
HARRY E SMITH

DATA
STRUCTURES

FORM AND
FUNCTION

DATA
STRUCTURES

FORM AND
FUNCTION

HARRY F. SMITH
IBM Scientific Center, Palo Alto

California State University, San Jose

Harcourt Brace Jovanovich, Publishers

and its subsidiary, Academic Press

San Diego New York Chicago Austin Washington, D.C.

London Sydney Tokyo Toronto

Copyright © 1987 by Harcourt Brace Jovanovich, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopy,
recording, or any information storage and retrieval system, without permission

in writing from the publisher.

Requests for permission to make copies of any part of the work should be
mailed to: Permissions, Harcourt Brace Jovanovich, Publishers, Orlando,

Florida 32887.

ISBN: 0-15-516820-7

Library of Congress Catalog Card Number: 86-83142

Printed in the United States of America

The camera-ready pages for this book were produced with the IBM 4250 Page Printer.
The text is set in Monotype Times Roman, the figures in Helvetica, and the algorithms

in Univers.

The illustrations are by House of Graphics.

/Katif

■/\utho>i ofi (Contentment

PREFACE

The subject of data structures is a rich treasure house of basic concepts, clever
tricks, the power of abstraction, numerous algorithms, and - implicit or explicit
throughout — means of evaluation and comparison of alternative approaches. It is
good that, by now, almost every student of computer science or data processing
takes an explicit data structures course; most programmers of earlier vintage
learned of these matters imperfectly from sketches on the backs of computer list¬
ings. The topic has become so fundamental, in fact, that whereas it was once
presented as an upper division course, it is now presented in the lower division, very
often in a “softened” form. But at the same time that the initial presentation has
“moved down,” the subject has “moved up” both in depth and scope, so that now a
second course is usually needed by serious students.

This book is designed primarily to respond to this need for additional coverage;
it contains a considerable amount of advanced and up-to-date material. With refer¬
ence to the guidelines of ACM Curriculum ’78 [1979], the material herein is
centered on CS7 (Data Structures and Algorithm Analysis). However, ACM
Curriculum ’78 also treats data structures in CS2 (Computer Programming), CSS
(Introduction to File Processing), and CS13 (Algorithms). We share the view that it
is desirable to have a unified treatment of these topics. In any advanced treatment,
it is difficult to do equal justice to several different aspects of the subject, including:

• the enormous amount of invention in the field;
• the increasing importance of abstraction in discussing data structures;
• the analysis of structures and algorithms in terms of complexity theory.

We have elected to present the latter two aspects, but not with consistent emphasis,
thereby maximizing the opportunity to dwell upon the first aspect. One objective of
this approach is to make the book useful as a text for a second course, either at the
upper division or graduate level; another objective is that the book should be valu¬
able as a reference for the professional programmer. Partly for this second reason,
the book is complete and self-contained with respect to the subject matter; this has
the added consequence that some number of teachers and students might find it to
their liking in the context of a first course in data structures. In summary, we have
striven to make this an eminently useful book. The following paragraphs describe
some of the ways in which the style of the book is designed to respond to these

multiple intentions.

1. In most of the chapters, the material is organized in the logical sequence: basic
notions, several applications of these notions, advanced notions. Thus, readers
having no prior familiarity with data structures would very likely wish to skip
the latter portions of the chapters, and knowledgeable readers might prefer to
skip or skim the initial portions. At an earlier point in time, the sections were
marked in a manner to indicate whether the material was introductory, interme¬
diate. or advanced. Two things caused that to change. One was the maturing

PREFACE

realization that our primary audience consists of those pursuing the subject a
second time. Related to tins is the second reason that for such an audience,
there is great divergence in what can be considered as basic and already known.
The present point of view is that the unmarked sections are all significant for a
second course in data structures, but that most students in such a course would
be able to skim through the initial parts of most chapters. On the other hand,
there are numerous sections marked with a indicating that the material is
more advanced, or less fundamentally significant, or both. There are two or
three special sections at the end of each chapter. One of these, the Reference to
Terminology, might seem somewhat inappropriate for a second-level text. But
we are convinced of its utility. Although more advanced readers may not be
overwhelmed by the proliferation of terminology, experience firmly indicates

that they still appreciate tools that are helpful in organizing concepts.

2. We have tried to provide a treatment that is more complete than usual, even
though — in such a dynamic subject area — that goal is ephemeral at best.
Related to this aim are the extensive bibliographic references. In order to
reduce the element of distraction for the more casual reader, multiple references
are usually removed to the Bibliographic Notes section at the end of the chap¬

ter, with [§] left to signal their occurrence.

3. In order to make the book accessible to a wide audience, only a modest level of
mathematics is employed. In Chapter 1, we review the necessary competence
on the reader’s part. For readers who wish to see detailed analyses of algo¬
rithms or learn how to perform their own analyses of algorithms, the original
treatment of these matters by Knuth [1973a, 1973b] is still incomparable. An
excellent treatment with a different point of view is that of Aho, Hopcroft, and

Ullman [1974],

4. We concur with the widespread use of Pascal for representing data structures
and algorithms. The issue is not without debate, however, as we discuss in
Chapter 1. In addition to the usual reasons for choosing Pascal, we find it
comforting that all the algorithms are in executable form, except for the neces¬
sity to transpose a few lines of text in some cases. As a sample of the clarity
that can be brought to exposition by Pascal, readers already acquainted with
the Schorr-Waite algorithm for marking a List are invited to examine the proce¬
dure MARK_LIST (Algorithm 4.7) on page 154.

5. It is relatively easy and can be quite informative to read a text such as this. But
the real transfer of knowledge in Computer Science comes with mastering exam¬
ples and doing exercises. We have sought to have a variety of examples that
are both interesting and meaningful, but to avoid the appearance of presenting
a cookbook of code. On occasion, minor details of efficiency in an algorithm
are suppressed in favor of clarity; in almost all cases, an algorithm appears on
one page. With regard to exercises, we have sought to have enough to satisfy a
wide range of interests and abilities among readers. The exercises at the end of
each chapter are classified at three of levels. Those marked with | should be
considered as intermediate, and those marked with tf should be considered as

PREFACE ix

advanced. Note, however, that these ratings reflect not one but several factors
level of the corresponding text, depth of requisite understanding, amount of

work required, etc. The language to be used lor implementing algorithms is
deliberately not specified, being left to the reader and/or the instructor. For
obvious reasons, however, Pascal is a strong candidate.

6. The organization of the chapters in this book reflects the title Data Structures:
Form and Function:

• Chapters 1—8 are about the individual data structures.

• Chapter 9 is a brief coda to the first eight chapters, presenting some
summary ideas about the use of structure in dealing with complexity.

• Chapters 10—13 address the topics of searching, memory management,
files, and sorting.

Although there are many examples relating to individual data structures in the
first eight chapters, there is much to be gained by having the dedicated
discussions of the last four chapters. If the reader’s interest is pragmatic, he1
can more readily make comparisons between methods - some of which do not
neatly fall into any of the earlier chapters. If his interest is more theoretical, he
can more readily appreciate the effects of choosing and commingling among the
various data structures.

It is definitely not trite to acknowledge the relevance of experience in using
earlier versions of these notes while teaching Data Structures courses at San Jose
State University. Over and over again, student reactions have shown that an appar¬
ently good way of explaining something could be made better, and so this effort
owes much to those who have stumbled and complained. The teaching experience
is also valuable because it seems to confirm the viability of writing one book that
could serve multiple audiences. These notes have been used more often in teaching
a graduate course in Data Structures, but they have been used just as successfully in
teaching an undergraduate, first course in the subject. In fact, the same precaution
needs to be observed at either level — to be careful about which material should be
covered and which should be omitted, depending upon the background of the audi¬
ence. Although there is not a great deal of latitude in picking material that should
be covered in a first course, there is for a second course; my own custom has been
to vary the latter by about 20 percent each time I teach it, which helps keep the
subject fresh. Specific suggestions for syllabi that are appropriate for both first and
second courses are given in the Instructor’s Manual.

It is sobering to recount the number of people to whom I am indebted in the
course of finishing this project. Sincere thanks go to all those who have read or
reviewed the work over the past years. Some of them are still nameless to me.

1 Throughout this book, the use of the pronoun “he” has no intended prejudice. It
should be construed as a reduction of “she” or “he.”

X PREFACE

However, it is a pleasure to be able to acknowledge contributions from Joel Aron
Marilyn Bohl, and Tony Hassit of IBM; from Henson Graves, John Mitchem, and
Jeff Smith of San Jose State University; and from Robert Tarjan of Princeton
University. I am particularly grateful to Cliff Hollander for his perceptive an
encouraging commentary when the manuscript was being launched, to William
Topp at University of the Pacific for offering valuable ideas that led to an impor¬
tant mid-course correction, and to Christopher Brown at the University o
Rochester and David Frisque at the University of Michigan for their constructive

encouragement in bringing the book to completion.

The experience with Academic Press and Harcourt Brace Jovanovich has been
uniformly a rewarding one. On the editorial side, Richard Bonacci, Dale Brown,
and Jack Thomas were all extremely helpful. On the production side, Lynn
Edwards and Don Fujimoto demonstrated a marvelous mixture of support and trust
with regard to the uncommon manner of producing camera ready masters. Alex
Teshin and Romaine Lo Prete from the House of Graphics were wonderfully

patient in rendering the line art.

There is an immense debt of gratitude of a different sort to the IBM Corpo¬
ration for enabling both the authorship and the computerized typesetting of this
book. None of this is to be construed, however, as an endorsement by IBM of any
of the views expressed herein. Over the past few years, numerous managers at the
Palo Alto Scientific Center have endured the traumas associated with this book; I
am particularly grateful to Pat Smith for his role in initiating this support. In
carrying out the typesetting, I received valuable help from Bob Creasy, Kathy Cruz-

Young, Mike Kay, and Art Schmidt.

CONTENTS

1 PRELIMINARIES 1

1.1 Real Machines and Abstract Data

1.1.1 Data Type and Data Structure

2

1.1.2 Abstract Data Types

1.2 Mathematical Background 7

1.2.1 O-Notation

1.3 Algorithms 11

1.3.1 Recursion 1.3.2 Analysis of Algorithms 1.3.2.1 Complexity
Classes 1.3.2.2 Measuring Complexity fl.3.2.3 Recurrence Relations

1.4 Languages and Programs 21

1.4.1 Representation of Algorithms 1.4.2 Data Typing in Pascal
1.4.3 Functions, Procedures, and Parameters

1.5 Overview 28

1.6 Bibliographic Notes 28

1.7 Reference to Terminology 28

1.8 Exercises 29

ARRAYS and SETS 33

2.1 One-Dimensional Arrays 34

2.1.1 Sequential Storage Allocation 2.1.2 Searching an Array

2.2 Multi-Dimensional Arrays 37

2.2.1 Storage Allocation Functions 2.2.2 Triangular Arrays

2.3 Examples of Array Usage 43

2.3.1 Cross Sections 2.3.2 Linear Algebra 2.3.3 Decision Tables
2.3.3.1 The Rule-Mask Technique

2.4 Sets 52

2.4.1 Sets in Mathematics 2.4.1.1 Relations and Functions
2.4.2 Ordered Sets and Set Representations 2.4.3 Sets in
Programming Languages

CONTENTS
• •

Xll

2.5 Reducing Algorithmic Complexity 58
2.5.1 Divide-and-Conquer f2.5.1.1 Strassen’s Algorithm 2.5.2 Parallel

Bit Operations +2.5.3 Four Russians Algorithm

2.6 Advantages and Limitations of Arrays 67

f2.7 Alternative Storage Schemes 68
12.7.1 Shell Storage +2.7.2 Arbitrary Extendibility

2.8 Sparse Matrices 72

+2.9 Extended Semantics for Arrays 77

2.10 Overview 78

2.11 Bibliographic Notes 78

2.12 Reference to Terminology 79

2.13 Exercises 80

RECORDS 86

3.1 Fixed Length Records

3.1.1 Multiple Qualification

86
3.1.2 Examples of Record Usage

3.2 Variant Records 93

3.2.1 Field Discrimination t3.2.2 Type Conversion

3.3 Variable Length Records

3.3.1 Field Demarcation by

99
Separators 3.3.2 Field Demarcation by Counts

3.4 Overview 104

3.5 Reference to Terminology 104

3.6 Exercises 104

4 LISTS 107

4.1 The Flexible Nature of Lists 107

4.1.1 Array Indices as Links 4.1.2 Pointer Variables as Links
4.1.2.1 Simple Lists 4.1.2.2 Circular Lists 4.1.2.3 Bi-directional Lists
4.1.3 The Free Storage Pool 4.1.4 The Economy of Pointers

4.2 Examples of Sequential List Usage 122

4.2.1 Maintenance of an Ordered List 4.2.2 Polynomial Addition
4.2.3 Equivalence Classes

4.3 Multiple Linking 131
4.3.1 Inverted Lists 4.3.2 Multilists 4.3.3 Arrays Revisited
f 4.3.3.1 Sparse Matrix Operations

CONTENTS
• • •

Xlll

4.4 List Structures 145

4.4.1 Representation Issues 4.4.2 Reentrant and Recursive List
Structures f 4.4.3 Operations with List Structures f 4.43.1 Traversing a
List Structure f 4.4.3.2 Multivariate Polynomial Addition f4.4.4 List
Processing Languages - LISP

4.5 Overview 159

4.5.1 The Hazards of Pointing

4.6 Reference to Terminology 160

4.7 Exercises 161

5 QUEUES and STACKS 166

5.1 Queues 166

5.1.1 Logical Data Structure 5.1.2 Physical Representation 5.1.2.1 Using
a Linked List 5.1.2.2 Using an Array as a Circular Queue 5.1.3 The Use
and Behavior of Queues f 5.1.3.1 Queue Parameters 5.1.4 Generaliza¬
tions of Queues

5.2 Stacks 176

5.2.1 Logical Data Structure 5.2.2 Physical Representation 5.2.3 Appli¬
cations of Stacks 5.2.3.1 Procedure Call and Return 5.2.3.2 Evaluation
of Expressions 5.2.3.3 Translation of Expressions

f5.3 Multiple Queues and Stacks 1S7

5.4 Recursion Revisited 191

5.4.1 Backus-Naur Form f5.4.2 Transformation of Programs
f5.4.2.1 Tabulation and Other Speed-Ups f5.4.3 Recursive Schema
and Computability

5.5 Overview 197

5.6 Bibliographic Notes 198

5.7 Reference to Terminology 198

5.8 Exercises 199

6 TREES 203

6.1 Definitions and Terminology 203

6.2 Linked Representation and Binary Trees 206

6.3 Tree Operations — Traversal Sequences 209

6.4 Efficient Traversal Schemes 213

6.4.1 Traversal via a Stack 6.4.2 Traversal via Threads f6.4.3 Traversal
via Tree Transformations

xiv CONTENTS

6.5 Other Tree Representations 222
6.5.1 Other Linked Representations f6.5.2 Sequential Storage Schemes

6.5.3 Complete t-ary Trees

6.6 Applications of Trees 228
6.6.1 Binary Search Trees 6.6.2 Recognizing Grammatical Structure with
Trees 6.6.2.1 Expressions 6.6.2.2 Parse Trees 6.6.3 Decision Trees and
Decision Tables 6.6.4 Heaps and Priority Queues f6.6.4.1 Alternative
Implementations of Priority Queues 6.6.5 Equivalence Relations
f6.6.5.1 The Ackermann Function

f6.7 Enumeration of Trees 251

f6.7.1 Ranking Functions for Trees

6.8 Searching for Solutions in Trees 259
6.8.1 Exhaustive Search Strategies f6.8.2 Backtracking f6.8.2.1 Systems
of Distinct Representatives f6.8.2.2 Nondeterministic Algorithms
f6.8.3 Branch-and-Bound 6.8.4 Games f6.8.4.1 Alpha-Beta Search

6.9 Overview 281

6.10 Bibliographic Notes 283

6.11 Reference to Terminology 284

6.12 Exercises 285

7 GRAPHS 294

7.1 Definitions and Terminology 295

7.2 Operations and Representations for Graphs 299

7.3 Connectivity 303
7.3.1 Search Trees in a Graph f7.3.1.1 The Number of Trees and
Cycles in a Graph f7.3.2 Blocks and Articulation Points of a Graph
7.3.3 Transitive Closure of a Digraph f7.3.4 Strongly Connected
Components of a Digraph

7.4 Applications of Graphs 320

7.4.1 Minimal Spanning Trees in a Graph 7.4.2 Shortest Paths in Graphs
and Digraphs f7.4.2.1 Dynamic Programming 7.4.3 Matchings and
Coverings in a Graph 7.4.3.1 Bipartite Graphs f 7.4.3.2 Systems of
Distinct Representatives Again f7.4.3.3 Networks and Flows
f7.4.3.4 Matching in the General Case 7.4.4 Traversals of a Graph or
Digraph 7.4.4.1 Eulerian Tours 7.4.4.2 Hamiltonian Cycles
f7.4.4.3 The Traveling Salesman Problem 7.4.5 Precedence Relations in a
Digraph 7.4.5.1 Topological Sorting f7.4.5.2 Critical Path Analysis
f7.4.5.3 Data Flow Analysis of Programs f 7.4.5.3.1 Dominance
f 7.4.5.3.2 Reducibility

7.5 Other Issues Relating to Graphs 361

f7.5.1 Graph Colorings f7.5.2 Planarity 7.5.3 Complexity of Graph
Algorithms f7.5.4 Graph Isomorphism

CONTENTS XV

7.6 Overview 367

7.7 Bibliographic Notes 368

7.8 Reference to Terminology 369

7.9 Exercises 370

8 STRINGS 380

8.1 Strings and String Operators 381

8.2 Representations for Strings 383

8.2.1 Character Code Sets 8.2.2 Data Structure Choices 8.2.3 A Set of
String Manipulation Algorithms 8.2.4 Minimum Redundancy Codes
8.2.5 Error Detecting and Correcting Codes f 8.2.5.1 Group Codes

8.3 Text Processing 404

8.3.1 Text Editing 8.3.2 Spelling Correction 8.3.3 Text Formatting

8.4 String Transformations 409

8.4.1 Data Compression 8.4.2 Cryptography 8.4.2.1 Private-Key
Systems f8.4.2.2 Public-Key Systems f8.4.2.2.J The RSA System

f8.5 Pattern Matching 419

+8.5.1 Substring Matching fS.S.l.l The Knuth-Morris-Pratt Algorithm
f 8.5.1.2 State-of-the-Art of Substring Matching +8.5.2 Finite State
Machines +8.5.3 Generalizations of Substring Matching
+8.5.4 Suffix Trees

8.6 Languages 432

8.6.1 Grammars +8.6.2 Recognizing Regular Expressions +8.6.3 Parsing
in General +8.6.4 String Processing as a Model of Computation

8.7 Overview 442

8.8 Bibliographic Notes 443

8.9 Reference to Terminology 443

8.10 Exercises 444

9 STRUCTURE and COMPLEXITY 448

9.1 Building Data Structures 448
9.1.1 Pointers Reconsidered +9.1.2 Data Encodings +9.1.3 Implicit
Data Structures

9.2 Mastering Complexity 456
+9.2.1 The Specification of Abstract Data Types

9.3 Choice of Data Structure Implementation 460

9.4 Reference to Terminology 462

XVI CONTENTS

10 SEARCHING 463

10.1 The Issues Involved 464
10.1.1 Harmonic Numbers 10.1.2 Path Length Properties of Trees

10.2 Searching Linear Data Structures 468

10.2.1 Sequential Search 10.2.2 Binary Search flO.2.3 Other Methods
for Ordered Tables

10.3 Searching Tree Structures 475
10.3.1 Random BST’s 10.3.2 Static BST’s with Unequal Frequencies
10.3.2.1 Optimal BST’s f 10.3.2.2 Quasi-Optimal Methods
f 10.3.2.3 Information-Theoretic Considerations f 10.3.2.4 An Alternative
- Median Split Trees 10.3.3 Dynamically Balanced BST’s
10.3.3.1 Height-Balanced Trees f 10.3.3.2 Weight-Balanced Trees
f 10.3.3.3 Restructuring Without Balance Criteria tlO.3.4 Multiway
Trees flO.3.5 A Unifying Perspective

10.4 Hashing 515
10.4.1 Hash Functions 10.4.2 Collision Resolution 10.4.2.1 Chaining
10.4.2.2 Open Addressing 10.4.2.3 Evaluation of Resolution Methods
10.4.2.4 Deletions and Rehashing f 10.4.2.5 Hash Table Rearrangement
flO.4.3 Hashing Optimality flO.4.4 Predictive Hashing

10.5 Digital Searching 538

10.5.1 Tries +10.5.2 Binary Digital Searching

tl0.6 Other Paradigms of Search 550

10.7 Overview 551

10.8 Bibliographic Notes 552

10.9 Reference to Terminology 553

10.10 Exercises 554

11 MANAGING PRIMARY MEMORY 560

11.1 Memory Management Issues 561

11.1.1 The Environment 11.1.1.1 Virtual Memory 11.1.2 Memory
Management Policies

11.2 Fixed-size Cells 564

11.2.1 Garbage Collection 11.2.1.1 Marking 11.2.1.2 Collection
11.2.2 Reference Counters 11.2.3 Compaction 11.2.3.1 Exchanging
Cells 11.2.3.2 Relocating Lists f 11.2.3.2.1 Moving Lists
f 11.2.3.2.2 Copying Lists 11.2.4 Garbage Collection versus Reference
Counters fll.2.5 Hybrid Reclamation fH-2.6 Parallel
Garbage Collection

CONTENTS xvii

11.3 Variable-size Blocks 584

11.3.1 Single Storage Pool 11.3.1.1 Organization 11.3.1.2 Allocation
11.3.1.3 Reclamation 11.3.1.3.1 Coalescing fl 1.3.1.3.2 Compaction
11.3.2 Buddy Systems 11.3.3 Multiple Storage Pools
11.3.4 Analyses and Comparisons f 11.3.4.1 Theoretical Results
f 11.3.4.2 Experimental Results

11.4 Overview 612

11.5 Bibliographic Notes 612

11.6 Reference to Terminology 613

11.7 Exercises 614

12 ISSUES WITH SECONDARY MEMORY 617

12.1 Storage Devices 618

12.1.1 Tapes 12.1.2 Disks and Drums f 12.1.2.1 Disk Fragmentation
12.1.3 Storage Devices - A Reprise

12.2 Virtual Memory 624

fl2.2.1 Implementation Issues f 12.2.2 Efficient Use of Virtual Memory

12.3 File Organizations 630

12.3.1 Sequential Files 12.3.2 Random Access Files f 12.3.2.1 Random
Access Parameters 12.3.3 Indexed Sequential Files 12.3.4 Tree-Struc¬
tured Files 12.3.4.1 B-Trees and B+-Trees f 12.3.4.2 Additional B-Tree
Considerations fl2.3.5 Extendible Hashing

12.4 Multi-dimensional Search 655

12.4.1 Multiple Sets of Indices 12.4.1.1 Bitmaps f 12.4.2 Multiple-Key
Hashing f 12.4.2.1 Superimposed Codes -fT2.4.3 Structures for General¬
ized Binary Search f 12.4.3.1 Quad Trees f 12.4.3.2 k-d Trees

12.5 Overview 665

12.6 Bibliographic Notes 666

12.7 Reference to Terminology 666

12.8 Exercises 667

13 SORTING 670

13.1 The Issues Involved 671

13.1.1 Inversions

CONTENTS xviii

13.2 Internal Sorting 674
13.2.1 Comparison-Based Methods 13.2.1.1 Insertion Sorting
13.2.1.1.1 Shellsort 13.2.1.2 Selection Sorting 13.2.1.2.1 Heapsort
13.2.1.3 Exchange Sorting 13.2.1.3.1 Quicksort 13.2.1.4 Merge
Sorting 13.2.2 Distribution Methods 13.2.2.1 Radix Sorting
13.2.2.2 Radix Exchange Sorting 13.2.2.3 Value Distribution Sorting
13.2.3 Theoretical Considerations f 13.2.3.1 Sort Optimality
f 13.2.3.2 Merge Optimality 13.2.4 Translating Theory Into Practice

fl3.3 Selection 709

13.4 External Sorting 712
13.4.1 Multiway Merging f 13.4.1.1 Buffer Management 13.4.2 Replace¬
ment Selection 13.4.3 Merge Patterns f!3.4.3.1 Tape Sorting
f 13.4.3.2 Disk Sorting

fl3.5 Parallel Sorting Schemes 724

13.6 Overview 726

13.7 Bibliographic Notes 727

13.8 Reference to Terminology 727

13.9 Exercises 728

List of Algorithms 733

Bibliography and References

Index 779

735

DATA
STRUCTURES

FORM AND
FUNCTION

1

PRELIMINARIES

“Not only does one not retain all at once
the truly rare works, but even within such works,

it is the least precious parts that one perceives first.
Less deceptive than life, the great masterpieces

do not give us their best at the beginning.”

Proust,
Remembrance of Things Past,

Within a Budding Grove, Part I

As with the mastery of any discipline, one must have a set of basic skills before he
can begin. For this book, that set of skills should be within the proximate grasp of
most programmers or students of programming. These skills include:

1. A modest competence in mathematics, including ordinary algebra and finite
mathematics. A knowledge of vector spaces and of some basic combinatorial
analysis is also helpful.

2. An appreciation of the use of algorithms, as distinct from a familiarity with the
nuts and bolts of a programming language.

3. A familiarity with a high-level programming language. Pascal is optimal for
our purposes; Ada, ALGOL, Modula, or PL/I should also provide adequate
background. Readers who know only BASIC, C, or FORTRAN will most
likely need to consult one of the scores of tutorial texts on Pascal.

After an initial discussion of something old (computing machines) and some¬
thing new (data abstraction), most of this chapter is devoted to setting forth some
details in each of these three areas. Less advanced readers may prefer to skirt the
issue of complexity, which is addressed in Section 1.3.2. In a sense, reading a chap-,
ter of this nature resembles taking vitamins - not as tasty as subsequent fare, but a
sensible means of averting a painful deficiency later on. It is addressed to the
reader who doesn’t already have everything in these areas.

2 PRELIMINARIES

1.1 REAL MACHINES AND ABSTRACT DATA

Even as computing machines become ever more prevalent, most users are blissfully
unaware of how they really operate at their native level; indeed, they are much
happier in not needing that knowledge. By the native level of operation, we reter to

machine instructions that, for example:

• add the contents of a memory location, which typically might be a word of 16
or 32 bits, to the contents of a designated machine register of the same size;

• move a byte of 8 bits from one memory location to another memory location;
• test the result of the last preceding arithmetic operation and take the next

machine instruction out of sequence if that result is negative or zero.

It is certainly possible to program a computer at this level of detail and many
people do, by either choice or necessity. Even in this case, however, most such
users actually write their programs in assembly language rather than in machine
language. By using assembly language, the programmer gains numerous advan¬
tages; primarily he is relieved of the responsibility for keeping track of where the

instructions and the data are within the memory of the machine.

Nonetheless, at this level of assembly programming, he must still be aware of
the nature of each machine instruction (and some of these can be quite difficult to
master and remember) and each machine register. Most machines have quite a bit
of idiosyncrasy at this level of detail. The stroke that finally frees most users from
having to contend with these details is the use of a high-level language (HLL) such
as Ada, ALGOL, APL, BASIC, COBOL, FORTRAN, LISP, Modula, Pascal, PL/I,
etc. We assume that any reader of this book is well acquainted with the state of
affairs that we have just summarized, and is comfortable using the machine in some
HLL, thereby suppressing irrelevant details. By using control structures, such as

if ... then ... else ...
while ... do ...

etc.

he has acquired a powerful abstraction away from the necessity of composing equiv¬

alent sequences of machine instructions.

1.1.1 Data Type and Data Structure

Now, what is the situation with regard to the manipulation of data, as opposed to
the composition of instruction sequences? The answer varies according to the HLL
that we examine. In many cases the facilities for abstraction are rather limited. We

can employ the primitive data types:

boolean corresponding to one bit of computer memory
character typically one byte (8 bits) of computer memory
integer typically one word (4 bytes) of computer memory
real typically two words (8 bytes) of computer memory

1.1.1 DATA TYPE AND DATA STRUCTURE 3

and we can employ arrays of any of these types. The integer and real types are
imperfect models of the integers and the real numbers from mathematics. The
modelling process has many nuances and pitfalls, which would merit an entire chap¬
ter it this were a treatise in numerical computation. The heart of the matter is that
integers and real numbers in mathematics can have an unbounded number of digits
(or other symbols) in their representation; but with computers, integers are repre¬
sented by fixed-point numbers of a fixed size, and real numbers are represented by
floating-point numbers, also of a fixed size. The number of bits actually employed
varies with the machine, and it is common for a given manufacturer to have
machines accommodating a variety of data sizes. Some representative values for
both number types are shown in Table 1.1.

computers integers (fixed) reals (floating)

Burroughs
Control Data
DEC
IBM

40 bits
18, 48, 60 bits
16, 36 bits
16, 32 bits

48, 88 bits
60, 108 bits
32, 36, 64, 128 bits
32, 64, 128 bits

Table 1.1 Number Sizes for Typical Computers

The situation with regard to floating-point numbers is much worse than that of
fixed-point numbers. It depends, for example, upon how many bits are allocated to
the mantissa, how many bits are allocated to the exponent, and what number base
is used with the exponent. But no matter what choices are employed for these three
parameters, floating-point numbers are poor models of real numbers, for several
reasons:

• For any two distinct real numbers u and v, there are always other real numbers
w such that u < w < v; but with the finite representation of floating-point
numbers, this fundamental property does not always hold.

• If we plot the finite set of all floating-point numbers for a given machine on the
real number line, we find that the gaps between the numbers are very uneven in
length (see Exercise 1.3).

• Although addition and multiplication are associative and distributive for real
numbers, the same operations on floating-point numbers are not!

Bounded representation has some peculiar hazards. For example, since
210 > 103 we would expect that a computing machine could faithfully represent any
three-digit number by the use of ten bits. Thus the largest three-digit integer 999
can be represented by the ten-bit number 1111100111. However, let us consider the
100 distinct decimal numbers in the range 9.00, 9.01, ... , 9.99. For each of these
numbers, the first four of the ten binary bits would have to be 1001, leaving just six
bits for the fractional parts. But these six bits yield only 64 distinct binary values
into which to map the 100 decimal numbers, so that in the binary representation
over two thirds of the numbers will be indistinguishable from neighboring values.
Many other examples of numerical pitfalls due to bounded representation can be
exhibited [§].

4 PRELIMINARIES

With regard to representing characters in computing machines, there are peculi¬

arities of a different and lesser kind. The characters of interest are mapped, via a
character code, onto arbitrary bit patterns. On most machines, a character code

pattern occupies one byte of storage; thus, in the common EBCDIC code, the bit
configuration 11000001 corresponds to the character 'A', 11110101 corresponds to

'5' etc Complications can arise with respect to an insufficient number ol bits tor

the entire set of characters, and also with respect to the arbitrariness of the code.

These matters will be discussed in detail in Section 8.2.1.

It would be logical to ask, from what we have said so far, how a computing

machine “knows” whether a sequence of bits such as 11000001 is:

• a sequence of boolean values — true, true, false, etc.,

• a short integer value of 27 + 26 + 2° = 193,

• the character 'A'
• or even something else.

The answer is that the machine does not “know” at all, from the bits themselves.1
Rather, the programmer - by operating upon the bits in a certain way - causes

them to be treated in the desired manner. At the level of assembly language, this is
controlled by the choice of machine operation codes. At the level of an HLL, it is
controlled by declaring items to be of the desired types, which in turn causes the

compiler or interpreter of the HLL to employ the proper operation codes.

Since the proper interpretation of data generally depends upon factors extrinsic

to its raw form in bits, what is the most appropriate manner in which to present

arbitrary data from a machine to a human when those factors are unknown? If we
consider a typical machine word of 32 bits under its alternate interpretations, then.

• 11000011 11110011 11010111 11010110 is obviously awkward,

• 3,287,537,622 obscures boolean and character data values,

• 'C3PO' obscures boolean and integer data values,
• and similar remarks apply for displaying real number data.

A very convenient solution to this dilemma is to group four bits at a time and

to display data in hexadecimal notation. Just as binary notation uses base 2 for

numbers and decimal notation uses base 10, so hexadecimal uses base 16. Hexade¬

cimal needs sixteen symbols for its digits; these symbols are by convention
0123456789ABCDEF

corresponding to the decimal values
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thus, we have

110000012 = (1100 0001)2 = (12 1)16 = C116= 12 x 161 + 1 X 16° = 19310

and also

1 At least, this is the situation in the von Neumann style of computing machine, which
prevails so widely today. There are various exceptions, for example machine architec¬
tures in which the data words have associated tags that make the data self-describing, to

various degrees.

1.1.1 DATA TYPE AND DATA STRUCTURE 5

11000011 11110011 11010111 110101102 = C3F3D7D616

It is often important to be able to do a limited amount of hexadecimal arithme¬
tic by hand. For instance, raw data is usually displayed or dumped from a machine
in hexadecimal form; and we must be able to translate this to binary or decimal
numeric values or to characters, as the case may require. When this involves too
much effort, either precomputed tables or subroutines are commonly used. Also,
we sometimes need to do hexadecimal addition or subtraction; an example of this
is combining offsets with the contents of registers in a memory dump. These oper¬
ations are easily performed, as we can see from the examples:

845A + 1A6B = (8 4 5 10) + (1 10 6 11) = (9 14 12 5) = 9EC5

845A - 1A6B = (8 45 10) — (1 10 6 11) = (6 9 14 15) = 69EF

The primitive types that we have been discussing are just one attribute of data.
An attribute is a generic quality used to describe an object, and a given attribute
may have several possible values. For instance, a person has the attribute of sex,
with the two possible values of male and female; some other attributes of persons
are height, weight, and age — with the values measured in inches, pounds, and
years, respectively. We have seen that in computing, data has the attribute of type,
with possible values of boolean, character, integer, and real. However, data can
also have other attributes. One is precision, for example 32 or 64 bits for reals;
another is number base, either binary or decimal.

The attribute of data that is the principal concern of this book is that of struc¬
ture, or “shape.” Structures are obtained by taking collections of primitive data
items and grouping them together in particular ways. From familiarity with HLL’s,
you know about one such structure, the array. Others that we will investigate are:
sets, records, lists, stacks, queues, trees, graphs, and strings. As we will point out
repeatedly, each of these is a logical structure, and it is convenient to think about
them without regard to how they are actually represented in a machine. Yet, the
issue of their physical representation is an important one that we need to address
explicitly in each case. As illustrated in our earlier discussion of integers and reals,
the process of modelling an abstraction (that is, choosing a representation) can have
many ramifications. We will see further evidence of this point in Section 1.4.1.

1.1.2 Abstract Data Types

We have seen that the use of control structures for execution sequencing is of great
advantage in HLL’s. The ability to define and use functions and procedures is
perhaps even more important. In an arithmetic expression, we are initially
restricted to the operators +, -, *, and /. These are then augmented by system
functions for absolute value, modulus, square root, etc. Beyond that, we can define
any function that we like, and then invoke it at any point within our program;
thus, we can effectively expand upon the primitive operators with arbitrarily defined
ones. If such a function is properly defined (that is, programmed), then anybody
who uses it can be unconcerned with numerous details of its implementation. In

6 PRELIMINARIES

fact, it can be implemented in many different ways, all of which are correct from

the point of view of the user, who simply presents input arguments and obtains

output values in return.

A powerful concept for data is to provide a similar definitional facility for data

structures. When this idea is carried out completely, an abstract data type (ADT) is

defined. Such a definition specifies both the set of permissible values that a variable

(or parameter) of this type may assume and also the permissible operations on

instances of ADT’s. The manner in which the ADT is represented is hidden from

the user, and he can only operate upon instances of ADT’s via procedure or func¬

tion calls. This mechanism also ensures that no illegitimate values can ever be

created. Several advantages accrue from the methodology of ADT’s. First, just as

the user of an ordinary program function can trust in its correctness, so the user of

an ADT can trust in the correct consequences of its use. Also, a program written in

terms of ADT’s is completely portable to any machine, as long as correct implemen¬

tations of the ADT’s exist for that machine. A simple instance of an ADT might be

for complex numbers, with functions to perform addition, multiplication, conju¬

gation, etc. The actual representation could be in terms of polar coordinates or

rectangular coordinates, or it might even switch from one to the other, but such

considerations would be transparent to the user.

The current state of computer science is such that the concepts just cited are not

yet all formally available in most programming languages. However, the notion of

an ADT is still of great utility in the first stages of a programming project. By

using it, a programmer can effectively distill the essential logic of a data structure

from the details of its possible representations. To put it positively, he should first

specify what he wants with his structures, and only after that take into consideration

how to implement them. To put it appositively, his design may profit from his

awareness of representation issues, but such issues should not distort the design. In

this book, we choose to approach data structures by asking what and then how in

an informal and unsystematic manner, rather than by defining and using ADT’s in

any rigorous fashion. However, since any serious student should be conversant with

the more formal approach, these matters are discussed in Chapter 9.

The programming language Pascal does provide some of the definitional power

that we have just described. A programmer can define and subsequently use arbi¬

trarily complex data structures of his choosing; but Pascal does not provide any

means for ensuring that these data structures will always be used correctly. In a

language that truly supports ADT’s, it is as if the implementation details are hidden

in a black box; but the analogy in Pascal is that they are enclosed within a clear

glass box, thus leaving open the possibility of misuse. More recent HLL’s such as

Ada [U.S. Dept, of Defense 1983] and Modula [Wirth 1985] fully support the

ADT concept, but they are yet to become the lingua franca that Pascal is. We will

discuss the facilities of Pascal for data typing in Section 1.4.2.

1.2 MATHEMATICAL BACKGROUND 7

1.2 MATHEMATICAL BACKGROUND

The level of mathematics that we need is modest, since we will usually analyze algo¬
rithms in only modest detail. By analyzing algorithms, we basically mean finding
quantitative results about the time or the memory requirements for their execution;
this matter will be explained in Section 1.3.2.

A. To begin with, we will need some concepts that are very simple but possibly
unfamiliar to some readers.

T y = Lx is the floor of x; that is, y is the greatest integer such that y <x. Thus,

13-2 = 3 L7 — 7 L—5.8 - —6 (not —5)

2. y = [x is the ceiling of x; that is, y is the least integer such that y > x. Thus,

[3.2 = 4 [1 = 1 T—5.8 = -5 (not—6)

3. From the operation of dividing z by y to obtain an integer-valued quotient, we
get the two operations

v = z div y = L(z -=- y), and u = z mod y = z — v x y (1.1)

The operator div yields the integer quotient and the operator mod yields the
modulus, or remainder. For example,

13 div 5 = 2 60 div 12 = 5 -19 div 4 = -5
13 mod 5 = 3 60 mod 12 = 0 -19 mod 4 = 1

We should caution you that there are alternative definitions of div and mod,
based on using truncate in lieu of floor. For example, in certain implementa¬
tions of Pascal, —19 div 4 = —4 and —19 mod 4 = —3.

B. Familiarity with logarithms is presumed. The usual notation is

log10 u = v, or log u = v, for u = 10v (1.2)

If, more generally, the base value is b, then the notation is

\ogb u = v, for u = bv = blogb u = \ogb (bu) (1.3)

Two base values that are important for our purposes are b = 2 and
b = e = 2.718281828 For the former, the common notation is

lg u = v, for u = 2V (1.4)

The latter case yields the natural logarithm, wherein

In u = v, for u = ev (1.5)

8 PRELIMINARIES

To convert logarithms from one base b to another base a simply requires multipli¬

cation by a constant, since

log*, u n
loga u = log# b x log6 u = U b>

C. The factorial of a non-negative integer n is n\, defined as follows:

(1.7) for n = 0, n\ — 1

for n > 0, n\ = n x (n — 1)! = n x (n — 1) x (n — 2) x — x 1

Related to the factorial are the binomial coefficients, denoted by either C(n,r) or

(^j, where for n > r > 0

n x (n - 1) x (n - 2) x - x (n - r + 1) _ n\

1x2x3 x - x r (in — r)\r\ 0-
(1.8)

C{n,r) is the number of combinations, or ways in which r objects can be selected
from n (distinct) objects; for example, C(7,2) = 21, C(7,3) = 35, etc. The binomial
coefficients get their name from the fact that they occur as the coefficients in the

familiar binomial expansion

n

ia + bf = £(">"'V (1-9)

r=0

There are numerous identities relating the binomial coefficients,

significant ones, all with simple proofs, are:

Some of the more

0-CD-* (1.10a)

(?M„-iH (1.10b)

CK-r)
(1.10c)

CMVM":!) (l.lOd)

and, for r / 0

H X

1
1

(l.lOe)

Also, related to the factorial and the binomial coefficients are the permutations

of r objects out of n, defined by

P(n,r) = r\x C(n,r) = --
(n — r)\

(1.11)

1.2 MATHEMATICAL BACKGROUND 9

In a combination the order among the selected elements is irrelevant; in a permuta¬
tion, however, the order is significant. Thus, P(7,2) = 42, P(7,3) = 210, etc. In
particular, P(n,n) = n\, and it represents all the different orders in which n distinct
elements can be arranged in n distinct positions.

D. There are two common ways to represent a permutation of n elements. The
first is illustrated by

(a b c d e f g\
f g b e a cj (1-12)

This signifies that the element in the first position goes to the fourth position (a
replaces d), the element in the second position goes to the sixth position (b replaces
/), etc. Typically, the first row of such a representation is implied rather than given
explicitly; so, for example, (d f g b e a c) would suffice for Eq. 1.12.

The second common way to express a permutation is in cycle notation. Our
same example would, in this style, be represented by

(d b f a) (g c) (e) (1.13)

In each cycle (xb x2,..., xfe), the element xk replaces x,, and for all i < k the element
x,- replaces xM. When representing permutations in cycle notation, it is often desir¬
able to obtain a unique representation by either of two sets of transformation rules.
The first of these sets is:

1.1 Arrange each cycle so that the smallest element in that cycle is the first element
in the cycle.

1.2 Delete any singleton cycles, such as (e) in Eq. 1.13.

1.3 List the remaining cycles in order of their first elements.

When these steps are applied to Eq. 1.13, we obtain the notation

(a d b f) (c g) (1.14)

On the other hand, the following set of rules is frequently more useful for work¬
ing with permutations:

II. 1 Arrange each cycle so that the smallest element in that cycle is the first element
in the cycle.

11.2 Retain any singleton cycles.

11.3 List the cycles in decreasing order of their first elements.

When these steps are applied to Eq. 1.13, we obtain the canonical form

(e) {c g) (a d b f) (1.15)

With the canonical form, the parentheses around the cycles can be omitted, yielding

e c g a d b f (1.16)

It is safe to omit the parentheses because they can easily be reconstructed by the
following rule: Insert a left parenthesis preceding any global left-to-right minimum.
Thus, in reconstructing Eq. 1.15 from Eq. 1.16, there are minima at e, c, and a.

10 PRELIMINARIES

E The Fibonacci numbers are the sequence of integers Fn, as follows:
1,1,2,3,5,8,13,21,34...

and defined by the relationship

*1 = 1, *2= 1 (1>17)

Fn = Fn-\ + Fn-2 (« = 3, 4, ...)

They describe a pattern of growth frequently found in nature. Examples include
population growth in idealized situations, spatial arrangement of leaves and flowers
in plants, etc. Closer to our purpose, they also describe various phenomena in the

analysis of data structures and algorithms.

F. Some basic concepts from set theory are also important for our purposes.
However, we will examine them in situ when we discuss sets as data structures in

Section 2.4.

The concepts that we have described to this point are essential for our purposes.
Some less elementary ones will be introduced as needed; they include linear alge¬
bra, recurrence relations, harmonic numbers, generating functions, and elements of
graph theory. Readers who are unfamiliar with these areas should not be concerned
about losing very much of the overall presentation. Background material can be

found in [§] if needed.

1.2.1 ONotation

It is common to have a quantity whose value depends upon some parameter n. A

simple example of this is V(n), the sum of the first n integers

n

V{n) = ^J= 1 +2 + 3 + ••• + n (1.18)

i=i

It is easy to show that V{n) has the exact value V(n) = Yin x (n + 1). This is often
not as pertinent, however, as the simpler fact that, as n increases, V(n) is of the
order of magnitude of n2, or V(n) = 0(n2). This idea can be made both more general
and more precise at the same time. The generality comes from speaking about
0{f{n)), where / may be any function of n. Thus, for the sum of squares

n

W{n) = Yf = 1 + 4 + 9 + - + n2 =
n x (n + 1) x (2n + 1)

(1.19)

1=1

the pertinent fact is that W(ri) = 0(w3). We obtain precision from the definition:

r(n) = 0(f(n)) iff there are two constants C and ft0,

such that | r(n) | < C x \f(n) | whenever n > n^.

This is read as ur(n) is order of /(«),” or “/*(«) is big Oh of /(«),” if and only if

(1.20)

1.2.1 0-NOTATION 11

By way of illustration, for r(n) = V(n), then f{n) = n2. If n0 = 2 then C - 0.7 will
work, and if = 5 then C = 0.6 will work, etc.; actually, for ^ sufficiently large,
we can get C as close to 0.5 as we like. Although 0-expressions are used in
equations - as m V{n) = 0(n2) - such equations have the peculiar property of
being one-sided ; they are formal means for conveying information from the right
hand side about the left hand side, as in Eq. 1.20. An alternative point of view that
makes this one-sidedness more explicit is to interpret Eq. 1.20 as saying that r(n) is
included (in a set theoretic sense, see Section 2.4) among those functions that are
asymptotically dominated by /(«). O-notation is very useful in contexts that have
nothing to do with machine computation [Knuth 1973a]; it is also a very impor¬
tant tool for analyzing and describing the behavior of algorithms, as we will see in
Section 1.3.2.

1.3 ALGORITHMS

In many ways, the study of data structures and the study of algorithms are comple¬
mentary. Indeed, this entire book could be rewritten with the emphasis upon
algorithms and yet cover many of the same topics. Therefore, it behooves us to
review just what an algorithm is. An algorithm can be defined as an unambiguous
specification of the steps to follow in order to solve a general problem, with the
assurance that the process will terminate after a finite number of steps. This state¬
ment is straightforward, but we should be sure that we understand all that is
implied by the definition.

General solution. An algorithm specifies how to solve some general problem.
The problem may have one input or several, or even none; but there is no solution
without at least one output. On the other hand, for many algorithms, just one bit
of output (true or false) is sufficient - for example, is n a prime number? An algo¬
rithm that solved the same problem every time would not be very useful; rather it
should solve a general class of problems, such as finding the square root of x, as
opposed to the square root of 3.

Unambiguous. The steps to be followed must be unambiguous. There must be
a determinism about the entire set of steps, and none of them can invoke any
magic. Thus, most kitchen recipes resemble algorithms but fall short in terms of
ambiguity, due to phrases such as: add a pinch of salt, stir over medium heat, etc.
In some cases, though, this ambiguity is less apparent, as in a computational
“recipe” that instructs us to choose an element x such that ..., or to choose the best
(?) route from A to B.

Termination. Finally, algorithms must be guaranteed to terminate. Herein
arises the principal distinction between an algorithm and a procedure. It is quite
easy to have a procedure that will run forever (until interrupted), as most beginning
programmers discover, or as in the case of an operating system. Sometimes, it can
be difficult to decide whether or not a computational procedure satisfies this crite¬
rion. There is, for instance, the following famous “algorithm,” which takes a
positive integer n as input and computes a sequence of integers from it.

12 PRELIMINARIES

while n > 1 do
if (n mod 2) = 0 then

n := n div 2
else

n := n * 3 + 1;

As an example, starting with n = 7, the following sequence is computed.

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

No one has been able to prove as yet that this process will terminate for all positive
integers n. There’s no need to expend machine cycles, however, since its termi¬

nation has been established for all values of n up to an extremely large limit.

The comparison between algorithms and programs is reminiscent of the
comparison between abstract data types and their representations. The essence of
an algorithm is independent of any particular machine or programming language.
Yet we can only capture the algorithm by expressing it in some particular language.
We will take up the subject of representing algorithms in Section 1.4. The remain¬

der of this section deals with algorithms in more general terms.

When considered in their own right, algorithms have a curious taxonomy.
Some useful characterizations that are employed to describe them are: determinis¬
tic, nondeterministic, probabilistic, greedy, oblivious, on-line, off-line, recursive, etc.
We will be concerned almost exclusively with deterministic algorithms, although we
will discuss the nondeterministic case in Chapter 6. The descriptions greedy, oblivi¬
ous, and on-line and off-line are modestly significant, and will be illustrated
subsequently. Recursion, however, is of fundamental importance and will be
discussed in the next section. A distinct and very important issue is the character¬
ization of algorithms in terms of the amount of time and the amount of memory-
space that they require for execution; we will expand on that in Section 1.3.2.

1.3.1 Recursion

Recursion is the phenomenon wherein an object is defined in terms of itself. We can
find recursion in many guises. It describes, for instance, the infinite series of
reflections that we see when we stand between two mirrors that are not quite paral¬
lel to each other. It also occurs commonly in mathematics. Examples of this are
Eq. 1.7 for factorials, Eq. 1.1 Od for binomial coefficients and Eq. 1.17 for Fibonacci
numbers. Another example from mathematics is found in the inductive definition

of the natural numbers:2

(a) 1 is a natural number, and

(b) if n is a natural number, then so is n + 1.

2 This common, intuitive definition by clauses (a) and (b) has several technical deficien¬
cies. They can be redressed by using a more detailed set of specifications known as the
Peano postulates.

: ?hCUP-SJON 13

Ok iKfieit is reconkw, of crane, n Chat many algorithms (and data structures! j
CBfioy it is their definition. Note that, to order to avoid infinite regress, a recur-
*** defisrtios will have two parts: (a) a bass clause that specifies some initial

■i jt-1 am '.) an e.s , tr.a: specifies hov- to obtain subsequent values.

funct or, /- A <r ntege', nteger;

var cp,qx nteger;

begin
rf n < 2 then

ALGOR_A := 1
e ve begin

q :* 1; r :* 1;
for r ; ' to n - 2 do begin

P :* q; q := r; r := p - q;
end;
ALGOR_A ;= r;

end;
end;

Algorrthm 1.1 £LGOR_A

Recursion is eepeda.lv useful because it often leads to definitions that are
tonct.se and mtntr-e. In demonstration of this point, consider the function
ALOOP_A Algorithm 1-1 j, uhich uses iteration rather than recursion. Can you
rtcogn.ze >.ha: it is computing? You should experiment with it for several values of
j» before comparing it with the definition given in Eq. 1.17. On the other hand,
rtcnru .e defir..::on* are not always easier to comprehend. Consider, for example,
the f - nunon ALGOR_B ‘ Algorithm 1.2j. What is a simpler way to specify its
effect'' If it is not obvious to you, then try the algorithm for some sample set of

. al ues s ash as p = 0, w = 7, « = 4.

function A_G0P_3 (p,rr. r -teger): integer;
begin

if n = 0 then
ALGOR_B:= p

else
ALGOR_B := ALGOR_B (p - m,m,n - 1);

end;

Algorithml.2 ALGOR_B

Expressing an algorithm in a manner that enhances insight and expressing it in
> rnar.nsr that maximizes computational efficiency often represent conflicting goals.

14 PRELIMINARIES

As an example, the computation of F7 by applying Eq. 1.17 would expand into the
set of evaluations in Figure 1.1; a direct computation by ALGOR_A would be
much more efficient, particularly as n becomes large. In Section 5.4 we will discuss
the transformation of an algorithm between equivalent (that is, producing the same
answers for all inputs) non-recursive and recursive forms. In this section our objec¬
tive has been simply to elucidate the basic nature of recursion, since it occurs in
both the algorithms and the data structures that we will be studying. The subject is
a large one in its own right, and we will return to it from time to time, beginning in

Chapter 4.

Ft = F5 + F6 = (F3 + F4) + (F4 + F5)

= ((Ft + F2) + (F2 + F3)) + ((F2 + F3) + (F3 + F4))

= ((1 + 1) + (1 + (F1 + F2))) + ((1 + (Ft + F2)) + ((F i + F2) + (F2 + F3)))

= (2 + (1 + (1 + 1))) + ((1 + (1 + 1)) + ((1 + 1) + (1 + (Fi + F2))))

= (2 + (1 + 2)) + ((1 + 2) + (2 + (1 + (1 + 1))))

= (2 + 3) + (3 + (2 + (1 + 2))) = 5 + (3 + (2 + 3))

= 5 +(3+ 5) = 5 + 8 = 13

Figure 1.1 Evaluation of F7 by Eq. 1.17

1.3.2 Analysis of Algorithms

Discovering that a particular algorithm can solve some problem is just part of the
story. A significant consideration beyond its capability is its cost. In real life,
computing costs can be measured in many different ways: coding time, debugging
time, dollars expended, physical resources required, etc. In discussions of data
structures and algorithms, however, cost is considered to have two principal compo¬
nents: the amount of computer time (in milliseconds, minutes, months, etc.), and
the amount of computer memory required for the execution of the algorithm. By
memory we mean primarily that which is required for the data, including temporary
or working values, and not that which is required for the program itself.

All of the problems that we will be considering have some size n associated with
them. What is meant by size? In many problems, this is easy to decide. If we are
doing a calculation involving an input of n items, then the size is often just n.
Assuming that we can abstract such a value of n from all the details of a problem,
the analysis proceeds from the observation that, as n increases, so may the costs,
both in time and in memory space. Analyzing an algorithm means trying to esti¬
mate these costs as a function of the size. Often one cost can be traded off against
the other. For instance, a simple loop to add a set of n numbers in memory would
require relatively less space but more time than would a program that added them
via a succession of n add instructions without a loop. However, most of the signif¬
icant trade-offs between time and memory are not so simple, and involve swapping
time for a choice of data structure, as opposed to space for instructions. Our

1.3.2 ANALYSIS OF ALGORITHMS 15

discussions of algorithmic complexity will primarily be in terms of time, since that is
usually the more critical resource, but space will enter the discussion in some cases.

In this section, we first describe the insights to be gained by classifying algorith¬
mic costs in broad categories of algorithmic complexity. Next we consider some of
the problems associated with trying to measure that complexity for a given algo¬
rithm. In all of these discussions of the effectiveness of algorithms, the reader might
plausibly associate computational efficiency solely with choosing a good algorithm.
Such a belief would be very misguided. The choice of an appropriate representation
(that is, data structure) for a problem is, in many cases, the most significant choice
to be made for reducing computational effort. Although the corroboration of that
claim depends upon the rest of this book, we can find another, dramatic illustration
in astronomy. For hundreds of years, early scientists used the model devised by
Ptolemy to describe the apparent motions of the planets in the heavens. The key
assumption of this model held that the planets and the sun move around the earth;
and this necessitated the use of epicycloids (circles with loops around their circum¬
ference) to make the observed data fit the theory. By contrast, Copernicus and
Kepler developed a model in which the planets move around the sun; in this repre¬
sentation, planetary motions are much more simply explained by using ellipses. Not
only that, but it was this basic model of planetary motion which led Newton to
formulate his epochal Law' of Gravitation. Imagine the state of science today if we
were still laboring under the weight of the earlier model.

1.3.2.1 Complexity Classes. In analyzing an algorithm, we do not try to estimate
precise costs. Too many factors are hard to quantify: how efficiently the algorithm
is expressed in a program, how efficiently the compiler or interpreter will translate
the program, what machine the program is run on, etc. Instead we try to find some
expression that depends upon an obvious, explicit parameter (or parameters) n, and
that can be used to approximate the performance of the algorithm. This is the

reason why the O-notation of Section 1.2.1 is of such importance for computation.

With regard to the definition given by Eq. 1.20, although there are algorithms
for which the value of the constant C is of interest, the nature of the expression f(n)

is much more significant. Why is this type of analysis so important, given that it is
often so crude? In most of the algorithms that we will study, a major consideration
is the feasibility of applying them to problems with larger and larger values of n.

As n grows, how does the time to execute an algorithm increase, if its complexity is
proportional to /(«)? Some common functional forms of f{n), and their values as n

increases, are illustrated in Table 1.2.

The importance of these effects can be demonstrated more effectively by chang¬
ing the point of view. Let us associate with each form of f(n) a constant that

hypothetically allows us to measure elapsed time for some algorithm of that
complexity class in units of milliseconds, that is T = C x f{n). Then, for each f(n),

we can invert this equation to find n — s(T), the largest size problem that can be

handled for any time interval. Moreover, we will “load the dice” by assigning

constants that discriminate against those f(n) with lower growth rates. The results

of this exercise are shown in Table 1.3.

16 PRELIMINARIES

f(n) n = 3 n = 10

o

C
O

II c
 n = 100 n = 300 n = 1000

ig n 1.6 3.3 4.9 6.6 8.2 10

n 3 10 30 100 300 1000

n Ig n 4.8 33 147 664 2469 9966

n2 9 100 900 10000 90000 106

n3 27 1000 27000 106 2.7 x 107 109

2" 8 1024 109 1030 1090 IO300

10n 1000 1010 1Q30 io100 IO300
1 Q1000

Table 1.2 Growth of Various f(n) with n.

The most important feature of Table 1.3 is that, whereas with algorithms
A1 — A4 it is feasible to solve problems of larger and larger size by making longer
computations, that is not the case for algorithms A5 and A6. Increasing the time
available for computation pays off for the former, where there is a multiplicative
factor between successive columns; but it has relatively little effect on the latter,
where there is an additive factor between successive columns. Thus it is far more
effective to find a faster algorithm than it is to compute for a longer time, or even
to acquire a faster machine. This is true even though we have chosen constants that
favor the latter algorithms. The benefit of these biased constants makes A5 and A6
competitive for small problems, but that benefit is of no avail as n increases.

f{n) 1 second 1 minute 1 hour 1 week 1 year

AT. 300 x n 3 180 10800 2 x 106 108
A2: 100 x n Ig n 4 91 3103 3.3 x 105 1.3 x 107
A3: 30 x n2 5 44 346 4489 32377
A4: 10 xn3 4 18 70 390 1454
A5: 3x2" 8 14 20 27 33 ■
A6: 1 x 10n 3 4 6 8 10

Table 1.3 Attainable Problem Size n for Given f(n) in Given Time T

It is clear from Tables 1.2 and 1.3 that an algorithm with exponential complexity
(A5,A6) is far less satisfactory than one with polynomial complexity (A1 - A4). In
fact, if the only algorithms that are known for solving a problem are all of exponen¬
tial complexity, then that problem is often said to be intractable. For large values
of n, such a problem may be solvable in theory, but it is not solvable in practice,
since we cannot wait years or millennia for the calculation to terminate. Is it really
reasonable to make such a distinction between polynomial and exponential algo¬
rithms? After all, how feasible is a computation of 0(1O6 x n1000)? There seem to be

1.3.2.1 COMPLEXITY CLASSES 17

two answers confirming the value of the distinction. One is that useful polynomial
algorithms are, in practice, always of quite low degree. Another reason, significant
for analysis, is that the class of polynomial algorithms is closed under composition.
We will have more to say about the gap between polynomial and exponential
complexity in Chapter 6.

1.3.2.2 Measuring Complexity. It is conventional to denote the amount of work,
or time, required to solve a problem of size n with a particular algorithm, by T(n).
Analyzing an algorithm to determine its performance means determining that
T(n) - 0(f(n)), for some f(n) like those of the preceding section. Thus, Eq. 1.19
could represent a generic example wherein the terms of the series W(n) correspond
to the work required to compute successive values jl9 s2,... in some other series S,
and where the work for the term s, is proportional to i2. In this case the complexity
T(n) of computing S is 0(n3).

More typically, we have to start our analysis at a lower level, by counting how
many times each step of the algorithm is executed. A more refined measure might
take into account the different amounts of time required by different steps, but we
sweep that under the rug by choosing a sufficiently large value for the constant C.
In fact, all that really matters is the time required for the steps that dominate the
computation. These steps might be multiplications for one problem, data compar¬
isons for another, data moves for yet another, etc. Having identified these, we
proceed by trying to estimate their frequency of execution. In the next paragraphs,
let P; and Pj represent blocks of algorithmic steps that are executed in some approx¬
imate times, and let Pu represent a sub-block of algorithmic steps within Pt.

If we have an algorithm of the general form Pt followed by Pp such that Pt
executes in time Tt - 0(f(m)) and Pj executes in time 7} = 0(g(ri)), then the overall
time complexity for executing Pt followed by Pj is

Tt +Tj<Cx |f(r) \ + C2\g(r) | for r > and r > n0

<(CI + C2)max(|/Ml, |*(r)|)

In other words,

T=Ti+Tj = 0(max(f{m),g(n))) (1.21)

This is the additive property of 0-notation. In the case of two successive definite
iterations

for i := 1 to m do begin

end;
for j := 1 to n do begin

end;

Eq. 1.21 reduces to max (m,n).

Next, consider the case of an algorithm P containing parts P, and sub-parts

with the properties:

18 PRELIMINARIES

• the outermost steps Pt execute in time T, = 0(f{m)), and
• the innermost steps PQ execute in time TtJ = 0(g(n)) for each single outermost

step Pt.

Then the overall time complexity for executing P is determined by the product of

the two:

T = 0(f(m) x g(n)) (1-22)

by an appropriate choice of constants. This is the multiplicative property of

O-notation. In the case of two nested definite iterations

for i := 1 to m do begin

for j := 1 to n do begin

end;

end;

Eq. 1.22 reduces to m x n.

Although estimations for definite iteration are easy, estimations in the cases of
indefinite iteration (for example, while ... do ... or repeat ... until ...) or in the
cases of alternate path selection (for example, if ... then ... else ... or case ... of
...) require more elaborate analysis methods. As an extreme example, Knuth uses
properties of the gamma function and complex-variable theory when analyzing
radix exchange sorting [Knuth 1973b].

Note from Eq. 1.20 that an estimate in terms of 0-notation represents an upper
bound analysis for a particular algorithm. A different point of view is to look for a
lower bound analysis, as represented by Q-notation:

r(n) = Q(g(«)) iff there are two constants C and «0,

, , , , (1.23)
such that | r(n) \ > C x | g(n) | whenever n > nQ.

Although Q-analysis can be applied to an algorithm, the more interesting and diffi¬
cult question is to apply it to a problem. In other words, we would like to know
the lower bound for the complexity of solving a problem, using any algorithm, and
this requires some fundamental insight into the nature of the problem. It is usually
easy to obtain a trivial estimate for Q. For instance, we would expect any problem
that has m inputs and n outputs to require at least Q(m + n) work, by virtue of the
usual necessity to read each input and write each output. However, depending
upon the nature of the problem, the complexity may be inherently greater than this.
Although we will mainly characterize results in terms of 0-notation, there will be a
few instances of Q-notation, for example, with matrix multiplication, sorting, etc.

If we have an algorithm to compute r(n), there is also the felicitous possibility
that C/(«) < r(n) < C/in), for some f(n) and for appropriate constants Cx and C2.
Thus, our algorithm is both Q{f(n)) and 0(f(n)), denoted by r{n) = 0(/"(n)). If a
problem has complexity Q(/"(«)), and if we have an algorithm for solving it with
complexity ©(/"(«)), then the only possible room for improvement lies in improving
the constant factor.

1.3.2.2 MEASURING COMPLEXITY 19

The actual values of the input, as opposed to just n, the number of such items,
constitute another important factor for the performance of an algorithm. When the
performance of an algorithm does not depend upon the actual values, then that
algorithm is said to be oblivious, which greatly simplifies the analysis. When an
algorithm is not oblivious, then the worst-case complexity that we obtain using
O-notation may be very infrequent. It may be much more meaningful to try to
estimate its average performance. However, this estimation depends upon knowing
the probability distribution for all the possible sets of input values. This can usually
only be guessed at, and a uniform distribution is often employed, but such an
assumption is patently unjustified in many cases.

Analysis of algorithms is a very active area in computer science, and the use of
O, 0, and Q is poorly standardized [Knuth 1976a]. In particular, it is common to
find 0(f(n)) employed when one of the other measures is more appropriate. Further
discussion of these issues can be found in Weide [1977],

fl.3.2.3 Recurrence Relations. Let’s suppose that you and an acquaintance are
having a friendly game of chance, such as matching pennies. He starts with 380 and
you start with 120. At every play the two of you simultaneously flip a coin and
look for heads and tails. In the two cases that the coins match one of you keeps
both coins, and in the two cases that they do not match the other keeps both coins.
Thus, at every play one of you wins 10 from the other. What are the probabilities
that: (a) he wins all the money, (b) you win all the money, or (c) the game never
ends? We’ll begin by using the variable pj to denote your expectation of winning all
500, starting with j pennies. Note that, with equal likelihood after the first play,
you will have either j — 1 pennies or j + 1 pennies, and be confronted with the new
expectation pj-x or pj+l. The only two ways that you can start with j pennies and
win everything are via these other states, and so we have the recurrence relation

Pj-\ + Pj+l
Pj =-2-’ °r Pj-Pj-l=Pj+\-P]

We can spell out the latter formula for j — 1,2,..., 49 as follows:

P\ ~ Po= Pi~ P\ = = P50 - P49 = d

for some constant difference d. Summing these 50 individual formulas, we obtain
p50 —Po~ 50d. But observe that p50 = 1 (you did it) and p0 = 0 (hope is lost), so that
d = .02. It is now easy to find that pn = -24. Moreover, the analysis from your
opponent’s point of view is complementary, with the result that he will win with
probability /?38 = .76. Thus, even though there are an infinite number of intermedi¬
ate possibilities, it is a statistical certainty that one of you will eventually experience
the painful condition known as Gambler’s Ruin.

Many phenomena in mathematics are most naturally expressed in terms of a
recurrence relation between values of a function for some integer values of its argu¬
ments. Some examples include the binomial coefficients, the Fibonacci numbers,
etc. If the recurrence relation is not too complicated, we may be able to solve it,
thereby obtaining a closed form solution. The complexity analysis of recursive
algorithms in turn depends upon the ability to formulate and solve such recurrence

20 PRELIMINARIES

relations. To illustrate these points, let us take Eq. 1.17, the definition of the Fibo¬

nacci numbers, and rewrite it as

F„-F»_i-Fn_ 2 = 0 (1.24)

This is a particularly simple form of recurrence in that it is linear, with constant
coefficients (that is, all l’s), and homogeneous (that is, the linear combination sums
to zero). As with solving a linear differential equation, this homogeneous equation
has homogeneous solutions of the form F„ = rn. Substituting this in Eq. 1.24 and

cancelling powers of r yields the characteristic equation

r2-rl-rQ = 0 (1.25)

By the quadratic formula, this equation has two distinct roots

1 T V5~ j 1 —
r 1 =---, and r2 =--- (1.26)

The linear homogeneous form of Eq. 1.24 then guarantees that the complete
solution to it is a linear combination of the solutions corresponding to the two

distinct roots:

Fn = ^\r\ + ^2r2 (1-27)

with the constants Ax and A2 to be determined from the initial values Fx = 1 and
F2 = 1. It simplifies matters to define F0 = 0, and then use Eq. 1.27 with F0 and Fu

whence we have

Fn = 0 = A\ + A2

„ , . , . ^,(1 + VF) . a2(i-VT)
F\ = 1 - A\r\ + A2r2 ----1 z

These yield

Al = 1/V5~, and A2 — — l/VJ”
from which, finally, the nth Fibonacci number is given by

Fn =

- r2)

(1.28)

(1.29)

with rx and r2 as in Eq. 1.26.

We now have a closed form solution for Fn. Let us compare our two original
algorithms for computing Fn, ALGOR_A and the method of Eq. 1.17. ALGOR_A
is clearly 0(n). From Figure 1.1, we observe that the recursive algorithm is 0(Fn),
which we have just seen is 0(rn). Even though the iterated algorithm is dramatically
better than the recursive one, it is not optimal; as we will see in Section 5.4.2, there
is an 0(lg n) algorithm for computing Fibonacci numbers.

Several more complicated possibilities can arise in solving recurrence relations:
non-homogeneity, non-linearity, repeated roots, complex roots, etc. In this book,

1.4 LANGUAGES AND PROGRAMS 21

we will employ some of these other solution techniques in an ad hoc manner, for
example in Section 2.5.1. A more systematic treatment of the topic can be found in
Lueker [1980],

1.4 LANGUAGES AND PROGRAMS

Computing has its own Tower of Babel, which forces most programmers to become
multilingual out of sheer necessity. There have been repeated attempts to lessen
these effects and to make the representation of algorithms relatively independent of
particular programming languages. We have elected to use none of these, but
rather to employ the language Pascal to represent the algorithms in this book.
Some of the reasons for this choice will be discussed in the next section.

The remainder of this preliminary material about languages and programs is
devoted to two other issues. One of these has to do with something comparatively
new; it centers on the facilities in Pascal for defining and then using data of arbi¬
trary type and structure. The other deals with something that should be old to
most readers, the nature of procedures, functions, and parameters.

1.4.1 Representation of Algorithms

Methods that have been used to represent algorithms independently of particular
programming languages include:

A. natural language such as English
B. flowcharts
C. decision tables
D. a semi-formal “Knuth” style
E. pseudo-code

Let us look at each of these briefly.

A. Natural language represents an ideal in that it shifts the burden of unfamiliarity
from the user to the computer, where it belongs. Unfortunately, the ideal of unre¬
stricted natural language has been all but abandoned in the face of two
overwhelming obstacles. First, specifying the steps of an algorithm in natural
language often results in verbosity; consider, for example, the ease of doing arith¬
metic in FORTRAN as compared with COBOL. An even bigger drawback is the
unremitting presence of ambiguity in natural language. Examples of this abound,
but the following will suffice: “I saw the man on the hill with the telescope.” Does
“with the telescope” apply to I, the man, or the hill?

B. Flowcharts have been used with some success, but they are used less commonly
now, due to several shortcomings. These disadvantages include the following: there
is very little standardization in the manner of drawing them; they all too often look
like spaghetti, obscuring rather than clarifying matters; they fail to convey essential

22 PRELIMINARIES

global and descriptive facts about an algorithm; it is hard to be certain that all
logical possibilities have been provided for; the translation from a flowchart to a

program must be done entirely by hand.

C. The use of decision tables represents a relatively small but well established tradi¬
tion. Since we will be discussing them subsequently, in Chapters 2 and 6, it is
sufficient for now to remark that their special form makes them unsuited for repre¬

senting algorithms in all of their generality.

D. The style that Knuth uses in his monumental set of volumes has been imitated
by many other writers. Basically, it consists of a set of numbered steps. Each step
is written in a mixture of plain English and program-like notation, as is most
convenient. Most steps include commentary in brackets that assist in understanding
what is happening, and sequencing is accomplished by conditional and uncondi¬
tional jumps to other numbered steps. There are two principal drawbacks
associated with this style. First, since no control structures are used (we will discuss
these shortly), the logical structure of the algorithm is obscured. Second, the trans¬
lation from this representation to a program is again a manual process, this
introduces the hazard that the algorithm cannot be implemented and tested directly,
leading to a higher risk of incorrectness. In fact, although we have not ourselves
found such an error in Knuth’s algorithms, he does discuss their occurrence [Knuth
1974], Moreover, we have found errors wherever other writers have used that style
in books on data structures. In summary, it would be preferable if readers could be

spared the possibility of such occurrences.

E. There is not just one single form of pseudo-code. Rather, every author who
uses such a method devises what he likes, although the results usually bear a strong
resemblance to either ALGOL, Pascal, or PL/I. The author gains several advan¬
tages by this method: his algorithms are technically language-independent, he is
free to simplify his syntax compared to what is required in a real language, and he
is also free to introduce mechanisms that he feels are helpful. The disadvantages
will seem rather familiar. First, since there is no standard pseudo-code, the reader
must be prepared to learn a different one with each author (and slight differences
between authors can be the source of disproportionate confusion). Second, since
pseudo-code is, by definition, not immediately executable, but must be translated,
there is less reason to be confident as to correctness. With regard to the latter
point, we have commonly found such errors when authors have employed this

method.

It has been very easy to find fault with each of these five approaches. Indeed,
no method is immune to criticism, and this is equally true of the one we will now
discuss, the use of Pascal. We do not describe Pascal in any great detail here, nor
even provide an appendix on the subject. One reason is that so many books are
already available for this purpose. Also, for those who have little prior familiarity
with the language, we do provide some help as we go along. The remainder of this
chapter, in fact, is designed to accomplish two purposes in overlapping fashion:

• to provide some initial coaching in Pascal, and
• to review the use of procedures and parameters in HLL’s.

In standard Pascal [Jensen and Wirth 1984], there are seven sections to a

program, ordered as follows:

1.4.1 REPRESENTATION OF ALGORITHMS 23

{ a header statement }

{ declaration of program labels (for goto’s) }
{ declaration of program constants }
{ declaration of program data types }
{ declaration of program variables }

6. { declaration of procedure’s and function’s }
7. (executable code, the main body of the program }

Only the first and seventh sections are strictly necessary, but a fifth section is also
needed for any practical computation. The declarations of procedures and func¬
tions are each, in turn, given using the same seven sections, except that procedure
or function is written instead of program. Since procedures (and functions) can
themselves have nested procedures, we see that the schema introduced above is a
recursive one. In some extended versions of Pascal, the rigid ordering of the seven
sections is somewhat relaxed.

The unit of program in any HLL is the statement. Broadly speaking, this
includes declarative statements, assignment statements, control statements, and
compound statements. In Pascal, the label, const, type, and var sections are
entirely declarative in nature; we will talk about the type and var sections in
Section 1.4.2. Assignment statements are presumed to be familiar. (Note that the
assignment operator is ': = ' and not ='.) As far as control statements are
concerned, this is where the reader unfamiliar with Pascal is apt to feel the most
pain, until he becomes accustomed to the syntax.

Pascal has one construct for definite iteration:

for <simple assignment statement> to <limit> do
<statement>;

and two constructs for indefinite iteration:

while <condition> do
<statement>;

and

1. program
2. label
3. const
4. type
5. var

repeat
<statement>;
<statement>;

until <condition>;

Note the asymmetry between the repeat ... until construct and the other two. This
is certainly bothersome, although minor. For selecting alternative actions, Pascal
has the following constructions:

if <condition> then
<statement>;

and

if <condition> then
<statement>

else
<statement>;

24 PRELIMINARIES

and

case < identifier> of
<subcase>;
<subcase>;

end;

The items in angle brackets are to be interpreted as meaning “any instance of

that class of object.” Thus < statement > might be a simple assignment statement,

an iteration control statement, a selection control statement, etc. In any of these

preceding “blueprints” of control structures, < statement > could, in addition to the

instances cited above, be a compound statement:

begin
<statement>;
<statement>;

end;

that is, a group of statements delimited by begin and end. In this situation, the
use of begin and end for grouping of statements is analogous to the use of paren¬

theses within statements for delimiting of expressions. Note that if a for, while, or

if statement is to apply to more than a single consequential statement, then the

consequence must be a compound statement.

Readers who are unfamiliar with Pascal-like syntax often find it difficult to

know when a control statement ends. Rather than giving a detailed exposition of

the syntax, we have two brief comments that are helpful here. One significant cue is

that in HLL’s of this sort, statements are delimited by semi-colons. The second
point has to do with the systematic manner in which we employ indentation in the

text of the algorithms in this book. You will find that the scope or the extent of a

control statement can always be found by reading downwards until the text is no
longer indented inside what is employed for the initial part of that statement.

Whereas the use of semi-colons is rigidly prescribed by the language, the use of

indentation is quite arbitrary; it is just an effective visual aid, of no significance,to

the compiler.

The virtues and defects of Pascal as a programming language have been thor¬

oughly explored elsewhere [§], and we will not rehash them here. Our interest in

Pascal has to do mainly with its power for representing algorithms. That these
representations are directly executable is a significant plus, since it provides a meas¬

ure of confidence as to their correctness; the principal issue, however, is that of

clarity of representation. To this end, we do not hesitate to sacrifice secondary

details of efficiency if we can thereby enhance clarity. In almost every case, an
algorithm is exhibited on one page. On the other hand, there are few comments,

since this sort of information is provided in the text describing the algorithm. With

regard to goto’s and the controversy surrounding them [Knuth 1974], we avoid

them in most cases. However, there are instances where they cannot be eliminated
except through the introduction (and excessive setting and testing) of boolean vari¬

ables. In such cases, we have not hesitated to use an occasional goto.

1.4.1 REPRESENTATION OF ALGORITHMS 25

The reader should be aware of a few particular points throughout the remainder
of this book. First, we will represent algorithms by procedures or functions where it
is important to emphasize the role of parameters, but we may simply represent algo¬
rithms by programs where this simplifies matters. Second, we consistently use
semi-colons as statement terminators rather than statement separators. Although
the definition of Pascal specifies the latter usage, the former usage does no harm,
and we have preferred to employ it consistently. The compiler easily accommodates
the former usage by treating affected parts of the program text as null statements.

Finally, we occasionally take some minor liberties with the text of algorithms in
order to facilitate exposition. These liberties, which violate Pascal rules, are of the
following nature:

• employing variables as array bounds instead of constants;

• placing type definitions for the parameters of a procedure within the procedure;
• placing declarations of global variables within the procedure;
• placing the text of large sub-procedures outside a procedure.

The adjustments, if any, that are required to transform an algorithm to a syntac¬
tically correct Pascal program will always be trivial.

1.4.2 Data Typing in Pascal

Different FILL’S exhibit different philosophies with regard to declaring the attri¬
butes of data:

• In APL, attributes are always inferred, never declared.

• In FORTRAN and PL/I, some attributes must be declared, but others may be
either declared or left for the compiler to assign default values.

• In Pascal, all attributes must be declared.

The fact that all attributes are declared in Pascal, thus communicating the
programmer’s intent to the compiler (or interpreter), enables many programming
errors to be detected at translation time rather than at execution time. Detection of
errors at this stage is more efficient and also makes debugging easier.

What we have called attributes are subsumed in Pascal under the type. Every
variable must be declared, along with its type, as in

var s: integer;
t: char;
u,v: real;

The type information that appears after the colon may be as simple as one of the
primitive data types — boolean, character, integer, or real — that we discussed in
Section 1.1.1. It may also include structural information, as we will see in the ensu¬
ing chapters. In addition, it is possible to employ two special types.

The first of these is the enumerated type, as in the declaration

var day: (Sun,Mon,Tues,Wed,Thurs,Fri,Sat);
color: (red,orange,yellow,green,blue,purple);

26 PRELIMINARIES

where a list of arbitrary, distinct names can be given in a list within parentheses. In
some other HLL’s, the user would have to make an implicit association between the
numbers 1 to 7 and the days of the week, and also between the numbers 1 to 6 and
the colors, and then use such integer values in his program. With enumerated
types, it is possible to deal explicitly, and more naturally, with meaningful symbols,

as in the examples

day := Mon; color := blue;

The second special type is the subrange type, as in the declaration

var interest: 7 .. 20;
digit: '0' .. '9';

by which it is specified that the permissible values for the variable interest are the
integers between 7 and 20, and that the permissible values for the variable digit are
the characters 'O' through '9'. Subrange specifications are particularly useful for
declaring the bounds of arrays, as we will see.

The items discussed so far in this section are useful. However, the primary
attractive feature of Pascal for the study of data structures is that the user can
define a “template” or type of data structure in the type section of his program,
and give it any name that he wishes. He may then use that defined type, by name,
elsewhere in the program as often as he chooses. This has great value both as a
mnemonic device and for purposes of guaranteeing consistency of structure defi¬
nition. By way of illustration, consider the fragment

type day = (Sun,Mon,Tues,WedThurs,Fn,Sat);
food = (cocktaifsoup, salad, entree, dessert.nuts);
work = Mon .. Fri;

var holiday,vacation: work;
menu: soup .. nuts;
week: day;

Note that day, food, and work are definitions, with an ' = ' and not a they are
not data variables.

The type of a variable determines the set of values that that variable may
assume. In many cases, the number of such values is a constant, the cardinality of
the type. As examples of this, the cardinality of type boolean is 2, that of char is
256 (in EBCDIC), that of day is seven, etc. The use of types can be carried to
arbitrarily many levels of definition, as long as no type is used before it is defined.
The utility of these methods will be more apparent as we begin to use structural
information as well as type information in the type definitions.

1.4.3 Functions, Procedures, and Parameters

Almost all HLL’s have two distinct categories of subroutines, the procedure and the
function. Their usage in Pascal presents nothing essentially new, just the detail that
the declarations of the parameters must include type information. Not only that,
but since a function returns a value, then the type of that value must be declared

1.4.3 FUNCTIONS, PROCEDURES, AND PARAMETERS 27

also. In the remainder of this chapter, when we speak of procedures, we are really
referring to both procedures and functions.

Recall that, in the text defining a procedure, three categories of variables may
be employed:

1. Formal parameters occur in the procedure heading.

2. Global variables are declared outside the procedure text, usually but not always
in the main program itself.

3. Local variables are declared within the text of the procedure itself. It is impor¬

tant to realize that a local variable may be declared with a name identical to

that of some global variable; in such a case, the global variable then becomes

hidden and inaccessible while the procedure is executing, and the use of the

duplicate name refers to the local variable. This hiding of one variable by

another also occurs when a formal parameter has a name identical to that of a
global variable.

When a procedure is invoked from some point, the invocation specifies some

actual parameters. There must be the same number of actual parameters as there

are formal parameters in the procedure header, and each actual parameter must

have the type that was specified for it in the header. There are two principal ways
in which parameters can be passed to a procedure:

1. In call-by-value, the value of the actual parameter is copied from its memory

location in the calling program to a private location in the procedure, where it
is subsequently used.

2. In call-by-reference, the address of the actual parameter is passed from the call¬

ing program to the procedure, so that the procedure operates upon the original
value and not a copy.

There are other parameter passing techniques, but they are neither present in Pascal

nor relevant to our presentation. How does the user control whether a parameter is

passed by value or by reference? This varies with the HLL; in some cases, it is not

even possible to do so. In Pascal, if a parameter is to be called by reference, the

formal parameter is preceded by var in the procedure heading. The ability to pass

parameters by reference is very important. Otherwise, except for the single value

that a function returns, we would have no satisfactory mechanism for making

permanent changes to the value of data with a procedure. (Of course, one can still

change the values of global variables, but that is a separate consideration.)

This brief discussion of procedure variables and parameters might seem rather

pointless. After all, we would not commonly reuse the names of variables, thereby

introducing needless confusion. But if we think about what happens with recursive

procedures — wherein both parameters and local variables are reused, perhaps

many times — it becomes clear that these issues are very relevant indeed. Readers

not already familiar with the issues would be well-advised to become so, in order to

avoid difficulties in comprehending the algorithms that we will be studying.

28 PRELIMINARIES

1.5 OVERVIEW

This chapter has been concerned with the two related subjects of data structuring
and algorithms. Even though the various individual data structures have yet to be
broached, it is apparent that the tool of abstraction can be as powerful for describ¬
ing data structures as it is for expressing algorithms. The language Pascal is very
useful for this purpose in that it provides syntactic mechanisms for expressing such

abstraction.

We cannot speak quantitatively about data structures and algorithms without
employing some tools of a mathematical nature. Some examples of these include
logarithms, combinations and permutations, Fibonacci numbers, etc. Many of these
tools already convey the notion of recursion; and recursion permeates the subject
matter of this book, both with regard to data structuring and algorithms.

Another significant topic in this chapter has been that of complexity of compu¬
tational methods, and techniques for characterizing and measuring complexity. The
focus of this book is primarily on data, and so the subject of complexity is not
treated in depth. However, no student of data structures can afford to ignore these
matters, though the less experienced might reasonably choose to postpone attention
to them at first reading.

1.6 BIBLIOGRAPHIC NOTES

• Some useful books on the subject of numerical analysis are Dahlquist and
Bjorck [1974], Forsythe et al. [1977], and Hamming [1971].

• Among the many excellent treatments of combinatorial mathematics are Liu
[1968], Roberts [1984], and Tucker [1984],

• The virtues and defects of Pascal as a programming language are argued in
Haberman [1973], Lecarme and Desjardin [1974], Welsh et al. [1977], arid
Wirth [1975].

1.7 REFERENCE TO TERMINOLOGY

abstract data type (ADT), 6
actual parameter, 27
algorithmic complexity, 15
attribute, 5
binomial coefficients, 8
call-by-reference, 27
call-by-value, 27

global variable, 27
hexadecimal, 4
high-level language (HLL), 2

t homogeneous (equation), 20
intractable (problem), 16
iteration, 13
local variable, 27

1.7 REFERENCE TO TERMINOLOGY 29

canonical form, 9

cardinality (of a type), 26
ceiling, 7

character code, 4

f characteristic equation, 20
combinations, 8
compound statement, 24
control structure, 2
cycle notation, 9

enumerated type, 25
exponential complexity, 16
factorial, 8

Fibonacci numbers, 10
fixed-point number, 3
floating-point number, 3
floor, 7

formal parameter, 27
function, 26

logarithm, 7
logical structure, 5
modulus, 7

oblivious (algorithm), 19
order of magnitude, 10
Pascal’s triangle, 29
permutations, 8

physical representation, 5
polynomial complexity, 16
primitive data types, 2
procedure, 26

f recurrence relation, 19
recursion, 12
separators, 25
subrange type, 26

f tags, 4
terminators, 25

1.8 EXERCISES

Sections 1.1 — 1.2

1.1 What is (a) 693B16 + 358516? (b) 58A416 - 29B516?

1.2 Convert (a) 925510 to hexadecimal; (b) 35D916 to decimal.

fl.3 Suppose that binary floating-point numbers rax 2e are represented by using
three bits plus sign for the mantissa ra and two bits plus sign for the exponent e,
with 0.5 < ra < 1.0. Plot the positive numbers in this representation on the real line.
How many distinct real numbers are there in this representation?

1.4 Pick some object from everyday life and list several of its attributes, and also
some representative values for each attribute.

1.5 Prove the identity given in Eq. 1.6.

1.6 Prove the identities given in Eqs. 1.10a — l.lOe.

fl.7 Use Eq. l.lOd to compute all the non-zero values of C(n,r) for n = 1 .. 8 and
r = 0 .. 8, and arrange them in a table of rows by n and columns by r. The table so
constructed is Pascal’s triangle. Now consider the sums of the entries on diagonals
running from the lower left to the upper right. What do you find? Prove the
observed relationship.

f 1.8 Prove the following identities without using Eq. 1.19:

30 PRELIMINARIES

(b) 12 + 2> + - + «2 = 2("+1) + ("+1)

f 1.9 For the Fibonacci numbers,

(a) prove that Fn+yFn_x — F* = (-1)”;

n

(b) derive the value of Y.Fk;
fe=i

n

(c) derive the value of ^F%.
k= 1

Section 1.3

1.10 Under what conditions might a musical score be considered an algorithm for

performing a piece of music?

1.11 Given F and G as defined below, compute the value of G(4). Show your

intermediate evaluations.

function F (x: integer): integer;
begin

if x < = 1 then F := 2
else F := 3 * F (x - 2) + G (x - 1);

end;

function G (x: integer): integer;
begin

if x <= 1 then G := 3
else G := 2 * F (x - 1) + 3 * G (x - 2);

end;

1.12 Given the following recursive definition:

function F (m,n: integer): integer;
begin

if n = 0 then F := m
else F := F (m,n - 1) + F (m + 1 ,n - 1);

end;

compute F(l,3). Show your intermediate evaluations.

f 1.13 A partition of an integer n is a decomposition of n into summands. For

example, the integer 4 can be partitioned in five distinct manners, as follows:

l+l+l+l 1+1+2 2+2 1+3 4

The number of partitions of n is denoted by P{n), and we see that P(4) = 5. In

general, P(n) can be computed recursively via the introduction of Q(m,n), as follows:

1.8 EXERCISES 31

function Q (m,n: integer): integer;
begin

if (m = 1) or (n = 1) then
Q := 1

else if m <= n then
Q := 1 + Q (m,m - 1)

else

Q := Q (m,n - 1) + Q (m - n,n);
end;

function P (n: integer): integer;
begin

P := Q (n,n);
end;

Compute P(7), showing your intermediate evaluations,

tt 1-14 Given the following recursive definition:

function F (m,n: integer): integer;
begin

if m * n = 0 then F := m + n + 1
else F := F (m - 1,F (m,n - 1));

end;

compute F(4,l). Show your intermediate evaluations.

11-15 Given two functions fin) and g{n), prove or disprove the necessity that
either/(n) = 0(g(n)), or g(n) = 0(f(n)), or perhaps both.

1.16 Write an efficient function in Pascal for computing the nth power of a

number, where n is a non-negative integer that may be quite large in practice. (Do

not use logarithms.) Test your program with several moderate examples, such as 323
and 277. What is the complexity of your algorithm?

11-1*7 [Dijkstra 1976] Write an efficient procedure to find all the distinct integer

solutions of the equation x2 + y2 = r. Test your program by applying it to r = 9425.
What is the complexity of your algorithm?

ft 1-18 The complexity classes discussed in Section 1.3.2.1 are adequate to encom¬

pass the great majority of situations. But there are other possibilities as well.

Classify the following functions into complexity classes, arranged from low to high.

A class might contain more than one function; that is, it might contain / and g
such that f = 0(g).

log n log log n n\os\ogn

n (\g n'fl2 nOg^)2

n Ig n (log n)10 n,l9n*1/2

n2 Ig n2 n72

32 PRELIMINARIES

Section 1.4

1.19 Give a brief comparison of the control structures in Pascal with those in any
other language of your choosing. If the language you choose for comparison does
not have the control structures repeat ... until, while ... do ..., or case ... of ...
end, sketch how their effects could be obtained with the control structures that your

language does have.

1.20 Discuss the distinctions between the typing facilities in Pascal and the typing

provided with ADT’s.

f 1.21 For the following program:

program FRAGMENT;

var u,v,w: integer;

procedure JUNK (p,q: integer; var r,s: integer);
begin

r := p * q;
s := (p + q) * r;

end;

begin
u := 4; v := 3; w := 7;
JUNK (u,v,v,w);

end.

(a) What will be the final value of w?

(b) What will be the final value of w if the header for JUNK is changed as

follows:

procedure JUNK (p: integer; var q,r,s: integer)

2

ARRAYS and SETS

“Now go, write it before them in a table, and note it
in a book, that it may be for the time to come ...”

Isaiah 30: 8

Imagine a deck of playing cards in a neat pile. Then imagine that same deck of

cards scattered over the floor. What is the essential difference? Succinctly, in the

first case the cards form an array, with an associated sequence; and in the second

case the cards form a set, without any order. In this chapter we will examine both
of these data structures, with an emphasis on the array.

The array is a data structure that is undoubtedly familiar to most readers.
There are two reasons for this:

• Arrays are a very natural and efficient structure for many operations with data,
as witness tax tables, time schedules, etc.

• Almost all HLL’s reflect this fact by providing constructs that facilitate oper¬
ations on arrays.

Sets, on the other hand, tend to be disquieting to most non-mathematical readers,
and they are seldom supported directly in HLL’s.

This chapter begins with some very basic material on arrays, after which some

examples of array usage are covered. Sets are then discussed, and some relation¬

ships between these data structures are developed. Their placement at this point in
the book reflects our desire to be able to:

• talk about sets in terms of arrays, and then immediately

• talk about arrays in terms of sets.

Finally, the last half of the chapter has a broader treatment of the nature and utility

of arrays than an ordinary programming course might provide. Although most of

our presentation of arrays is in terms of Pascal, we will also call attention to ways

of thinking about arrays that are not possible in most programming languages.

34 ARRAYS and SETS

2.1 ONE-DIMENSIONAL ARRAYS

The basic concept of an array suggests an ordered list, such as scores: 75, 90, 63,
82, 74, 88. In this simple example, we see three important features of an array:

1. It can have an arbitrary name, in this case scores.
2. It contains some definite number of elements of the same type, which in this

case is integer.
3. The elements of the array have a de facto ordering, so that we can refer, for

example, to the third score as being 63.

Unfortunately, the reasonable notion of a one-dimensional array as a "list" is sure
to engender confusion when we come to Chapter 4. Thus we will eschew the term

list in our discussion of arrays in this chapter.

A mathematician or a scientist would most likely refer to the third score as
scores3 = 63, using a subscript value of 3. However, programming languages do not
admit subscripts, superscripts, and other elements ot general mathematical notation:
instead, for referencing an element of an array, they usually employ one or the
other of the notations scores (3) or scores [3], which are referred to as both
subscripts and indices. Parentheses are employed in some languages, such as BASIC
and FORTRAN, and brackets are employed in some other languages, such as APL

and Pascal.

If we think about it, our example is implicitly a set of ordered pairs of

scores: (1,75), (2,90), (3,63), (4,82), (5,74), (6.88)

except that we do not need the first member of each pair as long as we keep
elements in their proper sequence. In many cases in both mathematics and comput¬
ing, it is desirable to start counting with zero (0-origin) rather than one {1-origin).
A compelling example of this is the memory of a computer. Addresses or locations
in memory always start with the value of zero. If a hypothetical computer had 100
memory locations, we would reference them as memory [0], memory [1].

memory [99].

In our example, using 0-origin, the ordered pairs would be

scores: (0,75), (1,90), (2,63), (3,82), (4,74), (5,88)

A potential problem here is to know what is meant by scores [3]. Does it refer to
63 or to 82? A language that allows these tw'o interpretations will also provide a
means for specifying which meaning is intended. Even more generally, we can allow
the first members of our pairs to begin with any integer value, as in

scores: (6,75), (7,90), (8,63), (9,82), (10,74), (11.88)

or in

scores: (-2,75), (-1,90), (0,63), (1,82), (2,74), (3.88)

Although this may seem strange, it means that we can now label the elements of our
array in a possibly more natural manner. For example, we may have an array of

2.1 ONE-DIMENSIONAL ARRAYS 35

o&n Payment amounts versus interest rates, in which it is realistic to speak of rates
o 7 8,..., 20 (percent). With such flexibility, there must be some means of specify-
mg the intended index values. In Pascal, the declaration of an array always
includes this information, as in

scores: arraY [6 .. 11] of integer, or scores: array [-2 .. 3] of integer.

Note that the declaration of an array contains the composite specification of
two types, the index type and the base type. The base type may be of a very general
nature. It is integer m the above examples, but it might have been character or real
or even some user-defined type. However, the index type must be that of a set of
ordinal values. As in the previous examples, it is usually a subrange type, but it
may also be an enumerated type, as in

type workweek = (Monday,Tuesday, Wednesday,Thursday, Friday);
activity = (reports,plans,laboratory,study,meetings, travel);

var schedule: array [workweek] of activity;

so that we might, for example, encounter schedule [Tuesday] ; = study.

1 he basic operations with arrays are very simple. The index, or subscript, is
used to select a position within the array; and either the value in that position is
retrieved, or a value is assigned to that position. An important aspect of these
operations is that the index may be an integer constant, an integer-valued variable,
or even an integer-valued expression. Alternatively, retrieval or assignment can be
applied to the entire array, treated as one composite value (see Section 2.3.1).

2.1.1 Sequential Storage Allocation

Since the one-dimensional arrays that we have described so far are sequences of
elements, and computer memory is itself a sequence of locations, it is simple and
natural to accommodate arrays in computers by mapping one sequence to the other.
Thus, if the array soup: array [2 .. 11] of char is stored in memory beginning at
location 1210, then soup [2] will be in 1210, soup [3] will be in 1211, ... , soup [11]
will be in 1219. (This presumes that each addressable memory location holds one
character, as is the case in byte-oriented computers.) More generally, if
x: array [s.. /] of char with lower index bound s and upper index bound t is stored
in memory beginning at location b, then

loc (x [7]) = b + (i-s) (2.1a)

However, other base types may require more than a single byte of storage per
element. Let us denote by int_size and real_size the amount required for integers
and reals. As we cited in Section 1.1.1, these would commonly be 4 and 8 bytes,
respectively. Thus, if y: array [5 .. t] of integer is stored in memory beginning at
location b, then

loc (y [z]) = b + (z — s) x int_size

and if z: array [s .. /] of real is stored in memory beginning at location b, then

(2.1b)

36 ARRAYS and SETS

loc (z [*]) =b + (i-s)x real_size (2.1c)

2.1.2 Searching an Array

An array is very commonly used for storing groups of related values as a table. In
a table there is usually one value from each related group that uniquely identifies
the group. This is sometimes called the argument, but the term key is used more
commonly in computing. The notion is that one searches the table to see if an
input value (the key) is present, and if so, where it is in the table. By finding where
the key is located in the table, one can also locate the data related to the key. A
familiar example of this process is that of finding the address and telephone number
of a person by looking-up his name in a directory. In a vastly simplified fashion,
these few sentences represent what Chapter 10 (Searching) is about. They are
presented here as background for the function SEARCH.A (Algorithm 2.1), which
searches for a key in an array of unordered numerical values. It takes two argu¬
ments, tbl for the name of the array to be searched, and an input value of key. If
key is present, SEARCH_A returns its index within tbl, otherwise, it returns the
value 0. Note that SEARCH_A violates Pascal syntax (see Section 1.4.1) by having
the type table defined within the function rather than previous to it. SEARCH_A
scans the table from the bottom to the top, which is slightly faster with some

computers; however, that is of minor importance.

function SEARCH.A (tbl: table; key: integer): integer;

type table = array [1 .. n] of integer;

var i: 0 .. n;

begin
i := n;
while (key <> tbl [i]) and (i <> 1) do

i := i - 1;
if key = tbl [i] then SEARCH_A := i

else SEARCH_A := 0;
end;

Algorithm 2.1 SEARCH_A

To illustrate matters, suppose that we have a table t: array [1 .. 9] of integer
containing the values 22, 17, 5, 65, 48, 83, 19, 28, 52. Then SEARCH_A (*,65)
returns the value 4, SEARCH_A (*,34) returns the value 0, SEARCH_A (*,52)
returns the value 9, etc. Note the compound test for termination either upon find¬
ing key in tbl or upon reaching the end of the table; similarly, it is necessary to
discriminate between these causes after leaving the iteration.

Even as simple an algorithm as SEARCH_A can be made more efficient via a
simple modification. Most of the work in SEARCH_A is done in the while loop.

2.12 SEARCHING AN ARRAY 37

However, the decrementing of the variable i will, on most machines, take much less
time than the double test for termination. This situation can be improved by the

tactic illustrated m the function SEARCH_B (Algorithm 2.2). Here, a O’th location

is maintained at the head of the table for storing the value of key prior to iteration.

Since this guarantees that key will always be found, only a single termination condi¬

tion is required. We are also able to dispense with the test after termination. It is

very common to use a special value in a last or first position of a data structure as a

signal that we have reached the boundary of the structure. A data value used in

this fashion is called a sentinel. What are the complexities of SEARCH_A and

SEARCH_B? Indefinite iteration is used in both cases; however, the maximum

number of iterations is bounded by n, the size of the table, in both cases. Thus the

complexity is 0(n) for the two algorithms, although the second one is superior
because of its smaller constant factor.

function SEARCH_B (tbl: table; key: integer): integer;

type table = array [0 .. n] of integer;

var i: 0 .. n;

begin
i := n;
tbl [0] := key;
while key <> tbl [i] do

i:= i - 1;

SEARCH_B := i;
end;

Algorithm 2.2 SEARCH_B

2.2 MULTI-DIMENSIONAL ARRAYS

The preceding sections treated one-dimensional arrays, so called because they can

be represented by listing their elements in one dimension, as in a line or a row. It is

very common, however, to deal with information that is most naturally represented

via arrays with two dimensions, as in the typical tax table shown in Figure 2.1, or

even three or more dimensions. Arrays of more than three dimensions can be

awkward to visualize or to represent in a drawing; but these perceptual issues are

largely irrelevant to computers and programming languages. First, we will consider

how arrays of progressively higher dimension generalize Eqs. 2.1; then we will

examine the effects of using some special kinds of arrays.

38 ARRAYS and SETS

Income (to
nearest $1000) 2

Number of Dependents
3 4 5 6

10 900 720 550 390 240

11 1090 900 720 550 390

12 1310 1090 900 720 550

13 1530 1310 1090 900 720

14 1760 1530 1310 1090 900

15 2000 1760 1530 1310 1090

16 2240 2000 1760 1530 1310

17 2480 2240 2000 1760 1530

Figure 2.1 A Table of Tax Liability

2.2.1 Storage Allocation Functions

Look at Figure 2.1 and you will note that it can be regarded in three different ways:

1. as a two-dimensional array of integers

array [10 .. 17,2 .. 6] of integer

2. as a one-dimensional array of rows of integers

array [10 .. 17] of array [2 .. 6] of integer

3. as a one-dimensional array of columns of integers

array [2 .. 6] of array [10 .. 17] of integer

Indeed, in Pascal and in some other programming languages, it is quite possible to
define multi-dimensional arrays recursively, as in methods 2 and 3 above. Method
1 seems more natural, however, and we will adhere to it in this book.

Although we will be using the first method, the ambivalent views suggested by
the other two methods raise a problem. How should an array that is two-dimen¬
sional be stored in computer memory, which is one-dimensional? Should we store
all the first row, then all the second row, etc. (row-major order)-, or should we store
all the first column, then all the second column, etc. (column-major order)?
FORTRAN employs column-major order, but almost all other programming
languages employ row-major order. You may wonder why this would matter, and
why it would not be transparent in an HLL. The problem is that it occasionally
ceases to be transparent. For example, in an I/O operation of an entire array, the
default sequence in which the elements appear would reflect their internal storage

allocation.

Let us suppose now that an array

x: array [si .. fj, $2 •• of base_type

with lower/upper index bounds sjtj is stored in row-major order beginning at
location b. In this declaration, base_type denotes character, integer, real; corre-

2.2.1 STORAGE ALLOCATION FUNCTIONS 39

spondingly, base_size denotes the size of one element of that type. The storage
allocation function is then

loc (x [ij]) = b + [n2(i — ^]) + (j — S2)] x base_size (2.2a)

where n2 = t2 - s2 + 1 is the number of elements in any row. This equation states
that, in order to find the location of the element in the zth row and the yth column,
we must start at b, increment sufficiently to step over (i — j5) rows, and then incre¬
ment past (j — s2) elements in the next row. If, on the other hand, the array is
stored in column-major order, then the storage allocation function is

loc (x [zj]) = b + [«](/' — s2) + (i — 5j)] x base_size (2.2b)

where n} = tx — sx + 1 is the number of elements in any column. Note that for an
array with m rows and n columns, stored in row-major order (with 1-origin index¬
ing) the subscripts of array elements as they occur in storage sequence are
11, 12,..., \t2,,21, 22,..., 2t2,..., tx\, tx2,..., txt2. In other words, the rightmost

subscript varies most rapidly and the leftmost subscript varies least rapidly, in the
manner of an odometer. You should be able to easily satisfy yourself of the truth
of Eqs. 2.2.

If we consider next a three-dimensional array

.x: array [S] .. fi, s2 .. t2, Sj .. t3] of base_type

with lower/upper index bounds s,/r„ and stored in row-major order beginning at
location b, then

loc (x \ij,k~\) = b + \n2n^{i — .s’j) + n3(/' — s2) + (k — 53j] x base_size (2.3)

where nd = td — sd + 1 is the number of elements in the dth dimension. As we
proceed to higher dimensions, the term row-major order is conventionally extended
to again mean that the subscripts vary with rapidity which diminishes as we read
from right to left; and the term column-major order is extended to signify the
opposite, that the rapidity diminishes as we read from left to right. This is so
despite the fact that for purposes of translating three-dimensional array notation to
a picture, it is conventional to regard the first subscript as selecting a plane, the
second subscript as selecting a row, and the third subscript as selecting a column.

A better term for describing this odometer type of storage allocation is lexico¬
graphic ordering. This term signifies that, in comparing two sequences

A: ah a2,..., an and B: bh b2,..., bn

to determine whether A precedes B or B precedes A, we start with al and bx and
examine successive pairs, a, and bh until the first pair is found for which a, A bt. The

order between A and B is then the same as the order for that pair. Note that this is
the same rule used to order words in a dictionary. To illustrate matters more
concretely, if we have

y: array [3 .. 4,1 .. 3,-2 .. 2] of integer

40 ARRAYS and SETS

2040
3,1, - 2

2044

3,1, - 1

2048
3,1,0

2052
3,1,1

2056
3,1,2

2060
3,2, - 2

2064
3,2, - 1

2068
3,2,0

2072
3,2,1

2076
3,2,2

2080
3,3, - 2

2084

3,3, - 1

2088
3,3,0

2092
3,3,1

2096
3,3,2

2100
4,1, -2

2104
4,1, - 1

2108
4,1,0

2112
4,1,1

2116
4,1,2

2120
4,2, - 2

2124
4,2, - 1

2128
4,2,0

2132
4,2,1

2136
4,2,2

2140
4,3, - 2

2144

4,3, - 1

2148
4,3,0

2152
4,3,1

2156
4,3,2

Figure 2.2 Lexicographic Allocation

stored in row-major order beginning at location 2040, then Figure 2.2 shows the

correspondence between subscripts and memory locations.

For the general case of an r-dimensional array

x: array .. t\, s2 .. t2,..., sr .. /,.] of base_type

stored in row-major order beginning at location b, then

loc (x [q, i2,..., irD =

b +

r >

{i\ - ^i) x Y\n<i + (h - s2) x Y\nd + + & “ Jr)
d= 2 d=3

x base size
(2.4)

where nd = td — sd + 1 is the number of elements in the dth dimension.

The formulas in this section are useful for several reasons. You may have , to
identify array elements in an unformatted printout, or perhaps write programs to
perform array manipulations in a language without array facilities (such as assembly
language), or even write a compiler for a language that supports arrays. In the
latter two cases, the preceding formulas can be usefully rearranged. As an example
of this, consider Eq. 2.3. It can be rewritten as

loc (x [/,/,/c]) = (b — ln2n3sl + n2s2 + s3] x base_size) + (n2n3 x base_size) x i

+ (n3 x base_size) xj + base_size x k (2.5)

=p+qxi+rxj+sxk

where p,q,r,s are constant values that can be pre-computed once the array has been
allocated in storage. For the example array in Figure 2.2, Eq. 2.5 would reduce to

loc (x — 1848 -I- 60 x i + 20 x j + 4 x k

2.2.1 STORAGE ALLOCATION FUNCTIONS 41

In practice, compilers pre-compute these constant values wherever possible —
for example, if the array bounds are constants. These and other constants associ¬
ated with the array, such as array dimensioning information, are stored within the
compiled program as a dope vector for that array. The dope vector facilitates rapid
reference to arbitrary elements of an array during program execution. Note that in
Eq. 2.5 it costs just three multiplications and three additions to compute the
location of an array element, as compared with four multiplications and six addi¬
tions in Eq. 2.3. The savings rapidly become more significant as the number of
dimensions in an array increases.

2.2.2 Triangular Arrays

Conventional arrays have some shortcomings as structures for describing and repre¬
senting data in computers. We will explore these shortcomings and some remedies
in the last half of this chapter; however, it is worth considering one particular situ¬
ation at this point. Note that the cardinality of an array is the product of its
dimensions. In the array of Figure 2.2, for instance, the cardinality is
2 x 3 x 5 = 30. These numbers were deliberately chosen to be small, but arrays of
just a few dimensions of moderate size can easily swamp the memory of a small
computer.

(a) Symmetrical Array (b) Triangular Array

Figure 2.3 Redundant Array Elements

In real life applications, however, arrays often have special structures that allow
the storage requirement to be reduced. Two such cases are illustrated in Figure 2.3,
where we see

(a) a symmetric array, in which atJ = ajt, and

(b) a triangular array, in which aLJ = 0 for i < j.

In both cases, it would be redundant to allocate storage for the entire square two-
dimensional array; there is no essential information above the diagonal from
element a [1,1] to element a [«,«].

42 ARRAYS and SETS

In allocating storage for triangular arrays (and for symmetric arrays, which can

be represented by triangular arrays), we can place the rows one after the other -

the first requiring one location, the second requiring two locations, ... , up to the

zth with i locations. This means that the ith row begins after the

1 + 2 + 3 + - + / - 1
i x (i - 1)

2

locations needed for the preceding i — 1 rows, so that the storage allocation {unc¬

tion becomes

loc (x [ij]) = b + 1 X--1-—— +jj x base_size (2.6)

Although our storage allocation function is still fairly simple, it is nonetheless quad¬

ratic in i instead of linear; moreover, such a mapping into memory is not supported

by most general purpose HLL’s. Thus, in order to obtain this saving, the user

would have to declare a one-dimensional array and then explicitly employ the

indices i and j to compute the offset into that array, using Eq. 2.6.

Xn\
\Y11

V21 y3i V41 ^51

X21 x^\ , Y22 V32 Ya2 Y52

X31 X32 x^N \V33 Y43 Y53

X41 X42 X43 X4N v V44 Y54

X51 X52 X53 X54 Xss^ \ Y55

Figure 2.4 Two Triangular Arrays

It is also possible for a problem to have a pair of triangular arrays, x and y, of

the same size n. In that case, they can be placed in memory together as one rectan¬

gular array of size n x (n + 1), as shown in Figure 2.4. The composite

two-dimensional array z can be declared in a straightforward manner, and then

xij = zij and y>J = zj,i+\ (2-7)

It is possible to generalize the ideas of this section to arrays of higher dimensions.

In this case they are called tetrahedral arrays (see Exercise 2.21).

2.3 EXAMPLES OF ARRAY USAGE 43

2.3 EXAMPLES OF ARRAY USAGE

Since arrays are so widely used in computing, a thorough survey of their applica¬
tions would be very large indeed. We will endeavor to convey some of this variety
by considering arrays from three different points of view. First, we look at arrays
from the point of view of geometry and information content. Second, we address a
few of the vast number of algebraic techniques for dealing with two-dimensional
arrays. And lastly, anticipating some special techniques for dealing with arrays of
boolean base type, we look at the nature and implementation of decision tables.

2.3.1 Cross Sections

Let us suppose that we have taken a survey ol a group of persons with respect to
their sex, education, and marital status. The expected responses to these queries are
as follows:

sex male or female
education completed primary, secondary, or college

marital status single, married, divorced, widowed, or other

The responses are totalled and then recorded in

survey: array [1 .. 2,1 .. 3,1 .. 5] of integer

In accordance with the conventional view of subscripts in three-dimensional arrays,
as cited in Section 2.2.1, we interpret our array as having two planes, three rows,
and five columns. The actual data is as shown in Figure 2.5, and a pictorial repre¬
sentation is given in Figure 2.6.

male
single married divorced widowed other

primary 20 17 9 11 14
secondary 32 13 7 5 10
college 11 9 11 8 12

female

primary 33 28 6 14 17
secondary 21 24 13 8 15
college 19 17 4 5 20

Figure 2.5 Example Data in Three Dimensions

From survey [1,2,3] = 7, we can then, for instance, read that there are 7 male
high school graduates that are divorced. When dealing with arrays, it is common to
be concerned with all the elements in a cross-section or hyperplane, in which some
indices are held constant and the remaining indices range over all their permissible

44 ARRAYS and SETS

survey [1„3] survey [„4]

values. Thus, by survey [,,4] we signify all elements in the fourth column, over all

planes and all rows; this corresponds to the plane of elements

11 14
5 8
8 5

namely, all the widowed persons. Or, by survey [1„3] we signify all the elements in
the first plane and the third column; this corresponds to the line of elements

9 7 11
namely, all the divorced males. Our first example is a two-dimensional cross-sec¬
tion, and the second example is a one-dimensional cross-section. In arrays of higher
dimension, the geometrical analogy falters, and we simply speak of hyperplanes.

Note that the notations survey [„4] and survey [1„3] are not supported in
Pascal. Hyperplane notation is permitted in Pascal only when trailing consecutive
subscripts are omitted — for example, survey [1] or survey [2,1] — and then only
within simple assignment statements. However, more general use of cross-sections
is allowed in some other programming languages, such as PL/I and APL.

2.3.2 Linear Algebra

Linear algebra deals extensively with properties of one-dimensional arrays, called
vectors, and two-dimensional arrays, called matrices. These structures are funda¬
mental to all of engineering and scientific computation.

The (inner) product of two vectors u and v is defined as the sum of products
XX x vi- Thus, for u = (11, 5, —7, —2) and v = (1, —3, 9, —27), their product is

11 x 1 + 5 x -3 + -7 x 9 + -2 x -27 = -13

Note that two vectors can be multiplied in this fashion only if they have the same
number of elements. Inner products are a useful way of expressing many common

2.3.2 LINEAR ALGEBRA 45

situations. For example, the preceding multiplication could represent the evaluation
of the polynomial

0123
f{x) = CIqX + fljX + Q2X + a-px

where the ut are the coefficients a, and the v,- are the powers jc', for jc = —3.

program MAT_VEC;

{computes product of matrix A and vector u, in vector v}

var i,j: integer;
sum: real;
A: array [1 .. m,1 .. n] of real;
u: array [1 .. n] of real;
v: array [1 .. m] of real;

begin
for i := 1 to m do begin

sum := 0;
for j := 1 to n do

sum := sum + A [i,j] * u [j];
v [i] := sum;

end;
end.

Algorithm 2.3 MAT.VEC

This concept extends with beautiful simplicity to the multiplication of a matrix
A by a vector u, as long as the matrix has dimensions m x n and the vector has
dimension n. Thus, the matrix has m rows, each of which can be regarded as a
vector of dimension n; and we can then multiply A [1,] by u to obtain a value,
multiply A [2,] by u to obtain another value, etc. These values taken together
constitute a new vector v, of dimension m, with one element corresponding to each
row of A. This is illustrated by the program MAT_VEC (Algorithm 2.3).

These ideas can be generalized yet again to yield the product of two matrices
C = A x B, if the dimensions of A and B are conformable, that is, if they match up
properly. For instance, if A has dimensions mxn and B has dimensions n x p, then
they can be multiplied to yield C with dimensions mxp. To see this, regard the p
columns of B as p vectors, and then multiply A x B [,1] to obtain the vector C [,1],
followed by A x B [,2] to obtain the vector C [,2], etc. In general, the element
C [if] is obtained by taking the vector product of the ith row of A and the yth
column of B. This is illustrated by the program MAT_MAT (Algorithm 2.4).

If you are not already familiar with these basic concepts from linear algebra,
then you might consult one of numerous books on the subject, such as Birkhoff and
MacLane [1977]. Our principal concern here is to call attention to the manner in
which the computational complexity increases in the preceding sequence of
processes. For a vector of n elements and a matrix of n x n elements, we see that:

• to multiply a vector by a vector is 0(n);

46 ARRAYS and SETS

program MAT_MAT;

{computes product of matrix A and matrix B, in matrix C}

var i,j,k: integer;
sum: real;
A: array [1 .. m,1 .. n] of real;
B: array [1 .. n,1 .. p] of real;
C: array [1 .. m,1 .. p] of real;

begin
for i := 1 to m do

for j := 1 to p do begin
sum := 0;
for k := 1 to n do

sum := sum + A [i,k] * B [k,j];
C [i,j] := sum;

end;
end.

Algorithm 2.4 MAT_MAT

• to multiply a matrix by a vector is 0(/i2);
• to multiply a matrix by a matrix is 0(«3).

These three values reflect the customary practice of equating the size of a matrix
problem to the length along one dimension. Note that this convention conflicts
with another, which measures the size of a problem by the amount of associated
input data. With the latter convention, since the amount of data increases as 0(n2)
and the work increases as 0(n3), we would be led to say that the complexity of

matrix multiplication is 0(n312).

There are many other basic and useful operations in linear algebra in addition

to those shown in Algorithms 2.3 and 2.4. Perhaps the most common is that of
solving a set of simultaneous linear equations, such as the following

a\,\x\ + al,2x2 d-h a\,nxn = h

a2,\x\ + a2,2x2 d-b a2,nxn = b2 ^ 8)

an.\x\ d~ an,2X2 d-b an,nxn = K

These can be written (and thought of!) much more simply as Ax = b, where

A is the (square) matrix of coefficients atJ

x is the vector of unknowns Xj

b is the vector of right-hand sides of the equations bt

There are several methods for solving such a set of simultaneous equations. One

that is commonly taught and fairly easily understood is known as Gaussian elimi¬

nation. The basic idea is to use the first equation to eliminate the first unknown

from all succeeding equations, then use the second equation to eliminate the second

unknown from equations below it, etc. These eliminations are accomplished by

2.3.2 LINEAR ALGEBRA 47

repeatedly transforming the coefficients of matrix A and vector b to new values A'
and b until the matrix is triangular. In this process, if the z'th equation is being
eliminated from those below it, then the element au is the pivot element, the basic
elimination step, to be applied for all i < j and i < k, is

a j,k ~ aj,k ~~ aj,i x ai,k I ai,i

b'j = bj ~ aj,tx h I au (2'9)

For k = i, it is easy to see that the coefficients below the pivot element vanish, so
that the matrix of coefficients becomes triangular. At that point it is possible to
solve the last of the equations for xn = bn / ann. This value of xn can then be substi¬
tuted in the next-to-last equation to solve for xn_i, both of these values can then be
substituted in the equation before that to solve for x„_2; and so on, up to xv Thus
Gaussian elimination consists of two processes: a forward elimination step to bring
the coefficients to triangular form, and a backward substitution step to solve for the
values of the unknowns. In this method the forward elimination step has a
complexity of 0(n3), and the backward substitution step has a complexity of 0(n2).
The details of an algorithm to accomplish a solution in this manner are left as an
exercise (see Exercise 2.10).

Matrix multiplication and the solution of systems of linear equations are oper¬
ations of pervasive significance throughout scientific and engineering computation.
These operations also serve as paradigms for other computations. In particular, the
complexity of 0(n3) for matrix multiplication will be cited several times in this book
as a paradigm of the performance of various other algorithms.

2.3.3 Decision Tables

In Section 1.4.1 we alluded to decision tables as an alternative formalism for repre¬
senting the logic of algorithms. Their utility in this regard traditionally has been
more apparent in business data processing than in scientific computation. In our
case, it is the techniques for manipulating decision tables that are of most interest.
For the reader unfamiliar with decision tables [§], we present some introductory
material in the next few pages. Knowledgeable readers may wish to skip to the next
section.

By well established convention, decision tables are drawn, as in Figure 2.7, with
four quadrants containing the following parts: a condition stub (northwest), condi¬
tion entries (northeast), an action stub (southwest), and action entries (southeast).
This table illustrates how a student might decide algorithmically whether to study
and/or watch television and/or sleep and/or walk the dog, when confronted with the
circumstances for an evening and the next day in school.

The columns in the entries half of the table correspond to different decision
rules to be applied. In any given situation, each condition stub evaluates to
Yes/True or No/False; the rule to be applied is then that for which the column of
condition entries matches the actual vector of condition values. In operational
terms, the condition values in different rows and the same column are combined

48 ARRAYS and SETS

fll R2 R3 R4 R5 R6 R7 R8 R9 RIO fill R12

Cl: homework
C2: test day
C3:good TV
C4: tired

yyyyyyyynnnn
yyyynnnnnnnn
yynnyynnyynn
YNYNYNYNYNYN

>41: study
>42: watch TV

>43: sleep
>44: walk dog

X X X X X X X
XX XX

X X
X

Figure 2.7 Decision Table (Limited Entry)

with logical AND; the rule to be applied corresponds to that column for which this

logical AND evaluates to True. Reading down that column, we then perform those
actions for which there is an X; note that there should be just one final rule, but

that this rule may entail more than one action. Thus, in the table, if conditions Cl
and C3 are true and conditions C2 and C4 are false, then we should perform rule

R6, invoking actions Al and A2.

school test test test test hw hw hw hw none none none none

TV fare good good poor poor good good poor poor good good poor poor

energy down up down up down up down up down up down up

school work work work work work work work
other TV TV sleep TV TV sleep dog

Figure 2.8 Decision Table (Extended Entry)

The decision table in Figure 2.7 is called a limited entry decision table. Figure
2.8 shows the same problem expressed in a different form, which is called an
extended entry decision table — wherein entries can be more general than Y,N,X, or
blank. Note that extended entries allow a decision table to be compressed verti¬

cally. Both limited entry and extended entry tables are widely used, with limited
entry being somewhat more common. The choice is primarily one of convenience,
since it is simple to transform from extended entry to limited entry.

Obviously, if we have n independent limited entry conditions to be tested, then
there are 2" possible columns of rules; thus, decision tables can rapidly become

unwieldy with even a modest number of conditions. Fortunately, it is usually possi¬
ble to apply the process of condensation to decision tables, shrinking them
horizontally by means of don’t-care entries, denoted with Thus, in Figure 2.9,

note that when conditions Cl and C3 are true, then condition C2 is irrelevant. The
form in Figure 2.9 is termed a fully expanded decision table. Using don’t-care
entries, it can be condensed to the form shown in Figure 2.10(a). The table also

2.3.3 DECISION TABLES 49

illustrates the use of the ELSE rule, to be applied when the given values of the
conditions match none of the sets of condition values in the other rules.

Figure 2.9 A Decision Table to be Condensed

R1 R2 R3 ELSE

Cl Y N Y
C2 Y
C3 N N Y

A1 X X
A2 X
A3 X

R1 R2 R3 ELSE

Cl Y Y
C2 Y N
C3 N N Y

A1 X X
A2 X
A3 X

(a) (b)

Figure 2.10 Two Condensations of Figure 2.9

Unfortunately, the process of condensation may not be unique, as shown by
Figure 2.10(b). Systematic techniques for performing condensation, based on
Karnaugh maps and Quine-McCluskey simplification, are discussed in Shwayder
[1975]. Applying condensation to a decision table in an ad-hoc manner is also
hazardous. The resulting table runs the risk of having one or more of the following
properties:

1. Redundancy. A rule (that is, a set of condition entries along with a set of action
entries) may be repeated or subsumed in another rule.

2. Inconsistency. There may exist rules having identical condition entry values but
different action entries;

3. Incompleteness. Some possible set(s) of condition values may not be covered by
the rules in the table.

It is easy to check for these properties in a fully expanded decision table, and there
are also techniques to check for them in condensed tables.

However, there is another issue that is not as readily verified by machine.
Suppose that some of the condition stubs are not logically independent, as in Figure
2.11, which indicates how bus fare is to be charged. If condition Cl is true, then
condition C3 cannot be true; this means, in turn, that a fully expanded form of
Figure 2.11 should have less than 2n rules. So, in a given decision table in

50 ARRAYS and SETS

R1 R2 R3 R4 R5

Cl: senior citizen
C2: handicapped
C3: child
C4: commute hour

Y Y N N N
Y N N

Y N

NY-

AV. ride free
A2: pay reduced fare
/43: pay full fare

X
XXX

X

Figure 2.11 Non-Independent Conditions

condensed form and with dependent condition stubs, confirming that there are no

ambiguous situations in the table is a more subtle process.

2.3.3.1 The Rule-Mask Technique. As stated previously, our interest is discovering
how to convert a decision table array to a machine computation. To this end, we
are not concerned with the specifics of the action entries, but only with the determi¬
nation of the proper rule, given a set of conditions. There are two general methods
for converting a set of conditions to the correct rule. The first of these is the rule-
mask technique, which we will discuss in this section. The second method is based
upon decision trees, and so is deferred to Chapter 6.

R1 R2 R3 R4 R5

Cl Y Y N N — 1
C2 Y N N Y N
C3 — Y Y — N

Figure 2.12 A Decision Table to be Evaluated

Suppose that we have the condition entries from a decision table, as shown in
Figure 2.12. In order to use this method, we need to perform three actions, as
follows:

1. Convert the decision table into two boolean matrices: the truth matrix, with a
value of 1 (True) where the decision table has either “Y” or “ —” and a value of
0 (False) where it has “N”; and the falsity matrix, with a value of 1 (True)
where the decision table has either “N” or “ - ” and a value of 0 (False) where
it has “Y.” For the data of Figure 2.12, the result of this process is illustrated
in Figure 2.13.

2. Evaluate all the conditions and generate a boolean vector in which the ith bit is
1/0, corresponding to the truth/falsity of the ith condition.

2.3.3.1 THE RULE-MASK TECHNIQUE 51

3. Finally, apply the algorithm shown by the program RULE_MASK (Algorithm
2.5). Observe that it first generates a rule vector of all True’s, and then for
each condition AND’s it against a corresponding row of one of the matrices
truth or falsity, according to the value of that condition. At the conclusion, the
vector rule will have the value True for all rules that match the actual condition
values.

fll R2 R3 R4 R5

Cl 1 1 0 0 1
C2 1 0 0 1 0
C3 1 1 1 1 0

fll R2 R3 R4 R 5

Cl 0 0 1 1 1
C2 0 1 1 0 1
C3 1 0 0 1 1

truth falsity

Figure 2.13 Expansion of Figure 2.12 for RULE_MASK

As an example, suppose that the conditions C1,C2,C3 had the respective values:
True, False, True. Then the vector rule would go from 11111 to 11001 to 01001 to
01000, indicating that rule 2 is to be applied. This formulation of the rule-mask
technique has the advantage that it can also be used for decision tables in which
more than one rule may satisfy a particular set of conditions. Moreover, the result¬
ant rule vector(s) can be AND’ed with the rows of the action entries, for the case
where multiple actions are indicated.

program RULE_MASK;

{evaluates rule as a function of cond, falsity, and truth}

var i,j: integer;
cond: array [1 .. m] of boolean;
rule: array [1 .. n] of boolean;
falsity,truth: array [1 .. m,1 .. n] of boolean;

begin
for j := 1 to n do

rule [j] := true;
for i := 1 to m do

if cond [i] then
for j := 1 to n do

rule [j] := rule [j] and truth [i,j]
else

for j := 1 to n do
rule G] := rule G] and falsity [i,j];

end.

Algorithm 2.5 RULE_MASK

52 ARRAYS and SETS

The rule-mask technique is naturally efficient in terms of storage utilization,
and it can also be made efficient via the use of parallel bit operations, as we will
illustrate in Section 2.5.2. Although the rule-mask computation is simple, the calcu¬
lation of the values of the conditions may be rather costly. In many cases the
proper rule could be determined without evaluating every condition. A variant
known as the interrupt rule-mask technique relaxes this requirement, but at the

expense of added computational complexity [King 1966].

2.4 SETS

We now turn and examine the nature of sets. We have not given them a chapter of
their own for reasons having to do with emphasis and sequencing of topic material.
Specifically, we are concerned with sets as data structures more than as mathemat¬
ical objects. Thus, we wish to be able to talk about sets that are implemented as
arrays; in turn, this representation of sets is central to some methods to be
explained in Section 2.5. Therefore, we have placed the discussion of sets at this
juncture. First, we give some background about sets as mathematical objects; next,
we discuss them in the light of data structures for program manipulation.

2.4.1 Sets in Mathematics

A set is a collection of entities. In mathematics, there are two methods for defining
what constitutes a set. With extension the members are explicitly exhibited, as in

workdays = {Tuesday,Friday,Monday,Wednesday,Thursday}

or

colors = {blue,green,orange,purple,red,yellow}

A more powerful concept is that of intension, whereby members are defined in terms
of a property that they possess, as in

prime_numbers = {all positive integers n, such that the only
divisors of n are 1 and n}

In mathematical notation it is conventional to denote set membership with braces,
as in the examples. As we pointed out at the very beginning of this chapter, there is
no notion of sequence among the elements of an ordinary set; they are like objects
jumbled together in a bag. In this sense, sets are particularly distinct from arrays,
where elements reside in sequential slots.

There is another consequence of the lack of order in sets. By way of example,
consider the cases of the array (4, 7, 5, 19, 7, 6, 4) and the set {4, 7, 5, 19, 7, 6, 4}.
There is no difficulty with having repeated values in the array, since they are distin¬
guishable by their positions. In the case of the set, however, repeated values can
lead to confusion. In point of fact, many treatments of sets do not allow such

2.4.1 SETS IN MATHEMATICS 53

duplication. Nonetheless, it is useful to be able to speak of cases such as: three red
balls, two white balls, and seven blue balls. Sets in which repetition is allowed are
termed multisets.

Up to this point, our examples have been of sets whose members are simple
entities: days of the week, colors, integers, etc. Much of the power of set theory,
however, comes from being able to deal with sets whose members may themselves
be composite items, such as other sets. Thus, consider the set

fruit = {apple,banana,orange}

and the following set of subsets of fruit.1

salad = { { }, {apple}, {banana}, {orange}, {apple,banana},

{apple,orange}, {banana,orange}, {apple,banana,orange} }

Since there are three fruits and each may or may not be present when we construct
a subset, then there are of course 23 = 8 possible subsets, the collection of which
defines the set salad. The possibilities for sets of more elaborate nature are not
confined to the case just illustrated; but this construction of a set B of subsets of
another set A is particularly important. The set B is called the powerset of the set
A, sometimes denoted by B = 2A. Since 2A counts the number of possible values
that can be assumed by a variable whose type is “set of A,” it is also the cardinality
for that type. Be careful not to confuse this type cardinality for a variable of type
set with the cardinality of the set itself, which is the number of objects in the set.

Given a set S and an object t, a basic consideration is whether the object is in
the set, expressed as t e S. A related but distinct question arises when we are deal¬
ing with two sets. The question then is whether one set is contained in the other or
not, denoted by the (proper) inclusion operator <= rather than the membership opera¬
tor e. For example, {a,c}<^{a,b,c}. The operator c: is analogous to the operator <
in ordinary arithmetic, while the operator c is analogous to the operator <.2

Given two sets A and B, there are three basic binary operations that can be
performed upon them. Using A = {p,q,r} and B — {r,s} as examples:

1. Set intersection, A{~)B, yields the set consisting of all those entities that are in
both A and B; thus Af]B = {r}.

2. Set union, A\JB, yields the set consisting of all those entities that are in A or in
B or in their intersection; thus A{JB — {p,q,r,s}.

3. Set difference, A — B, yields the set consisting of all those entities that are in A
but not in B; thus A — B — {p,q}, and B — A = {$}.

1 The set {} with no members is called the empty set. Note that {apple} is not the same
as apple. The former is a set with one member, apple-, the latter is not a set but rather
just itself. This distinction may seem nitpicking, but it is highly significant.

2 These analogies are imperfect because with the arithmetic operators we have a total
order, whereas with the set operators we have a partial order. This matter is addressed
in Section 7.4.5.

54 ARRAYS and SETS

These basic notions that we have cited about sets may seem almost trivial.
Nonetheless, they have been employed as the foundation for all of modem math¬
ematics, as we will illustrate in the next section. As a conclusion to this section, we

should point out a hazard of combining two concepts introduced herein:

• defining members of a set by intension, and
• allowing members of a set to be sets.

Imagine that we have a set U of persons in a town, and that one of them is a
barber. Now define the set X to be the subset of U consisting of those people who
do not shave themselves. If we assert that the barber shaves just those persons in
set X, does he shave himself or not? If we say that he does, then since he shaves
himself he cannot be in X, and so cannot shave himself. If we say that he does not
shave himself, then he must be in X, which would mean that he does shave himself.
This paradox, in different terminology, was known to the Greek philosophers. In
the stated form, we can resolve it by insisting that since the hypothesis of such a
barber introduces a contradiction, then no such barber can exist, and therefore there
is no paradox. However, when expressed more carefully in terms of the class of all
classes that are not members of themselves, the paradox is much harder to deal
with. It was Bertrand Russell who finally proposed to resolve it with his Theory of
Logical Types, in which sets are constrained from having members of unrestricted

type [Quine 1962].

2.4.1.1 Relations and Functions. Consider now the set S, whose members are pairs

of objects

S = { < a,b >, <c,d>, < e/>,...}

Such pairs are commonly called tuples, and the order within the pairs is important;
thus, < a,b > is not the same as < b,a >. A common way to obtain a set of tuples
is via the set operation of Cartesian product of two other sets, where Ax B denotes
all tuples < a^bj >, with at e A and bj e B. If there are m objects in set A and n
objects in set B, then there are m x n distinct tuples in the set C = A x B. A perva¬
sive instance of the notion of Cartesian product is the following. Let A and B be
the same (infinite) set Z, consisting of all the real numbers. Then Z x Z corre¬
sponds to all the points in the plane, with tuple values <x,y> corresponding to

coordinates at those points.

More pertinently, consider the example of the set A = {2, 3, 4, 6, 8, 12, 24} and

the set of tuples

D = { < 2,4 >, < 2,6 >, < 2,8 >, < 2,12 >, < 2,24 >, < 3,6 >, < 3,12 >, < 3,24 >,
< 4,8 >, < 4,12 >, < 4,24 >, < 6,12 >, <6,24>, <8,24>, <12,24>}

The set of tuples D, which is a subset of A x A, can be said to define a relation R
on the set A, in that, for certain values of i and j, we have <ahaj> e D, or a, Ra7.
In our example, the relation at R a,- corresponds to the fact that a, is a proper divisor
of aj. It is perhaps more natural to think of relationships as being defined inten¬
sively - that is, in terms of some property such as “divides,” “is greater than,” “is
brother of,” etc. But the important point is that relations can be defined exten¬
sively, through the use of tuples, and sometimes this is a more desirable method.

2.4.1.1 RELATIONS AND FUNCTIONS 55

Consider next a set of tuples based on the sets A and B, and let < > denote
the ith tuple value. Then, if these tuple values are constrained so that all the values
a> are distinct, we have a theoretical basis for another powerful concept in math¬
ematics, that of the function. Given a value ah we simply need find the unique tuple
containing a, as its left hand member, and then we have = f(a,). This corresponds
to the manner in which, for example, the function y = sin(x) is expressed in tabular
form for discrete values of the independent variable ;c.

These points will not be discussed further; our intention has been simply to
indicate the fundamental importance of sets in mathematics.

2.4.2 Ordered Sets and Set Representations

When we began our discussion of sets, we stressed that sets are intrinsically unor¬
dered. In some cases, however, we prefer to think of members of a set as possessing
a natural order, in which case the set is conventionally written, for example, as

workdays = < Monday,Tuesday,Wednesday,Thursday,Friday >

instead of with braces. In still other cases, even though sets may not be intrinsically
ordered, ordering of the elements is de facto present, particularly when we are using
computing machines with their sequential memories. This, in turn, has a bearing
upon the methods used for representing sets in computers.

A: P i c t A: c i p 1

B: g h r V m b Z B: b g h m r V Z

(a) (b)

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 i 0 0 0 0 0 0

abcdefgh i j k Imnopqrstuvwxy z

0 1 0 0 0 0 1 1 0 0 0 0 i 0 0 0 0 i 0 0 0 1 0 0 0 1

(c) Characteristic Vectors

Figure 2.14 Alternate Set Representations

When we considered how arrays are represented in computers, we found it very
natural and efficient to map successive array elements into successive memory
locations. In many other data structures, however, there is not one best method for
mapping the logical structure into a physical representation in computer memory.
This is the case for sets. We will illustrate it by showing two methods for represent¬
ing the sets A = [p,i,c,t} and B = {g,h,r,v,m,b,z}. One possibility is to simply list all
the members of a set as elements of a one-dimensional array, or vector. In such a
case, A and B might appear as in Figure 2.14(a). There are several points to be
made about this choice of representation:

56 ARRAYS and SETS

• There is an ordering of the elements, but it is a de facto one. A and B might
equally well be represented as in Figure 2.14(b), or in several other sequences.

• Such representations require arrays of varying length, according to the cardinal¬

ity of the set.
• Such a representation is adequate for the sets A and B, and also for

fruit = {apple,banana,orange}; but it is not adequate for sets whose members

are not simple objects, as in the case of the powerset of fruit.

In many problems involving sets, there are only a definite number of objects
that can be members, and the set containing all of these candidate members is called
the universal set. Since membership is a boolean valued attribute, we can character¬
ize any particular set over this universe by a boolean vector, called the characteristic
vector of the set. If we suppose that our universe in Figure 2.14 consists of all the
lower case letters of the alphabet, then the sets A and B can be represented as in
Figure 2.14(c). Note that the characteristic vector requires that the set be an
ordered one; the ith boolean value in the vector indicates the absence/presence of
the z'th object in the set. As long as the universe is not large, the characteristic
vector is quite efficient in terms of storage requirements. However, over a large
universe, the storage utilization is poor, particularly if most of the sets encountered
in practice have cardinality much smaller than the size of the universe. There are
still other methods for representing sets, as we will see later (see Section 6.6.5).

2.4.3 Sets in Programming Languages

Few programming languages have direct support for sets as data structures [§].
The user with such a need usually must represent sets in some manner similar to
that illustrated in the preceding section. However, there are exceptions. For exam¬
ple, sets are directly supported in Pascal at a modest level. Therein, the universe of
members is constrained to be some ordered collection of simple objects, delimited
by enumeration or as a subrange, as in the following examples:

type colors = set of (red,orange,yellow,green,blue,violet);
extent = set of min .. max;

var flag: colors;

flag := [red,yellow];

The symbols e, c, f~j, and (J of mathematics are usually not available to computer
users. In Pascal, the corresponding symbols in Table 2.1 are employed.

The definition of Pascal does not prescribe how sets are to be represented, but
in fact the exclusive method of choice has been the characteristic vector. Most
Pascal implementations restrict the number of bits in the vector to the maximum
number of bits that can be conveniently manipulated with one machine instruction,
which is commonly 60, 64, or 256 bits. Thus, it is common to have the pragmatic
restriction that sets in Pascal consist of objects from a universe that is isomorphic to

2.4.3 SETS IN PROGRAMMING LANGUAGES 57

Operator Set Notation Pascal Operator

membership e in
inclusion d <
intersection n *
union u +
difference -

Table 2.1 Pascal Symbols for Set Operations

the subrange 0 .. 59 or 0 .. 63 or 0 .. 255. There are several significant consequences
of this choice:

• Membership can be determined efficiently at the machine language level via a
shift instruction.

• Intersection maps to logical AND.
• Union maps to logical OR.

program SIEVE;

{as prime numbers are found in prospects, they are recorded
in primes and their multiples are deleted from prospects}

var i,next: integer;
primes,prospects: set of 2 .. n;

begin
prospects := [2 .. n];
primes := [];
next := 2;
repeat

while not (next in prospects) do
next := next + 1;

primes := primes + [next];
i := next;
while i <= n do begin {delete multiples of this prime}

prospects ;= prospects - [i];
i := i + next;

end;
until prospects = [];

end.

Algorithm 2.6 SIEVE

An illustration of the use of the set data structure is given by the program
SIEVE (Algorithm 2.6), which mimics the action of the sieve of Eratosthenes for
finding the prime numbers between 2 and n. The method commences with the set
prospects, containing all the numbers 2 .. n, and the empty set primes. Whenever a

58 ARRAYS and SETS

number i is found to be prime, it is added to the set primes, and all of its multiples
are deleted from the set prospects. The generalization of this technique to allow for

arbitrarily large n is left as an exercise (see Exercise 2.13).

2.5 REDUCING ALGORITHMIC COMPLEXITY

There are many problems involving two-dimensional arrays for which the straight¬
forward algorithms are 0(n2). We have seen this, for instance, with matrix
multiplication and the solution of simultaneous linear equations in Section 2.3.2.
What are the possibilities for reducing this complexity? This section explores
several techniques. Before considering these, however, a very significant practical
possibility occurs when the matrix can be partitioned into blocks of submatrices, as
in Figure 2.15, such that the blocks off the diagonal can be ignored as a first
approximation. (That is, they contain values sufficiently small that their effects can
be accounted for as second-order corrections.) If the original matrix is of dimen¬
sion nxn, and if it is partitioned into mx m submatrices, each of dimension
(:n/m) x (n/m), we may then have to deal only with the m sub-problems on the diag¬
onal, each of complexity 0((«/m)3); in other words, we may be able to improve

matters by a factor of m2.

Splitting a large problem into smaller ones may yield improved performance
even in cases where none of the subsets of data can be ignored. This is the subject
of the next section. In the case that the base type of the arrays is boolean, and
when there is access to the underlying capabilities for parallel bit processing that
exist with most computers, there is another avenue for improvement. Section 2.5.2
presents this technique in simpler terms. Finally, in 2.5.3, we will see an illustration

of applying both methods for the reduction of complexity.

2.5.1 Divide-and-Conquer

Suppose that we have an array of n numbers, and that we wish to find both the
smallest and the largest values in the array. A direct solution would be to loop
through the entire array and find the smallest value with n — 1 comparisons, and
likewise find the largest value with another n — 1 comparisons. A solution requiring
fewer comparisons is illustrated by the procedure MIN_MAX (Algorithm 2.7).
Using this method, we split the array in half in order to solve the original problem
with both halves; from these solutions, we find the overall minimum and maximum
by comparing the minima/maxima from the two halves. By applying this technique
recursively, we obtain a solution that requires (3/2)» — 2 comparisons rather than
In — 2 comparisons.

In order to demonstrate this, we have to deal with the recursive nature of
MIN_MAX by finding and solving the corresponding recurrence relation, as in
Chapter 1. For this particular case, we see that the work T(n) for an array of size n

2.5.1 DIVIDE-AND-CONQUER 59

X X ... X

XX ... x

XX ... X

o O

_i _i

O

XX ... X

XX... X

XX ... x

_L

o

■ I

1
1

-1—
1

1
1

-1-
1

i
i

—— -4—
i

— —

1
1
1

1
1
1

i
i
i X X . . . X

0
1
1
1

0
1
1
1

i
i

X X . . . X

1
1
1
1

1
1
1
1
1

i
i
i
i
i

X X . . . X

Figure 2.15 Decomposing a Problem

is twice the work, T(n/2), for an array of size n\2, followed by two comparisons
using those results:

T{n) = 27>/2) + 2 (2.10)

This recurrence relation really applies only if the size of the original array is a
power of two; but we can expect to interpolate fairly closely for intermediate sizes.
The solution of a non-homogeneous recurrence relation, as in Eq. 2.10, can be
expressed as the sum of a homogeneous solution plus a particular solution. We
have illustrated a little bit about the first of these solutions in Section 1.3.2.3.
Obtaining the latter is a bit more complicated, and requires a different tack. A
method that is simple and commonly effective, if inelegant, is to guess at the general
form of the solution using unknown coefficients. One can then try to determine the

60 ARRAYS and SETS

procedure MIN_MAX (lo,hi: limit; var mini,maxi: integer);

{finds mini and maxi values between io and hi in data)

type limit = 1 .. n;

var mid,mini ,min2,maxi ,max2: integer;
data: array [limit] of integer;

begin
if ((hi - lo) < 2) then begin

if data [lo] < data [hi] then begin
mini := data [lo]; maxi := data [hi];

end else begin
mini := data [hi]; maxi := data [lo];

end;
end else begin

mid := (lo + hi) div 2;
MIN_MAX (lo,mid,mini,maxi);
MIN_MAX (mid + 1,hi,min2,max2);
if mini < min2 then mini := mini

else mini := min2;
if maxi > max2 then maxi := maxi

else maxi := max2;
end;

end;

Algorithm 2.7 MIN_MAX

unknown coefficients by substituting the general form in the original equation. It is

reasonable to expect that the solution must be 0(n), or

T{n) = An + B (2.11)

and substituting this in Eq. 2.10 yields

An + B = 2 lA(n/2) + B] + 2 = An + 2B + 2 (2.12)

whence B = —2. Finally, since we know that T(2) = 1, then A — 3/2. Thus, we

have shown that

T{n) = {3l2)n-2 (2.13)

proving the earlier claim about MIN_MAX.

This technique for reducing complexity is called divide-and-conquer. The recur¬

rence relation in Eq. 2.10 expresses the fact that we have divided the original
problem into two parts, wherein the first term on the right describes the effort to
solve the subproblems, and the second term on the right describes the effort to

synthesize the subproblem results. The first term leads to the homogeneous
solution, and the second term leads to the particular solution. A generic equation
for the divide-and-conquer technique is

2.5.1 DIVIDE-AND-CGNQUER 61

T{n) = cT(nld) +/(«) (2.14)

Solutions corresponding to different values for the constants c and d and the func¬
tion/are illustrated in Aho et al. [1983] and Tucker [1984],

It is important to realize that our analysis of MIN_MAX is predicated upon
the assumption in Eq. 2.10, that the dominant factor in the algorithm is the number
of comparisons between elements of the array, ignoring even the div operation.
Such an assumption might in many cases be justified by taking note of factors such
as: the other costs in the algorithm are proportional to this dominant factor, and
so can be subsumed in the constant of proportionality; the comparisons may be
between large items, so that the cost of these comparisons really does dominate the
computation; etc. Unfortunately, MIN_MAX improves only the constant factor,
not the complexity class. In fact, even though it invokes only 75 percent as many
comparisons of array elements, the associated overhead will usually cause it to be
slower than the naive approach.

More commonly, divide-and-conquer can be very effective in that it may lower
the complexity class. We shall see examples of this in the next section and through¬
out this book (see also Exercise 2.19).

f2.5.1.1 Strassen’s Algorithm. A remarkable result by Strassen [1969] gave the
first demonstration that matrices can be multiplied with complexity less than 0(n3).
To begin with, consider the case of multiplying two 2x2 matrices A and B to
produce the 2x2 product matrix C. By the conventional method, the four
elements of C are obtained using 8 multiplications and 4 additions, as follows:

cll = + au^2\
c12 = a11^12 + a12^22

c2i = a2\bn + a22b2i

c22 = a2\b\2 + a22^22

(2.15)

However, consider the unobvious sequence of multiplications:

ml = (al2~ a22.) (hi + ^22)
m2 ~ (ai 1 + a22) (^11 + ^22)
m3 = (all ~ a2\) (hi + ^12)
m4 “ (all + a\2) h2
ms = a\ 1 (b\2 — b22)

m6 = a22 (hi — hi)

ml — (a21 + a22) ^11

(2.16)

followed by the sequence:

cl 1 = mi + m2 ~ w4 + m6
cn = m4 + m5
c2, =m6 + m7
c2 2 = m2 — m3 + w5 — m7

(2.17)

62 ARRAYS and SETS

Using Eqs. 2.16 and 2.17, the product of A and B is obtained with a total of 7

multiplications and k = 18 additions.

Crucial to Strassen’s method is the fact that these same equations can be used

when n x n matrices A,B,C are decomposed into n/2 x n/2 submatrices ■^ij’ ^ij
for ij= 1,2. (Matrices with dimensions that are not powers of two can be accom¬
modated in several ways.) The recurrence equation for the number of

multiplications is then T(n) — 7 T(n/2), with solution

T(n) = 7 T(n/2) = 72 T(«/4) = - = 1 T(n/2/) = - - 7lg " T(l) (2.18)

In other words, since 7\1) = 1

T(n) = 7lg ” = nlg 7 « «2'81 (2.19)

The number of additions can actually be reduced from k = 18 to k — 15. More
significantly, however, it can be shown that the number of additions by this method,
for any constant k, is likewise asymptotically 0(n2iX), whereas the number of addi¬
tions with the conventional method is 0(n3). Nevertheless, the constant factor
associated with this method is rather large, and so n must be sizeable (> 40) before

the method becomes profitable.

With regard to the inherent complexity of matrix multiplication, there are two
interesting postscripts (see also Exercise 2.16). One is that Strassen’s method is
known not to be optimal. Algorithms of even lower complexity have been exhib¬
ited; an example is that of Coppersmith and Winograd [1982] with complexity less
than 0(n2-5). The other comment has to do with the best-case analysis of the prob¬
lem. It is easy to see that since the product matrix has n2 elements, then it must
require at least that many multiplications. Surprisingly, however, the best theore¬
tical lower bound is still no better than Q(«2). As simple as one might suppose it
would be, the question of the complexity of matrix multiplication is still open.

2.5.2 Parallel Bit Operations

At the assembly language level, there is no problem in using parallel bit operations
if they exist in system hardware. In Pascal, we have seen that there is the data type
set, and that a set is virtually always represented as a vector of bits. We can thus
obtain access to parallel bit operations in Pascal by letting the truth/falsity of the
zth logical value correspond to the presence/absence of i in a set.

When applied to the procedure RULE_MASK (Algorithm 2.5) for dealing with
decision tables, this would cause both inner loops to be replaced by single state¬
ments, using the set intersection operator. We would then have

rule := rule * truth [i] , and rule := rule * falsity [i]

Rather than setting out the other changes to RULE_MASK, we investigate the
more general issue: What would it take to multiply two boolean matrices in Pascal,
representing them via sets? In fact, this process can be represented in several
manners that appear quite different. A method that is both efficient and instructive

2.5.2 PARALLEL BIT OPERATIONS 63

program BOOL_MULT;

{computes boolean matrix product, C = A x B}

const u = {# of rows in A and C}
v = {# of columns in A and # of rows in B}
w = {# of columns in B and C}

type setv = set of 1 .. v;
setw = set of 1 .. w;

var i,k: integer;
A: array [1 .. u] of setv;
B: array [1 .. v] of setw;
C: array [1 .. u] of setw;

begin
for i := 1 to u do begin

C [i] := [];
for k := 1 to v do

if k in A [i] then
C [i] : = C [i] + B [k];

end;
end.

Algorithm 2.8 BOOL_MULT

is given by the procedure BOOL_MULT (Algorithm 2.8), for matrices of arbitrary

but conforming dimensions. We see that the ith row of the product matrix C is

obtained as the union of various rows of B, according to the members of the set in

the ith row of A. The situation is illustrated in Figure 2.16 for u = 3, v = 4, w = 5;

there, for example, since the first row of A is 0101, the first row of C is obtained by

OR’ing the second and fourth rows of B. The net result is that BOOL_MULT

performs 0(uv) set unions instead of 0(uvw) individual bit multiplications.

A:u x v B:v x w C:u x w

Figure 2.16 Boolean Matrix Multiplication

64 ARRAYS and SETS

f2.5.3 Four Russians’ Algorithm

When the base type is boolean, there is a method of matrix multiplication that is

0(zz3/lg"), without reference to parallel bit processing. This method is called the
Four Russians’ algorithm [Arlazarov et al. 1970; Baase 1978], and it operates by
partitioning the two matrices to be multiplied. When this technique can be
combined with that of the previous section, then the cost is 0(zz2/lg"). For simplicity,
we will illustrate the method with the two square matrices shown in Figure 2.17.
For A and B of dimensions n x n, we would have m = Llg n and p = T(n/m). A is
then partitioned into p submatrices Ah, and B is partitioned into p submatrices Bh,
as shown in the figure. If m does not divide n evenly, it is necessary to pad A with
extra columns of zeros and B with extra rows of zeros, so that the submatrices are

of the same size.

1 1 1
1 1 1
1 1
1 1 1

Si

1 1 "
1 1 1
1 1 1
1 1 1

s2

Ai j A2 j ••• j Ap

1 1 1
1 1 1

• • •

1 1 ;
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

Bp

Figure 2.17 Partitioning for RUSSIANS

As a result of the manner of partitioning, the product matrix is given by
C = A x B = £Ah x Bh, where each product Ah x Bh is itself an«x« matrix. In the
preceding section, we have seen that the z'th row of the boolean product C — Ax B
can be developed by OR’ing rows Bk such that k e At. The situation here is exactly
analogous, except that the partitioning now causes us to have p submatrices both
for A and for B. The resulting reference for A then needs to be Ah i corresponding
to the z'th row of the hth submatrix of A, and the reference for B needs to be Bhk
corresponding to the kth row of the hth submatrix of B.

However, there are just m elements in any row of a submatrix Ah, so that there
can be only 2m — q < n distinct rows in any submatrix Ah. The trick with the Four
Russians’ algorithm is, for each 1 < h < p, to precompute and store in a table the q
possibly needed combinations of the rows from Bh, and to use the value of each
entire row of Ah as an index into this table. This is illustrated in the program
RUSSIANS (Algorithm 2.9), where the boolean combinations of the rows B _h,k~\
are computed and stored in the array BCOMB. Subsequently, each row A [/z,z] is
interpreted as an integer for indexing into BCOMB to find the correct contribution
to the sum of products which is C. In reading the algorithm, be careful to realize

t2.5.3 FOUR RUSSIANS’ ALGORITHM 65

program RUSSIANS;

const m = { Llg n}

n = {order of square matrices A, B, C}

p = {the partitioning factor, T(njm)}
q = {2m~ ' (for O-indexing)}

type setm = set of 1 .. m;
setn = set of 1 .. n;

var h,i,j,k,u: integer;
A: array [1 .. p,1 .. n] of setm;
B: array [1 .. p,1 .. m] of setn;
BCOMB: array [0 .. q] of setn;
C: array [1 .. n] of setn;

function SET_TO_INT (s: setm): integer;
var i,j: integer;
begin

i := 0;
for j := m downto 1 do

i := 2 * i 4- ord (j in s);

SET_TO_INT := i;
end;

begin
for i := 1 to n do

C □:-[];
for h := 1 to p do begin

BCOMB [0] := [];
j:=0;
k := 1;
u := 1;

for i := 1 to q do begin {generate BCOMB from B}
BCOMB [i] := BCOMB [j] + B [h,k];
j := j + 1;
if j = u then begin

j := 0;
k := k + 1;
u := i + 1;

end;
end;
for i := 1 to n do {index BCOMB by A and apply to C}

C [i] := C [i] + BCOMB [SET_TO_INT (A [h,i])];
end;

end.

Algorithm 2.9 RUSSIANS

66 ARRAYS and SETS

that A \h,i] and B [h,k~\ do not refer to bits in A and B, but rather to rows (that is,

sets) in the hth partitions of A and B.

Two points about the algorithm need amplification. First, it computes each

row of BCOMB as the boolean sum of a row B [h,k] with a row of BCOMB
already in hand. This is accomplished by using the variables j,k,u to count in the
appropriate manner. Second, the interpretation of the set A [h,i] as an integer is

trivial in assembly language, but may or may not be trivial in an HLL. To isolate
this consideration, it is depicted in RUSSIANS as the function SET_TO_INT,
which is 0{m) in time as shown. Note in this function that ord (/'in 5) will have the

value 0 or 1, from the definition of the Pascal built-in function ord.

What is the complexity of RUSSIANS? It depends upon the implementation.
As shown, the outer loop with h is executed p times, the two inner loops with i are
executed n times, and within the second inner loop SET_TO_INT is 0{m). Thus,
the complexity is 0(mnp) = 0(n2). In Section 3.2.2 we will see how in Pascal to
overcome the bottleneck introduced by this version of SET_TO_INT, and how to
achieve the performance 0(np) — 0(n2^%n). More generally, it can be shown that no
method based upon row-unions can attain a lower complexity, except in the sense of

having a smaller constant factor [Angluin 1976].

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0

1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

(a) A (b) B

0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 0 0 0

0
0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0
1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0
1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0
0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1
1 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0

0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0

(c) BCOMB (d) c

Figure 2.18 Trace of Algorithm RUSSIANS (see Figure 2.17)

+2.5.3 FOUR RUSSIANS’ ALGORITHM 67

Toillustrate the algorithm, consider the matrices A and B, as shown in (a) and

2’i8' Here We have n = 12’ m = 3, P = 4; note that the index type of
COMB is 0 .. 7 rather than 1 .. 8, to allow 0-origin indexing. For the submatrices

Ax and Bu the computed value of BCOMB is shown in (c), and the corresponding
first value of C is shown in (d). New values for BCOMB and updated values for C

would have to be computed for h = 2,3,4 to complete the calculation.

2.6 ADVANTAGES AND LIMITATIONS OF ARRAYS

In Chapter 1, we cited the distinction between a logical data structure and its phys¬
ical realization in storage. Most HLL’s explicitly provide the array as a data
structure for the user, thereby allowing references of the form x [ij,...] without any
need to think about how the references are carried out. In actual practice, as we
saw in Section 2.2.1, the compiler usually makes such a reference by storing the
array in row-major order, and then employing a storage allocation function that
reduces to the formula

loc (x [ij,...~\)=p + qxi + rxj+- (2.15)

employing the values p,q,r, etc. from the dope vector for that array. From this
point of view, the physical storage structure of an array is not radically different
from its logical data structure; it just involves “unravelling” along the dimensions.

Implemented in this fashion, arrays are the most natural and efficient data
structure for many applications. They have the following advantages:

Al. They are well suited to random access; that is, any element x [ij,...] can be
referenced as directly as any other element, using Eq. 2.15.

A2. If we have located x [ij,...], then it is very easy to traverse to any of the
neighbor elements x [i - Ij,...], x [i + 1 j,...], x [ij - 1,...], x [ij + 1,...],
...; from Eq. 2.15, it simply requires incrementing loc (x [ij,...]) by —q or
+q, or — r or +r, etc.

A3. If the elements of an array have independent values and so must all be
retained, the use of storage is very efficient. The only overhead, in fact, is that
required for the elements of the dope vector.

On the other hand, arrays as we have described them thus far have several
inflexibilities that make them unsuitable for storage of data in numerous applica¬
tions. Some of these limitations are as follows:

LI. Arrays are required to have a homogenous base type in most HLL’s. We
cannot, for example, have an array in which one element is a character,
another element is a number, and still another element is a sub-array.

L2a. It is very awkward to insert or delete new elements (as opposed to modifying
existing values) in an array. Thus, in our survey of persons with respect to
sex, education, and marital status in Section 2.3.1, suppose - after all the data

68 ARRAYS and SETS

was recorded in our array - that there were no widowed persons and that we
wished to delete that category. Or suppose that we needed to add to the
educational dimension the category of post-graduate attainment. Either o
these would change the dimensions of the array, and would necessitate reshut-
fling all or most of the elements in storage. This reshuffling, since it involves a
change in the total storage requirement, could force other data objects to be

relocated as well.

L2b. Even more drastically, suppose that we wish to add another dimension to an
array. Imagine in our survey that we now need to tabulate results by political
affiliation as well as by sex, education, and marital status. This could cause
reshuffling, as before; but now, all the code for processing these results must
be changed as well, since references to survey with three subscripts will no

longer be valid.

L3. It is quite common to have arrays in which a high percentage - 90%, 99%, or
even more - of the elements are zero in value. It can obviously be quite inef¬

ficient to store such sparse arrays in conventional lexicographic order.

There are several answers to these difficulties. For the first point, the inability
to store heterogeneous data in an array, we will find an answer primarily in Chapter
3, with records; another point of view is presented in Section 2.9. We address the
second point in the next section and also in Section 2.9. The topic of sparse arrays

is treated in Section 2.8.

f2.7 ALTERNATIVE STORAGE SCHEMES

As we stated, arrays are ill suited to problems in which their dimensions tend to
vary. Nonetheless, it is possible to reduce this disadvantage in some cases by stor¬
ing the array in memory in a manner that compromises one or more of the
advantages listed in Section 2.6. We will describe some of these approaches in this
section; later, in Chapter 4, we will revisit the subject of arrays to see what can' be

gained by using lists and pointers.

For ease of discussion throughout this section, let us now restrict our attention
to two-dimensional arrays; there is no intrinsic difficulty in extending these
concepts to arrays of higher dimension. First, we will consider how such an array
could be enlarged or extended without having to reshuffle any of its elements. Of
course, the total storage requirement increases in such a case, but we will assume
that such growth has been anticipated in the initial allocation of storage.

Consider an array A [1 .. m,l .. «] and imagine the two following situations:

(a) that we wish to add another row A [m + 1,], or

(b) that we wish to add another column A [,n -1-1]

How feasible are either of these two extensions to A? Fairly obviously, if A is stored
in row-major order, then (a) is easy and (b) is impossible without complete reshuf¬
fling; if A is stored in column-major order, then (b) is easy and (a) is impossible

+2.7 ALTERNATIVE STORAGE SCHEMES 69

without reshuffling. Thus, it is quite easy to extend an array in just one dimension,
as long as it has been stored in a manner that anticipates growth in that dimension.
Moreover, the storage allocation function remains linear in all the indices.

What can be done about extending arrays in more than one dimension? Also,
as we look at the consequences of mapping array elements into memory space, how
does this affect the proximity, in that memory space, of neighboring elements in
each of the dimensions? These questions have been investigated in depth [§]. In
the next two sections, we describe several techniques, primarily of theoretical inter¬
est, for dealing with these matters. Our discussion is restricted to the case of main
memory, which is one-dimensional in nature. It is interesting to speculate on the
effect of memories with higher dimensional address structure, such as disk drives.

f2.7.1 Shell Storage

In this section, we describe two storage allocation methods that provide extendibil-
ity in more than one dimension, at the expense of ease of random access. They
correspond to growth taking place in shells. It sometimes happens that we have a
square array in which it is natural to think of both growth and traversal as taking
place in cubic shells that expand in one quadrant. This is shown in Figure 2.19,
where (a) depicts the elements partitioned into shells, and (b) depicts the locations
in which elements of A are stored. It is now easy to traverse successive shells by
accessing elements in consecutive memory locations; moreover, it is straightforward
to annex another shell without having to reshuffle any elements already in storage.
What has been lost is the ability to easily access elements at random, since the
corresponding allocation function is

loc (A [iij]) = b + (max (z'j) - l)2 + (max(zj) - 1) + (j - i) (2.21)

which is equivalent to

loc (A [ij]) = b + i2 - 2i +j (i >j)
(2.22)

loc (A [ij]) = b +j2 - i (i <j)

In general, the storage allocation function for cubic shells of dimension n is a poly¬
nomial of nth degree in the subscripts, which complicates both random access and
also traversal to neighbors along the dimensions.

Reminiscent of the triangular arrays of Section 2.2.2 are diagonal shells, as illus¬
trated in Figure 2.20. Again, (a) depicts the elements partitioned into shells, and (b)
depicts the locations in which elements of A are stored. Both traversal and growth
are easy in the diagonals, but random access is again more complicated, given by

loc (A [zj]) = b + — z — b -f-
(z2 + 2ij +j2 - 3i -j)

2
(2.23)

70 ARRAYS and SETS

Figure 2.20 Diagonal Shells

Note that Eq. 2.23 has a term with both i and j. Because storage allocation func¬
tions for diagonal shells contain such multivariate terms, traversal to neighbors
along the dimensions is even less convenient than it is for cubic shells.

f2.7.2 Arbitrary Extendibility

Allocating array elements in shells provides a degree of multi-dimensional extendi¬
bility, but only for certain preferred patterns of traversal. This causes both random
access and traversal to neighbors along the dimensions to be awkward. We now
examine two storage allocation functions that allow both very general extendibility
and relative ease of access to these neighbors.

The first method uses the function

loc (A [ij]) = b + 2/_1 x y-1 (2.24)

t2.7.2 ARBITRARY EXTENDIBILITY 71

The effect of this is shown is Figure 2.21, where (a) depicts the array A, and (b)

depicts the memory locations obtained via Eq. 2.24. It is now possible to annex

both rows and columns in any arbitrary sequence. Also, traversals to neighbors are

obtained by multiplying or dividing by 2 or 3. To reference a random element,

however, requires computing exponential terms. In addition, only a small fraction

of the available memory locations is “hit” by Eq. 2.24. For an m x n array A, the

storage utilization is (m x n) + (2m~l3n~l); in Figure 2.21, this corresponds to an
efficiency of 5 percent.

a11 a12 ai3 ai4 1 3 9 27 1 2 4 8

a21 a22 a23 a24 2 6 18 54 3 6 12 24

a31 a32 a33 a34 4 12 36 108 5 10 20 40

a41 a42 a43 a44 8 24 72 216 7 14 28 56

a51 a52 a53 a54 16 48 144 432 9 18 36 72

(a) (b) (c)

Figure 2.21 Arbitrary Extendibility

The inefficiency associated with Eq. 2.24 is due in part to the fact that it maps

the subscripts into the integers rather than onto the integers. Therefore, one would

hope that an allocation function mapping onto rather than into the integers would

give better results. This possibility can be realized, in the two-dimensional case at

any rate, by means of the observation that any integer can be uniquely expressed as

the product of an odd integer, 2i— 1, and some power of two, 2j~l. Accordingly, let

loc (A [ij]) = b + (2i - 1) x 2/~1 (2.25)

The effect of this mapping upon the array elements in Figure 2.21(a) is shown in

Figure 2.21(c). Traversal to neighbors in columns is obtained by addition, and

traversal to neighbors in rows is obtained by multiplying or dividing by a power of

2 (which is particularly easy to do on almost all computers). Although this method

is superior to the preceding one in both ease of traversal and in storage efficiency

(28 percent in the figure), the exponential term in j still causes terms to be allocated

in a manner sufficiently non-compact that extension of A by columns is impractical.

Although the two schemes described in this section allow for arbitrary extendi-

bility and also afford relative ease of access to neighbors, the cost of random access

is high, and storage efficiency is poor. Section 4.3.3 discusses an alternative, more

practical solution to the problem of arbitrary extendibility.

72 ARRAYS and SETS

2.8 SPARSE MATRICES

We have defined sparse arrays as those containing relatively few elements (10
percent or less) that are non-zero in value. Such arrays are particularly common in
the solutions of large systems of equations. Thus, for reasons of relevance as well
as convenience, we will restrict our discussion to the two-dimensional case of sparse
matrices. Even a modest system of simultaneous equations of order 100 would
entail 10,000 real coefficients, or 80,000 bytes if storage were allocated for all of
them. For larger systems, it becomes still more imperative to suppress the storage
of full matrices consisting largely of zeros (not to mention saving the time that
would be wasted in processing these zeros). Several techniques have been employed
to effect this suppression [§]. Our objective here is mainly to describe what issues

are involved in choosing one method over another.

The important issues are as follows:

1. Density. Each of the methods to be described shortly suppresses zero elements
at the expense of carrying along information to identify the coordinates of the
retained elements. The storage efficiency of these techniques varies considerably
as a function of the density p, defined as the proportion of non-zero elements.

2. Access requirements. Applications of sparse matrices may require easy random
access to elements, easy traversal to elements in both rows and columns, or easy
traversal along one dimension only. These issues are reminiscent of those

discussed in Section 2.7.

3. Insertion and deletion. Although there are many problems in which the
locations of the non-zero elements do not change, there are also processes
wherein elements may change from zero to non-zero, and vice-versa. Thus, it
may be important to employ a technique that facilitates the continual insertion

and deletion of elements in the matrix.

4. Special formats. It is useful to distinguish three different types of sparsity, as
illustrated in Figure 2.22. Here, (a) corresponds to random sparsity, (b) corre¬
sponds to band sparsity, and (c) corresponds to block sparsity. In cases (b) and
(c), it is common to employ special techniques to exploit the regularity of the
matrix structure. All of the methods that we will describe here, however, are
for the more general case of randomly sparse matrices.

To facilitate the description and comparison of the methods, we will use the
sparse matrix M of Figure 2.23. It is actually rather far from being sparse accord¬
ing to most criteria, but it serves the purpose of providing a good example. In brief
succession, we will consider the following methods — bit maps, address maps,
delta-skips, and triples — for storing sparse matrices. None of these methods are
directly supported in HLL’s. Although it is possible to carry them out within an
HLL, the attendant overhead can be high. There is thus a strong implicit assump¬
tion, with all of these methods, that they are implemented in assembler language.

2.8 SPARSE MATRICES 73

xOOxOxxOOOxO

OOxOxOOxOOxx

OOOxOOOOxOOO

OxOOOOxOOxOO

xOxOOOOxxOOO

OOOxxOOOOxOO

OOOOOxOxxxOO

xOOxxOOxOOxO

000000000x00

xOOOOxOOOOxO

OxxOOOOxOOOO

OOOxOOOOxOOO

(a)

x x x 0 0 0 0

x x x 0 0 0 0

x x x 0 0 0 0

0 0 0 x x x 0

0 0 0 x x x 0

0 0 0 x x x 0

0 0 0 0 0 0 x

0 0 0 0 0 0 x

0 0 0 0 0 0 x

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(C)

xxOOOOOOOOOO
xxxOOOOOOOOO
OxxxOOOOOOOO
OOxxxOOOOOOO
OOOxxxOOOOOO

OOOOxxxOOOOO

OOOOOxxxOOOO

OOOOOOxxxOOO

OOOOOOOxxxOO

OOOOOOOOxxxO

OOOOOOOOOxxx

OOOOOOOOOOxx

(b)

0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

x x 0 0 0

x x 0 0 0

x x 0 0 0

0 0 x x x

0 0 x x x

0 0 x x x

Figure 2.22 Types of Sparsity

The bit map scheme would represent the sample matrix M by the three items
shown in Figure 2.24. The items are an array B of bits with values of 1/0 corre¬
sponding to non-zero/zero elements of M, a vector Z containing the non-zero
elements of M, and a vector R containing the relative locations of the first element
of each row of M in Z. The bit values of B would really be packed into machine
words - typically 32 bits at a time, in row-major order - to match the sequence of
elements of M in Z. The vector R is somewhat optional; its inclusion would
depend upon the application. Let us compute the storage requirement S (in bytes)
for this method. If we presume that the elements of M are real and require 8 bytes
each, and that the addresses in R require 4 bytes each, then S depends upon the size
of M, which is n2, and its density p. It is seen to be

2 n2
S — 8pn H—-—P 4n (2.26)

O

where the three terms correspond to the storage requirements for Z, B, and R.

Succinctly, the bit map method has good storage efficiency for matrices that are not
overly sparse. However, as the density becomes very small, then for large matrices

the middle term in Eq. 2.26 causes the method to have excessive overhead compared

with other methods. With respect to accessing array elements from Z using B and

R, the method makes it fairly easy to traverse along rows of M, but considerably

74 ARRAYS and SETS

more costly to traverse along columns of M. (It would be possible to make
traversal easy along columns as well as rows; however, this would entail the
expense of storing, in addition to B and R, the transpose of B and a vector C of

column origins.)

0 5 0 0 2

4 0 9 0 0

0 0 0 6 0
1 0 0 0 3

0 8 0 0 0

Figure 2.23 An Example Sparse Matrix

0 10 0 1
10 10 0
00010 52496138 13568

1 0 0 0 1
0 1 0 0 0 Z R

B

Figure 2.24 Bit Map Allocation

0 10 0 2
1 0 2 0 0
00010 52496138 02457

1 0 0 0 2
0 1 0 0 0 Z R

A

Figure 2.25 Address Map Allocation

The address map method is similar to the bit map method. As applied to the
sample matrix M, it entails the three items of Figure 2.25. The items are an array A
(to be described), a vector Z (as before), and a vector R (almost as before). In this
scheme, the zero elements of A correspond to zero elements in M; non-zero
elements in A are displacement values to be added to the elements of R, in order to
access the corresponding elements in Z. The storage requirements for this method
are quite a bit higher than in the bit map method. The saving observation is that,
depending upon the size of M, a small number of bits, perhaps just a byte, will
probably be sufficient to indicate the displacement in any one row. With such an
assumption, we find for this method that

S = 8pn2 + n2 + 4n (2.27)

In exchange for this greater storage requirement, the address map method offers
improved traversal capability, assuming that the underlying machine has reasonable

2.8 SPARSE MATRICES 75

character or byte operations. In particular, it becomes reasonable to traverse along
both rows and columns, without the necessity of storing the transpose of A.

In the delta-skip method, the matrix M is represented by the items in Figure
2.26. Here, C is the vector of relative locations of the first element of each column
of M in X (4 bytes should be adequate again). An element of X is either a non-zero
element of M, or a count of intervening zero elements in a column of M until the
next non-zero element. In the use of this method for solving large sets of equations
via a relaxation method, double precision integers were employed; for each element
of X the least significant bit was used to signify the proper interpretation of the
element. The storage requirements for this scheme depend upon a somewhat unpre¬
dictable factor, namely the degree to which non-zero elements and zero elements in
M tend to be separately clustered. In the most favorable case, this could require
just two delta elements for each column of M, for

S = 8 pn2 + 16/i + 4 n (2.28a)

In other cases this could require for each column of M as many delta elements as
there are non-zero elements, giving

S = 8 pn2 + 8 pn2 + 4 n (2.28b)

except that Eq. 2.28a is a lower bound for Eq. 2.28b. For large systems of very
sparse equations, the effect of the middle term in Eq. 2.28 makes the storage
requirement of the delta-skip method superior to that of the bit map method. In
terms of traversal, the delta-skip method is extremely fast in traversing the selected
dimension (columns, in this case) since no scanning of a map is required; however,
it is useless for traversing the other dimension.

X = (1) 4 (1) 1 (1) / 5 (3) 8 / (1) 9 (3) / (2) 6 (2) / 2 (2) 3 (1)

C = 1 6 9 12 15

Figure 2.26 Delta-Skip Allocation

R = 11223445
C = 2 5 1 3 4 1 5 2
Z = 52496138

Figure 2.27 Triples Allocation

In addition to their properties already cited, the bit map, address map, and
delta-skip methods all have the limitation that they are ill suited to problems in
which non-zero elements may vanish and/or appear, necessitating deletion and
insertion. With the last method that we will illustrate here, the triples method, such
a capability is at least possible, albeit somewhat awkwardly. For this method, the
sample matrix M is represented by the items in Figure 2.27, where R is a vector of

row indices, C is a vector of column indices, and Z is a vector of the non-zero

76 ARRAYS and SETS

values of M. Clearly, the array elements R [/], C [z], and Z [z] specify the non-zero
element Z [z] = M [R [z], C [z]]. The storage required for elements of R and C
depends, of course, upon the maximum subscript value to be accommodated.
Supposing that we generously allow 2 bytes, or 16 bits, for the subscript range, then

we find that

S = Spn2 + 2 pn2 + 2 pn2 (2.29)

For not very sparse matrices, the overhead with this method is quite high.
However, since all the terms in Eq. 2.29 are proportional to p, the triples method
becomes more storage-efficient than any of the preceding methods for low values of
p. Like the preceding methods, the triples method has a bias for traversal in one
dimension over the other. Along the preferred dimension, traversal with triples is
not as fast as with delta-skip, but faster than with either map method.

Finally, it is possible, although slightly awkward, to accommodate insertions
and deletions via the following strategy:

1. Make the dimensions of the vectors R,C,Z somewhat greater than what is
needed to accommodate all the initially non-zero elements of M\ these extra
positions then become an overflow area.

2. As elements of M vanish, simply allow those Z-values to go to zero.
3. As new elements need to be inserted in M, post them as they occur in the

unused overflow positions of R,C,Z.
4. Any processing of the elements of M using R,C,Z must take the overflow area

into special account.
5. Periodically, the elements of R,C,Z can be sifted to discard zero values in Z and

to re-establish them in sequence as desired — say, row-major order, as they are
in Figure 2.27.

This almost concludes our discussion of sparse matrices. To illustrate the rela¬
tive storage efficiencies of the four methods described, we give in Table 2.2 the
storage requirements (in bytes) for a sparse matrix of dimensions 100 x 100, with
values of p from .1 down to .003. For this purpose, Eq. 2.28 was evaluated by
computing the geometric mean of Eqs. 2.28a and 2.28b — that is, the square root
of their product.

Density p .1 .03 .01 .003

Bit-Map 9650 4050 2450 1890
Address-Map 18400 12800 11200 10640
Delta-Skip 11978 4670 2331 1260
Triples 12000 3600 1200 360

Table 2.2 Storage Requirements for Sparse Matrices

There are two remaining points that should be mentioned here. First, there is
another very important method of representation, using linked lists, that must be
deferred to the appropriate point in Chapter 4. Second, we have characterized the
methods solely in terms of various criteria cited at the beginning of this section. In

2.8 SPARSE MATRICES 77

a given case, however, the type of array processing required by an application may
substantially influence the choice of representation. For example, it might be
important to compare two matrices of equal size to determine when corresponding
elements are non-zero. For such a case, it is easy to see that the bit map method
would be uniquely effective.

f2.9 EXTENDED SEMANTICS FOR ARRAYS

In the two preceding sections, we discussed various alternative techniques for repre¬
senting arrays in storage, focusing primarily on ways to compensate for some of the
shortcomings listed in Section 2.6. In the present section, we deal with arrays at a
much higher level, briefly citing some ways in which the ordinary concept of an
array as a logical data structure has been extended.

Recall that the indices into an array may be constants, variables, or even
expressions; but they must evaluate to integer values. Some HLL’s, such as
REXX, support arrays with a more general form of subscripting wherein the indices
may be non-numeric symbols, such as “cow,” “moon,” “spoon,” etc. This effect is
called associative indexing.

A different and even more powerful generalization is found in the the language
APL. It was originally invented by Iverson [1964, 1980] for notational purposes,
but has since been widely implemented on many different computers [Falkoff and
Iverson 1973], The language has many novel features, and we will not try to
describe APL in any detail in this brief space. From our perspective, the significant
point is that it employs the array as its single, native data structure. However,
arrays are completely dynamic with regard to both size and base type in APL.
Whereas all type attributes must be explicitly given in Pascal, all attributes are
implicitly deduced in APL. Moreover, there are a great number of both arithmetic
and structuring operators. For most computations, these can be applied directly to
arrays without the necessity of any explicit indexing. This dispenses with the usual
necessity to visualize array operations as being performed one element at a time,
with index variables varying simultaneously and correctly over their appropriate
domains. By way of illustration, the entire process for multiplying two matrices A
and B (see Algorithm 2.4) is expressed in APL simply as C<-A+. *B. This relative
brevity of programs in APL as compared with other languages is very typical. Such
brevity can make it possible to conceptualize problems and their solutions in global
terms, without regard for irrelevant and specific details.

The diversity of data structures in this book reflects the fact that no single data
structure is best for all purposes. Nonetheless, it is possible to construct models of
computation in which a single data structure is sufficiently powerful to accommo¬
date everything else, as we will see on several occasions. It is worth comparing such
models for computation with the ideas expressed in Section 2.4.1, wherein the devel¬
opment and elaboration of set theory in the last century has provided the theoretical
underpinnings of almost all of modern mathematical analysis. Array Theory illus¬
trates the analogous idea of a generic basis for computation based upon the array

78 ARRAYS and SETS

data structure [More 1973]. It is not a programming language, but rather a large
body of axioms and proofs. As the theory has evolved, however, it has been trans¬
lated into various experimental programming systems, notably APL2 and NIAL
(Nested Interactive Array Language). One of the important features of these devel¬
opments is that they allow the elements of an array to be heterogeneous in nature.
The notations of both Array Theory and its programming derivatives are largely

based upon that of APL.

2.10 OVERVIEW

When data is of homogeneous type and has a highly regular, fixed shape, then the
array serves very well as a structure onto which to map the data. Under these
circumstances, it offers maximum storage efficiency and very good access times.
Thus, it is not surprising that the array is the first (and sometimes only) data struc¬

ture discussed in beginning programming courses.

In this chapter we explored the types of calculations for which arrays are partic¬
ularly well suited, of which linear algebra is a prime example. From this starting
point, we followed three paths that point the way to recurrent themes in this book.
One important direction deals with attaining more flexibility in data structures.
Sparse arrays illustrate a significant instance of this by relaxing the regularity of
arrays. Another important goal is to reduce the complexity of a computation on a
given data structure; the technique that is often appropriate for doing this with
arrays is divide-and-conquer. A third theme investigates ways to generalize what
can be done with the array as a logical data structure, leading to the topics of asso¬

ciative arrays, APL, and Array Theory.

2.11 BIBLIOGRAPHIC NOTES

• Extended treatments of decision tables can be found in Montalbano [1974],
Pollack et al. [1971], and Pooch [1974], For an interesting discussion of the
comparative power of decision tables versus other methods for representing
algorithms (for example, flowcharts and structured programs), see Lew [1982].

• Closely related variations of the rule-mask technique can be found in Barnard
[1969], Kirk [1965], and Muthukrishnam and Rajaraman [1970]. An addi¬
tional feature of the method is that it can be implemented in a manner to detect
decision table ambiguities at run-time, as well as at compile time [Imbrasha and
Rajaraman 1978].

• Two programming languages that are primarily set-oriented are LEAP and
SETL. LEAP is a language similar to ALGOL, but containing several built-in
set operations as well [Feldman and Rovner 1969]. A primary objective in its

2.11 BIBLIOGRAPHIC NOTES 79

design was efficiency of searching in sets; it has been used primarily for work
in graphics and in artificial intelligence. SETL has been used for a variety of
combinatorial problems. It primarily employs a set representation [Kennedy
and Schwartz 1975] based upon hashing (see Section 10.4); however, a signif¬
icant objective in the design of the SETL compiler [Schwartz 1975] is that it
should select the best representation for a given problem (see Section 9.3).

• The issues of array extendibility and the resulting proximity of neighbor
elements are explored in DeMillo et al. [1978], Rosenberg [1975], and Solntseff
and Wood [1977], Methods for both shell storage and for arbitrary extendibil¬
ity are given in Rosenberg [1974], along with analyses thereof.

• Discussions of sparse matrix representations and of basic methods of operations
using them, can be found in MacVeigh [1977] and Pooch and Nieder [1973].
The delta-skip representation and its use in solving large systems of linear
equations is described in Smith [1965],

2.12 REFERENCE TO TERMINOLOGY

0-origin, 34
1-origin, 34
action entry, 47
action stub, 47

f address map, 74
t Array Theory, 77
f associative indexing, 77

base type, 35
f bit map, 73
t cardinality (of a set), 53

Cartesian product, 54
characteristic vector, 56
column-major order, 38
condensation, 48
condition entry, 47
condition stub, 47
conformable (arrays), 45
cross-section, 43

f cubic shell, 69
decision rule, 47
decision table, 47

t delta-skip, 75
t diagonal shell, 69

divide-and-conquer, 60
don’t-care entry, 48
dope vector, 41

Gaussian elimination, 46
hyperplane, 43
index, 34
index type, 35
inner product, 44
intension, 52
key, 36

lexicographic ordering, 39
limited entry table, 48
matrix, 44
multiset, 53

f particular solution, 59
f pivot element, 47

powerset, 53
relation, 54
row-major order, 38
rule-mask technique, 50
sentinel, 37
sparse array, 68
subscript, 34
symmetric array, 41

f tetrahedral array, 84
transpose, 82
triangular array, 41
tridiagonal array, 84
triples, 75

80 ARRAYS and SETS

extended entry table, 48
extension, 52
function, 55

tuple, 54
universal set, 56
vector, 44

2.13 EXERCISES

Sections 2.1 — 2.2

2.1 What is the cardinality of the array A declared by

A: array [-3 .. 7,9 .. 13,4 .. 17,-1 .. -1] of real

2.2 [Wirth 1973] M and N are 3x3 arrays of integers, with M initially as

follows:

(a) What is the value of N after executing

for i := 1 to 3 do
for j := 1 to 3 do

N [i,j] := M [M [i,j],M [j,i]];

(b) What is the value of M after executing

for i := 1 to 3 do
for j := 1 to 3 do

M [i,j] := M [M [i,j],M [j,i]];

2.3 Stored in row-major order starting at location 376 is

V: array [0 .. 5,-2 .. 2,-3 .. 8,4 .. 7] of real

(a) What is the location of the element V [2,1,3,6]?

(b) What are the coefficients of the dope vector for V?

f2.4 Suppose that we have T: array [1 .. n\ of integer with ordered elements.
Write a function SEARCH_C that has as input parameters an argument key and a
table such as T, and that does the following. If the argument is already present, it
should return the index of its location; if the argument is not present, it should
insert it — relocating array elements as necessary so that the ordering will be main¬
tained — and then return the index of the argument in the rearranged table. What
is the computational complexity of your algorithm? What might be the hazards in
using an algorithm with this specification?

2.13 EXERCISES 81

Sections 2.3 — 2.4

2.5 Consider the problem of evaluating a polynomial

anx + an_^x + ••• + a^x + <2q

for integer n, and real x, and with each a, stored as the ith entry of an array of
coefficients. Assume that there is no exponentiation operator, so that the high
degree terms must be obtained by repeated multiplication by x. Write a function to
do this, and test it against

y(x) = x1 + 6x6 - lx5 + 12x4 + 2x2 - 3x + 8

for several values of x, such as 1.7 and —7.2. How many multiplications and how
many additions does your method require, as a function of the degree of the poly¬
nomial? What can you say with regard to the minimum complexity of an algorithm
for this problem?

2.6 For a matrix A of dimensions m x n, define the vector R by rt = min(a. J for
s = 1 ■■ an<i the vector C by cy — max(aiy) for t = 1 .. m. A is then said to have a
saddle point if max(/*,■) = min(cy). Write a procedure to test for the presence of a
saddle point in a matrix, and apply it to several 5x7 matrices of your choosing.

ff2.7 [Knuth 1973a] In Exercise 2.6, assume that the m x n elements of a matrix
have distinct values and that all permutations of these elements in the matrix
locations are equally likely. What is the probability of there being a saddle point?

f2.8 The array shown in Figure 2.28 is an example of a magic square of order n.
It has the property that its entries consist of the numbers from 1 to n2, and that the
sums along any row, any column, or the two diagonals all add up to
'A x n x (n2 + 1). For n an odd number, a long known method of construction is as
follows. Start with 1 in the middle of the top row, and always record the next inte¬
ger diagonally to the left and above the previous integer. If this causes you to fall
off an edge of the square, then “wrap around” modulo n; if the sought-after square
is already occupied, then drop down one row and proceed. Write a procedure to
generate magic squares for odd values of n, and use it to compute the magic square
of order 13.

f2.9 Permutations form a group. The product Pa x Pb signifies the result of
applying first Pa and then Ph. The inverse Pl is a permutation with the property
that P x P~x leaves the elements in their original arrangement. Thus, for P analo¬
gous to Eq. 1.12, P~x is found by first transposing the two rows and then reordering
the columns with respect to the new first row, as follows:

/4 6 7 2 5 1 3\ (\ 2 3 4 5 6 7\
\1 2 3 4 5 6 l) \6 4 7 1 5 2 3/

Write a procedure that computes the inverse of P in situ; that is, it replaces the
elements of P by the elements of P~x as it executes. Assume that P is given as in
the second line of Eq. 1.12, but output Px in cycle notation (canonical form is not
required).

82 ARRAYS and SETS

28 19 10 1 48 39 30

29 27 18 9 7 47 38

37 35 26 17 8 6 46

45 36 34 25 16 14 5

4 44 42 33 24 15 13

12 3 43 41 32 23 21

20 11 2 49 40 31 22

Figure 2.28 Magic Square of Order 7

•jf 2.10 Write a procedure that takes as input parameters the coefficient matrix

and the vector of right hand sides for a set of simultaneous linear equations, as in

Eqs. 2.8, and then solves these equations by Gaussian elimination, returning the

solution vector as an output parameter. Test your program by using it to solve the

set of equations

.410*! + .123x2 + -368*3 + .294*4 = .404

.365*! + .192*2 + .378*3 + -064*4 = .424

.178*! + .400*2 + .279*3 + -393*4 = -.256

.225*i + -387*2 + .402*3 + .113*4 = .155

and printing out the transformed coefficients at each iteration. What is the

complexity of your algorithm?

Straightforward Gaussian elimination has a serious potential hazard because the

forward step involves repeated divisions by the pivot elements au. It should be

apparent that a small pivot value (perhaps even zero) is an invitation to disaster as

far as accuracy is concerned. One resolution is to inspect all of the coefficients

atJ, ai+u,..., ani to find the aJ t that is greatest in magnitude. The z'th and y'th

equations can then be swapped, in a technique known as partial pivoting. Revise

your algorithm to incorporate partial pivoting, and use it to solve the same

equations again. Under what circumstances will pivoting be important?

•f-f2.ll The transpose of a matrix M, denoted by MT, is such that

MT [ij] — M [/',/]. It is possible to transpose a matrix in memory by permuting its

elements in situ, as opposed to getting a block of storage and copying from M to

MT. Write a procedure to transpose a matrix in this fashion. To accomplish this,

you should subvert the normal automatic mapping of arrays into sequential storage

by declaring a one-dimensional array A and then mapping M into A in lexicograph¬

ical order. Then apply your program to obtain MT in A. Test your program by

using it against the following 5x7 matrix, wherein the values of the elements corre¬

spond in fact to the indices of the elements:

2.13 EXERCISES 83

11 12 13 14 15 16 17
21 22 23 24 25 26 27
31 32 33 34 35 36 37
41 42 43 44 45 46 47
51 52 53 54 55 56 57

What can you say about the complexity of your program?

2.12 For the decision table of Figure 2.11, construct the matrices truth and falsity,
and apply the algorithm RULE_MASK to them. Trace the values assumed by the
vector rule, for a rider who is a non-handicapped child during the commute hour.

2.13 Rewrite the algorithm SIEVE, employing arrays of sets, and use it to search
for prime numbers over a reasonable range.

Section 2.5

f2.14 Simulate the application of the algorithm MIN_MAX to the following
array of data:

267 399 67 871 59 767 755 599 619 879 163 71

For each call to MIN_MAX, trace the following information: the input parameters
lo and hi, and the output parameters mini and maxi.

f2.15 What is the recurrence relation for the number of additions with Strassen’s
algorithm? What is its solution?

f2.16 [Winograd 1970] Strassen’s algorithm reduces the complexity of matrix
multiplication from 0(n3) to 0(n2Sl); however, it also has a large constant factor.
A method by Winograd does not attain a lower complexity, but it does have a smal¬
ler constant factor (less than one) than that of Algorithm 2.4. By way of
introduction, suppose that we wish to multiply two vectors, U = (ux, u2, u3, u4) and
V = (v„ v2, v3, v4). We can write the product as

U X V ~ («[+ V2)(m2 + vl) + (w3 + v4)(w4 + v3) — Cwlw2 + W3W4] — [vlv2 + V3V4]

In the general case, and restricting attention to the case n — 2m, we have

m mm

U x V = y>2,-l + v2i)(u2i + v2z— 1) ~
i=l i= 1 z=l

This requires 3n/2 multiplications rather than n, so it is not very profitable.
However, note that the bracketed terms can be precomputed for U and for V.
Similarly, in multiplying two matrices A and B, the bracketed terms can be precom¬
puted for each row of A and each column of B\ this gives us the basis for

Winograd’s algorithm.

(a) Write a procedure to multiply matrices using this technique; for simplicity, let
the matrices all be of order n — 2m. Test your program against Algorithm 2.4,

both for correctness and for performance.

X["2 i~\u2i\ —

84 ARRAYS and SETS

(b) Analyze your program to determine the total number of multiplications
required. Also, how does the number of additions for this algorithm compare
with the number of additions in Algorithm 2.4? Finally, how do the numbers
of storage accesses (for elements of A and B) compare in the two methods?

t2.17 Continue the application of the algorithm RUSSIANS to the multiplication
of the boolean matrices 2.18(a) and (b); that is, compute the matrix BCOMB and
the updated value of C, for h = 2.

f2.18 Strassen’s algorithm and the Four Russians’ algorithm provide two different
approaches that can be used to multiply boolean matrices with complexity less than
0(n3). Describe as precisely as possible the circumstances under which one would
be preferred over the other.

ff2.19 Assume that we have a vector V containing both positive and negative
integer values, and we wish to find a contiguous sub-vector of V such that the sum
of its elements is the maximum over all possible sub-vectors. Write a procedure for
doing this with complexity that is less than 0(n2). (Hint: Try divide-and-conquer.)
Test your program against the input vector

29 - 38 46 - 30 35 - 52 49 - 43 78 26 - 53 58 67 - 11

What can you say about the complexity of your algorithm?

Sections 2.7 — 2.8

f2.20 A common type of sparse matrix is the tridiagonal matrix, with non-zero
coefficients on the main diagonal and the two adjacent diagonals, and with zeros
elsewhere, as illustrated in the following sketch. Derive a storage allocation formula
that will map the non-zero elements of a tridiagonal matrix A into consecutive
memory locations, with A [1,1] in the first location.

x x 0 0 0 ... 0
x x x 0 0 ... 0
0 x x x 0 ... 0

0 ... 0 x x x 0
0 ... 0 0 x x x
0 ... 0 0 0 x x

f|2.21 Eq. 2.6 gives a sequential storage allocation formula for a triangular
matrix, with indices 1 <j < i < n, as

Derive a sequential storage allocation formula for a 3-dimensional tetrahedral array,
with indices 1 < k <j < i < n such that

loc (jc [y,fc]) = b +f(i) + g(j) + h(k)

(Hint: Use the results of Exercise 1.8.)

