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PREFACE 

The subject of data structures is a rich treasure house of basic concepts, clever 
tricks, the power of abstraction, numerous algorithms, and - implicit or explicit 
throughout — means of evaluation and comparison of alternative approaches. It is 
good that, by now, almost every student of computer science or data processing 
takes an explicit data structures course; most programmers of earlier vintage 
learned of these matters imperfectly from sketches on the backs of computer list¬ 
ings. The topic has become so fundamental, in fact, that whereas it was once 
presented as an upper division course, it is now presented in the lower division, very 
often in a “softened” form. But at the same time that the initial presentation has 
“moved down,” the subject has “moved up” both in depth and scope, so that now a 
second course is usually needed by serious students. 

This book is designed primarily to respond to this need for additional coverage; 
it contains a considerable amount of advanced and up-to-date material. With refer¬ 
ence to the guidelines of ACM Curriculum ’78 [1979], the material herein is 
centered on CS7 (Data Structures and Algorithm Analysis). However, ACM 
Curriculum ’78 also treats data structures in CS2 (Computer Programming), CSS 
(Introduction to File Processing), and CS13 (Algorithms). We share the view that it 
is desirable to have a unified treatment of these topics. In any advanced treatment, 
it is difficult to do equal justice to several different aspects of the subject, including: 

• the enormous amount of invention in the field; 
• the increasing importance of abstraction in discussing data structures; 
• the analysis of structures and algorithms in terms of complexity theory. 

We have elected to present the latter two aspects, but not with consistent emphasis, 
thereby maximizing the opportunity to dwell upon the first aspect. One objective of 
this approach is to make the book useful as a text for a second course, either at the 
upper division or graduate level; another objective is that the book should be valu¬ 
able as a reference for the professional programmer. Partly for this second reason, 
the book is complete and self-contained with respect to the subject matter; this has 
the added consequence that some number of teachers and students might find it to 
their liking in the context of a first course in data structures. In summary, we have 
striven to make this an eminently useful book. The following paragraphs describe 
some of the ways in which the style of the book is designed to respond to these 

multiple intentions. 

1. In most of the chapters, the material is organized in the logical sequence: basic 
notions, several applications of these notions, advanced notions. Thus, readers 
having no prior familiarity with data structures would very likely wish to skip 
the latter portions of the chapters, and knowledgeable readers might prefer to 
skip or skim the initial portions. At an earlier point in time, the sections were 
marked in a manner to indicate whether the material was introductory, interme¬ 
diate. or advanced. Two things caused that to change. One was the maturing 
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realization that our primary audience consists of those pursuing the subject a 
second time. Related to tins is the second reason that for such an audience, 
there is great divergence in what can be considered as basic and already known. 
The present point of view is that the unmarked sections are all significant for a 
second course in data structures, but that most students in such a course would 
be able to skim through the initial parts of most chapters. On the other hand, 
there are numerous sections marked with a indicating that the material is 
more advanced, or less fundamentally significant, or both. There are two or 
three special sections at the end of each chapter. One of these, the Reference to 
Terminology, might seem somewhat inappropriate for a second-level text. But 
we are convinced of its utility. Although more advanced readers may not be 
overwhelmed by the proliferation of terminology, experience firmly indicates 

that they still appreciate tools that are helpful in organizing concepts. 

2. We have tried to provide a treatment that is more complete than usual, even 
though — in such a dynamic subject area — that goal is ephemeral at best. 
Related to this aim are the extensive bibliographic references. In order to 
reduce the element of distraction for the more casual reader, multiple references 
are usually removed to the Bibliographic Notes section at the end of the chap¬ 

ter, with [§] left to signal their occurrence. 

3. In order to make the book accessible to a wide audience, only a modest level of 
mathematics is employed. In Chapter 1, we review the necessary competence 
on the reader’s part. For readers who wish to see detailed analyses of algo¬ 
rithms or learn how to perform their own analyses of algorithms, the original 
treatment of these matters by Knuth [1973a, 1973b] is still incomparable. An 
excellent treatment with a different point of view is that of Aho, Hopcroft, and 

Ullman [1974], 

4. We concur with the widespread use of Pascal for representing data structures 
and algorithms. The issue is not without debate, however, as we discuss in 
Chapter 1. In addition to the usual reasons for choosing Pascal, we find it 
comforting that all the algorithms are in executable form, except for the neces¬ 
sity to transpose a few lines of text in some cases. As a sample of the clarity 
that can be brought to exposition by Pascal, readers already acquainted with 
the Schorr-Waite algorithm for marking a List are invited to examine the proce¬ 
dure MARK_LIST (Algorithm 4.7) on page 154. 

5. It is relatively easy and can be quite informative to read a text such as this. But 
the real transfer of knowledge in Computer Science comes with mastering exam¬ 
ples and doing exercises. We have sought to have a variety of examples that 
are both interesting and meaningful, but to avoid the appearance of presenting 
a cookbook of code. On occasion, minor details of efficiency in an algorithm 
are suppressed in favor of clarity; in almost all cases, an algorithm appears on 
one page. With regard to exercises, we have sought to have enough to satisfy a 
wide range of interests and abilities among readers. The exercises at the end of 
each chapter are classified at three of levels. Those marked with | should be 
considered as intermediate, and those marked with tf should be considered as 
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advanced. Note, however, that these ratings reflect not one but several factors 
level of the corresponding text, depth of requisite understanding, amount of 

work required, etc. The language to be used lor implementing algorithms is 
deliberately not specified, being left to the reader and/or the instructor. For 
obvious reasons, however, Pascal is a strong candidate. 

6. The organization of the chapters in this book reflects the title Data Structures: 
Form and Function: 

• Chapters 1—8 are about the individual data structures. 

• Chapter 9 is a brief coda to the first eight chapters, presenting some 
summary ideas about the use of structure in dealing with complexity. 

• Chapters 10—13 address the topics of searching, memory management, 
files, and sorting. 

Although there are many examples relating to individual data structures in the 
first eight chapters, there is much to be gained by having the dedicated 
discussions of the last four chapters. If the reader’s interest is pragmatic, he1 
can more readily make comparisons between methods - some of which do not 
neatly fall into any of the earlier chapters. If his interest is more theoretical, he 
can more readily appreciate the effects of choosing and commingling among the 
various data structures. 

It is definitely not trite to acknowledge the relevance of experience in using 
earlier versions of these notes while teaching Data Structures courses at San Jose 
State University. Over and over again, student reactions have shown that an appar¬ 
ently good way of explaining something could be made better, and so this effort 
owes much to those who have stumbled and complained. The teaching experience 
is also valuable because it seems to confirm the viability of writing one book that 
could serve multiple audiences. These notes have been used more often in teaching 
a graduate course in Data Structures, but they have been used just as successfully in 
teaching an undergraduate, first course in the subject. In fact, the same precaution 
needs to be observed at either level — to be careful about which material should be 
covered and which should be omitted, depending upon the background of the audi¬ 
ence. Although there is not a great deal of latitude in picking material that should 
be covered in a first course, there is for a second course; my own custom has been 
to vary the latter by about 20 percent each time I teach it, which helps keep the 
subject fresh. Specific suggestions for syllabi that are appropriate for both first and 
second courses are given in the Instructor’s Manual. 

It is sobering to recount the number of people to whom I am indebted in the 
course of finishing this project. Sincere thanks go to all those who have read or 
reviewed the work over the past years. Some of them are still nameless to me. 

1 Throughout this book, the use of the pronoun “he” has no intended prejudice. It 
should be construed as a reduction of “she” or “he.” 
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However, it is a pleasure to be able to acknowledge contributions from Joel Aron 
Marilyn Bohl, and Tony Hassit of IBM; from Henson Graves, John Mitchem, and 
Jeff Smith of San Jose State University; and from Robert Tarjan of Princeton 
University. I am particularly grateful to Cliff Hollander for his perceptive an 
encouraging commentary when the manuscript was being launched, to William 
Topp at University of the Pacific for offering valuable ideas that led to an impor¬ 
tant mid-course correction, and to Christopher Brown at the University o 
Rochester and David Frisque at the University of Michigan for their constructive 

encouragement in bringing the book to completion. 

The experience with Academic Press and Harcourt Brace Jovanovich has been 
uniformly a rewarding one. On the editorial side, Richard Bonacci, Dale Brown, 
and Jack Thomas were all extremely helpful. On the production side, Lynn 
Edwards and Don Fujimoto demonstrated a marvelous mixture of support and trust 
with regard to the uncommon manner of producing camera ready masters. Alex 
Teshin and Romaine Lo Prete from the House of Graphics were wonderfully 

patient in rendering the line art. 

There is an immense debt of gratitude of a different sort to the IBM Corpo¬ 
ration for enabling both the authorship and the computerized typesetting of this 
book. None of this is to be construed, however, as an endorsement by IBM of any 
of the views expressed herein. Over the past few years, numerous managers at the 
Palo Alto Scientific Center have endured the traumas associated with this book; I 
am particularly grateful to Pat Smith for his role in initiating this support. In 
carrying out the typesetting, I received valuable help from Bob Creasy, Kathy Cruz- 

Young, Mike Kay, and Art Schmidt. 
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1 

PRELIMINARIES 

“Not only does one not retain all at once 
the truly rare works, but even within such works, 

it is the least precious parts that one perceives first. 
Less deceptive than life, the great masterpieces 

do not give us their best at the beginning.” 

Proust, 
Remembrance of Things Past, 

Within a Budding Grove, Part I 

As with the mastery of any discipline, one must have a set of basic skills before he 
can begin. For this book, that set of skills should be within the proximate grasp of 
most programmers or students of programming. These skills include: 

1. A modest competence in mathematics, including ordinary algebra and finite 
mathematics. A knowledge of vector spaces and of some basic combinatorial 
analysis is also helpful. 

2. An appreciation of the use of algorithms, as distinct from a familiarity with the 
nuts and bolts of a programming language. 

3. A familiarity with a high-level programming language. Pascal is optimal for 
our purposes; Ada, ALGOL, Modula, or PL/I should also provide adequate 
background. Readers who know only BASIC, C, or FORTRAN will most 
likely need to consult one of the scores of tutorial texts on Pascal. 

After an initial discussion of something old (computing machines) and some¬ 
thing new (data abstraction), most of this chapter is devoted to setting forth some 
details in each of these three areas. Less advanced readers may prefer to skirt the 
issue of complexity, which is addressed in Section 1.3.2. In a sense, reading a chap-, 
ter of this nature resembles taking vitamins - not as tasty as subsequent fare, but a 
sensible means of averting a painful deficiency later on. It is addressed to the 
reader who doesn’t already have everything in these areas. 



2 PRELIMINARIES 

1.1 REAL MACHINES AND ABSTRACT DATA 

Even as computing machines become ever more prevalent, most users are blissfully 
unaware of how they really operate at their native level; indeed, they are much 
happier in not needing that knowledge. By the native level of operation, we reter to 

machine instructions that, for example: 

• add the contents of a memory location, which typically might be a word of 16 
or 32 bits, to the contents of a designated machine register of the same size; 

• move a byte of 8 bits from one memory location to another memory location; 
• test the result of the last preceding arithmetic operation and take the next 

machine instruction out of sequence if that result is negative or zero. 

It is certainly possible to program a computer at this level of detail and many 
people do, by either choice or necessity. Even in this case, however, most such 
users actually write their programs in assembly language rather than in machine 
language. By using assembly language, the programmer gains numerous advan¬ 
tages; primarily he is relieved of the responsibility for keeping track of where the 

instructions and the data are within the memory of the machine. 

Nonetheless, at this level of assembly programming, he must still be aware of 
the nature of each machine instruction (and some of these can be quite difficult to 
master and remember) and each machine register. Most machines have quite a bit 
of idiosyncrasy at this level of detail. The stroke that finally frees most users from 
having to contend with these details is the use of a high-level language (HLL) such 
as Ada, ALGOL, APL, BASIC, COBOL, FORTRAN, LISP, Modula, Pascal, PL/I, 
etc. We assume that any reader of this book is well acquainted with the state of 
affairs that we have just summarized, and is comfortable using the machine in some 
HLL, thereby suppressing irrelevant details. By using control structures, such as 

if ... then ... else ... 
while ... do ... 

etc. 

he has acquired a powerful abstraction away from the necessity of composing equiv¬ 

alent sequences of machine instructions. 

1.1.1 Data Type and Data Structure 

Now, what is the situation with regard to the manipulation of data, as opposed to 
the composition of instruction sequences? The answer varies according to the HLL 
that we examine. In many cases the facilities for abstraction are rather limited. We 

can employ the primitive data types: 

boolean corresponding to one bit of computer memory 
character typically one byte (8 bits) of computer memory 
integer typically one word (4 bytes) of computer memory 
real typically two words (8 bytes) of computer memory 
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and we can employ arrays of any of these types. The integer and real types are 
imperfect models of the integers and the real numbers from mathematics. The 
modelling process has many nuances and pitfalls, which would merit an entire chap¬ 
ter it this were a treatise in numerical computation. The heart of the matter is that 
integers and real numbers in mathematics can have an unbounded number of digits 
(or other symbols) in their representation; but with computers, integers are repre¬ 
sented by fixed-point numbers of a fixed size, and real numbers are represented by 
floating-point numbers, also of a fixed size. The number of bits actually employed 
varies with the machine, and it is common for a given manufacturer to have 
machines accommodating a variety of data sizes. Some representative values for 
both number types are shown in Table 1.1. 

computers integers (fixed) reals (floating) 

Burroughs 
Control Data 
DEC 
IBM 

40 bits 
18, 48, 60 bits 
16, 36 bits 
16, 32 bits 

48, 88 bits 
60, 108 bits 
32, 36, 64, 128 bits 
32, 64, 128 bits 

Table 1.1 Number Sizes for Typical Computers 

The situation with regard to floating-point numbers is much worse than that of 
fixed-point numbers. It depends, for example, upon how many bits are allocated to 
the mantissa, how many bits are allocated to the exponent, and what number base 
is used with the exponent. But no matter what choices are employed for these three 
parameters, floating-point numbers are poor models of real numbers, for several 
reasons: 

• For any two distinct real numbers u and v, there are always other real numbers 
w such that u < w < v; but with the finite representation of floating-point 
numbers, this fundamental property does not always hold. 

• If we plot the finite set of all floating-point numbers for a given machine on the 
real number line, we find that the gaps between the numbers are very uneven in 
length (see Exercise 1.3). 

• Although addition and multiplication are associative and distributive for real 
numbers, the same operations on floating-point numbers are not! 

Bounded representation has some peculiar hazards. For example, since 
210 > 103 we would expect that a computing machine could faithfully represent any 
three-digit number by the use of ten bits. Thus the largest three-digit integer 999 
can be represented by the ten-bit number 1111100111. However, let us consider the 
100 distinct decimal numbers in the range 9.00, 9.01, ... , 9.99. For each of these 
numbers, the first four of the ten binary bits would have to be 1001, leaving just six 
bits for the fractional parts. But these six bits yield only 64 distinct binary values 
into which to map the 100 decimal numbers, so that in the binary representation 
over two thirds of the numbers will be indistinguishable from neighboring values. 
Many other examples of numerical pitfalls due to bounded representation can be 
exhibited [§]. 
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With regard to representing characters in computing machines, there are peculi¬ 

arities of a different and lesser kind. The characters of interest are mapped, via a 
character code, onto arbitrary bit patterns. On most machines, a character code 

pattern occupies one byte of storage; thus, in the common EBCDIC code, the bit 
configuration 11000001 corresponds to the character 'A', 11110101 corresponds to 

'5' etc Complications can arise with respect to an insufficient number ol bits tor 

the entire set of characters, and also with respect to the arbitrariness of the code. 

These matters will be discussed in detail in Section 8.2.1. 

It would be logical to ask, from what we have said so far, how a computing 

machine “knows” whether a sequence of bits such as 11000001 is: 

• a sequence of boolean values — true, true, false, etc., 

• a short integer value of 27 + 26 + 2° = 193, 

• the character 'A' 
• or even something else. 

The answer is that the machine does not “know” at all, from the bits themselves.1 
Rather, the programmer - by operating upon the bits in a certain way - causes 

them to be treated in the desired manner. At the level of assembly language, this is 
controlled by the choice of machine operation codes. At the level of an HLL, it is 
controlled by declaring items to be of the desired types, which in turn causes the 

compiler or interpreter of the HLL to employ the proper operation codes. 

Since the proper interpretation of data generally depends upon factors extrinsic 

to its raw form in bits, what is the most appropriate manner in which to present 

arbitrary data from a machine to a human when those factors are unknown? If we 
consider a typical machine word of 32 bits under its alternate interpretations, then. 

• 11000011 11110011 11010111 11010110 is obviously awkward, 

• 3,287,537,622 obscures boolean and character data values, 

• 'C3PO' obscures boolean and integer data values, 
• and similar remarks apply for displaying real number data. 

A very convenient solution to this dilemma is to group four bits at a time and 

to display data in hexadecimal notation. Just as binary notation uses base 2 for 

numbers and decimal notation uses base 10, so hexadecimal uses base 16. Hexade¬ 

cimal needs sixteen symbols for its digits; these symbols are by convention 
0123456789ABCDEF 

corresponding to the decimal values 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Thus, we have 

110000012 = (1100 0001)2 = (12 1)16 = C116= 12 x 161 + 1 X 16° = 19310 

and also 

1 At least, this is the situation in the von Neumann style of computing machine, which 
prevails so widely today. There are various exceptions, for example machine architec¬ 
tures in which the data words have associated tags that make the data self-describing, to 

various degrees. 
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11000011 11110011 11010111 110101102 = C3F3D7D616 

It is often important to be able to do a limited amount of hexadecimal arithme¬ 
tic by hand. For instance, raw data is usually displayed or dumped from a machine 
in hexadecimal form; and we must be able to translate this to binary or decimal 
numeric values or to characters, as the case may require. When this involves too 
much effort, either precomputed tables or subroutines are commonly used. Also, 
we sometimes need to do hexadecimal addition or subtraction; an example of this 
is combining offsets with the contents of registers in a memory dump. These oper¬ 
ations are easily performed, as we can see from the examples: 

845A + 1A6B = (8 4 5 10) + (1 10 6 11) = (9 14 12 5) = 9EC5 

845A - 1A6B = (8 45 10) — (1 10 6 11) = (6 9 14 15) = 69EF 

The primitive types that we have been discussing are just one attribute of data. 
An attribute is a generic quality used to describe an object, and a given attribute 
may have several possible values. For instance, a person has the attribute of sex, 
with the two possible values of male and female; some other attributes of persons 
are height, weight, and age — with the values measured in inches, pounds, and 
years, respectively. We have seen that in computing, data has the attribute of type, 
with possible values of boolean, character, integer, and real. However, data can 
also have other attributes. One is precision, for example 32 or 64 bits for reals; 
another is number base, either binary or decimal. 