2.13 EXERCISES 85

f2.22 Assume that we have a sparse matrix in the triples representation, with the
riples stored m row-major order. Write a procedure to transpose the matrix (see

txercise 2.11), obtaining the triples of the transposed matrix in the new row-major
order, and test your program against the sparse matrix of Figure 2.23. Do not
simply switch the indices and then sort. As an example, the original list of triples
(see Figure 2.27) is F

1,2,5; 1,5,2; 2,1,4; ... ; 5,2,8
and the transposed set of triples would be

. U2A; 1’4'.1’ 2’1-5’ ••• • w
Wnat is the computational complexity of your algorithm?

tf2.23 [Pfaltz 1977] Assume that we have two square, sparse matrices A and B
with pA = Prob (atj * 0) and pB = Prob (bu ^ 0).

(a) For S = A + B, what is ps = Prob (sLJ ^ 0)?

(b) For T = Ax B, what is pT = Prob (ttj ^ 0)?

(c) How do the preceding results change if the elements au and bu are known to
be zero? non-zero?

3

RECORDS

“Yea, from the table of my memory
I’ll wipe away all trivial fond records.”

Shakespeare
Hamlet, act I, scene 5

Records may indeed be trivial or complex, fond or bitter, but the need to transcribe
and retain information in a usable form matters to all of us — the householder with
a checkbook, the personnel manager, the accountant, the college registrar, even the
bookie and the loan shark. In essence a record is a composite of data; typically, it
may be a mixture of elements of alphabetic, numeric, and logical base types. The
fact that the data elements may be of heterogeneous types precludes the use of an
array structure, and we are thus led to using records. In this chapter, we will first
look at ordinary record structures and then at means of generalizing them, all
within the framework of HLL’s, Pascal in particular. The last section describes
some other techniques for dealing with variability in records; these latter methods

are more suited to assembler language programming.

3.1 FIXED LENGTH RECORDS

Suppose that we have a personnel record as follows:

name John Jones
birthday 03-31-46
wage $ 1237.82
marital status S(ingle), M(arried), D(ivorced), or W(idowed)

This record is one of many, and we wish to retain all the personnel records in a
computer in some coherent manner. It would be convenient to represent them by

var employee: array [1 .. n,1 .. 4] of base_type

Then, if John Jones were the z'th employee, we might have:

3.1 FIXED LENGTH RECORDS 87

employee [i,1] = 'John Jones'
employee [i,2] = 03,31,46
employee [i,3] = 1237.82
employee [i,4] = 'M'

However, this choice of data structure is not possible because the elements are,
respectively, a vector of characters, a vector of integers, a real number, and a char¬
acter; and arrays must have a homogeneous base type. Of course, one solution to
this difficulty is to replace the array employee with four distinct arrays, as follows:

employee_name:
employee_bday:
employee_wage:
employee_status:

array [1 .. n,1 .. 20] of char
array [1 .. n,1 .. 3] of integer
array [1 .. n] of real
array [1 .. n] of char

Indeed, such an approach is not uncommon; but it is unappealing. It forces us to
think of several distinct arrays when dealing with what is logically one item. If
employees are to be added or deleted in our personnel file, the programming over¬
head is both burdensome and error-prone.

A better approach is to explicitly aggregate the attributes for each employee. In
Pascal, it would be natural to do this for the preceding example via the definition in
Figure 3.1. This would cause employee to be a new, user-defined type, always
consisting of the four fields as shown. With this definition as a template, we might
then declare

var personnel: employee

whereby we could refer to any of the following: personnel.name, personnel.bday,
personnel.wage, personnel.status.

type employee = record
name: array [1 .. 20] of char;
bday: array [1 .. 3] of integer;
wage: real;
status: char;

end;

Figure 3.1 Employee Record Format, Version 1

These composite identifiers, selecting variable and field within the variable, are
called qualified names. The only permissible operations with a record are those of
retrieving from or storing into a particular field (or else the entire record) as in:

personnel.wage := worker.wage
test := worker.status
personnel.bday [2] := 18
personnel := worker

where worker is another record of type employee. In these selection operations, the
use of qualified names is more descriptive than the analogous use of subscripts for

88 RECORDS

an array. However, note that in effect qualifiers are always constants. Since they
cannot be variables or expressions, as subscripts can be for arrays, record oper¬
ations tend to be rather mundane. Of course, the names of fields within a record
must be distinct. However, the same name may be freely used as an identifier of a
field within several types of records.

Records are available as data structures in some languages (for example, PL/I
and COBOL) and not in others (for example, FORTRAN and BASIC). In those
languages that support them, the syntax for declaring them and using them varies
considerably. For example, in PL/I they are simply called structures, and the
syntax for declaring them is quite different from that in Pascal; yet the use of quali¬
fied names for referencing fields is the same in the two languages.

In some assembly languages, such as that for the IBM 370, a record template
can be defined very nicely with a dummy control section, whereby the fields are
listed in sequence. Subsequently, by loading a base register with the origin of an
actual record and by using the field name as a displacement, the effect of a qualified
name is obtained. In fact, this suggests to us how records are mapped into storage
in Pascal, PL/I, etc. Assuming that characters, integers, and reals occupy 1, 4, and
8 bytes respectively, the storage mapping for our employee record of Figure 3.1
would be as shown in Figure 3.2. That is, a personnel record of this type would
require 41 bytes, and the offsets from the beginning of the record to the four fields
would be 0, 20, 32, and 40.

Field Location Length

name 0 20

bday 20 12

wage 32 8

status 40 1

Figure 3.2 Storage Allocation Corresponding to Figure 3.1

3.1.1 Multiple Qualification

In the example of the employee record, we found it natural to define fields that are
arrays. We might also have chosen to declare

var personnel: array [1 .. n] of employee

whereby we could refer to any of the following: personnel [Q.name,
personnel [Q.bday, personnel IQ.wage, personnel [Q.status. An array in which every
element is a record of the same type is sometimes called a file.1 The use of one type

1 The term file has other meanings as well. In particular, it is often understood to be a
sequence of items of indefinite cardinality, and stored on some secondary medium such
as tape or disk. With this definition, a file may not have an index type that can be used
to select an item from it. We will discuss this more common usage in Chapter 12.

3.1.1 MULTIPLE QUALIFICATION 89

within another type may be carried to many levels. In particular, just as arrays of
more than one dimension can be viewed as (recursive) arrays of arrays, so we can
have records with fields that are themselves records.

As an example, suppose that we wished to include with each employee some
data about his spouse. Such a record definition might look like Figure 3.3. If
worker is a variable of type employee, then we could use multiple qualification, in a
manner analogous to multiple subscripts, to reference fields of fields. Thus, for
instance, worker.spouse.name = 'Elizabeth' and worker.spouse.age =32. With regard
to the field identifiers name and age, we have two different situations. Name is used
in both the outer and inner record definitions, and so worker.name and
worker.spouse.name refer to distinct items. On the other hand, it would be sufficient
to refer to worker.age without any ambiguity, since age is not a field identifier in the
outer record definition. This is called elision. Languages that support records tend
to have somewhat different rules about which elisions are permitted. We will
always use fully qualified names (with no elision) when dealing with records.

type employee = record
name: array [1 .. 20] of char;
bday: array [1 .. 3] of integer;
wage: real;
status: char;
spouse: record

name: array [1 .. 10] of char;
age: integer;

end;
end;

Figure 3.3 Employee Record Format, Version 2

Nonetheless, qualification, especially if it is multiple, can cause the names of
program variables to become tediously long. Pascal has the construction with,
which offers some relief in this regard. For instance, if it were necessary to revise
each field of the variable personnel [/], we could write

with personnel [i] do begin
name := ...
bday := ...
wage := ...
status := ...
spouse := ...

end;

(Note that spouse is of type record and that we can update the last field of
personnel [z] with one assignment statement, presuming that we have a suitable vari¬
able of type spouse for the right hand side.) The with construction is also
important because it can reduce the amount of computation required during
execution. Thus, in the preceding example, the indexing required to address
personnel [z] need only be performed once instead of for each field.

90 RECORDS

type spouse = record
name: array [1 .. 10] of char;
age: integer;

end;
employee = record

name: array [1 .. 20] of char;
bday: array [1 .. 3] of integer;
wage: real;
status: char;
spice: array [1 .. n] of spouse;

end;

Figure 3.4 Employee Record Format, Version 3

To carry our example one step further, suppose we are in a culture that prac¬
tices polygamy. In this case, we could employ the definitions of Figure 3.4. If
worker, of type employee, is a variable that contains the data for Mr. Jones, we

might then have:

worker.name = 'John Jones
worker.bday = 03,31,46
worker.wage = 1237.82
worker.status =
worker.spice [1].name = 'Elizabeth '; worker.spice [1].age = 32
worker.spice [2],name = 'Ann '; worker.spice [2].age = 28
worker.spice [3].name = 'Susan '; worker.spice [3].age = 43

etc.

The foregoing suggests that there are some practical difficulties associated with
fixed length records. Wherever a field is an array, we must decide on a maximum
bound for the array. This constitutes a dilemma. Just as soon as we decide on a
maximum - for example, that no name should require more than 30 characters -
and lay out our data accordingly, we will surely find an exception that forces us to
revise our plan. Moreover, the more that we attempt to forestall this possibility by
making a generous initial definition, the more we then exacerbate the problem of
wasted space in the majority of cases.

Note that the extra blanks in the name fields are at the right, with the signif¬
icant data all the way to the left. Data recorded in this manner is said to be left
justified. However, if the data corresponds to numeric values of varying sizes, such
justification to the left would cause the corresponding fields in a succession of

records to appear as

12
4872
3

so numeric data is always right justified, which causes the preceding values to

appear, more appropriately, as

3.1.1 MULTIPLE QUALIFICATION

12
4872

3

The dilemma cited for the case of the name fields in our employee record exam¬
ple becomes even worse when we consider the effects of marital status upon the
array spice. Just how much polygamy should we allow for? And what about the
total waste of this space when an employee is single? Two approaches to overcom¬
ing the rigidity of fixed length records will be discussed subsequently under the
topics of variant records and variable length records. First, however, we give a few
other illustrations of the utility of fixed length records.

3.1.2 Examples of Record Usage

Even though the use of records is largely motivated by the desire to compose data
of different base types, their structuring effect can also be useful with data elements
of the same type. For instance, in the situation depicted in Figure 3.5, we can oper¬
ate with complex numbers as generic entities, rather than having to keep track of
their real and imaginary parts.

procedure COMPLEX_MULT (a,b: complex; var c: complex);

type complex = record
real_part: real;
imag_part: real;

end;

begin

c.real_part := a.real_part * b.real_part - a.imag_part * b.imag_part;
c.imag_part := a.real_part * b.imag_part + b.real_part * a.imag_part;

end;

Figure 3.5 Complex Numbers as Records

Another useful record structure is

date = record
month: (Jan,Feb,Mar,Apr,May,June,July,Aug,Sept,Oct,Nov,Dec);
day: 1 .. 31;
year: 1 980 .. 1999;

end;

The cardinality of a record structure is the product of the cardinalities of its fields.
Thus, the cardinality of the type date is 12 x 31 x 20 = 7440. Of these 7440 distinct
values, there are 135 that are illegal, such as Feb. 29, 1983. Such possibilities for
inconsistent sets of values are common in record structures. Note that if date were

91

92 RECORDS

implemented as an ADT, then consistency checks would be built into the proce¬
dures that operated on values of this type. In more conventional programming, it
falls upon the user program to provide these checks. As another instance of poten¬
tially inconsistent data values, consider the case of a record for a single employee
that contains data for a spouse.

function BRIDGE_PLAYER (lead.follow: card): boolean;

{compares lead and follow and decides the winner;
takes into account trump/notrump circumstances}

type shdc = (spade,heart,diamond,club);
card = record

suit: shdc;
rank: (two,three,four,five,six,seven,eight,nine,ten,

jack,queen,king,ace);
end;

var notrump: boolean;
trump: shdc;

function FACEOFF: boolean;
begin

if lead.suit <> follow.suit then FACEOFF := true
else FACEOFF := lead.rank > follow.rank;

end;

begin
if notrump then BRIDGE_PLAYER := FACEOFF
else begin

if lead.suit <> trump then begin
if follow.suit <> trump then BRIDGE_PLAYER := FACEOFF
else BRIDGE_PLAYER := false;

end else begin
if follow.suit <> trump then BRIDGE_PLAYER := true
else BRIDGE_PLAYER := lead.rank > follow.rank;

end;
end;

end;

Algorithm 3.1 BRIDGE_PLAYER

The function BRIDGE_PLAYER (Algorithm 3.1) is a more substantial exam¬
ple of computation based upon the record type. It compares two playing cards,
lead and follow, and returns True if lead beats follow or False if follow beats lead.
The determination is made according to the rules of bridge. Readers who are famil¬
iar with the game will easily recognize the various conditions. For those who are
not, the following (non-independent) conditions determine the result:

1. There is a global boolean variable no trump; if no trump is false, then one of the
four suits - spade, heart, diamond, or club - is a trump suit.

3.1.2 EXAMPLES OF RECORD USAGE 93

2. If notrump is true, then the determination of the winning card depends upon
two factors, whether the cards are of the same suit, and which of the two has
the higher rank.

3. If notrump is false, then the determination of the winning card is slightly more
complicated, as elaborated in the algorithm.

For the cases where the determination has been reduced to evaluating the relative
ranks of the two cards, BRIDGE.PLAYER calls the function FACEOFF to estab¬
lish the result.

3.2 VARIANT RECORDS

There are several motivations for generalizing the fixed record format that we have
considered so far. For example, suppose that we wish to have a single record struc¬
ture for maintaining data about auto, home, and life insurance policies. Some
information pertaining to the policy holder — name, address, amount, premium,
etc. ~ would be the same for all these kinds of insurance. But other information
would be specific to the kind of insurance: data about the insured car, or the
insured home, or the type of life insurance and the beneficiary, etc. This situation
can be accommodated by placing all the common information at the beginning of
each record in a fixed part, and placing all the unique kinds of information at the
end of each record in a variant part. In addition, so that we can later distinguish
what kind of record we are dealing with, we must include a tag field in the fixed
part. In this example, the tag would have one of the values (auto, home, life) This
technique is known as the discriminated union.

The storage requirements for the three cases in this example will probably not
be identical. However, the fixed fields can always be in the same locations, and the
variant fields can be overlaid, since by the nature of our data a given record will
have just one of the three variants. In terms of storage allocation, we have two
possibilities:

1. At compile time, we can statically allocate for each record a total amount of
storage matching the requirement for the largest variant. During execution, the
fixed fields will then be assigned their values, and the variant fields will also be
assigned values consistent with their tag value. For some policies, we expect to
have wasted space at the end of the record.

2. Alternatively, during execution, we can determine what kind of policy we are
dealing with and dynamically allocate just the proper amount of space for that
variant. We then go on to assign the information to the fields of the record.
There is never any wasted space.

Note that in both of these cases, but particularly in the latter, we can cause a disas¬
ter by reassigning the value of the tag in a record that already contains data
corresponding to a particular variant.

94 RECORDS

Fixed
Part

Fixed
Part

Fixed
Part

Variant
A

Variant
C

Variant
6

Unused

Unused

(a) Static Allocation

Fixed
Part

Variant
A

Fixed
Part

Variant
6

Fixed
Part

Variant
C

(b) Dynamic Allocation

Figure 3.6 Variant Records

With the first allocation policy cited, we obtain the advantage that we can have
one record type with alternative formats, as illustrated in Figure 3.6(a). With the
second allocation policy, we obtain this plus an additional advantage; namely, we
can have maximal thrift in our use of storage, as illustrated in Figure 3.6(b). Both
of these policies are available in Pascal, but we need some tools from Chapter 4
before we can illustrate how to accomplish the latter alternative. In all, it is possi¬
ble to identify three uses for variant records. We have already cited alternate
formats and storage economy. In Section 3.2.2 we will describe an additional one,
for type conversion.

3.2.1 FIELD DISCRIMINATION 95

3.2.1 Field Discrimination

Variant records are supported in Pascal. To illustrate their use, let us return to our
employee record example, defining the format this time as in Figure 3.7. Here, the
tag field is status, and its value is used, via the case construction, to selectively
describe the format of the balance of the record. There are two significant differ¬
ences between the use of case to discriminate record variants and its use to control
program statement sequencing. One is that this case is not closed with an end;
rather the end that closes the record definition also closes the case, since the end
of the variant definitions is necessarily the end of the record definition as well. The
other difference is that discrimination is really based, not upon the possible values
of a variable, but upon the possible values of a type.

type spouse = record
name: array [1 .. 10] of char;
age: integer;

end;
employee = record

name: array [1 .. 20] of char;
bday: array [1 .. 3] of integer;
wage: real;
case status: char of

'M': (bliss: spouse);
(tally: 1 .. n;

spice: array [1 .. n] of spouse);
end;

Figure 3.7 Employee Record Format, Version 4

If worker is a variable of this type and is monogamous, we might refer to
worker.bliss.name-, if worker is polygamous, we might refer to worker.spice [2],age.
Note that records for single, divorced, or widowed employees would have no spouse
data at all; we might want to revise our definition, however, to include next-of-kin
information for such persons.

There is still some inflexibility in the scheme as shown. Although we can
discriminate on the basis of marital status, we are forced to allocate, at the outset,
an array spice with the maximum foreseeable bounds 1 .. n. However, this is really
a limitation of Pascal; in PL/I, for instance, it is possible under certain circum¬
stances to allocate the array spice with bounds of 1 .. tally rather than 1 .. n, as long
as tally precedes spice in the record specification.

In Pascal, the concept that a record consists of a fixed part followed by a vari¬
ant part can be extended recursively. That is, any variant can itself contain a fixed
part (with a tag) followed by a variant part, as illustrated in Figure 3.8. In this
example, the record of type r has a fixed part (d,e,a) and three variants. The first
variant x has a fixed part (f,g,b) with two variations (h,i) or j; the second variant y
has only a fixed part (k,l); and the third variant z has a fixed part c with two

96 RECORDS

type typea = (x,y,z);
typeb = (u,v);
typec = (s,t);

r = record
d,e: integer;
case a: typea of
x: (f: char;

g: real;
case b: typeb of

u: (h: integer;
i: boolean);

v: (j: array [1 .. 3] of char));
y: (k,l: boolean);
z: (case c: typec of

s: (m: real;
n: char;
o: integer);

t: (p: array [3 .. 7] of integer));
end;

Figure 3.8 Recursively Variant Records

variations (m,n,o) or p. As you can see, the correct placement of parentheses is vital

for distinguishing where variants begin and end. Also, one must not use the same

field identifier within variants at the same level.

f 3.2.2 Type Conversion

We have presented variant records as being primarily motivated by the need to

discriminate among several formats that might apply to part of a record. In order

to signal the correct format, a tag field is then required. This capability of applying

alternate formats to data is also useful for converting between the various primitive

(boolean, character, integer, real) types. In such a case, no tag field is required, and

the structure is called a free union. Type conversions in this fashion are commonly

useful, for example, in transmitting parameters across interfaces, or in I/O oper¬

ations; however, they must be used with care. Reading data as characters,

operating upon it as integers, and then interpreting it as characters again would be

likely to yield meaningless results. In assembly language, it is trivial to read data as

characters and then access it as numerical values. In an HLL like Pascal, the user

must be cautious, because the results can depend upon various details of compiler

implementation.

As an illustration of this technique, we might have the definition

t3.2.2 TYPE CONVERSION 97

type word = record case boolean of
true: (int: integer);
false: (cl ,c2,c3,c4: char);

end;

Then, if data is a variable of type word, we might read four characters (in EBCDIC
code) into its four bytes, as follows:

data.cl = 'A' { = Cl.
data.c2 = T' {= E31
data.c3 = '0' { = 06,
data.c4 = 'Z' {= E9-|

19310}
22710}
21410)
23310}

Then, a reference to data.int would immediately evaluate to

325293437710 { - 193 x 2563 + 227 x 2562 + 214 x 256 + 233}

Since the example has only two possibilities, it is sufficient to use the type boolean
which has only the two possible values True and False. This, by the way, empha¬
sizes the point made previously, that the case discrimination for record variants is
based upon values of a type, not values of a variable.

As another example of this technique, let us recall from Section 2.5.3 the
program RUSSIANS (Algorithm 2.9), for fast boolean matrix multiplication. The
algorithm requires the ability to take the value of a set variable and convert it to an
integer value. This conversion was performed in RUSSIANS by the function
SET_TO_INT. Unfortunately, the complexity of SET_TO_INT is O(m), causing
the overall time complexity of RUSSIANS to be 0(n2). By using a variant record,
however, we can express this function so that it has complexity 0(1), thereby reduc¬
ing the overall time complexity of RUSSIANS to 0{n2^n).

63 62 32 31 1 0

(a) A Characteristic Vector Representation

0 1 2 3 4 5 6 7

0 1 15 16

0 1 30 31

0 1 254 255

(b) Another Characteristic Vector Representation

Figure 3.9 Alternative Set Representations

In the original conversion routine, SET_TO_INT, we did not have to be
concerned with the manner in which sets are implemented by our Pascal compiler.
In the mapping of the original boolean input into the matrices A and B, it was

98 RECORDS

natural to associate the ith set element with the value in the ith column of the input.
This led to the corresponding “natural” function SET_TO_INT. But now, in using
variant records, we are escaping the consistency safeguards of Pascal typing, so that
we must discern (by testing, for example) just how the compiler implements sets.
One common scheme is, for a and b in the range 0 .. 63, to map set elements a.. b
to the 64 bits of a double word, as shown in Figure 3.9(a). In discussing
RUSSIANS, we did not worry about the issue of mapping the original boolean

rows into sets, but it is rather natural to map the value in the ith column of a row
onto the ith element of a set. With this implementation, the elements of the set
appear in reversed order in the double word, leading to the function
SET_TO_INT_V1 (Algorithm 3.2). Here, although there are again just two vari¬
ants, we have arbitrarily used an enumerated type with two mnemonic values, bit
and int, instead of the type boolean. The former refers to one set of 64 bits (b) and
the latter refers to two integers of 32 bits each (il, i2). However, we presume that
the parameter m in RUSSIANS is such that the high order integer il is always zero.
Since our sets in RUSSIANS were defined in terms of 1 .. m rather than 0 .. m, we
must use the integer division operator div to discard the least significant bit.

function SET_TO_INT_V1 (s: setm): integer;

type flag = (bit,int);
setm = set of 1 .. m;

var view: record case flag of
bit: (b: setm);
int: (il ,i2: integer);

end;

begin
view.b := s;
SET_TO_INT_V1 := view.i2 div 2;

end;

Algorithm 3.2 SET_TO_INT_V1

A different, common manner of representing sets is, for a and b in the range
0 .. 255, to map the set elements a .. b onto the smallest unit of storage that will
suffice - 8, 16, 32, or 256 bits - as shown in Figure 3.9(b).2 In the problem at
hand, we expect m to be small, so one byte is all that is required. To obtain conver¬
sion in 0(1) time with this representation, we need to number the columns of our A
matrix from right to left when mapping rows onto sets. In turn, this impacts the
original conversion routine (SET_TO_INT). We can adjust to the change in repre¬
sentation via the conversion function SET_TO_INT_V2 (Algorithm 3.3), which
uses an integer variant with just one byte. Since the set elements are not reversed in

2 For 31 < b < 256, this is not quite accurate; however, that is irrelevant to our purpose
here.

13.2.2 TYPE CONVERSION 99

and Since m = 3 in our Problem> we have to divide by 16 to shift
ott the last 4 bits.

pr®ceding Paragraphs have been concerned with details that we would
rather be able to ignore when discussing algorithms. If nothing else, they dramatize
the advantages of being able to represent algorithmic processes without having to
worry about the operations of an underlying machine. On the other hand a
conversion routine of this nature would in practice probably be implemented’ in
machine language anyway. In the present example, it is almost a tour-de-force to
be able to obtain executable algorithms in an HLL.

function SET_T0_INT_V2 (s: setm): byteint;

type byteint = packed 0 .. 255;
flag = (bit,int);
setm = set of 1 .. m;

var view: record case flag of
bit: (b: setm);
int: (i: byteint);

end;

begin
view.b := s;

SET_TO_INT_V2 := view.i div 16;
end;

Algorithm 3.3 SET_TO_INT_V2

3.3 VARIABLE LENGTH RECORDS

As we have seen in the preceding section, variant records offer some solution to the
problem of adjusting the size of a record to fit the data. However, the solution is
only partial. In the case of a polygamist with m wives, some HLL’s (such as PL/I)
allow the construction of a record containing an array of m elements for the m
wives; other HLL’s (such as Pascal) insist that the array must have a pre-defined
maximum number of elements, some of which will probably be unused. But what
if, in such a record, we need to deal with n children as well as m wives? HLL’s
generally are not equipped to cope with even this modest amount of variability.
Therefore, the techniques that we will describe for coping with truly variable length
records are generally implemented in assembly language.

The way to cope with extreme variability is to make each record self-describing
by interspersing control information with the rest of the data. A program to
process such a record must then start at the beginning of the record and scan fields
from left to right, interpreting them according to the control information that is
recognized during the scan. This control information can have either of two forms:
separators as in the next section, or counts as in Section 3.3.2. The data that we

100 RECORDS

will use in our examples represents the polygamous employee of Section 3.1.1. It is

reproduced here for convenience:

John Jones 033146 1237.82 P
Elizabeth 32
Ann 28
Susan 43

Before embarking on the details, however, we should remark that it is possible,

after all, to carry out such a scheme in an HLL, by the following technique. In lieu

of all other data structures, declare

var memory: array [0 .. memsize] of char {or integer}

Then process the variable length records within this large array by scanning the
data from left to right and interpreting it. Note that we must settle on a homogene¬
ous base type for the array memory, and then perform type conversions as needed,
perhaps using variant record techniques. It would be sensible to choose the base
type corresponding to that of the majority of the actual data, in order to minimize
the number of cases requiring conversion. The manner in which this method would
work will become apparent in the next sections. Still another technique for
handling variable length records using an HLL will be seen in Section 11.3.1.3.

3.3.1 Field Demarcation by Separators

This method is basically quite simple, as illustrated by the fragment

John Jones/033146/1237.82/ ...

There are two points to be observed in this fragment:

1. The real data is uniformly written in a homogeneous base type (character, in

this case).
2. The individual fields of the data are separated by some special separator value

from that base type ('/', in this case).

Thus, the nth field can be found by counting forward past n - 1 separators; the
contents of that field can be read directly if the type of the field is character, or

otherwise it may need to be converted.

Usually, it is important that the separator value should not be present in any of
the data fields. With the base type of character, this is fairly easy to ensure, since
the set of character values is so rich. Typical characters used as separators are

@ % 0 & * ! etc.

In the rarer case when the base type is integer, it can be much harder to find
distinctive values to use as separators. Moreover, even when safe values are avail¬
able (for example, 0 or -1) we observe that they require the standard memory space
for an integer, usually four bytes, which is uneconomical.

Applying this technique to the personnel data for our polygamous employee, we

might obtain

3.3.1 FIELD DEMARCATION BY SEPARATORS 101

John Jones/033146/123 7.82/P:Elizabeth/32
/Ann/28/Susan/43/; (next record)

Note that we actually used three separator characters for three different logical
functions: to separate fields within a record, to separate records, and to
indicate the beginning of optional data pairs following the marital status field. It is
important to realize that the choices of which characters to employ as separators,
and what logical functions to ascribe to them for decoding the data are arbitrary’
In addition, such a scheme is only meaningful when coupled with a program that
has been written to process such a variable length record. There are likely to be
occasions when you come across a variable length record that you need to decode
by hand without being fully aware of the rules. When the fields are demarcated by
separators, as in the example above, it is fairly easy to guess at the separators and
read the record.

The use of separator characters for variable length records is fairly congenial to
human processing of data, because the eye can easily scan and recognize where
fields begin and end. But this is not true for machines. If, for instance, it wished to
find the next record after that of Mr. Jones in this example, a program would have
to scan every character, one at a time, until it encountered the that signalled the
end of the record. Another problem with separators is that in general they must not
occur within the data. A way of handling exceptions to this rule is illustrated by
the usual manner of allowing quote characters to be included within quoted charac¬
ter strings. Although we will not cover the string data structure until Chapter 8,
most readers probably already have an acquaintance with literal data strings, as in

'Hello there' and T'm tired of computing'

Here, a single quote indicates either the beginning or the end of a string of charac¬
ters; two quotes indicates the occurrence of a single quote within a quoted string of
characters. The program that reads such literal character constants contains the
necessary logic to discriminate what is intended and to adjust the data in the
machine; for example, it would change the latter to

I'm tired of computing

Although the preceding use of double separators is workable, it is awkward. It also
is at variance with another conventional usage for repeated separator characters.
Suppose that we have the following alterations to our personnel record for Mr.
Jones: he is retired and thus salary does not apply, Elizabeth’s age is obscure, and
we are not sure of the second wife’s name. The available data would then typically
be recorded as

John Jones/033146//P:Elizabeth///28/Susa
n/43/; (next record)

That is, fields for which data are missing or null are conventionally indicated by
multiple separators.

In summary, encoding of variable length records using separators to demarcate
the fields is commonly used where there is an interface to people, as in data entry or
text editing, or where the data sizes are small enough that the scanning does not

102 RECORDS

become too burdensome. However, this method is ill suited to the internal process¬

ing of large volumes of records by machines.

3.3.2 Field Demarcation by Counts

As an alternative to the use of separators, it is common to precede each data field
with a fixed length count field. For data fields that are long and variable, the over¬
head is reasonable. For data fields that are short or intrinsically of fixed length, the
overhead would seem to be unreasonable. Nonetheless, in the interest of uniformity
and to make the record truly self-describing with fewer hidden assumptions, it is

common practice to attach counts to every field.

If the record is regarded as a succession of characters, as in the preceding
section, then we are faced with the decision of how many character positions, or
bytes, to allow for the count fields themselves. Of course, this depends upon the
data sizes in the application; regardless of size, however, the necessity to convert
between character data and numeric count data remains. For illustrative purposes,
we use the same personnel record as before. In this case, one byte would be suffi¬
cient, since we can then count to 255. Unfortunately, many of the corresponding
character codes would be gibberish to the eye, or even unprintable. Although this is
irrelevant for internal processing of variable length records, it does complicate our
attempts to illustrate the method. Accordingly, we will allow two character posi¬
tions for counts, but presume that only recognizable digit values are recorded
therein. However, you should recognize that this is not a faithful representation of

the actual internal record processing.

Of course, when we precede a data field of n characters with a count field of 2
characters, this makes the total space requirement n + 2 characters. Should the
count field value be n, or include itself and be n + 2? It is more common to use n,
but the decision really rests with the program for processing the record. In this
regard, if we have a file of variable length records, it is very convenient to be able
to skip over an entire record without having to skip over each individual field
within the record. For this purpose, it is usual to precede each record with a count
of the total number of characters in the record. To be useful, this count must be a
sum of the lengths of all the data fields and their count fields.

With all the preceding description in mind, we arrive at the record for Mr.
Jones, as follows:

7310John Jones06033146071237.8201P1509E1
izabeth02 32090 3Ann02281105Susan0243

Your first impression is probably that this is harder to read than when separators
were used. And so it is, for humans; but a program can now skip from one field to
the next, or from one record to the next, without the necessity of reading each indi¬
vidual character and interpreting it. Note that the scheme of preceding each record
with a count of the total record length is also applied to the sub-records for each of
the spouses.

The story of demarcating fields by counts does not end quite yet. Another kind
of count field is commonly employed in variable length records. In cases where a

3.3.2 FIELD DEMARCATION BY COUNTS

field is an array of dimension 1 .. n, a count field containing the value of n may be

inserted in the record before the array. In scanning an unfamiliar record of this

type from left to right by hand, it can be unclear whether we are looking at a field

size count, a record size count, a dimension count, or perhaps even data! This

makes such variable length records even more difficult for humans to read. A

program will necessarily contain logic to discriminate between these possibilities at

each juncture. For a person attempting to read a memory dump containing such

records, however, it often resembles solving a puzzle — making guesses as to what

certain character positions signify, and occasionally revising guesses and partially

restarting when the interpreted values become meaningless. (Note that with

encryption, where no clues are to be found in the data itself, the puzzle may become

extremely difficult.) With this embellishment of a third kind of count, the variable

length record for Mr. Jones might now look as follows:

7510John Jones06033146071237.820IP031509
Elizabeth02320903Ann02281105Susan0243

At the beginning of this section, we cited the importance of using counts

systematically if they are to be used at all. What would this record look like if the

same data values were null or missing (salary, age of Elizabeth, and name of Ann)

as in the example of the preceding section? It would appear as follows:

6310John Jones06033146000lP031309Elizabe
th00060002281105Susan0243

Although the scheme of using count fields within records to handle variable

length is much faster for machine processing than the scheme using separators, it is

still necessary, for example, to skip over z — 1 records one at a time in order to

reach the zth record. A variation of the scheme using counts is to remove the

record counts from the data and to place them in an array A, such that the value of

Ai is the count of the size of the zth record. This can speed up access to the zth

record to a moderate degree; however, the records are no longer self-describing,

which may be too substantial a penalty. To make access to the zth record very fast,

we could even use array B (compare Figure 3.2), defined by

(3.1)

However, such a scheme would be very inflexible with respect to insertions or

deletions into the file of records. All in all, the scheme of having the counts in the

records and in front of their data fields seems to be a good compromise between

flexibility and performance.

104 RECORDS

3.4 OVERVIEW

Beginning with the next chapter, we will be examining data structures that are much
more glamorous than records. Nonetheless, we will see that this proletarian struc¬

ture, the record, greatly facilitates construction of the more advanced ones. With
records, we are completely relieved of one shortcoming of arrays, the restriction to a
homogeneous base type. In variant records we also find a moderate degree of relief
from another shortcoming of arrays, the restriction to one predefined size. If we
need to escape this latter restriction entirely, we can do so via variable length
records, using either separators or count fields. But variable length records require
attention to a very low level of detail, one that is unsuited as a base for building

higher data abstractions.

3.5 REFERENCE TO TERMINOLOGY

t discriminated union, 93
elision, 89
field, 87
file, 88
fixed part, 93

t free union, 96
justification, 90

multiple qualification, 89
qualified names, 87
self-describing (record), 99
separator, 100
tag field, 93
variant part, 93

3.6 EXERCISES

Section 3.1

3.1 On the left in Figure 3.10 is the logical description of a data structure in
Pascal syntax, and on the right are some values for the same data structure. Give
the program “name” of each of the following values from that figure (that is, how
you would refer to it in a program statement). Use full names, not elided ones.

(a) 13

(b) 2.718

(c) 10

(d)
/ /

(e) 13.9

3.2 For the structure in Figure 3.10, compute two vectors — one containing the
locations, or offsets, for each field, and the other containing the lengths for each

3.6 EXERCISES 105

m: record
n: char;

o: record
n: array [-1 .. 2] of integer;

p: record
q: char;

r: real;

end;
end;
p: array [0 .. 1] of record

q: array [5 .. 7] of integer;

n: record
o: array [-7 .. -6] of char;

r: real;

end;
end;

end;

'Z'

59, 54, 13, 86

/ I

2.718

10,104,15 27,66,85

'Y', 'Z'

13.9
' ', '5'

0.0

Figure 3.10 Record for Exercises 3.1 and 3.2

field. Assume that the primitive data types character, integer, and real require 1, 4,

and 8 bytes respectively.

3.3 Devise a structure that might be used to capture the information for a

student’s college transcript. Such a structure might need to include a small amount

of personal data about the student, as well as data about courses, units, instructors,

grades, etc.

f3.4 The procedure shown in Figure 3.5 for performing complex multiplication

requires 4 multiplications and 2 additions. Find a procedure that requires 3 multi¬

plications, albeit at the expense of more additions. Under what circumstances is

your revised method a practical one?

f3.5 Convert the logic of the function BRIDGE_PLAYER to a decision table

with five condition stubs:

Cl: contract = notrump

C2: lead.suit = follow.suit

C3: lead.suit = trump

C4: follow.suit = trump

C5: lead.rank > follow.rank

and two action stubs:

41: lead wins

42: follow wins

Discuss the relative merits of the function and the decision table for representing

this algorithm.

106 RECORDS

Sections 3.2 — 3.3

3.6 Design a structure with variant records that might be suitable for the problem,
cited at the beginning of Section 3.2, of handling various types of insurance policies

that have a common fixed part.

3.7 Decode the following variable length record and rewrite it in a format appro¬

priate for humans.
E30BMATHEMATICS044606LEHMER0307ALGEBRA07MWF090009P
ROJ GEOM08TUTH101508TOPOLOGY09TUWTH14003108BOURBAK
I0208ANALYSIS06MW13 300ACATEGORIES05F14450905POLYA0
04C07RUSSELL0305LOGIC0BMTUWTHF11000EABELIAN GROUPS

06MF091509DIFF EQNS08TUTH1415

|3.8 We have the following variable length records:

A. 8706234A5708WING NUT0513/1703122031604ACME0211043.
191907WINSTON0245042.541406HOOVER022300

B. 1705 32GPA000002 5400
C. 470558BCZ12CONFABULATOR000218011607BARSTOW0003138
d! 6906909FF008HEXAFLEX0518/35018021605JIFFYO15047.1

11907RALSTON0245042.54

(a) Decode them and rewrite them in a format appropriate for humans.

(b) Rewrite them using separator characters instead of counts.

4

LISTS

“He’s got ’em on the list - he’s got ’em on the list;
and they’ll none of ’em be missed.”

W.S. Gilbert,
The Mikado, act I

From the humdrum — eggs, milk, rhubarb, flour — to the fanciful — a partridge in
a pear tree, two turtle doves, , twelve drummers drumming — lists pervade our
lives. They are also pervasive in computational processes, to the extent that the
subject matter of this book could be entitled “Lists” rather than “Data Structures.”
For example, an array of integers is a species of list; likewise, the employee record
of the preceding chapter is a list; and so also are queues, stacks, trees, graphs, and

strings, as we will see.

However, the notion of a list as a structured collection of items is too general
for our purposes; in any computer-oriented discussion that employs the term list,
the reader must be careful to ascertain what is actually being described. In this
chapter, we will First refine the notion by discussing lists that incorporate explicit
information for specifying the next item on the list. In common parlance, the items
on a list are variously called nodes, cells, elements, etc.; and the explicit data that

specify “next” are commonly called pointers or links.

After illustrating the utility of this form of data structure with some applica¬
tions, we will look at two generalizations of the concept. The first of these is
obtained by building structures that can specify many next values. The second,
more powerful generalization is obtained by employing recursion in the definition of

“List structures.”

4.1 THE FLEXIBLE NATURE OF LISTS

The essential aspect of a list is that we may wish to vary the sequence in which we
consider its items. Thus, if we have the list shown in Figure 4.1(a), it may happen
that we would really like to insert 65 as the fourth item, to obtain the list in (b),
another possibility is that we would like to delete 29 from (a), to obtain the list in

108 LISTS

(c). If we record the list values in an array, then we can achieve the effects of
insertion/deletion by moving blocks of values away from/toward the array origin.
However, this can be an expensive solution for a large array. Moreover, since the
array has a fixed size, this solution also fails to reflect the fact that the list has
changed in a more fundamental fashion (that is, its length has changed).

24
29
14
32
59
40

(a)

24
29
14
65
32
59
40

(b)

17
14
32
59
40

(c)

Figure 4.1 Insertion and Deletion in a List

The difficulty lies in the fact that, in Figure 4.1, physical sequence implies

logical sequence. The essential notion of a list for our purposes is that it should

contain explicit information for logical sequencing. This information is commonly

termed a link, and the two fundamental operations on a list are:

first{p) - to access the first item on the list referenced by p;

next(r) — to access the item that follows r in the list.

Normally, however, we prefer to think in terms of higher-level operations, such as:

locate(p,t) - to finds the first item containing t in the list referenced by p;

retrieve(p,s) - to find the 5th item in the list referenced by p;

insert{p,t) - to insert an item with value t in the list referenced by p;

delete(p,t) — to delete the first item with value t from the list referenced by p.

The descriptions of some of these operations lack precision. This is most evident in

the case of insertion. Where in the list should the new item be placed? We will

resolve such issues in the discussions that follow.

If we reflect upon the example cited in Figure 4.1, we see that there are two

distinct problems that we would like to solve with lists:

1. to be able to alter logical sequencing of list items without extensive physical

reordering, and

2. to be able to handle lists whose lengths may vary widely and unpredictably.

We will begin by discussing a method for implementing lists that works in all

general purpose HLL’s. It solves the sequencing problem but is weak with respect

to the variable length problem. Accordingly, most of our discussion has to do with

a more dynamic method that completely solves both problems. This method is

available in some languages, such as Pascal and PL/I, but not in others, such as

FORTRAN and BASIC.

4.1.1 ARRAY INDICES AS LINKS 109

1

2

3

4

5

6

R S R S R S

17 2 1 17 2 1 17 3
29 3 2 29 3 2 29 -

14 4 3 14 7 3 14 4
32 5 4 32 5 4 32 5
59 6 5 59 6 5 59 6
40 - 6 40 - 6 40 -

7 65 4

(a) (b) (c)

Figure 4.2 Insertion and Deletion Using Links

4.1.1 Array Indices as Links

In Figure 4.2(a), we have redrawn Figure 4.1(a). By annexing to the array R

another array S, we have made explicit what was implicit in Figure 4.1; for the z'th

element in R, the location of the next element in R is indicated by the value of the

zth element in S. Although this additional information may be unnecessary baggage

in Figure 4.2(a), its utility is apparent in Figure 4.2(b) and (c), where it enables us

to perform the insertion of Figure 4.1(b) and the deletion of Figure 4.1(c) simply by

adjusting one or two link values instead of by moving blocks of data.

More generally, suppose that we have an array A, each of whose elements is an

arbitrarily large aggregate of data. Then, let us supplement the data with linking

information in one of two ways:

(a) by treating the data aggregates as records and by including a new link field in

eacfrrrecord, or

(b) by introducing a new array B of link values.

It is then possible to thread the data aggregates in A into any number of disjoint

lists; all that is required is some indication of where a particular list starts and

where it ends. The starting locations must be supplied separately, but the end of a

list is indicated by the occurrence of an illegal index value, usually zero. Thus, in

Figure 4.3, let listl = 20 be the beginning of one list and list! = 25 be the beginning

of another list, in an array containing character data. Then list 1 yields “HAPPY”

and listl yields “HOUR.”

18 19 20 21 22 23 24 25 26 27

A R H O Y - P H P U

24 0 18 27 0 - 26 21 22 19

Figure 4.3 Disjoint Lists in an Array

110 LISTS

To illustrate how easily insertions and deletions can be performed at arbitrary

points in lists constructed in this manner, let us define list nodes by

type node = record
data: {whatever is required}

next: 0 .. n;

end;
var list: array [1 .. n] of node;

Then, in Figure 4.4(a), suppose that we wish to insert the single node at list [n]

between the logically successive list nodes at list [z] and list [/]• This is accom¬

plished by

list [n].next := list [i].next; list [i].next := n

On the other hand, to delete the node at list [j], which logically falls between the

nodes at list [r] and list [/], we simply write

list [r].next := list [s].next

The combined effect of this insertion and this deletion is shown in Figure 4.4(b).

That the deletion operation leaves list [s\.next = t is irrelevant for the immediate

purpose of logically resequencing t after r. This illustration is sketchy, and it

glosses over several aspects of using links that we prefer to defer until later sections.

i j ... n ... r s t i j ... n ... r s t

data

next

Figure 4.4 Implementing Lists with Cursors

i S t

(a)

n j t t

(b)

Associating link information with a node is easily understood in terms of index

values, and indices used for this purpose are sometimes called cursors. How useful

are cursors, and why might we wish to have a more complicated approach? In

brief, if we are dealing with lists that contain a single type of node, then cursors

may be satisfactory. Moreover, whether we have one type of node or several, if we

can safely estimate the maximum number of required nodes of each type, then

cursors may still be satisfactory. However, if there are several node types, we will

need a separate array for the lists of each type. Arrays must be declared with their

dimensions at the outset. If even one of our estimates of dimensionality is too low7,
our program can fail during execution.

4.1.2 POINTER VARIABLES AS LINKS 111

4.1.2 Pointer Variables as Links

The solution to the problem of lack of generality with the preceding approach is as
follows. We will not declare any space for list nodes before such space is required;
when it is required, we will ask for it via a system procedure. This procedure will
acquire just the amount of space that we need and then tell us where it is via
another primitive type of data, a pointer variable. Such a variable is not so mysteri¬
ous when we realize that it must correspond to an address in the computer
memory.1

This pointer variable opens the door to potentially serious programming
hazards; we will discuss these at the end of the chapter (see Section 4.5.1), by which
time the nature of the problems may be more easily appreciated. For now, suffice it
to say that some of the problems associated with pointers can be avoided by insist¬
ing that a particular pointer variable can point only to a particular type of data
object. For example, the Pascal definition

type link = {node;
node = record

data: char; {for example}

next: link;

end;

asserts that any variable of type link is a pointer, but only to a variable of type
node. Accordingly, in Figure 4.5(a) and with the preceding type definition, we have

var p,q,s: link;
a,b,c,h: node;

The notation for using pointers to access data varies considerably among those
HLL’s that support them; for p a pointer to a node and x a field in that node, the

syntactic styles employed to reference the x pointed to by p include;

pf.x, p->x, x(p), [p].x, etc.

Pascal employs the first of these styles. As examples of its use, with reference to

Figure 4.5(a),

p| = a; pt.data = 'A'; pt.nextf = b; pj.nextT.data = 'B'

It is essential to distinguish between the value of a pointer/? and the value of/>|, the
object to which it points. By way of illustration, if we started with Figure 4.5(a)
again, then q:=p would yield (b) of the figure; however, q] : = />! would yield (c)
of the figure. In the former case, we replicated the pointer value (address) of p into
q; jn the latter case, we copied the contents of the list node at p s location into the

i You have likely encountered pointer variables already, although you may not have real¬
ized it (and in any event, could not explicitly manipulate them). Specifically, in using
“call by reference” (see Section 1.4.3) for passing a parameter to a procedure, you are in
fact causing the compiler to transmit a pointer to the value rather than a copy of the

value.

112 LISTS

list node at q's location. With this background in hand, let us now explore the

subject of sequential linked lists.

4.1.2.1 Simple Lists. Suppose that some list nodes have been allocated, forming
the two lists shown in Figure 4.5(a). The objects a,b,c,h are of type node, according
to the definitions of the preceding section, and the objects p,q,s are of type link.
When dealing with a list of linked nodes, or a linked list, there is no name for the
entire list as there is for an array or a record. Rather, one retains in some pointer
variable a pointer value to the first node on the list. Such a variable is commonly
called a list head, or header, p and q are headers in Figure 4.5(a). Many operations
with lists involve linking or “chaining” from one node to the next, until the end of
the list is recognized via a special pointer value called nil. In pictorial represen¬
tations, nil is usually indicated as shown in nodes c and h, but sometimes the

symbol A is used.

If we wish to insert the node h pointed to by q into the list pointed to by header
p, what is required? It is very simple to insert h at the head of the list, as shown in
Figure 4.5(d), via the two pointer changes

q|.next := p; p := q;

It is more expensive to insert h at the end of the list because, in order to find the
end of the list, it is first necessary to chain from the head to the end by performing
p := p\.next until the nil is encountered. What if we wish to insert h at an arbi¬
trary point in the list, say with regard to b pointed to by si In this case, it is
straightforward to insert it after b, again with two pointer changes

qf.next := sf.next; sf.next := q;

as shown in Figure 4.5(e). There is a difficulty, however, if we wish to insert h
before b. That would require altering the pointer from node a, and we cannot get
to it by just using the pointer values of q and s.

One solution to this problem is to chain from the head of the list until we find a
node pointing to b, then make our insertion after that node. But note that this may
require 0(n) chaining operations, not a very satisfactory situation. Another possible
approach might be as follows:

temp := qf.data;
q| := sf; {copy entire record from b to h}
sf.data := temp;
sf-next := q;

In other words, insert the node pointed to by q after the node pointed to by s, but
then interchange their data. In the general case, however, this latter approach can
involve copying too much data.

At this point, it is important to make an observation about the labels in Figure
4.5. There, we have labelled the nodes a,b,c,h in order to facilitate talking about
them. But it would be misleading, for instance, to then characterize inserting node
h after node b by

h.next := b.next; b.next := q;

4.1.2.1 SIMPLE LISTS 113

(e) (f)

Figure 4.5 Implementing Lists with Pointers

In actual situations that involve computing with such nodes, they would not have
any labels and would not be known to the program except via pointer variables that
reference them. For our discussion, the pointers p,Q,s fortuitously have meaningful
values; we will see in Section 4.2 how pointer variables acquire meaningful values

in practice.

Next, let us look at the operation of deletion, which is the converse to that of
insertion. It is very easy to delete the first node in a list by p . — p] .next, as shown
in Figure 4.5(0- To delete the last node in a list is more work for the same reason
as it was to insert a node at the end — it requires chaining from the head to find
the end More generally, suppose that we wish to delete the node pointed to by s.
We encounter the same difficulty as in the case of inserting a node before b.
Namely, the pointer from node a must be altered, but we do not have a means of
accessing it. We can attempt a similar trick of copying 4 := s].next|. However, in

114 LISTS

addition to potential copying overhead, there is the fundamental problem that this

won’t work if 5 points to the last node on the list.

4.1.2.2 Circular Lists. A serious shortcoming associated with the simple form of
list discussed in the preceding section is that, given a pointer value into the middle
of such a list, we can access all the nodes from that point to the end, but cannot
access any of the preceding nodes. A simple modification solves this problem. We
can replace the nil pointer value in the last node by a pointer to the first node,

thereby creating a circular list.

Figure 4.6(a) shows Figure 4.5(a) redrawn as circular lists. For this style of
circular list, remarks about programming techniques would be similar to those made
previously about simple lists. However, a modest change makes it easy to insert a
node at either the first or the last position of a circular list. Namely, let the list
header point to the last node rather than to the first node. This is shown in Figure
4.6(b). Therein, to insert h at the front of the first list, we need

qj.next := pf.next; pf.next := q;

and to insert h at the rear of the first list, we need

qfnext := pf.next; pf.next := q; p := q;

That is, we insert h at the same place in the circle in both cases, but in the latter
case we then move the header around the circle by one position. You should
redraw Figure 4.6(b) for these two cases to convince yourself of this.

(a) (b)

Figure 4.6 Circular Lists

Suppose that we have list A with nodes ax, a2,..., am and list B with nodes
b\, b2,..., bn. A particular virtue of using circular lists as in Figure 4.6(b) is that it is
then quite easy to concatenate A and B into one list C with nodes au a2, ... ,
am, bx, b2, ... , bn (see Exercise 4.3). With regard to the problems of insertion before
an arbitrary nodeand deletion of an arbitrary node, we can now find the predeces¬
sor of a node by chaining all the way around the circle, although this solution is
rather expensive.

There are two pitfalls in what we have said so far concerning lists:

1. If we are chaining around a circular list, how can we distinguish the first node
from all the others?

4.1.2.2 CIRCULAR LISTS 115

2. What happens, in either a simple or a circular list, when there is only one node
and we delete it?

In answer to the first pitfall, we could insist upon always having the header avail¬
able for comparison, but this is clumsy. In answer to the second pitfall, we could
test for, respectively, p].next = nil or p].next — p, and then set p : = nil if so.
However, a better solution to both of these problems is to expand the header into a
node of the same format as the other nodes in the list. Henceforth, we will refer to
the term header as having this expanded sense.

In spite of the overhead, an extra node is worthwhile for several reasons, many
of which apply to simple lists as well as to circular lists:

• It can be used for recognizing when we are at the beginning of a circular list.
• It simplifies the representation of empty lists. For instance, there may be many

references to a list from within a program. Without a header node, if the list
becomes empty we must change each of these pointer references to nil.

• It is often necessary in list operations to operate on a pointer that points to an
arbitrary node r. If there is a possibility that r is the first one on a list, then all
references to r must test for that possibility and do something different if it
applies. The use of a header node removes the need for all these tests by stan¬

dardizing the treatment of such pointers.
• When we have a header node, there is often extra space (where data is stored in

non-header nodes) that can profitably be used to keep other information, such

as extra pointers, the number of nodes on the list, etc.

With the inclusion of header nodes, Figure 4.5(a) becomes Figure 4.7(a) and
Figure 4.6(a) becomes Figure 4.7(b). However, the literature on lists and headers is
lacking in consistency and preciseness; for example, the term header is applied
sometimes to p and q in Figure 4.7, and sometimes to what we call the header nodes

pointed to by p and q.

p a b c

A B c z
H 7

(a)

(b)

Figure 4,7 Header Nodes

116 LISTS

S

Figure 4.8 Bi-directional Lists

4.1.2.3 BI-DIRECTIONAL LISTS 117

4.1.2.3 Bi-directional Lists. We encountered two problems with simple forms of
lists, one having to do with inserting a node before an arbitrarily specified node in a
list and another having to do with deleting an arbitrary node. In principle, these
shortcomings can be overcome with a circular list; however, it is not realistic to
chain all the way around a circular list in order to find the predecessor of a node.
A much better resolution for both of these problems comes from introducing the list
operation:

previous(r) - to access the item that precedes r in the list.

This is easily accommodated via the bi-directional list, in which two links are main¬
tained at each node — one to that node’s predecessor and one to its successor, as
shown in the template:

type link = (node;
node = record

data: char; (for example}
pred,succ: link;

end;

Figure 4.8(a) shows Figure 4.5(a) redrawn as bi-directional lists. Note that we
have employed header nodes again, and that both the forward and backward lists
are circular. This would frequently be the preferred method, but it is also possible
to have bi-directional lists that are not circular and/or do not have header nodes. It
is now a simple matter to insert node h either before or after node b. The logic is
similar, requiring four pointer changes in either case. For instance, in order to

insert node h before node b, we would need

t|.pred := sf.pred;
t|.succ := s;
st.predt.succ := t;
sj.pred := t;

as shown in Figure 4.8(b). Thus, not only do bi-directional lists require space for

extra pointers; they also require twice as much work for insertions. However, the
situation with respect to deleting the arbitrary node b is much more elegant. It

requires just the two pointer changes

st.pred|.succ := st-succ; st-succt-pred := sfpred;

as shown in Figure 4.8(c).

To conclude these discussions of simple, circular, and bi-directional lists, what

would empty lists look like in each of the three cases? They would have the forms

shown, respectively, in (a), (b), and (c) of Figure 4.9.

5]
J

(a) (b)

Figure 4.9 Empty Lists

(c)

118 LISTS

4.1.3 The Free Storage Pool

In the beginning of our discussion of pointer variables, we said that the space for
list nodes is acquired via system processes. More precisely, these processes cause
the allocation and de-allocation of free space. The ramifications to this group of
processes cause it to be a topic in its own right, called memory management, it will
be elaborated upon in Chapter 11. For now, we will consider some of the basic
issues. First, is the rationing of free space done explicitly by the user, does the
system do it automatically, or is it a joint venture? In APL and LISP, for example,
it all happens automatically; in Pascal and PL/I, on the other hand, it is done
jointly. Second, what is the amount of free space required for list nodes? Is the size
always the same, or does it vary? In LISP there is just one size of list cell, in APL
and Pascal the amounts of space can vary in size. In this section we will do two
things. We will cite the system routines by which a Pascal user controls free space.
Then we will make a simplifying assumption, and illustrate how these system

routines might operate under that assumption.

In Pascal, free space is obtained from a memory area called the heap. A block
of free space is acquired from the heap by invoking new(p) , where p is a pointer
variable of a specified type. After new(p) is executed, p will be pointing to a block
of the appropriate size (since the compiler can detect the size from the type defi¬
nition). Assuming that characters, integers, pointers, and reals require 1,4,4, and 8
bytes respectively, then in Figure 4.10, p would contain the address of a block of 33
bytes. Having obtained the space via new(p), we might then proceed to fill it, for

example:

p|.a := 'X'; p|.b [2] := 7; pfd := 3.14; pj.e := nil;

Figure 4.10 illustrates an important additional point. Note that r and s are
pointers for a variant type record, with variants of unequal size. The invocation
new (r,easel) yields a block of 52 bytes, and the invocation new(s,ca.?£?2) yields a
block of 24 bytes. You may recall from Section 3.2 that one of the reasons for
using variant records is to economize on space by not allocating more than is
needed for that particular variant. In Pascal, we can obtain this economy by invok¬
ing new with variant discriminators as additional parameters.2

The converse of space allocation is space de-allocation. The system procedure
for this in Pascal is dispose, as in disposed), dispose(r,casel), dispose^,easel),
etc. Note that in many implementations of Pascal, the system procedure dispose is
not supported; rather a more primitive de-allocation scheme is provided via the

system procedures mark and release.

In order to convey some idea of what new and dispose do, let us assume that
our list nodes are all of the same size. In this simple environment, let P_NEW and
P_ DISPOSE (for pseudo-new and pseudo-dispose) be routines to ration free space.
In this case, free space can be one simple list of cells of the standard size, with a

2 In reality, when a compiler allocates space for records such as these, the final sizes may
be slightly greater. The usual cause is that fields of records are constrained to begin at
memory locations that are some power of two, leaving “holes.”

4.1.3 THE FREE STORAGE POOL 119

program ...

type fptr = ffnode;
fnode = record

a: char;
b: array [1 .. 3] of integer;
c,d: real;
e: fptr;

end;
rectype = (easel,case2);
vptr = fvnode;
vnode = record

f: array [1 .. 4] of char;
case rectype of

easel: (g: real;
h: array [1 .. 10] of integer);

case2: (i,j,k: integer;
m: real);

end;

var p: fptr;
r,s: vptr;

begin

new (p);
new (r,easel);
new (s,case2);

end.

Figure 4.10 Space Allocation from the Heap

header cell Free that points to the front of the list. Then the action of P_NEW is

given by

procedure P_NEW (var x: link);
begin

x := Free;
Free := Freef.next;

end;

and the action of P_DISPOSE is given by

procedure P_DISPOSE (x: link);

begin
xf.next := Free;
Free := x;

end;

In other words, memory management in this simple case consists of nothing more
than removing and adding cells at the front of a list. In Figure 4.11, P_NEW(<jf)

yields (b) from (a), and P_ DISPOSER) yields (a) from (b). (Whether

120 LISTS

P_DISPOSE(<?) actually sets q to nil would depend upon the implementation.)
Simple as this technique may be, it is all that is required in many cases. In partic¬
ular, when list processing must be performed in languages such as BASIC or
FORTRAN, this technique can be used to maintain a pool of available nodes

linked by cursors.

When de-allocating cells on a list, it is common to wish to free an entire list at
one time. The use of circular lists allows this operation to be performed in constant
time - that is, independently of the number of cells on the list (see Exercise 4.4).

(a) (b)

Figure 4.11 Free Space as a Simple Linked List

4.1.4 The Economy of Pointers

Before embarking on applications of linked lists, let us consider one last basic issue.
The use of links requires extra space. Just how much of a problem is this? Their
overhead is really a percentage of all the other space required in the list node or cell
or record. If that space is rather large, then the incremental cost for pointer space
should not be significant. Also, the amount of space required for a single pointer
might be 32 bits on some machines, but only 16 bits or less on others; this is a
function of the available addressing space on the underlying machine.3 In the case
of sequential lists, there is a trick that can be used. Bi-directional lists would seem
to require twice as much link space as simple or circular lists. But two links can be
fitted into the space required for one! We will describe two techniques for doing
this, using the list of Figure 4.12(a), where each cell has both a backward and a
forward link.

In Figure 4.12(b), the cell at address at is given the composite link value
at_x XOR aM, where XOR is the exclusive-or operation, available on many comput¬
ing machines. Then, to go forward from ah we combine the predecessor location
a,_j with the ith composite link

fl*-l XOR (a;_! XOR ai+l) = ai+l (4.1)

3 With the List structures that we will discuss in Section 4.4, fixed-size cells are packed in
various ways with data and/or pointers. At the assembly language level, it is often
possible to use ingenuity in this packing to maximize storage efficiency.

4.1.4 THE ECONOMY OF POINTERS 121

-1 a, a»+i

data data data

a,2 a/—i a/

a,- a,+i a/+2

(a) Successive Bi-directional Nodes, Conventionally

-i a a/+1

data data data

a,_2 XOR a, 8j_ i XOR 8/+ i a, XOR a,+2

(b) Successive Bi-directional Nodes, Encoding Links with XOR

0 (header) 61 19 48 5 73

61 data data data data data

73 19 9 24 21 5

(c) An Example, Encoding Links with MOD (r = 100)

Figure 4.12 Bi-directional Lists with Just One Link per Node

to yield the location of the successor cell. We can also go backward from a, by
combining the successor location ai+l with the zth composite link

ai+] XOR (az_, XOR ai+x) = at_x (4.2)

to yield the location of the predecessor cell.

If the exclusive-or operation is not available, another possibility is obtained by
computing the zth link value as (u,_, + ai+x) MOD r, where r is any sufficiently large

number. In this case, we can go forward from a, by computing

i + ai+1) - at_j) MOD r = ai+x (4.3)

and we can go backward from a, by computing

((a,-_, + ai+ j) - ai+x) MOD r - at_, (4.4)

This latter variant is illustrated in more detail in Figure 4.12(c) by using arbitrary

values for the ah and with r = 100.

Of course, these methods cannot be used with Pascal pointer variables, although
the MOD technique could be used with cursors. Also, one needs two successive
location values to start off rather than just one location value; however, it is then
easy to scan the list and to have arbitrary alternations in direction as that scan
proceeds On the other hand, if insertions or deletions are common, then the
adjustments that must be made to the composite link values are costly. This

122 LISTS

method has been characterized as referencing a list by its edges rather than its
nodes, and has been shown to be effective for a variety of applications [Wise 1976].

4.2 EXAMPLES OF SEQUENTIAL LIST USAGE

It is worth repeating the caveat from the beginning of this chapter, that lists may
mean many different things. Our discussion so far has been restricted to sequential
lists; we will soon move on to other forms. Even so, the simple forms of lists that
we have described thus far are already extremely useful, as the following three

examples illustrate.

4.2.1 Maintenance of an Ordered List

In Section 2.1.2 we presented two short, simple functions SEARCH_A (Algorithm
2.1) and SEARCH_B (Algorithm 2.2) for scanning the elements of an unordered
array in search of an input value. Both functions terminated with one of two
values: zero if the sought after value was not in the array, or the index of the
sought after value if it was in the array.

We will now look at an algorithm for searching an ordered list. This time, we
will return a pointer to the node containing the input argument if it is there; and if
it is not already there, we will insert it in the list in the correct location to maintain
the order of the list. The list is assumed to have a header node that contains a
dummy value less than any data value in the list. With such an algorithmic capabil¬
ity, it is easy to describe the construction and use of a dictionary, or a concordance,
or a symbol table for a compiler or assembler. Instead, however, we will illustrate a
capability that is common to all of these. Our list searching function
SEARCH_LIST (Algorithm 4.1) takes two input arguments:

head — a pointer to the header node of a list (presumed to be in order), and
id — a key value to be searched for in the list.

It returns False if the key value was not in the list and has been inserted, or True if
the key was in the list originally; it also has as an output argument:

loc — a pointer (in either case) to the location of the node containing the key.

Thus, in SEARCH_LIST the boolean result is returned by the function itself, and
the pointer result is returned as a var parameter. Although it violates mathematical
purity to have a function return a result via a call by reference, it is convenient for
the typical manner in which SEARCH_LIST might be used, as in

if SEARCH_LIST (...) then
{do one kind of processing if the key was already there}

else
{do another kind of processing if it was inserted}

4.2.1 MAINTENANCE OF AN ORDERED LIST 123

function SEARCH_LIST (head: ptr; id: integer; var loc: ptr): boolean;

{look for id in the ordered linked list with header node head (containing
key less than any id) and returns true/false according as it is/isn't
already there; if it isn’t there, insert it in a new node in proper
sequence; in any event, set loc to point to node containing id}

type ptr = |node;
node = record

key: integer;
next: ptr;

end;

var q,h ptr;
state: (append,found,insert,scan);

begin
loc := head;
state := scan;
while state = scan do begin

if locj.key = id then
state := found

else if locf.key > id then
state := insert

else if locf-next = nil then
state := append

else begin {keep looking}
q := loc;
loc := locj.next;

end;
end;
if state = found then

SEARCH_LIST := true
else begin

new (r);
rf.key := id;
case state of

append: begin
loc| next := r;
rf.next := nil;

end;
insert, begin

qf.next := r;
rj.next := loc;

end;
end;
loc := r;
SEARCH_LIST := false;

end;
end;

Algorithm 4.1 SEARCH_LIST

124 LISTS

The finished algorithm SEARCH.LIST masks some tricky details. For

instance, one common mistake in writing this algorithm is to use

while (loc <> nil) and (loci'.key < id) do

to control the scanning loop. At the end of the list, however, loc = nil, and the
expression loc].key will cause a run time error with many compilers. To see a more
subtle problem, note that just one of three things must be true when the scanning

loop terminates:

(a) the variable id is already in the list, or

(b) a node with id is to be inserted between two other nodes, or

(c) a node with id is to be inserted after the last node.

It is very easy to confuse the last two cases and either cause a run-time error or
insert a node at the wrong place in the list. Wirth [1976] gives an excellent exposi¬
tion of some of the hazards involved in solving what seems like an innocuous

problem.

In our solution, these difficulties are nicely finessed by the use of the variable
state, of enumerated type. This technique [Atkinson 1979, 1984] makes explicit
which conditions apply while searching through the list; it also provides an elegant
way to discriminate what must be done when the scanning terminates. You should
satisfy yourself how the algorithm works by trying it against a list of values (see
Exercise 4.9).

4.2.2 Polynomial Addition

Lists provide a very natural representation for symbolic manipulation of algebraic
terms. Each term can be represented by a list node; and a polynomial of such
terms is then represented by a list of terms ordered on the values of the exponents
of the variables. Under such operations as polynomial addition, polynomial multi¬
plication, and differentiation, it is characteristic that terms with given exponents are
created and destroyed in an unpredictable manner. Thus, the ability to insert and
delete terms is essential.

For example, with the definition

type link = fterm;
term = record

expon: integer;
coeff: real;
next: link;

end;

the polynomial P = 8. lx11 + 3.2x7 - 15 would appear as in Figure 4.13. This repre¬
sentation employs a simple list with a header node. Our discussion will be restricted
to polynomials with positive, integer exponents, which enables us to denote nodes as
headers by employing exponent values of — 1.

The procedure POLYADD (Algorithm 4.2) takes as input p and q, pointers to
the header nodes of polynomials P and Q. Q is added to P, with Q being

4.2.2 POLYNOMIAL ADDITION 125

Figure 4.13 A Polynomial as a Linked List

Figure 4.14 Polynomial Inputs to Algorithm POLYADD

unchanged but P being changed “in place” to reflect the sum. Our purpose in
doing this rather than developing the sum in a third polynomial R is to demonstrate
some important aspects of typical list processing. Note that POLYADD employs
two working pointer variables p\ and p2. The first is used to retain the previous
value of p, as p chains forward through P. This solves the problems of insertion
before a given node and deletion of an arbitrary node. The second is used when¬
ever we find a term in Q with no corresponding term in P. In such cases, we cannot
simply relink that term from Q into P, for that would alter Q, contrary to the
declared effect of POLYADD. Rather, we must get space for a new node via p2,
copy over the data from the term in Q, and then adjust the pointers. To illustrate

the operation of POLY ADD, assume that we have

U = 3x9 - 2x - 4x3 - 6x, and V = 2x + 5x6 - 4x

as shown in Figure 4.14. We have labeled the nodes for purposes of exposition,
even though the labels are meaningless for the algorithm. A trace of
POLYADD(m,v) is shown in Figure 4.15, and the resultant form of U is shown in

Figure 4.16.

Suppose that we had not chosen to represent polynomials as lists, but had

instead employed arrays, such as

a,b: array [0 .. n] of real

in which a [/] contained the coefficient of x‘ in A = Oq + o.xxx + a2x2 + ••• + anxn, and
b [/] contained the coefficient of x‘ in B = b0 + bxxx + b2x2 -l-h b„xn. In this case,

the addition could be carried out much more simply by

126 LISTS

procedure POLYADD (p,q: link);

type link = {term;
term = record

expon: integer;
coeff: real;
next: link;

end;

var pi ,p2: link;
state: (add,delete,done,insert,qonly,skip);

begin
state := add;
repeat

if state in [add,skip] then begin
pi := p;
p := pt.next;

end;
if state <> skip then

q := qf.next;
if q = nil then state := done
else if p = nil then state := qonly
else begin

if pf.expon < qf.expon then state := insert
else if pf.expon > qf.expon then state := skip
else begin {exponents must be equal}

state := add;
p|.coeff := pt-coeff + q}.coeff;
if pt-coeff = 0 then begin

{delete term from P: fix up links for P, free space}
state := delete;
p2 := p;
p := p|.next;
pi {.next := p;
dispose (p2);

end;
end;

end;
if state in [insert,qonly] then begin

{insert term in P: get space via p2, copy q\, fix up links for P}
new (p2);
p2|.expon := q|.expon;
p2|.coeff := q|.coeff;
p2}.next := p;
pi { next := p2;
pi := p2;

end;
until state = done;

end;

Algorithm 4.2 POLYADD

4.2.2 POLYNOMIAL ADDITION 127

state P Pi p2 q

add

skip

add

delete

insert

skip

add

done

|a V

t b Ta t!7
fc t b

I'd fc Td
T r t r V

Te t d
A fe A

Figure 4.15 Trace of Algorithm POLYADD

Figure 4.16 Output of Algorithm POLYADD

for i := 0 to n do
a [i] := a [i] + b [i];

However, in actual situations where symbolic algebraic manipulation is needed, the
range of the exponents is often much larger than the number of terms in any single
polynomial. This is particularly true for polynomial multiplication, where it would
be necessary to pre-allocate arrays of large dimension to anticipate extreme cases.
In these cases, the arrays a and b would be sparse, and we would expend much
space and time on zero terms. Thus, depending upon the sparsity, the list represen¬
tation will almost certainly save space and, in many cases, time also.

The inappropriateness of arrays for representing symbolic polynomials is
emphasized when we consider polynomials in several variables, because then the
range of potential exponent combinations explodes. An array would have to have
as many dimensions as there are variables. For lists, we can accommodate multi¬
variate polynomials by placing an ordering on the variables, and then retaining
terms according to lexicographical ordering of the corresponding exponents. As an

example

R(x,y,z) = A x3y + B x3z + Cxy2 z3 + Dy2z3 + Ey2 + F.y + Gz2 (4.5)

could be represented as shown in Figure 4.17. Another approach to handling multi¬

variate polynomials will be discussed in Section 4.4.3.3.

128 LISTS

Figure 4.17 A Multivariate Polynomial as a Linked List

4.2.3 Equivalence Classes

Consider the following problem. We have a set of n objects {a,}. We are also given
m statements of equivalence between pairs of members of this set, such as a2 = a5,
a3 = a8, etc. Let us assume that the objects can be mapped into the integers 1 .. n in
an efficient manner. If such a mapping is not already at hand by the nature of the
data, then we will discover how to do so in Chapter 10, when we talk about hash
functions. For definiteness, suppose that, with n = 19 and m = 16, we have the

following objects and relationships:

18 =12 16 = 14
6 = 10 9=1
8=2 3 = 13

11=5 7 = 19

8 = 18 16 = 6
17 = 4 16 = 17
9=11 3=8
3=9 19 = 15

(4.6)

By the nature of equivalence, we can easily determine that for this example

there are really just three equivalence classes, as follows:

(1,2,3,5,8,9,11,12,13,18) (4,6,10,14,16,17) (7,15,19)

It is frequently necessary to discover equivalence classes by processing equivalent
pairs. The problem arises naturally in assembling programs, when different symbols
may be declared to be synonymous, or with EQUIVALENCE statements in
FORTRAN [Arden et al. 1961; Galler and Fisher 1964], It can also arise when
performing set operations that are unrelated to language translation.

A naive first approach might simply be to use an array of n slots, as follows.

For each pair,

(a) If the slots for both members are empty, then label both slots with a new

class-id number.

(b) If the slot for one member is empty and the slot for the other member is occu¬

pied, then copy the label from the occupied slot to the empty slot.

4.2.3 EQUIVALENCE CLASSES 129

program EQUIV;

const listsize = 32; pairsize = 16; setsize = 19;

type cellndx = 0 .. listsize;
setndx = 0 .. setsize;
cell = record

valu; setndx; link: cellndx;
end;

var i,cellnum,classnum: integer;
flag: array [1 .. setsize] of boolean;
head: array [1 .. setsize] of cellndx;
classid: array [1 .. setsize] of integer;
cells: array [1 .. listsize] of cell;

procedure ADDCELL (u,v: setndx);
begin

cellnum := cellnum + 1; cells [cellnum].valu := v;
cells [cellnum],link : = head [u]; head [u] := cellnum;

end;

procedure DOPAIR;
var i,j: setndx;
begin

read (i,j); ADDCELL (i,j); ADDCELL (j,i);
end;

procedure DOLIST (i: setndx);
var j: cellndx; k: setndx;
begin

j := head [i];
while j <> 0 do begin

k := cells [j].valu;
if not flag [k] then begin

flag [k] := true; classid [k] := classnum; DOLIST (k);
end;
j := cells [j].link;

end;
end;

begin
for i := 1 to setsize do begin

flag [i] := false; head [i]:= 0;
end;
cellnum := 0; classnum := 0;
for i := 1 to pairsize do

DOPAIR;
for i := 1 to setsize do

if not flag [i] then begin
flag [i] := true; classnum := classnum + 1;
classid [i] := classnum; DOLIST (i);

end;
end.

Algorithm 4.3 EQUIV

130 LISTS

(c) If the slots for both members are occupied, then select the label for one of the
members and, for all members of the array having that label, change their

labels to that of the other member of the pair.

As the slots become occupied, this method will be forced to execute case (c) for
most instances of processing a pair. With a simple array structure, that will mean
scanning the entire array to find all members having a particular label, an operation
0(n) in time. If m is of the same order of magnitude as n, then the total complexity

will be 0(n2).

head

Figure 4.18 Action of First Phase of Algorithm EQUIV

A much more efficient method comes from maintaining the equivalence classes
in lists. When the situation corresponding to case (c) above arises, one need only
relabel all the items on the shorter list, and then concatenate the two lists. It is
fairly easy to show [Aho et al. 1974] that with this technique, the resulting algo¬
rithm is 0{n lg n). Rather than pursue this, however, we will describe yet a third
approach, also using lists. In this method, we maintain the lists by using an array

4.2.3 EQUIVALENCE CLASSES 131

called cells as a Free-list (in the manner of Figure 4.11), and using cursors rather
than pointer variables.

In the program EQUIV (Algorithm 4.3) we maintain a list head for each
member of the set. Then, in the first stage, we process each pair in constant time,
adding each member of the pair to a list for the other member. The effect of the
first stage on the pairs in Eqs. 4.6 is illustrated in Figure 4.18; the total effort for
this is 0(m). In the second stage, we process each member and its list, assigning
class-id numbers. This is done via the recursive procedure DOLIST, which is
executed just once for each member, so that the second stage is 0(n). In our exam¬
ple, DOLIST is called directly three times - for members 1, 4, and 7 - and
recursively 16 times; it processes the members in the sequence

1 9 3 8 18 12 2 13 11 5 / 4 17 16 6 10 14 / 7 19 15

Combining the work in the first and second stages (and the initialization phase) we
find that EQUIV is 0(m + n). Any algorithm for deciding equivalence classes must
look at each pair at least once and at each member at least once, so that EQUIV is
optimal with respect to time, at least within a constant factor. However, EQUIV
also requires arrays of 0(n) space and list cells of 0{2m) space, for 0(m + n) space
in total. Moreover, suppose that the problem is somewhat different, and that the
pairs come intermixed with queries about equivalence classes that are knowable
from the preceding pairs. EQUIV does not provide answers to such queries until all
the pairs have been processed. In Section 6.6.5 we will present another algorithm
for this problem that overcomes both of these deficiencies; it is 0(n) in space, is
almost optimal in time, and allows intermixing of pair declarations and queries.

4.3 MULTIPLE LINKING

Our use of lists so far has involved maintaining data items in sequence. That
sequence has usually been dictated by the value of a single key field within the item.
In this section, we discuss some departures from this. Consider the problem of
maintaining items in sequence on several lists simultaneously. We need a set of
links for each of the lists. Two structures that provide this facility are the inverted
list and the multilist. Note at the outset that these structures are very different from
a bi-directional list. Even though the latter has two links for each node, they both

have to do with sequence in a single list.

Inverted lists and multilists are used primarily when recording large amounts of
data. Real applications may have numerous variations of these structures in
response to the characteristics of the data, on the one hand, and the storage devices,
on the other hand. Our program is to discuss the basic ideas here and then pursue
them in greater detail in Chapter 12. In Section 4.3.3, as an illustration of multiple
linking techniques, we will reconsider the subjects of arrays in general, and sparse

matrices in particular.

132 LISTS

4.3.1 Inverted Lists

In Section 2.3.1 we were concerned with the results of a survey summarizing the sex,
education, and marital status of a group of people. These results were summarized
in an array of dimension 2x3x5, shown in Figure 2.5 and reproduced here as

Figure 4.19. Typical questions that we could answer from this array are:

• How many married males are there who have not completed high school?

• How many single females are there?
• How many people have finished high school but not college?

We might also wish to ask other kinds of questions, such as:

• Who are all the widowed persons?
• Who are all the divorced males?
• What are the values of the attributes (sex, education, marital status) for a given

individual who responded to the survey?

male

single married divorced widowed other

primary 20 17 9 11 14

secondary 32 13 7 5 10

college 11 9 11 8 12

female

primary 33 28 6 14 17

secondary 21 24 13 8 15

college 19 17 4 5 20

Figure 4.19 The Three-Dimensional Array of Figure 2.5

For the second group of questions, the data in the array structure of Figure
4.19 is of no use. To answer those questions, we would most likely begin by having
a record for each person, wherein these attribute values would be transcribed.
Suppose that we have such an array of records as shown in Figure 4.20 and
containing name, age, sex, education, and marital status. In this figure the records
have a de facto ordering, and we can specify a particular record by its numerical
index. It is often more useful, though, to be able to specify a record by its primary
key value. In this case, the names can serve as such key values; in real situations,
of course, names would not be unique, and social security numbers, employee

numbers, etc. would be used instead.

We can regard these records as representing a function F, such that

F(name, attribute) = value, as in the examples

F(Delilah, status) = single , and F(Roscoe, education) = secondary

If we now ask for the names of all the single persons, we can think of this question
as inverting the function F to obtain ¥~x (attribute, value) — names, as demonstrated

by the example

4.3.1 INVERTED LISTS 133

record name age

1 Archie 33
2 Beulah 23
3 Caspar 25
4 Delilah 46
5 Egbert 52
6 Gertrude 32
7 Hector 18
8 Jezebel 41
9 Maisie 32

10 Olaf 29
11 Roscoe 49

sex education status

male primary divorced
female secondary widowed
male secondary single
female college single
male primary married
female secondary widowed
male primary single
female primary married
female college divorced
male primary married
male secondary single

Figure 4.20 Some Example Data

F 1 (status, single) = Caspar, Delilah, Hector, Roscoe

This suggestive viewpoint is the origin of the term inverted list. There is one
inverted list (possibly empty) for every combination of an attribute with its possible
values, and this list will generally yield not one, but several names. The set of all
the lists is called an inverted file. An inverted file for the data of Figure 4.20, except
for the attribute of age, is shown in Figure 4.21. The list entries are recorded as
names; the entries might alternatively have been record numbers or locations. In
essence, however, an inverted list is a list of list pointers.

Sex
mate Archie, Caspar, Egbert, Hector, Olaf, Roscoe
female Beulah, Delilah, Gertrude, Jezebel, Maisie

Education
primary Archie, Egbert, Hector, Jezebel, Olaf
secondary Beulah, Caspar, Gertrude, Roscoe
college Delilah, Maisie

Marital Status
single Caspar, Delilah, Hector, Roscoe
married Egbert, Jezebel, Olaf
divorced Archie, Maisie
widowed Beulah, Gertrude

other none

Figure 4.21 Inverted File of Data in Figure 4.20

An example of an inverted list that usually employs locations is the index of a
book. In this book, for example, we find that the term “inverted list” is referenced
on pages 132-134, 140, 303, 450, 551, and 656-658. Here, using page references
serves very well because they apply just to this book, and they will change only in
the infrequent case of a new edition. On the other hand, consider the Bible or the
works of Shakespeare; these have been published in hundreds of editions, rarely

134 LISTS

with identical pagination. In such a case, it is more appropriate to have a concor¬
dance that is valid for all editions, referring to occurrences of words or phrases by

their logical locations, as exemplified by:

perverseness: Isaiah — 30,12
Proverbs — 2,14; 11,3; 15,4
Psalms — 101,4

and

perturbation: Henry IV (2nd) — l,ii,132; IV,v,23
Macbeth - V,i,10
Much Ado About Nothing — II,i,268
Richard III - V,iii,161

4.3.2 Multilists

Although we can use inverted lists to find those records having certain values of
attributes, we cannot dispense with the original data records. We thus have two
files in place of one - the original file and the inverted file. In our example of
Figures 4.20 and 4.21, however, we find that no individual has more than one value
for a single attribute; the inverted lists for a given attribute are all disjoint. This
suggests the possibility of combining the lists for each attribute within a single list,

similar to that which we saw in Figure 4.3.

record name age sex education status link fields

1 Archie 33 M primary divorced 8 3 5 9

2 Beulah 23 F secondary widowed 3 4 3 6

3 Caspar 25 M secondary single 10 5 6 4

4 Delilah 46 F college single 11 6 9 7

5 Egbert 52 M primary married 0 7 7 8

6 Gertrude 32 F secondary widowed 9 8 11 0

7 Hector 18 M primary single 2 10 8 11

8 Jezebel 41 F primary married 4 9 10 10

9 Maisie 32 F college divorced 1 0 0 0
10 Olaf 29 M primary married 6 110 0

11 Roscoe 49 M secondary single 5 0 0 0

Figure 4.22 Multilist of Data in Figure 4.20, Version 1

Such an organization of the data is called a multilist, and is illustrated for the
data of our example by Figure 4.22. A multilist is a set of records wherein each
record is simultaneously on r sequential lists. These unrelated list sequences are
expressed by including r link fields in each record. In this instance, we have used
record indices rather than name keys for the links; but they are in fact pointers to
the next record on the list having the same value for that attribute. For our small
example, it is not very helpful to maintain distinct values of age on distinct lists.

4.3.2 MULTILISTS 135

However, an easy and useful alternative is to incorporate a link field in the multilist
structure for accessing the persons in increasing order of age, as shown in the figure.
Finally, we no longer need to maintain the original file, as with inverted lists.
However, we do need a set of list headers, one for each value of each attribute;
these are shown in Figure 4.23.

Age 7

Marital Status
single 3
married 5
divorced 1
widowed 2
other 0

Sex
male 1
female 2

Education
primary 1
secondary 2
college 4

Figure 4.23 Headers for Multilist

With the annexation of the link field, the information in each record becomes
somewhat redundant. For instance, starting with the fact that Caspar has
completed high school, and then following the link to Gertrude, we can know that
that is her educational level also. Indeed, it appears that we can compress out
much of the original data from Figure 4.22 to yield Figure 4.24, thus saving some
storage. Unfortunately, although we can find all the high school graduates by
following the list header value of 2, we can now no longer access an arbitrary
record and ascertain that person’s educational level. A final adjustment that solves
this problem is to replace the nil link at the end of each list by a circular link back
to the header node for that attribute value. By such a strategy, we can always chain
far enough to identify any attribute value for a randomly accessed record. This is

illustrated in Figure 4.25.

record name age sex education status

1 Archie 8 3 5 9

2 Beulah 3 4 3 6

3 Caspar 10 5 6 4

4 Delilah 11 6 9 7

5 Egbert 0 7 7 8

6 Gertrude 9 8 11 0

7 Hector 2 10 8 11

8 Jezebel 4 9 10 10

9 Maisie 1 0 0 0

10 Olaf 6 11 0 0

11 Roscoe 5 0 0 0

Figure 4.24 Multilist of Data in Figure 4.20, Version 2

J22 practice, it may be far more economical to retain all the data, as in Figure
4 22, than to pay the cost of chaining around a large list. This is just one of many
pragmatic details that we will defer to Chapter 12. There is one final point to be

136 LISTS

made here concerning inverted lists and multilists. What if we were also maintain¬
ing a list of each person’s citizenship? And what if Archie had dual citizenship in
both Egypt and Israel? There is no problem with inverted lists if attributes have

multiple values, but this feature cannot be accommodated with multilists.

record name age sex education status

1 Archie 8 3 5 9

2 Beulah 3 4 3 6

3 Caspar 10 5 6 4

4 Delilah 11 6 9 7

5 Egbert 0 7 7 8

6 Gertrude 9 8 11 (widowed)

7 Hector 2 10 8 11

8 Jezebel 4 9 10 10

9 Maisie 1 (female) (college) (divorced)

10 Olaf 6 11 (primary) (married)

11 Roscoe 5 (male) (secondary) (single)

Figure 4.25 Multilist of Data in Figure 4.20, Version 3

4.3.3 Arrays Revisited

In the discussion of arrays in Chapter 2, we saw that the usual sequential storage
allocation method, while highly satisfactory for many applications, is too restrictive

for cases wherein:

(a) the array has an irregular shape, or

(b) the array is sparse.

We will illustrate two manners in which linked lists can be used to facilitate oper¬

ations on arrays of an arbitrary shape or density.

The first technique starts from the observation that a multi-dimensional array
can be regarded as a vector of vectors ... of vectors. Rather than unravel such an
array into a one-dimensional representation, we can employ vectors of pointers into
all dimensions except the last, where we finally have vectors of data values. To be
specific, let us consider again the array of Figure 4.19. In the new scheme illus¬
trated in Figure 4.26, we have vector x with pointers to the vectors yl and y2; the
latter, in turn, contain pointers to the vectors ztJ (i = 1,2; j = 1,2,3). Each z vector
contains one row of actual data.

The number of pointers required for this representation (8 in our example, for
an array of 30 elements) may seem to be excessive. But consider the general case of
a hypercube of k dimensions, with n elements on a side, and such that n is of
respectable size. Then it can be shown [Standish 1980] that the excess space for
pointer storage is almost independent of k and is of proportion 1 /(« — 1). More¬
over, on many machines, random access to an arbitrary element of the array by
following pointers may be even faster than when using a dope vector, as in ordinary
sequential allocation. However, this representation does have a bias toward access-

4.3.3 ARRAYS REVISITED 137

Figure 4.26 A Pointer-Based Array Representation

Figure 4.27 A Ragged Array

ing neighbors in the last dimension, with access to neighbors in the other

dimensions being more costly.

There are two situations in which the vector of pointers method is particularly
advantageous. One is when the array is large, so that there is a need to segment it,
or divide it up into logical parts. The other is in the case of a ragged array. This
term signifies an array in which, for example, not all planes have the same number

138 LISTS

of rows and/or not all rows have the same number of columns. An illustration of
this is given in Figure 4.27. Overall, this solution to the problem of arbitrary

extendibility is more practical than those presented in Section 2.7.2.

As a second illustration of the utility of linked lists for dealing with arrays, we
return to the subject of sparse matrices. Recall that these are typified by an array
of coefficients, mostly zero in value, for the solution of a set of simultaneous
equations. The methods of representation that we described in Section 2.8 - bit

map, address map, delta skip, and triples — are all related in approach in that they.

1. place the non-zero elements in sequential positions in a vector of data Z, and
2. employ auxiliary vectors to map the row and column indices of the original

matrix to indices in Z.

These methods all achieve the primary goal of conserving storage, but they are
ill suited to dynamic situations. For example, in solving a set of simultaneous
equations by a relaxation method, where we repeatedly use an unaltered set of coef¬
ficients, the previously cited methods can work quite well. However, in solving the
same equations by Gaussian elimination (see Section 2.3.2), coefficients appear and
disappear throughout the matrix. Although the triples method allows for modest
flexibility in dynamic situations, a better approach is to represent individual array
elements as list nodes, in the form shown in Figure 4.28. With this method, each
node is orthogonally linked in the row and column dimensions, using the pointer

fields Right and Down.

Coefficient

Down Row Col Right

Figure 4.28 Node Structure for Sparse Array Elements

0 5 0 0 2
4 0 9 0 0
0 0 0 6 0

1 0 0 0 3
0 8 0 0 0

Figure 4.29 The Example Sparse Array of Figure 2.23

We will apply this method to the matrix of Figure 2.23, reproduced here as
Figure 4.29. In so doing, we have to confess that we avoided an important detail
when discussing sparse matrices in Chapter 2. Extremely sparse matrices usually
have missing rows and columns consisting entirely of zero elements. In Chapter 2,
we ignored this and treated the row and column numbers as consecutive values.
But the fact that row j or column k is missing is important in a real problem. To
redress matters, we now posit some non-consecutive row and column values for
Figure 4.29. Applying the format in Figure 4.28 to this matrix, we obtain the struc¬
ture in Figure 4.30. Note that both the row lists and the column lists are circular

4.3.3 ARRAYS REVISITED 139

lists, and that there are header nodes for each row and column. In practice, the
header nodes might have distinctive formats; we have chosen to give them the same
format as data nodes.

Figure 4.30 The Sparse Array of Figure 4.29 as a List

How do orthogonal lists compare with other methods for representing sparse
matrices in terms of storage efficiency? To estimate this in a manner analogous to
that employed in Section 2.8, assume that each node requires

8 bytes for the coefficient
4 bytes for two subscript values (should be adequate)
8 bytes for two pointer values (possibly overgenerous)

or 20 bytes in all. The total space requirement is then given by

5 = 20 pn2 + 40n (4.7)

where p is density, and the two terms correspond to the data nodes and the header
nodes. Finally, let us assume that n = 100 and then carry forward Table 2.2 as

Table 4.1, with a row appended for orthogonal links.

140 LISTS

Density p .1 .03 .01 .003

Bit-Map
Address-Map
Delta-Skip

Triples
Linked List

9650
18400
11978
12000
24000

4050
12800
4670
3600

10000

2450
11200

2331
1200
6000

1890
10640

1260
360

4600

Table 4.1 Storage Requirements for Sparse Matrices

Not too surprisingly, the overhead for the pointers places orthogonal linking at
a disadvantage with respect to storage efficiency. However, there are many cases
where this is much less significant than the capacity for dynamically inserting and
deleting elements in the array. We will explore one example of this in depth in the
next section. But first, let us recall the discussions of the preceding two sections.

What, in fact, are the vectors of pointers in Figures 4.26 and 4.27? They are
inverted lists. And what is the orthogonally linked structure of Figure 4.30? It is

another multilist.

f4.3.3.1 Sparse Matrix Operations. Computations with sparse matrices are fairly

common, and the subject has a fairly specialized literature, for example Bunch and
Rose [1976]. Most of these treatments are directed at the efficient solution of
large, sparse sets of equations. Since the associated issues are fairly complicated,
and since we have not presented the graph-theoretical tools that underlie them, we

will pursue the less complex issue of multiplying sparse matrices.

In implementing the multiplication process, we need to employ a variety of util¬

ity routines: for input and output, for conversion between the linked list format
and others (such as triples format), for initializing the various header nodes, etc.
Although important, such routines are straightforward to implement, and so we will
presume their availability in what follows. The Pascal syntax corresponding' to

Figure 4.28 is

type ptr = |node;
node = record

row,col: integer;
coeff: real;
rowptr,colptr: ptr;

end;

We assume that we can employ the following subroutines:

1. SPARSE_SETUP (a,b: ptr, VAR c: ptr) - taking pointers to the headers of the
matrices A and B as input parameters, and returning a pointer to the header of
the matrix C. This initialization generates one row header in C corresponding

to each non-zero row header in A and one column header in C corresponding
to each non-zero column header in B. These are obviously the only positions

1-4.3.3.1 SPARSE MATRIX OPERATIONS 141

where we can develop a product in C; moreover, even some of these rows or
columns may turn out to be empty when we are finished.

2. SET_NODE (q: ptr, r,c: integer; valu: real; rp,cp: ptr) — which assigns the last
five parameters to the fields of the node pointed at by the first parameter.

3. SPARSE_TRIM (q: ptr) - which scans the row and column headers of the
sparse matrix corresponding to q, and deletes header nodes for those rows or
columns that are empty.

The most natural approach to the problem is to mimic the sequence of compu¬
tation in MAT_MAT (Algorithm 2.4), as reproduced here:

for i := 1 to m do
for j := 1 to p do begin

sum := 0;
for k := 1 to n do

sum := sum + A [i,k] * B [k,j];
C [ij] := sum;

end;

By transliterating this logic, we obtain the procedure SPARSE_MULT (Algorithm
4.4). Although the amount of code is substantially larger with lists than it is with
arrays, the pattern of scanning the elements of A and B is identical. A significant
source of inefficiency comes from having to chain from the ith row header and the
yth column header of C in order to insert C [ij]. Since the elements of C are devel¬
oped a row at a time, we mitigate this by using the variable q to remember the
previous point of insertion in the ith row. However, we are still forced to chain

down the yth column using the variable 5.

Algorithm 4.4 reflects a respectable, workman-like approach to the problem of
multiplying spars© matrices, but it is possible to do far better by analyzing where it
spends its time. Two things cause it to be inefficient. The first of these is that in
inserting C [ij] into two linked lists, we are able to use the variable q to expedite
row insertion, but are unable to expedite column insertion. Another, less obvious
shortcoming is that in the simultaneous traversal of a row in A and a column in B,

the statement

while (x <> u) and (y <> v) do begin

is executed with a frequency proportional to the sum of the densities of A and B, or
Pa + Pb- Thus there are far more comparisons than multiplications! A pretty reso¬
lution for this by Schoor [1982] is to perform the multiplication by the unobvious

sequence;

for i := 1 to m do
for k := 1 to n do

for j := 1 to p do
C [ij] := C [ij] + A [i,k] * B [kj];

where there is no need to initialize C in the list representation.

In other words, we pick an element A [i,&] and then scan the icth row of B to
see where there are any multiplications to be performed. As we repeat this opera¬
tion for the successive elements in the ith row of A, we accumulate contributions to
the ith row in C. As a consequence, the number of comparisons is reduced to the
product of the densities of A and B, or pA x pB. We still have to contend with the

142 LISTS

procedure SPARSE_MULT (a,b: ptr; var c: ptr);

var p,q,r,s,t,u,v,x,y: ptr;
sum: real;

begin
SPARSE_SETUP (a,b,c);
u : = aj.rowptr; {set to first row in A}

p := cj.rowptr; {set to first row in C}

while u <> a do begin
q := p; {remember beginning of ith row in C}
v := b|.colptr; {set to first col in B}

r := ct.colptr; {set to first col in C}

while v <> b do begin
x := ut-colptr; {begin /th row in A: a [/, 1]}
y := vj.rowptr; {begin /th col in B: b [I,/]}
sum := 0;
wfiile (x <> u) and (y <> v) do begin

if xt.col < y|.row then
x := xf.colptr

else if xt-col > yf.row then
y := yf.rowptr

else begin
sum := sum + xf.coeff * yt.coeff;
x := xf.colptr;
y := yt.rowptr;

end;
end;
if sum <> 0 then begin

new (t);
s := r;
while s|.rowptr <> r do

s := sj.rowptr; {find /th row in /th col of C}

SET_NODE {t,p|.row,r|.col,sum,r,p);
q|.colptr := t;
s|.rowptr := t;
q := t; {remember this entry in /th row of

end;
v := vf.colptr;
r := rj.colptr;

end;
u := u|.rowptr;
p := pf.rowptr;

end;

{go to next col in B}
{go to next col in C}

{go to next row in A}

{go to next row in C}

C}

SPARSE_TRIM (c);
end;

Algorithm 4.4 SPARSE_MULT

f4.3.3.1 SPARSE MATRIX OPERATIONS 143

(a) Use of brow for Fast Access to Rows of B

(b) Use of colend for Fast Access to Columns of C

Figure 4.31 Structures for Algorithm SPARSE_MULT_A

inefficiency of random insertion into two linked lists. The resolution for this is as

follows:

1 Maintain an array of pointers brow to the beginning of each row in B, as illus¬
trated in Figure 4.31(a). We can then index this array with the column index k

of A, in order to begin processing the row of B that corresponds to A

Note that brow must have an entry for the entire subrange 1 .. n.

144 LISTS

procedure SPARSE_MULT_A (a,b: ptr; var c: ptr);

const max = {maximum s ze of auxiliary arrays}

var p,q,u,v,x,y: ptr;
s: real;
brow,colend,rowend: array [1 .. max] of ptr;

begin
SPARSE_SETUP_A (a,b,c);

{Phase I: Generate the columns of matrix C}
u := aj.rowptr; {set to first row in A}
while u <> a do begin

x := uf.colptr; {begin /th row in A: a [/, 1]}
while x <> u do begin

v := brow [x].col]; {find Arth row in B}
if v <> nil then begin

y := vf.colptr; {begin Arth row in B\ b [Ar,1]}
while y <> v do begin

s := xf.coeff * y|.coeff;
p := colend [y].col]; {find end of/th col in C}
if p] .row = uf.row then

pf.coeff := p|.coeff + s
else begin

new (q);
SET_NODE (q,uT.row,p|.col,s,pT.rowptr,q);
pf.rowptr := q;
colend [yf col] := q;

end;
y := yj-colptr; {step along Arth row in B: b [Ar,/]}

end;
end;
x := xt.colptr; {step along /th row in A: a [/,Ar]}

end;
u := uf.rowptr; {go to next row in A}

end;
{Phase II: Scan the columns of matrix C and link the rows}

p := c|.colptr; {set to first col in C}
while p <> c do begin

x := p; q := pf.rowptr; {begin /th col in C: c [1,/]}
while q <> p do begin

if qf-coeff = 0 then begin
q := q|.rowptr;
dispose (xf.rowptr);
xf.rowptr := q;

end else begin
y := rowend [qj.row]; {find end of /th row in C}
qt-colptr := yf.colptr;
yf.colptr := q;
rowend [yf-row] := q;
x := q; q := qf.rowptr;

end;
end;
p := pj.colptr;

end;
{go to next col in C}

SPARSE_TRIM (c);
end;

Algorithm 4.5 SPARSE_MULT_A

14.3.3.1 SPARSE MATRIX OPERATIONS 145

2. Do not attempt to maintain both row and column links for C throughout the
multiplication. Rather, (a) develop C as a set of nodes linked along their
columns only, and then (b) scan these column-lists and insert the row links after
the multiplications are finished.

3. For use during 2(a) above, maintain an array of pointers colend to the last
element in each column of C, as illustrated in Figure 4.31(b). We can then
index this array with the column index j of B, and directly find where to apply
the next product term in C. Note that colend need have just one entry for each
column in B (and C).

4. For use during 2(b) above, maintain an array of pointers rowend to the last
element in each row of C. We can then index this array with the row index j of
C, and directly find where to row-link the next term in C. Note that rowend
need have just one entry for each row in A (and C).

When we put these elements together, we obtain the procedure SPARSE_MULT_A
(Algorithm 4.5). It employs the same auxiliary procedures SET_NODE and
SPARSE_TRIM as before. However, it employs SPARSE_SETUP_A, in order to
include the initialization of the arrays brow, colend, and rowend.

If we contemplate the multiplication of matrices that are sparse and very large,
the effect of the difference between pA + pB and pAx pB can be substantial. To
confirm this effect, we tested the two algorithms rather carefully. To begin with, in
dealing with matrices where the product of density and size is small, so that the
number of non-zero terms is small in an absolute sense, then the savings in the
number of comparisons is lost in the overheads of setup, loop initializations, and
trimming. But if the matrix sizes are truly large, or (paradoxically) if the densities
are not too small, then the time ratios are indeed commensurate with the compar¬
ison ratios. All in all, SPARSE_MULT_A is a nice illustration of the effectiveness
of choosing the right combination of algorithm and data structures.

4.4 LIST STRUCTURES

We will now consider list structures that are more powerful than any of those that
we have discussed so far. Whereas the lists of Section 4.3 achieved generality by the
use of multiple links, the lists in this section achieve generality through the use of
recursion. The term most commonly applied to this type of list is list structure,
although other terms, notably List, have been applied as well. Since list structure
is more useful when speaking and ‘‘List is more useful when writing, we will think
of them as List structures, but commonly revert to the use of List throughout the

remainder of this text.

Definition. A List is a finite sequence (possibly empty) of elements, each of

which is either atomic or a List.

The nature of an atom is not well specified, other than that it is not itself a List.

Several specialized programming languages have been developed for List proc¬

essing, which is a generic term for performing computations with List structures.

146 LISTS

We will examine these somewhat in Section 4.4.4, but the bulk of our discussion of

Lists reflects the following perspectives:

• The typical application user’s point of view of Lists and List processing is via

some special HLL.
• Nonetheless, our discussion will begin with some details about List structure

implementation, which is presumably carried out in assembly language. These
details provide interesting examples of representation choices; they also provide
insight for the List processing algorithms that we will study subsequently.

• In order not to burden many readers with an extra, unfamiliar language, these
List processing algorithms are presented in Pascal. For those readers who are
already familiar with a List processing language, the correspondence should be

straightforward.

4.4.1 Representation Issues

The basic way of representing a List is illustrated pictorially in Figure 4.32(a). The
elements of the outer List are r,s,t; r is itself the List consisting of u and v; t is the
List consisting of w; w is the List consisting of x; and s,u,v,x are atomic. Another
conventional manner of representing the same List is with parentheses, as

((A,B),C,((D))).

r s t

(a)

(b)

Figure 4.32 Two Pictorial Conventions for List Structures

4.4.1 REPRESENTATION ISSUES 147

1

0 A

0 C

0 B

(a)

(b)

Figure 4.33 Implementing the Conventions of Figure 4.32

An alternate pictorial scheme for this same List is shown in Figure 4.32(b). The
distinction between (a) and (b) reflects some important points to remember when
representing List structures. List elements are almost always mapped into cells of a
fixed size large enough to hold two pointer values. The right field always represents
a List, denoted by NIL if it is empty or by a pointer otherwise. The left field may
represent either another List, denoted by a pointer, or else an atomic value. Since
many atomic values require no more space than does a pointer value, it is common
to store them directly in the (available) left field. However, to complete that choice
of representation, a tag field must then be added to each List node so that the
nature of the left field can be discerned; this yields a structure like that shown in

Figure 4.33(a).

In other cases, necessarily so if the atomic value will not fit, the left field has a
pointer to the atom, and the use of tags for discrimination might result in the
structure of Figure 4.33(b). There are still other possible representations; the actual
choice depends upon machine architecture and other factors. Of course, an imple¬
mentation of Lists would very likely incorporate header nodes, for the same reasons
cited in Section 4 1 about simple lists: to facilitate selecting the first item of a List,
to ease the problems that arise when a List changes and there are multiple pointers
to it etc For our investigations, however, we find it sufficient and simplest to
employ the representation of Figure 4.33(b). We will draw upon these important
considerations for representing Lists as necessary, but suppress them where possible.

148 LISTS

In any List there are two fundamental operations: to select the head of the List

(referenced by the left pointer) and to select the tail of the List (referenced by the

right pointer). As an example, the head of the List (A,(B),C) is the atom A and its

tail is the List ((B),C); for the List ((D,E),F,(G)), the head is the List (D,E) and the

tail is the List (F,(G)). For reasons that are historical and now irrelevant, the head

and tail selector functions are commonly termed, respectively, CAR and CDR.

From the point of view of a user of a List processing language, CAR and CDR

extract sub-Lists from any List that is non-atomic; note that CAR may return an

atom and CDR may return NIL. Of course, from the implementation point of

view, as well as from the point of view to be discussed in Section 4.4.3, we are deal¬

ing not with Lists but with pointers to these Lists.

Note that the issue of representation has soiled the purity of the List concept.

In the definition of Lists and in high-level operations on them, we speak of the

empty List, NIL. In the machine, however, we cannot represent the nothingness of

the empty list except by using the explicit pointer value nil. We can think of NIL

in the List processing environment as being a special atom that denotes the empty

List; however, this loses some of the simple elegance of the definition.

4.4.2 Reentrant and Recursive List Structures

The List structure in Figures 4.32 and 4.33 is, more precisely, a pure List. There are

other possibilities, as illustrated in Figure 4.34. The List in (a) is termed a reentrant

List, or shared List, because the element x is referred to more than once. The List

in (b) is termed a recursive List, or cyclic List, because element y refers to itself

directly, and element z refers to itself indirectly. Note that there is an important

distinction between the use of the term recursive as applied to a List and to an algo¬

rithm. The latter usage necessarily implies a criterion for termination, whereas the

former usage does not.

One consequence of having these less restricted Lists is that they cannot be

simply represented with parentheses as in the case of pure Lists. The usual way of

coping with this situation is to label the Lists and then refer to the labels. Using

lower case letters as labels, we could write for the List of Figure 4.34(a)

u\ (v,C,v) v: (A,B)

and for the List of Figure 4.34(b) we could write

r: (j,B,(0) (s,A) M(C,t))

Much more serious than the issue of representing these more general Lists by a

string of symbols, however, are the complexities involved in computing with such

structures. We will see how this is so in the next section.

t

t4.4.3 OPERATIONS WITH LIST STRUCTURES 149

(b)

Figure 4.34 Reentrant and Recursive List Structures

f4.4.3 Operations with List Structures

It is difficult to convey the full flavor of List processing without going into details
that are beyond the scope of this book. However, there are some very pretty and
important ideas that can be expressed within the framework of two examples. The
first of these has to do with the most basic operation that one can conceive of for a
List: to traverse it, visiting each node without getting caught in an infinite excur¬
sion. This capability serves as a crucial first step in the process of reclaiming List
cells, to be discussed in Section 11.2.4 After the example of traversing a List, we will
take a different tack and illustrate the use of a more special sort of List structure,
appropriate for the problem of adding multivariate polynomials.

f4.4.3.1 Traversing a List Structure. The basic problem in traversing a List is that
it may be reentrant and cause us. to visit some nodes more than once, or even recur¬
sive and cause us to visit some nodes an infinite number of times, unless we employ
some strategy to block repeated visits. The strategy used for this purpose is to mark
nodes as they are visited, and then to follow links only to unmarked nodes.
Suppose that our objective is to count how many nodes there are in a List. For this
purpose, we will employ the recursive function COUNT. LIST (Algorithm 4.6), and
use the marking technique just described. In this procedure, the type definition for
a cell corresponds to Figure 4.33(b), augmented with a mark bit. To illustrate the

4 As a matter of fact, the techniques that are discussed in Chapter 11 provide a wealth of
instructive examples of List processing. But they belong there and not here.

150 LISTS

function COUNT_LIST (list: link): integer;

type link = t cell;
cel! = record

mark: boolean;
case isatom: boolean of

true: (data: {atom});
false: (head,tail: link);

end;

var cnt: integer;

begin
cnt:= 0;
if not list}.mark then begin

list}.mark := true;
cnt := 1;
if not list}-isatom then begin

cnt := cnt + COUNT_LIST (listj-head);
if listj.tail <> nil then

cnt := cnt + COUNT_LIST (listf-tail);
end;

end;
COUNT_LIST := cnt;

end;

Algorithm 4.6 COUNT_LIST

action of COUNT_LIST, consider the List of Figure 4.35, wherein pointer values

are represented symbolically rather than with arrows, and the mark and isatom

fields are not shown. Then the recursive sequence of visiting the cells is illustrated

in Figure 4.36. In this figure, the vertical axis indicates chronological sequence and

the horizontal axis indicates the depth of the recursive calls. Each entry in the

figure consists of the label of a visited cell, along with the count of all the cells seen

from it. Thus, cell c is the fourth cell to be visited. From it, we do not see cell c

(since it is already marked), but we do see cell /, which in turn sees cell h\ that line

of inspection ends at cell h, since cell b has already been visited. So the count for

cell c is 1 (for itself) plus 0 (looking along its head pointer) plus 2 (looking along its

tail pointer), for a total of 3.

We have earlier, in Section 1.3.1, seen some evidence that recursive algorithms

are likely to lose some efficiency in exchange for elegance of expression. Since the

capability to visit the nodes of a List is so basic, several faster, non-recursive algo¬

rithms have been developed for this purpose. In Section 6.4.1, in our treatment of

trees, we will see one such approach. However, since Lists are more general than

trees, and in order to illustrate several other points, we will base our discussion

upon a well-known algorithm by Schorr and Waite [1967]. In this example, we

omit the counting and concentrate upon the marking, since it is the more essential

issue. This algorithm uses the technique known as link inversion, whereby pointer

t4.4.3.1 TRAVERSING A LIST STRUCTURE 151

a e f

g /

g
B

h A

h

b A

Figure 4.35 An Example List

Depth

a-8

b-5

CD

E
i-

d-1

c-3

f-2

h-1

e-2

g-1

Figure 4.36 Trace of Algorithm COUNT_LIST

values are swapped back and forth between List cells in a systematic manner. To
illustrate this, Figure 4.37 shows a portion of a List at one instant in time, and then
again after a link inversion has been performed. In (a), the work cells P and Q
point to cell x and its left successor y, respectively. Via the sequence of operations

t := Qj.head; Of.head := P;
p := Q; Q:=t {old value of Q].head)

we have in (b) that P and Q point, respectively, to y and its left successor z. The
fact that x is the predecessor of y has been retained by inverting the left pointer in y
to point at x. The restoration of (b) to (a) can be obtained via the complementary

sequence of operations

t := Pf.head; Pf.head := Q;
q ;= p; p := t {old value of Pf.head)

152 LISTS

(a) (b)

Figure 4.37 Link Inversion

When we begin to implement a traversal marking procedure based on link
inversions, we discover a complication. Namely, upon ascending to a predecessor
node, we need to know if we are ascending from the head (left or CAR) direction or
from the tail (right or CDR) direction. In the former case, we should investigate
the other pointer field in the cell; in the latter case, we should ascend further.
Accordingly, in some implementations of the Schorr-Waite algorithm, every List cell
needs a tag bit in order to make this discrimination, as well as a mark bit. For
example, a tag bit is necessary if the List cells are represented as in Figure 4.33(a).
However, if the List cells are represented as in Figure 4.33(b), we can avoid this —
instead inverting the tag information in the bit field that is used to distinguish
atoms from List cells, in analogy to the inversion of the pointers in the other two
fields! We will see how this works shortly when we look at the algorithm.

Before we consider the algorithm, however, let us reflect upon what we are
doing. By altering pointer values, we are radically, although systematically, distort¬
ing the topology of the List structure. Throughout the execution of this algorithm,
the structure will be ill formed from the point of view of any other process that
might inspect it. To compound the problem, the pointer values are reassigned one
at a time, so that a totally inconsistent state will obtain during the middle of an
inversion. The concept of a pointer rotation, which treats a set of pointer value
exchanges as an indivisible action, is very useful in situations such as this [Suzuki
1982]. Chiefly, it allows algorithms to be expressed more concisely, and it reduces
the likelihood of inadvertently coding an inconsistent set of individual pointer

assignments.

Rotations can be specified among two values (that is, a swap), three values, or
more. For the present case, we need consider just rotations among three pointer
values. Even acquiring a node from the head of Free-list and inserting it at the
head of another list, as in Section 4.1.3, has the effect of such a pointer rotation.
This is illustrated in Figure 4.38, where (a) illustrates the pointer values before such
a sequence, and (b) illustrates the pointer values after such a sequence. Deleting a
node from the head of a list and returning it to the head of a Free-list would yield
exactly the opposite rotation. As another example, the link inversions from (a) to

t4.4.3.1 TRAVERSING A LIST STRUCTURE 153

(a) Free = a, a\.next = b, X = m

Free b c

(b) Free = b, a\.next = m, X = a

Figure 4.38 Pointer Rotations Illustrated with Free-List

(b) and back from (b) to (a) in Figure 4.37 can be expressed as the complementary

rotations

ROTATE (Qf.head,P,Q), and ROTATE (P|.head,Q,P)

We are now ready to consider the Schorr-Waite algorithm, MARK_LIST
(Algorithm 4.7). It takes a single parameter, which is a pointer to the origin of the
list. For each value of the variable pres, it marks the node pres] (if not already
marked), and then explores the cells accessible through pres].head (down left) and,
subsequently, those accessible through pres].tail (down right). The algorithm
retains the information for backing up to parents of cells by link inversions; these
link inversions are performed by calls upon the procedure ROTATE_3. The logic
for detecting if the search should be extended further in the head (tail) direction is
expressed in the function GO_HEAD (GO_TAIL). Note that these functions
reflect the logical nature of LISP-like cells as represented in Figure 4.33(b). A
different set of conventions about List cells would probably require a different
implementation for GO_HEAD and GO_TAIL; however, the logic for

MARK.LIST might be identical, or almost so.

Note the manner in which the tag information is retained in the field isatom,

that field contains the value True for atoms and False otherwise. Whenever the
algorithm descends to the right, it first sets isatom to True in the List cell. Ascents
from the left will find that value to be False, informing the algorithm to investigate
the tail pointer; ascents from the right will find that value to be True, informing
the algorithm to reset the value to False (it can’t really be an atom, since it has

descendants) and then to continue ascending.

The operation of MARK_LIST can best be understood by following its opera¬

tion upon a List such as that of Figure 4.35. In order to represent the trace of
MARK_LIST, the List representation is altered to the form of Figure 4.39(a),

displaying the values of mark, isatom, head, and tail for each cell. Figure

154 LISTS

procedure MARK_LIST (list: link);

type link = ^ cell;
cell = record

mark: boolean;
case isatom: boolean of

true: (data: char);
false: (head,tail: link);

end;

var pres,prev: link;

function GO_HEAD (ptr: link): boolean;
begin

if ptrf.isatom then GO_HEAD := false
else GO_HEAD := not ptrf .headf.mark;

end;

function GO_TAIL (ptr: link): boolean;
begin

if ptrf.isatom then GO_TAIL : = false
else if ptrj.tail = nil then GO_TAIL := false
else GO_TAIL := not ptrt.tailf.mark;

end;

procedure ROTATE_3 (var p,q,r: link);
var t: link;
begin

t := p; p := q; q := r; r := t;
end;

begin
prev := nil; pres := list;
repeat

if not presf.mark then
presf.mark := true;

if GO_HEAD (pres) then
ROTATE_3 (prev,pres,prest-head)

else if GO_TAIL (pres) then begin
presf.isatom := true;
ROTATE_3 (prev,pres,presf.tail);

end else if prevf.isatom then begin
ROTATE_3 (pres,prev,prevf.tail);
presf.isatom := false;

end else if GO_TAIL (prev) then begin
prevf.isatom := true;
ROTATE_3 (prevf.head,pres,prevf.taiI);

end else
ROTATE_3 (pres,prev,prevf.head);

until prev = nil;
end;

{down left}

{down right}

{up right}

{switch}

{up left}

Algorithm 4.7 MARK_LIST

14.4.3.1 TRAVERSING A LIST STRUCTURE 155

a: F F be e: F F g f f: F F h #
(a) b: F F d c c: F F c f g: F 1 B h: F F b #

d: F T A prev: # pres: a

a: ©F@e e: F f g f f: F F h #
(b) b: F F d c c: F F c f g: F 1 B h: F F b #

d: F T A prev: a pres: b

a: T F # e e: F F g f f: F F h #

(c) b: ©F©c c: F F c f g: F 1 B h: F F b #
d: F T A prev: b pres: d

a: T F # e e: F F g f f: F F h #

(d) b: ,1.©©© c: F F c f g: F 1 B h: F F b #
d: ©T A prev: b pres: c

a: T F # e e: F f g f f: F F h #

(e) b: T T da c: ©©c© g: F 1 B h: F F b #

d: T T A prev: c pres: f

a: T F # e e: F f g f f: ©F© #

(f) b: T T d a c: 1 1 c b g: F T B h: F F b #

d: T T A prev: f pres: h

a: T F # e e: F f g f <■ T F© #

(g) b: T T da c: 1 1 c b g: F 1 B h: ©F b #

d: T T A prev: c pres: f

a: T F # e e: F F g f f: 1 F h #

(h) b: T T da c: T©c© g: F 1 B h: T F b #

d: T T A prev: b pres: c

a: T F # e e: F f g f f: 1 F h #

(i) b: T©d© c: T F c f g: F T B h: T F b #

d: T T A prev: a pres: b

a: e: F f g f f: T F h #

(j) b: T F d c c: 1 F c f g• F 1 B h: T F b #

d: T T A prev: a pres: e

a: Jib# e: ©F ©' f: 1 F h #

(k) b: T F d c c: 1 F c f g: F 1 B h: T F b #

d: Ilk prev: e pres: g

a: 11b# e: T F©' f: T F h #

(1) b: 1 F d c c: 1 F c f g: (T)T b h: T F b #

d: Ilk prev: a pres: e

a: T©d© e: T F g f f: 1 F h #

(m) b: T f d c c: 1 F c f g: T T B h: T F b #

d: Ilk prev: # pres: a

Figure 4.39 Trace of Algorithm MARK_LIST

156 LISTS

4.39(b) -(m) displays these values as the algorithm executes; in each of these

displays, the values that have just changed are circled for emphasis.

Techniques for marking Lists have a great deal of relevance, as we will see in
Section 11.2.1.1. In general, for marking unrestricted Lists, we can expect to need
either more than linear time, or more than bounded workspace. In MARK.LIST,
we got around the need for 0(n) separate tag bits by taking advantage of a partic¬
ular representation for Lists. An interesting question remains: Is it possible to
mark unrestricted Lists in linear time and with bounded workspace, if we disregard

the possibility of such tricks of implementation?

f4.4.3.2 Multivariate Polynomial Addition. In Section 4.2.2 we illustrated the use
of sequential lists for polynomial addition. Although the discussion and the algo¬
rithm POLYADD were centered on polynomials in one variable, we cited how the
method using sequential lists could be extended to polynomials in several variables.
Figure 4.17 depicted how the polynomial R(x,y,z) of Eq. 4.5 might be represented in

this fashion.

The method described in that section has the drawback that space for exponents
must be allocated in each node for every variable that may be present, even though
many terms may have zero exponents in most of the variables. An elegant alternate
approach comes from noting that R(x,y,z) may be regarded as a polynomial t/(x),
wherein the coefficients of U are polynomials Vj(y), and the coefficients in each Vt
are in turn polynomials W^z). This may be seen by factoring R as

R(x,y,z) — A x3y + B x3z + C xy2 z3 + Dy2z3 + Ey2 -T Fy + Gz2 ^

= (Ay + (Bz))x3 + ((Cz3)y2)x + ((Dz3 + E)y2 + Ey + (Gz2))

From this insight, we see that we can use a List structure of polynomials with
generalized terms, such that the coefficients of any of these terms can themselves be
List structures of the same form. A suitable template for this is shown in Figure
4.40, where a tag value of 0/1 would indicate a constant/polynomial coefficient.
The resulting form of R(x,y,z) is shown in Figure 4.41, with the tag fields
suppressed since their values may easily be inferred.

Tag Coefficient Exponent Link

Figure 4.40 Node Structure for Term of Multivariate Polynomial

This representation may be just as significant for saving time as it is for saving
space. To demonstrate this, let us consider the general nature of an algorithm that
would add two polynomials P and Q in this representation, replacing P with the
sum. For every generalized term in P such that Q does not have a corresponding
term (say for x2), the algorithm can skip that term and its entire sub-List in P. By
contrast, with the structure suggested in Section 4.2.2, it would be necessary to step
through every individual term in P that had a factor of x2, even though there were

t4.4.3.2 MULTIVARIATE POLYNOMIAL ADDITION 157

no such terms in Q. In multivariate polynomials, the possibility of skipping over
sub-Lists in this fashion can be very common. An algorithm for adding multivari¬
ate polynomials represented with a comparable but different List structure can be
found in [Knuth 1973a]. Not surprisingly, it is considerably more elaborate than
POLYADD.

Figure 4.41 A Multivariate Polynomial as a List Structure

f4.4.4 List Processing Languages - LISP

The 1960’s saw the invention of several languages whose sole or principal data
structure was the List. These were devised to attack problems that are character¬
ized by manipulation of symbols more than by numeric calculations. You have
seen relatively simple examples of this for the case of polynomial algebra. The
languages COMIT, IPL, and SLIP have largely disappeared as the language LISP
[McCarthy 1960] has come to dominate List processing. To grossly oversimplify
matters, COMIT was oriented more to sequential lists than List structures; IPL and
SLIP burdened the user with responsibility for maintaining the free storage pool;
SLIP was based on FORTRAN, with its attendant restrictions; and finally, none of

the three has the expressive power of LISP [Bobrow and Raphael 1964],

The principal manner of expressing Lists in LISP is very similar to that
employed in Section 4.4.1, except that List items are separated by blanks instead of
commas, as in ((A) B (C D (E))). Although the empty List is usually denoted by

NIL, it can also be denoted by (). We have already talked about CAR and CDR
for taking Lists apart. There are also built-in functions for extracting particular
parts of a List and for constructing a new List out of other Lists. There are even
functions for replacing the CAR and CDR fields of a List cell in order to obtain
reentrant or recursive Lists. The unit of program, or user function, in LISP is also
a List; in it, the first element denotes the function to be performed and all subse-

158 LISTS

quent elements of the List are parameters for that function. Some simple examples

of this are the LISP functions:

(PLUS XI X2 ... XN) { = Xx/}
(SUB1 7) { = 7-1=6}
(DIFFERENCE X 3.2) { = X - 3.2}

For general computation, we need the ability to test conditions and take alter¬
nate actions depending upon the results. For testing purposes, LISP uses predicate
functions. These examine an argument and return the value T (for true) or NIL
(for false). Some basic predicates are ATOM and NULL; they test for atomic
Lists and empty Lists, respectively. Another is EQ, which tests for equality between
two atoms. Predicates and actions are combined in LISP via the function

(COND (Pl e,) (p2 e2) ...)

where the /?, are predicates and the et are actions. COND examines each List (p, e,)
from left to right. As soon as it finds a p, that is not NIL, it returns the value of
the corresponding et. If no such p, is found, it returns the value NIL.

(DEFINE (COUNT L)
(COND ((NULL L) 0)

((ATOM L) 1)
(T (PLUS (COUNT (CAR L))

(COUNT (CDR L))))))

Figure 4.42 A LISP Function for Counting Cells

In addition to using built-in functions like those we have described, a user can
define his own functions via the LISP function DEFINE. An example of this is the
function COUNT, for counting the number of non-NIL items in a List, as shown in
Figure 4.42. It is instructive to compare the LISP version of this function with the
Pascal version, COUNT_LIST (Algorithm 4.6). Except for the fact that the Pascal
function deals with Lists that may be reentrant or recursive, the two are very simi¬
lar. DEFINE always takes two lists as arguments. Flere, the first of these lists,
(COUNT L), declares a function COUNT with one parameter L; it serves the role
that a procedure heading has in more conventional programming languages. The
second list corresponds to the body of the function definition. Here, it specifies
how COUNT is to be computed for the three cases: if L is empty, if L is an atom,
or (otherwise) if L is a List. Since it can be difficult to keep track of parentheses in
LISP, expressions are commonly printed in an indented format such as this in order
to assist the eye.

In the preceding remarks, we have not intended to convey more than a glimpse
of a novel and very powerful language. The point we wish to make is that the List
structure provides a very powerful means for expressing an algorithmic process, and
that LISP does this without requiring any other data structures. Even more remark¬
ably, the semantics of LISP can be expressed with a function (called EVAL) that is
itself written in LISP! This is in marked contrast to the situation with other HLL’s,

4.5 OVERVIEW 159

where it is necessary to employ either a meta-language or natural language in order
to express the effect of executing a program in the HLL.

4.5 OVERVIEW

We have discussed lists and also Lists, both of which are logical structures. Perhaps
more than with any other data structure in this book, we have wedded the logical
structure to a particular physical representation, based on the pointer variable. The
pointer is, in fact, the only tool that is usually available to us for building such
dynamic data structures. We will elaborate upon this point in a moment, after first
surveying the significant features of lists and Lists.

The simple sequential list allows for flexibility of sequencing. When it is imple¬
mented with a free storage pool, we can “grow” one dimensional structures of
arbitrary size. Lists of this sort are well-suited to diverse applications such as main¬
taining a directory in proper sequence, performing symbolic polynomial arithmetic,
etc. If we also allow for more than one pointer from a node to other nodes, then
we can create data structures of arbitrary shape as well as size. There are two ways
to obtain this generality. One way is to simply allow a node to contain as many
pointers as required by the situation, as with inverted lists and multilists. Although
lists like these work very well for some applications with a database flavor, a more
powerful technique has been to define List cells with just two pointers, and then
employ recursion. The significant difference is that the first approach requires the
user to anticipate any structures that may be needed, whereas the second approach
allows a program to compute its own data structure requirements.

Interestingly, on the one hand, List structures are the premier vehicle for deal¬
ing with a significant class of problems; on the other hand, they have given rise to
a whole new category of problems to be solved. These new problems have to do
with administering the pool of Free storage used by List cells. In fact, the subjects
of Lists and the management of memory are so closely related that many authors
treat them together; however, Memory Management is broader than just the
administration of List cells, and so our treatment of it is deferred to Chapter 11.

4.5.1 The Hazards of Pointing

The pointer variable is dangerous because it is a “bare” address. With an address,
we expect to retrieve or store data whatever data! at that location. If our
program has an error, then we may easily try to retrieve nonsensical data from an
incorrect memory location; even worse, we might easily overwrite and destroy good
data via a wrong address. To make matters more complicated, the use of pointers
implies that nodes will be deleted at times, and their space returned (for example,
via dispose) for recycled usage. However, once a program has acquired an address
value for a pointer variable, there is nothing to prevent it from using that value

160 LISTS

even though the space has been recycled. Just how easily this can happen is illus¬

trated by the sequence

new(p); q := p; dispose(p);

Even if the procedure dispose sets p to nil, there is nothing to prevent the program

from subsequently using the invalid value contained in q. A situation like this, in

which a pointer variable has a value that is no longer valid, is termed a dangling

reference. The hazards of using pointer variables as data are analogous to the

hazards of using GOTO’s in program sequencing [Berry et al. 1976].

Pointer variables are really a means to an end — a tool for synthesizing data

structures of arbitrary size and connectivity. Thus, it has been suggested [Kieburtz

1976] that programming languages should provide either ADT’s or recursive data

structures for attaining these ends without recourse to explicit pointers. Unfortu¬

nately, such proposals can be criticized as having two principal defects:

1. They do not remove all the negative effects, particularly with respect to

performance degradation, since some of these effects just get hidden under the

covers; for example, implicit pointers can confound pipelining and caching

mechanisms just as much as do explicit pointers.
2. They simply do not allow for the generality and the control over data that a

user may need for some applications.

The remedy provided by Pascal - that all pointer variables must themselves be

typed — imposes a significant amount of discipline. But the programmer needs to

augment this with his own measure of disciplined use, of which pointer rotations are

an excellent example.

4.6 REFERENCE TO TERMINOLOGY

atom, 145

bi-directional list, 117

cyclic List, 148

circular list, 114

cursor, 110

dangling reference, 160

free space, 118

head (of List), 148

header (of list), 112

heap, 118

inverted file, 133

inverted list, 133

link, 108

t link inversion, 150

List structure, 145

f mark (a List), 149

multilist, 134

f pointer rotation, 152

pointer variable, 111

pure List, 148

f ragged array, 137

recursive List, 148

reentrant List, 148

shared List, 148

f tag bit, 152

tail (of List), 148

4.7 EXERCISES 161

4.7 EXERCISES

Section 4.1

4.1 Suppose that we have a multiply-linked structure according to the Pascal
syntax on the left, and that there are several such items as shown linked together
(symbolically) on the right. What is e.ptry].ptrw].ptrz].ptrx].data!

link = fitem a: 13 c e d A
item = record b: 4 c f 9 b

data: integer; c: 24 c 9 e f
ptrw: link; d: 72 b h A e
ptrx: link; e: 11 a d 9 h
ptry: link; f: 35 d A a b
ptrz: link; 9■ 19 b d c h

end; h: 40 A 9 c d

4.2 For the lists in Figure 4.5(a), write the statements required to insert node h
after the node pointed by s.

4.3 Suppose that we wish to concatenate two sequential lists A and B to obtain a
list C that consists of all of the nodes from A followed by all the nodes from B.

(a) Write an algorithm to perform this in the case that A and B are simple lists.

(b) Write an algorithm to perform this in the case that A and B are circular lists.

4.4 Suppose that we must return all the nodes on a sequential list to Free storage.

(a) Write an algorithm to perform the deallocation for the case of a simple list.

(b) Write an algorithm to perform the deallocation for the case of a circular list.

f4.5 Write a procedure that has as its parameter a pointer to the beginning of a
simple, sequential list without a header node, and that reverses the order of the
nodes in the list. Your algorithm should operate on the list in situ by reversing the
directions of the pointers, as opposed to making a reversed copy. Verify that your
algorithm works properly for degenerate cases, such as the list being empty or

containing just a single node.

f4.6 Suppose that we have two non-empty circular lists without header nodes, and
with pi pointing to the last node in one list and p2 pointing to the last node in the

other list.

(a) What is the effect of the following sequence?

t:= pit-link; pi link := p2|. link; p2f.link := t;

(b) What effect does the preceding sequence have if pi and p2 point to two differ¬

ent nodes in the same list?

4.7 You and some friends are suddenly rounded up into a circle. You are told
that, starting from the head of the circle, jcp will count to m, execute that mth
person, close the circle, and repeat this process until just one person is left to
escape., Given that there are n persons and that the rule is to execute every mth

162 LISTS

person, you need to decide which position to take in the circle if you are to remain
alive. This is the famous Josephus problem. Write a Pascal program to solve it,
using a circular list with pointer variables. Begin by initializing your list header
with the number of persons n, and your list nodes with the identifiers 1,2,3,....
Then proceed to count around the circle. As your program executes (literally!),
have it print out the identity of each person as he is eliminated. Write a simple
function to generate a circular list of size n, and use it in conjunction with your
program to solve the Josephus problem for {m,n) = (7,11), and for several other

pairs of your own choosing. Verify that it works properly for m = 1.

f4.8 Consider a linked list such that the physical sequence of its nodes in memory

is given by the locations
52 34 117 43 95 123 88

Using the MOD operator as in Section 4.1.4, and assuming a value of r= 128,
compute the composite forward-backward link values for each node and for the

header of this list.

Section 4.2

4.9 Trace the operation of the algorithm SEARCH_LIST by starting with an
empty list, and then presenting to it the eight input arguments: 4 4 2 5 3 1 1 3.

(a) For each argument, trace the distinct values assumed by the variables state,

loc, q, r.

(b) Draw the list as it appears when SEARCH_LIST terminates.

|4.10 Just as the introduction of a sentinel node in SEARCH_B (Algorithm 2.2)
caused that algorithm to be more efficient than SEARCE1_A (Algorithm 2.1), so
can a sentinel node be employed in SEARCH-LIST. Rewrite SEARCH_LIST to
incorporate this change, and test it against the input of Exercise 4.9.

f4.ll Starting with the functionality in SEARCH_LIST, write a program that will
compute a concordance, or cross-reference listing, for a set of alphabetic symbols.
The input to your program would be a symbol and its numeric location within some
text. The output of your program would be a listing of all the symbols, in alpha¬
betic order, along with all the locations at which each symbol was used.

4.12 Draw pictures of the following polynomial as (a) a simple list, (b) a circular
list, and (c) a bi-directional list — all with header nodes.

V = 4jc10 — 7.lx9 + 3.9jc5 + 13

4.13 Compute POLYADD(«,v) where

U = 2.4.x10 + 3Ax5 + 3.6x3 - 1.7.x

V = 3.7x20 - 2.4.x10 + 1.8.x5 + 4.5x2 + Ux + 8.3

Trace the values assumed by the variables state and p,pl,p2,q as the algorithm
executes. Also, draw the structure corresponding to U upon termination of the
algorithm.

4.7 EXERCISES 163

4.14 Write a function that takes as input a value of x and a polynomial U(x)
represented as in Figure 4.13, and that for output evaluates U(x) at x.

1*4.15 Write a procedure that differentiates a polynomial U(x) represented as in
Figure 4.13, and replaces (/(x) with U'(x).

1*4.16 Write a procedure to multiply two polynomials U and V as represented in
Figure 4.13. Your algorithm may invoke POLY ADD as a sub-procedure. The
product of U and V should be placed in W, a new list. What is the computational
complexity of your algorithm?

f4.17 Simulate the application of the algorithm EQUIV to the following sixteen
relationships:

1. 5 = 8
2. 7 = 10
3. 16 = 18
4. 12 = 6

5. 2 = 13
6. 3 = 17
7. 14 = 11
8. 12 = 4

9. 19 = 15
10. 2=9
11. 14 = 5
12. 7 = 19

13. 17 = 1
14. 9 = 16
15. 4 = 14
16. 16 = 7

(a) Show the resulting lists after the first stage, as in Figure 4.18.

(b) List the contents of each equivalence class, in the order in which they are
determined in the second stage.

f4.18 Section 4.2.3 describes a different approach to the equivalence problem that
leads to an 0(n lg n) algorithm. In this method, separate lists are maintained for
equivalence classes. Upon encountering a statement of equivalence for two items
such that both have already been assigned to classes, we first relabel all the items on
the shorter list, and then concatenate the two lists. Write a program to compute
equivalence classes by this method, and test it against the data of Exercise 4.17.

tf4.19 Consider the problem of finding the largest item in a list and also the
runner-up (the second largest). It is simple to perform n - 1 comparisons to find
the largest, and then another n — 2 comparisons to find the second largest, for
2n - 3 comparisons altogether. However, it is possible to find both items with
n + ig n _ 2 comparisons, by the following observation. The runner-up item must
have been involved in a comparison (and lost) with the largest item. If we think in
terms of a tournament, where the number of players, or items to be compared, is

halved at each stage, then

(a) the largest item need have been involved in only lg n comparisons;

(b) the runner-up must have been the loser in one of these comparisons;

(c) we need only search the list of losers to the largest item in order to find the

runner-up.

Write an algorithm to accomplish what has just been described. Note that we need
the flexible sequencing of lists, but not the dynamic size. Therefore, it is sufficient
and also much simpler to use cursors rather than pointer variables. You will need
lists for keeping track of two categories of items: the locations of the winners at
each stage of the comparison tournament (they will participate in the next stage of
the tournament), and the locations of the losers to each winner (the loser list for the
final winner is the source for the runner-up). Test your program against the follow¬

ing list of items:

267 399 67 871 59 767 755 599 619 879 163 71

164 LISTS

Section 4.3

4.20 Construct an inverted file for the following records.

name sex politics religion

Abigail female Democrat Jewish

Andrea female Democrat Moslem

Elizabeth female Republican Christian

Foster male independent Jewish

Harry male independent other

Jennifer female Democrat Moslem

Kendrick male Republican Jewish

Malachy male Democrat Christian

Mary female Republican Christian

Pamela female independent other

4.21 Construct a multilist for the records of Exercise 4.20, using the format

employed in the ultimate version in Section 4.3.2.

4.22 Compare bi-directional lists, inverted lists, and multilists.

f4.23 Compare inverted files and multilists for ease of performing the standard

operations: looking up, inserting, deleting, and updating a value. Find some

parameters for characterizing the problem, and then perform your analysis in terms

of these parameters.

f4.24 Write the utility routines required to perform sparse matrix multiplication

with Algorithms 4.4 and/or 4.5. Input one or both of those algorithms along with

your routines, and test the package by multiplying some sparse matrices. You

should construct test matrices having about a dozen non-zero elements apiece, and

with row and column indices such that the product matrix has a comparable

number of non-zero elements. Your program should read two sparse matrices in

triples format, translate them to linked list format, multiply them, squeeze out non¬

zero rows and columns, and then print the product matrix in triples format.

tf4.25 Build on Exercise 4.24 by writing a procedure that constructs a random

sparse matrix with the parameters:

m - range of the row index of the matrix

n - range of the column index of the matrix

p — the density of the matrix

via the use of a random number generator. Then generate a series of pairs of input

sparse matrices for various combinations of m,n,p and multiply them by both Algo¬

rithms 4.4 and 4.5. Obtain timings for the two multiplication methods, and distill

your experimental results in a table. Also, have your program measure the

observed density p for each product matrix. How do these observed densities

compare with the theoretical values of Exercise 2.23?

4.7 EXERCISES 165

Section 4.4

4.26 Draw the List represented by (((A),((B),C,(D)),E),(F,(G)),(H,I)) in the style
of Figure 4.32(a).

+4.27 Write a non-recursive procedure to perform the transformation as in Exer¬
cise 4.26 — that is, to read a List specification in parenthesis notation and produce
the corresponding List structure - but in the representation of Figure 4.33(b). Test
your program by running it against the List of Exercise 4.26.

+4.28 Write a procedure that takes a pure List, represented as in Figure 4.33(b),
and reverses the order of the cells at each level; for example, it converts
((A,B),C,((D))) to (((D)),C,(B,A)). Your algorithm should operate on the List in
situ, as opposed to making a reversed copy.

+4.29 Trace the operation of the algorithm MARK_LIST on the following List,
in the manner employed in Figure 4.39.

abed

i A

i

A

/ c

/

g A

h d

h

g c

++4.30 Write a recursive function that examines a List and provides one or more
messages indicating whether that List is pure, reentrant, or recursive. The messages
should specify where reentrancy and/or recursiveness occurs. (Hint: What other
information might be needed, and how might it best be represented?) Test your
program against the Lists of Figures 4.32(b), 4.34(a) (in the alternate format for

nodes), and 4.35.

+4.31 Represent the following polynomial in a List structure, employing the

scheme illustrated by Figures 4.40 and 4.41.

R(x,y,z) = Ax4y2 + B x4yz + Cx2yz3 + Dx2/ + Ey2z + Fy3z + Gy3

5

QUEUES and STACKS

“And, behold, there are last which will be first,
and there are first which will be last.”

Luke 13: 30

In our discussions of array, record, and list structures, we have seen the need for a
more general data structure in order to overcome various limitations. Lists actually
have such generality, but they are more complicated to use and also more costly,
both in time and space. Queues and stacks represent compromise solutions. They
allow for more flexibility than is possible with arrays; yet their implementations can
be relatively simple, and they can have performance characteristics as good as those
of arrays. This happy situation is obtained by restricting the notion of a linked list
so that we can reference only those data nodes at one or both of its two ends, but
not in the middle. Thus, queues and stacks are sometimes called restricted access

data structures.

In a sense, we cheated in Chapter 4. Several of the list manipulations there
already corresponded to queue and stack manipulations, but we did not disclose the
fact! By way of compensation, you should find the early material in this chapter
that much easier to understand. We begin with a discussion of queues and then a
discussion of stacks - presenting their logical properties, physical representations,
and examples of usage. The latter part of the chapter is devoted principally to the
use of stacks for recursive algorithms, in a sense continuing the discussion of this
topic in Section 1.3.

5.1 QUEUES

The queue is a familiar if not popular structure in everyday life. We spend much of
our lives waiting in queues, comforted by the fact that they are “fair” — we are
served in the order of our arrival. Every new arrival must go to the end of the
queue and wait there until all who have arrived before him have been served, at
which time he is at the front of the queue and so is the next to be served. This
concept is captured in the acronym FIFO, or “First In, First Out.” We will first

5.1.1 LOGICAL DATA STRUCTURE 167

model the use of a queue in an abstract manner, in the style of an ADT; subse¬
quently, we will demonstrate two alternate manners of realizing the model; finally,
we will discuss some uses of queues for computation.

5.1.1 Logical Data Structure

Logically speaking, a queue is a structure with several associated actions, predicates,
and conditions. By an action we mean an operation involving the queue and the
objects (people, cars, programs, etc.) that enter and leave it; our primary examples
of actions for a queue are:

create(x) — to bring into existence an empty queue x;

enqueue(x,r) — to add the object r to the rear of queue x;

dequeue(x,s) — to remove the object at the front of queue x and assign it to 5.

However, one can arbitrarily define other actions for a queue, such as:

count(x,c) — to assign to c the number of objects in the queue x;

head(x,t) - to assign to t the value of the object at the front of queue x,
without removing the object from the queue;

tail(x,t) — to assign to t the value of the object at the rear of queue x,
without removing the object from the queue.

By a predicate we mean a functional test that can be applied to a queue to yield
an answer of either True or False. Our principal example is:

empty{x) — to ascertain if queue x is empty or not.

Whereas a predicate is a boolean function that is executed under user control, a
condition is a boolean flag that is set by the underlying implementation (hardware
and/or software) in response to an exceptional situation. Our primary examples of

conditions are:

overflow(x) - to recognize when an attempt to enqueue an object on queue x
has failed because of insufficient space for the enlarged queue;

underflow(x) - to recognize when an attempt to dequeue an object from queue
x has failed because the queue is empty.

There are several points that should be made about the preceding definitions.
The number of operations required of queues is fairly small. It is particularly easy,
in this case, to characterize the logical structure of queues in an abstract fashion
that says nothing about how they will be implemented. Although the preceding
definitions lack some important elements that are needed for ADT’s, they do
convey much of the flavor. Note also the conventional use of the terms head and
tail to refer to the front and rear of a queue, respectively. Finally, be careful not to
confuse the semantics of these terms for queues with their semantics for Lists. The
term head has analogous meanings for the two structures, whereas the meanings of

the term tail in these cases are very different.

Figure 5.1 illustrates the use of this structure. On the left side of the figure are
a series of queue operations applied to an initially empty queue x, for simplicity,
the objects in the queue are designated by single character identifiers. On the right

168 QUEUES and STACKS

Operation Contents of Queue

enqueue (x,A) A

enqueue (x,B) A B

dequeue (x,s) B

enqueue (x,C) B C

enqueue (x,D) BCD

enqueue (x,£) B C D E

dequeue (x,s) C D E

dequeue (x,s) D E

enqueue (x,F) D E F

dequeue (x,s) E F

dequeue (x,s) F

Figure 5.1 Example of Operations with a Queue

side of the figure are the states of the queue after each operation, with the head at

the left and the tail at the right.

5.1.2 Physical Representation

It is fairly obvious that we can implement a queue as a linked list, with the enqueue
and dequeue operations being applied to opposite ends, and so this method is
shown first. It provides a pretty illustration of the use of a circular linked list.
After that we describe a second method that is less obvious; in compensation, it
yields the advantages of simplicity and efficiency that were touted at the beginning

of this chapter.

5.1.2.1 Using a Linked List. Our representation using a circular linked list demon¬
strates the necessary type definitions and also the procedures for initializing a queue
(that is, setting it to the empty state), for enqueuing, for dequeuing, and for testing
for emptiness. These elements are lumped as QUEUE_L (Algorithms 5.1). In this
representation, the circular list has a header node, which allows us to easily recog¬
nize an empty queue as one in which the solitary header node points to itself. Also,
we do not need separate working pointers for the current first and last nodes;
following the technique of Section 4.1.2.2, a single pointer to the last node suffices.
Several comments should be made about QUEUE_L:

• The representation is not complete; it does not, for instance, spell out in detail
the treatment of an underflow in DEQUEUE_L.

• In practice, DEQUEUE_L might be implemented as a function that returns the
dequeued value rather than as a procedure. However, this will work only if the
objects on the queue are single-valued (such as scalars or pointers).

• Note that each call to ENQUEUE_L causes three pointer values to be changed,
as indicated by the dashed lines in Figure 5.2(a).

5.1.2.1 USING A LINKED LIST 169

program QUEUE_L;

{algorithms for maintaining queues as circular link-lists;
items on the queue are of type qobj, the
parameter fifo points to the last item in the queue}

type qobj = ...
qptr = fcell;
cell = record

item: qobj;
succ: qptr;

end;

procedure INITQ_L (var fifo: qptr);
begin

new (fifo);
fifot-succ := fifo;

end;

function EMPTYQ_L (fifo: qptr): boolean;
begin

EMPTYQ_L := (fifo = fifoj.succ);
end;

procedure ENQUEUE_L (var fifo: qptr; data: qobj);
var p: qptr;
begin

new (p);
pf.item := data;
pf.succ := fifof.succ;
fifo|.succ := p;
fifo := p;

end;

procedure DEQUEUE_L (var fifo: qptr; var data: qobj);
var p,q: qptr;
begin

if fifo = fifot-succ then
{Underflow}

else begin
p := fifot-succ;
q := pf.succ;
data := q|.item;
pf.succ := qf.succ;
if q = fifo then {header is only cell left in queue}

fifo := p;
dispose (q);

end;
end;

begin

end.

Algorithms 5.1 QUEUE_L - Implementing a Queue as a Linked-List

170 QUEUES and STACKS

fifo

(a) Enqueuing X

fifo

(b) Dequeuing Y

fifo

(c) Dequeuing Z

Figure 5.2 A Queue as a Linked List

• In the procedure DEQUEUE_L, it is necessary to make a distinction between
the cases when the queue thereby becomes empty, and when it does not. In the
former case, as shown in Figure 5.2(b), two pointer values must be changed; in
the latter case, as shown by Figure 5.2(c), only one pointer value needs to be

changed.

5.1.2.2 Using an Array as a Circular Queue. If we naively visualize a queue in a
one-dimensional array, we see what has been described as a rubber snake, with its
head and its tail both steadily progressing, though at different rates, from one end
of the array to the other. Obviously, the definite, limited size of an array makes
this representation infeasible. However, let us declare an array large enough to

5.1.2.2 USING AN ARRAY AS A CIRCULAR QUEUE 171

accommodate the maximum size of the queue at any one instant, and then imagine

that this array is bent to form a circle. Letting the “rubber snake” chase its tail

around the circle indefinitely, we have a viable representation termed a circular

queue. This is illustrated in Figure 5.3, where the shaded/unshaded portions of the

array indicate the occupied/empty portions of the queue at an instant in time. It is

clear that we really need two distinct pointers, head and tail, in this scheme. In

other words, our definition of a queue in this manner includes not just the array
itself, but rather

type qobj = ...
queue = record

head,tail: 0 .. qsize;
item: array [1 .. qsize] of qobj;

end;

The queue be may empty, of course, and there are several techniques for represent¬
ing this in practice:

• adding another field to the definition, such as state: (empty, occupied)',

• adding to the definition a count field that contains the number of elements in

the queue;

• denoting emptiness by the condition, head = 0;

• denoting emptiness by the condition, head = tail.

Figure 5.3 A Queue as an Array

Our form of circular queue representation is given in QUEUE_A (Algorithms

5.2); it employs the second of the above alternatives, a count field. With this alter¬

native, it is convenient to have the variable tail refer to the next position in the

queue for enqueuing, as indicated in Figure 5.3. As with the algorithms of

QUEUE_L, the representation is not quite complete, and DEQUEUE-A might in

practice be a function rather than a procedure. To illustrate the use of QUEUE_A,

Figure 5.4 tabulates a sequence of (E)nqueue and (D)equeue operations for a circu¬

lar queue of size 4, along with the corresponding sequences of values for the queue

variables head and tail.

172 QUEUES and STACKS

program QUEUE_A;

{algorithms for maintaining queues as circular arrays; items
in the queue are of type qobj) head points to the next
position for dequeuing, and tail points to the next
position for enqueuing; an empty queue has count = 0}

const qsize = {the size of the circular queue}

type qobj = ...
queue = record

count,head/tail: 0 .. qsize;
items: array [1 .. qsize] of qobj;

end;

procedure INITQ_A (var fifo: queue);
begin

with fifo do begin
count := 0;
head := 1;
tail := 1;

end;
end;

function EMPTYQ_A (fifo: queue): boolean;
begin

EMPTYQ_A := (fifo.count = 0);
end;

procedure ENQUEUE_A (var fifo: queue; data: qobj);
begin

with fifo do
if (count = qsize) then

{Overflow}
else begin

items [tail] := data;
tail := tail mod qsize + 1;
count:= count + 1;

end;
end;

procedure DEQUEUE_A (var fifo: queue; var data: qobj);
begin

with fifo do
if count = 0 then

{Underflow}
else begin

data := items [head];
head := head mod qsize + 1;
count := count - 1;

end;
end;

begin

end.

Algorithms 5.2 QUEUE_A - Implementing a Queue as an Array

5.1.3 THE USE AND BEHAVIOR OF QUEUES 173

E E D E E D E D E E D E D D

head 1 1 1 2 2 2 3 3 4 4 4 1 1 2 3
tail 1 2 3 3 4 1 1 2 2 3 4 4 1 1 1

Figure 5.4 Trace of Activity with a Circular Queue

5.1.3 The Use and Behavior of Queues

If we consider that the output of a queue is identical with the input to the queue,
then we might reasonably conclude that queues are uninteresting data structures.
Nonetheless, they are important as basic tools in larger problems. We will see
examples of this in later chapters (Section 6.8.1, for example) and so we will not
pursue that subject here. Instead we comment upon a class of applications where
the queue is not just a utilitarian structure, but rather an essential aspect of the
system being studied. These are applications involving simulation, where we exam¬
ine the behavior of a model of some particular situation instead of examining the
actual situation. It is often advantageous to study the former instead of the latter,

as in the examples:

• designing an airplane;
• assessing the likely results if various traffic control parameters - one-way

streets, traffic light cycles, etc. - are modified;
• assessing the effects of algorithms that might be used in a computer operating

system to schedule various tasks;
• predicting the outcome of applying various tactics of business or war.

We may be able to make hundreds of simulated experiments far more cheaply,

quickly, and safely than we could perform one real experiment. Typically, we need
to make some simplifying assumptions to reduce the real process to a simulated
one. So the caveats that we encountered in Chapter 1 about modeling apply here

also: If the simulated process is not faithful to the true situation, then the answers

from the simulation can be quite misleading.

In the usual paradigm of simulation, a series of events takes place in some time

sequence. Each event is represented as a node, with time as the key value, and the
event-nodes are kept in a queue. It is possible to drive the simulation with a clock

that is regularly compared against the item at the head of the queue. However, it is
often more efficient to drive the simulation with a loop that removes the fiist item
from the queue, inspects the time at which it is to be performed, and then updates
the clock to that value and proceeds. In all, a program for simulation would

contain at least:

• queue data structures;
• procedures to generate and enqueue new event-nodes with the appropriate

values of the time;
• procedures to dequeue event-nodes and perform the appropriate actions,

• procedures to capture various statistical data about the process,

174 QUEUES and STACKS

• a main program to drive all the above components.

For many simulations, the effort of writing a program as just described is moderate,

but not unreasonable. For a very large simulation, one might prefer to use one of a

variety of general purpose simulation packages such as GPSS, SIMSCRIPT,

SIMULA, etc.

f5.1.3.1 Queue Parameters

In analyzing the behavior of a queue, it is conventional to speak of the items of

input — people, vehicles, messages, etc. — as customers. These customers are seek¬

ing some service which they may be able to obtain immediately or for which they

may have to wait in a queue. There may be one or several servers, all taking their

next customer from the common queue. In addition to n, the number of servers,

two other important parameters that characterize such a system are:

arrival times - the distribution of times between successive customer arrivals;

service times — the distribution of times required to provide the services that

customers are seeking.

It is conventional to use Kendall notation to succinctly characterize a given queuing

system [Kendall 1953]. In its briefer and more common form, it is written as

A/S/n, where A and S have symbolic values that specify the arrival and service time

distributions, respectively, and n is the number of servers. Two common symbolic

values for both A and S' are M, for an exponential distribution, and D, for a deter¬

ministic (constant) distribution. As an example, the queuing model M/D/3 would

describe a system with three servers, whose customers have exponential inter-arrival

time, and with a constant amount of time required for service.

Given values for the parameters A,S,n we then wish to determine various prop¬

erties such as:

• average and maximum queue lengths;

• average and maximum waiting times in the queue;

• traffic intensity, which determines the minimum number of servers that are

required in order to keep up with the arriving customers;

• server utilization, or the probability that any given server is busy.

For some combinations of values for A,S,n — for example, M/M/1 — Queuing

Theory is able to derive exact analytical solutions for many of these properties.

These matters are described comprehensively by Kleinrock [1975], and succinctly

by Allen [1975]. For other combinations of values for A,S,n it may be necessary or

convenient to simulate the system with a program containing the components

outlined in the previous section [§]. To relate these matters to our earlier discussion

of queues, the movement of a tail pointer is determined by the parameter A, and the

movement of a head pointer is determined by the parameter S.

5.1.4 GENERALIZATIONS OF QUEUES 175

5.1.4 Generalizations of Queues

By relaxing the logical characterization in Section 5.1.1, we can obtain other sorts
of data structures that are related to queues. One of these is the deque, or double-
ended queue. In this structure, insertions can be made at either end (enqueue-left or
enqueue-right) and likewise deletions (dequeue-left or dequeue-right). A deque
resembles a deck of cards in the hands of a sharp dealer; indeed, it even has the
same pronunciation. It also resembles a necklace with beads that can be added
and/or removed at either end, or the railway network of Figure 5.5. Two variants
of the deque are the input-restricted deque, wherein the input (but not the output) is
restricted to one end, and the output-restricted deque, wherein the output (but not
the input) is restricted to one end.

Figure 5.5 A Railroad Model of a Deque

Note that if a deque is implemented as a linked list, then the functional require¬
ments dictate that it should be a bi-directional list. We observed earlier that the
output of a queue is not a permutation of the input; however, this is not true for a
deque (see Exercise 5.2). Situations that call for deques are somewhat infrequent.

An example of their use is given in Section 8.6.2.

An important generalization of queues is the priority queue, in which each
object that is enqueued has a priority. It is the ranking of the priorities that prima¬
rily determines the order of dequeuing, except that in the case of equal priorities,
the order of enqueuing may be used to resolve ties. We have already seen a need
for such a structure in our discussion of simulation in Section 5.1.3. Namely, when
an event-node (corresponding to an event that is to occur at a definite time) is
generated, then we need a priority queue discipline rather than a FIFO discipline in
order to ensure sequencing of events in the proper chronology. It is straightfor¬
ward, though not efficient, to base a priority queue upon an ordinary queue by

either of the following two methods:

1. Items are inserted in the queue in order of their priority, analogous to
SEARCH_LIST (Algorithm 4.1), and then dequeued in normal fashion. The

times required for this are 0{n) for insertion and 0(1) for deletion.

176 QUEUES and STACKS

2. Items are enqueued in normal fashion, and then the queue is searched for the
item with lowest priority when a dequeuing operation is to be performed. This
times required for this are 0(1) for insertion and 0(n) for deletion.

Priority queues can be implemented more efficiently than this, however. If there are
relatively few levels of priority, a technique to be described in Section 5.3 may
suffice. More generally, an entirely different sort of data structure is required, and
this will be discussed in Section 6.6.4.

5.2 STACKS

A stack is a linear list that can be accessed for either input or output at just one of
its two ends. One example of this model of access can be found in a stack of plates
on a kitchen shelf or in a spring-loaded dispenser in a cafeteria. In both cases, the
only two logical possibilities are to add a plate to the top of the stack or to remove
a plate from the top of the stack. A stack is also exemplified by a railroad spur, as
illustrated in Figure 5.6(a). In this model, we can insert a boxcar from the input to
the open end of the spur, and we can remove a boxcar from the open end of the
spur to the output, mixing insertions and deletions as we wish. The essence of these
examples is that the next object to be removed will always be the last one that was
added, whence the acronym LIFO, or “Last In, First Out.”

In our example of the plates, the physical behaviors on the shelf and in the
cafeteria are notably different. With the former, the stack contents do not shift
with insertions and deletions; with the latter, the entire stack moves with each oper¬
ation. By analogy with the cafeteria example, stacks are sometimes referred to as
push-down stores. However, as we will see when we discuss the implementation of
stacks, that term can be misleading; in a computer, we do not want to imitate the
cafeteria case and relocate the entire stack with each operation upon it.

5.2.1 Logical Data Structure

The basic actions with a stack are as follows:

create(x) - to bring into existence an empty stack x;

push(x,r) - to add the object r to the top of stack x;

pop{x,s) — to remove the object at the top of stack x and assign it to s.

Another action that is sometimes defined for a stack is:

top(x,t) — to assign to t the value of the object at the top of stack x, without
removing the object from the stack.

The important predicate for a stack is, as with a queue:

empty(x) — to ascertain if the stack x is empty or not;

and the important conditions are:

5.2.1 LOGICAL DATA STRUCTURE 177

output input

(c) Push B

(b) Push A

(d) Pop B

(e) Push C (f) Pop C

Figure 5.6 A Railroad Model of a Stack

overflow(x) - to recognize when an attempt to push an object on stack x has
failed because of insufficient space for the enlarged stack;

underflow(x) - to recognize when an attempt to pop an object from stack x
has failed because the stack is empty.

Note the conventional use of the term top to refer to the position in a stack where

the last item was inserted.

Once again, these logical characterizations do not include any suppositions
about how the structure and its operations are to be implemented. As in the previ¬
ous case of the queue structure, this informal description of the stack structure has
much of the flavor of the specification of an ADT. (A more formal specification of
the stack as an ADT can be found in Section 9.2.1.) Figure 5.6 illustrates the stack
notions in terms of a railroad spur model. Initially, (a) the input contains boxcars
labeled A B C D Subsequent configurations for an arbitrary sequence of pushes
and pops’are then shown in (b)-(f). Since P(ush) and P(op) are indistinguishable,

178 QUEUES and STACKS

we will adopt the convention of using S(tack) and U(nstack) to describe a sequence

of operations with a stack.

5.2.2 Physical Representation

Stacks are easier to implement than queues. By anchoring the closed end of the
stack at some fixed location in memory, we need only keep track of the position of
the top. Thus, it is easy to implement a stack with an array, as shown in Figure
5.7. (In figures such as this, stacks are sometimes grown like stalactites, sometimes
like stalagmites, and sometimes horizontally; the choice is arbitrary, based on
convenience.) Our only concern is that the array be large enough to accommodate
the maximum potential size of the stack; we do not have to worry about the stack
“crawling” through memory. The typical declaration of a stack and some basic
operations upon it are illustrated in STACK_A (Algorithms 5.3). Similar observa¬
tions apply here as cited in our discussion of queue representations in Section 5.1.2.
One is that we have not spelled out the manner in which underflow and overflow
would need to be handled. Another is that, for convenience, POP may often be a
function that returns the popped object, as long as that object is a scalar.

1 2 3 top *” n

Figure 5.7 A Stack as an Array

Would we ever wish to represent a stack with a linked-list? The answer may
occasionally be yes, as we will see in Section 5.3. However, this choice is less
common and is also trivially easy to implement, so we will not elaborate upon it
here. In point of fact, we have already illustrated such a representation of stacks.
In the program EQUIV (Algorithm 4.3), there is one stack for each set member,
and the procedure ADDCELL is used to push v onto the wth stack.

5.2.3 Applications of Stacks

A basic point about a stack, as opposed to a queue, is that it can be used to trans¬
form an input sequence into a different output sequence. If we do nothing more
than a series of S(tack) and U(nstack) operations upon the input sequence ABC, the
possibilities that can occur are those shown in Figure 5.8. Note that of the six
permutations on these three symbols, we are unable to attain CAB by any series of
basic stack operations. The permutations of 1 .. n that can be obtained via a single
stack are called stack permutations', the characterization of those permutations that
cannot be obtained using a stack is left as an interesting exercise (see Exercise 5.7).

5.2.3 APPLICATIONS OF STACKS 179

program STACK_A;

{algorithms for maintaining stacks as arrays; items on the
stack are of type stkobj-, top points to the position of the
accessible item on the stack; an empty stack has top = 0}

const stkmax = {the maximum size of the stack }

type stkobj = ...
stack = record

top: 0 .. stkmax;
items: array [1 .. stkmax] of stkobj;

end;

procedure INIT_STK (var lifo: stack);
begin

lifo.top := 0;
end;

function EMPTY_STK (var lifo: stack): boolean;
begin

EMPTY_STK := (lifo.top = 0);
end;

procedure PUSH (var lifo: stack; data : stkobj);
begin

with lifo do
if top = stkmax then

{Overflow}
else begin

top := top + 1;
items [top] := data;

end;
end;

procedure POP (var lifo: stack; var data : stkobj);

begin
with lifo do

if top = 0 then
{Underflow}

else begin
data := items [top];
top := top - 1;

end;
end;

begin

end.

Algorithms 5.3 STACK_A - Implementing a Stack as an Array

180 QUEUES and STACKS

Operation Sequence Output Sequence

S U S U S U
S U S S U U
S S U U S U
S S U S U U
S S S U U U

ABC
A C B

B A C
B C A
C B A

Figure 5.8 Example of Operations with a Stack

Stacks have many and varied uses. We will discuss two of these uses in general
terms — for accomplishing procedure call and return, and for the evaluation of
arithmetic expressions. Then we will illustrate in more concrete terms their use for
the transformation of arithmetic expressions. Stacks are also important because of
their role in dealing with recursive algorithms and backtracking algorithms. The
first of these roles is dealt with in Section 5.3, and the topic of backtracking is

explored in Section 6.8.2.

5.2.3.1 Procedure Call and Return. Suppose that we have the situation exhibited
in Figure 5.9, with three procedures P, Q, and R residing in memory, such that:

P calls R from location s
P calls Q from location t
Q calls R from locations u and v

Control would be passed from one procedure to another in the sequence of the
numbering on the branches in the figure. Whenever there is such a transfer of
control, there must be some mechanism to remember where the call was issued
from, so that control can be returned to the proper point in the calling procedure
when the called procedure has terminated. This corresponds to a LIFO discipline.
For example, when P calls Q, Q calls R, and R returns, the return must be to Q, to
resume what Q had been doing. In a HLL, the compiler provides this mechanism
without any explicit awareness on the user’s part by (i) pushing information onto a
stack at call-time, and (ii) popping this information off the stack upon return.

The amount of information that needs to be kept on the stack can be as little as
a return address, but it might also involve the contents of machine registers, the
values of local variables, etc. In fact, since the values of local variables are required
only during the invocation of a procedure A, and since it is possible that A is recur¬
sive, then it makes much more sense to allocate space for these local variables
directly on the stack when A is called. With the alternative course of allocating
space within the procedure A itself, every recursive call would necessitate copying
out these values to the stack to allow for fresh values in the new invocation.1 Since

1 In fact, the reduction in the amount of memory that is pre-allocated for local data may
be more significant than the time that is saved in copying. We discuss such matters in
Chapter 11.

5.2.3.1 PROCEDURE CALL AND RETURN 181

p

Figure 5.9 Procedure Segments with Procedure Calls

procedures will in general require different amounts of space on the stack for their
local data, we encounter the additional twist that the amount by which to pop the
stack - that is, reset the top-of-stack pointer - on a procedure return is known
only by the called procedure. Thus, one of the values that needs to be stacked is
the previous value of the stack pointer itself. Note that if we are talking about
non-recursive procedures, then we may need to save and restore just a return
address and the values of some machine registers. But if we are talking about
recursive procedures, then we may need to preserve much more. Since the depth of
recursion is unpredictable, the stack is a structure perfectly suited to the problem of

allocating this storage in a dynamic fashion.

As the program in Figure 5.9 executes, the stack would contain a block of
information for each active or suspended procedure, and each block would contain
a return address, the value of the previous top-of-stack pointer, and values of local

variables, as shown in Figure 5.10:

(a) P calls R (e) R returns

(b) R returns (0 Q calls R

(c) P calls Q (g) R returns

(d) Q calls R (h) Q returns

182 QUEUES and STACKS

R
|t7 + l| 1 * 1 ,)

Is + ilB) . 0
ifttiQ- ID q

1, JTlCZl .)

B) P
B

ZJ p
B ID p B 3

(a) (b) (C) (d)

, R
|v + l| B ,)

im-iiB- 4) 0 Q
E+3)E3-)

B) P
B t 3 p

B
*) p

B

(e) (f) (g) (h)

Figure 5.10 Trace of the Call Stack for Figure 5.9

The figure reflects the assumption that P was itself called from a main program.

5.23.2 Evaluation of Expressions. In ordinary arithmetic, we are used to the fact
that 5 + 3 x 7 = 26, and not 56. In other words, we have learned that the multipli¬
cation operator always has a higher precedence than an addition operator, and so
should be performed first in the evaluation of an expression. If we want the addi¬
tion to be done before the multiplication, we can modify the precedence by

rewriting the expression as (5 + 3) x 7.

This use of parentheses poses no difficulty to humans, but their presence in
expressions is inconvenient with computing machines. Fortunately, it is possible to
write arithmetic expressions in such a fashion that parentheses are never required.
In fact, any expression can be written in three equivalent manners, as follows:

prefix notation x + 5 3 7 (operator precedes its operands)
infix notation (5 + 3) x 7 (operator between its operands)
postfix notation 5 3 + 7 x (operator follows its operands)

Note that parentheses are required only in the notation most familiar to us, which is
infix. Prefix and postfix notations were first introduced by the Polish logician
Lukasiewicz in order to simplify expressions in propositional calculus. This causes
prefix notation to be known also as Polish notation, and postfix notation to be
known as reverse Polish notation. Unfortunately, terminology occasionally gets
sloppy, so that postfix, which is particularly convenient for computation, is some¬
times referred to simply as Polish notation.

S.2.3.2 EVALUATION OF EXPRESSIONS 183

To see why postfix notation is so convenient, suppose that we have a computing
machine with a stack. The machine would operate on a postfix expression in the
following manner:

1. When the next item in the input is an operand, it is stacked.
2. When the next item in the input is an operator, then the two top operands on

stack are unstacked, the operation is performed, and the result is stacked.

Let us trace the operation of this machine upon the expression

935* + 10 6 — /
for which the equivalent infix expression is

(9 + 3 * 5) / (10 - 6)
The trace is shown in Figure 5.11, and we see that a machine with a stack can
indeed correctly evaluate an arithmetical expression in postfix notation. A stack
used for this purpose is commonly called an evaluation stack, to distinguish it from
the procedure-call stack of the preceding section.

Compilers almost always get rid of parentheses, translating infix expressions
into postfix notation as an intermediate representation of the source code. What
happens next in the compilation process depends upon the circumstances. Most
often, the postfix expressions undergo further translation into code for direct
execution on some target machine, but sometimes the code is left in the intermediate
form. For example, some machines have a stack architecture, as opposed to a regis¬
ter architecture, so that the machine can execute such code directly. (The relative
advantages of stack and register architectures is a subject of contention.) Even
when the underlying machine does not have a stack architecture, it is possible to use
an interpreter that simulates the actions of a stack machine. In fact, this is the
manner in which small machines commonly support Pascal — by interpreting the

intermediate code on a simulated stack machine.

Input Expression Stack Contents

935* + 10 6-/

3 5 * + 10 6 - / 9

5 * + 10 6 - / 9 3

* + 10 6 - / 9 3 5

+ 10 6 - / 9 15

10 6 - / 24

6 - / 24 10

- / 24 10 6

/ 24 4
6

Figure 5.11 Stack Evaluation of a Postfix Expression

5.2.3.3 Translation of Expressions. We have seen that a machine with a stack can
directly evaluate expressions that are in postfix notation. But people generally
prefer infix notation, so how is the translation from infix to postfix accomplished?
With a stack again! In order to discuss how this is performed, we need to make a

184 QUEUES and STACKS

few background remarks concerning this common situation in computing. The text
of a program in its source language is almost always treated as an array of charac¬
ters. Within this text are program tokens of various types: constants (numeric or
character), operators, identifiers, and delimiters.2 Almost all operators and delimit¬
ers and some constants and identifiers require just one character in the program

text, but most constants and identifiers consist of several characters.

To a compiler or other language translating program, the length of a token is
far less significant than its type; therefore, the first phase of compilation usually
decouples these aspects by scanning the text and extracting tokens for the next
phase. To keep our illustration of translating infix to postfix as simple as possible,

we will restrict our input expressions as follows:

• The tokens in an expression include just operands, parentheses, and the opera¬

tors for add, subtract, multiply, and divide.
• The operand tokens are single characters.
• The special character is used as a sentinel.

By making these restrictions, we can compute the token types via the function

TOKENIZE (Algorithm 5.4).

function TOKENIZE (ch: char): token;

type token = (null,opnd,asop,mdop,lpar,rpar);

begin
TOKENIZE := opnd;
case ch of

{default assumption}

TOKENIZE = null; {to mark the end}
ixi / r.

' t ■ TOKENIZE = asop; {add or subtract}
TOKENIZE = mdop; {multiply or divide}
TOKENIZE = Ipar; {left parenthesis}

end;
TOKENIZE = rpar; {right parenthesis}

end;

Algorithm 5.4 TOKENIZE

We will translate infix to postfix via two structures. One of these is a stack and
the other is a precedence matrix. The latter contains pre-encoded values that reflect
what action should be performed next, depending jointly upon the next token in the
input and the token at the top of the stack. The type of the former token is used to
select a column of the matrix, and the type of the latter token is used to select a
row of the matrix. The precedence matrix is shown in Table 5.1. Each of its entries
is one of the possible actions to be taken, according to the row and column indices.

2 Identifier is the generic term applied to symbolic names of variables, procedures,
keywords, etc. Delimiters are the punctuation of programs, such as parentheses, brack¬
ets, commas, periods, quote marks, etc.

5.2.3.3 TRANSLATION OF EXPRESSIONS 185

The matrix with its action-valued entries is used in conjunction with the procedure
IN_TO_POST (Algorithm 5.5).

null opnd asop mdop Ipar rpar

null done pass save save save errr
opnd errr errr errr errr errr errr
asop popl pass popl save save popl
mdop popl pass popl popl save popl
Ipar errr pass save save save P°P2
rpar errr errr errr errr errr errr

Table 5.1 Precedence Matrix for IN_TO_POST Algorithm

In IN_TO_POST, defer is a stack as defined in Algorithms 5.3, and PUSH and

POP are likewise defined therein. (In a real situation, one would probably choose

to implement PUSH and POP in-line rather than as distinct procedures.) As the

input line infix is scanned, operands are copied directly to the output line postfix,

the parentheses are removed, and the operators are relocated via the interaction of

defer and precedence. Note that the logic of the algorithm requires a usual type of

pop operation pop\ and a second type of pop operation pop2. The latter just corre¬

sponds to discarding a left parenthesis when the corresponding right parenthesis is

encountered. Note also, in the action for pop 1, that it is necessary to go back and

reuse the precedence matrix with the same value from the input, but the uncovered

value from the stack. These details may become clearer through examining Figure

5.12, which contains a trace of IN_TO_POST operating upon the input expression

'(A + B*C)/(D—E)#'.

In the translation from infix to postfix notation, the stack is essential. The

precedence matrix is not, however. It is common to achieve the same effect by

employing two precedence functions - one applied to the input token and another

applied to the token on top of the stack (see Exercise 5.11). The appropriate action

is then determined by comparing the values of these two functions, fiinput_ token)

versus g(stack_token). Whereas the precedence matrix requires 0(n2) space for n

tokens, the use of precedence functions require 0(n) space. On the other hand, if

we wish to make IN_TO_POST more realistic by extending the variety of tokens

that it will handle, it is simpler to add extra rows or columns to the precedence

matrix (with no alteration to the code) than it is to reconsider the interaction of the

precedence functions and the code in the light of these new token types. The

precedence matrix also facilitates the detection of erroneous input expressions, as in

the case of unbalanced parentheses.

186 QUEUES and STACKS

procedure IN_TO_POST (infix: line; var postfix: line);

{IN_TO_ POST operates on lines of characters, transforming

an expression from infix notation to postfix notation}

label 1,2;

const linmax = {maximum size of input and output lines}

type line = array [1 .. linmax] of char;
token = (null,opnd,asop,mdop,lpar,rpar);

action = (pass,save,pop1 ,pop2,done,errr);

var indx,pndx: 1 .. linmax;

cndx,rndx: token;

defer: stack;
precedence: array [token,token] of action;

begin
pndx := 1;

defer.top := 0;

PUSH (defer,'#');
for indx := 1 to linmax do begin

cndx := TOKENIZE (infix [indx]);

1: rndx := TOKENIZE (defer.items [defer.top]);

case precedence [rndx,cndx] of
pass: begin

postfix [pndx] := infix [indx];

pndx := pndx + 1;

end;
save: PUSH (defer,infix [indx]);

popl: begin
POP (defer,postfix [pndx]);

pndx := pndx + 1;

goto 1;
end;
pop2: begin

if defer.top = 0 then
{Underflow}

else
defer.top := defer.top - 1;

end;
done: goto 2;

errr: {erroneous situation}

end;
2: end;
end;

Algorithm 5.5 IN_TO_POST

t5.3 MULTIPLE QUEUES AND STACKS 187

indx top action stack postfix

1 1 save #
2 2 pass # (
3 2 save # (A
4 3 pass # (+ A
5 3 save # (+ A B

6 4 pass # (+ * A B

7 4 popl # (+ * ABC

7 3 popl # (+ ABC*

7 2 P°p2 # (A BC* +

8 1 save # ABC* +

9 2 save # / ABC* +

10 3 pass # / (ABC* +

11 3 save # ! (ABC* + D

12 4 pass # / (- ABC* + D

13 4 popl # / (- ABC* + DE

13 3 P°p2 # / (A B C* + D E -

14 2 popl # / A B C* + D E -

14 1 done # A B C* + D E - /

Figure 5.12 IN_TO_POST Operating upon '(A +B*C)/(D-E)#'

f5.3 MULTIPLE QUEUES AND STACKS

Our discussion of queues and stacks up to this point has been somewhat unrealistic,

for two reasons. First, we have glossed over the important issue of what do to in

the case of Overflow.3 Second, we often need several of these data structures simul¬

taneously. If they are implemented in terms of linked lists, then these issues do not

arise. But if the implementation is in terms of arrays, then our alternatives may be

either to abort a calculation, or else to dynamically reallocate space for the arrays

as their dimensions vary, and then shuffle their contents in memory. Garwick

[1964] has given an algorithm for accomplishing this, which we will discuss shortly.

However, we will present some other comments first. Evidently, the issue can be

finessed by using a linked list representation; so why bother with an array represen¬

tation that is prone to these difficulties? Efficiency is one very good reason, both in

terms of time and space. Another reason is that pointer variables may not be avail¬

able, so that arrays are the only choice. In fact, Garwick s method was originally

devised for the problem of handling the many one-dimensional tables needed by a

FORTRAN compiler (with which there are no dynamic pointer variables), where it

3 Underflow is less important to us. It reflects a possible aberration in the calling
program rather than in the implementation of the queue or stack. Moreover, it is quite
legitimate to keep deleting items from a queue or stack until an underflow is detected.

188 QUEUES and STACKS

was not possible to know in advance how these tables would grow for various'

source programs.

There is another important point. If an application requires just two stacks,

then it is a simple matter to share the entire pool of free memory between them, so
that no Overflow will occur until that entire pool is exhausted. This is accom¬
plished by anchoring the bases of the stacks at opposite ends of the memory pool
and growing them toward each other, as illustrated in Figure 5.13 for stacks U and
V. In fact, this is just the scheme that is employed in the run-time environments
generated by many Pascal compilers. There is always a procedure-call stack such as
described in Section 5.2.3.1; and when mark and release are used instead of
dispose, for deallocating space from the heap, then the heap can be implemented as
a stack growing from the opposite end of available memory, as in the figure.
However, no such simple scheme is possible when there are more than two stacks.

1 2 **• top

--U--

• • •
top "• n-^ n

--V--

Figure 5.13 Two Stacks Grown in Opposite Directions

Let us consider now the dynamic solution given by the procedure REPACK
(Algorithm 5.6). The strategy here is to anticipate future changes in stack size on
the basis of past history. By reallocating the stacks on the basis of this predictive
information, we hope to reduce the likelihood of future Overflows that must call on
REPACK. In order to do this, we need the global declarations reproduced here.

var Base,Oldtop,Top: array [1 .. n + 1] of integer;
Mem: array [lomem .. himem] of ...

The stacks are all allocated in Mem, with the zth stack located from
Mem [Base [/]] + 1 to Mem [Top [/]]. Note that with this convention an empty zth
stack corresponds to Base [z] = Top [z]. REPACK is called when a condition
Top [stkno~\ — Base [stkno + 1] + 1 signals that an Overflow has occurred. In order
for this condition to be valid for the nth stack, Base [n + 1] (and Newbase [n + 1])
must contain the value of himem. The strategy in REPACK is to compare the
growth of the stacks since the last time it was called, by computing any positive
differences Delta [z] : = Top [z] — Oldtop [z]. Thus, initially, we need to have
Oldtop [z] = Top [/]. The variables freemem and deltasum are used to calculate,
respectively, the total currently unused space and the total (positive) growth. From
these data, new values for the stack limits are calculated, as follows:

(a) Divide some fraction (commonly 0.1) of the unused space evenly among all of
the stacks.

(b) Reallocate the remainder of the unused space among the stacks according to
their individual growths.

After the values of Newbase [z] have been computed, the contents of the stacks are
shifted up or down in memory accordingly, with due care not to overwrite items

t5.3 MULTIPLE QUEUES AND STACKS 189

procedure REPACK (stkno: 1 .. n);

const alpha = 0.1;

var deltasum,freemem,i,j,k,t: integer;
p,q,r,s: real;
Base,Newbase,Delta,Oldtop,Top: array [1 .. n + 1] of integer;
Mem: array [lomem .. himem] of ...

begin
deltasum := 0; freemem := himem - lomem;

{gather statistics}
for i := 1 to n do begin

freemem := freemem - (top [i] - Base [i]);
if Top [i] <= Oldtop [i] then

Delta [i] := 0
else begin

Delta [i] := Top [i] - Oldtop [i];
deltasum := deltasum + Delta [i];

end;
end;

{compute new stack limits}
if freemem < 0 then

{No more Memory!}
else begin

p := alpha * freemem / n;
q := (1 - alpha) * freemem / deltasum;
r := 0;
Newbase [1] := Base [1];
for i := 2 to n do begin

s := r + p + q * Delta [i - 1];
t := trunc (s) - trunc (r); r := s;
Newbase [i] := Newbase [i - 1] + Top [i - 1] - Base [i - 1] + t;

end;
{relocate the stacks}

Top [stkno] := Top [stkno] - 1;
for i := 2 to n do

if Newbase [i] < Base [i] then begin
k := Base [i] - Newbase [i];
for j := Base [i] + 1 to Top [i] do

Mem G - k] := Mem G];
Base [i] := Newbase [i];
Top [i] := Top [i] - k;
Oldtop [i] := Top [i];

end;
for i := n downto 2 do

if Newbase [i] > Base [i] then begin
k := Newbase [i] - Base [i];
for j := Top [i] downto Base [i] + 1 do

Mem G + k] := Mem Q];
Base [i] := Newbase [i];
Top [i] := Top [i] + k;
Oldtop [i] := Top [i];

end;
Top [stkno] := Top [stkno] + 1;

end;
end;

Algorithm 5.6 REPACK

190 QUEUES and STACKS

before they have been relocated. Note the necessity to adjust the value of

Top [stknof since it has already been incremented by PUSH; when REPACK
returns to PUSH, the item that caused the Overflow can then be placed on its stack.
Note also that REPACK never relocates the first stack. This suggests that it would
be more efficient to make the largest stack the first one, thereby reducing the time

spent in relocating items.

(a)

(b)

(c)

Figure 5.14 Effect of Algorithm REPACK

The following example helps to convey the action of REPACK. Suppose that
we have 100 units of Mem, and that we have allocated 20 units each to five stacks.
Moreover, for some initial values of Oldtop, let the actual sizes be: 7,5,14,4,4.
These conditions are illustrated in Figure 5.14(a), and also displayed on the left of
Figure 5.15. Now suppose that a series of pushes and pops on the five stacks
cumulates with an overflow in the third stack, and with the Delta values illustrated
in the middle of Figure 5.15. (Here, negative values of Delta are also shown.) The
corresponding picture of Mem is shown in Figure 5.14(b). REPACK will compute
the values shown on the right of Figure 5.15 (with deltasum = 18 and
freemem = 51); the readjusted picture of Mem is shown in Figure 5.14(c).

Base Oldtop Space Size Delta Newbase Top Space' Size'

1 100 107 20 7 -2 100 105 6 5

2 120 125 20 5 9 106 120 37 14

3 140 154 20 14 7 143 164 40 21

4 160 164 20 4 -1 183 186 4 3

5 180 184 20 4 2 187 193 13 6

Figure 5.15 Action of Algorithm REPACK

How effective is Garwick’s method? Some detailed analysis can be found in
Knuth [1973a]. Most importantly, it depends upon there being sufficient space to
accommodate the overall maximum requirement. If the ratio of deltasum to
freemem is nearly equal to 1.0 in value, then space is being released at about the
same rate that it is being requisitioned. If deltasum is smaller than freemem, the
method works well; if deltasum is generally larger than freemem, our efforts are
almost certainly wasted, since space will soon be exhausted. Moreover, as the point
of exhaustion is approached, REPACK will be invoked more and more frequently

t5.3 MULTIPLE QUEUES AND STACKS 191

to reapportion smaller and smaller amounts of free space. This suggests that a test
for such a condition would likely save time, by terminating an untenable situation
earlier rather than later.

Another factor has been noted in the effectiveness of Garwick’s method. If the
values of the Delta [i] reflect too small a sample of the history, then the algorithm
may oscillate wildly before arriving at stable values for the limits of the stacks. One
proposed solution to this problem is to retain more change history, so that better
predictive calculations can be performed [Wise and Watson 1976], However, this
may be insufficient, particularly when the sequence of stack alterations exhibits flur¬
ries of activity with just a few of the stacks over a period of time. This can cause
the values of the Delta [i] to be even more misleading. A suggestion for coping
with this is to incorporate the relative stack sizes in the reapportionment calcu¬
lation, since the sizes are more stable than the changes in size [Standish 1980]. The
two refinements of Garwick’s method that we have just described are effective
because they provide more stable solutions. An orthogonal enhancement that can
significantly reduce the frequency of reorganization is to alternate the direction of
growth of the stacks, so that they occur in pairs, with each pair allocated as in
Figure 5.13 [Fraenkel 1979; Korsh and Laison 1983].

Although the motivation for REPACK is to accommodate multiple growing
and shrinking stacks, it can be adjusted to handle other instances of dynamically
varying tables of information, such as queues or deques. In particular, suppose that
we wish to implement a priority queue, and that there are only a modest number of
priority levels. We could associate one ordinary queue with each level, and then
have enqueuing and dequeuing procedures that administer the collection of queues.
Each individual queue might be implemented as a circular queue within the bounds

of an overall array.

5,4 RECURSION REVISITED

In Section 1.3.1 we discussed the issue of choosing between iteration and recursion

for expressing an algorithm. We saw there that recursion often provides a more
concise and intuitive definition of a quantity or a process than does iteration. In
the first of the following sections, we call attention to a very important instance of
this in computer science. We also saw in Chapter 1 that recursion may be dramat¬

ically less efficient than iteration for actual computation. Accordingly, we examine
in Section 5.4.2 some ways to systematically transform recursive programs to more

efficient, non-recursive ones. Finally, in the last section, we point out some interest¬
ing and somewhat intricate relations between the subject of recursion and the

subject of what is fundamentally computable. We introduce these topics at this
point because there is a close connection between recursion and the capabilities

provided by the stack data structure. Although this connection is not relevant for

Section 5.4.1, it is very much so for the subsequent two sections.

192 QUEUES and STACKS

5.4.1 Backus-Naur Form

In programming as well as in ordinary discourse, we have arrived at a variety of
notations to express our ideas. Any such notation can be regarded as a first level of
communication. However, it is frequently necessary to communicate at a second
level, about the notation itself. Two examples of this are defining the nature of
arithmetic expressions and characterizing the nature of English phrases and
sentences. At the higher level we are no longer dealing with specific arithmetic
factors or terms, or with specific words from a dictionary. Rather, we are dealing
with entire syntactic categories of such objects. Two significant problems in such an

endeavor are:

1. How do we discriminate between the levels of communication? Is “object” an
ordinary variable at the first level of discourse, or is it the name of a category

at the second level of discourse?
2. At the second level, how do we manage to specify every possible way of

constructing an instance of a category?

For the first problem, one device is to enclose names of categories in angle brackets.
Thus “object” is an ordinary variable at the first level, and “ < object > ” is a cate¬
gory at the second level. For the second problem, we should not be surprised to

find that recursion provides the answer.

For the specification of arithmetic expressions, the combination of these two
techniques leads to the scheme shown in Figure 5.16. This manner of notation is
known as Backus-Naur Form (BNF). It was first used to describe the language
ALGOL [Backus 1960; Naur et al. 1960], wherein it yielded a description that is
formal, remarkably brief, and almost (but not entirely) free of ambiguity.

<expression> ::= <term> | <expression> + <term> | <expression> — <term>

<term> ::= <factor> | <term> * < factor > | <term> / <factor >
<factor> ::= <variable> | (<expression>)

Figure 5.16 Example of BNF

What we see in Figure 5.16 are productions, wherein each syntactic category4 —
< expression >, < term >, and < factor > — is defined in terms of the following:
other categories (possibly including itself), various literal values, and various meta¬
linguistic symbols. Two of the latter, illustrated in this example, are ' (with the
interpretation “is defined as”) and T (with the interpretation “or”). Such symbols
as ' + ' and on the other hand, stand for themselves; that is, they are literal
values from the first level of communication. To paraphrase the last of the three
productions in the figure, a factor is either a variable or an expression enclosed
within parentheses.

4 You may recognize this notational device from our discussion of Pascal control struc¬
tures in Section 1.4.1.

5.4.1 BACKUS-NAUR FORM 193

Examination of Figure 5.16 reveals some important regularities of form. The
left hand side of a production always contains a syntactic category, and is an
instance of a non-terminal symbol — that is, one defined in terms of other symbols.
The right hand specifies one or more alternative definitions, separated by These
definitions may contain literal values, meta-linguistic punctuation, other non-termi¬
nal symbols, or terminal symbols, which are syntactic categories that are not further
defined. In the figure, < variable > is allowed to remain as a terminal symbol. This
is not very realistic. In practice, the productions would be comprehensive enough
so that all the terminal symbols corresponded to literal values.

This example merely touches upon a topic of substantial depth and importance.
We will have a little more to say about the matter when we discuss parse trees in
Section 6.6.2, and still more in Section 8.6 when we talk about languages and gram¬
mars. For now, the important points are as follows:

• Recursion is essential in order to specify an infinite set of possibilities without
constructing infinite lists, such as

< expression > ::= <term> | <term> + <term>
| <term> + <term> + <term> | ...

• Note how the issue of precedence in arithmetic expressions is accounted for by
the dependency among the productions.

In all of this, there is an important distinction between what we are trying to
accomplish and how we do it. BNF notation in the form illustrated here is the
original, pioneering tool for responding to the two issues raised at the beginning of
this section. Variations of BNF notation are widely in use, and so are flowchart¬
like syntax diagrams.

f5.4.2 Transformation of Programs

As we saw in Section 5.2.3.1, stacks play an important role in the implementation of
recursive procedures. However, there is an even broader relation between stacks
and recursion. It is often possible to improve the performance of an algorithm by
transforming a recursive function (with an implicit stack) to an equivalent iterative
function employing an explicit stack. This improvement comes about because the
amount of information that needs to be remembered may be much less than what is
automatically saved and restored during procedure call and return. In such a trans¬
formation, each recursive call causes a value of the function parameter to be pushed
onto the stack, and built around this are stack initialization and a loop that pops

values off the stack umtil it is empty.

Indeed, program transformations are not limited to just this type of conversion;
that is, the elimination of recursion may not be the primary goal. An important
goal in computer science is to be able to perform these transformations automat¬
ically. With such an automatic system, we could hope to express an algorithm in a
concise, intuitive, recursive fashion and then ultimately obtain an efficient counter¬
part with minimal human intervention. Even more significantly, it might be
possible to compose a recursive algorithm that is clearly correct; then, if the trans-

194 QUEUES and STACKS

formation process were error-free, the resulting program would also be correct

[Burstall and Darlington 1977].

A catalogue of program transformations would take us too far afield. Instead,
let us consider the program schema of Figure 5.17. Such a schema is a generalized
description of many recursive algorithms; it can be particularized by supplying
interpretations to the predicate p(x) and to the functions N, S, T, U,v,w. (There are
alternative forms of recursive schemas, but this one is adequate for our purposes
here and in what follows.) Since F calls itself twice, we might expect that a corre¬
sponding iterative program G would need to employ a stack at both of those points.
But suppose now that we had an interpretation such that £/(*) was void. A very
useful rule in this case is that we can eliminate the tail-recursion expressed by
F(w(x)), since it is the last step within F. Thus, we can transform F to F', with only
one recursive call, wherein the values of pertinent variables are reassigned, and then
a branch is taken back to an early step in F'. Analogously, the iterative program G
would need to employ a stack only for the transformation of the call F'(v(x)).

procedure F(x);
begin

if p(x) then N(x)
else begin

S(x); F(v(x)); T(x); F(wfx)); U(x);
end;

end;

Figure 5.17 A Recursive Schema

The preceding rather abstract discussion may become much clearer with the
following example. Recall that the Fibonacci numbers are defined by the equation
F„ = Fn_x + Fn_2. It is straightforward to translate the corresponding recursive func¬
tion to an iterative one, wherein a call to F(n) causes the values n — 1 and n — 2 to
be stacked, unless n < 2. The result is FIB_STK_A (Algorithm 5.7). However, in
comparing the Fibonacci definition with the recursive schema of Figure 5.17, we see
that U(pc) is essentially void (as are S(x) and T(x)). So the tail-recursion can be
eliminated, yielding the more efficient function FIB_STK_B (Algorithm 5.7).

Automatic program transformations are a significant issue, but for the present

transformations by hand are the norm. With regard to the particular issue of
converting recursion to iteration via the introduction of a stack, the details can
become somewhat tedious [§]. We are content to make these general observations:

• Our expressed motivation is that of efficiency, but we should realize that these
transformations are also fundamentally important for languages that do not

support recursion, such as FORTRAN.
• Transformations typically involve several steps until a “finished” program is

obtained. Throughout this book, we will see numerous instances of algorithms
that can be represented either recursively or else iteratively with a stack; in the
latter cases, we will expeditiously present finished programs.

f5.4.2 TRANSFORMATION OF PROGRAMS 195

function FIB_STK_A (n: integer): integer;

var defer: stack;
sum: integer;

begin
sum := 0; INIT_STK (defer);
PUSH (defer,n);
repeat

POP (defer,n);
if n <= 2 then

sum := sum + 1
else begin

PUSH (defer,n - 1);
PUSH (defer,n - 2);

end;
until EMPTY_STK (defer);
FIB_STK_A := sum;

end;

function FIB_STK_B (n: integer): integer;

var defer: stack;
sum: integer;

begin
sum := 0; INIT_STK (defer);
PUSH (defer,n);
repeat

POP (defer,n);
while n > 2 do begin

PUSH (defer,n - 2);
n := n - 1;

end;
sum := sum + 1;

until EMPTY_STK (defer);
FIB_STK_B := sum;

end;

Algorithms 5.7 FIB_STK

• The exchange of recursion for an explicit stack has the effect of reducing the
constant factor in the complexity of an algorithm; it will not of itself reduce

the complexity class of the algorithm.

f5.4.2.1 Tabulation and Other Speed-Ups. The final point in the previous section
raises an interesting question. In Chapter 1 we saw both a recursive definition (Eq.

1.17) and an iterative function ALGOR_A (Algorithm 1.1) for computing Fibo-

196 QUEUES and STACKS

nacci numbers. The latter did not require a stack; moreover, it reduced the
complexity from exponential to linear (see Section 1.3.2.3). How is this possible?

The answer has to do with the great number of redundant evaluations that
occur when applying the recursive definition, as illustrated in Figure 1.1. Such
redundancy is fairly common, and it can be avoided by the technique known as
tabulation. In this method, as applied to the Fibonacci calculation, a table is main¬
tained for the values of Fn. We initialize the table entries to zero; thereafter, when
a value of Fn is sought, we check the corresponding entry in the table. If it is zero,
we perform the evaluation and then store that value of Fn in the table for possible
future use; otherwise, we retrieve the desired value directly from the table with no
further evaluation. In the general method of tabulation, we need to maintain a
table with as many entries as there are values of Fn. But in the case of ALGOR_A,
we were able to do better by allocating storage for just two values at any one time

- for F„_y and Fn_2 ~ and then reusing that storage at each iteration.

The use of tabulation is independent of the exchange of recursion for an explicit
stack; that is, it is easy to find examples where either just the former, or just the
latter, or both together might be employed. Tabulation can be an extremely effec¬
tive tool for reducing complexity by eliminating redundancy [§]. The principal
hazard in its use is that, in the general case, it may not be possible to predict a
pattern of reusage, and so a large amount of storage may be required for the table
entries. This is particularly true when the recursion is defined in terms of two or

more parameters, so that the table becomes multi-dimensional.

We conclude this discussion by noting an ultimate transformation, whereby it is
possible to compute Fn in 0(lg n) time [§] rather than in 0(n) time, as with
ALGOR_A. The Fibonacci recurrence can be expressed in matrix form as

(5.1)

Applying this recurrence n — 2 times, we obtain

(5-2)

But the matrix product can be computed as a product of factors, each a power of 2
of the original matrix A, in 0(lg n) time (see Exercise 1.16), giving us our promised
result. By way of illustration, suppose that we wish to compute Fl5. Then we need

the matrices A, A4, A8 as follows:

whence

(5.3)

so that F15 — 610.

15.4.3 RECURSIVE SCHEMA AND COMPUTABILITY 197

f5.4.3 Recursive Schema and Computability

Figure 5.17 in the preceding section gave an example of a recursive schema which is
one model of recursive computation. To express the full power of recursion would
require a more generalized recursive schema R. Rather than pursue this, we note
that it is also possible to express iteration with a generalized iterative schema I. The
question then arises, is R more powerful than /; in other words, are there functions
that we can compute with R but not with 7? The answer is a bit subtle, and it
depends upon certain other factors. It is always possible to transform an iterative
calculation to a recursive one (see ALGOR_B, Algorithm 1.2), and it is often possi¬
ble to transform a recursive calculation to an iterative one [Strong 1971]. An
important feature for enabling this is that the iterative calculation should be able to
employ “counter” variables, such as the variable i of ALGOR_A (Algorithm 1.1).
However, there are cases wherein a recursive schema cannot be transformed to an
equivalent iterative schema because the iterative computation would require an infi¬
nite set of locations for recording intermediate results. In other words, iteration is
strictly less powerful than recursion [Paterson and Hewitt 1970]! However, if we
amend our iterative schema / to /', allowing it to have two pushdown stores
(unbounded stacks), then we find that /' is as powerful as R.

The preceding result has both practical and theoretical significance. The practi¬
cal aspect is that it confirms the importance of the stack as a data structure. The

theoretical significance derives from the following facts:

• It has been proven that any of several models of computation - among them
generalized recursion, the use of a Turing machine, or the use of a finite
machine with two pushdown stores — all yield computational capabilities that

are equivalent.
• No one has been able to find a notion of effective computability that cannot be

expressed in one of these provably equivalent models.

As a result, we have the Church-Turing Thesis: There is no function that is effec¬
tively computable that cannot be obtained via any one of these equivalent
mechanisms! In this discussion, we have overlooked numerous details in the interest
of conveying the broader picture. These deeper matters are explored in Beckman

[1980] and Minsky [1967].

5.5 OVERVIEW

One theme that the queue and stack data structures clearly illustrate is the power of
thinking in terms of Abstract Data Types, whereby the implementation of a struc¬
ture becomes a separate issue from its functional specification. They also
demonstrate that in programming, as in everyday life, a specialized solution to a
problem can be more cost-effective than a generalized one. Thus, these structures
can be used for many useful purposes, with significant savings in both space and

time compared with that required for ordinary linked lists.

198 QUEUES and STACKS

The great utility of both queues and stacks will become even more apparent as
they are used in algorithms in subsequent chapters. In the case of stacks, however,
the examples in this chapter have already conveyed some of their importance, both
practical and theoretical. The practical importance was shown primarily in the
manipulation of expressions; the theoretical significance is most evident in the

relationship between recursion and the use of stacks.

5.6 BIBLIOGRAPHIC NOTES

• Examples of queue-like data structures for simulation that are superior to ordi¬
nary linked lists can be found in Franta and Maly [1977] and Wyman [1975].
Extensive comparisons of data structures for representing queues of simulation
events are given in Jones [1986], McCormack and Sargent [1981], and Vaucher

and Duval [1975].

• Examples and “recipes” for transformations between recursive and iterative
forms of programs can be found in Auslander and Strong [1978], Bird [1977a,

1977b], and Horowitz and Sahni [1976].

• Two excellent accounts of the benefits that can be obtained with tabulation are
Bird [1980] and Cohen [1979b]. The technique for computing Fibonacci
numbers with 0(lg n) complexity is described in Miller and Brown [1966] and

Shortt [1978],

5.7 REFERENCE TO TERMINOLOGY

f arrival times, 174
Backus-Naur Form (BNF), 192

f Church-Turing Thesis, 197
circular queue, 171
deque, 175
delimiter, 184
FIFO, 166
head (of queue), 167
identifier, 184
infix notation, 182
input-restricted deque, 175

f interpretation (of a schema), 194
f Kendall notation, 174

LIFO, 176
meta-linguistic symbols, 192
non-terminal symbols, 193
output-restricted deque, 175

postfix notation, 182
precedence, 182
precedence matrix. 184
prefix notation, 182
priority queue, 175
productions, 192

f program schema, 194
push-down store, 176

t service times, 174
stack permutations, 178
syntactic categories, 192

t tabulation, 196
tail (of queue), 167

f tail recursion, 194
terminal symbols, 193
tokens, 184
top (of stack), 177

5.8 EXERCISES 199

5.8 EXERCISES

Section 5.1

5.1 Assume a circular queue of length 5, with index variables head and tail, as
used in Algorithms ENQUEUE_A and DEQUEUE_A. Tabulate the values of
head and tail, as in Figure 5.4, under the following sequence of E(nqueue) and
D(equeue) operations:

EEDEEDEEEDDEEEDDEDD

If an E/D operation would cause an overflow/underflow condition, ignore it and
continue tabulating with the next E/D operation.

f5.2 Suppose that we have a sequence of four input symbols, A B C D.

(a) Which permutations of the four symbols cannot be obtained using an input-
restricted deque, such that items can be inserted at just one end but removed
from either end?

(b) Which permutations of the four symbols cannot be obtained using an output-
restricted deque, such that items can be inserted at either end but removed

from just one end?

f5.3 Write a set of routines to implement a deque as a linked list, analogous to
Algorithms 5.1. For the four operations

DL — dequeue from the left EL (x) — enqueue x on the left
DR - dequeue from the right ER (x) - enqueue x on the right

test them against the command sequence

EL (A), ER (.B), DL, ER (Cj, EL (D), DR, EL (E), DR, DL, DR,

ER (/0, EL (G), DR, DL, EL (H), EL (/)

displaying the contents of the deque after each of the commands.

f5.4 Write a set of routines to implement a deque as a circular array, analogous
to Algorithms 5.2. Test them against the command sequence of Exercise 5.3.

Section 5.2

5.5 With input A B C D E F, what will be the output under the following S(tack)

and U(nstack) sequences?

(a) SSUSSUSUUSUU

(b) SSSUSUSUUSUU

5.6 With input ABC D EF and for each of the following permutations, either
indicate that it cannot be obtained by using a stack, or show how it can be obtained

via a sequence of S’s and U’s.

(a) BDCFEA

(b) BAFDCE

(c) CBDAFE

200 QUEUES and STACKS

f5.7 Given an input sequence A = au a2,..., a„ and some permutation of it A', how

can you tell by looking at A' whether it could have been obtained from A by using

a stack?

5.8 Simulate the operation of the algorithm IN_TO_POST in translating the

following infix expression to postfix:

'(A—B—C)/D + E*(F-G*(H-I))*J#'

Show the contents of the stack, the action taken, and the output contents as the

program executes, as in Figure 5.12.

t5.9 Rewrite the precedence matrix of Table 5.1 to include additional operators,

and then apply the new matrix, as follows:

(a) Rewrite the precedence matrix to include the operators (“gets”) for assign¬

ment and 'X (“exop”) for exponentiation.

(b) Simulate the operation of IN_TO_POST, using this extended precedence

matrix, on the following expression:

'AHB—C*DTET(F/(G/H +1)))#'

Show the contents of the stack, the action taken, and the output contents as

the program executes, as in Figure 5.12.

1*5.10 We have seen how to use stacks both for the evaluation of postfix

expressions and for the translation of infix expressions to postfix notation. In this

problem, you are to combine these processes by using two stacks - one for opera¬

tors and one for operands - in order to read an infix expression from left to right,

translating and evaluating simultaneously. For example, in processing the

expression (11 -7) *6, we would have the parallel trace shown in Figure 5.18.

Trace the contents of the two stacks when operating upon the expression:

((11 - 15 + 6) t 3 t 2 — 36) / 17 /(34 - 5 * 6)

where } denotes exponentiation.

Operator Stack Operand Stack

(

(11

(- 11

(- 11 7

(4

4
I * 4

* 4 6

24

Figure 5.18 Parallel Stack Contents

5.8 EXERCISES 201

tt5.ll The problem of converting an infix expression to a postfix expression is
commonly solved by using two precedence functions rather than a precedence
matrix. These two functions, commonly called / and g, directly reflect, for example,
that and 'j' have higher precedence than ' + ' and Both f and g take a token
as input and return an integer precedence value; both functions, in fact, can be
represented as tables of value corresponding to token. The function f is used for
examining the next position in the input, and the function g is used for examining
the top of the stack. The corresponding algorithm is driven principally by whether
f<g,f=g, orf>g.

(a) Construct the two precedence functions, taking into account the following
operators and delimiters, according to the usual mathematical interpretation of
precedence:

+ -*/()# as before
«— the assignment operator (': = ')

T the exponentiation operator
< = * > the relational operators
& | the logical operators and, or, not

(b) Rewrite the algorithm IN_TO_POST to use these precedence functions. (You
may have to make some arbitrary character substitutions in order to do this,
such as T for "f', etc.)

f5.12 We have seen that it is relatively straightforward, using a stack, to translate
an infix expression to the corresponding postfix expression. What can be done for
the problem of translating an infix expression to the corresponding prefix
expression?

Sections 5.3 — 5.4

ft5.13 Rewrite the algorithm REPACK to incorporate the improvement
mentioned at the conclusion of Section 5.3; that is, have the stacks grow in alter¬
nating pairs, as in Figure 5.13.

f5.14 The following function was encountered in Exercise 1.12.

function F (m,n: integer): integer;
begin

if n = 0 then F := m
else F := F (m,n - 1) + F (m + 1 ,n - 1);

end;

Transform it to a function that computes F using a stack instead of recursion, and
test your program by computing E(l,3).

tf5.15 A sequence of parentheses is said to be balanced when the numbers of left
and right parentheses are equal, and when each left parenthesis can be matched
against some later right parenthesis. For three pairs, there are five possibilities.

000 0(0) (0)0 (00) ((0))

202 QUEUES and STACKS

The goal of generating all balanced sequences of parentheses can be characterized in

BNF notation by

S ::= (S) S | e

where e denotes the empty sequence. Write a recursive procedure to generate all
balanced sequences for n pairs; then write an iterative program to generate the
same sequences. What observations do you have about the relative ease of compos¬

ing the two programs?

tf5.16 The following function was encountered in Exercise 1.14.

function F (m,n: integer): integer;
begin

if m * n = 0 then F := m + n + 1
else F := F (m - 1,F (m,n - 1));

end;

Transform the function F from recursive form to (a) iterative form, and then (b) a
form employing tabulation. After establishing that your programs are correct, try
both of them, as well as the original function, for computing E(4,l). What do you

observe about the relative performance of these three programs?

6

TREES

“A fool sees not the same tree that a wise man sees.”

Wm. Blake,
Marriage of Heaven and Hell, Proverbs of Hell

Just as Moliere’s M. Jourdain was surprised to learn that he habitually spoke prose,
many people would likely be surprised to realize how commonly they deal with
trees. Yet they pervade all aspects of everyday life, as witness genealogical charts,
hierarchical organizations of management, the Dewey decimal system for books,
etc. They occur more overtly in various aspects of computation such as parse trees,

sort trees, decision trees, etc.

Sometimes we think of trees in a graphical manner, and sometimes we use
schemes that convert the graphical representation to a sequential structure. Thus,
note that all the forms in Figure 6.1 are logically equivalent. In this figure, (a)
displays a tree in record format (akin to the Table of Contents for a book), (b)
displays the tree as a List structure via the use of parentheses, (c) displays the tree
as a map, and (d) displays the tree in the convincingly tree-like format typically

employed for discussions of this data structure.

Figure 6.1(d) clearly delineates the appropriateness of the term tree, since it
highlights the branching nature of the structure. Note that, contrary to nature’s
canonical form for trees, with the root at the bottom, in computer science the root
is generally at the top. However, this is not universally so, and one can still find
books and articles wherein trees are drawn with the root placed at the bottom, or
even at the left. In the next chapter, on graphs, we will see that a tree is a restricted
form of graph, and we will characterize this assertion more precisely. For now, let

us consider the following terminology and definitions.

6.1 DEFINITIONS AND TERMINOLOGY

A tree, in the most general sense, is a set of vertices, or nodes, and a set of edges,
where each edge connects a pair of distinct vertices, such that there is one and only
one connecting path on these edges between any pair of vertices. A tree in this

204 TREES

A

B

D

H

I

E

F

C

G

J

K

L

(a)

A(B(D(HI)EF)C(G(JKL)))

(b)

A

H I J K L

(d)

Figure 6.1 Alternative Forms of Trees

most general sense is called a free tree, as in Figure 6.2(a) However, it is more
common to impose the notion that there is a distinguished vertex, called the root.
In this case, we have an oriented tree, as in Figure 6.2(b). One can imagine picking
up (a) at vertex A and shaking it until the structure sags into the shape of (b). Note
that, except in the most trivial case, there are numerous oriented trees correspond¬
ing to a given free tree, according to which vertex is distinguished.

In Figure 6.2, the trees shown in (b), (c), and (d) are all equivalent in the sense
of oriented trees. However, it is sometimes important to consider the edges from a
vertex as having a left to right order. In this case, we have an ordered tree, and (b),
(c), and (d) are all distinct. Note that, in the tree representations of Figure 6.1, (c)
is an oriented tree while the other three cases are ordered trees. Ordered trees are
more natural in computing, since most representation schemes for trees have, by

6.1 DEFINITIONS AND TERMINOLOGY 205

default, an ordering among the branches. In most published allusions to tree struc¬
tures, and in this book, the term tree without any qualifiers implicitly signifies an

ordered tree.

The degree of a node is the number of edges that impinge on it. Except for free
trees, it is common to associate a direction with each edge, usually away from the
root. We also distinguish between the in-degree and the out-degree. But since the
in-degree is always one, except for the root, it is usual with trees to refer to the
out-degree simply as the degree. Thus, in Figure 6.3, node A has degree 3 and

nodes D,F,0,S have degree 1.

Level 0

Level 1

Level 2

Level 3

Figure 6.3 Basic Tree Definitions

Tree terminology borrows from both genealogy and horticulture. Thus, edges

are sometimes called branches; also, terminal nodes, or nodes of zero out-degree,
are usually called leaves. Note how Figure 6.3 is drawn so that nodes that are the
same number of edges distant from the root are at the same vertical displacement,

206 TREES

or level. The height of a tree corresponds to the level of the leaf or leaves that are
most distant from the root. The vertical predecessor of a node is its parent, or
father; the vertical successors are children, or sons, proceeding from the eldest at
the left to the youngest at the right; and nodes that have the same immediate
parent are siblings, or brothers. In addition, it is common to speak of a descendant
of a node, where the progeny may be more than one level distant, and also an
ancestor of a node, where the patrimony may be more than one level distant. It is
sometimes convenient to be able to compare the positions of any two nodes of a
tree. In order to do this, we extend the notion of order among siblings to encom¬
pass that of “cousins.” Then, for nodes X and Y, the possibilities (as illustrated in

Figure 6.3) are:

• X and Y have an ancestor-descendant relationship; for example, B is an ances¬

tor of H, and J is a descendant of A.
• X and Y have a left-right relationship, either as siblings or as “cousins”; for

example, I is left of J, and D is right of B; but also B is left of G, and C is

right of H.

Note that a tree is a recursive structure. It can be thought of as a root node
with zero or more children nodes, each of which is a tree. Thus, the structures
beginning at nodes B,C,D in Figure 6.3 are called subtrees of the tree rooted at node
A. The weight of the subtree at a node is the number of nodes in the subtree, not
counting the node itself. Thus, node A has weight 9 and nodes B,D,M,T have
weight 3. When there are disjoint trees, as in Figure 6.3, they are called a. forest. A
forest can readily be converted to a tree by introducing one extra node as a parent

to all of the roots of the trees in the forest.

6.2 LINKED REPRESENTATION AND BINARY TREES

How should trees be represented physically in computer memory? The most
common case is to make each node a separate List item, and to employ pointer
variables to make the branches explicit. There is a problem, however, in that nodes
do not all have the same number of children. One solution to this problem, shown
in Figure 6.4(a), is to allocate for each node a number of pointer locations equal to
the maximum out-degree for the application at hand, and to employ nil pointers as
necessary. Another solution, shown in Figure 6.4(b), is to have variable-size nodes,
allocating in each of them a number of pointer locations equal to the actual out-
degree. If there is a large amount of data associated with each node, so that the
memory required for the pointers is a small percentage of the memory required for
the entire node, then the first solution is feasible. But there are many cases when
this is not so, and it becomes highly inefficient. The second solution is likely to be
shunned because of the complications associated with having variable length items.

The most common resolution for this representation problem is the following
simple and ingenious construction. In Figure 6.5(a),

1. retain branches from parents to eldest (leftmost) sons, but delete branches to
other children;

6.2 LINKED REPRESENTATION AND BINARY TREES 207

(a) Fixed Size Nodes

(b) Variable Size Nodes

Figure 6.4 Tree Representations

2. introduce branches from eldest children to their next youngest siblings.

In this manner, we obtain Figure 6.5(b). If we now tilt (b) by 45 degrees, we obtain
(c), which looks like a tree again. It is, but of a special kind called a binary tree.
Note that a node in a binary tree always has just 0, 1, or 2 children, so that it is
feasible to allocate all nodes with just two pointer fields. However, a binary tree is
distinct from an ordered tree of maximum degree 2, because the left child and the
right child pointers have special significance. Thus, in Figure 6.6, the three struc¬
tures are all equivalent as trees, although (b) is the preferred way of drawing it;
however, as binary trees, (b) is ambiguous and (a) and (c) represent the distinct

cases of nil right and nil left pointers for node C.

208 TREES

Figure 6.6 Branch Direction is Significant

Note that the transformation from tree to binary tree has a unique inverse
process. Thus in Figure 6.7(a), by interpreting left pointers as child pointers and
right pointers as sibling pointers, we obtain Figure 6.7(b) as the corresponding
ordered forest. Be careful of truly ambiguous cases where a given drawing might be
either a tree or a binary tree. For example, in Figure 6.8, what is (b)? It could be
either the binary tree corresponding to (a) or a tree whose binary tree is (c).

Apropos of binary trees, a significant observation is that they correspond to
pure Lists. Another important remark is that we sometimes deal with binary trees
wherein each node has either no children or two children; in a case of this sort, we
have a strictly binary tree (sometimes called a full binary tree). Most of this chapter
will focus on binary trees rather than on trees, partly because of their storage effi¬
ciency. However, the reader should not infer that the only significance of binary
trees is as efficient representations of ordered trees. Binary trees are important in
their own right; they are commonly the natural data structure for a problem, as we
will see in Section 6.6.

6.3 TREE OPERATIONS - TRAVERSAL SEQUENCES 209

A C G J

F

(a) (b)

Figure 6.7 Binary Tree - Ordered Forest Correspondence

A a A

E

(a) (b) (c)

Figure 6.8 Ordered Tree or Binary Tree?

6.3 TREE OPERATIONS - TRAVERSAL SEQUENCES

Recall that the primitive operations for “crawling” through a list are next(r) and
previous(r). It is apparent that for a tree the analogous operations are
oldest_child(s), next_sibling{s), and parents). Using these as a basis, the following

common operations are useful things that we can do with trees:

210 TREES

traverse{r)

search(r)

look-up{r,key,p)

insert{r,key)

delete{r,p)

split(r,key)

to systematically “visit” each node of the tree rooted at r in
some order, being certain to include each node in the tour

once and only once;

to examine some or all of the nodes of a tree rooted at r
until some result is obtained, such as a maximum or mini¬

mum value;

to determine whether the data key is located in the tree
rooted at r, and to return a reference p to its location if it is;

to insert a node containing key at some appropriate location

in the tree rooted at r;

to delete the node referenced by p from the tree rooted at r;

to split the tree rooted at r into subtrees, with the form of
the split dependent upon the location of key in the tree.

This list is not a complete one; also, it lacks precision, which cannot be fully
supplied until we specify which of many kinds of trees we intend to employ.

Our initial objective is to master that operation upon which all the others
depend, that of traversal. We will first concentrate upon traversal of binary trees,
and then indicate the analogous process for ordered trees. Imagine that we have a
compulsive squirrel who must visit each node of a binary tree once and only once,
in order to gather every available nut with no wasted motion. Obviously, he can
arrange to visit terminal nodes just once, but he must pass through non-terminal
nodes three times: coming into the left branch, going from the left branch to the
right branch, and leaving the right branch. But at only one of these transits does he
really “visit,” or do the meaningful task associated with being at the node.

A

B

C

D

E F

G H

Figure 6.9 Tree Traversal

If we stipulate that the left branch should always be visited before the right
branch, then the three cases just cited lead to three sequencing schemes for travers¬
ing a tree, as illustrated by reference to Figure 6.9:

• preorder traversal: At a given node, visit the Node itself, then the Left branch,
then the Right branch (NLR) — A B C G D E HF.

• inorder traversal: At a given node, visit the Left branch, then the Node itself,
then the Right branch (LNR) — CGBAHEDF.

6.3 TREE OPERATIONS - TRAVERSAL SEQUENCES 211

• postorder traversal: At a given node, visit the Left branch, then the Right
branch, then the Node itself (LRN) - GCBHEFD A.

Note that the leaves occur in their left-to-right order in all three sequences.

Since the tree structure is recursive, we can transliterate these three schemes into
recursive procedures. In order to do this we first define a tree node as

type link = {node;
node = record

data: {depends upon the application}
left,rite: link;

end;

The corresponding procedures are then PREORDER_R, INORDER_R, and
POSTORDER_R (Algorithms 6.1). The lines are used to indicate that, in
practice, code would need to be inserted to accomplish the purpose of the traversal.

procedure PREORDER_R (ptr: link);

begin
// visit the node ptr\ //
if ptrf.left <> nil then

PREORDER_R (ptr|.left);
if ptr| rite <> nii then

PREORDER_R (ptrf.rite);

end;

procedure INORDER_R (ptr: link);

begin
if ptrt-left <> nil then

INORDER_R (ptrt-left);

// visit the node ptr] //
if ptr| rite <> nil then

INORDER_R (ptrj.rite);

end;

procedure POSTORDER_R (ptr: link);

begin
if ptrt-left <> nil then

POSTORDER_R (ptrt-left);

if ptrt rite <> nil then
POSTORDER_R (ptrt-rite);

// visit the node ptr] //

end;

Algorithms 6.1 PREORDER_R, INORDER_R, POSTORDER_R

Preorder traversal corresponds to the sequential listing of a table of contents. It
also corresponds to the notion of dynastic succession, whereby when a nobleman (at

a node) dies, the title passes to his eldest son, and then to his eldest son, etc. with

212 TREES

younger children being considered only if there are no progeny along the line of

eldest succession.

Inorder traversal corresponds to the way in which people construct algebraic

expressions. Thus, in Figure 6.10, each operator at a non-terminal node is scanned

between its left operand and its right operand, where an operand can itself be an

expression subject to the same manner of scanning.

Postorder traversal corresponds to the way in which we recursively decompose

tasks into subtasks. When, for instance, we are assembling some object and each of

its components must also be assembled, we cannot put the object together until we

have finished putting together all of the individual components.

+

A B

Figure 6.10 Algebraic Expressions via Inorder Traversal

Traversal of a tree is a way of imposing a linear structure upon something that

is inherently non-linear. This notion of forced linearization occurs in other contexts

too. For instance, the activity of thought would seem to depend a great deal upon

extensive logical connectivity among ideas. However, when we need to communi¬

cate our ideas, the sequential nature of language forces us to impose a linear

ordering on these elements. English, being highly uninflected, relies upon close

adherence to the ordering: < subject phrase > < verb phrase > < object phrase >,

which can be regarded as an inorder traversal of a tree with < verb phrase > at the

root. It is interesting to note that other languages allow both preorder and post¬

order traversals of the same tree. Thus, in German we can have:

preorder Gestern kletterte ich auf den Baum.

inorder Ich kletterte gestern auf den Baum.

postorder (Er weiss dass) ich gestern auf den Baum kletterte.

Traversal, by linearizing a tree, loses information. Section 6.7 addresses the ques¬

tion of how the information present in the original branching structure might be

recovered.

6.4 EFFICIENT TRAVERSAL SCHEMES 213

6.4 EFFICIENT TRAVERSAL SCHEMES

For a variety of reasons having to do with efficiency, the preceding algorithms for

traversing a binary tree are not likely to be used in practice. Recall from Section

5.2.3.1 that procedure calls require a variety of bookkeeping activities to take place.

The calling environment must be saved on a stack and the called environment must

be initialized; the converse must take place on procedure return. The amount that

must be saved and restored can be large if the procedures involved are recursive.

Because of this, several alternative methods have been developed for traversing

binary trees; we will describe them in varying detail in this section. At the outset,

note that all of these methods go down each tree branch just once, and visit each

node just once, so that they are all 0(n) in time, for a tree with n nodes.

One consideration for choosing one method over another is of course the rela¬

tive sizes of their constant factors; we have already commented that this factor

tends to be large for the recursive solution. Another motif is to find the minimum

amount of working storage that is required. The traversal methods of the first two

ensuing sections — using a stack and using threads — are practical in orientation;

on the other hand, those of Section 6.4.3 — using tree transformations — have a

more theoretical flavor.

Whereas the three recursive traversal procedures (Algorithms 6.1) are symmet¬

rical, the corresponding non-recursive procedures are not. In all of these alternative

traversal schemes, we will restrict our attention to the case of inorder traversal,

since it is almost always more complicated than preorder traversal, but less compli¬

cated than postorder traversal. The extensions of the ensuing methods to the other

two traversal schemes are left as exercises.

Before we consider these methods, however, let us recall the ordered trees with

which we started. What relationship, if any, do these three orders for traversing a

binary tree have to do with the orders in which we might traverse an arbitrary tree?

There is a very simple relationship, as follows:

1. There is a preorder traversal, defined by recursively visiting first the node and

then all the children from eldest to youngest. Moreover, preorder traversal of a

tree and preorder traversal of the corresponding binary tree access the nodes in

identical sequence.
2. There is no inorder traversal for trees, since there is generally no definite middle

position between a left and right branch.
3. There is a postorder traversal, defined by recursively visiting first all the chil¬

dren from eldest to youngest and lastly the node itself. Moreover, postorder

traversal of a tree and inorder traversal of the corresponding binary tree access

the nodes in identical sequence.

214 TREES

6.4.1 Traversal via a Stack

The most straightforward response to the inefficiency associated with recursive
traversal is to transform the algorithm so that it uses an explicit stack. As the
resulting iterative procedure traverses downward in the tree, it can record the
location that it came from in the stack, and this information can be used subse¬
quently to climb back up. Since the recursive algorithm for inorder traversal calls
itself twice, it would appear that we would need to push items onto the stack at two
points in the iterative algorithm. However, note that INORDER_R (Algorithm
6.1) is an instance of the recursive schema of Figure 5.17, with U(x) void. As
discussed in Section 5.4.2, the resulting tail-recursion can be eliminated, and infor¬
mation for just one of the calls in INORDER_R need be pushed on the stack. A
“finished” and efficient algorithm is the procedure INORDER_S (Algorithm 6.2).
It employs the same type definition for a node as previously, and it takes as param¬

eter a pointer to the root of the tree.

procedure !NORDER_S (ptr: link);

var top: 0 .. smax;
stk: array [1 .. smax] of link;

begin
top := 0;
while ptr <> nil do begin {go to extreme left)

top := top + 1;
stk [top] := ptr;
ptr := ptr|.left;

end;
while top > 0 do begin

ptr := stk [top];
top ;= top - 1;
// visit the node ptr] //
if ptrf.rite <> nil then begin

ptr := ptrf.rite;
while ptr <> nil do begin {go to extreme left}

top := top + 1;
stk [top] := ptr;
ptr := ptr}.left;

end;
end;

end;
end;

Algorithm 6.2 INORDER_S

This is a fundamental scheme for traversing trees, and you should trace its
operation on, for example, the tree of Figure 6.9. The essential feature of
INORDER_S is that pointers are pushed onto the stack far enough ahead so that
when a pointer p is popped off the stack, its left subtree has already been processed;

6.4.1 TRAVERSAL VIA A STACK 215

thus, we can immediately process p and then go to its right subtree. For a
discussion of the systematic transformation of INORDER_R to INORDER_S,
consult Horowitz and Sahni [1976] and Knuth [1974]. Note that whereas we used
calls to PUSH and POP in transforming the Fibonacci examples of Algorithms 5.7,
we expose the stack as part of the process in INORDER_S. Since the trade-off is
between two lines of code and one procedure call, this is a realistic approach that
one would often choose to use. In subsequent algorithms, we will have frequent
instances of both of these approaches.

Two key issues arise in attempting to improve upon INORDER_S. One, of
course, is that we would like to further reduce the constant factor associated with
the 0(n) complexity. More significantly, in the worst case, the stack may need to be
as large as the tree, or 0(n). So an important concern is to find a technique for
traversing a tree such that the requirements for working storage are bounded and
minimal. The methods to be described in the following sections place different
emphases upon these issues.

6.4.2 Traversal via Threads

A binary tree of n nodes has In link fields, but each node except the root is pointed
to exactly once. This means that there are {n — 1) non-nil pointers, leaving (n + 1)
nil pointers in the binary tree representation. This is rather wasteful, and so it was
proposed that the unused pointer fields should be used to assist in the traversal by
storing appropriate pointer values in them [Perlis and Thornton I960]. What are
the appropriate values? That depends upon the desired order of traversal. We
confront here the tension between two notions, alluded to in Section 6.3. On the
one hand we want to retain information in a tree structure; on the other hand, we
must process that information in some linear sequence.

If there is a preferred sequence in an application, then we can use the otherwise
empty link fields in the binary tree to store threads to point to predecessors and
successors in that sequence; this can enable us to do away with a stack entirely.
However, since a given link field may contain either a child pointer or a thread
pointer, it becomes necessary to associate boolean tag fields with the two link fields,
to enable the correct interpretation. In Figure 6.11, (a) shows a binary tree with
unused link fields, and (b) shows the same tree with tags and threads suitable for
inorder traversal. In (b), child pointers are shown as solid lines with tag values of
zero; predecessor threads are shown as dashed lines with left tag values of one;
and successor threads are shown as dashed lines with right tag values of one. Note
that node D has no predecessor and node K has no successor; the corresponding
fields might contain nil’s. Alternatively, a threaded tree is often implemented with
a header node, and in that case these fields in D and K would point to the header.

An algorithm for inorder traversal of a threaded binary tree is the procedure
INORDER_T (Algorithm 6.3). In lieu of a stack of pointers, a single pointer vari¬

able is all that is required for remembering enough information to perform the
traversal. This version of the algorithm does not assume the existence of a header

216 TREES

(a) Without Threads

I_1

(b) With Threads

Figure 6.11 Threads for Inorder Traversal

node; that is, the left pointer field of node D and the right pointer field of node K
are assumed to contain nil.

There are other possibilities for using threads to assist in traversal. For
instance, the threads to the predecessor nodes are commonly less useful, and so may
be omitted, yielding a right-threaded binary tree. Similarly, one can have a left-
threaded binary tree, with threads to predecessors but not to successors. In any

6.4.2 TRAVERSAL VIA THREADS 217

procedure INORDER_T (ptr: link);

type link = {node;
node = record

data: {depends upon the application}
Itag: boolean;
left: link;
rtag: boolean;
rite: link;

end;

var tptr: link;

begin
while not ptrf.ltag do

ptr := ptrt-left;
while ptr <> nil do begin

// visit the node ptr} //
tptr := ptr;
ptr := ptr}.rite;
if not tptrj.rtag then

while not ptrf.ltag do
ptr := ptrt-left;

end;
end;

Algorithm 6.3 INORDER_T

event, with threads, we can traverse a tree with reductions in both time and space

over that required to stack traversal. Threads do require memory for the tag fields.

Depending upon the data stored at a node and whether the algorithm is coded in an

HLL or in assembler language, it may be trivial to find space for the tags, or it may

increase memory requirements inordinately.

Note that threads do not make life simpler in all cases. For instance, consider

the binary tree of Figure 6.12, which is threaded for postorder traversal, and

observe the complexity of finding the successor to node B. More generally, if a tree

is threaded for postorder traversal, it is awkward to discern the successor of a node

with a right child without traversing the tree from the root; likewise, if a tree is

threaded for preorder traversal, it is awkward to discern the predecessor of a node

with a left child without traversing the tree from the root. However, if a tree is

threaded for inorder traversal, one can easily discern both the predecessor and the

successor of any node in all cases. The predecessor (successor) is either pointed to

directly by the left (right) link, or else it can be found by following the left (right)

child link. You should satisfy yourself that this is so by studying Figure 6.11.

Inorder threading has still another virtue; it can be used to expedite preorder

traversal as well as inorder traversal (see Exercise 6.9).

Given their orientation toward preferred traversal sequences, threads provide a

mechanism that is both simple and fast for finding a desired node in a tree. On the

218 TREES

Figure 6.12 Threads for Postorder Traversal

other hand, if the operations of inserting or deleting nodes in a tree occur relatively
frequently, then the additional overhead of updating the threads will be counter¬
productive. Perhaps even more important is the issue of incremental traversal,
which is the capability of finding the successor of an arbitrary node without starting
the search from the root every time, as alluded to in the preceding paragraphs.
Except for the case of postorder traversal, threads provide this capability easily,
whereas stack-based techniques do not. A thorough analysis of the relative effi¬
ciency of using stacks and threads can be found in Brinck and Foo [1981].

f6.4.3 Traversal via Tree Transformations

Traversing a tree via threads substitutes the requirement of two additional bits at
each tree node for the requirement of an arbitrarily large working stack. Is is possi¬
ble to reduce this requirement to just one additional bit, or no additional bits, and
yet not need a stack? A moment’s reflection upon the technique of MARK_LIST
(Algorithm 4.7) suggests that the answer is yes. If we can traverse a possibly recur¬
sive List with minimal additional storage, we can certainly traverse a binary tree, or
pure List, with minimal additional storage. However, there is an important differ-

t6.4.3 TRAVERSAL VIA TREE TRANSFORMATIONS 219

ence between the situation in Section 4.4.3.1 and the situation here. In the former
case, we were able to use the isatom bit to discriminate between ascents from the
left and the right, without introducing an explicit additional tag bit. Here, the data
structure is different. We can essentially use MARK_LIST, but must introduce an
additional bit in each tree node. (It is possible to do even better and get by with a
working bit stack; the size of this stack would need to be equal to the height of the
tree being traversed.)

Are there any alternative approaches, such that no tag bits are needed, either in
the tree nodes or in a working stack? There are several, and most of them employ
the techniques of link inversion and pointer rotation discussed in Section 4.4.3.1.
Lindstrom [1973] discusses several procedures for this type of traversal. A partic¬
ularly simple case is that where the tree is strictly binary and the objective is to visit
each node at least once, but it doesn’t matter if some nodes are visited more than
once. This is actually the case, for example, in some methods for doing garbage
collection during memory management (see Section 11.2.1.1).

procedure LINDSTROM (ptr: link);

var pres,prev: link;

begin
pres := ptr; prev := nil;
while pres <> nil do begin

if ATOM (pres) then begin
// visit the node pres| //
ROTATE_2 (pres,prev);

end;
// visit the node pres\ //
ROTATE_4 (prest.leftpresj.rite,prev,pres);

end;
end;

Algorithm 6.4 LINDSTROM

The procedure LINDSTROM (Algorithm 6.4) proceeds via two simple rules,
which may best be understood by translating the strictly binary tree in Figure
6.13(a) to the maze in Figure 6.13(b). A guaranteed way to get out of the maze is
to proceed with our right hand always in contact with the wall. This corresponds to
turning right at intersections and turning around at dead ends. In LINDSTROM,

it corresponds to:

(a) cyclically permuting pointer values at each non-terminal node, and

(b) swapping two pointer values at each terminal node.

The operations of permuting and swapping are expressed with pointer rotations (see
Section 4.4.3.1). The algorithm is written with the assumption that non-terminal
and terminal nodes have different structures (since the latter have no need foi link
fields), and that this difference can be detected with the functional test ATOM (ptr).
If this is not true, then terminal nodes can be identified as those having two nil

220 TREES

(a) (b)

Figure 6.13 Lindstrom Traversal

pointers. Using these rules, the algorithm LINDSTROM actually visits each termi¬

nal node once and visits each non-terminal node three times.

There are a variety of other link inversion traversal schemes [§]; we will
describe one very briefly and then another in more detail. The first one employs
link inversions in the usual manner and also uses the empty pointer fields of the leaf
nodes to maintain a stack [Robson 1973]. This stack contains just those nodes
possessing a non-nil left subtree that has been visited and a non-nil right subtree
currently being visited. (The traversal of the left subtree will always find leaf nodes
that are available for the stack before they are actually needed.) On ascent, if the
parent node has either a nil left or a nil right pointer, there is no ambiguity. If
both pointers in the parent are non-nil, then a comparison of the parent pointer
with the value at the top of the stack resolves the ambiguity.

In answer to the question at the beginning of this section concerning the mini¬
mum necessary amount of working storage for tree traversal, Morris [1979] found a
fairly simple and extremely elegant solution requiring just two temporary registers
and no tags. Suppose that we wish to do an inorder traversal of a tree rooted at
presf, as shown in Figure 6.14(a). Here, the circles P, correspond to individual
nodes, and the triangles STj correspond to subtrees (possibly empty). If the tree
were such that pres].left = nil, then (A) we could simply visit the node pres] and
apply the process to the subtree pres].rite. But what if, as in the figure,
pres].left ± nil? In that case, (B) we seek to transform the original tree T0 to

another form 7j such that:

1. The number of left edges in Tx is less than in T0.
2. The inorder traversal of 7j is the same as that of T0.
3. The transformation is reversible.

If we can find such a transformation, then we can apply it until we have situ¬
ation (A), and the problem is solved. In fact, we can obtain Tx by finding the
rightmost edge of T0 - that is, by following right edges in the subtree pres],left -
and then adding the wiggly edge from pT to pres in Figure 6.14(b) and deleting the
edge pres].left. Tx has the same inorder traversal sequence as T0 and also has one
less left edge (and one more right edge) than T0. Finally, in order to obtain reversi-

16.4.3 TRAVERSAL VIA TREE TRANSFORMATIONS 221

(a) (b)

bility (without a stack), we do not actually delete pres].left, rather, we transform T0
to T2, as shown in Figure 6.14(c). This introduces a cycle, so that T2 is not really a

tree. However, we can use the predicate

pres] is right-reachable from pres].left

as a boolean signal to treat pres].left as though it were nil! This logic is embodied
in the procedure MORRIS (Algorithm 6.5). Note therein that when a node is
visited, we reverse the transformation simply by erasing next].rite. Variations on
this technique suitable for preorder and postorder traversal are left as exercises.

As you can see, with all of these methods, a given link field may point, at vari¬
ous instants, to a child or to a parent or even to a “cousin.” This means that the
original structure of the tree is lost until the algorithm has terminated and restored
all links to their original values. Accordingly, traversal via tree transformations
precludes reentrant traversal by more than one user at the same time. In addition,
these techniques do not afford incremental traversal. Finally, most such methods

222 TREES

procedure MORRIS (ptr: link);

var next,pres: link;

begin
pres := ptr;
while pres <> nil do

if presj.left = nil then begin
// visit the node pres] //
pres := pres}.rite;

end else begin
next := pres}.left;
while (next}.rite <> nil) and (next}.rite <> pres) do

next := next}.rite; {find "rightmost" node of tree;
if next}.rite = nil then begin {mark unmarked node}

nextt-rite := pres;
pres := presj.left;

end else begin {unmark marked node}
// visit the node pres] //
next}.rite := nil;
pres := pres}.rite;

end;
end;

end;

Algorithm 6.5 MORRIS

are rather complicated, with high constant factors. Morris’s algorithm is notewor¬
thy for its simple elegance, and is comparable in speed to traversal with a stack.

In conclusion, we mention another traversal scheme that operates by a different
principle. In Section 4.1.4 we discussed the use of the operators XOR or MOD to
combine two pointers in one physical location. If we have a tree whose structure
will not vary, then we can map it into read-only storage, and use this same tech¬
nique to compute the addresses for the traversal. In addition to the two
pre-computed link values, each node requires a single, constant bit value that indi¬
cates whether that node is a left or a right child of its parent. Further details can

be found in Siklossy [1972].

6.5 OTHER TREE REPRESENTATIONS

The entire preceding discussion has been based upon the premise that trees are to be
represented as binary trees with two distinguished pointers, left and right. In prac¬
tice, although this is very common, there are many other ways in which tree
structures are represented in machine computation. We will briefly indicate some of
these ways and also cite instances where they are used in subsequent sections.

6.5.1 OTHER LINKED REPRESENTATIONS 223

6.5.1 Other Linked Representations

A little reflection suggests that the complication in tree traversal algorithms is due
to the fact that it is easier to “climb down” than it is to “climb up.” If space for
pointers is not too tight, then the simplest solution is just to add to each node a
third pointer, to the parent of that node (see also Exercise 6.15). In this case, a
binary tree might appear as in Figure 6.15(a). This representation also yields the
capability for incremental traversal. As we have seen, threads make it easy to find
the preorder or inorder successor of an arbitrary node, but are not very helpful for
the postorder case. Triply-linked binary trees provide a mechanism that does not
have a preferred traversal sequence and that works for all three orderings [Fenner
and Loizou 1981].

As we will see, there are many applications of binary trees in which the distin¬
guished links, left and right, have interpretations that are different from those
originally introduced, eldest child and next sibling. But if we are using a binary tree
to represent an ordered tree, note the asymmetry: It is easy to find younger siblings
of a node, but not easy to find older siblings of a node. A representation that
solves this problem is illustrated in Figure 6.15(b) —(d). The tree in (b) of the figure
has been converted to a binary tree in (c), with the siblings arranged in a circular
list. In addition, if we apply the same idea to the left links that we applied in (c) to
the right links, we obtain Figure 6.15(d). In this ring structure, there are circular
lists both for the relationships “next younger sibling” and “eldest child.”

In the representations shown in Figure 6.15, the effect has been that of replac¬
ing sequential lists with the bi-directional lists and circular lists. The figure
illustrates three such possibilities; there are several others. The choice among such
representations would depend upon the relative importance of the operations of
insertion, deletion, traversal, backing-up, etc. As a final observation about linked
representations, consider the following. All of our schemes have employed at least
two link fields. Is it possible to represent a tree with just one link field? Yes, if we
are dealing with an oriented tree rather than an ordered tree! In such a case, we
can redraw the tree of Figure 6.15(a) as Figure 6.16, employing with each node a
single pointer to its father. Such a representation is the basis of an important appli¬

cation in Section 6.6.5.

f6.5.2 Sequential Storage Schemes

If we are dealing with a tree structure that is fairly static, it may be worthwhile to
dispense with pointer fields altogether. Rather, the nodes can be retained in a
vector, and additional information that encodes the tree structure can be retained in
parallel vectors. How much additional information is required? In Figure 6.17,
comparison of (a) and (b) suggests that two bits will suffice, as they are just enough
to allow for the association of two binary markers, analogous to left and right
parentheses, with each node. Figure 6.17(c) illustrates such a scheme, called marked
preorder sequential representation, wherein the markers for a node indicate whether
it has (i) younger siblings and (ii) any children. Note that although the nodes are

224 TREES

Figure 6.15 Alternative Pointer-Based Representations

fixed in preorder sequence, the two bits of information with each node are sufficient
to allow construction of the underlying tree (see Exercises 6.16 and 6.17).

Another possibility is to associate with each node a single number that specifies
the structure relative to that node. Such a number might be the degree of the node,
as in Figure 6.17(d); this is referred to as preorder sequential with degrees. Alterna¬
tively, recalling the definition of the weight of a node and retaining that number
with each node, we obtain Figure 6.17(e); this is referred to as preorder sequential
with weights. Preorder sequential with degrees allows a subtree to be modified with¬
out having to alter parent nodes of the subtree, but it requires some computation to

t6.5.2 SEQUENTIAL STORAGE SCHEMES 225

Figure 6.16 Trees with a Single Pointer per Node

A(B(EF(JK))C(G)D(H(LMN)I))

(a) An Ordered Tree (b) Corresponding List

Node A B E F J K c G D H L M N /

Sibling 0 1 1 0 1 0 1 0 0 1 1 1 0 0
Child 1 1 0 1 0 0 1 0 1 1 0 0 0 0

(c) Marked Preorder Sequential Representation

Node ABE FJ KCGDHLMNI

Degree 32020010230000

(d) Preorder Sequential with Degrees

Node A B E F J K C G D H L M N 1

Weight 13 4 0 2 0 0 1 0 5 3 0 0 0 0

(e) Preorder Sequential with Weights

Figure 6.17 Sequential Representations for Trees

226 TREES

determine the extent of the subtree from the degree information. On the other
hand, preorder sequential with weights makes it trivial to determine the extent of a
subtree, but modification of a subtree makes it necessary to update the weights of
all its parent nodes. (These concepts are reminiscent of the discussion of encoding
of variable length records in Section 3.3.) The preceding schemes apply to preorder
enumeration of the nodes of a tree; it is straightforward to devise analogous
sequential representations for postorder enumeration of nodes.

Just as oriented trees have a simple linked representation, as we saw in the
preceding section, they also have a simple sequential representation. One simply
need represent their fathers via a vector of pointers or cursors.

6.5.3 Complete f-ary Trees

The rest of the chapter following this section is concerned with two issues - the use
of trees in a variety of applications, and means of obtaining efficient tree manipu¬
lation algorithms. With regard to efficiency, a very effective strategy is to restrict
the variability in the tree structure, using a variety of means. Much of Chapter 10
will be concerned with several such strategies. One such restriction is so fundamen¬
tal, however, that we introduce it here. With this technique it is possible to
represent trees in sequential storage much more simply than in the preceding
section.

A complete t-ary tree is one with the following structure:

1. All non-terminal nodes have degree t, except possibly the last one.
2. All leaves are on at most two levels, k and k — 1.
3. Leaves at level k are to the left of leaves at level k — 1.

Thus, in Figure 6.18, (a) is a complete ternary tree and (b) is a complete binary tree.
Complete t-ary trees admit to a particularly simple sequential storage scheme, as
may be seen in the figure, where the information depicted at each node is the rela¬
tive storage address of the node. In any complete t-ary tree, the number of nodes at
successive levels is 1, t, t2, t3,.... It is straightforward to compute the location of the
parent, the children, and the siblings of a given node at location j, as demonstrated
by the following equations:

parent of j L(t +j — 2) -=-1
t'th child of j t x (j — 1) + i + 1 (for 1 < i < t) (6.1)
left sibling of j j — 1 (only if ((/ - 2) mod t) ^ 0)
right sibling of j j + 1 (only if ((/' — 1) mod t) ^ 0)

The complete binary tree is a particularly important case. Since each of us has
exactly two natural parents, it has obvious practical value for storing a family tree
in a compact manner. We will also see its utility in the discussion of priority queues
in Section 6.6.4. For a complete binary tree, Eqs. 6.1 reduce to Eqs. 6.2:

parent of j l{j h- 2)
left child of j 2 j
right child of j 2j + 1 (6.2)

6.5.3 COMPLETE T-ARY TREES 227

(b) A Complete Binary Tree

Figure 6.18 Complete Nary Trees

left sibling of j j — 1 (only if j is odd)

right sibling of j j + 1 (only if j is even)

Complete t-ary trees are important for another reason besides their simplicity of

representation. The regularity of a complete tree causes it to be a balanced tree: It

has the minimum height for a tree of that degree with a given number of nodes. At

this point, we are satisfied to use the term balance in a general, descriptive manner,

for example, in terms of balance, the trees of Figure 6.18 are optimal, the tree of

Figure 6.11 is (subjectively) not bad, and the right subtree of Figure 6.12 is quite

degenerate. In Chapters 10 and 12 we will see how the concept of balance is made

more precise in a variety of manners.

228 TREES

6.6 APPLICATIONS OF TREES

As cited at the beginning of this chapter, tree structures pervade both everyday
experience and computing applications. This section expounds on some of these
applications. A significant factor is the manner in which meaning is attached to the
nodes and to the branches; this varies with the application, as we will see.

First, we look at the use of binary trees for maintaining a sorted list. We will
introduce the concept here and explore it in a more quantitative form in Chapter
10. Then we look at expression trees and, more generally, parse trees. When they
have been constructed according to a set of grammatical rules, a compiler can use
these trees to explicitly analyze and record the component structure of a program.
We then return to issues from earlier chapters, first examining the relation between
decision tables (Section 2.3.3) and decision trees, then showing how to implement
priority queues (Section 5.1.4) via complete binary trees, and finally illustrating the
use of oriented trees for solving the equivalence problem (Section 4.2.3). Since we
do not call attention to the fact each time, it is well to note at the outset that trees
are used in many of these applications as efficient representations for sets. We will
see this accomplished in three different manners in Sections 6.6.1, 6.6.4, and 6.6.5.

6.6.1 Binary Search Trees

Imagine the following scenario. We are receiving data xu Xj, x3,... sequentially in
time. Our objective is to maintain a list of the x’s that is always in order according
to the values of the x, that have arrived. Specifically, suppose that the data consists
of the winners of the Academy Award for Best Actress, as given in Figure 6.19, and

that we wish to maintain them in alphabetical order.

1961 Loren 1966 Taylor 1970 Jackson

1962 Bancroft 1967 Hepburn 1971 Fonda

1963 Neal 1968 Hepburn 1972 Minnelli

1964 Andrews 1968 Streisand 1973 Jackson

1965 Christie 1969 Smith 1974 Burstyn

Figure 6.19 Academy Awards for Best Actress

One approach would be to use an array A [1 .. n] with constant rearranging, as
follows. First we have A [1] = Loren; when Bancroft arrives, we shuffle and get
A [1] = Bancroft, A [2] = Loren; A [3] becomes Neal; when Andrews arrives, we
shuffle and get A [1] = Andrews, A [2] = Bancroft, A [3] = Loren, A [4] = Neal;
and so forth. This process actually corresponds to sorting by insertion, as we will
see in Chapter 13. It is not a very good method for a large list, since it requires
0(n) comparisons and 0(n) rearrangements for each new item. We have already
encountered a better solution using a linked list, as exemplified by the function

6.6.1 BINARY SEARCH TREES 229

SEARCH_LIST (Algorithm 4.1) in Section 4.2.1. In that approach, the amount of
rearrangement for each new item is 0(1), since it requires changing just two links;
however, there are still 0(n) comparisons for each new item.

function BST_INSERT (nptr,rptr: link): link;

{nptr points to node to be inserted, rptr points to root}

type link = jnode;
node = record

key: {the value to be used for ordering}
left: link;
rite: link;

end;

var tptr: link;

begin
if rptr = nil then

rptr := nptr;
tptr := rptr;
while nptrj.key <> tptrf.key do

if nptrf.key < tptrj.key then begin {go left}
if tptr}.left <> nil then

tptr := tptrj'.left
else begin {insert nptr] here}

tptr}.left := nptr;
tptr := nptr;

end;
end else begin {go right}

if tptrj.rite <> nil then
tptr := tptrj.rite

else begin {insert nptr] here}
tptrf.rite := nptr;
tptr := nptr;

end;
end;

BSTJNSERT := tptr;
end;

Algorithm 6.6 BST_INSERT

Our example is somewhat fanciful. However, problems of this type, with the
items arriving considerably faster than once a year for example, cataloging the
identifier symbols in a program during its compilation or assembly - are very
common. So it is important to find a solution that overcomes the 0(n) complexity.
A common, useful method is to build a binary search tree (BST), with the property
that the value of every node is greater than that of its left child and less than that of
its right child. The function BST_INSERT (Algorithm 6.6) uses such an interpreta¬
tion of left and right to insert new nodes into the appropriate place in a constantly
growing binary tree. It combines within one function the tree operations of look-up

230 TREES

and insertion cited in Section 6.3, but it is specific to BST’s. The algorithm reflects
the usual assumption that a data item is generally a record containing a key, whose
value determines the ordering, and other pertinent information as well. We assume
that all this data is already present in the node pointed to by nptr, and that the two
link fields in that node are both preset to nil. The input parameters are nptr, point¬
ing at the new node, and rptr, pointing at the root of the tree. Upon completion,
the function returns a pointer to the location of the node in the BST containing

nptr}.key.

Figure 6.20 BST for Figure 6.19

The algorithm proceeds by forking to the left or right, as determined by the
outcomes of comparisons between the key of the new item and keys of nodes in the
tree, until either a match or a nil pointer is found. In the former case, the key
value is already present in the tree; in the latter case, it is not present and so it is
inserted. In successive years, using the data from Figure 6.19 with actress name as
key, our tree would grow to that shown in Figure 6.20. In the figure we have
simply allocated space in each node to record the award years, including repetition.
The actual processing requirements in real cases involving repetition would vary

with the application.

The binary search tree is a very important data structure. It will occupy much
of our attention in Chapter 10, where we will also learn how to delete items from
BST’s. One of the reasons for its importance is that it allows us to read off the
values in order at any time during its construction simply by doing an inorder trav¬
ersal! Whether a BST efficiently serves its purposes of look-up, insertion, deletion,
etc. depends greatly upon its balance (see Section 6.5.3). We will need to learn
some additional properties of trees, in Section 10.1.2, before we can characterize the
efficiency of BST’s for these operations. For now, making the commonly safe

6.6.2 RECOGNIZING GRAMMATICAL STRUCTURE WITH TREES 231

assumption that the tree is not badly imbalanced, we can say that the times are
proportional to the “average” height of the BST, which is 0(lg n).

6.6.2 Recognizing Grammatical Structure with Trees

In Section 5.2.3 we illustrated the use of stacks both to evaluate a postfix expression
and to convert an algebraic infix expression to postfix form. The latter conversion
corresponds to a limited form of language translation. The translation process that
a compiler must perform is considerably more complicated; it is common for this
process to be conducted by:

1. constructing a tree that represents what the program intends, and
2. traversing the tree to cause the proper machine code to be generated.

The compiling process is a large subject in its own right [Aho and Ullman 1977;
Gries 1971], Here, we will simply illustrate here how tree structures are commonly
used therein.

6.6.2.1 Expressions. In this instance, the information associated with a node is an
operator, and the children of a node are the operands for the operator, with leaves
corresponding to input data. If a program contains the expression
'(A + B*C)/(D—E)', then the compiler might generate the tree shown in Figure
6.21(a). If we perform a postorder traversal, we obtain 'ABO + DE—/', which you
should recognize as the postfix form of our original expression. If we perform a
preorder traversal, we obtain 7 + A*BC—DE', which corresponds to the prefix form

of the original expression.

Figure 6.21 Expression Trees

If we perform an inorder traversal, we obtain /A + B*C/D-E/. This is similar to
the original expression but algebraically different, because of the conventional

232 TREES

precedence rules. For inorder traversal to work properly, it must parenthesize

subtrees before incorporating them at the next level. With this proviso, inorder

traversal yields '((A+ (B*C))/(D-E))'. Note that we now have superfluous parenthe¬

ses, some of which can be pruned out. An advantage of both prefix and postfix

notations is that parentheses in expressions simply disappear as an issue.

All the discussion of this section has been predicated on the use of binary oper¬

ators such as of ordinary arithmetic. The unary minus sign, as in -X, can

be treated as 0 - X. However, this raises the question of what to do with non¬

binary operators in general. Such might be the case, for instance, in subscripting an

array or with a procedure call, as in the examples:

a 15,2* j, Jfc] , or SUB1 (s, A,y + t, SUB2 (nn [z]))

In such cases, the ordered tree corresponding to the expression might have been

converted to a binary tree, as in Section 6.2. In Figure 6.21, if (a) is now regarded

as such an ordered tree and converted to the binary tree in (b), recall that the post¬

fix expression is then obtained by an inorder traversal of the binary tree.

Note that during compilation, expressions are being manipulated symbolically;

they are not being evaluated. Such manipulation of expressions is not limited to the

process of compiling. Expression trees are also used for other symbolic manipu¬

lations, such as polynomial arithmetic, differentiation, etc.

< expression >

I
<term>

<term>

I
<factor>

< expression >

I ^
<expression> + <term>

<term> <term> * <factor>

I I
<factor> <variable>

! I
< variable > C

I
B

<factor>

I
< variable >

I
A

<factor>

Figure 6.22 Parse Tree for the Expression '(A + B*C)/(D—E)'

6.6.2.2 PARSE TREES 233

6.6.2.2 Parse Trees. We have alluded to the fact that a compiler constructs
expression trees from a source program. It does this by having at hand a formal set
of rules that enables it to recognize which portions of the input text correspond to
meaningful syntactic categories in the language. As described in Section 5.4.1, a
very common way of specifying these rules is via BNF productions. The portion of
compiling that has to do with comparing program text against these rules is called
parsing. The parsing process produces an explicit parse tree to describe the intent of
the program. We will say more about this in Section 8.6.3. For now, consider the
application of the BNF productions of Figure 5.16 to the expression
'(A + B*C)/(D—E)'. With these productions, a compiler would determine the parse
tree of Figure 6.22. Note that the leaves of a parse tree are always terminal
symbols, and that they correspond to tokens in the source program.

In a programming language with keywords — such as if ... then ... else ..., for
... to ... do, and the like — parsing is much more complicated than simply recog¬
nizing expressions and their components. In practice, the number of production
required to specify expressions down to their terminal parts is more likely to be
about half a dozen (rather than the three shown in Figure 5.16). In contrast, the
number of productions required to characterize programs properly written accord¬
ing to the grammar of that language is commonly two hundred or so. By way of
illustration, Figure 6.23 shows a typical parse tree for the following Pascal program
fragment:

fori:= 1 to 1 2 do
if a [i] < 0 then

x := x - a [i];

6.6.3 Decision Trees and Decision Tables

Suppose that we have eight coins a,b,c,d,e/,g,h and that we are told they are all of
equal weight except for a counterfeit one, which is lighter. With an ordinary
balance scale, how can we determine the bad coin in just two weighings? It is fairly
easy and very natural to depict the solution to this type of problem as a decision
tree, as in Figure 6.24. In this figure abc: def represents balancing a,b,c against
d,ej. There are just three possibilities - {a + b + c) is less than, equal to, or
greater than (d + e +f) in weight. Corresponding to each of these possibilities, we
make the appropriate second weighing at the next level of the tree. The labels on
the leaves identify the coin that has been determined to be light, according to the

outcomes of the weighings.

Decision trees have many uses beyond that illustrated by this simple puzzle.
Common examples include diagnosing situations or identifying objects, designing
logic circuits or programs, analyzing algorithms, converting decision tables to
machine code, etc. [Moret 1982]. In this section we confine our attention to the
latter application. The material in Section 6.8 uses trees for analyzing more compli¬

cated situations.

Decision tables were introduced in Section 2.3.3. There are two principal meth¬
ods for converting decision tables to executable code. One of these, the rule-mask

<
 f
o
r

st
m

t>

234 TREES

Figure 6.23 Parse Tree for a Pascal Statement

<
e
n

ti
re

 v
a
r>

6.6.3 DECISION TREES AND DECISION TABLES 235

a~ c~ b~ h ~ g- of- t~ e~

Figure 6.24 A Decision Tree

method, was illustrated in Section 2.3.3.1. This method is highly efficient in terms
of storage utilization, but it generally requires that all the conditions be evaluated at
the very beginning of the calculation, which may be unnecessary and wasteful. The
second general method for translating a decision table does not have this drawback.
It generates code for evaluating conditions sequentially, as needed; in fact, it
constructs a decision tree. Sometimes this is done interpretively, via a special deci¬
sion-table language; sometimes it is done via translation to another language, such
as COBOL or FORTRAN. In choosing among the various alternatives, a variety
of other factors relating to efficiency are likely to be of overriding importance.
However, our discussion is confined to the nature of the translation from decision

table to decision tree.

In deciding which decision tree is preferable, we must choose what measure to
apply. In fact, there are several measures that can be applied, and they often yield
different decision trees. The two most common ones are minimum time and mini¬
mum storage. These measures become both more realistic and more complicated

when information is available about:

pt = the probability of occurrence of rule Rh and/or
t = the cost (time) for evaluating condition C;.

The extent to which this additional information is useful is a moot point. The deci¬
sion table user must balance a potential increase in efficiency against the difficulty

or inconvenience of providing such data.

A more serious problem is that the determination of the best decision tree, by
any of these measures, is an intractable (that is, exponential) problem [Hyafil and
Rivest 1976]. We can easily see the plausibility of this claim via the following argu¬
ment. Let f{n) be the number of complete decision trees on n conditions. For one
condition, /(l) = 1. For n conditions, there are n ways of choosing the condition at
the root, and there are/(a - 1) possibilities for both of the subtrees. Since the two
subtrees’ can be determined independently, we obtain for n> 2 the recursive

equation

f(n) = n x 2 x /(« - 1) (6.3)

with solution

m = 2”2 ><n! (6.4)

236 TREES

Because the function f{n) grows exponentially, it is important to find better

approaches to determining the best decision tree than the brute-force method of

simply testing all possible candidates. There are two algorithmic methods that we

will encounter soon in this text, and that are commonly useful for coping with

intractable problems such as this. One is the technique known as branch-and-

bound, (see Section 6.8.3), and the other is dynamic programming (see Section

7.4.2.1). Good results have been obtained with both of these methods for the deci¬

sion tree problem. Yet another possibility is to apply one of a variety of faster

heuristic methods; these may often yield results that are within a few percent of the

optimum [§].

fll R2 R3 R4 R5

Cl Y Y N N -

C2 Y N N Y N

C3 - Y Y — N

Figure 6.25 Conditions from a Decision Table

In the interest of simplicity, we will just describe the following two heuristics

[Montalbano 1962]:

• the quick-rule method, which is to make those tests that will isolate a rule as

quickly as possible; and
• the delayed-rule method, which is to delay the tests that will isolate rules as long

as possible.

The quick-rule method is storage-efficient because it minimizes the number of

conditional tests to be generated; the delayed-rule method, on the other hand, mini¬

mizes the average number of conditional tests to be executed. It is more common

to assume that time is the critical resource, and to therefore use the delayed-rule

method. Suppose, for example, that we have the decision table with the conditions

shown in Figure 2.12, reproduced here as Figure 6.25, and that we are not using

values for /?, or tj. Then the delayed-rule technique would cause C2 to be evaluated

first, since it has the least number of don’t-care entries. Figure 6.26 illustrates how

this causes the original decision table to be factored into two sub-tables, corre¬

sponding to the values of Y and N for C2. The process of selecting conditions and

factoring tables continues until all the rules have been reached. As a condition is

selected for testing, it becomes a node in a decision tree, with branches correspond¬

ing to Y and N. If a table is factored on a condition that has a don’t-care entry,

then the rule corresponding to the don’t-care entry must be entered in both sub¬

tables. Thus, in Figure 6.26, if Cl had been selected first, then the left and right

sub-tables would have had columns for Ri, R2, R5 and R3, R4, R5.

6.6.4 HEAPS AND PRIORITY QUEUES 237

HI R4

Cl
C3

Y N

R1 R2 R3 R4 R5

Cl Y Y N N —

C2 Y N N Y N
C3 — Y Y — N

N

R2 R3 R5

Cl
C3

Y N —
Y Y N

^-Cc

R^ H4 R2 R 3

Cl Y N

Y A k n
r—(Ci)—

R5

R2 R3

Figure 6.26 Factoring a Decision Table as a Decision Tree

6.6.4 Heaps and Priority Queues

Consider a data structure for a set of items, such that we can perform the following

operations:

insert(x,priority) — to add an item with value priority to the set referenced by x,

remove(x,s) - to remove the item with largest (or smallest) priority value
from the set referenced by x and assign it to 5.

Such a structure is called a priority queue and is useful, for example, in job schedul¬
ing, in discrete simulations based upon event times, and within numerous
algorithms We will encounter several of these latter applications in subsequent
sections (see Section 6.8.3 and Section 7.4.1). The priority queue was mentioned
originally in Section 5.1.4; however, at that point we did not know how to imple¬
ment it so that it would be efficient both for enqueuing and for dequeuing.1 We will
now discover how to do this by means of a binary tree. With a BST each node is

i Note that if successive items in time always have lower priorities, then the resulting
priority queue functions as an ordinary queue. On the other hand, if successive items
always have higher priorities, then the resulting priority queue functions as a stack.

238 TREES

intermediate in value to the values of its two children. For the priority queue, we
maintain the binary tree such that the value of each node is not less in value than

the values of either of its children.

Suppose that our initial set of items is as follows:
32 41 7 15 46 87 33 55 28 9 22

We begin by placing the items at sequential locations representing the nodes of a
complete binary tree (see Section 6.5.3), as in Figure 6.27(a). We then promote
large values by comparing each non-terminal node with its two children. If any
parent is less than either of its children, we exchange the parent with the larger
child. Moreover, if a parent is demoted, we also compare it with its two new chil¬
dren, in case there is a downward ripple. The application of this rule to the original

tree yields the following series of exchanges:

15 and 55, 7 and 87, 41 and 55, 32 and 87, 32 and 33

as shown in (b) of the figure, with the final form shown in (c) of the figure. Note
how 32, after being demoted from the root by 87, is then further demoted by 33.

32

/ \ /\
15 46 87 33

/\ /\
55 28 9 22

(a) (b)

/87\
55 33

/ \ /\
41 46 7 32

/\ /\
15 28 9 22

(c)

Figure 6.27 Complete Binary Tree as a Heap

A complete tree with the order property among its nodes as in Figure 6.27(c) is
called a heap',2 this use of the word heap has no relation whatsoever to its other
meaning (a pool of storage for dynamic memory allocation, as discussed in Section
4.1.3). A heap is useful for many applications; in particular, it provides a good
representation for a priority queue. This is so because if we already have a heap,
then either operation - inserting or removing an item in the heap - can be
performed (and the heap property maintained) in 0(\g n) time. (Note that we could
also have implemented a priority queue in an ordinary binary tree, without recourse
to the complete binary tree representation. The choice to use a complete binary tree
is based upon its guaranteed efficiency.) The procedures for insertion and removal
in a heap, and for initializing it as a priority queue, are shown in P_QUEUE_H

2 The series of promotion decisions that transforms a complete binary tree to a heap
should be carried out by proceeding in reverse sequential order from the last non-termi¬
nal node to the root. Thus, in Figure 6.27(b), we began by considering 46 in location 5
and ended by considering 32 in location 1. We will address this issue more directly in
Section 13.2.1.2.1. Our present point of view is that the heap already exists, and our
only concerns are how to insert another item or how to effect the removal of an item.

6.6.4 HEAPS AND PRIORITY QUEUES 239

(Algorithms 6.7), analogously to the manner in which similar operations for an
ordinary queue were shown in Chapter 5.

For insertion, the procedure INSERT_PRQ_H takes as parameters the address
of the heap and the value of the new object. It “activates” the next array location,
and then shuffles objects downward in the enlarged heap until it finds the proper
location for inserting the new object. If we originally have the heap of Figure
6.27(c), and then insert the value 51, the node contents are exchanged as shown in
Figure 6.28(a):

7 and 51, 33 and 51

It is important that the comparisons cease when the root is reached. An effective
technique for guaranteeing this is to place a large sentinel value in the O’th location

of the array, as illustrated by the action of INIT_PRQ_H.

,87v

55

/ \
41 46

/\ /\
15

51

28 9 22

(a) Inserting 51

33 7 \

/

55

L
46

22

/
41 46

/ \ / V
15 28 9 2$.

51

/\
33 32

/

(b) Removing 87

46 51

/ \ / \
41 22 33 32

/\ /\
15 28 9 7

(c) Final Heap

Figure 6.28 A Heap as a Priority Queue

For removal, the procedure REMOVE_PRQ_H takes as one parameter the
address of the heap, and returns as another parameter the object originally at the
root of the heap. Since the heap is now smaller, the last item in the array must be
moved. We find the proper new location for it by comparing it against the other
heap values, starting just below the root and shuffling items upward in the heap as
needed. The effect is the same as if we inserted the last array item at the root,
destroying the heap property, and then restoring it via a series of comparisons and
exchanges down just one path in the tree. We illustrate this in Figure 6.28(b) by
starting with the final heap of (a), removing the largest value (87), and then apply¬

ing the changes as shown:

7 and 55, 7 and 46, 7 and 22

The final, restored heap is shown in (c) of the figure.

Several minor points should be noted about the implementation shown in Algo¬
rithms 6 7 First, we of course have to preallocate an array adequate for the largest
anticipated queue size; we have not spelled out the obvious necessity to guard
against overflow. Second, we have assumed that highest priority means largest key
value- the changes required for implementing highest priority in the sense of small¬

est key are trivial. Finally, in a real application, one might prefer to include a level
of indirection to the actual queue objects, to avoid exchanging large records during

insertion and removal.

240 TREES

program P_QUEUE_H;
const inf = {a large number, forcing INSERT to terminate at root}

prqsize = {the size of the priority queue}
type prqobj = record

priority: integer;
data: ...

end;
prq = record

count: 0 .. prqsize;
items: array [0 .. prqsize] of prqobj;

end;

procedure INIT_PRQ_H (var heap: prq);
begin

heap.count := 0;
heap.items [0].priority := inf;

end;

procedure INSERT_PRQ_H (var heap: prq; data: prqobj);
var i,j: integer;
begin

with heap do begin
count:= count + 1;
i := count; j := i div 2;
while items [j],priority < data.priority do begin

items [i] := items [j];
i := j; j := i div 2;

end;
items [i] := data;

end;
end;

procedure REMOVE_PRQ_H (var heap: prq; var data: prqobj);
label 1;
var i,j: integer;

temp: prqobj;
begin

with heap do begin
data := items [1];
temp := items [count];
count := count - 1;
i := 1; j := 2;
while j <= count do begin

if j < count then {check if node has right sibling}
if items [j].priority < items [j + 1].priority then

j :=j + i;
if temp.priority >= items [j],priority then

goto 1;
items [i] := items [j];
i := j; j := 2 * i;

end;
1: items [i] := temp;

end;
end;

begin

end.

Algorithms 6.7 P_QUEUE_H - Implementing a Priority Queue as a Heap

t6.6.4.1 ALTERNATIVE IMPLEMENTATIONS OF PRIORITY QUEUES 241

f6.6.4.1 Alternative Implementations of Priority Queues. The preceding heap
implementation of priority queues is hard to beat in terms of its simplicity and effi¬
ciency, but several factors can cause other implementations to be preferred in some
cases. For example, suppose that there are objects with equal priorities; it might be
important to treat them with a FIFO discipline. However, it is easy to see that the
heap implementation gives us no guarantee of such behavior. We could remedy the
situation by including in each queue object another field that reflects its order of
accession, so that priority then becomes a compound value, but this solution is
likely to be undesirable.

There is another, more fundamental problem. Our application may need prior¬
ity queue operations other than just insert and remove, as listed at the beginning of
Section 6.6.4. A common requirement is for the operation of

merge(x,y) — to combine the priority queues referenced by x and y into one
priority queue referenced by x.

We could certainly accomplish this by repeatedly removing items from the priority
queue at s and inserting them into the priority queue at r; but that method would
be 0(n lg n), using heaps. So we seek implementations of priority queues that can

perform all three operations in 0(lg n) time.

Alternative implementations of priority queues include p-trees, (see Exercise
6.25), leftist trees [Knuth 1973b], and some of the forms of balanced trees that we
will discuss in Chapter 10. For the case that the priorities are integers in the range
0.. n, there is an elegant, but fairly complicated implementation in which these
values are kept as leaves in an unconstructed complete binary tree. It can be shown
that this technique allows any of a variety of priority queue operations (including
insert, remove, and merge) to be performed in 0(lg lg n) time [Johnson 1982; van

Emde Boas et al. 1977].

Rather than pursue these, we will outline an implementation based upon bino¬
mial trees [Vuillemin 1978], which have interesting combinatorial properties in their

own right. One manner of defining them is as follows:

D.l A binomial tree B0 is a single node.

D.2 If U and V are binomial trees Bk_x, then by adding an edge to make U the

leftmost son at the root of V, we obtain a Bk tree.

An alternate definition is:

j)/ A binomial tree Bk has k children, of which the first is a Bk_j tree, the next is a

Bk_2 tree, ... , and the last is a B0 tree.

Both of these definitions are apparent in Figure 6.29, displaying B0 through BA. The
figure also illustrates some of the properties of binomial trees, as follows:

• Bk has height k and 2k nodes.

• Bk has \ nodes on level j (whence the name).

The nexf^tep is to generalize binomial trees to binomial forests. After that, we
can represent a priority queue by a binomial forest that satisfies the heap condition
(that is, the priority of a node is not lower than the priorities of any of its children).
Two such priority queues, P of size 3 and Q of size 6, are illustrated in Figure
6 30(a) Now, two Bk_{ trees satisfying the heap property can be merged into one Bk
tree satisfying’the heap property simply by comparing their root nodes. The gener-

242 TREES

alized merge operation for two binomial forests representing priority queues is

carried out by merging their constituent trees, from smaller to larger, and employing

“carries” that are themselves binomial trees. This is diagrammed in Figure 6.30(b),

where P and Q of (a) are combined to form the priority queue R.

Figure 6.29 Binomial Trees

Not only does this construction give us our merge operation in 0(lg n) time; . it

also becomes the basis for the insertion and removal operations! Insertion, for

example, is a special case of merging a B0 tree with the current binomial forest

representation. For removal, we first scan the forest to find the tree B} with the

highest priority root; then, we separate that tree from the forest and remove the

root, splitting that tree into its children, which constitute a binomial forest of 2J — 1

nodes; finally, we merge this forest with the original (reduced) forest.

Binomial trees provide an effective as well as pretty implementation for priority

queues. Their principal disadvantage is one that is shared in varying degree by all

of the alternatives to heaps - namely, the requirement for additional storage to

carry along various pointers. The precise amount of extra storage depends upon

various details of implementation. For binomial trees, a discussion of these details

and a detailed analysis of their performance as priority queues can be found in
Brown [1978].

6.6.5 EQUIVALENCE RELATIONS 243

(a)

Figure 6.30 Merging Priority Queues as Binomial Forests

6.6.5 Equivalence Relations

In the beginning of this chapter, we made the distinction between oriented trees and
ordered trees, and the subsequent discussion has been preoccupied exclusively with
the latter and with binary trees. A representation for ordered trees requires at least
two pointers at each node, in order to allow correct discrimination of children and
siblings Recall from Figure 6.16, however, that an oriented tree can be represented
using just one pointer from a node to its father; alternatively, we can use an array

244 TREES

and indices instead of pointer variables. Such an economical representation turns
out to be entirely adequate for a variety of operations on sets. In this section, we
will start with two very simple algorithms that provide an 0(n2) solution to the equi¬
valence problem, and then show how simple modifications to them improve

performance, first to 0(n lg n) and then to essentially 0(n).

Suppose that we have the same set of n objects, and m pairwise equivalence
relationships between the objects, that we discussed in Section 4.2.3. Those

relationships (Eqs. 4.6) are reproduced here for convenience:

18 = 12
6 = 10
8=2

11 = 5

16 = 14
9 = 1
3 = 13
7 = 19

8=18
17 = 4
9=11
3=9

16 = 6
16 = 17
3=8

19 = 15

(6.5)

We saw from the earlier discussion that there are really just three equivalence

classes, as follows:

(1,2,3,5,8,9,11,12,13,18) (4,6,10,14,16,17) (7,15,19)

In a typical application, two things are needed:

1. to process the m statements of equivalence; and
2. to ascertain some number of times, usually proportional to n, to which equiv¬

alence class a given object belongs.

We will express the fact that objects are in the same equivalence class by main¬
taining them in an oriented tree, and will represent oriented trees via indices in an
array. The basic construction for building this tree will be called UNION(ij'),
which takes two oriented trees with roots identified by indices i and j and combines
them into one oriented tree. We assume, for brevity, that the class of an object is
synonymous with the index of its root node in the array, and that root nodes are
distinguishable by having index fields of zero. The basic construction for deciding
to which equivalence class an object belongs will be called FIND(z), which takes the
index of an object i and returns the index of the root of its tree. The type and var
information for this development are as follows:

type index = 1 .. n;
extent = -n .. n;

var father: array [index] of extent;

To illustrate these processes, we will use the procedure UN (Algorithm 6.8(a))
as our first approximation to UNION and the function FI (Algorithm 6.8(b)) as our
first approximation to FIND. By way of example, consider Figure 6.31. If we have
the array shown in (a) representing the trees in (b), and if we then perform
UN(FI(2),FI(4)), the resulting array values and tree structure would become as
shown in (c) and (d). Let us apply these algorithms to Eqs. 6.5, having first initial¬
ized all the array values to zero. This would require the sequence of calls shown in
Figure 6.31(e), and would yield the array shown in (f) of the figure, representing the
oriented trees in (g) of the figure.

Note that UN requires a constant amount of work each time it is used, and so
the work to process m equivalence statements is simply 0(m). The work for FI, on
the other hand, depends upon how far one must search to find the root. Thus, if
we have the following sequence of operations:

6.6.5 EQUIVALENCE RELATIONS 245

procedure UN (i,j: index);
begin

father [i] := j;
end;

Algorithm 6.8(a) UN

function FI (i: index): index;
var k: index;
begin

k := i;
while father [k] > 0 do

k := father [k];
FI := k;

end;

Algorithm 6.8(b) FI

UN(1,2) FI(1) UN(2,3) FI(1) UN(3,4) FI(1) ... UN(« - \,n)

we will grow the degenerate tree shown in Figure 6.32(a), and the work to perform

the FIND’S will be 1 + 2 + 3 + ••• + («- 1), or 0(n2).

There are two very simple modifications that greatly improve matters. The first

is to revise UN so that it always appends the tree of lesser weight as the child of the
other tree. In order to accomplish this, we include with each root node the number
of nodes in its tree; note that this is one more than the usual definition of the
weight of a tree, wherein the root is excluded from the count. The procedure
UNION (Algorithm 6.9(a)) incorporates this feature by interpreting a positive value

+k of father [i] as a pointer to the father k of node i, and a negative value -k of
father [i] as meaning that node i is a root with a count of +k. With this simple
device, UNION is always able to append the smaller tree to the larger tree. If in

the previous sequence of operations we now replace UN by UNION and initialize
the elements of father to be -1 in value, we then grow the tree shown in Figure

6.32(b). The more typical result of using UNION is demonstrated by replacing UN
by UNION in our processing of Eqs. 6.5; this yields the array values in Figure

6.32(c), representing the trees in (d) of the figure. It is easy to show by induction

that a tree of n nodes grown with this weighting rule will always have maximum
depth lg (n + 1). As a consequence, the work to perform the same sequence of FI’s

is now 0(n lg n).

We can enhance performance even more by making another modification, this

time changing FI to the function FIND (Algorithm 6.9(b)). In it, we compress the

path from a node to its father whenever a FIND(z) operation is performed, so that

after the root has been determined, the father pointers of all the nodes on the path

from the root to node i are set to point directly to the root. In other words, if we

originally had the tree of Figure 6.33(a), where the circles are nodes and the trian¬

gles are subtrees, then a FIND operation on the node D would have the side effect

246 TREES

U N (F I (1 8), F I (1 2))
U N (F I (6) , F I (1 0))
U N(F I (8),F I (2))
U N (F I (1 1),FI(5))
U N (F I (1 6), F I (1 4))
U N (FI (9),F I (1))
U N (F I (3), F I (1 3))
U N (F I (7), F I (1 9))
U N (F I (8), F I (1 8))
UN(FI(17),FI(4))
U N (F I (9), F I (1 1))
U N(F I (3),F I (9))
U N(F I (1 6) , F I (6))
UN(FI(16),FI(17)J
U N(F I (3),F I (8))
U N (F I (1 9), F I (1 5))

/ father[i]

1 5
2 12
3 13
4 0
5 12
6 10
7 19
8 2
9 1

10 4
11 5
12 0
13 5
14 10
15 0
16 14
17 4
18 12
19 15

(e) (f)

Figure 6.31 Action of Algorithms UN and FI on Eqs. 6.5

of transforming the tree to the form in (b) of the figure. If where we originally
applied UN and FI to Eqs. 6.5, we now apply UNION and FIND, having First
initialized all the array values to —1, we obtain the array in Figure 6.34(a), repre¬
senting the oriented trees in (b) of the figure.

6.6.5 EQUIVALENCE RELATIONS 247

procedure UNION (i,j: index);

var k: extent;

begin
k := father [i] + father [j];
if father [i] < father [j] then begin

father [j] := i; father [i] := k;
end else begin

father [i] := j; father [j] := k;
end;

end;

Algorithm 6.9(a) UNION

Figure 6.32 Action of Algorithms UNION and FI on Eqs. 6.5

248 TREES

(a) Before (b) After FIND’ing D

Figure 6.33 Path Compression

function FIND (i: index): index;

var j,k,t: extent;

begin
j := i;
while father [j] > 0 do

j := father [j];
k := i;
while j <> k do begin {compress path}

t := father [k];
father [k] := j;
k := t;

end;
FIND := j;

end;

Algorithm 6.9(b) FIND

As a consequence of adding compression to FIND, the time for a given FIND
operation is about doubled. However, since the times for all subsequent FIND’s to
the same object are reduced, the effect of adding compression is very significant
when, as is common, the application has many more FIND’s than UNION’S. The

6.6.5 EQUIVALENCE RELATIONS 249

Figure 6.34 Action of Algorithms UNION and FIND on Eqs. 6.5

combined effect of UNION and FIND has been analyzed and shown to yield a
performance that is not quite as good as 0(n), but very nearly so. We will spell this
matter out in the next section; some other comments should be made at this point:

• The program EQUIV (Algorithm 4.3) is inferior to the UNION-FIND algo¬
rithm because, although they have the same time complexity, the former has

space complexity 0(m + n), as opposed to 0(n) for the latter.
• In using EQUIV, we cannot answer any questions about which objects are

equivalent until all the relationships have been processed. When, as with
EQUIV, we must read all the input before being able to obtain any answers, we
have an off-line algorithm. By contrast, UNION-FIND constitutes an on-line
algorithm because we can freely intersperse FIND’s with UNION’S without

waiting for the end of the input.
• This topic was originally motivated by the problem of determining equivalent

sets of identifiers in a program. There are other useful applications for

UNION-FIND, as we will see in the next chapter.

250 TREES

f6.6.5.1 The Ackermann Function. It is easy to show that the weighting rule for

UNION in the preceding section yields 0(n lg n) performance (see Exercise 6.27).

By using path compression with FIND as well, we obtain a complexity 0(nf(n)), for

some function f(n) that grows extremely slowly; however, it is considerably harder

to demonstrate this fact. One such demonstration obtains the specific result

0{n G(n)), where

n 2 3 ..4 5 .. 16 17 .. 216 216 _|_ 2*55536

G(n) 1 2 3 4 5

so that G(n) < 5 for all practical purposes [Hopcroft and Ullman 1973].

An even more dramatic result is obtained by using a variant of the Ackermann

function [Beckmann 1980]. This well-known example from recursive function

theory is usually defined to be A(m,n) as follows:

if m = 0 then A := n + 1
else if n = 0 then A := A (m - 1, 1) (6.6)
else A := A (m - 1, A (m, n - 1));

It is also conventional to define an Ackermann function of a single variable by

A(n) = A(n,n). The double recursion causes this function to grow extremely rapidly.

Thus, .4(1) = 3, A(2) = 7, and (3) = 61. But remarkably, considering that the only

increasing arithmetic operation is n + 1,

A(4) = 2T2T2T2T2T2T2 - 3 > 10191"

where | denotes exponentiation. This latter number vastly exceeds the estimated

number of particles in the universe!

Tarjan [1975] defines an even faster growing variant of the Ackermann func¬

tion to be A'(m,n) as follows:

if m = 0 then A' := 2n
else if n = 0 then A' : = 0
else if n = 1 then A' := 2 (6.7)
else A' := A' (m - 1, A' (m, n - 1));

For A'(n) = A'(n,n), as before, we find that A'(4) > 2t2f2f ...]2 for a stack of

65536 2’s! Finally, he introduces an inverse:

a(n) = the least r such that n < A'(r) (6.8)

His net result is that the UNION-FIND algorithm has a complexity that is

&(n a(«)). We see that a(n) < 4, for all practical purposes, with a growing fantas¬

tically more slowly than even G(n).

t6.7 ENUMERATION OF TREES 251

t6.7 ENUMERATION OF TREES

The question of how many different trees there are of a specific kind with just n
nodes is fascinating in its own right. But also, for combinatorial applications
involving searches in tree structures, it is important to know a priori just how large
the search space is. By way of introduction, we address an issue that was alluded to
when first discussing traversal. Traversal linearizes a tree structure; how can that
structure then be recovered? Consider a binary tree with preorder traversal
ABDEHICFJG and with inorder traversal DBHEIAFJCG. Its root must
then be A, and its left subtree must contain DBHEI. In the left subtree, D must
be the left child of B, and the right subtree of B must contain H EI. Going on in
this fashion, we discover that the original tree must be as shown in Figure 6.35.

Figure 6.35 Reconstruction of a Binary Tree From Its Traversals

So we see that knowledge of the inorder traversal of a binary tree along with
knowledge of the preorder traversal (or of the postorder traversal) is sufficient to
allow reconstruction of the original binary tree. If we have a preorder traversal that
is 1,2,... ,n, then the inorder traversal is just some permutation of the first n integers.
How many of the n\ possible permutations correspond to attainable binary trees on
n nodes? For n = 3, we find that the possibilities are just those in Figure 6.36(a),
with inorder traversals shown in (b). It may seem surprising, at first, that these
traversals are exactly the same as the output sequences that can be obtained using a
stack on the input sequence 1,2,3 - that is, the stack permutations (see Section
5.2.3). But this is not surprising after all, when we recognize that the stacking and
unstacking sequences (c) used to obtain the outputs (b) are exactly the same as the
stacking and unstacking sequences used in INORDER_S (Algorithm 6.2), when
traversing the corresponding binary tree in (a).

To generalize our result from three nodes to n nodes, let b„ be the number of
possible trees on n nodes. The number of such binary trees is the sum of all possi¬
ble binary trees containing a root and a left subtree of j nodes and a right subtree of
n — 1 —j nodes. This can be expressed as

K = KK-X + b\bn_2 -bn-\bo (6.9)

252 TREES

% 1 2 3 S U S U S U
(root) ©A A

Q

(3)

(2) 1 3 2 S U S S U U

(root)

0 ©
©

2 1 3 S S U U S U

(root)

A ®
(2)

(2)

(?)

© 2 3 1 S S U S U U

C root)

A
s® 3 2 1 S S S U U U

(root)

(2)

©
(a) Binary (b) Inorder (c) Stack (d) Ordered

Trees Traversal Operations Trees

Figure 6.36 Stack Permutations

An explicit solution for this recurrence equation can be obtained through the use of

generating functions [Knuth 1973a; Liu 1968]. In this approach we try to find a

polynomial in the variable x, such that the coefficient of xn is the desired number bn.

The method proceeds along the following lines. Let

B(x) — ^ bnxn (6.10)

be the generating function for the number of binary trees on n nodes. Then, we

observe that

t6.7 ENUMERATION OF TREES 253

B2(x) = {bG 4 bxx + b2x2 + -) (60 + bxx 4- b2x2 + -)

= b0b0 4- {b(px + bxb0)x 4- (b()b2 4- bxbx 4- b2bo)x2 + •••
n (6-11)

= Z Yj’h-i*"
n> 0 7=0

Comparing this with the equations for R(x) and bn, we see that the coefficient of xn
in B2(x) is the same as bn+v This leads us to

xB2(x)=B(x)- 1 (6.12)

A solution for this quadratic equation in R(x) is

B(x) = -^(l - 7(1 - 4x)) (6.13)

Finally, use of the binomial theorem to expand 7(1 — 4x) , followed by various
simplifications, yields

() = 1)())"" (614)
n>0X y

= 1 + x + 2x2 4- 5x3 + 14x4 4 42x5 4 — (6.15)

The coefficients bn are the intriguing Catalan numbers [Cohen 1978], which occur in
the solutions to numerous problems of a combinatorial nature.

Recall that there is a one-to-one correspondence between binary trees on n
nodes and ordered forests on n nodes. If now, for each such forest on n nodes, we
connect the root of each tree in the forest to a common parent node, then we obtain
all ordered trees on«4l nodes. Thus, the number of ordered trees on n 4 1 nodes
is the same as the number of binary trees on n nodes. These are shown, for n = 3,

in Figure 6.36(d).

What about oriented trees and free trees? For a given number of nodes n, what
is the distinct number of each of these? These trees specify less information than is
contained in the ordered trees on n nodes. The answers can be obtained by generat¬
ing functions again [Knuth 1973a]. The results are:

C(x) = x + x2 4 2x3 4 4x4 4 9x5 + - (6.16)

for the number of oriented trees on n nodes, and

D(x) = x 4 x2 4- x3 4- 2x4 4 3x5 4- - (6.17)

for the number of free trees on n nodes. Figure 6.37 depicts the 14 ordered trees on
5 nodes (remember that the number of ordered trees on n nodes is the same as the
number of binary trees onn-1 nodes). They are arranged in 9 boxes correspond-

254 TREES

ing to the distinct oriented trees on 5 nodes, and in 3 rows corresponding to the

distinct free trees on 5 nodes.

All of the preceding discussion presumes that the n nodes are indistinguishable.
However, there are cases where this is not so, when the tree nodes are labeled. The
enumerations in these cases are fairly simple to derive. For ordered trees, each of
the n\ labelings of the bn_x trees is unique, so that there are n\b„_x labeled, ordered
trees on n nodes. The formula for the case of labeled free trees was discovered by
Cayley, one of the earliest investigators of trees, in 1889. It states that the number
of distinct labeled, free trees on n nodes is «"~2. We will conclude this section by
deriving Cayley’s formula. But first we observe that, having this formula in hand,
the n choices of a root yield n distinct oriented trees for each free tree; thus the
number of distinct, labeled oriented trees on n nodes is nn~x. Table 6.1 illustrates
the six cases that we have discussed, for several values of n.

Cayley’s formula can be proved by demonstrating a one-to-one correspondence
between the labeled free trees on n nodes and the sequences of length n — 2 over the
set of integers {1 .. n}. To do this, we systematically delete leaves and edges from a
labeled free tree, as follows:

(a) Find the leaf with smallest label, output the label of its father, and delete the
leaf and the edge to its parent.

(b) If there are just two nodes remaining, stop; otherwise, repeat step (a).

When applied to the tree of Figure 6.38, this procedure deletes the edges in the
order shown in the figure, and generates the sequence 7, 1, 2, 6, 7, 1, 6.

On the other hand, any sequence S of n — 2 values from the set {1 .. n} can be
used to generate a unique labeled, free tree. In the case of a free tree, the degree of
a node corresponds to the total number of edges impinging on the node, and this
value will be one more than the number of occurrences of that node label in S; to

f6.7 ENUMERATION OF TREES 255

n
labeled

ordered
labeled
oriented

labeled
free ordered oriented free

2 2 2 1 1 1 1
3 12 9 3 2 2 1
4 120 64 16 5 4 2
5 1680 625 125 14 9 3

6 30240 7776 1296 42 20 6
7 665280 117649 16807 132 48 11
8 2097152 262144 429 115 23

9 4782968 1430 286 47

10 4862 719 106

Table 6.1 Number of Trees of Each Type

Figure 6.38 Cayley’s Construction

see this, note that a node label is recorded in S only when that node is non-terminal

at some point. This leads to the process:

(c) Let N = {1 .. n}, and let S = su s2,..., s„_2.

(d) For i the smallest value from the set N that does not occur in the sequence S,
construct an edge between node i and node % and then delete i from N and sx

from S.

(e) If S is non-empty then repeat step (d) with the reduced values of N and S;
otherwise, construct an edge between the two nodes left in N, and then stop.

By referring to Figure 6.38, we see that the application of this process to the
sequence 5 - 7, 1, 2, 6, 7, 1, 6 causes edges to be introduced with the same unique
ordering and generates the original labeled, free tree. Thus, by the uniqueness of
this correspondence, we have a canonical representation for free trees, and therefore

also for oriented trees.

\

256 TREES

f6.7.1 Ranking Functions for Trees

The preceding section dealt with one aspect of combinatorial reasoning about a set
of objects, that of counting how many such objects there are. Having determined
that there are N such objects, a further objective is to derive a correspondence
between the values l .. N and the objects themselves. In other words, we would like
to be able to find a ranking function from the domain of trees to the range of inte¬
gers, so that we could refer to the z'th tree of a certain type. This capability has

several practical consequences:

• If many trees must be stored or archived, there can be substantial savings in

memory requirements.
• We can be sure to generate all of the trees 7j, T2,..., TN.
• Moreover, we can generate the trees “in order.”
• We can compare two trees 7) and 7} by applying the ranking function (f> to both

of them, and comparing </>(7}) and 0(7}).
• We can obtain a random tree by first generating a random number i between 1

and N, and then using the inverse ranking function 4>~l to construct the tree

7}. = 0-HO.

We begin by noting that for free or oriented trees with labels, the Cayley corre¬
spondence already gives an encoding whereby we can compute the kth Cayley
sequence, and then construct the corresponding tree. However, we are more often
interested in unlabeled ordered trees or, equivalently, unlabeled binary trees. There
are actually several very different correspondences between these trees and
subranges of the integers. A natural ordering on binary trees 7} and 7} can be
obtained by recursively comparing the sizes of their left and their right subtrees.
This serves as the basis for a scheme that orders binary trees lexicographically by
their shapes, and then relates these shapes to various permutations. Such an order¬
ing is illustrated by the vertical sequence of trees in Figure 6.36(a). Whereas, in
that figure we labeled the nodes in preorder and read them in inorder, it is instruc¬
tive now to label them in inorder, in Figure 6.39(a). Then if we read them in
preorder, we obtain the tree permutations, as shown in (b) of the figure; and if we
read them in postorder, we obtain the stack permutations again (though in a differ¬
ent sequence) in (c) of the figure. Both of these sets of permutations, and others as
well, have been used as the bases of ranking functions for binary and t-ary trees [§];
that is, they are used to exhibit a correspondence between the z'th permutation and
the zth (unlabeled) tree.

By using the level numbers of the leaves of a tree, we can obtain an entirely
different ranking function. We begin by appending leaf nodes to the original nodes
of the tree wherever it is possible to do so, creating an extended tree from the
original tree. For the five binary trees of Figure 6.36(a), we obtain the five
extended (and strictly binary) trees of Figure 6.40, with the original internal nodes as
circles, and the appended external nodes as squares. It is not hard to see that, if the
original tree had n nodes, then the extended tree has n + 1 leaves. (Why?) In

Figure 6.40, each leaf is labeled with its level, and the level sequences are shown

below each tree. Now suppose that we are given a set of positive integers {a,}.
Under what circumstances can these values, for some orderings, represent the level

t6.7.1 RANKING FUNCTIONS FOR TREES 257

\ 1 2 3 3 2 1

1 3 2 2 3 1

gAd
2 1 3 1 3 2

3 1 2 2 1 3

/ 3 2 1 1 2 3

(a) Binary (b) Tree (c) Stack
Trees Permutations Permutations

Figure 6.39 Tree Permutations

numbers of the leaves of a strictly binary tree? It can be shown (see Exercise 6.30)

that a necessary and sufficient condition is that

^Va'=l (6.18)

An ordering of the set {a,} for which this condition holds is called a feasible
sequence, and it is fairly straightforward to construct ranking functions based upon

such sequences [§].

There are many variations to the solution of the ranking problem, and the best
method is not easily chosen. Note, though, that there are three aspects to the use of

these methods:

1. to be able to compute i = f(T), for a tree T\
2. to be able to compute T = for an index value i;

258 TREES

3 3 3 3

Figure 6.40 Feasible Sequences

3. to be able to compute the next encoded representation (tree permutation, stack

permutation, feasible sequence, etc.), in order to generate the next tree.

Several of the methods cited provide these capabilities in 0(n) time, and they have

been applied, for example, to the detection of isomorphic subtrees.

6.8 SEARCHING FOR SOLUTIONS IN TREES 259

6.8 SEARCHING FOR SOLUTIONS IN TREES

For a large class of problems, the method of solution is to search among the nodes
of a tree. This is not the same as traversing all the nodes of a tree, since we may be
able to find the solution without visiting some of the nodes. Nor is it like searching
for a specific item, such as a name in a telephone directory, since the criteria for
having a solution can be much more complicated, involving various global features
of the tree space. Problems of the sort that we are describing are particularly
common in the area of endeavor known as Artificial Intelligence (AI) [Nilsson
1980; Raphael 1976; Winston 1977]. Examples include: proving theorems, play¬
ing non-trivial games, “understanding” natural language, “understanding” pictures,
controlling robots, and diagnosing illness in humans.

As a first attempt for solving such problems, we can systematically visit every
node in the tree. After such an exhaustive search, we may know more than we need
to know, but we will by then have found the solution. However, since a t-ary tree
of depth d has Of*) nodes, this brute-force approach is not feasible for many large,
real-life problems. In such cases, techniques for focusing and restricting the search
are crucial. We will begin by examining two comparatively simple approaches; this
material leads us, in Section 6.8.2, to the topic of backtracking. Section 6.8.3
presents the very useful branch-and-bound technique for restricting the search space.
Finally, we discuss the use of trees as applied to game playing.

6.8.1 Exhaustive Search Strategies

Let us consider the problem of finding the shortest path from the root of a tree to a
leaf, where the branches have associated weights that we can regard as distances.
The tree in Figure 6.41 will serve as an example. To begin with, we might look at
all the nodes at level 1 to see if any of them are leaves. If so, we would then pick
the leaf at minimum distance. If none of the nodes at level 1 are terminal, we could
then examine all the nodes at level 2 and again check for any leaves, repeating this
process for successive levels until we finally found a leaf. Of course, if the distances
were all the same, the task would really reduce to finding the leaf at the shallowest
level, and we would then have obtained our objective. However, the distances in
the figure are not equal, and we do not obtain a solution so easily. Instead, we will
examine all those non-terminal nodes with partial distances less than that of the
leaf. For these nodes, we will keep extending them by their descendants until either
we find a leaf that is closer, or else none of the partial distances is less than that of

the best leaf found so far.

This method, known as breadth-first search (BFS), can be viewed as search that
proceeds in ever-broadening concentric circles. It calls for the use of a queue, with
it, as nodes on level k of the tree are removed for processing, their descendants on
level k + 1 are inserted for subsequent processing. In this approach, we can use the

current best leaf value to restrict the search in two ways:

• to bypass enqueuing nodes whose distance already exceeds that value,

260 TREES

Search Discard Bypass Minimum At

A B C D E F 88 F

G 52 G

H 1 49 1

J K L M N 49 1

0 P Q R S T 42 P

U V W X 42 P

Figure 6.42 Breadth-First Search

• to discard dequeued nodes whose distance exceeds that value.

If we apply BFS to our tree of Figure 6.41, we will examine the nodes as shown in

Figure 6.42. We know, for instance, to discard the nodes K,L,M,N, since they are

all at a greater distance than the current best leaf value of 49 at I. We later know

to bypass the nodes R,S,T, since they are already at a greater distance than the

current best leaf value of 42 at P. On the other hand, even after P has been

located, we must still examine some nodes in the subtree at node O with a distance

of 37, until it is certain that there are no leaves with lesser distances at deeper levels.

Note that when O is searched / is still the best leaf; thus U at 48 is enqueued and

later discarded, whereas V at 50 is bypassed immediately.

6.8.1 EXHAUSTIVE SEARCH STRATEGIES 261

Let us consider how BFS might be implemented. First, we decide to represent
the tree of Figure 6.41 as the corresponding binary tree, as shown in Figure 6.43.3
In so doing, we associate distances with nodes rather than branches; namely, the
distance from a node to its zth child is uniquely associated with that child. The

corresponding node definition is then

type link = fnode;
node = record

cost: integer;
left,rite: link;

end;

Next, for obtaining the queue functions, we can employ either of the queue imple¬
mentations, Algorithms 5.1 or 5.2. The final procedure is BFS_TREE (Algorithm
6.10), with input parameter root pointing at the tree to be searched, and output
parameters goal and best identifying the location and distance of the winning leaf.

With breadth-first search, if you imagine yourself to be the searcher and the

tree to represent alternate paths through a maze, then while you will certainly find
your way out, it may cost incessant tracing and retracing of your steps. A different
(more reckless? more optimistic?) method is depth-first search (.DFS). It presumes
that the tree to be searched is of bounded depth, and it proceeds as far as it can

3 Note that our search really applies to an oriented tree, and that the de facto ordering is

not significant.

262 TREES

procedure BFS_TREE (root: link; var goal: link; var best: integer);

type qobj = record
base: integer;
ptr: link;

end;

var datum,defer: qobj;
next: link;
total: integer;
wait: {queue type}

begin
best := maxint;
INITQ (wait);
defer.base := 0; defer.ptr := root;
ENQUEUE (wait,defer);
repeat

DEQUEUE (wait,datum);
if datum.base < best then {test for discard}

if datum.ptr}.left = nil then begin {a leaf}
best := datum.base; goal := datum.ptr;

end else begin {process children}
next := datum.ptr}.left;
repeat

total := datum.base + next}.cost;
if total < best then begin {test for bypass}

defer.base := total; defer.ptr := next;
ENQUEUE (wait,defer);

end;
next := next}.rite;

until next = nil;
end;

until EMPTYQ_L (wait);
end-

Algorithm 6.10 BFS_TREE

down one sequence of branches until reaching a leaf. With that leaf value in hand,

it begins backing up and exploring other possibilities, except where the partial

distance at a node is already greater than the distance to the best leaf so far.

Whereas the technique of BFS called for a queue, the technique of DFS calls

for a stack, in order to remember where to back-up to. This time the current best

leaf value can be used to limit the work by indicating when entire subtrees should

be pruned and not searched further. When applied to the same tree in Figures 6.41

and 6.43, DFS causes the nodes to be examined as shown in Figure 6.44. We

know, for instance, to prune the nodes W,T,F, since they are all at a greater

distance than the current best leaf value of 81 at R. Later we prune the entire

subtree at node V, since its distance of 50 is greater than the current best leaf value

6.8.1 EXHAUSTIVE SEARCH STRATEGIES 263

Search Prune Minimum At

A B E M 83 M
N R 81 R
S W T F 81 R
C G 52 G
H 0 U 48 U
J P V (X) / 42 P

D K L (Q) 42 P

Figure 6.44 Depth-First Search

We eventually locate P at 42, but must still search the subtree of distance 12 at D to

ensure that there is not a better solution therein.

An implementation of DFS for this problem is the procedure DFS_TREE

(Algorithm 6.11), with input parameter root pointing at the tree to be searched, and
with output parameters goal and best indicating the location and the distance of the
winning leaf. Since it is natural to express depth-first search with a stack, it should
not be surprising that it can also be expressed recursively (see Exercise 6.32). We
choose to employ a stack not so much for reasons of efficiency as to expose the

nature of the backtracking that takes place in DFS. In this process, we alternate
our direction of tree exploration between forward and backward. A handy device
to control this is the familiar use of a variable state to control the flow of calcu¬
lation. As a minor point, note that a boundary value of stack [0\base = 0 is used.
There is much more to be said about backtracking per se, but that is the subject of

the next section.

It is easy to see that DFS can be just as inefficient as BFS, although in a differ¬

ent manner - in this case, by wasting a lot of time exploring sub-optimal branches.
From the advantage of a global point of view, it is too easy to see wherein these
methods are inefficient in the tree of Figure 6.41. But when such a perspective is

not possible - for example, if the figure is made more complicated by several
orders of magnitude - then our view of the problem comes closer to the myopic

view of a computer, and it is not so easy to be so wise. Much of the remainder of
Section 6.8 addresses ways to try to attain some of the wisdom of this global

perspective. What can be said, in the meanwhile, about BFS versus DFS? The
most important point is that one should try to suit the method to the problem. In

our example, for instance, if all the distances were the same, then the problem
would reduce to finding a leaf of minimum depth, for which BFS would clearly be

superior. BFS is also a good method where it is possible to employ parallel search,

and it is safer than DFS in that it will always succeed eventually (even if much later
in some cases). The shape of the search tree is extremely significant. If problem

states can recur, as in searching a maze, then DFS can completely fail, unless there
is a solution along the leftmost branch. Nonetheless there are other situations
wherein DFS will be superior. A distinct and important consideration, also, is the

amount of working storage required. For a /-ary tree of depth d, the size of the

DFS stack is just 0(d), but the size of the BFS queue is 0(tci). Finally, we have

illustrated BFS and DFS with the particular example of finding the shortest path

264 TREES

procedure DFS_TREE (root: link; var goal: link; var best: integer);

type stkobj = record
base: integer;
ptr: link;

end;

var datum: stkobj;
next: link;
state: (frwd,bkwd,done);
stack: array [0 .. smax] of stkobj;
top: 0 .. smax;

begin
state := frwd;
best := maxint; next := root;
stack [0].base := 0; top := 1;
datum.base := 0; datum.ptr := root;
stack [top] := datum;
repeat

case state of
frwd: begin

if datum.base >= best then {test for pruning}
state := bkwd

else if datum.ptr}.left = nil then begin
best := datum.base; goal := datum.ptr;
state := bkwd;

end else begin {look deeper in tree}
next := datum.ptr}.left;
datum.base := datum.base + next}.cost;
datum.ptr := next;
top := top + 1; stack [top] := datum;

end;
end;
bkwd: begin

while (top > 0) and (stack [top].ptr}.rite = nil) do
top := top - 1;

if top = 0 then
state := done

else begin {adjust value on top of stack and retry}
datum := stack [top];
next := datum.ptr}.rite;
datum.base := stack [top - 1].base + next}.cost;
datum.ptr := next;
stack [top] := datum;
state := frwd;

end;
end;

end;
until state = done;

end;

Algorithm 6.11 DFS_TREE

6.8.1 EXHAUSTIVE SEARCH STRATEGIES 265

from the root to the leaf in a tree. Such search methods can be applied to many
other problems where the criteria for a solution may be very different; correspond¬
ingly, the details of the new algorithms may be different. There may not even be a
tree data structure, as we will see in the next section! Yet the paradigms of BFS in

a solution tree (with a queue) and DFS in a solution tree (with a stack) will remain,
causing the new algorithms to have some essential similarities.

f6.8.2 Backtracking

Consider the following generalized problem:

1. We have m sets Xx, X2,..., Xm with respective cardinalities Ny, N2,..., Nm.
2. We wish to find an m-tuple of values xXi, x2J,... from the sets Xx, X2,..., such

that some criterion function <b(x,„ x2J,...) is satisfied; for example, <1> is true, <D
is maximized, etc.

There may in fact be no such m-tuples, or one, or many. We can certainly express

the solution in terms of nested iterations, as follows:

for i := 1 to N [1] do
for j := 1 to N [2] do

{Test that ® (x [1 ,i], x [2,j], ...) is satisfied}

We can represent the course of the computation as a tree wherein the index i varies
on level 1, the index j varies on level 2, etc. The complexity of such a solution will
be 0{NxN2 ... NJ, corresponding to the number of leaves that are on the bottom

level of the tree.

In a sense, we could say that backtracking is taking place in the process just

described, but it is backtracking of a very rigid sort. The true sense of the term
refers to the case where various constraint functions are used to restrict the search by
pruning subtrees, as in the preceding section. As we examine the members of the
sets in lexicographical order, if we have determined candidates for the first k - 1
positions of our H-tuple, and if the next candidate for the kth position of the tuple
can be rejected out of hand, then we have saved Nk+X... Nm evaluations. The

constraint functions will be very different for different problems and can also vary
considerably at the various levels of the tree for any given problem. There is a
trade-off between the complexity of computing constraints to avoid computation

and the complexity of simply evaluating a subtree. In the extreme case, with suffi¬
ciently sophisticated constraints, we may not have to backtrack at all! The more

common case is that it will be feasible and worthwhile to compute some constraints,

and that some backtracking will take place [§]. We will confine our attention to

two issues in the ensuing sections. The first is to illustrate some issues about back¬

tracking that did not appear in our discussion of DFS and to consider the efficiency

of the method. The second is to relate backtracking to the concept of nondeter-

ministic algorithms.

266 TREES

f6.8.2.1 Systems of Distinct Representatives. Suppose that we have the sets

S{ = {2,3,4,5}, S2 = {3,5}, S3 = {1,2}, S4 = {2,5}, 55 = {2,3} (6.19)

and that we wish to pick one element as a representative from each set, but that the
representatives of the sets must all be distinct. Such a situation might arise when an
organization has many committees with overlapping memberships. If this organiza¬
tion must send a representative from each committee to general meetings scheduled
in parallel, then the lack of a System of Distinct Representatives (SDR) will cause
the organization to be unrepresented in some matters. The SDR problem certainly
fits into the general backtracking scheme that we described in the previous section.
The criterion function in this case is that each committee should have a represen¬
tative, and the constraint is that no two representatives can be the same member.
Let us see how the backtracking solution proceeds in this case. An important
consideration at the outset is whether we wish to look for just one solution, or all

possible solutions. Here, we will look for all of them.

Using the backtracking technique, we generate elements xX i, Xr,j,... of our
m-tuple solution in succession. When we have candidates in the first k — 1 posi¬
tions, but cannot find a candidate in the kth position, then we need to discard the
current candidate in the (k - l)th position and try again. However, we may have to
discard much more than the current value of the (k — l)th candidate; the values of
many other variables may have been affected also. Sometimes we can reverse all
the necessary calculations to undo matters. It is often easier and safer to save on a
stack the values of variables subject to change, and simply restore them from the

stack when backtracking.

For the SDR problem, we can expect to find cases where there is no available
candidate from the kth set, consistent with the first k — 1 choices. Although it is
simple, in this case, to delete a member from a set in order to restore matters, it is
more instructive to imagine that we maintain a global variable active that records
which members of the universal set have already been assigned. When making a
forward step, we stack the value of the index in the current set and the value of
active; when making a backward step, we restore the previous values of the index
and of active from the stack. Whichever method is used to restore the previous
environment, the solution tree for finding SDR’s for the sets of Eqs. 6.19 is shbwn
in Figure 6.45, where the O’s indicate nodes that are expanded, and the X’s indicate

nodes where pruning occurs.

One of the problems associated with backtracking is the large uncertainty about
how effectively the constraints will prune subtrees. Apparently trivial tinkering with
a backtrack program can cause orders of magnitude difference in their efficiency.
Since in some problems we do not know if there exists even one solution, there is
the prospect of having a machine run for hours, and then not knowing if an answer
is minutes or centuries away. Some relief from this dilemma can be obtained by
Monte Carlo estimation techniques [Knuth 1975]. Here, we will simply point out
one commonly effective way to tinker with a backtracking algorithm.

In our SDR problem, we examined the sets in their given order. Set Sx has
cardinality 4 and so the branching factor at level 1 was 4; S2 has cardinality 2 and
so the branching factor at level 2 was 2; etc. Now backtracking is able to prune
one subtree at a time. At level 1 in our problem, this amounts to discarding 1/4 of

t6.8.2.1 SYSTEMS OF DISTINCT REPRESENTATIVES 267

X

C
M

268 TREES

the subtrees; at level 2, it amounts to discarding 1/2 of the subtrees, etc. It is
often more effective to rearrange the solution tree so that the nodes of lesser degree
are nearer the root. This makes it possible to eliminate larger subtrees with single
prunings, rather than smaller subtrees with repeated prunings. In fact, if we do this

by relabeling the sets as follows:

-S' \ — Sj, S 2 — ‘S'3, S3 — S4, S 4 — S5, S 5 Si

then the solution proceeds as in Figure 6.46 rather than as in Figure 6.45. For this
trivial example, the reordering reduces the number of nodes that have to be
expanded from 30 to 15, and the execution time is reduced in the same ratio. For
larger problems the difference can be enormous. The reordering that we illustrated
with this example is a static one, wherein the nodes on a given level all correspond
to the same set, and so have the same degree. More sophisticated forms of back¬

tracking allow for:

• arranging the levels of search dynamically;
9 suspending the search of a subtree S if it appears to be unprofitable, and exam¬

ining other parts of the solution tree, with the capability of resuming the search

of S later.

Although we are happy to have an algorithm to solve the SDR problem, as demon¬
strated in this section, we note that its complexity is exponential in the number of
sets. In Section 7.4.3, however, we will discover more powerful methods for dealing

with the problem.

O

X X O X
2 3 4 5

X X O X
2 3 4 5

Figure 6.46 A Superior Backtracking Solution to Eqs. 6.19

f6.8.2.2 Nondeterministic Algorithms. One way of viewing our backtracking
solution to the SDR problem is that we kept making guesses at the solution until we
found it. In order to make such guessing games work properly in a program, under

t6.8.2.2 NONDETERMINISTIC ALGORITHMS 269

the name of backtracking, we have to be quite careful about various bookkeeping
details. A very useful abstraction is obtained by allowing an algorithm to employ
the following three idealized functions:

choice(X) — which selects values of a variable X;

failure(node) — which causes a path of computation in a solution tree to be
abandoned at that node;

success(leaf) - which causes the algorithm to terminate, with the solution
available via the selected values leading to that leaf.

At a pragmatic level, these functions are implemented in terms of backtracking
with a stack, in much the same manner that recursion is implemented with a stack;
but it is useful to imagine that they are implemented by either of the following two
methods:

A. Whenever there is a choice to be made, the machine clones itself as many times
as there are possibilities, and then each of the choices is investigated in parallel
by one of these machines.

B. Whenever there is a choice to be made, the machine is able to guess which
choice will lead to a solution, and then that course is the one pursued.

An algorithm operating in either of these fashions is called a nondeterministic algo¬
rithm. The concept of nondeterministic algorithms was pioneered by Floyd [1967],
and a review of the subject can be found in Cohen [1979a].

Of course, we don’t know how to have a machine duplicate itself indefinitely,
nor do we know how to construct a machine that will always make a correct guess.
Nonetheless, it seems evident that either capability, A or B, should yield a signif¬
icant advantage in solving problems. The reason for this is simply that we could
then explore a solution tree in time proportional to its depth rather than in time
proportional to the exponential number of its nodes. Now, the following type of
problem occurs rather frequently: The solution of the problem requires exponential
time, but once knowing a solution it takes just polynomial time to confirm it. An
example of this would be the SDR problem as we have described it. If we are told
that a given ra-tuple is a solution to this problem, then it requires just polynomial
time to verify the assertion. Not knowing the answer though, it requires exponen¬
tial time to explore all the branches of the solution tree. Nonetheless, since the time
to explore any single path is polynomial, a nondeterministic algorithm (or machine),
could find the solution in polynomial time. Such a Nondeterministic Polynomial

algorithm is said to be an NP algorithm.

There are many problems that we know how to solve with NP algorithms, but
don’t know how to solve with P algorithms, which compute deterministically in
Polynomial time. Such problems are then said to be in the class NP. Evidently, the

class of NP problems properly subsumes the class of P problems; that is, the abili¬
ties A or B cited above should allow us to solve problems that are in the former
class but not in the latter one. This may be so. In fact, although intuition and a
variety of circumstantial results indicate that the class NP is larger than the class P,
the best efforts of computer scientists to prove this supposition hqve come to nil so
far. What would such a proof entail? It would require proving that, for even a
single problem known to be in NP, there is no P algorithm for its solution. Even
though there are many NP problems for which no P solutions are known, in none

270 TREES

of these cases has the impossibility of a P solution been demonstrated. (Note that
the SDR problem is not actually in the class NP. In Chapter 7 we will encounter
algorithms of polynomial complexity for its solution; however, these do not consti¬
tute such a demonstration.) So we are left with the astonishing conclusion that the
seemingly powerful capability to always make a correct guess in the face of uncer¬
tainty is of no provable advantage. This leads to the most dramatic question in

computer science at this writing: Is P — NP7

In discussing NP algorithms and P algorithms, we need to be aware of an
important distinction. To frame this matter, we pose our problems in such manner
that an algorithm should either find an instance of a solution (Yes), or else inform
us that no solution exists (No). A P algorithm will always terminate with one of
these responses. However, we cannot expect an NP algorithm to provide a No
answer in polynomial time, since the possibility of making the correct guesses does
not exist in such a case. In fact an NP problem is, by definition, one for which (i) a
Yes answer can be detected by an NP algorithm, and (ii) this answer can be verified

by a P algorithm.

There is more to the story in the following circumstances, suggesting that
indeed P / NP. It is often possible to transform or reduce one problem I to a
different problem Y such that, if we could solve 7 in a certain manner, then we
could also solve X in this manner. Such techniques have been applied to hundreds
of NP problems to show that they are equivalently “hardest” problems in NP.
Moreover, these techniques have the character that the reduction can be performed
with polynomial complexity in the size of the problem. So if we could solve one of
these hardest problems with a polynomial algorithm, then by composing that poly¬
nomial algorithm with the polynomial reduction,4 we could solve any of the other
problems in NP with a polynomial algorithm. The class of equivalently hardest
problems is known as NP-complete. At the present time, it is conjectured that the
relation of the sets NP, NP-complete, and P are as shown in Figure 6.47. That no

4 This illustrates the significance of the observation, made in Section 1.3.2.1, that the class
of polynomials is closed under composition.

t6.8.2.2 NONDETERMINISTIC ALGORITHMS 271

one has been able to find a P algorithm for even one ./VP-complete problem strongly
suggests that P ± NP. Nonetheless, this is an open question that is the subject of
much research; two good references are Garey and Johnson [1979] and Lewis and
Papadimitriou [1978].

f6.8.3 Branch-and-Bound

Backtracking is an improvement upon the exhaustive search that underlies DFS;
the improvement derives from being able to prune entire subtrees. It is also possible
to improve upon exhaustive search with a variation of BFS; this strategy is known
as branch-and-bound. The same search tree of Figure 6.41 that we used to illustrate
BFS and DFS can be used to demonstrate the essential feature of branch-and-
bound, which is to open nodes for consideration and selectively close them as
candidates for follow-up. In applying the method to the problem at hand, we will
simply use a table of the partial distances to each open node for deciding which is
the best candidate. The basic step in branch-and-bound consists of picking the
open node with minimum partial distance, closing it, and opening its children. The
repetitive application of this process to the tree of Figure 6.41 is illustrated in

Figure 6.48.

Close Node Open Nodes Distance At

A B - 60
C - 20
D - 12 12 D

D K - 50
L - 59 20 C

C G - 52
H - 30
/ - 49
J - 36 30 H

H 0-37 36 J

J P - 42 37 O

0 U - 48
V - 50 42 P

P P - 42 42 P

Figure 6.48 Branch-and-Bound Search

The complexity of branch-and-bound is proportional to the number of nodes

that are closed; each such operation requires selecting the open node at minimum
partial distance, finding its successors, and computing their partial distances. In our
example, note that as soon as the leaf node P is closed on the seventh step, it is sure
to be the leaf of minimal distance, and no further confirmatory search is required.

272 TREES

procedure BRANCH_BOUND (root: link; var goal: link; var best: integer);

type prqobj = record
base: integer;
ptr: link;

end;

var done: boolean;
next: link;
datum,defer: prqobj;

begin
done := false;
INIT_PRQ_H (pq);
defer.base := 0;
defer.ptr := root;

INSERT_PRQ_H (pq,defer);
repeat

REMOVE_PRQ_H (pq,datum);
if datum.ptrj.left = nil then {a leaf}

done := true
else begin {process children}

next := datum.ptr}.left;
repeat

defer.base := datum.base + next}.cost;
defer.ptr := next;

INSERT_PRQ_H (pq,defer);
next := next}.rite;

until next = nil;
end;

until done;
goal := datum.ptr;
best := datum.base;

end;

Algorithm 6.12 BRANCH_BOUND

If the implementation of BFS calls for a queue, and the implementation of DFS

calls for a stack, what structure is needed for the implementation of branch-and-

bound? A little reflection shows that we want to employ a priority queue, in order

to efficiently find the open node at minimum distance. For this purpose, we can

almost use the algorithms P_QUEUE_H intact, with the definition that the open-

node queue objects each consist of a distance and a pointer. Another minor but

important point is to reverse the sense of the inequality operator in

INSERT_PRQ_H, and to reverse the sense of two inequality operators in

REMOVE_PRQ_H, since high priority for this problem means smallest distance.

Our corresponding implementation is the procedure BRANCH_ BOUND (Algo¬

rithm 6.12), with input parameter root pointing at the tree to be searched, and with

output parameters goal and best identifying the location and the distance of the

t6.8.3 BRANCH-AND-BOUND 273

winning leaf. It is instructive to compare BRANCH_BOUND with BFS_TREE
(Algorithm 6.10). Overall, they are very similar. The principal difference is that in
BFS we can never by sure about the relative worth of a node except by extensive
comparisons and so must keep searching until the queue is completely empty of
prospects, whereas in branch-and-bound we explore the tree with more assurance
and are done as soon as we remove a leaf from the priority queue.

Recall from Section 6.8.2 that search can be described in terms of looking for a
tuple of values that satisfies some criterion function, subject also to some constraint
functions. In branch-and-bound, we try to simplify matters by solving a different
problem (X') than that originally given (X). The objective is for X' to have
constraints such that its solution encompasses that of X, and for X' to have a crite¬
rion function (d>') that is a good predictor for that of X ($>). It is important that O'
be conservative, erring on the side of admitting poor candidates, rather than exclud¬
ing good candidates. For our sample search problem, d>' was safe but not very
discerning as a predictor; essentially, for any open node, it predicted zero addi¬
tional distance to reach a leaf. A better example would be that of searching for the
shortest highway distance to some location, and using the airline distance from an
open node to the destination as a predictor of value. Just as there is a trade-off in
backtracking between the effort to refine the constraints that allow pruning and the
effort to search subtrees, so in branch-and-bound is there a trade-off between the
effort to find a <I>' that shaves the margin of error and the effort to close nodes.
Branch-and-bound has been found to be a highly efficient search technique for
many problems, and we will examine one such case in Section 7.4.4.3. One of its
principal hazards is that the amount of information that must be stored in the
priority queue can become rather large. Further discussion of the method can be

found in Horowitz and Sahni [1978] and Lawler and Wood [1966].

6.8.4 Games

Games provide particularly appealing instances of search trees. To begin the story,
imagine that we are playing the following simple game [Raphael 1976]. There is an
initial pile of seven stones, and A and B alternate with each other in removing
stones from the pile. The rules are simply that a player must take 1, 2, or 3 stones
when it is his turn. The objective is to cause the other player to take the last stone.

The possibilities in this game are diagrammed in Figure 6.49. Here, the infor¬
mation at a non-terminal node is the number of stones still in the pile before a
move; the branches have labels corresponding to the number of stones removed on
a move; and the leaves are marked A or B, according to whether A or B is the
winner in the sequence of moves leading to that leaf. There is something signif¬
icantly different about this tree. It embodies not just one point of view, as in the
case of the trees in the preceding sections, but two opposing points of view. At any
given level of the tree, a player is attempting to make a choice that will cause his
opponent to lose; but the players alternate with successive levels, so that a see-saw
is taking place. In a game-tree such as this, these alternate levels are called plys.
Since the outcome of a game has always been decided when we reach a leaf, a game
tree is best analyzed starting from the leaves and working our way back up to the

274 TREES

<t m -t to ^ m <(

Figure 6.49 A Game with 7 Stones

6.8.4 GAMES 275

root, if the size of the tree does not prevent it. To see how this works, consider the
subtree from Figure 6.49 that is shown in Figure 6.50:

1. Node P is a winning position for A and so can be marked with an A.
2. At node Q, since it is A’s turn, he will rationally choose the left branch, forcing

B to lose; so node Q can be marked with an A.
3. Node R is a winning position for B and so can be marked with a B.
4. At node S, since it is B’s turn, he will rationally choose the middle branch, forc¬

ing A to lose; so node 5 can be marked with a B.

S

A A

Figure 6.50 Marking Game Tree Nodes from the Leaves Upward

This analysis can be backed up all the way to the root, using the following

simple rules:

1. If it is A's (B’s) turn at a node and any of the children of the node are marked
as winning situations for A (B), then that node is marked as a winning situation

for A (B).
2. If it is A’s (B’s) turn at a node and none of the children of the node are marked

as winning situations for A (B), then that node is marked as a winning situation

for B (A).

The results of applying these marking rules to Figure 6.49 are shown in Figure 6.51,
which establishes that whoever moves first can win, provided he removes two stones
on the first move and plays rationally thereafter, as indicated by the branches in

heavy lines.

At this point, we need to step back from our simple example and make several
observations. For one, we can imagine actually generating the entire tree corre¬
sponding to a game and then marking the nodes, but this is wasteful on two
accounts. The tree may require an enormous amount of storage; furthermore, we
probably do not even need it explicitly. It may be possible to generate the nodes
sequentially according to some algorithm, in which case the information already
obtained from some subtree of a node may make it unnecessary to generate and
mark the other subtrees of that node. This may be seen in Figure 6.52, where the
left-most subtree (from the root) of Figure 6.51 is reproduced. If the nodes are
generated in postorder, then those nodes below the dashed line do not need to be
processed at all. For example, from examining the left child, node P has been

276 TREES

b ^ m ^ ^

Figure 6.51 The Solution to the Game of Figure 6.49

6.8.4 GAMES 277

CQ ^ QQ C QQ ^ QQ

/

Figure 6.52 Avoidable Subtree Evaluations in Figure 6.51

278 TREES

marked as favoring B, so the right child is irrelevant. Also, once nodes Q, R, and S
have been marked as favoring A, their right children can be ignored, and node T
and U are similar with respect to B. Finally, at node V, since the left child already
favors B, the entire middle and right subtrees can be omitted from consideration.

Our example game is necessarily rather trivial, in order to keep the tree of
reasonable size. In fact, it is quite easy to find a strategy that will guarantee a win,
without such elaborate analysis. In more complicated games, on the other hand,
the application of this principle may be very appropriate. However, such a brute-
force approach is completely inadequate for many games - for example, for chess,
or even checkers, with the large number of possible moves at each ply and the great
number of plys to be followed to reach terminal nodes. In such complicated games,
we must start at the root rather than at the leaves and explore a limited number of
moves for a limited number of plys. At the frontier of our search in this truncated
tree, we need an evaluation function to assess how good that potential situation may
be. For chess, such a function could measure number and quality of pieces held by
each player, quality of board position, special situations such as pins or checks, etc.
Since such a function is not a binary one, the marking process then proceeds by
minimaxing, which is the process of alternately selecting maxima and minima from
one level to the next. This will be illustrated in the next section.

Finally, note that there is a lot of wasteful activity in Figures 6.49 and 6.51.
The subtree of Figure 6.50 is replicated many times in Figure 6.49, both exactly and
with reversed logic. Yet the same analysis is applied in detail each time. Have we
encountered any technique that can avoid this? Yes, we have; by using tabulation
(see Section 5.4.2.1) to record the values of encoded positions, we can circumvent
the exponential behavior exhibited in the figures.

t6.8.4.1 Alpha-Beta Search. In the preceding section, we alluded to the infeasibil¬
ity of evaluating large game trees from the leaves upward. As a dramatic
illustration of this, the complete search tree for chess is estimated to have an aver¬
age branching factor of 35 and an average height of 100. This corresponds to about
35I00« 2.5 x 10154 leaves to be evaluated. Even if a computer could evaluate each of
these possibilities in a nanosecond, it would take 10138 years to examine them all.
Thus, for efficiently searching large trees, it is important to eliminate the need to
search some of the subtrees by using information already obtained — in other
words, to “prune” some of the branches. This was illustrated pictorially in Figure
6.52. We now describe this principle more precisely, in the technique known as
alpha-beta search. It is, in fact, a specialization of branch-and-bound to the case of
game trees.

Recall that selection of branches in game trees is based on some evaluation
function whose value is maximized/minimized at alternate plys. If we refer to the
player at even levels in the tree as the maximizer and the player at odd levels as the
minimizer, then the alpha-beta procedure associates extra information with each
node, as follows:

1. At maximizer plys, an alpha value is kept with each node as the tentatively
highest value attainable at that node.

t6.8.4.1 ALPHA-BETA SEARCH 279

2. At minimizer plys, a beta value is kept with each node as the tentatively lowest
value attainable at that node.

Refer now to Figure 6.53, which shows an excerpt from some larger game tree.
The minimizer, at node P, will choose the left branch, and so the beta value for
node P is —2. Backing up to node Q, the maximizer can record a tentative alpha
value of —2, signifying that he can expect to get at least that much, no matter what
else happens. Next, at node R, the minimizer will choose the right branch this time
for a beta value of 6; and this can be propagated to node Q to change its alpha
value to 6. Finally, if we examine node S, the fact that its value is —1 implies that
the beta value of node T is less than or equal to —1. From the point of view of
node Q, there is no need to also examine nodes U and V, since the right branch
from Q is already determined to be worse than the middle branch, and it doesn’t
matter how much worse it is.

0

Maximizer

Minimizer

Maximizer

Figure 6.53 Pruning with Alpha-Beta Values

To summarize matters:

1. Alpha values can never decrease, so we discontinue search below any maximizer
node if its current alpha value is equal to or greater than the current beta value
of any of its minimizer node ancestors.

2. Beta values can never increase, so we discontinue search below any minimizer
node if its current beta value is equal to or less than the current alpha value of

any of its maximizer node ancestors.

To illustrate this technique, consider Figure 6.54 as representing some hypothet¬
ical game tree in which the leaves, drawn with their values, are generated or scanned
from left to right. The tree is then redrawn in Figure 6.55, with the varying alpha-
beta values shown in the non-terminal nodes. Branches to those nodes that need to
be considered are drawn with heavy lines; branches to those nodes that are pruned
are drawn with light lines. Since this searching method can be tricky to understand,
and since it is awkward to convey the dynamically varying alpha-beta values in a
diagram, you would do well to test your understanding of this method by copying
Figure 6.54 and developing on your copy what Figure 6.55 should look like.

In case you are stuck, or in case your tree is beginning to look more butchered
than manicured, some remarks about what happens inside the two dotted regions of
Figure 6.55 may be helpful. Consider First what happens in the right hand excerpt
even though, in time, it occurs after the left hand excerpt. Node P has been deter¬
mined to have a tentative alpha value of 17, but this is greater than the beta value

280 TREES

1»_
<D

u.
<D <D <1>

N N N N

E E E E
X *c X "c

03
is

03
is

Figure 6.54 A Game Tree to be Searched Using Alpha-Beta

16.8.4.1 ALPHA-BETA SEARCH 281

of 5 at node Q. The alpha value can only increase if the middle and right branches
of node P are examined. However, they are irrelevant because the minimizer can be
certain that the left branch from Q gives a better beta value than the right branch
ever will. So prune the two rightmost branches from node P.

Consider next the left hand excerpt at the point in time that it is examined.
Node R has been determined to have a tentative beta value of 5. While no tentative
values have yet been established for nodes Q or U, node S is already known to have
a tentative alpha value of 7. Thus, node T is irrelevant. Even though it may reduce
the beta value at node R, when that value is backed up to node S, it will be discrim¬
inated against in favor of the better value of 7 that is available from the left branch
of S. So prune node T and propagate the beta value of 5 from node R to node U.
This alpha value of 5 at node U is only significant as a mark against which to eval¬
uate the contribution from the right branch of U (the alpha value may possibly
increase).

How much can be pruned using this technique? It greatly depends upon the
actual values in the tree and the order in which the subtrees are examined. In the
worst case, there may be no improvement at all. But in the best case, assuming a
branching factor b and a depth d, it has been shown [Slagle and Dixon 1969] that
the number of leaf evaluations is reduced from bd to

r(rf+i) , (rf-i)

b 1 ~2~ + b l~2~ - 1 (6.20)

In other words, with the optimal sequence of encountering leaf values, alpha-beta
search allows the tree to be searched twice as deeply for the same amount of effort
expended in ordinary minimaxing without the pruning. What can we expect from
alpha-beta if the sequence of leaf values is random? In that case, it has been shown
that the depth of search is 4/3 what it would be for ordinary minimaxing [Knuth

and Moore 1975].

6.9 OVERVIEW

We began this chapter by citing the pervasiveness of trees, and this should be quite
apparent by now. For the most part, we have dealt with explicit tree data struc¬
tures: how' to represent them, how to traverse them, how to associate meaning with
them, and how to search them. In the latter topic, moreover, we encountered cases

of solution trees where no explicit tree structure even exists.

Trees represent an interesting middle ground between linear data structures
(arrays, queues, stacks, strings) and the more general non-linear data structures
(Lists and graphs). The unifying principle that every node except the root has
in-degree of precisely one has two important consequences. It allows us to find an
efficient scheme for representation, via the correspondence between ordered trees
and binary trees. It also enables us to develop simple, systematic algorithms for
traversing trees, without worrying about cycles. In the extreme case of complete

282 TREES

<D
N

X
03

CD
N

E
’c

CD
N

X
03

0
N

E
'c

Figure 6.55 The Solution to the Game Tree of Figure 6.54

6.9 OVERVIEW 283

t-ary trees, the representation collapses to being implicit, without the need of
explicit pointers, and this yields important efficiencies in both space and time.

Although this chapter is about trees, it should be reiterated that in some appli¬
cations, we have actually used trees as powerful means of dealing with sets. One
example occurs with priority queues, where we can rephrase the capabilities as:

• add a member to a set, and
• extract the minimum member of the set.

Another occurs with the UNION-FIND algorithm, for which we can rephrase the
capabilities as:

• add a member to a set;
• test for membership in a set;
• compute the union of two sets.

Set operations carried out by these mechanisms do not have the limitations that are
inherent with built-in set operations in Pascal, where we are restricted to a universal
set isomorphic to 0 .. n, for small n.

In many ways, this chapter has covered only the first half of the subject of
trees. When we turn to Searching in Chapter 10, we will find that trees are by far
the most important (though not the only) data structure for that purpose. In fact,
some authors recognize this de facto situation by including searching as a sub-topic
of trees. For us, that approach would have caused this chapter to be intolerably
long. More significantly, it is important to look at the subject of searching without

being restricted to trees.

In Chapter 5, the last topic that we studied was the intimate relationship
between stacks and effective computability. It is intriguing to find another basic
issue of computability in our study of trees - that of nondeterministic algorithms

and the class NP.

6.10 BIBLIOGRAPHIC NOTES

• Other link inversion traversal schemes, not discussed in Section 6.4.3, can be
found in Burkhard [1975], Fenner and Loizou [1984], and Kilgour [1981].

• Permutations have been used as the bases of ranking functions for binary and
t-ary trees by a variety of techniques [Knott 1977; Rotem and Varol 1978;
Solomon and Finkel 1980; Trojanowski 1978]. Ranking functions based upon
feasible sequences can be found in Er [1985], Ruskey [1978], and Ruskey and

Hu [1977].

• Branch-and-bound solutions to the computation of time-efficient and space-effi¬

cient decision trees are given in Reinwald and Solano [1966, 1967], a dynamic
programming solution is that of Schumacher and Sevcik [1976], and an
approach combining branch-and-bound with dynamic programming is Martelli
and Montanari [1978]. Some heuristics are presented in Ganapathy and Raja-
raman [1973], Pollack [1965], Sethi and Chatterjee [1980], Shwayder [1974],

284 TREES

and Verhelst [1972], Yet another approach is to generate decision table code
by applying compiler optimization techniques [Myers 1972]. For an excellent
review and discussion of methods and results of computing optimal decision

trees, consult Moret [1982].

• Good general descriptions of backtracking and suggestions for its efficient
implementation can be found in Bitner and Reingold [1975], Fillmore and
Williamson [1974], Francez et al. [1977], Golomb and Baumert [1965], Pren-
ner et al. [1972], Purdom et al. [1971], and Wells [1971]. The use of
constraints in limiting search is discussed in Freuder [1978, 1982].

6.11 REFERENCE TO TERMINOLOGY

t alpha-beta search, 278
ancestor, 206

f backtracking, 263
balanced tree, 227
binary search tree (BST), 229
binary tree, 241

t binomial tree, 241
t branch-and-bound, 271

breadth-first search (BFS), 259
t Cartesian tree, 290
t Catalan numbers, 253
f Cayley's formula, 254
f centroid, 292

children, 206
complete t-ary tree, 226

t constraint function, 265
f criterion function, 265

decision tree, 233
degree, 205
depth-first search (DFS), 261
descendant, 206

f evaluation function, 278
extended tree, 256
external node, 256

f feasible sequence, 257
forest, 206
free tree, 204

t generating function, 252
heap, 238
height, 206
incremental traversal, 218
inorder traversal, 210

internal node, 256
leaf, 205
level, 206

f marked preorder sequential, 223
f minimaxing, 278
t nondeterministic algorithm, 269
f NP algorithm, 269
f YP-complete, 270
f off-line algorithm, 249
t on-line algorithm, 249

ordered tree, 204
oriented tree, 204
parent, 206
parse tree, 233

f path compression, 245

t plys, 273
postorder traversal, 211

f preorder sequential with degrees, 224
f preorder sequential with weights, 224

preorder traversal, 210
priority queue, 237

f p-tree, 290
root, 204
sibling, 206

f similar trees, 286
solution tree, 265
strictly binary tree, 208
terminal node, 205
threads, 215

f tree permutation, 256
t triple-order traversal, 287

weight, 206

6.12 EXERCISES 285

6.12 EXERCISES

Sections 6.1 — 6.2

6.1 Discuss the circumstances under which a genealogical chart is not a tree.

6.2 Convert the trees in Figure 6.56 as indicated:

(a) the ordered tree of (a) to the corresponding binary tree;

(b) the binary tree of (b) to the corresponding ordered tree.

Figure 6.56 Trees for Exercises 6.2, 6.3, and 6.11

Section 6.3

6.3 Traverse the binary tree of Figure 6.56(c) as follows: (a) in preorder, (b) in

inorder, and (c) in postorder.

6.4 [Aho et al. 1983] In the following table, the rows correspond to the nature of
the extended relationship between two nodes m and n (see Section 6.1), and the
column headings “...order(w) < ...order(n)” mean that m precedes n when the
binary tree containing m and n is traversed according to that order. For this table,
indicate by T(rue), F(alse), or ? whether the given row and column conditions

always, never, or sometimes occur simultaneously.

relationship

of m to n

preorder(m)
< preorder(n)

inorder(m)
< inorder(n)

postorder(m)
< postorder(n)

m left of n

m right of n

m ancestor of n

m descendant of n

286 TREES

ff6.5 [Dasarthy and Yang 1980] In a binary tree B, we can construct the
reflected binary tree BR by exchanging the left and right subtrees at each node
except the root. Further, for an ordered tree T, we can then construct the reflected
tree TR, via the correspondences: T-+B-*BR-*TR. Thus in Figure 6.57, for the tree
T\ of (a), such a sequence of transformations yields the tree TlR of (b).

(a) Construct the sequence of transformations just described, starting with the tree

T2 of Figure 6.57(c), and arriving at T2R.

(b) An important notion in trees is that of the total path length P in the tree,
equal to the sum of the numbers of edges from the root to each node. Thus,

P(T) = 3x1+4x2 + 2x3 = 17, P{TR) = 2x1+3x2 + 3x3+4 = 21

Prove that for a tree with n nodes, P(T) + P(TR) — P{B) + n — 1. (In our
example, we find that 17+ 21 =29+ 10 — 1.)

(c) Denoting by E(T) the number of leaf nodes in T, prove that E(T) + E(TR) = n.

A

(a) 71

Figure 6.57 Trees tor Exercises 6.5 and 6.34

Section 6.4

6.6 Two binary trees are similar when they have identical branching structure,
which means that either they are both empty, or they are both non-empty and have
similar left and right subtrees. Write a function that compares two binary trees for
similarity.

6.7 Write a procedure that traverses a binary tree in preorder sequence using a
stack. Have your program print out the data contents of the nodes as it visits them.

|6.8 Write a procedure that traverses a binary tree in postorder sequence using a
stack. Have your program print out the data contents of the nodes as it visits them.

6.12 EXERCISES 287

6.9 Write a procedure that traverses in preorder sequence a binary tree threaded
for inorder traversal.

tt6.10 For a binary tree threaded for postorder traversal, write a procedure to
perform the postorder traversal.

6.11 [Lindstrom 1973] A generalization of the usual traversal orders for a binary
tree that is sometimes useful is triple-order traversal: visit node, traverse left
subtree, visit node, traverse right subtree, visit node. Suppose that visits to nodes
under this scheme are numbered in serial fashion. Use Figure 6.56(c) to demon¬
strate that we can visit each node just once by retaining only those visits with
number equal to 0 (or 1, or 2) mod 3.

f6.12 For the tree of Figure 6.58, add dashed lines showing all of the edges that
would be inserted at one time or another if it were traversed by the algorithm
MORRIS.

A

D E F G

H I J K L

M

Figure 6.58 Tree for Exercise 6.12

tf6.13 Write a version of the algorithm MORRIS that could be used to traverse a

binary tree in postorder.

Section 6.5

f6.14 A complete /-ary tree has / internal nodes and X external nodes, with N
nodes altogether.

(a) Derive formulas for / and N as functions of X.

(b) Derive formulas for I and X as functions of N.

t6.15 [Tarjan 1983c] By associating non-standard semantics with the links in
binary search tree nodes, it is possible to represent a BST in such fashion that any
one of the related nodes (parent, left child, or right child) can be accessed in no

more than two linking operations.

(a) Illustrate how this can be accomplished.

288 TREES

(b) Sketch the algorithmic statements required for accessing each of the three

related nodes.

f6.16 Write a procedure that reads an ordered tree representation as in Figure
6.17(b) and generates an internal representation in the form of Figure 6.17(d), as

preorder sequential with degrees.

ft6.17 Write a procedure that reads an ordered tree representation as in Figure

6.17(b) and generates the corresponding binary tree.

Section 6.6

6.18 The following table shows the Best Actor Awards for 1963 - 1977. Draw the
alphabetical BST obtained by inserting them in chronological order, as was done in

Figure 6.20.

1963 Poitier 1968 Robertson 1973 Lemmon

1964 Harrison 1969 Wayne 1974 Carney

1965 Marvin 1970 Scott 1975 Nicholson

1966 Scofield 1971 Hackman 1976 Finch

1967 Steiger 1972 Brando 1977 Dreyfus

tf6.19 Write a function analogous to BST_ INSERT for inserting a node and
updating the threads in a BST threaded for inorder traversal.

ff6.20 [Stephenson 1980] In the usual manner of constructing a BST, new nodes
are always inserted at the leaves. It is also possible to grow a BST at the root by
using the search key K to split the BST into three components: a left BST contain¬
ing all nodes with keys less than K, the node K itself, and a right BST containing all
nodes with keys greater than K. For the BST of Figure 6.59(a) and the search argu¬
ment 44, such a splitting operation would produce the three components shown in

(b) of the figure.

(a) Write a function analogous to BST_INSERT for constructing a BST in this
manner.

(b) Analyze the comparative advantages and disadvantages of the two methods for
constructing BST’s.

6.21 Draw the expression tree corresponding to

(A—(B—C)*(D + E/(F—G)*H)*(I + J)—K)/L

f6.22 Suppose that you have 12 seemingly identical balls and are told that one of
them is either heavier or lighter than the others. Draw a decision tree for identify¬
ing the odd ball and determining whether it is heavier or lighter, all with just three
weighings.

6.23 Given a heap to be used as a priority queue, with contents as shown in
Figure 6.60:

(a) What does the restored heap look like after we remove 83 from the root?

(b) What does the restored heap look like after we add 60 to the heap of (a)?

6.12 EXERCISES

(a) Original BST (b) After Splitting BST on 44

Figure 6.59 Trees for Exercise 6.20

Figure 6.60 Tree for Exercise 6.23

290 TREES

|6.24 [Vuillemin 1980] A Cartesian tree is a tree defined on pairs of values
(*,, y), with the properties that it is a binary search tree with respect to the xh and a
priority queue with respect to the yt. It is simpler, but not essential, to assume that
there are no duplicate values in either variable. Then, rephrasing the definition
more formally, and using L and R to denote the left and right children of a node N,

both of the following are true:

(a) xL < xN and xN < xR

(b) yN > yi and yN > yR

Draw the Cartesian tree built by inserting the following pairs:

(8,35) (21,5) (15,17) (2,22) (12,3) (28,53) (3,48) (6,97) (5,13)

tf6.25 [Jonassen and Dahl 1975] One of the shortcomings of implementing a
priority queue as a heap (see Section 6.6.4.1) is that when an object is inserted and
there are already objects with the same priority, we cannot be certain which of them
will be removed first. An alternative scheme using priority trees, or p-trees, over¬
comes this problem, although at a cost 0((lg n)1 2 3 4). This scheme is based upon binary
trees, and is illustrated by Figure 6.61, where the ordering property is such that a
right child is always intermediate in value between its parent and its left sibling. If
we wish to insert a new object X into this priority queue, we start at T (the root)

and apply the following rules:

1. If T is empty or X.priority > T.priority, then insert X with T as its left subtree.
2. Otherwise follow left pointers from T, looking for the first node Y such that

X.priority > Y.priority.
3. If there is no such Y, append X as the new left leaf.
4. Otherwise repeat the entire process with the right subtree of Fs parent.

This is almost like ordinary list insertion, except that each item may have an associ¬
ated sublist. Thus, to add 7 to the tree of (a) in the figure, we would start at 15 and
apply rule (2) to get to 4, rule (4) to get to 11, rule (2) to get to 9, rule (2) to get to
5. rule (4) to get to 6, and rule (1) to insert 7 - arriving at the tree shown in (b) of
the figure. The highest priority item (lowest value) is in the leftmost leaf. To
remove it and regenerate the proper ordering among the nodes in constant time
requires that each node contain an additional pointer, to its father. Write proce¬
dures for initialization, insertion, and removal in a priority queue implemented via a
p-tree. Test your program by using it with the following sequence of I(nsert) and

R(emove) operations:

184, 15, 179, 173, 19, 155, R, 131, 122, 153, R, 140, 140, R, 115, 147, R, 147, R

and displaying the /7-tree structure before and after each removal.

f6.26 Simulate the application of the UNION-FIND algorithm to the following

relationships:

1. 1 = 3
2. 2 = 9
3. 18 - 15
4. 6=13

5. 14 = 11 9. 12
6. 4 = 19 10. 14
7. 17 = 5 11. 17
8. 6 = 10 12. 2

16 13. 19 = 7
8 14. 8 = 18
1 15. 10 = 17

12 16. 18 = 2

Show the resulting trees after each relationship is processed.

6.12 EXERCISES 291

Figure 6.61 Trees for Exercise 6.25

f6.27 In order to show that UNION without FIND (that is, with FI instead) has
complexity 0(n lg n), it is necessary to demonstrate that the height of the tree after
a UNION operation is bounded by Llg n. Prove that this is the case.

Section 6.7

f f6.28 The preorder traversal of a binary tree yields GEAIBMCLDFKJH,
and the inorder traversal of the same binary tree yields IABEGLDCFMKHJ.

(a) Draw the binary tree.

(b) To your tree of part (a), add threads, shown as dotted lines, for postorder

traversal.

tf6.29 Draw the labeled free tree that corresponds to the Cayley sequence
6, 8, 1,2, 12, 1, 12, 1,5, 8, 12.

ff6.30 Prove that the condition expressed by Eq. 6.18 is both necessary and suffi¬
cient for characterizing the leaves of a strictly binary tree.

Section 6.8

f6.31 Suppose that we wish to search the tree of Figure 6.62 for a leaf at mini¬

mum distance from the root.

(a) Trace the order of searching using BFS, as in Figure 6.42.

(b) Trace the order of searching using DFS, as in Figure 6.44.

(c) Trace the order of searching using branch-and-bound, as in Figure 6.48.

292 TREES

f6.32 Write a procedure to find the shortest path from the root to a leaf using
DFS with recursion instead of a stack. Test your program against the tree of

Figure 6.62.

tf6.33 It is very useful to be able to display binary trees on an ordinary line prin¬
ter in a format that mimics their appearance in drawings. Write a procedure to
accomplish this under the following assumptions: the root is to appear at the top of
the page, the width of the contents of the nodes is bounded by an input parameter,
and trees as large as possible short of overflowing the page width will be printed
“prettily.” Describe the principles underlying your method, and validate the good¬
ness of your program by applying it to several trees of moderate size and different
character (bushy/scrawny, regular/irregular, etc.).

f|6.34 [Kang and Ault 1975] Given a free tree T with n nodes, suppose that we
construct an ordered tree by selecting node u as root. Then u will have k subtrees
S\, s2,..., sk containing mb m2,..., mk nodes respectively. Define the “moment” of
the oriented tree rooted at u to be max (rab ra2,..., mk). Finally, a centroid of a free
tree is a node which, when chosen as root, yields an oriented tree of minimum
moment. Thus, if the tree 71 of Figure 6.57(a) is regarded as a free tree, then the
moment of node B is max (1,1,7) = 7, that of node C is max (1,3,5) = 5, etc.; and
both A and C are centroids of 71.

(a) Write a function to compute the centroid of a tree, representing the free tree
via the standard correspondence between ordered trees and binary trees, where
the ordering is irrelevant. Carry out DFS on the tree, starting from the arbi¬
trary choice of root in the representation, and implementing DFS recursively.
For each node X in this tree, compute the number of descendants C(A) of that

6.12 EXERCISES 293

node (counting a node as one of its own descendants). A centroid is the first
node encountered in this search for which C(X) > n/2. Test your program
against the tree T2 of Figure 6.57(c).

(b) Having found one centroid by this algorithm, what can you say about the
existence and location of other centroids in the same tree?

tf6.35 Write a program to solve the SDR problem by backtracking, where the
DFS is conducted via a stack, not via recursion. Apply it to finding all of the
SDR’s for the following sets:

Sx = {2,4,5,6} S3 = {2,6} S5 - {4,6}

$ = {1,4,6} S4 = {3,6} S6 = {1,4}

Discuss your choice of data structures, with regard to both the clarity and the effi¬
ciency of your program.

tf6.36 The game of 31 is played with a single die according to the following rules.
Player A begins by orienting the die with one its six faces upward, and the number
of pips on the face becomes the initial value. Thereafter, players B and A alternate
in selectively tilting the die so that one of the four side faces (but not the bottom
face) becomes the new top face, and the number of pips on the new top face is
added to the value. (Remember that the pips on opposite faces sum to seven.) A
player who causes the value to reach exactly 31 wins, and a player who causes the
value to exceed 31 loses. Write a program to compute the winner of this game,
using minimaxing. Have your program count the number of nodes that it expands.
Can you think of any ways to improve the efficiency of search?

7

GRAPHS

“The ways ... are dark and intricate.
Puzzled in mazes, and perplex’d with errors;

Our understanding traces them in vain.
Lost and bewilder’d in the fruitless search.”

Addison,
Cato, act I, scene 1

A graph is a very general kind of data structure that can be used to represent
numerous situations - maps, computer programs, electrical circuits, chemical
compounds, sociological relationships, etc. In each of these cases, it is convenient
to portray a graph as a set of points with connecting lines. This might suggest that
a graph is basically a geometrical object; such an interpretation is misleading,
however. A graph is fundamentally a combinatorial object — that is, a set of
points and a particular set of connecting lines out of all possible sets of such lines.
Because of the generality of graphs and the great diversity of ways that they are
used, it is a formidable task to master all of the ideas associated with them. This
state of affairs is reflected in the fact that whereas there are hardly any books dedi¬
cated to structures such as arrays or stacks or trees, there are numerous books
devoted to graphs and their mathematical properties. You may wish to read this
chapter in parallel with one of them [§]. This chapter has a more theoretical flavor
than the other chapters, reflecting very modestly some of this profusion of concepts
from graph theory. It is uncommon to include such material in a book devoted to
data structures. We choose to do so because graphs sustain many powerful tech¬
niques, yet one can hardly employ them without having some awareness of the basic
theoretical ideas that create these possibilities.

The terminology employed for describing graphs and their properties also
reflects their generality; this terminology is distressingly non-standard. The most
striking evidence of this is that there are two kinds of graph, directed and symmet¬
ric. Some authors have the point of view that graphs are basically directed, with
the symmetric variety as a special case; others consider graphs to be naturally
symmetric, with the directed variety as a special variation. There is some virtue in
this dichotomous view, in that many applications are distinctively expressed in terms
of just one of these two kinds. But it is also the case that a great number of
concepts and applications apply to both kinds. Therefore, our approach is to treat

GRAPHS 295

them in parallel as much as possible, indicating to the reader whenever the
distinction is important.

The earlier sections of this chapter cover some of the terminology associated
with graphs, then the most important means for representing them, and next various
ramifications of the most evident feature of graphs - the extent to which they are
“connected.” This coverage is sufficient to allow us to then discuss in moderate
detail, in Section 7.4, a variety of practical applications of graphs. Yet, graphs have
such varied and numerous uses that several important topics are not covered in that
section. So, in Section 7.5, we endeavor to place these other topics in perspective, if
only in summary.

7.1 DEFINITIONS AND TERMINOLOGY

The terminology associated with graphs is extensive and, as mentioned, notoriously
non-standardized. This section captures in one place most of the basic terminology
other terms will be introduced as needed. Some readers may prefer to skim it rather
quickly, and come back to it as the need arises.

Figure 7.1 Two Graphs

With graphs we are concerned with two sets of entities. The first is the set

V = {v„ v2,..., vm} of vertices, or nodes. The second is the set E = {ex, e2,..., en} of
edges, or arcs, which connect pairs of vertices. By an abuse of notation, we will
sometimes use V to denote the set of vertices, and other times use V in the sense of
| V\, the cardinality of V; the same remark applies to E, for the edges. The proper
interpretations should always be clear from the context. In Figure 7.1(a), we have
the case of a directed graph, or digraph, as indicated by the arrows; it is common
and useful to employ the term arc rather than edge in this case. Vertices connected
by an arc are adjacent; more precisely, as an example from (a), B is adjacent to E,
and E is adjacent from B. In Figure 7.1(b), we have the undirected case, which we
will simply call graph, and wherein it is useful to employ the term edge. Here,

296 GRAPHS

vertices joined by an edge are simply said to be adjacent to each other. If we imag¬
ine that each edge in (b) really denotes two arcs with opposite orientations, then

indeed a graph can be regarded as a special, symmetrical case of a digraph.

Conversely, we may regard a digraph as an orientation of a graph, wherein a direc¬

tion has been assigned to each edge; in this case, the graph is then the underlying

graph of the digraph, wherein the former is obtained by disregarding the directions

of the arcs in the latter.

The notion of adjacency is so fundamental that it is often convenient to use the

symbol T(T) to denote all the vertices that are adjacent from a given set of vertices

X, and likewise the symbol r-’(T) to denote all the vertices that are adjacent to a

given set of vertices X. Thus, in (a), T{A} = {B,E}, and T_1{5, E} = {A, B, C, D};

in an undirected graph, of course, F(A) = The notion of adjacency can be

applied to edges as well as vertices. In (a), for instance, the arc BE is adjacent to

the arcs ED and EF, at vertex E; in (b), on the other hand, the edges PQ, QR, and

QS are all adjacent to one another, at vertex Q. Adjacency is a relation between

either pairs of vertices or pairs of edges. There is also a useful relation between the

vertices and the edges of a graph, that of incidence; each arc or edge of a graph is

incident upon precisely two vertices that are its endpoints.

The fact that adjacency (the presence of an arc or an edge between two vertices)

is a relation is worth emphasizing. As an example, the graph in Figure 7.2 portrays

the “divides” relationship on the set from Section 2.4.1.1. Note that the relation

depicted by a digraph is asymmetric. The edges of a graph like that of Figure

7.1(b), on the other hand, always manifest a relation that is symmetric and transi¬

tive; that is, the vertices of a graph form disjoint connected components. In this

case there are two components, and for any pair of vertices in the same component,

there exists some path of successive edges that connects them. We can specify a

path either by listing its sequence of edges or by listing its sequence of vertices.

Thus AB, BE, EF, FD and ABEFD describe the same path in (a) of Figure 7.1, but

the latter notation is clearly simpler. If the graph in (b) had an appropriate, addi¬

tional edge, such as OT, then it would be a connected graph, with a path between

any pair of vertices.

Figure 7.2 A Digraph as a Relation

7.1 DEFINITIONS AND TERMINOLOGY 297

The concept of connectivity for a digraph is less simple. The example in (a) is
said to be weakly connected because the underlying graph is connected. However,
the more important issue in a digraph is whether it satisfies the condition that from
any vertex, we can find paths to every other vertex. In the present case, for exam¬
ple, even though there is a path from A to D (ABCD), there is no path from D to
A. When a digraph does satisfy this condition, however, it is said to be strongly
connected. The graph in (a) can be made strongly connected by the addition of an
arc from F to A.

In talking about paths in graphs, we may be concerned more with the vertices
that we visit, or more with the edges that we traverse, as we will see in Section
7.4.4. In either event though, paths that contain (a) repeated edges or (b) repeated
vertices may be disallowed for a given problem. In such cases, where neither (a)
nor (b) occurs, the path is said to be simple. Implicitly, most of the paths discussed
in this chapter are simple ones. Also, if the final vertex of a path is the same as the
initial vertex, then the path is a circuit, or cycle. It is legitimate to have a circuit of
length two in a digraph, but in the undirected case we insist that the term is not
meaningful unless the length is at least three.

It should be apparent that a tree is really a restricted instance of a graph, satis¬
fying the three conditions:

1. It is connected.
2. It has no circuits.
3. It has a distinguished node, called the root.

As a direct consequence of these conditions, a tree with V vertices must have V — 1
edges. Because it has a distinguished node, a tree may be thought of as a digraph,
with all arcs either pointing away from the root or toward the root. In fact, as we
have seen in the preceding chapter, this common polarity allows the arrows to be
omitted, unless we wish to emphasize either logical dependency or physical linking.

In the case of a tree, each node except the root has precisely one arc entering it,
and the term degree refers to the number of arcs leaving it. In the case of a
digraph, we have to distinguish between the in-degree (| F—1 (AT) |) and the out-degree
(| T(A) |) of a vertex X. For example, in Figure 7.1(a), vertex C has in-degree 1 and
out-degree 2, while vertex D has in-degree 3 and out-degree 1. In the undirected
case, the degree of a vertex is simply the number of edges incident upon the vertex;
thus, in (b) of the figure, vertices S and W are, respectively, of degrees 4 and 1. A
graph wherein all the vertices have the same degree is said to be regular. Note that

a 2-regular graph simply consists of one or more cycles.

The graph of Figure 7.3(a) has a new feature, the association of numerical
weights with its edges. Typically, these weights correspond to distance, time, cost,
etc. It is equally feasible to have weights on the arcs of a digraph, perhaps with
unequal weights on some opposing arcs. Such might be the case for a map of a
city, wherein the nature of one-way streets would cause it to take longer to go from
A to B than from B to A. In the graph of Figure 7.3(b), we see symbolic labels
associated with the arcs rather than weights. Labels are often used to specify which
course of action T(v,i) is to be followed, depending upon which vertex v we are at,
and what input i we next receive. Whereas there are many examples employing
weighted edges in this chapter, it is more convenient to explore the utility of labeled

edges in Section 8.5.2, with reference to Finite State Machines.

298 GRAPHS

d

/

C

£

(a) Weights (b) Labels

Figure 7.3 Edges with Values

Consider next the graphs in Figure 7.4. They illustrate two complications that
may arise when dealing with graphs. In the digraph of (a), we have cases of an arc
going from a vertex to itself; such an arc is called a loop. In the graph of (b), we
have multiple edges connecting the same two vertices, yielding a multigraph. Note
that we may also have loops in graphs and multiple edges in digraphs. Loops pose
a minor complication and multiple edges pose a larger one. When a graph has
neither of these features, it is said to be a simple graph4, for most applications,
simple graphs are sufficient. Except for some passing references to multigraphs, the
graphs in this chapter are always assumed to be simple.

(a) Loops (b) A Multigraph

Figure 7.4 Non-Simple Graphs

Fortified by these basic definitions, let us conclude this section with some intro¬
ductory remarks concerning computations with graphs. At the outset, you may ask
what makes a graph different in principle from a generalized form of a list, such as
a multilist or a List structure. After all, they both seem to consist of nodes and

7.1 DEFINITIONS AND TERMINOLOGY 299

links. There are some important differences, and these distinctions also convey
some of the nature of “graph processing.” For one, the structure of generalized lists
is usually very regular, with each node containing the same number of links to other

nodes. The degrees of the vertices in a graph may vary independently, however,
from 0 to V — 1.

More importantly, the edges in graphs are of equal importance with the
vertices, whereas in generalized lists they are simply the “glue” that binds the nodes
together. Thus, the edges in graphs will often have functions defined upon them,
such as weights, labels, etc. Many algorithms on graphs start with a given graph
G — (V,E) and derive from it a subgraph H = (V', E'), wherein V'^V and E'^E,
according to various constraints and conditions. Clearly, the edges in a graph have
an importance beyond that of mere glue.

A final remark in this introductory section has to do with the complexity of
computations with graphs. With other data structures, we have been able to char¬
acterize algorithms operating upon them in terms of one size parameter, as in
0{f(n)). With graphs, it is necessary to characterize complexity in terms of two size
parameters, number of vertices V and number of edges E, or 0(f(E,V)). Given the
value of V, then evidently E can vary from 0 to C{n,2), which is OiV2). The relative
sparsity or density of edges in a graph is significant both for issues of representation
and for choice of an algorithm to solve a particular problem. In the maximal case,
where there is an edge or arc connecting each of the C(n,2) pairs of vertices (v„ vj),
then the graph is complete. The complete graph on n vertices is commonly denoted
by Kn; thus the graph of Figure 7.5 is K5.

Figure 7.5 The Complete Graph K5

7.2 OPERATIONS AND REPRESENTATIONS FOR GRAPHS

It is fairly easy to specify the basic operations on graphs by generalizing those that
we encountered with trees. To begin with, we need the following operations:

successors(V) - to locate all vertices IF) in T(F);
predecessors{V) - to locate all vertices {/, in T_1(F);
vertices(E) - to locate the endpoint vertices Vl and Vj of the edge E.

300 GRAPHS

At a slightly higher level, we need operations for inserting and deleting edges; less
commonly, we need operations for inserting and deleting vertices. However, the
diversity of uses for graphs is so great that it becomes difficult to generalize to the
next higher level of operations. More so than in any other part of this book, each
of the major sections of this chapter should be approached as a brand new topic.

With regard to representation, we saw in Section 6.2 that trees could be “regu¬
larized” by virtue of a one-to-one correspondence between ordered trees and binary
trees. Is such a scheme possible with graphs? The answer is Yes for graphs that are
restricted in various ways [Pfaltz 1975; Smyth and Radaceanu 1974], but such
solutions are too limited in application for our purposes. Moreover, in the case of a
tree, it was possible to associate directly with each vertex its list of successors. In a
graph, however, a given vertex may be a successor (and a predecessor) to several
other vertices; so the references between X and r(Y), or between X and r_1(Y),
need to be indirect (that is, via links), so that sharing can take place. The usual
choices for representing a graph are to use either a set of lists or an array. We will
begin by illustrating these two methods and their variations, as applied to the
digraph of Figure 7.6. After reflecting upon the issues affecting a choice of repre¬
sentation, we conclude by citing some alternative possibilities.

a

Figure 7.7 shows an adjacency structure for the example digraph. (The term
adjacency list is often used, but it fails to convey the more specialized nature of the
representation.) This structure contains a list of vertex nodes, and each of these
vertex nodes serves as a header for a list of edge nodes for that vertex. The amount
of information that is stored in each vertex node or edge node would, of course,
vary with the given circumstances. In this case, each edge node must specify the
identity of the vertex adjacent from the header vertex via that edge, and also the
value of the label on that edge. An adjacency structure for an undirected graph
would differ from that of Figure 7.7 only in that each edge would have to appear
on the edge list for two vertices. It is important to realize that a representation via
an adjacency structure is not unique, because of the arbitrary order within each
edge list. Therefore, an algorithm applied to two representations of the same graph,
different only with respect to their edge list orderings, can yield two dissimilar
results. We will see this demonstrated in Section 7.3.1.

7.2 OPERATIONS AND REPRESENTATIONS FOR GRAPHS 301

Figure 7.7 Adjacency Structure for Figure 7.6

In Figure 7.7, the vertex list is maintained in an array, and the individual edge
lists are maintained as linked lists. Alternatively, the vertex and edge lists might
both be in arrays or both be in linked lists. The choice would depend principally
upon the relative importance of having random access to the vertex/edge data
versus being able to modify the lists of vertices/edges. Figure 7.8 illustrates the use
of arrays for both the vertex and edge lists. This structure is sometimes called an
indexed list.1 The data values associated with a given entry in the vertex-list array
specify (a) how many members belong to that vertex in the edge-list array, and (b)
the offset of those members from the beginning of the edge-list array.

The principal alternative to an adjacency structure is the adjacency matrix, as
illustrated in Figure 7.9 for our example digraph. Such a matrix has one row and
one column corresponding to each vertex. Edges correspond to non-null entries; a
value in the ith row and y'th column indicates relevant information about an edge
from vertex i to vertex j - in this case the value of the corresponding label. Thus,
in an adjacency matrix, each edge is implicitly determined by a tuple < v,-, v,- >.
Note that this implied determinacy fails in the case of a multigraph, since there may
be several edges with the same tuple values! (This limitation does not apply in the
case of an adjacency structure.) For some computational processes, it is useful to
store something other than a null where there is no edge; an example of this is
storing a very large number instead of a zero, in the case of weights. Of course, in
the case of an undirected graph, the adjacency matrix would be symmetric.

How do we choose between an adjacency structure and an adjacency matrix
representation? Some of the relevant factors are space, computational efficiency,
and flexibility. Let us consider each of these in turn.

Space. The space for an adjacency structure is 0(V + E), which is fine when a
graph is sparse, but can become very cumbersome (especially with the overhead of

i We have seen such structures earlier, without making special note of them. Examples
include the representation of sparse matrices, in Section 2.8, and the representation of
variable length records, in Section 3.3.2 (see Eq. 3.1).

302 GRAPHS

a C

c D

d E

d D

b A

a E

c B

Figure 7.8 Indexed List for Figure 7.6

A B C D E

A 0 0 a c 0
B 0 0 0 0 d
C b 0 0 d a
D 0 c 0 0 0
E 0 0 0 0 0

Figure 7.9 Adjacency Matrix for Figure 7.6

the pointers) when the graph is dense with edges. The adjacency matrix always
requires OiV2) space, which is inefficient for a sparse graph and very efficient for a
dense one. Particularly if there is extensive auxiliary information associated with
each edge in a sparse graph, then it would be inefficient to store that information in
the matrix locations, and so an auxiliary edge vector would be required as well. On
the other hand, if the edges have no associated weights, labels, etc., then a bit
matrix should suffice, and this will almost always be efficient in space.

Computational efficiency. An algorithm that operates on a graph represented as
an adjacency structure may have a complexity as low as 0(V + E), which may be as
low as 0{V) for a sparse graph. For the adjacency matrix, however, the corre¬
sponding complexity can hardly be less than OiV2) (see Section 7.5.3). This is
counterbalanced by two factors - the capability of accessing information about a
random edge in constant time, and the compact manner in which the adjacency
matrix can be manipulated.

7.2 OPERATIONS AND REPRESENTATIONS FOR GRAPHS 303

Flexibility. With an adjacency structure, it is cumbersome to vary the edges
incident with a vertex; with an adjacency matrix, it is easy to insert or delete edges.
The organization of an adjacency structure makes it straightforward to find F(X)
for a vertex X, but to locate r-'(X) would require either extensive searching or an
auxiliary, inverted list structure. With an adjacency matrix, on the other hand, it is
just as easy to find either of the sets T and T_1.

There are other representations for a graph. The most significant of these alter¬
natives is the incidence matrix, containing V rows and E columns. Each column has
just two non-zero entries, in the rows corresponding to the two ends of an edge.
Incidence matrices do not have the problem of ambiguity for representing multi¬
graphs that adjacency matrices have. In terms of space, an incidence matrix is as
good as an adjacency matrix for a sparse graph, OiV2), but it could require an exor¬
bitant number of entries for a dense graph, OiV3). An incidence matrix for our
example graph is shown in Figure 7.10. Note the use of positive and negative
entries to denote the polarity of the arcs; in the case of an undirected graph with
no values on its edges, we see that an incidence matrix could be efficiently repre¬
sented as a bit matrix. For still another representation possibility, see Exercise 7.3.

1 2 3 4 5 6 7

A a c 0 -b 0 0 0
B 0 0 d 0 0 0 -c

C —a 0 0 b d a 0
D 0 —C 0 0 -d 0 C

E 0 0 -d 0 0 —a 0

Figure 7.10 Incidence Matrix for Figure 7.6

7.3 CONNECTIVITY

Under the subject of connectivity in graphs, we subsume several related topics
related to the notion of reachability T*, which means that “we can get to vertex B
(for example) from vertex A.” The concept is rather straightforward for undirected
graphs; we have already seen that the adjacency relation causes the graph to be
partitioned into connected components. We have only to start at vertices and
search for all their neighbors, a process that can be carried out in several manners.
With digraphs, the issue is more complicated because of the distinction between
weak and strong connectivity. In the succeeding sections we consider first:

• the implications of various manners of searching a graph, and
• how to find the articulation points of a graph, which are the vertices whose

removal would cause a graph to become disconnected.

We then turn to digraphs and investigate:

• how to construct a reachability relation between vertices, and

• how to find the strong components of a digraph.

304 GRAPHS

7.3.1 Search Trees in a Graph

In Section 6.8.1 we examined two different techniques for searching trees, breadth-
first (BFS) and depth-first (DFS). These same techniques are used for searching
graphs, subject to two complications: We may encounter some vertices more than
once in our search, and we may not encounter other vertices at all. In order to
solve the first problem, we must mark vertices when they are visited; this is reminis¬
cent of the technique of Algorithms 4.6 (COUNT_LIST) and 4.7 (MARK_LIST).
The second problem is solved by looking for unmarked vertices after such a search,
and then initiating further searches as needed. Every time that we initiate a new
search, we construct a new search tree in the graph. When we are done, the trees of
this forest will span every vertex in it, and so they are called spanning trees.2

In describing the application of BFS and DFS to graphs, we will assume an
adjacency structure representation like that of Figure 7.7. The corresponding Pascal
syntax is shown in Figure 7.11. Instead of placing a boolean marker in the vertex
nodes, we have included the field data in which to record the sequence numbers of
the visits, and also the field dad by which to point to the parent of the vertex in the
search tree. Also, we will assume that vnode \Y].vid— 'A', vnode [2].vid =/B/, etc.
Note that the vertices reference the edges via pointers, whereas the edges reference
vertices via cursors.

type vndx = 0 .. vmax;
eptr = jenode;
enode = record

vno: vndx;
data: {depending upon the application)
next: eptr;

end;
vnode = record

vid: char;
dad: vndx;
data: {depending upon the application)
head: eptr;

end;

var vlist: array [vndx] of vnode;

Figure 7.11 Pascal Syntax for Adjacency Structure

In breadth-first search, we treat vertices X in the order in which they occur in a
queue. As we dequeue vertices that are at distance k from the root, we enqueue any
vertices in T(A) that have not yet been visited. Thus, vertices at distance k + 1

2 In the case of trees, we used the term traversal for a systematic visit to each node, and
reserved the term search for a more conditional exploration of the nodes. For graphs,
with their much more general structure, we have to use search techniques even for the
equivalent of traversal.

7.3.1 SEARCH TREES IN A GRAPH 305

procedure BFS_GRAPH (vertex: vndx);

var defer: vndx;
link: eptr;
seq: integer; {a global variable, initially 0}
vlist: array [vndx] of vnode;
wait: {queue type}

begin
INITQ (wait);
seq := seq + 1;
vlist [vertex].data := seq;
vlist [vertex],dad := 0;
ENQUEUE (wait,vertex);
repeat

DEQUEUE (wait,vertex);
link := vlist [vertex].head;
while link <> nil do begin

defer := link[.vno;
if vlist [defer].data = 0 then begin

seq := seq + 1;
vlist [defer].data := seq;
vlist [defer].dad := vertex;
ENQUEUE (wait,defer);

end;
link := link}.next;

end;
until EMPTYQ (wait);

end;

Algorithm 7.1 BFS_GRAPH

from the root are not visited until all vertices at distance k have been visited. This

search process is expressed in the procedure BFS_GRAPH (Algorithm 7.1), wherein

the text of Figure 7.11 is implicitly included, and the implementation of the queue

might be via either of the Algorithms 5.1 or 5.2. There are two related issues for

our implementation of BFS. One is whether to visit a vertex when it is enqueued or

when it is dequeued; the other is how to minimize the enqueuing of vertices that

have already been visited. In response to the second issue, and in contrast to the

choice employed in BFS_TREE (Algorithm 6.10), it is expedient to visit and mark

vertices when they are enqueued, thereby immediately eliminating them from subse¬

quent consideration.

In illustration of the method, suppose that we have the graph of Figure 7.12(a).

Then BFS, starting at the first vertex A, will cause one group of vertices to be

visited, in the numerical sequence shown in (b) of the figure. A scan of the vertex

list will then discover the unmarked vertex /, and initiate a second call to BFS that

reaches the remaining vertices. The solid edges in (b) are tree edges', they corre¬

spond to edges in the graph which were followed to find unmarked vertices. The

306 GRAPHS

(a)

A-1 /-9

(b)

/\-1 /-9

(d)

A-1 /-9

/A-1 /■ 9

Figure 7.12 BFS and DFS in a Graph

7.3.1 SEARCH TREES IN A GRAPH 307

wiggly lines are cross edges', they correspond to the “left-over” edges in the graph.
We can observe two facts about cross edges:

• They always occur between vertices that are in a left-right relationship in the
spanning tree (see Section 6.1).

• They always link vertices on the same or adjacent levels of the tree.

Depth-first search is best understood as a recursive process. We visit and mark
a vertex X, and then we examine the elements of T(T) one at a time. If a vertex Y
in T(X) is unmarked, we immediately apply DFS to it. This is simply expressed, as
in DFS_GRAPH (Algorithm 7.2). As in the case of BFS, the algorithm reflects an
adjacency structure representation, per the program text of Figure 7.11, and it
records sequence numbers and fathers rather than merely marks. The result of
applying DFS(1,0) and then DFS(9,0) to the graph of Figure 7.12(a) is the search
forest of (c) in the figure, again displaying the numerical sequence of the visits.
DFS search yields tree edges again, but this time the “left-over” edges are back
edges (dashed fines) rather than cross edges. A back edge of DFS always goes from
a vertex to one of its ancestors in the spanning tree; thus, for any edge XY in the
tree, either X is an ancestor of Y or Y is an ancestor of X. To demonstrate this,
assume that there is a cross edge between X and Y. We can arbitrarily assume that
X is visited first in the search; but then DFS at X cannot terminate until the edge
from X to Y is searched, making Y a child of X, and leading to a contradiction.

procedure DFS_GRAPH (vertex,father: vndx);

var index: vndx;
link: eptr;
seq: integer; {a global variable, initially 0}
vlist: array [vndx] of vnode;

begin
seq := seq + 1;
vlist [vertex],dad := father;
vlist [vertex],data := seq;
link := vlist [vertex],head;
while link <> nil do begin

index := linkj.vno;
if vlist [index],data = 0 then

DFS_GRAPH (index,vertex);
link := linkj-next;

end;
end;

Algorithm 7.2 DFS_GRAPH

Both BFS and DFS are conceptually simple and can be employed with either an
adjacency structure, as we have shown, or with an adjacency matrix. But remember
that with the former structure, the order in which vertices are visited will depend
upon the order of the edge nodes in their fists. The spanning trees of Figure 7.12(b)
and (c) reflect the assumption that the adjacency structures are ordered lexicograph-

308 GRAPHS

ically. For comparison, the trees of (d) and (e) in the figure illustrate the results,
respectively, of BFS and DFS when the ordering in the edge lists is reversed.

Search techniques such as BFS and DFS are important because they form the
basis for many other graph algorithms. In these other processes, we overlay the
basic search paradigm with the desired computation, rather than merely marking
the vertices as they are visited. In their basic forms, either BFS or DFS is effective
for finding the connected components of an undirected graph, in the manner
demonstrated. In addition, they can easily detect the presence of circuits in a graph
if they reach, via cross edges or back edges, a vertex that has already been marked.
When applied to the adjacency structure representation, both BFS and DFS process
each vertex just once and examine each edge just twice, so that their complexity is
0(V + E). In the case of an adjacency matrix, on the other hand, they both require
Oiy2) operations. The algorithms shown here employ queues and stacks imple¬
mented in straightforward manners. It is also possible to reduce the storage
requirements for these working structures by folding them into the representation of
the graph [Tarjan 1983a]. Although we do not pursue that idea here, such a tech¬
nique is illustrated with relation to topological sorting in Section 7.4.5.1.

What if our only concern is to find the connected components of a graph? We
have just seen that we can find them in time 0(V + E), using an adjacency struc¬
ture, and this representation also requires 0(V + E) space for storing the graph.
However, the edges in a graph express a symmetric and transitive relationship (that
is, equivalence classes), and we saw in Section 6.6.4 a way of computing equivalence
classes in time almost 0(V + E) and in space 0(V). That is, we could apply
UNION and FIND (Algorithms 6.9) to the edges without even storing them. At
the conclusion, we would have one oriented tree for each component of the graph,
wherein the edges in these trees would not have any certain correspondence to the
original edges in the graph. Nonetheless, for a large, dense graph that might have
O(103) vertices and contain 0(1O6) edges, the savings in space would be enormous.

f7.3.1.1 The Number of Trees and Cycles in a Graph. In general, we can construct
many different spanning trees for a graph, depending partly upon its representation
and, more importantly, upon various criteria that may be applied to the selection' of
edges. It is sometimes important to be able to determine the total number of
distinct spanning trees in a graph, and it might be supposed that a combinatorial
search is required to answer the question. In fact, the number can be computed
much more directly, via a result known as the Matrix-Tree Theorem. To do this,
we first construct the degree matrix B of the graph, where bu = | T(i) |, and
btJ = -1 or 0 according as there is or is not an edge (ij). Then the theorem states
that the number of spanning trees is given by the value of the cofactor of any
element of B. Thus, for the graph of Figure 7.13(a), the corresponding degree
matrix is shown in (b) of the figure. Arbitrarily expanding about B [2,3], we find
that the number of spanning trees is three, since the value of the 2,3 cofactor is

(_i)(2+3) x {1 x [(1) x 3 (1) x (-1)]

+ (—1) x [0 x (—1) — (—1) x (—1)]} = 3

These three trees are shown in (c) of the figure.

f7.3.1.1 THE NUMBER OF TREES AND CYCLES IN A GRAPH 309

(C)

Figure 7.13 Spanning Trees of a Graph

Once we have a spanning tree for a graph, then the addition of any other edge
must create a cycle. Moreover, each edge induces a cycle that canhot be obtained
as a combination of any other cycles. Thus, for a connected graph, there will be
E — V + 1 independent cycles. Any particular cycle in the graph can be expressed as
a linear combination of these, where edges are combined using addition modulo 2,
although not all linear combinations will yield a cycle. We can generalize this
notion to that of a graph G which may not be connected, and which may even be a
multigraph. If G has V vertices, E edges, and P components, then the cyclomatic
number v is defined as v = E - V + P. Even for G of the general nature that we
have described, v is precisely equal to the maximum number of independent cycles.

f7.3.2 Blocks and Articulation Points of a Graph

By means of spanning trees, we obtain a minimal connectivity among the vertices of
the graph. However, there are many instances where such a minimal connectivity is
inadequate. In a tree structure, the removal of any interior node would leave the
remaining nodes disconnected. In a graph, a vertex whose removal would separate
the remainder of the graph is called an articulation point, or cut vertex. A
connected graph that has no articulation points is said to be bi-connected, and the
maximal bi-connected subgraphs of a graph are called blocks. If we imagine that a
graph represents a communication network or a railway system, then articulation

310 GRAPHS

points represent facilities whose failure or destruction would sever communication.
Not only are articulation points strategically “critical”; their presence allows a
divide-and-conquer approach to be applied to the analysis of a graph. Many
computations involving the use of a graph can be performed more easily by first
finding the blocks of the graph, and then applying the computation to the individ¬

ual blocks.

An equivalent characterization for bi-connectedness is that there are two inter¬
nally disjoint paths connecting any pair of vertices. The fact that any two vertices
in the DFS spanning tree are in an ancestor-descendant relationship allows for an
ingenious solution based upon this criterion. More precisely, a node x is an artic¬
ulation point if it has a subtree wherein none of the nodes have back edges to any
ancestors of x. The truth of this condition for x dictates that any path between an
ancestor of x and a descendant of x must pass through x. This ingenious use of
DFS is due to Tarjan [1972], as illustrated by the program CUT_NODES (Algo¬
rithm 7.3); another solution to the problem can be found in Paton [1971]. We
begin by finding the DFS spanning tree, recording for each vertex its depth-first
sequence DFN(v), as we did in the previous section. This process is equivalent to a
preorder processing of the nodes in that tree. We also process the tree nodes in
postorder, computing for each a value LOW(v), according to the following rule:

LOW(v) = min (DFN(v), DFN(w), LOW(w)} (7.1)

where u is any ancestor of v (connected via a back edge), and w is any child of v. In
CUT_NODES, the test j < low [vertex'] looks for cases of smaller LOW(w), and the
test vlist [index].data < low [vertex] looks for cases of smaller DFN(m). A compli¬
cation that comes with either an adjacency structure or an adjacency matrix is that
each edge is represented twice, and so the second inspection of an edge must be
suppressed if the algorithm is to work properly. This is easily accomplished by the
test vlist [vertex].dad < > index.

As we work our way in the postorder processing from the leaves of the tree up
to the root, the articulation points are precisely those vertices v with a child w such
that DFN(v) < LOW(w). At the root, this rule will not apply; however, the root is
easily seen to be an articulation point in just those cases when it has more than one
child. In CUT_NODES, we have simply written out the articulation points. In
practice, one might wish to do more; for example, we could record the edges that
occur within each block in the following manner. Stack each edge (w,v) the first
time that it is encountered; subsequently, when an articulation point is discovered,
as above, pop from the stack all edges up to and including (w,v). This group of
edges constitutes one block in the graph.

As an illustration of this computation, consider the graph in Figure 7.14(a). In
(b) of the figure, the DFS spanning tree is shown starting from vertex A, along with
the DFN and the final LOW values. The articulation points are the starred vertices
A, F, and /; the resulting blocks are shown in (c) of the figure. Initially, for exam¬
ple, the vertex C is marked (3,3), but the ancestor A with DFN(yl) = 1 causes C to
be relabeled as (3,1). The vertex B is initially marked (2,2), but the child C with
LOW(C) = 1 causes B to be relabeled as (2,1). In similar fashion, the nodes E, G,
and H reflect the influence of ancestors, and the nodes D and F reflect the influence
of children.

t7.3.2 BLOCKS AND ARTICULATION POINTS OF A GRAPH 311

program CUT_NODES;
var flag: boolean;

i,root,t: vndx;
low: array [1 .. vmax] of vndx;

function CUT_SCAN (vertex,father: vndx): vndx;
var index,j: vndx;

link: eptr;
begin

seq := seq + 1;
vlist [vertex],data := seq;
vlist [vertex],dad := father;
if father = root then begin

if not flag then flag := true
else writeln (root); {root is a cut-node}

end;
low [vertex] := seq; {initialize LOW(v) to DFN(v)}
link := vlist [vertex],head;
while link <> nil do begin

index := linkf.vno;
if vlist [index],data = 0 then begin

j := CUT_SCAN (index,vertex);
if j < low [vertex] then

low [vertex] := j; {LOW(w) < LOW(v)}
if (j >= vlist [vertex],data) and (vertex <> root) then

writeln (vertex); {vertex is a cut-node}
end else

if vlist [vertex],dad <> index then {avoid copy of edge}
if vlist [index],data < low [vertex] then

low [vertex] := vlist [index],data; {DFN(tv) < LOW(v)}
link := link}.next;

end;
CUT_SCAN := low [vertex];

end;

begin
for i : = 1 to vsize do

vlist [i].data := 0;
seq := 0;
for i := 1 to vsize do

if vlist [i].data = 0 then begin
flag := false; root := i;

t := CUT_SCAN (i,0);
end;

end.

Algorithm 7.3 CUT_NODES

312 GRAPHS

Figure 7.14 Cut Vertices and Blocks

It should be emphasized that CUT_NODES, although it performs a distinctly
more sophisticated operation than does plain DFS, is just an elaboration of
DFS_GRAPH. In particular, each vertex is still processed just once and each edge
is examined just twice, so that the overall complexity for CUT_NODES applied to
an adjacency structure representation is 0(V + E).

The concept of connectivity can be generalized to the case of a set of cut
vertices, the removal of which leaves a graph disconnected. The minimum size of
such a set for a graph G is called the connectivity k(G); furthermore, for any
k < k(G), the graph is said to be k-connected. Just as bi-connectedness is equivalent
to the existence of two internally disjoint paths connecting any pair of vertices,
Menger’s Theorem shows that /c-connectedness is equivalent to the existence of k
internally disjoint paths connecting any pair of vertices. A complicated but still
linear algorithm for finding the tri-connected components of a graph (by DFS
again) is given in Hopcroft and Tarjan [1973a]. In a different vein, and analogous
to the manner in which a cut vertex separates a graph, we speak of a cut edge, or
bridge, the removal of which causes a graph to be disconnected; such an edge in
Figure 7.14(a) is FI. Such edges are easily determined after the articulation points
are known (see Exercise 7.11). As with vertices, the notion of edge connectivity can

7.3.3 TRANSITIVE CLOSURE OF A DIGRAPH 313

be generalized to the case of a set of edges that disconnects a graph; it is conven¬
tional to reserve the term cut-set to denote a minimal such set of edges.

7.3.3 Transitive Closure of a Digraph

We turn our attention now to the investigation of search trees in directed graphs.
Specifically, suppose that we have the digraph in Figure 7.15(a), and that we apply
DFS to it. The result is shown in (b) of the figure. We no longer have just tree
edges (solid lines) and back edges (dashed lines). There are cross edges (wiggly
lines) and also another category, forward edges (dotted lines). The cross edges are
between vertices with a left-right relationship, as in BFS, and the forward edges go
from a vertex to one of its non-child descendants. An important feature of such a
spanning tree is that it does not capture all of the reachability relationships among
the vertices by partitioning the vertices and edges into equivalence classes, as in the
undirected case. For example, since we started from vertex A, the tree conveys that
r*(.4) = {4, B, C, F, G}. But it fails to convey other reachability relationships, such
as F from I. Since the manner in which DFS partitions the vertices of a digraph
into spanning trees is dependent upon the starting vertices, then in order to be
certain to obtain r*(T) for each vertex in a digraph, we must conduct DFS from
each vertex. This causes the complexity of computing the reachability relationship
in a digraph to be OiV2 + EV), which in the worst case can be OjF3).

Figure 7.15 DFS in a Digraph

Are there any other solutions? The fact that the reachability relation will typi¬
cally have a dense set of arcs suggests that an adjacency matrix representation might
be efficient. To begin with, suppose that our adjacency matrix A is a boolean
matrix, wherein a value of True denotes a directed path of length 1 between the
corresponding vertices. Then the matrix A- captures information about directed
paths of length 2. If we perform boolean multiplication, we simply get a value of
True where such a path exists; if we perform integer multiplication, we obtain a
count of the number of directed paths of length 2 between the corresponding

314 GRAPHS

vertices. In similar fashion, A' can be used to obtain information about paths of
length i. Presume now that we are performing boolean multiplication and addition,

and that we compute A + A2 + A3 + - + Av~x. Since a simple path between any
two vertices cannot employ more than V — 1 arcs, this boolean sum will evidently
represent the union of all paths of all possible lengths, and so we will have
computed the reachability relationship, more commonly termed transitive closure.

The corresponding matrix is called the path matrix.

Unfortunately, each of the preceding matrix multiplications is 0(1/3), so that the
total computation would appear to be 0(F4). But this is not really the case. There
are two arguments that demonstrate that it is possible to do better. One of these is
a constructive one. If A is any boolean matrix and / is the identity matrix, then it is

easy to show by induction that

I+A+A2 + - + AV~l = (I+A)V~1 (7.2)

Since the right hand side can be obtained via lg F repeated squarings (see Exercise
1.16), we can obtain transitive closure in OiV3 lg F). However, the other argument
yields the astonishing result that the problems of multiplying two boolean matrices
and of computing the transitive closure of a boolean matrix are of the same
complexity [Aho et al. 1974; Fisher and Meyer 1971]. Thus, we should expect to
be able to compute transitive closure in OiV3).

procedure WARSHALL_B (adjacent: adj_mat_b; var path: adj_mat_b);

type vndx = 0 .. vmax;
adj_mat_b = array [vndx,vndx] of boolean;

var i,j,k,vsize: vndx;

begin
path := adjacent;
for k := 1 to vsize do

for i := 1 to vsize do
if path [i,k] then

for j := 1 to vsize do
path [i,j] := path [i,j] or path [k,j];

end;

Algorithm 7.4 WARSHALL_B

In fact, a method developed by Warshall [1962], shown as WARSHALL_B
(Algorithm 7.4), does just that. It accomplishes this with a series of three nested
loops. The rationale for the order of the nesting is rather unobvious. To under¬
stand the process, realize that we are finding, for successively larger values of k,
paths between the vertices i and j that employ only the first k vertices as intermedi¬
ate points. Conceptually, we are iterating

pathk [ij] =pathk_x [y] or (pathk_x [z',/i] and pathk_x [Ay])

7.3.3 TRANSITIVE CLOSURE OF A DIGRAPH 315

to express that there is a path (ij) employing just the first k vertices as intermediate
points if either (a) there is already such a path employing the first k — 1 vertices, or
(b) there are paths (i,k) and (Ay) that employ just the first k — 1 vertices. This is
illustrated in Figure 7.16. Within the actual machine procedure, in order to avoid
needless computation of and’s and or’s, we employ the test if pathk [z,A;]. Now the
notation pathk and pathk_x in the above expression implies that we would need
distinct iterated copies of the path array. However, we note that

pathk U->k~\ = pathk_y [z,W] , and pathk [Ay] = pathk_j [Ay]

Thus, during the A:th iteration, there is no change in any entry that has either index
equal to k, and so the algorithm can operate upon a single copy of the path matrix.