The attribute of data that is the principal concern of this book is that of struc¬ 
ture, or “shape.” Structures are obtained by taking collections of primitive data 
items and grouping them together in particular ways. From familiarity with HLL’s, 
you know about one such structure, the array. Others that we will investigate are: 
sets, records, lists, stacks, queues, trees, graphs, and strings. As we will point out 
repeatedly, each of these is a logical structure, and it is convenient to think about 
them without regard to how they are actually represented in a machine. Yet, the 
issue of their physical representation is an important one that we need to address 
explicitly in each case. As illustrated in our earlier discussion of integers and reals, 
the process of modelling an abstraction (that is, choosing a representation) can have 
many ramifications. We will see further evidence of this point in Section 1.4.1. 

1.1.2 Abstract Data Types 

We have seen that the use of control structures for execution sequencing is of great 
advantage in HLL’s. The ability to define and use functions and procedures is 
perhaps even more important. In an arithmetic expression, we are initially 
restricted to the operators +, -, *, and /. These are then augmented by system 
functions for absolute value, modulus, square root, etc. Beyond that, we can define 
any function that we like, and then invoke it at any point within our program; 
thus, we can effectively expand upon the primitive operators with arbitrarily defined 
ones. If such a function is properly defined (that is, programmed), then anybody 
who uses it can be unconcerned with numerous details of its implementation. In 
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fact, it can be implemented in many different ways, all of which are correct from 

the point of view of the user, who simply presents input arguments and obtains 

output values in return. 

A powerful concept for data is to provide a similar definitional facility for data 

structures. When this idea is carried out completely, an abstract data type (ADT) is 

defined. Such a definition specifies both the set of permissible values that a variable 

(or parameter) of this type may assume and also the permissible operations on 

instances of ADT’s. The manner in which the ADT is represented is hidden from 

the user, and he can only operate upon instances of ADT’s via procedure or func¬ 

tion calls. This mechanism also ensures that no illegitimate values can ever be 

created. Several advantages accrue from the methodology of ADT’s. First, just as 

the user of an ordinary program function can trust in its correctness, so the user of 

an ADT can trust in the correct consequences of its use. Also, a program written in 

terms of ADT’s is completely portable to any machine, as long as correct implemen¬ 

tations of the ADT’s exist for that machine. A simple instance of an ADT might be 

for complex numbers, with functions to perform addition, multiplication, conju¬ 

gation, etc. The actual representation could be in terms of polar coordinates or 

rectangular coordinates, or it might even switch from one to the other, but such 

considerations would be transparent to the user. 

The current state of computer science is such that the concepts just cited are not 

yet all formally available in most programming languages. However, the notion of 

an ADT is still of great utility in the first stages of a programming project. By 

using it, a programmer can effectively distill the essential logic of a data structure 

from the details of its possible representations. To put it positively, he should first 

specify what he wants with his structures, and only after that take into consideration 

how to implement them. To put it appositively, his design may profit from his 

awareness of representation issues, but such issues should not distort the design. In 

this book, we choose to approach data structures by asking what and then how in 

an informal and unsystematic manner, rather than by defining and using ADT’s in 

any rigorous fashion. However, since any serious student should be conversant with 

the more formal approach, these matters are discussed in Chapter 9. 

The programming language Pascal does provide some of the definitional power 

that we have just described. A programmer can define and subsequently use arbi¬ 

trarily complex data structures of his choosing; but Pascal does not provide any 

means for ensuring that these data structures will always be used correctly. In a 

language that truly supports ADT’s, it is as if the implementation details are hidden 

in a black box; but the analogy in Pascal is that they are enclosed within a clear 

glass box, thus leaving open the possibility of misuse. More recent HLL’s such as 

Ada [U.S. Dept, of Defense 1983] and Modula [Wirth 1985] fully support the 

ADT concept, but they are yet to become the lingua franca that Pascal is. We will 

discuss the facilities of Pascal for data typing in Section 1.4.2. 
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1.2 MATHEMATICAL BACKGROUND 

The level of mathematics that we need is modest, since we will usually analyze algo¬ 
rithms in only modest detail. By analyzing algorithms, we basically mean finding 
quantitative results about the time or the memory requirements for their execution; 
this matter will be explained in Section 1.3.2. 

A. To begin with, we will need some concepts that are very simple but possibly 
unfamiliar to some readers. 

T y = Lx is the floor of x; that is, y is the greatest integer such that y <x. Thus, 

13-2 = 3 L7 — 7 L—5.8 - —6 (not —5) 

2. y = [x is the ceiling of x; that is, y is the least integer such that y > x. Thus, 

[3.2 = 4 [1 = 1 T—5.8 = -5 (not—6) 

3. From the operation of dividing z by y to obtain an integer-valued quotient, we 
get the two operations 

v = z div y = L(z -=- y), and u = z mod y = z — v x y (1.1) 

The operator div yields the integer quotient and the operator mod yields the 
modulus, or remainder. For example, 

13 div 5 = 2 60 div 12 = 5 -19 div 4 = -5 
13 mod 5 = 3 60 mod 12 = 0 -19 mod 4 = 1 

We should caution you that there are alternative definitions of div and mod, 
based on using truncate in lieu of floor. For example, in certain implementa¬ 
tions of Pascal, —19 div 4 = —4 and —19 mod 4 = —3. 

B. Familiarity with logarithms is presumed. The usual notation is 

log10 u = v, or log u = v, for u = 10v (1.2) 

If, more generally, the base value is b, then the notation is 

\ogb u = v, for u = bv = blogb u = \ogb (bu) (1.3) 

Two base values that are important for our purposes are b = 2 and 
b = e = 2.718281828 .... For the former, the common notation is 

lg u = v, for u = 2V (1.4) 

The latter case yields the natural logarithm, wherein 

In u = v, for u = ev (1.5) 
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To convert logarithms from one base b to another base a simply requires multipli¬ 

cation by a constant, since 

log*, u n 
loga u = log# b x log6 u = U b> 

C. The factorial of a non-negative integer n is n\, defined as follows: 

(1.7) for n = 0, n\ — 1 

for n > 0, n\ = n x (n — 1)! = n x (n — 1) x (n — 2) x — x 1 

Related to the factorial are the binomial coefficients, denoted by either C(n,r) or 

(^j, where for n > r > 0 

n x (n - 1) x (n - 2) x - x (n - r + 1) _ n\ 

1x2x3 x - x r (in — r)\r\ 0- 
(1.8) 

C{n,r) is the number of combinations, or ways in which r objects can be selected 
from n (distinct) objects; for example, C(7,2) = 21, C(7,3) = 35, etc. The binomial 
coefficients get their name from the fact that they occur as the coefficients in the 

familiar binomial expansion 

n 

ia + bf = £(">"'V (1-9) 

r=0 

There are numerous identities relating the binomial coefficients, 

significant ones, all with simple proofs, are: 

Some of the more 

0-CD-* (1.10a) 

(?M„-iH (1.10b) 

CK-r) 
(1.10c) 

CMVM":!) (l.lOd) 

and, for r / 0 

H X
 

1 
1 

(l.lOe) 

Also, related to the factorial and the binomial coefficients are the permutations 

of r objects out of n, defined by 

P(n,r) = r\x C(n,r) = -- 
(n — r)\ 

(1.11) 
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In a combination the order among the selected elements is irrelevant; in a permuta¬ 
tion, however, the order is significant. Thus, P(7,2) = 42, P(7,3) = 210, etc. In 
particular, P(n,n) = n\, and it represents all the different orders in which n distinct 
elements can be arranged in n distinct positions. 

D. There are two common ways to represent a permutation of n elements. The 
first is illustrated by 

(a b c d e f g\ 
f g b e a cj (1-12) 

This signifies that the element in the first position goes to the fourth position (a 
replaces d), the element in the second position goes to the sixth position (b replaces 
/), etc. Typically, the first row of such a representation is implied rather than given 
explicitly; so, for example, (d f g b e a c) would suffice for Eq. 1.12. 

The second common way to express a permutation is in cycle notation. Our 
same example would, in this style, be represented by 

(d b f a) (g c) (e) (1.13) 

In each cycle (xb x2,..., xfe), the element xk replaces x,, and for all i < k the element 
x,- replaces xM. When representing permutations in cycle notation, it is often desir¬ 
able to obtain a unique representation by either of two sets of transformation rules. 
The first of these sets is: 

1.1 Arrange each cycle so that the smallest element in that cycle is the first element 
in the cycle. 

1.2 Delete any singleton cycles, such as (e) in Eq. 1.13. 

1.3 List the remaining cycles in order of their first elements. 

When these steps are applied to Eq. 1.13, we obtain the notation 

(a d b f) (c g) (1.14) 

On the other hand, the following set of rules is frequently more useful for work¬ 
ing with permutations: 

II. 1 Arrange each cycle so that the smallest element in that cycle is the first element 
in the cycle. 

11.2 Retain any singleton cycles. 

11.3 List the cycles in decreasing order of their first elements. 

When these steps are applied to Eq. 1.13, we obtain the canonical form 

(e) {c g) (a d b f) (1.15) 

With the canonical form, the parentheses around the cycles can be omitted, yielding 

e c g a d b f (1.16) 

It is safe to omit the parentheses because they can easily be reconstructed by the 
following rule: Insert a left parenthesis preceding any global left-to-right minimum. 
Thus, in reconstructing Eq. 1.15 from Eq. 1.16, there are minima at e, c, and a. 
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E The Fibonacci numbers are the sequence of integers Fn, as follows: 
1,1,2,3,5,8,13,21,34... 

and defined by the relationship 

*1 = 1, *2= 1 (1>17) 

Fn = Fn-\ + Fn-2 (« = 3, 4, ... ) 

They describe a pattern of growth frequently found in nature. Examples include 
population growth in idealized situations, spatial arrangement of leaves and flowers 
in plants, etc. Closer to our purpose, they also describe various phenomena in the 

analysis of data structures and algorithms. 

F. Some basic concepts from set theory are also important for our purposes. 
However, we will examine them in situ when we discuss sets as data structures in 

Section 2.4. 

The concepts that we have described to this point are essential for our purposes. 
Some less elementary ones will be introduced as needed; they include linear alge¬ 
bra, recurrence relations, harmonic numbers, generating functions, and elements of 
graph theory. Readers who are unfamiliar with these areas should not be concerned 
about losing very much of the overall presentation. Background material can be 

found in [§] if needed. 

1.2.1 ONotation 

It is common to have a quantity whose value depends upon some parameter n. A 

simple example of this is V(n), the sum of the first n integers 

n 

V{n) = ^J= 1 +2 + 3 + ••• + n (1.18) 

i=i 

It is easy to show that V{n) has the exact value V(n) = Yin x (n + 1). This is often 
not as pertinent, however, as the simpler fact that, as n increases, V(n) is of the 
order of magnitude of n2, or V(n) = 0(n2). This idea can be made both more general 
and more precise at the same time. The generality comes from speaking about 
0{f{n)), where / may be any function of n. Thus, for the sum of squares 

n 

W{n) = Yf = 1 + 4 + 9 + - + n2 = 
n x (n + 1) x (2n + 1) 

(1.19) 

1=1 

the pertinent fact is that W(ri) = 0(w3). We obtain precision from the definition: 

r(n) = 0(f(n)) iff there are two constants C and ft0, 

such that | r(n) | < C x \f(n) | whenever n > n^. 

This is read as ur(n) is order of /(«),” or “/*(«) is big Oh of /(«),” if and only if 

(1.20) 
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By way of illustration, for r(n) = V(n), then f{n) = n2. If n0 = 2 then C - 0.7 will 
work, and if = 5 then C = 0.6 will work, etc.; actually, for ^ sufficiently large, 
we can get C as close to 0.5 as we like. Although 0-expressions are used in 
equations - as m V{n) = 0(n2) - such equations have the peculiar property of 
being one-sided ; they are formal means for conveying information from the right 
hand side about the left hand side, as in Eq. 1.20. An alternative point of view that 
makes this one-sidedness more explicit is to interpret Eq. 1.20 as saying that r(n) is 
included (in a set theoretic sense, see Section 2.4) among those functions that are 
asymptotically dominated by /(«). O-notation is very useful in contexts that have 
nothing to do with machine computation [Knuth 1973a]; it is also a very impor¬ 
tant tool for analyzing and describing the behavior of algorithms, as we will see in 
Section 1.3.2. 

1.3 ALGORITHMS 

In many ways, the study of data structures and the study of algorithms are comple¬ 
mentary. Indeed, this entire book could be rewritten with the emphasis upon 
algorithms and yet cover many of the same topics. Therefore, it behooves us to 
review just what an algorithm is. An algorithm can be defined as an unambiguous 
specification of the steps to follow in order to solve a general problem, with the 
assurance that the process will terminate after a finite number of steps. This state¬ 
ment is straightforward, but we should be sure that we understand all that is 
implied by the definition. 

General solution. An algorithm specifies how to solve some general problem. 
The problem may have one input or several, or even none; but there is no solution 
without at least one output. On the other hand, for many algorithms, just one bit 
of output (true or false) is sufficient - for example, is n a prime number? An algo¬ 
rithm that solved the same problem every time would not be very useful; rather it 
should solve a general class of problems, such as finding the square root of x, as 
opposed to the square root of 3. 

Unambiguous. The steps to be followed must be unambiguous. There must be 
a determinism about the entire set of steps, and none of them can invoke any 
magic. Thus, most kitchen recipes resemble algorithms but fall short in terms of 
ambiguity, due to phrases such as: add a pinch of salt, stir over medium heat, etc. 
In some cases, though, this ambiguity is less apparent, as in a computational 
“recipe” that instructs us to choose an element x such that ..., or to choose the best 
(?) route from A to B. 

Termination. Finally, algorithms must be guaranteed to terminate. Herein 
arises the principal distinction between an algorithm and a procedure. It is quite 
easy to have a procedure that will run forever (until interrupted), as most beginning 
programmers discover, or as in the case of an operating system. Sometimes, it can 
be difficult to decide whether or not a computational procedure satisfies this crite¬ 
rion. There is, for instance, the following famous “algorithm,” which takes a 
positive integer n as input and computes a sequence of integers from it. 
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while n > 1 do 
if (n mod 2) = 0 then 

n := n div 2 
else 

n := n * 3 + 1; 

As an example, starting with n = 7, the following sequence is computed. 

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 

No one has been able to prove as yet that this process will terminate for all positive 
integers n. There’s no need to expend machine cycles, however, since its termi¬ 

nation has been established for all values of n up to an extremely large limit. 

The comparison between algorithms and programs is reminiscent of the 
comparison between abstract data types and their representations. The essence of 
an algorithm is independent of any particular machine or programming language. 
Yet we can only capture the algorithm by expressing it in some particular language. 
We will take up the subject of representing algorithms in Section 1.4. The remain¬ 

der of this section deals with algorithms in more general terms. 

When considered in their own right, algorithms have a curious taxonomy. 
Some useful characterizations that are employed to describe them are: determinis¬ 
tic, nondeterministic, probabilistic, greedy, oblivious, on-line, off-line, recursive, etc. 
We will be concerned almost exclusively with deterministic algorithms, although we 
will discuss the nondeterministic case in Chapter 6. The descriptions greedy, oblivi¬ 
ous, and on-line and off-line are modestly significant, and will be illustrated 
subsequently. Recursion, however, is of fundamental importance and will be 
discussed in the next section. A distinct and very important issue is the character¬ 
ization of algorithms in terms of the amount of time and the amount of memory- 
space that they require for execution; we will expand on that in Section 1.3.2. 

1.3.1 Recursion 

Recursion is the phenomenon wherein an object is defined in terms of itself. We can 
find recursion in many guises. It describes, for instance, the infinite series of 
reflections that we see when we stand between two mirrors that are not quite paral¬ 
lel to each other. It also occurs commonly in mathematics. Examples of this are 
Eq. 1.7 for factorials, Eq. 1.1 Od for binomial coefficients and Eq. 1.17 for Fibonacci 
numbers. Another example from mathematics is found in the inductive definition 

of the natural numbers:2 

(a) 1 is a natural number, and 

(b) if n is a natural number, then so is n + 1. 

2 This common, intuitive definition by clauses (a) and (b) has several technical deficien¬ 
cies. They can be redressed by using a more detailed set of specifications known as the 
Peano postulates. 
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Ok iKfieit is reconkw, of crane, n Chat many algorithms (and data structures! j 
CBfioy it is their definition. Note that, to order to avoid infinite regress, a recur- 
*** defisrtios will have two parts: (a) a bass clause that specifies some initial 

■i jt-1 am '.) an e.s , tr.a: specifies hov- to obtain subsequent values. 

funct or, /- A <r ntege', nteger; 

var cp,qx nteger; 

begin 
rf n < 2 then 

ALGOR_A := 1 
e ve begin 

q :* 1; r :* 1; 
for r ; ' to n - 2 do begin 

P :* q; q := r; r := p - q; 
end; 
ALGOR_A ;= r; 

end; 
end; 

Algorrthm 1.1 £LGOR_A 

Recursion is eepeda.lv useful because it often leads to definitions that are 
tonct.se and mtntr-e. In demonstration of this point, consider the function 
ALOOP_A Algorithm 1-1 j, uhich uses iteration rather than recursion. Can you 
rtcogn.ze >.ha: it is computing? You should experiment with it for several values of 
j» before comparing it with the definition given in Eq. 1.17. On the other hand, 
rtcnru .e defir..::on* are not always easier to comprehend. Consider, for example, 
the f - nunon ALGOR_B ‘ Algorithm 1.2j. What is a simpler way to specify its 
effect'' If it is not obvious to you, then try the algorithm for some sample set of 

. al ues s ash as p = 0, w = 7, « = 4. 

function A_G0P_3 (p,rr. r -teger): integer; 
begin 

if n = 0 then 
ALGOR_B:= p 

else 
ALGOR_B := ALGOR_B (p - m,m,n - 1); 

end; 

Algorithml.2 ALGOR_B 

Expressing an algorithm in a manner that enhances insight and expressing it in 
> rnar.nsr that maximizes computational efficiency often represent conflicting goals. 
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As an example, the computation of F7 by applying Eq. 1.17 would expand into the 
set of evaluations in Figure 1.1; a direct computation by ALGOR_A would be 
much more efficient, particularly as n becomes large. In Section 5.4 we will discuss 
the transformation of an algorithm between equivalent (that is, producing the same 
answers for all inputs) non-recursive and recursive forms. In this section our objec¬ 
tive has been simply to elucidate the basic nature of recursion, since it occurs in 
both the algorithms and the data structures that we will be studying. The subject is 
a large one in its own right, and we will return to it from time to time, beginning in 

Chapter 4. 

Ft = F5 + F6 = (F3 + F4) + (F4 + F5) 

= ((Ft + F2) + (F2 + F3)) + ((F2 + F3) + (F3 + F4)) 

= ((1 + 1) + (1 + (F1 + F2))) + ((1 + (Ft + F2)) + ((F i + F2) + (F2 + F3))) 

= (2 + (1 + (1 + 1))) + ((1 + (1 + 1)) + ((1 + 1) + (1 + (Fi + F2)))) 

= (2 + (1 + 2)) + ((1 + 2) + (2 + (1 + (1 + 1)))) 

= (2 + 3) + (3 + (2 + (1 + 2))) = 5 + (3 + (2 + 3)) 

= 5 +(3+ 5) = 5 + 8 = 13 

Figure 1.1 Evaluation of F7 by Eq. 1.17 

1.3.2 Analysis of Algorithms 

Discovering that a particular algorithm can solve some problem is just part of the 
story. A significant consideration beyond its capability is its cost. In real life, 
computing costs can be measured in many different ways: coding time, debugging 
time, dollars expended, physical resources required, etc. In discussions of data 
structures and algorithms, however, cost is considered to have two principal compo¬ 
nents: the amount of computer time (in milliseconds, minutes, months, etc.), and 
the amount of computer memory required for the execution of the algorithm. By 
memory we mean primarily that which is required for the data, including temporary 
or working values, and not that which is required for the program itself. 