Suppose that we have the digraph of Figure 7.17. Then the original value for
path is shown in Figure 7.18(a), and the results of the five iterations that transform
it to the transitive closure are shown in (b) - (f) of the figure. There are many uses
for the information in the path matrix. As a simple example, suppose that the
original adjacency relationship indicates calling relationships between procedures;
for example, from (a) of the figure, B calls C and E. Then path [z,z] = 1 indicates
that the zth procedure is recursive, as in the case of procedures B, C, D, E from (f)

of the figure.

Figure 7.17 An Example for Transitive Closure

Since we have observed that transitive closure is analogous to the multiplication
of boolean matrices, we are led back to some of the ideas that we explored in
Section 2.5.2. In particular, we saw there that it is often possible to speed up this
type of operation by employing sets as variables, thereby gaining access to parallel
bit operations at the hardware level. The corresponding embodiment in the present
case is WARSHALL_S (Algorithm 7.5), yielding transitive closure in OiV2). It is

316 GRAPHS

0 10 0 1
0 0 10 1

(a) 0 10 10
0 0 0 0 1
0 0 0 1 0

0 10 0 1
0 0 10 1

(b) 0 10 10
0 0 0 0 1
0 0 0 1 0

0 110 1
0 0 10 1

(c) 0 1111
0 0 0 0 1
0 0 0 1 0

0 1111
0 1111

(d) 0 1111
0 0 0 0 1
0 0 0 1 0

0 1111
0 1111

(e) 0 1111
0 0 0 0 1
0 0 0 1 1

0 1111
0 1111

(f) 0 1111
0 0 0 1 1
0 0 0 1 1

Figure 7.18 Trace of Algorithm WARSHALL_B

instructive to compare WARSHALL_S with BOOL_MULT (Algorithm 2.9). They
look so similar, and yet they compute such different quantities! As we saw in
Chapter 2, there are still other techniques available for reducing the complexity of
boolean multiplication, such as RUSSIANS (Algorithm 2.10). This is not quite the
final word with respect to efficiency; we will find still another approach to transi¬

tive closure in the next section.

procedure WARSHALL_S (adjacent: adj_mat_s; var path: adj_mat_s);

type vndx = 0 .. vmax;
adj_mat_s = array [vndx] of set of vndx;

var i,k,vsize: vndx;

begin
path := adjacent;
for k := 1 to vsize do

for i := 1 to vsize do
if k in path [i] then

path [i] := path [i] + path [k];
end;

Algorithm 7.5 WARSHALL_S

f7.3.4 Strongly Connected Components of a Digraph

As we have seen, DFS does not, by itself, yield equivalence classes of vertices in a
digraph. However, there are such equivalence classes, and these are the strongly
connected components of the digraph. Many operations upon digraphs can be
greatly simplified by finding the strong components as a first step, just as finding
the blocks of a graph can simplify matters. There is an important difference,
however, between the components of a graph and the strong components of a

t7.3.4 STRONGLY CONNECTED COMPONENTS OF A DIGRAPH 317

digraph. The former partition all of the vertices and all of the edges, whereas the
latter partition all of the vertices but only some of the arcs.

We saw earlier, with Figure 7.15, that DFS of a digraph yields trees that, in the
general case, may contain four types of edges: tree edges, backward edges, cross
edges, and forward edges. An important fact about DFS of a digraph is that the
cross edges always point from right to left, under the assumption that spanning tree
branches are drawn in order of discovery from left to right. The reasoning for this
is similar to that in Section 7.3.1, whereby we established that back edges in the
undirected case must always go to ancestors. In the present case, cross edges must
always go from a vertex with a higher DFS number to one with a lower DFS
number.

In a manner remarkably similar to that of CUT_NODES (Algorithm 7.3), DFS
can be embellished to perform both preorder and postorder processing of the
vertices and yield the strong components in 0{V + E). Such an algorithm is due to
Tarjan again [1972], and is illustrated by the program STRONG_COMPONENTS
(Algorithm 7.6). An alternative approach can be found in Sharir [1981]. Starting
at vertex A, we once again compute for each vertex a value LOW(v), as follows:

LOW(v) - min {DFN(v), DFN(w), LOW(w)} (7.3)

where u is any ancestor of v (that is, connected via a back edge), or where u is any
“cousin” of v (connected via a cross edge) leading to such an ancestor, and where w
is any child of v. This has the effect that as we process the vertices in postorder, we
look for larger and larger subtrees with the property that all nodes of the subtree
can reach the root. When we find a vertex x such that LOW(x) is still equal to
DFN(x), then we have found the root of a strong component. By stacking vertices
when they are first encountered, and then - when this latter condition is met -
popping vertices from the stack up to and including x, we capture the components
for output. One more thing is needed to make this process work. There may be
cross edges from one tree to another tree, as well as cross edges within trees. So
that the low DFN values to the left will not cause incorrect values on the right, all
the vertices in a strong component are marked as they are removed from the stack.

The action of STRONG_COMPONENTS is illustrated in Figure 7.19 for the
digraph of Figure 7.15. The original digraph is reproduced in (a) of Figure 7.19.
The spanning trees with the final DFN and LOW values are shown in (b) of the
figure, where the starred vertices are the roots of the strong components. The
strong components themselves are shown in (c) of the figure. Initially, for example,
the vertex F is marked (3,3), but the ancestor A with DFN(v4) = 1 causes F to be
relabeled as (3,1). The vertex C is initially marked (4,4) and is never changed, so it
is a strong component. The vertex B is initially marked (2,2), but the child F with
LOW(jF) = 1 causes B to be relabeled as (2,1). The vertex G is initially marked
(5,5), but the cross edge to F with DFN(F) = 3 causes G to be relabeled as (5,3). In
a similar fashion, the vertices H and / reflect their ancestral relation with vertex D;
however, the effects of the cross links to the first spanning tree are suppressed.

An important consequence of having found the strong components of a digraph
D is that we can then construct its condensation D*. In the condensed graph, each
strong component is replaced by a single vertex, and there are no cycles. The
condensation of our digraph of Figures 7.15 and 7.19 is shown in Figure 7.20. An

318 GRAPHS

program STRONG_COMPONENTS;
var i,t,top: vndx;

flag: array [1 .. vmax] of boolean;
low: array [1 .. vmax] of vndx;
stack: array [1 .. stkmax] of vndx;

function STRONG_SCAN (vertex,father: vndx): vndx;
var index,j: vndx;

link: eptr;
begin

seq := seq + 1;
vlist [vertex],data := seq;
vlist [vertex],dad := father;
low [vertex] := seq; {initialize LOW(v) to DFN(v)}
top := top + 1;
stack [top] := vertex;
link := vlist [vertex],head;
while link <> nil do begin

index := linkj.vno;
if vlist [index],data = 0 then begin

j := STRONG_SCAN (index,vertex);
if j < low [vertex] then

low [vertex] := j; {LOW(w) < LOW(v)}
end else

if flag [index] and (vlist [index],data < low [vertex]) then
low [vertex] := vlist [index],data; {DFN(t/) < LOW(v)}

link := link}.next;
end;
if low [vertex] = vlist [vertex],data then begin

repeat
write (stack [top]); {stack [top] is part of component}
flag [stack [top]] := false;
top := top - 1;

until stack [top + 1] = vertex;
writeln; {end of strong component}
vlist [vertex],data := vsize + 1;

end;
STRONG_SCAN := low [vertex];

end;

begin
for i := 1 to vsize do begin

flag [i] := true;
vlist [i].data := 0;

end;
seq := 0; top := 0;
for i := 1 to vsize do

if vlist [i].data = 0 then

t := STRONG_SCAN (i,0);
end.

Algorithm 7.6 STRONG_COMPONENTS

t7.3.4 STRONGLY CONNECTED COMPONENTS OF A DIGRAPH 319

Figure 7.19 Strongly Connected Components

Figure 7.20 Condensation of Figure 7.19

immediate application of this is an alternative method of computing transitive
closure [Munro 1971]. We saw that Warshall’s algorithm yields the closure in
OiV3) or OiV2), depending upon the use of parallel bit operations. However,

consider the following sequence of operations:

1. Find the strong components, and thus D*, in 0(V + E).

320 GRAPHS

2. Apply Warshall’s algorithm to D*.
3. Construct the closure of D by inserting l’s everywhere in each strong compo¬

nent subarray, and by filling in the remaining subarrays according to the result

of the second step — all in OiV2).

Since the condensation will often have far fewer vertices than the original digraph,
the second step may be much faster with D* than with D. Indeed, the major part of
the time may be spent in just filling in the reachability matrix in the third step.
While there is a possible reduction in time when using this method, there is also a

substantial increase in the programming task.

7.4 APPLICATIONS OF GRAPHS

Graphs can be used for solving so many diverse kinds of problems that it is difficult
to do the subject justice at this point. We have tried to choose areas that illustrate
a variety of problem types and solution methods for both graphs and digraphs. The
first two topics, minimal spanning trees and shortest paths, are fairly conventional.
The third section deals with matchings and coverings; less likely to be familiar, this
topic is an entree to many interesting and practical problems. The fourth section
discusses Eulerian and Hamiltonian traversals of a graph; and the final section
concentrates upon the ordering relationships that the arcs of a digraph impose on

its vertices.

7.4.1 Minimal Spanning Trees in a Graph

A simple and important use of undirected graphs is the following. G is a connected
graph with V vertices, and a set E of weighted edges connecting them. We wish to
select a subset of V — 1 edges that will form a spanning tree connecting the vertic.es,
subject to the criterion that the subset of edges selected will have the lowest possible
sum of associated weights. These weights might represent lengths of wire in a
circuit or pipe in a house, or they might represent other costs that are not related to
distance. In either event, there are commonly real savings associated with finding a
set of edges that yield such a minimal spanning tree (MST) of the network.

There are two principal methods for finding a minimal spanning tree, and they
both employ the following principle:

In the construction of an MST, there will be two sets of vertices, U and
its complement V — U. If (w,v) is an edge of lowest cost such that u e U
and v e (V— U), then there must be an MST that contains (w,v).

If we assume the contrary, then let T be some MST for the original graph, and
consider the graph H obtained by adding («,v) to T. H must have a cycle contain¬
ing the edge (w,v) and another edge (u',V) e T that connects the same components.
Since the edge (w,v) is by definition a lowest cost edge connecting the two compo-

7.4.1 MINIMAL SPANNING TREES IN A GRAPH 321

nents, then we can safely delete edge (u',v') from H to obtain an MST containing
the edge (w,v). This confirms the original claim.

One classical use of this principle, by Prim [1957], proceeds along the following
lines. We imagine that the vertices are divided among three sets: U containing
vertices that are already in the MST, V containing vertices that are not yet in the
tree but are in r(U), and W containing the remaining vertices. We start by placing
any single vertex in U. Thereafter, one iteration consists of the following steps:

1. Find the shortest edge that connects a vertex in V with a vertex in U.
2. Add that edge to the tree and update the sets U, V, and W.

We iterate these steps until all the vertices of the graph are included in U. This is
conceptually simple, as illustrated by the graph in Figure 7.21(a). Here, if we start
with vertex A, the edges are selected in the sequence shown in (b) of the figure.

24 B

H

(a)

H

(c)

Figure 7.21 Minimal Spanning Trees

The actions “find the shortest edge” and “update the sets U, V, and W” require
some attention if we are not to spend an inordinate amount of time examining
edges and vertices. The crucial insight for performing these operations efficiently is
that, on every iteration, we can associate with each of the vertices v, in V some

322 GRAPHS

procedure PRIM (cost: adj_mat_i; var least: distance;
var closest: parent; var sum: integer);

const inf = {some suitably large number, such as maxint}

type vndx = 0 .. vmax;
adj_mat_i = array [vndx,vndx] of integer;
distance = array [vndx] of integer;
parent = array [vndx] of vndx;

var i,j,k,min: integer;
undone: array [vndx] of boolean;

begin
least [1] := 0; closest [1] := 0; undone [1] := false;
sum := 0;
for j ;= 2 to vsize do begin {find smallest edge}

least [j] := cost [1 ,j];
closest Q] := 1;
undone G] := true;

end;
for k := 2 to vsize do begin {reach other V — 1 nodes}

min := inf;
for j := 2 to vsize do {update tree data}

if undone G] and (least G] < min) then begin
min := least G]; i : = j;

end;
sum := sum + min;
undone [i] := false;
for j := 2 to vsize do

if undone G] and (cost [i,j] < least G]) then begin
least G] •' = cost [i,j]; closest G] := i;

end;
end;

end;

Algorithm 7.7 PRIM

smallest edge et linking it to the set U. Therefore, when we have selected the short¬

est of these particular edges and thereby moved a vertex X from V to U, we need

just examine the effect of this upon the sets {e,}, U, V, and W. But this can be

simplified even further. We choose to employ an adjacency matrix representation

for illustrating Prim’s method. As discussed in Section 7.2, this allows us to repre¬

sent “no edge” by some arbitrarily large number. Then the distinction between the

sets V and W vanishes, and we need only update the sets {c,}, U, and V. The result

is the procedure PRIM (Algorithm 7.7). The progress of the algorithm is illustrated

by the partial trace in Figure 7.22, starting from vertex A and thereafter showing

successive values of closest and least — that is, the v,- and their corresponding et —

and of sum.

7.4.1 MINIMAL SPANNING TREES IN A GRAPH 323

/ closest [/] least [/] sum B C D E F G H / J

24 23 20 * * * * * *

A A A A A A A A A

D A 20 20 24 21 20 5 7 2 7 * *

A D A D D D D A A

G D 2 22 24 19 20 5 7 2 5 12 11
A G A D D D G G G

E D 5 27 24 19 20 5 7 2 3 12 11
A G A D D D E G G

H E 3 30 24 19 20 5 7 2 3 12 10
A G A D D D E G H

F D 7 37 24 18 20 5 7 2 3 12 10
A F 4 D D D E G H

B A 24 101 24 18 20 5 7 2 3 12 10
A F A D D D E G H

Figure 7.22 Partial Trace of Algorithm PRIM

The other classical technique for constructing an MST is by Kruskal [1956]. In
this case, we start with all the vertices as separate components, and we examine the
edges in increasing order of their cost. For each edge, if it connects two previously
distinct components, we include it in the spanning tree; if it connects two vertices
already in the same component, so that its inclusion would create a cycle, we
discard it. Let us apply this method to the same graph of Figure 7.21(a). The
edges are selected in the sequence shown in (c) of the figure. Observe that at the
third step, there is a choice between two edges of cost 5. It does not matter which
is chosen, and we assume that the edge GH is chosen rather than DE. As a result,
we find in the figure an illustration of the fact that the MST need not be unique
with respect to its set of edges. Nonetheless, the value of the MST (101, the sum of

the weights) is unique.

Although conceptually simple, the description in the preceding paragraph
glosses over two significant sub-problems: how to find the next smallest edge, and
how to discover when two vertices are already connected. The first problem can be
handled by sorting all the edges before beginning, and this is 0(E lg E), as we will
see in Chapter 13. However, we need only V — 1 edges, which will in most cases be
much less than all E of them. A much better answer to the first sub-problem is to

use a priority queue. For the second sub-problem, the resolution is to use

UNION-FIND (Algorithms 6.9)!

Having indicated how to solve the associated sub-problems, we leave the

detailed algorithm for Kruskal’s method as an exercise (see Exercise 7.17).

324 GRAPHS

However, it is valuable to consider here the circumstances under which one would
choose between Prim’s and Kruskal’s methods. It is easy to see that Prim s method
as applied to an adjacency matrix is OiV2); if applied to an adjacency structure in
the most obvious fashion, the complexity would still be the same. The use of a
priority queue to find the smallest edge connecting U and V — [/ would reduce this
for a sparse graph, but would increase it for a dense graph. Originally, Kruskal s
method was not very competitive with Prim’s because of the high cost then associ¬
ated with both of its sub-problems. Since the discovery of efficient means for
dealing with these problems, the balance has shifted somewhat. In particular, we
will learn in Section 13.2.1.2.1 that a priority queue of the edges can be constructed
in 0(E) if we process all of them at the beginning. Thereafter, for each iteration of
Kruskal’s method, finding the next smallest edge is 0(lg E) and testing for “equiv¬
alent” vertices is almost 0(1). In the extreme case, it might be necessary to examine
all the edges, so that the worst-case complexity is 0(E lg E); typically, however,
Kruskal’s algorithm would perform better than this. A generalization, confirmed by
experiment, is that Prim’s method is better for a dense graph, while Kruskal s

method is better for a sparse graph [§].

Both Prim’s and Kruskal’s methods illustrate what are known as greedy algo¬
rithms; this means that they attain globally optimal solutions by means of locally
optimal decisions. There are many other problems associated with graphs for whicl
this tactic does not work very well, as we will see in Section 7.4.4.3. The methods
of Prim and Kruskal represent two extremes: picking the next edge so as to add
one vertex to a single tree, and picking the next shortest edge while ignoring the
internal nature of the various trees already formed. By taking the latter details into
account - for example, via a priority queue for each tree - still more efficient
(and more complicated) MST algorithms can be obtained.3 These methods attain
complexity 0(E lg lg V), and they appear to have average performance 0(V + E).

7.4.2 Shortest Paths in Graphs and Digraphs

Another extremely common problem that arises with weighted graphs is that of
finding the shortest (minimum time or other cost) path between two vertices. As
opposed to our discussion of MST’s, the logic of this problem, and therefore the
discussion in this section, applies equally well to digraphs. More general than the
problem of finding the minimum distance between two particular vertices is a
second one of finding the minimum distances between a given source vertex and all
of the other vertices of the graph. If all the weights have the value 1, then the first
problem is trivially solved by BFS (recalling our discussion in Section 7.3.1). In the
general case of unequal weights, however, it appears to be no easier to solve the
first problem than it is to solve the second. Thus, our interest is in a means for

3 However, an implementation of priority queues in terms of heaps will not serve us in
this case, because we need to merge priority queues when we merge the corresponding
subtrees, and such an operation is 0(V lg V) with heaps. Some of the other priority
queue implementations discussed in Section 6.6.4.1 do not have this drawback.

7.4.2 SHORTEST PATHS IN GRAPHS AND DIGRAPHS 325

solving the latter. This can be accomplished by Dijkstra’s method [1959]. (His
article actually contains an independent exposition of Prim’s method as well as the
present algorithm.)

The ideas behind Dijkstra’s method have a very familiar ring. During the
course of the algorithm, we imagine that the vertices are divided among three sets:
U containing vertices that are already processed, V containing vertices that are not
yet processed but are in T(C/), and W containing the remaining vertices. We start
by placing the source vertex v0 in U; thereafter, one iteration consists of the follow¬
ing steps:

1. Find the shortest edge that connects a vertex in V, via the vertices in U, to v0.
2. Add that edge to the tree, and update the sets U, V, and W.

We iterate these steps until all the vertices of the graph are included in U. The
crucial difference between Prim’s method and this process is that the former looked
for the next minimum distance vertex from the partial tree, whereas Dijkstra’s algo¬
rithm looks for the next minimum distance vertex from v0. Once again, we employ
an adjacency matrix representation, and we obtain the procedure DIJKSTRA
(Algorithm 7.8), remarkably similar in form to PRIM.

For an example of this method, consider the digraph of Figure 7.23. The corre¬
sponding adjacency matrix is shown in Figure 7.24(a), and a trace of DIJKSTRA,
with E (the fifth vertex) as the source, is shown in Figure 7.24(b), for successive
values of least and father. By tracing out the final values of father, we see that the
corresponding spanning tree of shortest paths from E is completely degenerate in
this case: E-B — A — F-C-D. As in the case of the MST algorithms, the short-
est-paths spanning tree need not be unique, but the minimum costs will be unique.
In general the spanning tree constructed for this problem will bear no relation to
the spanning tree generated for the MST problem. To see this, suppose that we
apply DIJKSTRA to the graph of Figure 7.21(a), starting at vertex J. The span¬
ning tree for this case is shown in Figure 7.25; it is indeed very different from those

of Figure 7.21(b) and (c).

2

Figure 7.23 An Example for Shortest Paths

Dijkstra’s algorithm is remarkably similar in form to Prim’s but subtly different,
so that it is not as obvious why it works. To understand it, note that we always

326 GRAPHS

procedure DIJKSTRA (source: vndx; cost: adj_mat_i;
var least: distance; var father: parent);

const inf = {some suitably large number, such as maxint}

type vndx = 0 .. vmax;
adj_mat_i = array [vndx,vndx] of integer;
distance = array [vndx] of integer;
parent = array [vndx] of vndx;

var i,j,k,vsize: vndx;
min: integer;
undone: array [vndx] of boolean;

begin
for i := 1 to vsize do begin

least [i] := cost [source]];
father [i] := source;
undone [i] ;= true;

end;
least [source] := 0; undone [source] := false;
for k := 2 to vsize do begin {reach other V — 1 nodes}

min := inf;
for j := 1 to vsize do {find smallest edge}

if undone [j] and (least Q] < min) then begin
min := least [j]; i := j;

end;
undone [i] : = false;
for j := 1 to vsize do {update tree data}

if undone [j] and (min + cost [i,j] < least [j]) then begin
least [j] := min + cost [i,j]; father [j] := i;

end;
end;

end;

Algorithm 7.8 DIJKSTRA

select the next closest vertex v to the source such that v can be reached via vertices
already in the set U. Then the cost of this path to v via vertices in U must be the
minimum cost path to v. Suppose the contrary, that there exists some first vertex w
not in U, such that a path from the source to w and then ultimately to v has lower
cost, as illustrated in Figure 7.26. But then the distance just to w in such a path
must be less than the distance to v, and w would have to have been selected before
v, according to the original selection criterion. Since the assumption of such an
alternate, lower cost path leads to a contradiction, it cannot exist, and so the
process works.

We see that DIJKSTRA, like PRIM, has a complexity of OiV2) when imple¬
mented for an adjacency matrix; once again, for a sparse graph, an implementation
based upon an adjacency structure and employing priority queues could yield a
lower complexity. If we merely want to find the least distance from the source to a

7.4.2 SHORTEST PATHS IN GRAPHS AND DIGRAPHS 327

A B C D E F

(a) Adjacency Matrix

/ least [/'] father [/'] A B C D £ F

* 2 * 14 0 *

E E £ £ £ £

B 2 E 5 2 * 12 0 *

B E £ B £ £

A 5 B 5 2 10 12 0 7

B E A B £ A

F 7 A 5 2 8 11 0 7

B £ F F £ A

C 8 F 5 2 8 9 0 7

B £ F C £ A

D 9 C 5 2 8 9 0 7

B £ F C £ A

(b) Trace

Figure 7.24 Trace of Algorithm DIJKSTRA

A B

Figure 7.25 Shortest Paths from J in Figure 7.21

particular other vertex, then we could revise DIJKSTRA so that it terminated as

soon as that vertex had been reached; however, the complexity would still be OiV2).
To go to the other extreme, suppose that we wished to find the matrix of minimum
distances between every pair of vertices (v„ vy). We could obtain this with DIJK¬

STRA, starting from each vertex in turn, with a complexity of OiV3). However,

there is an attractive alternative due to Floyd. Although still OiV3), it is more

compact, being entirely analogous to WARSHALL_B (Algorithm 7.4). In

Warshall’s algorithm, we detect a path from v, to v, by iterating (conceptually)

pathk_x [z'j] or ipathk_x [i,fc] and pathk_x [/cj])

328 GRAPHS

Figure 7.26 Rationale of Dijkstra’s Method

In Floyd’s algorithm, we obtain the minimum distance from v, to y, by iterating

(conceptually)

min {leastk_i [ij], leastk_\ [z,/t] + leastk_\ [/cj]}

The resulting procedure is FLOYD (Algorithm 7.9). Note that it is conventional to
set the diagonal entries in the cost matrix to zero in order to model the underlying
reality of the problem. If this were not done, the final diagonal entries would not
correspond to shortest paths, but rather to the shortest circuits incident upon these
vertices. Analogously to WARSHALL_B, we test for least [z,&] < > oo in order to
eliminate unnecessary computations. The result of applying FLOYD to the digraph
of Figure 7.23 is illustrated by the trace in Figure 7.27. The initial value of least is
that of cost from Figure 7.24(a), and the final shortest paths are those given by

Figure 7.27(f)-

procedure FLOYD (cost: adj_mat_i; var least: adj_mat_i);

const inf = {some suitably large number, such as maxint}

type vndx = 0 .. vmax;
adj_mat_i = array [vndx,vndx] of integer;

var i,j,k: vndx;

begin
least := cost;
for k := 1 to vsize do

least [k,k] := 0;
for k := 1 to vsize do

for i := 1 to vsize do
if least [i,k] <> inf then

for j := 1 to vsize do
if least [i,k] + least [k,j] < least [i,j] then

least [i,j] := least [i,k] + least [k,j];
end;

Algorithm 7.9 FLOYD

7.4.2 SHORTEST PATHS IN GRAPHS AND DIGRAPHS 329

We stated earlier that using FLOYD is preferable to making V calls on DIJK-
STRA. But this once again depends upon the relative density of the graph; for a
sparse graph the repeated use of DIJKSTRA could be significantly better. There is
another factor that is also important in choosing between these two algorithms.
For some applications it makes sense to have edges with negative weights. In these
cases, Dijkstra’s algorithm does not work properly. Although it can easily be modi¬
fied to accommodate negative weights (see Exercise 7.20) - as long there are not
negative cycles as well — the resulting complexity can then be exponential [Johnson
1973]. Floyd’s algorithm handles negative weights with no attendant difficulties,
but the case of negative cycles poses an obvious problem.

0 * 5 * * 2 0 * 5 6 * 2 0 * 5 6 * 2

3 0 8 10 * 5 3 0 8 9 * 5 3 0 8 9 * 5
* * 0 1 * * (c) * * 0 1 * * (e) 7 * 0 1 * 9

6 * 11 0 * 8 6 * 11 0 * 8 6 * 11 0 * 8
* 2 * 14 0 * 5 2 10 11 0 7 5 2 10 11 0 7
* 17 1 4 9 0 20 17 1 2 9 0 8 11 1 2 9 0

0 * 5 * * 2 0 * 5 6 * 2 0 13 3 4 11 2

3 0 8 10 * 5 3 0 8 9 * 5 3 0 6 7 14 5
* * 0 1 * * (d) 7 * 0 1 * 9 (f) 7 20 0 1 18 9

6 * 11 0 * 8 6 * 11 0 * 8 6 19 9 0 17 8
5 2 10 12 0 7 5 2 10 11 0 7 5 2 8 9 0 7

20 17 1 4 9 0 8 17 1 2 9 0 8 11 1 2 9 0

Figure 7.27 Trace of Algorithm FLOYD

f7.4.2.1 Dynamic Programming. In previous sections, we have encountered several
algorithmic techniques for contending with the complexity associated with solving
problems: divide-and-conquer, backtracking, and branch-and-bound. By reexamin¬
ing some of the material from the preceding section, we now find another important
technique, dynamic programming. In the case of divide-and-conquer, we saw how
some problems can be broken up into smaller problems that can be solved and
composed independently. However, there are instances where we can decompose a
problem and solve its parts independently, and yet the resulting sub-solutions
cannot be composed independently. In such cases, if two specific conditions apply,
then we can use dynamic programming to reduce the exponential costs associated
with evaluating a large tree of possibilities. The first necessary condition is that an
optimal solution of a sub-problem should always be optimal no matter how that
sub-solution is combined in a larger problem. The second necessary condition is
that sub-problems should recur in several larger problems; this allows us to
compute the solutions for sub-problems just once and then store them in tables,
where they can be looked up when needed within larger problems.

Let us reexamine Floyd’s algorithm in the light of these remarks. There, for all

pairs ij, we look for

min {leastk_i [ij], lcastk_j [z',/c] + leastk_j [kj]}

330 GRAPHS

over successively larger sets of intermediate vertices Vj.. vt_j. On the Ath iteration,
the values of leastk_x [z',A] and leastk_x [Aj] always represent the shortest distances
(i,k) and (kj) over paths wherein the first k — 1 vertices are intermediate, so that the

first of the above conditions applies. Moreover, since

leastk [z',A] = leastk_x [*,A] , and leastk \kj] = leastk_x \kj]

then table entries having A: as a subscript will not change on the Ath iteration. Thus
the intermediate tables, corresponding to the second of the above conditions, can be
maintained in the same table where the final answer is developed! The fact that the
storage for the solutions for the sub-problems is essentially free is key to the success

of dynamic programming in this situation.

The method of tabulation for the transformation of a recursive program to a
more efficient one (see Section 5.4.2.1) is related to dynamic programming in a
limited sense. In this former technique we also store values in tables so that they
can be reused rather than recomputed. Dynamic programming is a more general
process in that it involves an optimization using such tabulated values. That
Floyd’s algorithm is an instance of dynamic programming almost escapes our notice
because of the fortuitous manner in which storage is reused. We will encounter
other, more distinctive uses of dynamic programming in Sections 7.4.4.3, 8.3.3,

8.6.3, and 10.3.2.1.

7.4.3 Matchings and Coverings in a Graph

Suppose that we have a group of persons and that we must pair them off, perhaps
as roommates. We can represent the persons as vertices of a graph in which, for
every compatible pair, there is a corresponding edge. Is there an efficient algorithm
that will either find a compatible roommate for every person, or else determine that
no such pairing exists? We will return to the question after posing it in the termi¬
nology of graph theory. A matching in a graph is an independent subset of its edges
(such that no two of the edges are adjacent), and a maximum matching in a graph
G is synonymous with the largest possible set of independent edges in G. An impor¬
tant numerical parameter of a graph is the cardinality of a maximum matching, a
quantity known as the edge independence number IE of the graph. If a matching is
such that it covers, or includes, all of the vertices, then we have a complete
matching.

We can also inquire as to the minimum number of (not necessarily independent)
edges that are required to obtain a covering of all the vertices of the graph — that
is, a set of edges such that all the vertices are incident to at least one edge in the set.
This quantity is known as the edge covering number CE of the graph. By reversing
the roles of the vertices and the edges, we obtain two analogous parameters for
vertices. One of these is the vertex independence number Iv, equal to the cardinality
of a maximal independent (non-adjacent) set of vertices in the graph. The other is
the vertex covering number Cv, equal to the cardinality of a smallest (not necessarily
independent) set of vertices that covers all the edges of the graph. It is straightfor¬
ward to see that, given any set S of independent vertices in a graph G, the

7.4.3 MATCHINGS AND COVERINGS IN A GRAPH 331

complementary set of vertices V — S' must be a covering of G, and vice-versa. To
see this, note that S is an independent set if and only if there exists no edge with
both ends in S; however, this is equivalent to the condition that every edge in G
has at least one of its ends in the set V — S. In particular, this is true for the case
of a maximal independent set of vertices and a minimum vertex cover, yielding

Cy + ly = V (7.4)

The analysis is slightly more complicated for the edge parameters, but as long as
there are no isolated vertices (that is, of degree 0), then also

Ce+Ie—V (7-5)

These notions are illustrated in Figure 7.28, where the graph in (a) has a maximal
matching as shown in (b); thus, we have that IE = 3. In addition, it is easily veri¬
fied that CE = 4, Iv = 2, and Cv = 5.

Figure 7.28 Independent Edges

Our original question was how to compute the maximum matching in a graph.
There is an efficient algorithm, but it is too complicated for us to consider here.
However, there are several variations on the problem of finding a maximum match¬
ing. We will begin by introducing one of these simpler variations, and will then
illustrate its relevance to the SDR problem first considered in Chapter 6. Section
7.4.3.3 calls attention to an important, alternative point of view for matching prob¬
lems. Finally, Section 7.4.3.4 briefly deals with matching in the general case.

7.4.3.1 Bipartite Graphs. Suppose that the vertices of our graph comprise two
independent sets, U and W; in other words, all edges in the graph are of the form
(u,xv), with wet/ and w e W, for U and W disjoint sets of vertices, not necessarily
of the same cardinality. Graphs of this form are called bipartite;4 a complete bipar¬
tite graph Kmn is one in which every vertex of U, of cardinality m, is adjacent to

* Note that a tree is a bipartite graph.

332 GRAPHS

every vertex of W, of cardinality n. For many applications, a bipartite graph is
conveniently represented via an adjacency matrix wherein the rows correspond to
elements of U and the columns correspond to elements of W. Thus, for the graph

of Figure 7.29(a), such a representation is shown in (b) of the figure.

Figure 7.29 A Bipartite Graph

There are many natural applications of bipartite graphs to matching problems.
For example, the two vertex sets in the figure might represent men and women, and
the edges might again denote compatibility. Then the issue might be to maximize
the number of compatible marriages (with no polygamy). Or perhaps the vertex
sets might represent workers and jobs, and the objective could be to try to assign
every worker to a job for which he is qualified. Even though our example of Figure
7.29 is small, it can still be tricky to find a maximum matching in it. Before reading
the next paragraph, you are encouraged to try to do so.

Happily, the matching problem is fairly simple for bipartite graphs. An under¬
lying reason is that in this case the edge independence number is equal to the vertex

covering number; that is,

IE = CK (7.6)

an equality that does not hold in the general case. The method for finding such a
maximum matching is to start with a given matching and then repeatedly try to
enlarge it by the following strategy. Let the given matching be M, consisting of
some subset of the edges; and let O be the remaining edges of the graph. We then
construct a path P whose edges are alternately in O and in M. More precisely, we
construct such a path starting with a vertex Wq e U that is not covered by M. From
Wo we visit and mark unmarked vertices, building a BFS tree. In this tree, in going

7.4.3.1 BIPARTITE GRAPHS 333

from an even level of the tree to an odd level, we may have zero, one, or many
edges in O to choose from. But in going from an odd level of the tree to an even
level, we can have just zero or one edges in M to choose from. If we arrive at a
vertex w0e W and there is no edge in M to carry us back to U, then our path
consists of j edges from M and j + 1 edges from O. Such a path P is called an
augmenting path, and it can be employed to construct a larger matching M'. We
do this by deleting from M those edges in M \J P, and then adding to M those
edges in O U P; another way of expressing this is that M' — M XOR P. For the
graph of Figure 7.29(a), this process is illustrated in Figure 7.30(a), where the solid
lines are in O and the wiggly lines are in the matching M. An augmenting path has
been derived by starting from G and building the tree shown in Figure 7.30(b). By
reversing the roles of the solid and the wiggly edges in the path G~7 — C— 1—^ — 3,
we obtain the larger matching shown in (c) of the figure. Note that it would have
been possible to extend the tree in (b) by adding the edge 2 — E. But that is irrel¬
evant. We are happy to be “stuck” at an unmatched vertex (3), so that we can stop

building the tree and construct an augmenting path.

Figure 7.30 Bipartite Matching

If we try to apply this process again, we are unable to find an augmenting path.
Such a condition corresponds to the fact that M' is a maximal matching for this
graph. What is the complexity of this algorithm? We note first that the number of
searches for an augmenting path is 0(V), actually 0(m\n(U,W)). For each search,
if the graph is represented by an adjacency structure, then the time to build the tree
is 0{E). Thus, the overall complexity of this method is 0(VE). There is a still

faster algorithm for this problem, as we will see in Section 7.4.3.3.

f7.4.3.2 Systems of Distinct Representatives Again. The Systems of Distinct
Representatives (SDR) problem was introduced in Section 6.8.2.1, where it was
solved by means of backtracking. An unfortunate aspect of that approach, of

334 GRAPHS

course, it that it has exponential complexity in the number of sets. With graphs,
however, we can obtain both theoretical insight about the problem and considerably
better methods for solving it. We begin by constructing a bipartite graph that
models the statement of the problem. In this graph, the vertex set U corresponds to
the sets, the vertex set W corresponds to the members, and an edge (u,w) corre¬
sponds to the fact that w e U. With regard to insight, a necessary and sufficient
condition for the existence of a solution, in the case of finite sets, is given by Hall’s
Theorem. The union of any k distinct sets from the given collection of sets {5,}
should have at least k distinct members [Hall 1935]. In applying this to the graph
in Figure 7.29(a), we find that (J (B,D,F) = {4,6}, so that indeed we cannot expect
to find a complete matching. Unfortunately, there are two reasons that cause Hall’s
Theorem to have more theoretical than practical significance. For one, it is not a
constructive criterion for a solution; for another, the application of this condition
requires 0(2") tests for a problem dealing with n sets.

The SDR problem of Eqs. 6.19 is reproduced here as Eqs. 7.7:

The bipartite graph corresponding to these equations is shown in Figure 7.31(a).
By repeatedly applying to it the method of the preceding section, we readily obtain
a complete matching, such as the one shown in (b) of the figure. For large
instances of the SDR problem, the solution based upon the graph structure will be
much more efficient than the previous one using an implicit tree structure.

We have used the SDR problem as a vehicle here and in Chapter 6 for illustrat¬
ing various points about graphs and trees, and we will now take leave of it.
However, there is a great deal more to be said on the topic, particularly with regard
to generalizations of it. Expositions of these further details can be found in Brualdi
[1977] and Korfhage [1974a],

A A

B 2

C 3

D 4

E 5

(b)

Figure 7.31 SDR Solution by Matching

f7.4.3.3 Networks and Flows. At this point, it is worthwhile to introduce a
related, important topic concerning computations on graphs. While we do not have
the space to treat it fully, it would be remiss not to at least mention it. The digraph

t7.4.3.3 NETWORKS AND FLOWS 335

in Figure 7.32(a) is called a network. It has a distinguished beginning vertex, the
source s, and a distinguished ending vertex, the sink t. The weights on the edges
represent the capacities c(u,w) of those edges. We wish to find a function defined
on each edge, the flow (j)(u,w), such that for all {u,w) e E

0 < 4>{u,w) < c(u,w) (7.8)

and such that for all v e V

^ <p(u,v) = ^ (p{v,w) (7.9)

ue r~*(v) weT(v)

Figure 7.32 Network Flows

336 GRAPHS

Eq. 7.8 expresses that the flow along an edge cannot exceed its capacity. Eq.
7.9 is a conservation condition: The total flow into a vertex must equal the total
flow out of it. A problem characterized in this manner can be easily understood in
terms of flow of liquid through a pipe. The subject of flows in networks was
pioneered by Ford and Fulkerson [1962], The usual objective is to find values for
0 that maximize the total flow — that is, the equal amounts of flow leaving the
source s and entering the sink t. For instance, a non-maximal flow for the network
of Figure 7.32(a) is shown in (b) of the figure. The general method of solution is to
iteratively improve such a situation until it is maximal, as illustrated in (c) of the
figure. There has been a remarkable history of better and better algorithms for this
purpose [§]. We will simply point out that these methods commonly use BFS and
cut-sets (see Section 7.3.2) to iteratively find sequences of augmenting flows, analo¬
gous to the augmenting paths of the preceding section.

Figure 7.33 Network Model of SDR Problem

One of our motivations for introducing the subject of networks, albeit briefly, is
that the matching problem on a bipartite graph can be reduced to a network prob¬
lem by a very trivial construction. In illustration of this, the matching problem of
Figure 7.31 corresponds to the network problem of Figure 7.33. We simply add a
source node and a sink node, and we set all the capacities equal to 1; then the
value of the maximal flow is equal to the value of the maximal matching. As a
result of this correspondence, some of the effective techniques for dealing with
network flows can be used to solve the bipartite matching problem. In particular,
the algorithm described in Section 7.4.3.1 has complexity 0(VE), which can be
OjF3) in the worst case. However, the network of Figure 7.33 is especially simple,
leading to a solution for the bipartite matching problem with complexity OiV2-5)
[Hopcroft and Karp 1973],

f7.4.3.4 Matching in the General Case. There are two principal ways in which to
generalize the previous results concerning the matching problem. One is to discard
the bipartite restriction. Another is to introduce weights on the edges, and then
look for a matching that maximizes the weighted sum of the matching edges. Let
us consider both of these in turn.

t7.4.3.4 MATCHING IN THE GENERAL CASE 337

For the general matching problem, the method of augmenting paths still applies

[Berge 1957], except that we may now encounter circuits of odd length. The pres¬

ence of certain types of odd circuits, known as blossoms, makes the analysis much

more difficult [Edmonds 1965]. There are several fairly complicated algorithms

that master the problem; the best of these has complexity 0(F° 5E) [Micali and

Vazirani 1980].

Under the heading of weighted matching, there are a variety of distinctive prob¬

lems. A particularly appealing example, for the bipartite case, is the Stable

Marriage Problem [Gale and Shapley 1962] (as opposed to the merely compatible

marriage situation). Herein, we may suppose that each boy and each girl ranks all

the members of the opposite sex in terms of their relative desirability in his or her

eyes. There then begins a series of proposals by the boys to the girls on their lists.

After every round of proposals, each girl accepts her best suitor, perhaps jilting a

previous choice in the process. Boys who are rejected or jilted simply propose to

the next choices on their lists in the next round. The final set of matchings, or

marriages, is said to be stable if there does not exist any boy-girl pair who mutually

prefer each other to their respective spouses. The question arises: Is it even possi¬

ble for all the eager boys and girls to attain simultaneous, stable connubial bliss?

The answer is that a stable situation does always exist. To see this, suppose that

Alice and Bob are not married, but that Alice likes Bob better than her husband

Arthur, and Bob likes Alice better than his wife Betty. But then, during the court¬

ship sessions, Bob must have proposed to Alice, only to lose out to someone she

preferred over him, perhaps Arthur. So instability cannot occur; in fact, there may

be several stable solutions [McVitie and Wilson 1971]. The one that we have

described is optimal for the men; if the women do the proposing, we may obtain a

different solution that is optimal from their point of view; and there may exist still

other stable solutions. There are many realistic analogues of the Stable Marriage

Problem. One example is the process by which college applicants and colleges

become matched every year (in which situation, please note, the colleges do the

proposing).

Another example of bipartite weighted matching occurs in matching workers to

jobs, with the proviso that the workers have numerically ranked skill levels relative

to the different jobs. The objective is to maximize the skills utilized by the workers.

This is known as the assignment problem, and the preferred method of solution is

the so-called Hungarian method, with complexity OiV3) [Kuhn 1955].

What about weighted matching in the non-bipartite case? To begin with, there

may not be an analogue of Stable Marriage. In other words, it may be impossible

to obtain a matching among homosexuals that is stable, as in the heterosexual case.

For the more general case of finding a maximal weighted matching, the presence of

blossoms again makes the solution complicated; nonetheless, it can be attained with

complexity 0(F3). Our discussion of matching has necessarily gotten skimpier as we

considered more involved variations. Excellent sources for amplifiying these

matters are Galil [1986], Lawler [1976], and Papadimitriou and Steiglitz [1982].

338 GRAPHS

7.4.4 Traversals of a Graph or Digraph

Sections 7.4.1 and 7.4.2 discussed finding trees in a graph - in one case to mini¬
mize the sum of the weights on the edges of the tree, and in the other case to
minimize the distances between pairs of nodes. In this section, we consider two

problems relating to paths in a graph:

I. Is it possible to traverse each edge of a connected graph G once and only

once?

II. Is it possible to visit each vertex of a connected graph G once and only once?

In both cases, we may insist that our initial and final vertices are the same, so that
we have a circuit, or we may be content to have an unclosed path. A cyclic
solution to problem I is called an Eulerian tour, in which case the graph is said to
be Eulerian-, a non-cyclic solution is called an Eulerian path. A cyclic solution to
problem II is called a Hamiltonian cycle, in which case the graph is said to be
Hamiltonian-, a non-cyclic solution is called a Hamiltonian path. The two problems
are meaningful for both graphs and digraphs. The nature of these properties, and
their independence, may be more easily appreciated by reference to Figure 7.34.
There, the graph in (a) is both Eulerian and Hamiltonian, that in (b) is Eulerian but
not Hamiltonian, that in (c) is Hamiltonian but not Eulerian, and that in (d) is
neither Eulerian nor Hamiltonian.

Figure 7.34 Eulerian and Hamiltonian Properties

Although the statements of the two problems have a nice symmetry, their
solutions are very different. The first has a very easy solution, and the second is
AP-complete. Our objectives in this section are rather limited:

7.4.4 TRAVERSALS OF A GRAPH OR DIGRAPH 339

• to acquaint the reader with these important aspects of graphs, and
• to relate these problems to some things that we have already learned.

The statements of problems I and II make no mention of weights. If a graph is
Eulerian, then the effect of weights is of course irrelevant. For the Hamiltonian
problem, however, the influence of weights is very important, giving rise to the
Traveling Salesman problem, wherein a Hamiltonian cycle of least cost is sought.
That is the third and the most substantial topic of this section.

7.4.4.1 Eulerian Tours. The genesis of graph theory occurred in 1736 when Leon¬
hard Euler solved the following problem: Was there a way in which the
townspeople of Konigsberg could take a walk that crossed each of the seven bridges
over the Pregel River, depicted in Figure 7.35(a), once and just once? Euler showed
that such a walk is impossible. It is easy to see why by reference to Figure 7.35(b).
This multigraph is derived from (a) by shrinking the land masses to points. If a
vertex in a graph is of even degree, then after arriving at it by one edge, we are sure
to have another edge by which to leave it; for a vertex of odd degree, however, this
is not the case. The net result is that if a graph has no vertices of odd degree, then
it is Eulerian, and the tour is easily found. If the graph has two vertices of odd
degree, then it admits an Eulerian path with these two vertices as the endpoints.5
Since Figure 7.35(b) has four vertices of odd degree, the original question about the

bridges must be answered in the negative.

C

(a)

Figure 7.35 The Konigsberg Bridges

5 By counting the number of edges incident to each vertex, we can see that there must be

an even number of vertices with odd degree.

340 GRAPHS

We can see from this example that the criterion is equally applicable to graphs
and multigraphs (including loops). For digraphs, the requirement is simply that of
equality between the in-degrees and out-degrees of each of the vertices. Euler’s
condition is quite useful in that it is both necessary and sufficient. It is easily evalu¬
ated for a given graph G, and if the answer is affirmative then it can also be used to
guide the construction of a tour of G: We simply employ the auxiliary condition
that whenever there is a choice about which edge to use next, we should not select a
bridge — that is, an edge that would disconnect the untraversed portion of the

graph (see Section 7.3.2).

Unfortunately, Euler’s condition is not likely to be satisfied in many real-life
situations. Thus, a postmen must deliver mail along each street even though his
route probably contains many intersections (vertices) with odd degree; the same
problem is faced in garbage collection and many other services. In these cases, we
are forced to traverse some of the edges in the graph more than once. To
compound the problem, the graphs for these practical situations are weighted, so
that the selection of the repeated edges is non-trivial. This is known as the Chinese
Postman Problem. The solution is somewhat lengthy, but it involves two concepts
that we are already familiar with. We begin by computing the shortest distances
between all pairs of vertices. Next, on the subgraph consisting of the nodes of odd
degree, we solve a minimum weighted matching problem. The matching identifies
which edges should be traversed twice. The details of this approach can be found in
Edmonds and Johnson [1973],

7.4.4.2 Hamiltonian Cycles. There is no known succinct property for infallibly
characterizing Hamiltonian graphs, as there is for Eulerian graphs. However, there
are a variety of sufficient conditions, of which the following is representative: If G
is a graph with V vertices such that, for all distinct non-adjacent vertices x and y,
the sum of the degrees of x and y is not less than V, then G is Hamiltonian

However, it is easy to find Hamiltonian graphs for which such conditions are not
necessary, such as a 2-regular graph, or cycle. When confronted with a graph that
does not satisfy any of the various sufficient conditions, we are reduced to combin¬
ing various heuristics with backtracking in order to resolve the matter [Rubin
1974]. Most heuristics are based upon the following principles:

• Once we have picked the two edges to be used in passing through a vertex, then
the remaining edges incident upon that vertex can be eliminated from
contention.

• We must never construct a circuit that does not include all the vertices.

Thus, we begin by including any edges incident upon vertices of degree 2; these
restrict the inclusion of other edges at other vertices, and either force the inclusion
of edges, or at least reduce the number of cases to be examined. We proceed in this
manner until either a Hamiltonian cycle has been constructed, or its impossibility
has been deduced. In particular, if we start from an independent set of vertices
vx, v2,..., vk, (see Section 7.4.3) then there can be just 2k edges through them. This
dictates that the number of edges in the graph that cannot occur in a Hamiltonian

circuit is given by t = £ I r(v.) I - 2k. If t < V, we then have obtained a conclusive
negative result. For an interesting variation on the problem of Hamiltonian cycles,
see Exercise 7.36.

t7.4.4.3 THE TRAVELING SALESMAN PROBLEM 341

f7.4.4.3 The Traveling Salesman Problem. The Traveling Salesman Problem (TSP)
is the vertex analogue of the Chinese Postman problem, and has many important
applications. Besides the obvious cases suggested by the name - that is, minimiz¬
ing the cost of providing service to V geographically separated facilities - there are
others. One common example arises when V different jobs must be scheduled for
some production facility, and there is a cost ctJ associated with switching between
the ith and yth jobs; the goal here is an optimal cyclical schedule for the jobs that
minimizes the aggregate changeover times.

There are some important distinctions between this problem and that of ascer¬
taining if a graph has a Hamiltonian cycle. For one, it is common to assume that
there is an edge between every pair of vertices, although it may be infinite in value
for some pairs. Thus the issue is not so much to determine if there is a cycle as it is

to determine the shortest cycle that visits each vertex once and only once. Another
issue is that, for some problems, the weights on the edges will satisfy the triangle

inequality of Euclidean plane geometry; that is, the sum of the values of any two
edges of a triangle cannot be less than the value of the third edge. For such prob¬
lems, this property can be used to advantage. Note that there are problems, such as

the job scheduling example, for which this need not be the case.

From the preceding discussion, you might easily infer that the Hamiltonian

cycle problem (A) and the Traveling Salesman problem (B) are distinct in their
complexities. But this would be an erroneous inference. By the process known as
problem reduction, we can transform (A) to (B), as follows. Wherever there is an
edge in (A), let the distance in (B) be 1; wherever there is not an edge in (A), let
the distance in (B) be 2. Then look for a solution of (B) such that the total distance

is not greater than V, the number of vertices. If there were a polynomial-time algo¬
rithm to solve (B), then that coupled with the trivial polynomial-time algorithm for
this reduction would yield a polynomial-time algorithm to solve (A). But since (A)

is known to be AT-complete, this is impossible, and so (B) must be AP-complete
also. Reductions such as this, though typically more complicated, have been used

extensively to establish that hundreds of problems are equivalently “hard” (see
Section 6.8.2.2). To illustrate just how hard TSP is, note that a backtracking
solution with no pruning would have to examine (V — 1)! paths (it doesn’t matter

where we start). This is worse than the worst complexity illustrated in Table 1.3,

and an exact solution for even moderate values of V would require centuries on the

fastest known computer.

One of the earlier, serious approaches was to apply dynamic programming. In

this formulation, we start at an arbitrary first city, and then successively consider
tours on larger and larger sets of cities. Let us denote by C(S,k) the cost of the

shortest path that starts at 1, visits (once) each city in the set S, and ends at k.
Now, for each such city k, the cost of that shortest path consists of the minimum,

over all predecessor cities j, of the quantity C{(S - {k})J) + djk. Starting with the
trivial values C({k},k) = dhk, we can then compute the values C{S,k) for all sets of

successively larger sizes, and do so for every city in each such set in terms of the

C(S,k) on the smaller sets. Finally, we obtain C((V - (1}),1), yielding the optimal
tour on all the cities. Dynamic programming reduces the time complexity from
0(F!) to 0(V22V). Although enormously better than the factorial complexity of

ordinary backtracking, it is still exponential; more significantly, the tables of inter-

342 GRAPHS

mediate solutions require 0(V2y) space, a dramatically less auspicious situation than

that which prevailed with Floyd’s algorithm.

For smaller size instances of TSP, dynamic programming works fairly well, but
for larger problems, branch-and-bound has been found to be more successful. As
an example of this latter approach, let us suppose that the distances are given by an
adjacency matrix A. We begin by subtracting from each entry in every row the
value r, of the smallest entry in that row, to obtain A'. Since one entry from each
row of A must occur in the solution, then the solution to TSP on A is the same as
2>, plus the solution to TSP on A'. Next, subtract from each entry in every column
of A' the value Cj of the smallest entry in that column, to obtain A”. The same
reasoning as used before tells us that the solution to TSP on A is the same as ^r,-

plus Y.cj Plus the solution to TSP on A". In other words, Yji + is a bounding
value. Let us denote this transformation process A^A'-^A" by 0. Next, we look
for a branching entry aT S among the zero values in A". If we do not include a^ s in
the tour, then we can effectively replace its value by infinity oo. If we do include ar s
in the tour, then there are two consequences. One is that we must effectively set as r
equal to oo in order to avoid a cycle of length 2; the other is that we cannot use
any further entries in row r or column s. So the choice of whether or not to employ
the edge ars in the tour corresponds to a branch point. If we do not include it, we
can apply 0 to an altered A"; if we do include it, we can apply 0 to a submatrix of
an altered A". The branch-and-bound solution to TSP proceeds by alternately clos¬
ing a branch point and evaluating the bounds associated with the two choices, then
picking the open branch with lowest bound for further exploration, etc. Several
branching criteria can be applied; a common one is to look for that zero value in
A" whose selection will maximize the increase in the lower bound.

Another successful class of techniques for solving TSP operates by local search;
with this method, one first obtains an approximate or a partial solution, and then
modifies it by local improvements. We shall not pursue local search here.
However, the concept of applying approximate solution methods to intractable
problems is an important one. With them, it is often possible to come reasonably
close to the elusive exact solution, but at far less cost. We will illustrate how some
of the concepts arising from more tractable graph problems are very useful for find¬
ing approximate solutions to TSP. The simplest method of all is to try a greedy
approach, as follows. Start with the shortest edge. Thereafter, consider adjacent
edges in order of their length, appending them to the tour if (a) they would not
cause any vertex to have degree three or more, and (b) they would not create a
cycle (unless that cycle includes all the vertices). Suppose that we had to pack our
sample case and visit the following cities: (A)tlanta, (B)ismarck, (D)enver,
(H)ouston, (J)acksonville, (L)ouisville, (M)emphis, (O)maha, (P)ortland, (S)an
Diego, and (W)ichita. They are depicted in Figure 7.36(a), and the intercity mile¬
ages are given in Table 7.1. The greedy method would select the edges in the
sequence shown in Figure 7.36(b), for a tour of 8678 miles.

We can generally expect to do better if the triangle inequality is satisfied, as
cited at the beginning of this section. In that case, consider the following simple-
minded approach. First, find the MST for the graph; then consider the tour
obtained by using each edge of the MST twice; and finally introduce “shortcuts”
by bypassing the second occurrence of each vertex. Note the relevance of the trian¬
gle inequality for guaranteeing that a shortcut will always live up to its name. As

t7.4.4.3 THE TRAVELING SALESMAN PROBLEM 343

(a)

(b)

Figure 7.36 The Greedy Heuristic for Solving TSP

344 GRAPHS

A B D H J L M O P S W

Atlanta 0 1483 1385 780 307 383 369 962 2569 2106 899

Bismarck 1483 0 668 1383 1790 1106 1209 576 1265 1639 781

Denver 1385 668 0 1014 1692 1118 1038 534 1234 1086 510

Houston 780 1383 1014 0 869 922 557 858 2189 1470 602

Jacksonville 307 1790 1692 869 0 690 672 1269 2876 2319 1202

Louisville 383 1106 1118 922 690 0 367 693 2302 2069 702

Memphis 369 1209 1038 557 672 367 0 633 2240 1778 530

Omaha 962 576 534 858 1269 693 633 0 1648 1619 297

Portland 2569 1265 1234 2189 2876 2302 2240 1648 0 1083 1735

San Diego 2106 1639 1086 1470 2319 2069 1778 1619 1083 0 1373

Wichita 899 781 510 602 1202 702 530 297 1735 1373 0

Table 7.1 Mileage Chart for TSP
(Standard Highway Mileage Guide, Rand McNally & Co, 1982)

applied to the graph of Figure 7.36(a), this method first computes the MST shown
by dashed lines in Figure 7.37(a). Now we need to be more specific about various
details such as where to start, which edge of the MST to traverse next when there is
a choice, which shortcut to take, etc. Let us make the arbitrary assumption that we
start with A(tlanta), and the reasonable assumptions that we always choose the
shortest adjacent edge in traversing the MST, and that we are likewise greedy in
making shortcuts. If we double each edge in the MST and use these assumptions,
we obtain the preliminary tour

AJAMLMWOBOWDSPSDWMHMA

When we introduce the greedy shortcuts, the repeated values drop out of this
sequence, yielding the tour

AJMLWOBDSPHA

for a total of 8727 miles, as shown by solid lines in Figure 7.37(a).

In this particular instance, the more sophisticated method failed to outperform
the greedy approach! Nonetheless, the MST method is important in that it is rela¬
tively simple, and yet guaranteed to produce a tour no worse than twice the
optimum. To see this, observe that the optimal tour minus an edge is a spanning
tree T, and the weighted value |MST| cannot exceed the weighted value | T\; that
is, | MST| < \T\. But then, twice around the MST cannot exceed 2x |r|, a
bound that can only be improved by the shortcuts. If we consider the deviation of
our approximate solution from the optimal solution, and take the ratio of the
former to the latter, then that ratio is bounded by 1. Thus, the tree method is said
to be a 1-approximate solution.

One of the better heuristics for solving the TSP is a lA-approximate solution,
based upon matching. We commence by computing the MST again. Then, on the

t7.4.4.3 THE TRAVELING SALESMAN PROBLEM 345

(a)

(b)

Figure 7.37 Other Heuristics for Solving TSP

346 GRAPHS

vertices of the MST that are of odd degree, we solve a minimum weighted matching
problem. We (i) add these edges M to the MST, (ii) construct an Eulerian tour

employing the edges in MST (J M, and (iii) apply shortcuts again. It is fairly easy

to show that, just as | MST | < | T\, so also \M\ < V2 x | T\, which establishes the
Vi-approximate character of the solution. As applied to our test data, we start with

the same MST as before, and note that the vertices of odd degree correspond to

Bismarck, Houston, Jacksonville, Louisville, Portland, and Wichita. A minimum

weight matching for these is: B — P, H— W, J—L. By adding these matching edges
to the MST, we obtain the Eulerian graph shown by dashed lines in Figure 7.37(b).

Starting at A again, and with similar assumptions as for Figure 7.37(a), we first

construct the preliminary tour

AJLMWOBPSDWHMA

This is already close to a good solution, and we need introduce only one shortcut

from D to H and another from H to A, to obtain

AJLM WOBPSDHA

for a total of 7995 miles, as shown by solid lines in Figure 7.37(b).

It is possible to construct examples where the 1-approximate and
V2-approximate algorithms of the last two paragraphs will actually attain their
maximum relative errors. In practice, however, these algorithms tend to yield

results much closer to the optimum. We should hasten to add that approximation
methods for TSP without the triangle inequality do not have such nice worst-case
bounds. In fact, if there were an r-approximate method, for any bounded value of
r, then P = NP - a most unlikely result! Our objective in this section has been

primarily to introduce TSP and to demonstrate how methods for attacking it are
related to other, familiar techniques for dealing with graphs. For the rest, we
supply several references [§], and leave the details of algorithms as exercises.

7.4.5 Precedence Relations in a Digraph

We have emphasized that the edges of a graph represent a mathematical relation
among the vertices. An important special case of this occurs in a digraph where

there are no cycles, otherwise known as a directed acylic graph (DAG).6 In a DAG,
the arcs represent a partial ordering among the vertices. We can represent the pres¬

ence of an arc from A to B by A<B. In the case of a total ordering (for example,
the points on a line) we always have a relation between two distinct objects A and B

- either A < B or B < A. The nature of a partial ordering relationship is such that
there may exist distinct pairs A,B where neither A<B nor B<A, and thus we

6 Note that a whereas a tree corresponds to a pure List and a graph to a recursive List, a
DAG corresponds to a reentrant List.

7.4.5 PRECEDENCE RELATIONS IN A DIGRAPH 347

cannot construct a unique sequential ordering of our set of objects.7 As an example,
the digraph of Figure 7.2 is a DAG. We may know, for instance, that 4 < 6; but
that doesn’t alter the fact that neither integer divides the other, and so there is no
partial (divisibility) ordering between them. Given that there are no cycles in a
DAG, we can always construct a linear ordering with the property that if A<B,
then A will occur to the left of B in this sequence. In fact, we can in general
construct many topological orderings that have this property. As an illustration of
these notions, consider the digraph of Figure 7.38(a). Two topological orderings of
the vertices are 1BDGCEFJ AH and CEGAIBFJDH\ there are many
others. Note that if we place the vertices in topological order, and then insert the
arcs from the original graph, they will all point from left to right. Thus, the effect
of a topological ordering is to embed a partial ordering in a total ordering.

Figure 7.38 Precedence in a Digraph

DAG’s are one special case of a digraph. Another important, special case is a
flow graph, which has a unique entry-point node s0, from which all other nodes can
be reached. The significance of flow graphs is that they can be used to model
programs. The more sophisticated methods of detecting errors in programs and of
optimizing their compilation all make extensive use of various concepts associated

with flow graphs.

In the ensuing three sections, we will first consider how to check for topological
orderings in a digraph. This capability is important as an initial step of other, more
complicated processes, and our second area of discussion consists of an example in
this spirit. Section 7.4.5.3 describes some of the concepts and techniques associated

with using flow graphs to analyze programs.

7 Technically, since we do not allow for the reflexive case what we have described

is a quasi ordering. But this strict form of partial order is what we want here.

348 GRAPHS

7.4.5.1 Topological Sorting. The process of discovering topological orderings of
the vertices of a digraph is known as topological sorting, and the problem presents
itself in various guises. For instance, we may be presented with a set of partial
orderings, analogous to the equivalence relations of Eqs. 4.6 and 6.5, or we may
already have their representation as a graph. Another consideration is that we may
already be certain that there are no cycles, or the existence of cycles may be an open
and important issue. As one concrete example, suppose that we think of these
relationships as signifying “A is defined in terms of B,” and that our goal is to write
a dictionary. Then it would be desirable to use an algorithm that would either find
some topological ordering, or else report that we had circular definitions. For
another example, suppose that the relationships expressed facts such as: “Course P
of r units is a prerequisite for course Q of s units.” Our chief interest then might be
to find a sequence of courses that would allow us to graduate in reasonable time.
In still another variation, our objective might be to enumerate all possible topologi¬

cal orderings.

The usual approach to the latter type of problem is not to generate permuta¬
tions, but to use the precedence relations in a clever manner to prune subtrees (in
other words, to employ backtracking) [Knuth and Szwarcfiter 1974; Varol and
Rotem 1981]. An interesting, alternative technique employs a ternary tree in a
manner analogous to the use of a BST for ordinary sorting [Szwarcfiter and Wilson
1978]. In this method, the middle child of a ternary tree node corresponds to the
case where neither A<B nor B<A\ after all the relationships have been processed,
the topological orderings can be obtained by a traversal of the final ternary tree.

Procedures for solving the other types of problems (that is, where enumeration
of all possible orderings is not the objective) are fairly simple. As a first comment,
the technique of DFS is directly applicable to either computing a valid topological
ordering, or else reporting that there is a cycle. We simply need modify DFS so
that (a) it still marks a node as soon as it reaches it, but (b) it labels the node with
its topological value just before exiting. The labels will actually be generated in
reverse topological order, but it is trivial to complement them. Note that if this
modified form of DFS encounters a node that is marked but not labeled, then a
cycle has been detected. A final observation is that we must attend to one other
detail in order for DFS to work — we must have a unique node of in-degree zero,
from which to start the search. Thus, the method would not work as described for
Figure 7.38(a). However, in most cases this can easily be taken care of by inserting
a dummy node S0 that has arcs to the original nodes of in-degree zero, as illustrated
in Figure 7.38(b).

In a case where we have a large set of partial ordering relationships with no
prior awareness about their nature, a somewhat different approach is called for.
We cannot use DFS directly; however, the solution is obtained by a similar
process. We need to maintain counts of the in-degrees of the nodes in the digraph,
corresponding to the relationships. We then proceed as follows:

(a) Begin by making a list of the nodes with in-degree zero.

(b) Look for any node X on the list, remove it, and decrement the in-degree
counts of the nodes in T(X) by one.

(c) As each of the counts is decremented in step (b), test to see if it is now zero; if
it is then add that node to the list.

7.4.5.1 TOPOLOGICAL SORTING 349

program TOPO_SORT;

label 1;

var elink: eptr;
i,k,top,vlink: vndx;

begin
top := 0;
for i := 1 to vsize do {build initial stack}

if vlist [i].indegree = 0 then begin
vlist [i].indegree := top; top := i;

end;
for k := 1 to vsize do

if top = 0 then begin
write (' Cycle at remaining nodes');
goto 1;

end else begin
write (' ',vlist [top].vid);
elink := vlist [top].head;
top := vlist [top].indegree;
while elink <> nil do begin

vlink := elink].vno;
vlist [vlink].indegree := vlist [vlink].indegree - 1;
if vlist [vlink].indegree = 0 then begin

vlist [vlink].indegree := top; top := vlink;
end;
elink := elink],next;

end;
end;

1: writeln;
end.

Algorithm 7.10 TOPO_SORT

(d) If we have processed all n nodes then we are done, else if the list is non-empty

then repeat step (b); otherwise, there must remain some node(s) with non-zero

counts, indicating that there is a cycle.

Either a queue or a stack can be used for the list; the list order is not impor¬

tant. We can obtain an algorithm that is economical in terms of space by threading

a stack where the in-degree values were maintained; that is, once such a field has

been determined to contain a zero, it will never be referenced by step (b) again, and

so is “free.” A program that implements this strategy is TOPO_SORT (Algorithm

7.10). Figure 7.39 illustrates the method as applied to the original digraph of

Figure 7.38(a). The structure before the process commences is illustrated in Figure

7.39(a). The program begins by building a stack in the count fields of I,G,C, as

shown in (b) of the figure. By the time / and B have been output by the algorithm,

the count fields appear as in (c) of the figure, where the link values associated with I

350 GRAPHS

and B are no longer meaningful. When the process terminates, it has discovered the

topological ordering IBDGCEFJAH.

Node Count Successors

1—4 2 H

0Q 1
C

M
 1 D F J

C
O

1 o

0 E

4—D 1

5—£ 1 A F

6—F 3 J

7—G 0 A H

8—H 3

9—1 0 B F

10—J 2 H

(a)

top

/
Node

Count

1 23456789 10

ABCDEFGH I J

2 1 0 1 1 3 3 3 7 2

(b)

Node

Count

/'°»
123456789 10

ABCDEFGH I J

2 7 0 7 1 1 3 3 7 1

(c)

Figure 7.39 Progress of Algorithm TOPO_SORT

f7.4.5.2 Critical Path Analysis. Throughout life, we often must complete certain
tasks before we can embark upon others. An earlier example of this was the neces¬
sity to take certain courses as prerequisites before taking others. A much more
complicated example is that of constructing a material object such as a building or
an airplane. In such an endeavor, the discrete activities that compose it will have
associated time values, and there will often be a strong economic incentive to make
the total time from start to finish as short as possible. Moreover, it is often possible
to allocate resources so that some number of these activities can be conducted in
parallel. Such a situation is readily modelled by a weighted DAG, because the pres¬
ence of a cycle would correspond to the unreasonable circumstance that an activity
would have to be completed before it could be started! Several techniques have
been devised for analyzing such projects by the use of graphs. Prominent examples
are PERT (Progress Evaluation Review Technique) and CPM (Critical Path
Method). They typically allow the user to determine the shortest overall time that is
possible, given the constituent times and the dependencies; they also identify those
activities that are most critical, in the sense that any shortening (lengthening) of
their elapsed times may be directly reflected in a shortening (lengthening) of the
overall time.

To illustrate these ideas, we will consider the making of an omelette, with
several kitchen helpers available as needed. Be forewarned that our motivation is
more mathematical than culinary, and we do not guarantee the recipe! As a first
step, we need to identify the separate, atomic activities to be performed; for our
omelette, these activities and their times are shown in Figure 7.40. Next we need to
make a DAG, with activities as vertices, that captures all of the dependencies; in
our case, we obtain Figure 7.41(a). It is possible to perform some analysis directly

17.4.5.2 CRITICAL PATH ANALYSIS 351

Activity Duration in seconds

A — Crack eggs 40
B - Put butter in pan 15
C — Slice mushrooms 170
D — Beat eggs 50
E - Heat butter in pan 90
F — Add some of melted butter to eggs 10
G - Add some milk to eggs 15
H - Saute the mushrooms 40
1 - Reserve mushrooms in side dish 10
J - Add special seasonings to mushrooms 105
K — Pour egg mixture into pan 5
L - Cook one side 90
M — Add mushrooms to eggs in pan 5
N - Turn omelette 15
O — Cook other side 75

Figure 7.40 Omelette Preparation Activities

on this activity-node graph. However, it is more common to transform the activity-
node graph to an event-node graph, wherein the original activities become the edges,
and the nodes are events. Each event corresponds to the completion of all activities
preceding it, and no successor activity can take place until the event has occurred.
Such an event-node graph for our omelette is shown in Figure 7.41(b). In making
this transformation, we find that we must often insert dummy activities, of zero time
duration, in order to prevent false dependencies. For the present case, we need a
dummy activity PI between nodes 5 and 6, and another dummy activity P2 between
nodes 8 and 11. The former is necessary, for instance, because activities G and H
both depend upon activity F, and activity H also depends upon activity C;
however, G does not depend upon C. Without the dummy activity, events 5 and 6
would collapse into a single event, introducing a false dependency of activity G
upon activity C.

Most or all of the work described in the preceding paragraph has to be done by
hand; it requires judgement and skill, and it is often accomplished by a series of
successive refinements to an initial model of the process. With regard to the trans¬
formation from activity-node graph to event-node graph, we would like the latter to
have the minimum number of nodes and arcs. There are algorithms to accomplish
this transformation, but it turns out that this can be a non-trivial problem in its
own right [Corneil et al. 1973].

Now we are ready to start cooking! In essence, we need to compute the longest
path through the graph from Start (event 1) to Finish (event 14). In our computa¬
tion, we begin by having an array of values as in Figure 7.40:

T:, - the duration of the activity between events i and j.
*i/

We then compute, successively, three other arrays of values:

1. ETj - the earliest time at which event j can occur;
2. LTj - the latest time at which event i can occur without causing the final event

to be delayed;

352 GRAPHS

Figure 7.41 Precedence Graphs for Figure 7.40

3. Floaty - the amount of time to spare in the activity between events i and j.

These calculations require us to process the event-nodes in the proper order. Not
surprisingly, this corresponds to their topological ordering, so that a topological
sort must be incorporated in the process. Although no cycles should be present, we
cannot rule out the possibility that the input data contains errors; therefore, in a
large real-life problem, the sort operation should check for this eventuality. For our
simple example, we have bypassed this step by assigning event-node numbers that

are already in topological order.

The earliest times ETj are computed in topological sequence by the rule

ETy = 0 ; ETj = max.g r-i(j) {ETj + Tt} (7.10)

This must be so because the jth event cannot occur until all of the activities origi¬
nating from predecessor events have been completed. By analogous reasoning, the
latest times LTt are computed in reverse topological sequence using the rule

LTn = ET„ ; LTi = min^ {LTj - rj (7.11)

Having the earliest and latest times for the events, it is finally a simple matter to
compute the floats by the rule

Float jj = LTj- ETj - Tjj (7.12)

The application of Eqs. 7.10 — 7.12 to the data of Figure 7.40 is shown in
Figure 7.42. We note that activities A,B,D,E, among others, have non-zero floats,
and thus are not so urgent. On the other hand, activities C,H,I,J,M,N,0 have zero

t7.4.5.2 CRITICAL PATH ANALYSIS 353

floats, and thus they are critical activities; if any of these are not commenced at
their earliest possible times, the Finish time will be delayed. There will always be at
least one critical path from Start to Finish, consisting entirely of critical edges. One
of the principal objectives of this type of analysis is to identify such edges. The
corresponding activities can then be closely monitored in an effort to prevent slip¬
page in completing the project. It may even be possible to concentrate more
resources on some critical activities in an effort to speed up the project. However,
increased attention to a particular critical activity will be beneficial only if that
activity lies on all critical paths; in general, there may be more than one critical
path, with some critical activities present in only some of the paths.

Event ET LT Activity Duration Float

1 0 0 A (1, 2) 40 110 — 0-40 = 70
2 40 110 B (1. 3) 15 70 - 0- 15 = 55
3 15 70 C (1. 6) 170 170- 0-170 = 0
4 105 160 D (2, 4) 50 160 - 40 - 50 = 70
5 115 170 E (3. 4) 90 160- 15- 90 = 55
6 170 170 F (4, 5) 10 170- 105- 10 = 55
7 210 210 P1 (5, 6) 0 170- 115- 0 = 55
8 220 220 G (5, 9) 15 230 - 115- 15 = 100
9 220 230 H (6, 7) 40 210- 170- 40 = 0

10 225 235 1 (7, 8) 10 220 - 210- 10 = 0
11 325 325 P2 (8, 9) 0 230 - 220 - 0 = 10
12 330 330 J (8,11) 105 325- 220- 105 = 0
13 345 345 K (9.10) 5 235 - 220 - 5 = 10
14 420 420 L (10.11) 90 325 - 225 - 90 = 10

M (11,12) 5 330 - 325 - 5 = 0
N (12.13) 15 345 - 330 - 15 = 0
O (13,14) 75 420 - 345 - 75 = 0

Figure 7.42 Critical Path Analysis of Omelette

f7.4.5.3 Data Flow Analysis of Programs. Anyone who is familiar with program
flowcharts can well appreciate that a program can be modelled by a graph, wherein
the nodes represent segments of code, and the edges represent the flow of control
between these segments. A segment of code might be as small as a single machine
instruction or a single HLL statement. However, it is much more efficient to equate
each node with a basic block of instructions, with the property that if the first
instruction in the block is executed, then so must the remainder of the block be
executed. We said earlier that a flow graph of a program has the special property
of possessing a unique entry-point node Sq, from which all other nodes can be
reached. It is easy to search the graph of a program from its starting location to
check for various types of errors, such as the existence of nodes that are not reach¬
able from s0. However, most of the effort of program analysis is concerned with
interactions between the use of variables in the various nodes. Thus, the major
topic is global data flow analysis, where the term global refers to the fact that the
entire graph (program) is being considered, and the term data refers to that which is
under investigation. Because of the multiplicity of possible execution sequences in a

354 GRAPHS

program, the aliasing of variables, and the possibility of external procedure calls,

such analyses can be non-trivial to perform.

The techniques of global data flow analysis are primarily useful for optimiza¬

tion purposes in compilers, and include:

• Common expression elimination. If the same expression is computed in several
nodes of a flow graph, and if each of these nodes has a common ancestor, then
it may be possible to remove that duplicated code from these nodes to their

ancestor.
• Live variable detection. Within a block, the values of various variables are

computed. If any such value is (is not) used in any successor blocks, then that
variable is said to be a live (dead) variable at the conclusion of the block, and its

value need (need not) be saved at that point.
• Available expression detection. Within a block, the computation of an

expression may be redundant if (i) it was previously computed in every prede¬
cessor block, and (ii) none of the variables in the expression were subsequently

assigned new values.

Typically, a bit vector is associated with each block, with one bit position for
each data object. The solution of a data flow problem is related in some fashion to
the propagation of these bit values through the nodes of the graph. Historically,
there have been two alternative approaches to organizing these calculations. We
will illustrate one of these, in the first section, as applied to the computation of
dominators. To describe the other technique, we need to introduce the notion of

reducibility in the second section.

f 7.4.5.3.1 Dominance. A node U in a digraph is a dominator of another node W if
every path from s0 to W contains U. Dominance is another type of partial ordering
on the nodes of a graph, but it is stronger than the type discussed in Section 7.4.5.
In the former case, if A^C and B~<C, we could not make any statement about
partial ordering between A and B. In the present case, if A dominates C and B
dominates C, then either A must dominate B or B must dominate A. To see why
this is so, consider any path from .s0 to C that contains A before B. If A did not
dominate B, then we could construct another path from s0 to C, going through A
and avoiding B. But that would violate the dominance relation between B and C.
Similarly, if B precedes A on any path to C, then B must dominate A. An impor¬
tant consequence of this stronger form of relationship is that, for any node of a
graph, its dominators form a linear sequence. Thus, every node has a unique imme¬
diate dominator from this sequence, and consequently we can form a dominator
tree of the nodes. For the flow graph of Figure 7.43(a), the dominator tree is
shown in (b) of the figure. Dominators have several uses in data flow analysis,
examples being common expression elimination and the detection of loops. Loops
are present, for instance, whenever we have an arc whose head dominates its tail.

Dominators can be computed rather easily by iteratively propagating bit values
among the nodes of the flow graph. Intuitively, the computation expresses that if
node A is a dominator of node B, then A must be a dominator of all the immediate
predecessors of node B. For the present purpose, we find it convenient and suffi¬
cient to represent the graph by an array of type vsets, containing for each node X

f7.4.5.3.1 DOMINANCE 355

(a)

(b)

Figure 7.43 Dominators in a Flow Graph

the information r-1(T), represented as set of 1 .. vmax. The dominators of a node
form a set of the same type, and the computation is expressed by the procedure
DOMINATORS (Algorithm 7.11). It begins by initializing the dominator sets
doms, and it then processes the nodes in some order, propagating information
among these sets. Any processing sequence, as specified by the parameter domseq,
would eventually produce the same final result. For now, we will simply assume
that domseq [i] = i. When, after an entire iteration, there has been no change in
any of the sets in doms, then the final values in doms contain the sets of dominators
for each node. As applied to the flow graph of Figure 7.43(a), it requires two iter¬
ations (plus one to determine that there has been no change) in order for
DOMINATORS to converge. These two iterates of doms are shown in Figure 7.44.

356 GRAPHS

procedure DOMINATORS (domseq: vseq; vpred: vsets; var doms: vsets);

type vndx = 1 .. vmax;
vseq = array [vndx] of vndx;
vset = set of vndx;
vsets = array [vndx] of vset;

var change: boolean;
i,j,k: vndx;
newdom: vset;

begin
doms [1] := []; {corresponds to the node s0)
for j := 2 to vsize do

doms [j] := [1 .. vsize] - [j];
change := true;
while change do begin

change := false;
for i := 2 to vsize do begin

j := domseq [i];
newdom := [1 .. vsize] - [j];
for k := 1 to vsize do

if k in vpred [j] then
newdom := newdom * (doms [k] + [k]);

if doms [j] <> newdom then
change := true;

doms [j] := newdom;
end;

end;
end;

Algorithm 7.11 DOMINATORS

DOMINATORS is not the fastest algorithm for the purpose; we will discuss its
performance in the next section. The best algorithm for computing dominators has
complexity 0(E <x(Ej) [Lengauer and Tarjan 1979], where a is the Ackermann

inverse function described in Section 6.6.5.1. DOMINATORS has the two virtues
that it is extremely simple, and that it illustrates several important notions in data
flow analysis. We will return to this algorithm in the next section, after broaching
some other concepts. What is worth noting here is that it is possible to solve the

live variable and the available expression problems by processes that are remarkably
similar. Such algorithms involve the manipulation of several sets for each node,

instead of just one (doms); however, the concept in both cases is to scan through all
the nodes of the graph, computing new values for these sets until we have an iter¬
ation in which none of them has changed.

f 7.4.5.3.2 Reducibility. For a program of any significant size, data flow analysis
in terms of basic blocks is too large a computation, and needlessly so. What is

t7.4.5.3.2 REDUCTIBILITY 357

doms [1] := {} doms [1] := {}

doms [2] := {1}

doms [3] : = {1,2}

doms [4] := {1,2}

doms [5] := {1,2,4}

doms [2] := {1}

doms [3] := {1,2}

doms [4] := {1,2}

doms [5] := {1,2}

doms [6] : = {1}

doms [7] : = {1,2}

doms [8] : = {1}

doms [9] : = {1,8}

doms [10] := {1,8}

doms [11] := {1,8}

doms [6] : = {1,2,4,5}

doms [7] := {1,2}

doms [8] := {1}

doms [9] := {1,8}

doms [10] := {1,8,9}

doms [11] := {1,8}

doms [12] := {1,8,11} doms [12] := {1,8,11}

First Iteration Second Iteration

Figure 7.44 Iterations of the Sets doms

desired is a technique for partitioning the flow graph into meaningful units that are
larger than basic blocks. We encountered one such partitioning of a digraph, the
condensed graph, in Section 7.3.4; it is based upon detecting the strong components

of the digraph. Some of the earlier data flow analyses were, in fact, based upon
nested, strongly connected subgraphs [Lowry and Medlock 1969]. However, in
such a partitioning, we have the undesirable feature that a strong component may

have multiple entry points.

The concept of an interval, on the other hand, leads to a set of disjoint parti¬

tions, each with a single entry point [Allen 1970; Cocke 1970]. An interval of a
node v is the maximal, single entry subgraph such that v is the only entry node, and
all loops contain v. The notion is applied by finding a sequence of reductions, or
transformations, to the original flow graph, according to various rules.8 If the

reductions can be carried out to the point that the reduced flow graph consists of a
single interval, then the original flow graph is said to be reducible. Conversely, if

the reductions terminate leaving more than one interval, then the original flow

graph is said to be irreducible.

The definition of what constitutes a reducible flow graph depends upon the

allowable transformations, and there is some inconsistency in this regard. The most

common definition employs two transformations 71 and 72, as follows:

• 71 — If there is an arc (v,v) in a flow graph, delete it.
• 72 - If there is a node v2 (not s0) with a single predecessor v„ then replace v,

and v2 and the arc (v1? v2) by a single new node node v0.

8 In addition to condensation and reduction as techniques for simplifying a digraph, there
is yet another transformation. It consists of deleting as many arcs as possible without
affecting the reachability properties. The result is the minimum equivalent graph {MEG)
of the digraph. Quite aside from its utility for data flow analysis, however, the problem
of finding the MEG of a digraph is MP-complete.

358 GRAPHS

Figure 7.45 Reduction of a Flow Graph

These transformations are illustrated in Figure 7.45, where they are applied in the
sequence 72, 71, 72, 72, 71 to the original flow graph. Note that the first applica¬
tion of 71 is essential in order to be able to make the subsequent application of 72.
Since the final graph consists of a single node, the original graph is a reducible one.
An example of a flow graph that is irreducible because neither of these transforma¬
tions can be applied is shown in Figure 7.46. In fact, this particular example is the
paradigm of an irreducible flow graph, in the sense that any irreducible graph

contains it as a subgraph.

In describing the transformations 71 and 72, we have not made any reference
to the intervals cited at the beginning of this section. However, it can be shown
that successful reduction to a single node by use of 71 and 72 is equivalent to
reduction in terms of intervals [Hecht and Ullman 1972], Moreover, reduction in
terms of 71 and 72 is simpler than the direct calculation of intervals. The principal
consequences of having a reducible flow graph are:

• Every loop has a unique entry point from the starting block.
• The edges in the flow graph can be partitioned into two sets, advancing edges

and retreating edges; the advancing edges form a DAG in which every node is
reachable from % and the retreating edges consist of just those edges whose
heads dominate their tails.

These properties are sufficient, as well as necessary. Moreover, the latter can be
used as the basis for establishing reducibility. In fact, a flow graph can be tested
for reducibility in 0(E) time [Gabow and Tarjan 1985]. The cited algorithm

t7.4.5.3.2 REDUCTIBILITY 359

employs DFS, and uses a linear variant of UNION-FIND (Algorithms 6.9) to keep
track of the necessary information. In contrast to the iterative approach in DOMI¬
NATORS, it is essentially based upon interval analysis. An approach combining
iterative and interval analysis techniques has also been found to be usually linear
[Graham and Wegman 1976],

The concept of reducibility is of practical importance for several reasons. It
happens that the iterative procedure DOMINATORS of the previous section works
whether a flow graph is reducible or not. Some of the earlier analyses in terms of
intervals, on the other hand, either would not work for an irreducible flow graph, or
would only work after making complicated adjustments. More recent analyses in
terms of intervals do not have this dependency [Allen and Cocke 1976]. Nonethe¬
less, even though reducibility is no longer such a critical factor for performing data
flow analysis, it can still make a significant difference in terms of efficiency. To
illustrate this, consider again the algorithm DOMINATORS. It iterates until there
has been no change in any of the sets of doms. If the graph is reducible, however,
and if we also process the nodes in a certain order, then we can compute the domi-
nators in one direct pass, without iteration!

The simplification to DOMINATORS just described depends upon a variant of
DFS. Given that DFS from s0 generates a spanning tree of the flow graph, our
numbering of the nodes heretofore (see Algorithm 7.2) has corresponded to a
preorder traversal of the spanning tree. What we need now is to vary DFS slightly
so that it numbers the nodes in reverse postorder sequence; that is, we need to
change DFS_GRAPH as follows:

(a) Start with seq = V (the number of nodes) instead of 0, and decrement seq
rather than increment it.

(b) Label the nodes in postorder — that is, just before exiting DFS_GRAPH,
rather than just after entering it. Note that we still need to mark nodes on
entry, and so the DFS numbers can no longer serve as marks.

By way of illustration, Figure 7.47 shows both the preorder numbering and the
reverse postorder numbering of the nodes in our flow graph of Figure 7.43(a).
Now, by inverting the numberings on the nodes, we obtain the desired order of
processing the nodes in DOMINATORS. Given that the DFS numbers are stored
in the field data for each vertex, the inversion can be computed by

for i := 1 to vzsize do
domseq [vlist [ij.data] := i;

It is not too hard to show that the dominators of a reducible flow graph can always
be computed in one direct pass via this sequence, significantly simplifying the algo¬
rithm [Hecht and Ullman 1975]. The reason is related to the fact that the
retreating edges of a reducible graph will always correspond to back edges in its
DFS spanning tree. To recapitulate, by processing the nodes of Figure 7.43(a) in
the order AHKLIJBGCDEF, just one pass is needed in DOMINATORS to

compute the values of doms, rather than two plus one as in Figure 7.44.

It is worth reflecting upon the appropriate graph representation to accomplish
these operations. When we first discussed DOMINATORS, it might have seemed
that an adjacency matrix would be a more serviceable representation in this problem
than an adjacency structure. The columns of the matrix would provide T1 at no

360 GRAPHS

additional storage cost. One factor that would be overlooked by such a choice is

the desirability of being able to use set operations rather than the slower boolean

operations. We now see that another factor is that of being able to do DFS

quickly, via the adjacency structure.

4(1,1)

/(9,5) K(ll,3)

L(12, 4)

E(5, 11)

F(6, 12) (preorder, reverse postorder)

Figure 7.47 Ordering the Nodes in a Flow Graph

DFS also optimizes the performance of other flow analyses, even though it does

not always produce a linear algorithm. Its wider significance is related to an addi¬

tional, important concept — that of interval depth d, or loop-interconnectedness.

This depth is equal to the largest number of retreating edges on any cycle-free path.

If DOMINATORS is applied to an irreducible flow graph, then the use of DFS as

described in the preceding paragraph will guarantee an upper bound of d 4- 2 iter¬

ations. In other flow analysis computations (for example, live variables) the use of

DFS provides a similar bound.

How do results such as these relate to programs in the real world? Surveys of

actual programs are encouraging in two respects. In one examination of a large set

of flow graphs, the average value of the depth d was found to be about 2.75 [Knuth

1971a]. A second significant point concerning actual programs is that most of them

— 90 percent in one study, and 100 percent in another — do have reducible flow

graphs! In fact, it is commonly thought that any program without this property is

not well-structured and should be revised.

7.5 OTHER ISSUES RELATING TO GRAPHS 361

7.5 OTHER ISSUES RELATING TO GRAPHS

Even with all that has been said, there are many significant matters relating to
graphs that we have failed to mention. The purpose of this last section is to briefly
acquaint you with these. It may be useful to explain why these items have been
relegated to this final section, rather than earlier ones. Sections 7.5.1 and 7.5.2
discuss the two graph issues of coloring and planarity. Although there are many
graph theoretical ideas associated with both of these, we find that coloring, on the
one hand, is an intractable problem, and planarity, though a linear problem, has
very complicated algorithms. Thus, there is less immediate value for us in analyzing
the solutions of these problems than there was for those of the preceding section.
Sections 7.5.3 and 7.5.4 deal with the complexity of graph algorithms and with
graph isomorphism. The former really constitutes a summing-up of many of the
ideas in the chapter; the latter is an appropriate finale that hearkens, after all that
we have discussed, to the basically combinatorial nature of graphs.

f7.5.1 Graph Colorings

There are a variety of problems that can be formulated in terms of:

• coloring the vertices of a graph in such manner that no adjacent pair of vertices
has the same color, or

• coloring the edges of a graph in such manner that no adjacent pair of edges has
the same color.

As in the case of traversals of a graph, the vertex-oriented and the edge-oriented
problems have very different characteristics.

Historically, vertex coloring has been more significant. An example is the situ¬
ation wherein final examinations or other sorts of meetings must be scheduled, and
where participants have potential conflicts with regard to these schedules. This can
be represented by a graph wherein the meetings are vertices, and an edge is drawn
between every pair of vertices where there is a conflict (some individual must partic¬
ipate in both meetings). We now look for an assignment of colors to the vertices
such that no adjacent pair of vertices has the same color. If distinct colors corre¬
spond to unique meeting times, then there will be no meetings that involve conflicts
for the participants. An obviously desirable feature is for the number of
colors/meeting times to be minimal. The minimum number of colors required for
the vertices of a graph is known as the chromatic number x of the graph; if
X(G) = k, then G is said to be k-chromatic. Another way of viewing the chromatic
number is that it is the minimum number of independent subsets (see Section 7.4.3)

into which the vertices of a graph can be partitioned.

For certain types of graphs, the chromatic number is easily determined. For
example, Kn is n-chromatic, and any bipartite graph is 2-chromatic. In the general
case, let A be the largest degree of any of the vertices in a graph. Then it is easy to
see that / < A + 1. Thus, begin by coloring an arbitrary vertex, and then repeatedly
look for any uncolored vertex and color it; in iterating this latter step until all

362 GRAPHS

vertices are colored, we can always be certain of having an unused color, since the
number of adjacent vertices is always less than A + 1. Graph theorists have
obtained tighter bounds on %. In the general case, however, to determine the
precise value of the chromatic number or to compute a minimal assignment of
colors to vertices is an VP-complete problem. Algorithms employing a variety of
heuristics are available [§]. Note, by the way, that the exponential character of
these methods can always be mitigated by first finding the blocks of the graph, in
effect employing divide-and-conquer. Nonetheless, for any one of these algorithms,
it is possible to find input graphs for which they will perform arbitrarily poorly, and
this seems to be a fundamental aspect of the problem. For TSP with the triangle
inequality, we exhibited both 1-approximate and Vi-approximate methods. For
vertex coloring, there are no methods known to be r-approximate, for any fixed r.
The best known approximation algorithm has r(V) = Vj lg V; indeed, it has been
shown that if there were an algorithm that was 1-approximate or better, then there

would also have to be a O-approximate algorithm [Garey and Johnson 1976]!

Situations modeled by edge coloring seem to be less common. The minimum
number of colors required for the edges of a graph is known as the chromatic index
x', or edge chromatic number. It is obvious that A < x', but a remarkable result
known as Vizing’s Theorem establishes also that x' < A + 1. For a bipartite graph
X' = A always, but in the general case it can be difficult to ascertain which value
applies. Many instances of edge coloring are concerned with bipartite graphs, so
that efficient algorithms based upon matching are available. Thus, a coloring of the
edges corresponds to a set of disjoint matchings, with a distinct color for each
matching. This happy situation is complicated, however, by the fact that many
applications involve additional constraints, leading to NP-complete problems again.

f7.5.2 Planarity

When confronted with graphs such as those in Figure 7.48(a) and (b), an important
issue may be whether they are actually planar — meaning that they can be drawn in
such manner that the edges do not intersect each other except at the vertices where
they are adjacent. The issue is extremely important, for instance, in the fabrication
of VLSI components, and it occurs naturally when we are dealing with maps. It
also has a fundamental significance for the applicability of divide-and-conquer to a
given graph. To be precise, if a graph is planar, then we can be certain of being
able to divide it into two components of roughly equal size by removing 0(kV2)

vertices [Lipton and Tarjan 1979, 1980],

In any discussion of planarity, it is usual to restrict attention to graphs wherein
there are no vertices with degree less than 3. A feature of planar graphs of this type
is that the edges form a number of closed regions and one infinite region. Now,
there are several ways to go about testing a graph for planarity, depending upon
our point of view.

A. A relatively simple approach is to try to apply Euler’s formula

V-E+ R = 2 (7.13)

t7.5.2 PLANARITY 363

(b)

Figure 7.48 Planarity

which relates the numbers of vertices, edges, and regions in a planar graph.9 Since
we are not considering multigraphs, then each region must be bounded by three or
more edges, and so the total number of edges over all the regions cannot be less
than 3R. In this inventory, each edge is counted as belonging to two regions, and
so 2E > 3R. Combining this fact with Euler’s formula gives us the result that in

any planar graph

E< 3V-6 (7.14)

Thus, when confronted with a particular graph, we can apply the criterion of Eq.
7.14. If it is violated, then the graph cannot be planar. For the graph of Figure
7.48(a), for example, we have 8 vertices and 19 edges, so that it cannot be planar.
On the other hand, Eq. 7.14 is satisfied both for Figure 7.48(b), with 8 vertices and
16 edges, and for Figure 7.34(d), with 10 vertices and 15 edges; yet one is planar

and the other is not.

9 Note that Euler’s formula is actually a special case of the cyclomatic number v (see
Section 7.3.1.1), since the value of v equals the number of finite regions; that is,

v = R- 1 =E- V+ 1.

364 GRAPHS

B. Unfortunately, Eq. 7.14 is a necessary condition for planarity, but not a suffi¬
cient one. For a graph theorist, therefore, it is very satisfying to learn that
Kuratowski’s Theorem gives an exact characterization of planar graphs. Namely,
the non-planar graphs are precisely those that have embedded (as subgraphs) either
the complete graph K5 or the complete bipartite graph K3 3, as illustrated in Figure

7.49.10 (Is Eq. 7.14 relevant for either of these? If not, then is Eq. 7.13?)

K3,3
i-Planar Graphs

*5

Figure 7.49 Kuratowski’s Non

C. Although Kuratowski’s theorem is conclusive, its computational complexity
causes it to have limited value. Happily, there are several (rather complicated) 0(V)
methods to test for planarity. Once again, an effective first step is to find the
blocks of the graph, and then apply one of these algorithms [§].

7.5.3 Complexity of Graph Algorithms

In this section, we will summarize two quite different issues that we have already
encountered many times in this chapter. We denote them here as the intrinsic and
extrinsic complexity of algorithms for dealing with graphs.

Intrinsic complexity. There are literally hundreds of meaningful problems that
can be posed about graphs. Some, such as finding a minimal spanning tree, are
very easy; others, such as determining planarity, are quite complicated. Aside from
their relative difficulty, they are both tractable problems. In fact, planarity has
complexity O(V) and is even more efficient than the minimal spanning tree, with
typical complexity 0(E lg E). However, the combinatorial nature of graph prob¬
lems causes many of them to be TVP-complete. The two chief instances of this that
we have discussed are the traveling salesman problem, and the coloring of the
vertices of a graph. The list of problems determined to be AP-complete grows
every month [§].

10 Actually, in looking for the two forbidden subgraphs of Figure 7.49 in a graph G, we
should ignore any vertices of degree 2 in G.

7.5.3 COMPLEXITY OF GRAPH ALGORITHMS 365

Extrinsic complexity. Anyone who wishes to solve a graph problem on a
computer must first decide upon the best choice of representation. Our two most
common choices have been the adjacency structure and the adjacency matrix. We
have also referred to indexed lists and incidence matrices, as well as sets (Section
7.4.5.3.1) and edge multilists (Exercise 7.3). We have seen several examples wherein
the choice of an adjacency structure leads to an 0(V + E) algorithm, whereas the
choice of an adjacency matrix leads to an OiV2) algorithm. So the question arises,
is this as fundamental a distinction as it appears to be? For any non-trivial problem
dealing with a graph, must the use of an adjacency matrix always entail an algo¬
rithm of complexity 0(^)7 In response, it is possible to find somewhat non-trivial
problems for which there are 0(V) algorithms, even with an adjacency matrix (see
Exercise 7.48). However, the Aanderaa-Rosenberg conjecture, which is carefully
worded to exclude certain instances, seems to demonstrate that the answer is affir¬
mative [Rivest and Vuillemin 1975; Rosenberg 1973]. Thus, for most problems
on sparse graphs, we are well advised to avoid an adjacency matrix in favor of an

adjacency structure.

f7.5.4 Graph Isomorphism

Two graphs are isomorphic if there is a one-to-one correspondence between their
vertex sets such that the adjacency relationships are preserved. In deciding about
graph isomorphism, we ignore any values attached to the vertices or edges and
consider only the adjacency relationships. Thus, in Figure 7.50, the graphs of (a)
and (b) are isomorphic to each other under the mapping: A^I, B^K, C^>M, D^>J,
E-+L, F^N; but they are both non-isomorphic to that of (c). (Why?) The issue of
graph isomorphism is central to a variety of problems having to do with pattern

recognition, such as the following:

• In chemistry, are two molecules, whose structures are modelled by multigraphs,

equivalent?
• In information retrieval, what database items match a request?
• In artificial intelligence, to what recognizable objects might parts of a visual

scene correspond?

One of the intriguing aspects of this problem is that, in distinction to almost all
the other problems relating to graphs, its complexity is uncertain. Technically, it is
an NP problem, since no polynomial algorithm is known; however, it has not been
demonstrated to be 7V.P-complete. The reader has the chance to attain fame and
glory by resolving the issue! Actually, as with so many graph problems, by either
specializing it or generalizing it, we change the complexity picture. Thus, if we
restrict ourselves to planar graphs, there is an O(V) algorithm for complexity
[Hopcroft and Wong 1974], On the other hand, if the question is whether a graph
G\ is isomorphic to a subgraph of another graph G2, then the problem is known to

be AR-complete.

For our stated problem of testing for graph isomorphism, we again need to find
good heuristics to employ with a backtracking approach. But first, perhaps we can
learn something from our treatment of trees (see Sections 6.7 and 6.7.1). There, we

366 GRAPHS

ABC

(a)

/

Q

(c)

(b)

Figure 7.50 Isomorphic and Non-Isomorphic Graphs

were able to completely encode the structure of a tree as either a single number or
sequence of numbers, such as a Cayley sequence or a feasible sequence. By now, we
have encountered a great number of graph parameters. In addition to the values V
and E, we also have the following: the cyclomatic number (Section 7.3.1.1); the
vertex connectivity and edge connectivity (Section 7.3.2); the vertex covering
number, vertex independence number, edge covering number, and edge indepen¬
dence number (Section 7.4.3); the chromatic number and chromatic index (Section
7.5.1); and the dominance number (Exercise 7.29). Moreover, there are still quite a
few others that we have not introduced. Can any two sets of such parameters for
two graphs be used to infallibly determine isomorphism? Quite aside from the
exponential complexity associated with computing some of these parameters, the
answer for the general case is No.

There are several graph isomorphism algorithms, employing a variety of heuris¬
tics [§]. We will illustrate the idea with one of these heuristics, which is quite
simple and can be very effective. It uses the invariant of a graph known as the
degree spectrum, which is an ordered list (d$, dx,..., dv_x) where dx equals the number
of vertices of degree i. For the graph of Figure 7.51, the degree spectrum is
(0, 0, 3, 2, 1,0). Since this graph has six vertices, an unrestricted attempt to find a
correspondence between G and any other graph G' with six vertices would have
complexity 0(6!) = 0(720). But by comparing the degree spectrum S of G with the
spectrum S' of G', we could immediately discern many non-isomorphic cases.
Moreover, for the case S = S', we could accomplish the backtracking analysis with

t7.5.4 GRAPH ISOMORPHISM 367

complexity 0(0! 0! 3! 2! 1! 0!) = 0(12), since we would only have to look for matches
among the three vertices of degree two and the two vertices of degree three.
Although the degree spectrum is a highly effective tool in many cases, as with our
example, note that that it does not help at all in other cases, such as regular graphs.

Figure 7.51 Example for the Degree Spectrum

7.6 OVERVIEW

In our catalogue of data structures, graphs unquestionably provide a wider variety
of interpretations than any other structure. The notion of a set of objects (vertices)
and adjacency relationships among them (edges) is deceptively simple. In fact, as
we have seen, the adjacency relationship leads to many others - connectivity,
reachability, independence, covering, dominance (in two different interpretations),
traversability, reducibility, colorability, planarity, etc. Each of these notions can be
used to model problems that are real and significant. This diversity of interpreta¬
tion and the basically combinatorial nature of graphs have caused this chapter to be

more mathematical in content than the others.

Another aspect of this diversity is that we are much more conscious of making
choices of data structure representation and of algorithmic method. Thus, for a
given problem, are we better off using an adjacency structure, an indexed list, an
adjacency matrix, an incidence matrix, sets, or perhaps some other representation?
And should we use BFS, DFS, a greedy approach, matching, branch-and-bound,
dynamic programming, or some heuristics? (These algorithmic possibilities are not
distinct; for example, a given method might simultaneously involve BFS, matching,
and heuristics.) For some problems, we are pleased to find that good choices of
data structure representation and algorithmic method can have a decided effect
upon the efficiency of our solution. Other problems seem to be intrinsically diffi¬
cult, and the best we can hope for is that a good heuristic will work well for most of

the cases.

We have made the point that graphs sustain more variety and complexity than

any other data structure that we have studied. It is intriguing to close the circle and
point out some strong commonalities between problems couched in terms of graphs
and problems couched in terms of the most basic data structure, the array. This

368 GRAPHS

duality is visible both in terms of representation (the adjacency matrix) and in terms
of theoretical insight (for example, the Matrix-Tree theorem in Section 7.3.1.1).

Other examples of co-extensiveness include:

• the relationship between matrix multiplication and transitive closure;
• the related techniques for dealing with sparse matrices and with strong compo¬

nents [Cuthill and McKee 1969; Tarjan 1976];
• the intimate relationship between cut-sets and vector spaces.

This symbiosis works both ways. Arrays yield powerful techniques for dealing with
graphs, and graphs yield powerful insights for dealing with arrays.

7.7 BIBLIOGRAPHIC NOTES

• Several good expositions of graph theory are Behzad et al. [1979], Berge
[1962], Bondy and Murty [1976], and Harary [1969].

• Discussions of the relative merits of Prim’s method and Kruskal’s method can
be found in Brennan [1982], Jarvis and Whited [1983], and Kershenbaum and
Van Slyke [1972]. The method of building MST’s with average cost 0(V + E)
is given in Cheriton and Tarjan [1976].

• An early, significant method for solving network flow with complexity Oiy3E)
was Edmonds and Karp [1972], A steady series of improvements are Dinic
[1970] with complexity OjETE), Karzanov [1974] and Malhotra et al. [1978]
with complexity OiV3), and Tarjan [1983c] with complexity 0(VE lg V).

• The early, dynamic programming approach to solving TSP was formulated by
Bellman [1962] and Held and Karp [1962], Subsequently, branch-and-bound
was employed rather successfully [Held and Karp 1970, 1971], More recent
and highly viable is the technique of local search found in Lin and Kemighan
[1973] and Rosencrantz et al. [1977]. The 14-approximate solution that we
describe is based upon Christofides [1976], For a good, up-to-date account of
the history and methods of solution for TSP, consult Held et al. [1984],

• Some of the more significant heuristics for the vertex coloring problem are
Brelaz [1979], Christofides [1971], Corneil and Graham [1973], Dutton and
Brigham [1981], Wang [1974], and Welsh and Powell [1967], For edge color¬
ing, consult Cole and Hopcroft [1982] and Gabow and Kariv [1982].

• Testing for planarity by application of Kuratowski’s Theorem leads to an 0(V6)
algorithm [Mei and Gibbs 1970]. Two good methods that are O(V) proceed by
successively adding either edges [Hopcroft and Tarjan 1974] or vertices [Even
and Tarjan 1976; Lempel et al. 1966] to an internal representation. Both tech¬
niques continue until either the entire graph has been represented or
non-planarity has been detected. Two other algorithms that have been found
good in practice, though not quite linear, are Rubin [1975] and Yeh [1982],

7.7 BIBLIOGRAPHIC NOTES 369

• An assortment of approaches to the graph isomorphism problem are Berztiss
[1973], Corneil and Gotlieb [1970], Corneil and Kirkpatrick [1980], Schmidt
and Druffel [1976], and Ullman [1976].

• The pioneering account of problems shown to be jVP-complete is Karp [1972].
A comprehensive catalogue of the situation is Garey and Johnson [1979]; some
excellent overviews are Cook [1983], Karp [1986], and Tarjan [1978].

7.8 REFERENCE TO TERMINOLOGY

t activity-nodes, 351
adjacency matrix, 301
adjacency relation, 296
adjacency structure, 300
arcs, 295

t articulation point, 309
t augmenting path, 333

back edges, 307
bi-connected graph, 309
bipartite graph, 331

f block, 309
t blossoms, 337
f bridge, 312
f capacities (in a network), 335

circuit, 297
t complement (of a graph), 379

complete bipartite graph, 331
complete graph, 299
complete matching, 330
component (of a graph), 296

t condensation graph, 317
connected graph, 296

f covering, 330
t critical activity, 353
f critical path, 353

cross edges, 307
t cut-set, 313
f cut vertex, 309

cycle, 297
degree, 297

f degree matrix, 308

digraph, 295
directed acylic graph (DAG), 346

f dominator (in a digraph), 354
t dynamic programming, 329

Hamiltonian graph, 338
incidence matrix, 303
incidence relation, 296

in-degree, 297
t independent cycle, 309

indexed list, 301
f irreducibility, 357
| isomorphic graphs, 365
t Kuratowski’s Theorem, 364

labels, 297
f line graph, 370

loops, 298
matching, 330

f Matrix-Tree Theorem, 308
minimal spanning tree (MST), 320

multigraph, 298
f network, 335
f orientation of a graph, 296

out-degree, 297
partial ordering, 346
path, 296
path matrix, 314
planar graph, 362
reachability, 303

f reducibility, 357
f reduction (of a flow graph), 357
f reduction (of a problem), 341

regular graph, 297
simple graph, 298
simple path, 297

f sink (in a network), 335
t source (in a network), 335

spanning tree, 304
f Stable Marriage Problem, 337

strong connectivity, 297

370 GRAPHS

t edge covering, 330
f edge independence, 330

Eulerian graph, 338

t Euler’s formula, 362
f event-nodes, 351
f float, 352
t flow graph, 347
f flows (in a network), 335

forward edges, 313
greedy algorithm, 324

t Hall’s Theorem, 334

subgraph, 299
topological ordering, 347
total ordering, 346
transitive closure, 314

f Traveling Salesman Problem (TSP), 341

tree edges, 305
f underlying graph, 296
f vertex covering, 330
f vertex independence, 330
f weak connectivity, 297

weights, 297

7.9 EXERCISES

Sections 7.1 — 7.2

7.1 Given the following two adjacency matrices, draw their corresponding graphs.

A e c D E F G H / J K L

A 0 i i 0 1 0 G 0 13 2 0 0 11
B 1 0 0 1 0 1 H 13 0 8 0 5 0
C 1 0 0 1 1 0 1 2 8 0 0 7 4
D 0 i i 0 1 1 J 0 0 0 0 6 17
E 1 0 0 1 0 0 K 0 5 7 6 0 0
F 0 i 0 1 0 0 L 11 0 4 17 0 0

(a) (b)

7.2 For the graph of Figure 7.52, show the representations as:

(a) an adjacency structure,

(b) an indexed list,

(c) an adjacency matrix,

(d) an incidence matrix.

f7.3 The fact that edge nodes are duplicated in the adjacency structure for an
undirected graph can be an annoyance. One manner of circumventing this is to
maintain the edges in a multilist, with links for the two vertices of each edge.
Depict such a representation for the graph of Figure 7.52.

f7.4 The line graph of a graph G is the graph L(G) wherein the vertices corre¬
spond to edges in G, and wherein two vertices in L(G) are adjacent if and only if
those edges in G are incident on a common vertex.

(a) Draw the line graph corresponding to the graph of Figure 7.52.

(b) Derive a formula, based upon properties of G, that counts the number of edges
in L(G).

7.9 EXERCISES 371

Figure 7.52 Graph for Exercises 7.2, 7.3, 7.4

7.5 Write a procedure that reads a list of records capturing the structure of a
graph and generates the corresponding adjacency structure representation. For

example, for Figure 7.6 we might have

A: a C c D

B: d E
C: d D b A a E

D: c B
E:

Section 7.3

7.6 For the graph of Figure 7.53(a), assuming that the adjacency structure is in

lexicographical order, do the following:

(a) Starting from vertex A, draw the BFS spanning forest and show the BFS

numbers and the cross edges.

(b) Starting from vertex A, draw the DFS spanning forest and show the DFS

numbers and the back edges.

Figure 7.53 Graphs for Exercises 7.6 and 7.8

372 GRAPHS

f7.7 Derive a relationship between the adjacency, incidence, and degree matrices

of a graph.

t7.8 Use the Matrix-Tree theorem to compute the number of spanning trees of

the graph of Figure 7.53(b). Draw them.

ff7.9 Use the Matrix-Tree theorem to derive Cayley’s formula (see Section 6.7)

for the number of labeled free trees on n nodes.

ff7.10 In the graph of Figure 7.54(a), assuming that the adjacency structure is in

lexicographical order, do the following:

(a) Starting from vertex A, draw the DFS spanning forest and show the DFS

numbers and the back edges.

(b) Add the values of LOW(v) to your figure, indicate the articulation points, and

draw the blocks.

Figure 7.54 Graphs for Exercises 7.10, 7.11, 7.12, 7.13, 7.15

tf7.ll In Section 7.3.2 we stated that one can rather easily determine the bridges
of a graph after using CUT_NODES; this remark is based on the fact that a bridge
will have an articulation point for at least one of its vertices. Describe how the
algorithm CUT_NODES can be modified to locate the bridges of a graph explicitly.
Demonstrate your technique by applying it to the graph of Figure 7.54(a).

tf7.12 Write a procedure to perform DFS on a graph via an explicit stack instead
of recursively, assuming that the graph is represented by an adjacency structure
again. Test your program against the graph of Figure 7.54(a).

7.9 EXERCISES 373

tf7.13 In the digraph of Figure 7.54(b), assuming that the adjacency structure is
in lexicographical order, do the following:

(a) Starting from vertex A, draw the DFS spanning forest and show the DFS
numbers and the other classes of edges.

(b) Add the values of LOW(v) to your figure, and draw the strong components;
also, show the condensation graph D*.

t7.14 Prove the validity of Eq. 7.2.

f7,15 Write a procedure that uses DFS to determine the type of each edge in a
digraph — tree, forward, backward, or cross. Test your program against the
digraph of Figure 7.54(b).

Sections 7.4.1 — 7.4.2

7.16 For the graph of Figure 7.55(a), do the following:

(a) Starting from node A, find an MST by Prim’s algorithm, numbering the edges
in the order of their selection;

(b) Find an MST via Kruskal’s algorithm, numbering the edges in the order of
their selection.

A

Figure 7.55 Graphs for Exercises 7.16, 7.17, 7.18, 7.19, 7.21, 7.22

f7.17 Write a procedure to find an MST using Kruskal’s technique. Test your

program against the graph of Figure 7.55(a).

7.18 Compute the shortest distances from node #3 to all the other nodes in the
graph of Figure 7.55(b), using Dijkstra’s algorithm and tracing the values assumed

by the variables least and father, as in Figure 7.24(b).

374 GRAPHS

|7.19 For the graph of Figure 7.55(b), use branch-and-bound to find the shortest

distance from node #3 to node #6. In doing so, you will need to choose between

some alternative details of technique. Discuss these alternatives, and compare the

use of Dijkstra’s algorithm and branch-and-bound for solving this problem.

tf7.20 We have cited that Dijkstra’s algorithm will fail in the presence of negative

edge costs.

(a) Give an example of this phenomenon.

(b) Describe a modification of the algorithm that allows shortest distances to be

computed correctly even in this case, as long as there are not also cycles with

negative cost.

tf 7.21 If we want to know the shortest distance between just two specific vertices

of a graph, a source and a sink, then we could implement a bi-directional form of

Dijkstra’s algorithm. With this method, we would alternate between adding an edge

from the source end and adding an edge from the sink end. Write a procedure to

accomplish this, and test it against the graph of Figure 7.55(b). Can the alternation

be terminated when the two search trees meet?

ff7.22 The algorithms PRIM and DIJKSTRA, very similar in form, solve two

different problems related to finding trees with minimum properties. Consider the

same two problems wherein we want the maximal solutions — the spanning tree

with maximum weight, and the longest paths between a source vertex and the other

vertices. For both PRIM and DIJKSTRA, either show how they can be modified

to produce the desired answer, or show why they cannot be so modified. Apply

your modifications to the graphs of Figure 7.55(a) (starting at node A) and Figure

7.55(b) (starting at node 3), respectively.

tf7.23 Given an n x n array M of positive integer elements, write a procedure to

find a sequence of horizontally or vertically adjacent entries such that (a) it starts at

71/[1,1] and ends at M [«,«], and (b) the sum of the squares of the differences

between adjacent entries is a minimum. As an example, for the matrix Ml of

Figure 7.56, such a minimum sequence is given by 4, 1, 3, 5, 4, 2, 7, 12, 7 with value

97. Test your program by finding the solution for the matrix M2 of the figure.

14 6 10 14 20 14 10
19 18 9 1 17 16 12

11 20 17 8 20 9 13

15 9 18 17 2 5 17

18 20 19 3 5 9 10

9 19 6 17 20 15 4

11 15 9 15 17 7 3

4 8 10 5 7

1 3 6 9 5

6 5 4 2 7

10 3 8 5 12

4 9 6 13 7

Ml M2

Figure 7.56 Two Mazes

7.9 EXERCISES 375

Section 7.4.3

7.24 For the graph of Figure 7.28, exhibit a minimum edge cover, a maximal
independent vertex set, and a minimum vertex cover.

f7.25 Starting from the unmatched vertex D in Figure 7.30(c), draw the BFS tree
to verify that no augmenting path is possible.

f7.26 Use augmenting paths to discover the solution to the SDR problem of Exer¬
cise 6.35, reproduced here:

51 = {2,4,5,6}

52 = {1,4,6}

Start with the initial matching:

S3={2,6} S5={4,6}

S4 = {3,6} S6 = {1,4}

5, - 2, S2 - 4, S3 - 6, S4 - 3, 56 - 1

tf7.27 Write a program to solve the maximal bipartite matching problem by
constructing BFS trees from unmatched vertices. Test your program against the
following bipartite graph:

A: 4 8
S: 5 7
C: 4 9
D: 13 5
E: 6 8

F
G
H
I:
J:

5 6
9 10
2 8
7 10

ff7.28 Write a procedure to find a minimum vertex cover for an arbitrary graph.

tf7.29 Whereas a vertex cover of a graph G is a set of vertices S' such that all
edges of G are incident with at least one vertex in S, a dominating set of vertices S is
one such that all vertices of G are either in S or adjacent to vertices in S. The
cardinality of a minimum (vertex) dominating set for a graph is the (vertex) domi¬

nance number of the graph.

(a) Give an example of a graph such that the minimum dominating set is not an

independent set.

(b) Write a procedure to find a minimum dominating set for an arbitrary graph.

ff7.30 The famous 8-Queens problem in chess is that of finding a set of squares
where 8 queens can be placed such that none threatens any other. In fact, this
problem corresponds to finding a maximal independent vertex set of a graph. Write
a program to solve the n-queens problem for an n x n chessboard.

tf7.31 A somewhat different problem than that of Exercise 7.30 is to find a small¬
est set of squares on a chessboard such that queens placed upon those squares will
dominate every square on the board. For example, it is possible to achieve this for
an 8 x 8 chessboard with five queens; that is, the dominance number of the corre¬
sponding graph problem is five. Write a program to solve this problem for an nxn

chessboard.

ff7.32 Write a program to solve the Stable Marriage Problem. Test it against the
data in Figure 7.57, where the men are denoted by upper case letters and the
women are denoted by lower case letters. The two matrices represent their orders
of preference; for example, man B prefers the women in the order b c e daf. Use

376 GRAPHS

your program to compute both the male-optimal and female-optimal solutions.
How might you construct a solution that has neither male nor female bias?

1 2 3 4 5 6 1 2 3 4 5 6

A e a b f d c a £ C F A B D

B b c e d a f b F C E B A D

C c d e b f a c A £ F B D C

D c b d a f e d C B D A E F

E b e a c f d e F D C A B E

F a f e d b c f B E D F C A

Figure 7.57 Marriage Partner Preferences

Section 7.4.4

f7.33 Prove the following facts relating to line graphs (see Exercise 7.4).

(a) If G is Eulerian, then L(G) is both Eulerian and Hamiltonian.

(b) If G is Hamiltonian, then L(G) is Hamiltonian.

(c) Demonstrate that the converses of (a) and (b) are false.

f7.34 An orientation of a complete graph (see Section 7.1) is a tournament. In
other words, the arc that exists between each pair of vertices can be interpreted as a
relative ranking between that pair of “players.” Prove that a tournament always has
a Hamiltonian path.

f7.35 Write a program to find an Eulerian tour in an Eulerian graph. Test your
program against the graph of Figure 7.58. Hint: The method described in the text
depends upon diagnosing the presence of bridges, an easy capability for the human
eye. A more effective algorithm for a machine is one that, for every vertex on an
initial tour, endeavors to incorporate (recursively) any detours along unmarked
edges from that vertex. Two strategies will help in carrying this out efficiently. One
is to allow edges to be deleted from the adjacency structure as they are used. The
other is to employ bi-directional linked lists, to facilitate inserting one list within
another list.

tf7.36 In chess, the knight always moves to the opposite comer of a 2 x 3 rectan¬
gle; as long as it stays on the board, it has eight possible moves, as shown in Figure
7.59(a). A classical problem is to find a Knight's Tour, in which it visits every
square just once; thus, we have a special case of finding a Hamiltonian path. A
solution for the case of a 5 x 5 chessboard is shown in Figure 7.59(b), where the
numbers indicate the sequence of visitation. Write a non-recursive program to solve
this problem for the n x n case. Try to find a good heuristic to limit the amount of
search. Explain your approach, and try to estimate its effectiveness.

ff7.37 Write a program to solve TSP using dynamic programming, and test it
against the data of Table 7.1. Your program should display enough information
about optimal sub-tours to demonstrate how it works.

7.9 EXERCISES 377

M- N-O- P

Q-R-S- T

Figure 7.58 Graph for Exercise 7.35

X X

x X

Kt

X X

X X

(a)

23 10 15 4 25

16 5 24 9 14

11 22 1 18 3

6 17 20 13 8

21 12 7 2 19

(b)

Figure 7.59 Knight’s Tour

ff7.38 Write a program to solve TSP using branch-and-bound, and test it against
the data of Table 7.1. Be sure to describe your criterion for picking branch nodes.
Also, your program should display enough intermediate information to demonstrate

how it works.

Section 7.4.5

7.39 Find a topological ordering for the digraph of Figure 7.60(a).

tf7.40 Write a procedure to discover all the topological orderings of a DAG.

Test your program against the digraph of Figure 7.60(a).

f7.41 For the event-node digraph of Figure 7.60(b), compute the early times, late

times, and floats. Also, indicate the critical path(s).

378 GRAPHS

Figure 7.60 Graphs for Exercises 7.39, 7.40, 7.41, 7.42

tf7.42 For the problem of performing critical path analysis on an event-node
digraph, first discuss the relative merits of the three graph representations: adja¬
cency structure, adjacency list, and indexed list. Then write a program to perform
such an analysis; that is, compute the early times, late times, and floats. Test your
program against the digraph of Figure 7.60(b).

f7.43 For the flow graph of Figure 7.61, do the following:

(a) Draw the dominator tree.

(b) Use variant DFS to label the nodes with the reverse postorder numbering
required for efficient use of the algorithm DOMINATORS.

f7.44 Explain the relationship between the advancing and retreating edges of a
reducible flow graph and the four categories of edges discovered by ordinary DFS?
How is this relationship different for an irreducible flow graph?

Section 7.5

f7.45 Write a procedure to find a minimal vertex coloring for an arbitrary graph.
Try to find a good heuristic to limit the amount of search. Explain your approach,
and try to estimate its effectiveness.

f7.46 Prove Euler’s formula (Eq. 7.13) by induction.

|7.47 Prove that for every planar graph there must be at least one vertex with
degree 5 or less.

f7.48 For a digraph represented by its adjacency matrix, consider the problem of
determining whether it contains a vertex with in-degree V — 1 and out-degree 0.
Write an O(V) procedure to solve the problem.

7.9 EXERCISES 379

Figure 7.61 Graph for Exercise 7.43

f7.49 The complement of a simple graph U is the graph W with the same vertex
set, such that vertices are adjacent in W if and only if they are not adjacent in U.

(a) Show that if a graph G is isomorphic to its complement, then the number of

vertices in G is congruent to 0 or 1 (mod 4).

(b) Prove that if a graph is not connected, then its complement must be connected.

(c) Prove that for any graph G with seven or less vertices, either G or its comple¬

ment must be planar.

(d) Prove that for any graph G with eleven or more vertices, either G or its

complement must be non-planar.

8

STRINGS

“ ... untune that string,
And, Hark! What discord follows.”

Shakespeare,

Troilus and Cressida, act I, scene 3

The string is no doubt a familiar data structure to most readers, and familiarity may
have bred a measure of indifference. After all, isn’t a string simply an array of
characters? In terms of implementation, it commonly is. Nonetheless, strings illus¬
trate the adage that “the whole can be greater than the sum of its parts.” For
instance, when considered solely as a sequence of letters from the alphabet, this
paragraph has no meaning; it acquires meaning only via the two-step process:
letters aggregated as words, and words aggregated as sentences. Thus, the subject
of string processing is not single characters, but rather groups of characters consid¬
ered as entities. Moreover, note that strings tend to be of widely varying lengths.

This example of composing a paragraph from groups of characters also illus¬
trates another point. Although we may wish to compute with multi-linked
structures such as trees and graphs, we are constrained to encode our ideas into a
string of symbols for most communication purposes. However, this is not a severe
limitation, since it is a trivial matter to encode the description of a graph in a string.
More significantly, the common way of expressing an algorithm for any possible
computation is as a string of symbols in a programming language. Also, as we will
see, the performance of that computation can be modelled, in turn, by a sequence of
string operations whereby the input (program string) is transformed to the output
(result string). Evidently the string, although not as flashy a data structure as the
graph, sustains a great deal of power. In fact, the ubiquity of string processing
causes our treatment of strings to be far longer than one might naively suppose
would be adequate.

We start by looking at strings logically and then physically. Thereafter, we
examine first some simpler uses of strings and then some more advanced ones, such
as cryptography and pattern matching. This culminates in an expansion of the
concept of pattern, via grammars, to encompass a more general type of recognition.
We conclude by describing how more general kinds of grammars open the door to
still more general types of recognition, and by characterizing the aforementioned
model of computation via string transformations.

8.1 STRINGS AND STRING OPERATORS 381

8.1 STRINGS AND STRING OPERATORS

A string is a sequence (possibly empty) of symbols from some alphabet. From now
on, we will speak of characters rather than symbols, since the difference is rather
subtle and irrelevant to our purposes. The necessity of distinguishing between a
named string and a literal string value gives rise to two common systems of deno¬
tation for dealing with strings:1

I. Names of strings and values of strings are distinguished by using different
alphabets or type fonts (for example, S, bd, si, 4, etc. as literal values; and a,
($, <5, etc. as the names of strings).

II. String values are distinguished by delimiting them within quotation marks (for
example, 'S', 'bd', 'si', '4', etc. as literal values; and S, bd, si, etc. as the
names of strings).

One immediate issue is how to specify the length of a string; this is usually indi¬
cated as | a | in notation I, and as LENGTH(sl) in notation II. Another immediate
issue is how to specify an empty string; this is usually denoted by £ in notation I,
and as " in notation II. Note that an empty string is not the same as a string
consisting of a blank character, commonly denoted by 'b'.

Although most programming languages allow for string constants via notation
II, it is less common for them to support variables of type string. Moreover, in
cases where they do, the terminology and notation for expressing operations with
string data are woefully non-standardized. The standard definition of Pascal
supports string constants in a limited fashion; several implementations of Pascal
extend the language to support string variables as well. For the purposes of this
book, we make no assumptions, but rather build our string facilities from scratch.

The fundamental operations with strings are concatenation, comparison,
insertion, deletion, and substitution. The most basic of these is the concatenation of
two strings to form a string whose length is the sum of the lengths of the two
components. This operation is denoted by various symbols in different program¬
ming languages: '||' (PL/1), ',' (APL), ' + ', or merely juxtaposition (SNOBOL).
Using juxtaposition, and for a = is and /? = land, we would then have a/? = island. In
Section 8.2.3 we introduce the procedure CONCAT that accomplishes this purpose.

Comparison of strings is performed lexicographically, using the same rules
whereby words are ordered in a dictionary. Thus, in comparing two strings

a = ala2 ... am and fi — b\b2 ... bn

to determine whether a < /?, a = /?, or a > /J, we examine successive pairs a, and bh

starting with i — 1, until either:

(a) the first pair is found for which a, ^ bh or

(b) no inequalities have been found but one string is longer than the other, or

(c) no inequalities have been found and the strings are of the same length.

i Note that this necessity does not occur with numerical data. There, for example, '1234'
is evidently a numerical constant, and 'R2D2' is implicitly a numerical variable.

382 STRINGS

In the first case, the ordering between a and /? has the sense of the inequality; in

the second case, the shorter string precedes the longer one; and in the third case,

the strings are equal. Examples are 'plow' < 'pray' and 'pray' < 'prayer'. Compar¬

ison of strings is commonly supported directly in HLL’s, via the same six relational

operators that are used for numerical data.

The (conditional) substitution of one string as part of another string involves a

subject string k, a pattern string n, and a replacement string v, as follows:

1. k is searched to determine if it is equivalent to a/q3 (where a and /J may be null);

in case there are multiple instances of /x, the first one is selected.

2. If the search succeeds, then v is substituted for fx, so that k is transformed to

av/J; otherwise, no action is performed.

We have described substitution in “non-procedural” terms; that is the way it is

accomplished in a language specialized for string processing, such as SNOBOL.

For our exposition, we will employ the non-standard symbols Y to denote testing

and Y to denote replacement. Then for k — banana, fi = na, and v = ndan, we

would obtain:

H i k j v = bandanna

v K i A4 = banana

In the other notation, let m = 'an', s ='distant', and n = 'omin'; we would then have:

1st' i s i 'ec' = 'decant'

m i s j 'inc' = 'distinct'

'ist' i s i n = 'dominant'

The substitution operation is powerful enough that it encompasses two other funda¬

mental operations - inserting one string within another, and deleting a portion of a

string. This can be seen from the further examples:

'sta' i s j " = 'dint'

'nt' i s j 'ntly' = 'distantly'

In general purpose HLL’s, substitution is usually broken out into two explicit

procedures. Typically, in string processing, a function called INDEX or MATCH is

provided to perform the equivalent of Y> returning an indication of the presence of

the pattern string in the subject string. A procedure by the name of SUBSTR is

typically provided for performing the actual replacement, at the location determined

by INDEX or MATCH. In PL/1 it is actually possible to use SUBSTR on either

side of an assignment statement. On the right side, it specifies the selection of a

substring from a string; on the left side, it specifies the replacement of a substring

of a string, as in our previous discussion. Note that the latter usage poses some

problems. What if the replacement string does not have the same length delineated

by SUBSTR? Ideally, the subject string should be shrunk or expanded to fit the

situation; PL/1 instead pads or truncates the replacement string to match the length

delineated by SUBSTR. In Section 8.2.3 we introduce the algorithms MATCH_0,

SUBSEL, and SUBREP that accomplish these purposes, but without this shortcom¬

ing of PL/1.

8.2 REPRESENTATIONS FOR STRINGS 383

8.2 REPRESENTATIONS FOR STRINGS

Since strings are sequences of characters from some alphabet, we will first consider
how individual characters are commonly represented, and then how sequences can
be represented. The choice for the representation of characters in a particular code
set is not likely to be an accessible parameter for many applications, but it is still an
important topic. On the other hand, the choice for the representation of sequences
is a significant one, as we will see. Having examined these latter choices, we will
subsequently choose one of them, and then map the logical string operations that
we discussed in Section 8.1 into Pascal procedures.

Sections 8.2.4 and 8.2.5 are concerned with other aspects of string represen¬
tation. Since codes are largely arbitrary, it is sometimes possible to construct a
code that gains efficiency by squeezing out redundancy in the underlying binary
representation. In particular, we will see how to do this with a structure called the
Huffman tree. On the other hand, we must frequently be concerned with the likeli¬
hood of data being corrupted by errors, usually in communication channels rather
than in computers per se. In this case, the resolution is to deliberately introduce
redundancy into code sets! As we will see, if this is done in a careful manner, then
the correct data values can often be determined despite errors.

8.2.1 Character Code Sets

As we observed in Section 1.1.1, a code set is a mapping from a set of characters to
an arbitrary set of bit patterns. All such sets in general use employ a constant
number of bits for each character in their set, so that the number of distinct charac¬
ters for a representation with k bits is evidently 2*. In the 1950’s and 1960’s, a
prevailing standard code set was the six-bit BCDIC (Binary Coded Decimal Inter¬
change Code). BCDIC was itself derived from the earlier Hollerith code whereby
characters are represented by combinations of holes in punched cards. Six-bit codes
such as BCDIC are still in use on some computers; they are adequate for represent¬
ing the 26 upper case letters, 10 digits, a score or more special characters, and a few
control characters which are used, for example, for directing an output device to
perform a carriage return, a line feed, or a horizontal tab. Whereas control charac¬
ters are not supposed to correspond to a visual symbol, the majority of the bit
patterns in a code set are visible for input and output, and they are termed graphics.

A six-bit code allows an insufficient number of symbols by present-day stand¬
ards. In BCDIC, for example, there is no room for the 26 lower case letters. Even
with this limitation, however, the demand for a variety of special characters causes
the existence of several duals in BCDIC - that is, two graphics sharing the same
bit pattern, as with '%' and '{'. Most computers today utilize either seven-bit
ASCII {American Standard Code for Information Interchange) or eight-bit EBCDIC
{Extended Binary Coded Decimal Interchange Code). With both of these codes, a
great deal of deliberation went into assigning characters to bit patterns in an intelli¬
gent fashion. Some of the more important considerations were as follows:

384 STRINGS

• Control characters and graphics should have bit patterns that are easily distin¬

guishable.
• Corresponding letters in upper and lower case should differ in only their high

order bits.
• There should be no duals.
• Compatibility with previous codes (such as BCDIC) should be sought-after.
• The consecutive letters of the alphabet should have consecutive bit patterns.

Some of these considerations, particularly the last two, are conflicting. For
such reasons, and for a host of personal and national reasons, the designers of
EBCDIC and ASCII arrived at the two different code sets displayed in Table 8.1.2
The most significant difference is that the sequence of the graphics is different in the
two codes. These represent distinct collating sequences for purposes of arranging
character strings in lexicographic order — that is, sorting. Thus, comparisons of
strings in the two codes yield different results. In particular, ASCII has the prece¬
dence: digits, upper case, lower case; and EBCDIC has the precedence: lower
case, upper case, digits. If the choice of collating sequence among lower case, upper
case, and digits is a difficult one, the choice of collating sequence among the scores
of special characters is much more so. Yet, this sequence has great implications in
that it manifests a canonical order for storing and retrieving indexed items within a
database. By inspecting Table 8.1, we can observe various other significant features

of ASCII and EBCDIC, as follows:

• The first 32 characters in ASCII and the first 64 characters in EBCDIC are

control characters.
• The letters of the alphabet are contiguous in ASCII, but broken into three

groups in EBCDIC, for compatibility reasons.
• the character for “space” ('b') collates low to all other graphics in both ASCII

and EBCDIC;
• EBCDIC still has unassigned code positions.

Many of the control characters are for use in data transmission: ACK (acknowl¬
edge), STX (start of text), ETX (end of text), CR (carriage return), LF (line feed),

BEL (ring the bell), etc.

The historical development of various character code sets is thoroughly docu¬
mented in Mackenzie [1980]. We will pursue one final point before moving to the
next topic. Consider one of the oldest codes of all, the teletype code (CCITT).
This code includes the 26 upper case letters, 10 digits, and various other characters;
yet it is a five-bit code! How is this possible? The answer can be seen by looking at
any typewriter keyboard. Certain characters are shift characters that change the
mode of translation of subsequent characters — for example, from lower case to
upper case. Thus, teletype code is almost a six-bit code, with one bit stripped off
and carried along as context. In point of fact, the five-bit code is used only for data
transmission. At the sending location, a shift character is generated whenever the

2 One of the major reasons for designing EBCDIC as an eight-bit code was to gain effi¬
ciency in representing the decimal data that pervades commercial data processing. The
choice of eight bits allows two binary-coded decimal digits (BCD) to be packed into a
single byte.

8.2.1 CHARACTER CODE SETS 385

Dec. Hex. EBCDIC ASCII

0 00 NUL NUL
1 01 SOH SOH
2 02 STX STX
3 03 ETX ETX
4 04 PF EOT
5 05 HT ENQ
6 06 LC ACK
7 07 DEL BEL
8 08 BS
9 09 HT

10 0A SMM LF
11 OB VT VT
12 OC FF FF
13 OD CR CR
14 OE SO SO
15 OF SI SI
16 10 DLE DLE
17 11 DC1 DC1
18 12 DC2 DC2
19 13 TM DC3
20 14 RES DC4
21 15 NL NAK
22 16 BS SYN
23 17 IL ETB
24 18 CAN CAN
25 19 EM EM
26 1A CC SUB
27 IB CU1 ESC
28 1C IFS FS
29 ID IGS GS
30 IE IRS RS
31 IF IUS US
32 20 DS SP

33 21 SOS !

34 22 FS "

35 23 #
36 24 BYP $
37 25 LF %
38 26 ETB &

39 27 ESC '

40 28 <
41 29)
42 2A SM *

43 2B CU2 +

44 2C ,

45 2D ENQ -

46 2E ACK

47 2F BEL /

48 30 0

49 31 1

50 32 SYN 2

51 33 3

52 34 PN 4

53 35 RS 5
54 36 UC 6

55 37 EOT 7

56 38 8

57 39 9

58 3A

59 3B CU3]

60 3C DC4 <

61 3D NAK =

62 3E >

63 3F SUB ?

Dec. Hex. EBCDIC ASCII

64 40 Sp @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 1
74 4A J
75 4B K
76 4C < L
77 4D (M
78 4E + N
79 4F 1 0
80 50 & P
81 51 Q
82 52 R
83
84

53 S
54 T

85 55 U
86 56 V
87 57 w
88 58 X
89 59 Y
90 5A ! z
91 5B $ [
92 5C * \

93 5D >]
94 5E j

95 5F —i

96 60 -
\

97 61 / a
98 62 b
99 63 c

100 64 d
101 65 e
102 66 i
103 67 g
104 68 h

105 69 i

106 6A t i i
107 6B , k

108 6C % 1

109 6D m

110 6E > n

111 6F ? 0

112 70 p
113 71 q
114 72 r |

115 73 s

116 74 t

117 75 u i
118 76 V

119 77 w

120 78 X

121 79 > y
122 7A Z

123 7B # t
124 7C @]
125 7D }
126 7E = ~

127 7F " DEL

Dec. Hex. EBCDIC

128 80
129 81 a
130 82 b
131 83 C

132 84 d
133 85 e
134 86 t
135 87 g
136 88 h
137 89 i
138 8A
139 8B
140 8C
141 8D
142 8E
143 8F
144 90
145 91 i
146 92 k
147 93 1
148 94 m

149 95 n
150 96 o
151 97 p
152 98 q
153 99 r
154 9A

155 9B
156 9C
157 9D

158 9E

159 9F

160 A0
161 A1
162 A2 s
163 A3 t
164 A4 u
165 A5 V

166 A6 w
167 A7 X

168 A8 y
169 A9 z

170 AA
171 AB
172 AC
173 AD
174 AE
175 AF
176 B0
177 B1

178 B2

179 B3

180 B4

181 B5
182 B6
183 B7
184 B8

185 B9
186 AA
187 AB

188 AC
189 AD

190 AE

191 AF

Dec. Hex. EBCDIC

192 CO {
193 Cl A
194 C2 B
195 C3 C
196 C4 D
197 C5 E
198 C6 F
199 C7 G
200 C8 H
201 C9 1
202 CA

203 CB
204 CC S
205 CD
206 CE V
207 CF

208 DO }
209 D1 J
210 D2 K
211 D3 L
212 D4 M

213 D5 N
214 D6 0
215 D7 P
216 D8 Q
217 D9 R
218 DA
219 DB
220 DC
221 DD
222 DE

223 DF
224 E0 \

225 El
226 E2 S
227 E3 T
228 E4 U
229 E5 V
230 E6 W
231 E7 X
232 E8 Y
233 E9 Z
234 EA
235 EB

236 EC rl
237 ED
238 EE
239 EF

240 FO 0
241 FI 1
242 F2 2
243 F3 3
244 F4 4

245 F5 5
246 F6 6
247 F7 7
248 F8 8
249 F9 9

250 FA 1
251 FB
252 FC

253 FD
254 FE

255 FF

Table 8.1 EBCDIC and ASCII Character Codes

386 STRINGS

value of the sixth bit changes from the preceding character; at the receiving
location, a sixth bit - the value of which depends upon the most recent shift char¬
acter — is appended to each incoming character. There may in fact be several shift
codes, allowing several modes of operation. Of course, it is important to distribute
the characters among the modes so that the expected frequency of shifts between
modes is low; for example, all the digits should be in the same mode. In addition,
very common characters, such as space, should occur in both modes, again to

reduce extra shift characters.

Let’s investigate the circumstances under which a shift code (one employing
shift characters) is more economical than a non-shift code, for the same alphabet
[Karlgren 1963]. To begin with, let’s do this for the teletype code. The two shift
characters and three other control characters occur in both modes, and the bit
pattern '00000' is unused in either mode. The other 26 bit patterns each have two
graphics, so that the total alphabet offers 2 x 26 + 6 = 58 possibilities. With an
unshifted code of six bits, the average character length will be exactly 6; with a
shifted code of five bits, the average character length will be 5 x (1 + Ps), where Ps is
the probability that a shift between modes will be required. Then the shift code is

superior whenever

5 x (1 + P5) < 6, or P,<y (8.1)

More generally, for an alphabet of N characters, an unshifted code will require
[\g N bits, and a shift code with c characters common to both modes will require
T lg {(N — c)/2 + c) bits. So there will be a net gain in efficiency whenever

(T lg {(N - c)/2 + c)) x (1 + Ps) < T lg N (8.2)

A variation upon the use of shift characters occurs with the escape character.
This is analogous to using shift without shift-lock on a typewriter, for the purpose
of changing the mode for only the next character. For infrequently used characters,
this is superior to the use of a shift code, since it requires two characters instead of
three for transmission. The effect is to impart a double length to such characters
whenever they occur. Both ASCII and EBCDIC contain an escape character
(ESC), although its precise use remains to be specified. In general, ESC followed by
any other character, or possibly a sequence of characters, may have a variety of
meanings; in particular, ESC followed by another character could signal a shift to

an alternate mode.

8.2.2 Data Structure Choices

The choice of a representation for strings requires careful attention to their expected
manner of use. We will describe six possibilities and then make some generaliza¬
tions about their applicability. To illustrate these schemes, let us suppose that we
have the sample line

'LI CMPR BANANAS,WATERMELONS,12'

8.2.2 DATA STRUCTURE CHOICES 387

This might, for instance, represent one line (or card) containing an instruction in
some assembly language. There will be some program that extracts the two fixed-
length fields ('Llbbbb' and 'CMPRbbb') and the three variable-length fields
('BANANAS', 'WATERMELONS', and '12'), storing each of them in the given string
representation.

1

2

3

4

5

L 1

C M P R

B A N A N A S

W A T E R M E L 0 N S

1 2

Figure 8.1 Fixed-Length String Representation

The simplest method of all is to represent fixed-length strings by means of
arrays, as shown in Figure 8.1. Here, each string is padded with extra blanks on the
right (in other words, left justified) to fill its array. A more sophisticated technique
is to use varying-length strings. A fixed-length array is used as before, but each
array also has an associated integer value that specifies the number of meaningful
characters in the string; note that there could just as well be meaningful, embedded
blanks. This representation is shown in Figure 8.2, and the corresponding Pascal
syntax is simply

type string = record
size: 0 .. maxstring;
data: array [1 .. maxstring] of char;

end;

1

2

3

4

5

Figure 8.2 Varying-Length String Representation

02 L 1

04 C M P R

07 B A N A N A S

11 W A T E R M E L 0 N S

02 1 2

The remaining four schemes all address the issue of truly variable-length strings.
This is important for reasons of storage efficiency, and also because the two simpler
representations run the risk (depending upon the application) of being too short for
some strings. We have already faced this issue in Section 3.3, in discussing varia¬
ble-length records. From the techniques presented there, we know that we can
delimit variable-length strings using either separators or count fields. The latter are

388 STRINGS

superior for machine processing of data, and so the third representation for our
example is as shown in Figure 8.3. The fourth scheme should by now be fairly
familiar; it is the indexed list, formally introduced in Section 7.2 for representing
the edge list of a graph, and used earlier in Section 2.8 for representing sparse

matrices. As applied to our example, it yields Figure 8.4.

0 2 L 1 0 4 C M P R 07BANANAS 1 1WATERMELONS 0 2 12

Figure 8.3 Count-Delimited String Representation

Figure 8.4 Indexed List String Representation

Not surprisingly, the technique that offers the most flexible representation is
that of a linked list, and this is shown in Figure 8.5. Here each cell represents a
machine word, containing a one byte character and a three byte pointer value. The
patent storage inefficiency in such a scheme suggests using a blocked linked list.
For the blocking illustrated in Figure 8.6, each cell is a machine double-word
containing four one byte characters and a three-byte pointer; the unused byte
might contain a fifth character or be used for other purposes.

Figure 8.5 Linked List String Representation

Of the various measures that might be applied to these choices for representing
strings, three are particularly important: efficiency of storage use, ease of look-
ing-up (matching) an argument string, and ease of modifying (substituting) a given

8.2.2 DATA STRUCTURE CHOICES 389

Figure 8.6 Blocked Linked List String Representation

string. When we apply these three criteria to our six representation choices, we
obtain Table 8.2. Let’s look at the values of some of the entries in the table.

storage
efficiency

ease of
look-up

ease of
modification

fixed-length poor fair fair

varying-length poor good fair

count delimiters excellent fair poor

indexed list excellent good poor

linked list fair poor excellent

blocked linked list good fair good

Table 8.2 Relative Merits of String Representations

Fixed-length strings evidently do not have much to commend them. Nonethe¬
less, their extreme simplicity causes them to be worthwhile for applications where
the intrinsic variability in length is not significant, as with punched cards or line
printers. Varying-length strings offer superior performance with only a trivial incre¬
ment in complexity. They do not save space but they save significantly in time,
since processing of irrelevant character positions is avoided. With both of these
methods, we find that the presence of unused character positions causes string

modification to be reasonably easy in many circumstances.

The count delimiter and indexed list techniques are actually rather similar -
the counts being with the data in the former case, and in a separate array in the
latter case. However, in processing strings, as opposed to records, it is usually
important to have all the descriptive information (counts and pointers) in the latter
form; this facilitates dealing with the zth string, for example. The indirection also
makes it possible to deal with substrings without the necessity of replicating charac¬
ter data, as illustrated in Figure 8.7. The capability can be more useful than is

390 STRINGS

suggested by this humorous example. For instance, systems that interact with
people may have hundreds of messages, requiring a large amount of storage, and
the words and phrases of these messages typically have a great deal of redundancy.
An indexed list can be used to overlap portions of text, with significant savings in
storage [Wagner 1973a]. The count delimiter and indexed list techniques are hard
to beat in terms of storage efficiency. Their biggest drawback is that string modifi¬
cation becomes extremely expensive unless the replacement string is never longer
than the pattern string. However, applications that require insertion and look-up,
but not string modification, occur rather frequently. A notable example is in the
building and use of symbol tables during assembly or compilation of programs.

Figure 8.7 Overlapped Messages

The linked list methods trade storage efficiency for ease of string modification.
Since a character usually requires one byte and a pointer usually requires three
bytes, the efficiency of the simpie linked list representation is only 25 percent. The
blocked linked list technique brings the efficiency up to 50 percent or more, depend¬
ing upon the blocking factor, but causes string modification to become more
complicated. It may be necessary to have an “empty” character, such as '#'. Thus,
suppose that we wish to change 'DISTANT', in Figure 8.8(a), to 'DOMINANT'. If
accomplished as in (b) of the figure, we must shuffle characters around; if accom¬
plished as in (c) of the figure, we must waste block space. Even so, for general
string processing the blocked linked list seems to offer a favorable combination of
characteristics.

D l S T ANT

(a)

D 0 M 1 N A N T /

(b)

D # # # 0 M N ANT

(c)

Figure 8.8 Complications with Blocked Linked Lists

As a postscript to the subject of string representations, the addressing capabili¬
ties of the underlying machine are a factor that is outside the implementer’s control.
If the machine is only word-addressable, and if several characters are packed into a
word, then the cost of operating upon individual characters can be high. A

8.2.3 A SET OF STRING MANIPULATION ALGORITHMS 391

machine that is addressable by characters (bytes) will perform much better for string
processing. Many machines, of course, offer both byte and word addressing.

8.2.3 A Set of String Manipulation Algorithms

For the purpose of illustrating string manipulation algorithms here and in the rest
of this chapter, we need to select a representation. The one that we will employ
throughout is that of varying-length strings, as was illustrated in Figure 8.2. As
mentioned earlier, this choice is inferior for some applications, but in many cases it
is a good choice, and it also has the virtue of simplifying the exposition of string
algorithms. To begin with, we will employ the definitions:

type extent = 0 .. maxstring;
string = record

size: extent;
data: packed array [1 .. maxstring] of char;

end;

The keyword packed is used to specify that characters should be stored densely in

words, rather than singly.

procedure CONCAT (s1,s2: string; var s3: string);

var b,i: extent;

begin
if si .size + s2.size > maxstring then

{Overflow}

else begin
b := 0;
for i := 1 to si .size do

s3.data [b + i] := si .data [i];

b := si .size;
for i := 1 to s2.size do

s3.data [b + i] := s2.data [i];

s3.size := b + s2.size;

end;
end;

Algorithm 8.1 CONCAT

The procedure CONCAT (Algorithm 8.1) is straightforward, concatenating the

contents of strings si and s2 in the string s3; note that, with this representation, a
test for potential overflow is imperative. The function MATCH_0 (Algorithm 8.2)
warrants a modest amount of explanation. It tests for the presence of pattern
within text, returning either a zero if it is not present, or else the index in the text
where the first match begins. Within the repeat ... until loop, a successful compar¬
ison of the jth text character and the Ath pattern character causes both indices to be

392 STRINGS

function MATCH_0 (pattern,text: string): extent;

label 1;

var j,k: extent;

begin
j := 1; k := 1;
repeat

if text.data G] = pattern.data [k] then begin

j :=j + i;
k := k + 1;

end else begin
j := j - k + 2;
if j + pattern.size <= text.size + 1 then

k := 1
else

goto 1;
end;

until (j > text.size) or (k > pattern.size);

1: if k > pattern.size then MATCH_0 := j - pattern.size

else MATCH_0 := 0;
end;

Algorithm 8.2 MATCH_0

12345678901234567890123456
aal f lal fatal fal I a I fatal f a f

a I

a I f a

a

a

a
a I f a I a I f a f

a

a

a I f

a

a I f a I a

a

a

a I f

a

a

a I f a I a I f a f

Figure 8.9 Trace of Algorithm MATCH_0

8.2.3 A SET OF STRING MANIPULATION ALGORITHMS 393

advanced by one; an unsuccessful comparison causes the text cursor to be backed
up and the pattern cursor to be reset to one. In looking for the pattern 'alfalalfaf

in the text 'aalflalfalalfallalfalalfaf', MATCH_0 would perform the individual
comparisons indicated in Figure 8.9 before returning a value of 17.

procedure SUBSEL (si: string; base,span: extent; var s2: string);

var i: extent;

begin
for i := 1 to span do

s2.data [i] := si .data [base - 1 + i];
s2.size := span;

end;

Algorithm 8.3 SUBSEL

procedure SUBREP (var si: string; base,span: extent; s2: string);

var delta,i,p: integer;

begin
delta := s2.size - span;
if si .size + delta > maxstring then

{ Overflow };
if delta < 0 then

for p := base + span to si .size do
si .data [delta + p] := si .data [p];

if delta > 0 then
for p := si .size downto base + span do

si .data [delta + p] := si .data [p];
for i := 1 to s2.size do

si .data [base - 1 + i] : = s2.data [i];

si .size := si .size + delta;
end;

Algorithm 8.4 SUBREP

The procedure SUBSEL (Algorithm 8.3) selects a substring from the string si,
with base and span specifying the beginning index in si and the length of the
substring; the result is assigned to s2. Thus, let u be the string 'abcdefghij'; then
SUBSEL (u,3,4,z) would cause z to be the string 'cdef'. The procedure SUBREP
(Algorithm 8.4) replaces a substring of si with the string s2. There are the same
parameters as in SUBSEL, but now si is the output string and s2 is an input string.
The first concern is to discover whether the “tail” of the string si must be moved
left/right because the substring to be replaced is longer/shorter in length than s2. If
so, those characters are relocated appropriately. Finally, the contents of s2 are
copied into the “hole.” Note that replacing a longer substring with a shorter one
will leave extra characters at the end of the target si. However this doesn’t matter,

394 STRINGS

since sl.size is the determining factor. To illustrate matters, let u be abcdofghij

again, and let v be '12345'. Then we would obtain results such as.

for SUBREP (m,3,0,v) , u = 'abl2345cdefghij/
for SUBREP (w,3,l,v), u = 'ab12345defghij'

for SUBREP (m,3,5,v) , u = 'abl 2345hij'
for SUBREP («,3,7,v), u = 'abl 2345j'

With regard to complexity, we see that CONCAT, SUBSEL, and SUBREP are
linear algorithms; however, the function MATCH_0 is more costly. In fact, for
pattern.size — m and text.size = n, MATCH_0 is 0(mn)', for the usual case of
n » m, we can see this from the example of pattern = amb and text = an, where am
represents m concatenations of a. In Section 8.5.1, we will examine ways in which

this can be improved.

8.2.4 Minimum Redundancy Codes

The significance of strings is that they carry meanings. In this sense, strings are
messages. In a finite collection of strings/messages, some are usually more likely to
occur than others. This spread of likelihoods can be viewed at the level of charac¬
ters, words, or even sentences, as illustrated in Figure 8.10. If we have a set of
messages U = {mu rr^,..., mN}, with respective probabilities {pup2, ... ,PN}, then the
“surprise” associated with receiving any one of the m, is defined as — lg pr These
ideas originated with Shannon’s Information theory [Shannon 1948], wherein the
quantity of information H associated with the entire set of messages U is defined as

the average surprise

N

H(U) = - 'Yfi te Pi
i= 1

(8.3)

characters words sentences

E the How are you?
A bird Give it to me.

N futility It’s a double feature.
0 abomination Grammars describe languages.
Y oxymoron The purple door sagged open.

Figure 8.10 Messages in Order of Decreasing Probability

This quantity H, called the entropy, is a minimum bound on the number of
binary decisions required to discriminate the value of a message. Thus, suppose
that we have the candidate messages and probabilities shown in the first two
columns of Figure 8.11. A binary decision tree for discriminating which data struc¬
ture is intended might look like Figure 8.12. An important quantity associated with

8.2.4 MINIMUM REDUNDANCY CODES 395

such a tree is its weighted path length (w.p.l.). This is obtained by multiplying each
frequency by its level in the tree and them summing; it corresponds to the average
value for the number of decisions that will be required. For the tree of Figure 8.12,
the w.p.l. is

3 x .17 + 2 x .24 + 4 x .12 + 3 x .11 + 4 x .15 + 3 x .01 + 2 x .20 = 2.83

Evaluating Eq. 8.3 for the same case, we obtain

H=. 17 x 2.56 + .24 x 2.06 + .12 x 3.06 + .11 x 3.18 + .15 x 2.74
+ .01 x 6.64 + .20 x 2.32 = 2.59

message probability code A code 6

tree .17 010 010
array .24 00 001
graph .12 0110 011
stack .11 111 100
list .15 0111 111
queue .01 110 101
string .20 10 110

Figure 8.11 Example Messages, Probabilities, and Codes

Queue

Stack

Figure 8.12 A Decision Tree for Data Structures

The definition in Eq. 8.3 has several desirable properties:

• It is always positive.
• It attains its maximum value when all the pt — 1 jN. This corresponds to the

intuitively reasonable notion that there is the most surprise when all outcomes

are equally likely.

396 STRINGS

• It is additive. If we have two independent sets of messages U and V, with infor¬
mation contents H{U) and H(V), then the information contained in the

cross-product of messages from U with messages from V is

H(UV) = -lg pq = -lg p~\gq = H{U) + H(V)

Since a given set of messages contains a fixed amount of information, we can
try to reduce the aggregate storage requirements for their recording or transmission
by mapping the messages {m,} into codewords of non-uniform lengths {$,}, assigning
more likely messages to shorter codes. In general, the codeword symbols can be
selected from an alphabet with K symbols. Then the expected character length will
be given by L = A fundamental result from information theory states that

this average length is bounded from below by H(U)I lg K; that is,

(8.4)

with the bound being attainable only in those rare cases where the st = -lg pt are
integers. In general, our encoding scheme will have redundancy, defined as
1 — H(U)I(L lg K). We are particularly interested in applying this idea to the repre¬
sentation of a set U of characters by binary codewords, for which K= 2. An
illustration is given by the Code A in Figure 8.11 (representing the decision tree of
Figure 8.12) with a redundancy of 1 — 2.59/2.83 — 0.085. Although this is not the
best possible encoding, it is clearly better than any fixed-length code could be.
Compare it, for example, with the Code B in Figure 8.11, where we find

L = Yj>di = s^^Pi = 3x1=3, and the redundancy is 1 — 2.59/3 = 0.137.

In the general case of trying to find a set of codes to represent a set of
messages, one must be careful to choose a set that can be decoded uniquely, and
also instantaneously - that is, without the necessity to look ahead of the current
position in the input. Such a code set is said to have the prefix property. By way of
illustration, the code in Figure 8.13(a) is not uniquely decipherable;3 the message
'01 O' could be decoded as either 'uw' or 'vu'. The code in (b) of the figure is
uniquely decipherable but not instantaneous; the message '0000001' corresponds to
'yyyz', but the 'y' values canno^ be determined without scanning ahead each time.

Huffman [1952] found an elegant, yet simple algorithm for constructing a mini-
mum-redundancy code with the prefix property, given a set of messages with
associated probabilities. The method proceeds by building a strictly binary tree (see
Section 6.2), wherein the message elements are leaves. His construction can be
applied either with a set of weights (unnormalized frequencies) or with a set of
probabilities (normalized frequencies). We begin by arranging the elements in a list,
from bottom to top, in order of increasing frequencies. We then remove the two
elements with lowest frequencies f and f2, and combine them in a new element with
frequency f -t-f2. In the binary tree this new element becomes a parent node to its
two summands, and in the list it is inserted so as to maintain the ascending

3 Note that the Morse code, using dots and dashes, does not have the prefix property.
How then can a message in Morse code be unambiguously decoded?

8.2.4 MINIMUM REDUNDANCY CODES 397

message code

u 0
V 01
w 10

message code

y
z

0
0001

(a) (b)

Figure 8.13 An Ambiguous and a Non-lnstantaneous Code

sequence. Then the two elements/nodes with lowest frequencies are selected as

before, and the process is repeated. This continues until the list contains just one
node, corresponding to the root of the binary tree. Here, we illustrate the algorithm

with the data of Figure 8.14 rather than that of Figure 8.11. Figure 8.15 shows

successive values for the list and for the tree as the algorithm progresses. When the
tree has been completed, a code is immediately forthcoming, by mapping left/right

branches in the tree to 0/1 bit values to reach the messages at the leaves. This is

shown in Figure 8.15(b), where the (square) terminal nodes are the original data

and the (circular) non-terminal nodes are generated by the algorithm. The final
code is also summarized in Figure 8.14. Huffman’s algorithm yields a tree with the

minimum weighted path length (w.p.l.) that can be obtained via an encoding. In

our example, it is

2 x 50 + 3 x (13 + 16 + 26 + 28) + 4 x (8 + 9 + 11) + 5 x (6 + 7) = 526

message weight code message weight code

A 11 0110 N 13 000

C 16 001 O 50 10

D 8 0100 R 9 0101

E 26 110 T 28 111

L 7 01111 Y 6 OHIO

Figure 8.14 Huffman Encoding for Weighted Messages

Eq. 8.4 stated a lower bound for the average path length, and it can easily be

shown that the tree obtained by Huffman’s construction has the minimum possible

w.p.l. (see Exercise 8.5). In fact, more can be said. A minimum encoding satisfies

H{U) <
lg K ~

(8.5)

[Ash 1965; Gallagher 1968]; thus, for a binary Huffman tree with normalized

frequencies, we are assured that

398 STRINGS

Figure 8.15 Applying Huffman’s Algorithm to Figure 8.14

8.2.4 MINIMUM REDUNDANCY CODES 399

H(U) < Yfft < H{U) + 1 (8.6)

In other words, a minimum binary encoding will never cost more than one extra
access beyond the limiting entropy value.

Having derived the code of Figure 8.14, how do we decode a message such as
'001100100110'? We start at the root of the tree and the beginning of the message,
branching according to successive bits until we find the first symbol at a leaf, 'C'.
We continually restart at the next bit in the message and at the root of the tree
again, finally obtaining the complete message, 'CODE'. Note how the prefix prop¬
erty guarantees a unique decoding.

It should be apparent that the Huffman construction does not yield a unique
tree/encoding scheme, although the w.p.l. value is unique. In fact, it may not even
yield a unique oriented tree; an alternative tree and code for the data of Figure
8.14 are shown in Figure 8.16. Although the two trees/codes have the same w.p.l.,
note that the second one is better balanced, with a lesser depth. It is straightfor¬
ward to modify the Huffman algorithm to guarantee the latter result [Schwartz
1964], When a non-terminal node has been formed and is to be inserted into the
list, there may be bther nodes in the list with the same weight. In such a case, the
new node should be inserted after such nodes. You should verify that such a
modification does in fact lead to Figure 8.16. The implementation of Huffman’s
algorithm is left as a fairly easy programming exercise. Note that, with one compli¬
cation (see Exercise 8.8), the priority queue is a natural choice of data structure for
the necessary operations of inserting a new node and removing a minimum node.

Figure 8.16 Alternative Huffman Tree of Minimum Height

Huffman’s algorithm responds to the objective of reducing the storage require¬
ments for data recording and transmission. In fact, the net savings by this method
may not be very great unless we are dealing with a rather small collection of
messages in which some are much more likely than others. It is often possible to

400 STRINGS

obtain an improved compression of redundancy by considering larger segments of
the message string than just individual symbols, as we will see in Section 8.4.1.
Another drawback to this method is that the decoding process requires the serial
examination of a bit string, which is difficult to implement efficiently on most
computers. On the other hand, the logic of Huffman tree construction can be

useful in instances unrelated to data compression (see Section 13.4.3).

8.2.5 Error Detecting and Correcting Codes

While the objective in the preceding section was efficiency, in this section it is reli¬
ability. We should expect that errors will cause changes in code values and corrupt
the associated meanings. This is particularly so when information is transmitted
between locations, and noise perturbs the information carrier. A sensible response
to this situation is to deliberately provide redundant information with a message.
Ordinary discourse contains a great deal of redundancy, thereby enabling humans to
detect and correct mistakes in communication in an unsystematic manner.

However, to provide this facility with machines, we need to incorporate redun¬
dancy of a more systematic nature, such as a checksum or an odd/even parity
check. With such a scheme, the sender computes some redundant information as a
function of the data, and attaches it to the message. The receiver recomputes the
same redundant information, and compares it to the received redundancy values.

At that point, one of three possibilities can be decided upon:

Acceptance — There are, with high probability, no errors.

Correction — Errors are present in locations that can be computed, so that
they can be corrected.

Rejection — Errors are present in unknown parts of the message, so that they
cannot be corrected.

A central idea for constructing codes that allow error detection and error
correction, as suggested above, is that errors are often independent. In this case, the
probability of multiple errors in a given code sequence will be much less than ,the
probability of a single error. Now let Bn be the set of binary n-tuples, and suppose
that we have a code C that is a subset of Bn. Two important concepts are the
Hamming weight of a codeword, defined to be its number of non-zero coordinates,
and the Hamming distance between any pair of codewords from C, defined to be the
number of coordinates in which their values differ. For concreteness, let us consider
B6 and the code C of Figure 8.17. We can regard this code as follows. The data is
contained in the leftmost three bits, the fourth bit is an even parity check on the
two leftmost data bits, the fifth bit is an even parity check on the first and last data
bits, and the sixth bit is an even parity check on the two rightmost data bits. The
significant fact is that for any pair of codewords in the set, the minimum Hamming
distance is three. This means that three or more independent errors are required in
order to change one codeword into another one. In the much more likely event of a
single error, we will obtain a faulty codeword Y at Hamming distance one from
some word X in C, and at Hamming distance two or more from all the other words
in C. It is then reasonable to conclude that the correct value of Y must be X.

8.2.5 ERROR DETECTING AND CORRECTING CODES 401

message code C

0 0 0 0 0 0 0
1 0 0 10 11
2 0 10 10 1
3 0 11110
4 10 0 110
5 10 110 1
6 110 0 11
7 1110 0 0

Figure 8.17 A Code with 3 Data Bits and 3 Check Bits

What if we have a code such that the minimum Hamming distance between any
two codewords is two? In this event, we may receive a faulty codeword Y that is at
Hamming distance one from two different codewords. It will not be possible to
correct the error, other than with a guess; on the other hand, we can be sure that
no single error can get by without our being aware of it. This is the function that
use of a single parity bit provides.

In general, as first shown by Hamming [1950], codes with a minimum distance
of d + 1 enable detection of d errors, and codes with a minimum distance of 2d + 1
enable correction of d errors. This can be visualized in geometric terms such that
each codeword is a point in space. When we speak of detection, we find that d
errors are insufficient to reach one codeword from another because they are at
Hamming distances d -f 1. When we speak of correction, we find that each code¬
word is surrounded by a “sphere” of radius d, and that none of the spheres can
intersect because the centers are at Hamming distances 2d + 1. Thus, as illustrated
in Figure 8.18, any codeword with k < d errors can safely be corrected to the value
of the codeword at the center of one particular sphere. Note that these two
distance conditions interact. A code with minimum distance of three can be used
either to correct single errors or to detect double errors, but not both. A code with
a minimum distance of five can be used either to correct double errors, correct
single errors and detect triple errors, or to detect quadruple errors. The choice of
whether to opt for more detection or more correction depends upon the application.
For example, it is common to have a situation where error detection could be used
to signal a request for retransmission. In such cases, we could emphasize rejection
(that is, detection without correction) in order to reduce the likelihood of an unde¬
tected multiple error. On the other hand, where retransmission is impossible or
irrelevant, as in the case of reading corrupted data from a magnetic tape, it would
make more sense to opt for as much correction as possible.

One potentially troublesome point is that, by introducing check bits, we have
lowered the efficiency, or the rate, of the code. In the example of Figure 8.17, we
have halved the effective transmission rate by including as many check bits as infor¬
mation bits. What is the trade-off in general terms? If we have codewords with
n — m + r bits, where m bits carry the information and r bits provide the checking,
how big must r be for a given m, in order to provide single-error correction? It

402 STRINGS

Figure 8.18 Hamming Distances for Correction

must be such that 2r >m + r + 1; this is so because there must be sufficient infor¬
mation in the r bits to distinguish among the m + r + 1 cases:

(a) there is an error in one of the m data bits;

(b) there is an error in one of the r check bits;

(c) there is no error.

This is equivalent to

m = n — r <2r — r — 1 (8.7)

When equality holds, we can construct a corresponding perfect Hamming code, of
length n = 2r — 1 and size (that is, number of messages) 22r~r~1. Some pairs (n,m)
for which perfect Hamming codes can be constructed are (3,1), (7,4), (15,11),
(31,26), etc. As you can see, efficiency ceases to be an issue as n increases.

One can carry out similar arguments to obtain various upper or lower bounds
for multiple-error correcting codes. For example, referring to Figure 8.18 again,
suppose that we have codewords of n bits and that we want d-bit error correction.
Then the “sphere” about each codeword must contain the codeword itself and all
the points reachable in d or fewer errors. The total number of points is P = 2", and
the total number in each sphere is S = ^C(nJ), for 0 <j <d. The ratio P/S is
known as the Hamming bound, corresponding to the maximum number of distinct
messages on n bits with d-bit error correction. For a single-error correcting code,
the Hamming bound reduces to 2"/(l + «); for n = 2r — 1, this tells us that we can
have 2"~r = 2m messages, agreeing with the results of the preceding paragraph. One
must be careful, however, because the Hamming bound is a necessary but not suffi¬
cient condition, and a code satisfying the bound may not exist.

t8.2.5.1 GROUP CODES 403

f8.2.5.1 Group Codes. In the preceding section, we showed the existence of
single-error correcting codes with good rates. Actually finding such codes and
determining how to use them efficiently is another matter. For instance, if we
receive a faulty codeword Y that does not match any of the messages of an (n,m)
code, we might try comparing Y with each of the 2m messages to see which it is
closest to. For m of even modest size, however, just the storage requirements of this
approach render it completely infeasible. Therefore, we want codes for which we
can find good encoding and decoding algorithms. Beyond this, if we can solve these
problems for single-error correcting codes, can we solve them for multiple-error
correcting codes? In this section, we will sketch how group codes provide a
solution for the single-error case. The demonstration suppresses a great deal of
theoretical underpinning which comes from linear algebra and group theory; a
fuller treatment can be found in Blahut [1983].

To be specific, what is an example of the Hamming (7,4) code, and how would
we use it to correct a faulty codeword? It is effective to represent the coding
process as the multiplication of the input vector 7 = (i\, h, 4) by a (4 x 7) genera¬
tor matrix G, as shown in Figure 8.19(a), yielding a codeword in the desired code C.
It is possible for G to have other forms, but the G of the figure makes the encoding
particularly simple. The leftmost four columns of G are the identity matrix, and the
rightmost three columns of G compute three parity bits to be appended to 7, via the
multiplication A = 7 x G (mod 2). As an example, the input 7=1011 would
become the codeword X = 1011010. An essential feature of this process is that any
codeword in C is a linear combination of the four rows of G, causing C to be a

subgroup of B1.

110 110 0
10 110 10
0 1110 0 1

1 0 0 0 1 1 0
0 10 0 10 1
0 0 1 0 0 1 1

0 0 0 1 1 1 1

(a) Generator Matrix G (b) Parity-Check Matrix H

Figure 8.19 Coding Matrices for Hamming (7,4) Code

Suppose now that we receive Y instead of X; that is, Y = X + Z { mod 2), for Z
an error vector. The value of Z can be determined in an ingenious fashion by using
the (3 x 7) parity-check matrix 77 of Figure 8.19(b). Observe that the rightmost
three columns of 77 are an identity matrix once again, and the leftmost four
columns of 77 are the transpose of the rightmost three columns of G. We begin by
computing S = 77 x YT (mod 2); the quantity S is called the syndrome. Now the
multiplication of YT by 77 is a mapping from B1 to B3. The set C of codewords
form a kernel of this mapping, for which 5 = 0. Moreover, the remaining values in
B1 form seven cosets of C, or equivalence classes, each with sixteen members. The
significance of the syndrome is that it depends only upon Z and not upon X, since
H x YT = H x (X + Z)T = 0 + 77 x ZT, for X in C. If 5 = 0, then we know that
Z = 0; if S 0, then it specifies a coset of sixteen possible error vectors. As an

404 STRINGS

example, suppose that we receive Y = 0110101. Multiplying YT by H, we obtain the

syndrome 5 = 011. In fact, any of the following Z values

0000011
0001100

ooioooo
0011111

0100110
0101001
0110101
0111010

1000101
1001010
1010110
1011001

1100000
1101111
1110011
1111100

could have caused this value of S. But since we assume that single errors are much
more likely than multiple errors, then the underlined one, known as the coset leader,

is deemed to be the desired value of Z. So the message is decoded as the first four

bits of X = 0110101 +0010000 = 0100101, or as '0100'.

In the process just described, the use of the syndrome to pick a coset leader

reduces the number of items to be searched from 2m to 2n~m. For the case in ques¬
tion - n = 7 and m = 4 - this is not significant; however, it rapidly does become
significant for larger codes, such as (15,11). The solution for the Hamming perfect

codes is even more elegant than we have described, in that the syndrome can be
used to determine Z without the necessity of storing 2n~m coset leaders. But for an
arbitrary (n,m) single-error correcting code, we must find the coset leaders. It can
be a sizeable task to determine them (without computing H x ZT, for every possible
Z, and recording the Z of smallest Hamming weight for each value of S). On the
other hand, they need be computed only once. The reader encountering these ideas

for the first time may find them slightly overwhelming. The significant point to
comprehend, however, is that by choosing a code to be a subgroup of Bn, one can
fairly directly and elegantly obtain efficient decoding algorithms for singe-error

correction.

The construction of codes that can correct multiple errors is an advanced topic,
as is the design of algorithms that efficiently decode (that is, accept, correct, or
reject) the codewords [§]. Some of the techniques, such as the use of a syndrome as
an error-locator function, carry over, but the details become much more compli¬

cated. They depend heavily upon arithmetic over finite fields GF(q).

8.3 TEXT PROCESSING

We can look forward to a society that uses less real paper, but it will also be one in
which there is assuredly more paperwork. Word-processors and general-purpose
computing machines assist us in the preparation and generation of ever more

memos, letters, programs, reports, etc. The preparation phase is typically an elec¬

tronic “cut-and-paste” one, in which we interactively edit the text of a document.
We may also invoke programs that detect or even correct misspellings. Finally, in

the generation phase, a formatting program processes the text file to yield a docu¬
ment that is aesthetically pleasing. Our discussion of text processing is based upon
these three principal themes.

8.3.1 TEXT EDITING 405

8.3.1 Text Editing

The most common conceptual model of text editing is that the user has a document
consisting of lines of characters. A moderate number of contiguous lines (about
twenty) are presented to the user on a video screen; at a given instant, a cursor
indicates a particular character position on a particular line. The user can position
the cursor underneath any character position on his screen, and he can also cause
the screen contents to scroll up or down to reveal lines that are above or below the
text on the screen. In addition, since some lines in his document may be too wide
for the screen, he can scroll left or right to reveal portions of lines that are off the
sides of the screen. The editor program that supports such operations usually has
two modes - one in which the user can type in new lines of text, and one in which
he can operate upon the existing lines of text. Typical capabilities in the latter
mode are:

• to cause the aforementioned scrolling over the two dimensional document —
up, down, left, or right;

• to locate occurrences of a given pattern anywhere in the document;
• to insert, change, or delete a specified substring in a line;
• to insert, change, or delete some or all occurrences of a specified substring in

the document;
• to insert or delete entire lines;
• to delete a block of lines from the document;
• to move or copy a block of lines from one portion of the document to another.

This model deals in terms of lines that can readily be displayed to the user, and
thus we do not expect the lines to be extremely wide. It is common to employ
varying-length strings for individual fines, and an array of pointers to keep track of
the relative sequence of the fines. Thus, a fragment of a document might look like
Figure 8.20, with string data as in (a) and with pointers as in (b). It is easy to see
how the editing operations cited above could be supported by the data organization
in this figure — using the string manipulation routines of Section 8.2.3, manipulat¬

ing pointer values, etc.

There are other text editing models. In discussing these models, the issue of
fines and lengths is paramount. For instance, suppose that we edit the fine with
relative number 329 in Figure 8.20, changing 'echo' to 'reverberation'. Suppose
also that the resulting fine exceeds the limit of the varying-length string implementa¬
tion. This would cause a failure in a primitive editor. However, other editors
would automatically split the fine in two, depending perhaps upon the type of the
document. Still more sophisticated is to dispense with underlying fines altogether,
treating the text file as one long super-string, or stream, of characters. In this
model, carriage returns and fine feeds can be left in the text, and they can be edited
like ordinary characters; however, the editor program does not use them for
control when displaying the text to the user, and substring searching can be done in
a manner that ignores them. Among other things, this solves the following common
problem. If we are looking for a substring with a line-oriented editor, and it
happens to span the end of one fine and the beginning of the next, then we will not
find it. However, this same situation will be treated properly in the case of a

stream-oriented editor.

406 STRINGS

location string

1300 models. In discussing these models, the issue of

1400 lines and lengths is paramount. For instance, suppose

1500 of the varying-length string implementation. This

1600 in Figure 8.20, changing 'echo' to 'reverberation'.

1700
1800 that we edit the line with relative number 329

1900 Suppose also that the resulting line exceeds the limit

2000 would cause a failure in a primitive editor. However,

(a) String Storage

line number 326 327 328 329 330 331 332

location 1300 1400 1800 1600 1900 1500 2000

(b) String Pointers

Figure 8.20 A Text Editing Example

This discussion has been limited to conveying just a few of the more important

notions in text editing. Other important topics include:

• the capability of pointing directly at a block of text with a mouse;
• the ability to mix text with line-drawings and pictures;
• the editor function of displaying the document so that “What You See Is What

You Get” (WYSIWYG).

Readers interested in pursuing these matters can find a comprehensive survey of text

editing in Meyrowitz and van Dam [1982].

8.3.2 Spelling Correction

It has long been recognized that there are four typical kinds of spelling mistakes in
a document: (a) omission of a letter, (b) insertion of a letter, (c) substitution of one
letter for another, and (d) transposition of adjacent letters. These are meaningful
categories of errors, in that they correspond to real-world mistakes in the typing of
input. But note that their relative importance depends upon the source of the docu¬
ment; for example, we would not expect to find transposition errors when using
optical character reading devices.

The four types of errors are important also because they form a basis for a
metric of the difference between a pair of strings. More precisely, one can define
the edit-distance between a pair to be the minimum number of editing changes
(insertions, deletions, substitutions, or transpositions) required to transform one
string to the other (see Exercise 8.24). This notion is fundamental in attempting to
correct spelling errors [Lowrance and Wagner 1975; Wagner and Fischer 1974].
But first, let us deal with the simpler issue of detection.

8.3.2 SPELLING CORRECTION 407

In any language, we have a higher expectation of encountering some successive
pairs of letters - for example, 'TH' or 'EFT - than others - such as 'GY' or 'QZ
These letter pairs are called digrams, and statistics concerning their relative
frequency in ordinary English text are readily obtained. A generalization that is
also useful is to employ statistics concerning n-grams, or successive groupings of n
letters. One can detect a great many typical spelling errors simply by scanning the
text of a document and flagging words that seem to be exceptional according to
these standards [McMahon et al. 1978].

In common practice, it is preferable to use a program that helps in correcting
errors by suggesting what was intended. Although the concept of edit-distance is
useful in this regard, it is not as powerful as the analogous idea of Hamming
distance. With the former, codes are designed so that some minimum distance is
maintained between any pair of codewords. In natural language, however, it is triv¬
ial to find numerous pairs of words, wherein both words are valid and yet their
edit-distance is just one; in such cases, not even detection is possible, much less
correction. Fortunately, most random single errors will not produce another valid
word, so that one can attempt to find the correct word that is “closest” to an incor¬
rect word, either in terms of edit-distance or some other criteria. It is relatively easy
to compensate for errors of insertion and transposition, requiring 0{n) trials for a
word of length n. To compensate for errors of omission and substitution is more
costly, requiring 0(kn) trials, where k is the size of the alphabet.

Correction is harder than detection because of the difficulties cited in determin¬
ing what is the most likely correct word. Correction is also more expensive; a
significant part of this cost arises from the need to be able to employ a large dictio¬
nary efficiently. Diverse techniques are employed for shoehoming a large
dictionary into a computer, and we will not encounter most of these (such as hash¬
ing and superimposed coding) until Chapters 10 and 12. But data compression is
also important for this purpose (see Section 8.4.1). A discussion of spelling
correction in general, with particular emphasis upon the dictionary problem, is
Peterson [1980].

8.3.3 Text Formatting

The text that was created via the techniques of the preceding section may have been
a program, a letter, a report, a book, etc. In all but the first of these instances, the
author would most likely want a printed copy that is formatted in some prescribed
and/or pleasing manner. Formatting is a rather broad topic that includes such

matters as:

• generating output that is fairly uniform with respect to spacing between words,
width of lines, and number of lines per page;

• displaying functionally distinct parts of the document (parts of a letter, section
headings, running headers and footers, etc.) in distinctive manners;

• employing special fonts, such as bold or italic, where appropriate;
• capturing information that can be used for automatically generating special

document parts, such as a table of contents or an index;

408 STRINGS

• defining and using macros to effect parameterized textual substitution.

Fortunately, there are numerous program tools to assist the author in accomplishing
these objectives. In many cases, the author actively directs the process by incorpo¬
rating verb-like commands (as in the IBM SCRIPT language) or adjective-like
descriptors (as in the IBM GML language) with the text. Both of these tools were
used, for example, in causing this book to be typeset by computer. Using these
tools is really a form of programming in a specialized language, and it is too exten¬
sive a topic for us to pursue here. An excellent treatise on text processing functions

in general is Kernighan and Plauger [1981].

The first item in the preceding list is somewhat different from the others in that
it is accomplished with very little participation by the author, and we will devote
our attention to it here. It basically requires three related decision processes that

are as old as printing:

1. Between which words of a paragraph should line-breaking be performed?

2. When and where should words be hyphenated?
3. If the right margins are to be even and not ragged, where should the extra space

be placed within each line?

If these matters are decided poorly, the result is a printed page that is aesthetically
displeasing. The three questions are answered in very different fashion by a
commercial printer and by a word-processing program. Commercial printing is
usually synonymous with typesetting (although movable type has largely disap¬
peared), where the characters are of varying width. Because of this variability, the
printer can answer the second and third questions in many different ways, adjusting
even the space between letters of a word as well as the space between words of a
line. In typical word-processing, on the other hand, character width is a constant,
and hyphenation is likely to be impossible. We will discuss both cases in brief,

general terms.

The simplest approach used by printers is to keep adding words to a line until
no more will fit, using normal spacing, and then to try to expand the spacing to
absorb what is left over at the right margin. If this cannot be done without leaving
too much space, then the printer can try to shrink the spacing and add one more
word to that line. The same approach can be used in typesetting by computer, wjth
the distinction that the spacing resolution may be finer. This simple, “greedy”
approach may do well, but it may also lead to poorly set lines later in the para¬
graph. However, using a computer makes it feasible to look ahead in the text and
assess the effects of a more general set of line-breaks — not just those variations
attained by moving a word from the beginning of the (i+ l)st line to the end of the
z'th line. This is a problem in optimization that is readily amenable to dynamic
programming, since the principle of optimality applies with respect to sub-segments
of the paragraph. Even so, the time and memory requirements for a straightfor¬
ward dynamic programming solution make it unacceptable in many applications,
and better approaches have been sought. The most conspicuous and thorough
solution maintains a list of feasible breakpoints as nodes of a digraph [Knuth and
Plass 1981]. An arc from node U to node V corresponds to a line of text between
these breakpoints, and attached to each such arc is a penalty metric. The penalty
figure reflects how unsatisfactory that line is; its computation depends in a some¬
what subjective fashion upon many factors that we will not describe here. Under

8.3.3 TEXT FORMATTING 409

this formulation, the solution corresponds to finding the shortest distance from the
start node to the end node. There are many less feasible breakpoints than there are
words, and breakpoints are even discarded at times. Thus, the complexity of this
solution is significantly better than that obtained by dynamic programming over all
sub-segments of the paragraph.

Line-breaking and spacing are much simpler problems in the typical word¬
processing program, but the corresponding solutions are both interesting and of
value. Once again, dynamic programming provides a starting point of view from
which simpler algorithms are derived. Assume, for instance, that we first apply the
simple process described at the beginning of the previous paragraph. If this tenta¬
tive output has m lines, and if we decide that our solution should have m lines also,
then the total amount of spacing in the resultant paragraph, and so also the average
interword spacing, are essentially known constants. (This is not quite true when we
consider the effects of periods at the ends of lines, and the extra space at the right
margin of the last line in the paragraph.) One approach uses properties of the
breakpoint indices to limit the range of dynamic search [Achugbue 1981]; another
moves words between adjacent lines until the variance of the interword spacing is
minimized [Samet 1982],

8.4 STRING TRANSFORMATIONS

In discussing codes in Sections 8.2.4 and 8.2.5, we considered alternate ways to
represent a string via recodings of individual characters in the string. Although
these recodings might take into account overall statistical properties of the character
set, the actual context of a given character occurrence never influenced the recoding
process. To illustrate this in plain words, the high conditional probability Pr('h'|T)
that an 'W might follow a T would not be taken into consideration. Our concern
in this section is with alternate ways to represent strings, taking into account a
larger context, perhaps a few adjacent characters or words or even the entire string.
However, these techniques have the property that they are not concerned at all with
the meaning of these larger units. String transformations that do operate with
“meaningful” substrings are the subject of Section 8.6. The first string transforma¬
tions that we will consider now are for compression, wherein redundancy is squeezed
out of data; this is an extension of the ideas in Section 8.2.4. The second class of
transformations, although they do not recognize the meaning in a string, have the
express purpose of concealing its meaning from unauthorized persons.

8.4.1 Data Compression

To begin with, recall that the objective of a Huffman encoding of a character set is
to minimize the redundancy that is usually present. The redundancy arises from the
unequal (unconditional) probabilities of characters occurring in an average string.
This encoding, by assigning shorter codewords to more probable characters, yields a

410 STRINGS

shorter expected length for messages containing them. One consequence is reduced
cost of storage, of course, and another is reduced cost of transmitting such messages
over communication lines. The Huffman encoding has a rather simple elegance and
is useful in various situations, but it has three practical shortcomings as a

compression technique:

1. It cannot detect and eliminate more global forms of redundancy that follow
from the conditional probabilities cited in the preceding section.

2. Although the encoding process can be done fairly efficiently, the decoding
process requires extensive bit manipulation, which tends to be inefficient on

most machines.
3. It requires an a priori knowledge of the probabilities.

In this section, we will survey some techniques that respond to one or more of these

difficulties.

There is a type of redundancy that is fairly common and also quite easily
compressed. Typically, we see it in text with long sequences of blank characters, or
in numbers with long sequences of zeros. It is also very prevalent in pictures, where
there are usually large homogeneous areas. An effective scheme in this case is run-
length encoding. We simply encode a run of K homogeneous values C as a three
character sequence: an escape character (see Section 8.2.1), the value of K (as a
byte), and the character C itself. Thus, in EBCDIC and postulating '%' as the
escape character, if we encountered a sequence of 76 periods, we could replace these
76 periods with '%</. Here the '<' corresponds to the fact that '</ = chr(76) in
EBCDIC (see Table 8.1) and the V is the compressed character itself. It is easy to
see that run-length encoding has none of the three shortcomings listed above.
However, its usefulness is limited to those situations where redundancy occurs in the
form of runs; in many applications, such redundancy has already been removed by
other means.

Huffman’s method uses the unconditional probabilities of single symbols; the
simplest extension of this idea is to utilize expectations concerning the occurrence of
digrams (see Section 8.3.2). Typically, in this method, the most common digrams
would be translated to unused byte values in the character code set. This is partic¬
ularly easy to do in EBCDIC, since many of the 256 values are commonly unused.
Note that with this method we also avoid the problem of having to decode a serial
bit string. Of course, it is possible to extend the technique even further to consider
groups of n-grams; however, a more effective technique is to look for text frag¬
ments of varying size, solely on the basis of their relative frequencies. Note the
contrast here:

• Huffman’s technique is a fixed-to-variable encoding that minimizes redundancy
by converting fixed-length symbols of unequal likelihood to variable-length
symbols, composed of equally likely binary values.

• The objective in the present instance is a variable-to-fixed encoding that mini¬
mizes redundancy by looking for fragments of variable-length but equal
likelihood. These fragments are then translated, via a dictionary, to equiproba-
ble fixed-length encodings [Cooper and Lynch 1982].

In the methods of the preceding paragraph, we saw the need for a dictionary of
digrams or other text fragments. The further these methods are carried, the more
the size of the resulting dictionary becomes an issue. Thus, although effective for

8.4.1 DATA COMPRESSION 411

large, relatively static databases [Schuegraf and Heaps 1973], these ideas are not
economical for the compression of a transient message. Another issue with the use
of such dictionaries is that there will be overlap among the fragments, as illustrated
by both 'TH' and 'HE' in 'THE'. It then becomes a significant computation to
decide which fragments to employ in order to maximize the compression.

There is in fact no single best compression method; the choice depends upon
the nature of the text and the manner in which it is to be used. For the methods
described thus far, we have to strike a balance among the four associated costs of
(a) preprocessing the text to determine what code to use, (b) generating and carry¬
ing along the dictionary, (c) performing the encoding, and (d) performing the
decoding. It may be effective to combine two simple methods, perhaps run-length
encoding followed by Huffman encoding.

In a different category are dynamic compression schemes that require no
preprocessing. Rather, as a message is scanned, statistics about it are used to
continually update a data structure according to which the message is compressed.
Basically, the same algorithm is used by both sender and receiver, with an identical
dynamic dictionary being built for decompression. There are several of these
dynamic compression schemes [§]. One principal category is that of dynamic Huff¬
man compression, which is still an encoding of individual characters. The method
known as universal compression operates on an entirely different principle; it uses
the statistics to maintain a dynamic dictionary of strings. In its simplest form, this
latter scheme corresponds to a variable-to-variable encoding, although it can also be

cast into variable-to-fixed form.

8.4.2 Cryptography

By the encryption of a message into a cipher, we attempt to make it unintelligible to
eavesdroppers, wiretappers, spies, etc. At the same time we must have a reverse
decryption process by which authorized parties can recover the original message
from the cipher. The need for such capabilities resided largely with diplomatic and
military operations until fairly recently. But we now have phenomena such as elec¬
tronic mail systems, electronic fund transfers, and databases containing billions of
banking and medical records. Moreover, issues of privacy, authenticity, tampering,
etc. make cryptographic techniques relevant to a much larger community. Of
course, whether it is good to be able to “break” a code depends upon your point of
view; so this topic has two perspectives - that of the cryptographer who devises
the code, and that of the cryptanalyst, or adversary, who tries to solve it. In
discussing these dual perspectives, we will find some insights from both information

theory and computational complexity.

Although cryptography has been employed for centuries, its first solid founda¬
tion was provided by Shannon [1949]. We begin with his model, shown in Figure
8.21, wherein A sends a message to B over an insecure channel. An adversary may
listen to the message traffic on this channel. The sender and the receiver overcome
this insecurity by having a key The sender applies the key to the plaintext message
to produce a ciphertext message; and the receiver applies the key to the ciphertext

412 STRINGS

Adversary

-7-
/

/

/

Figure 8.21 A Communication Channel

to recover the plaintext. Even though the adversary may know the general nature
of the encryption and decryption processes, he does not know the key and so
cannot understand the message. None of this is feasible, of course, unless the key is
secret; and so a secure channel is required for the communication of the key(s), as
shown in Figure 8.21. It might seem that we have just shifted the problem without
solving it; however, we might use a courier as the secure channel and have him
transmit a set of keys well in advance. Also, we can try to find clever schemes
whereby, although relatively small keys are employed, their effects are magnified by
the encryption/decryption processes.

From the preceding paragraph, we infer that there are two issues: to find good
encryption/decryption algorithms, and to find good ways to generate and employ
keys. Two diverse manners of handling the latter issue - one corresponding to
“classical” cryptography, and the other corresponding to recent invention - lead to
the treatments in the ensuing two sections. Superimposing cryptographic techniques
upon conventional data processing has a substantial cost, and thus the marketplace
has adopted them only in certain instances, such as for bank teller machines.
However, the cost of not adopting them more generally is potentially much higher,
and so they are likely to be very important in years to come. To supplement our
coverage of the topic, the encyclopedia of classical cryptography is Kahn [1967],
and an excellent extended account of modern developments is Lempel [1979],

8.4.2.1 Private-Key Systems. The most familiar manner of applying a key for
encryption purposes is to perform a character-by-character substitution of symbols
in an output alphabet for symbols in the input alphabet. Commonly, the alphabets
are the same, and the key amounts to a permutation of the alphabet symbols, as in:

ABCDEFGH I JKLMNOPQRSTUVWXYZ
QWERTYU I OPASDFGHJ KLZXCVBNM

Thus, if we apply this substitution to the plaintext 'CRYPTOGRAM', we obtain the
ciphertext 'EKNHZGUKQD'. There is another basic encryption method. To apply it.

8.4.2.1 PRIVATE-KEY SYSTEMS 413

we must first break the message into blocks of size n; we then use a permutation of
1 •• n as a rule defining a transposition of the symbols in each block. For the same
plaintext as before, with block-size 5 and with key of (1 5 3 2 4) (see the discussion
of cycle notation for permutations in Section 1.2), the corresponding ciphertext
would be 'PYTRCARMGO'.

These basic methods are astonishingly poor for concealing ordinary plaintext.
In substitution, we see that there are 26! possible transformations for an alphabet of
just upper-case letters, and so the complexity of discriminating among them might
appear to make for a good code. However, ordinary English text is estimated to
have a redundancy of 3.2 bits per character. Although there are lg (26!) = 88.4 bits
of equivocation introduced by the uncertainty as to which key is in use, this equiv¬
ocation is reduced by 3.2 bits for each character in the ciphertext. Thus, only 25 to
30 ciphertext symbols (that is, 88.4/3.2) are required, on the average, to dispel ambi¬
guity and allow decryption. This point in analyzing ciphertext where its content
becomes unequivocal is called the unicity point. The primary clues for solving a
substitution cryptogram come from the known, unequal frequencies of single char¬
acters, alluded to in our discussions of redundancy and compression. This
vulnerability is made worse by the similar phenomena with respect to digrams and
n-grams, yielding further clues for the cryptanalyst. Transposition ciphers are
perhaps slightly superior to substitution ciphers in that such higher order statistics
are obscured; nonetheless, they too readily succumb to a skilled adversary.

Since the inherent redundancy in a message allows simple ciphers to be broken
so easily, one possible remedy is to use compression in order to diminish that effect.
Indeed, this will push back the unicity point; however, if the adversary has suffi¬
cient ciphertext, the eventual outcome will be the same. A more effective solution is
to have the key introduce equivocation into the cipher as steadily as the message
dissipates it. In fact, this can be done by using a completely random string of
symbols as a key. If we map the letters of the alphabet to the integers 0 .. 25, then
encryption is performed character by character, using addition modulo 26. One
simply combines successive characters of the message with successive characters of
the key. Decryption is accomplished by the inverse process of subtracting (modulo
26) successive characters of the key from successive characters of the ciphertext.
This type of code is referred to as a one-time pad. It is completely secure against
cryptanalysis, since no amount of previous ciphertext provides any clues for inter¬
preting succeeding ciphertext. Unfortunately, it requires large amounts of secure
key data at both ends of the communication channel. Thus, it is used only in very
special situations, such as the Hot Line between Moscow and Washington.

One technique for bypassing the large key requirements of one-time pads is to
have a true key cause the generation of a pseudo-key of much greater length, akin
to the manner in which a seed value can be used to control pseudo-random number
generation. Although appealing, such generation schemes tend to have dependen¬
cies that a skilled cryptanalyst can exploit to find the true key, given sufficient
ciphertext. A more effective approach is to combine repeated applications of substi¬
tution and transposition in a product cipher. As implemented in hardware in the
IBM Lucifer system, the substitutions and transpositions are accomplished via
5(ubstitution)-boxes and P(ermutation)-boxes operating upon blocks of symbols
[Feistel 1973]. A typical P-box with a block of 8 binary inputs and 8 binary
outputs is illustrated in Figure 8.22(a); a typical 5-box with 3 binary inputs and 3

414 STRINGS

binary outputs is illustrated in (b) of the figure. The effect of an 5-box is to convert
its n-bit input to a number in the range 0 .. 2" — 1, then to permute these possible
converted values, and finally to convert the result of the permutation back to
binary. Thus, there are (2")! possible wirings for an 5-box with n inputs. It is not
technologically feasible to build 5-boxes for large values of rv, therefore, neither
P-boxes nor 5-boxes, used alone, provide cryptographic strength. But their combi¬
nation does, in the manner illustrated in Figure 8.22(c). The effect of the 5-boxes is
to confuse the single character statistics via complicated, non-linear bit mappings,
and the effect of the /"-boxes is to diffuse these mappings over wide spacings,
making their analysis (and also that of tt-grams) very difficult. In practice, the
P-boxes and the 5-boxes have predetermined input-output mappings. Note,
however, that the layers of 5-boxes really consist of pairs of boxes (50, 5j). This is
where the keys enter the picture. For every such pair, the selection between 50 and
5[is conditioned by a bit in the key. An example of this effect is illustrated by the
shading of one member of each pair in Figure 8.22(c).

Figure 8.22 captures the essence of a product cipher, but the actual parameters
in Lucifer are quite a bit greater. It calls for P-boxes that permute 128 bits,
5-boxes that make substitutions on 4-bit groups, keys that consist of 128 bits, and
devices that contain many P and 5 layers. These same ideas are now embodied in
the Data Encryption Standard (DES) adopted by the National Bureau of Standards
[1977] for use by federal and other agencies. The DES is actually a reduced variant
of Lucifer, employing a key of 56 bits. This reduction in key size has sparked a
great deal of controversy [Diffie and Heilman 1977]. It is argued that even though
56 bits are adequate for a while, advances in technology will make it economically
feasible for motivated adversaries to break DES-based ciphers within a decade or
so. Only time will settle the question; for now, however, the DES has stood up
very well under cryptanalysis.

f8.4.2.2 Public-Key Systems. Cryptography was originally employed by limited
numbers of people — diplomats, soldiers, lovers, thieves, etc. — who found it
reasonable to exchange secret keys in advance of their communications. As the .use
of cryptography becomes more widespread via DES or other means, it becomes an
overwhelmingly large task to manage the keys and keep them secret (for example,
by a master encryption scheme) [Ehrsam et al. 1978; Matyas and Meyer 1978].
Moreover, if there are n parties, then 'An x (n - 1) keys are required corresponding
to the 'An x (n - 1) possible pairs of communicants, so that the sheer volume of key
administration is a nuisance. Finally, there will be numerous situations in which A
will wish to send a confidential message to a stranger B, for whom he has no key.
An ingenious proposal for solving these problems (and others also, as we will see) is
to employ two keys instead of one, in a public-key cryptosystem [Diffie and Heilman
1976]. Every user u has his own public encryption key Pu that is maintained in a
public directory; he also has his own secret decryption key Su that is known only to

himself. For M a message, C the corresponding cipher, E an encryption algorithm,
and D a decryption algorithm, we arrange matters such that

C - E(M,PU) and M = D(C,SU) = D(E(M,PU),SU) (8.8)

t8.4.2.2 PUBLIC-KEY SYSTEMS 415

(a) P-Box (Transposition) (b) S-Box (Substitution)

(c) Combining P-Boxes and S-Boxes

Figure 8.22 Product Ciphers

The E and the D algorithms are designed to be easily computable, but to have
the property that it is computationally very difficult to invert E and find D. A
function / with the property that /_I is much harder to compute than / is called a
one-way function. A moderate instance of this occurs when dealing with polyno¬
mials y(x), where it is easy to compute the value of y corresponding to a value of x,
but it is generally much more work to find the value(s) of x corresponding to a
value of y. However, for a public-key cryptosystem, we also arrange that E and D

416 STRINGS

are trapdoor one-way functions. This means that with the right sort of knowledge —
namely, the value of the secret key — the receiver can “push the hidden button” to
spring the one-way function in the opposite direction and perform the decryption.
The net result is as follows. If any other user wishes to send a secret message to
user u, he simply looks up Pu in the public directory, applies the known algorithm E
using the first of Eqs. 8.8, and transmits the message. Even though the algorithms
D and E and the key Pu are generally known, no one but u is able to decrypt it
using the second of Eqs. 8.8, since only he knows the value of Su. Finding good
trapdoor one-way functions is a challenging quest, and we will get to that issue
shortly. But first, we comment about other uses of public-key directories.

A one-way function is useful in cryptography even when it doesn’t have the
trapdoor feature. With such a function, two users u and v can use their keys Pu and
Pv in the public directory to create a private key Su v, and they can then use this key
for any subsequent private messages, as in the discussion of the previous section.
This technique also makes it possible to use DES without many of the awkward key
management problems cited earlier. A candidate function of this sort is exponentia¬
tion modulo q, for q a properly chosen prime number and for a a fixed primitive
element in the finite field GF(q). Exponentiation has complexity 0(lg q) (see Exer¬
cise 1.16), but the best known algorithm for the inverse function of finding the
logarithm modulo q has complexity 0(q1/2). Each user u posts as his public key the
value Pu — asu (mod q), for some secret value Su in the set {1, 2,..., q — 1}. Then
exponentiation is all that is required for user u to compute

su,v = pvu = a‘Sv‘S" (mod 4)

and for user v to compute

su,v = Pu = a‘SuS'' (mod <?)

But any other user would have to employ the more costly logarithmic process in
order to compute

Su,v = Pi°Sa Pv (mod 4)

As an example, if q is slightly less than 2200, then exponentiation would be 0(200),
whereas finding the logarithm would be 0(2100) = O(1030) using the best known
method. Further details can be found in Pohlig and Heilman [1978].

There is a more profound benefit to be derived from public-key directories,
however. Secrecy is just one of a set of related requirements that occur when
computer-based methods replace more conventional ones; it protects against the
extraction of information. Every bit as serious is the necessity to protect against
tampering with information in a message, or the forging of messages. For example,
hard-copy signatures are fundamentally important for bank checks and for legal
contracts. If hard-copy documents are to be replaced by electronic messages, there
must be corresponding guarantees of authenticity, or that:

(a) a message purporting to come from user v really did originate with v, and

(b) nobody else could have performed an electronic cut-and-paste upon it.

Ingeniously, by adding to Eqs. 8.8 the condition

18.4.2.2 PUBLIC-KEY SYSTEMS 417

M = E(D(M,SU),PU) (8.9)

for any message M, then D (as well as E) has a unique inverse in the message space.

This means that both of the conditions (a) and (b) can then be validated. In order

for user v to send a certified message M to user u, he first decrypts M with his Sv

and then encrypts the result with us Pu, obtaining C = E(D(M,SV),PU). Upon receipt

of C, user u first decrypts C with his Su and then encrypts the result with v’s Pv. He

then has the original message; moreover, it could have come only from v, since

only v has Sv. There are interesting and subtle ramifications in these matters of

authentication; a much fuller discussion can be found in Simmons [1979].

In the quest for trapdoor one-way functions, an obvious place to start is with

problems known to be hard to solve, such as the NP problems. If the process of

trying to invert E to obtain D can be structured in such terms, then intuitively we

may have succeeded. Since public-key systems were first described, two well-known

trapdoors and a few lesser ones have been discovered. One is based upon an

./VP-complete problem, the knapsack problem [Merkle and Heilman 1978], The

other is based upon an NP problem, the factorization of large numbers, which will

be described in the next section. For both methods, the process of inverting E to

obtain D has seemed to be exponentially difficult, as desired. Nonetheless, there are

serious pitfalls in proceeding on such bases. It is a fairly common error to infer

difficulty of decipherment from the presence of a large number of possibilities. We

have already seen one instance where this argument is totally without merit, in our

information-theoretic analysis of simple substitution (see Section 8.4.2.1). Analo¬

gously, the arguments relating to NP problems are worst-case arguments, subject to

much simpler exceptions. In fact, a cipher that is AP-complete, yet easily broken,

has been demonstrated by Lempel [1979]. More recently, the knapsack trapdoor,

or at least the basic variation thereof, has been broken [Shamir 1982], reinforcing

the observation that it may be inappropriate to utilize arguments based upon

computational complexity.

Mathematical arguments are useful in cryptography, but the ultimate demon¬

stration is the pragmatic one that a given cipher be able to resist sustained

cryptanalysis. In this regard, we always presume that the method (that is, the E and

D algorithms) is completely known, and beyond that we distinguish three levels of

threat by an adversary:

• Unlimited ciphertext attack is his minimal capability, and a cipher that cannot

withstand it is worthless.

• Known plaintext attack (where the adversary can obtain corresponding plain¬

texts and ciphertexts) is harder to defend against. It is also a realistic

capability, since encrypted announcements are commonly sent prior to some

point in time and then disclosed at a later date. Susceptibility to this form of

attack can cause substantial embarrassment or worse inconvenience to the

communicants.

• Chosen plaintext attack can occur when the adversary is able to plant or stimu¬

late a plaintext and then look for the appearance of the corresponding

ciphertext. A cipher must be very strong to withstand this attack.

418 STRINGS

f8.4.2.2.1 The RSA System. RSA refers to a trapdoor scheme by Rivest, Shamir,
and Adleman [1978], It depends upon the fact that there are good algorithms to
determine if a number is prime, but only exponential algorithms to find the actual
factors of a number known not to be prime. We begin by finding two large random
primes q and r, and then computing their product n = q x r. The next step is to use
Euler’s totient function f{n), which is equal to the number of integers less than n
and relatively prime to n. For n a prime, </>(«) —n — 1; in the present case with
n = q x r, <f>(n) = (q - 1) x (r - 1). The secret key is then chosen as an integer 5' that

is simultaneously:

(a) larger than either q or r,

(b) less than </>(«), and

(c) relatively prime to </>(«).

By a variant of Euclid’s algorithm for finding the GCD (greatest common divisor)
of two integers, the public key p is computed as the multiplicative inverse of s
modulo 4>{n). Finally, both n and p are inserted in the public directory. A message
is segmented into blocks M in a manner such that the value of each block can be
mapped into the range 0.. n — 1. Then each block M is encrypted via
C = Mp (mod n); also, each block C is decrypted via M — Cs (mod n). Exponenti¬
ations such as this are not as formidable as they might seem, since they can be
computed modulo n; as already cited in the preceding section, this can be
performed with complexity 0(1 g n).

The method is easily illustrated by an example with q — 47, r = 59, and s — 157.
From these, we first obtain n — 41 x 59 = 2773, and f(n) = 46 x 58 = 2668. The
value of p is then computed to be the inverse to s modulo 2668, or p = 17. In other
words, p x s = 2669 = 1 (modulo 2668).4 The choice of parameters conveniently
allows us to use the correspondence 'b' = 0, 'A'= 1, ... , 'Z' = 26 to map two charac¬
ters at a time into four digit integers in the range 0 .. 2626. For the message 'PLAY
IT AGAIN SAM', the numeric blocks are then

1612 0125 0009 2000 0107 0109 1400 1901 1300

The encryption for each four digit block M is given by

C = MX1 = (((M2)2)2)2 x M (mod 2773)

so that the resulting ciphertext is

1908 0164 2072 0317 2287 0170 0982 1281 0446

To decrypt the message, each block C is raised to the 157th power modulo 2773.

The validity of the RSA scheme depends upon the fact that

D(E(M,p),s) = Mps = M (modulo n) (8.10)

It has the nice feature that encryption and decryption really use the same, relatively
simple algorithm. Although some misgivings have been expressed about its crypto-

4 The notation a _ b (modulo n) states that a is congruent to b modulo n, meaning that
(a — b) is a multiple of n, or (a — b) mod n = 0.

18.4.2.2.1 THE RSA SYSTEM 419

graphic strength, it is easy to choose the primes q and r in a way that seems to
guarantee a strong cipher [Rivest 1978b; Simmons and Norris 1977], For exam¬
ple, it is recommended that primes q and r of 100 digits each be used; such values
can be located in a few seconds on a large computer [Solovay and Strassen 1977].
Moreover, for maximum security, both {q - 1) and (r — 1) should contain large
prime factors, and their GCD should be small. In summary, the cryptosecurity of
an RSA cipher is related to the known difficulty of factoring large numbers, in the
sense that nobody knows how to attack it except by trying to factor n as a crucial
first step in finding s. This is implied security rather than demonstrated security.
Recently, however, it has been shown that cryptanalysis of a variant of the RSA
method is really equivalent in difficulty to factoring, and this provides increased
confidence in its importance.

t8.5 PATTERN MATCHING

In Section 8.2.3 we encountered the problem of looking for a pattern string in a text
string, for which we saw a solution with the function MATCH_0 (Algorithm 8.2).
MATCH_0 has the disappointing worst-case characteristic of being 0{mn), the
product of the lengths of the two strings. Indeed, until the mid-1970’s, no better
algorithm was known. In Section 8.5.1 we will find that several linear algorithms
have since been discovered for solving this problem. The remaining sections
expound on several manners in which those powerful ideas can be generalized.

f8.5.1 Substring Matching

The results of these sections sustain one of the more dramatic stories in computer
science. The account begins in 1970, when Cook proved the theoretical result that
if a machine known as a 2DPDA (two-way deterministic pushdown automaton)5 could
recognize a string in any amount of time, then a random access machine could
recognize the string in linear time. Intrigued by this result and aware of its rele¬
vance to the string matching problem, Knuth and Pratt tediously unravelled his
proof until they found a way to do substring matching in linear time, via a tech¬
nique that was independently discovered by Morris. If the Knuth-Morris-Pratt
algorithm (KMP) is surprising, a slightly later algorithm by Boyer and Moore
(B&M) is even more so. It matches substrings with a performance that is often
sub-linear! More recently, still a third linear solution has been discovered. We will

5 A 2DPDA is a machine with two tapes, one of which is read-only for input, and the
other of which can be used as a stack. For the substring matching problem, the
2DPDA keeps a record of successfully matched characters using the pushdown tape;

when a mismatch occurs, the values of these matched characters can be reconstructed
from the pushdown tape, without rescanning that portion of the input tape.

420 STRINGS

study the KMP algorithm in detail, say something about the other methods, and
then step back to evaluate the significance of the various substring matching algo¬

rithms from a practical point of view.

t8.5.1.1 The Knuth-Morris-Pratt Algorithm. It is instructive to reexamine
MATCH_0 (Algorithm 8.2) and its trace in Figure 8.9. In particular, let us concen¬
trate upon the early part of the trace, as reproduced in Figure 8.23. We are looking
for an instance of the substring 'alfalalfaf'. After finding a mismatch between
pattern [2] and text [2], we conceptually move the pattern one position to the right
and start again, with pattern [1] and text [2]. We then find that pattern [1 .. 3]
matches text [2 .. 4], but pattern [4] fails to match text [5]; so we naively restart
with pattern [1] and text [3]. However, it is really not essential to reexamine
text [3 .. 4], We already know what they are; they must, from the previous
comparisons, correspond to pattern [2 .. 3]. Moreover, in this particular case,
pattern [4] ('a') matches pattern [1], but no other positions pattern [2 .. 3], so that
pattern [1] therefore matches no positions text [3 .. 5]. More generally, we can

conclude that if:

(i) we have a partial match of k — 1 characters ending at text [j — 1], as in

pattern [1 .. k — 1] = text \j — k + 1 ..j — 1]

(ii) pattern [fc] fails to match text [/'], and

(iii) pattern [It] matches pattern [1] but no intermediate characters in the pattern,

then pattern 1] cannot occur anywhere in text \J — k + 1 ..j — 1]. So we can
conceptually slide the pattern all the way past text [j — 1].

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 ...
a a 1 f 1 a 1 f a 1 a 1 f a 1 ...

a i
a 1 f a

a
a

a
a 1 f a 1 a 1 f a f

Figure 8.23 Partial Trace of Algorithm MATCH_0

This is helpful in some cases, but we need to deal with situations that are more
general yet, as when pattern [k] occurs in pattern [2 .. k — 1], which means that it
also occurs in text [j - k + 2 ..j - 1]. We will do this by finding a vector
next [1 .. m] of displacements such that, upon a mismatch at pattern [k], we can use
next [k] to direct the amount by which we should slide the pattern. Let us defer for
a moment the issue of how such a vector can be computed, and follow the conse¬
quences of having it available. We are led to the function MATCH_ 1 (Algorithm
8.5), rather similar in form to MATCH_0, but with an important difference. Now,
upon an unsuccessful comparison, we do not backup the index j and reset the index

t8.5.1.1 THE KNUTH-MORRIS-PRATT ALGORITHM 421

function MATCH_1 (pattern,text: string): extent;

label 1;

type offset = array [1 .. maxstring] of extent;

var j,k: extent;

next: offset;

begin

SCAN_1 (pattern,next); {generate next from pattern)
j ;= 1; k := 1;

repeat
if text.data [j] = pattern.data [k] then begin

j := j + 1;
k := k + 1;

end else
if next [k] > 0 then

k := next[k]

else if j + pattern.size > text.size then
goto 1

else begin

j :=j + 1;
k := 1;

end;
until (j > text.size) or (k > pattern.size);

1: if k > pattern.size then MATCH_1 := j - pattern.size

else MATCH_1 := 0;
end;

Algorithm 8.5 MATCH_1

k to one; rather we reset k to next [k], and j is never decremented. This last point

is important when dealing with a text file that is too large to fit in main memory, so

that it is being accessed via buffers, which could make backup very awkward.

The operation of MATCH_ 1 is illustrated in Figure 8.24, where (a) displays the

value of the vector next, and (b) traces the comparisons that are performed. In the

vector next, a value of zero signifies that comparisons should resume with

text [/ + 1] and pattern [1]. A non-zero value specifies that comparisons should

resume with text [/] and pattern [next [k]]. The underlined values in (b) of the

figure do not correspond to comparisons. They represent places where comparisons

have been avoided, by virtue of knowing from previous successful comparisons what

the corresponding text values must be. Note that the amount of shift upon a

mismatch is given by k - next [k]; for example, 4 - 0 = 4 for j = 5, 6-3 = 3 for

j= 16, etc. It is straightforward to demonstrate that MATCH_1 has complexity

0(n). We add one to the index variable k a maximum of n times, and we sometimes

decrement it, but it always stays positive. Therefore, the maximum number of iter¬

ations is bounded by 2n.

422 STRINGS

1 2 3 4 5 6 7 8 9 10

pattern a 1 f a 1 a 1 f a f

next 0 1 1 0 1 3 1 1 0 5

(a)

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

a a 1 f 1 a 1 f a 1 a 1 f a 1 1 a 1 f a 1 a 1 f a f

a i
a 1 f a

a 1 f a 1 a 1 f a f
a 1 f a 1 a

a 1 f

a
a 1 f a 1 a 1 f a f

(b)

Figure 8.24 Trace of Algorithm MATCH_1

Examination of Figure 8.24(b) helps us to decide what we need to compute for
the vector next. When there has been a partial match of k — 1 characters ending at

text [/ - 1], as in

pattern [1 .. k — 1] = text [/ — k + 1 ..j — 1]

but such that pattern [A:] < > text [/'], then we wish to find the largest prefix of
pattern [1 .. k — 1] that matches a suffix of it, and thus also matches some of text
preceding the cursor j. In other words, we seek the largest i < k such that

pattern [1 .. i — 1] = pattern [k — i + 1 .. k — 1]

This means that we need to compare the pattern against itself, in much the same
manner as we compared the pattern against the text. It is instructive to retain in
another vector fail [1 .. m] the values of i just described, with fail [1] = 0, by defi¬
nition. For our sample pattern 'alfalalfaf', the values are as shown in Figure 8.25.
Thus, fail [9] = 4 indicates that pattern [1 .. 3] = pattern [6 .. 8].

1 2 3 4 5 6 7 8 9 10

pattern a 1 f a 1 a 1 f a f

fail 0 1 1 i 2 3 2 3 4 5
next 0 1 1 0 1 3 1 1 0 5

Figure 8.25 SCAN Computation for 'alfalalfaf

Having fail [k] and next [A:], we can compute fail [k + 1] by the following
argument. If pattern [k] matches pattern [fail [A:]], then fail [k + 1] = fail [/c] + 1;

t8.5.1.1 THE KNUTH-MORRIS-PRATT ALGORITHM 423

procedure SCAN_1 (pattern: string; var next: offset);

var i,t: extent;
fail: offset;

begin
i:= 1; t := 0;
fail [1] := 0;

next [1] := 0;

with pattern do
repeat

while (t > 0) and (data [i] <> data [t]) do
t := next [t];

i:= i + 1;

t := t + 1;

fail [i] := t;

if data [i] = data [t] then next [i] := next [t]

else next [i] := t;
until i >= size;

end;

Algorithm 8.6 SCAN_1

that is, we have extended the match by one character, as in the case k = 9. If

pattern [k~\ fails to match pattern [fail [A:]], then we need to try t = next [A:], or

next [next [A:]], or In other words, we slide the pattern against itself until we

find pattern [A:] — pattern [/]. For example, with k = 6 the search within the

pattern proceeds to the point that

pattern [6] = pattern [next [next [6]]] = pattern [next [3]] = pattern [1]

The corresponding value of t then determines the next entry in fail, by means of

fail [k + 1] = t + 1. Thus, for k — 6, we have fail [6 + 1] = 1 + 1. Moreover, as

soon as we find fail [k + 1] = t + 1, then we also know how to compute

next [k + 1]. Namely, if pattern [t + 1] = pattern [k + 1], the character in the

(t + l)th position must lead to a mismatch, since the character in the (k + l)th posi¬

tion did; in this case, then, we must use a shorter prefix. Otherwise, we can use

next [fc+l] = /+ l.

The logic for computing the vectors fail and scan is given in the procedure

SCAN_1 (Algorithm 8.6).6 Note that the vector fail is never accessed and is not

explicitly needed; it is present solely for edification. SCAN_1 can be seen to be

6 Actually, there is a subtle bug in SCAN_ 1. What happens when t — 0, and reference is
made to data [t] in testing the while condition? (Compare the discussion of the algo¬
rithm EQUIV in Section 4.2.1.) Happily, a great many Pascal compilers bypass the
second test when the first one fails, so that this scenario never occurs. Where this is not

the case, a clumsy circumlocution is required.

424 STRINGS

0(m) by a similar argument to that used with MATCH_1. Specifically, the variable
t is incremented by one at most m times, is sometimes decremented, and never goes

negative.

MATCH. 1 and SCAN_1 constitute the KMP algorithm [Knuth et al. 1977].
The pragmatic value of this method will be addressed in the next section. However,
note that the presentation here is designed to stress comprehensibility rather than
efficiency. Some refinements that can be added to emphasize efficiency over

comprehensibility are:

• inserting special code to speed up the common case of finding a mismatch at

the first position of the pattern;
• employing sentinel characters at the ends of the pattern and the text, in order to

reduce the overhead in the compound test for termination of the repeat loop.

f8.5.1.2 State-of-the-Art of Substring Matching. We usually think of substring
matching in terms of aligning the pattern against the left end of the text, comparing
characters from left to right, and sliding the pattern to the right on mismatches.
Suppose, instead, that we align the pattern against the left end of the text, as before,
but then compare characters from right to left. On a mismatch, we still shift the
pattern right, but we can now employ other information as well. Specifically, if the
character text [/] that caused the mismatch does not occur anywhere in pattern, then
we can effectively slide pattern all the way past text [/], and resume our right-to-left
comparison scheme with pattern [m] and text [/ + m]. In general, whenever there is
a mismatch and the corresponding text character does not occur in the pattern, we
can then completely ignore some number of characters in the text. There are
several components to the Boyer-Moore (B&M) substring matching algorithm
[1977], but what we have just described is the most important one. In the most
favorable situation, if we find a mismatch between the last position of the pattern
and a position of the text on every comparison, it may take just n\m comparisons to
determine that there is no substring match!

Just as with the KMP algorithm, we evidently need a table that tells how much
to shift the pattern when a mismatch occurs. In fact, the B&M algorithm employs
two tables, Delta_ 1 and Delta_2. Delta_ 1 requires one entry for each symbol in the
alphabet being employed, with Delta_ 1 [char] equal to m if char does not occur in
pattern and otherwise equal to m — i, for the largest i such that char = pattern [z],

Delta_ 2 is very similar to the table next in the KMP algorithm, except that it is
computed from the right of the pattern instead of the left. It serves the same
purpose of precluding 0(mn) comparisons should the pattern happen to be highly
repetitive (and should Delta_ 1 happen to be ineffectual). With these two tables in
hand, the Boyer-Moore algorithm resembles the Knuth-Morris-Pratt algorithm,
with the following principal differences:

• On a match, the indices j and k step downward rather than upward.
• On a mismatch, the pattern index k is reset to w, and the text index j is incre¬

mented by the greater of Delta_ 1 [text [/]] and Deltajl [£].

Thus, suppose that we had text = 'pepper nutmeg onion tarragon', and pattern =
'tarragon'. Then the Delta_ 1 values for 'a,g,n,o,r,t' would be 3,2,0,1,4,7; and all
other Delta_\ values would be 8. A trace of the comparisons that would be

f8.5.1.2 STATE-OF-THE-ART OF SUBSTRING MATCHING 425

performed is shown in Figure 8.26, with the periods indicating omitted comparisons.

On the first two mismatches, the shift would be determined by Delta_ 1 ['b'] = 8,
and on the third mismatch by Delta_ 1 [V] = 4.

1 2 3 4 5 6 7 8 9 0 i 2 3 4 5 6 7 8 9 0 i 2 3 4 5 6 7 8
p e P P e r n u t m e 9 0 n i o n t a r r a 9 0 n

0 n

9 0 n

n

t a r r a 9 0 n

Figure 8.26 Trace of Boyer-Moore Algorithm

The relative importance of Delta_ 1 and Delta_ 2 depends primarily upon the

size of the alphabet in use. With a binary alphabet, it is very unlikely that Delta_ 1

will discriminate very effectively (although this can be overcome by comparing

blocks of bits rather than single bits); on the other hand, for a large alphabet such

as ASCII or EBCDIC, the work to initialize Delta_ 1 will not be trivial. How good

is the B&M algorithm? Although its average behavior is sub-linear, typically requir¬

ing just one comparison for every four text characters, its worst case complexity is

still 0{n). However, we should not be too disappointed, since the worst-case behav¬

ior for any string matching algorithm must be 0(n) [Rivest 1977].

What can be said about the practical significance of the KMP and B&M algo¬

rithms? Drawing upon several different studies [§], we can conclude:

• Most patterns are such that an unsophisticated algorithm like MATCH_0 will

detect a mismatch, for a given alignment of the pattern and the text, in just

slightly more than one comparison. In the average case, the KMP algorithm

may not do much better.

• If the pattern is small, then the overhead of preprocessing it to generate the

tables causes these sophisticated techniques to be less efficient than a naive

method. This is especially true with the B&M algorithm.

• The previous remark applies also in the case that the penetration (how far into

the text the search proceeds) is not large.

• For a small alphabet, KMP may perform significantly better than B&M.

• For B&M the table Delta_ 1 is much easier to compute than Delta_2, and it is

also far more effective in reducing the number of comparisons with typical text.

Thus, it is reasonable to implement B&M using just Delta_ 1, if we are not

concerned about worst-case possibilities.

• If the pattern is not too small (that is, m > 5) and if the alphabet is reasonable

in size, then B&M is superior to any other method.

This does not exhaust all the possibilities for substring matching. There are other

methods, including another linear one, but they are based upon hashing, and so we

must defer their description until Section 10.4.4.

426 STRINGS

f8.5.2 Finite State Machines

At this juncture, we need to revert to a subject that was postponed when we studied
graphs. The labeled digraph of Figure 8.27(a) is called a transition diagram, its
most common use is to represent a Finite State Machine (FSM), wherein the nodes
represent states and the arcs represent transitions between states in response to
possible values of input. Each arc is labeled with the input value causing that tran¬
sition, and each node is labeled with the value of the output for that state.7 Thus, if
this FSM is in state 3 and the input 'b' is seen, then it will go to state 1 and output
'O'. Formally, an FSM is characterized by a quintuple (/, S, O, d, 2), where:

/ is a set of symbols from an input alphabet;
S' is a set of machine states;
O is a set of symbols from an output alphabet;
d is a mapping from 5 x / to 5;
A is a mapping from S to O.

In other words, d determines the next state as a function of the current state and the
input symbol, and X determines the output symbol (possibly null) as a function of
the input symbol. Examples of FSM’s from everyday life are elevators and vending
machines; each of them reacts in accordance with a set of internal states and a set
of external stimuli. Note that the amount of memory that such a device can have
of past events is limited by the finiteness of its set of states.

A special variant of an FSM is a Finite Automaton (FA), which is characterized
by a slightly different quintuple (I, S, 50, S, F), where:

/ is a set of symbols from an input alphabet;
5 is a set of machine states;
50 is a distinguished initial state;
<5 is a mapping from 5 x I to 5;
F is a set of final, or accepting, states.

The main difference is that whereas an FSM produces various outputs, an FA
simply has a set of final states F^S. The principal role of an FA is to decide, via
the finite sense of history implied by its state transitions, whether a given input
sequence meets certain criteria. Thus, an FA does have a limited form of output,
namely “accept” or “reject.” An example of an FA is shown in Figure 8.27(b).
Starting in state 50, and in response to a binary input string, this FA will be in state
53 whenever the last three symbols in the input are '101' (that is, if the numeric
value is divisible by 5). It is customary, as in the figure, to denote final states by
double circles.

In fact, the distinction between FSM and FA is often blurred, depending mostly
upon the context of their application. In the present instance, the notion of an FA
can appreciably increase our understanding of the KMP substring matching algo-

7 What we are describing is a Moore machine, where the output is a function of just the
current state. In a Mealy machine, the output is a function of the input symbol and the
current state. The difference is not significant, since either one can be modelled in
terms of the other.

'f‘8.5.2 FINITE STATE MACHINES 427

(a) Finite State Machine (FSM)

Figure 8.27 FSM and FA

rithm. To see this, consider the machine shown in Figure 8.28. This FA is atypical

in that it has precisely two transitions for every input character. If the input corre¬

sponds to the desired character, the machine goes to the succeeding state and reads

the next input; if the input fails, the machine goes to the designated failure state

(dashed lines) with the same input. The failure transitions do not have to be

labeled, since they correspond to the negations of the successful transitions. State

SO is special in that it makes the transition to -SI with the next input in all cases.

What process does this machine represent? It corresponds to our example of 'alfa-
lalfaf' from Figure 8.25! In other words, the action of SCAN_1 is to construct an

FA, as represented by the table next, which MATCH_ 1 then interprets to decide if

there is a match. This pictorial representation helps us understand how to construct

the ultimate optimization of the KMP algorithm, by having the preprocessing func¬

tion generate in-line code rather than the vector next. In other words, we can just

as well “hardwire” the effect of next rather than interpret its values. Figure 8.29

shows the code that does this.

428 STRINGS

Figure 8.28 FSM for 'alfalalfaf'

SO: j := j + 1;
SI: if text [j] <> 'a'then goto SO;

j := j + 1;
S2: if text G1 <=> '•' then goto SI;

j := j + 1;
S3: if text G] 'f' then goto SI;

j := j + 1;
S4: if text G] <> 'a'then goto SO;

j ;= j + i;
S5: if text G] <:> 'I' then goto SI;

j := j + 1;
S6: if text G1 <=> 'a'then goto S3;

j := j + i;
S7: if text G] <> 'I' then goto SI;

j :=j + i;
S8: if text G] <> 'f' then goto SI;

j := j + 1;
S9: if text G] <> 'a'then goto SO;

j := j + i;
S10: if text G1 'f' then goto S5;

j := j + 1;
{final state: pattern matched in text}

Figure 8.29 In-line Code for 'alfalalfaf'

f8.5.3 Generalizations of Substring Matching

From the discussion of Section 8.5.1.2, it might be concluded that the Knuth-Mor-
ris-Pratt algorithm has relatively little practical utility. But such is not the case; it
is a paradigm for many generalizations of the matching problem [§] (see also Exer¬
cise 8.23). We will now illustrate a particularly useful one, that of finding all
occurrences of a fixed set of patterns in a text string. For depicting this process, the
notion of an FA is no longer ancillary; it is central.

t8.5.3 GENERALIZATIONS OF SUBSTRING MATCHING 429

Suppose that we have a set of words or phrases, and that we wish to find all
occurrences of any them in some text. This is a typical requirement in applications
involving information retrieval or text editing. We could look for each of these
patterns in turn, employing the insights of Section 8.5.1; however, by constructing
an appropriate FSM, we can look for them all in parallel, with considerable savings
in time. Thus, suppose that our set of words is {'chin', 'ice', 'itch', 'with'}. The
essential aspects of such a machine are described by the transition diagram in
Figure 8.30. For each state, there are one or more labeled successful transitions,
and one unlabeled failure transition (dashed lines). In the figure, we have shown
only those failure transitions that do not return to SO; the others, returning to SO,
are implicit. As in the case of Figure 8.28, successful transitions call for the next
input character, and failure transitions (except in the case of SO) employ the same
input character. The provision of failure transitions from the leaves of this tree-like
structure reflects the desire to find all occurrences of patterns in the text, even when
they overlap.

Figure 8.30 FSM for {'chin', 'ice', 'itch', 'with'}

The algorithm to search a text string, using this FSM, is very similar to
MATCFL1. A successful comparison of a text position against a state advances
the text pointer and the state, as indicated in the transition diagram. In the case of
an unsuccessful comparison, a failure state is selected, according to Figure 8.31(a),
and the comparison cycle is repeated. Whenever a successful comparison leads to
one of the final states {4, 7, 10, 14}, an appropriate output message is generated and
the failure transition is made. Thus, in applying this FSM to the input text 'witch¬
ing', the state transitions would be as shown in Figure 8.31(b), where horizontal
progression corresponds to successful transitions and vertical progression to failure

transitions, and where underlined transitions would generate output.

430 STRINGS

state 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

transition 0 0 0 5 0 0 1 0 0 1 2 0 5 8 0

(a) Failure Transitions

w i t c h i n 9

11 12 13
8 9 10.

2 3 i

0 0

(b) Trace of State Transitions

Figure 8.31 Parallel Pattern Search

Of course, there is a glaring omission in the preceding discussion. Given a fixed
set of patterns, how do we construct the corresponding FSM? More precisely, it is
rather easy to see how to perform the construction by hand, but what is the algo¬
rithm for a machine to do it? Not surprisingly, such an algorithm is reminiscent of
SCAN_1 in many ways, although the details are different. In SCAN_1, we
computed later values of fail [i] and next [z] in terms of earlier values of next [/].
In this case, noting that the successful transitions form a tree, we would compute
the failure transitions first for nodes at distance 1 from SO in this tree, then at
distance 2, etc. An important question is just how much effort is required for this
computation; it can be shown that the complexity is linear in the sum of the
lengths of the patterns. In a large application involving bibliographic retrieval, the
cost of searching in this manner was found to be approximately independent of the
number of keywords specified, and the overall search was speeded up by a factor of
5 to 10 over that of previous methods [Aho and Corasick 1975].

f8.5.4 Suffix Trees

In the preceding sections, we have seen how to improve the efficiency of matching
patterns against a text string by preprocessing the patterns. With text editing, for
example, this is an appropriate strategy. However, there are other applications in
which efficiency is derived by preprocessing the text rather than the patterns. This
can be accomplished fairly efficiently with suffix trees, which effectively provide
indices into a text string S [McCreight 1976; Weiner 1973]. In this structure, we
must impose the condition that the final character of S does not occur anywhere
else in S. This is easily handled by placing a sentinel value at the end of S; thus S
— 'ababc' becomes 5, = ,ababc$'. In the suffix tree, each edge corresponds to a
substring, and each leaf corresponds to the index of the last occurrence of the suffix
spelled out by the edges leading to that leaf. The suffix tree for our example S is
shown in Figure 8.32(a). We see, for instance, that 'ab' occurs twice; one time it is

f8.5.4 SUFFIX TREES 431

part of 'ababc' starting in the first position, and the other time it is part of 'abc'

starting in the third position. As a practical matter, we do not need to store the

substrings with the edges; rather we store S once, and then place in each node V a

pair of indices. These indices delineate that portion of 5 corresponding to the

in-edge of V (compare Figures 8.4 and 8.7), as shown in Figure 8.32(b) for the

suffix tree in (a) of the figure.

(a)

(b)

Figure 8.32 Suffix Tree for'ababc'

With suffix trees, it is possible to efficiently answer questions such as:

• What are all the occurrences of a pattern in a text?

• What is the longest repeated substring in a string?

• What is the longest string that occurs as a substring in two other strings?

Suffix trees can also be used to implement the dynamic dictionary used for universal

data compression, as cited in Section 8.4.1 [Rodeh et al. 1981]. Algorithms for the

construction of suffix trees are linear in the length of the text string, and substring

searches are then linear in the length of the pattern; however, both time and space

requirements grow with the size of the alphabet.

432 STRINGS

8.6 LANGUAGES

The most important purpose of strings, as indicated earlier, is to convey meaning.
But meaning depends upon understanding, which brings us to the problem of recog¬
nizing a sentence in a language. This recognition really has two parts:

Syntax — Does the given sentence have a valid structure to be meaningful?

Semantics — Can a meaningful interpretation be supplied to the parts of the
sentence that have been perceived syntactically?

As an example of this distinction, the sentence “The pencil’s purple concepts snored
pungently” is impeccable by syntactic standards; but it is nonetheless gibberish
when we try to supply semantics. We will not be concerned with semantic issues
here; rather, we will demonstrate how the pattern matching ideas of Section 8.5 can
be generalized to deal with broader and broader problems of syntactic pattern
recognition. Many of these ideas were originally motivated by the study of natural
language. Subsequently, it has been found that natural language is only moderately
amenable to analysis by these methods. However, the same techniques have been
enormously useful for the study of computer languages. Our objective here is
merely to show the forest of these activities. It is an extremely dense forest, with
perhaps the most extensive theoretical foundation of any in computer science. For
extensive details, you may wish to consult Hopcroft and Ullman [1979],

Our first concern is to communicate an appreciation of the mechanisms by
which languages can be specified. We will then consider a concrete example of the
recognition process for a restricted but important class of languages. After some
general discussion about recognition in less restricted classes of languages, we will
conclude with some comments concerning the inherent power of expressing compu¬
tation in terms of string operations.

8.6.1 Grammars

To begin with, a language L is simply a set of sentences, or strings over some alpha¬
bet of symbols. It is perfectly possible for L to be a finite set; however, most
languages of interest are infinite sets. A very useful way of specifying a language is
by finding a grammar G, or set of rules, that characterizes it. We had a glimpse of
this previously, when we discussed BNF in Chapter 5. One of the significant
features of BNF is that it easily allows the definition of an infinite set of sentences,
via recursion.

Given some grammar G, we can use it derive in a systematic fashion all the
legal sentences in L(G), the language defined by the grammar. A harder problem is
to take a language L and find a grammar G that specifies L and all of L and noth¬
ing but L. Although this can often be done, the answer may not be unique; there
may be several grammars that generate the same language. Another problem,
harder than simply enumerating all the sentences of a grammar, is that of recogniz¬
ing whether a given string a is in L{G) (without simply searching for a in all of
L(G), of course). This latter issue is our principal concern.

8.6.1 GRAMMARS 433

At this point, it is useful to compare the discussion of BNF in Section 5.4.1
with the discussion of logical operations on strings in Section 8.1. As you can see,
applying a production is simply a matter of performing a string substitution: Given
a sentence ap/i, we can transform it to av/i whenever there is a production p^v.
The BNF grammar for a language must always have a distinguished non-terminal
symbol from which any derivation of a sentence starts. We then apply productions,
obtaining for a time mixtures of non-terminal and terminal symbols, and eventually
winding up exclusively with terminals — that is, a sentence in L(G). Although finite
languages may be of limited value, they have some charming uses. The familiar
instance shown in Figure 8.33(a) serves as a vehicle for illustrating the substitution
process. Starting from < sentence > we can derive a variety of actual sentences.
One such is illustrated in Figure 8.33(b), where we apply successively the
productions 1, 2, 5, 6, 3, 4, 7, 2, 5, 6.

1. <sentence> ::= <noun phrase> <predicate>
2. < noun phrase> ::= <noun> | <article> <noun>
3. < predicate > ::= < verb phrase > I < verb phrase> <nounphrase>
4. < verb phrase > ::= <verb> | <verb> < adverb >
5. < article > ::= a | the
6. <noun> ::= farmer | wife | child | nurse | dog | cat | rat | cheese

7. <verb> ::= takes | leaves | stands
8. <adverb> ::= alone

(a) BNF for “Farmer in the Dell’’

< sentence > -> < noun phrase> <predicate>
-> < article > <noun> < predicate >
-> the <noun> < predicate >
-> the farmer < predicate >
-> the farmer < verb phrase > < noun phrase >
-► the farmer <verb> <nounphrase>
-» the farmer takes < noun phrase >
-> the farmer takes < article > <noun>
-+ the farmer takes a <noun>
-*■ the farmer takes a wife

(b) Derivation Using BNF of (a)

Figure 8.33 A Familiar Finite Language

We are now ready to make some crucial distinctions. What kinds of string
substitutions does our grammar specify in its productions; that is, how general in
nature are they? A pioneering classification by Chomsky [1959] recognizes four
progressively more restricted types of substitution rules, or classes of grammars:

• Type 0 grammars, or phrase-structure grammars, allow the substitution <xpfi-+av(5

whenever p->v is a production.
• Type 1 grammars, or context-sensitive grammars, impose the restriction that the

length of v cannot be less than that of p.
• Type 2 grammars, or context-free grammars, impose the additional restriction

that the left hand side of any production must consist of a single non-terminal
symbol. In other words, the applicability of a production does not depend

upon particular contexts a and /? in which p occurs.

434 STRINGS

• Type 3 grammars, or regular grammars, impose one of the additional
restrictions: (a) the right hand side of any production must have the form t or
tV, or (b) the right hand side of any production must have the form t or Vt,
where t is a terminal symbol and V is a non-terminal symbol.

Corresponding to each class of grammars is a class of languages; thus, we speak of
context-sensitive languages (CSL), context-free languages (CFL), and regular
languages. Intuitively (and provably) regular languages are properly contained in
context-free languages, context-free languages are properly contained in context-
sensitive languages, and context-sensitive languages are properly contained in those
derived from phrase-structure grammars.

The example in Figure 8.33(a) is a context-free grammar, and we illustrated its
use in the derivation of a sentence in Figure 8.33(b). Recall, however, that we are
more concerned about recognizing a given sentence as part of L(G) than we are
about generating sentences. How is this done? In short, one must be able to
deduce from the sentence itself an appropriate sequence of productions that leads
from the start symbol to that sentence. This can be tricky, and the difficulty
increases enormously as we proceed up the hierarchy from Type 3 to Type 0. In the
next section we show how it can be done for regular languages, and in the subse¬
quent section we comment upon the more difficult cases.

f8.6.2 Recognizing Regular Expressions

In Section 8.5 we saw how to recognize fixed patterns or even fixed sets of patterns
in a text string. We now wish to recognize variable patterns, as specified by some
grammar. For some significant applications, the amount of variability provided by
a regular grammar is sufficient. The sentences that can be defined by regular gram¬
mars are called regular expressions (R.E.'s), and they have a comparatively simple
structure. For an alphabet I, any symbol x 6 / is a regular expression, and further
expressions can be composed recursively by the following operations:

Concatenation — If a and P are regular expressions, then so is a/I, or writing a
followed by /?.

Union — If a and P are regular expressions, then so is a + p, by which
is meant writing either a or writing p.

Closure - If a is a regular expression, then so is a*, which signifies writ¬
ing any number of instances (possibly none at all) of a.

It is useful to relate these three operations to familiar ones of ordinary arithmetic,
as follows:

regular expressions arithmetic

union
concatenation

closure

addition
multiplication

exponentiation

This analogy is especially useful because the relative precedence is the same in both
columns. Thus, the regular expression '((A + BC)* B + AC)A' denotes (((any number

t8.6.2 RECOGNIZING REGULAR EXPRESSIONS 435

of'A' or 'BC') followed by 'B') or 'AC') followed by 'A'. Some particular sentences
that correspond to this specification are 'BA', 'ABCABA', 'ACA', etc.

We could have defined the same language by means of BNF, as in:

<expression> ::= <a> A
<a> ::= <fi> B | A C
<P> e | <j?> <y>
<y> ::= A | B C

where e denotes the empty string. However, the simpler notation makes it possible
to specify a regular expression in one short phrase. Such conciseness is useful, for
instance, in specifying a pattern that a text editor should look for. In any event, we
now know of two ways to specify a regular language, but how can we recognize
one? Finite state machines again provide the answer. In this case, to recognize an
expression of the form '((A + BC)* B + AC)A', we need the machine shown in Figure
8.34. It is different from those we have seen before, in that it has no failure transi¬
tions; however, it does have e-transitions, which are transitions that can occur
without any input! The reason for this is that we have to deal with a nondeter-
ministic situation. Both the union and the closure operators allow for alternate
paths to the final state; the e-transitions provide the mechanism whereby we can
pursue these alternate paths in parallel in order not to miss a valid expression.

In fact, the machine in Figure 8.34 is an example of a Nondeterministic Finite
Automaton (NFA). Such machines have one or both of the characteristics:

• There are e-transitions.
• The transition labels for some nodes are not distinct, so that the same input

symbol may evoke transitions to any of several other states.

Remarkably, although an NFA seems to be “more” than an FA, it really is not;
there is a straightforward procedure, given an NFA, to construct an equivalent FA.

This procedure entails two steps:

436 STRINGS

1. The e-transitions are eliminated by constructing the e-closure — that is, by
taking the transitive closure of the transition diagram under the e’s.

2. An FA is generated whose states are the powerset of the states of the NFA. If
the NFA has n states, then the equivalent FA could have 2" states, of course,
but the actual number is very often much less.

The construction just described is significant because it shows that there are two
distinct strategies that we could employ to build a regular expression recognizer:

• We already know how to build an interpreter for an FA; so we could (i) do the
construction, and then (ii) build such an interpreter.

• We could build an interpreter for the NFA.

Now constructing the FA from the NFA is straightforward, but it can be costly, so
that the first route makes sense only when the resulting FA will be used many
times. When the FA will be used only a few times the second route is better, and
that is the method that we will use here. Also, this will allow us to demonstrate
some techniques tjiat are much more instructive than the details of building the FA
from the NFA.

We begin by considering Figure 8.34 again. It appears that there is some arbi¬
trariness about the use of e-transitions, and that some of them might have been
omitted. Toward the end of this section, we will comment on how we obtained this
diagram from the regular expression '((A + BC)* B + AC)A', and why it has the form
that it does. Our interpreter will examine the text string without ever backing up;
for each input character X, we will build a set St of states, where each S', is obtained
from Sj_i in two stages:

1. The initial value of S’, is computed as those states of the NFA that we can tran¬
sit to from states in S,-_l5 according to the value of X.

2. The final value of S', is computed as the 8-closure of the initial value of S',-.

This sounds rather complicated, but a clever choice of data structure leads to a
fairly simple algorithm, as you will soon see. We will use a deque, more precisely
an output-restricted deque. Relative to a given input character X, we will remove
and examine each of the states u e S, in the left end of the deque:

(a) if u is a final state, we have found a regular expression;

(b) if X causes a non-e-transition from u to another state v, we insert v in the right
end of the deque, as part of the initial value of Si+l;

(c) if u is a state with one e-transition v (or two e-transitions v and w), we insert it
(them) in the left end of the deque, as part of the e-closure of St.

By this process, we are both adding to and subtracting from the final value of S, on
the left, until ultimately it has disappeared, leaving just the initial value of Si+1' on
the right. One other thing is necessary - that we keep the growing and shrinking
value of S, separate from the growing value of SM. This can be accomplished by
putting a special marker value between them in the deque. When we remove a
value from the left end of the deque and find that it is the marker, then we know
that S, is exhausted; so we are ready to work with the next text character and the
initial value of S,-+1; but first we reinsert the marker at the right end to keep SM
separate from Si+2.

Having fixed the nature of the interpreter, we also need to fix the nature of the
representation for the NFA. For this purpose, and with the transition diagram as

f8.6.2 RECOGNIZING REGULAR EXPRESSIONS 437

we have constructed it, each state can be represented by a record with one label
field and two transition fields; the entire NFA can be represented by an array of
these states. The values of such an array for the NFA of Figure 8.34 are shown in
Figure 8.35(a). We adopt the following conventions for programming convenience:

• state = 1 is the initial state and state = 0 is the final state;
• the marker corresponds to state = — 1;
• for states with just one e-transition, we duplicate the value of that transition.

Regarding the manner of implementation of the deque, it could of course be a
linked list (see Exercise 5.3) or a circular array (see Exercise 5.4). The operations
for our output-restricted deque are then available as:

INITDQ — to initialize a deque;
ENQ_L - to insert a value at the left end of the deque;
ENQ_R — to insert a value at the right end of the deque;
DEQ_L — to remove a value from the left end of the deque.

1 2 3 4 5 6 7 8 9 10 11 12 13

label
nex fl
next2

A C B A C BA
2 5 4 6 11 8 9 10 10 3 13 13 0
30 12 70000 10 3 13 00

(a) Encoded Form of NFA of Figure 8.34

Examine States from Deque Accept

1 3 12 4 7 6 2 B

13 8 C

10 1 12 j 7 6 A

910312 4 7 6 B

13 8 A

0

(b) Trace of Transitions for'BCABA'

Figure 8.35 Interpretation of an NFA

Putting the pieces all together, the function RE_COGNIZER (Algorithm 8.7)
searches for an occurrence of pattern in text, beginning at start. If there is no
match beginning at start, the function returns a zero; if there is a match, the func¬
tion returns the index in text of the end of the pattern. For example, with the
pattern encoded as in Figure 8.35(a), and with text = 'CABBCABAABCBAC',
RE_COGNIZER would fail to find a match for start = 1,2,3; but for start = 4, it
would find a match. In doing so, it would make the transitions and accept the
input characters as shown in Figure 8.35(b), where the underlined transitions corre¬
spond to the correct sequence of “guesses.” As a result, RE_COGNIZER would
return a value of 8, signifying that 'BCABA' in text [4 .. 8] is an instance of

'((A+BC)* B + AC)A'.

438 STRINGS

function RE_COGNIZER (pattern: fsm; text: string; start: extent): extent;

type state = record
ch: char;
nextl ,next2: 0 .. maxstate;

end;
fsm = array [1 .. maxstate] of state;

var dq: deque;
found: boolean;
i,j: integer;
pattern: fsm;
stat: state;

begin
RE_COGNIZER := 0;
found := false; j := start;
INITDQ (dq);

ENQ_L(dq,1); ENQ_R (dq,-1); {start and marker symbols}
repeat

DEQ_L (dq,i);
if i < 0 then begin {marker}

j := j + 1;

ENQ_R (dq,-1); {recycle marker}
end else if i = 0 then begin {final state}

found := true;

RE_COGNIZER := j - 1;
end else begin

stat := pattern [i];
if stat.ch = text.data [j] then

ENQ_R (dq,stat.nextl)
else if stat.ch = ' ' then begin

ENQ_L (dq,stat.nextl);
if stat.nextl <> stat.next2 then

ENQ_L (dq,stat.next2);
end;

end;
until found or (j > text.size) or (dq.count = 1);

end;

Algorithm 8.7 RE_COGNIZER

What is the complexity of recognizing a regular expression of length m in a

string of length «? As a first step, we draw upon the fact that for a regular

expression of length ra, the number of states in an NFA for recognizing it can be

bounded by 2m. Moreover, (a) no input character is matched against any state

more than once, and (b) no state has more than two transitions. Thus, the

complexity of this matching problem is 0(mn). Crucial to this bound is the nature

of the transition diagram as we have drawn it. In essence, we are computing the

t8.6.2 RECOGNIZING REGULAR EXPRESSIONS 439

e-closure every time we need it, but the cost of each such computation is strictly
bounded. By contrast, if e-transitions are contracted - that is, if an NFA with
partial or complete e-closure is used — then the complexity may actually increase
because conditions (a) and (b) may no longer be true.

We promised to describe how the transition diagram of Figure 8.34 was
obtained from the regular expression '((A + BC)* B + AC)A'. In brief, this is done by
building bigger machines from smaller ones, where there is a rule for each of the
operations — concatenation, union, and closure. The most elementary machine is
one that recognizes a character, as in Figure 8.36(a). For concatenation, we merge
a final state with a succeeding initial state to obtain the machine in (b) of the figure.
For union, we need an initial state with two e-transitions, and we also introduce an
e-transition from the final state of one alternative to the final state of the other
alternative, as in (c) of the figure. Lastly, for closure, we make the construction
shown in (d) of the figure, where we make an initial state out of what was the final
state, and then introduce a new final state.

®-JL0JL-0
(a) (b)

Figure 8.36 Composition Rules for NFA’s

The pattern matching method that we have just described is used in text editors,
where the cost of constructing the equivalent FA would far outweigh the benefit of
having it [Thompson 1968], There are other applications where the reverse is true.
This is well exemplified in the process of scanning the text of a program to find the
tokens (see Section 5.2.3.3). Tokens are easily described using regular expressions.
Identifiers are usually a letter followed by some optional number of letters, digits,
and special characters. Numbers are composed from digits and also {+ - . , etc.}.
Just as there is a straightforward procedure to construct an FA equivalent to an
NFA, so is it possible to construct an NFA that will recognize a given regular
expression, by following the technique of our construction for '((A + BC)* B + AC)A'.

440 STRINGS

These two steps are usually combined with a third one for minimizing the number
of states in the FA, since it could have 2" of them if the NFA has n states. An
optimized FA for finding program tokens is one of the easier and major compo¬

nents of any compiler.

Our final remark serves as a climax to our discussion, and also as prelude to the
next section. We employed FSM’s in an ad hoc manner for the purpose of recog¬
nizing regular expressions. In fact, not only can FSM’s recognize all regular
expressions; the cognitive power of FSM’s extends precisely to sentences generated
by a Type 3 grammar, and no further! In the next section, we will encounter analo¬
gous characterizations of the other classes of grammars in terms of what is required
in order to recognize their languages.

f8.6.3 Parsing in General

Pattern recognition by now has become a familiar two-step:

1. We translate the pattern to some representation.
2. We interpret that representation against some input string.

For simple substring matching, the first step is fairly simple; for regular expression
recognition, it is straightforward but no longer simple; and for recognizing
sentences higher up in the Chomsky hierarchy, the first step can be a large task with
many subtleties. We will content ourselves in this section with describing how the
distinctions among the four types of grammars are significant, and what sorts of
recognition mechanisms are required.

Context-free grammars (CFG’s) are the next most difficult after regular gram¬
mars. Happily, they suffice (almost) for HLL’s as we know them. Two instances
where they are inadequate for the purpose are that of enforcing that variables must
be declared before they are used, and that of monitoring that the actual parameters
in a procedure call match the formal parameters of the procedure. However, such
issues can be dealt with by other parts of a compiler. The fact that most of a
programming language can be characterized by a CFG expressed in BNF has a very
important consequence. Specifically, there are algorithms to perform the first step
above in a clean fashion, culminating in tables that can then be interpreted to guide
the parsing (that is, recognition of the syntactic components) of a program. The
output of a parser usually takes the form of a parse tree, such as those we described
in Section 6.6.2.2. As it turns out, even unrestricted CFG’s are troublesome for
programming languages for reasons having to do with efficiency and ambiguity.
Both of these items merit a descriptive paragraph.

The first parsers for CFL’s employed backtracking and were rather inefficient.
A major improvement came with the realization that they can be parsed using
dynamic programming to find longer and longer valid substrings. This leads to
algorithms of complexity 0(«3), for an input string of length n. More astoundingly,
it can be shown that this problem is equivalently hard to the familiar ones of matrix
multiplication and transitive closure [Valiant 1975a]. The latter parallel should not
be too surprising in the light of the e-closure discussion in the preceding section.
Since parsing is such an important issue for programming, it is common to describe

18.6.3 PARSING IN GENERAL 441

HLL’s by CFG’s that are restricted in various fashions in order to simplify and

speed up the parsing process. (Recall that a given language may be specifiable by

many different grammars.) As a consequence of these restrictions, it is common to

find parsers for HLL’s that operate linearly for almost all programs.

Another reason for having restricted context-free grammars is to avoid ambigu¬

ity in the derivation of the parse tree. Sometimes, the ambiguity is not serious, as

when the BNF production

< expression > ::= < expression > + < expression>

would allow the derivation of either (x + y) + z or x + {y + z) for the expression

x + y + z. In any event, this is easily made unambiguous by including extra

productions, along the lines of Figure 5.16. The infamous dangling else, in the case

of the BNF production

<if_stmt> ::= if <condition> then <stmt>
| if <condition> then <stmt> else <stmt>

is more of a problem, since the statement

if A then if B then C else D

can be parsed as either

if A then (if B then C else D), or if A then (if B then C) else D

with quite different meanings. It is possible to augment the productions so that this

is unambiguous also, but the resulting grammar in this case is distinctly harder to

understand. Moreover, whenever we augment the grammar with extra productions

to remove ambiguity, the parsing process takes significantly longer. It is often

simpler and more convenient to allow the grammar to be ambiguous, but to disam¬

biguate it by applying various rules in other parts of the compiler [Aho et al. 1975].

As a capstone to this discussion, some CFL’s are inherently ambiguous, making it

impossible to find an unambiguous CFG for them.

We promised to characterize languages of Types 0, 1, and 2 in terms of their

recognition mechanisms. Briefly put, the story is as follows:

• Context-free languages can be recognized by a pushdown automaton (PDA)\ this

is essentially an FSM enhanced with an infinite stack.
• Context-sensitive languages can be recognized by a linear bounded automaton

(LBA)\ this is essentially an FSM enhanced with a finite rewritable tape that

originally contains the input.
• Phrase-structure languages can be recognized by a Turing machine; this is

essentially an FSM enhanced with an infinite, rewritable tape that originally

contains the input.

To sum it up, the notion of pattern recognition embraces matters from the most

prosaic, as exemplified by the algorithm MATCH_0, to the most fundamental in

computer science.

442 STRINGS

f8.6.4 String Processing as a Model of Computation

We have seen ample evidence that the simple notion of string substitution is power¬
ful enough to support very complex processes, such as the compilation of programs.
It is useful at this point to recall the programming language LISP (see Section
4.4.4). LISP was, in fact, modelled very deliberately upon the lambda calculus
[Landin 1964] as a means of expressing recursive computations. As we saw in
Section 5.4.3, this notation is powerful enough to represent any function that is
computable. Another formalism that has been demonstrated to have the same
power as that of lambda calculus is that of Markov algorithms [Tremblay and
Sorenson 1984], We will not try to describe them here, partly for reasons of space,
but also because we have already illustrated the essence of this algorithmic notation
in our discussion of string substitution at the very beginning, in Section 8.1. The
analogy with Lists is completed when we realize that the language SNOBOL
[Griswold et al. 1971] is a string-processing language closely modeled upon the
Markov formalism. It includes all of the string substitution capabilities that we
have described in this chapter, and many more. In particular, it is easy in
SNOBOL to specify patterns that are as general as any that can be defined via BNF
[Gimpel 1973]. SNOBOL is very useful for certain types of calculations, and it
possesses the same theoretical power as List-processing languages. Nonetheless,
HLL’s based upon strings seem not to be as generally useful as those based upon
Lists. In part, this is due to the lack of standardization with respect to string nota¬
tion and string operations. More compellingly, whereas it is often natural to think
of computations in List-processing terms, it is less natural to think of them in
string-processing terms.

8.7 OVERVIEW

Wherever we turn in dealing with strings, we are reminded that they sustain mean¬
ing that is expressed via patterns. Most of the ways of dealing with strings that we
have discussed reflect this fact:

• transforming strings to more efficient representations that still retain all the
information;

• transforming strings to representations that can retain the meaning even in the
face of errors;

• transforming strings to disguise the meaning;
• recognizing meaningful phrases within strings.

The operations just described are all based upon string transformations. This is
true even for the recognition problem, which is usually couched in terms of recog¬
nizing which transformations will have a desired effect. It is remarkable that the
concept of string transformation is so effective over such a wide range of applica¬
tions, even though the notation for expressing it is so poorly standardized.

In earlier chapters, we encountered two types of searching - one in which we
looked for a specific value of a key in a data structure, and one in which we looked

8.7 OVERVIEW 443

for the optimization of some criterion function. By the time we finished the last of
the topics on the preceding list, we had discovered a third, more general type of
search. This hidden power in string processing accounts for the election of strings

as our ultimate data structure.

8.8 BIBLIOGRAPHIC NOTES

• Much material on single-error correcting codes, such as the construction of a
generator matrix G and parity-check matrix H for a given (n,m) pair, can be
found in Berlekamp [1968], Blahut [1983], and Peterson and Weldon [1972].
These also contain a wealth of information about more general kinds of codes.

• For discussions of dynamic Huffman coding, consult Gallagher [1978], Knuth
[1985], and Vitter [1985]. Universal compression is described in Ziv and
Lempel [1977, 1978], and an efficient variable-to-fixed implementation is given
in Welch [1984], Yet another dynamic compression scheme is that of Bentley

et al. [1986].

• Two broader applications of the KMP matching technique are comparing poly¬
gons for similarity [Manacher 1976], and matching arbitrary patterns in two
dimensions [Baker 1978b; Bird 1977c]. The summary conclusions about string
matching are drawn from Davies and Bowsher [1986], Horspool [1980], and

Smit [1982].

8.9 REFERENCE TO TERMINOLOGY

f accepting state, 426
ASCII, 383

f authenticity, 416
ciphertext, 411
code set, 383
collating sequence, 384
compression, 409

line-breaking, 408
t longest common subsequence, 447
f Markov algorithm, 442
t Nondeterministic Finite Automaton, 435

n-gram, 407
t one-way function, 415
t parity-check matrix, 403

f context-sensitive grammar, 433
control character, 383

f coset leader, 404

cipher, 411
Data Encryption Standard, 414

decryption, 411
digram, 407

duals, 383
EBCDIC, 383

t context-free grammar, 433 perfect Hamming code, 402
f phrase-structure grammar, 433

plaintext, 411
prefix property, 396

f product cipher, 413
t public-key cryptosystem, 414
f pushdown automaton, 441

rate (of a code), 401
redundancy, 396

t regular expression, 434

444 STRINGS

edit-distance, 406
encryption, 411
entropy, 394
equivocation, 413
escape character, 386
feasible breakpoint, 408

t Finite Automaton (FA), 426
f Finite State Machine (FSM), 426
t generator matrix, 403

grammar, 432
graphic, 383

f group code, 403
Hamming bound, 402
Hamming distance, 400
Hamming weight, 400
language, 432

f linear bounded automaton, 441

f regular grammar, 434
run-length encoding, 410

semantics, 432
sentence, 432
shift character, 384

t size (of a code), 402
substitution cipher, 412

t suffix tree, 430
| syndrome, 403

syntax, 432
transposition cipher, 413

f trapdoor one-way function, 416
f Turing machine, 441

unicity point, 413
universal compression, 411
weighted path length (w.p.l.), 395

8.10 EXERCISES

Sections 8.1 — 8.2

8.1 What are the results of the following string operations, given that l = 'SISS',

P = /ISSI/, and S = 'MISSISSIPPI'?

(a) 'SPIS' !| I

(b) 'MIS' i S j I

(c) USjP

(d) P i S i 'UDDY'

8.2 Indicate by T(rue) or F(alse) the results of the following string comparisons,
both in EBCDIC and in ASCII.

(a) 'Aa1'<='aA1'

(b) 'Aa10' < 'Aa2'

(c) 'blah' = 'blah '

(d) 'X(I)' > = 'X(I)'

8.3 Let w = 'abce' and v = 'aababcabcdabcde'. Trace the operation of
MATCH_0 (w,v), as in Figure 8.9. How many character comparisons are made?

8.4 We have the following frequencies for symbols in a set of strings:

A - .18 D -.16 G -.06
B - .07 E - .23 H - .03
C-.ll F — .04 I - .12

Compose a Huffman tree of minimum height, and also the corresponding binary
codes for the symbols. What is the weighted path length of the coding tree?

8.10 EXERCISES 445

+8.5 Prove that the tree obtained by Huffman’s algorithm must have a minimum
weighted path length.

f8.6 [Schwartz and Kallick 1964] Show how the ideas of Exercise 6.30 can be
used to obtain a canonical Huffman tree in which the weights appear at the leaves
in ascending order from left to right. For the data of Exercise 8.4, what is the
canonical tree, what is the corresponding code, and what is the w.p.l.?

+8.7 Huffman t-ary trees can be constructed similar to Huffman binary trees, with
the t smallest weights being combined each time. We have a set of messages with
frequencies as follows:

A - 15 D - 13 G -70
B — 7 E — 51 H — 6
C - 64 F - 4 1-75

J - 25 M - 9
K - 80 N - 11
L - 5

Construct a Huffman ternary tree of minimum height over the alphabet (0,1,2) for
these messages, show the codes for the messages, and compute the w.p.l.

+8.8 Write a program to compute a Huffman tree for a given set of symbols and
frequencies. In doing so, you will have to decide whether it is important to
construct the tree of minimum height; the heap implementation of a priority queue
does not handle this requirement very well. There are other possibilities, as exem¬
plified by the /?-tree of Exercise 6.25. After writing your program, test it against the
data of Exercise 8.4.

8.9 Prove that the minimum Hamming distance for a group code is equal to the
minimum weight of its non-zero codewords.

+8.10 Applying the Hamming bound,

(a) What is the maximum number of possible messages, if we wish to have a code
of sixteen bits with double-error correction?

(b) What is the minimum number of bits required to send five messages and have
single-error correction? Find a code that satisfies this objective.

t+8.11 For the (7,4) code of Figure 8.19,

(a) What are the codeword values?

(b) What are the coset leaders for each of the non-zero syndromes?

t+8.12 Describe how the syndromes for the (7,4) code of Figure 8.19 can be used

to effect error correction without using coset leaders.

Sections 8.3 — 8.4

++8.13 Write a set of procedures to extract statistics from a file of English text;
these might include, for example, counts of individual characters, word counts,
sentence counts, etc. State your assumptions about recognizing word breaks
(blanks, hyphen, end-of-line, etc.) and sentence breaks (period, semi-colon, etc.),
and demonstrate that your procedures handle them properly. Describe how such
statistics can be used, separately and in combination, to make judgements about
issues such as compression and readability. Apply your procedures to three differ-

446 STRINGS

ent types of input text - adult, juvenile, and technical prose - and summarize

your conclusions.

ff8.14 Write an algorithm to do line-breaking of paragraphs by dynamic
programming, and apply it to various test paragraphs. As part of doing this, you
will have to choose a cost function that your solution minimizes; explain the

rationale for your choice.

f8.15 We discussed fixed-to-variable, variable-to-fixed, and variable-to-variable
encodings. When might a fixed-to-fixed encoding be applicable, and how might it

be accomplished?

f8.16 Write functions to implement the RSA encryption/decryption scheme,
presuming that the parameters n,p,q,r,s are integers that fit in the word of your
underlying machine. Test these by decoding the following message, where the
parameter values are the same as those employed in Section 8.4.2.2.I.

1510 0731 2049 1904 0741 1964 0962 2624 2417 1908 2326 0363
2624 0542 1655 1717 1567 0219 0521 1684 1007 1787 2342

tf8.17 Write functions to implement RSA encryption/decryption under the more
realistic assumption that multi-precision arithmetic is required.

ff8.18 Prove the validity of Eq. 8.10.

Sections 8.5 — 8.6

tf8.19 Use the Knuth-Morris-Pratt algorithm to do the following:

(a) Compute the failure transitions fail and next for the pattern 'pollopolop', as in
Figure 8.25.

(b) For te.xt = 'pollopollopolloppollolop', trace the values of the indices over
pattern and text, as in Figure 8.24.

(c) Draw the equivalent FSM, as in Figure 8.28.

f8.20 Construct the FSM (by hand) for searching in parallel for the words {AAB,

ABAB, ABC, BAA, BBC, CAB, CBC, CCAA}. Show the FSM as in Figure 8.30, and
also the failure transitions as in Figure 8.31(a).

f8.21 Write a procedure analogous to MATCH_1 to do parallel searching for
several patterns, using the FSM approach. Apply your program to the data of
Figures 8.30 and 8.31.

ft8.22 Write a program analogous to SCAN_1 that generates the FSM (that is,
the nodes and their success and failure transitions) for a given set of patterns.
CHint: Write one procedure that generates the success transitions, and then a
second one that scans the success transitions to generate the failure transitions.)
Give some thought to your choice of data structure. It should be possible to take
the structure encoding any given set of patterns and add other patterns to it, with¬
out having to reorganize everything. Test your program by applying it to the data
of Exercise 8.20.

8.10 EXERCISES 447

tf8.23 Write a function that searches an input string and finds the first palin¬
drome therein. Your algorithm should scan the string and stop as soon as it finds
such a palindrome.

++8.24 [Hirschberg 1975] Given a string A = axa2... a„, then S = aaai2... aip is a
subsequence of A when 1 < z'l < i2 < - < ip < n; thus S =/bcfk/ is one of many
possible subsequences of A = 'abcdefghijk'. An important issue in comparing two
strings for their “closeness” is to determine the longest common subsequence (LCS)
between them. For example, with A = /xyzwtwxzx/ and B = 'ywxzxyxw', the LCS is
'ywxzx'. This problem has many important applications. One is that of computing
the edit-distance between two text strings. Another is that of comparing strands of
genetic material to determine their evolutionary distance, regarded as the number of
mutations required to produce one strand from another strand. Although it is not
the fastest method, a fairly simple algorithm for the problem can be developed via
the following recursive function definition:

if (A [j] = B [k]) then f(j,k) := 1 + f(j-1 ,k-1)
else f(j,k) := Max (f(j,k-1),f(j-1 ,k))

with f(j,k) = 0 at the low boundaries. This definition expresses the length of the
LCS on prefixes of the two strings in terms of the lengths on shorter prefixes, with
the final LCS length determined by f(m,n). It is straightforward to express the
above formulation iteratively rather than recursively, using the technique of
dynamic programming (see Section 7.4.2.1).

(a) Apply this process, by hand, to find the LCS of the strings 'abbcabacb' and
'cacbcbbac'.

(b) Write a procedure to compute and display the LCS of two strings, and test
your program against the data of part (a).

(c) What are the time and space requirements of your program? Can you find a
way to reduce the space requirement?

ff8.25 Suppose that we call RE_COGNIZER with the same pattern and the same
text as in Section 8.6.2, but with start = 8. Trace the corresponding state transitions
and other data as in Figure 8.35(b).

ff8.26 Construct an NFA that can be used for recognizing regular expressions of
the form '(0+1)((01)* +1)* 1', as in Figure 8.34. Also construct the corresponding
array of state information, as in Figure 8.35(a).

f|8.27 In order to search text to find the leftmost occurrence of a regular
expression, no matter where it occurs, we need (a) to enhance the algorithm
RE_COGNIZER, and (b) to construct a somewhat different NFA. Describe what
is required for (a) and (b), then implement these requirements, and finally apply

your results to the data of Exercise 8.26.

9

STRUCTURE and COMPLEXITY

“Structure without life is dead.
But Life without structure is un-seen.”

John Cage,
Silence, Lecture on Nothing

We have studied in considerable detail the data structures: array, set, record, list,
queue, stack, tree, graph, and string. In this brief chapter, we present a more
general essay on their nature. To begin with, consider the following questions:

• Are any of these structures more fundamental than the others? Is there any
way to relate them to one another?

• More generally, what theoretical bases can we find for the use of data struc¬
tures? What are the advantages and shortcomings of these bases?

• From a practical point of view, how do we choose a good implementation for a
data structure?

Of course, this list of questions is by no means comprehensive. Over the past years,
there have been numerous attempts to deal with questions such as these, leading to
elegant formal methods in some cases. Unfortunately, because of their formality
and because of lack of consistency among the approaches, few programmers have
deemed it worth the effort to master such concepts. Our objective is to present the
essential characteristics of a few of the more promising ideas. Some other useful
points of view include dTmperio [1969], Fleck [1978], Korfhage [1974b], and
Mealy [1967],

9.1 BUILDING DATA STRUCTURES

We begin by referring to the summary of the advantages and limitations of arrays
(see Section 2.6). After all, in those cases where none of the shortcomings apply,
there is little reason to look beyond the array data structure. But many problems,
of course, are not so tractable. Thus we find the need to use, alone or in combina¬
tion, the several other structures discussed in this book. Is the diversity that we
have seen really necessary? Is any one of these structures powerful enough to

9.1 BUILDING DATA STRUCTURES 449

subsume all the others? In terms of computability, we have previously alluded to
four structures that have been employed as universal data types:

1. Arrays have been used in APL, and their theoretical adequacy and power have
been developed in Array Theory. (See Section 2.9 and Gull and Jenkins [1979]
for a discussion of this).

2. Sets have been used in SETL (see Section 2.4.3).

3. Lists have been used in LISP. (For a discussion of this, see Section 4.4.4 and
McCarthy [1963]).

4. Strings have been used in SNOBOL (see Section 8.6.4).

However, the issue here is the narrower and more difficult one of represen¬
tational power. This is analogous to the issue of comparing the power of various
programming control structures (goto, repeat ... until, etc.), in that the choices of
data structure and its representation can affect the complexity of a computation;
but it is complicated in a way that comparison of control structures is not. The
difficulty arises in trying to separate two aspects of a data structure:

(a) the specification of its semantic intent - the “what,” and

(b) the details of its realization — the “how.”

This latter point is less of an issue with control structures, since it is their nature to
express “how”; so the issue there is simply concern for the power and convenience
of alternative constructs for “how,” rather than confusion of “what” and “how.”

In the ensuing three sections, we begin by reexamining the role of pointers in
data structuring. Then we examine some results concerning the explicit represen¬
tation of one data structure by another. Lastly, we consider the interesting case of
implicit data structures.

9.1.1 Pointers Reconsidered

We have stressed that programming with pointer variables is hazardous (see Section
4.5.1). Their improper use is a frequent source of errors; moreover, the errors thus
created are typically much harder to diagnose than are other sorts of errors. The
pointer issue is worth reexamining since it relates directly to the difficulty cited in
the preceding section — that of trying to distinguish between the semantic specifica¬
tion of a data structure and the details of its implementation.

If we think about it, we realize that pointers are used for three principal
purposes:

1. They express as connectors that we want to tie together other structures.
2. They express as relators that two nodes bear some semantic relationship to one

another.
3. They bind a variable to a particular value.

The latter usage may arise implicitly, in the disciplined context of passing a parame¬
ter to a procedure by reference (as opposed to value); it may also arise explicitly, as
when referring to the head of a list or to the root of a tree. But the use of a pointer
(that is, a location) to effect such a binding is a consequence of the way in which
the structure has been declared. We could alternatively have a manner of declara-

450 STRUCTURE and COMPLEXITY

tion in which the binding was accomplished using a name rather than a location

[Kieburtz 1976].1

The major difficulty in using pointer variables stems from the confusion

between using them as connectors and as relators. Indeed, there is ample reason for

such confusion, since a pointer may be serving both purposes at once; an example

of this is the use of pointers to connect and relate the nodes of a BST. On the other

hand, the fact that one node follows another on a sequential linked list may convey

no essential relationship. (The only thing that I have in common with the person

next to me in the grocery line is that we both wish to purchase food.) At the other

extreme, we could have an r-regular graph, with the vertices represented by an array

of nodes, and with each of these vertices adjacent to r — 1 other vertices. In such a

case, it would be natural and efficient to express these fundamental relationships via

links to the adjacent vertices.

The one pointer mechanism can serve the two purposes, connector and/or rela¬

tor. But which of these is meant to apply in a given instance often cannot be

discerned by looking at code employing pointers, any more than one can easily tell

by looking at some assembly code what is intended. In both of these cases, the

problem is that the level of expression is too low to sustain the true meaning. An

apt example of this in the case of pointer-based data structures is the following.

Consider two record structures — one for bi-directional linked lists, and one for

binary trees. Either structure will have, in addition to its ordinary data fields, two

pointer fields to other records of its type. However, there is nothing to distinguish

which of the two very different logical structures this one physical structure

embodies, other than by the haphazard manner in which the programmer supplies

names to the structure.

Unfortunately, there are no magic answers to these difficulties. What is needed

is a method of abstracting above the level of operations with pointer variables. In

Section 9.2 we will confront the important topic of data abstraction in general.

When pointers must be used there are only a few remedies, each with its shortcom¬

ings. One is to provide an environment where explicit pointer freeing is not

allowed. This is done at the cost of significant run-time overhead, as we will see in

Chapter 11. Another proposal allows for explicit pointer freeing, but again with

compensating overhead, this time via a “bump” imposed upon dynamic structures,

and called a tombstone [Lomet 1985], The tombstone remains even when the

dynamic structure is discarded, and thus is able to catch and invalidate subsequent

references to the structure. Many users work in environments where these methods

are not available. Their only recourse is to adopt their own disciplined program¬

ming mechanisms, of which pointer rotations are a good example.

1 A similar remark applies to a fourth use of pointer variables, not listed above. In our
discussion of inverted lists (see Section 4.3.1), we found that there were two possibilities
- to use locations (either pointers or cursors), or to use keys (names).

t9.1.2 DATA ENCODINGS 451

f9.1.2 Data Encodings

The concept of a data encoding, wherein one data structure is represented in another
one, is not completely novel to us. We have already seen several instances of it.
The most pervasive one is that of encoding a multi-dimensional array in a line (a
one-dimensional array), reflected in our discussion of storage allocation functions in
Section 2.2.1. Another rather elegant one is that of encoding any ordered tree as a
corresponding binary tree (see Section 6.2); still others include the encoding of any
ordered tree in a line (see Sections 6.5.2 and 6.5.3). In general terms, we speak of a
guest structure G, which is to be encoded in a host structure H. To accommodate
the most general case, it is conventional to regard both G and H as graphs, with G
being embedded in H. A primary issue with any data structure is the set of usage
patterns characterizing access from one atomic item to another. In the embedding,
vertices in G become vertices in H, but edges in G become paths in H, with the
costs of traversing paths representing a dilation of the access costs in H over those
in G [Rosenberg 1978]. This dilation can occur with respect to both space and
time, where the former may partly be due to the overhead of pointers. Restricting
our attention to the time dilation, the concepts that we have been describing can be
expressed as G <TH whenever G can be encoded in H such that no adjacent nodes
in G have path length greater than T in H. More generally, T may be some func¬
tion T(n), where n characterizes the size of G in the usual way.

One of the issues to which these ideas have been successfully applied is that of
loss of proximity between array elements under various encodings (see Section 2.7
for a related discussion). In the preceding paragraph, we alluded to the usage
patterns of access within a data structure. In a ^-dimensional array, an element in
general has 2d immediate neighbors. For d > 1, when the array is represented in
the conventional manner by a linearizing storage allocation function, it has been
rigorously shown that there is an unbounded loss of proximity in at least some of
the dimensions [Rosenberg 1975]. This is easy to visualize intuitively when we
consider that an element in a 2-dimensional array cannot “squeeze” n2 neighbors
(from the array) into 2n neighbors (on the line). In many cases, this loss of proxim¬
ity may not be serious. For example, patterns of array usage are often confined to
traversals in a single dimension, as in ordinary matrix multiplication, so that dila¬
tion in the other dimensions is irrelevant. Also, the effects of the dilation will only
become significant when the array is so large that it must be decomposed, explicitly
or implicitly, into sub-arrays for processing.2 However, it is easy to find examples
where both of these issues do matter. One instance is that of multiplying large
matrices by Strassen’s method (see Section 2.5.1.1), which proceeds by recursively
decomposing matrices into sub-matrices.

We might ask what would be the effect of having a host H of more general
character than a line — perhaps a binary tree. (In such an encoding, the vertices of
G are understood to be embedded at the leaves of H). Even in this case, for G an

2 By implicit decomposition, we refer to the effects of virtual memory. In such an envi¬
ronment, there is always the hazard of degradation in performance when data accesses
must cross page or cache boundaries (see Section 12.2.2).

452 STRUCTURE and COMPLEXITY

n x n matrix, it has been shown that loss of proximity is still unbounded; more

precisely, in this case T{n) > (lg n - 2) / 3 [Lipton et al. 1976]. So far, we have
been speaking of the worst-case loss of proximity. When we consider the average
loss of proximity, however, the situation is different. Arrays encoded as lines must
still have unbounded loss of average proximity, but arrays can be encoded as binary
trees in such a manner that the average loss in proximity is bounded [DeMillo et al.
1978]. In fact, there is a result of immediate practical use. Consider two possible
ways of encoding a two-dimensional array, as illustrated in Figure 9.1. The encod¬
ing in (a) is via a 2-tree (a binary tree), and the encoding in (b) is via a 22-tree (a
quaternary tree)? The encoding in (b) has been shown to be superior to that in (a)

in the following respects [Wood 1978]:

• Under reasonable assumptions about relative costs of primitive machine oper¬

ations, access time will be 30 percent higher with (a) than with (b).
• The binary encoding of (a) requires 50 percent more pointer locations than the

quaternary encoding of (b).
• Average loss in proximity will be 75 percent worse with (a) than with (b).

Evidently, 22-trees are considerably superior to 2-trees for the encoding of two-
dimensional arrays. Even more generally, it has been shown that for encoding a
d-dimensional array in a tree, the choice of a 2^-tree as a host is always nearly opti¬

mal [Rosenberg 1979],

(a) Binary Tree Encoding

Figure 9.1 Encodings of 2k x 2k Arrays

f 9.1.3 Implicit Data Structures

The notion of order among data values is often a crucial issue in a data structure.
One example of this is a BST, wherein recursively all the values in the left/right
subtrees of a node are smaller/greater than the value at the node itself; here the
ordering is explicitly maintained via the use of pointers. An even more basic exam¬
ple is that of an array whose elements are in sequence; in this case the ordering is
maintained among the array locations, and no pointers are required. A third exam¬
ple is the heap. The ordering in this elegant structure is partial, not total, but again

3 Quaternary trees are conventionally termed quad trees. We will say a little bit about
them in Section 12.4.3.1.

19.1.3 IMPLICIT DATA STRUCTURES 453

the ordering is maintained among the data locations rather than via pointers. Data
structures such as the ordered array and the heap are called implicit data structures.
Since they don’t use pointers, they are efficient in terms of space; they also avoid
the problems cited in Section 9.1.1. In this section we will meet some more exotic

examples in this useful category. In order to appreciate the discussion, you may
wish to skim Sections 10.2.2 and 10.3.1, if you are not already familiar with the
material therein.

To begin with, we note some performance characteristics of the ordered array
and the heap. Three measures are significant for our purpose:

• the complexity of searching for an arbitrary item;

• the complexity of inserting or deleting an item;

• the complexity of finding a distinguished (minimum or maximum) item.

Drawing upon what we know already and/or anticipating some of the subject
matter of Chapter 10, the complexities are as follows:

structure search insert/delete distinguished

ordered array 0(lg n) 0(r>) 0(1)
heap O(n) 0(ig n) 0(1)

In particular, we see that the product of the search and the insert/delete complexi¬
ties is 0(n lg n) for both structures, and that both are imbalanced with respect to
these two capabilities. For a BST, the search time is <9(lg n) and so is the

insert/delete time (inclusive of the associated search time), yielding a product of
0(lg n)1. However, this increased efficiency is purchased at the expense of addi¬
tional storage for the pointers. This suggests the question: Are there any implicit
data structures such that (1) the product of the complexities of search and

insert/delete is better than 0(n lg n), and/or (2) there is better balance between the

complexities?

One such structure is the bi-parental heap, or heap. It is like a heap except that

each child must satisfy the partial ordering relationship with respect to two parents.
An example of a beap with example data obeying such an ordering is shown in

Figure 9.2(a). In terms of implementation, however, we perceive a triangular
matrix, more particularly a diagonal shell matrix as discussed in Section 2.7.1. This
is apparent from Figure 9.2(b), shown with array locations. The storage allocation

formula for such a representation is reproduced here from Eq. 2.23:

, , , r. ^ , , (i +j\ ■ L , (i2 + 2iJ + / ~ 3i ~J)
loc (A [ij]) = k + (2) - 1 = b +-3- l9-1)

However, the manner of using a beap is to travel (up,down,left,right) between adja¬

cent nodes, and the formulas for such transitions are fairly simple. The beap is
treated as though each diagonal were a separate block, with the z'th diagonal

containing i elements. The bi-parental ordering is such that the kth element of the

y'th block is less than both the kth and (k + l)th elements of the (j + l)th block.

These ordering constraints in a beap are stronger than in a heap, and they make it

possible to search for an arbitrary item X with time complexity 0(nxl2). Any such

454 STRUCTURE and COMPLEXITY

search is initiated at the top right node in Figure 9.2(b), and always proceeds either

leftward or downward, as follows:

(a) if X < atJ then move left;

(b) if X > atj then move downward, and also move left if atJ is beyond the fringe

diagonal.

Since the longest path that can be traversed in this manner is 0(n1'2), we have the
cited result. The technique for insertions and deletions is analogous to that for a
heap, except that the longest path is once again 0(n1/2). In other words, the beap is
an implicit data structure for which the complexities of search and insert/delete are

balanced, and such that their product is 0(n).

14 an = 14 /-"ai2 = 21 ^"ai3 = 33 ^'au = 45

^ ^
321 = 16 ,^''322 = 27 ^-"^323 = 38

331 = 19 ^^a32 = 32 833 = 59

841 =25^^^842 = 40

351 =31

(b) Diagonal Shell Mapping

Figure 9.2 Bi-Parental Heaps (Beaps)

But this is just the beginning of the story! Consider next the data structure
illustrated in Figure 9.3. It is a sequence of blocks such that (1) the zth block has z
elements, and (2) each element in the zth block is less than every element in the
(z + l)th block. But also, the zth block is a rotated list - that is, a cyclic shift of a
sorted list. A crucial feature of our intended use of such a structure is that the
elements in a block must all be distinct. Assuming that this is so, note that we can
then always find the minimum element in a block B [5.. t] in 0(1 g zj comparisons.
We simply need apply a variant of binary search (see Section 10.2.2). With this
variant we first compute m — {s + t) div 2; we then look for the minimum in
B [5 .. m] if B [m] < B [f], or in B [m + 1 .. t] if B [m] > B [t].

24 16 20 23 33 38 39 28 30

Figure 9.3 Rotated Lists

Because we can find the minimum element in a block in 0(lg z) time, we can
also find any arbitrary element X in the data structure of Figure 9.3 in 0(lg n) time,
by the following process:

t9.1.3 IMPLICIT DATA STRUCTURES 455

(a) First apply ordinary binary search, discovering that X must be in either one of
two consecutive blocks.

(b) Next apply the variant method of binary search on the larger rotated list to
find its minimum element Mint.

Depending upon the comparison of X and Minh then proceed as follows:

(c) If X > Minh re-apply the variant method to find X in the larger block.

(d) If X < Minh apply the variant method twice to the smaller block, finding first
its minimum Mini_l and then X.

Finally, we can insert or delete an element X in 0(n1'2 lg n) time. The technique

to perform insertion is as follows. We begin by finding the block i to which X

belongs. This can be found in 0(lg n) time by searching in the manner described in

the preceding paragraph. We then perform a “hard exchange,” in which X is

inserted in its proper place. This requires 0(n112) data shifts in the worst case, since

that is the magnitude of the largest block. As a result of the insertion of X, we can

expect that the former maximum element Maxt in that block may now have to be

relocated to the (i + l)th block, in turn bumping Maxi+l to the next block, etc.

However, each of these bumping operations is an “easy exchange”: The minimum

and maximum in the new block are found in 0(lg i) time once again, and then the

old maximum is displaced by a new minimum - without any data shifts! The

process for deletion in a rotated list is completely analogous. The summary

accounting for insertion/deletion is 0(n112 lg n) comparisons and 0(nl/2) moves. In

other words, for the rotated lists structure of Figure 9.3, the product of the

complexities for searching and insertion/deletion is 0(nlj2 (lg n)2).

The beap and the rotated lists structure and others as well, including a beap of

rotated lists, are described in Munro and Suwanda [1980]. Table 9.1 summarizes

the complexities for the implicit data structures that have been cited in this section.

There are still other possibilities; as an example, we can have rotated lists of

elements that are (recursively) rotated lists [Frederickson 1983],

structure search insert/delete

ordered array

heap

beap

rotated lists

beap of rotated lists

0(lg n)

O(n)

0(n^2)

0(lg n)

0(n1/3 lg n)

O(n)

0(lg n)

Oin1'2)

0(n1/2 lg n)

0(n1/3 lg n)

Table 9.1 Complexities of Implicit Data Structures

456 STRUCTURE and COMPLEXITY

9.2 MASTERING COMPLEXITY

As our starting point, let us consider the following parable by Simon [1962]. There
once were two watchmakers, Hora and Tempus, who both made highly regarded
timepieces. However, their methods of operation differed. Tempus constructed his
watches by carefully assembling 1,000 components. Hora, on the other hand, first
constructed 100 sub-assemblies of 10 components each, then assembled these into 10
larger units of 10 sub-assemblies each, and finally obtained a finished watch by
putting these 10 units together. Since their watches were so highly regarded, they
received frequent phone calls from eager customers. Unfortunately, whenever they
answered their phones, the assembly that was being worked upon would fly apart,
making it necessary to restart after the phone call. As the demand for their
products increased and their phones began to ring more often, a strange thing
happened. Hora prospered, but Tempus was driven out of business.

We can see why this happened when we compute their respective probabilities
of finishing a watch between phone calls. Let p — .01 be the probability that a call
occurs while adding a part to an assembly. In Hora’s case, he has to make 111
assemblies altogether. The probability of his finishing any of his 10-part assemblies
without interruption is (1 — ,01)10 = 0.9, and he will have lost the effort of assem¬
bling 5 components, on average, whenever it is necessary to restart. Now Tempus
has to perform just one assembly of 1,000 components, but his probability of
accomplishing this without interruption is (1 — .01)1000 — 44 x 10-6. Moreover, he
will have assembled l/p=100 components, on average, before an interruption.

Summarizing these figures,

• Tempus makes just 1/111 as many assemblies as Hora.
• Tempus loses 100/5 = 20 times as much work as Hora per interruption.
• Tempus has to restart 0.9910 / .991000 = 20,000 times more frequently than Hora.

By multiplying these three ratios, we find that it takes Tempus about 4,000 times
longer than Hora to obtain one finished watch. No wonder his business failed!

Simon presents several other conclusions from his parable, two of which, are
particularly noteworthy. First, in order to master complexity it is crucial to super¬
impose structure upon it. Second, an eminently useful structure for this purpose is
a hierarchy, or tree. One of the most obvious features in biology is the hierarchical
organization of living creatures into stable “building blocks” — first by cells, then
by tissues, then by organs, etc. If we relate biological assemblages to those of the
watchmakers, it is strikingly clear that evolution works as well as it does because it
models Hora rather than Tempus.

In programming also, we are incapable of mastering complexity except by
decomposing it via structure. With respect to data structures, one can cite several
objectives of such an approach:

• We hope first of all to obtain a higher-level point of view that will help us
better understand and solve certain problems. Thus, to the undiscerning eye, a
heap might be just an array used in some strange fashion. But viewed in terms
of the notion of a priority queue, it is much more.

9.2 MASTERING COMPLEXITY 457

• By structuring data in coherent and meaningful fashion, we also hope to gain
some leverage for achieving reliability in our programming. In particular, a
formal treatment of data structures provides the opportunity of conjoining them
with other formal constructs that can facilitate proof of correctness.

• If we are successful in separating the issue of semantic specification from that of
implementation, then we have the opportunity to select at a later time which¬
ever representation is best for a given set of operating circumstances.

Mechanisms for attaining these objectives are the abstract data types (ADT’s)
discussed in Section 1.1.2. At the very least, an ADT specifies both the set of
permissible values that a variable of this type may assume and also the permissible
operations on instances of ADT’s. It may or may not include mechanisms for facil¬
itating proofs of correctness, or for automatically choosing an optimal
representation. A variety of methods have been employed for specifying ADT’s. In
the next section we characterize these methods, and then illustrate one of them in
brief detail.

f9.2.1 The Specification of Abstract Data Types

The earliest formal techniques for the specification of data types had some of the
flavor of the data encodings described in Section 9.1.2. In particular, data struc¬
tures were commonly modelled by graphs because of their generality [Earley 1971].
However, such schemes were primitive in the sense that they did not bundle a data
structure and its operations into a package. The language Simula was the first to
provide facilities for constructing such packages of data types and associated oper¬
ations, calling them classes [Dahl and Nygaard 1966]. As with Pascal, however,
the representation details are completely visible in Simula, so that there is no
protection against misuse of a data structure. Some examples of languages that do
provide facilities for defining and using protected ADT’s are Alphard via forms
[Shaw et al. 1977], CLU via clusters [Liskov et al. 1977], and Mesa and Modula
via modules [Geschke et al. 1977; Wirth 1985]. The provision for ADT’s as pack¬
ages in Ada is destined to have even more impact [U.S. Dept, of Defense 1983],
The methods of specifying data abstraction in these languages are explicit; that is,
the semantics of the new data type are modelled constructively, in terms of oper¬
ations upon more basic data types. With this technique, it is also straightforward to
incorporate axiomatic assertions for establishing proof of correctness. In cases such
as these, the method is termed axiomatic specification; the classic description of
such a process is Hoare [1972b],

From a purist viewpoint, the preceding constructive approach toward ADT’s is
just a modelling of desired behavior, not a theoretical specification of the desired
abstract properties. The explicit approach has some practical drawbacks as well,
related to the fact that the model is essentially a program. The intent of abstraction
is to reduce matters to easily comprehended units. But a program is likely to
become too long and to contain details that are irrelevant to the intended
abstraction. These facts, in conjunction with the combinatorial buildup of inter¬
action among the program parts, can soon thwart easy comprehension. Finally,

458 STRUCTURE and COMPLEXITY

such a program model of an ADT is likely to bias one’s perspective about how that

ADT should ultimately be implemented.

By appealing to some notions of abstract algebra, however, it is possible to
remove the “how” from specifications. By way of introduction, an algebra is char¬

acterized in terms of four entities:

1. A set, called the carrier of the algebra; typical carriers are the boolean values
True and False, the set of integers, the set of character strings, etc.

2. Various operations upon the carrier; typical operations for these carriers
include, respectively: AND, OR, NOT; addition and multiplication; concat¬

enation and comparison.
3. The presence of some distinguished constant elements from the carrier.
4. Some number of axioms relating the first three items.

Depending upon the richness of the carrier and operations and axioms, one can
obtain many different kinds of algebraic systems [Stanat and McAllister 1977],
Some examples are semigroups, monoids, groups, rings, lattices, fields, etc.

The axioms of an algebra for ADT’s usually have to express relations simul¬
taneously involving several carriers, as we will see momentarily.4 The corresponding
terminology is to refer to these different carriers as sorts', and so the algebraic spec¬
ification technique is in terms of a many-sorted algebra. There have been two major
expositions of algebraic specification. One is known as ADJ [Goguen et al. 1978],
and the other is known as ADT [Guttag 1977]. We employ the notation of the
latter to illustrate in Figure 9.4 the algebraic specification of a stack. It is a very
time-honored example for readers unfamiliar with these techniques (and a very
time-worn example for some other readers).

Let us examine Figure 9.4. You may wish to compare it with the informal
specification of a stack that was presented in Section 5.2.1. After the introduction
of the ADT that is being defined (via the label type), it has a declarative section (via
the label syntax) that specifies the domains and ranges of the five stack operations.
For example, PUSH takes as arguments a Stack and an element, and then returns a
Stack. The final section (via the label semantics) defines the “what” of Stack in
terms of relations, or axioms, that must hold between the various operations. In
both form and intent, the organization in Figure 9.4 can be likened to that of a
program with its heading, declarative part, and procedural part. An important
distinction, however, is that in this case the procedural part contains just functions,
and these functions have no side effects. The fact that the heading of the ADT
Stack is parameterized by element causes Stack to be a generic data type. As a
consequence, there is no necessity to have separate Stack ADT’s for each distinct
type of stackable item.

The crucial feature of the specification in Figure 9.4 is that it in fact defines an
algebra, of the many sorts: Stack, element, and Boolean. As such, it can be manip¬
ulated algebraically to derive proofs of theorems from the axiom-relations.
Moreover, the specification is concise, and any properties algebraically proved

4 There is an important distinction here. While both axiomatic specification and algebraic
specification incorporate axioms, the former yields a constructive definition, and the
latter yields a non-constructive one.

t9.2.1 THE SPECIFICATION OF ABSTRACT DATA TYPES 459

type Stack [element]

syntax
NEWSTK -+ Stack

PUSH (Stack,element) -> Stack
POP (Stack) -> Stack

TOP (Stack) -> element |J {UNDEFINED}
ISNEW (Stack) -> Boolean

semantics
declare stk: Stack; item: element;

POP (NEWSTK) = NEWSTK

POP (PUSH (stk,item)) = stk

TOP (NEWSTK) = UNDEFINED

TOP (PUSH (stk,item)) = item

ISNEW (NEWSTK) = TRUE

ISNEW (PUSH (stk,item)) = FALSE

Figure 9.4 Algebraic Specification of a Stack

about it do not depend in any way upon extraneous details of representation. The

idea here is first to prove the correctness of the simple, abstract specification. Then,

when the abstract description is mapped to a concrete one, all that is required for

establishing the correctness of the resulting implementation is to demonstrate that

this mapping is a homomorphism that preserves the necessary algebraic properties.

The details of the agenda described in the two preceding sentences can become

fairly complex, but they can also be partially automated [Guttag et al. 1978a]. The

essential point is that such an agenda factors the proof-of-correctness problem into
two stages, and this constitutes a significant advantage.

This algebraic specification gives us a set of axioms rather than a model. In all

fairness, however, it would be hard to imagine how these axioms were originally

conceived, other than through the imagery of a model. Although there is no bias of

representation, there is one in the choice of identifiers; for example, the terms POP,

PUSH, etc. strongly suggest the intent. Moreover, the stack is just about the

simplest data structure that we can define in this manner. If we were to illustrate

the technique with a more complicated structure, such as a BST, and if the identifi¬

ers were to be nonsensical, then it would be a much harder task to understand the

“what” of the structure. In short, systems of axioms have been termed “systems

designed to reason about not to reason in”; finding the right set of axioms for spec¬

ifying an ADT can require a great deal trial and error. Note that on the one hand,

the absence of a model is one of the important features of this technique; on the

other hand, the implementor of such an ADT then has no guidelines as to how to

proceed, which may be a source of difficulty in some cases.

In addition to the practical considerations just discussed, there are some theore¬

tical issues relating to the use of algebraic specifications. In any axiom system we

must be concerned with completeness, consistency, and power. A set of axioms

about an ADT is complete if any true statement characterizing the ADT can be

460 STRUCTURE and COMPLEXITY

derived from the axioms; the set is consistent if it is impossible to derive contradic¬
tory statements from the axioms. In practice, the issue of completeness is the more
pressing one. As an example, does the given set of axioms completely specify the
behavior of the ADT under various boundary conditions? For example, what is the
proper interpretation of applying a POP to an empty stack? Also, our specification
in Figure 9.4 really needs to be expanded to deal with Stacks of bounded size,
imposing another boundary condition. Lastly, with regard to power, we find that
some ADT’s can be completely specified only via the introduction of axioms
employing hidden operators, or even hidden sorts. These hidden entities are not visi¬
ble or accessible to the user of the ADT, but the specification axioms are necessarily

incomplete without them.

In this section, we have been concerned simply with introducing some of the
increasingly important concepts about data structure specification. For a more
general survey of specification techniques consult Liskov and Zilles [1975], For
illustrations of the algebraic specification of a wide variety of ADT’s — including
stacks, queues, binary trees, BST’s, sets, and strings — consult Guttag et al.
[1978b]. Finally, for a good survey of all aspects of the issue of data abstraction,

see Ford [1979].

9.3 CHOICE OF DATA STRUCTURE IMPLEMENTATION

We learned in the preceding section of the many advantages gained by describing
the solution of a problem at a very high level, incorporating abstract data struc¬
tures. Work in this direction will very likely cause a substantial transformation in
what it means to program in years to come. However, two developments must take
place before such techniques come into widespread use. We have alluded to one of
them, the automation of some of the logical processes involved in deriving a specifi¬
cation. It is also important that computers assist in automatically choosing
representations that will yield efficient overall programs. The automation is desir¬
able both to relieve the burden on the programmer, and to bypass the potential, for
human clerical error. Before describing the relatively few results in automated
selection, let us consider how people deal with the matter.

To begin with, this concern does not arise for the majority of FORTRAN users.
They operate with only the most basic data structure, the array, and usually have
no reason to employ anything other than the standard representation via sequential
storage. As the logical data structures become more complicated, however, possibil¬
ities for representation become more numerous. And when a problem requires
several logical data structures, each with its choices for representation, we have the
familiar phenomenon of combinatorial explosion in ensuring that they interface
properly. At present it falls upon the user to sort out these possibilities. This is
very much an art, and explains why it may be profitable to write a book about
Data Structures. One important point relates to a generalization about program¬
ming. It is often possible to trade space for time. As the following examples
illustrate, one must be very careful in applying that generalization to a choice of
data structure representation:

9.3 CHOICE OF DATA STRUCTURE IMPLEMENTATION 461

• In deciding to use a linked list rather than an array to represent a dynamic

ordered sequence, it is true.

• In deciding to use a bi-directional list rather than a simple linked list, it is false

at the level of list operations — that is, both space and time increase with the

former - but very likely to be true at the higher level of the problem that is to

be solved.

• In using one of the representations of Section 2.8 for a very sparse matrix, it is

absolutely false; the sequential allocation representation method can take

orders of magnitude more space and time.

• There are so many ways to represent trees that we simply leave it to the reader

to sort out the possibilities and their consequences.

• The two principal representations for a graph are the adjacency structure and

the adjacency matrix. Applied to the extremes of graph density, the generaliza¬

tion is false; but there are very likely some intermediate situations where it is

true. By the way, you should feel pleased if you recognize that this is basically

the same statement as the earlier one about sparse matrices.

One of the very first efforts in automated choice of representation took the

approach of incorporating just one standard possibility for each structure, and then

applying some of the techniques of data flow analysis (see Section 7.4.5.3) to opti¬

mize the resulting program [Schwartz 1975]. A later, more ambitious effort

employed a library of alternative possibilities for each logical data structure, and

then attempted to analyze the user’s high-level program to ascertain which combina¬

tions of representations would most likely yield the best performance. The selection

program depended upon a variety of heuristics that in many cases achieved reason¬

ably good results. In many cases, however, the heuristic would guess incorrectly

about the intent of the user program, and then the quality of the final program

could be extremely bad [Low 1978]. By using a more formal approach, in which

the selection program is allowed to better “understand” the user program, there is

hope of avoiding such bad outcomes [Rowe and Tonge 1978].

The success of automated efforts at selection ultimately depends upon being

able to use one of three means for extracting the intentions of a user program. The

most desirable possibility is for the selection program to be able to make a correct

analysis on its own, but this appears to be extremely difficult. In lieu of or in

conjunction with analysis, there is the option that the user interactively assist in the

process. Unfortunately, the user often has either no ideas or incorrect ideas about

what is really likely to happen. The last option is to rely upon test runs employing

alternative representations. This is likely to be unsatisfactory because the test data

may predict poorly the results with typical data, and also because of the combina¬

torial growth in cost of cases to be tried. In fact, it may be unwise to beat one’s

head against the issue of having one best representation, and then having to

compute numerous conversions to interface properly. Rather, it may be much more

efficient at times to have redundant representations that incorporate more than one

view of a structure, and do not require any conversions.

462 STRUCTURE and COMPLEXITY

9.4 REFERENCE TO TERMINOLOGY

algebra, 458
algebraic specification, 458
axiomatic specification, 457

f beap, 453
t bi-parental heap, 453
t carrier, 458

class, 457
cluster, 457

t completeness, 459
f consistency, 460
f embedding, 451

form, 457

f guest structure, 451
f hidden operator, 460
f hidden sort, 460
f host structure, 451
f implicit data structure, 453
f many-sorted algebra, 458

module, 457
package, 457

f quad tree, 452
| rotated list, 454
t tombstone, 450

10

SEARCHING

“Seek not the things that are too hard for thee,
Neither search the things that are above thy strength.”

Ecclesiasticus 3: 21

The notion of searching is familiar to us both in everyday life and from earlier
topics in this book. In fact, we have encountered in previous chapters three very

different paradigms of searching:

1. The most common use of the term is that we have a set of records, and that
one field of each record has a value (the key) that uniquely identifies it. We
are then presented with an input key value, for which we are to find the corre¬
sponding record. We have seen such a set of values maintained as an array in
Section 2.1.2 and also as a linked list in Section 4.2.1.

2. A different interpretation is that we wish to search for a value that optimizes
some criterion function, possibly also subject to some constraint function(s).
In particular, we saw in Section 6.8 the use of breadth-first search, depth-first
search, and other techniques for exploring solution trees.

3. We encountered still another interpretation when we discussed pattern match¬
ing in strings in Section 8.5. In its simplest form, that of looking for the
occurrence of pattern as a substring of text, this does not appear to be signif¬
icantly different from the first paradigm. However, as the specification of the
pattern becomes more and more general in nature, as in the case of a regular
expression or a sentence in a context-free language, we find that the relatively
simple idea expressed by the first paradigm has grown to become a very

powerful concept.

Search can also be understood in a very narrow sense, as exemplified by using
an index value to retrieve a desired value from an array. Indeed, as we will see
when we study hashing, this is not a completely ridiculous interpretation. In addi¬
tion to encountering imprecision relative to the paradigm of searching, we also
encounter it with respect to the domain of searching. We speak at various times of
searching a table or a file or a database. What distinctions are intended in these
cases? The conventional sense of these three search domains is as follows:

464 SEARCHING

• A table of data is an ephemeral set of values held in main memory during the
course of a calculation, with just one key field per item.

• A file of data is a permanent set of values that resides in secondary memory, so
that it must be retrieved in order to be used. There is usually just one key field

per item.
• A database is a set of related files in secondary memory. The records typically

have many key fields per item and many items for each key value; so retrieval
is no longer a matter of finding the single record whose single key matches the

given key.

Most of this chapter will be concerned with the first search paradigm, of look¬
ing for the occurrence of a key in a table of data (but not necessarily an array!) in
main memory. Implicitly, every item is a record with the key as just one field, but
we will almost always deal with just keys, for the sake of simplicity. We will
develop this paradigm of searching under four different categories: linear data
structures, tree structures, hash tables, and digital structures. At the end of this
chapter, we will allude briefly to still other searching paradigms; however, we will
not really be finished with the topic of Searching until we study Secondary Memory
in Chapter 12.

10.1 THE ISSUES INVOLVED

As we confront the task of searching, we find that there are a substantial variety of
choices among interrelated data structures and algorithms. Depending upon the
circumstances, almost every one of the methods that we will discuss can be the best
one for a given situation. We will make some comparative comments as we proceed
through the various methods, and then present an overall comparison in the Over¬
view. The factors to which we have just alluded are principally:

• How large is the table?
• What action is required if the search succeeds? if it fails?
• Which actions are required against the table - look-up? insertion? deletion?
• Is there any a priori knowledge of the relative likelihoods pt for searches on the

various keys Kp.
• Is there a possibility of equal keys?
• For a given method, what is its efficiency?

• For a given method, what other criteria are important for deciding when it is
appropriate to use?

Situations in which it it necessary to allow for equal keys tend to be less
common. They are also contrary in spirit to the first paradigm, with which we are
mostly concerned. So we will ignore that possibility, obtaining the welcome bonus
that our algorithms are thereby relieved of the clutter that equal keys sometimes
introduce. A comparatively trivial issue is whether the keys are alphabetic or
numeric in character; we will see examples of both types. The bottom line in most
of our discussions will be the efficiency of a given method, as measured by the aver-

10.1 THE ISSUES INVOLVED 465

age number of comparisons required between key values. We will refer repeatedly
to the two quantities:

CS„ - the average number of comparisons in searching a table of size n when
the search succeeds;

CFn — the average number of comparisons in searching a table of size n when
the search fails.

In order to obtain rigorous answers to questions concerning efficiency, we will need
the material in the next two sections, dealing with harmonic numbers and with path
length properties of trees.

10.1.1 Harmonic Numbers

The harmonic series defined by

h= 1+L + L + ... + -I + ... (io.i)

is a divergent one that is frequently encountered in mathematics. The partial sums
given by the first n terms of Eq. 10.1 are known as harmonic numbers Hn. They
occur in diverse applications. As an example, suppose that we are recording a
sequence of random independent values about some phenomena, such as the heights
of adult persons passing by. How many times should we expect to see someone
taller than anyone seen previously? The first person is automatically taller than any
predecessors, the second person is the taller of the first two with probability 1/2, the
third person is the tallest of the first three with probability 1/3, ... , and the nth
person is the tallest of the first n with probability 1 In. So the total number of cases
of “tallest so far” when observing n random independent values is given by H(ri).
In more mathematical terms, the average number of left-to-right maxima in a
sequence of n elements is given by Hn; and the same argument can be applied for
observing minima rather than maxima. Now recall that the canonical represen¬
tation of a permutation P in cycle notation (see Section 1.2) is itself a unique
parenthesis-free permutation Q, with one cycle in P for every left-to-right minimum
in Q. So as one surprising and rewarding consequence of our knowledge of
harmonic numbers, we learn that the average number of cycles in a random permu¬

tation on n elements is given by Hn.

Although the harmonic series diverges, it does so very slowly. (Yet remarkably,
if each term r1 in Eq. 10.1 is replaced with i~s for any 5 > 1, then the corresponding
series converges!) Just how slowly the values of H„ diverge is conveyed by the

following data [Boas and Wrench 1971]:

H„> 5 only for n > 83
Hn> 10 only for n > 12367
Hn > 15 only for n > 1835421
Hn > 20 only for n > 272400600

466 SEARCHING

Fortunately, if we need the value of Hn for some large n, we can approximate it

quite well by

Hn = In n+ y +
2 n \2n

+
120 n

+ (10.2)

[Knuth 1973a], where y — 0.57721 ... is Euler’s constant. Thus, Hn — 0(In n).

10.1.2 Path Length Properties of Trees

We will commonly represent the search process by a binary tree (even in some cases
where there is no explicit tree structure) such that each node denotes a distinct
search outcome. An important notion is that of an extended binary tree, wherein
leaves are appended wherever possible to the nodes of the original tree. The
original nodes are then called internal nodes (denoted by circles), and the appended
nodes are called external nodes (denoted by squares). The resulting tree is a strictly
binary one, with each of the original nodes having degree two. This process is illus¬
trated in Figure 10.1, with a binary tree in (a) and the corresponding extended tree
in (b). The original nodes now constitute n internal nodes, each with two non-nil
pointers, and there are x external nodes. Since the 2n pointers point to n + x — 1 of
the nodes in the extended tree, we must then have x — n + 1. Extended trees have
many uses (see Sections 6.7.1 and 8.2.4); their significance in this chapter is that the
external nodes will be used to denote distinct unsuccessful outcomes of searches.

(a) (b)

Figure 10.1 Extending a Binary Tree

An important notion in any tree is that of path length, which is the sum of the
lengths of the paths from the root to each node. More particularly, we will be
speaking of internal path length I and external path length E in binary trees, where

10.1.2 PATH LENGTH PROPERTIES OF TREES 467

the sums are restricted to internal and external nodes, respectively. Thus, in Figure
10.1(b), we find

7=2x1+3x2+1x3—11, and £=1x2 + 5x3 + 2x4 = 25

An important relation between these two quantities for binary trees is

E = I+2n (10.3)

To see this, suppose that we convert an external node at level k to an internal node
at level k and two external nodes at level k + 1, as shown in Figure 10.2. The net
change in E is — k + 2 x (k + 1), and the net change in 7 is +k; thus the net change
in (E - 7) is +2, and Eq. 10.3 is easily established by induction.

Figure 10.2 Change in Path Lengths, / and E

For our purposes, we will be concerned with the minimum, average, and maxi¬
mum values of the path lengths for various binary trees having n internal nodes.
The maxima, over all binary trees, are readily seen to occur when the tree is
completely degenerate — that is, when each internal node has at least one external
node as a child. The precise average values depend upon the set of binary trees
under consideration. But assuming that all successful outcomes are equally likely
and likewise that all unsuccessful outcomes are equally likely, then these averages
correspond, in fact, to our parameters CSn and CFn. In order to compute the
former value, we need to include the cost of the comparison at the root for each
internal node and divide by n\ in the case of failure, we have simply the average
over the n + 1 external nodes. That is, for equally probable situations,

CS„ = -t±+ and (10.4)

Moreover, combining Eqs. 10.3 and 10.4, we find that

CS„=(l +7r)CT»-1 <‘0.5)

When do the minimum values occur? A very convenient characterization is that
the minimum path lengths will occur for just those trees where the external nodes
all lie on either one level or two adjacent levels (see Exercise 10.4), resulting in a
completely balanced binary tree (but not necessarily a complete binary tree). In such
a case, with j of the x external nodes on level k — 1 and x — j of them on level k, we

468 SEARCHING

must have j x 2~k+l + (x -j) x 2~k = 1 (see Eq. 6.18), whence x +j = 2k. Since also
x < 2k < 2x, we have shown that k = L lg x = L lg {n + 1); thus, a binary tree on n
internal nodes and with minimum path length must have height L lg (n + 1).

10.2 SEARCHING LINEAR DATA STRUCTURES

The two types of (unrestricted) linear data structures that we have studied are one¬
dimensional arrays and linked lists, and searching was illustrated with both of them.
In the array case we dealt with an unordered sequence of keys, and in the linked list
case we dealt with an ordered sequence of keys. In the three sections that follow,
we will reexamine these two basically different situations in some detail. We
consider first the case of unordered keys, then a workhorse method for ordered
keys, and finally some other techniques that can be used with ordered keys.

10.2.1 Sequential Search

We saw two versions of sequential search in Section 2.1.2, SEARCH_A and
SEARCH_B (Algorithms 2.1 and 2.2). Although a pragmatic modification causes
the latter to have a significantly better constant factor than the former, the two
algorithms have the same computational complexity. What is that complexity? Let
us assume for now that the probabilities pt of searching for the keys Kt are all equal
to lIn, for a table of size n. Then the quantity CSn for successful search will be n/2,
on the average; however, the quantity CFn for unsuccessful search must always be
n. There are several avenues for improving upon this. Presuming still that the pi
are all equal, and in the expectation that unsuccessful searches are common, then
we are somewhat better off if the keys are ordered, as in SEARCELLIST (Algo¬
rithm 4.1) in Section 4.2.1. This allows us to always terminate the search for K as
soon as we reach a key K(such that Kt > K. In other words, CFn will now have an
average value of n/2 also. However, note that the worst case still requires n
comparisons, for both success and failure, so that sequential search is 0(n). We will
presently see a variety of better methods for taking advantage of ordered keys.

On a different tack, if the probabilities p, are not equal, we can find other
avenues for improvement. Suppose that the values of the p, are known, and that
they do not vary with time. Then we can optimize matters by arranging our
sequence of keys from most probable to least probable (see Exercise 10.7). In other
words we have, after relabeling them, KUK2,..., Kn such that px>p2> - > p„, and
this minimizes the expected value

CSn = \xp]+2xp2-\-h n x pn (10.6)

The relevance of this approach is apparent from Zipf’s Law, which demonstrates
repeatedly the validity of the following observation with respect to natural phenom-

10.2.1 SEQUENTIAL SEARCH 469

ena: The nth most likely value seems to occur with probability proportional to 1/n
[Zipf 1949],1 For such data, we would have

P\ = y. P2 = f. - > Pn = jr (10.7)

where c = l/Hn (the reciprocal of the nth harmonic number). This combined with

Eq. 10.6 leads immediately to CSn = njH„. Since Hn — 0(In n), we see that pre¬

ordering of data that satisfies Zipfs law speeds up search by a factor of (lnn)/2.

Similar improvements can be noted for other probability distributions. In partic¬

ular, there is another empirical observation known as the 80-20 rule: 80 percent of

the activity deals with 20 percent of the data, with the same rule applying recur¬

sively to the data in that 20 percent, etc. [Heising 1963]. For a set of keys
conforming to this statistic and pre-ordered accordingly, it can be shown that
CS„ = 0.122n [Knuth 1973b],

Although the approach just described can work very well for applications with

known and static probabilities, it does not help for those cases where the p, are

unknown in advance or where they vary in time. For these dynamic probabilities,

we can employ a self-organizing list, wherein the chronological sequence of requests
causes the keys to be continually reordered in the list:

• For example, when the key Kt is retrieved, we can employ the move-to-front

heuristic, moving Kx to be Kx and shifting Kx.. Kl_l to the rear, in anticipation

that Kt is likely to be a target again fairly soon.

• A less drastic strategy is the transposition heuristic, whereby Kt is swapped with
its predecessor Kx_x in the list.

The transposition strategy has been shown to have some theoretical advantage. If

there is no correlation among the requests, it yields asymptotically fewer compar¬

isons than any other reorganizing heuristic [Rivest 1976a]. However, it is fairly
common for there to be such correlation, leading to situations where move-to-front

yields better performance. A good example of this is seen with the pattern of refer¬

ences to variables in a local section of a program. An extreme example where

transposition performs poorly is the case of several items being permuted repeatedly

near the end of the list, with none of them making any progress toward the front of

the list. Another problem with the transposition heuristic is that its superiority is

asymptotic. Convergence to asymptotic behavior may be slow, and a more mean¬

ingful measure may be amortized performance, wherein the cost is averaged over the

actual sequence of requests. From this perspective, the move-to-front heuristic will

often be more effective, since it may converge more quickly toward a low-cost

ordering of the list. Thus, we see that there are several reasons for the move-to-

front heuristic to be preferred in practice [§]. In comparing these two heuristics,

however, we cannot overlook the issue of whether the sequential search is being

conducted in an array or in a linked list. With a linked list, either strategy is cheap

i Zipf found this to be true of words in natural language, population figures of cities, etc.
Also, the most common words tend to be the shortest ones, yielding some minimization

of effort - that is, built-in minimal-redundancy.

470 SEARCHING

and easy; with an array, transposition is still cheap, but move-to-front has 0(n)

complexity.

Although the search methods in the remainder of this chapter will have lower
complexities, they will usually have higher constant factors. Therefore, for small
tables, and particularly where the search probabilities are unequal, one of the tech¬

niques described in this section may often be the method of choice.

10.2.2 Binary Search

We consider now the case in which there is an ordered set of keys in an array. In
applying sequential search, by key comparisons, to such an array, every comparison
divides the table into one element that may or may not be the desired value, and the
remainder of the table that may contain the desired value. A much more effective
technique is to use divide-and-conquer, such that each comparison either locates the
desired value or else splits the remainder of the table into two halves, only one of
which need be searched. This approach, known as binary search, is comparatively
simple and is one of the truly venerable computing techniques. Yet, remarkably,
even experienced programmers seem to have trouble in getting it right the first time.
You are encouraged to try to do so before proceeding.

In this algorithm for searching, we once again use a function that returns either
the location of the sought-after key value, or else a zero to signify that it is absent.
Our function in this case is SEARCH_BINARY (Algorithm 10.1), employing three
local variables: lo and hi delimit the subrange of the array where the input key
must occur if present, and i is computed (using integer division, div) as the
midpoint of that range. The algorithm actually makes two comparisons for every
iteration, which affects the constant factor but not the complexity class; in some
circumstances, this can be finessed by using a 3-way compare instruction. Suppose
now that we invoke SEARCH_ BINARY to search for 93 in the table of Figure
10.3; the corresponding trace of the variables lo, hi, i, tbl [z] is shown in Figure
10.4(a). Similar trace sequences for input arguments of 58 and 20 are shown in (b)
and (c) of the figure. Note the importance of the while condition in the case of
key = 20; because this value is not in the table, the condition lo > hi ultimately
causes the search to terminate.

/ tbl [/] /' tbl [/] i tbl [/] / tbl [/]

1 3 8 33 15 61 22 87
2 8 9 34 16 62 23 89
3 11 10 39 17 69 24 93
4 15 11 47 18 74 25 96
5 17 12 50 19 78 26 97
6 24 13 52 20 81
7 28 14 58 21 83

Figure 10.3 Binary Search Data

10.2.2 BINARY SEARCH 471

function SEARCH_BINARY (key: integer; tbl: table): integer;

{given the key, the function returns the value 0 if it is not in
the table, and returns the index of the key in the table if it is}

label 1;

const n = {size of the table}

type table = array [1 .. n] of integer;

var i,hi,lo: 0 .. n;

begin
SEARCH_BINARY := 0;
lo := 1; hi := n;

while hi >= lo do begin
i := (lo + hi) div 2;
if key > tbl [i] then

lo := i + 1
else if key < tbl [i] then

hi := i - 1
else begin

SEARCH_BINARY := i;

goto 1;
end;

end;
1:
end;

Algorithm 10.1 SEARCH_ BINARY

lo hi / tbl [/]

1 26 13 52
14 26 20 81
14 19 16 62
14 15 14 58

lo hi / tbl [/]

1 26 13 52
1 12 6 24
1 5 3 11
4 5 4 15
5 5 5 17
6 5 — —

lo hi / tbl [/]

1 26 13 52
14 26 20 81
21 26 23 89
24 26 25 96
24 24 24 93

(a) key = 93 (b) key = 58 (c) key = 20

Figure 10.4 Trace of Algorithm SEARCH_BINARY

Binary search is sometimes called logarithmic search because it has complexity
0(lg n). We can see this easily by drawing the binary tree traced by the search
process for various arguments, as in Figure 10.5. The logarithmic height can be
established by an inductive argument on the subrange size, hi — lo + 1. The
external nodes are not drawn, but adding them shows that the tree is completely
balanced, and thus has the minimum possible path lengths. By evaluating / and E

472 SEARCHING

for this tree and applying Eqs. 10.4, we find that CSn = 4.00 and CFn = 4.81. In

the general case and with the assumption that all keys are equally likely to be

accessed, it can be shown that the average numbers of comparisons for binary

search are approximated by

CSn = (l + lg (n + 1) - 1 , and CFn = lg (n + 1) (10.8)

The imprecision in these formulas is slight (« 0.086); a more precise treatment can

be found in Reingold and Hansen [1983]. Eqs. 10.8 do more than confirm that

binary search on an ordered table has average performance of lg n. With sequential

search, the worst case is n, twice its average cost of n\2. The worst case with binary

search corresponds to failure, for which the cost is only slightly worse than the aver¬

age performance!

Figure 10.5 Tree Followed by SEARCH_BINARY

The principal disadvantage of binary search is that it is ill-suited to a table

where the contents must be modified by insertions or deletions. This is because the

method depends upon the table being in an array, so that index arithmetic can be

performed; and both insertion and deletion may require that half the table (on the

average) be shifted in order to open or close a hole in the array. Thus, this method

would work very well for a telephone directory that is issued once a year, but would

be quite unsuitable for the guest listing in a large hotel. In most other respects, if

insertions and deletions are not an issue, binary search is a very good method.

110.2.3 OTHER METHODS FOR ORDERED TABLES 473

f 10.2.3 Other Methods for Ordered Tables

For some computing machines, the division step in each iteration of binary search

may be a source of significant inefficiency. With Fibonacci search, it is possible to

avoid this and derive successive sub-intervals entirely by subtraction. Just as binary

search is most easily understood in terms of completely balanced trees, Fibonacci

search is most easily understood in terms of Fibonacci trees. Each such tree

contains Fn_x nodes, and has as left child a Fibonacci tree with Fn_x — 1 nodes and

as right child a Fibonacci tree with Fn_2 — 1 nodes. As an example, the Fibonacci

tree with 20 nodes is shown in Figure 10.6. Each new subrange can be computed

from that of its parent by using the two properties:

1. The difference between a node and its two children is the same (and is a Fibo¬

nacci number), both to the left and to the right.

2. If the difference between a node and its parent is Fn, then the next difference on

the left is Fn_x, and the next difference on the right is Fn_2.

Analysis of Fibonacci search shows it to require only about 4 percent more compar¬

isons than binary search on the average (see Exercise 10.11). Because the subranges

are of unequal sizes, however, Fibonacci trees are less well balanced, and the worst-

case performance is severely degraded. In fact, although the average cost of

Fibonacci search is only 4 percent greater than that of binary search, the worst case

can have a cost of 44 percent more comparisons, as we will see in Section 10.3.3.1.

Stated in other terms, we have already seen that the worst case of binary search is

not significantly worse than the average case; in Fibonacci search, however, the

worst case is 40 percent worse than the average case [Overholt 1973].

Figure 10.6 A Fibonacci Tree

474 SEARCHING

Human beings learn to be quite efficient in searching, as when looking for a

word in a dictionary, or for a name in a telephone book. Clearly, we use a method

more sophisticated than binary search. In fact, we employ a predictive element,

basing our next search location upon how nearly correct the previous search

location was. We can attempt the same thing with an algorithm, leading to the

method of interpolation search. If the current search interval in an ordered table is

lo .. hi, then a good guess as to the location of an input key K is given by

(10.9)

(The use of (hi - lo - 1) rather than (hi - lo) causes the search to converge better

near the boundaries.) Thus, for an input value of K = 93, interpolation search

would first examine location

in Table 10.3, as compared to location 13 on the first trial with binary search.

Interpolation search has been demonstrated to have average complexity

0(lg lg n) [Perl et al. 1978]; this demonstration is fairly complex and not readily

apparent. However, imagine that we are performing ordinary binary search,

wherein the path length is 0(lg n), and that we then discover a way to perform

binary search on the correct path for finding the input key - for an overall

complexity of 0(1 g lg n)\ It’s not that simple, since we don’t know the correct path

until after we have found the key. Nonetheless, this “quadratic” view of binary

search provides a useful insight about interpolation search [Perl and Reingold

1977]. As a standard against which to measure all other methods for searching an

ordered table, interpolation search is optimal if the distribution of key values is

fairly uniform [Yao and Yao 1976]. This latter result is reasonable because, if the

distribution were absolutely uniform, then interpolation would always compute the

exact location on the first try.

Unfortunately, the distribution of key values is usually far from being uniform,

with the unpleasant result that the worst-case behavior of interpolation search is

0(n). (This can be overcome by employing alternate cycles of binary and interpo¬

lation search.) Another consideration about this method is that its complexity has a

large constant factor because of the overhead of the interpolation computations.

Consequently, the table has to be very large before this technique is significantly

better than binary search. Despite these rather discouraging remarks, interpolation

search is sometimes worth the trouble. This is particularly so when it can save even

one access to secondary memory, or when the keys are such that the basic cost of a
comparison is high.

10.3 SEARCHING TREE STRUCTURES 475

10.3 SEARCHING TREE STRUCTURES

In the preceding section, we found that thinking of binary search and Fibonacci
search in terms of trees greatly enhanced our understanding and analysis of them.
The principal drawback with these methods was their inflexibility with respect to
insertions and deletions. Thus, it is very plausible to think of employing explicit
tree structures in order to obtain flexibility. There is another trade-off as well. In
binary search and Fibonacci search, consider how often we recompute the next left
child or right child, even though they are always the same for a given table.
Although the explicit tree structure costs more in terms of space for pointers, it
saves the time spent in blindly repetitive address calculations.

Felicitously, we are already familiar with many of the basic ideas about BST’s
from our study of them in Section 6.6.1. Our first task at this point is to extend
those ideas by considering the problem of deletion from BST’s, and then to analyze
the efficiency of random BST’s. After that we will look for improvements upon the
basic scheme. Analogous to sequential search, there are methods appropriate to
static trees wherein the keys have unequal probabilities, and where insertion and
deletion are not an issue. In a different cateory, there are a variety of methods for
dealing with the potential imbalance in trees that vary dynamically.

10.3.1 Random BST’s

In Section 6.6.1 we saw how to “grow” BST’s, adding new nodes as leaves in such a
manner that we could at any time retrieve all the nodes in the tree in proper
sequence by performing an inorder traversal. The function for doing this,
BST_INSERT (Algorithm 6.6), has a great deal of symmetry and is fairly simple.2
When we consider how to delete a node from a BST, we find that it is a bit more
complicated. We are constrained to adjust the pointers in the tree in such fashion
that an inorder traversal of the reduced BST will encounter the remaining nodes in
proper sequence. In fact, there are two ways to do this - by “promoting” either
the predecessor or the successor of the node to be deleted; what we mean by
promoting will become clear shortly. Note that as human agents we can easily use
an overview to select whichever is easier in the particular circumstances. However,
it would be uneconomical to embody this approach in a machine algorithm. We
will elect to present a deletion algorithm that proceeds by first finding the inorder
successor of the node X to be deleted. Where is the successor of A? A little
thought shows that we must go right from X and then proceed as far left as we can
until we find a nil left pointer. After we start to travel leftward, any node Y that
we encounter with a non-nil left pointer cannot be the successor of X, since there

then exists some other node Z that follows X but precedes Y.

2 Recall that it is more than just an insertion algorithm; it is really a search algorithm
that automatically performs an insertion if the input key is not already in the tree.

476 SEARCHING

7

(a) Original BST

7

(c) Deleting 29

24 24

(d) Deleting 5

47

50

7 13 42

(e) After 5 Deleted

Figure 10.7 Deletion from a BST

In order to illustrate the deletion process, let us imagine that we have built the
BST shown in Figure 10.7(a) as a result of the following sequence of insertions:

24 47 29 5 11 16 31 13 27 3 8 50 6 42 7

Now there are actually two very simple cases, corresponding to when one (or both)
of the pointer values in a node X is nil; in those cases, we simply cause the father
of X to point to the only child of X. Thus, suppose that we wish to delete either 16
or 31; the changed pointer values for these two deletions are shown by the dashed
lines in Figure 10.7(b). If we look now at the procedure BST_DELETE (Algorithm
10.2), we find those cases represented and dealt with by the first four lines in the
body of the code. When the node to be deleted has two non-nil pointer values,
however, we must find its successor, as described previously. For the case of delet-

10.3.1 RANDOM BST’S 477

ing 29 from (a), we make the adjustments illustrated in Figure 10.7(c); here,
tptr].left = nil in BST_DELETE, and so the corresponding if statement is not
executed. The most complicated possibility is illustrated by the deletion of 5 from
(a), for which the necessary adjustments are illustrated in Figure 10.7(d), and the
resulting BST is completely redrawn in (e). In this case, the variable tptr succes¬
sively takes the values 11,8,6 until a nil left pointer is encountered, with the variable
sptr then having the value 8. Note that the input argument nptr is called by refer¬
ence, since it is one of the pointer variables that must be reassigned.

procedure BST_DELETE (var nptr: link);

{nptr points to the node to be deleted from the tree}

type link = }node;
node = record

key: {the value to be used for ordering}
left: link;
rite: link;

end;

var sptr,tptr: link;

begin
if nptr}.left = nil then

nptr := nptr}.rite
else if nptr}.rite = nil then

nptr := nptr}.left
else begin

tptr := nptr}.rite;
if tptr}.left <> nil then begin

repeat
sptr := tptr;
tptr := tptr}.left;

until tptr}.left = nil;
sptr}.left := tptr}.rite;
tptr}.rite := nptr}.rite;

end;
tptr}.left := nptr}.left;
nptr := tptr;

end;
end;

Algorithm 10.2 BST_DELETE

BST’s and their associated algorithms are very convenient for searching,
insertion, and deletion. How efficient are they? In the case of binary search, the
completely balanced character of the implicit search tree guarantees logarithmic
behavior. For dynamically varying BST’s, there is the hazard that they may
become very imbalanced. Fortunately, the imbalance is not likely to be bad, in a
probabilistic sense. We will show that BST’s grown with random insertions behave

478 SEARCHING

only 39 percent worse than completely balanced trees. For the case of deletions,
only partial analyses exist, but we will see that these are reassuring, nonetheless.

We assume that CSn and CFn are average values over all possible random BST’s
with n nodes - that is, over all n\ orderings of the input keys. The simplest way to
establish the result for the case of random insertions is to note that the number of
comparisons when finding a key must be one more than the number of comparisons
when it was first inserted. Averaging these over CF0 (for the first node inserted),
CF\ (for the second node inserted), ... , CFn_x (for the last node inserted), we have

CFn + CFj + ••• + CFn_ j
cs„=i+ —-4-— (10.10)

Combining this with Eq. 10.5 we get

(n + 1) CFn = In + CFq + Ciq + - + CFn__x (10.11)

The next step is to subtract from this equation the corresponding equation with

(n — 1) in place of n, yielding the recurrence equation

(n + 1) CFn - nCFn_i = 2 + CFn_x (10.12)

which is readily solved as

CF„ = CF„_, + = 2if„+1 - 2

Finally, combining this with Eq. 10.5 again, we have

cs„ = 2(1 + A)i/„ - 3

(10.13)

(10.14)

Since Hn is approximated by In n (see Eq. 10.2), then CS„ is approximated by 2 In n,
or about 1.386 lg n. In other words, search in a BST grown by random insertions
will, on the average, cost just 39 percent more comparisons than for one that is
completely balanced. This is all the more remarkable when we learn that if the
average is taken over all binary trees, rather than over all BST’s, the average pdth
length does not grow as In n, but rather as nM2 [Knuth 1973a]!

One of the earliest derivations of these results about BST’s and about the path
length properties in Section 10.1.2 is by Hibbard [1962]. Hibbard also established
the result that a random deletion from a random BST leaves a random BST. In
order to clarify the meaning of this last statement, we need to define what is meant
here by random. Although we speak of a set of distinct keys {KUK2,..., Kn) we can
just as well, for the present purpose, speak of the integers Sn = {1,2,...,«}. The
trees formed by insertion and deletion operations on the {AT,} will be isomorphic to
the trees formed by insertion and deletion operations on permutations of Sn. In this
manner, the problem of dealing with random trees is converted to the problem of
dealing with random permutations (see Section 6.7.1). As an example, if we
compute the 24 BST’s generated by S4, we find the 14 distinct trees of Figure 10.8,
with frequency of shapes: 1, 1, 2, 1, 1, 3, 3, 3, 3, 1, 1, 2, 1, 1. We can reverse the
point of view and decide about the randomness of any set of BST’s on n nodes by
comparing their shape distribution with that obtained by growing all n\ BST’s on Sn.

10.3.1 RANDOM BST’S 479

1,2, 3, 4 1,2, 4, 3 1,3, 2, 4 1,4, 2, 3 1,4, 3, 2
1,3, 4,2

2, 1,3,4
2, 3, 1, 4
2, 3, 4, 1

2, 1,4,3
2, 4, 1, 3
2, 4, 3, 1

3, 1, 2, 4
3, 1, 4, 2
3, 4, 1, 2

3, 2, 1, 4
3, 2, 4, 1
3, 4, 2, 1

2

3

4, 1,2,3

4

3

1

3

2 1

4, 1, 3, 2 4, 2, 1, 3
4, 2, 3, 1

4,3, 1,2 4,3, 2,1

Figure 10.8 Shape Distribution of BST’s on 4 Nodes

480 SEARCHING

This is the manner of proving the assertion at the beginning of the paragraph.
More precisely, if we tabulate the composition of each of the n\ random insertion
sequences with each of the n possible random deletions, we find that the resulting
BST’s on n — 1 nodes have the same shape distribution as the (n - 1)! BST’s on

(see Exercise 10.14).

Does this mean that a sequence of random, interspersed insertions and deletions
is guaranteed to be random? No; in fact, after a sequence of random insertions
and one deletion, the BST obtained by just one more random insertion is no longer
random! Succinctly, the problem is that after the deletion, one of the gaps into
which the next insertion might be made has relative width 2l(n + 1), and all the
other gaps have relative width 1 /(« + 1). Also, recall that our deletion algorithm is
asymmetrical, always promoting the successor and never the predecessor. We
should anticipate that this bias will cause the root of the BST to move inexorably to
the right, and thus lead to increased average search length after many
insertion/deletion pairs. Early analyses of the exact behavior of random BST’s were
complex and not definitive [Knuth 1977]. It was subsequently shown by simulation
[Eppinger 1983] that, paradoxically, the average path length improves (for a while,
anyway)! These experiments also showed that after a very large number of
insertion/deletion pairs, the average path length steadily worsens, particularly for
larger BST’s. Finally and very significantly, this same study demonstrated that the
use of a symmetrical deletion algorithm always causes the average path length to
become better than random. The symmetrical effect can be obtained either by
strictly alternating between predecessor and successor, or by using a random
number generator to “flip a coin.” More recent analytical results confirm the
observed phenomena by proving that, after a great many insertions and asymmet¬
rical deletions, the average search length approaches 0(nl/2) [Culberson 1985].
There is as yet no corresponding theoretical basis for the observed phenomena that
symmetrical deletion improves matters.

10.3.2 Static BST’s with Unequal Frequencies

In the case of sequential search for keys with unequal frequencies of access, we saw
in Section 10.2.1 several methods for using these frequencies to reduce the average
search time. Similar opportunities present themselves with BST’s. It is useful in
this case to associate p- s (i = 1 .. n) with successful search terminating at an internal
node, and to associate q- s (i = 0 .. n) with unsuccessful search terminating at an
external node. Search terminating at a node labeled #,■ corresponds to an argument
key that falls between the keys Kt_x and Kt located at nodes labeled /?,•_, and p(; the
node labeled q0 (qn) corresponds to an argument key that is less than Kx (greater
than Kn). Now consider the two BST’s in Figure 10.9, where the first row of adjoin¬
ing numbers tabulates the path lengths. Then, for the hypothetical values of ph qt in
the second row, we see that the overall average weighted path length (see Section
8.2.4) is 1.8 in (a) of the figure and 2.2 in (b) of the figure; thus, the better
balanced tree of (a) is superior. However, this comparative advantage is easily
reversed if we use the hypothetical values of ph qt in the third row, leading to aver-

10.3.2 STATIC BST’S WITH UNEQUAL FREQUENCIES 481

age weighted path lengths of 1.9 for (a) and 1.8 for (b). Note that these path length
values are a combination of both CS„ and CFn.

We see from Figure 10.9 that the optimal shape for a BST varies with the
values of the p, and qh The determination of the optimal shape, given a set of
frequencies, affords a pretty illustration of dynamic programming, as we will see in
the next section. Following that, we will discuss several methods for computing
quasi-optimal solutions. Then, in the last two sections, we will reconsider the prob¬
lem of optimality from entirely different viewpoints.

(a)

Figure 10.9 Variation of Path Length with p„ qi

10.3.2.1 Optimal BST’s. It would be very natural at this point to wonder why the
computation of optimal BST’s presents an issue. In Section 8.2.4 we saw Huffman’s
simple but elegant construction for finding a code tree with minimal weighted path
length. How is this different? In fact, there are two significant differences:

482 SEARCHING

• In Chapter 8, the input data was associated with just the external nodes, but
now we have input data (frequencies) at both internal and external nodes.

• Our binary tree is now a BST, with the requirement that the keys must be main¬

tained in inorder sequence.

We might simply generate all the possible BST’s for the given set of data,
compute their weighted path lengths, and retain the best one. But recall that there
are C{2n,n)l{n + 1) such BST’s (see Eq. 6.14), and so this approach is completely
impractical. We are saved, however, by the principle of optimality (see Section
7.4.2.1). For any optimal tree T, its descendants TL and TR must also be optimal
BST’s. If not and (for example) TL is not optimal, then by finding the optimal
version TL' and constructing T' from TL' and TR, we have T' superior to T,
which is a contradiction. So we can start with single internal nodes and then
proceed by successively constructing larger BST’s from smaller ones. Since we can
tabulate and reuse the values for the smaller trees over and over again, this compu¬
tation is not exponential after all. As with the Huffman construction, we can work
with either (normalized) probabilities or (unnormalized) frequencies. We will illus¬
trate matters with the latter. In doing this computation, we will be concerned with
subtrees Tu spanning the leaves from qt to qp and for which we have the following

three quantities:

wtj - the sum of the weights in Tip note that wu = qh and that for j — i = 1,

then = q, + Pj + qP

cu - the cost (that is, weighted path length) of Tip note that cu = 0, and that

for j -i = 1, then cu = wy.

rtJ - the root of the optimal TtJ spanning q, to q-, note that for j — i = 1, then

rU=j-

In the general case, since the depth of the vertices in the subtrees TL and TR is
increased by one when they are combined in T, we have the formula

cij = wi,k-1 + Pk + wkj + ci,k-1 + ckj (10.15)

relating the cost of TtJ with root at k to the values on the corresponding subtrees.
The sum of the first three terms is simply wtJ, and the essential calculation is to find
the value of k that minimizes c, „ as follows:

cii = wtJ + minkfej (cik_, + ckJ) (10.16)

To illustrate matters, suppose that we have the following set of frequencies:

P\ ~~ 2> Pi ~ 4, Pi — 1, p<$ — 3, /?s 1 (10 171
= 01=3, q2=l, ?3 = 3> tf4 = 2> ?5 = 7 V '

The computation can be laid out as in the tableaux of Figure 10.10, where each box
contains the values of wip cip and rt j for the indicated pair ij. As an example of the
optimization, consider the calculation of c15. It is the minimum of the cases:

Wj_5 + Cj | + c2 5 = 25 + 0 + 33 = 58
Wi;5 + c^2 + C35 = 25 + 8 + 24 = 57
W15 + C\ 3 + C4 5 = 25 + 17 + 10 = 52
W15 + cli4 + C55 = 25 + 32 + 0 = 57

10.3.2.1 OPTIMAL BST’S 483

00

iv = 2

n

w = 3

22

w = 1

33

iv = 3

44

iv = 2

55

w = 7
c = 0 c = 0 c = 0 c = 0 c = 0 c = 0
r = r = r = r = r = r =

oi
iv

c =

r =

12

w =

c =

r =

02

iv = 12

c = 19

r = 2

23

iv =

c =

r =

13

w = 12

c = 17

r = 2

03

iv = 16

c = 28

r = 2

34

w =

c =

r =

24

iv = 10

c = 15

r = 4

14

iv = 17

c = 32

r = 2

04

iv = 21

c = 43

r = 2

45

iv = 10

c = 10

r = 5

35

w = 16

c = 24

r = 5

25

iv = 18

c = 33

r = 4

15

iv = 25

c = 52

r = 4

05

iv = 29

c = 67

r = 4

Figure 10.10 Computation of an Optimal BST

from which we conclude that cl 5 = 52. Moreover, since this minimum occurs for

k = 4, then rI 5 = 4 is the root of the optimal subtree Tus spanning qx to q5. The

final optimal BST is shown in Figure 10.11(a), in the same style as Figure 10.9,

thereby confirming the final value of c0 5. In this final tree, it is straightforward to

see from the tableaux that r0 5 = 4. Moreover, this has the further consequence that

the left subtree of K4 is T0 3 spanning the leaves q0 to q3, so we look for the value

r0 3 = 2 and find that the root of T0 3 is K2.

This calculation can be expressed rather concisely, as shown in the program

OPT_BST (Algorithm 10.3). The algorithm has three nested loops, one for

computing the subtrees of successively greater widths, one for computing all the

subtrees of a given width, and one for minimizing a given subtree. Thus, the

complexity is apparently 0(n3) for both time and storage. However, it can be

shown that the roots of the subtrees satisfy the property

rij-l — rij — ri+lj (10.18)

and this allows a reduction of the search interval in the inner loop. To see this

informally, note that the tree TtJ can be obtained from by adding pj and q] and

484 SEARCHING

program OPT_BST;

const size = {number of internal nodes}

type ndx = 0 .. size;

var h,i,j,k,m,min: integer;
p,q = array [ndx] of integer;
cost,weight: array [ndx,ndx] of integer;
root; array [ndx,ndx] of ndx;

begin
for i := 0 to size - 1 do begin

j := i + 1;
weight [i,j] := q [i] + P D] + d GD;
cost [i,j] ;= q [i] + p G] + q G];
root [i,j] := j;

end;
for h := 2 to size do begin

for i ;= 0 to size - h do begin

j := i + h;
weight [i,j] := weight [i,j - 1] + p Q] + q GD;
k := root [i,j - 1];
min := cost [i,k - 1] + cost [k,j];
for m := k + 1 to root [i + 1 ,j] do

if (cost [i,m - 1] + cost [m,j]) < min then begin
k ;= m;
min ;= cost [i,m - 1] + cost [m,j];

end;
cost [i,j] := weight [i,j] + min;
root [i,j] := k;

end;
end;

end.

Algorithm 10.3 OPT_BST

re-optimizing. Intuition suggests that the root could move right in this process, but

should never move left. A similar remark applies to Ti+ij’ By proving Eq. 10.18

rigorously, it can be shown that both the time and space requirements for this

calculation are reduced to 0(n2) [Knuth 1971b], This shortcut is reflected in the

algorithm OPT_BST. With regard to our example of Figure 10.10, since

r0 3 = 2 = r1>4, then we need consider only the case k — 2 in computing c0 4.

We can observe the separate impact of the pt and the qt by recomputing the

optimal BST for the data of Eqs. 10.17, but in one case treating the p, as identically

zero, and in another case treating the qt as identically zero. The resulting “leaf’

form of the BST (for p, — 0) is shown in Figure 10.11(b), and the resulting “node”

form of the BST (for qt = 0) is shown in Figure 10.11(c). We see that the three trees

in the figure are all quite different.

10.3.2.1 OPTIMAL BST’S 485

(a) Optimal BST

(b) Optimal BST with p,- = 0

(c) Optimal BST with p, = 0

Figure 10.11 Optimal BST’s

486 SEARCHING

For certain problems, it is natural to regard the probabilities p,- of successful
search as all being identically zero, as when the values Kt are boundaries separating
items to be distributed into an ordered set of categories. In this case, the optimal
BST can be computed in 0(n lg n) time and 0(ri) space. However, both the original
algorithm for this [Hu and Tucker 1971] and a subsequent refinement [Garsia and
Wachs 1977] are fairly complicated, in terms of both implementation and proof of

correctness.

The problem of the optimal BST can be generalized by assigning other cost
functions, by constraining the maximum height of the tree, by using multiway trees,
etc. In all these various possibilities, how does the problem of computing an opti¬
mal alphabetic tree (that is, with traversal constraints on the node ordering)
compare with the problem of computing an optimal non-alphabetic tree? Do the
constraints always make the problem harder, as in this case, or do they sometimes
make it easier, by reducing the number of cases to be investigated? In fact, both

situations can occur; an example of the latter is given in Itai [1976].

flO.3.2.2 Quasi-Optimal Methods. For large sets of keys, not even the quadratic
method of Algorithm 10.3 is very satisfactory, particularly with regard to space.
Also, the Pi are not usually all zero, and so the 0(n lg n) method cited near the end
of the last section is often not applicable. Therefore, a number of heuristic methods
have been proposed for finding BST’s that may be slightly less than optimal, by
means of algorithms that are 0(n lg n) or even 0(n) [§]. When we consider that the
probabilities ph qt are often known only approximately, this becomes a very good

trade-off.

As an initial approach to the problem, we might try inserting keys in order of
decreasing probabilities pf, for the same data of Eqs. 10.17, this method yields the
BST of Figure 10.12(a), with a cost of 69. It is not hard to see that this monotonic
heuristic is a poor one that can lead to a completely degenerate BST, having corre¬
spondingly large cost. Even in the average case, this heuristic yields BST’s that are
no better than random BST’s — that is, with an average cost of 1.4 lg n.

It would be nice if we could employ divide-and-conquer, first finding the root of
the final BST by some criterion, and then recursively applying that same criterion to
the two subtrees. Several such criteria have been tried. For one, we can pick the
root so that the sums of the weights in the two subtrees are balanced as closely as
possible; for the same data again, this heuristic yields the BST of Figure 10.12(b),
with a cost of 72. This balanced heuristic can be implemented in 0(n) time and
space, and it yields BST’s that are probabilistically as good as completely balanced
ones - that is, with an average cost of lg n. Nonetheless, this method can yield
moderately poor results if the root thus selected has itself a particularly low proba¬
bility, as in our example.

In another variation of balancing, the root is picked in such a manner that the
maximum of the weights of the two subtrees is minimized; for our example, this
happens to produces the optimal BST, with cost of 67. This min-max heuristic can
also be implemented in 0(n) time and space, and it has been found to be generally
superior to the balanced heuristic.

110.3.2.2 QUASI-OPTIMAL METHODS 487

22341 13321 7

(a) Monotone Heuristic (- 69)

(c) Greedy Heuristic (= 69)

Figure 10.12 Quasi-Optimal BST’s

488 SEARCHING

A completely different approach is to employ a greedy heuristic. In this
method, the tree is built from the bottom rather than the top by repeatedly (a) look¬

ing for a triple qt_u p„ qt with the property that its sum is a local minimum, scanning
left to right, and then (b) replacing the triple with one external node (as in
Huffman’s method). The result of the greedy heuristic applied to the same example
data is again the BST of Figure 10.12(c), with a cost of 69. This technique can also
be implemented in 0(n) time and space, and experiments suggest that it yields even

better results than the balanced or min-max heuristics.

To put things in perspective, the quasi-optimal BST’s obtained by methods such
as these are typically only a few percent inferior to the optimal BST’s, indicating
that they are pragmatically quite acceptable. Even so, if we have a static set of
items from which an optimal or quasi-optimal BST might be constructed, we should
consider the possibility that the same set of items might better be handled in an
array, using ordinary binary search. Whether or not an optimal or quasi-optimal
BST will buy as much as it costs depends upon how heavily the BST will be used
and how widely the ph q, values are skewed. (We will illustrate the comparative
performance of binary search and an optimal BST for a realistic set of data in
Section 10.3.2.4.) This is not the last word about optimal BST’s. In the succeeding
two sections, we will examine the issue from other points of view.

flO.3.2.3 Information-Theoretic Considerations. It is interesting to examine the
issue of optimal BST’s from a theoretical point of view. In Section 8.2.4 we intro¬
duced the notion of the entropy H(U) associated with a set of messages U = {m,} of
varying probabilities pt. One of the principal results described there is that, for K
the number of code symbols, the average codeword length is bounded from below
by H(U)I lg K, or (Eq. 8.4)

Moreover, for a minimum binary encoding with normalized frequencies, we also
had (Eq. 8.6)

Consider next the case of an optimal BST with the /?, identically zero, with
normalized qt and with H — — lg <7,-. In that case, it has been shown that

(10.19)

[Gilbert and Moore 1959]. In other words, the imposition of the alphabetic
constraint in going from a minimum binary encoding to a leaf form of an optimal
BST causes the upper bound to increase by just one more comparison, on the aver¬
age. Other authors have since discovered even better bounds for optimal BST’s,

110.3.2.3 INFORMATION-THEORETIC CONSIDERATIONS 489

and also for various types of quasi-optimal BST’s. For example, with Copt denoting
the cost of optimal BST’s, it has been shown that

tf/lg3<tf- \gH-{\ge-l)<Copt<Cwb<// + 2

HI\g3<H- lg // — (lg e — 1) < Copt < Cmm < H + 2 (1°'20)

where Cwb and Cmm denote the cost of the balanced and min-max quasi-optimal
BST’s of the preceding section [Bayer 1975]. The bound HI lg 3 is not as tight as
the other lower bound, but it has an easy intuitive interpretation. Namely, a BST
corresponds to a ternary search tree with the information removed to a leaf node;
then the term Hj lg 3 follows from Eq. 8.4.

flO.3.2.4 An Alternative — Median Split Trees. If we step back from the problem
of finding the optimal shape for a BST to support efficient searching, we could say
that there is a conflict between two objectives:

• balancing the tree, and

• placing frequently accessed items near the root.

A thoughtful way to overcome this is to allocate two key values at each node of the
tree, with one reflecting the first objective, and the other reflecting the second objec¬
tive. Such search trees are called split trees, with one key serving as the target of a
successful match, and the other key serving to split unsuccessful matches to the left
and to the right. We might ask what would be the optimal form of a split tree,
given a set of ph qt. The computation to determine an optimal split tree is evidently
of complexity 0(n5) [Huang and Wong 1984], However, the original proposal for
this type of tree uses the lexical median of the set of keys as a splitting value [Sheil
1978], The resulting structure is called a median split tree, and it can be constructed
in 0(n lg ri) time. A median split tree is either empty or else consists of:

(a) a root containing Kpt (the key with highest frequency of access in the tree) and
Ks, (the median value of the keys K ^ Kp,);

(b) a left subtree that is a median split tree containing the remaining keys K such
that K ^ Kpi and K < Kst;

(c) a right subtree that is a median split tree containing the remaining keys K such
that K ^ Kp; and K > Ksf;

It might be objected that both the space for an extra key and the time for an
extra comparison would make such a method less efficient than one based upon
pure BST’s, or would at least cause attempts to compare this method with other
methods to be suspect. As far as time is concerned, the extra comparison will in
many cases be insignificant within the overall computation associated with a node.3
It is the number of distinct node accesses (the path length) that is usually most
important. The extra space is also likely to be insignificant for a real application.
Moreover, using the median as the split value allows us to obtain a net space saving
in all cases! This is because the resulting tree can then be compactly represented as

3 Recall that binary search, as commonly implemented (Algorithm 10.1), also involves
two comparisons at each node of the search tree.

490 SEARCHING

a complete binary tree stored in an array. There is one complication. In a
complete binary tree, as opposed to a completely balanced binary tree, all the leaves
at level k should be to the left of leaves at level k-l. In order to force this condi¬
tion, we do not choose the median as split value; rather, for a set of n ordered
keys, we use a pseudo-median according to the following pattern:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

f(n) 1 2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10

Note that this also takes care of the fact that the median is not well-defined for an

even number of items.

/ word Pi Fi / word Pj Fi / word Pi Fi

1 a .068 5 10 from .013 26 19 of .106 2

2 and .084 3 11 had .015 22 20 on .020 16

3 are .013 24 12 he .028 10 21 that .031 7

4 as .021 14 13 his .020 15 22 the .204 1

5 at .016 18 14 1 .015 20 23 this .015 21

6 be .019 17 15 in .062 6 24 to .076 4

7 but .013 25 16 is .029 8 25 was .029 9

8 by .015 19 17 it .026 12 26 with .021 13

9 for .028 11 18 not .013 23

Table 10.1 26 Most Common Words in English Text

By way of illustration, consider Table 10.1, wherein the 26 most common words
in typical English text have been taken from Kucera and Francis [1967] and listed
in lexical order, along with their normalized relative frequencies ph and also their
frequency rank order Ft. If ordinary binary search is performed, then the structure
of the search tree is that of Figure 10.5, and we readily find that CSn = 4.43. (This
is markedly inferior to the value CS„ = 4.00 in Section 10.2.2, where the 26 keys
were assumed to have equal likelihood of access.) If the optimal BST is
constructed, as shown in Figure 10.13(a), then CS„ = 3.24. Finally, if the pseudo¬
median split tree is constructed, as shown in Figure 10.13(b) with nodes written as
Kpj/KSi, then CSn — 2.95. Thus, there can be substantial advantage in separating the
issues of lexical ordering and frequency ordering. Note that the median split tree is
simultaneously a heap with respect to the frequencies and a complete BST with
respect to the key splitting! This is similar to the Cartesian tree of Exercise 6.24, in
that one structure embodies both a BST and a priority queue, but it is different in
that here we are dealing with only one variable, and also in that this priority queue
is a heap. We have seen that the interaction of lexical and frequency orderings can
lead to serious degradation for optimal BST’s. However, it has been shown that
this is much less likely to occur with split trees; they are relatively stable about
their optimal conjunctions of lexical/frequency orderings.

1" 10.3.2.4 AN ALTERNATIVE - MEDIAN SPLIT TREES 491

Figure 10.13 Optimal Search Trees for Table 10.1

(b
)

(P
se

u
d

o
)

M
ed

ia
n
 S

p
li

t
T

re
e

492 SEARCHING

As a final comment about the construction of split trees, we have not taken into
account the effects of unsuccessful searches. However, it is important to consider
the q, only when their values are known to be highly skewed. In many cases their
values will be very uncertain compared to those for the ph and in other cases it will
be reasonable to assume that they are not highly skewed. Thus, omitting their

influence from the computation is unlikely to be a serious matter.

10.3.3 Dynamically Balanced BST’s

For the Best Actresses data of Figure 6.19, we obtained the BST of Figure 6.20
when we used BST_ INSERT (Algorithm 6.6) repeatedly. What if we now try this
with another list of Best Actresses, as given in Figure 10.14? The resulting BST in
this case is shown in Figure 10.15; it illustrates how easily a random input sequence
can lead to an unbalanced tree with very poor search characteristics. In fact, this
eventuality is a realistic one, since many BST’s are not grown randomly. There is
no possibility of pre-constructing an optimal BST in these cases. Instead, the tree is
reorganized dynamically whenever insertions or deletions cause it to become imbal¬
anced. As we will see, depending upon the criteria that are used to characterize the
balance of the tree, there are several methods for deciding when and how to do this

restructuring.

1944 Bergman 1949 de Havilland 1954 Kelly

1945 Crawford 1950 Holliday 1955 Magnani

1946 de Havilland 1951 Leigh 1956 Bergman

1947 Young 1952 Booth 1957 Woodward

1948 Wyman 1953 Hepburn 1958 Hayward

Figure 10.14 Academy Awards for Best Actress

As an extreme measure, we might insist that the BST be completely balanced at
every step. Unfortunately, the original algorithm for enforcing this condition has
complexity 0{n) for each rebalancing, and requires two stacks [Martin and Ness
1972], Although it is possible to reduce the workspace required, it is still the case
that the tree needs to be rebalanced for a high proportion of insertions, and the
rebalancing can have global consequences. This latter point is illustrated in Figure
10.16, where (a) depicts a complete binary tree before insertion of node A, and (b)
depicts the rebalanced tree after insertion. Note that it was necessary to alter the
position of every single node in the tree in order to rebalance it.

Felicitously, we can obtain a great deal by settling for less than perfection. The
first and still most common technique is that of balancing (recursively) the heights
of the two subtrees of every node; we will discuss this method in the first section.
Following that, we will examine a technique that balances the weights of the two
subtrees; and then we will consider several other alternatives, some of which just
respond to local imbalance without guaranteeing any global criteria.

10.3.3.1 HEIGHT-BALANCED TREES 493

Figure 10.15 BST for Figure 10.14

Figure 10.16 Completely Rebalancing a BST

494 SEARCHING

10.3.3.1 Height-Balanced Trees. Height-balanced trees were discovered by two
Russian mathematicians, Aderson-Vel’skii and Landis, from whom their more
common name of AVL trees derives [Adel’son-Verskii and Landis 1962]. They
have the property that for every node the balance factor, or height of left subtree
minus height of right subtree, is —1, 0, or +1. Thus, in Figure 10.17, (a) is an AVL
tree, but (b) is not because the AVL property is violated at node K. In order to
manipulate AVL trees, it is necessary to retain the value of the balance factor with
each node, which requires a minimum of two bits of extra storage. It is common to
speak of a node with a balance factor of +1, 0, or —1 as being left heavy, balanced,
or right heavy.

(a) AVL (b) Non AVL

Figure 10.17 Example Binary Trees

Just how unbalanced can a binary tree be and yet retain the AVL property?
This question is readily answered by turning it around and constructing min trees of
successively greater heights; that is, for a given value of height h, we want the AVL
tree Th with the minimum number of nodes. Each such mintree must consist of a
root, one subtree that is the AVL mintree of height h - 1, and another subtree that
is the AVL mintree of height h- 2. The mintrees Tx - TA are, for example, as
shown in Figure 10.18. We see that the number of nodes n(Th) is given by the
recurrence relation

n(Th) = 1 + n{Th_x) + n(Th_2) (10.21)

This is remarkably similar to the recurrence relation for Fibonacci numbers,
Fn = Fn_y + F„_2; and we find that the successive values of n(Th) - 1, 2, 4, 7, 12,...
- are each just one less than a value in the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13,...;
thus, we have that

n(Th) = Fh+l ~ 1 (10.22)

Not surprisingly, the mintrees of AVL type are also called Fibonacci trees. We have
already encountered them in Section 10.2.3, with T5 illustrated in Figure 10.6.

10.3.3.1 HEIGHT-BALANCED TREES 495

T1

/

Figure 10.18 Fibonacci Trees

AVL trees are quite good as BST’s. One important reason is that the path
length for an AVL tree containing n items can never exceed by more than 44
percent the path length of a completely balanced tree containing those n items
[Adel’son-VeFskii and Landis 1962; Foster 1965]. To show this, we note that a
closed form solution of Eq. 10.21 can be obtained on the basis of our earlier closed
form Fibonacci solution in Eq. 1.29. Since we have just shown that the number of
nodes n in an AVL tree of height h cannot be less than Fh+2 1, then

(10.23)

where rx, r2 are given in Eqs. 1.26, and where the second inequality follows from the
fact that r2< 1. Substituting the value of r„ taking logarithms to the base 2, and

simplifying yields

(10.24) h< 1.44 lg (a + 2) — 0.33

for the promised result. This is the worst-case figure; in fact, we will see that the

average path length is lg n plus a small constant.

All of the preceding might be somewhat academic were it not for another
important feature of AVL trees - that it is relatively simple to perform rebalanc¬
ing, when it becomes necessary to do so. If an insertion causes a tree to lose its
AVL property, then a few local readjustments are sufficient to restore the AVL
property. This is in contrast to the global readjustments that were required in
Figure 10.16. In Figure 10.19, nodes are drawn as circles and show their balance
factors, and subtrees are drawn as triangles and show their height. Looking in the

figure, we see:

(a) an AVL tree;

(b) the tree after adding a new node and causing imbalance;

(c) the tree after rebalancing.

496 SEARCHING

Figure 10.19 Single Rotations

n
ew

10.3.3.1 HEIGHT-BALANCED TREES 497

The type of rebalancing illustrated in this sequence is called a single right rotation.
It has two important features:

1. It preserves the in-order traversal of the tree: 71, A, 72, B, 73.
2. The height of the tree at the root is the same after rebalancing as it was before

the new node was added.

The last point is at the heart of the matter. If the tree shown in Figure 10.19 is
really a subtree in a larger tree that has the AVL property, then the fact that the

height of the subtree is invariant under rebalancing means that the balance factors

of the ancestor nodes cannot be affected. Only the balance factors between the root
of the subtree and the point of insertion are subject to change. Moreover, a little
reflection shows that the root of the affected subtree, known as the critical node, is

that closest ancestor to the new node that has a non-zero balance factor. There is a
mirror-image case of a single left rotation, illustrated in Figure 10.19(d) — (f)- Note
that single rotations rebalance trees in which the balance factor has the same sense
for a critical node and its child, either left-left for a single right rotation, or else
right-right for a single left rotation. Single rotations require changes in just two

pointer values.

In order to implement AVL trees, we define nodes as

type link = fnode;

node = record
key: {the value to be used for ordering }

tilt: -1 .. +1;
left,right: link;

end;

The actions of single right and single left rotation are then reproduced by the proce¬
dures ROTATE_LL and ROTATE_RR (Algorithms 10.4). Be careful to observe

that the suffixes '_LL' and _RR' refer to the sense of imbalance, which is opposite

to the sense of the corrective rotation.

procedure ROTATE_LL (dad,son: link);

begin
dadf.tilt := 0;

sonf tilt := 0;
dadf.left := sonf.rite;

sonf.rite := dad;

end;

procedure ROTATE_RR (dad,son: link);

begin
dadj-tilt := 0;

sonf.tilt := 0;
dadj.rite := sonj.left;

son|.left := dad;

end;

Algorithms 10.4 ROTATE_LL and ROTATE_RR

*

498 SEARCHING

Figure 10.20 Double Right Rotation

10.3.3.1 HEIGHT-BALANCED TREES 499

procedure ROTATE_LR (dad: link; var son: link);

var gson: link;

begin
gson := sonj.rite;
son).rite := gsonj.left;
dadf.left := gson).rite;
gsonf.left := son;
gson|.rite := dad;
case gsont-tilt of

-1: begin
sonf.tilt := +1;
dadt-tilt := 0;

end;
0: begin

sonj.tilt := 0;
dadt.tilt := 0;

end;
+ 1: begin

son t-tilt := 0;
dad t-tilt := -1;

end;
end;
gson t-tilt := 0;
son := gson;

end;

Algorithm 10.5 ROTATE_LR

When the sense of the balances of the critical node and its child are opposite,

then we have a more complicated situation that requires a double rotation. This is

illustrated in Figure 10.20, wherein we see:

(a) an AVL tree;

(b) the tree after adding a new node as a child of either 73 or 73, causing the

balance at node B to be +1 (for 72) or -1 (for 73), and causing imbalance at

node C;

(c) the tree after performing a left rotation at node A, causing the balance at

nodes A and B to be either 0 and +2 (for 73) or +1 and +1 (for 73);

(d) the rebalanced tree, after performing a right rotation at node B, causing the

balance at nodes A and C to be either 0 and —1 (for 73) or +1 and 0 (for 73).

Here, the critical node is heavy to the left and its child is heavy to the right; this

left-right combination is rebalanced by performing a single left rotation at the child

and then a single right rotation at the critical node. The composite effect is called a

double right rotation, as illustrated in procedure ROTATE_LR (Algorithm 10.5).

There is, of course, the mirror image case of right-left imbalance; the composite

rebalancing for it is termed a double left rotation. Note that, as with the single

500 SEARCHING

procedure AVL_INSERT (var nptr,rptr: link);

label 1;

var kkey: {same type as link].key}
del: -1 .. +1;
dad,gdad,ptr,qtr,son: link;

begin
{Phase I - locate insertion point for new node}

if rptr = nil then begin
rptr := nptr;
goto 1;

end;
gdad := nil;
dad := rptr;
qtr := nil;
ptr := rptr;
kkey := nptrf.key;
while ptr <> nil do begin

if ptrf.tilt <> 0 then begin
gdad := qtr;
dad := ptr;

end;
if kkey = ptrfkey then begin

nptr :s= ptr;
goto 1;

end else begin
qtr := ptr;
if kkey < ptrf.key then ptr := ptr|.left

else ptr := ptrf.rite;
end;

end;

Algorithm 10.6 AVL_INSERT (1 of 2)

rotations, tree height is preserved; so also is the inorder traversal: T\, A, T2, B,
73, C, T4.

The complete algorithm for inserting a new node in an AVL tree is given in the

procedure AVL_INSERT (Algorithm 10.6), which uses the rotation procedures of

Algorithms 10.4 and 10.5 ^nd also an analogous procedure ROTATE_RL. In

order to identify those nodes for which the balance factors may need to be changed

after the insertion, we could use a stack. Much more efficient is the use of the

variables dad and gdad to simply record the identity of the critical node. Though

slightly long, AVL_ INSERT is straightforward, with logic that parallels what is
depicted in Figures 10.19 and 10.20. If we now build a BST for the data of Figure

10.14, using AVL_INSERT rather than BST_INSERT, the tree will grow as in

Figure 10.21. In the top part of the figure, the tree is shown as it appears just prior

to each rotation, and the names on the nodes have been abbreviated to the first two

letters. Also, critical nodes are circled and wiggly arrows pointing to transformed

10.3.3.1 HEIGHT-BALANCED TREES 501

{Phase II - insert as child of qtr, and rebalance}
if kkey < qtr}.key then qtrj.left := nptr

else qtrf.rite := nptr;
if kkey < dad}.key then begin

son := dadt-left; del := +1;
end else begin

son := dad}.rite; del := -1;
end;
ptr ;= son;
while ptr <> nptr do

if kkey < ptr}.key then begin
ptr}.tilt := +1; ptr := ptr}.left;

end else begin
ptr}.tilt := -1; ptr := ptr}.rite;

end;
{If tree is balanced then adjust and return, else rotate}

if dad}.tilt = 0 then
dad}.tilt := del

else if dad}.tilt + del = 0 then
dad}.tilt := 0

else begin
if del = +1 then begin

if son}.tilt = +1 then ROTATE_LL (dad,son)
else ROTATE_LR (dad,son);

end else begin
if son}.tilt = -1 then ROTATE_RR (dad,son)

else ROTATE_RL (dad,son);
end;
if gdad = nil then rptr := son
else if dad = gdad}.left then gdad}.left := son
else if dad = gdad}.rite then gdad}.rite := son;

end;
1:
end;

Algorithm 10.6 AVL_INSERT (2 of 2)

trees are labeled with the type of imbalance. The final tree at the bottom is compa¬
rable to Figure 10.15.

The story of deletions in AVL trees is somewhat analogous to that of insertions,
but a little more complicated. If the AVL property is destroyed by a deletion, then
the property can be restored by applying the same LL, RR, LR, or RL rotations as
for insertion. However, it may be necessary to apply not just one such rotation, but
<9(lg ri) of them. In order to see this possibility, imagine that the rightmost node is
deleted from a Fibonacci tree (see Figures 10.6 or 10.18). We leave the details of
the complete algorithm for AVL deletion as an exercise (see Exercise 10.22).

Our final concern has to do with the efficiency of the algorithms for search,
insertion, and deletion in AVL trees. This depends significantly upon the average

SEARCHING

Figure 10.21 Growth of AVL Tree for Figure 10.14

10.3.3.1 HEIGHT-BALANCED TREES 503

frequency of single and double rotations under random sequences of insertions and
deletions, and also upon the average length of the path that is retraced when adjust¬
ing balance factors. Extensive simulations indicate the average values shown in
Table 10.2 [Karlton et al. 1976]. We see that deletions, although somewhat more
complicated to implement, are less likely to incur rebalancing. But most impor¬
tantly, the average value for the path length in an AVL tree is empirically found to
be approximated by lg n + c, where c % 0.25.

Insertions Deletions

no rebalancing .535 .785
single rotations .233 .132
double rotations .232 .083
traceback length 2.78 1.91

Table 10.2 AVL Rebalancing Statistics

If there are advantages to using trees with the AVL property (height of left
subtree minus height of right subtree equal to -1 .. 1), then what might be the case
for trees where the balance factor is allowed to be -2 .. 2, -3 .. 3, or —k .. k? These
generalizations of AVL trees are called height-balanced HB[k~]trees [Foster 1973].
On the one hand, the worst-case height increases as k increases [Karlton et al.
1976]; thus,

for k = 2, h = 1.81 lg « — 0.71:
fork = 3, A = 2.15 lg n - 1.13:

etc.

as compared to Eq. 10.24 for k = 1. On the other hand, the frequency of rebalanc¬
ing is less, declining from .465 for k = 1 (see Table 10.2) to about 0.2 for k = 2.
The optimal value of k depends upon the relative importance of searches, insertions,
and deletions in a given application — being a trade-off between increased average
search length and decreased cost of restructuring. However, one comparison via
simulation strongly suggests that HB [1] trees (pure AVL trees) are often better
than their generalizations [Baer and Schwab 1977].

Just as HB [k] trees are a generalization of AVL trees, one-sided height-
balanced (OSHB) trees, are a specialization of AVL trees. For these, the condition
is imposed that the balance factor is never positive (or negative). Their motivation
is that the balance factor can then be stored in just one bit. Whether or not this is
significant depends very much upon the details of the implementation. Although
there are algorithms for performing insertion and deletion in OSHB trees with the
same 0(lg n) complexity as for HB trees, they are considerably more complicated
[Raiha and Zweben 1979; Zweben and McDonald 1978]. If it is really important
to find a balancing scheme that requires just one bit per node, then we will find
better ways to accomplish this in Section 10.3.5.

f 10.3.3.2 Weight-Balanced Trees. In the preceding section, we saw how to obtain
BST’s with good performance by imposing the criterion of height-balance. Similar

504 SEARCHING

success has been obtained by imposing the criterion of weight-balance, in two differ¬
ent manners. In the original method, for a tree T with left and right subtrees TL
and Tr, the node balance of a node T is defined as 1/2 if T is an external node, and
as P(T) = | Tl \ I | T\ otherwise, where | T\ denotes the number of external nodes in
T [Nievergelt and Reingold 1973]. Obviously, we must have 0 < P(T) < 1. Then T
is said to be of bounded balance a, or in BB [a], if

(i) a < P(T) < 1 — a;

(ii) both Tl and TR are also in BB [a].

Although originally characterized as “bounded balance,” this criterion is now
commonly described as “weight-balance.” But the reader should beware on this
point. The term “weight-balance” was in fact originally applied to a different
method that is now less widely in vogue. In this other method, the weight is stored
at each node X, and rotations are applied in a fashion to reduce the value of the
internal path length at X whenever possible [Baer 1975]. Trees constructed by this
method have the same worst-case search length of 1.44 lg n as AVL trees, and a
worst-case value of internal path length that is better than for either AVL trees or
BB [a] trees [Gonnet 1983]. Unfortunately, a rotation at one node according to
this criterion can cause imbalance at other nodes, and lead to a “chain-reaction” of
rotations both upward and downward. Thus, we turn our attention to BB [a] trees.

A tree in BB [1/2] is a complete binary tree with a full complement of 2h leaves.
Some other examples of weight balanced trees are shown (without external nodes) in
Figure 10.22, with each node displaying its value of p. Note that the BB [a] cate¬
gory of a tree is not the same as the value of P at the root of the tree. Curiously,
there can be no trees with 1/3 < a < 1/2. If there were such a tree, it would have to
have subtree(s) not in BB [1/2]. Let 7 be a smallest such subtree. Then the
subtrees of T are both in BB [1/2], and have 2L - 1 and 2R — 1 internal nodes,
respectively. However, L + R since T is not in BB [1/2]. In that case, the balance
of T is P(T) = 2L I (2L + 2R) = 1 / (1 + 2R~L). If L<R then p(T) < 1/3, and if L > R
then P(T) > 2/3. Thus there cannot be a tree T in BB [a] with 1/3 < a < 1/2.

How are weight-balanced trees related to height-balanced trees? In answer,
there is no relationship; neither class is properly contained in the other. For exam¬
ple, the tree of Figure 10.22(c) is BB [1/3], and we learned in the preceding
paragraph that this is the best that can be obtained, short of completely balanced
trees. But it is obvious that this tree is not height-balanced (and neither is the
BB [1/4] tree of (b) in the figure). In the other direction, let T be a tree such that
Tl is a Fibonacci tree of height h and TR is a complete binary tree with 2h leaves.
Then the ratio | TL\ / | T\ can be made smaller than any a, for h sufficiently large.
So T is then height-balanced but not weight-balanced.

The crucial property of height-balanced trees is that balance can be maintained
globally, in the face of insertions and deletions, via simple rotations. A similar
property exists for weight-balanced trees, but it is not so elementary. In the case of
insertions, a BB [a] tree can be maintained as such via the same single or double
rotations as for height-balanced trees, whenever 0 < a < 1 — 2~1'2. The case of
deletions is more complicated, leading to the bounds 2/11 < a < 1 — 2~ll2 (approxi¬
mately, 0.182 < a < 0.293) [Blum and Mehlhorn 1980]. Moreover, the height of
weight-balanced trees is logarithmic in the number of nodes, and also the rotations
can be applied in logarithmic time. The effects of rotations upon the node balances

110.3.3.2 WEIGHT-BALANCED TREES 505

Figure 10.22 BB [a] Trees

is illustrated in Figure 10.23; the derivation of the formulas therein are left as an
exercise (see Exercise 10.24).

How do weight-balanced trees compare with height-balanced trees in terms of
performance? This question has several answers:

• Even for the (best possible) case of BB [1/3] trees, the average search length is
1.09 lg n and the worst search length is 1.70 lg n, as compared with lg n and

1.44 lg n for HB [1] trees.

• Weight-balance is certainly a more expensive criterion, both in terms of the time
required to perform divisions and in terms of the space required to store the
balance information. But note that it is much more useful to store the weight
| T| and to compute the /? values as needed, rather than to store f}(T).

506 SEARCHING

Figure 10.23 Weight Balance Transformations

• Although it costs more space to store weights than to store height differentials,
the weight information has the additional advantage that it can be quite useful
for finding an item in a BST according to its rank. Thus, suppose that we wish
to retrieve the y'th item out of the n items stored in a BST. An algorithm for
this need simply compare the argument j against the weight w of the left subtree
of a node X; as a result,

(a) if j < w then proceed to the left subtree;
(b) if j — w then X is the y'th node;
(c) if j > w then proceed to the right subtree with j: = j — w.

110.3.3.2 WEIGHT-BALANCED TREES 507

• Height-balancing requires a retracing of part of the insertion path to restore

balance, after the point of insertion is determined. Weight-balancing, on the

other hand, can be performed as the search proceeds top-down from the root.

• One of the principal motivations for the weight-balancing method was to be

able to “fine-tune” the performance by using a stringent (relaxed) value of a,

according as searches (insertions) are more important. Although it is also possi¬

ble to relax HB [1] to HB [&], the consequences in that case are abrupt rather
than gradual.

• Overall, the additional complications of weight-balancing do not seem to be as

cost-effective as the simpler techniques of height-balancing. They require a bit

more time and produce slightly inferior results [Baer and Schwab 1977; Walker

and Wood 1976]. The differences are slight, however, and the choice between

them might reasonably depend upon the importance of satisfying rank queries,

as described above.

110.3.3.3 Restructuring Without Balance Criteria. The methods of the two preced¬

ing sections have relied upon the retention of balance criteria at each node. The

essential point of those methods is that whenever an insertion or a deletion causes

the criterion to be violated at any node(s), then it can always be efficiently restored

by means of rotations. It is possible to use the same rotations without reference to

explicit balance criteria. The two obvious ways to do this are analogous to the

move-to-front rule and transposition rule for linear search (see Section 10.2.1). A

transposition can be accomplished by one rotation, and a move-to-root can be

accomplished by a series of rotations. One advantage of this approach is the

savings in space and time for storing and manipulating the balance data. Another

is that the rotations can be applied even in the case of search, and not just with

insertions and deletions; thus the resulting BST might be able to converge steadily

toward its optimal form. In fact, the transposition rule “flirts with disaster” when

applied to BST’s [Allen and Munro 1978]. The performance of the move-to-root

rule is distinctly better, but it can very easily lead to monotonic trees with 0(n)

worst-case search times (see Section 10.3.2.2). Whether or not this is a serious

possibility depends upon the entropy of the keys in the BST (see Section 10.3.2.3)

[Bitner 1979]. If the entropy is high (the access probabilities are fairly uniform),

then the shape of the tree becomes important and the move-to-root rule does not

perform too well. But if the entropy is low, as it is for example with Zipf s law,

then the keys with high access probabilities will all tend to be near the root, so that

this approach is reasonable. Even so, there is another problem with the practical

implementation of such self-organizing BST’s. They tend to cause many more

rotations than do the methods of the two previous sections. One technique for

bounding the cost of restructuring to an amortized value of 0(lg n) is to split the

original BST into two BST’s that are then concatenated [Sleator and Taijan 1983]

(see also Exercise 6.20).

508 SEARCHING

110.3.4 Multiway Trees. Although several criteria were employed for balancing
search trees in the preceding section, one property was kept inviolate, that the
search trees should always be binary. The effects of the different balancing criteria
were reflected in the varying heights of the subtrees, although height was not always
the criterion per se. A different strategy is to insist that subtrees should always be
equal in height, but allow the width or arity (that is, branching factor) of the nodes
to vary. Such trees are called multiway trees. As in the case of the trees of the
preceding section, by imposing conditions upon the manner in which the arity is
allowed to vary, it is possible to define closed classes of trees, such that a specified
property is maintained under insertions and deletions. Consequently, one can
analyze such a class of trees and obtain various properties about it. The original
notion of multiway trees balanced in this fashion corresponds to that of B-trees
having large arity, for use with secondary memory. We will study them in Section
12.3.4. Here we will consider the viability of trees of low arity, for dynamic search¬

ing in main memory.

The simplest case that we encounter is that of 2-3 trees,4 in which each node is
either a 2-node containing one key and two children, or a 3-node containing two
keys and three children. Search and insertion for a key K both begin at the root.
In the case of insertion, this process carries us to an external node X, and the
insertion proper proceeds bottom-up from that point. If the parent of X is a
2-node, then K is placed therein and the 2-node becomes a 3-node. But if the
parent of X is a 3-node, then the insertion of K causes node-splitting; in this
process, the 3-node is replaced by two 2-nodes, and a key K' is promoted upward
in the 2-3 tree into its parent node. The promotion may cause a similar split and
promotion in the parent node, and this process can continue all the way to the root.
Balancing by splitting is conceptually easy to follow, as we can see by applying the
method to our Best Actress data of Figure 10.14. The corresponding growth to the
final 2-3 tree is shown in Figure 10.24. Splittings occur with the insertions of
de Havilland, Wyman, and Leigh. The last of these also splits its parent, causing
the entire tree to grow in height and to acquire a new root node. Subsequent split¬
tings occur for Magnani and Hayward.

If we consider how to implement 2-3 trees, we are led to adopt a node structure
in the nature of

type Iink23 = |node23;
node23 = record

full: boolean;
kl ,k2: integer;
p0,p1 ,p2: Iink23;

end;

In order to insert a new value, we need to use a stack to retain pointers along the
path from the root to the point of insertion. Subsequently, in the procedure for
inserting a key into a node X, if the insertion causes X to split, then the pointer to
the parent of X can be retrieved from the stack, and the procedure can recursively
call itself to insert a promoted key into the parent. (Note that pointers as well as

4 2-3 trees are B-trees of order 3, as we will see in Chapter 12.

110.3.4 MULTIWAY TREES 509

Be Cr .Cr.

Be de

(a) (b)

(e)

(c) (d)

(f)

(g) (h)

(i)

Figure 10.24 Growth of 2-3 Tree for Figure 10.14

keys are promoted upward during splits.) The details of an algorithm to do this are
left as an exercise (see Exercise 10.26).

It was fairly straightforward to compare various balancing criteria for binary
search trees. In order to compare these previous techniques with 2-3 trees, however,
we need to ask more general questions:

510 SEARCHING

I. In terms of space, for a binary tree with n keys, there are n nodes, but in a 2-3

tree with n keys, there can be anywhere from n/2 to n nodes. Is it possible to

obtain bounds better than (0.5, 1.0) for the average storage efficiency of

random 2-3 trees?

II. The normal expectation is that one key comparison is required to search a

2-node and two key comparisons are required to search a 3-node. In terms of

time, are we more concerned about the average number of key comparisons

required, or are we more concerned about the average number of nodes that

will be accessed? Either of these measures might be the more significant one,

depending upon underlying details of implementation. What shapes of 2-3

trees are optimal with respect to the two measures?

The answer to the first question - the average number of nodes Nn in a

random 2-3 tree with n keys - can be obtained by a very pretty combinatorial tech¬

nique by Yao [1978], known as fringe analysis. Since most of the keys must occur

at the lo,wer levels of the tree, it is effective to concentrate our attention upon the

subtrees at those levels. Thus, the only two possibilities for subtrees at the very

lowest level are 2-nodes and 3-nodes. An arbitrary 2-3 tree T is said to be of

class (1; a,b) if its subtrees of height one consist of a 2-nodes and b 3-nodes. As an

example, the 2-3 tree of Figure 10.24 is of class (1; 4,2). In a tree with n keys, and

therefore n + 1 external nodes, we must have

2a + 3b = n + 1 (10.25)

Denoting by N(T) the number of nodes in a particular 2-3 tree T, there are

a + b — 1 keys in the internal nodes above the lowest level, so that the number of

nodes, N(T) — a — b, above the lowest level must satisfy

(a + b~l\ < N(T) -{a + b)<{a + b- 1) (10.26)

Let Pr„{a,b) be the probability of obtaining a tree of class (1; a,b) after n

random insertions. Also define An to be the average value of a for a random 2-3

tree with n keys, and similarly for Bn with respect to b. Then averaging over all 2-3

trees with n keys, and using Eq. 10.26, we obtain

3 (An + Bf) i
2 - y < < 2(An + Bn)-l (10.27)

Now if T is a 2-3 tree with n — 1 keys, of class (1; a,b), then a random insertion into

T will yield a tree either of class (1; a — \,b + 1) or of class (1; a + 2,b — 1). The

former case will happen with probability 2a/n, and the latter with probability

1 — 2a/n. Accordingly,

110.3.4 MULTIWAY TREES 511

An ^,^rn-1 (a’b) (—^(a — 1) + ^1 + 2)^

= ^Prw_!(a,6)(a - -f- + 2) (10.28)

= (* “ ir)An-1 + 2

We find that the first few values for this recurrence are Ax — 1, A2 — 0, A3 — 2, etc.;
and the general solution for n > 6 is given by A„ = 2(n + l)/7. With this result and
Eq. 10.25, we also find that B„ = (n + l)/7, for n> 6. Combining these latter two
formulas with Eq. 10.27 leads to the improved bounds on N„

°-64« < + ±-<Nn<-jn--j< 0.86 n (10.29)

for all n > 6.

This calculation of the bounds (0.64, 0.86) can be regarded as a first-order anal¬
ysis, with the bounds (0.5, 1.0) being a zero-order analysis. By considering all

classes of subtrees of height two on the bottom fringe, it is possible to conduct a
second-order analysis, leading to improved bounds (0.70, 0.79). However, this anal¬
ysis and others of still higher order become exponentially more difficult to conduct
[Eisenbarth et al. 1982].

With regard to the second question raised above, concerning the optimal shape
of 2-3 trees, elegant answers have been obtained for both measures - number of

key comparisons [Rosenberg and Snyder 1978] and number of node accesses

[Miller et al. 1979]. As it turns out, the best 2-3 for our data of Figure 10.14 is the

same under either measure (see Exercise 10.27), and has the form shown in Figure
10.25. However, such a coincidence occurs only for some 16 values of n within the

range 2 .. 31. In general, striving for the objective of minimum number of node

accesses leads to “bushy” trees containing a large number of 3-nodes. On the other

hand, striving for the objective of minimum number of comparisons leads to

“scrawny” trees, with 3-nodes permitted only on the leftmost path from the root to

the leaves. Unfortunately, these answers to the second question raised above are

somewhat academic for dynamic tree search; they refer to the best possible 2-3
trees, not to 2-3 trees as they occur randomly in practice.

Figure 10.25 Optimal 2-3 Tree for Figure 10.14

512 SEARCHING

f 10.3.5 A Unifying Perspective

We have now discussed several tree structures suitable for dynamic searching.
There are still several others. In this last section on the subject we will introduce
one more tree structure, by means of which we are able to illustrate some surprising
commonality among many of the methods. To begin with, let us reconsider the 2-3
trees of the last section. Although that section expressed the attitude that we would
be willing to spend (and possibly waste) extra space in tree nodes, it is still true that
programs are commonly constrained to be economical in their use of main memory.
It is easy to do this for a 2-3 tree by binarizing it, and converting every 3-node to
two 2-nodes. For example, the binarized version of Figure 10.24 is shown in Figure
10.26. This latter figure is drawn in a manner emphasizing that the original solid
links have not changed, but now some dashed links have been inserted between keys
in the same 3-node. Frequently the solid links are described as “vertical” links, and
the dashed links are drawn and described as “horizontal” links. Note that a data
structure for this representation still needs just one boolean value in each node. In
this case, the boolean value for a node indicates whether the right link from that

node is horizontal or vertical.

Holliday

Booth deHavilland Hepburn Magnani Young
\
\
\
\
\
\

Woodward ■

Figure 10.26 Binarized Form of Figure 10.24

The fact that the left links in binarized 2-3 trees do not likewise have a dual
interpretation suggests the tree structure known as a symmetric binary B-tree (SBB
tree), in which either link may be either horizontal or vertical [Bayer 1972]. In
non-binarized form, this corresponds to a 2-3-4 tree,5 with rules for insertion and
rebalancing by splitting that are analogous to those for a 2-3 tree. A very impor¬
tant property of the splitting rules is that there can never be two horizontal links in
succession on any path from the root. Evidently, we now need two boolean values
in each node, one for each link. This is similar to the situation for AVL trees,

5 2-3-4 trees are B-trees of order 4, as we will see in Chapter 12.

110.3.5 A UNIFYING PERSPECTIVE 513

where we needed two bits to represent the three possible values of balance factor at
a node. This suggests the question, “How well do SBB trees, using the same 2-bit
quantity of balance information, perform compared to AVL trees?”

First, note that there are SBB trees that are not AVL trees. It is easiest to
illustrate this with reference to Figure 10.26, the binarized form of a 2-3 tree, where
we see that the AVL property does not hold at the node for Leigh. SBB trees are
still logarithmic, but in the longest comparison path we can find alternating hori¬
zontal and vertical links. As a result, the worst case is given by 2 lg n, as compared
to 1.44 lg n for AVL trees (see Eq. 10.24). On the other hand, there seems to be
less of splitting reorganization in SBB trees than there is of rotational reorganiza¬
tion in AVL trees.

Now let us make the following alteration in our conception of SBB trees.
Think of the horizontal links as being red and the vertical links as being black, and
then use one bit in each node to indicate the color of its link to its parent. This
formulation is that of red-black trees. By this invention, many of the methods for
constructing balanced trees can be shown to share certain themes. Among these are
that (i) every path from the root to a leaf must contain the same number of black
links, and (ii) no path from the root can ever encounter two red links in succession.
Depending upon the rules used to redress exceptions to (ii), when they arise, we can
obtain a variety of methods. One particularly simple rule is to rebalance from the
top-down on insertions, always splitting a 4-node (that is, one with two red links)
into two 2-nodes. But such a splitting involves nothing more than color flips of
three links and possibly a single or double rotation! These matters are illustrated in
Figure 10.27, where the solid links denote black and the dashed links denote red.
In each of the cases (a) and (b) and (c), we see a 2-3-4 tree on the left, then the
binarized form of the tree, then the effects of a split, and finally the corresponding
2-3-4 tree after the split. When the 3-node containing D and E is oriented as in (a)
of the figure, only the color flips are required. But if the 3-node is oriented the
other way, as in (b) of the figure, we see that a single rotation is required as well as
the flips. Finally, in (c) of the figure, we see a case requiring flips and a double
rotation. The beautifully simple reason that this is guaranteed to work is that since
4-nodes are split on the way down, then it will always be possible to insert a value
with its parent if necessary (that is, change the color of that link to red), because its
parent must be a 2-node or a 3-node.