All of the problems that we will be considering have some size n associated with 
them. What is meant by size? In many problems, this is easy to decide. If we are 
doing a calculation involving an input of n items, then the size is often just n. 
Assuming that we can abstract such a value of n from all the details of a problem, 
the analysis proceeds from the observation that, as n increases, so may the costs, 
both in time and in memory space. Analyzing an algorithm means trying to esti¬ 
mate these costs as a function of the size. Often one cost can be traded off against 
the other. For instance, a simple loop to add a set of n numbers in memory would 
require relatively less space but more time than would a program that added them 
via a succession of n add instructions without a loop. However, most of the signif¬ 
icant trade-offs between time and memory are not so simple, and involve swapping 
time for a choice of data structure, as opposed to space for instructions. Our 
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discussions of algorithmic complexity will primarily be in terms of time, since that is 
usually the more critical resource, but space will enter the discussion in some cases. 

In this section, we first describe the insights to be gained by classifying algorith¬ 
mic costs in broad categories of algorithmic complexity. Next we consider some of 
the problems associated with trying to measure that complexity for a given algo¬ 
rithm. In all of these discussions of the effectiveness of algorithms, the reader might 
plausibly associate computational efficiency solely with choosing a good algorithm. 
Such a belief would be very misguided. The choice of an appropriate representation 
(that is, data structure) for a problem is, in many cases, the most significant choice 
to be made for reducing computational effort. Although the corroboration of that 
claim depends upon the rest of this book, we can find another, dramatic illustration 
in astronomy. For hundreds of years, early scientists used the model devised by 
Ptolemy to describe the apparent motions of the planets in the heavens. The key 
assumption of this model held that the planets and the sun move around the earth; 
and this necessitated the use of epicycloids (circles with loops around their circum¬ 
ference) to make the observed data fit the theory. By contrast, Copernicus and 
Kepler developed a model in which the planets move around the sun; in this repre¬ 
sentation, planetary motions are much more simply explained by using ellipses. Not 
only that, but it was this basic model of planetary motion which led Newton to 
formulate his epochal Law' of Gravitation. Imagine the state of science today if we 
were still laboring under the weight of the earlier model. 

1.3.2.1 Complexity Classes. In analyzing an algorithm, we do not try to estimate 
precise costs. Too many factors are hard to quantify: how efficiently the algorithm 
is expressed in a program, how efficiently the compiler or interpreter will translate 
the program, what machine the program is run on, etc. Instead we try to find some 
expression that depends upon an obvious, explicit parameter (or parameters) n, and 
that can be used to approximate the performance of the algorithm. This is the 

reason why the O-notation of Section 1.2.1 is of such importance for computation. 

With regard to the definition given by Eq. 1.20, although there are algorithms 
for which the value of the constant C is of interest, the nature of the expression f(n) 

is much more significant. Why is this type of analysis so important, given that it is 
often so crude? In most of the algorithms that we will study, a major consideration 
is the feasibility of applying them to problems with larger and larger values of n. 

As n grows, how does the time to execute an algorithm increase, if its complexity is 
proportional to /(«)? Some common functional forms of f{n), and their values as n 

increases, are illustrated in Table 1.2. 

The importance of these effects can be demonstrated more effectively by chang¬ 
ing the point of view. Let us associate with each form of f(n) a constant that 

hypothetically allows us to measure elapsed time for some algorithm of that 
complexity class in units of milliseconds, that is T = C x f{n). Then, for each f(n), 

we can invert this equation to find n — s(T), the largest size problem that can be 

handled for any time interval. Moreover, we will “load the dice” by assigning 

constants that discriminate against those f(n) with lower growth rates. The results 

of this exercise are shown in Table 1.3. 
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f(n) n = 3 n = 10 

o
 

C
O

 

II c
 n = 100 n = 300 n = 1000 

ig n 1.6 3.3 4.9 6.6 8.2 10 

n 3 10 30 100 300 1000 

n Ig n 4.8 33 147 664 2469 9966 

n2 9 100 900 10000 90000 106 

n3 27 1000 27000 106 2.7 x 107 109 

2" 8 1024 109 1030 1090 IO300 

10n 1000 1010 1Q30 io100 IO300 
1 Q1000 

Table 1.2 Growth of Various f(n) with n. 

The most important feature of Table 1.3 is that, whereas with algorithms 
A1 — A4 it is feasible to solve problems of larger and larger size by making longer 
computations, that is not the case for algorithms A5 and A6. Increasing the time 
available for computation pays off for the former, where there is a multiplicative 
factor between successive columns; but it has relatively little effect on the latter, 
where there is an additive factor between successive columns. Thus it is far more 
effective to find a faster algorithm than it is to compute for a longer time, or even 
to acquire a faster machine. This is true even though we have chosen constants that 
favor the latter algorithms. The benefit of these biased constants makes A5 and A6 
competitive for small problems, but that benefit is of no avail as n increases. 

f{n) 1 second 1 minute 1 hour 1 week 1 year 

AT. 300 x n 3 180 10800 2 x 106 108 
A2: 100 x n Ig n 4 91 3103 3.3 x 105 1.3 x 107 
A3: 30 x n2 5 44 346 4489 32377 
A4: 10 xn3 4 18 70 390 1454 
A5: 3x2" 8 14 20 27 33 ■ 
A6: 1 x 10n 3 4 6 8 10 

Table 1.3 Attainable Problem Size n for Given f(n) in Given Time T 

It is clear from Tables 1.2 and 1.3 that an algorithm with exponential complexity 
(A5,A6) is far less satisfactory than one with polynomial complexity (A1 - A4). In 
fact, if the only algorithms that are known for solving a problem are all of exponen¬ 
tial complexity, then that problem is often said to be intractable. For large values 
of n, such a problem may be solvable in theory, but it is not solvable in practice, 
since we cannot wait years or millennia for the calculation to terminate. Is it really 
reasonable to make such a distinction between polynomial and exponential algo¬ 
rithms? After all, how feasible is a computation of 0(1O6 x n1000)? There seem to be 
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two answers confirming the value of the distinction. One is that useful polynomial 
algorithms are, in practice, always of quite low degree. Another reason, significant 
for analysis, is that the class of polynomial algorithms is closed under composition. 
We will have more to say about the gap between polynomial and exponential 
complexity in Chapter 6. 

1.3.2.2 Measuring Complexity. It is conventional to denote the amount of work, 
or time, required to solve a problem of size n with a particular algorithm, by T(n). 
Analyzing an algorithm to determine its performance means determining that 
T(n) - 0(f(n)), for some f(n) like those of the preceding section. Thus, Eq. 1.19 
could represent a generic example wherein the terms of the series W(n) correspond 
to the work required to compute successive values jl9 s2,... in some other series S, 
and where the work for the term s, is proportional to i2. In this case the complexity 
T(n) of computing S is 0(n3). 

More typically, we have to start our analysis at a lower level, by counting how 
many times each step of the algorithm is executed. A more refined measure might 
take into account the different amounts of time required by different steps, but we 
sweep that under the rug by choosing a sufficiently large value for the constant C. 
In fact, all that really matters is the time required for the steps that dominate the 
computation. These steps might be multiplications for one problem, data compar¬ 
isons for another, data moves for yet another, etc. Having identified these, we 
proceed by trying to estimate their frequency of execution. In the next paragraphs, 
let P; and Pj represent blocks of algorithmic steps that are executed in some approx¬ 
imate times, and let Pu represent a sub-block of algorithmic steps within Pt. 

If we have an algorithm of the general form Pt followed by Pp such that Pt 
executes in time Tt - 0(f(m)) and Pj executes in time 7} = 0(g(ri)), then the overall 
time complexity for executing Pt followed by Pj is 

Tt +Tj<Cx |f(r) \ + C2\g(r) | for r > and r > n0 

<(CI + C2)max(|/Ml, |*(r)|) 

In other words, 

T=Ti+Tj = 0( max(f{m),g(n))) (1.21) 

This is the additive property of 0-notation. In the case of two successive definite 
iterations 

for i := 1 to m do begin 

end; 
for j := 1 to n do begin 

end; 

Eq. 1.21 reduces to max (m,n). 

Next, consider the case of an algorithm P containing parts P, and sub-parts 

with the properties: 



18 PRELIMINARIES 

• the outermost steps Pt execute in time T, = 0(f{m)), and 
• the innermost steps PQ execute in time TtJ = 0(g(n)) for each single outermost 

step Pt. 

Then the overall time complexity for executing P is determined by the product of 

the two: 

T = 0(f(m) x g(n)) (1-22) 

by an appropriate choice of constants. This is the multiplicative property of 

O-notation. In the case of two nested definite iterations 

for i := 1 to m do begin 

for j := 1 to n do begin 

end; 

end; 

Eq. 1.22 reduces to m x n. 

Although estimations for definite iteration are easy, estimations in the cases of 
indefinite iteration (for example, while ... do ... or repeat ... until ...) or in the 
cases of alternate path selection (for example, if ... then ... else ... or case ... of 
...) require more elaborate analysis methods. As an extreme example, Knuth uses 
properties of the gamma function and complex-variable theory when analyzing 
radix exchange sorting [Knuth 1973b]. 

Note from Eq. 1.20 that an estimate in terms of 0-notation represents an upper 
bound analysis for a particular algorithm. A different point of view is to look for a 
lower bound analysis, as represented by Q-notation: 

r(n) = Q(g(«)) iff there are two constants C and «0, 

, , , , (1.23) 
such that | r(n) \ > C x | g(n) | whenever n > nQ. 

Although Q-analysis can be applied to an algorithm, the more interesting and diffi¬ 
cult question is to apply it to a problem. In other words, we would like to know 
the lower bound for the complexity of solving a problem, using any algorithm, and 
this requires some fundamental insight into the nature of the problem. It is usually 
easy to obtain a trivial estimate for Q. For instance, we would expect any problem 
that has m inputs and n outputs to require at least Q(m + n) work, by virtue of the 
usual necessity to read each input and write each output. However, depending 
upon the nature of the problem, the complexity may be inherently greater than this. 
Although we will mainly characterize results in terms of 0-notation, there will be a 
few instances of Q-notation, for example, with matrix multiplication, sorting, etc. 

If we have an algorithm to compute r(n), there is also the felicitous possibility 
that C/(«) < r(n) < C/in), for some f(n) and for appropriate constants Cx and C2. 
Thus, our algorithm is both Q{f(n)) and 0(f(n)), denoted by r{n) = 0(/"(n)). If a 
problem has complexity Q(/"(«)), and if we have an algorithm for solving it with 
complexity ©(/"(«)), then the only possible room for improvement lies in improving 
the constant factor. 
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The actual values of the input, as opposed to just n, the number of such items, 
constitute another important factor for the performance of an algorithm. When the 
performance of an algorithm does not depend upon the actual values, then that 
algorithm is said to be oblivious, which greatly simplifies the analysis. When an 
algorithm is not oblivious, then the worst-case complexity that we obtain using 
O-notation may be very infrequent. It may be much more meaningful to try to 
estimate its average performance. However, this estimation depends upon knowing 
the probability distribution for all the possible sets of input values. This can usually 
only be guessed at, and a uniform distribution is often employed, but such an 
assumption is patently unjustified in many cases. 

Analysis of algorithms is a very active area in computer science, and the use of 
O, 0, and Q is poorly standardized [Knuth 1976a]. In particular, it is common to 
find 0(f(n)) employed when one of the other measures is more appropriate. Further 
discussion of these issues can be found in Weide [1977], 

fl.3.2.3 Recurrence Relations. Let’s suppose that you and an acquaintance are 
having a friendly game of chance, such as matching pennies. He starts with 380 and 
you start with 120. At every play the two of you simultaneously flip a coin and 
look for heads and tails. In the two cases that the coins match one of you keeps 
both coins, and in the two cases that they do not match the other keeps both coins. 
Thus, at every play one of you wins 10 from the other. What are the probabilities 
that: (a) he wins all the money, (b) you win all the money, or (c) the game never 
ends? We’ll begin by using the variable pj to denote your expectation of winning all 
500, starting with j pennies. Note that, with equal likelihood after the first play, 
you will have either j — 1 pennies or j + 1 pennies, and be confronted with the new 
expectation pj-x or pj+l. The only two ways that you can start with j pennies and 
win everything are via these other states, and so we have the recurrence relation 

Pj-\ + Pj+l 
Pj =-2-’ °r Pj-Pj-l=Pj+\-P] 

We can spell out the latter formula for j — 1,2,..., 49 as follows: 

P\ ~ Po= Pi~ P\ = = P50 - P49 = d 

for some constant difference d. Summing these 50 individual formulas, we obtain 
p50 —Po~ 50d. But observe that p50 = 1 (you did it) and p0 = 0 (hope is lost), so that 
d = .02. It is now easy to find that pn = -24. Moreover, the analysis from your 
opponent’s point of view is complementary, with the result that he will win with 
probability /?38 = .76. Thus, even though there are an infinite number of intermedi¬ 
ate possibilities, it is a statistical certainty that one of you will eventually experience 
the painful condition known as Gambler’s Ruin. 

Many phenomena in mathematics are most naturally expressed in terms of a 
recurrence relation between values of a function for some integer values of its argu¬ 
ments. Some examples include the binomial coefficients, the Fibonacci numbers, 
etc. If the recurrence relation is not too complicated, we may be able to solve it, 
thereby obtaining a closed form solution. The complexity analysis of recursive 
algorithms in turn depends upon the ability to formulate and solve such recurrence 
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relations. To illustrate these points, let us take Eq. 1.17, the definition of the Fibo¬ 

nacci numbers, and rewrite it as 

F„-F»_i-Fn_ 2 = 0 (1.24) 

This is a particularly simple form of recurrence in that it is linear, with constant 
coefficients (that is, all l’s), and homogeneous (that is, the linear combination sums 
to zero). As with solving a linear differential equation, this homogeneous equation 
has homogeneous solutions of the form F„ = rn. Substituting this in Eq. 1.24 and 

cancelling powers of r yields the characteristic equation 

r2-rl-rQ = 0 (1.25) 

By the quadratic formula, this equation has two distinct roots 

1 T V5~ j 1 — 
r 1 =---, and r2 =--- (1.26) 

The linear homogeneous form of Eq. 1.24 then guarantees that the complete 
solution to it is a linear combination of the solutions corresponding to the two 

distinct roots: 

Fn = ^\r\ + ^2r2 (1-27) 

with the constants Ax and A2 to be determined from the initial values Fx = 1 and 
F2 = 1. It simplifies matters to define F0 = 0, and then use Eq. 1.27 with F0 and Fu 

whence we have 

Fn = 0 = A\ + A2 

„ , . , . ^,(1 + VF) . a2(i-VT) 
F\ = 1 - A\r\ + A2r2 ----1 z 

These yield 

Al = 1/V5~, and A2 — — l/VJ” 
from which, finally, the nth Fibonacci number is given by 

Fn = 

- r2) 

(1.28) 

(1.29) 

with rx and r2 as in Eq. 1.26. 

We now have a closed form solution for Fn. Let us compare our two original 
algorithms for computing Fn, ALGOR_A and the method of Eq. 1.17. ALGOR_A 
is clearly 0(n). From Figure 1.1, we observe that the recursive algorithm is 0(Fn), 
which we have just seen is 0(rn). Even though the iterated algorithm is dramatically 
better than the recursive one, it is not optimal; as we will see in Section 5.4.2, there 
is an 0(lg n) algorithm for computing Fibonacci numbers. 

Several more complicated possibilities can arise in solving recurrence relations: 
non-homogeneity, non-linearity, repeated roots, complex roots, etc. In this book, 
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we will employ some of these other solution techniques in an ad hoc manner, for 
example in Section 2.5.1. A more systematic treatment of the topic can be found in 
Lueker [1980], 

1.4 LANGUAGES AND PROGRAMS 

Computing has its own Tower of Babel, which forces most programmers to become 
multilingual out of sheer necessity. There have been repeated attempts to lessen 
these effects and to make the representation of algorithms relatively independent of 
particular programming languages. We have elected to use none of these, but 
rather to employ the language Pascal to represent the algorithms in this book. 
Some of the reasons for this choice will be discussed in the next section. 

The remainder of this preliminary material about languages and programs is 
devoted to two other issues. One of these has to do with something comparatively 
new; it centers on the facilities in Pascal for defining and then using data of arbi¬ 
trary type and structure. The other deals with something that should be old to 
most readers, the nature of procedures, functions, and parameters. 

1.4.1 Representation of Algorithms 

Methods that have been used to represent algorithms independently of particular 
programming languages include: 

A. natural language such as English 
B. flowcharts 
C. decision tables 
D. a semi-formal “Knuth” style 
E. pseudo-code 

Let us look at each of these briefly. 

A. Natural language represents an ideal in that it shifts the burden of unfamiliarity 
from the user to the computer, where it belongs. Unfortunately, the ideal of unre¬ 
stricted natural language has been all but abandoned in the face of two 
overwhelming obstacles. First, specifying the steps of an algorithm in natural 
language often results in verbosity; consider, for example, the ease of doing arith¬ 
metic in FORTRAN as compared with COBOL. An even bigger drawback is the 
unremitting presence of ambiguity in natural language. Examples of this abound, 
but the following will suffice: “I saw the man on the hill with the telescope.” Does 
“with the telescope” apply to I, the man, or the hill? 

B. Flowcharts have been used with some success, but they are used less commonly 
now, due to several shortcomings. These disadvantages include the following: there 
is very little standardization in the manner of drawing them; they all too often look 
like spaghetti, obscuring rather than clarifying matters; they fail to convey essential 
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global and descriptive facts about an algorithm; it is hard to be certain that all 
logical possibilities have been provided for; the translation from a flowchart to a 

program must be done entirely by hand. 

C. The use of decision tables represents a relatively small but well established tradi¬ 
tion. Since we will be discussing them subsequently, in Chapters 2 and 6, it is 
sufficient for now to remark that their special form makes them unsuited for repre¬ 

senting algorithms in all of their generality. 

D. The style that Knuth uses in his monumental set of volumes has been imitated 
by many other writers. Basically, it consists of a set of numbered steps. Each step 
is written in a mixture of plain English and program-like notation, as is most 
convenient. Most steps include commentary in brackets that assist in understanding 
what is happening, and sequencing is accomplished by conditional and uncondi¬ 
tional jumps to other numbered steps. There are two principal drawbacks 
associated with this style. First, since no control structures are used (we will discuss 
these shortly), the logical structure of the algorithm is obscured. Second, the trans¬ 
lation from this representation to a program is again a manual process, this 
introduces the hazard that the algorithm cannot be implemented and tested directly, 
leading to a higher risk of incorrectness. In fact, although we have not ourselves 
found such an error in Knuth’s algorithms, he does discuss their occurrence [Knuth 
1974], Moreover, we have found errors wherever other writers have used that style 
in books on data structures. In summary, it would be preferable if readers could be 

spared the possibility of such occurrences. 

E. There is not just one single form of pseudo-code. Rather, every author who 
uses such a method devises what he likes, although the results usually bear a strong 
resemblance to either ALGOL, Pascal, or PL/I. The author gains several advan¬ 
tages by this method: his algorithms are technically language-independent, he is 
free to simplify his syntax compared to what is required in a real language, and he 
is also free to introduce mechanisms that he feels are helpful. The disadvantages 
will seem rather familiar. First, since there is no standard pseudo-code, the reader 
must be prepared to learn a different one with each author (and slight differences 
between authors can be the source of disproportionate confusion). Second, since 
pseudo-code is, by definition, not immediately executable, but must be translated, 
there is less reason to be confident as to correctness. With regard to the latter 
point, we have commonly found such errors when authors have employed this 

method. 

It has been very easy to find fault with each of these five approaches. Indeed, 
no method is immune to criticism, and this is equally true of the one we will now 
discuss, the use of Pascal. We do not describe Pascal in any great detail here, nor 
even provide an appendix on the subject. One reason is that so many books are 
already available for this purpose. Also, for those who have little prior familiarity 
with the language, we do provide some help as we go along. The remainder of this 
chapter, in fact, is designed to accomplish two purposes in overlapping fashion: 

• to provide some initial coaching in Pascal, and 
• to review the use of procedures and parameters in HLL’s. 

In standard Pascal [Jensen and Wirth 1984], there are seven sections to a 

program, ordered as follows: 
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{ a header statement } 

{ declaration of program labels (for goto’s) } 
{ declaration of program constants } 
{ declaration of program data types } 
{ declaration of program variables } 

6. { declaration of procedure’s and function’s } 
7. ( executable code, the main body of the program } 

Only the first and seventh sections are strictly necessary, but a fifth section is also 
needed for any practical computation. The declarations of procedures and func¬ 
tions are each, in turn, given using the same seven sections, except that procedure 
or function is written instead of program. Since procedures (and functions) can 
themselves have nested procedures, we see that the schema introduced above is a 
recursive one. In some extended versions of Pascal, the rigid ordering of the seven 
sections is somewhat relaxed. 

The unit of program in any HLL is the statement. Broadly speaking, this 
includes declarative statements, assignment statements, control statements, and 
compound statements. In Pascal, the label, const, type, and var sections are 
entirely declarative in nature; we will talk about the type and var sections in 
Section 1.4.2. Assignment statements are presumed to be familiar. (Note that the 
assignment operator is ': = ' and not ='.) As far as control statements are 
concerned, this is where the reader unfamiliar with Pascal is apt to feel the most 
pain, until he becomes accustomed to the syntax. 

Pascal has one construct for definite iteration: 

for <simple assignment statement> to <limit> do 
<statement>; 

and two constructs for indefinite iteration: 

while <condition> do 
<statement>; 

and 

1. program 
2. label 
3. const 
4. type 
5. var 

repeat 
<statement>; 
<statement>; 

until <condition>; 

Note the asymmetry between the repeat ... until construct and the other two. This 
is certainly bothersome, although minor. For selecting alternative actions, Pascal 
has the following constructions: 

if <condition> then 
<statement>; 

and 

if <condition> then 
<statement> 

else 
<statement>; 
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and 

case < identifier> of 
<subcase>; 
<subcase>; 

end; 

The items in angle brackets are to be interpreted as meaning “any instance of 

that class of object.” Thus < statement > might be a simple assignment statement, 

an iteration control statement, a selection control statement, etc. In any of these 

preceding “blueprints” of control structures, < statement > could, in addition to the 

instances cited above, be a compound statement: 

begin 
<statement>; 
<statement>; 

end; 

that is, a group of statements delimited by begin and end. In this situation, the 
use of begin and end for grouping of statements is analogous to the use of paren¬ 

theses within statements for delimiting of expressions. Note that if a for, while, or 

if statement is to apply to more than a single consequential statement, then the 

consequence must be a compound statement. 

Readers who are unfamiliar with Pascal-like syntax often find it difficult to 

know when a control statement ends. Rather than giving a detailed exposition of 

the syntax, we have two brief comments that are helpful here. One significant cue is 

that in HLL’s of this sort, statements are delimited by semi-colons. The second 
point has to do with the systematic manner in which we employ indentation in the 

text of the algorithms in this book. You will find that the scope or the extent of a 

control statement can always be found by reading downwards until the text is no 
longer indented inside what is employed for the initial part of that statement. 

Whereas the use of semi-colons is rigidly prescribed by the language, the use of 

indentation is quite arbitrary; it is just an effective visual aid, of no significance,to 

the compiler. 

The virtues and defects of Pascal as a programming language have been thor¬ 

oughly explored elsewhere [§], and we will not rehash them here. Our interest in 

Pascal has to do mainly with its power for representing algorithms. That these 
representations are directly executable is a significant plus, since it provides a meas¬ 

ure of confidence as to their correctness; the principal issue, however, is that of 

clarity of representation. To this end, we do not hesitate to sacrifice secondary 

details of efficiency if we can thereby enhance clarity. In almost every case, an 
algorithm is exhibited on one page. On the other hand, there are few comments, 

since this sort of information is provided in the text describing the algorithm. With 

regard to goto’s and the controversy surrounding them [Knuth 1974], we avoid 

them in most cases. However, there are instances where they cannot be eliminated 
except through the introduction (and excessive setting and testing) of boolean vari¬ 

ables. In such cases, we have not hesitated to use an occasional goto. 
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The reader should be aware of a few particular points throughout the remainder 
of this book. First, we will represent algorithms by procedures or functions where it 
is important to emphasize the role of parameters, but we may simply represent algo¬ 
rithms by programs where this simplifies matters. Second, we consistently use 
semi-colons as statement terminators rather than statement separators. Although 
the definition of Pascal specifies the latter usage, the former usage does no harm, 
and we have preferred to employ it consistently. The compiler easily accommodates 
the former usage by treating affected parts of the program text as null statements. 

Finally, we occasionally take some minor liberties with the text of algorithms in 
order to facilitate exposition. These liberties, which violate Pascal rules, are of the 
following nature: 

• employing variables as array bounds instead of constants; 

• placing type definitions for the parameters of a procedure within the procedure; 
• placing declarations of global variables within the procedure; 
• placing the text of large sub-procedures outside a procedure. 

The adjustments, if any, that are required to transform an algorithm to a syntac¬ 
tically correct Pascal program will always be trivial. 

1.4.2 Data Typing in Pascal 

Different FILL’S exhibit different philosophies with regard to declaring the attri¬ 
butes of data: 

• In APL, attributes are always inferred, never declared. 

• In FORTRAN and PL/I, some attributes must be declared, but others may be 
either declared or left for the compiler to assign default values. 

• In Pascal, all attributes must be declared. 

The fact that all attributes are declared in Pascal, thus communicating the 
programmer’s intent to the compiler (or interpreter), enables many programming 
errors to be detected at translation time rather than at execution time. Detection of 
errors at this stage is more efficient and also makes debugging easier. 

What we have called attributes are subsumed in Pascal under the type. Every 
variable must be declared, along with its type, as in 

var s: integer; 
t: char; 
u,v: real; 

The type information that appears after the colon may be as simple as one of the 
primitive data types — boolean, character, integer, or real — that we discussed in 
Section 1.1.1. It may also include structural information, as we will see in the ensu¬ 
ing chapters. In addition, it is possible to employ two special types. 

The first of these is the enumerated type, as in the declaration 

var day: (Sun,Mon,Tues,Wed,Thurs,Fri,Sat); 
color: (red,orange,yellow,green,blue,purple); 
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where a list of arbitrary, distinct names can be given in a list within parentheses. In 
some other HLL’s, the user would have to make an implicit association between the 
numbers 1 to 7 and the days of the week, and also between the numbers 1 to 6 and 
the colors, and then use such integer values in his program. With enumerated 
types, it is possible to deal explicitly, and more naturally, with meaningful symbols, 

as in the examples 

day := Mon; color := blue; 

The second special type is the subrange type, as in the declaration 

var interest: 7 .. 20; 
digit: '0' .. '9'; 

by which it is specified that the permissible values for the variable interest are the 
integers between 7 and 20, and that the permissible values for the variable digit are 
the characters 'O' through '9'. Subrange specifications are particularly useful for 
declaring the bounds of arrays, as we will see. 

The items discussed so far in this section are useful. However, the primary 
attractive feature of Pascal for the study of data structures is that the user can 
define a “template” or type of data structure in the type section of his program, 
and give it any name that he wishes. He may then use that defined type, by name, 
elsewhere in the program as often as he chooses. This has great value both as a 
mnemonic device and for purposes of guaranteeing consistency of structure defi¬ 
nition. By way of illustration, consider the fragment 

type day = (Sun,Mon,Tues,WedThurs,Fn,Sat); 
food = (cocktaifsoup, salad, entree, dessert.nuts); 
work = Mon .. Fri; 

var holiday,vacation: work; 
menu: soup .. nuts; 
week: day; 

Note that day, food, and work are definitions, with an ' = ' and not a they are 
not data variables. 

The type of a variable determines the set of values that that variable may 
assume. In many cases, the number of such values is a constant, the cardinality of 
the type. As examples of this, the cardinality of type boolean is 2, that of char is 
256 (in EBCDIC), that of day is seven, etc. The use of types can be carried to 
arbitrarily many levels of definition, as long as no type is used before it is defined. 
The utility of these methods will be more apparent as we begin to use structural 
information as well as type information in the type definitions. 

1.4.3 Functions, Procedures, and Parameters 

Almost all HLL’s have two distinct categories of subroutines, the procedure and the 
function. Their usage in Pascal presents nothing essentially new, just the detail that 
the declarations of the parameters must include type information. Not only that, 
but since a function returns a value, then the type of that value must be declared 



1.4.3 FUNCTIONS, PROCEDURES, AND PARAMETERS 27 

also. In the remainder of this chapter, when we speak of procedures, we are really 
referring to both procedures and functions. 

Recall that, in the text defining a procedure, three categories of variables may 
be employed: 

1. Formal parameters occur in the procedure heading. 

2. Global variables are declared outside the procedure text, usually but not always 
in the main program itself. 

3. Local variables are declared within the text of the procedure itself. It is impor¬ 

tant to realize that a local variable may be declared with a name identical to 

that of some global variable; in such a case, the global variable then becomes 

hidden and inaccessible while the procedure is executing, and the use of the 

duplicate name refers to the local variable. This hiding of one variable by 

another also occurs when a formal parameter has a name identical to that of a 
global variable. 

When a procedure is invoked from some point, the invocation specifies some 

actual parameters. There must be the same number of actual parameters as there 

are formal parameters in the procedure header, and each actual parameter must 

have the type that was specified for it in the header. There are two principal ways 
in which parameters can be passed to a procedure: 

1. In call-by-value, the value of the actual parameter is copied from its memory 

location in the calling program to a private location in the procedure, where it 
is subsequently used. 

2. In call-by-reference, the address of the actual parameter is passed from the call¬ 

ing program to the procedure, so that the procedure operates upon the original 
value and not a copy. 

There are other parameter passing techniques, but they are neither present in Pascal 

nor relevant to our presentation. How does the user control whether a parameter is 

passed by value or by reference? This varies with the HLL; in some cases, it is not 

even possible to do so. In Pascal, if a parameter is to be called by reference, the 

formal parameter is preceded by var in the procedure heading. The ability to pass 

parameters by reference is very important. Otherwise, except for the single value 

that a function returns, we would have no satisfactory mechanism for making 

permanent changes to the value of data with a procedure. (Of course, one can still 

change the values of global variables, but that is a separate consideration.) 

This brief discussion of procedure variables and parameters might seem rather 

pointless. After all, we would not commonly reuse the names of variables, thereby 

introducing needless confusion. But if we think about what happens with recursive 

procedures — wherein both parameters and local variables are reused, perhaps 

many times — it becomes clear that these issues are very relevant indeed. Readers 

not already familiar with the issues would be well-advised to become so, in order to 

avoid difficulties in comprehending the algorithms that we will be studying. 
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1.5 OVERVIEW 

This chapter has been concerned with the two related subjects of data structuring 
and algorithms. Even though the various individual data structures have yet to be 
broached, it is apparent that the tool of abstraction can be as powerful for describ¬ 
ing data structures as it is for expressing algorithms. The language Pascal is very 
useful for this purpose in that it provides syntactic mechanisms for expressing such 

abstraction. 

We cannot speak quantitatively about data structures and algorithms without 
employing some tools of a mathematical nature. Some examples of these include 
logarithms, combinations and permutations, Fibonacci numbers, etc. Many of these 
tools already convey the notion of recursion; and recursion permeates the subject 
matter of this book, both with regard to data structuring and algorithms. 

Another significant topic in this chapter has been that of complexity of compu¬ 
tational methods, and techniques for characterizing and measuring complexity. The 
focus of this book is primarily on data, and so the subject of complexity is not 
treated in depth. However, no student of data structures can afford to ignore these 
matters, though the less experienced might reasonably choose to postpone attention 
to them at first reading. 

1.6 BIBLIOGRAPHIC NOTES 

• Some useful books on the subject of numerical analysis are Dahlquist and 
Bjorck [1974], Forsythe et al. [1977], and Hamming [1971]. 

• Among the many excellent treatments of combinatorial mathematics are Liu 
[1968], Roberts [1984], and Tucker [1984], 

• The virtues and defects of Pascal as a programming language are argued in 
Haberman [1973], Lecarme and Desjardin [1974], Welsh et al. [1977], arid 
Wirth [1975]. 

1.7 REFERENCE TO TERMINOLOGY 

abstract data type (ADT), 6 
actual parameter, 27 
algorithmic complexity, 15 
attribute, 5 
binomial coefficients, 8 
call-by-reference, 27 
call-by-value, 27 

global variable, 27 
hexadecimal, 4 
high-level language (HLL), 2 

t homogeneous (equation), 20 
intractable (problem), 16 
iteration, 13 
local variable, 27 
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canonical form, 9 

cardinality (of a type), 26 
ceiling, 7 

character code, 4 

f characteristic equation, 20 
combinations, 8 
compound statement, 24 
control structure, 2 
cycle notation, 9 

enumerated type, 25 
exponential complexity, 16 
factorial, 8 

Fibonacci numbers, 10 
fixed-point number, 3 
floating-point number, 3 
floor, 7 

formal parameter, 27 
function, 26 

logarithm, 7 
logical structure, 5 
modulus, 7 

oblivious (algorithm), 19 
order of magnitude, 10 
Pascal’s triangle, 29 
permutations, 8 

physical representation, 5 
polynomial complexity, 16 
primitive data types, 2 
procedure, 26 

f recurrence relation, 19 
recursion, 12 
separators, 25 
subrange type, 26 

f tags, 4 
terminators, 25 

1.8 EXERCISES 

Sections 1.1 — 1.2 

1.1 What is (a) 693B16 + 358516? (b) 58A416 - 29B516? 

1.2 Convert (a) 925510 to hexadecimal; (b) 35D916 to decimal. 

fl.3 Suppose that binary floating-point numbers rax 2e are represented by using 
three bits plus sign for the mantissa ra and two bits plus sign for the exponent e, 
with 0.5 < ra < 1.0. Plot the positive numbers in this representation on the real line. 
How many distinct real numbers are there in this representation? 

1.4 Pick some object from everyday life and list several of its attributes, and also 
some representative values for each attribute. 

1.5 Prove the identity given in Eq. 1.6. 

1.6 Prove the identities given in Eqs. 1.10a — l.lOe. 

fl.7 Use Eq. l.lOd to compute all the non-zero values of C(n,r) for n = 1 .. 8 and 
r = 0 .. 8, and arrange them in a table of rows by n and columns by r. The table so 
constructed is Pascal’s triangle. Now consider the sums of the entries on diagonals 
running from the lower left to the upper right. What do you find? Prove the 
observed relationship. 

f 1.8 Prove the following identities without using Eq. 1.19: 
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(b) 12 + 2> + - + «2 = 2("+1) + ("+1) 

f 1.9 For the Fibonacci numbers, 

(a) prove that Fn+yFn_x — F* = ( -1)”; 

n 

(b) derive the value of Y.Fk; 
fe=i 

n 

(c) derive the value of ^F%. 
k= 1 

Section 1.3 

1.10 Under what conditions might a musical score be considered an algorithm for 

performing a piece of music? 

1.11 Given F and G as defined below, compute the value of G(4). Show your 

intermediate evaluations. 

function F (x: integer): integer; 
begin 

if x < = 1 then F := 2 
else F := 3 * F (x - 2) + G (x - 1); 

end; 

function G (x: integer): integer; 
begin 

if x <= 1 then G := 3 
else G := 2 * F (x - 1) + 3 * G (x - 2); 

end; 

1.12 Given the following recursive definition: 

function F (m,n: integer): integer; 
begin 

if n = 0 then F := m 
else F := F (m,n - 1) + F (m + 1 ,n - 1); 

end; 

compute F(l,3). Show your intermediate evaluations. 

f 1.13 A partition of an integer n is a decomposition of n into summands. For 

example, the integer 4 can be partitioned in five distinct manners, as follows: 

l+l+l+l 1+1+2 2+2 1+3 4 

The number of partitions of n is denoted by P{n), and we see that P(4) = 5. In 

general, P(n) can be computed recursively via the introduction of Q(m,n), as follows: 



1.8 EXERCISES 31 

function Q (m,n: integer): integer; 
begin 

if (m = 1) or (n = 1) then 
Q := 1 

else if m <= n then 
Q := 1 + Q (m,m - 1) 

else 

Q := Q (m,n - 1) + Q (m - n,n); 
end; 

function P (n: integer): integer; 
begin 

P := Q (n,n); 
end; 

Compute P(7), showing your intermediate evaluations, 

tt 1-14 Given the following recursive definition: 

function F (m,n: integer): integer; 
begin 

if m * n = 0 then F := m + n + 1 
else F := F (m - 1,F (m,n - 1)); 

end; 

compute F(4,l). Show your intermediate evaluations. 

11-15 Given two functions fin) and g{n), prove or disprove the necessity that 
either/(n) = 0(g(n)), or g(n) = 0(f(n)), or perhaps both. 

1.16 Write an efficient function in Pascal for computing the nth power of a 

number, where n is a non-negative integer that may be quite large in practice. (Do 

not use logarithms.) Test your program with several moderate examples, such as 323 
and 277. What is the complexity of your algorithm? 

11-1*7 [Dijkstra 1976] Write an efficient procedure to find all the distinct integer 

solutions of the equation x2 + y2 = r. Test your program by applying it to r = 9425. 
What is the complexity of your algorithm? 

ft 1-18 The complexity classes discussed in Section 1.3.2.1 are adequate to encom¬ 

pass the great majority of situations. But there are other possibilities as well. 