This colorful approach has many more nuances and possibilities than we have
space to describe in detail, and the original paper is well worth reading [Guibas and
Sedgewick 1978]. We simply make these final observations:

• There are other possibilities besides the top-down balancing method just
described. A very efficient bottom-up alternative, never requiring more than
0(1) rotations for either insertion or deletion, is that of Tarjan [1983b].

• Search (without insertion) in a red-black tree is “color-blind” ordinary BST
search, in which the colors of the links can simply be ignored.

• Although 2-3-4 trees are not AVL trees, they properly include AVL trees. A
nice way to demonstrate this is with a construction that transforms an AVL tree
to a 2-3-4 tree by coloring its links. As an example, consider the AVL tree of

514 SEARCHING

D mE

A
,A.B.C rn\

71 72 73 74

75 76

75 76

71 72 73 74 71 72 73 74

(a) Flip Only

71 72 73 74

71 72 73 74 71 72 73 74

(b) Flip and Single Rotation

(c) Flip and Double Rotation

Figure 10.27 Top-Down Splitting in Red-Black Trees

110.3.5 A UNIFYING PERSPECTIVE 515

Figure 10.21, and define the height of a node as the length of the longest path
to an external node. Then apply the color red to any link connecting a parent
of even height and a child of odd height. In Figure 10.28(a), the original AVL
tree is redrawn showing the height values and the colors; the corresponding
2-3-4 tree is shown in (b) of the figure.

Leigh

Young

Woodward

/
/

Hayward
1

(a) “Colored” AVL Tree

(b) Corresponding 2-3-4 Tree

Figure 10.28 “Colored” AVL Tree of Figure 10.21

10.4 HASHING

Binary search and the explicit tree search methods that we have studied are all of
complexity Odg n). Thus their performance is fairly good for tables of moderate
size, but the inexorable growth causes these methods to be less satisfactory for very
large tables. A radically different approach is to proceed not by comparisons
between key values, but by finding some function h(K) that can directly yield the
location of K in the table. In fact, the storage allocation formulas that map array

516 SEARCHING

elements to memory locations as functions of their indices provide examples of this
facility (see Sections 2.2.1 and 2.7). An important aspect of such storage allocation
functions is that they are one-to-one from a limited domain of index values to a
corresponding range of memory locations. But in the present case we are usually
dealing with a very large potential name space of keys and a much smaller actual

address space of table locations.

These ideas are readily illustrated in terms of the mapping from the set of all
possible identifiers in a programming language to a compiler symbol table. For
example, there are over 109 legal six-character identifiers in FORTRAN, and many
more in Pascal. Of course, only a minuscule proportion of these will actually occur
in any given program; thus, a symbol table of about 103 locations is typically
adequate. Mappings h(K) for such situations are called hash functions, with the
property that we can expect h{Kf = h{Kf for many different pairs if. With the
numbers from our FORTRAN example, we see that any hash function must inevi¬
tably map a minimum of at least 106 synonym keys, out of all possible ones, to some
table locations. The objective, then, is to find a hash function that, when applied to
any typical set of keys, will produce relatively few collisions, - that is, occurrences
of synonyms. Note that it is crucial to store the key K itself at a hash table
location, since there is no unique reverse mapping h(K)-+K to determine which
synonym is present. (See Exercise 10.35 for a method of partially subverting this

requirement.)

Finding hash functions that minimize collisions is just one aspect of the prob¬
lem, and we will consider this matter in Section 10.4.1. But we must still deal with
those synonyms that do occur, in the process known as collision resolution, in
Section 10.4.2. After these two principal concerns, we devote the remaining sections

to some other issues relating to hashing.

10.4.1 Hash Functions

Over the years, about half a dozen distinct hashing techniques have been employed.
In practice, the method of division has been found to be distinctly superior to all
the rest. Therefore, except for some preliminary mention of the other techniques,
we will concentrate our attention upon hash functions using division. As we said in
the preceding paragraph, an important criterion for a hash function is that it should
minimize collisions. A second important factor is that it be relatively fast and
simple to compute if it is not to lose its advantage over comparison-based methods.
Thirdly, h(K) should usually be a function of all the bits in the machine represen¬
tation of K. A technique that violates this latter principle is to extract some subset
of the bits in K in order to compose h{K). Extraction is acceptable when it is
known in advance that the discarded bits convey very little distinguishing informa¬
tion; the hazard in the general case is that the discarded bits may be just the ones
needed to thwart the generation of synonyms.

In addition to extraction and division, there are techniques that employ folding,
radix transformation, algebraic coding, and multiplication. Folding is the combin¬
ing of multi-word keys into single-word quantities, typically by exclusive-OR’ing; it

10.4.1 HASH FUNCTIONS 517

is used singly and also as a prelude to the other techniques. The radix transforma¬
tion and algebraic coding techniques are of theoretical interest but computationally
expensive and less effective than division, so they are seldom employed. Nonethe¬
less, it is instructive to consider the rationale for algebraic coding. In Section 8.2.5
we saw that by constructing codes with redundancy in an appropriate manner, it is
possible to create codeword clusters. This clustering property can then be used to
facilitate error detection and correction in codewords. In hashing, we find that
actual sets S{ of keys usually do not have the character of being randomly drawn
from the universe U of possible keys. Rather, they tend to exhibit natural cluster¬
ing. It is often possible to obtain many other words from a given word by changing
just one letter; a good example of this is provided by the word “band.” Given that
clusters tend to occur, we find a fourth important criteria for a hash function -
that it should separate clusters. In fact, there is a great deal of similarity between
the methods that algebraic coding employs for separating clusters and the methods
cited in Section 8.2.5.1 for generating clusters via group codes. More precisely,
both employ arithmetic over finite fields GF(q).

The next hashing technique to consider is multiplication. Although less popular
than division, it is still a very viable method. It entails multiplying the key K either
by itself or by some constant, and then using some portion of the bits from the
product as the hash table location. When the choice is to multiply K by itself, we
have the mid-square method. If K is 20 bits then the product is 40 bits, wherein the
middle 10 bits satisfy the criterion that they are a function of all the original bits of
K. The method also satisfies the criteria of simplicity, but it does have two draw¬
backs. One is that degenerate keys, with many leading or trailing zeros, will be
reflected in hash values containing many zeros; the other is that the size of the hash
table is constrained to be a power of two.

A much safer multiplicative method, avoiding both the degeneracy and the
constraint on table size, is to compute h(K) = L(M x ((C x K) mod 1)). In this
expression, M is the size of the table and 0 < C < 1. It is important to choose C
with some circumspection in order to avoid various ill effects, such as causing an
alphabetic key K to be synonymous with other keys obtained by permuting the
characters of K. An example of a value which has been found to be theoretically
sound is C = .6180339887 ...6 [Knuth 1973b],

We come now to the method of hashing by division. The hash function is
computed simply as h(K) = /fmod M, using 0-origin indexing and for a table of size
M. Although the formula is applicable for tables of any desired size, it is nonethe¬
less important to choose the value of the divisor M with care, as with the choice of
C for multiplicative hashing. For instance, if M were even, then all even (odd) keys
would be mapped to even (odd) table locations - a severe bias. More generally, a
good rule is to choose M to be a prime number, but to avoid primes that divide
rk + 1, for the case that a and k are small and r is the radix of the character set
(presuming alphabetic keys). To illustrate the simplest case of the reason for this
restriction, suppose that characters are treated as integers to the radix r, and that M

6 This value of C is called the golden ratio. It is the reciprocal of r{= 'A(l + \fT),
obtained in Section 1.3.2.3 (Eqs. 1.26) as one of the roots of the Fibonacci recurrence
equation.

518 SEARCHING

is a prime that divides r — 1. Another way of expressing the latter fact is as a state¬
ment of congruence', r is said to be congruent to 1 modulo M, or r = 1 (mod M)
(see also Section 8.4.2.2.1). Note that if r = 1 (modulo M), then also rk = 1. Now
consider the case of h(K) applied to the alphabetic key K = anan_x... a0. We find that

h{K) = ^ mod M

= mod M) (/•' mod M))

= ^(a(- mod M) (modulo M)

= mod M

(10.30)

In other words, this h(K) will compute the same hash value for any permutation of
the characters of K. Similar clustering effects occur for other small values of a and
k? In practical terms, for a byte oriented character set, one should avoid choosing
M to be a prime close to 256fc, as in the example 65537 = 2562 + 1. There is one
final comment concerning the choice of divisor M. The foregoing has stressed the
choice of M as a suitable prime. In fact, a value of M that is non-prime, but that
has no small primes p < 20 as factors is often just as satisfactory [Lum et al. 1971].

We have described several hash function methods. By what standard(s) can
they be evaluated for their efficacy? A very common one is to compare their
performance against that of random hashing. This corresponds to the assumption
that every input key is equally likely to be hashed to any one of the hash table
locations, disregarding collisions. For a table of size M and a set of keys of cardi¬
nality n, the probability that a single key will hash to any particular location is 1/M,
and the probability p(i) that a given table location will correspond to i synonyms
can be expressed in terms of the binomial distribution as

*«-(")(■£)' 0-■£)-'
In most cases of interest, we will have that n » 1 and M » 1, with the average
density of hashing being given by n\M. In such cases, where the likelihood of
“hitting” a given location with any one key is rare and the overall probability nIM
of a hit is not large, it is convenient to approximate p(i) by the Poisson distribution

(10.31)

The Poisson probability distribution has the appearance of a skewed normal
distribution, with the amount of skew dependent upon the first parameter. A few
values of P{i) are shown in Table 10.3, for n/M = 0.5 and for n\M = 1.0. Examin-

7 This is essentially the same reasoning by which one can show that a poor choice of C, in
multiplicative hashing, can lead to clusters among permutations of an alphabetic key K.

10.4.1 HASH FUNCTIONS 519

ing this table and disregarding the effects of collision resolution, we see that the
overall likelihood of finding synonyms (that is, i > 1) at any one location is 0.09 for
a hash table that is half-full (n/M — 0.5), and 0.26 for one that is full (n/M — 1.0).
It is reasonable to evaluate any given hashing method by comparing its performance
to that of this random hashing criterion. By this standard, the division method has
been found to be quite good, subject to the restriction from the preceding paragraph
concerning choice of divisor; surprisingly, it often performs even better than
random hashing! The reason for this lies with our earlier remark that typical sets of
input keys do not conform to the assumptions for random hashing. Rather, they
commonly contain clusters such as {SUM1, SUM2, SUM3, ...}; and the division
method tends to exploit such non-randomness to separate the clusters.

/ 0.5 1.0 / 0.5 1.0

0 .60653 .36788 4 .00158 .01533
1 .30327 .36788 5 .00016 .00307
2 .07582 .18394 6 .00001 .00051
3 .01264 .06131 7 .00007

Table 10.3 Sample Poisson Values P

There is much more to be said about hash functions and how to choose among
them [§]. We have cited the division method as being generally superior. But for a
large application that relies extensively upon hashing, one dare not ignore the statis¬
tical nature of the sets of input keys; the performance of any of the methods can be
greatly influenced by it.

10.4.2 Collision Resolution

The second major issue in hashing is that of resolving collisions among synonyms.
Indeed, as long as the hash function is not a poor one, the choice of collision reso¬
lution technique tends to be distinctly more important for success of hashing
performance. In the previous section we referred to the Poisson model to predict
the likelihood that there would be collisions at any one location. Suppose that we
ask, instead, about the likelihood of collisions anywhere in the table. The probabil¬
ity of this is high, even in the event that the table is relatively empty. An appealing
illustration of this is the famous birthday paradox: In an assembly of 23 persons,
there is a better than even chance that some two of them will have exactly the same
birthday of the year! In more prosaic terms, hashing just 23 keys into a hash table
of size 365 will, with probability 0.5072, produce at least one collision.

There are four basic methods of collision resolution, two of which depend upon
the idea of maintaining linked lists of synonyms, and two of which depend upon the
idea of computing a sequence of hash table locations until an empty slot is found.
In all of these, the comparative measure is the number of probes - that is, the

520 SEARCHING

number of memory locations that must be examined in order to determine the

location of a key in the table. We will examine these basic methods in Sections

10.4.2.1 and 10.4.2.2, and then evaluate their performance in Section 10.4.2.3.

However, there is more to the story. Specifically, in the last two sections we will

examine first the issues of deletion and overflow in hash tables, and then ways of

rearranging hash tables to enhance performance.

In order to illustrate matters, we need to introduce some sample keys and to

choose a hash function. For all of our illustrations, the table size will be M — 13,

and the prevailing definitions will be those of Figure 10.29. Into this table, we will

successively insert the keys from Figure 10.30. The hash function hx{K) will be

implemented as HASH : = key mod hsiz, for which the values are also shown in the

figure. By assuming that K = 0 does not occur naturally, we can mark all hash

table locations as initially empty by initializing them to zero. Since the operations

of search and insertion are so closely related, we will present algorithms that (a)

search for an item and insert it if necessary (unless this would cause table overflow),

and (b) return either the location of the item in the table, or a —1 in the case of

overflow. They are easily modified if one wishes to have algorithms that perform

just one of the two operations

const hsiz = 13;

type hash_ndx = 0 .. 12;

hash_link = -1 .. 1 2;

hash_item = record
key; integer;
data: {depending upon the application)

link: hash_link; {necessary for some methods)
end;
hash_table = array [hash_ndx] of hash_item;

Figure 10.29 Type Definitions for Hashing

i Ki HKj) i Ki MKy)

i 119 2 7 109 5

2 85 7 8 147 4

3 43 4 9 38 12

4 141 11 10 137 7

5 72 7 11 148 5

6 91 0 12 101 10

Figure 10.30 Sample Keys with Initial Hash Values

10.4.2.1 CHAINING 521

10.4.2.1 Chaining. There are two variants of chaining. In the simpler of these, the
locations in the hash table serve as list heads, and all the keys that hash to a given
location are maintained dynamically in a linked list. This method is commonly
called separate chaining. Of course, there is further variability if we allow for differ¬
ent methods of maintaining the linked synonym lists, such as FIFO, LIFO, or by
key value. But in most implementations of separate chaining, the individual lists
will tend to be so short that there is little reason not to make the simplest choice,
which is LIFO. For the example keys of Figure 10.29, the resulting hash table will
be as shown in Figure 10.31.

91

3ZI

H0

OH-

10

10

137 72 85 [

Figure 10.31 Separate Chaining

As we will see in Section 10.4.2.3, the method of separate chaining has the best
performance of any of the collision resolution methods. However, it is frequently
inconvenient to dedicate the hash table entries to the role of list heads, especially if
the number of entries in the hash table is relatively moderate. This leads to the
other chaining method, known as internal chaining. In this case, the linking among
synonyms is within the hash table itself, via cursor fields that are all initialized to

522 SEARCHING

-1 (for nil).8 The method requires one global cursor value finger, initialized to the

value hsiz - 1 and used in resolving collisions. Search commences at the location

h(K). If the location is empty then K is inserted there; otherwise that location and

others linked to it are probed in search of K. If K has not been found before a nil

cursor value is encountered, then the value of the global cursor finger is used to

initiate a search for an empty table location. When (and if) such a location i is

found, then K is inserted there and the last cursor value in the linked list is updated

to the value i.

For example, after the insertion of the first eight keys from Figure 10.29, the

resulting hash table will appear as in Figure 10.32(a), with linked lists for h(K) — 4

and h(K) = 7. For the next key (38) the location 6(38) = 12 is already occupied and

the link field for location 12 is nil, so the variable finger is employed to find the

empty location 9. Note that this has caused the linked lists for 7 and 12 to coalesce,

as shown in (b) of the figure. Indeed, because of this characteristic phenomenon,

the method of internal chaining is more commonly known as coalesced chaining.

Figure 10.32(c) displays the final appearance of the hash table after all the keys

have been inserted. It also shows the number of probes required to insert each key

and, in parentheses, the lesser number of probes required to subsequently find some

keys. The detailed algorithm to accomplish coalesced chaining as we have just

described it is the function HASH_COALESCE (Algorithm 10.7). In this algorithm

note that the effect of repeatedly using finger to find the next empty table location

is bounded in its potential cost. Its value starts at hsiz — 1 and always decreases

toward zero; thus the average cost per entry, in a table that is reasonably full,

cannot be more than one extra probe per access.

/ Key Link Probes

0 91 -1 1

1 0 -1

2 119 -1 1

3 101 -1 4(2)

4 43 10 1

5 109 6 1

6 148 -1 3(2)
7 85 12 1

8 137 -1 4(4)

9 38 8 2(2)

10 147 3 3(2)
11 141 -1 1

12 72 9 2(2)

/' Key Link

0 91 -1

1 -1

2 119 -1

3 -1

4 43 10

5 109 -1

6 -1

7 85 12

8 -1

9 38 -1

10 147 -1

11 141 -1

12 72 9

1 / Key Link

0 91 -1

1 -1

2 119 -1

3 -1

4 43 10

5 109 -1

6 -1

7 85 12

8 -1

9 -1

10 147 -1

11 141 -1

12 72 -1

(a) (b) (c)

Figure 10.32 Illustration of Coalesced Chaining

8 Note that in assembly language, it may be possible to conserve additional space by using
short cursors rather than full-length pointers.

10.4.2.1 CHAINING 523

function HASH_COALESCE (arg: integer; var htbl: hash_table): hash_link;

var finger: hash_ndx; {a global variable, initially hsiz — 1}

i: hash_ndx;

begin
i := HASH (arg);
if htbl [i].key = 0 then begin

htbl [i].key := arg;
htbl [i].link := -1;

HASH_COALESCE := i;
end else begin

while (htbl [i].key <> arg) and (htbl [i].link <> -1) do
i := htbl [i].link;

if htbl [i].key = arg then

HASH_COALESCE := i
else begin

while (htbl [finger],key <> 0) and (finger > 0) do
finger := finger - 1;

if htbl [finger].key <> 0 then {table is full}

HASH_COALESCE := -1
else begin {insert arg in table}

htbl [finger],key := arg;
htbl [finger],link := -1;
htbl [i].link := finger;

HASH_COALESCE := finger;
end;

end;
end;

end;

Algorithm 10.7 HASH_COALESCE

We defer discussion about the expected complexities of the chaining methods

until Section 10.4.2.3. However, it is appropriate to point out now some avenues

for improving upon these two basic methods of resolution. With separate chaining,

we may be able to eliminate the necessity of storing the entire key in each node.

This becomes possible when we find a quantity g{K) such that K is uniquely deter¬

mined as a function of g(K) and h(K). For this, the quantities g(A] = K div M and

h(K) = K mod M are likely candidates. Moreover, it is possible to modify internal

chaining so that the chains do not coalesce (see Exercise 10.35), thereby gaining the

same advantage for this method also. A different tactic for improving upon

coalesced chaining is to reserve a part of the table area outside of the range of the

hash function; such a region is called a cellar. All collisions are chained to the

cellar until it is full, and only after that to the main hash area. If the proportion of

the table memory reserved for the cellar is small (as in ordinary coalesced chaining,

where there is no cellar), then coalescing will begin to happen early, with an

increase in the average number of probes. On the other hand, too large a cellar

524 SEARCHING

will, by diminishing the range of the hash function, also increase the average
number of probes. The optimum occurs when the hash and cellar areas are appor¬
tioned approximately in the ratio 0.86:0.14; however, this varies somewhat with

the influence of other factors [Vitter 1982].

10.4.2.2 Open Addressing. In many applications, any pointer overhead at all is
unacceptable. This leads to the technique as known as open addressing, in which a
sequence of table locations is inspected until either the desired key or an empty slot
is found. The original technique for doing this simply calls for starting at the
location hx(K) and examining locations sequentially (mod M). This is called linear
probing. After the first seven keys from Figure 10.29 have been inserted, the hash
table will appear as in Figure 10.33(a). When the key 147 is presented, it will be
inserted in location 6, after failing to find an empty slot in locations 4,5. Before
147 was inserted, there were clusters of keys in locations 4,5 and 7,8. After the
insertion of 147, these two clusters have been combined into one large primary clus¬
ter. Any keys that subsequently hash to locations near the beginning of the cluster
unavoidably require a relatively large number of probes, and the clustering phenom¬
enon gets worse with increasing cluster size! In order for hashing to work well, we
need to have the “holes” distributed randomly; however, linear probing propagates
primary clusters that thwart this property. Ultimately, when all the keys have been
inserted, the hash table will appear as in Figure 10.33(c). Once again, appended to

each entry in (c) is the number of probes required for its insertion.

/ Key Probes

0 91 1

1 101 5

2 119 1

3 0
4 43 1

5 109 1
6 147 3
7 85 1
8 72 2

9 137 3
10 148 6
11 141 1
12 38 1

/ Key

0 91
1
2 119
3
4 43
5 109
6 147
7 85
8 72
9

10
11 141
12

/ Key

0 91
1
2 119
3
4 43
5 109
6
7 85
8 72
9

10
11 141
12

(a) (b) (c)

Figure 10.33 Illustration of Linear Probing

At first glance, we might try to redress the primary clustering problem by
computing successive probe locations as h^K) = hx(K) + {i — 1) x c rather than
hi{K) = hx{K) + (i - 1). Although this does eliminate primary clustering, it does not
prevent the formation of secondary clusters. The basic problem with this attempt is
that any two keys that probe a given location will then probe the identical sequence
of successor locations (as when we walk in another person’s footsteps on the beach).

10.4.2.2 OPEN ADDRESSING 525

What is needed is for the values in the probe sequence for a key to be random in

character; in fact, the term random probing is sometimes employed. But what we

look for, practically speaking, is a probe sequence that is simple to compute, yet

sufficiently scrambled that it thwarts clustering. The sequence should also access

every location in the table, since that may be necessary as the table becomes full.

A method that is good in all of these respects is that known as double hashing.

In this case the value of the increment to hx(K) is determined from an auxiliary hash
function and the probe sequence is computed as

hjiK) = (/z,_](/Q + h0(K)) mod hsiz (for i = 2, 3,...) (10.32)

The value of h$ should not be zero, of course, and should be relatively prime to the

table size, thereby guaranteeing access to each location. In practice, it works well to

use a function such as l%{K) = 1 + Kmod(hsiz — 2). This form of double hashing is
particularly good when hsiz and hsiz — 2 are twin primes.

Ki h:(Kj) h0(Kj)

119 2 10

85 7 9

43 4 11

141 11 10

72 7 7

91 0 4

109 5 11

147 4 5

38 12 6

137 7 6

148 5 6

101 10 3

(a)

i key Probes

0 91 1
1 72 2

2 119 1

3 101 3
4 43 1

5 109 1

6 137 3
7 85 1

8

9 147 2

10 148 4

11 141 1

12 38 1

(b)

Figure 10.34 Illustration of Double Hashing

The application of this method is illustrated in Figure 10.34, for hsiz — 13 and

hsiz — 2= 11. In (a) of this figure, the values K and hx(K) are reproduced from

Figure 10.30, and the values of h^{K) are appended. We can see, for example, that

the probe sequence for the key 38 is

12 5 11 4 10 39281706

Figure 10.34(b) displays the final locations of the keys in the hash table, along with

the corresponding number of probes required for their insertions. The algorithm to

526 SEARCHING

function HASH_DOUBLE (arg: integer; var htbl: hash_table): hash_link;

var found: boolean;
hcnt: hash_ndx; {a global count of table entries}
i,j: hash_ndx;

begin
found := false;
i := HASH (arg); j := INCR (arg);
while (htbl [i].key <> 0) and (not found) do

if htbl [i].key <> arg then
i := (i + j) mod hsiz

else
found := true;

HASH_DOUBLE := i;
if not found then begin

if hcnt = hsiz - 1 then {table is full}
HASH_DOUBLE := -1

else begin {insert arg in table}
hcnt:= hcnt + 1;
htbl [i].key := arg;

end;
end;

end;

Algorithm 10.8 HASH_DOUBLE

accomplish this is the function9 HASH_DOUBLE (Algorithm 10.8), wherein h$(K)
is implemented as INCR : = 1 + key mod (hsiz — 2). A critical detail in this imple¬
mentation is the use of hcnt to keep track of the number of entries. In particular,
by never allowing hcnt to exceed hsiz — 1, we guarantee that there will always be at
least one empty location for forcing termination of the while loop in the event that
a key is not in the table.

10.4.2.3 Evaluation of Resolution Methods. The significant aspect of searching by
hashing is that its average performance depends upon the ratio nfM, for n the
number of items and M the table size, rather than upon just n. This ratio is
denoted a, the load factor. We have already seen it, in effect, in the discussion of
the Poisson distribution in Section 10.4.1. In the present section our principal
concern is the average number of probes for each of the four collision resolution
methods, in terms of PS (successful searches) and PF (unsuccessful searches).
Approximate formulas for each of the eight cases are derived in Knuth [1973b].
For the most part, we are content to quote the formulas and comment upon them.

9 An algorithm for linear probing is not shown; with the proviso that h0(K) = 1 for all K,
it would be identical to HASH_ DOUBLE.

10.4.2.3 EVALUATION OF RESOLUTION METHODS 527

a PS PF PS PF PS PF PS PF

.25 1.12 1.03 1.14 1.04 1.17 1.39 1.15 1.33

.50 1.25 1.11 1.30 1.18 1.50 2.50 1.39 2.00

.75 1.38 1.22 1.52 1.49 2.50 8.50 1.85 4.00

.90 1.45 1.31 1.68 1.81 5.50 50.50 2.56 10.00

(a) Separate (b) Coalesced (c) Linear (d) Random
Chaining Chaining Probing Probing

Table 10.4 Values of PS(a) and PF(a)

To assist in their comprehension, all eight of them are evaluated for several values
of a, in Table 10.4.

The first method that we discussed was that of separate chaining. It can be
somewhat misleading to compare this method with the other three, since in fact one
can have a > 1 in this case. Nonetheless, for separate chaining, the approximate
formulas are

PS = 1 + y , and PF = e a + a (10.33)

These expressions apply even when a >> 1. Thus, for n » M, the average length
of each list will be a, and we should expect to search half of a list, on average,
before finding an item. For coalesced chaining, the approximate formulas are

2a ,
PS = 1 + — + -—

4 8a
and PF = 1 +

2a , e — 1 2a
(10.34)

We can see from Table 10.4 that both chaining methods are superior to either open
addressing method. In particular, even as a approaches one, the expected number
of probes with coalesced chaining is still close to just two! Next, the approximate
formulas for linear probing are

PS =
1 +(1 - a)-1

2
and

1 + (1 -a)“2

2
(10.35)

Inspection of Table 10.4 confirms that linear probing, while satisfactory for small a,
is extremely poor as a approaches one. In fact, the average values of PS and PF at
this limit are, respectively, nM/'Js' and M/2.

For the case of double hashing, recall that the intent is to generate a probe
sequence that is random in character. This is commonly described by employing
the concept of uniform hashing, wherein the probe sequence is equally likely to be
any of the M! permutations (0 .. M — 1). This has the consequence that the C(M,n)
possible empty/full configurations are all equally likely to occur. It is instructive to
compute the expected values of PS and PF under such idealized circumstances.
Suppose that a hash table of M locations has a loading factor a, and that we
conduct an unsuccessful search for an entry. Then the probability of an initial colli-

528 SEARCHING

sion (and at least a second probe) is a, and the probability pt of i successive
collisions and at least an (i + l)th probe is a'. We can compute PF as the sum of
the probe lengths k weighted by the probabilities qk that exactly k probes are

required - that is, ^Jk x qk. Thus,

PF = q\ + 2q2 + 3 q2 + -

= <7i + <h + + "■

+ #2 + ?3 + ■"
+ #3 + ■"

(10.36)

Now, for each key that is in the table, the number of probes required to find it is
the same as the number of probes required in the unsuccessful search preceding its
insertion.10 Averaging this quantity over all values of PF as the table grows from 0

entries to n — 1 entries, we find

(10.37)

If we examine double hashing closely, we find that the probe sequences are far from
being random. In fact, they are always arithmetic progressions determined by hx(K)
and h$(K). Thus the likelihood of having the same probe sequences for two keys
under double hashing is 0(1/M2); yet the likelihood of having the same probe
sequences under uniform hashing is 0(1/M!). So it is somewhat surprising to find
that both in theory and in practice, the performance of double hashing closely
approximates that of random probing, as expressed in Eqs. 10.36 and 10.37 [Guibas
and Szemeredi 1978]. The average values of PS and PF as a approaches one are,
respectively, In M and M/2.

In comparing coalesced chaining, linear probing, and double hashing, we find
that the probe sequences of double hashing approximate those of random probing,
the probe sequences of linear probing are significantly inferior, and the probe
sequences of coalesced chaining are significantly superior. The improvement of
coalesced chaining over that of random probing comes, of course, at the expense of
carrying along additional information in the form of the links. In general, we might
be tempted to conclude that either chaining method requires more space than either
open addressing technique. However, this is not always true. Observe that separate
chaining requires space for M pointers of size P and n records of size R + P,
whereas open addressing requires space for M table slots of size R. When R » P
then separate chaining may be more efficient in space. For example, suppose that
M — 200, n — 150, P— 1, and R = 24. Then separate chaining would require

10 The validity of this remark depends upon the details of the hashing scheme (compare
this with Section 10.3.1). It is true for linear probing and double hashing, but not true
for coalesced hashing.

10.4.2.3 EVALUATION OF RESOLUTION METHODS 529

200 x 1 + 150 x 25 = 3950 units of storage, and open addressing would require
200 x 24 = 4800 units of storage.

Overall, hashing has some distinct advantages and some distinct disadvantages
relative to comparison-based searching methods. When we can afford to trust in
the laws of probability, then for large values of n (and reasonable values of a), a
good hashing scheme usually requires less probes (on the order of 1.5-2.0) than
does any other method that we have examined thus far, including search in a binary
tree. On the other hand, we should realize that hashing may perform abominably,
requiring 0(n) probes in the worst case. Thus, we would not care to use it where
timely responsiveness is critical, as in an air-traffic control system. Two other prob¬
lems with hashing are (i) the need to have some a priori estimate of the maximum
number of items to be accommodated in the hash table, and (ii) ways to handle
deletions. These problems are somewhat related, and we will discuss responses to
both of them in the next section. For now, we note that where there is not an
advance estimate of the number of items, separate chaining would be recommended,
since overflow is then not a problem. Finally, none of the advantages of ordered
relationships are available in a hash table. For example, we cannot process the
items in the table sequentially. Neither can we conclude, after an unsuccessful
search, anything about items that are “close” to the one that we sought.

10.4.2.4 Deletions and Rehashing. When we first have the need to delete a value A,
from a hash table that has been generated by coalesced hashing or open addressing,
we encounter a surprising fact. If A, precedes any other value A) in a probe
sequence, then we cannot simply discard A,. If we did, then subsequent probes for
Kp on encountering the “hole” left by A„ would conclude that A) was not present.
We can see the truth of this in any of the Figures 10.32, 10.33, or 10.34. The
solution is that we need to regard each hash table location as being in one of three
states: empty, occupied, or deleted. Then as far as searches are concerned, a
deleted cell is treated just like an occupied one. In the case of insertions, we can
arrange to use the first empty or deleted location that is encountered in the probe
sequence. Observe that this problem does not arise with deletions from the lists of
separate chaining. Also, with linear probing it is fairly simple to relocate values
backward in their probe sequence when a deletion occurs, so that no “deleted”
values are introduced (see Exercise 10.37).

For coalesced hashing and double hashing, however, the problem of deletions is
more serious. Although the introduction of a tag value for marking deletions will
make it possible for the algorithms FIASFI_COALESCE and HASH-DOUBLE to
work properly, that is only a partial solution. There is still the problem that if
deletions are common, then unsuccessful searches will begin to require 0(M) probes
in order to detect that a value is not present. (Exercise 10.38 presents a more subtle
problem.) When a hash table overflows absolutely, or when its performance
becomes too degraded because of deletions, the only recourse is to rehash it into
another table of a more appropriate size. The value of a at which this becomes
worthwhile can be characterized in terms of the expected savings in subsequent
accesses [Hopgood 1968]. Note that since deleted entries will not be rehashed, then
the new table might be either larger or smaller, or even the same size. Rehashing is
a simple matter if the new table area is distinct from the old table area; however,

530 SEARCHING

one may wish to rehash into a new table area that is not distinct. An algorithm to
accomplish this, using a boolean array to distinguish relocated/unrelocated values, is

the subject of Exercise 10.39.

110.4.2.5 Hash Table Rearrangement. If we peruse Table 10.4, we observe that
when the load factor is high then open addressing, by either linear or random prob¬
ing, is distinctly worse for unsuccessful searches than it is for successful ones. The
reason is not hard to see. It is the familiar issue that we cannot detect an unsuc¬
cessful search in an unordered list until we reach the end of the list. For the
moment, let us suppose that the keys had been arranged in sequence by decreasing
value, and that they had then been hashed into the table from this sequence. As a
result, the probe sequence of any key K must consist of keys that are already pres¬
ent and larger than it. So we could detect an unsuccessful search for a key Kj
whenever, in the probe sequence for key Kp we encountered another key Kt such
that Kj > Kt. (By assumption, if Kj were present, it would have been inserted before
Kj). Moreover, such a situation would relieve the necessity of the compound termi¬
nation condition that we see in the while loop of HASH_DOUBLE.

In fact, it is not necessary that the keys have been inserted in decreasing order
of their values. The technique known as ordered hashing compensates for this via
the following search/insertion algorithm [Amble and Knuth 1974], When a new
key Kj is to be inserted, we can follow its probe sequence until either an empty slot
is found or else a smaller key Kt is found. In the latter event, Kj “bumps” Kt from
its location, and Kj is directed to proceed further along its probe sequence. The
entire affair has been likened to a game of musical chairs, wherein many keys may
be bumped before matters settle down. This logic is captured in the function
HASH_ORDERED (Algorithm 10.9), which you should compare carefully with
HASH_ DOUBLE. The application of this method to the keys of Figure 10.29 is
shown in Figure 10.35. Things proceed uneventfully for the first few keys. When
the key 72 is presented, it collides with 85; but it is smaller and so we proceed to
location 1. However, when the key 147 is presented, it bumps the key 43 from
location 4. The subsequent probe sequence for 43 is 2, 0, 11, 9 (since /io(43) = 11);
but because locations 2, 0, 11 are already occupied by keys larger than 43, we do
not stop looking until location 9. Later, the key 137 bumps 85 along to location 3.
The real chase comes when the key 148 is presented; it bumps 109 from location 5
to location 3, in turn bumping 85 to location 12, in turn bumping 38 to location 10.
On the final insertion, the key 101 bumps 38 from location 10 to location 8.

0 1 2 3 4 5 6 7 8 9 10 11 12

91 72 119 85 43 109 85 38 43 38 141 38
109 147 148 137 101 85

Figure 10.35 Illustration of Ordered Hashing

It is easy to see that this scheme must work when insertions are performed by
decreasing order of the key values. Therefore, we know how to generate at least

110.4.2.5 HASH TABLE REARRANGEMENT 531

function HASH_ORDERED (arg: integer; var htbl: hash_table): hash_link;

var hcnt: hash_ndx; {a global count of table entries}
i,j: hash_ndx;
k: integer;

begin
i := HASH (arg); j := INCR (arg);
while arg < htbl [i].key do

i := (i + j) mod hsiz;
if arg = htbl [i].key then

HASH_ORDERED := i
else begin

if hcnt = hsiz - 1 then {table is full}
HASH_ORDERED := -1

else begin {insert arg in table}
while htbl [i].key <> 0 do begin

if arg > htbl [i].key then begin {bump the key}
k := htbl [i].key;
htbl [i].key := arg;
arg := k;

end;
i := (i + INCR (arg)) mod hsiz;

end;
hcnt:= hcnt + 1;
htbl [i].key := arg;

HASH_ORDERED := i;
end;

end;
end;

Algorithm 10.9 HASH_ORDERED

one arrangement of the table for which ordered hashing is viable. Remarkably, no

matter what input permutation of the keys is employed, the algorithm

HASH_ ORDERED will always generate the same final hash table! To see this,

suppose that there are in fact two or more table arrangements. Then let A, be the

largest key with a different location in two distinct arrangements. Necessarily, all

the keys A, > A, have identical locations in all possible arrangements, by the manner

in which A, was chosen. But then, in the probe sequence for A, - in any arrange¬

ment - all the keys greater than A, reside in fixed locations, and any keys less than

Kj must occur later in the probe sequence. Accordingly, A; must reside in the first

probe location not occupied by larger keys, and must do so for all arrangements.

This contradicts the existence of Ay and thus the possibility of more than one hash

table arrangement.

Ordered hashing was introduced with the motive of improving the performance

of unsuccessful searches. It is fairly easy to see that it does so. To begin with, since

we have seen that the final hash table arrangement is independent of the insertion

532 SEARCHING

sequence, let us presume that the keys have been inserted in sequence by decreasing
value, as suggested at the beginning of this section. This amounts to ordinary
double hashing, and we have already seen (Eq. 10.37) that in this case
PS — (—1/a) x ln(l — a). But since this corresponds to the unique sequence in the
ordered hash table, then PS for ordered hashing must have the same value. In the
case of an unsuccessful search for a key K, the significant observation is that the
number of probes PF is the same as it would have been if K did occur in the table
in its proper place, after any keys Kt > K in its probe sequence. In other words, for
ordered hashing, PF = PS. What about the cost, during randomly ordered
insertions, of relocating items? Although the average cost of insertions is the same
as in the case of double hashing, the probability distribution is not the same. In
particular, some insertion sequences can require 0{n2) “demotion” iterations in the
algorithm HASH_ORDERED. Our final observation is that if an unsuccessful
search is always followed by an insertion, as in typical compiler and assembler
applications, then there is not much reason to employ the method. But when there
are relatively many unsuccessful searches compared to the number of successful
searches, then ordered hashing is strongly recommended. Note the implication of
these last two statements - the advantage of the method will be gained via a vari¬
ant of HASH_ ORDERED that searches but does not insert.

We have seen that ordered hashing does not improve matters for successful
searches. Is there any technique that does? In fact, there have been several
approaches to this problem. One of these is illustrated in Figure 10.36(a). A new
key Kq has the probe sequence indicated in the first row of the diagram, where
circles denote occupied locations and squares denote empty locations. We see that
five probes would be required to find an empty location for K$. Shown vertically
are the probe sequences for the keys Ka, Kb,... that occupy the locations along s
sequence. Although the locations are shown as being distinct, they need not be, of
course. What really counts is whether, by bumping one of the keys out of KJs
sequence, we can reduce the aggregate probe lengths of all the keys. The first
choice would be to bump Ka by one if the next location in its probe sequence were
empty, but that is not the case here. The second choice would be either to bump Ka
by two or Kb by one, but this does not help either. However, on the next diagonal,
by bumping Kc by one to an empty location, there is a change of +1 for accessing
Kc and —2 for accessing K0. All in all, this method has been shown to lead to an
average PS = 2.49 as a approaches one, and to an expected worst case cost of
0(«‘/2) [Brent 1973].

A more general approach is illustrated in (b) of Figure 10.36. In this diagram,
search is not limited just to the probe sequences of those keys on s sequence.
Rather, a binary tree of choices is explored. Whenever the probe sequence of a key
Kj finds that location occupied by another key Kp then the next locations in the
sequences for both keys are examined. (Once again, note that the locations corre¬
sponding to these nodes need not be distinct.) The sense of the figure is that the
probe sequence for the bumping key Kt continues to the left, and that the probe
sequence for the bumped key K} extends to the right. For the case illustrated in the
figure, the optimum strategy would be to bump the key X from node A to node B
and the key Y from node B to node C, thus allowing the insertion of Kq at node A.
This method has been shown to lead to an average PS = 2.13 as a approaches one,
and to an expected worst case cost of 0(lg n) [Gonnet and Munro 1979],

110.4.2.5 HASH TABLE REARRANGEMENT 533

hi(K0)

Figure 10.36 Two Rearrangement Schemes for Hash Tables

There is a limitation with either of the two methods illustrated in Figure 10.36,
in that probe sequences are explored only in a forward direction. This causes some
of the arrangements that they compute to be sub-optimal. The computation of an
optimal arrangement (apparently yielding 1.83 for the average value of PS as a
approaches one) would also, in effect, have to allow for exploring probe sequences

534 SEARCHING

in a backward direction [Lyon 1978; Rivest 1978a], Such a computation would
correspond, in fact, to solving the assignment problem; this was cited in Section
7.4.3.4 as one of the variations of computing a minimum weighted matching for a
bipartite graph. In practice, one would seek to adapt the amount of rearranging
activity to the expected savings in subsequent accesses, along the lines depicted in
Figure 10.36. Is it likely to be worthwhile to rearrange hash tables to reduce the
average value of PS? For the symbol table for a compiler, it might well be, since
there the ratio of subsequent (successful) searches to initial (unsuccessful) searches

can be high; and for a fixed dictionary, it almost certainly would be.

110.4.3 Hashing Optimality

In our evaluation of open hashing performance in Section 10.4.2.3, we found that
the average value of PS is 0(log/t), and that the worst-case value of PS is 0(n).
Subsequently, in Section 10.4.2.5, we saw how to improve these values by means of
collision resolution methods that rearrange the hash table. By these rearrange¬
ments, the average value can be reduced to 0(1) (a constant), and the worst-case
value can be reduced to 0{ log n). In this section we consider the question of the
absolutely best hashing performance that can be obtained. These improvements are
obtained both via the choice of hashing function and via the choice of collision
resolution method. There are several variations on this theme, all of them sustain¬
ing the central idea that it is possible to use a hash table with 0(1) worst-case

performance.

In order to discuss these matters, we will speak of a universe U of possible key
values and a subset S of keys, chosen from U and to be hashed into a table of size
M. Also, the size \U\ is N and the size | S| is n. Now the most desirable situation
would be to find a perfect hashing function that would engender no collisions, and
so would map each key in S into a distinct location in the table with a single probe.
It is extremely unlikely that an arbitrary hashing function will have this property.
As an illustration, suppose that n — 30 and M = 40. Then there are 4030 « 1048
mappings from S into the table; only 40 x 39 x — x 11 = 401/10! « 2 x 1041 of these
do not have collisions, however. In other words, only about two in every 10 million
will be perfect for these values of n and M. Nonetheless, Sprugnoli [1977] discusses
two heuristics for finding for such a function, once having been presented with some
fixed, unchanging set S. We can impose the additional condition that M = n —
that is, that there be no empty table slots; in this case we have a minimal perfect
hash function. In one attack upon this problem, a hash value is constructed using
the first character, the last character, and the length of the key [Cichelli 1980].
Various heuristics are then employed to guide a backtracking search for an assign¬
ment of values to the characters that will produce a minimal perfect hash function.
In one example of this method, a minimal perfect hash function is obtained that
maps the reserved words of Pascal into the range 2 .. 37; for example, with 15 for
'B' and 13 for 'NT, this function hashes 'BEGIN' to 33.

For small, static sets of keys, as with the reserved words in an HLL, the idea of
a perfect or minimal perfect hash function can be extremely worthwhile. As a
general approach to hashing, however, the idea has some practical shortcomings. It

110.4.3 HASHING OPTIMALITY 535

is totally unsuited for a varying set of keys, where a single insertion makes it neces¬
sary to compute an entirely new hash function. Moreover, even for static sets of
keys, the methods just described have limited applicability except for small n. One
reason is because of the use of heuristics with exponential complexity; thus, we may
not be able to ascertain in any reasonable amount of time whether a solution exists
for a given set S, much less the value of a solution. Another reason is that the
methods can generate hash constants so large with respect to the fixed word size of
the underlying machine that they cannot reasonably be employed. Nonetheless, the
search for perfect and minimal perfect hash functions has attracted a large amount
of effort [§].

In addition to the pragmatic results outlined in the preceding paragraphs, some
remarkable theoretical results have been obtained concerning the possibility of hash¬
ing a sparse table; by this, we mean hashing an arbitrary subset S from a universe
U of size TV to a table of size M, where M is suitably less than TV. For M > 2 and
TV < 2M - 2, as an example, it is always possible to determine (with a single probe!)
whether or not any given member of U is present in the table. This is possible by
means of an ingenious assignment of keys to table locations, such that examination
of the location specified by h(K) has one of three results:

(a) K is there and so is present in the table;

(b) some different key from U is there, such that we can infer that K is somewhere
else in the table;

(c) some different key from U is there, such that we can infer that K is absent
from the table.

On the one hand, this result is true for any subset of elements of U (as long as
TV < 2M — 2). On the other hand, it may not actually retrieve K if it is present;
rather, the result has the effect of determining set membership. This unusual
demonstration is coupled with further conclusions concerning the sufficiency of 0(1)
probes (but not single probes), subject to restrictions on the relative values of M
and TV [Yao 1981]. These restrictions are removed in Fredman et al. [1984], where
it is shown how hashing can be used to store and retrieve a sparse subset of items
from a universe U in a table M with 0(1) worst-case performance - regardless of
the relative values of M and TV!

Thus far, we have viewed the question of hashing optimality as one of trying to
find a hash function h for which the worst-case performance will not be too bad, no
matter what subset S of U is presented to it. More precisely, we look for an h such
that, averaged over all sets of input keys, the number of collisions produced by h is
bounded relative to the size of the set. The approach known as universal hashing
uses separate chaining and deals not with a single hash function, but with a set H of
hash functions [Carter and Wegman 1979]. One chooses an h at random from H
and then averages the expected number of collisions over all the members of H,
rather than over all the possible input sets S. The effect of this is to provide relief,
in a technical sense, for the possible worst-case behavior that any single hash func¬
tion can have for certain inputs. In other words, universal hashing guarantees that
the expected time to process any input sequence is linear in the length of the
sequence. For a suitable prime p, one example of a class H of universal hash func¬
tions is given by H\ hs,(K) = (s x K + t) mod p. The idea is that one chooses a

function from H at random and then monitors its operation on the input set S at

536 SEARCHING

hand. In the event of unsatisfactory performance, one just randomly chooses

another function from H.
Alas, we must note that the results described in the two preceding paragraphs

do not come without cost. In both cases, although the expected time complexities
of the methods are guaranteed to be 0(1), the cost in the size of the information
(that is, program and/or data) required to specify them is unbounded. (We are
reminded of the unlimited growth of hash constants in some of the perfect hashing
methods.) Quantitative discussions of these compensating costs can be found in

Mairson [1983] and Mehlhom [1982a].

flO.4.4 Predictive Hashing

The conventional use of hashing is for determining the location of an item in a table
or file. Sometimes we encounter situations wherein an item is very unlikely to be
present and where it is not disastrous to mistakenly decide that it is, as long as we
don’t decide that it is not present when it really is. This leads to a different and
powerful use of hashing for predicting whether an item is likely to be present in a
table or file. Actually, the idea is to be able to compute rather quickly, and with no
error, whenever a value is not present. We accept, however, that the computation
may erroneously predict that an item is present when it is not. In other words, this
method will filter out all the values that are really present, but will also filter out
some number of false drops — that is, values that seem to match the cri teria but
really do not. Thus, suppose that we are checking a credit card number to see if the
card is suspect. In the vast majority of cases no action is required. However, the
cost of looking for the card number in a large reference file is likely to be high; the
complete file may not even fit in main memory. So it is better to be able to deter¬
mine quickly when a complete search is not required, even at the expense of
occasionally being misled that a number is in the file and looking for it without

finding it.

For the situation just described, we employ a large bit table b0bx... bM_x and a
set of hash functions hx, h2,..., hs. These functions are chosen to be completely inde¬
pendent of each other, but each of them hashes input keys into the range 0 .. M — 1.
The hash table (the bit values) is generated by applying each hash function to each
key in the file. For a given key Kh the effect will be to set to one those bits
addressed by the union of hx(Kt), hfKf ... , hs{Kf When the entire set of keys has
been hashed to this bit array, then bk will have the value one only if some hash
function applied to some key returned the value k. Now when an input key K is
presented, we simply test whether bh.(K) = 1 for all 1 < j < s. If the test fails for any
j, then K cannot be in the file and we can proceed with other matters. Otherwise,
we should assume that K is present and search for it in the file. For maximum
effectiveness, the parameters 5 and M for this Bloom filter [Bloom 1970] should be
chosen such that approximately half of the M hash bits get set to one. We will
analyze a closely related situation very shortly, from which it can be seen that for a
file of N records, the probability of getting a false drop is approximated by
(1 — e~fr)s- Moreover, even if there are a moderate number of false drops in the
“hits” to the file, that is much less significant than the time that is saved by not

110.4.4 PREDICTIVE HASHING 537

doing a full search for the majority of items that are not in the file. In situations
for which this approach is appropriate, the hash table is typically large, but not too
large to fit in main memory, whereas a conventional hash table for the file would
not fit in main memory.

In the method just described, we constructed a large hash table that could be
used as a predictor for all the items in a table or file. A closely related approach
can be used for speeding up the search for a string pattern in a text file. In this
scenario, we have a large, fairly static text file that is to be searched many times,
perhaps a file used for information retrieval. Such a file is typically organized in
terms of text lines (see Figure 8.20). Rather than laboriously searching for an input
pattern in each line of such a file, we can construct a small hash table for each line,
as a predictor for substrings that occur in that line [Harrison 1971], In particular,
we construct a hashed k-signature by applying a hash function h to each of the
substrings a,-ai+l... ai+k_x of length k in that line. The range of h is 0 .. m — 1, and
the hash table is a bit table b0bx... bm_x. After the signature is constructed for a line,
then bj in that signature will have the value one only if h applied to some substring
in that line returned the value j. Now when an input pattern is presented, we first
compute the hashed /c-signature of all its substrings of length k. Then the pattern
cannot be in a text line if, for any 0 <j < m - 1, the jth bit of the pattern signature
is one and the y'th bit of the line signature is zero, whereupon we can skip with
certainty to the next text line. If the signature of the text line does “cover” that of
the pattern, however, we must employ conventional pattern matching on that line.

Of course, there may be false drops. Let us estimate the probability of this,
using 2-signatures and assuming that there is no correlation among substrings of
length two — that is, digrams. (From our mention of digrams in relation to spell¬
ing correction in Section 8.3.2, we know that this assumption is not really justified.)
The probability that any single digram in a line of text will not hash to a particular
location in the bit table is (1 — 1/m). For an average number t of digrams in a text
line, the probability that none of them will hash to that particular location is there¬
fore (1 — 1/m)'; and the probability that at least one of them will hash to that
location and set it to one is (1 - (1 - 1/m)'). Therefore, if the pattern has s
digrams, the probability that each of them will hash onto one of these locations in
the line signature having value one is Pr = (1 — (1 - l/m)')s. Finally, since
(1 — l/m)m « e~\ we can substitute e~‘lm for (1 — 1/m)' and rewrite this as

Pr = (l - e~tlm)s (10.38)

(The analysis of false drops for a Bloom filter is almost identical.) As an example,
suppose that we have a 12-character pattern (with 11 adjacent pairs) and an
80-character text line (with 79 adjacent pairs). Then for a hash table of 64 bits,
Pr = (1 — e~79l64)n — .02275. In other words, for these parameters, the signature
test allows almost 98 percent of the non-matching substrings to be discarded with¬
out further testing.

The signature method is certainly useful for a large static text file that will be
searched often, but it is not practical for spontaneous searching of text files. More¬
over, it requires that extra space be allocated with each text line for its signature.
Our last example of predictive hashing responds to both of these objections. It is in
fact a third 0(n) method for general substring matching (see Section 8.5.1), by Karp

538 SEARCHING

and Rabin [1981]. In this algorithm (K&R), hashing is used to construct a finger¬
print of a pattern. In order to be useful, the fingerprint function must be so concise
and easily computable that there is a savings in comparing fingerprint values rather
than directly comparing substrings. It should also, of course, yield a small percent¬
age of false drops. With this scheme, we need to construct the fingerprint of the
pattern just once. But since we have to construct the fingerprints of many succes¬
sive substrings of the text, we need some method that allows for very efficient

“updating” of the fingerprint from one substring to the next.

In the K&R substring matching method, the characters a, of a substring are
treated as digits dt relative to the radix r of the character set. Then the fingerprint

of a substring D = d^+i... di+m_u of length m, is defined by

(j>{D) = dfm~X + di+lrm~2 + - + di+m_x (modulo p) (10.39)

where p is a latge prime. For p < 232, we see that comparing fingerprints reduces to
comparing full-word integers in common machine architectures. What is 0 for D',
the successor to D, when we shift right one place? The crux of this method is that

we can compute 0(D') fairly simply by

0(D') ee (0(D) - djrm~1) x r + di+m (modulo p) (10.40)

An important reason that Eq. 10.40 is easy to evaluate is that, for prime p, the
modulus operation can be applied after each operation rather than at the end of the
evaluation. Now observe that 0 is a hash function, but we do not need a hash table
like that required in the signature method. Rather, the fast update of Eq. 10.40

takes its place!

One more thing is required in order for the K&R method to be useful. The
probability of a false drop has to be suitably small. In Karp and Rabin [1981] it is
shown that for a text string of length n and a suitable choice of prime p, this proba¬
bility is 2.511/m and the expected complexity of looking for a match is 0(n). Since
we know that any hashing function can yield very bad performance for certain
inputs, their method also incorporates a notion akin to that of uniform hashing (see
Section 10.4.3). In particular, if the number of false matches with a given
pattern/text combination is excessive, then one can interrupt the process, randomly
choose a different suitable prime, and then continue the process with the new defi¬
nition of 0. In conclusion, note that good performance for the K&R algorithm
depends upon two capabilities that are not required with the earlier KMP and B&M
algorithms; we must be able to do multiplication and modulus operations quickly,
and we must be able to obtain random prime numbers easily.

10.5 DIGITAL SEARCHING

Most of our searching methods have been based upon binary comparisons of keys.
Hashing was a notable exception, substituting properties of key transformations for
the natural ordering among the keys. Now let’s suppose that instead of organizing

10.5 DIGITAL SEARCHING 539

the data, we organize the search space. We can do this by regarding a key in terms
of its representation as a sequence of “digits” — characters or actual digits or bits
— and then using the values in this sequence to guide our search. Indeed, we do
this very naturally when we use the thumb-indices of a large dictionary to find the
first entries for each letter of the alphabet. We will examine two rather different
ways of operating with the digits of the key. The first conforms to the thumb-index
analogy; the second combines elements of digital searching with those of BST’s.

10.5.1 Tries

The word trie comes from the word retrieval and is pronounced like “try” so that it
will not be confused with tree. It is particularly appropriate for alphabetic keys,
where the radix is 27, allowing for a space character. For illustrative purposes,
however, that is too “branchy,” and so we will use just the eight most common
letters {e, t, a, o, i, n, s, t}. In particular, we will compose examples from the 26 most
common words that employ only these (non-blank) letters, as shown in Table 10.5
(and as opposed to Table 10.1 in Section 10.3.2.4). Ordinary words do not have the
prefix property (see Section 8.2.4), and we can see several instances of this in the
table; for example, 'the' is a prefix of 'then' and 'these'. When using tries, there¬
fore, it becomes necessary to employ some distinct terminator character to
discriminate such cases. We will employ '#' for that purpose. At each node of a
trie for our example words, we will make a nine-way branch, corresponding to the
nine possible values a, e, h, i, n, o, s, t' of the examined character. This process is
illustrated in Figure 10.37, where the value used for branching at the yth level is the
yth character of the argument key. Since the initial portions of the keys are deter¬
mined by the search path, there is a choice between storing an entire key at a leaf
(as in the figure), or just the suffix portion of a key. One or the other is required,
however, in order to prevent a partial match from being falsely interpreted as a
complete match.

/ word / word / word / word

1 the 8 it 15 not 22 its
2 to 9 as 16 an 23 into
3 a 10 his 17 one 24 than
4 in 11 on 18 she 25 these
5 that 12 at 19 has 26 then
6 is 13 i 20 no
7 he 14 this 21 so

Table 10.5 26 Most Common Words Using {e, t, a, o, i, n, s, h}

Two things are apparent from Figure 10.37. First, this structure allows us to
make more elaborate discriminations and so find keys faster, on average, than is
possible with a BST. In particular, if there are n keys and we are performing ra-way
branching on their digits, then with the best of circumstances we should be able to

540 SEARCHING

10.5.1 TRIES 541

discriminate among them with logw n = lg n/ lg m tests. In the case of a full alpha¬
bet of 27 characters, this would suggest that only 1/ lg 27 ~ 0.21 as many tests

would be needed as with ordinary binary comparisons. Even in the worst case,
moreover, the number of tests is bounded by the number of characters in the long¬
est key, and this is far less than the 0{n) worst-case for unbalanced BST’s. Another
feature of Figure 10.37 is that, in fact, many of the branch possibilities are empty.
This increases the actual number of discriminations required, and also leads to
extravagant use of space in tries. A realistic expected value for the number of
nodes, under the assumption that the keys are random, can be shown to be «/ In m
[Knuth 1973b]; accordingly, the average amount of space is mn/ In m. There are
several avenues to explore for reducing the wasted space that we see in Figure
10.37.11 But first, let us take up the matter of implementing tries.

Dealing with tries in an HLL like Pascal reveals some interesting problems. A
fundamental one is that the pointers in Figure 10.37 may refer either to other nodes
containing vectors of pointers or to nodes containing keys. Since the keys are likely
to be of widely varying length, they might preferably be placed in a string table
rather than in the trie nodes. But that doesn’t alter the fact that the pointers must
be able to reference two very different sorts of structures, for which the remedy is to
use variant records. In our case, we will have one variant that contains a vector of
pointers, and another variant that contains an alphabetic key. The reason for using
a vector of pointers is that the multiway branch can thereby be accomplished in one
machine operation, by indexing the vector with the character at hand. We will use
V' .. 'Z' as the index type for the vector of pointers. The value is arbitrarily
chosen as the terminator character because it closely precedes the range 'A' .. 'Z' in
the EBCDIC character set; a different choice would doubtless be made for ASCII
(see Table 8.1).

Incorporating these observations, we arrive at the function TRIE_INSERT
(Algorithm 10.10) for searching a trie, inserting arg if it is not already there, and (in
any case) returning a pointer to the node containing arg. Note that there are two
circumstances under which an argument key will be inserted. The simpler case
occurs when one of the appropriate pointers is nil and so a new word node must be
created and attached to the trie. A trickier situation occurs when a pointer chain
terminates with an unequal match between arg and the key K at a leaf. In this case,
it is first necessary to insert intervening vect node(s) up to the point of the earliest
level j at which arg and K differ in the jth position; and then the trie pointers must
be updated to reflect this.12

In selecting the representation in Figure 10.37 and in developing the algorithm
TRIE_ INSERT, we were guided by the desire to be able to build a trie dynam¬
ically. We may have a simpler situation where just searches need be performed, and
not insertions, as in the case of the reserved words of an HLL. In that case, we

11 The non-contiguity of the alphabetic characters in EBCDIC is particularly distressing at
this point. It exacerbates the phenomenon of wasted space in tries by interspersing
extra unused pointer positions in the nodes.

12 In TRIE_INSERT, we could have written ne\N(r,vect) and new(?,vtwaf) in order to
preclude wasted space (see Figure 4.10). For the sake of simplicity, this was not done.

542 SEARCHING

function TRIE_INSERT (arg: key_id; var tbl: trie_ptr): trie_ptr;

const first = V'; last = 'Z';

type alf = first .. last;
key_range = 1 .. key_max;
key_id = packed array [key_range] of char;
nodetype = (vect,word);
trie_ptr = |trie_node;
trie_node = record

case tag: nodetype of
vect: (ptrs: array [alf] of trie_ptr);
word: (key: key_id);

end;

var ch: alf;
done: boolean;
i,j: key_ range;
p,q,r,s: trie_ptr;

begin
done := false; i := 1; q := tbl;
while done = false do begin

done := true;
case qt-tag of

vect: if qj.ptrs [arg [i]] <> nil then begin
p := q; q := qj.ptrs [arg [i]];
done := false; i := i + 1;

end else begin {hang a new word node from vect node}
new (s); sj.tag := word;
qt-Ptrs [arg [i]] := s;
s[.key := arg;
TRIE_INSERT := r;

end;
word: if arg = qf.key then {found it}

TRIE_INSERT := q
else begin {need new vect node(s) and a new word node}

i := i - 1; j := i;
repeat

new (r); rf.tag := vect;
for ch := first to last do

rI.ptrs [ch] := nil;
Pt-Ptrs [arg [j]] := r;
j := j + 1; P := r;

until arg [j] <> q| key [j];
rt-ptrs [qt-key Q]] := q;
new (s); sf.tag := word;
rt-ptrs [arg [j]] := s;
s[.key := arg;
TRIE_INSERT := r;

end;
end;

end;
end;

Algorithm 10.10 TRIE_INSERT

10.5.1 TRIES 543

might represent the trie as a two-dimensional array, where each member of the
array is either a keyword or else an index of another column in the array, according
to the following definitions:

type col_ndx = 1 .. col_max;
member = (link,word);
trie_member = record

case tag: member of
link: (cursor: 0 .. col_max);
word: (key: key_id);

end;

trie_a = array [alf,col_ndx] of trie_member;

An algorithm to perform searching in such a structure is likewise much simpler than
Algorithm 10.10. Figure 10.38(a) exhibits an array representation corresponding to
the original trie of Figure 10.37.

It is certain that we can expect to have a shorter search path with a trie than
with a BST. How this will affect search times is less clear. It depends largely upon
the relative speeds of doing character extraction and word comparison on the
underlying machine, and so is mostly outside of our control. However, a major
concern with using tries has always been how to implement them efficiently in terms
of space. Some of these efforts are summarized in the following paragraphs.

A. Tries were first proposed by Fredkin [1960] and also by de la Briandais [1959].
These two proposals have a significant difference. The former presents tries as we
have described them. The latter characterization retains just the non-void siblings
within a node, and then transforms this ordered tree with nodes of variable degree
to the corresponding binary tree. When this transformation is applied to Figure
10.37, we obtain the binary tree in Figure 10.39. Now there is less wasted space,
but it is no longer possible to accomplish fast branching by indexing on an array of
pointers. Exactly how much space is saved depends upon several factors. The
savings will be greater as the sparsity of the vector increases. Don’t forget, though,
that each non-void entry now requires space for a digit label and two pointers, as
opposed to just one pointer in Figure 10.37. Because the fast multi-branching is
lost, the representation in Figure 10.39 is generally less popular. However, it is
possible to recoup some of the loss by familiar techniques. One is to link sibling
nodes in decreasing order of their expected usage. Another might be to replace
linked lists of siblings by BST’s of siblings.

B. Trie nodes are usually space efficient near the root and less so further away
from the root, as in Figure 10.37. A sensible response to this is to employ a hybrid
data structure that is like a trie near the root, but reverts to linked lists or BST’s
near the leaves, when the number of children becomes less than some value b. As
cited at the beginning of this section, the average number of nodes for a random
trie is n/ In m. Employing a hybrid random trie in this manner, the node require¬
ment is approximately #ln m), for b and m small and n large [Knuth 1973b].
The optimal overall strategy is to switch at about b = 6, thereby reducing the
number of nodes by a factor of six [Sussenguth 1963].

C. In realistic sets of alphabetic keys for information retrieval, we often encounter
words that have identical prefix portions - for example, physical, physician, physi-

544 SEARCHING

in LU
I
H

1 1 1 1

T
H

E
N

1

T
H

E
S

E

1

1 1 1 1 1

T
H

A
N

1 1

T
H

A
T

CO
1

in
i— 1

T
H

IS

1 1 1 1

CM

N
O

 1

O
N

E

1 1 1 1 1 1

-

O
N

 1 1 1 1 1 1 1 N
O

T

o H 1 1 1 1 1 1 IT
S

1

05 Z 1 1 1 i 1 1 1
O
H
Z

00 1 1 1
CO

1 1 T
O

1 1

1 1 1

S
H

E

1 1 S
O

1 1

CO 1 1 1 1 1
CM
i— 1 1 i

m 1 1 1 1 1 1 - 1 1

- 1 1 1 1 05 1 CO o

CO 1 H
A

S

H
E

1 H
IS

1 1 1 1

CM < 1 1 1 1 A
N

1 A
S

A
T

- 1 CM 1 CO m CO 00

■H- < LU I - z o CO 1-

E

CO

H
IS

1 1 1 1 1 I 1

T
H

IS

CM

A
T

1 1

T
H

A
T

1 1 1 1 1

-
co 1 1

CO
1 1 1 1 1

o

A
S

1 1 H
A

S

1 1 1 1 1

05

0
1

 1 1 1 1

o
i-
z 1 1 1

00 A
N

1 1

T
H

A
N

1 1 1 1 1

H
E

1 1 1 1 1 1

S
H

E

T
H

E

CO 1
CM

1 1
H 1

i-
o
z

1 1

in 1
O

1 1 - 1 1 1 IT
S

1 1 1 1 1

O
N

 1 S
O

05

CO 1 00

T
H

E
N

1 Z 1

N
O

 1 1

CM 1 1 1 1

O
N

E

1

T
H

E
S

E

1

- 1 < CM 1 — CO in CD

■tv < LU I - z O CO

Figure 10.38 Array Forms of Trie of Figure 10.37

(b
)

R
ev

er
se

d

10.5.1 TRIES

Figure 10.39 Tree Form of Trie of Figure 10.37

546 SEARCHING

cist, physics. Because of this non-random property, many more trie nodes are
required to discriminate such words than we would otherwise expect. In particular,

it causes “one-way” branching; we see two such nodes (marked with *’s) in Figure

10.37. It is not hard to “collapse” tries so that one-way nodes are deleted. We
simply incorporate in each node an additional field that specifies how many digits

should be skipped over until finding one that is significant for discrimination.

D. It was natural to build the trie in Figure 10.38(a) by examining the characters
from left to right. But there are other possibilities. For example, by examining the
characters from right to left, we can construct the trie in Figure 10.38(b), which
requires only thirteen nodes of pointers rather than fifteen. Can we discover an
optimal sequence of character positions to test and thus construct the optimal trie,
as we did the optimal BST in Section 10.3.2.1? Unfortunately, this problem and
several alternate phrasings of it have all been shown to be AP-complete [Comer and
Sethi 1977]. Therefore, in lieu of exact answers, we look for heuristics. The prob¬
lem of finding an optimal sequence of character positions for discriminating
between words has been investigated in the context of finding optimal rules for
abbreviation of words. In an excellent study of this matter, many rules were tried,
and one of the simplest was found to be generally superior [Bourne and Ford
1961]. Specifically, a good rule is simply to skip over all the characters in the even-
numbered positions. In particular, this discards the second characters of words.
Second characters are very commonly vowels, and accordingly provide less discrimi¬

natory power than do characters in other positions.

E. Lastly, there are techniques for retaining the branching structure of a trie, but
“squeezing” out the excess space. Examine Figure 10.38 again, and imagine that we
slice such an array into its columns. Then suppose that we slide these columns up
and down beside a large empty vector of slots in such manner that there are no
multiple entries in any row, and as few empty rows as possible. We can then super¬
impose the vertically shifted columns upon the vector of slots, and this elongated
vector can be used in lieu of the two-dimensional array, with subsequent savings in
space. The result is known as a compacted trie. It is illustrated in Figure 10.40,
where (a) is the original trie for the words {APE, ATE, PAT, PEA, PET, TAP,
TEA}, and where (b) shows a compacted trie for the same words; the values abdve
the compacted trie mark the beginnings in (b) of the corresponding columns from
(a). Exact and approximate algorithms for finding compacted tries in this manner
are given in Al-Suwaiyel and Horowitz [1984], and they tend to reduce the space
requirement by 70 percent. The exact algorithm is exponential in the number of trie
nodes examined. However, the simplest of the approximate algorithms compacts
almost as well in practice and yet has complexity 0(mn), for m the branching factor
and n the number of nodes. The goodness of the compacted result depends much
more heavily upon m than upon n. Interestingly, repeated use of the KMP string
matching technique (see Section 8.5.1.1) is central to all of these algorithms. Of
course, the technique of compaction is useful only for static tries. Another way of
squeezing space out of tries is to construct compressed tries, in which the essential

point is to replace vectors of pointers by vectors of boolean indicators [Maly 1976].

This typically reduces storage requirements by an order of magnitude, with no
diminishment of accessing speed. The resulting structure is very cumbersome to

update; so it too is suitable only for static tries.

10.5.1 TRIES 547

1 2 3 4 5

A 2 - PAT TAP PEA
E - 5 TEA —

P 3 APE - — —

T 4 ATE - - PET

(a) Original Trie

1 2,3 54

LEE 5 10 PAT 9 APE ATE PEA TAP TEA PET —

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Compacted Trie

Figure 10.40 Compacting a Trie

Now that we have dealt at length with the issue of space in tries, what can be
said about their usefulness as compared with other structures for searching? First,
they are particularly useful for dealing with long, variable-length keys. Most trie
searches on such keys need examine only the first few characters. Moreover, in the
event of an unsuccessful search, we will know the longest partial match. By
contrast, methods based upon key comparisons or hashing may cost more because
of the need to deal with the entire key; also, hashing is useless for indicating partial
matches. A significant hazard with unbalanced BST’s and with hashing is their
0(n) worst-case behavior. This is far less of a problem with tries. We have already
mentioned that the longest path can be no longer than the longest key. The possi¬
bility of this happening depends upon non-randomness in the distribution of digits
in the keys. Unlike the BST case, however, it is completely independent of the
sequence in which the keys are inserted. For a given set of keys, the same trie will
be obtained for any sequence of insertions!

f 10.5.2 Binary Digital Searching

In contrasting tries with BST’s, we might conclude that comparison searching is
intrinsically binary and that digital searching is intrinsically multiway. This is not
true, however. Multiway comparison trees were introduced in Section 10.3.4; we
will now encounter a binary form of digital searching. In this method, the bit
representation of a key is used rather than its character representation. That makes
it more appropriate for implementation in assembly language than in an HLL,
where bit extraction is awkward. We can illustrate the concept nonetheless, using
the hypothetical mapping from characters to bits illustrated in Figure 10.41(a).
Under this mapping, the keys of Table 10.5 would appear as in (b) of Figure 10.41.
An algorithm for inspecting the binary digits from left to right and
searching/inserting in a binary tree would be very similar to BST_INSERT (Algo¬
rithm 6.6). When the search has reached a node X, the first step is to compare the

548 SEARCHING

argument key with the key at X. If they are equal, the argument has been found.
Otherwise, for X at the fth level of the tree, the search goes left or right from X,
according to whether the ith bit of the argument has the value 0 or 1. When the
words of Figure 10.41(b) are inserted in their listed sequence, from more probable
to less probable, we obtain the binary digital search tree of Figure 10.42. It is some¬
what disconcerting at first glance; it resembles an ordinary BST with some keys out

of place, as though it might have been constructed by a novice.

binary octal binary octal

a 000 0 n 100 4

e 001 1 0 101 5

h 010 2 s 110 6

i 011 3 t 111 7

(a) Binary/Octal Encoding of {e, t, a, o, i, n, s, h}

word octal word octal word octal word octal

1 the 721 8 it 37 15 not 457 22 its 376

2 to 75 9 as 06 16 an 04 23 into 3475

3 a 0 10 his 236 17 one 541 24 than 7204

4 in 34 11 on 54 18 she 621 25 these 72161

5 that 7207 12 at 07 19 has 206 26 then 7214

6 is 36 13 1 3 20 no 45

7 he 21 14 this 7236 21 SO 65

(b) Words and Octal Equivalents

Figure 10.41 Binary Representation of the Words of Table 10.5

We learned in the preceding section that the shape of a trie is dependent upon
the distribution of the digits in the keys, but is independent of the order of
insertion. This is in contrast to BST’s, in which the shape is independent of the key
values, but very dependent upon the order of insertion. Since binary digital search
trees are intermediate in character to tries and BST’s, it is not completely surprising
to learn that their shapes depend upon both of these factors. The good news is that
their dependence upon order of insertion is much less than with BST’s. Therefore,
as with tries, the worst-case performance of binary digital search trees is much
better than that of BST’s. We can observe that this is so by taking the keys from
Figure 10.41(b) and building an ordinary BST with them, as in Figure 10.43. This
latter tree is badly unbalanced, with an average path length of 152/26 = 5.846. By
contrast, the tree of Figure 10.42 has an average path length of 111/26 = 4.269.
What if the keys are distinctly non-random, such that there are many instances of
equality among the prefix portions of their binary representations? In this case we
could first hash the keys to scramble their bit values, and then proceed as before.
In fact, the original description of binary digital searching is couched in these terms

[Coffman and Eve 1970].

Whereas in trie searching the keys are at the leaves, in binary digital searching
they are at the nodes; thus, this latter method requires many more key comparisons

110.5.2 BINARY DIGITAL SEARCHING 549

Figure 10.43 Ordinary BST for Figure 10.41

550 SEARCHING

than trie searching does. An example of a digital search method that does not have
this drawback is the elegant technique known as Patricia (Practical Algorithm to
Retrieve Information Coded in Alphanumeric) [Morrison 1968]. On the way down
in the search path from the root, the keys are examined from left to right, and one¬
way branching is eliminated because each node has a field specifying the index of
the next bit that is significant for discrimination. The sequence of examined bit
values on the way down then corresponds to just one legitimate entry. The last
node along any valid, unique sequence does not have a downward link to an
external node containg the key, as in a trie, but rather an upward link to one of the
nodes on the search path — with the unique key matching the search stored therein.
This means that comparisons do not have to be made against keys on the way
down, but only after following a back pointer; and this is easily recognized because
it leads to a node with a smaller bit index. So Patricia requires just one type of

node and just one full key comparison per search!

fl0.6 OTHER PARADIGMS OF SEARCH

In the beginning of this chapter, we cited three paradigms of searching that had
been encountered throughout the book. We called attention to them at that point
expressly for the purpose of distinguishing the paradigm of this chapter from other,
familiar possibilities. We now return to the subject. There are, in fact, yet other
types of search that one may want to perform; corresponding to all these possible
paradigms, there is a substantial body of study. Our intent here is simply to give a

brief overview of them.

Range search. The objective in this case is to find all the values that lie between
two limiting values, L(ower) and C(pper). This is fairly easily accomplished by
building upon familiar methods. One approach would be to first sort all the input
values. It would then be straightforward to find both L and U in the sorted array
via binary search, and then return all the values between those two locations. Alter¬
natively, we could construct a BST of the input values and then traverse the BST

selectively, as follows:

(a) if the value at a node X is greater than L, traverse the left subtree of X;

(b) if the value at a node X falls between L and U, output X;

(c) if the value at a node X is less than U, traverse the right subtree of X.

Closest-match search. In this case we presume that the search will not succeed
in finding an exact match, and so we seek the value in the table that is closest to the
search argument. An appropriate response to this situation is to preprocess the
original input values xt to ranges by finding the midpoints y, between them. Then
binary search on the table of yt will indicate the value of xt that is closest to the
input argument. We have already seen this paradigm, in more complicated form, in
our discussion of spelling correction in Section 8.3.2.

Multi-dimensional search. This is the issue that can cause search to “blow-up.”
There is the obvious case of looking for an exact match for a key containing several
attributes or dimensions. But also, all the other paradigms, such as range searching

110.6 OTHER PARADIGMS OF SEARCH 551

and closest-match searching, generalize to it as well. Multi-dimensional search
could be explored at this juncture, with some profit. In many cases of practical
interest, however, the quantity of multi-dimensional data is so large that the issues
of secondary memory are very significant. Accordingly, we defer discussion of this
topic to Section 12.4.

10.7 OVERVIEW

When viewed in all its paradigms, the notion of search, in the sense of looking for
the correct or the best answer to a problem, is broad enough to encompass much of
computing. What is the best way to search greatly depends upon the relative costs
of those two basic resources, time and space. Consider the case of finding the value
of sin(xr). If memory is relatively more precious, then it is better to rely solely upon
an approximation formula to evaluate sin(x:). But if computing cycles are relatively
more precious, then it is better to store tabular values that can be used to expedite
the numeric calculation of sin(x). Trade-offs like this assumed great importance in
the infancy of computing, when cycles and memory were both comparatively dear.
The issue is still important in many instances, as witness the immense potential
benefit of trading space for time with the techniques of tabulation (see Section
5.4.2.1) and dynamic programming (see Section 7.4.2.1). Stated simply, we should
always remember that it is sometimes better to recompute, and sometimes better to
search for a precomputed value in a table.

Recomputing is one way of recasting the problem of search. The use of asso¬
ciative memory is yet another way. With machines having this form of memory,
one can specify a desired value of an attribute and then access all records possessing
this property, via one operation of parallel search over all the records in the
memory [Gotlieb and Gotlieb 1978; Pfaltz 1977]. Indeed, hashing provides a
mapping from a key value to a location value and so has much of the flavor of
associative search, except that it is complicated by the occurrence of synonyms. One
can also look at inverted lists as providing associative retrieval.

Returning to the narrower view of search that we have explored in this chapter,
let us reflect in broad terms upon four typical techniques for this purpose: binary
search, search trees, hashing, and digital search. Most of our discussion has been
directed at the time complexities for conducting searches and insertions/deletions in
the associated structures. However, just as we found a time-space trade-off in the
preceding paragraphs, we find another trade-off at this lower level of problem solv¬
ing. Not including insertions and deletions, there are three costs to consider:

P(n) — the preprocessing time to build the search structure
S(n) — the space required for the search structure
Q(n) — the time required for querying the search structure

Table 10.6 shows these three costs for each of the four searching techniques. We
can see that binary search is superior in terms of space and competitive in terms of
query time; it is nonetheless inappropriate, even for a static set of data, when only
a few queries will be conducted, because of the relatively high preprocessing cost.

552 SEARCHING

Of course, the table tells only part of the story. Besides the neglected issues of

insertion/deletion, there are others: the relative significance of average as opposed

to worst-case performance, the importance that the structure manifest the order

relationship between keys, etc. There is clearly no one best search method. The

choice depends both upon the requirements of the application and upon the charac¬

teristics of the data (see Exercise 10.46). Moreover, as we particularly saw in the

discussion of digital search, it is quite possible that the best solution is a combina¬

tion of methods.

Method P(reprocess) S(pace) Q(uery)

Binary Search
Search Trees
Hashing
Digital Search

0(n Ig n)
0(1)
0(n)
0(1)

O(n)
0(3n)
0(n/a)

0({nm)l(b In m))

0(lg n)
0(lg n)

0(1)
0(logm n)

Table 10.6 Costs of Search Techniques

10.8 BIBLIOGRAPHIC NOTES

• For analyses and comparisons of the move-to-front and transposition heuristics

for self-organizing lists, consult Bentley and McGeoch [1985], Bitner [1979],

and Sleator and Tarjan [1985]. For a general discussion of self-organizing

linear search, see Hester and Hirschberg [1985].

• Exposition and comparison of various heuristics for constructing quasi-optimal

binary search trees can be found in Fredman [1975], Korsh [1981, 1982],

Mehlhorn [1975, 1977], and Walker and Gotlieb [1972],

• A good theoretical discussion of hashing functions can be found in Knott

[1975], and a comprehensive evaluation of their performance against a variety

of representative inputs can be found in Lum et al. [1971]. For a more detailed

discussion of the paradoxically good behavior of the division method consult

Ghosh and Lum [1975].

• Examples of different approaches to the construction of perfect and minimal

perfect hash functions can be found in Cormack et al. [1985], Jaeschke [1981],

Sager [1985], and Yang and Du [1985].

10.9 REFERENCE TO TERMINOLOGY 553

10.9 REFERENCE TO TERMINOLOGY

address space, 516

t amortized cost, 469
arity, 508

AVL tree, 494

balance factor, 494

f balanced heuristic, 486

t binarizing, 512

t binary digital search tree, 548
binary search, 470

f Bloom filter, 536

t bounded balance BB [a], 504
f cellar, 523

closest-match search, 550

coalesced chaining, 522

collision, 516

t color flip, 513

f compacted trie, 546

completely balanced tree, 467

t compressed trie, 546

critical node, 497

double hashing, 525

double rotation, 499

extended binary tree, 466

external node, 466

external path length, 467

f false drop, 536

Fibonacci search, 473

Fibonacci tree, 494

f fingerprint, 538

t fringe analysis, 510

f greedy heuristic, 488

harmonic number, 465

harmonic series, 465

hash function, 516

t hashed ^-signature, 537

height-balanced tree, 503

internal chaining, 521

internal node, 466

internal path length, 466

interpolation search, 474

linear probing, 524

load factor, 526

f median split tree, 489

t min-max heuristic, 486

t mintree, 494

f monotonic heuristic, 486

move-to-front heuristic, 469

multi-dimensional search, 550
multi-way tree, 508

name space, 516

node-splitting, 508

open addressing, 524

f ordered hashing, 530

t perfect hashing function, 534

f Poisson distribution, 518

primary clustering, 524

probe, 519

probe sequence, 525

random hashing, 518

range search, 550

t red-black tree, 513

secondary clustering, 524

self-organizing list, 469

separate chaining, 521

single rotation, 497

t split tree, 489

t symmetric binary B-tree, 512

t symmetrical deletion, 480
synonym, 516

2-3 tree, 508

f 2-3-4 tree, 512

transposition heuristic, 469

trie, 539

f uniform hashing, 527

f universal hashing, 535

t weight-balanced tree, 504

weighted path length, 480

ZipPs Law, 468

554 SEARCHING

10.10 EXERCISES

Section 10.1

flO.l Prove the following facts about harmonic numbers:

(a) 1 4—~ < 1 4- yyi

(b) YH, = (n + \)Hn-n
/=i

10.2 Compute the values of the internal and external path lengths for the BST in

Figure 10.15 and for the BST at the bottom of Figure 10.21.

10.3 Derive expressions for the internal and external path lengths of an extended
binary tree that has n nodes and is degenerate - that is, each internal node has at

least one external node as a child.

fl0.4 Prove that an extended binary tree with all of its leaves on at most two
adjacent levels has the minimal value of path length for any such tree with the same

number of nodes.

fl0.5 Derive (a) a relationship between the number of external nodes and the
number of internal nodes in an extended f-ary tree, and (b) a relationship between
the external path length and the internal path length in an extended r-ary tree.

Section 10.2

10.6 Name four things that one might do (not all at the same time) to improve

the performance of sequential search.

f 10.7 In sequential search with known and unequal probabilities,

(a) Prove that the sequence px>p2> - > pn yields the minimum average time for
searching.

(b) What sequence yields the maximum average search time? Derive a relation¬
ship between the minimum and maximum average search times.

ff 10.8 In sequential search with known and unequal probabilities, one can opti¬
mally arrange the keys in decreasing order of these probabilities. When the
probabilities are not known in advance, one remedy is the move-to-front self-organ¬
izing heuristic. Prove that the asymptotic cost (number of comparisons) for the
latter can never be worse than that for the optimal static ordering by more than a

factor of two.

10.9 Using the data of Figure 10.3, show the execution of SEARCH_BINARY
for (a) key = 33 and (b) key — 75, tracing the values of lo, hi, i, and tbl [z] as in

Figure 10.4.

10.10 EXERCISES 555

f 10.10 How would you generalize Fibonacci search so that it works for any size

table? Write an algorithm for this general case of Fibonacci search, and test your

program by applying it to the same input data and input arguments used in the text
for binary search (see Figures 10.3 and 10.4).

ft 10.11 Derive expressions for the internal and external path lengths of Fibonacci
trees, and calculate the asymptotic values of these expressions.

Sections 10.3.1 - 10.3.2

10.12 Presume the following sequence of I(nsert) and D(elete) operations for a
binary search tree:

I 32 I 17 I 14 I 47 I 35 I 20 14 I 51 I 38 I 40 I 16 D 35 I 28

I 57 I 62 I 39 I 45 I 25 I 22 I 23 I 24 D51 I 18 D20 I 35 D22

Draw the tree as it appears immediately before and immediately after each of the

four deletions (that is, eight sketches of the tree), with deletions performed accord¬
ing to BST_DELETE.

f 10.13 How many permutation sequences on 1 .. 10 will yield the following cases
of BST’s:

(a) for Figure 10.44(a)?

(b) for Figure 10.44(b)?

(c) for completely degenerate trees (each internal node has at least one external
node as a child)?

Figure 10.44 Trees for Exercise 10.13

556 SEARCHING

ttl0.14 Suppose that we have a random permutation of {1,2,3,4} and that we

perform the following sequence of operations:

(a) insert the first three elements into a BST;

(b) randomly delete one of these three elements from the BST per BST_DELETE;

(c) insert the left-over element into the BST.

Do this for all possible permutations and deletions, and compare the shape distribu¬

tion of the final BST’s with that of random BST’s on three elements.

110.15 Compute (by hand) the optimal BST for the following frequencies:

P\ = L Pi - 3, />3 = 2’ Pa = 4> Ps = 5
% — 4, cj\ = 5, q2~ cfo — 2, ?4 = 4, q$ — 3

tlO.16 For the frequencies in Exercise 10.15, compute the quasi-optimal BST’s

(and their costs) according to the four heuristics - monotonic, balanced, min-max,

and greedy — of Section 10.3.2.2.

f 1*10.17 The balanced and min-max heuristics for quasi-optimal BST’s are very

similar. Write a better-than-0(«2) algorithm that can be used to compute either

tree, along with its associated cost. First, test your program against the data of
Exercise 10.15 Next, use your program to compute the balanced tree and the min-

max tree for the data of Table 10.1 in Section 10.3.2.4 (where all the <?, = 0).

tflO.18 Assume that the words in Table 10.5 of Section 10.5.1 obey Zipfs Law

(see Section 10.2.1), and then construct the median split tree for them. Compute
the resulting value of CSn. What is the value of CSn for binary search on these

words, under the same assumption of Zipf s Law?

Sections 10.3.3 — 10.3.5

f 10.19 By definition, the AVL mintree Th contains the minimum number of nodes

n(Th) for any AVL tree of that height. Does it also have the maximum (internal)

path length for any AVL tree that contains n(Th) nodes? (Hint: Consider the case

of « = 20.)

110.20 The Best Actor Awards for 1944—1958 have the sequence shown in the

following figure.

(a) Generate the BST for the sequence.

(b) Generate the AVL tree for the sequence, showing the tree just prior to each

rotation, according to AVL_ INSERT.

1944 Crosby 1949 Crawford 1954 Brando

1945 Milland 1950 Ferrer 1955 Borgnine

1946 March 1951 Bogart 1956 Brynner

1947 Colman 1952 Cooper 1957 Guinness

1948 Olivier 1953 Holden 1958 Niven

10.10 EXERCISES 557

flO.21 Derive an expression for the minimum proportion of nodes in an AVL tree
that must have zero balance factors.

ft 10.22 Analyze the problem of deletion from AVL trees, and construct figures
showing how the various cases should be handled. (Hint: You can first reduce the
problem of deleting a node X at an arbitrary position to that of deleting a leaf, by
finding the successor Y to X and then exchanging them.) Use your analysis to write
an algorithm that does AVL deletions, and test your program by deleting Leigh
from the tree of Figure 10.21.

flO.23 Prove that Fibonacci trees are BB [1/3].

fflO.24 In Figure 10.23, derive the formulas shown for the new balance factors in
terms of the original balance factors, after the rotations.

tflO.25 For the data of Figure 10.14, construct the corresponding BB [1/4] tree,
showing the tree before and after each rotation, and displaying the balance factors
at each node.

ffl0.26 Analyze and diagram the various cases for splitting a node in a 2-3 tree.
Then write an algorithm to accomplish search and insertion in a 2-3 tree. Test your
program by inserting the values 1 .. 20 into an originally empty tree, displaying the
tree immediately after each insertion that has affected more than a single node.

10.27 What is the comparison cost (sum over all keys of the number of compar¬
isons required) for the 2-3 tree of Figure 10.24? for that of Figure 10.25? What are
these costs directly related to?

flO.28 The first step in performing a second-order fringe analysis of 2-3 trees is to
classify the subtrees of height two that can occur. Show the subtrees that result
from such a classification.

fflO.29 [Aho et al. 1974] From time to time, we have alluded to the need for a
representation of priority queues such that not only the operations of insertion and
removal can be performed in 0(lg n) time, but also that of merging queues.
Describe in detail how 2-3 trees can be used to provide such an implementation.

fl0.30 Construct the 2-3-4 tree obtained by applying the top-down method of
splitting and rotations to the data of Figure 10.14. Show the tree before and after
each split and/or rotation.

flO.31 Name the motion pictures for which the actresses of Figure 10.14 won
their Academy Awards.

Section 10.4

fl0.32 Prove that the step from the first to the second line in Eq. 10.30 is valid
when M is a prime; also, show by a counterexample that it is not valid when M is
not a prime.

flO.33 Obtain characterizations of poor multipliers for multiplicative hashing.

558 SEARCHING

110.34 Presume that we have the following sequence of input keys

185 99 145 71 197 129 72 172 48 108 142 122

for a table of size 13, and that we use double hashing with hx{K) = K (mod 13) and

hv(K) = 1 + K (mod 11). Then display the following data:

(a) the contents of each hash table location, and the number of probes required

for the corresponding insertion, using the above algorithm;

(b) the same quantities as in (a), but with linear probing — that is, with h$(K) = 1;

(c) the same quantities as in (a), but with coalesced chaining;

(d) the final insertion location of each key when ordered hashing is used.

f 10.35 Describe how to implement internal chaining so that lists do not coalesce.
One motive for doing this is to be able to save space by storing abbreviated keys
(for example, K div M) at table locations. Another is to facilitate the process of
deletion. Modify HASH_COALESCE to incorporate the ideas of no coalescing
and abbreviated keys, and then test your program against the example data of

Figure 10.29.

flO.36 [Maurer 1968] The earliest collision resolution method for overcoming
primary clustering was that known as quadratic residue search, according to the

probe sequence

hi+l{K) = (/q(A) + a x i + b x i2) mod (hsiz) (for i = 1,2,...)

Aside from the question of how well it approximates random probing, there is also
an issue as to whether this will probe every table location. Derive relations among
a, b, and hsiz that affect how much of the table is probed.

10.37 Write an algorithm that performs deletions from a hash table constructed
by linear probing, and that rearranges the table in the process so that valid probe
sequences are maintained. Test your program by deleting the entries from the table
of Figure 10.33, in the sequence in which they were originally inserted.

flO.38 Consider the case where double hashing is employed and deletions' are
performed. What should be done about the value of the global variable hcnt that is
used in HASH_ DOUBLE? Explain the reasoning behind your answer.

flO.39 [Bays 1973] Write an algorithm to rehash a hash table in situ, as
mentioned in Section 10.4.2.4. First, test your program by applying it to the data
of Figure 10.34, rehashing the table contents to array [0.. 18] in place of
array [0 .. 12]. For the new hash functions, use hx(K) = K (mod 19) and
/jo(A] = 1 + K(mod 17). Second, test your program again by rehashing the table
contents back to array [0 .. 12].

110.40 For very large hash tables, a serious drawback can be the time required to
initialize them. Describe a method whereby initialization can be avoided (at the
expense of using extra space).

ft 10.41 Write a function that implements the Karp and Rabin substring matching
algorithm. Employ an auxiliary function to convert characters to integers in a suit-

10.10 EXERCISES 559

able range, try using p = 33554393, and test your program against the data of
Section 8.5.1.1.

Sections 10.5 — 10.7

10.42 We wish to keep track of all twelve 4-character substrings that occur in
'POPOLLOPPOLOOPO', using a trie. First show the trie that we would have if we
branched on the substring characters from left to right, and then show the trie that
we would have if we branched on the substring characters from right to left.
Presuming that trie nodes are not overlapped, how many nodes are required in the
two cases?

ftl0.43 Find the most compacted form that you can for the trie of Figure
10.38(a). How does this compaction affect the cost of searching the trie with an
input key?

tflO.44 Write an algorithm to do trie deletion, and test your program by deleting
'TO' from the trie of Figure 10.37.

fflO.45 If we enlarge the alphabet used in Figure 10.41(a) to that of Figure 10.45,
we can then encode the words in Table 10.1 of Section 10.3.2.4. Use this encoding
to construct the binary digital search tree for those words, assuming that they are
inserted in order of decreasing probability.

binary binary binary binary

a 0000 f 0100 n 1000 t 1100
b 0001 h 0101 0 1001 U 1101
d 0010 i 0110 r 1010 w 1110
e 0011 m 0111 s 1011 y 1111

Figure 10.45 Alphabet for Exercise 10.45

fl0.46 For the paradigm of search studied in this chapter, give a general analysis
of how to choose a particular method. Your presentation should be fairly
complete, comprising a few pages. You might choose to employ a decision table as
part of your analysis.

11

MANAGING PRIMARY MEMORY

“Memory [is] like a purse — if it be overfull
that it cannot shut, all will drop out of it.

Take heed of a gluttonous curiosity to feed
on many things, lest the greediness of the appetite

of thy memory spoil the digestion thereof.”

Thomas Fuller,
Holy and Profane States: of Memory

Our discussions of computational efficiency have focused mostly on execution time,

with an occasional nod to memory requirements, even though the limits imposed by

a finite memory size are certainly more rigid than the usual constraints of time.

The earlier chapters in this book might lead one to believe that he can always get as

much space as he needs, either by explicitly asking for it, as with new in Pascal, or

simply because the program needs it, as in LISP or APL. Fortunately, memory is a

reusable resource. So this attitude will work — but only if there is some means to

effectively recycle the chunks of memory that programs discard during execution.

In discussing this problem, we find that the dynamic data structures that can cause

us to run out of memory space can also be important tools for managing it.

The problem is a complex one, with many contributing factors. We will begin

by painting, in the next section, a broad picture of what the issues are. As we will

see, perhaps the most significant of these issues is whether the pieces of memory are

all of one size or of various sizes. The two major sections of this chapter corre¬

spond to this dichotomy.

An additional point is that we will be describing memory management algo¬

rithms in Pascal, even though in practice they would largely be implemented in

assembly language. But Pascal imposes some restrictions upon pointer operations;

for example, only the two most basic relational operators {=, < >} are allowed,

and not {<,< = ,> = ,>}. Thus, although we will sometimes model situations in

terms of pointer variables, at other times we will employ cursors (see Section 4.1.1)

in order to sidestep these restrictions.

11.1 MEMORY MANAGEMENT ISSUES 561

11.1 MEMORY MANAGEMENT ISSUES

The issues that concern us in this chapter recur at several different levels when we
use a computer. At most or all of these levels, the matter is out of our hands, with
“the system’’ providing the services that we need. For instance, most of our work
may be done under one operating system. If this system provides multiprogram¬
ming services on one underlying machine to a set of users, then it must apportion
the available memory space among these users, with the active requirements for
each member of this set tending to fluctuate dynamically. At a lower level, one
such user may be using some HLL, or editor, or other system program. The
execution environment for each of these programs must, in turn, divide the piece of
memory pie given to it by the system among the procedures and data that constitute
that total program. As we go to deeper levels, with our own program executing, we
may have to solve a memory resource problem that mimics, with smaller pieces,
what transpired at a higher level. We will explore these matters further under the
heading of “The Environment.”

At each level, the system and/or the user must make various choices that direct
how this dividing-up process is to be regulated. We will investigate these choices
under the heading of “Memory Management Policies.” For now, the relevant
points are two: Depending upon the user’s relationship to the environment, he may
be responsible for some or all of these choices; and a poor set of policies can have
dire consequences, making computation very inefficient or even impossible.

11.1.1 The Environment

The most conspicuous part of our programming environment is usually determined
by the HLL’s in which we do the bulk of our work. It is the built-in characteristics
of these languages that shape the memory management problem in our eyes. For
instance, various languages allow the requisition of space in any of three distinct
fashions, as follows:

1. Static Allocation. When a program is to be executed, the fixed, total memory
requirement for that program has already been calculated by the compiler, and
so memory in this amount is obtained from the system before the program is
loaded and given control. This is the only possible manner of using memory
in FORTRAN, for instance. As long as the operating system can supply the
necessary total requirement, there is no memory management problem at the

user program level.

2. Automatic Allocation. Languages such as ALGOL, Pascal, and PL/1 are
block-structured. This means that they can (recursively) have nested sub-proce¬
dures, each with their own set of local variables. To reduce the memory
demand on the system, space for the local variables of any such procedure is
automatically obtained on procedure entry and automatically released on
procedure exit. In this manner, sibling procedures can share from a common

562 MANAGING PRIMARY MEMORY

pool of working memory. The pool is administered via a run-time stack (see

Section 5.2.3.1), and there is relatively little problem.

3. Dynamic Allocation. Many languages — ALGOL, APL, LISP, Pascal, PL/1,
and SNOBOL, for example - support the ability to requisition space dynam¬
ically; it is this facility that raises the memory management problem. The
request for space may be explicit (as with new in Pascal), or it may be implicit
(as in APL or LISP). Similarly, the release of space may be explicit or
implicit. Also, the size of the request may be a constant (as with LISP), or it
may be a variable amount (as with APL or Pascal). Fixed-size units of
memory are commonly termed cells, and variable-sized units are usually called
blocks. In order to keep track of which memory locations are in use and
which are not, the user program and the run-time environment divide the
responsibility in manners that vary with the language. APL and LISP, for
instance, do it all for the user; in Pascal, the responsibility is shared; and in
PL/1, the burden is even more upon the user program. Unfortunately, as
more responsibility is shifted away from the system to the user, this added

burden is not only complex, but also highly error-prone!

Note that all three allocation policies may be in use at one time. For instance, a
Pascal program has a static requirement equal to the total size of all its code
segments plus the amount needed for global variables. As the program executes,
sub-procedures will automatically acquire and release space for parameters and
local variables on the the run-time stack. Finally, any user calls to new or dispose

will dynamically use space from the Pascal heap.

The issue of whether we are dealing in fixed-size cells or variable-size blocks
makes a great deal of difference for memory management. We will look at the
former case in Section 11.2, and then deal with the latter case in Section 11.3. It
would be misleading, however, to suggest that the items we have cited so far are the
only environmental factors. An extremely important issue is how the areas of
dynamic memory may reference one another with pointer variables, as illustrated by
the following examples:

• Memory mamagement in a multiprogramming operating system is not trivial.
The jobs that the system must schedule tend to have widely varying require¬
ments for both amount and duration of memory occupancy. Nonetheless, the
different jobs do not reference one another, and this greatly simplifies matters.

• In the programming environment of APL or SNOBOL, the pointer links to
areas of dynamic memory form a bipartite graph; pointers are from system
“names” in a symbol table to dynamic objects, or vice versa. Thus, although
dynamic objects can reference one another, these references are disciplined by
the symbol table.

• In the most complicated cases, a dynamic object may contain pointers directly
to other dynamic objects. This may be slightly less complex when, as in LISP,
the number of such references is limited to two. In ALGOL or Pascal,
however, the possibilities for multi-linking can vary widely from one dynamic
block to the next.

11.1.1 THE ENVIRONMENT 563

To recapitulate, the chief environmental issues are:

• modes of memory usage — static, automatic, and dynamic;
• responsibility - user, system, or shared;
• fixed-size cells versus variable-size blocks;
• pointer “connectivity.”

To restate the problem in its worst form, there may be dynamic memory objects of
variable sizes, containing variable numbers of pointer links to each other. The
moment of truth in memory management comes when we must shift all of these
objects in memory and correctly reestablish all the pointer references to reflect these
shifts. Fortunately, some of the programming environments that we have been
describing yield situations that are much simpler to manage than this.

11.1.1.1 Virtual Memory. There is another environmental factor whose presence
causes the memory management problem to be completely recharacterized, and that
is whether we are operating with virtual memory. At this point we will be brief and
consider only the logical nature of this facility; the physical realization of virtual
memory depends upon secondary memory, which is the subject of Chapter 12.

The entire rationale for memory management is that the machine has a fixed,
inflexible amount of main memory. Since even one memory location in excess of
this limit spells disaster, we must be niggardly and strive to contain our total
memory appetite to what is available. Now virtual memory gives a computer the
functional appearance of having much more main memory available than is really
present in the hardware. This fiction is maintained at some cost (paid to the oper¬
ating system), as we will see in Chapter 12; however, this cost is amply
compensated by the fact that user programs can now become much simpler. What,
then, of the battle to hold the breach against a mythical limit?

There are two answers to this question. The first is that many user programs
do not operate in virtual memory environments, and so these concerns are still vital.
The second is that even with virtual memory, some management policy is required
for dynamic allocation. In fact, the policies will be not be very different in either
case. The result of poor policies in one case is catastrophic degradation of perform¬
ance (that is, program failure); in the virtual memory case it is progressive
degradation of performance.

11.1.2 Memory Management Policies

Whatever the environment in which memory must be managed, and no matter how
responsibility is shared among the system and the user, policies must be chosen and
implemented to cover three major issues: memory organization, memory allocation,
and memory reclamation. At this point we will just introduce each of these prob¬
lems; the details of specific solutions will be developed in Sections 11.2 and 11.3.

At any instant in time, some cells and/or blocks of dynamic memory will be in
use and others will be free. How should these two sets of memory areas be organ¬
ized? Should they all be linked together in one list? or should there be a linked list

564 MANAGING PRIMARY MEMORY

of just the free areas? or should there be several lists, corresponding to various sizes
of blocks? If there is a single list, should it be maintained as a stack? or a queue?

or by order of the block addresses? or by order of block sizes?

Given a definite memory organization policy, the next question is how a request
for a block of a specific size should be serviced. Should we simply allocate the first
block of adequate size from the free storage list? Or should we try to respond in
some more sophisticated fashion, for possibly better overall performance? If we do
not find a block of exactly the desired size, what do we do with the excess memory

in the block that is chosen for allocation?

The number of meaningful combinations of an organization policy with an allo¬
cation policy is great enough that it requires care to discriminate among the
combinations. Nonetheless, the implementation details tend to be relatively
straightforward. On the other hand, storage reclamation can be fairly tricky. In
part, this stems from the asymmetrical attitude we express toward memory blocks
(or anything that we “need”). When we need something, we are impatient to have
it immediately; when we no longer need it, we are more likely to forget about it
than to make an explicit effort to return it. Thus, in writing a program with pointer
variables, we cannot forget new where it is required, but we may remember
dispose only as an afterthought, if at all. So the first problem in storage reclama¬
tion is that it may be non-trivial to answer the question: Which memory blocks are
still in use and which no longer are (and therefore should really be considered free)?
In answering this question, the environment is very important. Storage reclamation
also has another component. Once it has been determined which blocks are no
longer in use, it is necessary to make them explicitly available as part of the free
pool. In fact, the variety of methods that are employed for solving this problem,
including special techniques of organization, account for much of this chapter.

11.2 FIXED-SIZE CELLS

In this section we restrict our attention to the case when all memory requests are of
one fixed size. What happens when, in addition, these cells never reference one
another? The memory management for such a situation is very simple. We can
organize our Free pool as q stack. Requests can always be satisfied by the top cell
on the stack; cells that are released can be pushed back on the stack. Indeed, we
described just such a simplified mechanism in Section 4.1.3. Note the assumption,
in this scheme, that cells are explicitly pushed on the stack, and not abandoned
when no longer needed.

In practice, there are two issues that complicate memory management for cells.
One is that it is common to abandon cells that are no longer needed, and the other
is that each cell may contain pointers to other cells. Cells are the data structure in
languages that operate on Lists, such as LISP; and the majority of the literature on
the topics of this section is best understood in the context of memory management
for LISP-like systems. The logical structure and various physical representations of
cells for these List processing environments were explored in Section 4.4.1; recall

11.2 FIXED-SIZE CELLS 565

that such a cell never contains more than two pointers to other cells, so that pure
Lists are binary trees.

List-processing languages in general, and LISP in particular, assume all of the
responsibility for reclaiming memory, with no cooperation required of the user
program. They must therefore have a mechanism for discovering which cells are no
longer in active use. If a pointer variable P is pointing at cell X, and if the value of
P is changed so that it no longer points at X, then cell X cannot automatically be
returned to the Free pool, for X may still be pointed at by some other List cell.
Two distinct approaches are used to solve this problem.

In one of these, called garbage collection, no effort is expended until the time
arrives when a request for a cell cannot be satisfied because the Free pool is
exhausted, or almost so. At that juncture, the normal course of user computation is
suspended, and the system performs a phase of following all the pointers that lead
to active memory cells, marking those cells as being in use. After the active cells
have been marked, the system performs a second phase of incorporating the
unmarked (and therefore unused) cells into the Free pool, thereby allowing them to
be reused. Except in the case when no garbage cells have been found, the system
then honors the memory request that precipitated this activity and returns control
to the user program. We will look at these matters in detail in Section 11.2.1.

An alternative approach is for the system to try to keep track of which cells are
in active use by maintaining, for each cell or each sub-List, a reference count of the
number of pointers to that cell or sub-List. Then, whenever one of these counts is
decremented to zero, that cell or sub-List can be reclaimed by the Free pool. We
will look at this approach in Section 11.2.2.

11.2.1 Garbage Collection

As stated above, garbage collection basically consists of a marking phase followed
by a collection phase. We will begin by exploring these two phases. Later on, we’ll
step back to consider first some of the difficulties associated with garbage collection,
and then some sophisticated variations that have been developed in response to
these difficulties. These variations deal with such matters as compaction, hybrid
methods, and parallel garbage collection.

11.2.1.1 Marking. You might well be having a sensation of deja vu at this point.
After all, we discussed basically the same problem in Section 4.4.3.1; we also
encountered a generalization of it in Section 7.3.1, in connection with depth-first
search of a graph. In the context of garbage collection, however, there are some
important distinctions. One difference is the importance of efficiency, since garbage
collection can constitute as much as 10 — 30 percent of program execution. Other
issues are related to the environment in which garbage collection is conducted.

For one, in our earlier, brief characterization of marking, we ignored a simple
but important detail. The marking phase must initialize the marks of all the cells of
memory to “unused” before it begins to mark active cells as “used.” Fortunately,

566 MANAGING PRIMARY MEMORY

because the cells are all of the same size, it is easy to sweep through memory to
perform this initialization. Another issue is that although pure Lists are binar\
trees, reentrant and recursive Lists are graphs. In order to find all the acti\e cells,
or nodes of this graph structure, we must do a search from each base pointer into
the structure. Where these base pointers are to be found depends upon the environ¬
ment, but the same algorithm for searching is applied to each of them. Taking
these comments into account, we will proceed to discuss marking under the assump¬

tions that:

1. The initialization has already been performed.
2. Any algorithm that we discuss is applied to each base pointer.

In Section 4.4.3.1 we first examined the recursive algorithm COUNT_LIST
(Algorithm 4.6) for examining all the cells of a List, and then raised the issue of
efficiency. We saw in Sections 5.4.2 and 6.4.1 that a very common manner of elimi¬
nating recursion in the interest of efficiency is to introduce an explicit stack.
However, this technique presents us with a dilemma in the case of garbage
collection. The marking that precedes collection is invoked when the Free pool is
almost exhausted. If the marking algorithm then uses a stack, that stack may
require 0{n) entries, for a memory with O(n) cells. There may not be that much

available space for the garbage collector to do its thing!

An ingenious resolution to this dilemma is to use link inversions, as we saw in
MARK_LIST (Algorithm 4.7). The information that would otherwise be retained
in a stack is therewith retained in the link fields of the List itselt. Although
MARK_LIST has complexity 0(n), it visits each cell three times. Because of this
and the inherent overhead in the rotations, it is slower than an algorithm that
simply uses a stack. A compromise solution is to combine stack traversal with link
inversions, employing the first technique until the stack becomes full, at which point

we fall back upon the second technique for a while.

There are other ways too. In Section 4.4.3.1 we pointed out that the Schorr-
Waite algorithm could require space for an explicit tag bit in each node, depending
upon the representation for cells. Lindstrom [1973] has shown how to mark a List
without employing any tag information at all, but this technique has an average
complexity of 0(n lg ri) and a worst-case complexity of 0{nz). An algorithm by
Wegbreit [1972] is 0(n) and does not require any tag bits in the cells. This method
employs link inversion again, but it records tag information in a bit stack only as
needed; in practice, the size of this bit stack can be fixed, and yet still be adequate
for all but extreme cases. Moreover, stack entries (and revisits) are required for just
those cells in which both CAR and CDR reference sub-Lists. Even so. careful anal¬
ysis of the operations required to implement a variety of marking algorithms shows
that the Schorr-Waite algorithm is commonly faster — unless, of course, there is
space for a pointer stack, thereby eliminating link inversions [Baer and Fries 1977],

Still other possibilities are obtained if we consider why certain List structures
cause various marking algorithms to perform poorly. As an example. Wegbreits's
algorithm will stack each cell of the List in Figure 11.1. but no stacking is really
required if we look ahead in the List. Rather than presume, for a List cell with two
successor links, that w?e must stack one and follow the other, we can first check to
see that both of the cells pointed to are unmarked (and not an atom). Since stack¬
ing is faster than link inversion and since this technique reduces the stack depth in

11.2.1.1 MARKING 567

some cases, it is worthwhile [Kurokawa 1981], Nonetheless, even this method will

fail to secure any advantage if, for instance, the List is a balanced binary tree.

-ATOM

Figure 11.1 Wasted Marking Effort

In summarizing this discussion of marking, we find that a simple stack algo¬

rithm provides the best performance, but that there is the hazard of running out of

space. Although this may be less significant with virtual memory, it is frequently

important to use methods that do not have this drawback, even at the cost of

decreased performance. Of these methods, MARK_LIST is particularly noteworthy

because it serves as a model for other algorithms with Lists. Also, note that

MARK_LIST operating upon List cells with two link fields requires one bit of tag

information to discriminate between the links. For marking fixed-size List cells

with m link fields, the algorithm can be generalized to use lg m bits of tag informa¬

tion. MARK_LIST and the alternative techniques cited in this section all have the

feature that for unrestricted Lists, they require either more than linear time or more

than bounded workspace. If we disregard tricks of implementation (as in

MARK_LIST), we are left with the interesting theoretical question: Is it possible to
mark unrestricted Lists in linear time and with bounded workspace?

11.2.1.2 Collection. The second phase of garbage collection may be quite simple;

it might consist of just scanning all of memory and linking together the unmarked

cells. Such a method is given by COLLECT_0 (Algorithm 11.1). The area of

memory to be collected is represented as a global array of cells, and cursors are

employed rather than pointer variables, in anticipation of studying more compli¬

cated reclamation schemes later on. The collection is conducted downward from hi

to lo so that the resulting Free-list will be ordered by ascending addresses. This

allows subsequent allocations of cells from Free to come from the lower end of

memory. Note that collection also turns off mark bits, in anticipation of the mark¬

ing phase of the next garbage collection cycle. In COLLECT_0 we have ignored

some considerations that might prompt more complicated reclamation policies;

these will be explored in Section 11.2.3.

568 MANAGING PRIMARY MEMORY

procedure COLLECT_0;

type cursor = lo .. hi;
cell = record

mark: boolean;
case isatom: boolean of

true: (data: char);
false: (head,tail: cursor);

end;

var free,p: cursor;
store: array [cursor] of cell;

begin
free := 0;
for p := hi downto lo do

with store [p] do
if mark then

mark := false
else begin

isatom := false;
tail := free;
free := p;

end;
end;

Algorithm 11.1 COLLECT_0

11.2.2 Reference Counters

With reference counters, either every cell or every List (and sub-List) has a field in

which the number of references to that cell or List is dynamically maintained. It is
considerably more economical to maintain these counts at the sub-List level, in the

header nodes. Such a List structure, with its counts, is illustrated in Figure 11.2(a).

Here we see Lists U, V, W, X with reference counts of 1, 2, 1, 4 in their header cells.

Suppose that, in this figure, the reference to the List U is released. The reference

count for U then goes from 1 to 0. However, before deallocating the cells on List

U, it is necessary to trace out the “closure” of U, to decrement the reference counts

of Lists referred to from cells of U. Note that this process is very similar to the

marking process in garbage collection; it can be carried out recursively, or by using

a stack, or by a more sophisticated method. The decrementing ultimately reduces

the Lists of (a) in Figure 11.2 to those of (b), leaving Lists U and W freed, while

Lists V and X still have non-zero counts. There is no periodic collection process, as

with garbage collection. Rather, as soon as a reference counter goes to zero, all of
the corresponding cells are added to the Free-list immediately after their references

are checked.

Imagine that we are using reference counters, and that we deallocate a tree by

setting its root pointer to NIL. For a tree of appreciable depth, the scheme just

11.2.2 REFERENCE COUNTERS 569

u

V w

ATOM

ATOM

W

4 •-► ATOM •-► ATOM

ATOM

(a) Original List

X w

ATOM

ATOM

(b) After Releasing List U

ATOM

Figure 11.2 Reference Counting

described can cause a significant cascade of dereferencing activity. The List
processing language SLIP introduced an ingenious variation of reference counting
that simultaneously eliminates both this burst of activity and also any need for a
stack for finding the closure [Weizenbaum 1963, 1969]. When a List U is deallo¬
cated, its successor Lists are not traced immediately. Rather, the cells of U are
added to the end of the Free-list — that is. Free is maintained as a queue - and
references from cells of U are not checked until those cells reach the front of Free.

11.2.3 Compaction

Either with garbage collecting or with reference counting, the cells in active use will
eventually become interspersed with the Free-list cells throughout the memory avail¬
able to the List processing environment. In some cases this dispersion needs to be
counteracted by compacting the active cells into a contiguous storage area. As one
example, available memory for a process may consist of two dynamic areas that
grow from the opposite ends of a region (see Figure 5.13). Indeed, dynamic
memory for Pascal is often administered in this fashion, with the run-time stack and
the heap being the two areas. If such a heap area is used for List cells, then it may

570 MANAGING PRIMARY MEMORY

be important to restrain the sprawl of the heap so that the stack may have sufficient

space for expansion.

Another instance arises when the system is operating with virtual memory. As

the active cells become interspersed with the Free cells throughout a large address

space, program execution will generate more and more page faults (see Section 12.2)

in order to retrieve cells. The only manner in which to hold down the large ineffi¬
ciency of execution caused by these faults is, once again, to compress the active cells

into contiguous pages.

We will discuss one particular method for compacting fixed-size cells and then a
class of different methods. The first and simpler technique, exchanging cells, relies

upon a conventional, initial marking phase, and it especially reflects the stack/heap
situation. The second class of methods involves relocation of entire Lists. These

latter methods have wider applicability; also, they can be used to compact memory

without an initial marking phase.

11.2.3.1 Exchanging Cells. With this method we employ two cursors, p and q, that
start at opposite ends of memory and move toward each other until they meet.
First the cursor p is incremented until it references an unmarked cell, and then the
cursor q is decremented until it references a marked cell. This pair of cells is

exchanged and the cycle is repeated, until eventually p and q meet. Such a process
physically relocates the free and active cells into two disjoint areas; however, some
additional logic is needed to adjust the inter-cell links so that they retain the proper
connectivity. The technique for accomplishing this is to place in each old active cell
location a link, known as a forwarding address, to the new active cell location.
Then, when the swapping phase is concluded, a second pass through just the active

cells can retrieve updated link values via these forwarding addresses.

A procedure for accomplishing what has been described is COLLECT_ 1 (Algo¬

rithm 11.2); it requires several comments:

• Store [lo] and store [hi] are reserved as marker locations, so that the algorithm

can be guaranteed to work properly in degenerate cases.
• The Free-list is regenerated, in order of ascending addresses as in COLLECT_0,

during the swapping phase rather than in a separate phase.
• Mark bits are turned off (as in COLLECT_0), in anticipation of the next

garbage collection cycle.
• In the old active locations, the head cursor is used as the forwarding address,

and the tail cursor is used to link the Free-list.

• The algorithm requires one-and-a-half passes through memory.

Its operation can be seen with the List shown in Figure 11.3(a). The same List is

shown in (b) of the figure, scattered in hypothetical memory locations between

lo = 0 and hi = 21. After the swapping phase is concluded, the relevant List cells

appear as in (c) of the figure; for example, the active cell originally in location 13 is

now relocated to location 5. Finally, Figure 11.3(d) shows the contents of the old

and new List cells after the pointers have been updated in the second phase of

COLLECT. 1.

11.2.3.2 RELOCATING LISTS 571

procedure COLLECT_1;

type cursor = lo .. hi;

cell = record
mark: boolean;

case isatom: boolean of
true: (data: char);

false: (head,tail: cursor);
end;

var free,p,q: cursor;

store: array [cursor] of cell;

begin
free := 0;

p := lo; store [pj.mark := true;

q := hi; store [qj.mark := false;
repeat

{match active cell from one end with free cell from other end}
repeat

P := P + 1;
until not store [p].mark;

repeat
{ build new Free-list as we go }

store [q].tail := free;

free := q;

q := q - 1;

until store [q].mark;

if p < q then begin
{swap active cell with free cell, leave forwarding address}

store [p] := store [q];

store [qj.mark := false;

store [qj.isatom := false;

store [qj.head := p;

end;
until p >= q;

{use forwarding addresses to update links, as required}

for p := lo + 1 to q do begin
store [pj.mark := false;

if not store [pj.isatom then begin
if store [pj.head > q then

store [pj.head := store [store [pj.head].head;

if store [pj.tail > q then
store [pj.tail := store [store [pj.tail],head;

end;
end;

end;

Algorithm 11.2 COLLECT_1

572 MANAGING PRIMARY MEMORY

a

4

4

13

5 14

6

6 12

4

c

e

g /

g

B

(a) List Symbolically

20

15

7 9

7

15 9 B

(b) List with Cursor Values

20_

~ 21

(c) After Swapping

1

7 8

7

B

(d) After Updating Link Values

/
h A

h

b A

9

18 0

18

13 0

8

18 0

2

13 0

9

8 10

18

2 19

Figure 11.3 Progress of Algorithm COLLECT, 1

11.2.3.2 RELOCATING LISTS 573

11.2.3.2 Relocating Lists. There are two unsatisfactory features about
COLLECT_ 1. First, it scans all of the addressable List space (which can be quite
large under virtual memory). Second, the physical sequence of the cells of a List
after collection will most likely bear no relation either to (a) the logical sequence of
the cells, or (b) the physical sequence of those cells before collection. By relocating
entire Lists, rather than operating upon cells, it is possible:

• to limit the work to the size of the Lists rather than the memory size;

• to obtain desirable properties in the address sequence of cells in the new List;
• to dispense with a separate marking phase.

Studies of the empirical properties of Lists in LISP show that most such Lists
contain long linear segments [Clark 1979; Clark and Green 1977], Therefore, it
may be desirable, when compacting a List, to “linearize” it by causing cells to
become physically adjacent to predecessors as much as possible.

The most widely used technique for compaction under these considerations is to
move a List that is dispersed in one area of memory to a fresh area. A variation is
to copy the List, rather than move it. The distinction is that the moving process
may destroy the old List, whereas the copying process will leave the old List intact.
Note that the utility of both of these techniques is certainly not restricted to the
cause of memory management. But for memory management, an important issue
once again is the potential shortage of working storage at the instant when moving
or copying needs to be performed. Some of the techniques for overcoming this
hazard are the familiar ones of forwarding addresses and link inversions. In our
discussion of marking algorithms for Lists (see Section 11.2.1.1), we encountered an
apparent requirement for either more than linear time or more than bounded work¬
space. Yet for the more complicated operations of moving or copying a List, we
will find that linear time and bounded workspace are simultaneously achievable.
This is so because, in both cases, we are able to employ the doubled space (for the
original and for the copy) to record temporary values during the construction of the
new List. Of course, relocation cannot be guaranteed to yield compaction unless
the new area is contiguous. One method for insuring this is to divide the List
memory into two semi-spaces and to alternate their usage, relocating active Lists
from one semi-space to the other when performance monitoring dictates it [Fenichel
and Yokelson 1969].

f 11.2.3.2.1 Moving Lists. The problem is to move an arbitrary List from one
memory area to another. As with marking, we wish to avoid recursion in the inter¬
est of efficiency, and we are precluded from using an explicit stack since that might
consume more space than is available at this juncture. The challenge is to find an
algorithm that is 0{n) in time (for a List with n cells) and that requires just a
constant amount of workspace. Two earlier algorithms attain this goal [Cheney
1970; Reingold 1973], but with the requirement that each cell of the List be visited
twice. A study of List-processing programs found that only about 1/3 of CAR’s
and 3/4 of CDR’s typically have sub-Lists [Clark and Green 1977], This led to an
algorithm by Clark [1976] that we will present here. It achieves better performance
by following tail pointers before following head pointers. Assuming that these
proportions are independent, then this algorithm will only revisit about 1/4 of the

574 MANAGING PRIMARY MEMORY

List cells in typical cases. Moreover, the relocated Lists become CDR-linearized,

which is important with virtual memory.

As a cell is visited,

(a) its contents are moved to a new location;

(b) a forwarding address is placed in the head link at the old location,

(c) when the head link points to a non-atomic sub-List, then the tail link at the
old location is used as part of an implicit stack for recording cells that must be

revisited.

The algorithm for this is the function MOVE_LIST. It uses the procedure

NEWCELL to obtain and initialize new cells, as follows:

procedure NEWCELL (var ptr: link);

begin
new (ptr);
ptrf.mark := true;
ptrf.isatom := false;

end;

In the repeat ... until loop, the algorithm chains through an outer List, setting
the forwarding addresses and developing the implicit stack, all within the pointer
fields at the old locations. In the while loop, cells in the stack are picked off for
processing, unless the associated sub-Lists have already been moved. In many
applications of this algorithm, it is even possible to dispense with the mark field,
using machine address values to distinguish original cells from new cells.

The operation of MOVE_LIST is illustrated in terms of the List of Figure
11.3(a) again, with the actual trace displayed in Figure 11.4. The original List is
shown in (a). At the conclusion of the first pass over the outer List, the situation is
as shown in (b), wherein cells n,o,p,q have been allocated for the new List. Note the
forwarding addresses in the old List, and also the stack of deferred sub-Lists associ¬
ated with cells / and a. The pass over the sub-List from cell / yields the situation
shown in (c), with deferred sub-Lists associated with cells h and a. At the conclu¬
sion of the pass over the sub-List from cell h, the situation is as shown in (d),
wherein all of the cells in the new List have by now been allocated; however, there
are still deferred sub-Lists associated with cells c and a. The final pass finds no new
cells, but adjusts pointer values in cells n and u to yield the situation shown in (e).

Upon termination, we find that:

• The original List has been destroyed.
• Both List cells and atomic cells have been relocated.
• The new List is CDR-linearized.
• MOVE_LIST returns with a pointer to the new List.

f 11.2.3.2.2 Copying Lists. Since algorithms for copying a List must not destroy
the original List, they are somewhat more complicated. An important requirement,
again, is that these schemes have a bounded requirement for working storage.
There has been a succession of algorithms with complexities diminishing from 0{n2)
to 0(n lg n) to 0(n) [§]. One of the latter, by Robson [1977a], requires no mark
bits and has no dependency (as have some) upon either the address ordering or the

fll.2.3.2.2 COPYING LISTS 575

function MOVE_LIST (list: link): link;

label 1;

type link = 'f cell;
cell = record

mark: boolean;
case isatom: boolean of

true: (data: char);
false: (head,tail: link);

end;

var endlist: boolean;
atom,copy,left,rite,next,temp,top: link;

begin
next := list;
NEWCELL (copy);
list := copy;
MOVE_LIST := copy;
top := nil;

1: repeat
endlist := true;
left := next|.head; rite := next|.tail;
nextf.head := copy; copy!.head := left;
if leftf.isatom then begin

NEWCELL (atom);
atom|.isatom := true; atom|.data := leftj.data;
copyf.head := atom; leftj.isatom := false;
leftf.head : = atom; leftf.tail := nil;

end else if not left|.mark then begin
nextf.tail := top; top := next;

end;
if rite = nil then

copyj.tail := rite
else if rite|.head|.mark then

copyf.tail := ritef.head
else begin

endlist := false;
NEWCELL (copyj.tail);
copy := copyf.tail; next := rite;

end;
until endlist;
NEWCELL (copy);
while top <> nil do begin

next := topj.headf.head;
temp := top; top := top|.tail;
if nextt.headf.mark then

temp|.head|.head := next|.head
else begin

temp|.head|.head := copy;
goto 1;

end;
end;

end;

Algorithm 11.3 MOVE_LIST

576 MANAGING PRIMARY MEMORY

a: be c: g f f: h #
b: d c c: c f g: B h: b #
d: A

(a) top = #

a: n # e: o f f: q a

b: d c c: c f g: p # h: b #
d: A

n: bo o: p q q: h #
p: B

(b) top = /

i a: n # e: o f f: q a

b: d c c: c f g: p # h: r a

d: A

n: bo o: p q q: r #
p: B r: b #

(c) top = h

a: n # e: o f f: q a
b: sc c: u a g: p # h: r a

d: t #

n: bo o: p q q: r #

s: t u u: c q p: B r: s #

t: A

(d) top = c

a: n # e: o f f: q a

b: sc c: u a g: p # h: r a

d: t #

n: so o: p q q: r #
s: t u u: u q p: B r: s #
t: A

(e) top = #

Figure 11.4 Trace of Algorithm MOVE_LIST

contiguity of List cells. Although it is somewhat slower than the other algorithms,
the lack of restrictions makes it more useful for the general case of copying a List.
The ideas behind Robson’s technique are interesting, and we will sketch these ideas
without presenting the algorithm explicitly.

The method proceeds in two phases. In the first phase, the cells of the old List
are scanned and cells of the new List are generated. At the conclusion of this
phase, the head fields of the old List cells have forwarding addresses, as in
MOVE_LIST, but the tail fields of the old List cells contain special marks. The
original contents of cells from the old List have been copied into their counterpart
cells in the new List. Atomic cells are not copied; to do so would likely cause
unnecessary duplication, since their values can be shared.

As cells of the old List are scanned, one of four constant mark values -
denoted by marks [/] (i = 0,1,2,3) - is stored in each tail field. These mark values
symbolically encode information about forward and backward pointers in the
original List cell contents. In scanning a List and following either head or tail poin¬
ters, a pointer is a forward pointer if it points to an unexamined sub-List, and a
backward pointer if it points either to an atom or to a sub-List that has been exam¬
ined. Obviously, this depends upon the order in which pointers are followed -

til.2.3.2.2 COPYING LISTS 577

head and then tail, or tail and then head. The choice employed, systematically and
recursively, in the first phase is head and then tail.

The meaning attached to the four constant, symbolic values in the marks array
is as follows:

marks [0] - The original head and tail pointers of a cell having this value are
both backward pointers.

marks [1] - The original head pointer of a cell having this value is a backward
pointer, and the original tail pointer is a forward pointer.

marks [2] - The original head pointer of a cell having this value is a forward
pointer, and the original tail pointer is a backward pointer.

marks [3] — The original head and tail pointers of a cell having this value are
both forward pointers.

Note that the forward pointers discovered in the first phase define a spanning tree
for the structure, with the cells on this tree being visited in preorder. In the second
phase the List is scanned again; but this time the pointers are followed, systemat¬
ically and recursively, in the order tail and then head. As cells are scanned in this
phase, two things are done simultaneously:

1. The original contents of the old List cells are restored from their counterparts in
the new List.

2. The correct pointer values for the new List cells are inserted, using the forward¬
ing addresses from the old List cells.

a

Figure 11.5 Forward and Backward Pointers (Robson)

We can illustrate these ideas by describing the operation of the algorithm upon
the sample List of Figure 11.3(a) again, redrawn as Figure 11.5. By applying the
definition (following head pointers before tail pointers), we find that the solid lines
in the figure are forward pointers and that the dashed lines in the figure are back-

578 MANAGING PRIMARY MEMORY

ward pointers. At the conclusion of the first phase, the situation is as shown in
Figure 11.6(a), where the marks {mO, ml, ml, m3} in the tails of the original List
cells indeed correspond to the four cases for the pointers in those cells, according to
Figure 11.5. At the conclusion of the second phase, the situation is as shown in

Figure 11.6(b).

a

n m3

b

0 ml

n

b e

0

d c

e

s mO

s

g f

P

c | /
(a) After the First Phase

(a) After the Second Phase

/
<1 m2

h

r mO

q

h A

r

b A

f

h A

h

b A

<7

r A

r

0 A

Figure 11.6 Progress of Robson’s Copy Algorithm

11.2.4 Garbage Collection versus Reference Counters

There are some important caveats attached to both garbage collecting and reference
counting, particularly in the straightforward versions that we have described so far.
For instance, it is imperative with either scheme that the implementation leave no
loopholes such that a List is deallocated while a pointer variable still references it;
this creates a dangling reference which, if then used, can create havoc (see Section
4.5.1). This problem can arise in garbage collection if base pointers, that may for
an instant reside in temporary registers, are missed in the marking phase. It can
also arise with reference counters if the bookkeeping is done improperly. It is
usually very difficult to ferret out program errors of this sort, for two reasons.
First, the system will usually not manifest a malfunction until much later in time,

11.2.4 GARBAGE COLLECTION VERSUS REFERENCE COUNTERS 579

when the evidence is diluted or lost. Second, the state of the system that invoked
the error may not be reproducible. Many of the other difficulties associated with
garbage collection and reference counting are more complementary in nature, so
let’s consider these in turn.

With garbage collection, the danger of developing a dangling reference is
compounded because the state of the system upon initiation of marking is unpre¬
dictable. At that instant, some List structures may be ill-formed, perhaps because
the user program is in the middle of constructing the Lists, or because the user
program is doing its own link inversions upon a List, etc. A different and signif¬
icant problem with the use of garbage collection is that when it is invoked, the user
task stops until the marking and collection cycle is completed. In the A.I. environ¬
ment, where List processing is the general method of choice, this can have severe
consequences. It is not feasible to control a robot in real-time, for example, with
the expectation that it may have to “freeze” for substantial intervals (perhaps
10-20 seconds) while garbage collection takes place.

Still another problem arises with garbage collection when the Free-list becomes
nearly exhausted. At this point, the collection process will be invoked more and
more often, and reclaim less and less space. Therefore, it is a good idea to have the
garbage collector count the number of cells reclaimed, and - if that number is less
than some limit - abort the job immediately rather than thrash itself to an
ungraceful termination. Alternatively, it is often possible to vary the amount of
space allocated by the system, either initially or dynamically. Under the assumption
that computing cost is proportional to the product of storage size and execution
time, we can then ask what is the optimal amount of storage, such that we are
neither paying for too much unused memory, nor wasting too much time in garbage
collection instead of in useful computation. If M is the available memory size, and
n is the average number of cells still in use after each collection, then let p = njM.
Also, let c, be the cost of marking and unmarking a cell in use, and let c2 be the
cost of collecting a cell not in use, where we expect to find c, >> c2. Then the
average cost per cell returned to Free is given by

C =
c{n + c2{M — n)

M — n

C\P

1 - p + c2 (11.1)

For p = 1/4, this yields C = cj3 + c2; but for p = 3/4, we find that C = 3cx + c2. In
other words, the cost per liberated cell rises sharply as p increases. A more detailed
analysis shows curves that have shallow cost minimums in the range 0.6 < p < 0.8,
but that escalate steeply as p approaches 1.0 [Hoare 1974], A subsequent analysis
with somewhat different assumptions suggests that it is better to operate with p
closer to 0.5 [Campbell 1974],

The reference counter method avoids the abrupt pause associated with garbage
collection, because the reclamation is incremental. However, there is a high cost
involved in performing the bookkeeping. There is the obvious cost of finding space
for counts rather than just mark bits. At the List-header level there is ample room,
but at the level of individual cells this may be a severe problem. The cost in terms
of execution overhead is even worse. Thus, consider the work associated with the
statement p := {pointer expression}:

(a) decrement the count of the List p]\

580 MANAGING PRIMARY MEMORY

(b) if this count is zero, free the List p}\

(c) evaluate the expression and then increment the count for that List;

(d) finally, assign the pointer value to p.

Moreover, if the above statement is p: = p, then even this simple-minded sequence

is insufficient to prevent the reference by p on the left-hand side from being lost

before it is needed by the right-hand side.

Another major difficulty associated with reference counters is that they are
unable to cope with circular, or recursive. Lists since the counts therein can never
go to zero. This is illustrated by Figure 11.7, wherein the two Lists U and F mutu¬
ally prevent their reclamation. Thus, even ordinary sequential lists of the circu ar
and bi-directional type cannot be managed by reference counts, which is a serious
handicap. One rather unsatisfactory remedy is to have the user explicitly free such
recursive Lists. A second solution is to isolate circular structures via header nodes,
and then count just the external references to such a structure [Bobrow 1980;

Friedman and Wise 1979]. The next section provides still another remedy.

U ' ’

2 -► ATOM •-

ATOM

Figure 11.7 Reference Counting Circularity

A different perspective on the relative merits of garbage collection and reference
counting can be obtained by examining how their costs are assessed. In a multipro¬
gramming environment, the time penalty for the former can fall upon everyone,
regardless of the nature of the particular programs. The situation is somewhat
fairer with reference counting, where the overhead for maintaining proper counts is

always charged directly to the program that is using them.

Clearly, neither of the straightforward methods that we have examined for
reclaiming unused memory is entirely satisfactory. In the next two sections, we will
investigate some fancier techniques that offer ways to overcome the principal diffi¬

culties associated with garbage collection and reference counting.

111.2.5 Hybrid Reclamation

As we have seen, one problem associated with garbage collection is the large
amount of time required to mark and reclaim all of memory. A related problem is
the impact that such a computation can have upon the feasibility of real-time appli¬
cations. Since reference counting has neither of these drawbacks, a useful idea is to
employ a hybrid scheme wherein counting is the primary method, but garbage

tl 1.2.5 HYBRID RECLAMATION 581

collection is used occasionally. Collection is essential in this hybrid scheme both for
reclaiming the circular structures that reference counting cannot detect, and for
providing compaction of the active cells. Although this hybrid of garbage collection
and reference counting is feasible, it fails to take into account some of the other
shortcomings of counting. In particular, we have seen that this method is costly in
terms of space for the counts, and also with respect to the time spent in continually
updating them.

The scheme just described can be substantially improved by making use of the
observation [Clark and Green 1977] that, in typical LISP programs, about 90-98
percent of the reference counts are one! Therefore, it is much more economical to
keep track of just those items with counts of zero and counts of greater than one.
In order to do so, the counts are placed in hash tables, using a technique known as
hash linking [Bobrow 1975], which we will explain briefly. Suppose that we have a
set of keys and a table T, and that for most keys the table locations are adequate to
store the associated information. However, we find that some small proportion of
the keys require additional information to be associated with them. In such a case,
we can either use a bit flag at the corresponding table address A, or store some
exceptional value at A, signifying that special treatment is required. Then a hash
function h is applied to A, and h(A) serves as an implicit -link to an entry in an
auxiliary table T', without requiring space to store an explicit link at A to the entry
in T ’. As an illustration of the utility of this technique, suppose that we wish to
maintain counts in a table T of 16-bit words (allowing a range of 0 .. 65535), and
that some small percentage of the counts will reach or exceed the upper limit. This
is easily handled with hash linking by storing counts less than 65535 just as they are,
but storing 65535 in any location Aj where the inequality fails. For the latter cases,
we compute h{A}) to direct us to an entry in a snail hash table T', where that entry
in T' contains space for a key Aj and its count value.

We will now consider a hybrid reclamation scheme [Deutsch and Bobrow 1976]
that uses hash linking to maintain three tables, as follows:

1. Multiple Reference Table (MRT) — Each entry corresponds to an address and a
corresponding count of two or more.

2. Zero Count Table (ZCT) - Each entry corresponds to an address for which the
corresponding count is zero. An address can be in this table either because the
corresponding datum is truly unreferenced, or because the datum is referenced
only externally - that is, from a program variable or from the run-time stack.

3. Variable Reference Table (VRT) - Each entry corresponds to an address refer¬
enced externally, as described for the ZCT.

Note that the large majority of data, with reference counts of one, will not appear
in either the MRT or the ZCT. Conversely, we can determine that the count is one
whenever the corresponding address does not appear in either table.

The use of the hash tables solves the problem of excessive space for reference
counts, but it does not respond to the problem of time spent in updating them. The

answer here is to generate a sequential file (see Section 12.3.1) of reference count
transactions, rather than applying them as they occur. This file can then be read at

suitable intervals, and the transactions can be applied to the hash tables in batches.
A transaction of type allocation of a new datum causes an address to be placed in
the ZCT. For a transaction of type pointer creation:

582 MANAGING PRIMARY MEMORY

(a) if the datum is in the ZCT, then delete it (the count is now one);

(b) else if the datum is in the MRT, then increment it unless the count is at its

maximum;

(c) else enter it in the MRT with default count of two.

Finally, for a transaction of type pointer destruction:

(d) if the datum is not in the MRT, then enter it in the ZCT (the count was one);

(e) else (the datum is in the MRT), then delete it if the count is two;

(f) else do nothing if the count is at its maximum, else decrement it.

As a result of processing a sequence of transactions against the hash tables, if any
datum D has an entry in the ZCT but not in the VRT, then after decrementing the

counts of data to which it refers, D can safely be recycled back to Free.

The foregoing hybrid scheme was designed specifically for use with a second
level of memory (see Section 12.1). A large measure of the efficacy of this approach
comes as a result of the transactions being accumulated in primary memory before
being written out, so that many of them can be cancelled against one another with¬
out ever being written to the file. This can be seen from observation again [Clark
and Green 1977]. For example, it is very common to have an allocation trans¬
action for an address followed by a pointer creation transaction for it, whereby the
datum is “nailed down”; the net result is no change in the hash tables. Another
example is that of a datum created and rapidly abandoned, again resulting in no
change. Where the List-processing program is compiled, then the methods of global
data flow analysis (see Section 7.4.5.3) can be used to further advantage; they can
detect a variety of situations that lead to cancellation, and so require no transaction

posting at all [Barth 1977].

It is also possible to implement a form of hybrid reclamation without recourse
to secondary memory. With this scheme, a one-bit reference count is kept with
each datum, such that a value of one denotes multiple references [Wise and Fried¬
man 1977]. Once this condition applies to a datum, it can be reclaimed only by
marking and garbage collection. But as discussed above, multiple references are
relatively infrequent. Moreover, by maintaining and consulting a table of the most
recent activity, it is possible to reduce the number of instances where a multiple
reference is recorded and a datum is “lost.” Another useful benefit of this tech¬
nique is that the bit used for the reference count can also be employed as a tag

during the marking phase of garbage collection.

f 11.2.6 Parallel Garbage Collection

By providing a measure of incremental reclamation, the hybrid scheme of the previ¬
ous section can significantly reduce the total amount of time spent in garbage
collection. However, another problem still remains - collection engenders a pause
that can completely disrupt a real-time application. In response to this, there have
been several proposals to interleave the activity of the user process with that of the
collection process. Some of these are of the mark-and-collect variety, as in Section

111.2.6 PARALLEL GARBAGE COLLECTION 583

11.2.1, and others are of the relocation variety, as in Section 11.2.3.2. We will look
at both of these in turn.

In the paradigm for parallel garbage collection, there are two distinct process¬
ors, with the mutator doing the useful work of the user, and the collector reclaiming
cells soon after they are abandoned. Since the mutator may cause the pointers from
a cell to change after the cell has been marked but before marking has terminated
and collection has begun, some new ideas are required. A very elegant solution to
this problem employs three colors — white, gray, and black — with which to mark
cells [Dijkstra et al. 1978], Marking begins by graying the roots of the mutator
graph and the Free-list. Thereafter, the basic marking operation is to find a gray
cell X and then to gray any of its white descendants, at the same time blackening X.
In essence, a white cell is unmarked, a gray cell is marked but its descendants are
not, and a cell that is black has both itself and its descendants marked. Also, the
mutator must cooperate by graying any white cell that it acquires. The marking

phase eventually alternates with a collection phase, during which white cells are
recognized as “quick garbage” and returned to the Free-list, and black cells are
whitened. Black cells that have in fact been abandoned are “slow garbage”; they
will fail to be marked in the next cycle, and so be reclaimed at that time.

A mutator-collector parallel garbage collector is not a simple algorithm, because
of the delicate possibilities for interaction between the two processes. For instance,
marking must be prohibited from altering the pointer topology of Lists, as happens
in MARK_LIST (Algorithm 4.7). In one detailed description of this method,
marking is performed via repeated linear scans of memory in search of gray cells,
which is clearly inefficient. However, the issue there was not efficiency in the first

place [§]; rather, it was to obtain an algorithm for which correctness could be
demonstrated [Gries 1977], An example of a more efficient mutator-collector is
provided by Kung and Song [1977], By employing four colors, it avoids the neces¬
sity of having to mark the Free-list as well as the mutator graph. It presumes the
availability of space for a deque, thereby attaining respectable marking efficiency.

For the relocating variant of reclamation, recall from Section 11.2.3.2 that two
semi-spaces E and F are employed. The user process runs in E until it becomes full,
then active data is moved from E to F, then operation resumes in F until it becomes

full, then active data is moved from F to E, etc. By itself, this does not eliminate

the pause, but the following scheme does [Baker 1978a]. In equilibrium, as the user
program is running, some number of cells have been copied from fromspace to the

bottom end of tospace via a pointer B. If the user program requires a new cell, it is

allocated from the top end of tospace via a pointer T. Interleaved with user
program operations are collection operations that scan the cells in tospace from the

bottom end via another pointer S. When the pointer S reaches a cell in tospace
with a link A to a cell in fromspace, the collector moves that cell to the bottom end

of tospace (via pointer B), updates the link X, and leaves a forwarding address in
the old cell location. After a while, the pointer 5 will have caught up with the

pointer B, and the moving activity will have incrementally cleaned out fromspace, at

which point the two spaces can “flip.” A further embellishment comes from the

observation that young objects have a high mortality rate, but old objects die hard,
and so it is a waste of time to keep moving the latter. Therefore, it is worthwhile to

operate with several smaller segments of memory rather than two large semi-spaces,

584 MANAGING PRIMARY MEMORY

separating objects into different segments according to their age, and eventually not

examining segments filled with old objects [Lieberman and Hewitt 1983].

The mutator-collector approach described at the beginning of this section would
appear to be quite different from the relocation method just described. But think of

the cells still in fromspace as being white, of those copied to tospace but with
descendants that have not yet been examined as being gray, and of those copied and
examined as being black. We see that the two approaches do in fact share some
very basic concepts of graph marking. One of the significant distinctions in the
relocation approach is that the graph is scanned in breadth-first order, the cells in

tospace serve as a queue for this purpose, and no explicit stack is required.

11.3 VARIABLE-SIZE BLOCKS

In order to convey the nature of the problem with variable-size blocks, let us inves¬
tigate the consequences of some particular, arbitrary assumptions concerning
storage organization, allocation policy, and deallocation policy. Suppose that we
have a memory of twelve units (initially empty) and that we are presented with a
series of requests involving allocation and deallocation, yielding the states shown in
Figure 11.8(a). In order to portray what is happening, we label empty blocks with
the number of units they contain, and active blocks with the name of the item they
contain. In general, when a request for R units is matched against a block contain¬
ing S units, we will allocate the rightmost R units to the request, and the leftmost
(S' - R) units as a smaller empty block. The Free space of empty blocks is main¬
tained as a linked list, with returned blocks being inserted at the front. The reason
for allocating from the right will be described in Section 11.3.1.1; the reason for
maintaining Free-space as a stack is that it is the simplest way to manage a linked
list. One final point is that we will encounter situations where there are two or
more contiguous empty blocks; for now, we will presume that they are left in that
state. Figure 11.8(a) speaks for itself. When we try to obtain space for E, we fail
because memory has become checkerboarded with active blocks and small empty
blocks. There are actually five unused units of memory, but they are unavailable to
us because unused memory has become fragmented into useless blocks. Coping with
fragmentation causes memory allocation to be a problem for blocks, whereas allo¬

cation was trivial for cells.

The example in Figure 11.8(a) is based upon some definite but simplistic poli¬
cies of organization (a stack), allocation (first-fit), and deallocation (do nothing).
Now let us consider another example, using some different policies. In particular,
suppose that requests for variable-size allocations are always honored by rounding
them up to the nearest multiple of some standard size Bstd, say 1000 units. This
example typifies the way in which an operating system would respond to requests
for storage for program tasks. It is illustrated in Figure 11.9 for a hypothetical
series of requests, and with a total available memory of 10,000 units. Here, we are
unable to satisfy the request for 900 units for E even though there are 2100 unused
units of memory. In this case, the unused but unavailable memory locations occur

11.3 VARIABLE-SIZE BLOCKS 585

(a) First-Fit (b) Best-Fit

Figure 11.8 External Fragmentation

within allocated blocks, and so the phenomenon is termed internal fragmentation.
The phenomenon portrayed in Figure 11.8 is termed external fragmentation.

We can regard the examples of Figure 11.8 as having a basic block size
Bstd = 1. Then it is easy to see that as we vary Bstd from small values to large
values, the external fragmentation will decrease but the internal fragmentation will
increase. Moreover, it has been observed that the increase in internal fragmentation
sharply exceeds the decrease in external fragmentation [Randell 1969],

In this section, we will examine several variations in each of the three policies
- organization, allocation, and reclamation. Initially, we will restrict our attention
to various manners of dealing with memory as one storage pool. Subsequently, we
will look first at a class of methods known as buddy systems, and then at the use of
multiple storage pools.

The number of combinations of policies soon becomes cumbersome to grasp
even conceptually, much less in terms of performance characteristics. Memory
management strategies are generally measured with respect to two performance
parameters - the degree to which they are able to satisfy various sequences of stor-

586 MANAGING PRIMARY MEMORY

Initial ! 1 \ —i n

A-2200 | A i i i

6-1600 1 A B 1 J 1

C-400 | A B C

D-3700 1 A B C D_LJ

E-900 | A B C P 1 1
Figure 11.9 Internal Fragmentation

age requests from a finite available memory, and their execution overhead. In order

to fully characterize such sequences of requests, we must consider:

• the distribution of request sizes;
• the distribution of arrival times of these requests;
• the distribution of occupancy times of these requests.

Clearly, to measure each of the sizable number of combinations of policies against a
representative set of request sequences is a large task. So we conclude with a
section that will hopefully bring some order out of chaos for the reader, drawing

upon several excellent published analyses and simulation studies.

11.3.1 Single Storage Pool

The idea here is that blocks of memory are strung together as one sequential linked
list, with various possibilities for organizing that list. When a request is received for
a block of a given size, the allocation policy must actually perform two tasks:

1. select a free block from which to satisfy the request;
2. decide what to do about the difference between the request size and the selected

block size.

The policy of reclamation includes actions that can happen either at storage release
time, or when an allocation request cannot be satisfied. The former type of action
is suggestive of the incremental reclamation of storage with reference counts; the
latter type is analogous to a compaction phase of garbage collection.

11.3.1.1 Organization. Our meaningful unit of storage is now a block rather than
a cell; therefore, we need to examine what must be included in the structure of a
block. As a minimum, an unused block would need the format shown in Figure
11.10(a), and an active block might have either the format shown in (b) or (c) of the

11.3.1.1 ORGANIZATION 587

Count Tag = 1 Succ Link Junk

(a) Empty Block

Count Tag = 0 Data

(b) Active Block — Format 1

Count Tag = 0 Succ Link Data

(c) Active Block — Format II

Figure 11.10 Memory Block Formats

type cursor = lo .. hi;
blockl = record

count: cursor;
case tag: boolean of

false: (data: {string of data bytes});
true: (succ: cursor;

junk: {string of empty bytes});
end;
block2 = record

count: cursor;

case tag: boolean of
false: (succ: cursor;

data: {string of data bytes});
true: (succ: cursor;

junk: {string of empty bytes});
end;

Figure 11.11 Pascal Syntax for Memory Blocks

figure. In Pascal terms we would have either blockl or blockl, as illustrated in
Figure 11.11.

One of the first consequences that follows from these formats is that an unused
block must have a minimum size bmin that is large enough to contain the count,
tag, and succ fields; an allocation policy must never split off an empty block smal¬
ler than this limit. It is also easy to see from these formats why - in splitting an
empty block into a reduced empty part and an active part, as in Figure 11.8 - we
make the active part on the right. By so doing, we have only to reduce the count to
reestablish the empty block; if we made the active part on the left, we would also
have to reestablish the tag and link fields. The choice between the block 1 and the
blockl alternatives depends upon whether or not our linked list of blocks is to be
just a Free-list, or should include all the blocks in memory. The blockl format will
speed up searching for an empty block because the list is shorter. The blockl

588 MANAGING PRIMARY MEMORY

format, with all the blocks in order of address, can facilitate the process of reclama¬
tion but it requires both more space and more time. In the block 1 case, it is
possible to maintain the Free-list in several ways. In Figure 11.8, we employed a
stack; you may recall that in SLIP a queue is used (see Section 11.2.2). A common
choice is to maintain the Free-list by address, although the block size is sometimes

used as the criterion.

11.3.1.2 Allocation. As we have said, an allocation policy includes both selecting
an empty block and possibly having to dispose of an excess in that block. Let s
consider the problem of excess capacity first. One possibility is to simply include
the excess in the allocated block. Indeed, that is what happens when memory is
allocated in multiples of a fixed block size Bstd, as in Figure 11.9, and it leads to
internal fragmentation. This is also what must happen if the excess is too small, as
we discussed in the previous section. Note that this manner of handling the excess
may necessitate extra information in an active block, to distinguish data from junk.
The other way of handling excess capacity is the one illustrated originally in Figure
11.8; namely, we split the excess off into a new and smaller unused block, leading

to external fragmentation.

Allocation is essentially the process of searching a list to find a block that is
large enough. We see that external fragmentation complicates allocation in two
ways. It simultaneously causes this list to be longer and the entries in the list to be
smaller, both of which increase the search overhead. In our example of Figure
11.8(a), the allocation selection policy specified the first unused block that was large
enough, no matter how much larger; this is known as first-fit. It would appear
that such a policy is imprudent, causing us to be unable to allocate 3 units to E
because we had previously split a 3-unit block to satisfy D, when a 2-unit block
would have worked just as well. This suggests that a better policy might be best-fit,
whereby we would look for the smallest unused block that is just large enough to
satisfy the request. Indeed, if we apply such a policy to that same series of requests,
as shown in (b) of Figure 11.8, we are rewarded with greater success. However, it is
easy to construct a counter-example where best-fit fails and first-fit succeeds, as
illustrated in Figure 11.12. More generally, a problem with best-fit is that it may
rarely find a block of exactly the desired size, and so will split an empty block into
an active part and a splinter, an empty block so small that it is of little practical
value. Over a period of time, if Free-list accumulates many such splinters, it may
both worsen execution overhead and reduce memory availability.

Note that if the linked list is maintained by address, then the process of search¬
ing for a best-fit means searching the entire list (unless we find an exact-fit), and so
will be more expensive than searching for a first-fit. For this reason, the Free-list
might be maintained by block size to shorten the searching process of best-fit.
What happens if we use the first-fit method with a Free-list ordered by block size?
It depends upon whether the blocks are in increasing or decreasing order of size. If
they are in increasing order, first-fit becomes best-fit; if they are in decreasing
order, first-fit will succeed (or fail) on the very first try, yielding a policy known as
worst-fit. This policy, which always splits up the largest unused block, is not neces¬
sarily a bad one; it definitely tends to oppose the formation of small fragments.

11.3.1.2 ALLOCATION 589

Initial

A- 6

fi-1

Release A

C-3

D-3

£-4

(a) First-Fit (b) Best-Fit

Figure 11.12 External Fragmentation, Again

Let’s attempt to apply intuition again, as when we decided to try best-fit rather
than first-fit. If first-fit is applied to a lengthy series of allocation and deallocation
requests, then the continual activity at the front end of the Free-list can be expected
to bias Free toward having more small blocks at the front and more large blocks at
the rear. This in turn will cause any requests for large blocks to have long searches.
It would seem that an improvement upon this situation would be to have each
search cycle begin at that point in the list where the previous search cycle ended. In
such a next-fit policy, the distribution of block sizes in the list should be more
random, and the average search length should be shorter. In fact, as we will see in
Section 11.3.4.2, the observed results with next-fit need careful interpretation.

Our final allocation policy derives from the optimal stopping policy for Markov
chains, and is dramatically illustrated by the following hypothetical situation. You
are presented with a sequence of choices, one after the other. If you could “spread
them out” and go back and forth, it would be easy to pick the best. However, you
are required to examine them in sequence, with no knowledge about the values of
the still unseen choices. As each choice is paraded before you, you can pass on it,
which eliminates it from further consideration, or you can select it, which concludes
the game. An example of this might be a motorist trying to pick a motel without
going back over his tracks.

590 MANAGING PRIMARY MEMORY

To illustrate the principle in a different manner, suppose that you are playing
the following card game. The value of the cards in the deck is considered to run,
from lowest to highest: 2,3, ... , ace of clubs; 2,3, ... , ace of diamonds, and so on,
for hearts and then spades. The dealer shuffles the cards, takes the first one, and
then begins to look at the other cards one at a time. As he looks at each card in
turn, the dealer compares it with the one in his hand, retaining the higher one and
discarding the lower one. Obviously, by the time he reaches the end of the deck, he
will be holding the ace of spades. What is your role in this game? You are watch¬
ing him as he does this, but you cannot see the faces of the cards, only his actions
in exchanging one card for another. Nonetheless, you are asked to identify the ace
of spades when it comes by, not after the fact. If you were challenged to play this
game with odds of 3 to 1 in your favor, would it be a favorable bet? Surprisingly, it

would be!

The unaided probability of identifying the ace of spades as the cards go by you,
face unseen, is certainly just 1/52. So how is this a favorable bet? A key observa¬
tion is that a candidate for best must be better than any that has been seen so far.

Your strategy is:

1. to allow S out of the total of A to go by, simply noting the best candidate in

this initial segment from 1 to S; and then
2. to pick the first candidate after that point.

What is the probability that this strategy will find the best candidate X in the y'th
position, if you allow S of them to go by? It is the joint probability Pr (SJ) of the

two events that:

(a) X occurs in the yth location, and

(b) there will be no candidates in the interval S to j — 1.

The probability of event (a) is given by 1/A. Also, if Y is the best candidate in the
first j - 1 positions, then the probability of event (b) that Y will occur within the
first S positions, so that no candidates occur between S and j - 1, is given by
S/(j - 1). In other words, Pr (SJ) = (1/A) x (Sl(j - 1)). Summing this over the like¬
lihoods of finding the best candidate in positions 5 + 1 through N, we obtain

wjh=i{i+^TT+-+ttt) - - "*-■> (1L2)
j=S+1

For large values of N, the value of S that maximizes this summation is closely
approximated by N/e « 0.368 A, and this strategy will succeed in correctly identify¬
ing the best candidate with probability 1/e « 0.368. In other words, for the card
game, if you picked the first candidate, as indicated by an exchange of cards on the
dealer’s part, after the nineteenth card, you would have a better than even chance of
winning with the 3 to 1 odds. If the game is instead to try to identify one or both
of the two of clubs and the ace of spades, at even money, the prospects are even

more favorable.

As applied to the storage allocation problem, this is called the optimal-fit policy.
It suggests (1) examining 0.368 of the blocks on the Free-list and recording the
block Y in this sample that is closest in size to the request, and (2) picking the first
block X thereafter that gives a closer fit than Y. Compared to first-fit, we would

11.3.1.2 ALLOCATION 591

expect it to require more searching but to give a better fit; compared to best-fit, we
would expect it to require less searching but to yield, on the average, a poorer fit.
This is a very pretty method, but its validity rests upon certain assumptions that do
not always apply with the storage allocation problem:

• that the blocks in the Free-list are statistically independent in terms of size;
• that the number of blocks is both large and known;

• that it is impossible to return to a block once it is passed over [Leung 1982b].

When the latter assumption is false there is some benefit, because it may happen
that no candidate block is found after the sample, and yet a candidate existed in the
sample. In the original description of optimal-fit, reversion to a candidate from the
sample was employed about 25 percent of the time, and the method was found to
be generally superior to first-fit [Campbell 1971], However, as we will see in
Section 11.3.4.2, the first assumption above is usually not true with first-fit - that
is, the block sizes are not independent. Therefore, the observed results with opti¬
mal-fit also need careful interpretation.

Except for some very different storage organizations that we will examine in
Sections 11.3.2 and 11.3.3, the methods that we have described here encompass
most of the techniques used in organizing memory for dynamic allocation of varia¬
ble-size blocks. Still, there are other possibilities. For example, Free-list might be
organized as a binary search tree (see Exercises 11.10 and 11.11). However, this
introduces overhead that may not be worthwhile unless Free-list is fairly long.
Extra space is required for the tree pointers, thereby increasing bmin. Also, time
must be spent maintaining the pointers and (possibly) keeping the tree in balance.
Still another idea is to have the allocation policy take into account the anticipated
release times of already allocated blocks [Beck 1982],

11.3,1.3 Reclamation. With fixed-size cells, we found that it is sometimes neces¬
sary to compact them in order to reduce their dispersion in memory. In the case of
variable-size blocks, a more pressing need is to counteract the trend toward frag¬
mentation of memory. This was evident in the examples of Figures 11.8 and 11.12,
where the reclamation policy was the trivially simple one of pushing deactivated
blocks onto a stack. There are two approaches that can be used for the purpose.
One idea is to determine, upon the return of a block, if either adjacent block in
memory is also an empty block. If so, they can be coalesced into one larger block.
(The terms “collapsed” and “consolidated” are also used.) Although effective,
coalescing has its limitations. Therefore, the more drastic step of compaction may
be required; however, compaction is considerably more complicated with blocks
than it is with cells. We will now look at coalescing and compaction in turn.

11.3.1.3.1 Coalescing. The goal in coalescing is to merge adjacent empty blocks.
The basic problem in implementing it is to find the two blocks that are adjacent to
a given block and, if necessary, adjust the chain of Free-list pointers. When a block
at location Q of size C is returned, it is simple to investigate the block that follows
it in memory, by looking in or around location R = Q + C (taking into account
prefix space). If the block at R is empty, it is also simple to combine it with the

592 MANAGING PRIMARY MEMORY

block at Q. However, it is not so simple to adjust the relevant Free-list pointer to

point to Q instead of R:

• If the Free-list is in arbitrary sequence, then we must search the entire list to

find the predecessor to R, which will typically require 0(n) probes.
• If the Free-list is maintained by address, then the block at location Q is the

predecessor of the block at location R. However, the operation of inserting the
block Q (or any block) into such an ordered Free-list will have required 0(n)

comparisons, so that we are no better off.

One apparent solution is to organize the empty blocks as a bi-directional list, in

arbitrary sequence. Then, when a block Q is returned, and if the succeeding block
R in memory is also empty, we can combine Q and R and adjust the pointers, all in
constant time. However, what we have described still only accounts for coalescing
with an empty neighbor block on the right. The problem of finding and coalescing
with an empty neighbor block on the left is a bit more complicated. We first have
to find the beginning of the left neighbor block, in order to test if it is empty; and
the bi-directional list does not help with this, unless the Free-list is maintained by
location. (If it is, we can link to the predecessor of Q, and then test to see whether
it extends as far as Q, or if there is an intervening active block.) Unfortunately, we
saw with the second case above that it costs 0(n) operations to maintain the Free¬

list by location.

Is there any solution that can deactivate a block and coalesce on both sides,
and do so in constant time? There is, but at the expense of requiring additional
information in active blocks as well as empty blocks. Note that we should not
mind having extra information in empty blocks, since most of their space is unused
anyway. With regard to active blocks, on the other hand, the additional overhead
may be a substantial proportion of the allocation or it may be insignificant. A very
effective manner of including additional information in active and empty blocks to
facilitate coalescing is to use boundary tags. Such a scheme is illustrated in Figure
11.13, wherein each block has a suffix containing count and the boolean value
empty, this suffix can easily be interrogated by any procedure working in another
block to its immediate right. Note that an empty block requires several items of
information, while the only essential extra information for an active block is a
duplicate of its tag. With boundary tags, when a block Q is deactivated, we can
find the adjacent block R on the right by using Qs count, as before. We can also
test the suffix of the block P to the left of Q; if P is active, there is nothing further
to do; but if P is empty, we can use the duplicate count value in P’s suffix to reach
the beginning of P. Since the Free-list is bi-directional, we can combine Q with P
and/or R and restructure the list, as appropriate, all in constant time.

Count Empty = 1 Pred Link Succ Link Junk Count Empty = 1

(a) Empty Block

Count Empty = 0 Data Count Empty = 0

(b) Active Block

Figure 11.13 Boundary Tag Formats

11.3.1.3.1 COALESCING 593

const bdry_size = 1;
bmin = 3;

type cursor = lo .. hi;

itemicity = (boundary,fill,links);
item = record

case itemicity of
boundary: (count: integer;

empty: boolean);
fill: (byte: char);

links: (pred.succ: integer);
end;

var free: integer;

store: array [cursor] of item;

Figure 11.14 Boundary Tag Item Formats

Of course, it is unlikely that we can allocate a one-bit suffix in an active block
without sacrificing an entire word, or at least an entire byte. Thus, it is common to
show the same suffix form, containing duplicate values of count and empty, for both
active and empty blocks. It is awkward to illustrate the boundary tag method in
Pascal if we try to represent entire blocks via variant records. However, we can do
almost as well if we use variant records to represent items within blocks. In partic¬
ular, we will use the global information shown in Figure 11.14, such that an item is
one of the three types: boundary, fill, or links. For the sake of simplicity, a
boundary item has the same format for prefix and suffix and for both empty and
active blocks; however, our algorithms will not use the count information in the
suffix item of an active block.

Cursor Itemicity Contents

lo

lo + 1
lo + 2

boundary
links
boundary

count = 1 , empty = 1

pred = 0 , succ = lo + 4
count = 1 , empty = 1

lo + 3 boundary count = —1 , empty = 0

lo + 4
lo + 5
hi - 1

boundary
links
boundary

count = hi — lo - 6 x bdry_size , empty = 1
pred - lo , succ — 0
count = hi - lo + 6 x bdry size , empty = 1

hi boundary count = -1, empty = 0

Figure 11.15 Initialization for FIRST-FIT and COALESCE

We now present algorithms to do first-fit allocation and also deallocation with

coalescing, using these formats. Store is considered to be an array of items, and
free identifies the head of our bi-directional, non-circular Free-list. We assume that

594 MANAGING PRIMARY MEMORY

the items in the first six and the final two locations of store are initialized as shown
in Figure 11.15. The contents of lo + 3 and hi are dummy active blocks needed for
the coalescing process; note that with a block size of —1, the same boundary item
serves as both prefix and suffix. The small empty block from lo to lo + 2 serves as
the head of the Free-list. Its size and position guarantee its permanence - that is,
it will never be either allocated or coalesced. By using bdry_size to parameterize the
size of a boundary item, we facilitate transcribing these algorithms to assembly
language, should that be desired. We are not so concerned about introducing a
similar parameter for the size of a links item, since that can easily be provided for

by the choice of bmin.

function FIRST.FIT (n: integer): integer;

var done: boolean;
p,q,size: integer;
u: item;

begin
p := free; done := false;
FIRST_FIT := 0; {in case no space is available}
repeat

size := store [p].count;
if size < n then begin

p := store [p + 1].succ;
done := (p = 0);

end else begin
if (size = n) or (size - n < bmin) then begin

store [p].empty := false;
store [store [p + 1].pred + 1].succ := store [p + 1].succ;
store [store [p + 1].succ + 1].pred := store [p + 1].pred;
store [p + size + bdry_size].empty := false;

FIRST_FIT := p;
end else begin

q := size - n - 2 * bdry_size;
store [p],count := q; store [p + q + bdry_size].count := q;
q := p + size - n;
u.count := n; u.empty := false;
store [q] := u; store [q + n + bdry_size] := u;
FIRST_FIT := q;

end;
done := true;

end;
until done;

end;

Algorithm 11.4 FIRST_FIT

The function FIRST_FIT (Algorithm 11.4) searches the Free-list for the first
block that is not less than the desired size «, returning either the address of that
block, or a zero if there is none. If a block is found such that it has size n or such

11.3.1.3.1 COALESCING 595

procedure COALESCE (q: cursor);

var glued: boolean;
p,r,size: integer;

begin
glued := false;
store [q],empty := true;
size := store [q],count;
if store [q - 1].empty then begin

p := q - store [q - 1],count - 2 * bdry_size;

size := size + store [p],count + 2 * bdry_size;
glued := true;

q := p;
end;

r := q + size + 2 * bdry_size;
if store [r],empty then begin

size := size + store [r].count + 2 * bdry_size;
if glued then begin

store [store [r + 1].pred + 1].succ := store [r + IJ.succ;
store [store [r + 1].succ + 1].pred := store [r + 1].pred;

end else begin
store [store [r + 1].pred + 1].succ := q;
store [store [r + 1].succ + Ij.pred := q;
store [q + Ij.pred := store [r + Ij.pred;
store [q + IJ.succ := store [r + IJ.succ;
glued := true;

end;
end;
if not glued then begin

r := store [free + IJ.succ;
if r <> 0 then

store [r + 1 J.pred := q;
store [q + 1 J.succ := r;
store [q + Ij.pred := free;
store [free + IJ.succ := q;

end;
store [qj.count := size;

store [q + size + bdry_sizej := store [qj;
end;

Algorithm 11.5 COALESCE

that its size is in excess of n by less than bmin, then the entire block is removed

from the the Free-list and allocated. If the excess size of this block equals or

exceeds the minimum, then it is split. The procedure COALESCE (Algorithm 11.5)

is called with the address q of the block Q. It first checks the block P on the left,

coalescing if appropriate. It next checks the block R on the right. If R is to be

coalesced and P already was, then R is de-linked as a distinct block on the Free-list;

596 MANAGING PRIMARY MEMORY

if R is to be coalesced and P was not, then the appropriate link adjustments are
made. Finally, if Q was not coalesced with either P or R, then it is inserted at the

front of the Free-list.

The process of coalescing has several virtues. It reclaims memory incrementally
rather than in the spasmodic style of garbage collection. It can also be accom¬
plished quickly in time and with little space overhead. In particular, since blocks
are not relocated, we do not have to worry about updating pointer values. Note
that there are alternative ways to coalesce, if we separate the issues of what to do
(that is, coalesce) and when to do it. The usual policy with regard to “when” is at
deallocation time. One alternative policy is to coalesce at allocation time; if an
allocation request causes an empty block to be split, then the resulting smaller
empty block can be tested for coalescing with an adjacent empty block at that time.
Still another alternative policy is not to coalesce at either allocation or deallocation,
but to wait until an allocation request fails. At that time, all the blocks in memory
can be scanned in address sequence, to simultaneously coalesce adjacent empty

blocks and also regenerate the Free-list.

f 11.3.1.3.2 Compaction. Unfortunately, coalescing cannot by itself prevent situ¬
ations where memory may be only 50 percent utilized, and yet unable to satisfy a
reasonable request. For example, memory could consist of alternating active and
empty blocks all of size X, and the request could be for a block of size X + 1. In
such situations, we need to compact the active blocks toward one end of the
dynamic memory area, leaving the remainder as one large free block. In the
discussion of compaction in Section 11.2.3.1, we were able to employ the regular
structure of cells to advantage in two ways. First, COLLECT. 1 (Algorithm 11.2)
was able to swap active and empty cells between locations at opposite ends of
memory, since all cells are of the same size. Second, it was straightforward to
update pointers by means of forwarding addresses left in the old locations, since the
detection of pointer values within cells obeyed easily computable rules.

The irregular structure of blocks makes swapping impossible; also, the
detection of pointers within blocks can be difficult. Since the latter issue depends
heavily upon details of implementation, we will not pursue it here. We simply note,
in passing, two different approaches to the problem. One is to program for each
block type (that is, record) a corresponding routine that knows how to find the
pointers in such a block. Another is to make each block self-describing (see Section
3.3), and then use an interpreter to extract pointers. An interesting discussion of

this problem can be found in Wodon [1969],

We turn from the issue of detecting pointers within blocks to that of computing
the compaction. Since swapping is impossible, the general technique is that of slid¬
ing compaction, wherein all of the active blocks slide to one end, squeezing out the
empty blocks in the process. The earliest algorithms for doing this were rather
expensive in either time or space; so compaction of blocks, with associated pointer
adjustment, was often regarded as a means of last resort. Several methods traded
space for time by specifying that each block should contain extra space that would
always be available to the compactor. We will refer to such an area within each
block as the utility field. Compaction can then be conducted with three left-to-right,
or lo to hi, passes over the blocks, as follows:

fl 1.3.1.3.2 COMPACTION 597

(a) As each active block Q is reached in the first scan, its forwarding address is
stored in its utility field. The value of the forwarding address is easily
computed as the value of the present address of Q minus the sum of the space
in all the holes (empty blocks) to the left of Q.

(b) As each active block is reached in the second scan, the pointers are extracted
and updated, using the forwarding addresses in the blocks to which they refer.
Any pointers to the blocks from outside the dynamic memory area are also
updated at this point.

(c) Now that all pointers are updated, the third scan can safely relocate each
block, using its forwarding address again.

z

z

(b) Threaded Links

Z_

X

ABC

Figure 11.16 Pointer Transformations for Compaction

A significant improvement over earlier methods is a linear algorithm by Morris
[1978] that requires just two passes, and also one extra bit for each pointer field.
The essence of the method is the reversible transformation illustrated in Figure
11.16. We see in (a) of the figure a block at location Z that is referenced by several
pointers. In (b) the tree pointers of (a) are threaded to form a sequential list, with
the initial location Z now acting as list head, and with the non-pointer item X that
originally resided at Z now serving to terminate the list. Subsequently, the
forwarded location of the block is computed to be Z', after which the list in (b) is
converted back to a tree in (c), with the pointer values being updated to the value
Z'. Since all the pointers have now been updated, there is no further need to access
them in their original locations; thus, it is safe to conclude the process by sliding
the block to Z

598 MANAGING PRIMARY MEMORY

There is one complication in performing the sequence of transformations shown

in Figure 11.16 without an extra scan. It depends upon the links all being up-poin¬

ters - that is, pointing in the direction from lo to hi. This allows the updating to

be applied as soon as the block at Z is reached, thereby restoring the information X

that may be required in order to interpret the contents of the block. However, this

complication can be remedied by treating the up-pointers in one scan, and then

treating the down-pointers in a second scan from hi to lo. Morris’s algorithm actu¬

ally compacts memory by sliding active blocks from lo toward hi at the same time

that it processes the down-pointers, and it presupposes a previous marking phase, as

in garbage collection. We will illustrate the sequence of events during compaction

using, instead, a variation by Jonkers [1979].1 It does not depend upon prior mark¬

ing, it does not require an extra bit per pointer, it uses two lo to hi scans, and it

compacts memory from hi toward lo. Figure 11.17(a) depicts memory checker-

boarded with active and empty blocks, and containing both up-pointers and

down-pointers to block Q. There are pointers to the other blocks as well, but they

are omitted in the interest of clarity. By the time that the first scan reaches Q, the

up-pointers to Q have been threaded, as in (b). But now the sum of the holes to the

left of Q is known, and the up-pointers can be updated, as in (c). Note that this

also restores the contents of the header for block Q, thereby facilitating the interpre¬

tation of its contents. The first scan then continues to the end of the memory

region and threads the down-pointers to Q as it does so, as in (d). Now when Q is

reached in the second scan, it is safe to update all the down-pointers originating

from blocks to the right, as in (e). Moreover, all blocks to the left of Q will have

been relocated, and so Q can also be moved to its new location, as in (f).

The discussion of compaction in this section would appear to be very different

from that of Section 11.2.3. They actually have much in common. In particular,

one view of compaction in the earlier section was as a means of reclaiming garbage,

following one of a variety of marking algorithms. The compaction techniques of

this section are also relevant for garbage collection. We do not explicitly discuss the

marking of multi-linked blocks, since it is the familiar business of searching a graph.

But note that if blocks contain utility fields, these fields also provide an easy

solution to the problem of finding space for a stack. Marking techniques based

upon the utility field approach are described in Thorelli [1972]. But there is an

even stronger common ground between compaction as discussed earlier and as

treated here. Even for compacting fixed-size cells, the techniques of this section are

sometimes preferred to that of COLLECT_l. This is so because of the sliding

nature of the compaction. The original physical memory sequence of the cells of a

List can be important in some applications, and COLLECT_l jumbles this

sequence.2 Sliding compaction, on the other hand, preserves the so-called genetic

ordering of the original physical sequence [Terashima and Goto 1978].

1 For still another variation see Martin [1982].

2 Recall that the list-moving method of Section 11.2.3.2.1 has a different type of virtue; it
provides a linearizing compaction.

rh~ m i i\
11.3.2 BUDDY SYSTEMS 599

n
x

0

(a) Initially

£> *—1
X 4- i 4— ~T~ T

(b) During First Scan

(c) During First Scan

L_C-t_2, P X
1 x L T

(d) End of First Scan

r~r~ >
1 1 X T

(e) During Second Scan

L C(—1_X_S_X
T i x i

Q

(f) During Second Scan

Figure 11.17 Progress of Jonkers’ Compaction Algorithm

11.3.2 Buddy Systems

If we reflect upon what we have encountered so far in managing storage for
variable-size blocks, it appears that allocation is moderately expensive, because it
involves searching the Free-list, and reclamation is very expensive whenever
compaction is required. Both of these problems can be side-stepped by choosing a

600 MANAGING PRIMARY MEMORY

different form of storage organization that leads to simpler algorithms for allocation
and reclamation. The idea is that blocks should only exist in a fixed number of
sizes s{<s2< - < sm, and that a split should always break a block B of size st into

two buddies BL and BR of sizes si_l and st_K. Thus,

Subsequently, whenever BL and BR are both free, they can be recombined to recon¬
stitute the original block. Moreover, neither B^ nor BR can recombine except with
its buddy. Reclamation is thus efficient because buddies always have a fixed
address relationship, making it easy for a block to determine if its buddy is avail¬
able for recombination. Allocation is made efficient by maintaining separate
bi-directional lists for each block size st. (Why bi-directional?)

The original and simplest buddy system is the binary buddy system, correspond¬
ing to K = 1 in Eq. 11.3 [Knowlton 1965], In this case, it is easy to see that blocks
always split by dividing in half. With any of the buddy systems, it is important to
be able to locate the buddy of a block quickly. For binary buddies, we can see that
this is simply a matter of regarding the addresses of the blocks as binary numbers.
The addresses of two buddies — for example, 'abcOOOOO' and 'abclOOOO' — will
always agree in their prefix portions, be opposite in one bit position, and have all
zeros in their suffix portions. Thus, we can find the buddy of a block by simply
inverting a particular bit position. Another way of regarding this is that the split of
a block of size s, = 2' at location L will give rise to two blocks of size 5;_j = 2,_1, at
locations L and L + 2'-1. These matters are illustrated in Figure 11.18, which
exhibits a hypothetical snapshot of a dynamic memory area organized as binary
buddies. In this figure we can observe the following details:

• Blocks that have been split are denoted by empty circles, allocated blocks are
denoted by solid circles, and empty blocks are denoted by rectangles.

• With each block is shown its address, in binary on the upper levels and in deci¬
mal on the lower levels.

• All empty blocks of a given size are linked together.

Details about the effectiveness of this organization will be addressed in Section
11.3.4. In general terms, however, we can see that this method engenders both
internal fragmentation (any request must be rounded up to the next largest size
Si = 2') and external fragmentation (it may be impossible to satisfy a request, even
though there are unallocated buddies with aggregate space in excess of the request).
If the request sizes all happen to be slightly in excess of a power of two (such as 9,
17, 33, etc.) then the internal fragmentation for a binary buddy system can
approach 50 percent. The problem is that the set of allowable sizes {s,} is too
coarse. A resolution for this is to vary K in Eq. 11.3.3 In particular, for K=2, we
have as {s,} the familiar Fibonacci numbers, yielding the Fibonacci buddy system
[Hirschberg 1973]. When K>2, we encounter generalized Fibonacci buddy systems

[Hinds 1975]; for example, K = 3 leads to block sizes {I, 2, 3, 4, 6, 9, 13, 19,...}.

3 More accurately, specification of a solution for Eq. 11.3 depends not only upon a value

for K, but also upon values for the K initial sizes s1; s2,... .

0
0

0
0

0
0

0

11.3.2 BUDDY SYSTEMS 601

o
o
o
o
o

CD
■O
CO
CD
X

CD
N

cn
CO
C\J CO

CNJ
CO

Figure 11.18 Binary Buddies

CO

S
iz

e
H

ea
d

er

602 MANAGING PRIMARY MEMORY

Figure 11.19 Fibonacci Buddies

11.3.2 BUDDY SYSTEMS 603

Let us consider how a generalized Fibonacci buddy system might be imple¬
mented. As a starting point, Figure 11.19 is a hypothetical snapshot of an ordinary
Fibonacci buddy organization analogous to Figure 11.18. It is easy to locate the
binary buddy of a block, but the logic for computing a buddy block in the general¬
ized case is apparently not so simple:

• If a block B is a left buddy of size st at location L, then its right buddy is of size
Si_K+, at location L -l- sh and they combine to form a block of size sM at
location L.

• If a block B is a right buddy of size st at location L, then its left buddy is of size
si+K_i at location L — si+K_u and they combine to form a block of size si+K at
location L — si+K_v

L S

F L S i Pred Link Succ Link Junk

(a) Empty Block

F L S i Data

(b) Active Block

Figure 11.21 Buddy Block Formats

In fact, it is possible to keep track of the buddies elegantly and simply, as illus¬
trated in Figure 11.20, by means of two boolean values L(eft) and S(ave) in each
block [Cranston and Thomas 1975], When a block X splits into a left buddy block
Y and a right buddy block Z, where Y is by convention the larger of the two, then
we assign LY : — 0 and SY ■= Lx on the left, and Lz : = 1 and Sz : — Sx on the right.
Recombination is accomplished by discarding the L bits of the offspring and assign¬
ing Lx := SY and Sx: = Sz. In addition to the L and 5 bits, we need other
information in the blocks. Each block requires, of course, a boolean value F(ree).
It also needs the value of i, as an encoding of the size, for indexing into a vector of
sizes Note that it is quite easy to pack F, L, S, i together on most machines.
Finally, each empty block must have space for its two bi-directional pointers.
Combining these items, we obtain the pictorial formats shown in Figure 11.21 and

604 MANAGING PRIMARY MEMORY

const K = {1 for binary, 2 for Fibonacci, etc.}

type cursor = lo .. hi;

sizcod = 1 .. sizmax;

itemicity = (fill,links,tags);

item = record
case itemicity of

fill: (byte: char);

links: (pred,succ: integer);

tags: (free,left,save: boolean;

code: sizcod);

end;
list = record (header for a list of size s/}

size: integer;

pred,succ: integer;

end;

var lists: array [sizcod] of list;

store: array [cursor] of item;

Figure 11.22 Pascal Syntax for Buddy System Data

the Pascal formats shown in Figure 11.22. In the latter figure, the values of

lists IQ.size must be initialized to the values corresponding to the choice of K — for

example, the ordinary Fibonacci numbers for K = 2.

The logic of requesting a block under the buddy system is spelled out in the

function RQST_BUDDY (Algorithm 11.6). It first looks for the smallest adequate

size with a non-empty list.4 If that size is too large then a block from that list is

split, and this process is iterated with the buddy closer in size (with the unused

buddy being inserted in the proper list). Three auxiliary routines of a straightfor¬

ward nature are not shown but are required, as follows:

1. DETACH (p: cursor) — which deletes the block located at p from its doubly

linked list. If either the predecessor or the successor link is zero (indicating the

list head), then the size code in store [p] can be used to index the proper list.

2. ATTACH (i: sizcod; p: cursor) — which inserts the block located at p in the ith
doubly linked list.

3. SET_TAGS (p: cursor; a,b,c: boolean; s: sizcod) — which assigns the parame¬
ters a,b,c,s to the tags in the block located at p.

The reverse process is illustrated by the procedure RTN_BUDDY (Algorithm

11.7). The returned block is iteratively combined with any buddy blocks that are

completely empty, and finally the largest possible combined block is inserted in its

proper list. Note that the algorithms RQST_ BUDDY and RTN_ BUDDY will

4 In practice, one would have to decide whether to adjust the parameter n in either
RQST_ BUDDY or in the caller in order to account for the space required by the
header tags.

11.3.2 BUDDY SYSTEMS 605

function RQST_BUDDY (n: integer): integer;

var i,j: integer;
p,q: cursor;

begin
RQST_BUDDY := 0; {in case no space is available}
if n <= lists [sizmax].size then begin

i := 1;
while n > lists [ij.size do

i := i + 1; {find smallest adequate size}

j := i;
while lists [j].succ = 0 do

j := j + 1; {find non-empty list}
if j <= sizmax then begin

p := lists [j].succ;
DETACH (p);
while (j > i) and (j - K >= 1) do begin {split}

q := p + lists [j - 1].size;
SET_TAGS (q,true,false,store [p].save,j - K);

SET_TAGS (p,true,true,store [p].left,j - 1);
if i > j - K then begin {use larger buddy}

ATTACH (j - K,q);

j := j -1;
end else begin {use smaller buddy}

ATTACH (j - 1 ,p);
j := j - K; p := q;

end;
end;
store [pj.free := false;

RQST_BUDDY := p;
end;

end;
end;

Algorithm 11.6 RQST_BUDDY

work for any value of K, with proper initialization of lists [Q.size. However, for the

case of K= 1 (that is, binary buddies), one might choose to simplify them slightly.

In accordance with the objective stated at the beginning of this section, buddy

system organizations are generally able to allocate and deallocate blocks of storage

faster than any of the methods of Section 11.3.1. (However, what would happen if

the activity consisted alternately of requests and returns of a block of smallest size?)

We will say more about this, and about the relative merits of the method for vari¬

ous values of K, in Section 11.3.4.

606 MANAGING PRIMARY MEMORY

procedure RTN_BUDDY (p: cursor);

var buddy: item;
done: boolean;
j,j0: sizcod;
p0,q: cursor;

begin
done := false; store [p].free := true;
pO := p; jO := store [p0].code;
while (store [p].code < sizmax) and (not done) do begin

j := store [p].code;
if store [p].left then begin

q := p + lists G]size; buddy := store [q];
if not ((buddy.free) and (buddy.code = j - K + 1)) then

done := true
else begin

DETACH (q);

SET_TAGS (p,true,store [p].save,buddy.save,j + 1);
end;

end else begin
q := p - lists [j + K - 1].size; buddy := store [q];
if not ((buddy.free) and (buddy.code = j + K - 1)) then

done := true
else begin

DETACH (q);

SET_TAGS (q,true,buddy.save,store [p].save,buddy.code + 1);

p := q;
end;

end;
end;
if done then ATTACH (j,p)

else ATTACH (sizmax,p);
end;

Algorithm 11.7 RTN_BUDDY

11.3.3 Multiple Storage Pools

One of the oldest ideas for organizing storage to satisfy requests of different sizes is

still one of the best, albeit somewhat more complicated [Ross 1967]. It is to main¬

tain separate lists of blocks of various sizes, as in the buddy system. As with

buddies, if the list with the optimum size for a request is empty, then a block from a

larger size list may be split. One difference between this method and the buddy

system is that now recombination does not follow such simple rules; in practice,

boundary tags might be used for the purpose. Another difference is that the set of

sizes can be chosen arbitrarily, to try to match the actual pattern of request sizes. If

the number of distinct sizes is moderately large, then it would be sensible to organ-

11.3.3 MULTIPLE STORAGE POOLS 607

ize the list heads as a binary search tree, thereby guaranteeing logarithmic rather
than linear search times. The issue of overhead is not important in this case
because the tree structure is superimposed upon the list heads rather than upon the
individual blocks (compare the remark in the last paragraph of Section 11.3.1.2).
Note that with multiple storage pools, as with buddy systems, allocation policy is a
matter of finding the right list as opposed to selecting an item from a list.

If the pattern of request sizes is accurately known, as is often the case - for
example, the sizes requested by an operating system for its various standard data
structures — then the multiple storage pool idea can work very well. In cases where
these sizes are not known, however, the sizes “in stock” may correspond very
poorly, and thus lead to fragmentation that is actually much worse than with a
single storage pool. An effective way to deal with this is to have the storage allo¬
cation system vary its inventory of block sizes dynamically, as a function of the
recent history of requests [Leverett and Hibbard 1982; Oldehoeft and Allan 1985].

11.3.4 Analyses and Comparisons

At the very beginning of our discussion of variable-size blocks, we stressed the
extreme difficulty of obtaining precise measures of the goodness of various policies
of organization, allocation, and reclamation. For one, there are a very large
number of possible combinations of these policies. For another, orthogonal to this

combinatorial complexity are the issues of:

• the distribution of request sizes;
• the distribution of arrival times of these requests;
• the distribution of occupancy times of these requests.

Although theoretical results are meager in comparison to what is known for other
areas, such as searching and sorting, they are nonetheless interesting and helpful.
However, most of the available wisdom about choosing an optimal combination of
policies derives from a variety of simulation experiments. In the next two sections,

we will discuss these two approaches in turn.

fll.3.4.1 Theoretical Results. Suppose that we have a storage policy that is in
equilibrium, such that there are M empty blocks and N active blocks; then let p be
the probability that a request for a block of a given size cannot be matched exactly,
so that an empty block must be split. In such an equilibrium situation, it can be
shown that M = pN\2 (see Exercise 11.14). For the not uncommon situation where
p & 1, this yields M — A/2, otherwise known as the fifty-percent rule. With these
circumstances, in other words, there will tend to be half as many empty blocks as

active blocks.

Now let M,N,p retain their meaning, and denote by / the average size of an
empty block and by r the average size of an active block. The effective storage
utilization can then be expressed as p = rNffM + rN). It can be shown that in
equilibrium f=r, and so p = 1/(1 + Vzp). For p « 1 again, this yields p = 2/3,

608 MANAGING PRIMARY MEMORY

otherwise known as the two-thirds rule [Gelenbe 1971]. In such an equilibrium situ¬

ation, in other words, storage utilization will be about two-thirds.

Although the two preceding results are generalizations that do not take into

account much of the dynamic variability in storage policies, they are nonetheless
helpful in interpreting the behavior of such policies. Of a different nature, a

number of more precise results have been obtained by Robson. They characterize
the worst-case amount of memory required to satisfy a sequence of storage allo¬
cations and deallocations, under the assumption that coalescing is performed but

not compaction. More formally, let N{M,n) be the smallest amount of memory N

such that:

(i) the size of an individual block never exceeds n, and

(ii) the total amount of allocated space never exceeds M.

Robson [1971] has shown that N{M,2) = L(3M - l)/2. In other words, even when
blocks are requested only in sizes one and two, then no matter what allocation
policy is used, it is possible to have memory just two-thirds full and yet not be able
to satisfy a request. Note that this result, although consonant with the two-thirds

rule of the preceding paragraph, is very specific and much stronger. Exact values
for other values of n are not so easily obtained; however, Robson has shown that

with N(n) = limM^00N(M,n)!M, then

0.5 lg n < N(n) < .84 lg n + 0(1) (11.4)

The preceding results indicate the limits that can be obtained with any storage
allocation policy. What can be said about specific policies? Robson [1977b] has

also shown that first-fit is not far from optimal, with lower and upper bounds (anal¬
ogous to Eq. 11.4) of 0.5 lg n and lg n. For best-fit, on the other hand, Robson

demonstrates a sequence of requests such that Mn words are needed — that is,
N(n) > n.

Turning to the buddy systems, there is the following analogous result [Knuth
1973a] for binary buddies:

r < N(2r) < 2(r + 1) (1'1.5)

A more practical question concerns the relative usefulness of buddy systems for
various values of K in Eq. 11.3. Recall that the rationale for Fibonacci buddies was

that providing more block sizes would serve to reduce the internal fragmentation.

It has been shown analytically that this does occur over a broad range of request

size distributions, with typical internal fragmentation (expressed in terms of overal¬

location) of 1.24 for K = 2, as opposed to 1.33 for K = 1 [Peterson and Norman
1977; Russell 1977].

Although it was not stated and may not have been apparent, all but the last of

the results cited in this section are derived solely through combinatorial reasoning.

None of the probabilistic concerns cited at the outset play any part in this section,
although they do so in the next. There are many other pretty combinatorial results

pertaining to storage allocation, often in terms of the well-known bin-packing prob¬

lem. A good introduction to these more general results is Coffman [1983].

111.3.4.2 EXPERIMENTAL RESULTS 609

til.3.4.2 Experimental Results. Since the analysis of storage allocation is intracta¬

ble in its full generality, we must fall back upon well-conceived and carefully

executed simulations for guidance in choosing among dynamic storage policies.

There are really two types of simulations. Some are primarily directed at tuning a

particular system [§], and others are concerned to obtain more general conclusions.

We will not say much about the former here but just abstract from some of them,

for the benefit of the interested reader. Two features are of particular interest:

1. In actual practice, the distribution of block sizes is usually very irregular, char¬
acterized by several sharp peaks.

2. The most effective way to deal with this irregularity seems to be to use multiple
storage pools.

The input parameters to a simulation have already been cited: policies for stor¬

age organization, allocation, and reclamation; and distributions characterizing

request sizes, arrival times, and occupancy times. With regard to output, there are

two principal figures of merit. One is a measure of the efficiency of memory utiliza¬

tion, and the other is a measure of the speed of the algorithms that implement the

different policies. There is no difficulty in measuring time, but the measurement of

storage efficiency must be somewhat indirect. We know that the two ways in which

memory becomes unavailable are through internal fragmentation and external frag¬

mentation. The first of these is easily computed as the excess of what is allocated

over what was requested; but the second is a relative matter. Empty blocks that

are too small for one series of requests may be just fine for a different series.

Therefore, external fragmentation is usually computed by running until a request

cannot be satisfied, and then computing the total percentage of unallocated memory

at that point.

The fifty-percent rule tells something about the degree of external fragmenta¬

tion. In practice, however, the ratio M/N is often closer to 40 percent than to 50

percent. This is partly due to the systematic splitting of active blocks from the right

end of empty blocks (see Section 11.3.1.2). It is also a consequence of the fact that

the release sequence of active blocks is not random, but rather is correlated with

their age. These observations, found in Shore [1977], follow from an earlier exper¬

iment measuring the relative amounts of external fragmentation under first-fit and

best-fit [Shore 1975]. In this earlier study, the difference in storage efficiency for

the two allocation policies was not great (only about 3 percent), and it varied with

the nature of the request size distributions.5 Storage efficiency also varied with the

frequency of requests that were large compared to the average request. A useful

conclusion is that when this frequency is large, then first-fit is to be preferred over

best-fit, and vice-versa. The reason is that first-fit, by preferentially allocating from

one end of memory, tends to encourage the formation of large available blocks at

the other end. There are also two slightly subtle corollaries to this conclusion. The

next-fit allocation policy systematically eliminates the bias toward one end of

memory in first-fit, and the optimal-fit policy assumes that no such bias exists. In

fact, the elimination of bias can cause next-fit to have storage utilization inferior to

5 These included uniform, normal, exponential, and hyperexponential distributions.

610 MANAGING PRIMARY MEMORY

that of either first-fit or best-fit [Bayes 1977]. Also, the effects of this bias can

cause first-fit to typically outperform optimal-fit after all [Page 1982].

There are also interesting experimental results concerning external fragmenta¬
tion in buddy systems. We saw in the preceding section that Fibonacci buddies
definitely have less internal fragmentation than binary buddies, typically 24 percent
overallocation as compared with 33 percent. Unfortunately, they accomplish this

by introducing split-off blocks that are smaller and less useful. Simulations show
that, in fact, the sum of the internal and external fragmentations is relatively
constant [Peterson and Norman 1977]. This total fragmentation seems to be in the

range 35-45 percent, no matter what buddy system is employed!

Remember, though, that storage utilization is only half of the story. Let us

turn now to the issue of how quickly dynamic storage can be managed with various
combinations of policies. One early simulation compared three very different poli¬
cies6 — first-fit, binary buddy, and multiple storage pools [Purdom et al. 1971]. In
terms of storage utilization, multiple storage pools were slightly better than first-fit,
and both were much better than binary buddy. With regard to speed, however,
binary buddy was always much faster than first-fit and often faster than multiple

storage pools.

Nielsen [1977] conducted an extremely ambitious and thorough series of simu¬
lation experiments. First, he constructed a base test load of storage requests
founded upon a mixture of distributions, and then he developed 17 other test loads
as variations of the base load. He also combined organization, allocation, and
reclamation policies in various manners to obtain 35 distinct dynamic storage poli¬
cies. Rather than conduct 18 x 35 = 1890 experiments, he began by applying all 35
policies to the base test load. After analyzing those results, he selected 7 of the best
storage policies and then applied them to the other 17 test loads in a second phase.
The 35 policies fell into 6 categories according to the method of storage organiza¬

tion, as follows:

I all blocks in one list ordered by address
II a Free-list ordered by address
III a Free-list organized as a stack or a queue
IV multiple storage pools
V binary buddies
VI a Free-list ordered by size

The individual policies within these categories tested allocation strategies of first-fit,
best-fit, and next-fit. The reclamation strategies included garbage collection,
coalescing, and compaction.

The first phase yielded the following general conclusions:

• Reclamation is slower with just the Free-list organized by address than it is with
all the blocks ordered by address, but allocation is faster.

• Next-fit is slightly inferior with respect to storage utilization, but it is dramat¬
ically faster.

6 The probability distributions employed here were Poisson for arrival, geometric for size,
and exponential for life.

fll.3.4.2 EXPERIMENTAL RESULTS 611

• Organizing the Free-list as a stack or a queue is a poor idea in terms of both

storage utilization and speed.

• Multiple storage pools are decidedly effective in terms of both storage utiliza¬
tion and speed.

• Buddy systems are very fast but are the worst in terms of storage utilization.

• A Free-list ordered by size provides acceptable storage utilization, but it is

non-competitive in speed with the other organizations.

• A good dynamic storage policy can typically provide better than 80 percent

storage utilization (except for buddy systems).

The detailed results from the first phase led Nielsen to choose the following 7

particular policies for more extensive testing in the second phase:

A organization I next-fit coalesce upon allocation

B organization I next-fit coalesce upon deallocation

C organization II next-fit coalesce upon deallocation

D organization II next-fit garbage collect and compact

E organization IV garbage collect

F organization V combine upon deallocation

G organization V combine only when out of space

Policy E performed the best both in terms of storage utilization and speed. Policy

B performed surprisingly well except when storage was heavily used, leading to

somewhat longer allocation searches. In the two buddy system strategies, policy G

was distinctly superior to policy F, which frequently would combine buddies and

then immediately have to split them again. The wisdom of deferring recombination

was also reflected in the superiority of policy B to policy A. Finally, neither policy

C nor D was as good as either policy A or B. In other words, these experiments

indicate that linking all blocks into one address-ordered list is better than just link¬

ing empty blocks into a Free-list. Nielsen’s overall ranking of the policies was as

follows: E, G, B, F, A, D, C.

As ambitious and comprehensive as Nielsen’s results are, it is wise to exercise

some caution in selecting a policy for dynamic storage management. Just as in the

case of choosing a hashing function, the selection depends a great deal upon the

particular application. The degree of ambiguity in these matters is well illustrated

by the question, "Which is relatively better, first-fit or best-fit?" We saw with the

theoretical treatment of the previous section that best-fit has a disastrous worst case

compared to that of first-fit. However, such worst-case behaviors are not encount¬

ered in practice. With regard to the experimental side, there is poor agreement.

Some find best-fit to be better, and others find that first-fit is superior. The latter

conclusion is related to the earlier cited tendency to generate large blocks at one

end; this tendency has the paradoxical effect that it also causes first fit to yield a

psuedo-best fit!

612 MANAGING PRIMARY MEMORY

11.4 OVERVIEW

The objective in this chapter is simple to state. It is the dynamic management of
pieces of memory so that a user program will always be able to obtain a piece when
it needs it, and be able to do so economically. However, the problem is not a trivial
one to solve, as evidenced by the great number of approaches that have been tried.
This diversity reflects the fact that the successful use of modem programming envi¬
ronments, with ever larger address spaces and with increasing use of dynamic
structures, is critically dependent upon efficient solutions to the problem. Although
this chapter is organized principally along the dichotomy between fixed and variable
size pieces of memory, many of the same concerns — marking, pointer updating,
etc. - can be found in both contexts. An excellent alternative survey of many of
these pervasive issues is provided by Cohen [1981]. Hopefully, it is clear by now
why we have chosen to treat this subject after that of searching. An efficient imple¬
mentation of memory management depends, after all, upon skillful use of the

techniques of Chapter 10.

Sections 11.2.4 and 11.3.4 already distill many of the significant conclusions
about alternative ways to solve the memory management problem, so we will simply
conclude with a few remarks of a more general nature. First, we cannot obtain a
solution “for free.” We must plan, except in rare circumstances, to spend extra
memory resource if we do not want to see the storage manager usurp most of the
cycles of the computer. In the case of garbage collection, we saw in Section 11.2.4
that an efficient equilibrium point occurs when the actual requirements are only
about two-thirds of the total available space. Remarkably, we saw the same operat¬
ing ratio of two-thirds in our discussion of management of blocks in Section
11.3.4.1. The two-thirds ratio is of course only a generalization, but we can expect
to run into severe degradation when we operate much beyond it. Much of the abil¬
ity to crowd this ratio successfully, to better than 80 percent, depends upon tailoring
the memory management strategy to the environment in which it will be used. This
is reminiscent of the importance of analyzing an application before adopting a hash
function. Our final advice concerns the benefits of being “lazy.” One extreme opin¬
ion on the topic of memory management is that it is profitable to trivialize ,the
allocation problem by combining or compacting blocks of memory as frequently as
possible. (The analogous point of view for cells is to use reference counts.) In quite
a few cases, as evidenced in the investigations of Section 11.3.4.2, it is really more
economical to defer such activity until it cannot be avoided.

11.5 BIBLIOGRAPHIC NOTES

• One early algorithm for copying a List is 0(n2) in time without mark bits, and
still another is 0(n lg n) in time by using mark bits [Lindstrom 1974]. The
earliest 0(n) algorithm requires that the new List be allocated in a contiguous
block of storage; moreover, it also requires arithmetic upon the pointer values

11.5 BIBLIOGRAPHIC NOTES 613

[Fisher 1975], There is a later 0(n) algorithm with better performance that
again requires contiguity [Clark 1978].

• There are several measures by which to assess the relative advantage of parallel
garbage collection over serial garbage collection. These matters are discussed in
Hickey and Cohen [1984] and Wadler [1976].

• Experiments conducted with memory management for the purpose of tuning
particular systems are Bozman et al. [1984] directed at the IBM VM/SP operat¬
ing system, Hanson [1977] directed at a SNOBOL4 system, Margolin et al.
[1971] directed at the IBM CP/CMS operating system, and Marlin [1979]
directed at a Pascal system.

11.6 REFERENCE TO TERMINOLOGY

automatic allocation, 561
t backward pointer, 576

best-fit, 588

t forwarding address, 570

blocks, 562
t boundary tags, 592

binary buddies, 600

garbage collection, 565
t genetic ordering, 598
t hash linking, 581

holes, 597

buddy system, 600
t CDR-linearization, 574

cells, 562
f coalescing, 591
f collector, 583
t compacting, 569
t down-pointer, 598

internal fragmentation, 585
marking, 565

f mutator, 583
next-fit, 589

f optimal-fit, 590
f priority search tree, 615

dynamic allocation, 562
external fragmentation, 585

reference counting, 565
f semi-space, 573
f sliding compaction, 596

splinter, 588

Fibonacci buddies, 600
f fifty-percent rule, 607

first-fit, 588
f forward pointer, 576

static allocation, 561
t two-thirds rule, 608
f up-pointer, 598

worst-fit, 588

614 MANAGING PRIMARY MEMORY

11.7 EXERCISES

Section 11.2

11.1 If the algorithm COLLECT. 1 is used to compact the following scattered
List, then what will be the contents of the old and the new List locations after the
compaction? Show your results in the style of Figure 11.3.

14 17 6 9

31 9

29

5 2

5

14 0

29 6

31

11 17

11

9 35

ffll.2 [Dijkstra 1976] A generalization of COLLECT. 1 is the problem of the
Dutch National Flag. Imagine that we have a row of cans, each of which contains a
single red or white or blue pebble. The object is to exchange pebbles between cans
until their contents are: all those with red pebbles, then all those with white
pebbles, then all those with blue pebbles. The two permissible operations are (i) to
inspect the contents of a can, and (ii) to exchange the contents of two cans. Write a
procedure that mimics this situation by operating upon a one-dimensional array.
Your algorithm should use only a few working registers, should never inspect a
given pebble more than once, and should strive for the minimum number of
exchanges. Demonstrate the correctness of your program by applying it to a few
sets of cans with random contents, and also to some degenerate cases — for exam¬
ple, all red or white or blue pebbles, pebbles already sorted, etc. What can you say
about the average number of exchanges performed by your algorithm?

fll.3 Trace the operation of the algorithm MOVE.LIST on the following List,
showing the symbolic values of the pointers in the old List and in the new List at
each iteration, as in Figure 11.4.

e b

e

c f

h d

h

g c

fll.4 Assume that Robson’s List-copying technique is applied to the accompany¬
ing List.

(a) Redraw the List to show the forward and backward pointers, in the style of
Figure 11.5.

11.7 EXERCISES 615

(b) Show the contents of the old List after the first phase, as in Figure 11.6(a),
and the contents of the new List after the second phase, as in Figure 11.6(b).

a b

e b i c

e f

i f j g

i j

j f A

c d

+11.5 Derive the expected number of exchanges performed by the algorithm
COLLECT_l, assuming that the expectation of a cell being free is given by the

probability /.

t+11.6 Write a procedure that implements Robson’s List copying algorithm. Test

your program by using it to copy the List of Figure 11.3(a).

Section 11.3

11.7 Explain as concisely as possible the terms external and internal fragmenta¬

tion, and the distinction between them.

11.8 Explain as concisely as possible the terms coalescing and compaction, and

the distinction between them.

11.9 Suppose that we have a memory of the indicated number of units, and the

following sequence of allocations and deallocations:

A — 4 units
B — 7 units

release B
C — 1 unit
D — 1 unit

E — 1 unit
F — 3 units

release A
G - 1 unit

release E

H — 3 units
release F

1—2 units
release D
release G

Draw pictures of memory, showing the locations of A, B, etc., and the disposition

of free storage at the conclusion of this sequence. (Note: Give some thought to

displaying this data in a clear fashion.)

(a) Do so for a first-fit strategy with 15 units, LIFO return, no coalescing.

(b) Do so for a best-fit strategy with 15 units, LIFO return, no coalescing.

(c) Do so for a binary buddy strategy with 16 units.

(d) Do so for a Fibonacci buddy strategy with 13 units, splitting the larger buddy

to the left.

fll.10 [McCreight 1985] Organizing memory blocks in a binary tree presents two
problems. The first is that we need to be able to retrieve blocks along two different
dimensions — location and size. The Cartesian tree of Exercise 6.24 might be used
for this. However, it does not solve the second problem, that the resulting binary
tree can become very imbalanced. The priority search tree, using rebalancing tech¬
niques from Section 10.3.3, solves both problems. In a priority search tree used for

616 MANAGING PRIMARY MEMORY

memory management, location is a primary dimension of organization, and the size
of the largest node (block) in the left subtree is a secondary dimension of organiza¬
tion. The resulting structure can be used to support both first-fit and best-fit
allocation with <9(lg n) complexity. Describe in detail the formats of the tree nodes
and the rules to be used for insertion and deletion in order to obtain this capability.

Write procedures to allocate and reclaim storage blocks using first-fit, for
the case that the blocks are organized as a priority search tree, as in Exercise 11.10.

ffll.12 Assume that memory blocks contain just two types of items, the first type
being a header that contains both a label and a count of the number of pointers in
that block, and the second type being pointers to the beginning locations of blocks
in the memory region. Write a program to implement Jonkers’ compaction algo¬
rithm for such blocks. Test your program against the memory blocks shown
scattered in locations 1 through 50 in the following table. Display the memory
contents after both passes of the algorithm.

location items

3 A - 3, 15, 3, 40
9 B - 2, 40, 3

15 C - 1, 15
21 D - 4, 27, 9, 3, 27
27 E - 0
34 F - 2, 9, 40
40 G - 5, 9, 15, 9, 40, 34

11.13 Prove that splitting and recombination of Fibonacci buddies cannot be
accomplished with less than two bits per block.

fll.14 [Knuth 1973a] Suppose that memory is checkerboarded with M empty
blocks and N active blocks, of the four types:

H — a hole (that is, an empty block)
A — an active block between two holes
B — an active block between a hole and an active block
C - an active block between two active blocks

Also, let p be the probability that a request for a block of a given size cannot be
matched exactly, so that an empty block must be split. Assuming that blocks are
released at random, show that if the storage policy is in equilibrium, such that the
value of M tends to remain constant under insertions and deletions, then M = pN\2.

tfH.15 Write a set of programs with which to conduct your own simulation
experiments with dynamic memory algorithms. In addition to particular allocation
and reclamation algorithms, such as Algorithms 11.4-11.7, you will need to
develop (a) procedures to generate requests of various sizes and lifetimes, (b) a
driver program to control the simulation, and (c) auxiliary procedures to gather and
display pertinent data.

12

ISSUES WITH SECONDARY MEMORY

“Teach me not the art of remembering, but the art
of forgetting, for I remember things I do not wish to

remember, but I cannot forget things I wish to forget.”

Cicero,
Themistocles in De Finibus,

Bk ii, Ch 32, Sec 104

It is a familiar observation that when the dimensions of a phenomenon change by
orders of magnitude, then we have not just a qualitatively different phenomenon,
but a completely different one. This is clearly so when we compare travelling
between two locations by foot, and by car, and by airplane. It is also a conspicuous
feature in the transition from primary memory to secondary memory for a
computer. In all the preceding chapters, the fact that primary memory is directly
addressable, fast, volatile, and relatively expensive was responsible for numerous
choices about data structures and algorithms in the interests of efficiency.

Secondary memory is not directly addressable from within a program; data
must be explicitly transmitted from secondary memory to primary memory before it
can be used. Secondary memory may be very fast by human standards, but it is
several orders of magnitude slower than primary memory. For any computation
that depends heavily upon the use of secondary memory, this difference will be
directly reflected in an execution time that is very much greater. On other side of
the coin, the data in secondary storage can persist for long periods; so the greatly
reduced cost over that of primary memory makes it the only viable medium when

we must retain large volumes of data.

With secondary memory, sizes as well as speeds typically vary by several orders
of magnitude from those of primary memory. We will see that this causes the
quest for optimum performance to lead to representation choices that are very
different from some choices made in earlier chapters. This will be notably true, for
example, in the way we use trees, and in the way we deal with overflow when hash¬
ing. Also, pointers are powerful agents for constructing data structures in primary
memory, but “bare” pointers are generally unacceptable in secondary memory.

Secondary memory actually serves another purpose as well, that of providing a
reservoir of working memory during large calculations. Thus, during operations
upon large arrays that cannot all fit in main memory at the same time, we might

618 ISSUES WITH SECONDARY MEMORY

partition the arrays and then explicitly transfer sub-arrays back and forth between
primary and secondary memory during the calculation. Or if a program is so large
that it will not all fit in main memory at the same time, then we might repeatedly
overlay one piece of program (that is no longer needed) with another piece of
program. If an excess of needed working memory over available primary memory
were the only problem, then by using virtual memory (to be described in Section
12.2) we could practically make that reason disappear. However, the second need
still remains - to be able to save or archive data over a period of time. For this,
there is no substitute for having non-volatile secondary storage.

Our first concern will be to describe the principal types of secondary storage,
for the benefit of readers not already acquainted with them. Section 12.2 is then
devoted to an account of virtual memory. The major part of this chapter is Section
12.3, wherein we explore several alternative schemes for allocating files of data to
secondary memory. Finally, in Section 12.4, we consider the important topic of
multi-attribute files, which are the basis for various database organizations.

12.1 STORAGE DEVICES

The general character of all storage devices is that performing input from a device
to main memory or output from main memory to a device involves two time inter¬
vals, as follows:

1. There is a delay time while finding the location of the information on the stor¬
age medium; the length of this delay depends upon the device (and the
location), but not upon the quantity of information to be transferred.

2. There is a transfer time for actually sending the information; this transfer time
depends both upon the device and upon the quantity of information that is to
be transmitted.

In almost all cases, the rate of data transfer, expressed in bytes per second, is at
least an order of magnitude slower than the corresponding rate for accessing data
from main memory, and the delay time is usually several orders of magnitude worse
than the transfer time. With these factors, it is important to minimize having the
computer wait for the completion of input/output, or I/O. There are two means for
accomplishing this.

One is to transmit a large block of information on each I/O operation, thus
amortizing the delay time per byte of data transferred. Another means, available in
all except the simplest of current machines, is to attach the storage devices to chan¬
nels, which are in reality computers dedicated to performing the I/O. A channel can
run independently of the CPU, after the CPU has presented it with a special
program that specifies what is required of it. Thus, the CPU and the channels on a
computer can be running simultaneously, and the CPU is. not required to sit and
wait until I/O is completed. There is one situation where the CPU may have to
wait for the channel to finish an operation - when they both try to access main
memory at the same time. Whenever the channel needs to do I/O of an item of
data in the main memory, it usurps control from the CPU for just long enough to

12.1.1 TAPES 619

accomplish it. This is called cycle stealing, and is transparent to the user. Although
there are a variety of storage devices, we will concentrate our attention upon tapes,
disks, and drums since they are by far the most important devices.

12.1.1 Tapes

The most common size of magnetic tape for computers is 1/2 inch in width and
2400 feet long. Data is recorded as bits along a number of parallel tracks, usually
eight for data and one for parity (see Section 8.2.5). With this arrangement one
byte, or character, can be recorded at a time across the width, and so the important
parameter is density of recording along the length. This is designated in terms of
bpi, or bits per inch (although it would perhaps be more meaningful to speak of
bytes per inch). Recording densities have steadily increased over the years, with
800, 1600, and 6250 bpi now being common. A fundamental fact about tapes is
that they do not move except when performing I/O. Therefore, any operation using
a tape must first accelerate it from rest to its operating speed (typically, 125 inches
per second), then do the data transfer, and finally decelerate it to rest again. This
means that for typical figures of 1600 bpi and 125 inches per second, we have a
data transfer rate of 200,000 bytes/second. The starting and stopping have several
consequences. One is a delay time on the order of 20 milliseconds before the next
record can be read or written, and another is a necessarily unused area on the tape,
or inter-record gap (IRG), between successive blocks of data. There is also a more
subtle consequence. It is not possible to change a block of data on the tape unless
it is the last block, because there is no guarantee of controlling the tape motion with
sufficient precision to over-write a block and yet accurately maintain the IRG for
reading the next block. In other words, we can read a tape or write it, but not
perform some interspersed sequence of these operations; thus, a process involving
change to data on tape necessitates rewriting an entirely new tape.

The IRG typically varies in size from 3/10 to 3/4 inch, depending upon the
characteristics of the tape drive. If we are not careful about the size of the blocks,
or physical records, we may wind up with a tape that consists of mostly blank IRG’s
and relatively little data. One extreme (and unrealistic) alternative would be to
write one physical record as long as the tape. With a length of 2400 feet and a
recording density of 1600 bpi, we could store more than 46 million bytes on one
tape. This would be enough for about 23 copies of the entire text of this book.
For a more realistic objective, suppose that we wanted to store the data of punched
cards as discrete physical records. Each card has 80 columns and can be recorded
as 80 bytes. With the same density of 1600 bpi, this amounts to 0.05 inch for each
card image. For the typical case of 0.6 inch IRG’s, we are left with the situation
illustrated in Figure 12.1, and with a tape holding only 44,300 card images, or 3.5
million bytes, for less than 8 percent of its maximum storage capacity.

The resolution for this situation is to group some number of logical records
(cards in this case) into one physical record. This number of logical records per
physical record is called the blocking factor. Suppose that we employed a blocking
factor of 20. In that case the physical record length would be 1.0 inches, and the
tape could hold 18,000 physical records (but 360,000 logical card records) for 63

620 ISSUES WITH SECONDARY MEMORY

percent of its maximum storage capacity. A large blocking factor helps us in terms
of tape capacity, and it also helps to amortize the delay time per byte of data, as
mentioned in Section 12.1. However, there is another side to the coin. We must
have a correspondingly large block of main memory, called a buffer, for completing
the data transfer. In practice, the choice of size for I/O buffers reflects a compro¬
mise between attaining reasonable I/O performance and not consuming too much
primary memory.

12.1.2 Disks and Drums

Tapes are very useful for storage if we use them in the mode of reading or writing
records in successive positions. But since it typically takes about two minutes to
scan a tape from beginning to end, it is hopelessly ineffective to try to retrieve
random records from a tape — the average delay is an intolerable one minute for
each record. By contrast, disks and drums are direct-access devices, with the prop¬
erty that it is feasible to access any of their storage locations at random. Disks are
much more common and also more generally useful than drums, so we will mpstly
talk about them. We will be describing typical large-capacity disks that are
employed with a medium-sized or large computer, not the small floppy disks that
are now so common with personal computers. These large disks can typically hold
100 million bytes of data.

A disk consists of a number of platters, typically between six and thirty, stacked
one above another on a spindle. Data is recorded on both the top and bottom
surfaces of each platter except for the two outermost surfaces, and there is usually
one read/write head for each surface. All the heads are physically ganged together
in a comb-like arrangement, which causes them to move in lock-step between the
outer periphery of the platters and the center. The data on each surface is recorded
in concentric tracks (not in a spiral, as with a phonograph record). There are typi¬
cally 200 to 800 tracks, plus a few spare ones in case a track becomes unusable, and
each of these is composed of several sectors. Finally, the collection of tracks at the
same radial distance on all the surfaces is termed a cylinder. Figure 12.2 illustrates
the features just described.

12.1.2 DISKS AND DRUMS 621

READ/WRITE
Heads per Arm

Figure 12.2 Disk Storage

We can see that it is natural to regard the location of an item of data on a disk
as being determined by a three-level address: cylinder number, track (that is,
surface) number, and angular position. In fact, access to a disk location is specified
by: (a) using the cylinder number to control the radial positioning of the read/write
heads, (b) using the track number to select the proper head, and then (c) using a
coordinate related to angular position. The delay time for accessing a disk location

thus has two components:

• a seek time to accomplish the radial positioning, if the read/write heads are not

already at the proper cylinder;
• a rotational latency while waiting for the correct angular position to occur

under the heads.

The seek time is significantly larger, because it involves mechanical motion of the
heads over some number of cylinders; representative minimum/average/maximum
values are 10/30/55 milliseconds. At typical rotational speeds of 3600 rpm, the
average latency, on the other hand, is 8.3 milliseconds. Finally, for a typical
recording density of about 13,000 bytes/track and with the same 3600 rpm, the data

transfer rate would be 800,000 bytes/second.

Just as with tapes, we look for ways to use disks efficiently. Blocking can again
be used for improving both storage utilization and average access rate, by the same
reasoning used with tapes. There is one difference, however, in that the blocking is
pre-defined by the sector sizes. For some disks, there is just one immutable sector
size, and the user simply packs as many logical records in a sector as possible. With
the larger and more expensive disks, it is common to be able to pre-format tracks to
have sectors of customized sizes. This pre-formatting may not be under the control

622 ISSUES WITH SECONDARY MEMORY

of the end-user; on the other hand, there is another factor that he more likely can
control. By allocating his data on a single cylinder, or at least on consecutive cylin¬
ders, the user can make the seek time non-existent, or at least minimal.

Drums typically have several hundred tracks around the circumference of a
rotating drum, with one read/write head permanently positioned over each track, as
in Figure 12.3. Thus, drum locations are determined by two-level addresses, as
opposed to the three levels for disks. The total capacity of a drum is significantly
smaller than that of a disk, being on the order of 5 million bytes. Drums tend to
have smaller latencies than disks, due to higher rotational speeds; even more signif¬
icantly, they have no seek delays. As we will see in Section 12.2, this combination
of characteristics makes them well-suited for supporting virtual memory.

READ/WRITE Heads

o o o o

Figure 12.3 Drum Storage

1*12.1.2.1 Disk Fragmentation. A single disk for the IBM 3350 contains over
16,000 tracks of about 19,000 bytes each. Allocation of data will typically be in
terms of entire tracks, for very large blocks of data that may require from one to a
dozen tracks. Over a period of time, as tracks are allocated and deallocated, the
storage on the disk will become fragmented into varying-size extents - that is, sets
of logically contiguous tracks on the same cylinder. Some of these extents will be
occupied and some will be empty, in a manner analogous to the fragmentation of
main memory, but now on a much larger scale. A severe consequence of external
fragmentation in main memory is that we may be unable to find a large enough
contiguous extent. With disk space this is not a problem, however, because we can
spread a large data block over several extents that are chained together. Instead,
we encounter a different problem - the extended time required to access the sepa¬
rate extents. This is especially severe when the tracks must be spread over two or
more cylinders, thus requiring additional seek delays. Theoretical models of disk
fragmentation in terms of the geometric distribution and of Markov chains can be
found in Leung [1982a, 1983].

In order to limit the cumulative degradation in performance, it is expedient to
reorganize the entire contents of a disk periodically. A common technique for
doing this is just to copy all the data, in logical sequence, from the fragmented disk

112.1.2.1 DISK FRAGMENTATION 623

onto a new disk; this is such a lengthy operation that it must be done at off-hours.
In an alternative, pragmatic approach, only about 10 percent of the extents are
selectively relocated, so this can be interwoven with normal processing. Yet the
reduction in fragmentation is substantially equivalent to that obtained with the

slower, naive process [Franaszek and Considine 1979].

12.1.3 Storage Devices — A Reprise

The nature of tapes is such that they usually retain data for just one user or process
over long periods of time, and they are retrieved from a tape library when required
by that user or process. It is not uncommon for a computing center to have just a
few tape drives, but a library containing thousands of tape reels. At the other
extreme, drums cannot be removed, and they are used to retain data for many proc¬
esses for relatively short periods of time. The average computing center has either
no drums or just one, which is then used for special purposes. Disks are a good
compromise. It is often possible to exchange disk packs in a disk drive. Also, while
some disks are used to retain data for many users or processes, others are used to
retain data that is private to a single user or process. Because of these features and
because they are intermediate in performance to tapes and drums, disks are the
most versatile and useful of the storage devices. Typically, a computing center may
have a dozen disk drives and a library of several score disk packs, some public and
some private. A representative comparison of the values for average delay and
access speed is shown in Table 12.1 for typical main memory, drum, disk, and tape.
The two delay figures represent the average values for (a) locating an arbitrary
block of data, and (b) beginning to access the next block of data in physical
sequence. Note that all of these values are an order of magnitude better than those
for a typical personal computer, and at least an order of magnitude inferior to those
of state-of-the-art devices with large computers. The principal intent of the table,

however, is to illustrate relative speeds rather than absolute speeds.

Average Delay
(milliseconds)

(a) (b)

Access Speed
(microseconds/byte)

main memory 0 0 0.050

drums 5 5 0.300

disks 30 8 1.250

tapes 105 20 5.000

Table 12.1 Representative Timing Figures

There are many variations upon the ideas presented here, as illustrated by disks

with several sets of read/write heads, “electronic” disks that have no mechanical
arms at all, drums that do have movable read/write heads, etc. More significant

624 ISSUES WITH SECONDARY MEMORY

than these, however, is the point that since tapes and disks can be removed from the

machine and stored in libraries, we can effectively have a tertiary level of storage.

This third level is of indefinitely large capacity, but with correspondingly larger

delays to allow for human intervention. Some applications need to have a third

level of storage that is more automatic and has shorter delays. One such storage

device is the IBM 3850 Mass Storage System. It can backup a disk storage unit

with as much as 472 billion bytes of data, stored in 4,000 tape cartridges, and it has

the capability of streaming data between the disk and a selected tape cartridge at

high speed.

12.2 VIRTUAL MEMORY

If the memory requirements for a problem exceed the main memory that is available

to us, then we can explicitly shuffle portions of our data or program between main

memory and secondary memory, as we described at the beginning of this chapter.

But this is a very unpleasant route to have to take. It is cumbersome to program,

resulting in a solution that has no flexibility with regard to alternative memory

configurations, and it is simply a distraction so far as our principal endeavor is

concerned [Sayre 1969]. Virtual memory, if available, relieves us of these difficul¬

ties. With it, we are able to use a program-address space that can be much larger

than the memory-address space available to us.1 The hardware and the system soft¬

ware then contrive to swap blocks of data between main and secondary memory as

needed, pushing out a block that hopefully won’t be needed again soon, in order to
make room for the block that is now required.

If the parameters of the computing system are chosen with care, virtual memory

can work very well. But if they are not chosen with care, and the amount of swap¬

ping becomes excessive, then the several orders of magnitude difference in access

speeds illustrated in Table 12.1 spell disaster. In the next section we will describe

how virtual memory is accomplished, and call attention to the most important

factors determining its effectiveness. Following that, we will illustrate how the pres¬

ence of virtual memory does not completely relieve the user of care; rather, it

presents strong implications about how he should organize a large problem for effi¬
cient machine solution.

1 A less common situation that is sometimes confused with this one is that of a program-
address space that is smaller than the memory-address space, because the machine
architecture develops an address of restricted size (perhaps 16 bits) when decoding
instructions. In such cases the issue is not to map a large logical address space to a
small physical address space, but rather to map many small logical address spaces to
one large physical address space.

1-12.2.1 IMPLEMENTATION ISSUES 625

f 12.2.1 Implementation Issues

We have said that the system can, by a combination of hardware and software,
bring absent blocks into main memory on demand. A basic issue is whether the
blocks should be of fixed or variable size. Blocks of variable size, or segments,
correspond to logical units of programming, such as structured data items, compiled
procedures, etc. On the other hand, blocks of fixed size, or pages, correspond to
convenient physical units of data transfer. With the former we encounter the famil¬
iar phenomenon of external fragmentation, and with the latter that of internal
fragmentation (see Section 11.3). We saw in Chapter 11 that the problem of
managing primary memory in order to accommodate variable-size blocks is much
more difficult than that of managing fixed-size blocks. So when there are no other
issues, we find that virtual memory is almost always implemented with pages, in the

interest of simplicity.

However, it is also very common for a computer with virtual memory to be
operating in a multiprogramming mode, in which it is servicing several users simul¬
taneously; additionally, it is common for these users to wish to share programs and
data. The conduct of this multi-user activity (and the related issue of protecting the
shared objects from misuse) depends upon the concept of logical segments. There¬
fore, in order to satisfy both logical and physical considerations, virtual memory is
commonly implemented in terms of segments that are then partitioned into pages.
In this case there is a need for a segment table and also a number of page tables,

one for each segment.

The details of the organization just described are conveyed by Figure 12.4,
where a program address is shown as consisting logically of a segment identifier 3, a
page identifier 14, and a displacement 159 within the page. The translation of the
program address is carried out in two phases. First, the value 3 is found in the
segment table. In our case, it is present, and the corresponding table entry points to
a page table; if the reference had been to segment 6, then the setting of the presence
bit would have signalled its absence. In the latter case, (i) the data in the pointer
field would indicate the location of the segment in secondary memory, (ii) a page
table for that segment would be allocated, (iii) the entry in the table for segment 6
would be updated to reflect this change, and (iv) the translation would then proceed

in normal fashion.

The second translation step is similar to the first. The page identifier 14
becomes an offset in the page table for segment 3, and the corresponding entry
points to the location of that page in main memory at location 18000. If the refer¬
ence had been to the second page of that segment, then the setting of the presence
bit would have signalled its absence. In this latter case, (i) the data in the pointer
field would indicate the location of the page in secondary memory, (ii) the page
would be swapped into a page frame in main memory, (iii) the entry in the table for
page 2 would be updated to reflect this change, and (iv) the translation would then
proceed in normal fashion. At the conclusion of the translation steps described in
these two paragraphs, the data is finally accessed at location 18000 + 159 = 18159.

The translation process just described requires several comments. Even when
there is no segment fault or page fault, corresponding to the circumstance that data
is not already in main memory, it would seem that the amount of work required for

626 ISSUES WITH SECONDARY MEMORY

Segment Page Main Memory
Table Tables (Page Frames)

Figure 12.4 Virtual Address Translation

decoding addresses is three times that required in the absence of virtual memory,
making this feature uneconomical in practice. In fact, although the segment and
page tables are usually just arrays in main memory, special hardware is provided to
accomplish the translation, and the net overhead is commonly just a few percent.
Also, for a single user system, there is no need for segments, which simplifies the
translation. Unavoidably, however, there is the potential that the computer will
spend almost all of its time waiting for a needed page to be swapped in. There are
three steps involved in thwarting this:

1. Make the access ratio between secondary and main memory as low as possible.
2. Adopt a policy for replacing pages that will tend to minimize the likelihood of

subsequent page faults.
3. Multiprogram, so that while waiting upon a page for one user, the machine can

be executing the program of another user.

With regard to the first point, a common tactic has been to use a drum as the
paging device, although of late this role is sometimes taken over by disks with very
high performance. The second and third points are more complicated and very
interrelated. Consider, for example, the paging behavior of a single user’s program
with relation to the fraction / of its total pages that are in main memory. If / is
close to 1, then page faults will be relatively infrequent; if /is small, then a fault
will occur very quickly. Overall, the incidence of faulting as a function of / is
shown in Figure 12.5, where the shaded area represents the variation induced by
various choices for page replacement strategies. It is clear that although the choice
of such a strategy is important, it is much less significant than having a substantial

1-12.2.1 IMPLEMENTATION ISSUES 627

proportion of a program’s pages already in main memory. Even though the precise
value of this proportion varies from one program to the next, the general phenome¬
non indicated by the figure always exists; and the minimum number of pages that
should be present before it is sensible for a program to start executing is called its
working set2 [Denning 1968]. In a multiprogramming environment, each of the
programs manifests this same need to have its working set resident in main memory.
Thus, as an initial fact of life, the very act of multiprogramming drastically expands
the minimum amount of main memory required.

Proportion of
Resident Pages

Figure 12.5 Page Faulting Behaviour

Assuming that we do have an adequate amount of main memory, then two

policies interact very strongly:

• selecting the page to be replaced;
• choosing which program to schedule for execution next, when the one that was

executing cannot proceed. (This may be because of a page fault, an incomplete
I/O operation, the expiration of a time quantum, or some other reason.)

When these policies are poorly coordinated, the executing program will engender a
page fault rather quickly, leading to another pair of decisions with similar bad
consequences, and degenerating into what is termed thrashing. At that point the
system spends almost all of its time juggling pages and never doing any useful work.
We will not discuss scheduling policies further, but it should be clear that they are

very much related to the page replacement policies.

Several replacement policies have been studied, including random selection,
organizing pages as a circular queue and replacing their contents in cyclical fashion
(see Exercise 12.2), and various other strategies. One that works well and is
commonly used is to replace the page that was least recently used (LRU). The LRU

2 What constitutes the working set for a program depends upon the time interval over
which its behavior is observed. It is obviously a monotonic function of the length of the
interval; moreover, it is fairly easy to conclude that a plot of the function is concave

downward.

628 ISSUES WITH SECONDARY MEMORY

algorithm requires the effect of a list wherein the identifier of a page is moved to
the front of the list whenever the page is referenced (analogously to the move-to-
front heuristic of Section 10.2.1). In practice, special hardware in the machine
provides the LRU function at high speed, without the necessity to explicitly manip¬
ulate such a list. Another effective strategy is to try to capture sufficient data to be
able to identify the working set, and then to release pages that have dropped out of

the working set.

In order to assess the effectiveness of these various policies, we can ignore the
multiprogramming issue and ask the following question: If we had perfect hind¬
sight, what replacement policy applied to the stream of addresses generated by a
program would result in the minimum number of page faults? This question can be
answered by the artifice of first generating the stream of addresses and then
computing from that stream the optimal policy. Such an experiment was
performed. It yields, not an implementable policy (since we cannot expect to have
the necessary vision in practice), but one against which other policies can be meas¬
ured [Belady 1966]. Briefly stated, a good policy such as LRU is found to lead to
a faulting rate that differs from the optimum by only about 30 percent.

At this point, let us recapitulate some of the various factors that affect how well
virtual memory will work. A system designer must balance the effects of total main
memory, access ratio between main and secondary memory, the multiprogramming
load (that is, maximum number of active users), working set sizes, scheduling
policy, and replacement policy. Some comments are in order about the relative
significance of some of these. In particular, it is much less effective to have a good
replacement policy than it is to have a page allocation of adequate size for the
working set. And even if both of these factors are satisfactory, a high access ratio
will still vitiate the entire scheme. A clever way of capitalizing upon the importance
of the access ratio is to introduce a high-speed cache memory between the CPU and
the main memory, giving two levels of virtual access. A cache memory will typi¬
cally be about 1/10 the size but about 10 times as fast as the main memory. Yet it
can enable a computer to operate within 80 — 90 percent of the performance that it
would have if the entire main memory were of the higher speed [Liptay 1968;
Smith 1982]!

The low access ratio of a cache memory serves another useful purpose. Page
sizes for virtual memory are typically IK or 4K bytes. This has two harmful
effects. One is substantial internal fragmentation. Another is that much of that
large block of data may not be referenced and so is superfluous; yet we paid the
cost of fetching it, and it takes up valuable space in main memory.3 Although the
large page size would appear to be inefficient, it is only relatively so; because of the
high access ratio, a smaller choice for the page size would yield worse overall
performance. The numbers change in the case of a cache, however. Typical cache
sectors are 64 or 128 bytes in size, and the efficiency of their use tends to be high.

An extensive discussion of virtual memory can be found in Denning [1970].
We turn our attention, in the next section, to the user side of the matter.

3 Note that this is an additional argument against a virtual memory scheme based solely
upon segments.

112.2.2 EFFICIENT USE OF VIRTUAL MEMORY 629

112.2.2 Efficient Use of Virtual Memory

Ideally, the presence of virtual memory would be transparent to our programs in
their use of an artificially large address space. In fact, it is important for working
sets not to become too large, but rather to migrate through the address space in
nice clusters. This translates into having programs that manifest a high degree of
locality — that is, the addresses generated over a period of time should not cross
too many page boundaries. It is for this reason that the CDR-linearization
discussed in Section 11.2.3.2.1 is significant. Still another consequence of operating
with virtual memory is illustrated by the semi-spaces described in Section 11.2.3.2.
Further analysis of the related roles of garbage collection and virtual memory can

be found in Baecker [1972].

Although the design techniques just cited are important, they are not under
control of the average user. So we will focus, instead, upon the remarkable conse¬
quences that simple variations in ordinary programming can have upon
performance. These effects have been commonly appreciated for many years; we
will confine our discussion to one example from a more recent treatment. Specif¬
ically, let us consider the program MAT_MAT (Algorithm 2.4) for multiplying two
matrices, with m = n = p for the sake of simplicity. The executable code is then

for i := 1 to n do
for j := 1 to n do begin

sum := 0;
for k := 1 to n do

sum := sum + A [i,k] * B [k,j];
C [i,j] : = sum;

end;

In the ordinary case, with all data in main memory, the multiplications are the

dominant steps and the complexity is 0(n3).

But now let the sizes be such that each matrix A,B,C resides on several pages of
k elements each, so that each requires n2jk pages. Furthermore, let us assume that

n < k « n2 (12.1)

Since the time to service a page fault is several orders of magnitude greater than the
time for performing a multiplication, the page faults now become the dominating

steps (see Section 1.3.2.2) that we should count in analyzing this version of matrix
multiplication. Finally, recall that the conventional method of storing matrices is in
row-major order (see Section 2.2.1). In that case the nested loops of the algorithm

are such that the elements A [z,k] and also the elements C [ij] will be accessed in
the order in which they occur in storage. Thus, there will be n2lk faults associated
with accessing each of them. However, the references to the elements B [kj] will
cause n2/k faults for every complete cycle through the inner loop, or n4//c faults for
the entire program. The total number of faults is is therefore (nA -I- 2n2)/k - which

is less than «3, by Eq. 12.1.

These circumstances can be dramatically improved by first computing the trans¬

pose T of B, as follows:

630 ISSUES WITH SECONDARY MEMORY

for i := 1 to n do
for j := 1 to n do

T D/i] := B [i,j];

The revised multiplication step for MAT_MAT is then

sum := sum + A [i,k] * T [j<k]

During the transposition, the matrix B will generate n2\k page faults, and the matrix
T will generate a like number for each value of i, or n2/k faults in all. In the matrix
multiplication per se, A and C will still cause 2n2/k faults between them, and the
matrix T will generate n2lk faults for each value of i — or n3/k faults in all. Adding
these up, the final fault count is (2n3 + 3n2)lk, and this is less than 2n2, by Eq. 12.1.
In other words, simply by first transposing B, we have reduced the complexity by an
order of magnitude. This can be more fully appreciated by making a plausible
assumption — for example, k = 512 and n — 256, which yields 8,400,000 faults with¬
out transposition and 66,000 faults with transposition. A fuller treatment of this
example, and other examples as well, can be found in Moffatt [1983].

12.3 FILE ORGANIZATIONS

If the operating economics of virtual memory were favorable enough, we would
never have to be concerned about the issues we address in this section. We would
not need to maintain files as distinct entities in secondary memory. Instead, we
could regard them as always being directly addressable in our large virtual memory
when we needed them, and the same kinds of data structuring that we have used
heretofore could in principal be applied without any change. However, the operat¬
ing economics of virtual memory do not yet sustain such a casual attitude. For the
time being, for a file in secondary storage, we must first identify the records from
the file that we wish to access, and then explicitly copy them back and forth.

Since it is common to be dealing with many thousands or even millions of
records, and since each individual access to secondary memory is orders of magni¬
tude slower than ordinary computational steps, it is imperative to organize the data
so that just a few accesses are required. In almost all cases, this organization is
based upon the primary key associated with each record. This necessitates search¬
ing, and so it might be tempting to try to use storage addresses directly, in order to
avoid the searching problem. But these addresses have an an artificial device¬
dependency, and are generally awkward to employ for most practical situations.
Even worse, the data on secondary storage devices will almost inevitably be subject
to reorganization, causing physical addresses to lose their validity.

Accepting that records are identified by their keys, one of the major issues is
whether we should:

1. simply deal with the keys in their records;
2. employ a subset of the key values in a sparse index-,
3. employ all of the key values in a dense index.

12.3 FILE ORGANIZATIONS 631

Assuming that the keys constitute just a small fraction of the total storage require¬

ment, we can expect that the use of an index will reduce the overall number of

storage accesses, since most of the search can then be conducted within the index in

main memory. The use of a dense index has two additional advantages. One is

that there is more freedom about where the records are actually placed, since every

record is pointed to from the dense index by its key. Another is that variable-length

records are thereby easily accommodated. In the common case that an index is

employed, it will often be inefficient to fetch or retain in main memory the entire set

of indices for a large file; rather, the search will proceed by accessing a block of

typically hundreds of index entries, searching it, and then making subsequent

access(es) as a result.4

Quite apart from the relationship between the index entries and the final

record(s) that are sought, there are some choices concerning the index entries them¬

selves. For one, since these entries are understood to be keys in sequence, the

redundancy between successive key values is usually high. Thus, it is possible to

employ key compression techniques that are considerably more efficient than the

compression techniques discussed in Section 8.4.1. Typically, this involves suppress¬

ing leading characters that can be derived from the preceding keys in the sequence.

The advantage of compression, of course, is that it accommodates having many

more key values in a block. It has several disadvantages, however, one being the

additional computation required for decompression, and another that we will

mention very shortly. Still another choice is whether a block of indices should have

the structure of a simple list, or perhaps that of a tree. In the former case, one

could then employ either sequential or binary search of the block. Other techniques

from Chapter 10 apply in the latter case, of course. The choices as to compression

and structure are not independent. Thus, binary search of a sequential list structure

is more effective than ordinary sequential search, and so is tree search, given the

usual size of the index blocks. When the keys are compressed, however, sequential

search is the only possibility. The interplay of factors in designing indices for files

draws upon our previous studies in several ways, and it is one of the principal

themes of this chapter. A further treatment of some of the particular points

addressed in this paragraph can be found in Maruyama and Smith [1977].

In the following two sections, we will examine file organizations, or access

methods, that correspond in natural fashion to the basic types of storage devices,

tape and direct-access. Sections 12.3.3 and 12.3.4 then discuss the two principal

ways in which tree structures are built in secondary memory. Lastly, we examine

some more recent techniques that guarantee a small, fixed number of accesses.

4 With or without an index, there is another possibility. Some disk storage devices are
able to scan a track and search for a record with a specified key, thus obviating the need
for search of a block in main memory. However, the circumstances in which this capa¬

bility exists and can be put to use are relatively less common.

632 ISSUES WITH SECONDARY MEMORY

12.3.1 Sequential Files

This is the simplest organization, and the only one that can be used with data
stored on tape. It depends upon the records being in key sequence within the file,
so that they can be processed one after the other in their physical sequence. In
reality, there is a distinction to be made, depending upon whether or not keys are
present and relevant for the operation being performed. The use of keys implies
that the presence or absence of a record with a given key can be significant, and we
are then truly performing sequential access. It is also possible to perform the same
operation upon each record in the physical sequence, regardless of its key value. In
this case, we are performing serial access. This distinction becomes inescapable
when we reach the last record in our file. With sequential access, it is common to
rely upon a signal from the data, in the form of a sentinel record with an artificial
key. With serial access, we must rely upon an indication from the device that no
more records exist; in the case of tape, this signal from the device is called an end-

of-file (EOF).

In the earliest days of computing, sequential and serial access were the only file
organizations, reflecting the fact that tape and punched cards were then the only
physical file media. Even though other possibilities now exist, sequential access is
still very useful for applications where data is accumulated, sorted, and then batch
processed at the convenience of the system, as opposed to responding in a timely
manner to requests from users. Batch processing is appropriate in the preparation

of account statements and bills every month, in doing payroll calculations, etc.
Note, by the way, that even though we can have much fancier file organizations
with a disk than with a tape, what we sometimes want on a disk is nothing more

than sequential access. However, the definition of sequential access files retains a
feature deriving from their origin with tapes and cards: They cannot be modified,
only read or written. In terms of computation, there is not a great deal to be said
with regard to sequential files, because their organization is so simple. (But see
Exercise 12.4, which demonstrates that this is not entirely true.)

For searching ordered files in main memory, we saw that binary search was
much more effective than sequential search. Binary search applied to blocks of data
on tape, however, would involve costly backward and forward motion and would
perform worse than sequential search. There is a different, fairly obvious technique
for reducing the amount of search in that sort of situation. If we are looking for a

particular key K somewhere in a set of sequential blocks, we can access blocks and
just examine the last key Kj in each block until K < K-, when that happens, K must
be in that block, and we can look for it by either sequential or binary search. This

method is called either jump search or, for obvious reasons, block search
[Shneiderman 1978], The performance of jump search depends upon the relative
costs Cj of jumping and cs of searching a block, and also upon the number of records

N and the size of the blocks B. We should expect to jump over half of the blocks,

for a cost of N/2B, and we can assume sequential search within the final block, for
a cost of B/2. Then the total cost is

C = (12.2)

12.3.1 SEQUENTIAL FILES 633

We can look for the minimum value of C by differentiating this equation with
respect to B and setting the result equal to zero. From this process, we find the
optimum value of B and the corresponding minimum value of C as

(12.3)

In the case of tape, c} is so much higher than cs that the advantage of jump search
over sequential search is scarcely noticeable. But there are other cases of sequential
files where binary search is either inefficient (as with sequential files on disk) or
impossible (as with compressed indices). For these, the square root complexity of
jump search is quite respectable — not as good as the logarithmic complexity of
binary search, but much better than the linear complexity of sequential search.

12.3.2 Random Access Files

Random access files depend upon direct-access devices for implementation, and the
term random access can easily be misinterpreted. It should not be thought of in
terms of independence of access time as a function of the key, since in fact the seek
and rotational delays cause the access behavior not to be random with respect to
where the key is located. Rather, the term signifies a method for dealing with keys
that appear in random sequence from the key space. Thus, whereas sequential
access is appropriate for applications such as account billing or payroll, random
access would be the method of choice for an application such as inventory control,
where it is important to maintain up-to-date status of stock on hand. In some rare
cases where the key space is not too large and the user can control the assignment
of keys, it may be possible to use disk addresses directly as keys, as mentioned in
Section 12.3. For example, a manufacturer might assign disk addresses as part
numbers (and might regret it when the need arose to obtain a disk with a different
address structure). Such situations are very uncommon, however, and the standard

way of implementing random access is via hashing.

There are some important differences between our use of hashing in Chapter 10
and its application to secondary memory. For one, it is no longer relevant that the
hash function be simple to compute. For another, the optimal manner of handling
collisions is different. Principally, however, it is expedient to partition storage into
blocks called buckets, with each bucket containing some fixed number of slots for
synonymous keys. Thus, the hash function is used to compute a bucket number,
and then that entire bucket is read into main memory and searched for the desired
key. Depending upon the nature of the search outcome, retrieval and search of
additional bucket(s) may be required. The principal objective is no longer to limit
the number of key probes, but rather to limit the number of bucket accesses. It is
usually advantageous to have a moderately large bucket size, and this will in fact
tend to increase the average number of key probes (equal to the product of the
number of slots and the average number of accesses). However, the larger buckets
will tend to absorb the fluctuations from the average, leading to less accesses and

thus reduced overall cost.

634 ISSUES WITH SECONDARY MEMORY

It is implicit in the above discussion that sequential search is employed when
looking for a key in a bucket. In reality, the keys might be maintained in order
within a bucket, thus allowing binary search. Since bucket sizes tend to be moder¬
ate, however, and since it is usually too costly to maintain such ordering within
buckets, the choice of sequential search is a reasonable one. On the other hand, it
is sometimes plausible to load the keys into the buckets in decreasing order of prob¬
ability of reference. As in previous discussions (see Section 10.2.1), this can be very
effective in reducing the average number of accesses during sequential search.

In our study of collision resolution in Chapter 10, we encountered two chaining
techniques — separate and coalesced — and two open addressing techniques —
linear probing and random probing. Of these four methods, linear probing defi¬
nitely yielded the worst performance; the choice among the other three methods
depended upon various factors. When we reconsider these techniques in the context
of secondary memory, we find that random probing is distinctly the worst method,
since it implies disk accesses with significant delay times. Linear probing, on the
other hand, implies accesses to buckets in successive logical tracks in the same cylin¬
der. So linear probing, conventionally referred to simply as open addressing in this
context, is one of the two acceptable and commonly used techniques for dealing

with bucket overflow.

The other method of choice is a variation of separate chaining. In Chapter 10
each home address contained just a pointer and no keys. In this case, the home
buckets are called the prime area, and each such bucket can contain several keys, as
well as a pointer. In the event of bucket overflow, synonyms are stored in buckets
in an overflow area, and these buckets are chained to buckets in the prime area.
The chaining in the overflow area is between records rather than between buckets,
but this should not create excessive overhead in a well-designed system having a low
percentage of overflow entries. In the typical situation of a disk having 20 surfaces,
16-19 of the tracks in each cylinder might be treated as distinct prime buckets, and
the remaining 1—4 tracks in a cylinder might be treated as an overflow area for
retaining the overflow chains from the prime buckets.

In this section, we have lightly sketched some of the issues having to do with
random access; in the ensuing section, we will look more closely at some of the
details. One curious aspect of all this is that we are encountering hashing - in
secondary storage as an addendum to hashing in main memory. In fact, the history
of hashing is just the reverse! It was devised originally as a means of providing
random access to secondary storage, and subsequently adopted for searching main
storage [Morris 1968]. Two excellent, pioneering references that demonstrate the
original emphasis are Buckholz [1963] and Peterson [1957].

f 12.3.2.1 Random Access Parameters. In our closer look at random access, we will
find that the determination of an optimal set of design parameters is a fairly compli¬
cated business, for which both simulation and analysis techniques have been
employed. Two of the most critical parameters are B, the number of buckets, and
S, the number of slots in each bucket. In terms of these and the loading factor a,
the principal figures of merit in evaluating a particular design are:

OP - the percentage of records that overflow from their home bucket, and

fl2.3.2.1 RANDOM ACCESS PARAMETERS 635

AA — the average number of bucket accesses that are required.

In Section 10.4.1 the Poisson distribution was used to predict the number of syno¬
nyms that will hash to a given location, as a function of the loading factor a = n\M
(see Eq. 10.31). In this case, we wish to know the likelihood that a bucket will
overflow. The total available memory is M — BS, and the average loading per
bucket is ^ = n/B = aS. Then the distribution of bucket occupancies can be approx¬
imated by the Poisson distribution as

P M = (12-4)

where M is presumed to be fixed, with S varying. As an example, Table 12.2
displays P (n,i) for a range of i, for the values fx — 5 and n = 8. The overflow can
be found by summing terms of Eq. 12.4 for which i > S.

/ 5 8 / 5 8 / 5 8

0 .007 6 .146 .122 12 .003 .048

1 .034 .003 7 .104 .139 13 .001 .030

2 .084 .011 8 .065 .139 14 .017

3 .140 .029 9 .036 .124 15 .009

4 .176 .057 10 .018 .099 16 .005

5 .176 .092 11 .008 .072 17 .002

Table 12.2 Sample Poisson Values P (/*,/)

Recall that the Poisson model reflects the assumption that the hash function
completely randomizes the assignment from key space to address space, and that the
use of division for a hash function will often yield results that are better than
predicted by this random model. On the other hand, as we also discussed in Chap¬
ter 10, the divisor should be chosen with some circumspection. For that matter, the
effectiveness of any particular hash function depends upon the nature of the set of
given keys, considered as a subset from the entire key space. Suppose that hashing
by division is employed and yields relatively poor performance for a particular set
of keys. Then there will be an increase in the collision rate. This is of far more
consequence with secondary storage than with main memory, since it can lead to an
increase in the average number of costly bucket accesses; therefore, it can be worth¬

while to expend effort to compute a better hash function.

As an example of a situation where extra care may be warranted, consider the

case where the keys consist of digits expressed as EBCDIC characters; thus, we
would have 'O'= 11110000, '1' = 11110001, ... , '9' = 11111001 (see Table 8.1). When
four-character groups are treated as 32 bit integers, then for some choices of divi¬
sors, congruential relationships will cause distinctly worse than random clustering of
synonyms (compare Section 10.4.1). This effect is aggravated when the keys are
non-random (such as sequential numbers) and for small bucket sizes S. An effective
manner to cope with this phenomenon in such cases is to use two division steps

[Clapson 1977]. The first one employs a “good” divisor for the purpose of smooth-

636 ISSUES WITH SECONDARY MEMORY

ing the keys; the second one is a conventional division by B for the purpose of

mapping into the address space.

Turning from the issue of choosing a hashing function to that of handling colli¬

sions, we can single out two factors that are particularly important:

• the choice of number of bucket slots S, and
• the choice between chaining and open addressing.

In fact, the values for both the overflow percentage OP and the average number of
accesses AA are decreasing functions of S (and of B as well). As a primitive means
of visualizing the effects of these choices, Figure 12.6 displays two collision patterns,
one for a bucket size of one, and another where the bucket size has been doubled
and the hash function has been adjusted correspondingly. For S — 1 in (a) of the
figure, we can see that the average value of OP is 4/11 =0.36; if chaining is
employed the value of A A is 16/11 = 1.45, and if open addressing is employed the
value of AA is 24/11 = 2.18. For S = 2 in (b) of the figure, we can see that the
average value of OP is 2/11 =0.18; if chaining is employed the value of A A is
13/11 = 1.18, and if open addressing is employed the value of AA is 14/11 = 1.27.
These reductions in OP and AA correspond to what we would expect, since statis¬
tical variations should tend to cancel out with larger values of S. The extent to
which this is true is illustrated by Figure 12.7, where the value of AA with open
addressing is plotted as a function of a for several values of S. We see that AA
decreases dramatically as S increases from 1 to 20. But of course we can only
increase S within the constraint that the available memory M = BS. Eventually, the
space and data transmission costs associated with a large buffer impose limits upon
the effective size for S.

(a) Bucket Size = 1

(b) Bucket Size = 2

Figure 12.6 Two Collision Patterns

Both simulation and analysis have been applied to such questions as finding
optimum bucket sizes, deciding between open addressing and chaining, and dealing
with other random access issues [§]. The principal conclusions are as follows:

• At the outset, we cannot attach the same significance to a in chaining that we
do in open addressing, since the former case does not take into account the
space allocated for the overflow area.

• In fact, whereas a can never be greater than 1.0 in open addressing, it is possi¬
ble and even reasonable to have a > 1.0 with chaining, since the overflow area
can be arbitrarily large.

112.3.2.1 RANDOM ACCESS PARAMETERS 637

s = 1

S = 2

S = 5

S = 10

S = 20

Figure 12.7 AA versus a for Various Values of S(lots)

• A common rule of thumb is to make a bucket the size of a track. Although
this is a good first approximation, it can be better for some combinations of
device and application parameters to have a bucket be either more or less than

a single track.
• For small S, or as a approaches 1.0, open addressing is inferior to chaining.
• For S > 10, the value of A A is good with both overflow methods. Open

addressing has the virtue of being simpler, and tends to be slightly faster.
Chaining is less susceptible to statistical variations; it also can be pushed to

yield very good space utilization, for a ^ 1.5 and S > 10.

As a final point, if we are contemplating the use of overflow chaining, there is
an additional issue that must be taken into consideration - the effects of insertions
and deletions. For example, suppose that we wish to design a random access file
that will hold 64,000 records distributed among 8,000 buckets, with S = 10 and
a = 0.8. Then, from Table 12.2, we can expect to encounter as overflow:

corresponding to i = 11, lx 0.072 x 8000 = 576 records
corresponding to i — 12, 2 x 0.048 x 8000 = 768 records
corresponding to i — 13, 3 x 0.030 x 8000 = 720 records

etc.

for a total of 3,384 overflow records. Since these amount to only about 5 percent
of the 64,000 original records, we might be tempted to allocate 95 percent of the
tracks on a cylinder as a prime area and 5 percent of the tracks as an overflow area.
But we must realize that whereas a deletion has only a 5 percent chance of remov¬
ing a record from the overflow area, an insertion has more than a 28 percent chance
of encountering a full track (from summing terms in Table 12.2 for i ^ 10) -
thereby adding a record to the overflow area! Thus, the overflow area will exhibit
substantial net growth until equilibrium is reached, and so the initial file design

638 ISSUES WITH SECONDARY MEMORY

must anticipate this situation. In the example just cited, this would correspond to
allocating 15 — 20 percent of the tracks in a cylinder for overflow. A detailed treat¬
ment of this issue, along with graphs and tables to assist in planning a file layout,
can be found in Olson [1969]; an even more complete analysis can be found in van

der Pool [1973a],

12.3.3 Indexed Sequential Files

For many applications with files, it is satisfactory to “give up” sequential access in
order to obtain random access.5 But it is worth reflecting upon what has been lost.
Keys that are missing or duplicated in an input file may be significant. They are
trivially recognizable in sequential processing, but not in random processing. A
similar remark applies to near misses between keys. For many applications, there¬
fore, it is important to be able to obtain both sequential and random access. As an
example, credit card issuers must be able to access their files sequentially in order to
prepare monthly account statements; they also must be able to access their files
randomly in order to check for cardholders exceeding their credit limits, for lost or
stolen cards, etc. A file organization with this capability is the indexed sequential
access method (ISAM). The idea is conveyed by Figure 12.8, wherein we have a
sparse index, each of whose entries corresponds to the last key in a block of data.

The file might be small enough that the entire index could reside in main
memory and thus could be binary searched, or the file might be so large that the
index would also be partitioned into blocks. In the latter case, we might use jump
search on the index. More likely, however, we would prefer to introduce a second
level of indexing, as in Figure 12.9, that could reside in main memory. The total
cost of finding a record is then the sum of: (i) an access to a lower-level index
block, (ii) an access to a data block, and (iii) the costs of searching within the two
index blocks and the data block. With respect to (iii), note that the comments in
Section 12.3 apply; that is, within each block we can choose among sequential
search, binary search, tree search, jump search, etc.

When we look at the issue of using a disk to implement ISAM with two levels
of indexing, we find a very natural match: The first-level index should direct the
search to the proper cylinder, and the first track in each cylinder should contain a
second-level index directing the search to the proper track in that cylinder. Alterna¬
tively, one might consider using a single level of indices along with interpolation
search, rather than two levels of indices. Although this can reduce the number of
index accesses from 2.0 to an average between 1.1 and 1.7, for typical sets of keys,
there is no guarantee against a particular set of keys having an average that is
greater than 2.0 [Ghosh and Senko 1969], In particular, such a set of keys could
then cause an extra disk seek.

5 Note that although we cannot obtain sequential access on a random access file, we can
obtain serial access.

12.3.3 INDEXED SEQUENTIAL FILES 639

Key Data

Figure 12.8 Indexed Sequential File

The structures in Figures 12.8 and 12.9 serve very well for a file that is static, or
comparatively so. In reality, it is also necessary to allow for the possibility of
insertions, and also deletions. In part, insertions can be handled by allowing extra
initial space in the ISAM blocks, but eventually this must lead to overflow. The
method of handling overflow in ISAM is similar to the technique of separate chain¬
ing into overflow areas in the case of random access. To be precise, each track

index entry would contain the following data:

(a) the highest key for the associated track T (in either prime or overflow area);

(b) the prime track number T;

(c) the highest key for T in the overflow area (same as (a) if there are no overflow

keys for T);

640 ISSUES WITH SECONDARY MEMORY

Key Data

Figure 12.9 Secondary Indices

(d) the overflow track and record numbers for the lowest key for T in the overflow
area (same as (b) if there are no overflow keys for T).

This is illustrated in Figure 12.10(a). For example, the highest key for track 1 is
285, and it has not overflowed, so the prime and the overflow entries for track 1
have the same key and pointer values. On the other hand, track 2 has overflow
entries; this is conveyed by the dissimilar entries for prime and overflow for track
2, where track r is understood to be an overflow track. Note that the overflow
record in track r with key 549 carries a pointer linking it back to its home track.

With the situation shown in (a) of the figure, if the key 427 were to be
presented, the prime track 2 would be searched; but if the key 533 were presented,
then the overflow chain beginning at track r and record 1 would be searched. On
the other hand, if the key 168 were presented and not found in track 1, then the

12.3.3 INDEXED SEQUENTIAL FILES 641

Prime Overflow 1 Prime Overflow

Index Trk 285 Track 1 285 Track 1 513 Track 2 549 Trk r, Rec 1

Track 1

Track 2

117 Data 132 Data 285 Data

302 Data 330 Data 513 Data

549 Data Trk 2

(a) Originally

Index Trk

Prime Overflow Prime Overflow

285 Track 1 285 Track 1 501 Track 2 549 Trk r, Rec 2

Track 1

Track 2

117 Data 132 Data 285 Data

302 Data 318 Data 501 Data

Track r 549 Data Trk 2 513 Data Trk r, Rec 1

(b) After Inserting 318

Figure 12.10 ISAM Details

replicated value of 285 in that track index would signify that the overflow area need
not be searched. In other words, a search in ISAM examines either the prime area
or the overflow area, but never both. This is different from random access, where
the prime area is always searched first and then, if that fails, the overflow area is
examined second. Figure 12.10(b) illustrates the effect of inserting 318. Since the
prime tracks are maintained in key sequence, this insertion causes the record with
key 513 to be moved from prime to overflow. The primary index value for track 2
is then adjusted to be 501 to reflect this change. Meanwhile, 549 remains as the
highest overflow key for track 2, but now 513 becomes the lowest overflow key for
track 2. Note that the data in the overflow tracks is maintained in linked list form,

with the end of a list denoted by the appropriate prime track number.

As long as overflow can be contained within the same cylinder, ISAM perform¬
ance is quite acceptable. When the overflow area on a particular cylinder is full,
however, and further insertions must be chained to a separate overflow cylinder,

performance can rapidly degrade. The resolution is to reorganize the contents of
the disk. One must then decide how to balance the cost of reorganization against
the cumulative degradation of performance caused by the extra accesses; several

642 ISSUES WITH SECONDARY MEMORY

analytical models have been described for estimating this trade-off [Shneiderman

1973; Tuel 1978],

12.3.4 Tree-Structured Files

Searching an ISAM file corresponds, in large part, to searching a multiway tree,
wherein each node can have many children (see Section 10.3.4). Moreover, in the
absence of insertions, it has the pleasing property of requiring just two accesses to
retrieve any item. Unfortunately, these characteristics are soon lost when insertions
are common, and the search path to an item involves overflow chaining. Let us
then ask the general question: How feasible is it to use tree searching techniques
when the data occupies secondary storage? At the outset, we have two choices

about the nature of our links between nodes:

• If we are relying upon virtual memory to implement a large, transitory tree,

then ordinary pointer variables will work.
• In the absence of virtual memory, or if the large tree is to endure after the

computation, then we must use explicit secondary storage addresses rather than

pointer variables.

In primary memory, a principal concern in dealing with binary trees was to mini¬
mize wasted storage for empty pointer values; the resulting BST’s can be
characterized as skinny and deep. Suppose that we apply the same reasoning in the
case of secondary memory. Then for a BST with a million nodes, even if it is
completely balanced, the path length to the leaves is twenty since 106 « 220. If each
inter-node reference were to cause a disk access, the cost would be insupportable.
But with balanced and comparatively bushy and shallow multiway tree of order 32,
for example, the number of references would be reduced to five, since 106 « 325.
Sections 12.3.4.1 and 12.3.4.2 explore efficient ways in which to implement multi¬
way trees. Before that, however, we consider more carefully the viability of binary
trees in secondary memory.

The high number of accesses cited in the preceding paragraph is misleading; it
does not take into account that closely related nodes will tend to cluster on a page.
Suppose, in fact, that we are growing a BST, and that its nodes spread over more
and more pages (or blocks). The simplest strategy is to assign successive nodes to
successive locations within a page, allocating a new page whenever the current one
becomes full. We can illustrate the results of this approach by the following exam¬
ple. If we have 2048 keys, then the argument of the preceding paragraph suggests a
total of 11 accesses, for a completely balanced BST; by comparison, the use of Eq.
10.14 suggests a total of 14 accesses for a random BST. In fact, for a page size of
32 keys and for a random BST, it has been shown that this sequential allocation
strategy would entail an average of just 7 accesses [Muntz and Uzgalis 1970]. Even
better than this naive strategy, however, is the following grouped allocation strat¬
egy. Whenever a new node is to be assigned a location, it is placed in the same
page as its father if there is room; otherwise, it is placed in a brand-new page.
With this strategy, for n the number of keys and b the number of keys per page, the
average number of page accesses is approximated by HJ{Hb - 1) [Knuth 1973b].

12.3.4 TREE-STRUCTURED FILES 643

For our same example (that is, 2048 keys, page size of 32 nodes, and random BST),
this strategy entails just three accesses, on the average. Now the average number of
accesses in a complete t-ary tree is optimal, of 0(log, n) = 0(In «/ In t)\ so we see
that the grouped allocation strategy is actually close to this in performance.

A little reflection suggests a drawback. The method tends to cause the allo¬
cation of a large number of pages that remain partially empty. A resolution for this
is to allow just k unfilled pages at any one time. Then when a node cannot fit in its
father’s page, it is assigned to one of these k pages. (Note that k = 1 corresponds
to sequential allocation, and k = oo corresponds to grouped allocation.) Simu¬
lations suggest that a value of k = 8 is almost as good as k = oo, but without the
correspondingly poor storage utilization [Sprugnoli 1981].

These results are certainly encouraging. Nonetheless, they are inadequate to
recommend the use of BST’s in secondary storage, in most instances. One reserva¬
tion is that these results are averages, and the number of accesses in the worst case
can be horrendously higher. Also, any insertions or deletions or rebalancings in
BST’s seriously compound the number of additional accesses. So we turn instead to
a method that is stable with respect to the cost of search, and also with respect to
the costs of insertion, deletion, and rebalancing.

12.3.4.1 B-Trees and B+-Trees. We will use the definition that a B-tree of order m
is a tree with the following properties:

1. The root is a leaf, or else has j sons and contains j — 1 keys, where m>j> 2.
2. The internal nodes have j sons and contain j — 1 keys, where m>j> m/2.
3. The leaves have no sons and contain j — 1 keys, where m>j> m/2.
4. The leaves are all on the same level.

The original definition of B-trees of order m is in terms of 2 m>j>m [Bayer and
McCreight 1972]; that definition and the one employed here are both in current
vogue. Our choice is motivated by the fact that the balanced trees that we discussed
in Section 10.3.4 are, in fact, B-trees of low order. The definition m>j> m/2
encompasses both 2-3 trees as B-trees of order 3 and 2-4 trees as B-trees of order 4.
The definition 2m>j>m encompasses 2-4 trees as B-trees of order 2, but it fails to

encompass 2-3 trees.

Figure 12.11 AB-TreeNode

The logical structure of a B-tree internal node is shown in Figure 12.11. If an
argument key K is not found (by sequential or binary search) in this node, and if K
falls between Kt and Ki+U then search continues in the son pointed to by pt. A
concrete example of a B-tree of order 5 is shown in Figure 12.12. If search in a
B-tree terminates unsuccessfully at a leaf and if K is then to be inserted in the tree,

644 ISSUES WITH SECONDARY MEMORY

Figure 12.12 B-Tree of Order 5

there may well be space for it in the leaf. But if there is no room because the leaf
node is full, then

(a) K is logically inserted in the proper order;

(b) the full node is split and half of its contents are relocated into a newly allo¬
cated node;

ctf
PQ

12.3.4.1 B-TREES AND B + -TREES 645

Figure 12.13 Insertion of 983 in Figure 12.12

(c) the median key value is removed and migrated up to the parent node.

As a result of the last step, the parent node will need to find room for the migrated
key, and also a new pointer. If the parent is already full, then it will itself undergo

split according to the same rules (a) —(c). Finally, if a split occurs at the root, the
-tree grows upward one level, with two new nodes being allocated. In illustration,

646 ISSUES WITH SECONDARY MEMORY

Figure 12.13 depicts the result of adding 983 to the B-tree of Figure 12.12. Node R
is forced to split, causing a key to migrate up to node P and an additional pointer
to be inserted in P. But P has no room for another key/pointer pair; so it also
splits, in turn affecting the root. It is easy to see that since splits migrate median
key values upward, they serve to balance the B-tree with respect to width.

When a value is deleted from a B-tree, the process that takes place is the reverse
of what happens during insertion, with one additional twist. A key may be deleted
from a leaf Q as long as it remains half-full. When that condition is violated, then
the first recourse is to pick either of the closest siblings of the affected node, and to
rebalance the contents between the two nodes. However, if the sibling Q' is just
half-full also, then the two half-full nodes are joined as one almost full node Q
Because of this joining, the parent node must shed a pointer and migrate a key
downward into Q in fact, the deletion from Q guarantees that there will be space
in Q " for the extra key. As with splitting, joining can be repeated upward to the
root. The twist in this operation occurs when the key Kt to be deleted is in an
internal node P rather than a leaf. In this case, we look for the successor Kj to Kt in
some descendant of P, swap Kt into the descendant node and Kj into P, and then
delete Kt from the descendant. In fact, we see from the nature of the B-tree struc¬
ture that the successor must be located in the first position of a leaf. (Whether this
is the leftmost or the uppermost position in a picture depends upon the orientation
of the picture.) These interactions are illustrated by the deletion of 367 from the
B-tree of Figure 12.13. The deletion initially causes the successor to 367 (that is,
408) to be swapped into the root. Since the node U is then too sparse, it is joined
with node V, pulling 492 from node T into the combined node. This in turn leaves
node T too sparse; so it must be joined with node S, pulling 408 from the root into
that combined node. The final B-tree is then as shown in Figure 12.14.

It is important to determine the maximum number of accesses required to find a
key in a B-tree. We can see that a B-tree of order m must have at least two nodes
at level one, and at least 2([(m/2)y~l nodes at each level j > 0. Now think of the
leaves as internal nodes, and imagine that there are external nodes at one level
below the leaves. Then a B-tree of n total internal nodes, with its leaves at level h,
must have a minimum of n + 1 external nodes at level h + 1. But these n + 1
external nodes correspond to the n keys in the B-tree of height h. Thus, we find
that n + 1 > 2(f (m/2))A_1, or

(12.5)

In practice, m is usually chosen to be in the range 50-300. The exact choice
depends both upon the record size for the given application and, not surprisingly,
upon the characteristics of the underlying secondary storage medium. If the record
sizes are either large or variable, it is common to employ indirection - that is,
place pointers to data records in the nodes, rather than the actual records. This has
the effect of causing an extra access. But without this step, extra accesses would
doubtless be required anyway, since the large records would effectively reduce the
attainable branching factor m. A final point about the choice of node size is that it
is common to design B-trees so that the size of a node corresponds to the size of a
page in virtual memory. This allows the fast paging hardware to assume responsi¬
bility for fetching and retaining the required pages/nodes in main memory.

12.3.4.1 B-TREES AND B +-TREES 647

Figure 12.14 Deletion of 367 from Figure 12.13

Disregarding the possibility of indirection, let us employ Eq. 12.5 to evaluate
h(n,m) over the indicated range of 50-300 for m, and for various values of n.

What we find are relatively flat curves; for example,

h(104, 100) < 3 h{ 104, 200) < 2
/z(106, 100) <4 h(\0\ 200) < 3

648 ISSUES WITH SECONDARY MEMORY

Thus a cost of just three accesses is representative for searching a B-tree with a
million keys; moreover, if the root node is kept in main memory at all times, just
two accesses are required. What about the number of accesses required for
insertion and deletion? When conducting the top-down search, the h nodes on the
search path would be retained in memory; then the bottom-up insertion or deletion
processes would require no more than 0(h) additional accesses. In fact, the average
number of additional accesses is much less. To illustrate this for the case of

insertions, we note two facts:

• The minimum number of keys in a B-tree of order m with p nodes is

1 + (T(m/2) — \) (p — 1).
• For a tree with p nodes, the number of splits is given by p — h (allowing for the

creation of two new nodes each time that the root splits).

Dividing the latter by the former, we find that the average number of splits is less

than 1 /(T(m/2) - 1).

We might be able to obtain even fewer splits by the following strategy. In the
example of adding 983 to the B-tree of Figure 12.12, it would have been possible to
“overflow” 956 to node Q; this would have perturbed nodes P, Q, R somewhat, but
not as much as with the splitting operation. In similar fashion, when keys are
deleted in a B-tree, it is possible to “underflow” with a neighbor rather than
perform joining operations. Still more generally, rather than rotate just one p,K
pair from (to) a node on overflow (underflow), we could attempt to balance the
number of p,K pairs in two adjacent sibling nodes. Even without this overflow
technique, however, we see from the preceding paragraphs that the algorithms for
search, insertion, and deletion in B-trees of reasonable order are all of low complex¬
ity. They are also straightforward as to logic, but fairly tedious in their details
[Wirth 1976],

A closer scrutiny of B-trees suggests several ways in which their performance
might be improved. We will defer most of these ideas until Section 12.3.4.2, but
one variation is so important that we will describe it now. Our discussion of the
B-tree of Figure 12.12 was entirely in terms of random access. Suppose that we also
wished to perform sequential access upon the same set of keys. It is relatively easy
to do so with a preorder traversal of the B-tree; however, the resulting performance
compares unfavorably with that of sequential access in an ISAM file. The B+-tree
offers a resolution for this unsatisfactory state of affairs. It is based upon two
simple ideas:

• The internal nodes should be used only for indexing, with all real data stored at
the leaves (thus, some keys will occur both in internal nodes and in leaves).

• Each leaf should contain a pointer whereby the leaves can be chained together
in logical sequence.

With the provision of a header node, it is then trivial to access the keys of a B + -tree
sequentially. It is also cheaper in terms of space, requiring just one node in main
memory at any instant, rather than all the nodes on the path from the root to the
current node. This new structure is illustrated in Figure 12.15, for the same data of
Figure 12.12. You should compare the two figures to note the differences. B+-trees
have another significant advantage beyond their principal one of expediting sequen¬
tial access; namely, deletion is simplified. If the key to be deleted occurs in both an
internal node and a leaf, we need simply remove it from the leaf, and the value in

12.3.4.1 B-TREES AND B +-TREES 649

Figure 12.15 B+-Tree Corresponding to Figure 12.12

650 ISSUES WITH SECONDARY MEMORY

the internal node can be left intact — it still serves to direct the search path to the
proper son! In other words, any key value that serves to separate two leaves is

permissible, whether it exists in a leaf or not.

The characteristics of B + -trees are so good that they have become somewhat of
a standard for file organization. This is exemplified by IBM’s Virtual Storage
Access Method {VSAM). The implementation details and the terminology of
VSAM are different, but the organization is nonetheless that of a B+-tree. We

sketch the major differences, as follows:

• The basic node of data storage is the control interval, located at the bottom
level of the tree, and with the format shown in Figure 12.16. Control intervals
usually have the size of a disk track. Since all data records are retrieved via the
control information, it is easy to handle variable-size records. Also, in the proc¬
esses of insertion and deletion, the free area is maintained as one contiguous
block. A group of control intervals in one disk cylinder is a control area.

• The level just above the control intervals is that of the sequence set. Typically,
each node in the sequence set corresponds to one control area and is stored in
the same cylinder as its control area, thereby reducing seek activity. Links
between the nodes in the sequence set are used to facilitate sequential process¬
ing. The levels above the sequence set constitute the index set.

• Compression is applied to both the keys and the pointers, allowing more of
them to be stored in a node and thereby gaining a higher branching factor.

We will say a bit more about B-trees in the next section; a good general survey of
the topic is Comer [1979]. Further details about VSAM, in particular, can be
found in Keehn and Lacey [1974] and Wagner [1973b].

Data Records Free Space Control Info

R^ R2 Rs Rn
Record Cont. Int.
Defn’s. Defn.

Figure 12.16 Format of the VSAM Control Interval

fl2.3.4.2 Additional B-Tree Considerations. With B-trees, reorganization is done
dynamically, as contrasted with the off-line reorganization that is required with
ISAM, and this causes them to have superior performance in most cases. But a
B-tree does have an Achilles’ heel, having to do primarily with inefficient use of
storage. This is partly because of the use of pointers, but also because of unused
space within the nodes. To appreciate the first of these reasons, suppose that we
are able to treat the tree of Figure 12.15 as a static structure, in which nodes will
seldom be reorganized. Then we can economize on pointers as in Figure 12.17,
allocating sibling nodes in sequential locations. As a result, we can increase the
branching factor. Then, for some combinations of the parameters (number of keys,
node size, pointer size, etc.), a static structure like that of Figure 12.17 may have a
shorter height than that of the corresponding B-tree. By including one overflow
pointer (not shown) in each leaf node, the possibility of handling insertions exists.

112.3.4.2 ADDITIONAL B-TREE CONSIDERATIONS 651

For a file with only moderate numbers of insertions and deletions, the reduced
number of accesses with this structure might more than compensate for the over¬
head of occasional reorganizations [Held and Stonebraker 1978].

Figure 12.17 A Static File Corresponding to Figure 12.12

With respect to the issue of unused space in B-trees, an immediate observation
is that since the leaves have no children, then we may as well employ an alternate
format for them, one without space for pointers. A more fundamental issue is that
of discovering where in the 50-100 percent range their average storage efficiency
actually lies. The fringe analysis technique provides an elegant solution to this
problem (see Section 10.3.4). As a matter of fact, such an analysis for B-trees of
typical order m is simpler than it is for 2-3 trees. This is so because a much higher
proportion of the keys reside in the bottom layer of the fringe, and therefore it

652 ISSUES WITH SECONDARY MEMORY

suffices to analyze just that layer and ignore the others. By this means, for a B-tree
obtained by random insertions, it has been shown that the average storage efficiency

is In 2 = 69 percent [Yao 1978].

If we are concerned with worst-case storage efficiency or if we wish to improve
the average efficiency, then we can think of increasing the minimum proportion of
fullness above 1/2, thereby obtaining a dense multiway tree [Culik et al. 1981]. The
case of B*-trees, with a minimum proportion of 2/3, is particularly common, and is
implemented as follows. Overflow in a node Q (unless Q is the root) is handled by
attempting first to redistribute keys and pointers between Q and a non-full left or
right sibling Q', in order to balance their contents (compare this with the discussion
of “overflow” and “underflow” on page 648). Only if both sibling nodes are full is
splitting performed. In this case, a new node Q " is allocated, and the contents of
the full node Q and a full sibling Q' are redistributed so that Q, Q', and Q " each
have at least (2m — l)/3 children apiece. Note that this not only increases storage
efficiency, but also improves the average search length, since the resulting tree may

have a shorter height.

Still another means of increasing storage efficiency is suggested by the fact that
in B +-trees, we can employ any “key” values at the upper levels of the tree, as long
as they properly separate the keys at the lower levels. For the common case of
alphabetic keys, this leads to the concept of prefix B- trees [Bayer and Unterauer
1977]. The idea is to compress separator keys into minimal prefix strings of charac¬
ters. Since the number of prefix characters required in order to distinguish between
a consecutive pair of keys will vary for different pairs, this suggests the possibility of
adjusting the breakpoints between nodes in a fashion that minimizes the aggregate
prefix lengths. The rationale for this is that shorter prefixes can enable a higher
branching factor, and thus once again a tree with possibly shorter height.

f 12.3.5 Extendible Hashing

One way of viewing B-trees is that they are “elastic,” being able to grow and shrink
to conform to the storage requirement, without imposing a costly worst-case
penalty. The hashing schemes that we examined in Section 12.3.2 have an excellent
0(1) average performance under reasonable operating conditions, but they are unac¬
ceptable in some applications because of their very poor worst-case cost. Elasticity
is not present in hash tables except by costly rehashing (see Section 10.4.2.4), and
even then the worst-case feature does not go away. Of rather recent invention are
several hashing schemes, designed specifically for secondary memory, where these
failings are removed. We will describe one of these methods in modest detail, and
then comment about another.

The concepts in extendible hashing [Fagin et al. 1979] are reminiscent of those
employed in constructing binary digital search trees in Section 10.5.2. In order to
describe the method, we will initially use the keys in their natural form, ignoring the
hashing aspect until later. The technique employs a directory filled with pointers to
leaf pages that hold the actual data. Associated with the directory is a parameter d,
the depth, that indicates how many leading bits of a key are to be used. When a

112.3.5 EXTENDIBLE HASHING 653

d' = 2
d' - 2

000

001

010

011

100

101

110

111

d' = 2

(a) Initial Table

(b) Adding 1010,

Figure 12.18 Illustration of Extendible Hashing

key is presented, its first d bits are used to index an entry in the directory that
contains the pointer to the leaf page for that key, as shown in Figure 12.18(a). In
the figure, we see that d = 3 and so the directory has eight slots. In general, there
may be more than one pointer from the directory to a given leaf page, as with the
pointers for '000' and 'OOF in the figure. The central idea in extendible hashing is
that it can never take more than two secondary memory references to find an item
of data. The first of these accesses the correct directory page P (presuming that the
directory is typically far too large to fit in main memory), and the second uses the

appropriate pointer in P to fetch the desired leaf page.

How is this two-access figure maintained when pages overflow, without the
usual overhead of chaining or open addressing? When an insertion exceeds the
capacity of a page, which we assume here to be four for illustrative purposes, then
d', the local depth, of that page becomes important. Suppose that we add the key
'1010../ to the structure of Figure 12.18(a). The directory uses the initial bits '101'
to point to the appropriate page. The fact that d' = 1 < d for this page indicates
that keys beginning with '100', '110', and '111' also reside there, and that there are

654 ISSUES WITH SECONDARY MEMORY

other pointers to this page corresponding to such key values. So the response is to

split the page on the value of the second bit of its keys, just as a B-tree page is split

when it becomes full. There is a difference, of course, in that the new pages in a

B-tree will both be half-full, whereas here the contents may split unevenly. After

the page has split, the table appears as in (b) of Figure 12.18, with the directory

updated. Consider next the consequence of adding '010111../ to the table of Figure

12.18(b). Now the directory uses '01 Cf to point to the appropriate page, and it must

be split again. This time, however, the fact that d' = 3 = d serves as a signal that

the value of d must be incremented, and the size of the directory must be doubled.

The final effect is shown in (c) of Figure 12.18. We see that the number of accesses

to find a key is still just two.

One of the nice features of this scheme is that the structure can also contract,

when warranted by a deletion, thus creating a hash table that is as elastic as a

B-tree. The scheme is also reminiscent of the binary buddy system that we studied

in Section 11.3.2, since splitting and recombination are based upon leading bits.

Still another advantage of extendible hashing is that, if the directory entries are

based upon the leading bits of the keys (and not hashed keys, which we will come

to momentarily), then it is possible to process the hash file (in a weak sense) sequen¬

tially! More precisely, the leaf pages are in the correct natural order. So sequential

processing can be obtained by fetching each one in turn and sorting its relatively

small number of items.

How well does extendible hashing work in a real application? There are two

principal issues to consider. One is that it could perform very poorly with a bad set

of keys, such that their prefixes are all very similar. This is where hashing comes

into the picture. By using hashed keys instead of the keys themselves, the prefix

bits become randomly distributed, particularly so if a technique like universal hash¬

ing is used (see Section 10.4.3), and the splittings subsume the role of collision

resolution. One slight drawback, of course, is that this curtails the possibility of

weak sequential processing. A second area of concern with extendible hashing is

the size of the directory. It can theoretically become extremely large in the worst

case; however, analysis indicates that this “never” happens in a probabilistic sense.

Both simulations and usage suggest that extendible hashing is very competitive with

B-trees. In terms of storage utilization, the average value is the same, being

In 2 = 69 percent. With regard to secondary accesses, the number is always just
two, as opposed to three or four for large B-trees.

There are other hashing schemes that attain performance comparable to that of

extendible hashing by different techniques. To give just one example, in the method

known as dynamic hashing [Larson 1978], the directory is maintained as a binary

tree rather than as the “squashed trie” of extendible hashing. This causes the direc¬

tory to grow and shrink less abruptly, and it also means that the total space for the

directory is probably less, even allowing for the pointer overhead. Nonetheless,

there is no longer any guarantee that one access will be sufficient to find the correct
portion of the directory.

12.4 MULTI-DIMENSIONAL SEARCH 655

12.4 MULTI-DIMENSIONAL SEARCH

In Chapter 10 and in the earlier parts of this chapter, we have encountered a
remarkable variety of techniques for searching for a record that matches a given key
value. Unfortunately, these many methods are, in themselves, inadequate for a
variety of other important paradigms of search. Some of these other paradigms
were cited at the beginning and at the end of Chapter 10, particularly in Section
10.6. It happens that a number of data structures and algorithmic techniques suited

to these other purposes are available. Some of them are of comparatively recent
invention, and it would not be surprising to see further, substantial growth of capa¬
bility in these areas. In this section, we will try to convey a modest appreciation of
the issues and of the possibilities. The most pressing issue is where the underlying
data records have secondary keys in addition to the primary keys by which they are

uniquely identified. Effective means for dealing with this issue are important
because they underpin the vast enterprise known as database, which we will not
address [§]. Search in terms of just one key reflects underlying many-to-one
relationships that can be described in terms of trees, and for which a single index

structure is sufficient. Search in terms of several keys reflects the more complicated
case of underlying many-to-many relationships. Here the natural description is in
terms of graphs, and one solution is to provide a separate index structure for each

secondary key.

There are several progressively more complicated ways in which one can query a

set of records having multiple keys. Some of these other ways are as follows:

• simple queries - for example, to find all students who are majoring in

Computer Science;
• boolean queries - for example, to find all male students who are married and

without children;
• range queries - for example, to find all students between the ages of 20 and 25;
• closest-match queries - for example, to find the student with hometown closest

to Wichita, Kansas.

In the most general case, a boolean query can contain conjunction (AND), disjunc¬
tion (OR), and negation (NOT). Very commonly, of course, there are queries in

which no operators are applied to one or more keys; that is, any values of those
keys are acceptable. This corresponds to a partial-match query, it is conventional

to denote unspecified attributes in such a query by Thus, for a crossword-

puzzler, 'H * S *' might be any member of the set of words {HASP, HISS, HOSE,
HOST, HUSH, HUSK}. As we will see, the various methods for multi-dimensional

searching are not all equally adept at handling these four possibilities ~~ conjunc¬

tion, disjunction, negation, and partial-match.

Although it is possible to conduct any of the queries just cited by performing a

search of the entire data file and applying the appropriate tests to each record, that

is precisely what we would rather not do, except in the case when the data file is

very small. And we particularly wish to avoid this when the data file is so large
that it resides in secondary memory. In our survey of multiple-dimensional search,

Section 12.4.1 treats search that is conducted via multiple sets of indices, and

656 ISSUES WITH SECONDARY MEMORY

Section 12.4.2 explores some sophisticated variants of hashing. The last section
describes two data structures that are useful for multi-dimensional binary search.

12.4.1 Multiple Sets of Indices

Two structures that have long been used for searching on multiple keys are the
inverted files and multilists encountered in Chapter 4. There we introduced and
illustrated them. Here we will examine them more critically for their relative
performance with respect to space, query time, and update time.

The relative suitability of inverted files depends very much upon the number of
attributes (that is, keys), the nature of the values assumed by these attributes, and
the type of query to be conducted. Recall from Section 4.3.1 that with this struc¬
ture, index information about the data is maintained in a separate file of inverted
lists. This is a great advantage when the inverted file is smaller than the data file
itself and can be retained in primary memory. In that case, simple queries and
boolean queries can be performed efficiently by first operating upon the inverted
file, and then retrieving just the pertinent records from the data file in secondary
memory. In order for this to pay off, it is important that there be neither too few
nor too many values for an attribute. For example, consider the attribute sex, with
values male and female. The lists for male and for female would be very large, so
searching on this attribute would not significantly reduce the proportion of the data
file that must be retrieved. At the other extreme, consider the attribute salary, with
discrete values from $300.00 to $1000.00. Unless these values are grouped into
ranges, we are faced with the unsatisfactory situation that there are likely to be as
many distinct lists for salary value as there are records in the data file. Inverted
files are very commonly used, because of the convenience that they provide for
many and varied types of boolean queries. However, this convenience is purchased
at the price of having inverted lists for each attribute, and the aggregate size of the
inverted file may come to exceed the size of the data file. The inverted file will
often no longer even fit in primary memory, thereby .vitiating one of its main
advantages. In this case, it can become a major issue to organize the inverted fiie in
a manner that minimizes the number of secondary accesses to it! We will refer to
this problem in the next section, but first let us consider the use of multilists.

First of all, recall that there is much less of a problem with space when using
multilists (see Section 4.3.2). On the other hand, queries against multilists will be
somewhat slower because of the necessity to thread through the data file. For
simple queries, this can be acceptable. Also, a conjunctive query can be performed
rather efficiently by following the links for the list with the smallest number of
records and discarding those records for which the conjunction fails. However,
searching a multilist with a disjunctive query is very inefficient, requiring the search
of g list for each term in the disjunction.

The issue of update efficiency for inverted files and multilists cannot be resolved
quite as summarily as the issues of space and query efficiency. Suppose that we
wish to change the value of an attribute. Recall that it is common to link records
in a multilist with forward pointers to physical locations. This is all the more

12.4.1 MULTIPLE SETS OF INDICES 657

important if we wish to minimize accesses to secondary storage. So changing the
value of an attribute requires searching two link lists and changing the appropriate
pointer values. With bi-directional lists, this can be done fairly readily. In the case
of inverted files, it is more common to employ logical pointers (in terms of primary
key values). Although this causes data retrieval to be somewhat slower, it allows
the contents of the inverted file to be unaffected by any relocation of records in the
data file. Changing the value of an attribute, however, requires that the list for the
old value be searched, followed by a deletion, and then an insertion in the new list.
Depending upon the details of implementation, these update operations might

require more or less work than those required for the multilist.

12.4.1.1 Bitmaps. We have seen that an inverted file provides more flexible query
capability than a multilist, but that a serious problem is the large amount of space
that may be required for the inverted lists. One remedy is to just partially invert the
data file (that is, invert on only certain attributes), but this may not be satisfactory
in many applications. For attributes that have only a small number of values, an
effective alternative is to employ a bitmap [§]. This is a matrix B with one row for
each record and one column for each value of each attribute, so that B \ij\ = 1 if
the z'th record has the y'th attribute value. Whereas a small number of values for an
attribute is inefficient for an inverted file, it works very well with bitmaps. Consider
a file of n records that have the attribute class, with values {freshman, sophomore,
junior, senior}. Inverted lists on this attribute would require a minimum of n lg n
bits to store either n pointers or n keys, whereas a bitmap for this attribute would
require just 4n bits. (The four values could be encoded in two bits, of course, but it
is better to retain them unencoded to facilitate query processing.) In other words, a
bitmap B is likely to be preferable whenever there are less than lg n values for an
attribute. In addition to conserving space, bitmaps greatly facilitate boolean
queries. A fairly obvious reason for this is that conjunctions and disjunctions can
be performed directly on the columns of B, without the necessity of scanning
inverted lists and comparing their entries. A more subtle reason is that now
negated queries are easily obtained by complementing the appropriate bit, whereas
negated queries against an inverted file require the merging of all the complemen¬

tary inverted lists.

f 12.4.2 Multiple-Key Hashing

Just as hashing eliminates the need for an index when searching on a single key, so
all the more does it eliminate the need for the multiple sets of indices employed in
inverted files. Hashing also helps solve another problem. If a partial-match query
is fairly general, many records may satisfy the request. Suppose for example that 10
percent of the records in a large data file satisfy a query, and that a file “page”
contains 20 records. If the records {/?,} satisfying the query are distributed
randomly throughout the file, then the probability that none of the 20 records in a
page will be accessed is (1 - (0.9)20) = 0.12. So 88 percent of the pages will have to
be accessed in order to retrieve the 10 percent of the {/?,} that satisfy the query.

658 ISSUES WITH SECONDARY MEMORY

The performance will be little better than that of searching the entire data file! As

we will see, hashing can be used to mitigate this effect.

To begin with, suppose that a string of bits b{b2... bw of width w is used to
address a bucket of records. Then a straightforward technique is that of partitioned
hashing, in which a hash function hj is applied to each key Kh such that the range of

^ is v, bits, and Xv< = w- These hash values can then be concatenated to provide
one composite hash value for the entire set of keys. In general the v, may vary, and
it is appropriate to assign longer bit fields to keys that are more commonly used in
queries, and also to keys with greater numbers of values. Both of these allocations
have the effect of reducing the number of accesses to secondary memory against
those keys. Moreover, by choosing the hash functions properly, we can try to form
clusters, consisting of groups of records having similar attribute values. In one
investigation, a mixed approach using inversion and hashing was found to reduce
the number of secondary accesses by a factor of two or three [Rothnie and Lozano
1974]. A word of caution is that the success of this approach is relative to the
intrinsic clustering of the data values and to the nature of the queries conducted
against them.

Hashing provides still another advantage. What happens with an inverted file
as a partial-match request becomes more specific? The number of records that are
retrieved will almost certainly decrease, but the amount of work will increase with
each attribute that must be examined! Considering that rather precise queries are
common, it would be nice to have a method such that fewer retrievals coincided
with less work. Let us assume that we use partitioned hashing with k attributes,
and with the same number of bits v for each attribute — that is, w = kv. Then the
search space is reduced by a factor of 2V for each attribute that is specified.
Conversely, if t is the number of unspecified attributes, then the number of hash
buckets to be searched is proportional to n‘lk.

Rivest has shown how to extend this to handle negation as well as conjunction,
in a method called associative block design (ABD). To set the background, we will
restrict the discussion to binary attributes. (It is straightforward to encode non¬
binary attributes as binary ones.) Then an ABD (k,w) is characterized by a table
with b = 2W rows and k columns, where the values '0, 1, *' signify, respectively, that
an attribute is absent, present, or arbitrary. In such a table,

(a) Each row has w bit values and k — w asterisks.

(b) For any two rows, there is at least one column that is different with respect to
the bit values (0,1).

(c) Every column contains b (k — w)jk asterisks.

These properties are illustrated in the ABD(4,3) of Figure 12.19. The significance
of such a design is that each row corresponds to a list of records answering that
description and maintained in a corresponding hash bucket. With hash functions
properly chosen to yield this partitioning, the number of buckets that must be
searched is a decreasing function of the number of unspecified attributes. The
intent of condition (a) is to restrict the maximum size of each bucket, the intent of
condition (b) is to guarantee that lists are disjoint, and that of condition (c) is to
restrict the worst-case behavior. For the 81 possible queries on {0, 1, *}4, Figure
12.20 tabulates the number of buckets (lists) that must be searched as a function of
t, the number of unspecified attributes. For example, the query '* * 1 *' would

112.4.2 MULTIPLE-KEY HASHING 659

require searching of the five buckets 2, 4, 5, 6, 7, and so would any other query with

three unspecified attributes. However, the query '1 * * O' would require searching of

just the three buckets 1,4,8, and so would any other query with two unspecified

attributes. In the case of just one unspecified attribute, 8 of the possible 32 such

queries would need to search only one bucket (for example, '0 1*0' with bucket 5),

and the other 24 would require searching of two buckets (for example, '0 1 * T with

buckets 2 and 3).

Bucket Bit Position
12 3 4

Bucket Bit Position
12 3 4

1 * 0 0 0 5 0 1 * 0

2 * 1 1 1 6 1 0 * 1
3 0 * 0 1 7 0 0 1 *

4 1 * 1 0 8 1 1 0 *

Figure 12.19 Associative Block Design (4,3)

The significant fact in Figure 12.20 is the close correspondence between the

computed averages in the third column and the theoretical values in the fourth

column. That is, the number of lists to be searched decreases as t decreases, again

in proportion to ntlk. Now the construction of associative block designs is a non¬

trivial combinatorial problem [Rivest 1976b]. For many parameter pairs (k,w), no

corresponding ABD {k,w) exists; an instance of this is the pair (5,4). Our example

ABD(4,3) is too small to be practical per se. However, given an ABD (k,w), it is

possible to use it as a basis for larger ABD’s, of type (rk,rw) and also of type

(,kr, wr). Aside from the difficulty in finding ABD’s, one of their principal draw¬

backs is the complexity of the hash function computation. However, this cost is

very worthwhile for data files stored in secondary memory because of the large

reductions in the number of accesses. Related combinatorial designs for partial-

match retrieval are given in Burkhardt [1976a, 1976b],

t No. Queries Avg. No. Buckets
gf/4

4 1 X 1 = 1 8 8.000

3 4 x 2= 8 5 4.757

2 b x 4 = 24 3 2.828

1 4 x 8 = 32 56/32 = 1.75 1.682

0 1 x 16 = 16 1 1.000

Figure 12.20 Retrieval Costs for ABD(4,3)

660 ISSUES WITH SECONDARY MEMORY

fl2.4.2.1 Superimposed Codes. In Section 10.4.4 we saw several variations on the

theme of predictive hashing. The essence of those methods was the multiple use of

hash function(s). Each hash computation would turn on a small number of bits in

a large boolean vector, and the multiple hash values were superimposed by OR’ing

them together in this vector. This is the basis for a method of information retrieval

that antedates all the others in this chapter. In the context of partial-match

retrieval (rather than text searching, as in Chapter 10) it is known as superimposed

coding [Mooers 1951]. The analogy between the text searching point of view and

the partial-match point of view can best be understood by referring to the Bloom

filters discussed earlier. In that technique any key present in a file is hashed onto a

large bit vector T with each of several independent hash functions, and this opera¬

tion is done for each key in the file. Subsequently, in order to predict if a specific

key K is in the file, the same hash functions are applied to K. If any of the bit

locations that must be turned on for K to be present are not found turned on, then

K assuredly cannot be in the file. On the other hand, the outcome that they are all

turned on does not guarantee that K is in the file; the key K might be a false

match, or false drop.

In the case of a Bloom filter, one bit vector T serves as a predictor for the

occurrence of keys in the entire file. In the present context, we are hashing the

presence of binary attributes in a record Rh and so we associate with each record a

bit vector P, that is the superimposed encoding of the attributes of that record.

When presented with a conjunctive query, we hash the attributes that are specified

and then compare this vector Q of superimposed codes with the vectors {/*,-}. Any

record P, potentially satisfies the query if the ones in its P, include all of those in Q.

Of course, since an P, may be a false drop, it is always necessary to verify that it

does indeed match the query specifications. However, the possibility for error exists

only in one direction; that is, no valid record will be missed. The trick in using

superimposed coding is to properly adjust two principal parameters — the width w

of the vector Q, and the number of bits k that are turned on in Q for each attri¬

bute. When these are well chosen, there are just a few false drops, and the fact that

the bulk of the non-matching records never need to be accessed amply compensates
for the cost of the false drops.

In many ways, the vectors {P,} are like the bitmaps that we encountered in

Section 12.4.1.1, and some of those same bit processing techniques are applicable

here. There are also important differences. Superimposed codes do not support

disjunction and negation, as do bitmaps; on the other hand, they can efficiently

encode thousands of binary attributes in less than a hundred bits. A comprehen¬

sive, up-to-date account of superimposed coding and a realistic application of it are

given in Roberts [1979]. In a typical large information retrieval system, even the

compression provided by superimposed codes may not relieve the necessity of

having the {P,} in secondary memory. An effective solution in this case is to struc¬

ture the codes in two levels, analogous to the use of a secondary index in ISAM,

thereby sharply reducing the number of secondary accesses [Sacks-Davis and
Ramamohanarao 1983].

112.4.3 STRUCTURES FOR GENERALIZED BINARY SEARCH 661

fl2.4.3 Structures for Generalized Binary Search

In dealing with attributes of data, we find that there are various modalities. The
most important of these are:

• qualitative data - the possible values are descriptive only, such as male for sex,
Protestant for religion, etc.;

• ordinal data — a discrete number of possible values can be ranked, but not
measured against one another, such as sophomore for class, blue for color, etc.;

• quantitative data — some metric such as time or length exists for comparing any
two values, such as years for age, miles for distance, etc.

Most of our treatment of multi-dimensional search has until now been concerned
with data that has many dimensions, or attributes, each of which is qualitative, or
perhaps ordinal. The structures that we examine now are particularly well suited
for dealing with data that has few dimensions, each of which is quantitative. The
simplest case, of course, is the familiar one of geometrical space of two or three
dimensions. For this reason, search employing these structures is commonly charac¬
terized as geometric search. In the same vein, typical search paradigms for these
structures are range-search and closest-match search, as described in Section 10.6.
Several data structures have been devised for these purposes; we will describe just
two of the most common ones. They represent two different manners in which to
generalize the technique of binary search. A broader treatment of structures for
these purposes is found in Bentley and Friedman [1979].

f 12.4.3.1 Quad Trees. The term quad tree actually describes several structures that
recursively decompose a region of two-dimensional space into four sub-regions, or
quadrants. As originally proposed and still commonly used, the recursion proceeds
on the locations of points in this space [Finkel and Bentley 1974], For a large class
of applications, it is more useful to decompose space into successively smaller
squares, as illustrated in Figure 12.21. The shaded regions and the clear regions in
(a) of this figure represent two classes of data in those areas, such as binary pixel
values. The quad tree representation of the entire region is shown in (b) of the
figure. It is conventional to attach the four child quadrants of a node in the order
N(orth)W(est), N(orth)E(ast), S(outh)W(est), S(outh)E(ast). Recursive decomposi¬
tion proceeds until each square is homogeneous. The leaves are tagged as being
black or white, according to the value of the data in that area, and internal nodes
are tagged as being gray. More efficient in many cases, however, is to terminate the
recursion at some threshold, and then apply a gray-scale value to the leaves. The
regularity of decomposition that we see in Figure 12.21 is beneficial in that it might
be used to good purpose via a parallel processing mechanism. It can also be a
source of complication when, for example, the natural form of input consists of
rectangles that overlap the quadrant regions. One of the principal reasons for using
quad trees to represent regions is that they can significantly reduce the space
required to store data. The space for a two-dimensional array of values is 0{n2).
For many types of two-dimensional images, however, the space requirement for the

corresponding quad tree is 0(n).

662 ISSUES WITH SECONDARY MEMORY

F G J

R S

T u

H 1 L M

D

V w
0

X Y

P Q

(a) Region Image

Figure 12.21 The Quad Tree Structure

The use of quad trees for storing point data is different in character and easily
described. In this case each node might represent a city, with its latitude and longi¬
tude as the two keys. Then, when presented with the latitude and longitude of a
search location, each iteration of an algorithm analogous to binary search would
discard three quadrants and look in the remaining quadrant. We will not pursue
their use in this regard, since the structure of the next section has been found to be
much better for many purposes. An extensive survey of quad trees and their repre¬
sentations is Samet [1984].

112.4.3.2 K-D TREES 663

112.4.3.2 k-d Trees. The k-d tree (^-dimensional tree) is a binary tree such that
the left (right) subtree of a node contains items with keys having values less than
(equal to or greater than) the value of a key stored at the node. (It is important to
accommodate the case of equality, since there may be many non-unique secondary
key values.) The decisive feature with k-d trees is that the comparison relation is
computed with different attributes, or keys, at successive levels of the tree. If the
keys were geographic coordinates, for instance, then latitude might be employed at
odd levels and longitude at even levels. Felicitously, k-d trees are useful for data¬
base types of search as well as for geometric search paradigms [Bentley 1979a], We
will employ the data of Figure 12.22 to try to illustrate the flexibility they bring to
the former type of search. The data in the figure might pertain to a history of
accomplishments by some precocious undergraduates. Each record contains values
for the attributes of name, age, and class. The simplest way to implement k-d trees
is according to the original proposal, whereby the attributes are used cyclically
[Bentley 1975]. An instance of a k-d tree built by cycling on them in the order of
class, age, name, and then class again is shown in Figure 12.23(a).

Record Name Age Class

1 Hoare 21 junior
2 Ullman 20 freshman
3 Knuth 21 senior
4 Tarjan 18 freshman
5 Codd 20 freshman
6 Graham 20 junior
7 Hoare 24 junior
8 Graham 19 sophomore
9 Tarjan 19 sophomore

10 Knuth 20 freshman
11 Bentley 24 senior
12 Tarjan 17 freshman
13 Yao 18 sophomore

Figure 12.22 Multi-dimensional Data

In practice, there are several ways to improve upon the k-d tree construction of
Figure 12.23(a). One is to employ a threshold, as with quad trees, to terminate
branching when there are only a few items left in a subtree. Another is to look for
a way to obtain more balanced trees. Clearly, whichever attribute is used at a given
level, the optimal choice of an attribute value is the median of those in that tree.
Even so, the cyclic choice of attributes can easily lead to comparatively unbalanced
subtrees. A way to avoid this is to employ adaptive partitioning, which means to
employ at each root of a subtree that attribute having the maximum dispersion of
values in that subtree [Friedman et al. 1977]. For this, each node must carry
along an explicit discriminator, or index, of the attribute to be used for the next
level in the tree. Applying this idea to the data of Figure 12.22 leads to the better
k-d tree of Figure 12.23(b), with the discriminator values (1) name, (2) age, and (3)
class shown with each node. Note that an attribute may be employed two times in
a row; an instance of this is age in the case of records #4 and #9. Also, we can

664 ISSUES WITH SECONDARY MEMORY

Class

Age

Name

Class

(a) Cyclic Attributes

(b) Adaptive Partitioning

Figure 12.23 Examples of a k-d Tree

112.4.3.2 K-D TREES 665

expect to see records on a given level of the tree employing different attributes for
discrimination at the next level; an example of this is records #7 and #8 using class,
#4 using age, and #10 using name.

The adaptive partitioning approach causes a k-d tree to be sensitive to the data
from which it is built, and this is one of its particular advantages. Even so, a k-d
tree can be somewhat inefficient for queries with respect to just one dimension. The
problem is that there may be many dimensions, and branching might occur on the
desired dimension at just every #th level of the tree. Thus, the work to compute a
partial-match with just one key specified may be 2k times what it would be in a BST
on that key. The good news, on the other hand, is that k-d trees share an impor¬
tant characteristic with the hashing techniques of Section 12.4.2. Specifically, the
work associated with a partial-match query goes down exponentially with the
number of attributes that are specified. With respect to range queries and closest-
match queries, k-d trees evidently have an average cost of 0(lg n).

There are some limitations to k-d trees, a principal one being a paucity of good
methods for using them dynamically. It is fairly easy to insert new nodes, and a
random k-d tree has the same expected value for maximum path length of
1.386 lg n as does a random BST (see Eq. 10.14). However, deletions present more
of a problem. Moreover, there are not as yet any good methods for rebalancing k-d
trees, and this is certainly an important issue for dynamic situations.

12.5 OVERVIEW

In Chapter 1 we stated that data structures are often fundamentally more significant
than algorithms for determining how efficiently or conveniently a task can be
performed. The consequences of choosing between algorithms are typically
expressed in varying complexity classes, and ultimately these differences prevail.
But the constant factors are also important. This is particularly true with secondary
memory, where the constants may vary by many orders of magnitude. The influ¬
ence of these constant factors upon the choice of data structure is substantial, and it
accounts for the variety of structures in this chapter. One can avoid deciding
between all of these structures by relying upon virtual memory, but this only hides

the issue and does not solve it, as we illustrated in Section 12.2.

In the progression of the file organizations in Section 12.3, we find parallels to
much of the previous course of this entire book. The earliest file organization (and
the only one for many years) was the sequential file; its analogues in primary
memory are the array and queue and stack. The first way of responding to the
need for dynamic structures in secondary memory was via hashing, which typically

relies upon linked lists (explicitly or implicitly) of synonyms. Another response was
via indexed sequential files, which are trees. And just as structures for maintaining
tree balance are important in primary memory, they are also vital in secondary
memory with B-trees. Lastly, although the issue was beyond the scope of this book
and thus barely exposed, the requirement to deal with multi-dimensional data has
analogues with graphs. In particular, some database models make use of the struc-

666 ISSUES WITH SECONDARY MEMORY

ture known as a hypergraph. Succinctly, whereas a graph conveys relationships
between pairs of vertices via edges, a hypergraph is a generalization that conveys

relationships among sets of vertices.

12.6 BIBLIOGRAPHIC NOTES

• Simulation is employed in Lum et al. [1971] as the basis for answering ques¬
tions about optimum bucket sizes, for deciding between open addressing and
chaining, and for responding to other random access issues. Analytical answers
to some of these questions can be found in Severance and Duhne [1976] and
van der Pool [1972, 1973b].

• The problem of designing files with multiple attributes so that they provide
good performance for many kinds of queries is a very difficult one, and it has
inspired a variety of ideas far beyond what we have room to describe. Among
the more interesting approaches are those of Abraham et al. [1968], Bolour
[1979], Bose and Koch [1969], Chow [1969], Ghosh [1972], Hsiao and Harary
[1970], Lum [1970], Schkolnick [1975], Shneiderman [1977], and Wong and
Chiang [1971],

• Data structures texts that treat the subject of database are Gotlieb and Gotlieb
[1978] and Tremblay and Sorenson [1984]. Texts devoted entirely to the topic
are Date [1981, 1983] and Ullman [1982],

• For alternative methods of employing bitmaps, particularly with regard to mini¬
mizing the number of accesses to secondary memory, and for analyses of their
performance, consult Burke and Rickman [1973], Pfaltz et al. [1980], and
Vallarino [1976],

12.7 REFERENCE TO TERMINOLOGY

t adaptive partitioning, 663 t least recently used (LRU), 627
f locality, 629

logical record, 619
multilist, 656
negation, 655

t associative block design, 658
B-tree, 643
B+-tree, 648

f B*-tree, 652
batch processing, 632
bitmap, 657
block search, 632
blocking factor, 619
boolean query, 655
bucket, 633
buffer, 620 t partitioned hashing, 658

t ordinal data, 661
overflow area, 634
page, 625
page fault, 625
page frame, 625

partial-match query, 655

f cache memory, 628
channel, 618

physical record, 619
t prefix B-tree, 652

primary key, 655 t closest-match query, 655

12.7 REFERENCE TO TERMINOLOGY 667

conjunction, 655
cycle stealing, 619
cylinder, 620
dense index, 630

f dense multiway tree, 652
direct-access device, 620
disjunction, 655

t dynamic hashing, 654
end-of-file (EOF), 632

f extendible hashing, 652

t false drop, 660
| geometric search, 661

indexed sequential access, 638
inter-record gap (IRG), 619
inverted file, 656
jump search, 632

t k-d tree, 663
f key compression, 631

latency, 621

prime area, 634
t quad tree, 661
f qualitative data, 661
t quantitative data, 661

random access, 633
range query, 655
secondary key, 655
sector, 620
seek time, 621
segment, 625
sequential access, 632
serial access, 632
simple query, 655
sparse index, 630

f superimposed coding, 660
thrashing, 627
track, 620
VSAM, 650
working set, 627

12.8 EXERCISES

Sections 12.1 — 12.4

12.1 How many logical records of 100 bytes each can be stored on a tape that is
2000 feet long with a recording density of 1600 BPI (a) if the blocking factor is 5?

(b) if the blocking factor is 40?

12.2 [Belady et al. 1969] We can model the behavior of a paging algorithm
against the execution of a given program as follows. Let the pages that are succes¬
sively referenced by the program be given by a string of page numbers, as for
example: 12341251234 5. Suppose now that a FIFO replacement algo¬

rithm is used, and that we have slots A,B,C for three pages in main memory. Then
the history of the page slots in time will be as follows, where a period indicates an

empty slot and an underscore indicates the most recent reference.

A: l 1 1444555555

B: . 22211 1 11 33 3

C: . . 3332222244

We can see that this set of circumstances incurs nine page faults: 1,4, 5 in A and
2 1 3 in B and 3, 2, 4 in C. Suppose that we now try to improve matters by allo¬
cating four page slots instead of three. Trace the paging activity for this case, as

above, and describe what happens.

668 ISSUES WITH SECONDARY MEMORY

12.3 Describe briefly the essential differences between serial and sequential access.

fl2.4 [Dijkstra 1976] Even though batch processing is a venerable style of
computation, it engenders the File Update Problem. Even after many years of exist¬
ence, it is frequently solved in a clumsy fashion. This is a pity, because it has clean
and elegant solutions. In this problem, there are two sequential files as input:

1. An Old Master File, consisting of one record per key, and (for our purposes)
containing an account key and an account balance in each record.

2. A Transaction File, consisting of possibly many records per key. Each record is
one of three types: (I)nsertion, specifying that a new account with the given key
and a zero balance is to become part of the Master File; (U)pdate, applying a
positive or negative increment to the balance; or (D)eletion, specifying that the

given record for that key is to be removed from the Master File.

It is neither possible nor efficient to update the Old Master File directly, and so we
construct as output a New Master File, consisting of one record per key, with
balances reflecting the contributions from the two inputs. Artificially high keys are
used as sentinels to mark the ends of all three files.

The reason that solutions to this problem are often clumsy has to do with their
manner of dealing properly with exceptional conditions. In particular, various
combinations of missing and repeated keys in the two input files make it tricky to
synchronize matters. Thus, an attempt to insert a key already present in the Master
file, or to delete a key not already present, signals an error, as does an attempt to
update a key that is not currently valid. However, the transaction file may contain
a succession of records such that a key is deleted, then reinserted, then updated
several times, then deleted again, etc. Write a program to perform Sequential File
Update, and test it against the following input:

Old Masters: 5, 21 / 8, 9 / 10, 7 / 18, 31 / 999, 0
Transactions: U, 8, 3 / D, 8 / U, 8, 2 /1, 8 / U, 8, 40 /1, 10 / D, 15 /

U, 18, -1 / U, 18, 11 / U, 18, -4 / I, 24 / U, 24, 5 / 1, 999

12.5 Describe briefly the essential differences between indexed-sequential and
direct access.

12.6 What are the significant differences between using hashing for main memory
and using it for secondary memory?

12.7 For the following two patterns of collisions, compute the corresponding
values of overflow percentage OP, and also the average number of accesses AA,
both with chaining and with open addressing.

x
x

Bucket Size = 1

Bucket Size = 2

12.8 EXERCISES 669

f 12.8 Assume that the keys 1 .. 29 are inserted, in that sequence, into initially
empty B-trees, for the cases (a) and (b) below. Draw the trees as they appear imme¬
diately after each insertion that has affected more than a single node. For this
exercise, when equality of balance is not possible, always split off nodes with greater
numbers of entries to the left. Take care to be exact in applying the various rules.

(a) Do this for a B-tree of order 6.

(b) Do this for a B*-tree of order 6.

tfl2.9 The “other half’ of Exercise 10.26 is deletion from a 2-3 tree. Analyze
and diagram the various cases for this, making note of any arbitrary algorithmic
choices. Then write the program and test it in the following manner. Start with the
2-3 tree obtained by inserting 1 .. 20 as in Exercise 10.26, and then try four patterns
of deletions. For each pattern, start counting with the first item and then delete
exactly 13 items, each time selecting the next item to be deleted as the rath of the
remaining items, in the style of the Josephus problem (see Exercise 4.7). Do this for
ra = 2, 3, 5, and 8. What are the final 2-3 trees for the four cases?

ff 12.10 Write an algorithm to perform search and insertion for extendible hash¬
ing, such that if search fails then the item is inserted. Presume that initially the
depth of the directory is d = 2, and do not consider the possibility that the directory
may require more than one “page.” Also assume that leaf pages hold just four
items and that they are initially empty. Test your program against a random
sequence of 40 insertions, and display the contents of the directory and the hash

table just before and just after each split.

•ftl2.ll Prove the following about an ABD (k,w) design:

(a) Each column contains a total of bit values.

(b) For any 0 < u < w, there are (^j rows which agree in exactly u positions with

any given record in {0,1}*.

(c)
wb

w ~ 2(b - 1)

fl2.12 Draw the k-d tree that is obtained for the data of Figure 12.22 when the

attributes are employed in the cycle: name, age, class, etc.

ffl2.13 Write an algorithm to do insertion into a k-d tree. Test your program by
applying it to the data of Figure 12.22, using the cycle: name, age, class, etc.

13

SORTING

“Light shone, and order from disorder sprung.”

Milton,

Paradise Lost, Bk III

“Better late than never, as Noah remarked
to the Zebra, which had understood

that passengers arrived in alphabetical order.”

Bert Leston Taylor,
The So-Called Human Race

The advantages of having items ordered according to the values of their keys are
very compelling. We find data arranged this way in dictionaries, in libraries, in
timetables, and in countless other places. Much of the motivation for having this
orderliness stems from the needs of humans. For example, although hashing can be
very efficient as a means of searching for an item with a computer, it is decidedly
inconvenient for use by people. Sorting is also commonly used as a preprocessing
step for expediting subsequent searches with computing machines. Thus, whether
for the sake of people or machines or both, this need for order is reflected in the
commonly accepted statistic that computers spend more than one-quarter of their
time performing the sorting function.

Sorting is a fundamental process, and it also illustrates very nicely the practical
benefits of many of our previous studies. Thus, even though much of the story of
sorting relates to discoveries now one or two decades old, and which are treated
definitively in Knuth [1973b], it behooves us to give it the special attention of this
chapter. Our objective is to be thorough, though not nearly so complete as Knuth,
and to bring the subject up to date in the areas where there is recent invention.

Just as in the case of searching, we need to begin with a few mathematical
concepts, dealing in the present case with some properties of permutations. After
that, most of Section 13.2 is drawn from the “classical” material on sorting
described in the preceding paragraph. More precisely, it discusses internal sorting
methods that can be used when main memory is large enough to hold all the data
to be sorted. A problem that is related to sorting, yet simpler, is that of selection,
as in the example of finding the third largest item from a set; this is the topic of

SORTING 671

Section 13.3. When main memory is not large enough to hold all the data to be
sorted, some very different methods in Section 13.4 for external sorting are appro¬
priate. The final topic is an active area of current research, that of methods for
parallel sorting.

13.1 THE ISSUES INVOLVED

Given a sequence of items that have keys, we say that they are sorted if Kt < Kj
whenever i < j. When we are dealing with numeric keys, the proper ordering
between pairs of keys is clear. The situation for alphabetic keys is less obvious,
being crucially dependent upon the collating sequence of the character set (see
Section 8.2.1). But there are few differences in principle between alphabetic keys
and numeric ones, and for the most part we we will employ numeric keys in the
interests of simplified exposition. We can regard a sequence that is in order as the
identity permutation, and a sequence S that is not in order as some permutation P
applied to the identity. Then sorting amounts to finding the inverse permutation
P~x that should be applied to the sequence S so that it will be in order. A very
useful concept in this regard is that of the number of inversions in a permutation, to

be discussed in Section 13.1.1.

It is possible, of course, that values of keys may be repeated within a sequence;
such a case would occur, for example, when sorting a group of transactions based
upon account numbers. However, this is somewhat of a distraction from our princi¬
pal objective of elucidating the various methods; so we will not treat the case of
repeated key values in any systematic fashion. In fact, we will commonly use the
following sequence in the course of illustrating a variety of methods:

33 41 7 15 55 87 28 22 9 46 32 (13.1)

There is one aspect of the repeated-key case that cannot be ignored, however.

Suppose that we have the data items

3 lj 5 12 4j 2i 42 22 13

where equal keys are distinguished by subscripts corresponding to their relative
positions originally. Then it may be important that the sorted sequence should

retain this secondary ordering, as in

ll 12 13 2X 22 3 4j 42 5

If a sorting technique is guaranteed to preserve this secondary ordering, it is said to
be a stable sort. Although stability is important in some applications, it is irrelevant
in others. The latter fact is a fortunate one, since several of the sorting methods

that are fastest are also unstable.

The principal criteria for comparing sorting methods are, as heretofore, time
complexity foremost, and space complexity secondarily. For searching, most of our
discussions centered on the number of comparisons required in order to locate a

672 SORTING

record with a given key. An important difference now is that the output of a sort is

a permutation of the input, and so we need to measure work in terms of moving
data as well as comparing keys. Moreover, some sorting algorithms perform the
same amount of work regardless of the actual input; that is, they are oblivious (see
Section 1.3.2.2). On the other hand, many methods are not oblivious, so that their
minimum and maximum complexities are very different from their average complex¬

ities. This sometimes gives rise to what could be termed “pathologies,” or perverse
behaviors, associated with certain combinations of sorting method and input permu¬
tation. We will find that the time complexities of the sorting methods do not vary
greatly, with 0(n2) and 0{n lg n) being most typical. In practice, the size n is often

very large, so that even this modest difference becomes extremely significant.

type index = 0 .. size; {size = n}
item = record

key: integer;

end;
items = array [index] of item;

Figure 13.1 Type Definitions for Sorting

Sorting is conveniently characterized in terms of permuting the elements of an
array from an input sequence to an output sequence. With this in mind, we will

presume throughout this chapter that the type definitions of Figure 13.1 apply.
Given that n may be very large and that arrays are highly efficient in use of storage,
this is also by far the most natural characterization. When we account for the
movement of records, however, and particularly if the records are large, then two
other possibilities might be considered - the use of linked lists, and the use of a
table for indirection. By way of illustration, suppose that we have the array

elements shown in Figure 13.2(a). Then the sorted array, would be, of course, as
shown in (b). The effect of sorting the same data using cursors as links is shown in
(c) of the figure. Finally, we see in (d) of the figure the use of a table for indi¬
rection; sorting via this latter technique is called an address table sort. In

employing this last method, it may happen that the records are long but the keys
are short. It would probably be better in that case to operate upon direct copies of
the keys rather than indirectly upon the keys in the original records; this variation
is known as key sorting. For many (but not all) of the sorting methods, we can

always incorporate one of these structures if it is warranted, so we lose little and
gain simplicity in exposition by sticking with the array representation.

As a concluding note, output in the form of a linked list or an address table
may be adequate, or we may still need to physically permute the records. The prob¬

lem of generating the rearrangement corresponding to an address table is closely
related to the generation of the inverse of a permutation, using its cycle structure

(see Exercise 2.9). The problem of generating the rearrangement corresponding to a
linked list is the subject of Exercise 13.5.

13.1 THE ISSUES INVOLVED 673

1 25 1 25 0
2 13 2 13 4
3 20 3 20 1
4 16 4 16 3

(a) Unsorted Data (c) Linked List Sort
(head = 2)

1 13 1 2 1 25
2 16 2 4 2 13
3 20 3 3 3 20
4 25 4 1 4 16

(b) Sorted Data (d) Address Table Sort

Figure 13.2 Structures for Sorting

13.1.1 Inversions

If a sequence is not in order, it is useful to quantify its relative unsortedness. A
convenient measure for this is the number of inversions by which the corresponding
permutation differs from the identity. There is an inversion for every pair (j,i) such
that j > i and j is to the left of i. Moreover, for a given permutation, let bk repre¬
sent the number of inversions in which k is the second member of a pair. The
sequence bx, b2,..., bn is called the inversion table of the permutation. Thus the
permutation 279485361 would have the inversion table 805233010 where,
for example, b5 = 3 because of the three inversions (7,5), (9,5), and (8,5). The inver¬
sion table entries must clearly have the property that 0 <bk<n-k. The greatest
number of inversions in a permutation will occur for n, n — 1,..., 1; it will have the
corresponding inversion table n — 1, n — 2,..., 0. Summing these entries, we find
that the maximum is 0(n2/2); the average number of inversions in a permutation is
easily found to be 0(n2/4). Inversions have the remarkable property that it is easy
to go in the opposite direction, constructing the permutation corresponding to a
given inversion table. We simply start with b„ and work our way to the left, drop¬
ping each value k into the permutation sequence in the manner dictated by bk. To

illustrate using our original example,

for Z>8 = 1, place 8 with 9 yielding 9 8
for b7 = 0, place 7 with 9 8 yielding 7 9 8
for b6 = 3, place 6 with 7 9 8 yielding 7 9 8 6
for b5 = 3, place 5 with 7 9 8 6 yielding 7 9 8 5 6

etc.

In constructing a random permutation of 1 .. n, we have to be careful that the
generated elements are distinct. If we define a random permutation in terms of its
inversion table, however, we can take advantage of the fact that the bk are inde¬
pendent of one another. For example, what is the average number of maxima seen
in scanning a permutation from right to left? (In our example there are four such

674 SORTING

maxima, at 1, 6, 8, 9.) Now for any such maximum k, all the values j > k must
occur to the left of it; in other words, for that value of k, bk has its maximum value
of n - k. The average number of right-to-left maxima is then equal to the sum of

the independent probabilities that bk — n — k, which is

i+y + + + 7T

This sum is instantly recognizable as the nth harmonic number Hn. In fact, from
our discussion of harmonic numbers in Section 10.1.1, we see that this is really a
familiar problem. In that section we recounted that permutations can be expressed
in cycle notation in a canonical manner (see Section 1.2) by arranging for each cycle
to begin with its smallest element, and then writing the cycles in decreasing order of
these first elements. In this fashion, our sample permutation 279485361
becomes (5 8 6) (4) (1 2 7 3 9). Recall that we can omit the parentheses and write
this as 58641273 9, because the parentheses (and thus the cycles) can be recon¬
structed by looking for left-to-right minima. But looking for minima is isomorphic
to looking for maxima, and looking from left to right is isomorphic to looking from
right to left. In other words, in analyzing permutations in terms of inversions, we
once again discover that the average number of cycles in a random permutation on
n elements has the value Hn.

13.2 INTERNAL SORTING

We have spoken of the variety of sorting methods. How many are there, really?
From one point of view, there are just five generic methods. Four of them operate
via comparisons between pairs of keys in one manner or another, and we will
describe them first. The fifth generic method can be lumped under the category of
distribution sorting, and we treat it distinctly from the other methods, in Section
13.2.2. These generic methods are “no-frills” offerings that have the virtues of
simplicity and low programming effort. However, most of them have complexity
0(n2)\ and so for large n, it is worthwhile to consider “brand-name” offerings that
are not as simple but have lower complexity. There are scores of such sorting meth¬
ods. Generally, though, we will examine just one efficient counterpart for each of
the generic methods.

13.2.1 Comparison-Based Methods

The comparison-based methods are: insertion sorting, selection sorting, exchange
sorting, and merge sorting. At first acquaintance, the distinctions among the first
three of these will seem to be rather illusory, in that the operations of insertion,
selection, and exchanging can be found to occur in all three of them. Indeed, some
of the earlier surveys of sorting methods (such as Martin [1971]) employ classifica¬
tions different than those employed here. However, the distinctions that we will be

13.2.1 COMPARISON-BASED METHODS 675

making are useful ones that are by now well accepted. Before proceeding, we
should ask whether these methods (and distribution sorting) are really the only
generic methods. The answer is, not quite.

We are already familiar with the possibility of using BST’s for the purpose of
sorting (see Section 6.6.1); this method even has good complexity (see Section
10.3.1). Nonetheless, because of the space requirement for two link variables with
each key, it is unlikely to be used for large values of n. Another method is enumer¬
ation sorting. Imagine that a list of unique values of numerical grades has been
posted, and that we wish to determine our relative rank in the class. We can ascer¬
tain the rank by using that list to count j, the number of grades that are greater
than ours. Our rank is then given by j + 1. Indeed, every student in the class can
determine his rank in the class in the same fashion. Note that we have not actually
permuted the data items by this process. Rather, the array of rank values that we
obtain is related to the auxiliary array of values in an address table sort. To be
precise, the permutation specified in the counting case is the inverse of the permuta¬
tion specified in the address table case. It is easy to see that enumeration sorting is
0(n2), so that it is neither better nor worse than the generic methods that we have
cited. Since there does not seem to be any way to improve enumeration sorting so
that it is better than 0(n2), as with the other methods, it is rarely accorded equal
status with them. (However, we will see an exception to this in Section 13.5.)

13.2.1.1 Insertion Sorting. Insertion sorting is easily understood in the familiar
terms of repeatedly picking up playing cards and inserting them into the proper
position in a partial hand of cards, thereby maintaining the cards in order. Let us
apply this process to our sample input of Eq. 13.1. Matters progress as illustrated
in Figure 13.3, with the numbers below (above) the diagonal constituting the sorted
(unprocessed) portions of the input. The work for each new number Kj (just above
the diagonal) consists of comparing it with numbers Kt to its left until we find
K, < Kj, or until we reach the left end of the list. Rather than test for both eventu¬
alities each time, it is better to put a sentinel at the left end. Corresponding to this,
we have the procedure INSERT_SORT (Algorithm 13.1), wherein the text of
Figure 13.1 is implicitly included. The method would also sort properly if the
comparison were K, < Kp rather than Kt < Kj. But then, for equal keys, the
execution time would increase; more significantly, the method would change from

being stable to being unstable.

For random data, each of the n keys must be compared against a sequence to
its left of average length n/2, and each of those searches will be of average length
nj4. Moreover, compares and moves are interspersed in this algorithm. Thus,
insertion sort entails 0(n2/4) comparisons and 0{n2/4) moves. We can obtain a
more meaningful picture, however, by reflecting upon the work performed by the
inner loop. Each comparison that results in a move is the result of an inversion in
the input permutation, and each such move reduces the number of inversions by
one. Since the average number of inversions is 0(n2l4), we thus have direct confir¬
mation of the expected complexity of insertion sort. Of greater significance, we see
that since the work is proportional to the number of inversions, then insertion sort
will perform much better than average with input data for which the degree of

676 SORTING

procedure INSERT_SORT (var data: items);

const ninf = {a large negative value as sentinel}

var i,j: index;
rcrd: item;

begin
data [0].key := ninf;
for i := 2 to size do begin

j := i - 1; rcrd := data [i];
while rcrd.key < data [j].key do begin

data Q + 1] := data [j];

end;
data G + 1] := rcrd;

end;
end;

Algorithm 13.1 INSERT_SORT

unsortedness (the number of inversions) is low.1 In fact, because of its extreme
simplicity and because it performs so well in this case, insertion sort as in Algorithm
13.1 is the recommended method for data that is nearly sorted.

In analyzing the performance of any algorithm, we must be very careful to
understand the assumptions underlying the analysis. The importance of this is illus¬
trated when we examine insertion sort more closely, seeking ways in which to
improve it. Since the search is conducted on an ordered array, we might try replac-

1 The number of inversions is not the only possible measure of unsortedness. Other
measures of disorder are discussed in Section 13.2.4.

13.2.1.1 INSERTION SORTING 677

ing the sequential search with binary search, leading to the method known as binary
insertion. This would reduce the overall complexity of the search from 0(n2) to
0(n lg n). Unfortunately, there is no corresponding reduction in the complexity of
the moves, so this approach has limited practical utility. In fact, for the occasions
when insertion sort is most appropriate - that is, with data that is nearly in order
— binary search might even be less efficient than sequential search. There is a
significant way to improve the performance, however. We should recognize that the
process of inserting an element into an array by shifting some of the array contents
is much less efficient than inserting an element into a linked list, which requires
changing two link values. By the latter approach, although we still have 0{n2l4)
comparisons, we have only 0(n) moves! Although this modification is very worth¬
while (see Exercise 13.4), it still does not overcome the 0(n2) barrier. That is the
subject of the next section.

13.2.1.1.1 Shellsort. In order to break the 0(n2) barrier with insertion sorting (and
for that matter with any of the generic methods), we need to reduce the number of
inversions by more than one on each iteration. A method that accomplishes this in
the present case is Shellsort, named after its discoverer [Shell 1959]. It is also called
diminishing increment sort, which captures the essence of the method — to perform
insertion sorts with a series of increments hs that diminish to one on the last pass.
In the earlier stages, each move of an element from the ith to the (z + hs)th position
can have the effect of eliminating several inversions. Since the last pass employs an
increment of one, it is equivalent to ordinary insertion sorting, and so the output of
the pass must necessarily be sorted. Because of the previous stages, however, this

last pass will encounter relatively few inversions.

We illustrate the technique for our example data, employing increments of
5, 3, 1. Each pass with a particular hs consists logically of hs distinct insertion sorts,
conducted upon values that are hs apart in the data. This is not as complicated as it
may sound, as can be seen by reference to Figure 13.4. In (b) of the figure, we have
offset the five chains corresponding to /z3 = 5 on five lines, and in (c) and (d) of the
figure we see the final values of this pass. The sequence is now said to be 5-sorted.
The next pass uses h2 = 3, and parts (e) and (f) of the figure show the corresponding
chains before and after sorting. The sequence at this point is said to be 3-sorted.
In fact, the transition from (e) to (0 has required just four upward moves, but it has
reduced the number of inversions from 18 to 8. The chains for hx = 1 are shown
before sorting in (g) and after sorting in (h). The detailed procedure to perform all
of this is SHELLSORT (Algorithm 13.2). In reducing the above description to
code, it is expedient to have each pass scan the array just once from left to right,
rather than trying to isolate hs chains each time. Thus, the algorithm rotates among
the distinct chains as it proceeds, rather than following the sequence just described.

The logical effect is identical though.

Two related and unresolved issues about Shellsort are the optimum choice of a
sequence of increments, and its complexity. These matters are explored masterfully
in Knuth [1973b], and the remainder of this section draws heavily upon it.
Suppose, to begin with, that we have just two increments, the last being hx = 1.
Then it can be shown that the optimum choice for h2 is approximately 1.72n1/3,
yielding an average performance of 0(zz5/3). However, it is more effective to employ

678 SORTING

(a) 33 41 7 15 55 87 28 22 9 46 32

33
41

87
28

32

(b) 7
15

55

22
9

46

32
28

33
41

87

(c) 7
9

46

22
15

55

(d) 32 28 7 9 46 33 41 22 15 55 87

32 9 41 55

(e) 28
7

46
33

22
15

87

9 32 41 55

(0 22
7

28
15

46
33

87

(g) 9 22 7 32 28 15 41 46 33 55 87

(h) 7 9 15 22 28 32 33 41 46 55 87

Figure 13.4 Trace of Shellsort

procedure SHELLSORT (var data: items);

const t = 3; {for this example}

var done: boolean;
h,j,s: index;
i: integer;
incr: array [1 .. t] of index;
rcrd: item;

begin
incr [1] := 1; incr [2] := 3; incr [3] : = -5;
for s : = t downto 1 do begin

h := incr [s];

for j := h + 1 to size do begin
done := false; i := j - h; rcrd := data Q];
while (i > 0) and (not done) do

if rcrd.key >= data [i].key then
done := true

else begin
data [i + h] := data [i];
i ! = i - h;

end;
data [i + h] := rcrd;

end;
end;

end;

Algorithm 13.2 SHELLSORT

13.2.1.1.1 SHELLSORT 679

a greater number of increments. The original description of Shellsort suggested the
sequence L(n/2), L(«/4), L(«/8), However, it has been shown that if a sequence of
hs satisfies such a divisibility property with respect to any set of divisors, then it
cannot yield an average performance better than 0(n312). Moreover, the worst-case
performance with such a sequence is 0{n2). For maximum effectiveness, the hs
should be relatively prime to one another; in this case, there is more mixing among
the data items, which leads to a faster reduction in the number of inversions. In
this mixing, a remarkable property becomes significant. If we have a sequence that
has already been y-sorted and we then A>sort it, the output of this latter pass is still
y-sorted! We leave the proof of this fact as an exercise (see Exercise 13.7), but its
truth can be seen in Figure 13.4.

Despite considerable research, no one knows even the optimal number of incre¬
ments to employ for a sequence of size n, much less the optimal set of values.
Knuth suggests using hx — 1 and hs+l = 3hs+ 1, stopping with h, when ht+2 > n; the
sequence in this case is 1, 4, 13, 40,.... This suggestion and several others seem to
yield a performance that can be approximated either as 0(n lg2«) or as 0(«5/4), with
some evidence that the exponential form is closer to reality. There is still the tantal¬
izing possibility, however, that some sequence may be found which will yield an

0{n lg n) average performance.

13.2.1.2 Selection Sorting. With this method we repeatedly look for the smallest
remaining key and then move it to its final position. It is instructive to compare the
effect of insertion sort with that of selection sort. With the former we examined
one new key each cycle and maintained the growing output in correct relative order,
but could not be sure that any item was in its final location until the last cycle.
With selection sort we examine the entire (remaining) input each cycle, and we
always know that the initial portion of the output contains its final values. This is
illustrated with our example data in Figure 13.5, wherein the numbers below
(above) the diagonal constitute the sorted (remaining) portions of the input. The
corresponding procedure is SELECT_SORT (Algorithm 13.3), with the text of

Figure 13.1 implicitly included once again.

Selection sorting requires about twice as many comparisons as insertion sorting,
on the average, since each outer loop examines the entire remaining sequence, yield¬
ing 0(n2l2) comparisons. However, it requires just 0(n) moves. This latter fact
suggests that selection sort might be appropriate when the underlying records are
large. Nonetheless, the method is still 0(n2) overall. This shortcoming is more
significant here than it was with insertion sorting, because selection sorting is an
oblivious method. That is to say, selection sorting will execute its 0{n2/2) compar¬
isons and 0(n) moves even if the input is already sorted! Thus, it is not a good

method to apply to input data that is nearly in order.

13.2.1.2.1 Heapsort. With ordinary insertion sorting, we saw a fundamental limi¬
tation due to the necessity to make as many data moves as there are inversions.
The fundamental shortcoming with ordinary selection sorting, on the other hand, is
that we are obtaining a great deal of information in each outer loop, but then ignor¬
ing it and reconstructing the same information again in the next cycle. One way to

680 SORTING

Figure 13.5 Trace of Selection Sort

procedure SELECT_SORT (var data: items);

var i,j,k: index;
lo: integer;
rcrd: item;

begin
for i : = 1 to size - 1 do begin

k := i; rcrd := data [i]; lo := rcrd.key;
for j:= i + 1 to size do

if data [j].key < lo then begin
k := j; lo := data [jj.key;

end;
data [i] := data [k]; data [k] := rcrd;

end;
end;

Algorithm 13.3 SELECT_SORT

redress this situation would be to employ divide-and-conquer, splitting our original
data into nl'2 groups of nll2 items each, and using a work area of size nl>2. We begin
by placing the smallest item from each group in a corresponding work location.
Then we repeatedly (a) select the smallest item from the work area, and (b) replace
it with the next largest item out of the group from which it originated. Such a
method is called quadratic selection sort, and has complexity 0(n3'2). Better still,
however, is to organize our comparisons as a tournament, in the manner shown in
Figure 13.6 for our example data. In other words, we could place our data at the
leaves of a complete binary tree and make a series of pairwise comparisons, always
promoting the smallest value to be the parent. By this process, the smallest key will
be promoted to the root. Then, when we remove the lowest key from the root, we
can determine the next “winner” with just fig n further comparisons. Indeed, such

13.2.1.2.1 HEAPSORT 681

a method is feasible, and is termed a tournament sort. However, it requires space
for 0(n) internal nodes in addition to the 0(n) leaves, and we must be careful to
mark the empty nodes as promotions drain the tree. The latter effect is illustrated
in Figure 13.7.

7

33 7 55 28 22 9 46 32

33 41 7 15 55 87

Figure 13.6 Tournament Sort

7

OO OO 00 00 OO 87

Figure 13.7 A Tournament with Promotions

An ingenious method that attains the effect of a tournament sort without the
shortcomings just described is Heap sort. It operates, as the name suggests, by
employing the heap data structure of Section 6.6.4. To be precise, we regard our
array of data as a complete binary tree, with the data at all of the nodes, and not
just the leaves. The method has two phases. In the first we convert the tree to a
heap by iteratively applying the heap condition to each internal node, starting at the
last and working our way up to the root. Thus, our example data as a complete
binary tree is shown in Figure 13.8(a). In (b) of the figure we begin applying the
heap condition at location 5 (value 55), and repeatedly apply it until we get to

location 1. The following exchanges take place:

15 and 22, 7 and 87, 41 and 55, 41 and 46, 33 and 87

Note how the exchange of 41 and 55 forces a subsequent exchange of 41 and 46.
At the conclusion of the first phase, we then have the heap as in (c) of Figure 13.8.

It may seem strange that we have applied the heap condition in the sense of
promoting the largest value each time, rather than the smallest. Even stranger

682 SORTING

33

41 7

15 55 87 28

22 9 46 32

(a) Complete Binary Tree

87

55 33

22 46 7 28

15 9 41 32

(c) Initial Heap

46

22 32 7 28

15 9 55 87

(e) After 2nd Pass of 2nd Phase

87

55

46 33

22 41 7 28

15 9 32 87

(d) After 1st Pass of 2nd Phase

7

22 28 32 33

41 46 55 87

(f) Sorted Array

Figure 13.8 Trace of Heapsort

perhaps, the second phase of Heapsort proceeds by repeatedly truncating the heap,
exchanging the value at the root with the value at the truncated position, and then
restoring the heap property. Thus, the first pass in the second phase exchanges 87
and 32, and then restores the heap property by the further exchanges:

32 and 55, 32 and 46, 32 and 41

leading to the situation in Figure 13.8(d). The second pass of the second phase
exchanges 55 and 32, and then restores the heap property by the further exchanges

32 and 46, 32 and 41

All of this leads to the situation shown in (e) of the figure, and eventually we obtain
the sorted arrangement shown in (f) of the figure. In fact, this mechanism is exactly

13.2.1.2.1 HEAPSORT 683

procedure HEAPSORT (var data: items);
var i: index;

rcrd: item;

procedure SIFT (left,rite: index);
label 1;
var j: integer;
begin

j := 2 * left; rcrd := data [left];
while j <= rite do begin

if j < rite then
if data [j].key < data G + 1].key then

j := j + 1;
if rcrd.key >= data Gl-key then

goto 1;
data [left] := data Q]l
left := j; j := 2 * j;

end;
1: data [left] := rcrd;
end;

begin
for i := size div 2 downto 1 do
{transform original tree into heap}

SIFT (i,size);
for i := size - 1 downto 1 do begin
{swap root (largest) with last and restore heap}

rcrd := data [i + 1];
data [i + 1] := data [1];
data [1] := rcrd;
SIFT (1 ,i);

end;
end;

Algorithm 13.4 HEAPSORT

the same that we used for removing an item from a priority queue implemented as a

heap. It is also the basis for accomplishing the first phase of Heapsort; we just

vary the subrange of the array upon which we operate!

Putting all of this together leads to the procedure HEAPSORT (Algorithm

13.4), where the sub-procedure SIFT is almost identical to REMOVE_PRQ_H

(Algorithm 6.7). One might easily suppose, because of all the data motion, that

Heapsort is not very efficient. Not only that, in converting our original array of

values to a heap, we have actually increased the number of inversions, from 27 to

38. Nonetheless, for large n, Heapsort is the most efficient method that we have

encountered so far. Both the heap creation phase and the selection phase consist of

0(n) calls upon the procedure SIFT, and each such call can involve no more than

0(lg n) exchanges along a path from an internal node to a leaf. (Note that, for a

series of n related exchanges, we do not actually perform 3n moves, but rather n + 2

684 SORTING

moves.) Thus Heapsort is 0(n lg n), even in the worst case; that is, it is a &{n lg n)
sorting method. In fact, the first phase can be shown to be 0{n) (see Exercise
13.11). This is not very relevant for sorting with a heap, since the second phase is

still 0(n lg n), but it is significant for other applications of heaps.

There is a distinction between tournament sort and Heapsort that is a bit subtle
and sometimes significant. With the former, we know exactly the number of
comparisons and promotions that are required. Namely, there are n — 1 for setting
up the tournament and Tig {n - 1) for promoting a winner out of the tournament.
With the latter, we know that the number of comparisons (and exchanges) is 0(n)
for setting up the heap and 0(lg n) for promoting a winner out of the heap;
however, we do not know the exact values. Consequently, if our focus is on devel¬
oping a good algorithm, we would probably prefer to use a heap; on the other
hand, if our focus is on getting accurate counts in developing complexity bounds,
we should employ a tournament. Instances where this distinction matters can be

found in Sections 13.3 and 13.4.2.

Although analysis of the average complexity of Heapsort is incomplete, the
average amount of computation is found to be fairly stably approximated by n lg n.
Thus, the best case of Heapsort for 8 items is exemplified by 87632451, with 21
comparisons and 13 exchanges. Yet the corresponding worst case, as exemplified by
1 5 2 6 4 3 7 8, is not that much worse; it requires 29 comparisons and 24
exchanges. These results also illustrate a general feature of the method, that
performance is better for input data that tends toward descending order than it is
for data that tends toward ascending order.

13.2.1.3 Exchange Sorting. In the generic form of exchange sorting, we repeatedly
compare pairs of elements, exchanging them if they are out of order, until no out-
of-sequence pairs remain. The most common method for doing this is to start at
the beginning of the sequence and compare Kt and + 1 for successive values of i
from 1 to n — 1. This will sweep the largest value to the last position. The entire
process is then repeated for values of i from 1 to n — 2, then from 1 to n — 3, etc.
The observed behavior has been likened to that of bubbles rising in a liquid, with
the result that this method is called bubble sort. We observe that successive cycles
can terminate with successively smaller values: n — 1, n — 2, etc. In fact, we can do
even better by keeping track of the last location bound where an exchange occurred
during a cycle of the outer loop. Because no exchanges occurred thereafter, the
remainder of the sequence must be order; so bound — 1 is an appropriate right-
hand limit for comparisons on the next cycle of the outer loop. With this
refinement, a trace of bubble sort upon our example data is shown in Figure 13.9;
included in the trace is the value of bound after each cycle of the outer loop. The
corresponding procedure is BUBBLE_SORT (Algorithm 13.5).

For estimating the efficiency of bubble sort, we find that inversions are useful in
two ways. Since each basic exchange operation reduces the number of inversions by
just one (as in insertion sorting), and since the average number of inversions is
0(n2/4), we can see that bubble sort is basically an 0{n2) method. However, each
exchange involves three moves, so that the average number of moves is actually
0(3n2/4) - far inferior to either insertion or selection sorting. The estimation of
the average number of comparisons is more complicated, since it depends upon the

13.2.1.3 EXCHANGE SORTING 685

procedure BUBBI_E_SORT (var data: items);

var bound,i,j: index;
rcrd: item;

begin
bound := size;
repeat

j := 0;
for i := 1 to bound - 1 do

if data [ij.key >= data [i + 1].key tnen begin
rcrd := data [i];
data [i] := data [i + 1];
data [i + 1] := rcrd;
j : = i;

end;
bound := j;

until bound = 0;
end;

Algorithm 13.5 BUBBLE_SORT

average number of iterations of the repeat ... until loop. In this regard, it is useful
to look at the complete inversion table. We find that each outer iteration of bubble
sort reduces each non-zero value of bt by one. For example, with reference to
Figure 13.9, the initial value of the inversion table is 2725450020 0, after the
first pass it’ is 1 6 1 4 3 4 0 0 1 0 0, etc. Thus, the number of outer cycles is deter¬
mined by the largest expected value among the b,. This can be shown to lead to the
result that the average number of comparisons is given by n x (n - In n)l2. So in
number of comparisons, bubble sort is inferior to insertion sorting and of no signif¬
icant advantage over selection sorting. All in all, considering both comparisons and

686 SORTING

moves, we see that bubble sort is inferior to either insertion sort or selection sort,

despite its catchier name.

Once again, we can look for ways to improve upon the basic method. In exam¬
ining Figure 13.9, we notice an asymmetry: large values propagate to the right
quickly, but small values (for example, 9) propagate to the left slowly. This obser¬
vation has inspired the cocktail shaker sort, which is basically bubble sort with
alternation of direction on successive passes. Although this method seems to
perform marginally better than bubble sort, it does not overcome the basic 0(n2)
character of the method [Wirth 1976]. A better idea is to incorporate diminishing
increments into bubble sort, yielding complexity analogous to that of Shellsort
[Dobosiewicz 1980]. But the best way to use exchanges is that of the next section.

13.2.1.3.1 Quicksort. The method we now describe was dubbed Quicksort by its
inventor Hoare [1962]. This title is well-deserved, since it was then and still is the
fastest known method for internal sorting based upon comparisons of keys. It is
also known as partition-exchange sort, since that term captures the basic idea of the
method, as follows. One of the items is selected as a partitioning element; the
remaining items are compared with it, and a series of exchanges is performed. At
the conclusion of this series of exchanges, the original sequence has been partitioned
into three subsequences:

(a) all the items less than the partitioning element;

(b) the partitioning element in its final place;

(c) all the items greater than the partitioning element.

At this stage, we have finished with (b) and can recursively apply Quicksort to the
items in (a), and also to the items in (c); when the recursion terminates, the entire
sequence will be sorted.

If we pay close attention to the description in the preceding paragraph, we note
that there are two distinct processes that have to be spelled out: how to select the
partitioning element at each stage, and how to perform the exchanges. For now, we
will simply choose the first element in a sequence as its partitioning element, and
concentrate our attention upon the exchanges. This latter process is conducted with
the aid of two cursors, i starting from the left of the sequence and j starting from
the right. First i is incremented until it references an item greater than the parti¬
tioning element, and then j is decremented until it references an item less than the
partitioning element. This pair of items is exchanged and the cycle is repeated, until
i and j cross. When they do, the point at which they cross identifies the proper
place to insert the partitioning element in order to obtain the three subsequences
described in the previous paragraph. More precisely, the cycle terminates with
i =j+ 1. At this point, we have data [left + 1 ../] less than the partitioning element
and data [/-hi.- rite'] greater than the partitioning element; thus, an exchange of
the items referenced by left and j achieves the desired partitioning. This mechanism
is spelled out in the procedure QUICKSORT (Algorithm 13.6); you would do well,
before continuing, to compare it with the procedure COLLECT_l (Algorithm 11.2)
of Section 11.2.3.1.

Once again, we illustrate matters with our example data. Note that QUICK¬
SORT has as input parameters a pair of indices delimiting the subrange of data to

13.2.1.3.1 QUICKSORT 687

procedure QUICKSORT (var data: items; left,rite: index);

var i,j: integer;
part,rcrd: item;

begin
i := left; j := rite + 1; part ;= data [left];
repeat

repeat
i:= i + 1;

until data [i].key >= part.key;
repeat

j := j - 1;
until part.key >= data [j].key;
if i < j then begin

rcrd := data [i];
data [i] ;= data [j];
data [j] := rcrd;

end;
until i >= j;
data [left] := data [j]; data [j] := part;
if left < j -1 then

QUICKSORT (data, I eft,j - 1);
if i < rite then

QUICKSORT (data,i,rite);
end;

Algorithm 13.6 QUICKSORT

which the current procedure invocation applies. Accordingly, the trace in Figure

13.10 is segmented vertically according to recursive calls, with the first line of each

segment showing the corresponding values of the parameters left and rite. The

underlined items in each line are those referenced by i and j (or by left and J), and

the circled items are those that are in their final place, either because of an

exchange, or because they are sequences consisting of a single item. The efficiency

of Quicksort is illustrated by the fact that only four exchanges are performed in the

first procedure invocation, and yet the number of inversions has been reduced from

27 to 15. On occasion, we see that left and j reference the same item, as indicated

by the double underline for 41 in the sixth invocation in Figure 13.10. The resulting

exchange is indeed wasteful, but less so than it would be to insert a test for equality.

All that we have said about Quicksort so far is by way of introduction, to

convey the basic principles of the method. To use it practically, one needs to intro¬

duce several refinements. In fact, since it seems to be the best method, it has been

the target of numerous suggested refinements. Since some of these suggestions are

of dubious benefit, some discretion is required in choosing among them. In the

remainder of this section we will first describe the more important refinements, and

then discuss the efficiency of Quicksort.

688 SORTING

left rite 1 2 3 4 5 6 7 8 9 10 11

1 11 33 41 7 15 55 87 28 22 9 46 32

33 32 7 15 55 87 28 22 JL 46 41

33 32 7 15 9 87 28 22 55 46 41

33 32 7 15 9 22 28 87 55 46 41

28 32 7 15 9 22 © 87 55 46 41

1 6 28 32 7 15 9 22 33 87 55 46 41

28 22 7 15 9 32 33 87 55 46 41

9 22 7 15 © © 33 87 55 46 41

1 4 9 22. _7 15 28 32 33 87 55 46 41

9 _7_ 22 15 28 32 33 87 55 46 41

© ©
22 15 28 32 33 87 55 46 41

3 4 7 9 22 J5. 28 32 33 87 55 46 41

7 9 © © 28 32 33 87 55 46 41

8 11 7 9 15 22 28 32 33 87 55 46 41

7 9 15 22 28 32 33 41 55 46 ©

8 10 7 9 15 22 28 32 33 41 55 46 87

7 9 15 22 28 32 33
© 55 46 87

9 10 7 9 15 22 28 32 33 41 55 46 87

7 9 15 22 28 32 33 41 © 87

Figure 13.10 Trace of Algorithm QUICKSORT

To begin with, the procedure as shown masks a bug. We see from Figure 13.10
that the sort is accomplished via an initial call specifying the bounds of the input
array as parameters. Depending upon the actual data values, however, either i or j
could run off the ends of the array in the initial pass. Thus, sentinel values are
needed at both ends in order to guarantee the termination of the inner repeat
until loops.

A more profound point is that we have shown Quicksort as a recursive proce¬
dure. This has the usual benefits of perspicuity and brevity, at the expense of
efficiency. Since efficiency is much more important in a procedure that may be
heavily used, we should convert it to an iterative procedure, using a stack to record
pairs of indices that correspond to sub-arrays yet to be sorted. Moreover, the
procedure QUICKSORT exhibits tail recursion (see Section 5.4.2). Therefore, the
corresponding iterative procedure need push just one pair of indices onto the stack,
and then loop to sort the sub-array corresponding to the other pair of indices. In

13.2.1.3.1 QUICKSORT 689

our simplified version, we have always sorted the leftmost sub-array before the
rightmost sub-array. It is not hard to find an input sequence such that this rigid
policy would require a working stack of size 0(n). This is easily remedied, however,
if we compare the relative sizes of the two subsequences, and then always save the
larger subsequence and sort the smaller subsequence first. By this device, we can be

sure that the size of the stack is 0(lg n).

As the subsequences become smaller and smaller, the comparatively elaborate
machinery of Quicksort becomes counter productive, so it is better to switch to a
simpler method for small sequences. Since by then we are dealing with items that
are almost sorted, it is an ideal situation for applying insertion sort to finish the
task. The best cutover value at which to make this switch depends, in practice,
upon details of implementation and the underlying machine; typically, it has been
observed to be in the range 6-15. Even better than invoking insertion sort sepa¬
rately for each small subsequence is to simply ignore such sequences during
Quicksort, and then make one call on insertion sort after Quicksort terminates! The
number of residual inversions is the same in either case, and the overhead of numer¬

ous distinct procedure calls is thereby avoided.

The nature of our last basic refinement to Quicksort is best motivated by the
following question. What will happen if we apply Algorithm 13.6 to a sequence
that is already completely sorted? The first and smallest item will become the parti¬
tioning element, and j will subsequently be decremented n times in search of a
smaller value, with the result that the first item will be exchanged with itself. This
will be followed by the call QUICKSORT(data,2,«), with n - 1 comparisons, etc -
for a total complexity of 0(n2). Data that is already sorted, or nearly so, is a very
significant possibility; yet this highly touted method is totally inefficient for such a
case. What went wrong? The answer has to do with the issue that we bypassed
when beginning to discuss Quicksort; it lies with the choice of the partitioning
element. For this method to work well, the partitioning element should on the
average divide its sequence into two subsequences of comparable size. By defi¬
nition, the median of a sequence would accomplish exactly this. A pragmatic
technique that works well is to choose the partitioning element as the median of a
small sample — commonly as the median of the three elements at the first, middle,
and last locations in the sequence. Although this will not eliminate the worst-case

complexity of 0(n2) , it will make it much less likely to occur.

The refinements discussed in the preceding paragraphs are summarized in the

following considerations:

• Sentinels need to be placed at either end of the input array.
• Iteration should be substituted for recursion.
• The subsequence to be stacked should always be the longer one.
• Small subsequences should be deferred for one final invocation of insertion sort.
• The partitioning element should be chosen with discretion, perhaps with the

median-of-three technique.

A more detailed discussion of these and other issues relating to practical implemen¬

tation of Quicksort can be found in Sedgewick [1978].

We turn now to the issue of the efficiency of Quicksort. We stated at the begin¬
ning of this section that it is the fastest known method based upon comparisons of
keys. It is not hard to see why this might be so, since the two main inner loops are

690 SORTING

simply i: — i + 1 and j: = j — 1. Detailed proofs of its 0{n lg n) average complexity
are rather elaborate [Sedgewick 1977]. An easier, informal approach comes from
noting the close correspondence of Quicksorting a random permutation to that of
constructing a BST from the same random permutation. The root of the BST
corresponds to the partitioning element, with each other item in the tree being
compared with the root during its insertion. The same remarks apply with respect
to the left (right) child of the root and all the other nodes in the left (right) subtree
of the root; likewise, they apply at successively lower levels in the BST. This is
illustrated, for our example data, by the BST of Figure 13.11. This argument can
be made more precise, along the lines of the derivation of Eqs. 10.10—10.14 in
Section 10.3.1. The result is completely analogous; the expected number of
comparisons for Quicksort applied to a random input sequence is given by
1.386n lg n. Be aware that a rigorous proof of this result depends upon the input
subsequence for each pass being a random permutation. It is not uncommon to
tinker with Quicksort in an attempt to improve it, and inadvertently destroy the
property of randomness in the subsequences.2 For several such cases, it has been
shown that the “improvement” in fact degrades performance.

Figure 13.11 BST Analogous to Quicksort

How does Quicksort compare with Heapsort, the other 0{n lg n) algorithm?
Quicksort has commonly been found to be about twice as fast as Heapsort, owing
largely to its fast inner loops. Another important advantage is that it easily allows
the incorporation of a simpler sorting method to handle small subsequences. There
are two words of caution though. For one, Heapsort is 0(n lg n) in the worst case.
With Quicksort, although the median-of-three approach can reduce the likelihood of
quadratic worst-case complexity, the possibility still exists, just as it does with
random BST’s. Finally, Heapsort operates in situ, requiring a small, bounded
amount of working storage, whereas Quicksort requires an 0(lg n) stack.

13.2.1.4 Merge Sorting. Another way of thinking about Quicksort is that it is an
application of divide-and-conquer. It has good average performance because the

2 This matter is particularly sticky when equal keys are present. It then matters greatly
whether the inner loops terminate on equality or continue until inequality.

13.2.1.4 MERGE SORTING 691

partitioning element on the average divides input sequences into two subsequences
of approximately equal size. Merge sorting is a method in which divide-and-
conquer is applied without leaving anything to chance, by recursively dividing input
sequences into two subsequences that are invariably of the same size. Thus, the
complexity of merge sort is 0(n lg n) even in the worst-case. Unfortunately, this
method also tends to require a fair amount of working storage, thereby reducing its
appeal as an internal sorting method. Nonetheless, it has two features that cause it
to be highly important. For one, it is a stable 0(n lg n) method, and the other two
0(n lg n) methods, Heapsort and Quicksort, are not. Even more significantly, it is
the method that we must employ, eventually at least, when the volume of the data

forces us to use external sorting methods.

Output W Input U Input V

14
14 17
14 17 23
14 17 23 24

17 23 38 ...
17 23 38 ...
23 38 39 ...
38 39 55 ...
38 39 55 ...

14 24 32 ...
24 32 41 ...
24 32 41 ...
24 32 41 ...
32 41 44 ...

Figure 13.12 The Merging Process

Before discussing merge sorting, we need to focus upon the process of merging
two ordered input sequences to form one ordered output sequence. In fact, this is a
familiar concept, although previous examples were encumbered with various, partic¬
ular details. An example was the addition of polynomials represented as linked
lists, using POLYADD (Algorithm 4.2) in Section 4.2.2. The essentials of merging
are illustrated in Figure 13.12, where the basic step is to compare the first items of
two input sequences U and V, and to promote the smaller one to the output
sequence W. This is mirrored in the procedure MERGE (Algorithm 13.7), where
input arrays U of size p and V of size q are combined to yield an output array W of
size r. A significant aspect of merging is that it is linear in the combined sizes of
the two inputs, since each comparison results in the production of one of the
r =p + q outputs. Implemented in the obvious manner with arrays, however, it
requires 0(n) space both for the input sequences and for the output sequence.
Although there are methods for merging arrays with a bounded amount of work¬
space, they tend to be impractical. A better resolution is to employ linked list

techniques. The inclusion of cursors with each record

type item = record
key: integer;
link: index;

end;

will usually be less costly than doubling the entire data space. And there is the
additional, significant advantage that cursor assignments can then be employed,
rather than costly record moves. If it is necessary to conclude with the records

physically in sequence, we can resort to the technique of Exercise 13.5.

692 SORTING

procedure MERGE (U: items; p: index; V: items; q: index;
var W: items; var r: index);

const inf = {a large positive value as sentinel}

var ,j,k: index;

begin
i := 1 U [p + 1].key := inf;
j := 1 V [q + 1].key = inf;
r := p + q;
for k := 1 to r do

if U [i].key <= V [j].key then begin
W [k] := U [i]; i := i + 1;

end else begin
W [k] := v 0]; j:=j + i;

end;
end;

Algorithm 13.7 MERGE

Assuming that all the cursor fields have been initialized to zero, our sorting
technique will be to divide the input array of records into two sub-arrays (larger on
the left, if there are an odd number of items), recursively sort both sub-arrays, and
then merge them. This process is spelled out in the procedure MERGE_SORT and
the sub-procedure MERGE_LIST (Algorithm 13.8). Although the details are
dissimilar, you should be able to recognize that MERGE_LIST is indeed the linked
list analogue of the procedure MERGE. Two of its input parameters are cursors p
and q, pointing to the beginnings of two linked lists of records in data-, and it
returns output parameter r, the initial cursor for the merged combination. For

MERGE_SORT, the input parameters left and rite specify the subrange of the
array data to be sorted; and the output parameter head is the initial cursor for the
sorted array. A trace of the action of Algorithm 13.8 upon our sample data is given
in Figure 13.13. The figure shows the contents of the link fields for the records

data [left.. rite}, and also the corresponding value of head. The initial index param¬
eters supplied to MERGE_SORT are of course 1, 11; however, the trace output in
the figure reflects the order in which the recursion “unwinds” with its results.

The form of MERGE_SORT suggests the following recurrence equation

Tin) = 2T(nl2) + cn (13.2)

where the first term reflects the costs of the two recursive calls to sequences of size

«/2, and the second term reflects the fact that merging is linear in the combined
sizes of its two inputs. It is fairly easy to establish from this that

T{n) = an lg n + b (13.3)

from which we can infer that merging is indeed 0(« lg n). We could not apply this

argument to Quicksort, since there the partitioning does not always yield

13.2.1.4 MERGE SORTING 693

procedure MERGE_SORT (var data: items; left,rite: index;
var head: index);

var headl,headr,midi,midr: index;

procedure MERGE_LIST (var data: items; p,q: index; var r; index);
var s: index;
begin

if data [p].key <= data [q].key then begin
r := p; p ;= data [p].link;

end else begin
r := q; q ;= data [q].link;

end;
s := r;
while ((p > 0) and (q > 0)) do

if data [p].key <= data [q].key then begin
data [s].link := p; s := p; p := data [p].link;

end else begin
data [s].link := q; s := q; q := data [q].link;

end;
if p > 0 then data [s].link := p;
if q > 0 then data [s].link := q;

end;

begin
midi := (left + rite) div 2; midr := midi + 1;
if (rite - left < 2) then headl := left

else MERGE_SORT (data,left,midl,headl);
if (rite - left < 3) then headr := midr

else MERGE_SORT (data,midr,rite,headr);
if (rite - left < 1) then head := headl

else MERGE_LIST (data,headl,headr,head);

end;

Algorithm 13.8 MERGE_SORT

left rite head 1

33

2

41

3

7

4

15

5

55

6

87

7

28

8

22

9

9

10

46

11

32

1 2 1 2 0

1 3 3 2 0 1

4 5 4 5 0

4 6 4 5 6 0

1 6 3 2 5 4 1 6 0

7 8 8 0 7

7 9 9 0 7 8

10 11 11 0 10

7 11 9 11 7 8 0 10

1 11 3 2 10 9 8 6 0 11 7 4 5 1

Figure 13.13 Trace of Algorithm MERGE_SORT

694 SORTING

33 41 7 15 55 87 28 22 9 46 32
1-'

33
-1

41 , 7. 15 55 87 28 22 9 46 32
1-

7 33 41 15 55 87 28 22 9 46 32

7 33 41 ' 15 55 87 28 22 9 46 32

7 33 41 , ' 15 55
-1

87 _._| 28 22 9 46 32
1-

7 15 33 41 55 87 28 22
1

9 46 32

7 15 33 41 55 87 ' 22 28 i 9 46 32

7 15 33 41 55 87 1 9 22 28 ' i^£|

7 15 33 41 55 87 9 22 28 32 46
_I

7 15 33 41 55 87 ' 9 22 28 32 46 i
l~T~ 9 15 22 28 32 33 41

(a) Top-Down Recursive Merging

46 55 87

33 41 7 15 55 87 28 22 9 46 32
1-

33
1

41 , ^ , 15 1
55 87 28 22 9 46 32

33 41 7 15 55
, 87 28 22 9 46 32

33 41 7 15 55 87 28 22 9 46 32

33 41 7 15 55 87
1

22 28 , 9 , 48 , 32

33 41 7
15 1

55 87 22 28 9 46 32
1

7 15 33 41 55 87 , 22 28 1
9 46 32

7 15 33 41 22 28 55 87 9 46 32

7 15 33 41 22 28 55 87 1 9 32 46 1

' 7 15 22 28 33 41 55 87 1 9 32 46

' 7 9 15 22 28 32 33 41

(b) Bottom-Up Straight Merging

46 55 87 1

41 , 7 15 55
87 1

28 22 9 46 32

1 15 33 41 55 87 28 22 9 46 32

7 15 33 41 55 87
1

22 28 ' , 9 46 , , 32
7 i 15 33 41 55 87 22 28 9 32 46
7 l—-- 15 22 28 33 41 55 87 ' , 9 32 46
7 9 15 22 28 32 33 41 46 55

-1
87

(c) Natural Merging

Figure 13.14 Alternative Merge Patterns

subsequences of equal length. Nonetheless, it is instructive to compare the recursive
formulations of Quicksort and merge sort. They both represent divide-and-conquer
solutions. In Quicksort, all of the work goes into splitting the original sequence
into subsequences that are then joined trivially by juxtaposition. In merge sort, on
the other hand, the splitting is performed very simply, and all of the work goes into

13.2.1.4 MERGE SORTING 695

joining the resulting parts. In the terms in which we usually think of divide-and-
conquer, merge sort is much more typical; yet they are both instances of the
paradigm, coming at the problem from opposite directions.

As with Quicksort, if we intend to implement merge sorting for extended use,
we should introduce refinements for the sake of efficiency. Some examples of these
might be exchanging recursion for iteration, applying insertion sort to small initial
subsequences, etc. In the course of making these changes, we might also choose to
merge bottom-up rather than in the top-down manner of Algorithm 13.8. In this
case, unless n is a power of two, we will merge different sequences than previously.
Even if n is a power of two, it is simpler to merge all pairs of one-item sequences
first, then all pairs of two-item sequences, etc. The difference is illustrated in Figure
13.14, where (a) shows the logical effect of the top-down merge from Figure 13.13,
and (b) shows the logical effect of a bottom-up merge on the same data.

There is yet another important variation of merge sorting. The methods
discussed so far are oblivious to any pre-existing order in the input, and are called
straight merging. The “order” with which we are concerned here is that expressed
by the runs in the input sequence. A run is a maximal subsequence Kr... K, such
that Kr <KS < K, for all r < s < t. Although a random permutation will have runs
with an average length of about 2, we may be dealing with non-random input, with
runs of substantial length. We can take advantage of this order by looking for and
merging naturally occurring runs, with the expectation that fewer merge passes will
be required overall. This technique is called natural merging, and it constitutes an
alternative bottom-up approach to the problem. The logical effect of applying
natural merge to the same data as before is illustrated in (c) of Figure 13.14.

The traces in Figure 13.14 illustrate some shortcomings associated with these
techniques. In both (b) and (c), we see that the later passes may not have a partner
with which to merge. If we are merging by copying back and forth between two
areas, this will lead to unproductive copying of “bachelors”; in any event, it will
lead to sequences of varying length. This latter phenomenon is even worse in (c),
since we can expect that the initial runs will vary considerably in length. All in all,
merge sorting is slightly inferior as an internal sorting method. It has been found to
be about as fast as Heapsort (that is, half as fast as Quicksort), but it cannot be
reasonably performed except with 0{n) working storage. The real utility of merge
sorting will become apparent when we discuss external sorting in Section 13.4.

13.2.2 Distribution Methods

The preceding methods are all based upon comparisons between pairs of keys. We
will see in Section 13.2.3 that this leads to the fundamental lower bound Q{n lg n).
The methods of the present section are able to break this bound by means of
performing other kinds of operations upon the keys. In all cases, some arithmetic
function of the key value is used to map the key to one of a number of buckets.
The effect is to allow multi-way decisions instead of just two-way decisions based
upon comparisons. This is the sorting analogue to the use of tries in searching,
wherein we find a method of very different character from the usual methods based

696 SORTING

upon binary comparison trees. After one or more functional applications of a
distribution method, the last distribution of the keys among the buckets yields all of
the keys in sorted sequence. This general principle gives rise to several different
methods: radix sorting, radix exchange sorting, and value distribution sorting.

13.2.2.1 Radix Sorting. Radix sorting corresponds to the method of sorting used
with electro-mechanical card sorting machines before computers became so powerful
and ubiquitous. In more familiar terms, it is analogous to the use of tries as data
structures for searching. Using our familiar example data of Eq. 13.1, each key
can be expressed in radix ten as Kt— 7) x 10 + Uh with 0 < Tf, U{ < 9. The basic
operation of radix sorting is to distribute each key into one of ten buckets, corre¬
sponding to the ten possible values for a digit in a particular position of each key.
In our case, we have only tens and units digits. Although it may not be obvious at
first, we need to begin with the least significant digit (LSD), and end with the most
significant digit (MSD). The distribution of our eleven keys on the value of their
units digits is shown in Figure 13.15(a). In terms of a card sorter, we see ten card
pockets; in terms of data structures, we see ten queues. In either interpretation, we
next collect and concatenate the contents of the ten sequences into one sequence

41 22 32 33 15 55 46 7 87 28 9 (13.4)

We then apply the distribution operation to the tens digits, being careful to treat
leading blanks as zeros, with the result shown in Figure 13.15(b). Since the keys
have only two digits, we have only to collect the contents of the ten queues/pockets
once again, and we have a sorted output. Radix sorting is stable. Indeed, the
stability between successive passes is an essential reason that the method works.

32 55 87
41 22 33 15 46 7 28 9

0 1 2 3 4 5 6 7 8 9

(a) First Pass of Radix Sort

9 28 33 46
7 15 22 32 41 55 87

0 1 2 3 4 5 6 7 8 9

(b) Second Pass of Radix Sort

9 22 32 46
7 15 28 33 41 55 87

0 1 2 3 4 5 6 7 8 9

(c) Radix Sort on MSD Only

Figure 13.15 Illustration of Radix Sort

We have alluded to the implementation of radix sort in terms of queues. In the
present case the radix value was r = 10, but other values are possible. We must be
careful about the possibility of data such that all of the records are distributed to

13.2.2.1 RADIX SORTING 697

the same queue on a given pass; this would lead to an 0(nr) space requirement for
the queues. A better strategy is to allocate a link field in each record, and to use 2r
locations to identify the head and the tail for each queue. This yields an improved
space 0(n + r) requirement. An algorithm to perform radix sorting would then
consist of alternate phases: distribution, wherein the items are distributed among
the r queues; and collection, wherein the contents of these queues are concatenated
into one list again. The work associated with each distribution is 0(ri), and that
associated with each collection is 0(r). If the keys consist of p “digits,” then the
total complexity is evidently 0(p(n + r)). For cases where both p and r are fixed
and not too large, we have found an 0(ri) sorting method.

The method just described for decimal keys can be generalized to other kinds of
data. If the keys are binary, then it would be inefficient to employ r — 2, since the
resulting value of p would cause too many passes to be required; clearly, radix sort
is not an improvement over comparison-based sorts unless p < lg n. For binary
keys, it is better to extract b bits at a time, and to distribute the data among r — 2b
buckets. However, if the range of the key values is much greater than n, then even
this approach may not be feasible, in terms of either space or time. Note that we
can also apply this approach to alphabetic strings, or even to enumerated types such
as date in Section 3.1.2; in this latter case, the value of r will be different for each
pass, but that is a fairly simple matter to take care of. We leave the detailed imple¬
mentation of a radix sorting algorithm as an exercise; the operations of distribution
and collection of linked-records in the queues do not, after all, involve anything
very new to us. However, one comment about such an endeavor is worthwhile.
Although it is possible to extract bits or digits from keys in HLL’s such as Pascal,
the costs of doing so will almost certainly vitiate any advantage that radix sorting
might have — at this level of programming. The one circumstance that might
counteract this would be if we were to extract bytes (r = 256), since some compilers

are clever enough to find simple translations for such extractions.

Radix sorting, as described thus far, requires that we process the keys from
LSD to MSD. If the range of the keys is large, however, we should note two
undesirable consequences. One is that so many passes are then required that the
method becomes non-competitive. The other is that the activity of the earlier passes

will tend to be irrelevant, being of consequence only in the unlikely event that we
have keys that are equal with respect to all of their higher-order “digits.” A very
worthwhile approach for such cases is to first perform a radix sort on k of the
MSD’s, thereby partitioning the data into rk buckets, and then apply insertion sort
to each bucket [MacLaren 1966]. Be careful here, for the radix sort of the k

MSD’s must still proceed from the least to the most significant of the MSD’s! As a
concrete example, in sorting n four-byte integers, we might do a radix sort on the
two high-order bytes, and then apply a comparison-based sort to each resulting
bucket.3 We can expect to accomplish this latter phase efficiently since each bucket

3 This “sophisticated” approach comes more naturally than you might suppose. It is the
technique that you might use for sorting playing cards into order by rank within suit. It
is also the technique that the Postal Service uses for classifying mail by Zip Code, with
the additional advantage that the second phases can be off-loaded to the corresponding

Post Offices.

698 SORTING

is small, and since not many inversions can occur in any of the buckets. By way of
illustration, Figure 13.15(c) shows the effect of doing a radix sort on just the MSD
of the example data. If we now collect the contents of these queues as

7 9 15 28 22 33 32 41 46 55 87 (13.5)

we find that the number of inversions has been reduced from 27 to 2. To put
matters more precisely, if radix sort is applied to the first k of the “digits,” then the
expected number of inversions remaining is n(n — 1)/(4r*) — if the values of the keys
have a uniform distribution. If the latter condition is not fulfilled, then this tech¬
nique is subject to the degenerate possibility that most of the n keys may wind up in
just one of the final buckets, so that the second phase is no longer efficient. A good
rule of thumb for coping with deviations from uniformity is to choose r and k such

that nlrk <0.1.

13.2.2.2 Radix Exchange Sorting. Radix exchange sorting is unlike the other distri¬
bution methods in two ways: It specifically operates upon the binary
representations of the keys, and it operates in situ [Hildebrandt and Isbitz 1959].
We begin by examining the leftmost bit of each key, and rearranging the data so
that all keys with a zero in this position are placed to the left, and all keys with a
one in this position are placed to the right. We then apply the method recursively
to the two subsequences, using the next bit to the right. The method of rearranging
each time is a familiar one. It is the exchange method that we have seen both in
COLLECT. 1 (Algorithm 11.2) in Section 11.2.3.1, and also in QUICKSORT
(Algorithm 13.6) in Section 13.2.1.3.1. A principal difference in this case is that the
partitioning value of 2b may not actually occur in the data. For keys that are
uniformly distributed, radix exchange is another 0(n lg n) method, with perform¬
ance comparable to that of Quicksort (which it actually predates). However, it
rapidly degenerates whenever the assumption of uniformity fails to hold. In partic¬
ular, it performs very poorly when there are many equal keys, or even when most of
the keys have the same value in some bit positions. Note that this can easily occur
with numeric data having leading zeros, or with alphabetic character codes.

13.2.2.3 Value Distribution Sorting. If the analogue of radix sorting is trie search¬
ing, then the analogue of value distribution sorting is hash searching. We seek to
map keys directly to their final locations via an order-preserving function F - that
is, one such that F(K,) < F(K;) whenever Kt < Kj. Such a method has long been
known, under the name of address calculation sorting [Isaac and Singleton 1956]. If
the keys are uniformly distributed over the range Klo.. Khi, then we can allocate B
buckets, with the range of the y'th bucket defined as

Klo +
(j - l) x (Khi - Kl0)

B
to Kio +

j x (Khi - Kl0)

B
(13.6)

As With hashing, we can anticipate collisions. The best way to handle them is to
maintain each bucket as a linked list. We can either maintain each list in order as
keys are distributed to individual buckets, or we can perform a comparison-based
sort upon each bucket at the conclusion of the distributions. There is an obvious

13.2.2.3 VALUE DISTRIBUTION SORTING 699

resemblance to radix sorting coupled with insertion sorting, except that the distribu¬

tion is determined by one arithmetic function applied to the entire key rather than
by multiple radix distributions. There is the impediment, once again, that 0(n)
space is required. There is also the practical hazard that non-uniformly distributed
keys may occur frequently. In such cases, the method can easily degenerate, with

most of the keys falling into one bucket, so that we wind up with a quadratic
method rather than a linear one. A technique for combatting this degeneration is to
use a cumulative distribution function of the key values, thereby allowing the
construction of a more accurate address function F. This is fine if such a function
can be determined in advance, but not very cost effective if it must be constructed
for every set of data to be sorted. One proposal for confronting this issue employs
a double level of distribution, where one of the levels is determined by sampling the

input [Noga and Allison 1985].

More recently, this approach has attracted attention in the form of distributive
partitioning [Dobosiewicz 1978]. The crucial difference with this method is that for
predictive purposes, only the minimum, median, and maximum key values in the
input need be determined. With these data at hand, the method proceeds by divid¬
ing both of the intervals minimum.. median and median.. maximum into «/2
sub-intervals of equal length. The keys are then distributed into these sub-intervals.
After that, if any sub-interval has received more than one key, the same process is
applied recursively to it. For a variety of distributions of the input keys (for exam¬
ple, uniform or normal), this method has been shown to have 0(n) average
complexity. Moreover, for any input distribution, it has a worst-case complexity of
Oin lg n), by an argument similar to that for Eqs. 13.2 and 13.3 with merge sorting,
in Section 13.2.1.4. An essential part of this argument depends upon the fact that
the median can be determined in linear time, as we will see in Section 13.3. Even
though linear, that process is somewhat complicated; nonetheless, several exper¬
iments indicate that distributive partitioning is commonly faster than Quicksort.

The conclusions of the preceding paragraph are so provocative that it is helpful

to step back and try to place them in perspective. Since we have an 0{n) expected
sorting method, why might it not be the method of choice? Three factors contribute

to the answer:

• As with merge sorting, the method requires 0(n) space.
• The details of its implementation are fairly complicated, owing largely to the

nature of the median-finding process.
• The method is still somewhat controversial.

As noted in previous discussions, the complexity of an algorithm depends upon
the model of computation that is employed. Thus, we will see in the next section
that comparison-based sorting is necessarily £l{n lg n). An essential aspect of

distributive partitioning is that of being able to include a floor operator in the
computational model; this enables one to compute n-way branches efficiently

[Schmitt 1983]. Implicit here is the assumption (usually justified) that the key can
be treated as a single-precision real number. (This has the unexpected result that

the floating-point performance of the underlying machine then becomes an issue!)

Just as the success of Quicksort has inspired many variations, so has the success of

distributive partitioning engendered variations, usually in combination with one or

more comparison-based techniques (see Section 13.2.4).

700 SORTING

13.2.3 Theoretical Considerations

We have now encountered several sorting methods that are 0(n2), and several others
that are 0{n lg n). Implicit throughout has been the contention that sorting is
Q(n lg n). In this section, our first order of business is to demonstrate the true sense
of this implied statement. The result will be a lower bound on the number of
comparisons needed to sort n items. The existence of such a lower bound confers
no guarantee that a sorting method conforming to it exists, or that we can find it if
it does. So we will follow the presentation of the lower bound with two sections
wherein we look at methods and results that approach the lower bound in practice.

(a) Insertion Sort Comparisons

(b) Selection Sort Comparisons

Figure 13.16 Sort Comparison Trees

A useful manner of depicting sorting by comparisons is via a decision tree. In
this tree, a node with a label a:b represents the comparison of two items, with the
left branch corresponding to the outcome a < b, and the right branch corresponding
to the outcome a > b. We have seen decision trees before, in Figure 6.24 of Section
6.6.3, and in Figure 8.12 of Section 8.2.4. Nodes in the present decision trees have
just two outcomes rather than three. However, we can increase our understanding
by allowing for the realistic case a < b rather than just a < b. The tree of Figure
13.16(a) depicts the comparisons made by insertion sort in ranking three elements
a,b,c. The effect of the tree is to “unwind” the loops of the algorithm and show
each comparison explicitly. In interpreting a comparison tree such as this, it is
important to realize that the labels are associated with the items and not the

13.2.3 THEORETICAL CONSIDERATIONS 701

locations, although the sorting method may cause items to be moved as a result of a
comparison. For example, if a > b, then the insertion sort algorithm will cause the
sequence at the node on the right branch from the root to become b a c.

Figure 13.16(b) depicts the tree of comparisons made by selection sort for the
same input. Note that this tree contains two extra comparisons and two leaves
marked as X, to denote impossible outcomes; their occurrence reflects that
selection sort is an oblivious technique. For either tree in Figure 13.16, there are 6
possible leaves, or outcomes, corresponding to the 3! input permutations. In
general, for any such decision tree on n inputs, there must be n\ leaves. We also
know from Section 10.1.2 that the minimum, height for a binary tree with x leaves is
L lg x. Accordingly, our decision tree with n\ leaves has a minimum height of
L lg (n!). By observing that

n< > n(n-!)(*-2)... 2 (13.7)

we then obtain lg («!) > («/2) lg (n/2), or lg («!) = Q(n lg n). In other words, no
method of sorting n items can discriminate among the n\ possible orderings in less
than Q(« lg ri) comparisons. By using Stirling’s formula for n\, we obtain a more
precise value for the Information Theoretic Bound

L(n) = Tig («!) = n lg n — n + 0.5 lg n + 0(1)
In 2 & (13.8)

= n lg n — 1.443« + 0(lg n)

on the minimum number of comparisons L(n) to sort n items.

fl3.2.3.1 Sort Optimality. The Information Theoretic Bound L(n) yields a mini¬
mum value for the maximum number of comparisons required to sort n items in the
worst case. That still leaves us with the task of finding a sequence of comparisons
that has this minimax property; the redundant comparisons in Figure 13.16(b) read¬
ily suggest how an injudicious sorting method could far exceed the bound. We have
already alluded to a technique that focuses upon comparisons, downplaying other
considerations, and that is the binary insertion method (see Section 13.2.1.1). Let
us see how well this method performs for n = 6. It is fairly easy to see that the
maximum number of comparisons in building an ordered sequence with successive
lengths 2, 3,4, 5, 6 is 1,2, 2, 3, 3 - for a worst case total of 11 compares. But
L(6) = 10. In general, the maximum value for binary insertion is given by

n

Bin) = ^ Tig k = n Tig n - 2rlg " + 1 (13.9)

k= 1

Except for n < 5, B(n) is always in excess of L(n), and the excess grows steadily.

However, it is possible to sort 6 elements with a maximum of 10 comparisons.
To do so, we first make three pairwise comparisons, leading to the digraph depicted
in Figure 13.17(a). In this and subsequent digraphs the relation x <y is denoted by
placing x to the left of y, and so the arrows can be omitted. The second step is to

702 SORTING

(c) (d)

Figure 13.17 Minimum Sorting for n = 6

sort the top three elements with a maximum of three comparisons, leading to. the
(possibly relabeled) configuration shown in (b) of the figure. The final step of
merging c and e into the sequence a, b, d,f is the crucial one. If we first insert c,
then we will require a maximum of two comparisons and obtain one of the three
configurations shown in (c) of the figure, leaving e to be inserted with a maximum
of three comparisons. The three steps then total 3 + 3 + 5 = 11. It is better to first
insert e. This requires exactly two comparisons and leads to one of the four config¬
urations depicted in (d) of the figure; in either event, the element c can then be
inserted with two more comparisons. Altogether, the three steps establish that
L(6) = 3+ 3+4= 10.

The method just described can be extended recursively to handle any number of
elements; it is known as the Ford-Johnson algorithm [Ford and Johnson 1959], and
also as merge insertion. As an example, suppose that we wish to sort 17 elements by
this method. We first make 8 pairwise comparisons to obtain eight pairs 6, < ah
leaving the odd element as b9; next we apply the method recursively to the ah arriv¬
ing at the situation represented by the graph of Figure 13.18(a). As in the case of

113.2.3.1 SORT OPTIMALITY 703

Figure 13.17, we now merge the remaining bt into the sorted chain bxax.. a8 in such a
manner as to maximize the efficiency of the binary search at each stage — by caus¬
ing the number of relevant items in the chain to be 2* — 1, or somewhat less.
Figure 13.18(b) shows the appropriate order of insertion, and also the number of
comparisons, in parentheses, for each b(. The total number of comparisons is 8 for
the first step, 16 for the second (recursive) step, and evidently 26 for the third step,
for 50 altogether. By contrast, 5(17) = 54, and L(17) = 49.

3i 32 83 S4 85 36 87 dg

61 £>2 bg £>4 £>5 £>6 £>7 £>8 69

(a) Sorted Chain b\, a-i, ••• a8

3-1 82 33 84 85 36 37 38

£>2 63 £>4 £>5 £>6 by £>8 69

2 1 4 3 8 7 6 5

(2) (2) (3) (3) (4) (4) (4) (4)

(b) Inserting b’s with a’s

Figure 13.18 Merge Insertion

The insertion order sequence follows the pattern b3, b2; b5, 64; bn, bl0,..., Z>6;....
By characterizing it more precisely (see Exercise 13.19), it is possible to show that

the number of comparisons in merge insertion is given by

FM = |>g(^) (1310)
k.— 1

= n lg n — c(n) n + 0(lg n)

where 1.329 < c{n) < 1.415. It is interesting to study the values of Lin), F(n), and
B[n) for n from 2 to 22, as recorded in Table 13.1. It has been shown that
F{n) > L{n) for all n > 22 [Hwang and Lin 1969]. Nonetheless, Eq. 13.10 is so
close to the Information Theoretic Bound of Eq. 13.8 that we have to wonder
whether merge insertion is the best attainable method, or if there exists a better
minimax method for some values of n. In fact, the Ford-Johnson algorithm misses

being optimal for infinitely many n > 189 [Manacher 1979].

The minimax behavior that we have just studied is often of less concern than an
examination of minimean behavior - that is, measuring the average number of
comparisons of various algorithms over all inputs, and trying to find a particular
algorithm that minimizes this average. This is a potentially harder problem in that

704 SORTING

it may require a knowledge of the probability distribution for various inputs.
Assuming that all permutations of an input sequence are equally likely, however, we
find that the problem is actually a familiar one. We wish to find a sorting method
that guarantees that all leaves of the comparison tree lie on two adjacent levels,
thereby minimizing the external path length (see Section 10.1.2). For n < 6, merge
insertion is minimean optimal, as well as minimax optimal; for n — 6, although the
process of Figure 13.17 is minimax optimal, it is not minimean optimal. The
discovery of a method that is minimean optimal for n — 6, and no worse than mini¬
max optimal, is left as an exercise (see Exercise 13.17). For large n, it has been
speculated that a minimean solution may fail to be a minimax solution.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

L(n) 1 3 5 7 10 13 16 19 22 26 29 33 37 41 45 49 53 57 62 66 70

F(n) 1 3 5 7 10 13 16 19 22 26 30 34 38 42 46 50 54 58 62 66 71

B(n) 1 3 5 8 11 14 17 21 25 29 33 37 41 45 49 54 59 64 69 74 79

Table 13.1 Values of L(n), F(n), B(n)

fl3.2.3.2 Merge Optimality. The circumstances of merging — that it operates
upon two files already in sequence, and that it is so fundamental to sorting when n
is large — single it out for special analysis. To dispel possible confusion, recall the
distinction between linear merging (Algorithm 13.7) and merge-sorting (Algorithm
13.8), where the former is implicitly a basic step in the latter process. We have seen
that the maximum number of comparisons in merging two ordered files
U: ux, w2,..., u„ and V: vl5 v2,..., vm is given by n + m — 1. Denoting by M(n,m) the
number of comparisons for any optimal, alternative merging method, then evidently
M{n,m) <n + m — 1. But suppose that m= 1. Then it requires just Tig [n + 1)
comparisons to merge the solitary item with the other file, and so M(n, 1) is much
less than what can be obtained via linear merging. Perhaps information theory can
guide us here, as it did in the discussion of sort optimality. In merging U with n
elements and V with m elements, there are C(n + m,m) possible outcomes, corre¬
sponding to the m ways in which the v,- can be placed in the output file of size
n + m. For m = n, we find that M{n,m) > lg C(n + m,m) = 2n — 0.5 lg n + 0(1),
from application of Eq. 13.8. Which is more accurate - the upper bound of 2n — 1
from linear merging, or the lower bound of 2n — 0.5 lg n from information theory?