Classify the following functions into complexity classes, arranged from low to high. 

A class might contain more than one function; that is, it might contain / and g 
such that f = 0(g). 

log n log log n n\os\ogn 

n (\g n'fl2 nOg^)2 

n Ig n (log n)10 n,l9n*1/2 

n2 Ig n2 n72 
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Section 1.4 

1.19 Give a brief comparison of the control structures in Pascal with those in any 
other language of your choosing. If the language you choose for comparison does 
not have the control structures repeat ... until, while ... do ..., or case ... of ... 
end, sketch how their effects could be obtained with the control structures that your 

language does have. 

1.20 Discuss the distinctions between the typing facilities in Pascal and the typing 

provided with ADT’s. 

f 1.21 For the following program: 

program FRAGMENT; 

var u,v,w: integer; 

procedure JUNK (p,q: integer; var r,s: integer); 
begin 

r := p * q; 
s := (p + q) * r; 

end; 

begin 
u := 4; v := 3; w := 7; 
JUNK (u,v,v,w); 

end. 

(a) What will be the final value of w? 

(b) What will be the final value of w if the header for JUNK is changed as 

follows: 

procedure JUNK (p: integer; var q,r,s: integer) 
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ARRAYS and SETS 

“Now go, write it before them in a table, and note it 
in a book, that it may be for the time to come ...” 

Isaiah 30: 8 

Imagine a deck of playing cards in a neat pile. Then imagine that same deck of 

cards scattered over the floor. What is the essential difference? Succinctly, in the 

first case the cards form an array, with an associated sequence; and in the second 

case the cards form a set, without any order. In this chapter we will examine both 
of these data structures, with an emphasis on the array. 

The array is a data structure that is undoubtedly familiar to most readers. 
There are two reasons for this: 

• Arrays are a very natural and efficient structure for many operations with data, 
as witness tax tables, time schedules, etc. 

• Almost all HLL’s reflect this fact by providing constructs that facilitate oper¬ 
ations on arrays. 

Sets, on the other hand, tend to be disquieting to most non-mathematical readers, 
and they are seldom supported directly in HLL’s. 

This chapter begins with some very basic material on arrays, after which some 

examples of array usage are covered. Sets are then discussed, and some relation¬ 

ships between these data structures are developed. Their placement at this point in 
the book reflects our desire to be able to: 

• talk about sets in terms of arrays, and then immediately 

• talk about arrays in terms of sets. 

Finally, the last half of the chapter has a broader treatment of the nature and utility 

of arrays than an ordinary programming course might provide. Although most of 

our presentation of arrays is in terms of Pascal, we will also call attention to ways 

of thinking about arrays that are not possible in most programming languages. 
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2.1 ONE-DIMENSIONAL ARRAYS 

The basic concept of an array suggests an ordered list, such as scores: 75, 90, 63, 
82, 74, 88. In this simple example, we see three important features of an array: 

1. It can have an arbitrary name, in this case scores. 
2. It contains some definite number of elements of the same type, which in this 

case is integer. 
3. The elements of the array have a de facto ordering, so that we can refer, for 

example, to the third score as being 63. 

Unfortunately, the reasonable notion of a one-dimensional array as a "list" is sure 
to engender confusion when we come to Chapter 4. Thus we will eschew the term 

list in our discussion of arrays in this chapter. 

A mathematician or a scientist would most likely refer to the third score as 
scores3 = 63, using a subscript value of 3. However, programming languages do not 
admit subscripts, superscripts, and other elements ot general mathematical notation: 
instead, for referencing an element of an array, they usually employ one or the 
other of the notations scores (3) or scores [3], which are referred to as both 
subscripts and indices. Parentheses are employed in some languages, such as BASIC 
and FORTRAN, and brackets are employed in some other languages, such as APL 

and Pascal. 

If we think about it, our example is implicitly a set of ordered pairs of 

scores: (1,75), (2,90), (3,63), (4,82), (5,74), (6.88) 

except that we do not need the first member of each pair as long as we keep 
elements in their proper sequence. In many cases in both mathematics and comput¬ 
ing, it is desirable to start counting with zero (0-origin) rather than one {1-origin). 
A compelling example of this is the memory of a computer. Addresses or locations 
in memory always start with the value of zero. If a hypothetical computer had 100 
memory locations, we would reference them as memory [0], memory [1]. 

memory [99]. 

In our example, using 0-origin, the ordered pairs would be 

scores: (0,75), (1,90), (2,63), (3,82), (4,74), (5,88) 

A potential problem here is to know what is meant by scores [3]. Does it refer to 
63 or to 82? A language that allows these tw'o interpretations will also provide a 
means for specifying which meaning is intended. Even more generally, we can allow 
the first members of our pairs to begin with any integer value, as in 

scores: (6,75), (7,90), (8,63), (9,82), (10,74), (11.88) 

or in 

scores: (-2,75), (-1,90), (0,63), (1,82), (2,74), (3.88) 

Although this may seem strange, it means that we can now label the elements of our 
array in a possibly more natural manner. For example, we may have an array of 
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o&n Payment amounts versus interest rates, in which it is realistic to speak of rates 
o 7 8,..., 20 (percent). With such flexibility, there must be some means of specify- 
mg the intended index values. In Pascal, the declaration of an array always 
includes this information, as in 

scores: arraY [6 .. 11] of integer, or scores: array [ -2 .. 3] of integer. 

Note that the declaration of an array contains the composite specification of 
two types, the index type and the base type. The base type may be of a very general 
nature. It is integer m the above examples, but it might have been character or real 
or even some user-defined type. However, the index type must be that of a set of 
ordinal values. As in the previous examples, it is usually a subrange type, but it 
may also be an enumerated type, as in 

type workweek = (Monday,Tuesday, Wednesday,Thursday, Friday); 
activity = (reports,plans,laboratory,study,meetings, travel); 

var schedule: array [workweek] of activity; 

so that we might, for example, encounter schedule [Tuesday] ; = study. 

1 he basic operations with arrays are very simple. The index, or subscript, is 
used to select a position within the array; and either the value in that position is 
retrieved, or a value is assigned to that position. An important aspect of these 
operations is that the index may be an integer constant, an integer-valued variable, 
or even an integer-valued expression. Alternatively, retrieval or assignment can be 
applied to the entire array, treated as one composite value (see Section 2.3.1). 

2.1.1 Sequential Storage Allocation 

Since the one-dimensional arrays that we have described so far are sequences of 
elements, and computer memory is itself a sequence of locations, it is simple and 
natural to accommodate arrays in computers by mapping one sequence to the other. 
Thus, if the array soup: array [2 .. 11] of char is stored in memory beginning at 
location 1210, then soup [2] will be in 1210, soup [3] will be in 1211, ... , soup [11] 
will be in 1219. (This presumes that each addressable memory location holds one 
character, as is the case in byte-oriented computers.) More generally, if 
x: array [s.. /] of char with lower index bound s and upper index bound t is stored 
in memory beginning at location b, then 

loc (x [7]) = b + (i-s) (2.1a) 

However, other base types may require more than a single byte of storage per 
element. Let us denote by int_size and real_size the amount required for integers 
and reals. As we cited in Section 1.1.1, these would commonly be 4 and 8 bytes, 
respectively. Thus, if y: array [5 .. t] of integer is stored in memory beginning at 
location b, then 

loc (y [z]) = b + (z — s) x int_size 

and if z: array [s .. /] of real is stored in memory beginning at location b, then 

(2.1b) 
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loc (z [*]) =b + (i-s)x real_size (2.1c) 

2.1.2 Searching an Array 

An array is very commonly used for storing groups of related values as a table. In 
a table there is usually one value from each related group that uniquely identifies 
the group. This is sometimes called the argument, but the term key is used more 
commonly in computing. The notion is that one searches the table to see if an 
input value (the key) is present, and if so, where it is in the table. By finding where 
the key is located in the table, one can also locate the data related to the key. A 
familiar example of this process is that of finding the address and telephone number 
of a person by looking-up his name in a directory. In a vastly simplified fashion, 
these few sentences represent what Chapter 10 (Searching) is about. They are 
presented here as background for the function SEARCH.A (Algorithm 2.1), which 
searches for a key in an array of unordered numerical values. It takes two argu¬ 
ments, tbl for the name of the array to be searched, and an input value of key. If 
key is present, SEARCH_A returns its index within tbl, otherwise, it returns the 
value 0. Note that SEARCH_A violates Pascal syntax (see Section 1.4.1) by having 
the type table defined within the function rather than previous to it. SEARCH_A 
scans the table from the bottom to the top, which is slightly faster with some 

computers; however, that is of minor importance. 

function SEARCH.A (tbl: table; key: integer): integer; 

type table = array [1 .. n] of integer; 

var i: 0 .. n; 

begin 
i := n; 
while (key <> tbl [i]) and (i <> 1) do 

i := i - 1; 
if key = tbl [i] then SEARCH_A := i 

else SEARCH_A := 0; 
end; 

Algorithm 2.1 SEARCH_A 

To illustrate matters, suppose that we have a table t: array [1 .. 9] of integer 
containing the values 22, 17, 5, 65, 48, 83, 19, 28, 52. Then SEARCH_A (*,65) 
returns the value 4, SEARCH_A (*,34) returns the value 0, SEARCH_A (*,52) 
returns the value 9, etc. Note the compound test for termination either upon find¬ 
ing key in tbl or upon reaching the end of the table; similarly, it is necessary to 
discriminate between these causes after leaving the iteration. 

Even as simple an algorithm as SEARCH_A can be made more efficient via a 
simple modification. Most of the work in SEARCH_A is done in the while loop. 
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However, the decrementing of the variable i will, on most machines, take much less 
time than the double test for termination. This situation can be improved by the 

tactic illustrated m the function SEARCH_B (Algorithm 2.2). Here, a O’th location 

is maintained at the head of the table for storing the value of key prior to iteration. 

Since this guarantees that key will always be found, only a single termination condi¬ 

tion is required. We are also able to dispense with the test after termination. It is 

very common to use a special value in a last or first position of a data structure as a 

signal that we have reached the boundary of the structure. A data value used in 

this fashion is called a sentinel. What are the complexities of SEARCH_A and 

SEARCH_B? Indefinite iteration is used in both cases; however, the maximum 

number of iterations is bounded by n, the size of the table, in both cases. Thus the 

complexity is 0(n) for the two algorithms, although the second one is superior 
because of its smaller constant factor. 

function SEARCH_B (tbl: table; key: integer): integer; 

type table = array [0 .. n] of integer; 

var i: 0 .. n; 

begin 
i := n; 
tbl [0] := key; 
while key <> tbl [i] do 

i:= i - 1; 

SEARCH_B := i; 
end; 

Algorithm 2.2 SEARCH_B 

2.2 MULTI-DIMENSIONAL ARRAYS 

The preceding sections treated one-dimensional arrays, so called because they can 

be represented by listing their elements in one dimension, as in a line or a row. It is 

very common, however, to deal with information that is most naturally represented 

via arrays with two dimensions, as in the typical tax table shown in Figure 2.1, or 

even three or more dimensions. Arrays of more than three dimensions can be 

awkward to visualize or to represent in a drawing; but these perceptual issues are 

largely irrelevant to computers and programming languages. First, we will consider 

how arrays of progressively higher dimension generalize Eqs. 2.1; then we will 

examine the effects of using some special kinds of arrays. 
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Income (to 
nearest $1000) 2 

Number of Dependents 
3 4 5 6 

10 900 720 550 390 240 

11 1090 900 720 550 390 

12 1310 1090 900 720 550 

13 1530 1310 1090 900 720 

14 1760 1530 1310 1090 900 

15 2000 1760 1530 1310 1090 

16 2240 2000 1760 1530 1310 

17 2480 2240 2000 1760 1530 

Figure 2.1 A Table of Tax Liability 

2.2.1 Storage Allocation Functions 

Look at Figure 2.1 and you will note that it can be regarded in three different ways: 

1. as a two-dimensional array of integers 

array [10 .. 17,2 .. 6] of integer 

2. as a one-dimensional array of rows of integers 

array [10 .. 17] of array [2 .. 6] of integer 

3. as a one-dimensional array of columns of integers 

array [2 .. 6] of array [10 .. 17] of integer 

Indeed, in Pascal and in some other programming languages, it is quite possible to 
define multi-dimensional arrays recursively, as in methods 2 and 3 above. Method 
1 seems more natural, however, and we will adhere to it in this book. 

Although we will be using the first method, the ambivalent views suggested by 
the other two methods raise a problem. How should an array that is two-dimen¬ 
sional be stored in computer memory, which is one-dimensional? Should we store 
all the first row, then all the second row, etc. (row-major order)-, or should we store 
all the first column, then all the second column, etc. (column-major order)? 
FORTRAN employs column-major order, but almost all other programming 
languages employ row-major order. You may wonder why this would matter, and 
why it would not be transparent in an HLL. The problem is that it occasionally 
ceases to be transparent. For example, in an I/O operation of an entire array, the 
default sequence in which the elements appear would reflect their internal storage 

allocation. 

Let us suppose now that an array 

x: array [si .. fj, $2 •• of base_type 

with lower/upper index bounds sjtj is stored in row-major order beginning at 
location b. In this declaration, base_type denotes character, integer, real; corre- 
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spondingly, base_size denotes the size of one element of that type. The storage 
allocation function is then 

loc (x [ij]) = b + [n2(i — ^]) + (j — S2)] x base_size (2.2a) 

where n2 = t2 - s2 + 1 is the number of elements in any row. This equation states 
that, in order to find the location of the element in the zth row and the yth column, 
we must start at b, increment sufficiently to step over (i — j5) rows, and then incre¬ 
ment past (j — s2) elements in the next row. If, on the other hand, the array is 
stored in column-major order, then the storage allocation function is 

loc (x [zj]) = b + [«](/' — s2) + (i — 5j)] x base_size (2.2b) 

where n} = tx — sx + 1 is the number of elements in any column. Note that for an 
array with m rows and n columns, stored in row-major order (with 1-origin index¬ 
ing) the subscripts of array elements as they occur in storage sequence are 
11, 12,..., \t2,,21, 22,..., 2t2,..., tx\, tx2,..., txt2. In other words, the rightmost 

subscript varies most rapidly and the leftmost subscript varies least rapidly, in the 
manner of an odometer. You should be able to easily satisfy yourself of the truth 
of Eqs. 2.2. 

If we consider next a three-dimensional array 

.x: array [S] .. fi, s2 .. t2, Sj .. t3] of base_type 

with lower/upper index bounds s,/r„ and stored in row-major order beginning at 
location b, then 

loc (x \ij,k~\) = b + \n2n^{i — .s’j) + n3(/' — s2) + (k — 53j] x base_size (2.3) 

where nd = td — sd + 1 is the number of elements in the dth dimension. As we 
proceed to higher dimensions, the term row-major order is conventionally extended 
to again mean that the subscripts vary with rapidity which diminishes as we read 
from right to left; and the term column-major order is extended to signify the 
opposite, that the rapidity diminishes as we read from left to right. This is so 
despite the fact that for purposes of translating three-dimensional array notation to 
a picture, it is conventional to regard the first subscript as selecting a plane, the 
second subscript as selecting a row, and the third subscript as selecting a column. 

A better term for describing this odometer type of storage allocation is lexico¬ 
graphic ordering. This term signifies that, in comparing two sequences 

A: ah a2,..., an and B: bh b2,..., bn 

to determine whether A precedes B or B precedes A, we start with al and bx and 
examine successive pairs, a, and bh until the first pair is found for which a, A bt. The 

order between A and B is then the same as the order for that pair. Note that this is 
the same rule used to order words in a dictionary. To illustrate matters more 
concretely, if we have 

y: array [3 .. 4,1 .. 3,-2 .. 2] of integer 
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2040 
3,1, - 2 

2044 

3,1, - 1 

2048 
3,1,0 

2052 
3,1,1 

2056 
3,1,2 

2060 
3,2, - 2 

2064 
3,2, - 1 

2068 
3,2,0 

2072 
3,2,1 

2076 
3,2,2 

2080 
3,3, - 2 

2084 

3,3, - 1 

2088 
3,3,0 

2092 
3,3,1 

2096 
3,3,2 

2100 
4,1, -2 

2104 
4,1, - 1 

2108 
4,1,0 

2112 
4,1,1 

2116 
4,1,2 

2120 
4,2, - 2 

2124 
4,2, - 1 

2128 
4,2,0 

2132 
4,2,1 

2136 
4,2,2 

2140 
4,3, - 2 

2144 

4,3, - 1 

2148 
4,3,0 

2152 
4,3,1 

2156 
4,3,2 

Figure 2.2 Lexicographic Allocation 

stored in row-major order beginning at location 2040, then Figure 2.2 shows the 

correspondence between subscripts and memory locations. 

For the general case of an r-dimensional array 

x: array .. t\, s2 .. t2,..., sr .. /,.] of base_type 

stored in row-major order beginning at location b, then 

loc (x [q, i2,..., irD = 

b + 

r > 

{i\ - ^i) x Y\n<i + (h - s2) x Y\nd + + & “ Jr) 
d= 2 d=3 

x base size 
(2.4) 

where nd = td — sd + 1 is the number of elements in the dth dimension. 

The formulas in this section are useful for several reasons. You may have , to 
identify array elements in an unformatted printout, or perhaps write programs to 
perform array manipulations in a language without array facilities (such as assembly 
language), or even write a compiler for a language that supports arrays. In the 
latter two cases, the preceding formulas can be usefully rearranged. As an example 
of this, consider Eq. 2.3. It can be rewritten as 

loc (x [/,/,/c]) = (b — ln2n3sl + n2s2 + s3] x base_size) + (n2n3 x base_size) x i 

+ (n3 x base_size) xj + base_size x k (2.5) 

=p+qxi+rxj+sxk 

where p,q,r,s are constant values that can be pre-computed once the array has been 
allocated in storage. For the example array in Figure 2.2, Eq. 2.5 would reduce to 

loc (x — 1848 -I- 60 x i + 20 x j + 4 x k 
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In practice, compilers pre-compute these constant values wherever possible — 
for example, if the array bounds are constants. These and other constants associ¬ 
ated with the array, such as array dimensioning information, are stored within the 
compiled program as a dope vector for that array. The dope vector facilitates rapid 
reference to arbitrary elements of an array during program execution. Note that in 
Eq. 2.5 it costs just three multiplications and three additions to compute the 
location of an array element, as compared with four multiplications and six addi¬ 
tions in Eq. 2.3. The savings rapidly become more significant as the number of 
dimensions in an array increases. 

2.2.2 Triangular Arrays 

Conventional arrays have some shortcomings as structures for describing and repre¬ 
senting data in computers. We will explore these shortcomings and some remedies 
in the last half of this chapter; however, it is worth considering one particular situ¬ 
ation at this point. Note that the cardinality of an array is the product of its 
dimensions. In the array of Figure 2.2, for instance, the cardinality is 
2 x 3 x 5 = 30. These numbers were deliberately chosen to be small, but arrays of 
just a few dimensions of moderate size can easily swamp the memory of a small 
computer. 