The answer to this question is that M(n,n) =2n — 1. For m = n, the Informa¬
tion Theoretic Bound is weak, and linear merging is actually optimal. To see why
no fewer comparisons will suffice in the worst case, let the two sequences U and V
be chosen such that ut < Vj whenever i < j and w, > v, whenever i > j. Then the
output sequence must be ul<vl<u2<v2< - <un< v„. Moreover, each of the
2n — 1 comparisons ux:v1? vx\u2, u2:v2, ... , un:v„ must have been made. Without
comparing vx:u2, for example, the above sequence would be indistinguishable from
ux < u2 < Vj < v2 < - <un< vn. And without comparing u2:v2, it would be indistin¬
guishable from ux < Vj < v2 < u2 < - <un< v„.

1-13.2.3.2 MERGE OPTIMALITY 705

V u

^ m ^ 1

(a) Before Merging

V U W

(b) During Merging

(c) After Merging

Figure 13.19 Merging (n + m) Items in (n + 2m) Space, n > m

From the optimality of binary insertion when m — 1 and the optimality of linear
merging when m = n, we are led to the Hwang-Lin algorithm [Hwang and Lin
1972], also known as binary merging, which combines the best features of these two
approaches. Suppose that we wish to merge file U with n elements and file V with
m elements, where n>m. Binary merge is usually programmed to examine the two
input files from right to left and write the output file in the same direction. With
this technique, we are able to use the diminishing values of n and m to keep track of
the unprocessed portions of U and V. Moreover, if m is much less than n, we can
obtain significant efficiency of space by using the technique illustrated in Figure
13.19, thereby performing the merge in a total of n + 2m space. The rationale of
binary merge is to partition U into m + 1 segments of about L{n/m) elements each,
and to compare vm with up, which is chosen to be the last element of the next-to-last

segment of U. As a result of the comparison,

• If up > vm, then the elements up .. un are written out, and the method resumes

with v, .. vm and ux .. up_x.
• If up < vm, then binary search (requiring an additional t comparisons) is used to

find the largest index q such that uq < vm; the values vm, uq+l.. un are written out;

and the method resumes with v, .. vm_, and ux.. uq.

To optimize the efficiency of binary search in the second of these two cases, we
choose t = Llg (n/m), and then p = n + 1-2', causing the size of the last segment of

U to be 2‘ — 1.

706 SORTING

We will illustrate these matters for the case n — 35 and m = 5. Rather than
portray actual input values, we will simply make arbitrary decisions as to the
outcome of each comparison step, and thus the consequent action. Figure 13.20
describes the sequence of events, showing for each step the values of m, n, t, p, and
the output values, and also the value of q if it is relevant. It is easy to see that for
this example there are 8 comparisons made by the main loop and a total of 11
comparisons made in the binary search, for a total of 19 comparisons altogether.
Linear merge, on the other hand, would require about twice as many comparisons.

n m f P Compare q Output

35 5 2 32
U32 > ^5 U32 - U35

31 5 2 28
U28 < V5

30
^5 “31

30 4 2 27
“27 < 27

^4 U28 ‘ ‘ U30

27 3 3 20
U20 < V3

23 V3 U2A '' U27

23 2 3 16
“16 > ^2 U-\6 ■■ U23

15 2 2 12
U12 < ^2

15
V2

15 1 3 8
U8>V1 U8 - “ 15

7 1 2 4 5 V1 U6 U7

5 0 “i “5

Figure 13.20 Binary Merging Example

Let us denote the complexity of binary merge as H(n,m). Then we can see that
it satisfies the recurrence equation

H(n,m) = max{H(n — 2t,m) + 1, H(n,m — 1) + t + l) (13.11)

reflecting the two possible outcomes of each comparison, and assuming the worst-
case eventuality that binary search will alway terminate with q — n. The solution of
Eq. 13.11 is

H(n,m) = m + - 1 + mt (13.12)

where t= Llg (n\m). It is straightforward to see that for m= 1, Eq. 13.12 yields
H(n, 1) = Tig (n + 1), which is the same as the best performance via ordinary binary
insertion. Likewise, it is straightforward to see that for m = n, Eq. 13.12 yields
H(n,n) =2n — 1, which is the same as the best performance via linear merging. The
Hwang-Lin algorithm does indeed capture the best aspects of the two more basic
methods. It also works well for intermediate values of m, although it is not always
optimal. We should note that when m and n are close in value, then the roles of
“smaller” and “larger” may oscillate between the two files U and V. So each step
of binary merging should begin by comparing m and n to determine the sense of the
merging logic.

As we have said, binary merging is not always optimal. The determination of
the optimal values M(n,m) is a difficult problem in the general case. It is fairly easy

113.2.3.2 MERGE OPTIMALITY 707

to extend the result that =2m-l to show that M(m + l,m) = 2m. This
can also be generalized to show that M(m + d,m) = 2m + d - 1 whenever
m<n< L(3m/2) + 1, so that linear merge is optimal over a large range of d
[Stockmeyer and Yao 1980]. At the other extreme — that is, the determination of
M(n,d) for small values of d — only isolated results are known.

13.2.4 Translating Theory into Practice

The difficulty of finding the best sorting algorithm for all situations can be better
appreciated when we step back to list some of the qualities that it ought have:

• It should have good average performance and good worst-case performance.
• It should be stable.
• It should use minimum storage.

There is also another less obvious quality:

• It should respond with better performance to inputs that have a measure of
pre-sortedness, with the complexity improving from 0(n lg n) to 0(n) as we go
from random input to input that has a high degree of pre-sortedness.

This last issue can be very influential in evaluating different methods.

Since the answers that we obtain about these concerns will vary considerably
with the yardstick used for measuring order, we need to say a little about various
measures. The one that we have used most frequently is the number of inversions.
If we consider an input such as

n + 1, n + 2,..., 2n, 1, 2,..., n

its measure is 0(n2). Yet this sequence is intuitively nearly sorted, and in fact can
easily be put in order via merging. So inversions have shortcomings as a measure.
Since runs provide a good measure for natural merging, are they appropriate in
general? Once again we find a counter-example, as demonstrated by

2, 1,4, 3,... ,n,n- 1

which has O(n) runs. Yet this sequence is easily placed in order via insertion sort in

just O(n) time.

Still another possible measure is the minimum number of compound delete-
insert operations required to sort a sequence. This number, in turn, is equal to n
minus the length of the longest ascending subsequence (LAS) in the sequence. For

our example data

33 41 7 15 55 87 28 22 9 46 32

the longest ascending subsequences are all of length 4 (for example, 7 15 28 32); in
other words, 11 -4 = 7 such compound operations would be required. Unfortu¬
nately, the realization of an efficient sorting method based upon this measure is
another matter. There are also some other less common measures [Manilla 1985],
but let us instead return to the central issue of choosing among sorting methods.

708 SORTING

If we look at comparison-based methods pragmatically, some of the highlights

are as follows:

• Insertion sort is one of the simplest (thereby having an excellent constant
factor), and it is particularly appropriate whenever the input has relatively few

inversions. It is also stable.

• Heapsort has 0(n lg n) complexity in both the average and the worst case;
however, it is not stable and it tends to be only half as fast as Quicksort.

• Quicksort is one of the two methods more commonly preferred, primarily
because of its speed. This is counterbalanced by its 0(n2) worst-case complexity
and its lack of stability. Since it is the winner in terms of raw, average speed, it
has been the target of numerous attempts (not always successful) at improve¬
ment. These attempts have focused on making it even faster, making it stable,

overcoming its worst-case complexity, etc. [§].

• Merging is the other of the two methods more commonly preferred. Although
not quite as fast as Quicksort, it has the advantages of stability and of 0{n lg n)
complexity in both the average and worst case. Straight merging is usually not
as good as natural merging because it does not capitalize on pre-sortedness. A
recommended technique, in fact, is to convert Algorithm 13.8 so that it does
natural merge. The inferior features of merging are the amount of space
required and the amount of data movement. One proposal for merging with
reduced data movement suggests using balanced trees, of either the AVL or 2-3
variety [Brown and Tarjan 1979].

On the theoretical side, some of the more important insights are those concern¬
ing pre-sortedness, cited earlier. From Section 13.2.3, the Ford-Johnson and
Hwang-Lin algorithms are concerned with minimizing comparisons, which they do
admirably. They are not equally good with respect to data movement, however,
and we know that this is a significant part of the cost of sorting. Historically, the
Hwang-Lin algorithm was designed for external sorting with tapes. For this, it does
have practical significance, since the issues of space and data movement are then
absorbed within the larger paradigm.

The distributive methods are in a special category, of course, since they are not
restricted by the Information Theoretic Bound. The simplest distributive method is
radix sort, which clearly merits consideration when the keys are short. The more
general question is, “With arbitrary keys, should one aim for an 0(n) sort via
distributive partitioning?” As we have seen, this approach requires more space, and
there is also the hazard of getting an 0(n2) result if the chosen algorithm fails to
cope with a particular input distribution.

In the final analysis, if the sorting requirement is large, it may be worthwhile to
go to the trouble of implementing a hybrid sorting method that couples two or more
methods. We have seen this idea before - for example, in coupling Quicksort with
a final insertion sort, and in one of the variants of radix sorting. A particularly
common idea is to combine distributive partitioning with a comparison-based

fl3.3 SELECTION 709

method. The goal is to dispense with the median-finding process, and yet to attain
0(n) expected complexity and 0(n lg n) worst-case complexity [§].

fl3.3 SELECTION

We all know, in computing or in real life, how to effectively identify the item or
person that wins a contest. Techniques for properly identifying runners-up are
much less well known. For instance, in the typical situation that the winner has
been determined by a randomly composed tournament of comparisons, the second
best is very likely not the one who lost to the winner on the final round. Half of the
time, the second best will have been eliminated by the winner in an earlier round of
the tournament. This is the reason for seeding top-rated players in sports contests,
thereby making it highly likely that the best players will reach the finals.

The problem of finding the second best was discussed earlier, and it can be
done in 0(n 4- lg n) time (see Exercise 4.19). What about the more general problem
of finding the kth best? One possibility is to sort all the items and then simply
extract the kth best, but this approach requires 0(n lg n) work, most of which is
wasted in the general case. For small, constant values of k, either of the selection
sorts, SELECT,SORT or HEAPSORT, will do the job simply and efficiently. We
can simply insert a test to terminate after the kth iteration. With HEAPSORT, we
do not even require that k be a constant. As long as k < (n / lg n), then we can
build the heap in 0(n) time and select the k smallest elements in
0{n + k\gn) = 0(n) time. It should be apparent that, by symmetry, all of the
remarks in this paragraph apply equally well to finding the (n — k + l)th element.
The most difficult case occurs for k = T(«/2), which corresponds to the median.

The major result that we will develop in this section is that, in fact, there are
0(n) algorithms for all of these selection problems. But either they are somewhat
complicated and/or they have large constant factors. So first let us look at a very
pretty technique discovered by Hadian and Sobel [1969], We begin by making a
tournament of n — k + 2 items, using n-k+l comparisons. Since the largest item
is greater than n — k + 1 others, it cannot be the kth largest. So for each of the
remaining k - 2 items, we replace the largest item in the tournament and recompute
the tournament, using Tig (n — k + 2) comparisons. We then finish off by finding
the desired item as the second largest item in the final tournament. Adding up all

of these leads to

Vk{n) <n - k + (k - 1) Tig {n - k + 2) (13.13)

as a minimax bound Vk(n) on the cost for finding the kth largest of n items. Note
that we were careful to employ a tournament rather than a heap, since we were
anxious to get precise upper bounds on the number of comparisons. The values
predicted by this construction are optimal for small values of k and n; a few such

values are shown in Table 13.2.

In the two preceding paragraphs, we have described first some practical
approaches to solving the selection problem and then a more theoretical approach.

710 SORTING

n Vfn) Vfn) V3(n) Vfn) V5(n) V6(n)

2 1 1
3 2 3 2
4 3 4 4 3
5 4 6 6 6 4

6 5 7 8 8 7 5

Table 13.2 Values of Vk(n)

Is there anything to add to the story? There is, and it begins with Quicksort.

Suppose that we are looking for the kth smallest element. Then let us apply Quick¬

sort, with the result that the partitioning value winds up in the y'th location. If

k = j, we are done; if k < j, we should look in the left partition; and if k > j, we

should look in the right partition [Hoare 1971]. It is that simple! Moreover, since

we use just one of the two partitions each time, there is no longer any need to

employ either recursion or a stack. It can be shown that this method has average

complexity 0(n) (see Exercise 13.26). Unfortunately, the example of trying to find

the smallest item from input such as n, 1, 2,..., n — 1 shows that it has 0{n2) worst-

case complexity, just as with ordinary Quicksort.

Let us now concentrate upon the case of finding the median. The Quicksort

variation is linear on the average, but quadratic in the worst case. The Hadian-So-

bel method is close to optimal for small values of k, but we can see that it requires

Oi'An lg n) comparisons for finding the median. Thus, we can appreciate the signif¬

icance of more recent methods that compute the median (or any other kth best

value) with worst-case linear complexity. The idea is to choose a partitioning

element for the Quicksort variation in such a manner that the two partitions cannot

be degenerate, thus guaranteeing linear performance. To do this, we first pick some

small, odd number r and then divide the original sequence of items into 2*7+1

groups, each containing r items apiece (inserting dummy items if required). The

second step is to sort each of the 2q + 1 small groups to find their medians.

Thirdly, we make a recursive application of this entire method to the set of medi¬

ans, thereby discovering the median of medians, mm. At this point we have the

situation depicted in Figure 13.21 for the case r = 7. In this figure the open circles

denote the medians, and the open square denotes the median of medians. The

points other than mm fall into four regions A,B,C,D with:

4*7 + 3 items that must be greater than mm in region B

4*7 + 3 items that must be less than mm in region C

6q items with unknown relationship to mm in regions A and D

In our Quicksort variation we now choose mm as the partitioning element, and then

recursively continue the search in regions A,B,D or in regions A,C,D. In either

event, we are left with no more than (10<7 + 4)/(14<7 + 7) < 5/7 of the original items
that need to be searched.

tl3.3 SELECTION 711

Increasing Order-

Medians

Figure 13.21 The Median of Medians Construction

We will now show that this process never requires more than 20n comparisons,
so that we indeed have a linear algorithm for selection. The bookkeeping to estab¬

lish this must include the comparisons for:

(a) the sorting of the 2*7+1 small groups;

(b) the recursive sorting of the «/7 medians to find the median of medians;

(c) the partitioning of the original data about mm;

(d) the recursive sorting of the 5«/7 (maximum) items in the relevent partition.

For (a) we know from Table 13.1 that r = 7 items can be sorted with 13 compar¬
isons; thus, all the groups can be sorted in 13«/7 comparisons.. For (b) we can find
the median of medians in 20n/7 comparisons, by our inductive hypothesis. The
partitioning (c) can trivially be performed in n comparisons. And finally, applying
our hypothesis again, the sort of the smaller set of items can be accomplished in
100rt/7 comparisons. Adding these gives us a total of (13 + 20 + 7 + 100)n/7 = 20n

comparisons, as promised!

The accounting in our demonstration was very loose in order to make the expo¬
sition easier. We also neglected the possibility that there may be repeated data
items. Improvements for the purposes of handling duplicate values and of attaining
better bounds are left as exercises (see Exercises 13.27 and 13.28). The best bound
in the original version of this technique was 5.43« comparisons [Blum et al. 1973];
this was subsequently improved to about 3n comparisons [Schonhage et al. 1976].

Both of the cited constructions have high constant factors. More useful is a method
based upon sampling; although not guaranteed to be linear in all cases, it works

very well in practice [Floyd and Rivest 1975].

712 SORTING

13.4 EXTERNAL SORTING

In many real-life applications that require sorting, the number of items far exceeds

the capacity of primary memory, and so it becomes imperative to employ sorting

methods that make efficient use of secondary memory - that is, tapes or disks -

to accomplish the process. We have seen, in Chapter 12, that a dominating concern

in using these devices efficiently is to minimize the number of separate accesses that

are required. Also, both of these storage mediums have a physical structure that

causes certain accessing behaviors to be strongly preferred — sequential access in

the case of tapes, and minimal number of seek operations with disks. The weight of

all of these considerations will now cause us to completely revise some opinions

derived in the case of internal sorting.

The usual paradigm of external sorting is first to construct sorted initial runs by

employing familiar sorting techniques in internal memory, and then to complete the

sort by successively merging these into larger and larger runs. At the outset, one

might question the necessity of these basic assumptions. With virtual memory, we

might simply apply one of the techniques already studied, and hope for the best.

This is not a completely ridiculous idea if the number of items is only moderately

large, and it is worth considering briefly. The most important issue is that the

pattern of references to the data should have a high degree of locality. Thus, Shell-

sort or a distributive sort would be very poor in this regard. However, one of the

best methods for internal sorting, Quicksort, is also very good with respect to local¬

ity. Quicksort with virtual memory (or Quicksort applied directly to data in

secondary memory) is just barely feasible for moderately large values of n [Brawn et

al. 1970]; however, it does not compare favorably with the better variations of the

sort-merge paradigm, particularly as n increases. Moreover, its worst-case 0(n2)
behavior is intolerable in this context.

It is very typical in large sorting applications for the records to be big. It might

seem particularly appropriate, therefore, to use a key sort (see Section 13.1).

Appearances can be deceiving though. The use of an address table with a large

amount of data can usurp a significant amount of primary memory better used for

the original data. And paradoxically, even though it may be possible to sort the

keys very fast, the final pattern of secondary accesses to rearrange the records in

order may lead to a total performance far worse than would occur without key sort
[Hubbard 1963]!

Our first concern in the succeeding sections is to explain multiway merging, the

basic version of the sort-merge paradigm. Subsequent sections explore various

avenues for improving this basic approach - first by obtaining better initial runs,

then by employing more sophisticated merge patterns that take into account the
idiosyncrasies of secondary memory devices.

13.4.1 MULTIWAY MERGING 713

13.4.1 Multiway Merging

Most of the early invention with regard to external sorting was directed toward effi¬
cient uses of tapes, since they were by far the more prevalent medium when these
problems were first confronted. The subsequent prevalence of disks does not render
these ideas irrelevant, since we know that it is often useful to employ a disk as a
sequential access device. Thus, although our discussion in this and the next two
sections is in terms of the number t of tapes employed as input — or the order of
merge, t - much of it is relevant for disks also, and we will tidy up matters in
Section 13.4.3.2. Suppose that we have four tapes 71, 72, 73, 74, and that 74
contains r runs, where r = 57. We will also assume for now that all the runs have
the same length m; that is, the total number of items to be merged is n = m x r.
One possibility is to first distribute the runs as evenly as possible from 74 to 71,
72, 73; then merge the runs from 71, 72, 73 back to 74; then distribute the new
runs of length 3m back to 71, 72, 73; etc. Four distributions and four merges are
plainly sufficient to complete the process, since the number of distinct runs is
reduced by a factor of three each time, and [log3 57 = 4. Altogether, we have
made 8 passes (read/write operations) over each item, although the distributions
seem to contribute less to the solution than the merges. It is convenient to depict
this pattern of activity as in Figure 13.22, where successive lines show the contents
of 71, 72, 73, 74 at successive stages of the merging operation. The meaning of an
entry such as 9631 for 74 is that 74 currently contains 6 runs of length 9m and 1 run

of length 3m.

71 72 73 74

_ — — 157

119 I19 I19 —

— — — 319

37 36 36 -

— — — 96 31

92 31 92 92 -

— — - 272 31

271 271 31 - ’

- — — 571

Figure 13.22 Merging with 3 Input and 1 Output Tapes

We can employ the same four tapes more usefully in a balanced merge, wherein
there are always the same number of tapes for input and for output, with their roles
being alternated. Suppose that we have the same initial runs on 74, and that we
begin by distributing them to 71, 72. Then the first runs from 71, 72 are merged
and written on 73; the second runs from 71, 72 are merged and written on 74;
and this alternation to 73, 74 continues. When the input on 71, 72 is exhausted,
then 73, 74 become the input tapes and 71, 72 become the output tapes; when the
input on 73, 74 is exhausted, the roles are switched again; etc. After the initial

714 SORTING

n 72 73 74

_ — — I57
f29 I28 — —

— 214 I1 214

47 I1 47 — -

— — 84 83-!1

162 161 91 — -

— - 321 251

571 — — — !

Figure 13.23 Balanced 2-way Merging

distribution, six merging phases are plainly sufficient to complete the process, since

the number of distinct runs is reduced by a factor two each time, and T log2 57 = 6.

Figure 13.23 depicts the pattern of merging activity in this case. Although there are

more merges than before, we have eliminated the useless copying, and the total of 7

passes is a distinct improvement over the previous 8. Actually, by rotating which

tape receives the output and by copying just 2/3 of the items from the output tape

each time, we could have improved the 3-way merging scheme to the point that it

outperformed this balanced 2-way merging scheme. But for 21 tapes, where t > 3,

balanced merging will always be the better alternative.

Although simple, these two examples convey several important points. First,

we are led to compare the efficiency of various merging schemes in terms of the

total number of passes over the data. Secondly, if there are n items and they are in

initial runs of size m, then balanced multiway merging with It tapes requires

T log, (w/m) passes. In looking for better ways to accomplish merging, one obvious

approach is to use larger values of t, and another is to start with larger values of m

— in other words, larger initial runs. In fact, we will find that sophisticated merg¬

ing patterns overcome the apparent dilemma encountered in this section — that we

must settle for either wasteful copying (Figure 13.22) or reducing the order of merge

(Figure 13.23).

f 13.4.1.1 Buffer Management. The multiway merging scheme that we have just

examined is a combination of input, trivial computation, and output. We have

stressed that for efficiency, it is important to minimize the number of distinct

accesses. There is more to it than that. While an input buffer is being filled, no

computation can safely be performed with its contents. Therefore, it is conventional

to use double buffering, wherein the contents of buffer A are available for use while

buffer B is being filled with the next block of data from the input. As long as

buffer B is filled and ready when the computation finishes with buffer A, then their

roles can be switched with no loss in time. Similar remarks apply to the use of

output buffers and to the use of pairs of buffers for multiple input streams. Thus,

113.4.1.1 BUFFER MANAGEMENT 715

(a)

1 5 6 11 12 14 15 16

2 3 4 7 8 9 10 13

Figure 13.24 The Insufficiency of Paired Buffers

for multiway merging of order t, one would want 2 buffers for each input and 2

buffers for output, for a total of 21 + 2.

However, simply having It + 2 buffers allocated in pairs is not a good enough

strategy. The merging process should, at any time, be able to find m items to fill

the next output buffer, and should not have to wait for an input buffer to be filled

in order to do so. The example in Figure 13.24 demonstrates that, in fact, this may

not be possible if the 21 input buffers are simply assigned in pairs to the t inputs. In

(a) of the figure we see the contents of input tapes U and V, in blocks of size two.

The remainder of the figure traces the double buffering activity, with buffers A and

C dedicated to tape U and buffers B and D dedicated to tape V. Of course, double

buffering would also be used for the output buffers for tape W, but we disregard

this and simply show the output blocks. As we follow the progress of the merging

activity, we observe

(b) initial loading of buffers A and B from U and V;

(c) loading of buffers C and D from U and V;

(d) emptying of buffer B;

(e) emptying of buffer A and reloading of buffer B from V;

(f) emptying of buffer D and reloading of buffer A from U.

716 SORTING

Now the merging process is delayed because the next block is needed from tape V,

however, this must be loaded into buffer D, which was just depleted on this step

and will not be reloaded until the next step.

There is a resolution for this type of situation, and that is to anticipate which of

the active input buffers will be the first to be depleted. In the technique ot forecast¬

ing, one simply looks at the last items in these buffers, and deduces from the

smallest of those values which input will first need replenishing. With this method

the pool of 21 buffers becomes a set of floating buffers, with many of them possibly

being assigned to a single input for some interval. Suppose that this policy were in

effect upon reaching the state toward the bottom of Figure 13.24. Then, upon

comparing the 9 in buffer B with the 11 in buffer C, the next input would have been

directed from tape V to the available buffer A, thereby avoiding the delay.

14

28 38 40 35

(a) Initial Heap

23

34 38 40 35

(b) replace (a) with 34

27

34 38 40 35

(c) replace (b) with 31

Figure 13.25 The Heap replace Operation

13.4.2 REPLACEMENT SELECTION 717

13.4.2 Replacement Selection

Suppose that we have space in primary memory for a buffer of size m, to be used

for producing initial runs. The obvious approach is to repeatedly (a) fill the buffer

with the next m items, (b) sort them with some efficient method from Section 13.2,

and (c) write out the run of length m. A much better scheme is to use the buffer as

a heap, along with a new priority queue operation:

replace(pq,min,next) — to remove the smallest item from pq, assigning it to min,
and to insert next in pq, restoring the heap property as

required.

In illustration of the replace operation, suppose that we have the heap shown in

Figure 13.25(a), with m — 1. Output of 14 and input of 34 leads to the situation

shown in (b) of the figure; output of 23 and input of 31 leads to the situation

shown in (c); etc.

Let us now assume that m = 4, and use this operation with the input sequence

shown in Figure 13.26(a), in the technique known as replacement selection. In

generating runs, as shown in (b) of the figure, we repeatedly select the smallest of
the current items in the buffer. The underlying mechanism for this is, of course, the

heap strategy of Figure 13.25;4 however, for long records it would probably be pref¬

erable to use a level of indirection, storing pointers in the heap rather than the
actual records. Also, we must not select any item from the buffer if it is smaller

than the last value that has been output in the current run. Items in this category

(marked with *’s in the figure) are ineligible for the current run, and must wait for

the next run. This requirement is easily implemented by keeping track of the
current run number; keys of eligible items are then prefixed with the current run

number, and keys of ineligible items are prefixed with the next run number.

We observe from Figure 13.26 that although the buffer size is four, the lengths

of the first two initial runs are six and nine. There is nothing particularly contrived

about this example. It is in the nature of replacement selection that, for random

input, it generates initial runs with an average length of twice the buffer size. The

practical results are even better than this theoretical value,. because it is fairly

common for the input to be already partially sorted (see Section 13.2.4). In this

event, the method will perform even better than predicted by theory, generating

initial runs that may be much longer than 2m (see Exercise 13.31). All of this is

important because, as we have seen in the preceding section, longer runs mean fewer

runs, and this can shorten the merging phase. Another advantage of replacement

selection is that it lends itself very well to overlapping of input, computation, and

output. On the other hand, we should note two slight disadvantages. The runs

produced are not of fixed length; neither can we divide the number of items n by a

chosen buffer size m to obtain some known number of final runs r. Both of these

matters may cause some inconvenience in the ensuing merge phase.

4 Note that since our interest is in a good, convenient algorithm and not in precise counts
of comparisons, we choose to use a heap rather than a tournament (see Section 13.3).

718 SORTING

37 63 21 89 14 40 66 18 03 43 69 10 22 72 24 76 98 01 84 27 59

(a) Input Sequence

Buffer (m = 4) Output

37 63 21 89

37 63 14* 89 21

40 63 14* 89 21 37

66 63 14* 89 21 37 40

66 18* 14* 89 21 37 40 63

03* 18* 14* 89 21 37 40 63 66

* C
O

o

 18* 14* 43* 21 37 40 63 66 89

(First run completed)

03 18 14 43

69 18 14 43 03

69 18 10* 43 03 14

69 22 10* 43 03 14 18

69 72 10* 43 03 14 18 22

69 72 10* 24* 03 14 18 22 43

76 72 10* 24* 03 14 18 22 43 69

76 98 10* 24* 03 14 18 22 43 69 72

01* 98 10* 24* 03 14 18 22 43 69 72

01* 84* 10* 24* 03 14 18 22 43 69 72

(Second run completed)

01 84 10 24

27 84 10 24 01

27 84 59 24 01 10

(b) Generating Initial Runs

Figure 13.26 Replacement Selection

13.4.3 Merge Patterns

We will be examining patterns of merging in which intermediate runs of varying

lengths are created. If at some point in this process we think of the existing sets of

runs as leaves in a /-ary tree, then Huffman’s algorithm (see Section 8.2.4) suggests

a simple and elegant solution to the problem of minimizing the amount of work

required to merge them. That is, one would always combine at the deepest level of

the tree the contents of those tapes containing the least amount of data. Unfortu¬

nately, this simple perspective ignores the idiosyncrasies of the two chief external

mediums, tape and disk. These generate other concerns, as we will see in the
following two sections.

113.4.3.1 TAPE SORTING 719

113.4.3.1 Tape Sorting. To begin with, we cannot do f-way merging with tapes

unless we have at least t + 1 of them — t for input and 1 for output. Thus, there is
a pragmatic upper limit for any user who must depend upon the computing facilities
available to him. A more fundamental fact about tapes is that they are efficient
only when used as sequential access devices. In fact, the methods that we are
describing use them as queues, but with a strong additional restriction - that the
queue be completely filled before it is emptied.5 Moreover, after a tape is written, it
must be rewound before it can be read, and this can take a significant portion of a
minute. Therefore, it is important that successive merge passes leave their output
on tape in such fashion that there be no waste tape motion, and that they deliver
the most work per pass. Although balanced multiway merging is quite respectable,
it is not optimal in this respect, as we will now see.

Let us reconsider the same set of four tapes 71, 72, 73, 74 and the same set of
57 runs that we discussed in Section 13.4.1. We found there that 3-way merging
was inferior to balanced multiway merging because of the unproductive nature of
the distributive, or copying, passes. Is there a more efficient way to employ 3-way
merging, using those same four tapes? There is, and since we are by now familiar
with the format established in Figures 13.22 and 13.23, the easiest recourse is to
demonstrate the technique by a similar figure. In the method of polyphase merging
depicted in Figure 13.27, we begin by distributing unequal numbers of runs from 74
to 71, 72, 73. We then merge from 71, 72, 73 to 74 until 73 becomes empty,
producing 13 runs of length 3m on 74; then 73 and 74 are rewound, and the next
merge step produces 7 runs of length 5m on 73; etc. Note that we now have a fifth
column in the figure, showing the amount of data that is processed at each step, as
a fraction of the number of initial runs. There are altogether 7 merge steps in this
example, the same as for multiway merging. In that case, however, each of the 57
initial runs was processed 7 times; now those 57 runs have been processed an aver¬

age number of times equal to

57 + 39 + 35 + 36 + 34 + 31 + 57 _^ ^

57

The trick here is to wind up at the last step with exactly one run on each of

input tapes, and then conclude with a t-way merge of these t runs for the final
output. It was not just luck that we succeeded in this case. Rather, the value 57 is

one of a series of numbers that are perfect for the purpose of doing polyphase
merging with four tapes. We can rather easily discover what those numbers are by

building a table backwards, as shown in Figure 13.28. In this scheme, we let
a > b > c represent the numbers of runs on the non-empty tapes at successively

higher levels. This condition implies that the largest number in a row must be the
same as the smallest number in the next row, since a step must end when the tape

with the smallest number of runs is depleted. In fact, we have this relation and two

others, as follows:

s There are also tape merging schemes that use tapes as stacks, by reading tape backward
as well as forward. Although these have a slight advantage in some cases, we will not

pursue them here.

720 SORTING

71 72 73 74 File Fraction

— — — I57 (Initial)

I24 I20 I13 — 57/57

I11 I7 - 313 39/57

I4 - 57 36 35/57
- 94 53 32 36/57

172 92 51 - 34/37

171 91 — 311 31/57
— — 571 — 57/57

Figure 13.27 Polyphase Merging for t = 4

an cn+1 ’ bn an+\ an » cn ^n+1 an (13.14)

from which we find that

an - an-\ + an-2 + an-3 (13.15)

with initial conditions ax = 1, a2 = 2, a3 — 4. In other words, this method will work
with r = 9, 17, 31, 57, 105,.... The scheme can also be generalized for any number
of tapes p + 1, yielding a p-way polyphase merge, for which the perfect initial values
are the pth order Fibonacci numbers

fip)_ /•(?) i fte) i fip) i i /-O7)
Jn -Jn-\ +Jn-2+Jn-3 ^-V Jn-p (13.16)

Some examples of these values for different values of p are shown in Table 13.3.

Level a 5 c Total

0 i 0 0 1
1 i 1 i 3
2 2 2 i 5
3 4 3 2 9
4 7 6 4 17
5 13 11 7 31
6 24 20 13 57
7 44 37 24 105

Figure 13.28 Perfect Polyphase Distributions for t = 4

An obvious question at this point is what to do if the number of initial runs
does not match one of the values in the desired column of Table 13.3. The easy
answer is that we should insert a number of dummy runs equal to the difference.
However, the issue of where they should be inserted is a more subtle one. To begin

113.4.3.1 TAPE SORTING 721

Level P = 2 P = 3 II -u

P = 5

C
D

II Q
.

1 2 3 4 5 6

2 3 5 7 9 11

3 5 9 13 17 21

4 8 17 25 33 41

5 13 31 49 65 81

6 21 57 94 129 161

7 34 105 181 253 321

8 55 193 349 497 636

Table 13.3 pth Order Fibonacci Numbers

with, we do not really need to insert the dummies; rather, we can just use counters

to keep track of the numbers of these fictitious runs on each tape. Then we note

that merging a dummy run with a real run amounts to copying, and that merging

two dummy runs amounts to simply decrementing two counters. So there is much

advantage in dividing the total number of required dummy runs equally (in some

sense) among the tapes in the initial distribution. The details are more intricate

than this simple observation suggests, with the surprising result that it is sometimes

better to operate with more than the minimum number of dummy runs and passes

[Shell 1971]!

Figure 13.29 Cascade Merging for t = 5

722 SORTING

We have alluded previously to two sources of wasted tape motion, copying and
rewinding. Rewinding is actually much more of a culprit than is copying (see Exer¬
cise 13.29), and polyphase merging as we have described it still has this problem. In
each merge step, in fact, the tape last depleted and the tape just filled both have to
be rewound by sizeable amounts. There are variations of polyphase sorting that
directly confront this issue. However, it is more instructive to examine briefly the
pattern known as cascade merging. As with polyphase merging, we start with a
perfect distribution of initial runs on the tapes. To illustrate this method, we will
use five tapes rather than four; a viable distribution of initial runs in this case is
30, 26, 19, 10. We see in the ensuing pattern, as shown in Figure 13.29, that a given

merge step has sub-steps. In this case, for example,

a first sub-step does 4-way merging from 71, 72, 73, 74 to 75
a second sub-step does 3-way merging from 71, 72, 73 to 74
a third sub-step does 2-way merging from 71, 72 to 73
a final sub-step copies from 71 to 72

The number of runs that are copied (marked with *’s) is so small as to be of little

consequence.

We see that this method employs merges of orders t, t— 1,... ,2 and that it
always processes all of the runs on each step. This might seem to place it at a
disadvantage compared to polyphase, which always does merges of order t and
processes just a fraction of the runs at each step. Nonetheless, for t > 6, cascade
merge is asymptotically superior to polyphase merge. The reason is that the tapes
containing the most initial runs are written earlier in each step, and can then be
rewound while the tapes with lesser numbers of runs are being written; thus, much
of the rewind activity is overlapped with useful computation.

f = 4 t = 6 t = 8 f = 10

Balanced Merge, f/2 1.000 Ig r 0.631 Ig r 0.500 Ig r 0.431 Ig r
Ordinary Merge, f — 1 1.262 Ig r 0.861 Ig r 0.712 Ig r 0.631 Ig r
Polyphase Merge, t— 1 1.042 Ig r 0.598 Ig r 0.528 Ig r 0.509 Ig r
Cascade Merge, t — 1 1.042 Ig r 0.622 Ig r 0.479 Ig r 0.407 Ig r

Table 13.4 Asymptotic Numbers of Tape Passes

Let us summarize this matter of merge patterns by tabulating their asymptotic
behavior, in terms of fractional number of runs processed, for various values of t.
We do this in Table 13.4 for balanced multiway merging, for multiway merging
with copying, for polyphase merging, and for cascade merging. It is important to
realize that these are asymptotic, theoretical numbers. In many computing environ¬
ments, for example, balanced multiway merge and polyphase merge may differ only
slightly in their efficiency. Moreover, a fortuitous number of initial runs, or
perhaps the characteristics of a particular device, can easily tip the balance. None¬
theless, when external sorting is a major activity, it is sensible to investigate
alternatives such as these, with the possibility of saving substantial amounts of time.

f 13.4.3.2 DISK SORTING 723

fl3.4.3.2 Disk Sorting. Many of the limitations with tape do not apply with disks.
One need not have t + 1 disks to do t-way merging; in fact, just two will suffice,
one for the inputs and one for the output. Neither do we have to contend with
rewinding. So there is much more flexibility in composing merge patterns, and one
might be encouraged to employ large merge orders, thereby decreasing the number
of passes. But now we discover a different kind of limitation. If the order of merge
is high, then space must be allocated for buffers for each of the inputs. Since the
buffers are obtained by dividing up some fixed amount of space t ways, this leads to
smaller buffers as t gets larger. Now transmission time is a decreasing function of
the merge order, as we wished, but seek time is an increasing function of the merge
order, since smaller buffers require more seeks to fill them. In other words, to do a
Away merge of n items will require time proportional to {St + T)n, where S and T
are constants related to the seek and transmission costs, and where normally S < T.
These dependencies usually yield an operating curve with a moderately shallow
minimum. For a given computing environment, it is fairly easy to obtain usable
estimates for the relative importance of seek and transmission times, and to thereby
locate a good operating point.

Figure 13.30 A Disk Merge Tree

An idealized model of the situation just described is given by the cost function

C = SxD + TxE (13.17)

To see the significance of the variables D and E, let us draw a tree representing a
hypothetical merge sequence, as in Figure 13.30, where the leaves all contains initial
runs of length m. If we compute the costs as tabulated in Figure 13.31, then the
value of E for this merge tree is 29, which we recognize as external path length. But
what is D1 It is the degree path length, which can alternatively be expressed as the
sum, over all leaf nodes, of the degrees of the internal nodes on the path from the
leaf to the root. Thus, D for the tree of Figure 13.30 can be obtained as:

4 x (4 + 3) + 3 x (3 + 2 + 3) + 1 x (2 + 3) + 2 x (2 + 3 + 3) + 2 x (3 + 3) = 85

If we have values for 5 and T, then we can construct an optimal merge tree by
using the principle of optimality in a fashion reminiscent of, but different from, the

724 SORTING

principle that we used for building optimal binary search trees in Section 10.3.2.1

(see Exercise 13.38).

Node Cost

13 (3 S + 7) X 3m

14 (2S + T) X 2m

15 (4S + T) X 4m
16 (2S + T) X 4m
17 (3 S + T) X 4m

18 (3S + T) x 12m

Total (85S + 297) X m

Figure 13.31 Cost Computation for the Tree of Figure 13.30

f 13.5 PARALLEL SORTING SCHEMES

For the preceding sections of this chapter, most of the results were discovered well
before the 1970’s. Although the concerns of this section likewise date from that
time, they also reflect more recent invention. Our starting point is the Information
Theoretic Bound of 0(n lg n) from Section 13.2.3. If sorting is so important, then
perhaps we can circumvent this bound by having many processors operating in
parallel. In particular, we inquire whether n processors can be employed in such a
fashion that the time is reduced to <9(lg «)? The first order of business in looking
for answers to such questions is to define the model of computation, and we will
speak to that very shortly. From first principles, however, we are able to see that
no comparison-based method can hope to do better than 0(lg n) time. This is so
because there are that many levels in the comparison tree, and the tests on each
level depend upon the test results from preceding levels, but no assemblage, of
processors can produce results any faster than dictated by this number of levels.

Before describing models of parallel computation, it might be well to explain
why we tolerate the notion of having n processors, where n could be very large.
One reason is the historical one that these issues were first raised in the context of
building fast switching, or permutation, networks. This is a somewhat simpler
problem than sorting, and an important one, for which n is commonly of reasonable
size. So it has practical appeal. Another, obvious reason is that the enormous
advances in VLSI fabrication techniques now make such devices plausible. Finally,
even if some of the ideas are not yet feasible, the unrestricted models of parallel
computation have theoretical importance in their own right.

There are two broad models for parallel computation. In the network model,
the processors are autonomous, having their own memories, and communicating via
a network of connections. In the shared memory model, all the processors can
communicate freely via their shared memory. In almost all of the former models,
the links tend to be few in number and very regular in their topology. These

113.5 PARALLEL SORTING SCHEMES 725

features are conventionally imposed because of their practical significance; the end
result is that these models are less powerful than the shared memory models, due to
the constricted communication among the processors. There are many variations
upon both of these models, reflecting very significant concerns. Examples of these
are the quantity of information that must be exchanged among processors (the
network model), the handling of memory contention (the shared memory model),
and the cost of setting up a computation (both models). It is curious that, in either
model, attempts to parallelize the more efficient 0(n lg n) serial sorting methods
have not succeeded. It seems as though they are inherently serial to some degree.
Thus, it is easy to apply multiple processors to the early steps of merging or later
steps of Quicksort, but seemingly not possible to do so with the final steps of merg¬
ing or initial steps of Quicksort. The methods that have responded well to
parallelization are some of the more lowly 0(n2) methods!

(a)

(b)

Figure 13.32 Sorting with a Network of Comparators

In speaking of network models, we need to distinguish between those that are
intended to serve a wide variety of computational purposes and those that are
designed strictly for sorting. The logic required for sorting is extremely simple, and
so it is comparatively easy to design a network when that is the only operation
required of it. The basic logical unit required is a comparator with two inputs A
and B, and two outputs S and L, such that the output S receives the smaller of the
two inputs, and the output L receives the larger of the two. A useful convention for
representing a network of such comparators is depicted in Figure 13.32(a), with the
inputs on the left and the outputs on the right. A comparator is a vertical bridge

726 SORTING

between a pair of inputs; it will cause that pair to be exchanged, if necessary, so
that the S output is above the L output. Thus, Figure 13.32(b) illustrates the action
of this network in sorting the input sequence 3, 2, 4, 1. Note that two comparisons
are performed in parallel each time, and that three time steps are required.

Using comparators in sorting networks is like doing bubble sort comparison-
exchanges in parallel. With 0(n) comparators, we could hope to translate the 0(nf
character of that method into an 0(n) parallel sorting method. How much better
can we do in reality? In this regard, Batcher [1968] demonstrated two different
schemes that sort n items in 0(lg2 n) time by using networks of 0(n lg2 n) compara¬
tors. A more recent result uses a graph-theoretic construction to demonstrate that a
network of 0(n lg n) comparators can sort n numbers in <9(lg n) time [Ajtai et al.
1983]. Unfortunately, whereas Batcher’s schemes admit of practical implementa¬
tion, this more recent method does not at present.

If the paradigm of most network models is the comparison-exchange of bubble
sort, the paradigm of most shared memory models is enumeration sorting! Since
the processors can freely compare any pair of values, then counting can be used to
determine the ranks of the items. To cite the power of this technique, we know that
serial computation requires n — 1 comparisons to find the maximum of n items. Yet
in the shared memory model of computation, it has been shown, by another graph-
theoretic construction, that n processors can find the maximum in time lg lg n + c,
for c a constant [Valiant 1975b]! Related arguments there and elsewhere show how
to apply enumeration to the problems of sorting and merging. These methods do
attain our goal of having n processors sort n items in 0(lg n) time. However, the
final remark at the end of the previous paragraph applies here also - it is not pres¬
ently feasible to implement these methods.

The preceding remarks appear to leave the issue of fast parallel sorting unre¬
solved. Although the theoretical outlook is good, those methods with best
asymptotic performance seem to have unreasonably high costs, in either the network
or the shared memory model. Moreover, the economics of building special purpose
devices has never generated more than limited enthusiasm. It is only a matter of
time until parallel computing architectures begin to proliferate though. At that
point, it is likely that economics will dictate the adoption of general purpose
network architectures, perhaps shuffle-exchange networks [Stone 1971] or cube-
connected-cycles [Preparata and Vuillemin 1979], to name just two. The issue will
then become that of discovering what parallel sorting algorithms can best be
adapted to these general purpose schemes for parallelism.

13.6 OVERVIEW

In several ways, this final chapter is broader in scope than any of the others.
Computer science is now several decades old, and the topic of sorting has played a
central role from the very earliest years until the present. The number of published
sorting algorithms, with all their variations, is very large. And although the prob¬
lem statement of sorting is relatively simple, compared to that of searching, the

13.6 OVERVIEW 111

choice of which method to use is not so simple. The numerous alternatives have
been classically used to illustrate the benefits of various computing trade-offs at all
levels of pedagogy. Thus, sorting teaches us about the “engineering” side of
computer science. At the same time, as the discussion of Section 13.5 reveals, sort¬
ing is a very active area of research in contemporary computer science.

The broad scope is also apparent when we contrast some of the real-world
concerns (buffer management, and merge patterns that cater to tape and disk
behaviors) with some of the theoretical results. In the latter regard, there is pleasing
symmetry in the following observation. For each of the issues — sorting optimality,
merging optimality, and selection optimality — a pair of investigators have made
major contributions by using very pretty combinatorial analysis and sophisticated
data structures. We refer, of course, to the algorithms by Ford and Johnson,
Hwang and Lin, and Hadian and Sobel. The virtue of breadth in this final sense —
of having one’s feet planted both in the real world and in theory — is a fitting note
on which to close.

13.7 BIBLIOGRAPHIC NOTES

• Some Quicksort variations include sampling to determine the partitioning
element [Frazer and McKellar 1970], computing the mean rather than the
median to determine the partitioning element [Motzkin 1983], and exploiting
pre-sortedness [Dromey 1984],

• One proposal for hybrid sorting is essentially address calculation sorting
followed by Heapsort, thus bounding the worst-case complexity [Meijer and
Akl 1980]. Another is a combination of distribution and merging [van der Nat
1980]. And still another employs three phases: distribution, then Quicksort on
each bucket, and finally insertion sorting to clean up remaining inversions

[Allison and Noga 1982].

13.8 REFERENCE TO TERMINOLOGY

address calculation sort, 698
address table sort, 672
balanced merge, 713
binary insertion, 677

linear merging, 704
f longest ascending subsequence, 707
f median of medians, 710
f merge insertion, 702

f binary merging, 705
bubble sort, 684

f minimax behavior, 701
f minimean behavior, 703

f cascade merging, 722
cocktail shaker sort, 686
comparator, 725

natural merging, 695
f network model, 724

f cube-connected-cycles, 726

order of merge, 713
partition-exchange sort, 686

728 SORTING

t degree path length, 723
diminishing increment sort, 677
distributive partitioning, 699
double buffering, 714
dummy run, 720
enumeration sort, 675

t floating buffers, 715
f Ford-Johnson algorithm, 702
f forecasting, 715

Heapsort, 681
t Hwang-Lin algorithm, 705

hybrid sorting, 708
Information Theoretic Bound, 701
initial runs, 712
inversion, 673
inversion table, 673
key sort, 672

partitioning element, 686
passes, 713

t polyphase merging, 719
t /?th order Fibonacci numbers, 720
t quadratic selection sort, 680

Quicksort, 686
radix exchange sorting, 698
radix sorting, 696
replacement selection, 716
run, 695

f shared memory model, 724
Shellsort, 677

| shuffle-exchange network, 726
stable sort, 671
straight merging, 695
tournament sort, 681
value distribution sorting, 698

13.9 EXERCISES

Sections 13.1 — 13.2.2

13.1 What is the inversion table for the permutation 53721986 4?

f 13.2 Write an algorithm to compute a permutation, given its inversion table.
Test your program against the inversion table 7664022 1 0. What is the
complexity of your program?

fl3.3 In enumeration sorting, how are the final counts related to the permutation
P l that is needed to rearrange the input values in order? Write an algorithm that
accomplishes this rearrangement.

13.4 Write a version of insertion sort that uses a linked list, using cursors rather
than pointer variables. Test your program against the data of Eq. 13.1, displaying
the cursor values after each major iteration.

f 13.5 Assume that cursors have been employed in performing a linked list
insertion sort, as in Exercise 13.4. Write an algorithm that will permute the result¬
ing records (in the final array, after that sort) to their proper sequence, using as
little working storage as possible. What is its complexity? Test your program
under the assumption that the input data to the linked list insertion sort was that of
Eq. 13.1, displaying the cursor values after each major iteration.

13.6 Sort the following input via a Shellsort, using increments of 5,3,1 and show¬
ing the sequence of the keys after each pass.

74 95 26 66 36 24 1 60 70 2 25 22 31

13.9 EXERCISES 729

tfl3.7 [Gale and Karp 1972] Prove that a sequence that is first y-sorted and then
k-sorted still remains y'-sorted.

13.8 Demonstrate either that selection sort is stable or that it is not stable.

13.9 Show the effect of transforming the sequence of keys from Exercise 13.6 into
a heap. Then perform a Heapsort, displaying the heap after each sift-up operation.

fl3.10 Write an algorithm to perform tournament sorting. Test your program
against the input from Exercise 13.6.

f 13.11 Prove that the complexity of initially creating the heap in Heapsort is 0{n).

13.12 Sort the sequence of keys from Exercise 13.6 via Quicksort. Show the
values of the parameters left and rite for each invocation, and show the sequence of
the keys after each exchange.

|13.13 Write a version of Quicksort incorporating all of the basic refinements
discussed in Section 13.2.1.3.1, and implementing the median-of-three function as a
sub-procedure. Test your program against three sample sets of data, each of size
about one hundred; try it with data in order, data in reverse order, and data in
random order. Compare its execution times against these test inputs with those of
Algorithm 13.6 for the same inputs.

13.14 Use merging to sort the sequence of keys from Exercise 13.6, doing so for:

(a) a two-way top-down recursive merge,

(b) a two-way bottom-up straight merge,

(c) a natural merge.

Show the sequence of the keys after each pass, as in Figure 13.14.

13.15 Sort the sequence of keys from Exercise 13.6 via a radix sort, showing the

sequence of the keys after each pass.

Sections 13.2.3 — 13.3

ffl3.16 Draw the comparison trees that correspond to applying Heapsort and
Quicksort to a sequence of three elements a,b,c. Your trees should be done in the

style of Figure 13.16.

tfl3.17 What is the external path length for the comparison tree corresponding to
the method of Figure 13.17? Demonstrate a minimean sorting method for six

elements that has a smaller external path length.

tfl3.18 [Knuth 1973b] Given a digraph G as in Figure 13.17, one can define the
efficiency of G as E(G) = n\ / (2kT(G)), where k is the number of comparisons made
in obtaining the configuration G, and T(G) is the number of ways in which G can
be topologically sorted (see Exercise 7.40). Initially k = 0 and T(G) = »!, so that
E(G) = 1. In the final graph (a line) T(G) = 1, so that the efficiency depends upon
the number of comparisons made to complete the sort. Since F(6) = 10, from Table
13.1, the final graph for this merge insertion has an efficiency of 6!/210 = 45/64.
With reference to Figure 13.17(b), calculate the efficiency of the graph obtained by
inserting c before e, and the efficiencies of the graphs obtained by inserting e before

730 SORTING

c (the values of T(G) can easily be computed by hand). The significance of this
process is that a comparison always leads to a graph of lower efficiency; therefore,
it can be determined a priori that inserting c before e could never lead to a graph
with final efficiency of 45/64, as above, whereas inserting e before c could do so.

tfl3.19 Obtain a formula that describes the insertion order sequence for merge
insertion. Starting from this formula, derive the summation form of Eq. 13.10.

f 13.20 For the following input files, trace the action of binary merge as in Figure
13.20; however, show the actual comparisons and actual outputs that result from

merging these inputs.

U: 15 19 20 25 28 31 37 42 44 48 51 52 54 55
56 61 63 67 69 72 73 76 78 83 85 89 90 96

V: 23 57 79 88

ffl3.21 Write a program to perform binary merging. Test it by applying it to the
data of Exercise 13.20, and printing out the same values asked for in that exercise.

fl3.22 Write an algorithm to find the length L of the longest ascending subse¬
quence of a sequence. Test your program against the sequence

23 11 24 25 14 15 17 22 12 26 13 21 16

What is the complexity of your program? Finally, revise your algorithm so that it
actually finds an instance of such a longest subsequence of length L.

f 13.23 [Pohl 1972] The problem of finding the maximum (or the minimum) in
an array of n elements by a sequence of comparisons can be characterized as
follows. To simplify matters, assume that the elements all have distinct values.
Then the elements of the array are in one of two disjoint sets: A containing
elements that could be the maximum, and B containing elements that cannot be the
maximum. Any comparison must be of one of three forms:

a ? a between elements from set A
alb between elements from sets A and B
bib between elements from set B

Initially, set A has cardinality NA = n and set B has cardinality NB = 0. The three
types of comparisons alter the cardinalities as follows:

ala alb

a < b a > b

bib

ANa - 1 - 1 0 0
AA/e + 1 + 1 0 0

Since the goal is to have NA = 1 and NB = n - 1, then the best we can do is always
make comparisons of the form a 1 a, and a minimum of n - 1 of these will be
required to reach the desired final state.

In Section 2.5.1 we saw how to find both the minimum and maximum values in
an array of n elements at a cost of 3/2n — 2 comparisons, using the recursive proce¬
dure MIN_MAX (Algorithm 2.8). Analyze this problem afresh in terms of four
disjoint sets:

13.9 EXERCISES 731

A — containging elements that could be either the minimum or the maximum
B — containing elements that could be the minimum but not the maximum
C — containing elements that could be the maximum but not the minimum
D — containing elements that can be neither the minimum nor the maximum

with initial cardinalities NA = n, NB = 0, Nc = 0, ND = 0. Construct a table contain¬
ing an analysis of all possible comparisons (like that above), and then demonstrate
that a minimum of 3/2« — 2 comparisons are required.

fl3.24 According to Table 13.2, the value of V2(5) is 6. Even so, show how to
find the two largest of five items, without necessarily knowing which is greater, in

just five comparisons.

tfl3.25 [Hyafil 1976] An upper bound on the complexity of selection is given by

Eq. 13.13. Prove that a lower bound is given by

(Hint: Use a technique like that of Exercise 13.23.)

tfl3.26 Prove that in using the ordinary variation of Quicksort to perform
selection (that is, without linear median-finding), the average complexity is 0(n).

ft 13.27 Demonstrate whether or not the linear median-finding construction will
work for r = 5. What about r = 3? Finally, show the effect of repeated data values

upon the choice of r.

tf 13.28 Demonstrate an improved bound for linear median-finding, either by
using a larger value of r and/or by using more careful techniques than those

employed in the text.

Sections 13.4 — 13.5

13.29 Suppose that we are merging n runs with three tapes, and that the initial
distribution is 1 run on T\ and n - 1 runs on T2. Is any copying required? How

many passes will be required?

13.30 What would be the initial runs obtained via replacement selection, assuming

a buffer size of 5, for the following input sequence?

56 12 68 22 76 29 80 31 81 30 77 24 70 15 59
02 44 86 26 65 04 41 78 13 48 82 14 46 77 07

113.31 Under what circumstances will replacement selection transform the input

sequence to a single initial run, thereby accomplishing the sort without any need of

subsequent merging operations?

f 13.32 If we define a random input sequence of elements xb x2,..., xn in terms of a
random permutation of 1 .. n, then what is the expected length of the first run

encountered in the input to replacement selection?

732 SORTING

tf 13.33 Write an algorithm to perform replacement selection. Test your program

against the data of Exercise 13.30.

f 13.34 Generate a table, like that of Figure 13.28, showing perfect polyphase
distributions for t = 6. Then generate the analogue of Figure 13.27, showing how
65 initial runs would actually be merged.

ffl3.35 Investigate the action of polyphase merge on 17 initial runs with four
tapes. Label the runs in their initial locations on 71, 72, 73; then use a merge tree
to keep track of their activity throughout the merging process. Use this to draw
conclusions about the disposition of dummy runs.

ff 13.36 Write an algorithm to perform polyphase merging, assuming that tapes
are modelled by arrays. You may ignore the issue of dummy runs by assuming a
perfect initial distribution, but your algorithm should be general enough to handle
any reasonable number of tapes. Test your program against three initial distribu¬
tions (n > 100 in each case) for each of the cases t — 3, t = 5, t = 8.

f 13.37 Describe in moderate detail how one might best do sorting if just two tapes
were available.

ffl3.38 Suppose that we have 24 initial runs of equal sizes. Using Eq. 13.17,
compute and draw the optimal merge patterns corresponding to three different sets
of assumptions: 5 - 1 and T = l, S = l and 7=0, S' = 0 and 7=1.

fl3.39 The sorting network of Figure 13.32 uses six comparisons to sort four
numbers. Try to find a network that sorts four numbers in fewer comparisons.

LIST of ALGORITHMS

1.1 ALGOR_ A Fibonacci numbers by iteration 13
1.2 ALGOR_ B Multiplication by recursion 13

2.1 SEARCH_ A Search an unordered array 36

2.2 SEARCH_B Search an unordered array with sentinel 37

2.3 MAT_VEC Multiply a matrix by a vector 45

2.4 M AT_ MAT Multiply a matrix by a matrix 46

2.5 RULE_MASK Compute decision table rule 51
2.6 SIEVE Find primes by sieve of Eratothenes 57

2.7 MIN_MAX Find minimum and maximum in an array 60

2.8 BOOL_MULT Multiply two boolean matrices 63
2.9 RUSSIANS Fast boolean multiplication 65

3.1 BRIDGE_ PLAYER Evaluate play of cards in game of bridge 92

3.2 S ET_ T 0_ INT_ V1 Convert set to integer — I 98

3.3 SET_TO_INT_V2 Convert set to integer — II 99

4.1 SEARCH_ LIST Search/insert in linked list 123

4.2 POLYADD Add polynomials as linked lists 126

4.3 EQUIV Find equivalence classes 129

4.4 SPARSE_ MULT Multiply two sparse matrices — I 142

4.5 SPARSE_ MULT_ A Multiply two sparse matrices — II 144

4.6 COUNT_LIST Count cells in recursive List 150

4.7 MARK_LIST Mark cells in recursive List 154

5.1 QUEUE_L Implementing a queue as a linked list 169

5.2 QUEUE_A Implementing a queue as an array 172

5.3 STACK_A Implementing a stack as an array 179

5.4 TOKENIZE Convert characters to tokens 184

5.5 IN_TO_POST Translate infix to postfix 186

5.6 REPACK Reallocate multiple stacks on overflow 189

5.7 FIB_STK Fibonacci numbers using a stack 195

6.1 PREORDER_R. INORDER_R,

POSTORDER_ R Recursive tree traversals 211

6.2 INORDER_S Inorder tree traversal using a stack 214

6.3 INORDER_T Inorder tree traversal using threads 217

6.4 LINDSTROM Lindstrom’s tree traversal 219

6.5 MORRIS Morris’s tree traversal 222

6.6 BST_ INSERT Search/insert in binary search tree 229

6.7 P_QUEUE_H Implementing a priority queue as a heap 240

6.8 UN, FI Sets as oriented trees — I 245

6.9 UNION, FIND Sets as oriented trees — II 247, 248

6.10 BFS_TREE Breadth-first search of tree 262

6.11 DFS_TREE Depth-first search of tree 264

6.12 BRANCH_BOUND Branch-and-bound search of tree 272

734 LIST of ALGORITHMS

7.1 BFS_ GRAPH Breadth first search of graph 305

7.2 DFS_ GRAPH Depth-first search of graph 307

7.3 CUT_ NODES Find cut-nodes and blocks of graph 311

7.4 WARSHALL_B Compute transitive closure of digraph - I 314

7.5 WARSHALL_S Compute transitive closure of digraph — II 316

7.6 STRONG_ COMPONENTS Find strong components of digraph 318

7.7 PRIM Compute minimal spanning tree 322

7.8 DIJKSTRA Shortest paths from single source 326

7.9 FLOYD Shortest paths for all pairs of vertices 328

7.10 TOPO_SORT Topological sort of acyclic digraph 349

7.11 DOMINATORS Find dominators in a flow graph 356

8.1 CONCAT Concatenate two strings 391

8.2 MATCH_0 Quadratic pattern matching 392

8.3 SUBSEL Extract substring from a string 393

8.4 SUBREP Replace substring in a string 393

8.5 MATCH_ 1 Linear pattern matching 421

8.6 SCAN_1 Compute shift vector for Algorithm 8.5 423

8.7 RE_ COGNIZER Look for regular expression in a string 438

10.1 SEARCH. BINARY Binary search in ordered array 471

10.2 BST_ DELETE Delete node from binary search tree 477

10.3 OPT.BST Construct optimal (static) BST 484

10.4 ROTATE. LL, ROTATE. RR AVL single rotations 497

10.5 ROTATE. LR AVL double rotation 499

10.6 AVL. INSERT Search/insert in AVL tree 500, 501

10.7 HASH. COALESCE Coalesced hashing (search/insert) 523

10.8 HASH. DOUBLE Double hashing (search/insert) 526
10.9 HASH.ORDERED Ordered hashing (search/insert) 531
10.10 TRIE. INSERT Search/insert in dynamic trie 542

11.1 COLLECT.0 Collecting memory cells — I 568
11.2 COLLECT.1 Collecting memory cells — II 571
11.3 MOVE. LIST Move a recursive List structure 575
11.4 FIRST. FIT First-fit allocation of memory block 594
11.5 COALESCE Coalescing blocks with boundary tags 595
11.6 RQST. BUDDY Allocate a (generalized) buddy block 605
11.7 RTN.BUDDY Deallocate a (generalized) buddy block 606

13.1 INSERT. SORT Insertion sort 676
13.2 SHELLSORT Shellsort 678
13.3 SELECT. SORT Selection sort 680
13.4 HEAPSORT Heapsort 683
13.5 BUBBLE. SORT Bubble sort 685
13.6 QUICKSORT Quicksort 687
13.7 MERGE Linear merging 692
13.8 MERGE. SORT Sorting by merging 693

BIBLIOGRAPHY
and

REFERENCES

There are three types of references, as follows:

1. General references of a significant nature for the study of data structures; they may
have been cited numerous times or not at all. These are listed with [•].

2. Specific references that are cited in the text just a few times. These are listed with the
section numbers in which they appear.

3. Incidental references that are not cited in the text, but that provide noteworthy back¬
ground material. These are listed without any special marking.

Abraham, C.T., Ghosh, S.P., and Ray-Chaudhuri, D.K. (1968) File Organization Based on
Finite Geometries, Information and Control 12, 143-163. [12.6]

Achugbue, J.O. (1981) On the Line Breaking Problem in Text Formatting, Proceedings of
ACM SIGPLAN-SIGOA Symposium on Text Manipulation, ACM SIGPLAN

Notices 16: 6, 117-122. [8.3.2]

ACM (1976) Proceedings of Conference on Data: Abstraction, Definition, and Structure,

ACM SIGPLAN Notices 11 (Special Issue).

ACM (1979) Curriculum ’78: Recommendations for the Undergraduate Program in
Computer Science, ACM Communications 22, 147-166. [Preface]

Adel’son-Vel’skii, G.M. and Landis, E.M. (1962) An Algorithm for the Organization of
Information, Soviet Math. Doklady 3, 1259-1263. [10.3.3.1]

Aho, A.V. and Corasick, M.J. (1975) Efficient String Matching: An Aid to Bibliographic
Search, ACM Communications 18, 333-340. [8.5.3]

Aho, A.V., Hopcroft, J.E., and Ullman, J.D. (1974) The Design and Analysis of Computer

Algorithms, Addison-Wesley. [•]

Aho, A.V., Hopcroft, J.E., and Ullman, J.D. (1983) Data Structures and Algorithms,

Addison-Wesley. [•]

Aho, A.V., Johnson, S.C., and Ullman, J.D. (1975) Deterministic Parsing of Ambiguous

Grammars, ACM Communications 18, 441-452. [8.6.3]

Aho A V, and Ullman, J.D. (1977) Principles of Compiler Design, Addison-Wesley.
[6.6.2]

Ajtai, M., Komlos, J., and Szemeredi, E. (1983) An 0(n log n) Sorting Network,
Proceedings 15th ACM Symposium on Theory of Computing, 1-9. [13.5]

736 BIBLIOGRAPHY and REFERENCES

Allen, A.O. (1975) Elements of Queueing Theory for System Design, IBM Systems Journal

14, 161-187. [5.1.3.1]

Allen, B. and Munro, J.I. (1978) Self-Organizing Binary Search Trees, ACM Journal 25,

526-535. [10.3.3.3]

Allen, F.E. (1970) Control Flow Analysis, ACM SIGPLAN Notices 5: 7, 1-19. [7.4.5.3.2]

Allen, F.E. and Cocke, J. (1976) A Program Data Flow Analysis Procedure, ACM

Communications 19, 137-147. [7.4.5.3.2]

Allison, D.C.S. and Noga, M.T. (1982) Usort: An Efficient Hybrid of Distributive Parti¬

tioning Sorting, BIT 22, 135-139. [13.7]

Al-Suwaiyel, M. and Horowitz, E. (1984) Algorithms for Trie Compaction, ACM Trans¬

actions on Database Systems 9, 243-263. [10.5.1]

Amble, O. and Knuth, D.E. (1974) Ordered Hash Tables, Computer Journal 17, 135-142.
[10.4.2.5]

Angluin, D. (1976) The Four Russians’ Algorithm for Boolean Matrix Multiplication is

Optimal in Its Class, ACM SIGACT News 8: 1, 29-33. [2.5.3]

Arden, B.W., Galler, B.A., and Graham, R.M. (1961) An Algorithm for Equivalence

Declarations, ACM Communications 4, 310-314. [4.2.3]

Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., and Faradzev, I.A. (1970) On Economical

Construction of the Transitive Closure of an Oriented Graph, Soviet Math. Doklady

11, 1209-1210. [2.5.3]

Ash, R. (1965) Information Theory, Wiley-Interscience. [8.2.4]

Atkinson, L.V. (1979) Pascal Scalars as State Indicators, Software Practice and Experience

9,427-431. [4.2.1]

Atkinson, L.V. (1984) Jumping About and Getting into a State, Computer Journal 27,

42-46. [4.2.1]

Auslander, M.A. and Strong, H.R. (1978) Systematic Recursion Removal, ACM Commu¬

nications 21, 127-134. [5.6]

Baase, S. (1978) Computer Algorithms: Introduction to Design and Analysis, Addison-

Wesley. [2.5.3]

Backus, J. (1960) The Syntax and Semantics of the Proposed International Algebraic

Language of the Zurich ACM-GAMM Conference, Proceedings International

UNESCO Conference on Information Processing, Paris, 125-132. [5.4.1]

Baecker, H.D. (1972) Garbage Collection for Virtual Memory Systems, ACM Communi¬

cations 15, 981-986. [12.2.2]

BIBLIOGRAPHY AND REFERENCES 737

Baer, J.L. (1975) Weight-Balanced Trees, Proceedings National Computer Conference,

467-472. [10.3.3.2]

Baer, J.L. and Fries, M. (1977) On the Efficiency of Some List Marking Algorithms,

Proceedings IFIP Congress, 751 -766. [11.2.1.1]

Baer, J.L. and Schwab, B. (1977) A Comparison of Tree-Balancing Algorithms, ACM

Communications 20, 322-330. [10.3.3.1, 10.3.3.2]

Baker, H.G. (1978a) List Processing in Real Time on a Serial Computer, ACM Communi¬
cations 21, 280-294. [11.2.6]

Baker, T.P. (1978b) A Technique for Extending Rapid Exact-Match String Matching to

Arrays of More Than One Dimension, SIAM Journal of Computing 7, 533-541.
[8.8]

Barnard, T.J. (1969) A New Rule Mask Technique for Interpreting Decision Tables,

Computer Bulletin 13, 153-154. [2.11]

Barth, J.M. (1977) Shifting Garbage Collection Overhead to Compile Time, ACM Commu¬

nications 20, 513-518. [11.2.5]

Batcher, K.E. (1968) Sorting Networks and Their Application, Proceedings Spring Joint

Computer Conference, 307-314. [13.5]

Bayer, P.J. (1975) Improved Bounds on the Costs of Optimal and Balanced Binary Search

Trees, M.I.T. Project MAC Tech. Memo. 69. [10.3.2.3]

Bayer, R. (1972) Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms,

Acta Informatica 1, 290-306. [10.3.5]

Bayer, R. and McCreight, E. (1972) Organization and Maintenance of Large Ordered

Indexes, Acta Informatica 1, 173-189. [12.3.4.1]

Bayer, R. and Unterauer K. (1977) Prefix B-Trees, ACM Transactions on Database

Systems 2, 11-26. [12.3.4.1]

Bays, C. (1973) The Reallocation of Hash-Coded Tables, ACM Communications 16, 11-14.
[10.10]

Bays, C. (1977) A Comparison of Next-fit, First-fit, and Best-fit, ACM Communications

20, 191-192. [11.3.4.2]

Beck, L.L. (1982) A Dynamic Storage Allocation Technique Based on Memory Residence

Time, ACM Communications 25, 714-724. [11.3.1.2]

Beckman, F.S. (1980) Mathematical Foundations of Programming, Addison-Wesley.
[5.4.3, 6.6.5.1]

Behzad, M., Chartrand, G., and Lesniak-Foster, L. (1979) Graphs and Digraphs, Wads¬

worth Publishers. [7-7]

738 BIBLIOGRAPHY and REFERENCES

Belady, L.A. (1966) A Study of Replacement Algorithms for a Virtual Storage Computer,

IBM Systems Journal 5, 78-101. [12.2.1]

Belady, L.A., Nelson, R.A., and Shedler, G.S. (1969) An Anomaly in Space-Time Charac¬
teristics of Certain Programs Running in a Paging Machine, ACM Communications

12, 349-353. [12.8]

Bellman, R. (1962) Dynamic Programming Treatment of the Travelling Salesman Problem,

ACM Journal 9, 61-63. [7-7]

Bellmore, M. and Nemhauser, G.L. (1968) The Traveling Salesman Problem: A Survey,

Operations Research 16, 538-558.

Bentley, J.L. (1975) Multidimensional Binary Search Trees Used for Associative

Searching, ACM Communications 18, 509-517. [12.4.3.2]

Bentley, J.L. (1979a) Multidimensional Binary Search Trees in Database Design, IEEE

Transactions on Software Engineering SE-5, 333-340. [12.4.3.2]

Bentley, J.L. (1979b) Decomposable Searching Problems, Information Processing Letters 8,

244-251.

Bentley, J.L. (1980) Multidimensional Divide-and-Conquer, ACM Communications 23,

214-229.

Bentley, J.L. and Friedman, J.H. (1979) Data Structures for Range Searching, ACM

Computer Surveys 11, 397-409. [12.4.3]

Bentley, J.L., Haken, D., and Saxe, J.B. (1980) A General Method for Solving Divide-and-

Conquer Recurrences, ACM SIGACT News 12: 3, 36-44.

Bentley, J.L. and McGeoch, C.C. (1985) Amortized Analyses of Self-Organizing Sequen¬

tial Search Heuristics, ACM Communications 28, 404-411. [10.8]

Bentley, J.L., Sleator, D.D., Tarjan, R.E., and Wei, V.K. (1986) A Locally Adaptive .Data

Compression Scheme, ACM Communications 29, 320-330. [8.8]

Berge, C. (1957) Two Theorems in Graph Theory, Proceedings National Academy of

Science 43, 842-844. [7.4.3.4]

Berge, C. (1962) Theory of Graphs and its Applications, Methuen-Wiley. [7-7]

Berlekamp, E.R. (1968) Algebraic Coding Theory, McGraw-Hill. [8.8]

Berry, D.M., Erlich, Z., and Lucena, C.J. (1976) Correctness of Data Representations:

Pointers in High Level Languages, Proceedings of Conference on Data: Abstraction,

Definition, and Structure, ACM SIGPLAN Notices 11 (Special Issue), 115-119.

[4.5.1]

Berry, D.M. and Schwartz, R.L. (1979) United and Discriminated Record Types in

Strongly Typed Languages, Information Processing Letters 9, 13-18.

BIBLIOGRAPHY AND REFERENCES 739

Berztiss, A.T. (1973) A Backtrack Procedure for Isomorphism of Directed Graphs, ACM
Journal 20, 365-377. [7.7]

Berztiss, A.T. (1975) Data Structures — Theory and Practice (2nd ed.), Academic Press.

Betteridge, T. (1974) An Analytical Storage Allocation Model, Acta Informatica 3,
101-122.

Bird, R.S. (1977a) Notes on Recursion Elimination, ACM Communications 20, 434-439.
[5.6]

Bird, R.S. (1977b) Improving Programs by the Introduction of Recursion, ACM Commu¬
nications 20, 856-863. [5.6]

Bird, R.S. (1977c) Two Dimensional Pattern Matching, Information Processing Letters 6,
168-170. [8.8]

Bird, R.S. (1980) Tabulation Techniques for Recursive Programs, ACM Computer Surveys
12, 403-417. [5.6]

Birkhoff, G. and MacLane, S. (1977) A Survey of Modern Algebra (4th ed.), Macmillan.
[2.3.2]

Bitner, J.R. (1979) Heuristics That Dynamically Organize Data Structures, SIAM Journal
of Computing 8, 82-110. [10.3.3.3, 10.8]

Bitner, J.R. and Reingold, E.M. (1975) Backtrack Programming Techniques, ACM
Communications 18, 651-656. [6.10]

Blahut, R.E. (1983) Theory and Practice of Error Control Codes, Addison-Wesley.
[8.2.5.1, 8.8]

Bloom, B.H. (1970) Space/Time Trade-offs in Hash Coding with Allowable Errors, ACM

Communications 13, 422-426. [10.4.4]

Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., and Tarjan, R.E. (1973) Time Bounds for
Selection, Journal Computer and System Sciences 7, 448-461. [13.3]

Blum, N. and Mehlhorn, K. (1980) On the Average Number of Rebalancing Operations in
Weight-Balanced Trees, Theoretical Computer Science 11, 303-320. [10.3.3.2]

Boas, R.P. and Wrench, J.W. (1971) Partial Sums of the Harmonic Series, American

Mathematical Monthly 78, 864-870. [10.1.1]

Bobrow, D.G. (1975) A Note on Hash Linking, ACM Communications 18, 413-415.
[11.2.5]

Bobrow, D.G. (1980) Managing Reentrant Structures Using Reference Counts, ACM
Transactions on Programming Languages and Systems 2, 269-273. [11.2.4]

Bobrow, D.G. and Raphael, B. (1964) A Comparison of List-Processing Computer
Languages, ACM Communications 7, 231-240. [4.4.4]

740 BIBLIOGRAPHY and REFERENCES

Bolour, A. (1979) Optimality Properties of Multiple-Key Hashing Functions, ACM

Journal 26, 196-210. [12.6]

Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications, Elsevier North-

Holland. [7-7]

Bookstein, A. and Fouty, G. (1976) A Mathematical Model for Estimating the Effective¬

ness of Bigram Coding, Information Processing and Management 12, 111-116.

Bose, R.C. and Koch, G.G. (1969) The Design of Combinatorial Information Retrieval
Systems for Files with Multiple-Valued Attributes, SIAM Journal of Applied Math¬

ematics 17, 1203-1214. [12.6]

Bourne, C.P. and Ford, D.F. (1961) A Study of Methods for Systematically Abbreviating

English Words and Names, ACM Journal 8, 538-552. [10.5.1]

Boyer, R.S. and Moore, J.S. (1977) A Fast String Searching Algorithm, ACM Communi¬

cations 20, 762-772. [8.5.1.2]

Bozman, G., Buco, W., Daly, T.P., and Tetzlaff, W.H. (1984) Analysis of Free-Storage

Algorithms — Revisited, IBM Systems Journal 23, 44-64. [11.5]

Brawn, B.S., Gustavson, F.G., and Mankin, E.S. (1970) Sorting in a Paging Environment,

ACM Communications 13, 483-494. [13.4]

Brelaz, D. (1979) New Methods to Color the Vertices of a Graph, ACM Communications

22, 251-256. [7.7]

Brennan, J.J. (1982) Minimal Spanning Trees and Partial Sorting, Operations Research

Letters 1, 113-116. [7.7]

Brent, R.P. (1973) Reducing the Retrieval Time of Scatter Storage Techniques, ACM

Communications 16, 105-109. [10.4.2.5]

Brinck, K. and Foo, N.Y. (1981) Analysis of Algorithms on Threaded Trees, Computer

Journal 24, 148-155. [6,4.2]

Brown, M.R. (1978) Implementation and Analysis of Binomial Queue Algorithms, SIAM

Journal of Computing 7, 298-319. [6.6.4.1]

Brown, M.R. (1979) A Partial Analysis of Random Height-Balanced Trees, SIAM Journal
of Computing 8, 33-41.

Brown, M.R. and Tarjan, R.E. (1979) A Fast Merging Algorithm, ACM Journal 26,

211-226. [13.2.4]

Brualdi, R.A. (1977) Introductory Combinatorics, Elsevier North-Holland. [7.4.3.2]

Brzozwski, J.A. (1964) Derivatives of Regular Expressions, ACM Journal 11, 481-494.

Buchholz, W. (1963) File Organization and Addressing, IBM Systems Journal 2, 86-111.

[12.3.2]

BIBLIOGRAPHY AND REFERENCES 741

Bunch, J.R. and Rose, D.J. (eds.) (1976) Sparse Matrix Computations, Academic Press.
[4.3.3.1]

Burke, J.M. and Rickman, J.T. (1973) Bitmaps and Filters for Attribute-Oriented
Searches, International Journal Computing and Information Sciences 2, 187-200.

[12.6]

Burkhard, W.A. (1975) Nonrecursive Traversals of Trees, Computer Journal 18, 227-230.
[6.10]

Burkhard, W.A. (1976a) Hashing and Trie Algorithms for Partial Match Retrieval, ACM
Transactions on Database Systems 1, 175-187. [12.4.2]

Burkhard, W.A. (1976b) Partial Match Retrieval, BIT 16, 13-31. [12.4.2]

Burstall, R.M. and Darlington, J. (1977) A Transformation System for Developing Recur¬

sive Programs, ACM Journal 24, 44-67. [5.4.2]

Burstall, R.M. and Feather, M. (1978) Program Development by Transformation: An
Overview, Proceedings of “Les Fondements de la Programmation," 1RIA-SEFI,

France, 45-55.

Campbell, J.A. (1971) A Note on an Optimal-Fit Method for Dynamic Allocation of
Storage, Computer Journal 14, 7-9. [11.3.1.2]

Campbell, J.A. (1974) Optimal Use of Storage in a Simple Model of Garbage Collection,
Information Processing Letters 3, 37-38. [11.2.4]

Carter, J.L. and Wegman, M.N. (1979) Universal Classes of Hash Functions, Journal of
Computer and System Sciences 18, 143-154. [10.4.3]

Cheney, C.J. (1970) A Nonrecursive List Compacting Algorithm, ACM Communications
73,677-678. [11.2.3.2.1]

Cheriton, D. and Tarjan, R. E. (1976) Finding Minimum Spanning Trees, SIAM Journal

of Computing 5, 724-742. [7.7]

Chomsky, N. (1959) On Certain Formal Properties of Grammars, Information and Control

2, 137-167. [8.6.1]

Chow D.K. (1969) New Balanced-File Organization Schemes, Information and Control 15,

’ 377-396. t12-6]

Christofides, N. (1971) An Algorithm for the Chromatic Number of a Graph, Computer

Journal 14, 38-39. [7-7]

Christofides, N. (1976) Worst Case Analysis of a New Heuristic for the Traveling
Salesman Problem, Algorithms and Complexity: New Directions and Recent Results

(ed. Traub, J.F.), Academic Press, 441. [7-7]

Cichelli, R.J. (1980) Minimal Perfect Hash Functions Made Simple, ACM Communications

23, 17-19. [10.4.3]

742 BIBLIOGRAPHY and REFERENCES

Clapson, P. (1977) Improving the Access Time for Random Access Files, ACM Communi¬

cations 20, 127-135. [12.3.2.1]

Clark, D.W. (1976) An Efficient List-Moving Algorithm Using Constant Workspace,
ACM Communications 19, 352-354. [11.2.3.2.1]

Clark, D.W. (1978) A Fast Algorithm for Copying List Structures, ACM Communications
27,351-357. [11.5]

Clark, D.W. (1979) Measurements of Dynamic List Structure Use in LISP, IEEE Trans¬
actions on Software Engineering SE-5, 51-59. [11.2.3.2]

Clark, D.W. and Green, C.C. (1977) An Empirical Study of List Structure in LISP, ACM
Communications 20, 78-87. [11.2.3.2, 11.2.3.2.1, 11.2.5]

Cocke, J. (1970) Global Common Subexpression Elimination, ACM SIGPLAN Notices 5:
7, 20-24. [7.4.5.3.2]

Coffman, E.G. (1983) An Introduction to Combinatorial Models of Dynamic Storage
Allocation, SIAM Review 25, 311-325. [11.3.4.1]

Coffman, E.G. and Eve, J. (1970) File Structures Using Hashing Functions, ACM
Communications 13, 427-432,436. [10.5.2]

Cohen, D.I.A. (1978) Basic Techniques of Combinatorial Theory, John Wiley & Sons. [6.7]

Cohen, J. (1979a) Non-Deterministic Algorithms, ACM Computer Surveys 11, 79-94.

[6.8.2.2]

Cohen, J. (1981) Garbage Collection of Linked Data Structures, ACM Computer Surveys

72,341-367. [11.3.4.1]

Cohen, N.H. (1979b) Characterization and Elimination of Redundancy in Recursive

Programs, Proceedings 6th ACM Symposium on Principles of Programming
Languages, 143-157. [5-6]

Cole, R. and Hopcroft, J. (1982) On Edge Coloring Bipartite Graphs, SIAM Journal of
Computing 11, 540-546. [7-7]

Comer, D. (1978) The Difficulty of Optimum Index Selection, ACM Transactions on Data¬
base Systems 3, 440-445.

Comer, D. (1979) The Ubiquitous B-Tree, ACM Computer Surveys 11, 121-137. [12.3.4.1]

Comer, D. and Sethi, R. (1977) The Complexity of Trie Index Construction, ACM Journal
24, 428-440. [10.5.1]

Cook, S.A. (1983) An Overview of Computational Complexity, ACM Communications 26,

401-408. [7.7]

Cooper, D. and Lynch, M.F. (1982) Text Compression Using Variable-to-Fixed-Length
Encodings, Journal of American Society for Information Scence 33, 18-31. [8.4.1]

BIBLIOGRAPHY AND REFERENCES 743

Coppersmith, D. and Winograd, S. (1982) On the Asymptotic Complexity of Matrix

Multiplication, SIAM Journal of Computing 11, 472-492. [2.5.1.1]

Cormack, G.V., Horspool, R.N.S., and Kaiserworth, M. (1985) Practical Perfect Hashing,

Computer Journal 28, 54-58. [10.8]

Corned, D.G. and Gotlieb, C.C. (1970) An Efficient Algorithm for Graph Isomorphism,

ACM Journal 17, 51-64. [7.7]

Corned, D.G., Gotlieb, C.C., and Lee, Y.M. (1973) Minimal Event-Node Network of

Project Precedence Relations, ACM Communications 17, 296-298. [7.4.5.2]

Corneil, D.G. and Graham, B. (1973) An Algorithm for Determining the Chromatic

Number of a Graph, SIAM Journal of Computing 2, 311-318. [7.7]

Corneil, D.G. and Kirkpatrick, D.G. (1980) A Theoretical Analysis of Various Heuristics

for the Graph Isomorphism Problem, SIAM Journal of Computing 9, 281-297. [7.7]

Cranston, B. and Thomas, R. (1975) A Simplified Recombination Scheme for the Fibo¬

nacci Buddy System, ACM Communications 18, 331-332. [11.3.2]

Culberson, J. (1985) The Effects of Updates in Binary Search Trees, Proceedings 17th

ACM Symposium on Theory of Computing, 205-212. [10.3.1]

Culik, K., Ottmann, T., and Wood, D. (1981) Dense Multiway Trees, ACM Transactions

on Database Systems 6, 486-512. [12.3.4.2]

Cuthill, E. and McKee, J. (1969) Reducing the Bandwidth of Sparse Symmetric Matrices,

Proceedings ACM National Conference, 157-172. [7.6]

Dahl, O.J. and Nygaard, K. (1966) SIMULA - an ALGOL-Based Simulation Language,

ACM Communications 9, 671-678. [9.2.1]

Dahlquist, G. and Bjorck, A. (1974) Numerical Methods, Prentice-Hall. [1.6]

Dasarthy, B. and Yang, C. (1980) A Transformation on Ordered Trees, Computer Journal

23, 161-164. [6.12]

Date, C.J. (1981) An Introduction to Database Systems (3rd ed.), Addison-Wesley. [12.6]

Date C.J. (1983) An Introduction to Database Systems: Volume II, Addison-Wesley.
[12.6]

Davies, G. and Bowsher, S. (1986) Algorithms for Pattern Matching, Software Practice

and Experience 16, 575-601. [8-8]

de la Briandais, R. (1959) File Searching Using Variable Length Keys, Proceedings

Western Joint Computer Conference, 295-298. [10.5.1]

DeMillo, R.A., Eisenstat, S.C., and Lipton, R.J. (1978) Preserving Average Proximity in

Arrays, ACM Communications 21, 228-231. [2.11, 9.1.2]

744 BIBLIOGRAPHY and REFERENCES

Denning, D.E. (1984) Digital Signatures with RSA and Other Public-Key Cryptosystems,

ACM Communications 27, 388-392.

Denning, P.J. (1968) The Working Set Model for Program Behavior, ACM Communi¬

cations 11, 323-333. [12.2.2.1]

Denning, P.J. (1970) Virtual Memory, ACM Computer Surveys 2, 153-189. [12.2.2.1]

Deutsch, L.P. and Bobrow, D.G. (1976) An Efficient, Incremental, Automatic Garbage

Collector, ACM Communications 19, 522-526. [11.2.5]

Diffie, W. and Heilman, M. (1976) New Directions in Cryptography, IEEE Transactions

on Information Theory IT-22, 644-654. [8.4.2.2]

Diffie, W. and Heilman, M. (1977) Exhaustive Cryptanalysis of the NBS Data Encryption

Standard, Computer 10: 6, 74-84. [8.4.2.1]

Dijkstra, E.W. (1959) A Note on Two Problems in Connexion with Graphs, Numerische

Mathematik 1, 269-271. [7.4.2]

Dijkstra, E.W. (1976) A Discipline of Programming, Prentice-Hall. [1.8, 11.7, 12.8]

Dijkstra, E.W., Lamport, L, Martin, A.J., Scholten, C.S., and Steffens, E.F.M. (1978)
On-the-Fly Garbage Collection: An Exercise in Cooperation, ACM Communications

27,966-975. [11.2.6]

d’lmperio, M.E. (1969) Data Structures and their Representation in Storage, Annual

Review of Automatic Programming 5, Pergamon Press, 1-75. [9.]

Dinic, E.A. (1970) Algorithm for the Solution of a Problem of Maximal Flow in a
Network with Power Estimation, Soviet Math. Doklady 11, 1277-1280. [7.7]

Dobkin, D. and Lipton, R.J. (1976) Multidimensional Searching Problems, SIAM Journal
of Computing 5, 181-186.

Dobosiewicz, W. (1978) Sorting by Distributive Partitioning, Information Processing

Letters 7, 1-6. [13.2.2.3]

Dobosiewicz, W. (1980) An Efficient Variation of Bubble Sort, Information Processing

Letters 11, 5-6. [13.2.1.3]

Dreyfus, S.E. (1969) An Appraisal of Some Shortest Path-Algorithms, Operations Research
77,395-412.

Dromey, R.G. (1984) Exploiting Partial Order with Q LAsort, Software Practice and

Experience 14, 509-518. [13-7]

Dutton, R.D. and Brigham, R.C. (1981) A New Graph Coloring Algorithm, Computer
Journal 24, 85-86. [7.7]

Dwyer, B. (1981) One More Time - How to Update a Master File, ACM Communi¬
cations 24, 3-8.

BIBLIOGRAPHY AND REFERENCES 745

Earley, J. (1970) An Efficient Context-Free Parsing Algorithm, ACM Communications 13,

94-102.

Earley, J. (1971) Toward an Understanding of Data Structures, ACM Communications 14,

617-627. [9.2.1]

Edmonds, J. (1965) Paths, Trees, and Flowers, Canadian Journal of Mathematics 17,

449-467. [7.4.3.4]

Edmonds, J. and Johnson, E.L. (1973) Matching, Euler Tours, and the Chinese Postman,

Mathematical Programming 5, 88-124. [7.4.4.1]

Edmonds, J. and Karp, R.M. (1972) Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems, ACM Journal 19, 248-264. [7.7]

Ehrsam, W.F., Matyas, S.M., Meyer, C.H., and Tuchman, W.L. (1978) A Cryptographic

Key Management Scheme for Implementing the Data Encryption Standard, IBM

Systems Journal 17, 106-125. [8.4.2.2]

Eisenbarth, B., Ziviani, N., Gonnet, G.H., Mehlhorn, K., and Wood, D. (1982) The

Theory of Fringe Analysis and Its Application to 2-3 Trees and B-Trees, Informa¬

tion and Control 55, 125-174. [10.3.4]

Elgot, C.C. and Snyder, L. (1977) On the Many Facets of Lists, Theoretical Computer

Science 5, 275-305.

Elson, M. (1975) Data Structures, Science Research Associates.

Eppinger, J.L. (1983) An Empirical Study of Insertion and Deletion in Binary Search

Trees, ACM Communications 26, 663-669. [10.3.1]

Er, M.C. (1985) Enumerating Ordered Trees Lexicographically, Computer Journal 28,

538-542. [6.10]

Even, S. (1979) Graph Algorithms, Computer Science Press.

Even, S. and Tarjan, R.E. (1975) Network Flow and Testing Graph Connectivity, SIAM

Journal of Computing 4, 507-518.

Even, S. and Tarjan, R.E. (1976) Computing an st-Numbering, Theoretical Computer

Science 2, 339-344. [7.7]

Fagin, R., Nievergelt, J., Pippenger, N., and Strong, H.R. (1979) Extendible Hashing -

A Fast Access Method for Dynamic Files, ACM Transactions on Database Systems

4, 315-344. [12.3.5]

Falkoff, A.D. and Iverson, K.E. (1973) The Design of APL, IBM Journal of Research and

Development 17, 324-334. [2.9]

Faloutsos, C. (1985) Access Methods for Text, ACM Computer Surveys 17, 49-74.

746 BIBLIOGRAPHY and REFERENCES

Feistel, H. (1973) Cryptography and Computer Privacy, Scientific American 228: 5, 15-23.
[8.4.2.1]

Feldman, J.A. and Rovner, P.D. (1969) An ALGOL-Based Associative Language, ACM

Communications 12, 439-449. [2.11]

Fenichel, R.R. and Yochelson, J.C. (1969) A LISP Garbage-Collector for Virtual-Memory

Computer Systems, ACM Communications 12, 611-612. [11.2.3.2]

Fenner, T.I. and Loizou, G. (1981) A Note on Traversal Algorithms for Triply Linked

Binary Trees, BIT 21, 153-156. [6.5.1]

Fenner, T.I. and Loizou, G. (1984) Loop-Free Algorithms for Traversing Binary Trees,

BIT 24, 33-44. [6.10]

Fillmore, J.P. and Williamson, S.G. (1974) On Backtracking: A Combinatorial Description

of the Algorithm, SIAM Journal of Computing 3, 41-55. [6.10]

Finkel, R.A. and Bentley, J.L. (1974) Quad Trees - A Data Structure for Retrieval on

Composite Keys, Acta Informatica 4, 1-9. [12.4.3.1]

Fischer, MJ. (1972) Efficiency of Equivalence Algorithms, Complexity of Computer

Computations, (eds. Miller, R.E. and Thatcher, J.W.), Plenum Press, 153-167.

Fischer, M.J. and Meyer, A.R. (1971) Boolean Matrix Multiplication and Transitive

Closure, Proceedings 12th IEEE Symposium on Switching and Automata Theory,

129-131. [7.3.3]

Fischer, M.J. and Paterson, M.S. (1974) String Matching and Other Products, M.I.T.

Project MAC Tech. Memo. 41.

Fisher, D.A. (1975) Copying Cyclic List Structures in Linear Time Using Bounded Work¬

space, ACM Communications 18, 251-252. [11.5]

Fleck, A.C. (1971) Towards a Theory of Data Structures, Journal of Computer and System
Sciences 5, 475-488.

Fleck, A.C. (1978) Recent Developments in the Theory of Data Structures, Computer
Languages 3, 37-52. [9]

Floyd, R.W. (1967) Nondeterministic Algorithms, ACM Journal 14, 636-644. [6.8.2.2]

Floyd, R.W. and Rivest, R.L. (1975) Expected Time Bounds for Selection, ACM Commu¬

nications 18, 165-173. [13.3]

Ford, L.A. and Johnson, S.M. (1959) A Tournament Problem, American Mathematical

Monthly 66, 387-389. [13.2.3.1]

Ford, L.R. and Fulkerson, D.R. (1958) Network Flow and Systems of Distinct Represen¬

tatives, Canadian Journal of Mathematics 10, 78-85.

BIBLIOGRAPHY AND REFERENCES 747

Ford, L.R. and Fulkerson, D.R. (1962) Flows in Networks, Princeton University Press.

[7.4.3.3]

Ford, R. (1979) A Survey of the Development and Implementation of Data Abstractions,

University of Pittsburgh Computer Science Dept. Report 79-3. [9.2.1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. (1977) Computer Methods for Math¬

ematical Computations, Prentice-Hall. [1.6]

Foster, C.C. (1965) Information and Storage Using AVL Trees, Proceedings ACM

National Conference, 192-205. [10.3.3.1]

Foster, C.C. (1973) A Generalization of AVL Trees, ACM Communications 16, 513-517.
[10.3.3.1]

Fraenkel, A. (1979) Paired Sequential Lists in a Memory Interval, Information Processing

Letters 8, 9-10. [5.3]

Franaszek, P.A. and Considine, J.P. (1979) Reduction of Storage Fragmentation on Direct

Access Devices, IBM Journal of Research and Development 23, 140-148. [12.1.2.1]

Francez, N., Klebansky, B., and Pnueli, A. (1977) Backtracking in Recursive Computa¬

tion, Acta Information 8, 125-144. [6.10]

Franta, W.R. and Maly, K. (1977) An Efficient Data Structure for the Simulation Event

Set, ACM Communications 20, 596-602. [5.6]

Franta, W.R. and Maly, K. (1978) A Comparison of Heaps and the TL Structure for the

Simulation Event Set, ACM Communications 21, 873-875.

Frazer, W.D. and McKellar, A.C. (1970) Samplesort: A Sampling Approach to Minimal

Storage Tree Sorting, ACM Journal 17, 496-507. [13.7]

Frederickson, G.N. (1983) Implicit Data Structures for the Dictionary Problem, ACM

Journal 30, 80-94. [9.1.3]

Fredkin, E. (1960) Trie Memory, ACM Communications 3, 490-499. [10.5.1]

Fredman, M.L. (1975) Two Applications of a Probabilistic Search Technique: Sorting

X + Y and Building Balanced Search Trees, Proceedings 7th ACM Symposium on

Theory of Computing, 240-244. [10.8]

Fredman, M.L., Komlos, J., and Szemeredi, E. (1984) Storing a Sparse Table with 0(1)

Worst Access Time, ACM Journal 31, 538-544. [10.4.3]

Freuder, E.C. (1978) Synthesizing Constraint Expressions, ACM Communications 21,

958-966. C6-1°]

Freuder, E.C. (1982) A Sufficient Condition for Backtrack-Free Search, ACM Journal 29,

24-32. [6-!0]

748 BIBLIOGRAPHY and REFERENCES

Friedman, D.P. and Wise, D.S. (1979) Reference Counting Can Manage the Circular

Environments of Mutual Recursion, Information Processing Letters 8, 41-45.
[11.2.4]

Friedman, J.H., Bentley, J.L., and Finkel, R.A. (1977) An Algorithm for Finding Best

Matches in Logarithmic Expected Time, ACM Transactions on Mathematical Soft¬

ware 3, 209-226. [12.4.3.2]

Gabow, H.N. (1976) An Efficient Implementation of Edmonds’ Algorithm for Maximum

Matching on Graphs, ACM Journal 23, 221-234.

Gabow, H.N. and Kariv, O. (1982) Algorithms for Edge Coloring Bipartite Graphs and

Multigraphs, SIAM Journal of Computing 11, 117-129. [7.7]

Gabow, H.N. and Tarjan, R.E. (1985) A Linear-Time Algorithm for a Special Case of

Disjoint Set Union, Journal of Computer and System Sciences 30, 209-221.

[7.4.5.3.2]

Gale, D. and Karp, R.M. (1972) A Phenomenon in the Theory of Sorting, Journal of

Computer and System Sciences 6, 103-115. [13.9]

Gale, D. and Shapley, L.S. (1962) College Admissions and the Stability of Marriage,

American Mathematical Monthly 69, 9-15. [7.4.3.4]

Galil, Z. (1979) On Improving the Worst Case Running Time of the Boyer-Moore String

Matching Algorithm, ACM Communications 22, 505-508.

Galil, Z. (1980) Finding the Vertex Connectivity of Graphs, SIAM Journal of Computing
9, 197-199.

Galil, Z. (1986) Efficient Algorithms for Finding Maximum Matchings in Graphs, ACM

Computer Surveys 18, 23-38. [7.4.3.4]

Galil, Z., Micali, S., and Gabow, H. (1982) Priority Queues with Variable Priority and an

0(EV log V) Algorithm for Finding a Maximal Weighted Matching in General

Graphs, Proceedings 23rd IEEE Symposium on Foundations of Computer Science,
255-261.

Gallager, R.G. (1968) Information Theory and Reliable Communication, John Wiley &

Sons- [8.2.4]

Gallager, R.G. (1978) Variations on a Theme of Huffman, IEEE Transactions on Informa¬
tion Theory IT-24, 668-674. [8.8]

Galler, B.A. and Fischer, M.J. (1964) An Improved Equivalence Algorithm, ACM
Communications 7, 301-303. [4 2 3]

Ganapathy, S. and Rajaraman, V. (1973) Information Theory Applied to the Conversion

of Decision Tables to Computer Programs, ACM Communications 16, 532-539.

[6.10]

BIBLIOGRAPHY AND REFERENCES 749

Garey, M.R. and Johnson, D.S. (1976) The Complexity of Near-Optimal Graph Coloring,

ACM Journal 23, 43-49. [7.5.1]

Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability — A Guide to the

Theory of NP-Completeness, W.H. Freeman & Co. [6.8.2.2, 7.5.3]

Garey, M.R., Johnson, D.S., and Tarjan, R.E. (1976) The Planar Hamiltonian Circuit

Problem is AT-Complete, SIAM Journal of Computing 5, 704-714.

Garsia, A.M. and Wachs, M.L. (1977) A New Algorithm for Minimum Cost Binary Trees,

SIAM Journal of Computing 6, 622-642. [10.3.2.1]

Garwick, J.V. (1964) Data Storage in Compilers, BIT 4, 137-140. [5.3]

Gelenbe, E. (1971) The Two-Thirds Rule for Dynamic Storage Allocation Under Equilib¬

rium, Information Processing Letters 1, 59-60. [11.3.4.1]

Gersting, J.L. (1982) Mathematical Structures for Computer Science, W.H. Freeman & Co.

Geschke, C.M., Morris, J.H., and Satterwaite, E.H. (1977) Early Experience with Mesa,

ACM Communications 20, 540-553. [9-2.1]

Ghandour, Z. and Mezei, J. (1973) General Arrays, Operators, and Functions, IBM

Journal of Research and Development 17, 335-352.

Ghosh, S.P. (1972) File Organization: The Consecutive Retrieval Property, ACM Commu¬

nications 15, 802-808. [12.6]

Ghosh, S.P. and Lum, V.Y. (1975) Analysis of Collisions when Hashing by Division,

Information Systems 1, 15-22. [10.8]

Ghosh, S.P. and Senko, M.E. (1969) File Organization: On the Selection of Random

Access Index Points for Sequential Files, ACM Journal 16, 569-579. [12.3.3]

Gilbert, E.N. and Moore, E.F. (1959) Variable-Length Binary Encodings, Bell System

Technical Journal 38, 933-967. [10.3.2.3]

Gimpel, J.F. (1973) A Theory of Discrete Patterns and Their Implementation in

SNOBOL, ACM Communications 16, 91-100. [8.6.4]

Goguen, J.A., Thatcher, J.W., and Wagner, E.G. (1978) An Inital Algebra Approach to

the Specification, Correctness, and Implementation of Abstract Data Types, Current

Trends in Programming Methodology, Vol. IV (ed. Yeh, R.T.), Addison-Wesley,

80-149. [9.2.1]

Goldberg, I.B. (1967) 27 Bits are Not Enough for 8-Digit Accuracy, ACM Communi¬

cations 10, 105-106.

Golomb SW. and Baumert, L.D. (1965) Backtrack Programming, ACM Journal 12,

516-524. [6-10]

750 BIBLIOGRAPHY and REFERENCES

Gonnet, G.H. (1983) Balancing Binary Trees by Internal Path Reduction, ACM Communi¬
cations 26, 1074-1081. [10.3.2.2]

Gonnet, G.H. and Munro, J.I. (1979) Efficient Ordering of Hash Tables, SIAM Journal of
Computing 8, 463-478. [10.4.2.5]

Goodman, S. and Hedetniemi, S. (1973) Eulerian Walks in Graphs, SIAM Journal of
Computing 2, 16-27.

Goodman, S.E. and Hedetniemi, S.T. (1974) On Hamiltonian Walks in Graphs, SIAM
Journal of Computing 3, 214-221.

Gotlieb, C.C. and Gotlieb, L.R. (1978) Data Types and Structures, Prentice-Hall.

[10.7, 12.6]

Gotlieb, L. (1981) Optimal Multi-way Search Trees, SIAM Journal of Computing 10,
422-433.

Graham, S.L. and Wegman, M. (1976) A Fast and Usually Linear Algorithm for Global
Flow Analysis, ACM Journal 23, 172-202. [7.4.5.3.2]

Gries, D. (1971) Compiler Construction for Digital Computers, John Wiley & Sons. [6.6.2]

Gries, D. (1977) An Exercise in Proving Parallel Programs Correct, ACM Communications
20, 921-930. [11.2.6]

Gries, D. (1979) The Schorr-Waite Graph Marking Algorithm, Acta Informatica 11,
223-232.

Griswold, R.E., Poage, J.F., and Polonsky, I.P. (1971) The SNOBOL4 Programming
Language (2nd ed.), Prentice-Hall. [8.6.4]

Guibas, L.J. and Sedgewick, R. (1978) A Dichromatic Framework for Balanced Trees,
Proceedings 19th IEEE Symposium on Foundations of Computer Science, 8-21.

[10.3.5]

Guibas, L.J. and Szemeredi, E. (1978) The Analysis of Double Hashing, Journal of
Computer and System Sciences 16, 226-274. [10.4.2.3]

Gull, W.E. and Jenkins, M.A. (1979) Recursive Data Stuctures in APL, ACM Communi¬
cations 22, 79-96. j-9 j-j

Guttag, J.V. (1977) Abstract Data Types and the Development of Data Structures, ACM
Communications 20, 396-404. T9 2 11

Guttag, J.V., Horowitz, E., and Musser, D.R. (1978a) Abstract Data Types and Software
Validation, ACM Communications 21, 1048-1064. [9 2 1]

Guttag, J.V., Horowitz, E., and Musser, D.R. (1978b) The Design of Data Type Specifica¬

tions, Current Trends in Programming Methodology, Vol. IV (ed. Yeh, R.T.)
Addison-Wesley, 60-79. ' T9 2 11

BIBLIOGRAPHY AND REFERENCES 751

Haberman, A.N. (1973) Critical Comments on the Programming Language Pascal, Acta
Informatica 3, 47-57. [1.6]

Hadian, A. and Sobel, M. (1969) Selecting the ith Largest Using Binary Errorless Compar¬
isons, Colloquia Mathematica Societatis Janos Bolyai 4, 585-599. [13.3]

Hall, M. (1948) Distinct Representatives of Subsets, AMS Bulletin 54, 922-926.

Hall, M. and Knuth, D.E. (1965) Combinatorial Analysis and Computers, American Math¬
ematical Monthly 72 (part 2), 21-28.

Hall, P. (1935) On Representatives of Subsets, London Mathematics Society Journal 10,
26-30. [7.4.3.2]

Hall, P.A.V. and Dowling, G.R. (1980) Approximate String Matching, ACM Computer
Surveys 12, 381-402.

Hamming, R.W. (1950) Error Detecting and Error Correcting Codes, Bell System Tech¬
nical Journal 29, 147-160. [8.2.5]

Hamming, R.W. (1971) Introduction to Numerical Analysis, McGraw-Hill. [L6]

Hanson, D.R. (1977) Storage Management for an Implementation of SNOBOL4, Software
Practice and Experience 7, 934-941. [1L5]

Harary, F. (1969) Graph Theory, Addison-Wesley. [2.7]

Harrison, M.C. (1971) Implementation of the Substring Test by Hashing, ACM Communi¬
cations 14, 777-779. [10.4.4]

Hecht, M.S. and Ullman, J.D. (1972) Flow Graph Reducibility, SIAM Journal of
Computing 1, 188-202. [7.5.5.3.2]

Hecht, M.S. and Ullman, J.D. (1974) Characterizations of Reducible Flow Graphs, ACM
Journal 21, 367-375.

Hecht, M.S. and Ullman, J.D. (1975) A Simple Algorithm for Global Data Flow Analysis
Problems, SIAM Journal of Computing 4, 519-532. [7.4.5.3.2]

Heising, W.P. (1963) Note on Random Addressing Techniques, IBM Systems Journal 2,
112-116. [10.2.1]

Held, G. and Stonebraker, M. (1978) B-Trees Re-examined, ACM Communications 21,
139-143. [12.3.4.2]

Held, M., Hoffman, A.J., Johnson, E.L., and Wolfe, P. (1984) Aspects of the Traveling
Salesman Problem, IBM Journal of Research and Development 28, 476-486. [7.7]

Held, M. and Karp, R.M. (1962) A Dynamic Programming Approach to Sequencing
Problems, SIAM Journal 10, 196-210. [2.7]

752 BIBLIOGRAPHY and REFERENCES

Held, M. and Karp, R.M. (1965) The Construction of Discrete Dynamic Programming

Algorithms, IBM Systems Journal 4, 136-147.

Held, M. and Karp, R.M. (1970) The Traveling Salesman Problem and Minimum Span¬

ning Trees, Operations Research 18, 1138-1162. [7.7]

Held, M. and Karp, R.M. (1971) The Traveling Salesman Problem and Minimum Span¬

ning Trees: Part II, Mathematical Programming 1, 6-25. [7.7]

Heilman, M.E. (1979) The Mathematics of Public-Key Cryptography, Scientific American

241: 2, 146-157.

Herlestam, T. (1978) Critical Remarks on Some Public-Key Cryptosystems, BIT 18,

493-496.

Hester, J.H. and Hirschberg, D.S. (1985) Self-Organizing Linear Search, ACM Computer

Surveys 17, 295-311. [10.8]

Hibbard, T.H. (1962) Some Combinatorial Properties of Certain Trees with Applications

to Searching and Sorting, ACM Journal 9, 13-28. [10.3.1]

Hickey, T. and Cohen, J. (1984) Performance Analysis of On-the-Fly Garbage Collection,
ACM Communications 27, 1143-1154. [11.5]

Hildebrandt, P. and Isbitz, H. (1959) Radix Exchange — An Internal Sorting Method for
Digital Computers, ACM Journal 6, 156-163. [13.2.2.2]

Hinds, J.A. (1975) An Algorithm for Locating Adjacent Storage Blocks in the Buddy
System, ACM Communications 18, 221-222. [11.3.2]

Hirschberg, D.S. (1973) A Class of Dynamic Memory Allocation Algorithms, ACM
Communications 16, 615-618. [11.3.2]

Hirschberg, D.S. (1975) A Linear Space Algorithm for Computing Maximal Common
Subsequences, ACM Communications 18, 341-343. [8.10]

Hoare, C.A.R. (1962) Quicksort, Computer Journal 5, 10-15. [13.2.1.3.1]

Hoare, C.A.R. (1971) Proof of a Program: FIND, ACM Communications 14, 39-45.

[13.3]

Hoare, C.A.R. (1972a) Notes on Data Structuring, Structured Programming (Dahl, O.J.,
Dijkstra, E.W., and Hoare, C.A.R.), Academic Press, 83-174.

Hoare, C.A.R. (1972b) Proof of Correctness of Data Representations, Acta Informatica 1,
271-281. [9.2.1]

Hoare, C.A.R. (1974) Optimization of Store Size for Garbage Collection, Information
Processing Letters 2, 165-166. [11.2.4]

Hoare, C.A.R. and Wirth, N. (1973) An Axiomatic Definition of the Programming
Language Pascal, Acta Informatica 2, 335-355.

BIBLIOGRAPHY AND REFERENCES 753

Hopcroft, J.E. and Karp, R.M. (1973) An n^/2 Algorithm for Maximum Matchings in

Bipartite Graphs, SIAM Journal of Computing 2, 225-231. [7.4.3.3]

Hopcroft, J. and Tarjan, R.E. (1973a) Dividing a Graph into Triconnected Components,

SIAM Journal of Computing 2, 135-158. [7.3.2]

Hopcroft, J. and Tarjan, R.E. (1973b) Algorithm 447: Efficient Algorithms for Graph

Manipulation [H], ACM Communications 16, 372-378.

Hopcroft, J. and Tarjan, R.E. (1974) Efficient Planarity Testing, ACM Journal 21,

549-568. [7.7]

Hopcroft, J.E. and Ullman, J.D. (1973) Set Merging Algorithms, SIAM Journal of

Computing 2, 294-303. [6.6.5.1]

Hopcroft, J.E. and Ullman, J.D. (1979) Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley. [8.6]

Hopcroft, J.E. and Wong, J.K. (1974) Linear Time Algorithm for Isomorphism of Planar

Graphs, Proceedings 6th ACM Symposium on Theory of Computing, 172-184. [7.5.4]

Hopgood, F.R.A. (1968) A Solution to the Table Overflow Problem for Hash Tables,

Computer Bulletin 11, 297-300. [10.4.2.4]

Horowitz, E. and Sahni, S. (1976) Fundamentals of Data Structures, Computer Science

Press. [•]

Horowitz, E. and Sahni, S. (1978) Fundamentals of Computer Algorithms, Computer

Science Press. [6.8.3]

Horspool, R.N. (1980) Practical Fast Searching in Strings, Software Practice and Experi¬

ence 10, 501-506. [8.8]

Housden, R.J.W. (1975) On String Concepts and Their Implementation, Computer Journal

18, 150-156.

Hsiao, D. and Harary, F. (1970) A Formal System for Information Retrieval from Files,

ACM Communications 13, 67-73. [12.6]

Hu, T.C. and Tucker, A.C. (1971) Optimal Computer Search Trees and Variable-Length

Alphabetical Codes, SIAM Journal of Applied Mathematics 21, 514-532. [10.3.2.1]

Huang, S.H.S. and Wong, C.K. (1984) Generalized Binary Split Trees, Acta Informatica

'21, 113-123. [10.3.2.4]

Hubbard, G.U. (1963) Some Characteristics of Sorting in Computing Systems Using

Random Access Storage Devices, ACM Communications 6, 248-255. [13.4]

Huffman, D.A. (1952) A Method for the Construction of Minimum-Redundancy Codes,

IRE Proceedings 40, 1098-1101. [8.2.4]

754 BIBLIOGRAPHY and REFERENCES

Hwang, F.K. and Lin, S. (1969) An Analysis of Ford and Johnson’s Sorting Algorithm,
Proceedings 3rd Princeton Conference on Information Sciences and Systems, 292-296.

[13.2.3.1]

Hwang, F.K. and Lin, S. (1972) A Simple Algorithm for Merging Two Disjoint Linearly
Ordered Sets, SIAM Journal of Computing 1, 31-39. [13.2.3.2]

Hyafil, L. (1976) Bounds for Selection, SIAM Journal of Computing 5, 109-114. [13.9]

Hyafil, L. and Rivest, R.L. (1976) Constructing Optimal Binary Decision Trees is
AT-Complete, Information Processing Letters 5, 15-17. [6.6.3]

Imbrasha, M. and Rajaraman, V. (1978) Detection of Logical Errors in Decision Table

Programs, ACM Communications 21, 1016-1025. [2.11]

Inglis, J. (1974) Inverted Indexes and Multi-list Structures, Computer Journal 17, 59-63.

Isaac, E.J. and Singleton, R.C. (1956) Sorting by Address Calculation, ACM Journal 3,
169-174. [13.2.2.3]

Itai, A. (1976) Optimal Alphabetic Trees, SIAM Journal of Computing 5, 9-18. [10.3.2.1]

Iverson, K.E. (1964) Formalism in Programming Languages, ACM Communications 7,

80-88. [2.9]

Iverson, K.E. (1980) Notation as a Tool of Thought, ACM Communications 23, 444-465.

[2.9]

Jaeschke, G. (1981) Reciprocal Hashing: A Method for Generating Minimal Perfect
Hashing Functions, ACM Communications 24, 829-833. [10.8]

Jarvis, J.P. and Whited, D.E. (1983) Computational Experience Using Minimum Spanning
Tree Algorithms, Operations Research Letters 2, 36-41. [7.7]

Jensen, K. and Wirth, N. (1984) Pascal User Manual and Report (3rd ed.), Springer-

Verlag. [1.4.1]

Johnson, D.B. (1973) A Note on Dijkstra’s Shortest Path Algorithm, ACM Journal 20,

385-388. [7.4.2]

Johnson, D.B. (1975) Priority Queues with Update and Finding Minimum Spanning Trees,
Information Processing Letters 4, 53-57.

Johnson, D.B. (1977) Efficient Algorithms for Shortest Paths in Sparse Networks, ACM
Journal 24, 1-13.

Johnson, D.B. (1982) A Priority Queue in Which Initialization and Queue Operations
Take 0(log log D) Time, Mathematical Systems Theory> 15, 103-106. [6.6.4.1]

Johnson, W.L., Porter, J.H., Ackley, S.I., and Ross, D.T. (1968) Automatic Generation of

Efficient Lexical Processors Using Finite State Techniques, ACM Communications
11, 805-813.

BIBLIOGRAPHY AND REFERENCES 755

Jonassen, A. and Dahl, O.J. (1975) Analysis of an Algorithm for Priority Queue Adminis¬
tration, BIT 15, 409-422. [6.12]

Jones, D.W. (1986) An Empirical Comparison of Priority-Queue and Event-Set Implemen¬
tations, ACM Communications 29, 300-311. [5.6]

Jones, J.P. (1974) Recursive Undecidability — An Exposition, American Mathematical

Monthly 81, 724-738.

Jonkers, H.B.M. (1979) A Fast Garbage Collection Algorithm, Information Processing
Letters 9,26-30. [11.3.1.3.2]

Kahn, A.B. (1962) Topological Sorting of Large Networks, ACM Communications 5,
558-562.

Kahn, D. (1967) The Code-Breakers, Macmillan. [8.4.2]

Kam, J.B. and Ullman, J.D. (1976) Global Data Flow Analysis and Iterative Algorithms,

ACM Journal 23, 158-171.

Kambayashi, Y., Yajima, S. and Nakatsu, N. (1982) Data Compression Procedures Based
on the Similarity of Strings, Systems — Computers — Controls 13, 29-37.

Kang, A.N.C. and Ault, D.A. (1975) Some Properties of a Centroid of a Free Tree, Infor¬
mation Processing Letters 4, 18-20. [6.12]

Kang, A.N.C., Lee, R.C.T., Chang, C.L., and Chang, S.K. (1977) Storage Reduction
Through Minimal Spanning Trees and Spanning Forests, IEEE Transactions on

Computers C-26, 425-434.

Karlgren, H. (1963) Representation of Text Strings in Binary Computers, BIT 3, 52-59.
[8.2.1]

Karlton, P.L., Fuller, S.H., Scroggs, R.E., and Kaehler, E.B. (1976) Performance of
Height-Balanced Trees, ACM Communications 19, 23-28. [10.3.3.1]

Karp, R.M. (1972) Reducibility Among Combinatorial Problems, Complexity of Computer
Computations, (eds. Miller, R.E. and Thatcher, J.W.), Plenum Press, 85-103. [7.7]

Karp, R.M. (1975) On the Computational Complexity of Combinatorial Problems,

Networks 5, 45-68.

Karp, R.M. (1986) Combinatorics, Complexity, and Randomness, ACM Communications

29, 98-111. [7.7]

Karp, R.M., Miller, R.E., and Rosenberg, A.L. (1972) Rapid Identification of Repeated
Patterns in Strings, Trees, and Arrays, Proceedings 4th ACM Symposium on Theory

of Computing, 125-136.

Karp, R.M. and Rabin, M.O. (1981) Efficient Randomized Pattern-Matching Algorithms,
Aiken Computer Laboratory Report TR-31-81, Harvard University. [10.4.4]

756 BIBLIOGRAPHY and REFERENCES

Karzanov, A.V. (1974) Determining the Maximal Flow in a Network by the Method of

Preflows, Soviet Math. Doklady 15, 434-437. [7-7]

Keehn, D.G. and Lacey, J.O. (1974) VSAM Data Set Design Parameters, IBM Systems

Journal 13, 186-212. [12.3.4.1]

Kendall, D.G. (1953) Stochastic Processes Occurring in the Theory of Queues and Their
Analysis by the Method of the Imbedded Markov Chain, Annals of Mathematical

Statistics 24, 338-354. [5.1.3.1]

Kennedy, K. and Schwartz, J.T. (1975) Introduction to the Set-Theoretic Language SETL,

Computers and Mathematics with Applications 1, 97-119. [2.11]

Kernighan, B.W. and Plauger, P.J. (1981) Software Tools in Pascal, Addison-Wesley.
[8.3.2]

Kershenbaum, A. and Van Slyke, R. (1972) Computing Minimal Spanning Trees Effi¬

ciently, Proceedings ACM National Conference, 518-527. [7.7]

Kieburtz, R.B. (1976) Programming Without Pointer Variables, Proceedings of Conference
on Data: Abstraction, Definition, and Structure, ACM SIGPLAN Notices 11
(Special Issue), 95-107. [4.5.1, 9.1.1]

Kilgour, A.C. (1981) Generalized non-Recursive Traversal of Binary Trees, Software Prac¬

tice and Experience 11, 1299-1306. [6.10]

King, P.J.H. (1966) Conversion of Decision Tables to Computer Programs by Rule Mask

Techniques, ACM Communications 9, 796-801. [2.3.3.1]

Kirk, H.W. (1965) Use of Decision Tables in Computer Programming, ACM Communi¬

cations 8, 41-43. [2.11]

Kirkpatrick, D. (1974) Determining Graph Properties from Matrix Representations,
Proceedings 6th ACM Symposium on Theory of Computing, 84-90.

Kleinrock, L. (1975) Queueing Systems Volume I: Theory, John Wiley & Sons. [5.1.3.1]

Knott, G.D. (1975) Hashing Functions, Computer Journal 18, 265-278. [10.8]

Knott, G.D. (1977) A Numbering System for Binary Trees, ACM Communications 20,

113-115. [6.10]

Knowlton, K.C. (1965) A Fast Storage Allocator, ACM Communications 8, 623-625.

[11.3.2]

Knuth, D.E. (1971a) An Empirical Study of FORTRAN Programs, Software Practice and
Experience 1, 105-133. [7.4.5.3.2]

Knuth, D.E. (1971b) Optimum Binary Search Trees, Acta Informatica 1, 14-25. [10.3.2.1]

Knuth, D.E. (1973a) The Art of Computer Programming, Vol. 1: Fundamental Algorithms
(2nd ed.), Addison-Wesley. [#]

BIBLIOGRAPHY AND REFERENCES 757

Knuth, D.E. (1973b) The Art of Computer Programming, Vol. 3: Searching and Sorting,

Addison-Wesley. [•]

Knuth, D.E. (1974) Structured Programming with go to Statements, ACM Computer

Surveys 6, 261-301. [1.4.1, 6.4.1]

Knuth, D.E. (1975) Estimating the Efficiency of Backtrack Programs, Mathematics of

Computation 29, 121-136. [6.8.2.1]

Knuth, D.E. (1976a) Big Omicron and Big Omega and Big Theta, ACM SIGACT News 8:

2, 18-24. [1.3.2.2]

Knuth, D.E. (1976b) Mathematics and Computer Science: Coping with Finiteness, Science

194, 1235-1242.

Knuth, D.E. (1977) Deletions that Preserve Randomness, IEEE Transactions on Software

Engineering SE-3, 351-359. [10.3.1]

Knuth, D.E. (1981) The Art of Computer Programming, Vol. 2: Semi-Numerical Algorithms

(2nd ed.), Addison-Wesley.

Knuth, D.E. (1985) Dynamic Huffman Coding, Journal of Algorithms 6, 163-180. [8.8]

Knuth, D.E. and Moore, R.W. (1975) An Analysis of Alpha-Beta Pruning, Artificial Intel¬

ligence 6, 293-326. [6.8.4.1]

Knuth, D.E., Morris, J.H., and Pratt, Y.R. (1977) Fast Pattern Matching in Strings,

SIAM Journal of Computing 6, 323-350. [8.5.1.1]

Knuth, D.E. and Plass, M.F. (1981) Breaking Paragraphs into Lines, Software Practice

and Experience 11, 1119-1184. [8.3.2]

Knuth, D.E. and Szwarcfiter, J.L. (1974) A Structured Program to Generate All Topolog¬

ical Sorting Arrangements, Information Processing Letters 2, 153-157. [7.4.5.1]

Korfhage, R.R. (1974a) Discrete Computational Structures, Academic Press. [7.4.3.2]

Korfhage, R.R. (1974b) On the Development of Data Structures, ACM SIGPLAN Notices

9:12, 14-22. [9-]

Korsh, J.F. (1981) Greedy Binary Trees are Nearly Optimal, Information Processing

Letters 13, 16-19. [10.8]

Korsh, J.F. (1982) Growing Nearly Optimal Binary Search Trees, Information Processing

Letters 14, 139-143. [10.8]

Korsh, J.F. and Laison, G. (1983) A Multiple-Stack Manipulation Procedure, ACM

Communications 26, 921-923. [5.3]

Krarup, J. and de Werra, D. (1982) Chromatic Optimisation: Limitations, Objectives,

Uses, References, European Journal Operations Research 11, 1-19.

758 BIBLIOGRAPHY and REFERENCES

Kruse, R.L. (1984) Data Structures and Program Design, Prentice-Hall.

Kruskal, J.B. (1956) On the Shortest Spanning Subtree of a Graph and the Traveling

Salesman Problem, AMS Proceedings 7: 1, 48-50. [7.4.1]

Kucera, H. and Francis, W. (1967) Computational Analysis of Present-Day American

English, Brown University Press. [10.3.2.4]

Kuhn, H.W. (1955) The Hungarian Method for the Assignment Problem, Naval Research

Logistics Quarterly 2, 83-97. [7.4.3.4]

Kung, H.T. and Song, S.W. (1977) An Efficient Parallel Garbage Collection System and
Its Correctness Proof, Carnegie-Mellon University Computer Science Dept. Report.

[11.2.6]

Kurokawa, T. (1981) A New Fast and Safe Marking Algorithm, Software Practice and
Experience 11, 671-682. [11.2.1.1]

Landin, P.J. (1964) The Mechanical Evaluation of Expressions, Computer Journal 6,
308-320. [8.6.4]

Langdon, G.G. (1984) An Introduction to Arithmetic Coding, IBM Journal of Research

and Development 28, 135-149.

Larson, P.A. (1978) Dynamic Hashing, BIT 18, 184-201. [12.3.5]

Lawler, E.L. (1976) Combinatorial Optimization: Networks and Matroids, Holt, Rinehart,
and Winston. [7.4.3.4]

Lawler, E.L. and Wood, D.W. (1966) Branch-and-Bound Methods: A Survey, Operations

Research 14, 699-719. [6.8.3]

Lecarme, O. and Desjardins, P. (1974) Reply to a Paper by A.N. Haberman on the

Programming Language Pascal, ACM SIGPLAN Notices 9: 10, 21-27. [1.6]

Lecarme, O. and Desjardins, P. (1975) More Comments on the Programming Language
Pascal, Acta Informatica 4, 231-243.

Lehman, D.J. (1977) Algebraic Structures for Transitive Closure, Theoretical Computer
Science 4, 59-76.

Lempel, A. (1979) Cryptology in Transition, ACM Computer Surveys 11, 285-303.

[8.4.2, 8.4.2.2]

Lempel, A., Even, S., and Cederbaum, I. (1966) An Algorithm for Planarity Testing of

Graphs, Proceedings International Symposium on Theory of Graphs, Rome, 215-232.

[7.7]

Lengauer, T. and Tarjan, R.E. (1979) A Fast Algorithm for Finding Dominators in a

Flowgraph, ACM Transactions on Programming Languages and Systems 1, 121-141.

[7.4.5.3.1]

BIBLIOGRAPHY AND REFERENCES 759

Leung, C.H.C. (1982a) A Simple Model for the Performance Analysis of Disc Storage

Fragmentation, Computer Journal 25, 193-198. [12.1.2.1]

Leung, C.H.C. (1982b) An Improved Optimal-Fit Procedure for Dynamic Storage Allo¬

cation, Computer Journal 25, 199-206. [11.3.1.2]

Leung, C.H.C. (1983) Analysis of Disc Fragmentation Using Markov Chains, Computer

Journal 26, 113-116. [12.1.2.1]

Leverett, B.W. and Hibbard, P.G. (1982) An Adaptive System for Dynamic Storage Allo¬

cation, Software Practice and Experience 12, 543-555. [11.3.3]

Lew, A. (1982) On the Emulation of Flowcharts by Decision Tables, ACM Communi¬

cations 25, 895-904. [2.11]

Lewis, H.R. and Papadimitriou, C.H. (1978) The Efficiency of Algorithms, Scientific

American 238: 1, 96-109. [6.8.2.2]

Lewis, T.G. and Smith, M.Z. (1982) Applying Data Structures (2nd ed.), Houghton

Mifflin.

Lieberman, H. and Hewitt, C. (1983) A Real-Time Garbage Collector Based on the Life¬

times of Objects, ACM Communications 26, 419-429. [11.2.6]

Lin, S. and Kernighan, B.W. (1973) An Effective Heuristic Algorithm for the Traveling

Salesman Problem, Operations Research 21, 498-516. [7.7]

Lindstrom, G. (1973) Scanning List Structures without Stacks or Tag Bits, Information

Processing Letters 2, 47-51. [6.4.3, 6.12, 11.2.1.1]

Lindstrom, G. (1974) Copying List Structures Using Bounded Workspace, ACM Commu¬

nications 17, 198-202. [1L5]

Liptay, J.S. (1968) Structural Aspects of the System/360 Model 85: The Cache, IBM

Systems Journal 7, 15-21. [12.2.1]

Lipton, R.J., Eisenstat, S.C., and DeMillo, R.A. (1976) Space and Time Hierarchies for
Classes of Control Structures and Data Structures, ACM Journal 23, 720-732.

[9.1.2]

Lipton, R.J. and Tarjan, R.E. (1979) A Separator Theorem for Planar Graphs, SIAM

Journal of Applied Mathematics 36, 177-189. [7.5.2]

Lipton, R.J. and Tarjan, R.E. (1980) Applications of a Planar Separator Theorem, SIAM

Journal of Computing 9, 615-627. [7.5.2]

Liskov, B.H., Snyder, A., Atkinson, R., and Schaffert, C. (1977) Abstraction Mechanisms

in CLU, ACM Communications 20, 564-576. [9.2.1]

Liskov, B.H. and Zilles, S.N. (1975) Specification Techniques for Data Abstractions, IEEE

Transactions on Software Engineering SE-1, 7-19. [9.2.1]

760 BIBLIOGRAPHY and REFERENCES

Liu, C.L. (1968) Introduction to Combinatorial Mathematics, McGraw-Hill. [1.6, 6.7]

Lomet, D.B. (1985) Making Pointers Safe in System Programming Languages, IEEE

Transactions on Software Engineering SE-11, 87-96. [9.1.1]

Low, J.R. (1978) Automatic Data Structure Selection: An Example and an Overview,

ACM Communications 21, 376-385. [9.3]

Lowrance, R. and Wagner, R.A. (1975) An Extension of the String-to-String Correction

Problem, ACM Journal 22, 177-183. [8.3.2]

Lowry, E.S. and Medlock, C.W. (1969) Object Code Optimization, ACM Communications

12, 13-22. [7.4.5.3.2]

Lueker, G.S. (1980) Some Techniques for Solving Recurrences, ACM Computer Surveys

12, 419-436. [1.3.2.3]

Lum, V.Y. (1970) Multi-attribute Retrieval with Combined Indices, ACM Communications

13, 660-665. [12.6]

Lum, V.Y., Yuen, P.S.T., and Dodd, M. (1971) Key-to-Address Transform Techniques: A

Fundamental Performance Study on Large Existing Formatted Files, ACM Commu¬

nications 14, 228-239. [10.8, 12.6]

Lynch, M.F. (1973) Compression of Bibliographic Files Using an Adaptation of Run-

Length Coding, Information Storage and Retrieval 9, 207-214.

Lynch, M.F. (1977) Variety Generation - A Reinterpretation of Shannon’s Mathematical

Theory of Communication, and Its Implications for Information Science, Journal

Amererican Society for Information Science 28, 19-25.

Lyon, G. (1978) Packed Scatter Tables, ACM Communications 21, 857-865. [10.4.2.5]

Mackenzie, C.E. (1980) Coded Character Sets, History and Development, Addison-Wesley.

[8.2.1]

MacLaren, M.D. (1966) Internal Sorting by Radix Plus Sifting, ACM Journal 13, 404-411.

[13.2.2.1]

MacVeigh, D.T. (1977) Effect of Data Representation on Cost of Sparse Matrix Oper¬
ations, Acta Informatica 7, 361-394. [2.11]

Madnick, S.E. (1967) String Processing Techniques, ACM Communications 10, 420-424.

Mairson, H.G. (1983) The Program Complexity of Searching a Table, Proceedings 24th

IEEE Symposium on Foundations of Computer Science, 40-47. [10.4.3]

Malhotra, V.M., Kumar, M.P., and Maheshwari, S.N. (1978) An 0(V3) Algorithm for

Finding Maximum Flows in Networks, Information Processing Letters 7, 277-278.

[7.7]

BIBLIOGRAPHY AND REFERENCES 761

Maly, K. (1976) Compressed Tries, ACM Communications 19, 409-415. [10.5.1]

Manacher, G. (1976) An Application of Pattern Matching to a Problem in Geometrical

Complexity, Information Processing Letters 5, 6-7. [8.8]

Manacher, G. (1979) The Ford-Johnson Sorting Algorithm is Not Optimal, ACM Journal

26, 441-456. [13.2.3.1]

Mannila, H. (1985) Measures of Presortedness and Optimal Sorting Algorithms, IEEE

Transactions on Computers C-34, 318-325. [13.2.4]

Margolin, B.H., Parmelee, R.P., and Schatzoff, M. (1971) Analysis of Free-Storage Algo¬

rithms, IBM Systems Journal 10, 283-304. [11.5]

Marlin, C.D. (1979) A Heap-Based Implementation of the Programming Language Pascal,

Software Practice and Experience 9, 101-119. [11-5]

Martelli, A. and Montanari, U. (1978) Optimizing Decision Trees Through Heuristically

Guided Search, ACM Communications 21, 1025-1039. [6.10]

Martin, J.J. (1982) An Efficient Garbage Compaction Algorithm, ACM Communications

25, 571-581. [11.3.1.3.2]

Martin, W.A. (1971) Sorting, ACM Computer Surveys 3, 147-174. [13.2.1]

Martin, W.A. and Ness, D.N. (1972) Optimizing Binary Trees Grown with a Sorting Algo¬

rithm, ACM Communications 15, 88-93. [10.3.3]

Maruyama, K. and Smith, S.E. (1977) Analysis of Design Alternatives for Virtual Memory

Indexes, ACM Communications 20, 245-254. [12.3]

Matyas, S.M. and Meyer, C.H. (1978) Generation, Distribution, and Installation of Cryp¬

tographic Keys, IBM Systems Journal 17, 126-137. [8.4.2.2]

Maurer, W.D. (1968) An Improved Hash Code for Scatter Storage, ACM Communications

11, 35-38. [10.10]

Mayne, A. and James, E.B. (1975) Information Compression by Factorising Common

Strings, Computer Journal 18, 157-160.

McCarthy, J. (1960) Recursive Functions of Symbolic Expressions and Their Computation

by Machine, Part I, ACM Communications 3, 184-195. [4.4.4]

McCarthy, J. (1963) A Basis for a Mathematical Theory of Computation, Computer
Programming and Formal Systems (eds. Braffort, P. and Hirshberg, D.), North-

Holland, 33-70. [91]

McCormack, W.M. and Sargent, R.G. (1981) Analysis of Future Event Set Algorithms for

Discrete Event Simulation, ACM Communications 24, 801-812. [5.6]

McCreight, E.M. (1976) A Space-Economical Suffix Tree Construction Algorithm, ACM

Journal 23 (1976), 262-272. [8.5.4]

762 BIBLIOGRAPHY and REFERENCES

McCreight, E.M. (1985) Priority Search Trees, SIAM Journal of Computing 14, 257-276.

[11.7]

McMahon, L.E., Cherry, L.L., and Morris, R. (1978) Statistical Text Processing, Bell

System Technical Journal 57, 2137-2154. [8.3.2]

McVitie, D.G. and Wilson, L.B. (1971) The Stable Marriage Problem, ACM Communi¬

cations 14, 486-492. [7.4.3.4]

Mealy, G.H. (1974) Data Structures: Theory and Representation, Proceedings IFIP

Congress, 322-325. [9.]

Mehlhorn, K. (1975) Nearly Optimal Binary Search Trees, Acta Informatica 5, 287-295.
[10.8]

Mehlhorn, K. (1977) A Best Possible Bound for the Weighted Path Length of Binary

Search Trees, SIAM Journal of Computing 6, 235-239. [10.8]

Mehlhorn, K. (1982a) On the Program Size of Perfect and Universal Hash Functions,

Proceedings 23rd IEEE Symposium on Foundations of Computer Science, 170-175.
[10.4.3]

Mehlhorn, K. (1982b) A Partial Analysis of Height-Balanced Trees Under Random
Insertions and Deletions, SIAM Journal of Computing 11, 748-760.

Mei, P.S. and Gibbs, N.E. (1970) A Planarity Algorithm Based Upon the Kuratowski
Theorem, Proceedings Spring Joint Computer Conference 91-93. [7.7]

Meijer, H. and Akl, S.G. (1980) The Design and Analysis of a New Hybrid Sorting Algo¬

rithm, Information Processing Letters 10, 213-218. [13.7]

Merkle, R.C. and Heilman, M.E. (1978) Hiding Information and Signatures in Trapdoor

Knapsacks, IEEE Transactions on Information Theory IT-24, 525-530. [8.4.2.2]

Meyrowitz, N. and van Dam, A. (1982) Interactive Editing Systems: Part I, ACM
Computer Surveys 14, 321-352. [8.3.1]

Micali, S. and Vazirani, V.V. (1980) An 0(| v|0-5 |£|) Algorithm for Finding Maximum

Matching in General Graphs, Proceedings 21st IEEE Symposium on Foundations of
Computer Science, 17-27. [7.4.3.4]

Miller, J.C.P. and Brown, D.J.S. (1966) An Algorithm for the Evaluation of Remote

Terms in a Linear Recurrence Sequence, Computer Journal 9, 188-190. [5.6]

Miller, R.E., Pippenger, N., Rosenberg, A.L., and Snyder, L. (1979) Optimal 2,3-Trees,
SIAM Journal of Computing 8, 42-59. [10.3.4]

Minsky, M.L. (1967) Computation: Finite and Infinite Machines, Prentice-Hall. [5.4.3]

Moffat, A. (1983) The Effect of Paged Memory upon Algorithm Performance, ACM
S1GACT News 15: 2, 45-52. [12.2.2]

BIBLIOGRAPHY AND REFERENCES 763

Montalbano, M. (1962) Tables, Flow Charts, and Program Logic, IBM Systems Journal 1,

51-63. [6.6.3]

Montalbano, M. (1974) Decision Tables, Science Research Associates. [2.11]

Montangero, C., Pacini, G., and Turini, F. (1977) Two-Level Control Structure for

Nondeterministic Programming, ACM Communications 20, 725-730.

Mooers, C.N. (1951) Zatacoding Applied to Mechanical Organization of Knowledge,

American Documentation 2, 20-32. [12.4.2.1]

More, T. (1973) Axioms and Theorems for a Theory of Arrays, IBM Journal of Research

and Development 17, 135-175. [2.9]

Moret, B.M.E. (1982) Decision Trees and Diagrams, ACM Computer Surveys 14, 593-623.
[6.6.3, 6.10]

Morin, T.L. and Marsten, R.E. (1976) Branch-and-Bound Strategies for Dynamic

Programming, Operations Research 24, 611-627.

Morris, F.L. (1978) A Time- and Space-Efficient Garbage Compaction Algorithm, ACM

Communications 21, 662-665. [11.3.1.3.2]

Morris, J.M. (1979) Traversing Binary Trees Simply and Cheaply, Information Processing

Letters 9, 197-200. [6-4.3]

Morris, R. (1968) Scatter Storage Techniques, ACM Communications 11, 38-44. [12.3.2]

Morrison, D.R. (1968) PATRICIA - Practical Algorithm to Retrieve Information Coded

in Alphanumeric, ACM Journal 15, 514-534. [10.5.2]

Motzkin, D. (1983) Meansort, ACM Communications 26, 250-251. [13.7]

Munro, J.I. (1971) Efficient Determination of the Transitive Closure of a Directed Graph,

Information Processing Letters 1, 56-58. [7.3.4]

Munro, J.I. and Suwanda, H. (1980) Implicit Data Structures for Fast Search and Update,

Journal of Computer and System Sciences 21, 236-250. [9.1.3]

Muntz, R. and Uzgalis, R. (1970) Dynamic Storage Allocation for Binary Search Trees in

a Two-Level Memory, Proceedings 4th Princeton Conference on Information Sciences

and Systems, 345-349. [12.3.4]

Muthukrishnam, C.R. and Rajaraman, V. (1970) On the Conversion of Decision Tables to

Computer Programs, ACM Communications 13, 347-351. [2.11]

Myers, H.J. (1972) Compiling Optimized Code from Decision Tables, IBM Journal of

Research and Development 16, 489-503. [6.10]

National Bureau of Standards (1977) Data Encryption Standard, Publication 46. [8.4.2.1]

764 BIBLIOGRAPHY and REFERENCES

Naur, P. (1975) Programming Languages, Natural Languages, and Mathematics, ACM

Communications 18, 676-683.

Naur, P. et al. (1960) Report on the Algorithmic Language ALGOL 60, ACM Communi¬

cations 3, 299-314. [5.4.1]

Nielsen, N.R. (1977) Dynamic Memory Allocation in Computer Simulation, ACM
Communications 20, 864-873. [11.3.4.2]

Nievergelt, J. and Reingold, E.M. (1973) Binary Search Trees of Bounded Balance, SIAM
Journal of Computing 2, 33-43. [10.3.3.2]

Nilsson, N.J. (1980) Principles of Artificial Intelligence, Tioga Publishing, Palo Alto. [6.8]

Noga, M.T. and Allison, D.C.S. (1985) Sorting in Linear Expected Time, BIT 25 451-465.
[13.2.2.3]

Oldehoeft, R.R. and Allan, S.J. (1985) Adaptive Exact-Fit Storage Management, ACM
Communications 28, 506-511. [11.3.3]

Olson, C.A. (1969) Random Access File Organization for Indirectly Addressed Records,
Proceedings ACM National Conference, 539-549. [12.3.2.1]

O’Neil, P.E. and O’Neil, E.J. (1973) A Fast Expected Time Algorithm for Boolean Matrix
Multiplication and Transitive Closure, Information and Control 22, 132-138.

Overholt, K.J. (1973) Efficiency of the Fibonacci Search Method, BIT 13, 92-96. [10.2.3]

Page, I.P. (1982) Optimal Fit of Arbitrary Sized Segments, Computer Journal 25, 32-33.

[11.3.4.2]

Papadimitriou, C.H. (1976) On the Complexity of Edge Traversing, ACM Journal 23,
544-554.

Papadimitriou, C.H. and Steiglitz, K. (1982) Combinatorial Optimization - Algorithms and
Complexity, Prentice-Hall. [7.4.3.4]

Parnas, D.L. (1972a) A Technique for Software Module Specification with Examples,
ACM Communications 15, 330-336.

Parnas, D.L. (1972b) On the Criteria To Be Used in Decomposing Systems into Modules,
ACM Communications 15, 1053-1058.

Parnas, D.L. and Clements, P.C. (1986) A Rational Design Process: How and Why to
Fake It, IEEE Transactions on Software Engineering SE-12, 251-257.

Paterson, M.S. and Hewitt, C.E. (1970) Comparative Schematology, M.I.T. Project MAC
Conference on Concurrent Systems and Parallel Computations, 119-127. [5.4.3]

Paton, K. (1971) An Algorithm for the Blocks and Cutnodes of a Graph, ACM Communi¬
cations 14, 468-475. vi i 21

BIBLIOGRAPHY AND REFERENCES 765

Perl, Y., Itai, A., and Avni, H. (1978) Interpolation Search — A Log Log N Search, ACM

Communications 21, 550-553. [10.2.3]

Perl, Y. and Reingold, E.M. (1977) Understanding the Complexity of Interpolation

Search, Information Processing Letters 6, 219-222. [10.2.3]

Perlis, A.J. and Thornton, C. (1960) Symbol Manipulation in Threaded Lists, ACM

Communications 3, 195-204. [6.4.2]

Peterson, J.L. (1980) Computer Programs for Detecting and Correcting Spelling Errors,

ACM Communications 23, 676-687. [8.3.2]

Peterson, J.L. and Norman, T.A. (1977) Buddy Systems, ACM Communications 20,

421-431. [11.3.4.1, 11.3.4.2]

Peterson, W.W. (1957) Addressing for Random-Access Storage, IBM Journal of Research

and Development 1, 130-146. [12.3.2]

Peterson, W.W. and Weldon, E.J. (1972) Error-Correcting Codes (2nd ed.), M.I.T. Press.
[8.8]

Pfaltz, J.L. (1972) Graph Structures, ACM Journal 19, 411-422.

Pfaltz, J.L. (1975) Representing Graphs by Knuth Trees, ACM Journal 22, 361-366. [7.2]

Pfaltz, J.L. (1977) Computer Data Structures, McGraw-Hill. [2.13, 10.7]

Pfaltz, J.L., Berman, W.J., and Cagley, E.M. (1980) Partial-Match Retrieval Using

Indexed Descriptor Files, ACM Communications 23, 522-528. [12.6]

Pippenger, N. (1978) Complexity Theory, Scientific American 238: 6, 114-124.

Pohl, I. (1967) A Method for Finding Hamilton Paths and Knight’s Tours, ACM Commu¬

nications 10, 446-449.

Pohl, I. (1972) A Sorting Problem and Its Complexity, ACM Communications 15, 462-464.
[13.9]

Pohlig, S.C. and Heilman, M.E. (1978) An Improved Algorithm for Computing Loga¬

rithms over GF(p) and its Cryptographic Significance, IEEE Transactions on

Information Theory IT-24, 106-110. [8.4.2.2]

Pollack, S.L. (1965) Conversion of Limited-Entry Decision Tables to Computer Programs,

ACM Communications 8, 677-682. [6.10]

Pollack, S.L., Hicks, H.T., and Harrison, W.J. (1971) Decision Tables: Theory and

Practice, John Wiley & Sons. [2.11]

Pooch UW (1974) Translation of Decision Tables, ACM Computer Surveys 6, 125-151.
[2.11]

766 BIBLIOGRAPHY and REFERENCES

Pooch, U.W. and Nieder, A. (1973) A Survey of Indexing Techniques for Sparse Matrices,

ACM Computer Surveys 5, 109-133. [2.11]

Prenner, C.J., Spitzen, J.M, and Wegbreit, B. (1972) An Implementation of Backtracking
for Programming Languages, Proceedings ACM National Conference, 763-771.

[6.10]

Preparata, F.P. and Vuillemin, J. (1981) The Cube-Connected Cycles: A Versatile Network
for Parallel Computation, ACM Communications 24, 300-309. [13.5]

Prim, R.C. (1957) Shortest Connection Networks and Some Generalizations, Bell System

Technical Journal 36, 1389-1401. [7.4.1]

Purdom, P.W., Brown, C.A., and Robertson, E.L. (1981) Backtracking with Multi-Level

Dynamic Search Rearrangement, Acta Informatica 15, 99-113. [6.10]

Purdom, P.W., Stigler, S.M., and Cheam, T.O. (1971) Statistical Investigation of Three
Storage Allocation Algorithms, BIT 11, 187-195. [11.3.4.2]

Quine, W.V., Paradox (1962) Scientific American 206: 4, 84-96. [2.4.1]

Rabin, M.O. (1976) Probablistic Algorithms, Algorithms and Complexity: New Directions
and Recent Results (ed. Traub, J.F.), Academic Press, 21-39.

Rabin, M.O. (1977) Complexity of Computations, ACM Communications 20, 625-633.

Raiha, K.J. and Zweben, S.H. (1979) An Optimal Insertion Algorithm for One-Sided

Height-Balanced Binary Search Trees, ACM Communications 22, 508-512.

[10.3.3.1]

Randell, B. (1969) A Note on Storage Fragmentation and Program Segmentation, ACM
Communications 12, 365-369,372. [11.3]

Raphael, B. (1976) The Thinking Computer - Mind Inside Matter, W.H. Freeman & Co.

[6.8, 6.8.4]

Read, R.C. and Corneil, D.G. (1977) The Graph Isomorphism Disease, Journal of Graph
Theory 1, 339-363.

Reingold, E.M. (1972) On the Optimality of Some Set Algorithms, ACM Journal 19,
649-659.

Reingold, E.M. (1973) A Nonrecursive List Moving Algorithm, ACM Communications 16,

305-307. [11.2.3.2.1]

Reingold, E.M. and Hansen, W.J. (1983) Data Structures, Little, Brown, & Co. [•]

Reinwald, L.T. and Solano, R.M. (1966) Conversion of Limited-Entry Decision Tables to

Optimal Computer Programs I: Minimum Average Processing Time, ACM Journal
13, 339-358. [6.10]

BIBLIOGRAPHY AND REFERENCES 767

Reinwald, L.T. and Solano, R.M. (1967) Conversion of Limited-Entry Decision Tables to

Optimal Computer Programs II: Minimum Storage Requirement, ACM Journal 14,
742-755. [6.10]

Rivest, R.L. (1976a) On Self-Organizing Sequential Search Heuristics, ACM Communi¬

cations 19, 63-67. [10.2.1]

Rivest, R.L. (1976b) Partial-Match Retrieval Algorithms, SIAM Journal of Computing 5,
19-50. [12.4.2]

Rivest, R.L. (1977) On the Worst-Case Behavior of String-Searching Algorithms, SIAM

Journal of Computing 6, 669-674. [8.5.1.2]

Rivest, R.L. (1978a) Optimal Arrangement of Keys in a Hash Table, ACM Journal 25,

200-209. [10.4.2.5]

Rivest, R.L. (1978b) Remarks on a Proposed Cryptanalytic Attack on the M.I.T. Publ¬

ic-Key Cryptosystem, Cryptologia 2, 62-65. [8.2.2.1]

Rivest, R.L., Shamir, A., and Adleman, L. (1978) A Method for Obtaining Digital Signa¬

tures and Public-Key Cryptosystems, ACM Communications 21, 120-126. [8.4.2.2.1]

Rivest, R.L. and Vuillemin, J. (1975) A Generalization and Proof of the Aanderaa-Rosen-

berg Conjecture, Proceedings 7th ACM Symposium on Theory of Computing, 6-11.
[7.5.3]

Roberts, C.S. (1979) Partial-Match Retrieval via the Method of Superimposed Codes,

IEEE Proceedings 67, 1624-1642. [12.4.2.1]

Roberts, F.S. (1984) Applied Combinatorics, Prentice-Hall. [1.6]

Robson, J.M. (1971) An Estimate of the Store Size Necessary for Dynamic Storage Allo¬

cation, ACM Journal 18, 416-423. [11.3.4.1]

Robson, J.M. (1973) An Improved Algorithm for Traversing Binary Trees Without Auxil¬

iary Stack, Information Processing Letters 2, 12-14. [6.4.3]

Robson, J.M. (1974) Bounds for Some Functions Concerning Dynamic Storage Allo¬

cation, ACM Journal 21, 491-499.

Robson, J.M. (1977a) A Bounded Storage Algorithm for Copying Cyclic Structures, ACM

Communications 20, 431-433. [11.2.3.2.2]

Robson, J.M. (1977b) Worst Case Fragmentation of First Fit and Best Fit Storage Allo¬

cation Strategies, Computer Journal 20, 242-244. [11.3.4.1]

Rodeh, M. (1982) A Fast Test for Unique Decipherability Based on Suffix Trees, IEEE

Transactions on Information Theory IT-28, 648-651.

Rodeh, M., Pratt, V.R., and Even, S. (1981) Linear Algorithm for Data Compression via

String Matching, ACM Journal 28, 16-24. [8.5.4]

768 BIBLIOGRAPHY and REFERENCES

Rosenberg, A.L. (1973) On the Time Required to Recognize Properties of Graphs: A

Problem, ACM SIGACT News 5: 4, 15-16. [7.5.3]

Rosenberg, A.L. (1974) Allocating Storage for Extendible Arrays, ACM Journal 21,

652-670. [2.11]

Rosenberg, A.L. (1975) Preserving Proximity in Arrays, SIAM Journal of Computing 4,

443-460. [2.11,9.1.2]

Rosenberg, A.L. (1978) Data Encodings and Their Costs, Acta Informatica 9, 273-292.
[9.1.2]

Rosenberg, A.L. (1979) Encoding Data Structures in Trees, ACM Journal 26, 668-689.
[9.1.2]

Rosenberg, A.L. and Snyder, L. (1978) Minimal-Comparison 2,3-Trees, SIAM Journal of

Computing 7, 465-480. [10.3.4]

Rosenberg, A.L. and Stockmeyer, L.J. (1977) Hashing Schemes for Extendible Arrays,

ACM Journal 24, 199-221.

Rosenkrantz, D.J., Stearns, R.E., and Lewis, P.M. (1977) An Analysis of Several Heuris¬

tics for the Traveling Salesman Problem, SIAM Journal of Computing 6, 563-581.

[7.7]

Ross, D.T. (1967) The AED Free Storage Package, ACM Communications 10, 481-492.

[11.3.3]

Rotem, D. (1975) On a Correspondence Between Binary Trees and a Certain Type of

Permutation, Information Processing Letters 4, 58-61.

Rotem, D. (1981) Stack Sortable Permutations, Discrete Mathematics 33, 185-196.

Rotem, D. and Varol, Y.L. (1978) Generation of Binary Trees from Ballot Sequences,

ACM Journal 25, 396-404. [6.10]

Rothnie, J.B. and Lozano, T. (1974) Attribute Based File Organization in a Paged

Memory Environment, ACM Communications 17, 63-69. [12.4.1.1]

Rowe, L.A. and Tonge, F.M. (1978) Automating the Selection of Implementation Struc¬

tures, IEEE Transactions on Software Engineering SE-4, 494-506. [9-3]

Rubin, F. (1974) A Search Procedure for Hamilton Paths and Circuits, ACM Journal 21,

576-580. [7.4.4.2]

Rubin, F. (1975) An Improved Algorithm for Testing the Planarity of a Graph, IEEE

Transactions on Computers C-24, 113-121. [7.7]

Rubin, F. (1976) Experiments in Text File Compression, ACM Communications 19,
617-623.

BIBLIOGRAPHY AND REFERENCES 769

Rubin, F. (1979) Cryptographic Aspects of Data Compression Codes, Cryptologia 3,

202-205.

Ruskey, F. (1978) Generating t-ary Trees Lexicographically, SIAM Journal of Computing

7, 424-439. [6.10]

Ruskey, F. and Hu, T.C. (1977) Generating Binary Trees Lexicographically, SIAM

Journal of Computing 6, 745-758. [6.10]

Russell, D.L. (1977) Internal Fragmentation in a Class of Buddy Systems, SIAM Journal

of Computing 6, 607-621. [11.3.4.1]

Sacks-Davis, R. and Ramamohanarao, K. (1983) A Two Level Superimposed Coding

Scheme for Partial Match Retrieval, Information Systems 8, 273-280. [12.4.2.1]

Sager, T.J. (1985) A Polynomial Time Generator for Minimal Perfect Hash Functions,

ACM Communications 28, 523-532. [10.8]

Samet, H. (1982) Heuristics for the Line Division Problem in Computer Justified Text,

ACM Communications 25, 564-571. [8.3.2]

Samet, H. (1984) The Quadtree and Related Hierarchical Data Structures, Computer

Surveys 16, 187-260. [12.4.3.1]

Sayre, D. (1969) Is Automatic “Folding” of Programs Efficient Enough to Displace

Manual?, ACM Communications 12, 656-660. [12.2]

Schkolnick, M. (1975) The Optimal Selection of Secondary Indices for Files, Information

Systems 1, 141-146. [12.6]

Schmidt, D.C. and Druffel, L.E. (1976) A Fast Backtracking Algorithm to Test Directed
Graphs for Isomorphism Using Distance Matrices, ACM Journal 23, 433-445. [7.7]

Schmitt, A. (1983) On the Number of Relational Operators Necessary to Compute Certain

Functions of Real Variables, Acta Informatica 19, 297-304. [13.2.2.3]

Schonhage, A., Paterson, M.S., and Pippenger, N. (1976) Finding the Median, Journal of

Computer and System Sciences 13, 184-199. [13.3]

Schoor, A. (1982) Fast Algorithm for Sparse Matrix Multiplication, Information Proc¬

essing Letters 15, 87-89. [4.3.3.1]

Schorr, H. and Waite, W.M. (1967) An Efficient Machine-Independent Procedure for

Garbage Collection in Various List Structures, ACM Communications 10, 501-506.
[4.4.3.1]

Schuegraf, E.J. and Heaps, H.S. (1973) Selection of Equifrequent Word Fragments for

Information Retrieval, Information Storage and Retrieval 9, 697-711. [8.4.1]

Schuegraf, E.J. and Heaps, H.S. (1974) A Comparison of Algorithms for Data Base

Compression by Use of Fragments as Language Elements, Information Storage and

Retrieval 10, 309-319.

770 BIBLIOGRAPHY and REFERENCES

Schumacher, H. and Sevcik, K.C. (1976) The Synthetic Approach to Decision Table

Conversion, ACM Communications 19, 343-351. [6.10]

Schwartz, E.S. (1964) An Optimum Encoding with Minimum Longest Code and Total

Number of Digits, Information and Control 7, 37-44. [8.2.4]

Schwartz, E.S. and Kallick, B. (1964) Generating a Canonical Prefix Encoding, ACM

Communications 7, 166-169. [8.10]

Schwartz, J.T. (1975) Automatic Data Structure Choice in a Language of Very High

Level, ACM Communications 18, 722-728. [2.11, 9.3]

Sedgewick, R. (1977) The Analysis of Quicksort Programs, Acta Informatica 7, 327-355.
[13.2.1.3.1]

Sedgewick, R. (1978) Implementing Quicksort Programs, ACM Communications 21

847-857. [13.2.1.3.1]

Sedgewick, R. (1983) Algorithms, Addison-Wesley. [•]

Sethi, I.K. and Chatterjee, B. (1980) Conversion of Decision Tables to Efficient Sequential

Testing Procedures, ACM Communications 23, 279-285. [6.10]

Severance, D.G. (1974) Identifier Search Mechanisms: A Survey and Generalized Model,
ACM Computer Surveys 6, 175-194.

Severance, D. and Duhne, R. (1976) A Practitioner’s Guide to Addressing Algorithms,
ACM Communications 19, 314-326. [12.6]

Shamir, A. (1982) A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman

Cryptosystem, Proceedings 23rd IEEE Symposium on Foundations of Computer

Science, 145-152. [8.4.2.2]

Shannon, C.E. (1948) A Mathematical Theory of Communication, Bell System Technical
Journal 27, 379-423 and 623-656. [8.2.4]

Shannon, C.E. (1949) Communication Theory of Secrecy Systems, Bell System Technical
Journal 28, 656-715. [8.4.2]

Sharir, M. (1981) A Strong-Connectivity Algorithm and Its Applications in Data Flow

Analysis, Computers and Mathematics with Applications 7, 67-72. [7.3.4]

Shaw, M. (1980) The Impact of Abstraction Concerns on Modern Programming
Languages, IEEE Proceedings 68, 1119-1130.

Shaw, M., Wulf, W.A., and London, R.L. (1977) Abstraction and Verification in Alphard:

Defining and Specifying Iteration and Generators, ACM Communications 20,

553-564. [9.2.1]

Sheil, B.A. (1978) Median Split Trees: A Fast Lookup Technique for Frequently Occur¬

ring Keys, ACM Communications 21, 947-958. [10.3.2.4]

BIBLIOGRAPHY AND REFERENCES 771

Shell, D.L. (1959) A High-Speed Sorting Procedure, ACM Communications 2: 7, 30-32.
[13.2.1.1.1]

Shell, D.L. (1971) Optimizing the Polyphase Sort, ACM Communications 14, 713-719.
[13.4.3.1]

Shneiderman, B. (1973) Optimum Data Base Reorganization Points, ACM Communi¬

cations 16, 362-365. [12.3.3]

Shneiderman, B. (1977) Reduced Combined Indices for Efficient Multiple Attribute

Retrieval, Information Systems 2, 149-154. [12.6]

Shneiderman, B. (1978) Jump Searching: A Fast Sequential Search Technique, ACM
Communications 21, 831-834. [12.3.1]

Shneiderman, B. and Scheuermann, P. (1974) Structured Data Structures, ACM Communi¬

cations 17, 566-574.

Shore, J.E. (1975) On the External Storage Fragmentation Produced by First-Fit and
Best-Fit Allocation Strategies, ACM Communications 18, 433-440. [11.3.4.2]

Shore, J.E. (1977) Anomalous Behavior of the Fifty-Percent Rule in Dynamic Memory

Allocation, ACM Communications 20, 812-820. [11.3.4.2]

Shortt, J. (1978) An Iterative Program to Calculate Fibonacci Numbers in 0(log n) Arith¬

metic Operations, Information Processing Letters 7, 299-303. [5.6]

Shwayder, K. (1974) Extending the Information Theory Approach to Converting Limited-
Entry Decision Tables to Computer Programs, ^4CM Communications 17, 532-537.

[6.10]

Shwayder, K. (1975) Combining Decision Rules in a Decision Table, ACM Communi¬

cations 18, 476-480. [2.3.3]

Siklossy, L. (1972) Fast and Read-Only Algorithms for Traversing Trees Without an
Auxiliary Stack, Information Processing Letters 1, 149-152. [6.4.3]

Simmons, G.J. (1979) Symmetric and Asymmetric Encryption, ACM Computer Surveys 11,

305-330. [8.4.2.2]

Simmons, G.J. and Norris, M.J. (1977) Preliminary Comments on the M.I.T. Public-Key

Cryptosystem, Cryptologia 1, 406-414. [8.2.2.1]

Simon, H.A. (1962) The Architecture of Complexity, Proceedings of the American Philo¬

sophical Society 106, 467-482. [9.2]

Slagle, J.R. and Dixon, J.K. (1969) Experiments with Some Programs that Search Game

Trees, ACM Journal 16, 189-207. [6.8.4.1]

Sleator, D.D. and Tarjan, R.E. (1983) Self-Adjusting Binary Trees, Proceedings 15th ACM

Symposium on Theory of Computing, 235-245. [10.3.3.3]

Ill BIBLIOGRAPHY and REFERENCES

Sleator, D.D. and Tarjan, R.E. (1985) Amortized Efficiency of List Update and Paging

Rules, ACM Communications 28, 202-208. [10.8]

Smit, G. de V. (1982) A Comparison of Three String Matching Algorithms, Software

Practice and Experience 12, 57-66. [8.8]

Smith, A.J. (1982) Cache Memories, ACM Computer Surveys 14, 473-530. [12.2.1]

Smith, H.F. (1965) Numerical Development of Harmonic Series for the Coordinates of the

Moon, Ph.D. Thesis, Columbia University. [2.11]

Smyth, W.F. and Radaceanu, E. (1974) A Storage Scheme for Heirarchic Structures,

Computer Journal 17, 152-156. [7.2]

Snyder, L. (1977) On Uniquely Represented Data Structures, Proceedings 18th IEEE
Symposium on Foundations of Computer Science, 142-146.

Solntseff, N. and Wood, D. (1977) Pyramids: A Data Type for Matrix Representations in
Pascal, BIT 17, 344-350. [2.11]

Solomon, M. and Finkel, R.A. (1980) A Note on Enumerating Binary Trees, ACM
Journal 27, 3-5. [6.10]

Solovay, R. and Strassen, Y. (1977) A Fast Monte-Carlo Test for Primality, SIAM Journal
of Computing 6, 84-85. [8.4.2.2.1]

Soule, S. (1977) A Note on the Nonrecursive Traversal of Binary Trees, Computer Journal
20, 350-352.

Spira, P.M. and Pan, A. (1975) On Finding and Updating Spanning Trees and Shortest
Paths, SIAM Journal 4, 375-380.

Sprugnoli, R. (1977) Perfect Hashing Functions: A Single Probe Retrieving Method for
Static Sets, ACM Communications 20, 841-850. [10.4.3]

Sprugnoli, R. (1981) On the Allocation of Binary Trees to Secondary Storage, BIT 21,
305-316. [12.3.4]

Stanat, D.F. and McAllister, D.F. (1977) Discrete Mathematics in Computer Science, Pren¬
tice-Hall. [9.2.1]

Standish, T.A. (1980) Data Structure Techniques, Addison-Wesley. [#]

Stephenson, C.J. (1980) A Method for Constructing Binary Search Trees by Making

Insertions at the Root, International Journal Computer and Information Sciences 9,
15-29. [6.12]

Stockmeyer, L.J. and Chandra, A.K. (1979) Intrinsically Difficult Problems, Scientific
American 240: 5, 140-159.

Stockmeyer, P.K. and Yao, F.F. (1980) On the Optimality of Linear Merge, SIAM
Journal of Computing 9, 85-90. [13.2.3.2]

BIBLIOGRAPHY AND REFERENCES 773

Stone, H.S. (1971) Parallel Processing with the Perfect Shuffle, IEEE Transactions on

Computers C-20, 153-161. [13.5]

Stone, H.S. (1973) Discrete Mathematical Structures and Their Applications, Science

Research Associates.

Stonebraker, M. (1974) The Choice of Partial Inversions and Combined Indices, Interna¬

tional Journal Computer and Information Sciences 3, 167-188.

Strassen, V. (1969) Gaussian Elimination is not Optimal, Numerische Mathematik 13,

354-356. [2.5.1.1]

Strong, H.R. (1971) Translating Recursion Equations into Flowcharts, Journal of

Computer and System Science 5, 254-285. [5.4.3]

Stubbs, D.F. and Webre, N.W. (1985) Data Structures with Abstract Data Types and

Pascal, Brooks/Cole Publishing. [•]

Sussenguth, E.H. (1963) Use of Tree Structures for Processing Files, ACM Communi¬

cations 6, 272-279. [10.5.1]

Sussenguth, E.H. (1965) A Graph-Theoretic Algorithm for Matching Chemical Structures,

Journal of Chemical Documentation 5, 36-43.

Suzuki, N. (1982) Analysis of Pointer “Rotation,” ACM Communications 25, 330-335.
[4.4.3.1]

Szwarcfiter, J.L. and Wilson, L.B. (1978) Some Properties of Ternary Trees, Computer

Journal 21, 66-72. [7.4.5.1]

Tarjan, R.E. (1972) Depth-First Search and Linear Graph Algorithms, SIAM Journal of

Computing 1, 146-160. [7.3.2, 7.3.4]

Tarjan, R.E. (1974a) Testing Flow Graph Reducibility, Journal of Computer and System

Sci. 9, 355-365.

Tarjan, R.E. (1974b) Finding Dominators in Directed Graphs, SIAM Journal of

Computing 3, 62-89.

Tarjan, R.E. (1975) Efficiency of a Good But Not Linear Set Union Algorithm, ACM

'journal 22, 215-225. [6.6.5.1]

Tarjan, R.E. (1976) Graph Theory and Gaussian Elimination, Sparse Matrix Computations

(eds. Bunch, J.R. and Rose, D.J.), Academic Press, 3-22. [7.6]

Tarian R E (1978) Complexity of Combinatorial Algorithms, SIAM Review 20, 457-491.
[7.7]

Tarjan, R.E. (1979) Applications of Path Compression on Balanced Trees, ACM Journal

'26, 690-715.

774 BIBLIOGRAPHY and REFERENCES

Tarjan, R.E. (1983a) Space-Efficient Implementations of Graph Search Methods, ACM

Transactions on Mathematical Software 9, 326-339. [7.3.1]

Tarjan, R.E. (1983b) Updating a Balanced Search Tree in 0(1) Rotations, Information

Processing Letters 16, 253-257. [10.3.5]

Tarjan, R.E. (1983c) Data Structures and Network Algorithms, SIAM, Philadelphia. [•]

Tarjan, R.E. and Yao, A.C.C. (1979) Storing a Sparse Table, ACM Communications 22,

606-611.

Tenenbaum, A.M. and Augenstein, M.J. (1981) Data Structures Using Pascal, Prentice-

Hall. [•]

Terashima, M. and Goto, E. (1978) Genetic Order and Compactifying Garbage Collectors,

Information Processing Letters 7, 27-32. [11.3.1.3.2]

Thompson, K. (1968) Regular Expression Search Algorithm, ACM Communications 11,

419-422. [8.6.2]

Thorelli, L.E. (1972) Marking Algorithms, BIT 12, 555-568. [10.3.1.3.2]

Tremblay, J.P. and Manohar, R. (1975) Discrete Mathematical Structures with Applications
to Computer Science, McGraw-Hill.

Tremblay, J.P. and Sorenson, P.G. (1984) An Introduction to Data Structures with Applica¬
tions (2nd ed.), McGraw-Hill. [#]

Trojanowski, A.E. (1978) Ranking and Listing Algorithms for k-ary Trees, SIAM Journal

of Computing 7, 492-508. [6.10]

Tucker, A. (1984) Applied Combinatorics (2nd ed.), John Wiley & Sons. [1.6, 2.5.1]

Tuel, W.G. (1978) Optimum Reorganization Points for Linearly Growing Files, ACM
Transactions on Database Systems 3, 32-40. [12.3.3]

Ullman, J.D. (1972) A Note on the Efficiency of Hashing Functions, ACM Journal 19,
569-575.

Ullman, J.D. (1982) Principles of Database Systems (2nd ed.), Computer Science Press.

[12.6]

Ullman, J.R. (1976) An Algorithm for Subgraph Isomorphism, ACM Journal 23, 31-42.

[7.7]

U S. Dept, of Defense (1983) Reference Manual for the Ada Programming Language

ANSI/MIL-STD-1815A. ^ j 2, 9.2 1]

Valiant, L.G. (1975a) General Context-Free Recognition in Less Than Cubic Time,

Journal of Computer and System Science 10, 308-315. [8.6.3]

BIBLIOGRAPHY AND REFERENCES 775

Valiant, L.G. (1975b) Parallelism in Comparison Problems, SIAM Journal of Computing 4,

348-355. [13.5]

Vallarino, O. (1976) On the Use of Bit Maps for Multiple Key Retrieval, Proceedings of
Conference on Data: Abstraction, Definition, and Structure, ACM SIGPLAN

Notices 11 (Special Issue), 108-114. [12.6]

van der Nat, M. (1980) A Fast Sorting Algorithm, a Hybrid of Distributive and Merge

Sorting, Information Processing Letters 10, 163-167. [13.7]

van der Pool, J.A. (1972) Optimum Storage Allocation for Initial Loading of a File, IBM

Journal of Research and Development 16, 579-586. [12.6]

van der Pool, J.A. (1973a) Optimum Storage Allocation for a File in a Steady State, IBM

Journal of Research and Development 17, 27-38. [12.6]

van der Pool, J.A. (1973b) Optimum Storage Allocation for a File with Open Addressing,

IBM Journal of Research and Development 17, 106-114 [12.3.2.1]

van Emde Boas, P., Kaas, R., and Zijlstra, E. (1977) Design and Implementation of an

Efficient Priority Queue, Mathematical Systems Theory 10, 99-127. [6.6.4.1]

Varol, Y.L. and Rotem, D. (1981) An Algorithm to Generate all Topological Sorting
Arrangements, Computer Journal 24, 83-84. [7.4.5.1]

Vaucher, J.G. and Duval, P. (1975) A Comparison of Simulation Event List Algorithms,

ACM Communications 18, 223-230. [5.6]

Verhelst, M. (1972) The Conversion of Limited-Entry Decision Tables to Optimal and
Near-Optimal Flowcharts: Two New Algorithms, ACM Communications 15,

974-980. C6-10]

Vitter, J.S. (1982) Implementations for Coalesced Hashing, ACM Communications 25,
911-926. [10.4.2.1]

Vitter, J.S. (1985) Design and Analysis of a Dynamic Huffman Coding, Proceedings 26th
IEEE Symposium on Foundations of Computer Science, 293-302. [8.8]

Vose, M.R. and Richardson, J.S. (1972) An Approach to Inverted Index Maintenance,

Computer Bulletin 16, 256-262.

Vuillemin, J. (1978) A Data Structure for Manipulating Priority Queues, ACM Communi¬

cations 21, 309-315. [6.6.4.1]

Vuillemin, J. (1980) A Unifying Look at Data Structures, ACM Communications 23,

229-239. E612]

Wadler, P.L. (1976) Analysis of an Algorithm for Real Time Garbage Collection, ACM

Communications 19, 491-500. [11-5]

Wagner, R.A. (1973a) Common Phrases and Minimum-Space Storage, ACM Communi¬

cations 16, 148-152. [8.2.2]

776 BIBLIOGRAPHY and REFERENCES

Wagner, R.A. and Fischer, MJ. (1974) The String-to-String Correction Problem, ACM
Journal 21, 168-173. [8.3.2]

Wagner, R.E. (1973b) Indexing Design Considerations, IBM Systems Journal 4, 351-367.
[12.3.4.1]

Walker, A. and Wood, D. (1976) Locally Balanced Binary Trees, Computer Journal 19,
322-225. [10.3.3.2]

Walker, W.A. and Gotlieb, C.C. (1972) A Top-Down Algorithm for Constructing Nearly
Optimal Lexicographic Trees, Graph Theory and Computing (ed. Read, R.C.),
Academic Press, 303-323. [10.8]

Wang, C.C. (1974) An Algorithm for the Chromatic Number of a Graph, ACM Journal
21, 385-391. [7.7]

Warshall, S. (1962) A Theorem on Boolean Matrices, ACM Journal 9, 11-12. [7.3.3]

Wegbreit, B. (1972) A Space-Efficient List Structure Tracing Algorithm, IEEE Trans¬
actions on Computers C-21, 1009-1010. [11.2.1.1]

Weide, B. (1977) A Survey of Analysis Techniques for Discrete Algorithms, ACM
Computer Surveys 9, 291-313. [1.3.2.2]

Weiner, P. (1973) Linear Pattern Matching Algorithms, Proceedings 14th IEEE Symposium
on Switching and Automata Theory, 1-11. [8.5.4]

Weizenbaum, J. (1963) Symmetric List Processor, ACM Communications 6, 524-536.
[11.2.2]

Weizenbaum, J. (1969) Recovery of Reentrant List Structures in SLIP, ACM Communi¬
cations 12, 370-372. [11.2.2]

Welch, T.A. (1984) A Technique for High-Performance Data Compression, Computer 17:
6, 8-19. [8.8]

Wells, M.B. (1971) Elements of Combinatorial Computing, Pergamon Press. [6.10]

Welsh, D.J.A. and Powell, M.B. (1967) An Upper Bound for the Chromatic Number of a
Graph and its Application to Timetabling Problems, Computer Journal 10, 85-86.

[7.7]

Welsh, J., Sneeringer, W.J., and Hoare, C.A.R. (1977) Ambiguities
Pascal, Software Practice and Experience 7, 685-696.

and Insecurities in

[1.6]

Winograd, S. (1970) On the Number of Multiplications Necessary to Compute Certain
Functions, Communications in Pure and Applied Mathematics 23, 165-179. [2.13]

Winston, P.H. (1977) Artificial Intelligence, Addison-Wesley. [6.8]

Wirth, N. (1973) Systematic Programming: An Introduction, Prentice-Hall. [2.13]

BIBLIOGRAPHY AND REFERENCES 111

Wirth, N. (1975) An Assessment of the Programming Language Pascal, IEEE Transactions

on Software Engineering SE-1, 192-198. [1.6]

Wirth, N. (1976) Algorithms + Data Structures — Programs, Prentice-Hall. [•]

Wirth, N. (1985) Programming in Modula-2 (3rd ed.), Springer-Verlag. [1.1.2, 9.2.1]

Wirth, N. (1986) Algorithms and Data Structures, Prentice-Hall.

Wise, D.S. (1976) Referencing Lists by an Edge, ACM Communications 19, 338-342.
[4.1.4]

Wise, D.S. (1979) Morris’s Garbage Compaction Algorithm Restores Reference Counts,
ACM Transactions on Programming Languages and Systems 1, 115-120.

Wise, D.S. and Friedman, D.P. (1977) The One-Bit Reference Count, BIT 17, 351-359.
[11.2.5]

Wise, D.S. and Watson, D.C. (1976) Tuning Garwick’s Algorithm for Repacking Sequen¬

tial Storage, BIT 16, 442-450. [5.3]

Wodon, P.L. (1969) Data Structure and Storage Allocation, BIT 9, 270-282. [11.3.1.3.2]

Wong, E. and Chiang, T.C. (1971) Canonical Structure in Attribute Based File Organiza¬

tion, ACM Communications 14, 593-597. [12.6]

Wood, D. (1978) A Comparison of Two Methods of Encoding Arrays, BIT 18, 219-229.
[9.1.2]

Wright, W.E. (1981) Binary Search Trees in Secondary Memory, Acta Informatica 15,

3-17.

Wulf, W.A., Shaw, M., Hilfmger, P.N., and Flon, L. (1981) Fundamental Structures of

Computer Science, Addison-Wesley.

Wyman, F.P. (1975) Improved Event-Scanning Mechanisms for Discrete Event Simu¬

lation, ACM Communications 18, 350-353. [5.6]

Yang, W.P. and Du, M.W. (1985) A Backtracking Method for Constructing Perfect

Hashing Functions from a Set of Mapping Functions, BIT 25, 148-164. [10.8]

Yao, A.C.C. (1978) On Random 2-3 Trees, Acta Informatica 9, 159-170. [10.3.4, 12.3.4.2]

Yao, A.C.C. (1981) Should Tables be Sorted?, ACM Journal 28, 615-628. [10.4.3]

Yao, A.C.C. and Yao, F.F. (1976) The Complexity of Searching an Ordered Random
Table, Proceedings 17th IEEE Symposium on Foundations of Computer Science,

173-177. [10.2.3]

Yeh, D. (1982) Improved Planarity Algorithms, BIT 22, 2-16. [7.7]

778 BIBLIOGRAPHY and REFERENCES

Zipf, G.K. (1949) Human Behavior and the Principle of Least Effort, Addison-Wesley.
[10.2.1]

Ziv, J. and Lempel, A. (1977) A Universal Algorithm for Sequential Data Compression,

IEEE Transactions on Information Theory IT-23, 337-343. [8.8]

Ziv, J. and Lempel, A. (1978) Compression of Individual Sequences via Variable-Rate

Encoding, IEEE Transactions on Information Theory IT-24, 530-536. [8.8]

Zweben, S.H. and McDonald, M.A. (1978) An Optimal Method for Deletion in One-Sided
Height-Balanced Trees, ACM Communications 21, 441-445. [10.3.3.1]

INDEX

Aanderaa-Rosenberg conjecture 364
abbreviation 546
abstract data type (ADT) 6, 91, 167,

177, 456-459
algebraic specification 457
axiomatic specification 457

Academy Awards 228, 288, 492, 556

Ackermann’s function 250
actual parameter 27
adaptive partitioning 663
algorithm

greedy 324
nondeterministic 269

oblivious 19
off-line 249
on-line 249

alpha-beta search 278-281
amortized performance 469

APL 77, 448

arity 507
array

base type 34
cross-section 44

index type 34

indices 33
ragged 137

subscripts 33
symmetric 41
tetrahedral 84

triangular 41
0-origin indexing 34

1-origin indexing 34

Array Theory 77
articulation point 309
assembly language 2, 87, 96, 98-103,

547, 560, 593
associative block design (ABD) 658

associative indexing 77

associative search 551

attribute 5
augmenting path in a graph 332

automatic memory allocation 561

AVL tree 490-503

balance factor 492

critical node 495
double rotation 499

mintree 493
single rotation 495

backtracking 265-271
Backus-Naur Form (BNF) 191-193, 233,

432, 434
non-terminal symbol 192
productions 192
terminal symbol 192

backward pointer 576
batch processing 632
best-fit allocation 588
bin-packing problem 608

binarizing a tree 511
binary buddies 599
binary digital search tree 547-550

binary insertion 677
binary search 470-472
binary search tree (BST) 228-231,

475-480
binary tree 207

complete binary tree 226
completely balanced binary tree 467

extended binary tree 466
similarity 286
strictly binary tree 208

binomial coefficients 8
binomial trees 241-242
biparental heap (beap) 453
bipartite graph 331-334

birthday paradox 519
bitmaps 657
block search 632
blocking factor 619
blocks (of a graph) 309
Bloom filter 536, 660
blossoms (in a graph) 336

boundary tags 592
bounded balance [a] 503

780 INDEX

branch-and-bound 271-273, 341
breadth-first search (BFS) 259-265,

303-308
bridge (in a graph) 312
bucket (for hashing) 633
buffers 619,636,715

cache memory 628
call-by-reference 27
call-by-value 27
cardinality (of a set) 53
cardinality (of a type) 26
Cartesian product 54
Cartesian tree 290
Catalan numbers 253
Cayley’s formula 254
CDR-linearization 573
ceiling operator 7
cellar (for hashing) 522
channels 618
character code 4, 382-386

ASCII 383
control characters 383
duals 383
EBCDIC 383
escape character 385
graphics 383
Morse code 396
shift character 385

characteristic equation 20
characteristic vector 56
Chinese Postman Problem 340
Church-Turing Thesis 197
cipher

product cipher 413
substitution cipher 412
transposition cipher 412

ciphertext 411,417
circular queue 170
closest-match search 550
coalesced chaining 522
coalescing memory 591-594

collating sequence 383
collision 515
color flip 513
column-major order 38

compacting memory 568-577, 595-599
comparator 724

complex numbers 90, 104

complexity classes 15-17
compound statement 24

condensation of a digraph 319

conformable (arrays) 45
congruence relation 418, 517

conjunction 655
control structures 2, 23-24

coset leader 403

CPM 350
critical path analysis 349-352

activity-node graph 351

critical activity 352
dummy node 351
early times 352
event-node graph 351
float 352
late times 352

cube-connected-cycle 726

cubic shells 69
cursors 110
cut vertex 309
cycle stealing 618
cyclomatic number 308

dangling reference 160
data encoding 450-451

guest structure 450
host structure 450

Data Encryption Standard (DES) 413
decision tables 47-51, 233-236

action entries 47

action stub 47
condensation 48

condition entries 47
condition stub 47
decision rules 48

delayed-rule method 236
don’t-care entries 48
extended entry 48
limited entry 48

quick-rule method 236
rule-mask technique 50

degree path length 723
delimiters 183
dense index 630

depth-first search (DFS) 259-265,
303-308

deque 174

diagonal shells 70, 453
digrams 406, 537

Dijkstra’s algorithm 324-328
direct-access devices 620-622
discriminated union 92
disjunction 655

disk cylinder 620

INDEX 781

disk extent 622
disk sector 620
disk track 620
distributive partitioning 699
divide-and-conquer 58-62, 679, 690

dope vector 40, 67
double buffering 715
down-pointers 597
dummy runs 720
Dutch National Flag problem 614
dynamic memory allocation 561
dynamic programming 329-330, 341,

408, 440, 447, 480-483

edit-distance 406
eight Queens problem 375
eighty-twenty rule 469

elision 88
end-of-file (EOF) 632
entropy 394
enumerated type 25
equivocation 412
Euler’s constant 465
Euler’s formula 362
Euler’s totient function 417
Eulerian graphs 338
exponential complexity 16

extension 52
external fragmentation 585

external nodes 466
external path length 466

factorial 8
false drop 536, 660
Farmer in the Dell 432
feasible breakpoint 408

feasible sequence 257
Fibonacci buddies 601
Fibonacci numbers 10, 19-20, 193-196

Fibonacci search 472
Fibonacci tree 472, 494
fifty-percent rule 607
File Update Problem 668
fingerprint (of a pattern) 537
Finite Automaton (FA) 426
Finite State Machine (FSM) 425

first-fit allocation 588
fixed-point numbers 3
floating buffers 715
floating-point numbers 3

floor operator 7

flowcharts 22
Floyd’s algorithm 327-330
Ford-Johnson algorithm 702
forecasting 715
forest 206
formal parameter 27
forward pointer 576
forwarding address 570
free union 96
fringe analysis 509-511

Gambler’s Ruin 19
game of bridge 91

game of 31 293
garbage collection 565-567, 577-583
Gaussian elimination 46, 82, 137
generating functions 252
generator matrix 402
generic data type 458
genetic ordering 599
geometric search 661
global variable 27
golden ratio 517
grammars 432-433

graph
adjacency relation 295
chromatic index 361
chromatic number 361

complement 379
complete graph 298
component 296

covering 330
degree spectrum 366
directed acyclic graph (DAG) 346
directed graph or digraph 295

dominance number 375

edges
back edgees 305
cross edgees 305
forward edges 312

tree edgees 304

flow graph 347, 352-360
available expression

detection 353

basic block 353
common expression

elimination 353
dominator 354

interval depth 359
interval of a node 356
live variable detection 353

reducible 357

782 INDEX

in-degree of a vertex 297
incidence relation 295

isomorphism 365

line graph 370, 376

loops 297

matching 330-337

minimum equivalent graph

(MEG) 357

multigraph 297

network 334

capacity 334
flow 334

sink 334

source 334
orientation 295

out-degree of a vertex 297
planar graph 362

reachability relation 303
regular graph 297

representations

adjacency matrix 301

adjacency structure 299
incidence matrix 302
indexed list 301

multlist 370
simple graph 298

spanning trees 303, 308
strongly connected 296
subgraph 298

underlying graph 295
weakly connected 296

group codes 402-404

Hall’s Theorem 333

Hamiltonian graphs 338
Hamming bound 402

Hamming distance 400

Hamming weight 400

harmonic numbers 465, 469, 674

harmonic series 465
hash linking 580

hashed k-signature 537
hashing

double hashing 524

dynamic hashing 654

extendible hashing 652

ordered hashing 530

partitioned hashing 658

perfect hashing 534

random hashing 518

uniform hashing 527

universal hashing 535
heap (data structure) 238

heap (in Pascal) 118
hexadecimal 4
hidden operators 459
hidden sorts 459
high-level language (HLL) 2
holes (in memory) 596
homogeneous equation 20
Huffman encoding 396-399, 718
Hungarian method 337
Hwang-Lin algorithm 704
hypergraph 666
hyperplane 44

identifiers 183
implicit data structure 452-455
indexed sequential access method

(ISAM) 638
infix notation 182

Information Theoretic Bound 701, 704
Information Theory 393-395, 488,

700-701
initial runs 712
inner product 44
intension 52

inter-record gap (IRG) 619
internal chaining 520
internal fragmentation 585
internal nodes 466
internal path length 466
interpolation search 473
intractable (problem) 16
inversion table 673
inverted file 133

inverted list 132-134, 140, 303, 450, 551,
656-658

Jonker’s algorithm 596-599

Josephus problem 161, 669
jump search 632

justification 90

Kendall notation 174
key compression 631

knapsack problem 416

Knight’s Tour 376

Kruskal’s algorithm 322-324

Kuratowski’s Theorerm 363

INDEX 783

lambda calculus 441
latency 621
least recently used (LRU) 627
lexicographic order 39
line-breaking 407
linear bounded automaton (LBA) 441

linear probing 523
link inversion 151
LISP 157-158,441,448
list

bi-directional list 115
circular list 113
header node 114
indexed list 301, 387
rotated list 454
self-organizing list 469

List structure 145

atom 145
head 147
pure List 148
recursive List 148
reentrant List 148

tail 147
load factor a 525, 635

local variable 27
locality of program references 629

logarithms 7
longest ascending subsequence

(LAS) 707
longest common subsequence (LCS) 446

magic square of order n 81
Markov algorithm 441

matrix 44
transpose 82

tridiagonal 84
Matrix-Tree Theorem 308

Mealy machine 425
median of medians 710
Menger’s Theorem 311

merge insertion 702

merging
balanced merge 713
binary merging 704

cascade merging 721
linear merging 704

natural merging 695
poyphase merging 719

straight merging 695
minimal spanning tree (MST) 320-324

minimax methods 701

minimaxing 278

minimean methods 703
modulus operator 7
Moore machine 425
move-to-front heuristic 469, 507, 627
multilist 134-135, 140, 656-657
multiple qualification 88

multiset 52

network model for parallel

computing 724
next-fit allocation 589
NIAL 77
node-splitting 508
Nondeterministic Finite Automaton

(NFA) 434
NP-complete 270

O-notation 10-11, 15
omelette recipe 350-352
one-time pad 413
open addressing 523-525
optimal-fit allocation 590

order of magnitude 10
order of merge 712
overflow area 634

page fault 625
page frame 625
parallel garbage collection 582-583

collector 582
mutator 582

parity-check matrix 403

partial ordering 346
partial pivoting 82
partition 30
Pascal’s triangle 29
path compression 245

Patricia 548
Peano postulates 12
perfect Hamming code 402

permutations 8
canonical form 9
cycle notation 9

inverse 82
inversions 673

PERT 350
pivot element 46, 82

plaintext 411
plys (in a game) 273
pointer rotation 152

784 INDEX

pointer variable 110
Poisson distribution 518, 635
Polish notation 182

polynomial complexity 16
postfix notation 182

powerset 53

precedence functions 187,200
precedence matrix 184
precedence of operators 181
prefix notation 182

prefix property 396
Prim’s algorithm 320-324
primary cluster 524
prime area 634
prime numbers 57, 418, 517
primitive data types 2

priority queue 175, 237-242, 272, 323,
683, 716-718

priority search tree 615
probe sequence 524
program schema 193

pth order Fibonacci numbers 720
public-key cryptosystem 415

pushdown automaton (PDA) 441

quadratic residue search 558
qualified name 86

quasi-optimal BST’s 486-488
balanced heuristic 486
greedy heuristic 486
min-max heuristic 486

monotonic heuristic 486
query

boolean query 655

closest-match query 655

partial-match query 655
range query 655

random access 633
range search 550

rate of a code 401

recurrence relation 19-21, 60, 695
recursion 12-14, 19-21, 191-197
redundancy 395

reference counting 567-568, 577-582
regular expressions 434-439
replacement selection 716
REXX 77

row-major order 38

run-length encoding 409

saddle point 81

secondary cluster 524

seek time 621

semi-spaces 573

sentinel 36, 239, 675, 688

separate chaining 520

separator characters 99

separators in Pascal 25

sequential access 632

serial access 632

SETL 78, 448

shared memory model for parallel

computing 724

shuffle-exchange network 726

sieve of Eratosthenes 57

simulation 173-174

arrival times 174

customers 174

servers 174

service times 174

sliding compaction 596

SNOBOL 441, 448

sort

address table sort 672

bubble sort 684, 725

cocktail shaker sort 686

diminishing increment sort 677

enumeration sort 675, 725

heapsort 679-684, 709

hybrid sorting 708

key sort 672

partition-exchange sort 686

quadratic selection sort 680

quicksort 686-690, 710

radix exchange sort 698

radix sort 696

Shellsort 677-679

stable sort 671

tournament sort 681, 709

value distribution sort 698

sparse arrays 71-76, 137-145

address map representation 73

bit map representation 72

delta-skip representation 74

linked list representation 135-140

triples representation 75
sparse index 630

splinter (of memory) 588

Stable Marriage Problem 336

stack permutations 179

static memory allocation 561

INDEX 785

Strassen’s algorithm 61-62
subrange type 26
superimposed codes 660

symmetric binary B-tree (SBB tree) 512
symmetrical deletion from a BST 480
syndrome 403
synonym 515
System of Distinct Representatives

(SDR) 266-268, 333-334

tabulation 194-196, 330
tail-recursion 193, 214
terminators in Pascal 25
thrashing 627

threads 215
tokens (in a program) 183

tombstone 450
topological ordering 346-349
total ordering 346
tournament in a graph 376
transitive closure of a digraph 312-316
transposition heuristic 469, 507
trapdoor one-way function 415
Traveling Salesman Problem

(TSP) 340-346
traversal of a tree

incremental traversal 218
inorder traversal 211
Lindstrom’s method 219-220
Morris’s method 220-222
postorder traversal 211
preorder traversal 211
triple-order traversal 287

tree
ancestor-descendant relationship 206

B-tree 643-652
B + -tree 648
prefix B-tree 652

centroid 292
complete t-ary tree 226
decision tree 233, 394

degree of a node 205
dense multiway tree 652
extended tree 256

external nodes 256
free tree 204

A 6 height 205
b 7 height-balanced tree

d 9 See AVL tree

f i internal nodes 256
G 2
H 3

I 4
J 5

k-d tree 663
leaves 205
left-right relationship 206
level of a node 205
median split tree 489
ordered tree 205
oriented tree 204

p-tree 290
parse tree 233

quad tree 451, 661
red-black tree 512
reflected tree 286
root 204
split tree 489
suffix tree 430
weight 206
weight-balanced tree 503-507

2-3 tree 508
2-3-4 tree 512

tree permutations 256
trie 540-547

compacted trie 546
compressed trie .546

tuples 54
Turing machine 441
two-thirds rule 607

unicity point 412
universal compression 410

universal set 55
up-pointers 597
utility field 596, 599

vector 44
virtual memory 563, 624-630, 712

Virtual Storage Access Method
(VSAM) 650

Vizing’s Theorem 362

Warshall’s algorithm 314-316
watchmaking 455
weighted path length (w.p.l.) 394, 480

Winograd’s algorithm 83

working set 626
worst-fit allocation 589

ZipPs Law 468