(a) Symmetrical Array (b) Triangular Array 

Figure 2.3 Redundant Array Elements 

In real life applications, however, arrays often have special structures that allow 
the storage requirement to be reduced. Two such cases are illustrated in Figure 2.3, 
where we see 

(a) a symmetric array, in which atJ = ajt, and 

(b) a triangular array, in which aLJ = 0 for i < j. 

In both cases, it would be redundant to allocate storage for the entire square two- 
dimensional array; there is no essential information above the diagonal from 
element a [1,1] to element a [«,«]. 
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In allocating storage for triangular arrays (and for symmetric arrays, which can 

be represented by triangular arrays), we can place the rows one after the other - 

the first requiring one location, the second requiring two locations, ... , up to the 

zth with i locations. This means that the ith row begins after the 

1 + 2 + 3 + - + / - 1 
i x (i - 1) 

2 

locations needed for the preceding i — 1 rows, so that the storage allocation {unc¬ 

tion becomes 

loc (x [ij]) = b + 1 X--1-—— +jj x base_size (2.6) 

Although our storage allocation function is still fairly simple, it is nonetheless quad¬ 

ratic in i instead of linear; moreover, such a mapping into memory is not supported 

by most general purpose HLL’s. Thus, in order to obtain this saving, the user 

would have to declare a one-dimensional array and then explicitly employ the 

indices i and j to compute the offset into that array, using Eq. 2.6. 

Xn\ 
\Y11 

V21 y3i V41 ^51 

X21 x^\ , Y22 V32 Ya2 Y52 

X31 X32 x^N \V33 Y43 Y53 

X41 X42 X43 X4N v V44 Y54 

X51 X52 X53 X54 Xss^ \ Y55 

Figure 2.4 Two Triangular Arrays 

It is also possible for a problem to have a pair of triangular arrays, x and y, of 

the same size n. In that case, they can be placed in memory together as one rectan¬ 

gular array of size n x (n + 1), as shown in Figure 2.4. The composite 

two-dimensional array z can be declared in a straightforward manner, and then 

xij = zij and y>J = zj,i+\ (2-7) 

It is possible to generalize the ideas of this section to arrays of higher dimensions. 

In this case they are called tetrahedral arrays (see Exercise 2.21). 
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2.3 EXAMPLES OF ARRAY USAGE 

Since arrays are so widely used in computing, a thorough survey of their applica¬ 
tions would be very large indeed. We will endeavor to convey some of this variety 
by considering arrays from three different points of view. First, we look at arrays 
from the point of view of geometry and information content. Second, we address a 
few of the vast number of algebraic techniques for dealing with two-dimensional 
arrays. And lastly, anticipating some special techniques for dealing with arrays of 
boolean base type, we look at the nature and implementation of decision tables. 

2.3.1 Cross Sections 

Let us suppose that we have taken a survey ol a group of persons with respect to 
their sex, education, and marital status. The expected responses to these queries are 
as follows: 

sex male or female 
education completed primary, secondary, or college 

marital status single, married, divorced, widowed, or other 

The responses are totalled and then recorded in 

survey: array [1 .. 2,1 .. 3,1 .. 5] of integer 

In accordance with the conventional view of subscripts in three-dimensional arrays, 
as cited in Section 2.2.1, we interpret our array as having two planes, three rows, 
and five columns. The actual data is as shown in Figure 2.5, and a pictorial repre¬ 
sentation is given in Figure 2.6. 

male 
single married divorced widowed other 

primary 20 17 9 11 14 
secondary 32 13 7 5 10 
college 11 9 11 8 12 

female 

primary 33 28 6 14 17 
secondary 21 24 13 8 15 
college 19 17 4 5 20 

Figure 2.5 Example Data in Three Dimensions 

From survey [1,2,3] = 7, we can then, for instance, read that there are 7 male 
high school graduates that are divorced. When dealing with arrays, it is common to 
be concerned with all the elements in a cross-section or hyperplane, in which some 
indices are held constant and the remaining indices range over all their permissible 
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survey [1„3] survey [„4] 

values. Thus, by survey [,,4] we signify all elements in the fourth column, over all 

planes and all rows; this corresponds to the plane of elements 

11 14 
5 8 
8 5 

namely, all the widowed persons. Or, by survey [1„3] we signify all the elements in 
the first plane and the third column; this corresponds to the line of elements 

9 7 11 
namely, all the divorced males. Our first example is a two-dimensional cross-sec¬ 
tion, and the second example is a one-dimensional cross-section. In arrays of higher 
dimension, the geometrical analogy falters, and we simply speak of hyperplanes. 

Note that the notations survey [„4] and survey [1„3] are not supported in 
Pascal. Hyperplane notation is permitted in Pascal only when trailing consecutive 
subscripts are omitted — for example, survey [1] or survey [2,1] — and then only 
within simple assignment statements. However, more general use of cross-sections 
is allowed in some other programming languages, such as PL/I and APL. 

2.3.2 Linear Algebra 

Linear algebra deals extensively with properties of one-dimensional arrays, called 
vectors, and two-dimensional arrays, called matrices. These structures are funda¬ 
mental to all of engineering and scientific computation. 

The (inner) product of two vectors u and v is defined as the sum of products 
XX x vi- Thus, for u = (11, 5, —7, —2) and v = (1, —3, 9, —27), their product is 

11 x 1 + 5 x -3 + -7 x 9 + -2 x -27 = -13 

Note that two vectors can be multiplied in this fashion only if they have the same 
number of elements. Inner products are a useful way of expressing many common 
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situations. For example, the preceding multiplication could represent the evaluation 
of the polynomial 

0123 
f{x) = CIqX + fljX + Q2X + a-px 

where the ut are the coefficients a, and the v,- are the powers jc', for jc = —3. 

program MAT_VEC; 

{computes product of matrix A and vector u, in vector v} 

var i,j: integer; 
sum: real; 
A: array [1 .. m,1 .. n] of real; 
u: array [1 .. n] of real; 
v: array [1 .. m] of real; 

begin 
for i := 1 to m do begin 

sum := 0; 
for j := 1 to n do 

sum := sum + A [i,j] * u [j]; 
v [i] := sum; 

end; 
end. 

Algorithm 2.3 MAT.VEC 

This concept extends with beautiful simplicity to the multiplication of a matrix 
A by a vector u, as long as the matrix has dimensions m x n and the vector has 
dimension n. Thus, the matrix has m rows, each of which can be regarded as a 
vector of dimension n; and we can then multiply A [1, ] by u to obtain a value, 
multiply A [2, ] by u to obtain another value, etc. These values taken together 
constitute a new vector v, of dimension m, with one element corresponding to each 
row of A. This is illustrated by the program MAT_VEC (Algorithm 2.3). 

These ideas can be generalized yet again to yield the product of two matrices 
C = A x B, if the dimensions of A and B are conformable, that is, if they match up 
properly. For instance, if A has dimensions mxn and B has dimensions n x p, then 
they can be multiplied to yield C with dimensions mxp. To see this, regard the p 
columns of B as p vectors, and then multiply A x B [,1] to obtain the vector C [,1], 
followed by A x B [,2] to obtain the vector C [,2], etc. In general, the element 
C [if] is obtained by taking the vector product of the ith row of A and the yth 
column of B. This is illustrated by the program MAT_MAT (Algorithm 2.4). 

If you are not already familiar with these basic concepts from linear algebra, 
then you might consult one of numerous books on the subject, such as Birkhoff and 
MacLane [1977]. Our principal concern here is to call attention to the manner in 
which the computational complexity increases in the preceding sequence of 
processes. For a vector of n elements and a matrix of n x n elements, we see that: 

• to multiply a vector by a vector is 0(n); 
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program MAT_MAT; 

{computes product of matrix A and matrix B, in matrix C} 

var i,j,k: integer; 
sum: real; 
A: array [1 .. m,1 .. n] of real; 
B: array [1 .. n,1 .. p] of real; 
C: array [1 .. m,1 .. p] of real; 

begin 
for i := 1 to m do 

for j := 1 to p do begin 
sum := 0; 
for k := 1 to n do 

sum := sum + A [i,k] * B [k,j]; 
C [i,j] := sum; 

end; 
end. 

Algorithm 2.4 MAT_MAT 

• to multiply a matrix by a vector is 0(/i2); 
• to multiply a matrix by a matrix is 0(«3). 

These three values reflect the customary practice of equating the size of a matrix 
problem to the length along one dimension. Note that this convention conflicts 
with another, which measures the size of a problem by the amount of associated 
input data. With the latter convention, since the amount of data increases as 0(n2) 
and the work increases as 0(n3), we would be led to say that the complexity of 

matrix multiplication is 0(n312). 

There are many other basic and useful operations in linear algebra in addition 

to those shown in Algorithms 2.3 and 2.4. Perhaps the most common is that of 
solving a set of simultaneous linear equations, such as the following 

a\,\x\ + al,2x2 d-h a\,nxn = h 

a2,\x\ + a2,2x2 d-b a2,nxn = b2 ^ 8) 

an.\x\ d~ an,2X2 d-b an,nxn = K 

These can be written (and thought of!) much more simply as Ax = b, where 

A is the (square) matrix of coefficients atJ 

x is the vector of unknowns Xj 

b is the vector of right-hand sides of the equations bt 

There are several methods for solving such a set of simultaneous equations. One 

that is commonly taught and fairly easily understood is known as Gaussian elimi¬ 

nation. The basic idea is to use the first equation to eliminate the first unknown 

from all succeeding equations, then use the second equation to eliminate the second 

unknown from equations below it, etc. These eliminations are accomplished by 
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repeatedly transforming the coefficients of matrix A and vector b to new values A' 
and b until the matrix is triangular. In this process, if the z'th equation is being 
eliminated from those below it, then the element au is the pivot element, the basic 
elimination step, to be applied for all i < j and i < k, is 

a j,k ~ aj,k ~~ aj,i x ai,k I ai,i 

b'j = bj ~ aj,tx h I au (2'9) 

For k = i, it is easy to see that the coefficients below the pivot element vanish, so 
that the matrix of coefficients becomes triangular. At that point it is possible to 
solve the last of the equations for xn = bn / ann. This value of xn can then be substi¬ 
tuted in the next-to-last equation to solve for xn_i, both of these values can then be 
substituted in the equation before that to solve for x„_2; and so on, up to xv Thus 
Gaussian elimination consists of two processes: a forward elimination step to bring 
the coefficients to triangular form, and a backward substitution step to solve for the 
values of the unknowns. In this method the forward elimination step has a 
complexity of 0(n3), and the backward substitution step has a complexity of 0(n2). 
The details of an algorithm to accomplish a solution in this manner are left as an 
exercise (see Exercise 2.10). 

Matrix multiplication and the solution of systems of linear equations are oper¬ 
ations of pervasive significance throughout scientific and engineering computation. 
These operations also serve as paradigms for other computations. In particular, the 
complexity of 0(n3) for matrix multiplication will be cited several times in this book 
as a paradigm of the performance of various other algorithms. 

2.3.3 Decision Tables 

In Section 1.4.1 we alluded to decision tables as an alternative formalism for repre¬ 
senting the logic of algorithms. Their utility in this regard traditionally has been 
more apparent in business data processing than in scientific computation. In our 
case, it is the techniques for manipulating decision tables that are of most interest. 
For the reader unfamiliar with decision tables [§], we present some introductory 
material in the next few pages. Knowledgeable readers may wish to skip to the next 
section. 

By well established convention, decision tables are drawn, as in Figure 2.7, with 
four quadrants containing the following parts: a condition stub (northwest), condi¬ 
tion entries (northeast), an action stub (southwest), and action entries (southeast). 
This table illustrates how a student might decide algorithmically whether to study 
and/or watch television and/or sleep and/or walk the dog, when confronted with the 
circumstances for an evening and the next day in school. 

The columns in the entries half of the table correspond to different decision 
rules to be applied. In any given situation, each condition stub evaluates to 
Yes/True or No/False; the rule to be applied is then that for which the column of 
condition entries matches the actual vector of condition values. In operational 
terms, the condition values in different rows and the same column are combined 
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fll R2 R3 R4 R5 R6 R7 R8 R9 RIO fill R12 

Cl: homework 
C2: test day 
C3:good TV 
C4: tired 

yyyyyyyynnnn 
yyyynnnnnnnn 
yynnyynnyynn 
YNYNYNYNYNYN 

>41: study 
>42: watch TV 

>43: sleep 
>44: walk dog 

X X X X X X X 
XX XX 

X X 
X 

Figure 2.7 Decision Table (Limited Entry) 

with logical AND; the rule to be applied corresponds to that column for which this 

logical AND evaluates to True. Reading down that column, we then perform those 
actions for which there is an X; note that there should be just one final rule, but 

that this rule may entail more than one action. Thus, in the table, if conditions Cl 
and C3 are true and conditions C2 and C4 are false, then we should perform rule 

R6, invoking actions Al and A2. 

school test test test test hw hw hw hw none none none none 

TV fare good good poor poor good good poor poor good good poor poor 

energy down up down up down up down up down up down up 

school work work work work work work work 
other TV TV sleep TV TV sleep dog 

Figure 2.8 Decision Table (Extended Entry) 

The decision table in Figure 2.7 is called a limited entry decision table. Figure 
2.8 shows the same problem expressed in a different form, which is called an 
extended entry decision table — wherein entries can be more general than Y,N,X, or 
blank. Note that extended entries allow a decision table to be compressed verti¬ 

cally. Both limited entry and extended entry tables are widely used, with limited 
entry being somewhat more common. The choice is primarily one of convenience, 
since it is simple to transform from extended entry to limited entry. 

Obviously, if we have n independent limited entry conditions to be tested, then 
there are 2" possible columns of rules; thus, decision tables can rapidly become 

unwieldy with even a modest number of conditions. Fortunately, it is usually possi¬ 
ble to apply the process of condensation to decision tables, shrinking them 
horizontally by means of don’t-care entries, denoted with Thus, in Figure 2.9, 

note that when conditions Cl and C3 are true, then condition C2 is irrelevant. The 
form in Figure 2.9 is termed a fully expanded decision table. Using don’t-care 
entries, it can be condensed to the form shown in Figure 2.10(a). The table also 
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illustrates the use of the ELSE rule, to be applied when the given values of the 
conditions match none of the sets of condition values in the other rules. 

Figure 2.9 A Decision Table to be Condensed 

R1 R2 R3 ELSE 

Cl Y N Y 
C2 Y 
C3 N N Y 

A1 X X 
A2 X 
A3 X 

R1 R2 R3 ELSE 

Cl Y Y 
C2 Y N 
C3 N N Y 

A1 X X 
A2 X 
A3 X 

(a) (b) 

Figure 2.10 Two Condensations of Figure 2.9 

Unfortunately, the process of condensation may not be unique, as shown by 
Figure 2.10(b). Systematic techniques for performing condensation, based on 
Karnaugh maps and Quine-McCluskey simplification, are discussed in Shwayder 
[1975]. Applying condensation to a decision table in an ad-hoc manner is also 
hazardous. The resulting table runs the risk of having one or more of the following 
properties: 

1. Redundancy. A rule (that is, a set of condition entries along with a set of action 
entries) may be repeated or subsumed in another rule. 

2. Inconsistency. There may exist rules having identical condition entry values but 
different action entries; 

3. Incompleteness. Some possible set(s) of condition values may not be covered by 
the rules in the table. 

It is easy to check for these properties in a fully expanded decision table, and there 
are also techniques to check for them in condensed tables. 

However, there is another issue that is not as readily verified by machine. 
Suppose that some of the condition stubs are not logically independent, as in Figure 
2.11, which indicates how bus fare is to be charged. If condition Cl is true, then 
condition C3 cannot be true; this means, in turn, that a fully expanded form of 
Figure 2.11 should have less than 2n rules. So, in a given decision table in 
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R1 R2 R3 R4 R5 

Cl: senior citizen 
C2: handicapped 
C3: child 
C4: commute hour 

Y Y N N N 
Y N N 

Y N 

NY- 

AV. ride free 
A2: pay reduced fare 
/43: pay full fare 

X 
XXX 

X 

Figure 2.11 Non-Independent Conditions 

condensed form and with dependent condition stubs, confirming that there are no 

ambiguous situations in the table is a more subtle process. 

2.3.3.1 The Rule-Mask Technique. As stated previously, our interest is discovering 
how to convert a decision table array to a machine computation. To this end, we 
are not concerned with the specifics of the action entries, but only with the determi¬ 
nation of the proper rule, given a set of conditions. There are two general methods 
for converting a set of conditions to the correct rule. The first of these is the rule- 
mask technique, which we will discuss in this section. The second method is based 
upon decision trees, and so is deferred to Chapter 6. 

R1 R2 R3 R4 R5 

Cl Y Y N N — 1 
C2 Y N N Y N 
C3 — Y Y — N 

Figure 2.12 A Decision Table to be Evaluated 

Suppose that we have the condition entries from a decision table, as shown in 
Figure 2.12. In order to use this method, we need to perform three actions, as 
follows: 

1. Convert the decision table into two boolean matrices: the truth matrix, with a 
value of 1 (True) where the decision table has either “Y” or “ —” and a value of 
0 (False) where it has “N”; and the falsity matrix, with a value of 1 (True) 
where the decision table has either “N” or “ - ” and a value of 0 (False) where 
it has “Y.” For the data of Figure 2.12, the result of this process is illustrated 
in Figure 2.13. 

2. Evaluate all the conditions and generate a boolean vector in which the ith bit is 
1/0, corresponding to the truth/falsity of the ith condition. 



2.3.3.1 THE RULE-MASK TECHNIQUE 51 

3. Finally, apply the algorithm shown by the program RULE_MASK (Algorithm 
2.5). Observe that it first generates a rule vector of all True’s, and then for 
each condition AND’s it against a corresponding row of one of the matrices 
truth or falsity, according to the value of that condition. At the conclusion, the 
vector rule will have the value True for all rules that match the actual condition 
values. 

fll R2 R3 R4 R5 

Cl 1 1 0 0 1 
C2 1 0 0 1 0 
C3 1 1 1 1 0 

fll R2 R3 R4 R 5 

Cl 0 0 1 1 1 
C2 0 1 1 0 1 
C3 1 0 0 1 1 

truth falsity 

Figure 2.13 Expansion of Figure 2.12 for RULE_MASK 

As an example, suppose that the conditions C1,C2,C3 had the respective values: 
True, False, True. Then the vector rule would go from 11111 to 11001 to 01001 to 
01000, indicating that rule 2 is to be applied. This formulation of the rule-mask 
technique has the advantage that it can also be used for decision tables in which 
more than one rule may satisfy a particular set of conditions. Moreover, the result¬ 
ant rule vector(s) can be AND’ed with the rows of the action entries, for the case 
where multiple actions are indicated. 

program RULE_MASK; 

{evaluates rule as a function of cond, falsity, and truth} 

var i,j: integer; 
cond: array [1 .. m] of boolean; 
rule: array [1 .. n] of boolean; 
falsity,truth: array [1 .. m,1 .. n] of boolean; 

begin 
for j := 1 to n do 

rule [j] := true; 
for i := 1 to m do 

if cond [i] then 
for j := 1 to n do 

rule [j] := rule [j] and truth [i,j] 
else 

for j := 1 to n do 
rule G] := rule G] and falsity [i,j]; 

end. 

Algorithm 2.5 RULE_MASK 
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The rule-mask technique is naturally efficient in terms of storage utilization, 
and it can also be made efficient via the use of parallel bit operations, as we will 
illustrate in Section 2.5.2. Although the rule-mask computation is simple, the calcu¬ 
lation of the values of the conditions may be rather costly. In many cases the 
proper rule could be determined without evaluating every condition. A variant 
known as the interrupt rule-mask technique relaxes this requirement, but at the 

expense of added computational complexity [King 1966]. 

2.4 SETS 

We now turn and examine the nature of sets. We have not given them a chapter of 
their own for reasons having to do with emphasis and sequencing of topic material. 
Specifically, we are concerned with sets as data structures more than as mathemat¬ 
ical objects. Thus, we wish to be able to talk about sets that are implemented as 
arrays; in turn, this representation of sets is central to some methods to be 
explained in Section 2.5. Therefore, we have placed the discussion of sets at this 
juncture. First, we give some background about sets as mathematical objects; next, 
we discuss them in the light of data structures for program manipulation. 

2.4.1 Sets in Mathematics 

A set is a collection of entities. In mathematics, there are two methods for defining 
what constitutes a set. With extension the members are explicitly exhibited, as in 

workdays = {Tuesday,Friday,Monday,Wednesday,Thursday} 

or 

colors = {blue,green,orange,purple,red,yellow} 

A more powerful concept is that of intension, whereby members are defined in terms 
of a property that they possess, as in 

prime_numbers = {all positive integers n, such that the only 
divisors of n are 1 and n} 

In mathematical notation it is conventional to denote set membership with braces, 
as in the examples. As we pointed out at the very beginning of this chapter, there is 
no notion of sequence among the elements of an ordinary set; they are like objects 
jumbled together in a bag. In this sense, sets are particularly distinct from arrays, 
where elements reside in sequential slots. 

There is another consequence of the lack of order in sets. By way of example, 
consider the cases of the array (4, 7, 5, 19, 7, 6, 4) and the set {4, 7, 5, 19, 7, 6, 4}. 
There is no difficulty with having repeated values in the array, since they are distin¬ 
guishable by their positions. In the case of the set, however, repeated values can 
lead to confusion. In point of fact, many treatments of sets do not allow such 
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duplication. Nonetheless, it is useful to be able to speak of cases such as: three red 
balls, two white balls, and seven blue balls. Sets in which repetition is allowed are 
termed multisets. 

Up to this point, our examples have been of sets whose members are simple 
entities: days of the week, colors, integers, etc. Much of the power of set theory, 
however, comes from being able to deal with sets whose members may themselves 
be composite items, such as other sets. Thus, consider the set 

fruit = {apple,banana,orange} 

and the following set of subsets of fruit.1 

salad = { { }, {apple}, {banana}, {orange}, {apple,banana}, 

{apple,orange}, {banana,orange}, {apple,banana,orange} } 

Since there are three fruits and each may or may not be present when we construct 
a subset, then there are of course 23 = 8 possible subsets, the collection of which 
defines the set salad. The possibilities for sets of more elaborate nature are not 
confined to the case just illustrated; but this construction of a set B of subsets of 
another set A is particularly important. The set B is called the powerset of the set 
A, sometimes denoted by B = 2A. Since 2A counts the number of possible values 
that can be assumed by a variable whose type is “set of A,” it is also the cardinality 
for that type. Be careful not to confuse this type cardinality for a variable of type 
set with the cardinality of the set itself, which is the number of objects in the set. 

Given a set S and an object t, a basic consideration is whether the object is in 
the set, expressed as t e S. A related but distinct question arises when we are deal¬ 
ing with two sets. The question then is whether one set is contained in the other or 
not, denoted by the (proper) inclusion operator <= rather than the membership opera¬ 
tor e. For example, {a,c}<^{a,b,c}. The operator c: is analogous to the operator < 
in ordinary arithmetic, while the operator c is analogous to the operator <.2 

Given two sets A and B, there are three basic binary operations that can be 
performed upon them. Using A = {p,q,r} and B — {r,s} as examples: 

1. Set intersection, A{~)B, yields the set consisting of all those entities that are in 
both A and B; thus Af]B = {r}. 

2. Set union, A\JB, yields the set consisting of all those entities that are in A or in 
B or in their intersection; thus A{JB — {p,q,r,s}. 

3. Set difference, A — B, yields the set consisting of all those entities that are in A 
but not in B; thus A — B — {p,q}, and B — A = {$}. 

1 The set {} with no members is called the empty set. Note that {apple} is not the same 
as apple. The former is a set with one member, apple-, the latter is not a set but rather 
just itself. This distinction may seem nitpicking, but it is highly significant. 

2 These analogies are imperfect because with the arithmetic operators we have a total 
order, whereas with the set operators we have a partial order. This matter is addressed 
in Section 7.4.5. 
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These basic notions that we have cited about sets may seem almost trivial. 
Nonetheless, they have been employed as the foundation for all of modem math¬ 
ematics, as we will illustrate in the next section. As a conclusion to this section, we 

should point out a hazard of combining two concepts introduced herein: 

• defining members of a set by intension, and 
• allowing members of a set to be sets. 

Imagine that we have a set U of persons in a town, and that one of them is a 
barber. Now define the set X to be the subset of U consisting of those people who 
do not shave themselves. If we assert that the barber shaves just those persons in 
set X, does he shave himself or not? If we say that he does, then since he shaves 
himself he cannot be in X, and so cannot shave himself. If we say that he does not 
shave himself, then he must be in X, which would mean that he does shave himself. 
This paradox, in different terminology, was known to the Greek philosophers. In 
the stated form, we can resolve it by insisting that since the hypothesis of such a 
barber introduces a contradiction, then no such barber can exist, and therefore there 
is no paradox. However, when expressed more carefully in terms of the class of all 
classes that are not members of themselves, the paradox is much harder to deal 
with. It was Bertrand Russell who finally proposed to resolve it with his Theory of 
Logical Types, in which sets are constrained from having members of unrestricted 

type [Quine 1962]. 

2.4.1.1 Relations and Functions. Consider now the set S, whose members are pairs 

of objects 

S = { < a,b >, <c,d>, < e/>,...} 

Such pairs are commonly called tuples, and the order within the pairs is important; 
thus, < a,b > is not the same as < b,a >. A common way to obtain a set of tuples 
is via the set operation of Cartesian product of two other sets, where Ax B denotes 
all tuples < a^bj >, with at e A and bj e B. If there are m objects in set A and n 
objects in set B, then there are m x n distinct tuples in the set C = A x B. A perva¬ 
sive instance of the notion of Cartesian product is the following. Let A and B be 
the same (infinite) set Z, consisting of all the real numbers. Then Z x Z corre¬ 
sponds to all the points in the plane, with tuple values <x,y> corresponding to 

coordinates at those points. 

More pertinently, consider the example of the set A = {2, 3, 4, 6, 8, 12, 24} and 

the set of tuples 

D = { < 2,4 >, < 2,6 >, < 2,8 >, < 2,12 >, < 2,24 >, < 3,6 >, < 3,12 >, < 3,24 >, 
< 4,8 >, < 4,12 >, < 4,24 >, < 6,12 >, <6,24>, <8,24>, <12,24>} 

The set of tuples D, which is a subset of A x A, can be said to define a relation R 
on the set A, in that, for certain values of i and j, we have <ahaj> e D, or a, Ra7. 
In our example, the relation at R a,- corresponds to the fact that a, is a proper divisor 
of aj. It is perhaps more natural to think of relationships as being defined inten¬ 
sively - that is, in terms of some property such as “divides,” “is greater than,” “is 
brother of,” etc. But the important point is that relations can be defined exten¬ 
sively, through the use of tuples, and sometimes this is a more desirable method. 



2.4.1.1 RELATIONS AND FUNCTIONS 55 

Consider next a set of tuples based on the sets A and B, and let < > denote 
the ith tuple value. Then, if these tuple values are constrained so that all the values 
a> are distinct, we have a theoretical basis for another powerful concept in math¬ 
ematics, that of the function. Given a value ah we simply need find the unique tuple 
containing a, as its left hand member, and then we have = f(a,). This corresponds 
to the manner in which, for example, the function y = sin(x) is expressed in tabular 
form for discrete values of the independent variable ;c. 

These points will not be discussed further; our intention has been simply to 
indicate the fundamental importance of sets in mathematics. 

2.4.2 Ordered Sets and Set Representations 

When we began our discussion of sets, we stressed that sets are intrinsically unor¬ 
dered. In some cases, however, we prefer to think of members of a set as possessing 
a natural order, in which case the set is conventionally written, for example, as 

workdays = < Monday,Tuesday,Wednesday,Thursday,Friday > 

instead of with braces. In still other cases, even though sets may not be intrinsically 
ordered, ordering of the elements is de facto present, particularly when we are using 
computing machines with their sequential memories. This, in turn, has a bearing 
upon the methods used for representing sets in computers. 

A: P i c t A: c i p 1 

B: g h r V m b Z B: b g h m r V Z 

(a) (b) 

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 i 0 0 0 0 0 0 

abcdefgh i j k Imnopqrstuvwxy z 

0 1 0 0 0 0 1 1 0 0 0 0 i 0 0 0 0 i 0 0 0 1 0 0 0 1 

(c) Characteristic Vectors 

Figure 2.14 Alternate Set Representations 

When we considered how arrays are represented in computers, we found it very 
natural and efficient to map successive array elements into successive memory 
locations. In many other data structures, however, there is not one best method for 
mapping the logical structure into a physical representation in computer memory. 
This is the case for sets. We will illustrate it by showing two methods for represent¬ 
ing the sets A = [p,i,c,t} and B = {g,h,r,v,m,b,z}. One possibility is to simply list all 
the members of a set as elements of a one-dimensional array, or vector. In such a 
case, A and B might appear as in Figure 2.14(a). There are several points to be 
made about this choice of representation: 
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• There is an ordering of the elements, but it is a de facto one. A and B might 
equally well be represented as in Figure 2.14(b), or in several other sequences. 

• Such representations require arrays of varying length, according to the cardinal¬ 

ity of the set. 
• Such a representation is adequate for the sets A and B, and also for 

fruit = {apple,banana,orange}; but it is not adequate for sets whose members 

are not simple objects, as in the case of the powerset of fruit. 

In many problems involving sets, there are only a definite number of objects 
that can be members, and the set containing all of these candidate members is called 
the universal set. Since membership is a boolean valued attribute, we can character¬ 
ize any particular set over this universe by a boolean vector, called the characteristic 
vector of the set. If we suppose that our universe in Figure 2.14 consists of all the 
lower case letters of the alphabet, then the sets A and B can be represented as in 
Figure 2.14(c). Note that the characteristic vector requires that the set be an 
ordered one; the ith boolean value in the vector indicates the absence/presence of 
the z'th object in the set. As long as the universe is not large, the characteristic 
vector is quite efficient in terms of storage requirements. However, over a large 
universe, the storage utilization is poor, particularly if most of the sets encountered 
in practice have cardinality much smaller than the size of the universe. There are 
still other methods for representing sets, as we will see later (see Section 6.6.5). 

2.4.3 Sets in Programming Languages 

Few programming languages have direct support for sets as data structures [§]. 
The user with such a need usually must represent sets in some manner similar to 
that illustrated in the preceding section. However, there are exceptions. For exam¬ 
ple, sets are directly supported in Pascal at a modest level. Therein, the universe of 
members is constrained to be some ordered collection of simple objects, delimited 
by enumeration or as a subrange, as in the following examples: 

type colors = set of (red,orange,yellow,green,blue,violet); 
extent = set of min .. max; 

var flag: colors; 

flag := [red,yellow]; 

The symbols e, c, f~j, and (J of mathematics are usually not available to computer 
users. In Pascal, the corresponding symbols in Table 2.1 are employed. 

The definition of Pascal does not prescribe how sets are to be represented, but 
in fact the exclusive method of choice has been the characteristic vector. Most 
Pascal implementations restrict the number of bits in the vector to the maximum 
number of bits that can be conveniently manipulated with one machine instruction, 
which is commonly 60, 64, or 256 bits. Thus, it is common to have the pragmatic 
restriction that sets in Pascal consist of objects from a universe that is isomorphic to 
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Operator Set Notation Pascal Operator 

membership e in 
inclusion d < 
intersection n * 
union u + 
difference - 

Table 2.1 Pascal Symbols for Set Operations 

the subrange 0 .. 59 or 0 .. 63 or 0 .. 255. There are several significant consequences 
of this choice: 

• Membership can be determined efficiently at the machine language level via a 
shift instruction. 

• Intersection maps to logical AND. 
• Union maps to logical OR. 

program SIEVE; 

{as prime numbers are found in prospects, they are recorded 
in primes and their multiples are deleted from prospects} 

var i,next: integer; 
primes,prospects: set of 2 .. n; 

begin 
prospects := [2 .. n]; 
primes := [ ]; 
next := 2; 
repeat 

while not (next in prospects) do 
next := next + 1; 

primes := primes + [next]; 
i := next; 
while i <= n do begin {delete multiples of this prime} 

prospects ;= prospects - [i]; 
i := i + next; 

end; 
until prospects = [ ]; 

end. 

Algorithm 2.6 SIEVE 

An illustration of the use of the set data structure is given by the program 
SIEVE (Algorithm 2.6), which mimics the action of the sieve of Eratosthenes for 
finding the prime numbers between 2 and n. The method commences with the set 
prospects, containing all the numbers 2 .. n, and the empty set primes. Whenever a 
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number i is found to be prime, it is added to the set primes, and all of its multiples 
are deleted from the set prospects. The generalization of this technique to allow for 

arbitrarily large n is left as an exercise (see Exercise 2.13). 

2.5 REDUCING ALGORITHMIC COMPLEXITY 

There are many problems involving two-dimensional arrays for which the straight¬ 
forward algorithms are 0(n2). We have seen this, for instance, with matrix 
multiplication and the solution of simultaneous linear equations in Section 2.3.2. 
What are the possibilities for reducing this complexity? This section explores 
several techniques. Before considering these, however, a very significant practical 
possibility occurs when the matrix can be partitioned into blocks of submatrices, as 
in Figure 2.15, such that the blocks off the diagonal can be ignored as a first 
approximation. (That is, they contain values sufficiently small that their effects can 
be accounted for as second-order corrections.) If the original matrix is of dimen¬ 
sion nxn, and if it is partitioned into mx m submatrices, each of dimension 
(:n/m) x (n/m), we may then have to deal only with the m sub-problems on the diag¬ 
onal, each of complexity 0((«/m)3); in other words, we may be able to improve 

matters by a factor of m2. 

Splitting a large problem into smaller ones may yield improved performance 
even in cases where none of the subsets of data can be ignored. This is the subject 
of the next section. In the case that the base type of the arrays is boolean, and 
when there is access to the underlying capabilities for parallel bit processing that 
exist with most computers, there is another avenue for improvement. Section 2.5.2 
presents this technique in simpler terms. Finally, in 2.5.3, we will see an illustration 

of applying both methods for the reduction of complexity. 

2.5.1 Divide-and-Conquer 

Suppose that we have an array of n numbers, and that we wish to find both the 
smallest and the largest values in the array. A direct solution would be to loop 
through the entire array and find the smallest value with n — 1 comparisons, and 
likewise find the largest value with another n — 1 comparisons. A solution requiring 
fewer comparisons is illustrated by the procedure MIN_MAX (Algorithm 2.7). 
Using this method, we split the array in half in order to solve the original problem 
with both halves; from these solutions, we find the overall minimum and maximum 
by comparing the minima/maxima from the two halves. By applying this technique 
recursively, we obtain a solution that requires (3/2)» — 2 comparisons rather than 
In — 2 comparisons. 

In order to demonstrate this, we have to deal with the recursive nature of 
MIN_MAX by finding and solving the corresponding recurrence relation, as in 
Chapter 1. For this particular case, we see that the work T(n) for an array of size n 
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Figure 2.15 Decomposing a Problem 

is twice the work, T(n/2), for an array of size n\2, followed by two comparisons 
using those results: 

T{n) = 27>/2) + 2 (2.10) 

This recurrence relation really applies only if the size of the original array is a 
power of two; but we can expect to interpolate fairly closely for intermediate sizes. 
The solution of a non-homogeneous recurrence relation, as in Eq. 2.10, can be 
expressed as the sum of a homogeneous solution plus a particular solution. We 
have illustrated a little bit about the first of these solutions in Section 1.3.2.3. 
Obtaining the latter is a bit more complicated, and requires a different tack. A 
method that is simple and commonly effective, if inelegant, is to guess at the general 
form of the solution using unknown coefficients. One can then try to determine the 
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procedure MIN_MAX (lo,hi: limit; var mini,maxi: integer); 

{finds mini and maxi values between io and hi in data) 

type limit = 1 .. n; 

var mid,mini ,min2,maxi ,max2: integer; 
data: array [limit] of integer; 

begin 
if ((hi - lo) < 2) then begin 

if data [lo] < data [hi] then begin 
mini := data [lo]; maxi := data [hi]; 

end else begin 
mini := data [hi]; maxi := data [lo]; 

end; 
end else begin 

mid := (lo + hi) div 2; 
MIN_MAX (lo,mid,mini,maxi); 
MIN_MAX (mid + 1,hi,min2,max2); 
if mini < min2 then mini := mini 

else mini := min2; 
if maxi > max2 then maxi := maxi 

else maxi := max2; 
end; 

end; 

Algorithm 2.7 MIN_MAX 

unknown coefficients by substituting the general form in the original equation. It is 

reasonable to expect that the solution must be 0(n), or 

T{n) = An + B (2.11) 

and substituting this in Eq. 2.10 yields 

An + B = 2 lA(n/2) + B] + 2 = An + 2B + 2 (2.12) 

whence B = —2. Finally, since we know that T(2) = 1, then A — 3/2. Thus, we 

have shown that 

T{n) = {3l2)n-2 (2.13) 

proving the earlier claim about MIN_MAX. 

This technique for reducing complexity is called divide-and-conquer. The recur¬ 

rence relation in Eq. 2.10 expresses the fact that we have divided the original 
problem into two parts, wherein the first term on the right describes the effort to 
solve the subproblems, and the second term on the right describes the effort to 

synthesize the subproblem results. The first term leads to the homogeneous 
solution, and the second term leads to the particular solution. A generic equation 
for the divide-and-conquer technique is 
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T{n) = cT(nld) +/(«) (2.14) 

Solutions corresponding to different values for the constants c and d and the func¬ 
tion/are illustrated in Aho et al. [1983] and Tucker [1984], 

It is important to realize that our analysis of MIN_MAX is predicated upon 
the assumption in Eq. 2.10, that the dominant factor in the algorithm is the number 
of comparisons between elements of the array, ignoring even the div operation. 
Such an assumption might in many cases be justified by taking note of factors such 
as: the other costs in the algorithm are proportional to this dominant factor, and 
so can be subsumed in the constant of proportionality; the comparisons may be 
between large items, so that the cost of these comparisons really does dominate the 
computation; etc. Unfortunately, MIN_MAX improves only the constant factor, 
not the complexity class. In fact, even though it invokes only 75 percent as many 
comparisons of array elements, the associated overhead will usually cause it to be 
slower than the naive approach. 

More commonly, divide-and-conquer can be very effective in that it may lower 
the complexity class. We shall see examples of this in the next section and through¬ 
out this book (see also Exercise 2.19). 

f2.5.1.1 Strassen’s Algorithm. A remarkable result by Strassen [1969] gave the 
first demonstration that matrices can be multiplied with complexity less than 0(n3). 
To begin with, consider the case of multiplying two 2x2 matrices A and B to 
produce the 2x2 product matrix C. By the conventional method, the four 
elements of C are obtained using 8 multiplications and 4 additions, as follows: 

cll = + au^2\ 
c12 = a11^12 + a12^22 

c2i = a2\bn + a22b2i 

c22 = a2\b\2 + a22^22 

(2.15) 

However, consider the unobvious sequence of multiplications: 

ml = (al2~ a22.) (hi + ^22) 
m2 ~ (ai 1 + a22) (^11 + ^22) 
m3 = (all ~ a2\) (hi + ^12) 
m4 “ (all + a\2) h2 
ms = a\ 1 (b\2 — b22) 

m6 = a22 (hi — hi) 

ml — (a21 + a22) ^11 

(2.16) 

followed by the sequence: 

cl 1 = mi + m2 ~ w4 + m6 
cn = m4 + m5 
c2, =m6 + m7 
c2 2 = m2 — m3 + w5 — m7 

(2.17) 
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Using Eqs. 2.16 and 2.17, the product of A and B is obtained with a total of 7 

multiplications and k = 18 additions. 

Crucial to Strassen’s method is the fact that these same equations can be used 

when n x n matrices A,B,C are decomposed into n/2 x n/2 submatrices ■^ij’ ^ij 
for ij= 1,2. (Matrices with dimensions that are not powers of two can be accom¬ 
modated in several ways.) The recurrence equation for the number of 

multiplications is then T(n) — 7 T(n/2), with solution 

T(n) = 7 T(n/2) = 72 T(«/4) = - = 1 T(n/2/) = - - 7lg " T(l) (2.18) 

In other words, since 7\1) = 1 

T(n) = 7lg ” = nlg 7 « «2'81 (2.19) 

The number of additions can actually be reduced from k = 18 to k — 15. More 
significantly, however, it can be shown that the number of additions by this method, 
for any constant k, is likewise asymptotically 0(n2iX), whereas the number of addi¬ 
tions with the conventional method is 0(n3). Nevertheless, the constant factor 
associated with this method is rather large, and so n must be sizeable (> 40) before 

the method becomes profitable. 

With regard to the inherent complexity of matrix multiplication, there are two 
interesting postscripts (see also Exercise 2.16). One is that Strassen’s method is 
known not to be optimal. Algorithms of even lower complexity have been exhib¬ 
ited; an example is that of Coppersmith and Winograd [1982] with complexity less 
than 0(n2-5). The other comment has to do with the best-case analysis of the prob¬ 
lem. It is easy to see that since the product matrix has n2 elements, then it must 
require at least that many multiplications. Surprisingly, however, the best theore¬ 
tical lower bound is still no better than Q(«2). As simple as one might suppose it 
would be, the question of the complexity of matrix multiplication is still open. 

2.5.2 Parallel Bit Operations 

At the assembly language level, there is no problem in using parallel bit operations 
if they exist in system hardware. In Pascal, we have seen that there is the data type 
set, and that a set is virtually always represented as a vector of bits. We can thus 
obtain access to parallel bit operations in Pascal by letting the truth/falsity of the 
zth logical value correspond to the presence/absence of i in a set. 

When applied to the procedure RULE_MASK (Algorithm 2.5) for dealing with 
decision tables, this would cause both inner loops to be replaced by single state¬ 
ments, using the set intersection operator. We would then have 

rule := rule * truth [i] , and rule := rule * falsity [i] 

Rather than setting out the other changes to RULE_MASK, we investigate the 
more general issue: What would it take to multiply two boolean matrices in Pascal, 
representing them via sets? In fact, this process can be represented in several 
manners that appear quite different. A method that is both efficient and instructive 
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program BOOL_MULT; 

{computes boolean matrix product, C = A x B} 

const u = {# of rows in A and C} 
v = {# of columns in A and # of rows in B} 
w = {# of columns in B and C} 

type setv = set of 1 .. v; 
setw = set of 1 .. w; 

var i,k: integer; 
A: array [1 .. u] of setv; 
B: array [1 .. v] of setw; 
C: array [1 .. u] of setw; 

begin 
for i := 1 to u do begin 

C [i] := []; 
for k := 1 to v do 

if k in A [i] then 
C [i] : = C [i] + B [k]; 

end; 
end. 

Algorithm 2.8 BOOL_MULT 

is given by the procedure BOOL_MULT (Algorithm 2.8), for matrices of arbitrary 

but conforming dimensions. We see that the ith row of the product matrix C is 

obtained as the union of various rows of B, according to the members of the set in 

the ith row of A. The situation is illustrated in Figure 2.16 for u = 3, v = 4, w = 5; 

there, for example, since the first row of A is 0101, the first row of C is obtained by 

OR’ing the second and fourth rows of B. The net result is that BOOL_MULT 

performs 0(uv) set unions instead of 0(uvw) individual bit multiplications. 

A:u x v B:v x w C:u x w 

Figure 2.16 Boolean Matrix Multiplication 
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f2.5.3 Four Russians’ Algorithm 

When the base type is boolean, there is a method of matrix multiplication that is 

0(zz3/lg"), without reference to parallel bit processing. This method is called the 
Four Russians’ algorithm [Arlazarov et al. 1970; Baase 1978], and it operates by 
partitioning the two matrices to be multiplied. When this technique can be 
combined with that of the previous section, then the cost is 0(zz2/lg"). For simplicity, 
we will illustrate the method with the two square matrices shown in Figure 2.17. 
For A and B of dimensions n x n, we would have m = Llg n and p = T(n/m). A is 
then partitioned into p submatrices Ah, and B is partitioned into p submatrices Bh, 
as shown in the figure. If m does not divide n evenly, it is necessary to pad A with 
extra columns of zeros and B with extra rows of zeros, so that the submatrices are 

of the same size. 
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Figure 2.17 Partitioning for RUSSIANS 

As a result of the manner of partitioning, the product matrix is given by 
C = A x B = £Ah x Bh, where each product Ah x Bh is itself an«x« matrix. In the 
preceding section, we have seen that the z'th row of the boolean product C — Ax B 
can be developed by OR’ing rows Bk such that k e At. The situation here is exactly 
analogous, except that the partitioning now causes us to have p submatrices both 
for A and for B. The resulting reference for A then needs to be Ah i corresponding 
to the z'th row of the hth submatrix of A, and the reference for B needs to be Bhk 
corresponding to the kth row of the hth submatrix of B. 

However, there are just m elements in any row of a submatrix Ah, so that there 
can be only 2m — q < n distinct rows in any submatrix Ah. The trick with the Four 
Russians’ algorithm is, for each 1 < h < p, to precompute and store in a table the q 
possibly needed combinations of the rows from Bh, and to use the value of each 
entire row of Ah as an index into this table. This is illustrated in the program 
RUSSIANS (Algorithm 2.9), where the boolean combinations of the rows B \_h,k~\ 
are computed and stored in the array BCOMB. Subsequently, each row A [/z,z] is 
interpreted as an integer for indexing into BCOMB to find the correct contribution 
to the sum of products which is C. In reading the algorithm, be careful to realize 
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program RUSSIANS; 

const m = { Llg n} 

n = {order of square matrices A, B, C} 

p = {the partitioning factor, T(njm)} 
q = {2m~ ' (for O-indexing)} 

type setm = set of 1 .. m; 
setn = set of 1 .. n; 

var h,i,j,k,u: integer; 
A: array [1 .. p,1 .. n] of setm; 
B: array [1 .. p,1 .. m] of setn; 
BCOMB: array [0 .. q] of setn; 
C: array [1 .. n] of setn; 

function SET_TO_INT (s: setm): integer; 
var i,j: integer; 
begin 

i := 0; 
for j := m downto 1 do 

i := 2 * i 4- ord (j in s); 

SET_TO_INT := i; 
end; 

begin 
for i := 1 to n do 

C □:-[]; 
for h := 1 to p do begin 

BCOMB [0] := [ ]; 
j:=0; 
k := 1; 
u := 1; 

for i := 1 to q do begin {generate BCOMB from B} 
BCOMB [i] := BCOMB [j] + B [h,k]; 
j := j + 1; 
if j = u then begin 

j := 0; 
k := k + 1; 
u := i + 1; 

end; 
end; 
for i := 1 to n do {index BCOMB by A and apply to C} 

C [i] := C [i] + BCOMB [SET_TO_INT (A [h,i])]; 
end; 

end. 

Algorithm 2.9 RUSSIANS 



66 ARRAYS and SETS 

that A \h,i] and B [h,k~\ do not refer to bits in A and B, but rather to rows (that is, 

sets) in the hth partitions of A and B. 

Two points about the algorithm need amplification. First, it computes each 

row of BCOMB as the boolean sum of a row B [h,k] with a row of BCOMB 
already in hand. This is accomplished by using the variables j,k,u to count in the 
appropriate manner. Second, the interpretation of the set A [h,i] as an integer is 

trivial in assembly language, but may or may not be trivial in an HLL. To isolate 
this consideration, it is depicted in RUSSIANS as the function SET_TO_INT, 
which is 0{m) in time as shown. Note in this function that ord (/'in 5) will have the 

value 0 or 1, from the definition of the Pascal built-in function ord. 

What is the complexity of RUSSIANS? It depends upon the implementation. 
As shown, the outer loop with h is executed p times, the two inner loops with i are 
executed n times, and within the second inner loop SET_TO_INT is 0{m). Thus, 
the complexity is 0(mnp) = 0(n2). In Section 3.2.2 we will see how in Pascal to 
overcome the bottleneck introduced by this version of SET_TO_INT, and how to 
achieve the performance 0(np) — 0(n2^%n). More generally, it can be shown that no 
method based upon row-unions can attain a lower complexity, except in the sense of 

having a smaller constant factor [Angluin 1976]. 

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 

1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 

1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

(a) A (b) B 

0 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 1 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 
1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 
1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 
0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 
1 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 

0 0 0 0 0 1 1 0 1 0 0 0 
0 0 0 0 0 1 1 0 1 0 0 0 

(c) BCOMB (d) c 

Figure 2.18 Trace of Algorithm RUSSIANS (see Figure 2.17) 
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Toillustrate the algorithm, consider the matrices A and B, as shown in (a) and 

2’i8' Here We have n = 12’ m = 3, P = 4; note that the index type of 
COMB is 0 .. 7 rather than 1 .. 8, to allow 0-origin indexing. For the submatrices 

Ax and Bu the computed value of BCOMB is shown in (c), and the corresponding 
first value of C is shown in (d). New values for BCOMB and updated values for C 

would have to be computed for h = 2,3,4 to complete the calculation. 

2.6 ADVANTAGES AND LIMITATIONS OF ARRAYS 

In Chapter 1, we cited the distinction between a logical data structure and its phys¬ 
ical realization in storage. Most HLL’s explicitly provide the array as a data 
structure for the user, thereby allowing references of the form x [ij,... ] without any 
need to think about how the references are carried out. In actual practice, as we 
saw in Section 2.2.1, the compiler usually makes such a reference by storing the 
array in row-major order, and then employing a storage allocation function that 
reduces to the formula 

loc (x [ij,...~\)=p + qxi + rxj+- (2.15) 

employing the values p,q,r, etc. from the dope vector for that array. From this 
point of view, the physical storage structure of an array is not radically different 
from its logical data structure; it just involves “unravelling” along the dimensions. 

Implemented in this fashion, arrays are the most natural and efficient data 
structure for many applications. They have the following advantages: 

Al. They are well suited to random access; that is, any element x [ij,... ] can be 
referenced as directly as any other element, using Eq. 2.15. 

A2. If we have located x [ij,... ], then it is very easy to traverse to any of the 
neighbor elements x [i - Ij,... ], x [i + 1 j,... ], x [ij - 1,... ], x [ij + 1,... ], 
...; from Eq. 2.15, it simply requires incrementing loc (x [ij,... ]) by —q or 
+q, or — r or +r, etc. 

A3. If the elements of an array have independent values and so must all be 
retained, the use of storage is very efficient. The only overhead, in fact, is that 
required for the elements of the dope vector. 

On the other hand, arrays as we have described them thus far have several 
inflexibilities that make them unsuitable for storage of data in numerous applica¬ 
tions. Some of these limitations are as follows: 

LI. Arrays are required to have a homogenous base type in most HLL’s. We 
cannot, for example, have an array in which one element is a character, 
another element is a number, and still another element is a sub-array. 

L2a. It is very awkward to insert or delete new elements (as opposed to modifying 
existing values) in an array. Thus, in our survey of persons with respect to 
sex, education, and marital status in Section 2.3.1, suppose - after all the data 
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was recorded in our array - that there were no widowed persons and that we 
wished to delete that category. Or suppose that we needed to add to the 
educational dimension the category of post-graduate attainment. Either o 
these would change the dimensions of the array, and would necessitate reshut- 
fling all or most of the elements in storage. This reshuffling, since it involves a 
change in the total storage requirement, could force other data objects to be 

relocated as well. 

L2b. Even more drastically, suppose that we wish to add another dimension to an 
array. Imagine in our survey that we now need to tabulate results by political 
affiliation as well as by sex, education, and marital status. This could cause 
reshuffling, as before; but now, all the code for processing these results must 
be changed as well, since references to survey with three subscripts will no 

longer be valid. 

L3. It is quite common to have arrays in which a high percentage - 90%, 99%, or 
even more - of the elements are zero in value. It can obviously be quite inef¬ 

ficient to store such sparse arrays in conventional lexicographic order. 

There are several answers to these difficulties. For the first point, the inability 
to store heterogeneous data in an array, we will find an answer primarily in Chapter 
3, with records; another point of view is presented in Section 2.9. We address the 
second point in the next section and also in Section 2.9. The topic of sparse arrays 

is treated in Section 2.8. 

f2.7 ALTERNATIVE STORAGE SCHEMES 

As we stated, arrays are ill suited to problems in which their dimensions tend to 
vary. Nonetheless, it is possible to reduce this disadvantage in some cases by stor¬ 
ing the array in memory in a manner that compromises one or more of the 
advantages listed in Section 2.6. We will describe some of these approaches in this 
section; later, in Chapter 4, we will revisit the subject of arrays to see what can' be 

gained by using lists and pointers. 

For ease of discussion throughout this section, let us now restrict our attention 
to two-dimensional arrays; there is no intrinsic difficulty in extending these 
concepts to arrays of higher dimension. First, we will consider how such an array 
could be enlarged or extended without having to reshuffle any of its elements. Of 
course, the total storage requirement increases in such a case, but we will assume 
that such growth has been anticipated in the initial allocation of storage. 

Consider an array A [1 .. m,l .. «] and imagine the two following situations: 

(a) that we wish to add another row A [m + 1, ], or 

(b) that we wish to add another column A [,n -1-1] 

How feasible are either of these two extensions to A? Fairly obviously, if A is stored 
in row-major order, then (a) is easy and (b) is impossible without complete reshuf¬ 
fling; if A is stored in column-major order, then (b) is easy and (a) is impossible 
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without reshuffling. Thus, it is quite easy to extend an array in just one dimension, 
as long as it has been stored in a manner that anticipates growth in that dimension. 
Moreover, the storage allocation function remains linear in all the indices. 

What can be done about extending arrays in more than one dimension? Also, 
as we look at the consequences of mapping array elements into memory space, how 
does this affect the proximity, in that memory space, of neighboring elements in 
each of the dimensions? These questions have been investigated in depth [§]. In 
the next two sections, we describe several techniques, primarily of theoretical inter¬ 
est, for dealing with these matters. Our discussion is restricted to the case of main 
memory, which is one-dimensional in nature. It is interesting to speculate on the 
effect of memories with higher dimensional address structure, such as disk drives. 

f2.7.1 Shell Storage 

In this section, we describe two storage allocation methods that provide extendibil- 
ity in more than one dimension, at the expense of ease of random access. They 
correspond to growth taking place in shells. It sometimes happens that we have a 
square array in which it is natural to think of both growth and traversal as taking 
place in cubic shells that expand in one quadrant. This is shown in Figure 2.19, 
where (a) depicts the elements partitioned into shells, and (b) depicts the locations 
in which elements of A are stored. It is now easy to traverse successive shells by 
accessing elements in consecutive memory locations; moreover, it is straightforward 
to annex another shell without having to reshuffle any elements already in storage. 
What has been lost is the ability to easily access elements at random, since the 
corresponding allocation function is 

loc (A [iij]) = b + (max (z'j) - l)2 + (max(zj) - 1) + (j - i) (2.21) 

which is equivalent to 

loc (A [ij]) = b + i2 - 2i +j (i >j) 
(2.22) 

loc (A [ij]) = b +j2 - i (i <j) 

In general, the storage allocation function for cubic shells of dimension n is a poly¬ 
nomial of nth degree in the subscripts, which complicates both random access and 
also traversal to neighbors along the dimensions. 

Reminiscent of the triangular arrays of Section 2.2.2 are diagonal shells, as illus¬ 
trated in Figure 2.20. Again, (a) depicts the elements partitioned into shells, and (b) 
depicts the locations in which elements of A are stored. Both traversal and growth 
are easy in the diagonals, but random access is again more complicated, given by 

loc (A [zj]) = b + — z — b -f- 
(z2 + 2ij +j2 - 3i -j) 

2 
(2.23) 
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Figure 2.20 Diagonal Shells 

Note that Eq. 2.23 has a term with both i and j. Because storage allocation func¬ 
tions for diagonal shells contain such multivariate terms, traversal to neighbors 
along the dimensions is even less convenient than it is for cubic shells. 

f2.7.2 Arbitrary Extendibility 

Allocating array elements in shells provides a degree of multi-dimensional extendi¬ 
bility, but only for certain preferred patterns of traversal. This causes both random 
access and traversal to neighbors along the dimensions to be awkward. We now 
examine two storage allocation functions that allow both very general extendibility 
and relative ease of access to these neighbors. 

The first method uses the function 

loc (A [ij]) = b + 2/_1 x y-1 (2.24) 
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The effect of this is shown is Figure 2.21, where (a) depicts the array A, and (b) 

depicts the memory locations obtained via Eq. 2.24. It is now possible to annex 

both rows and columns in any arbitrary sequence. Also, traversals to neighbors are 

obtained by multiplying or dividing by 2 or 3. To reference a random element, 

however, requires computing exponential terms. In addition, only a small fraction 

of the available memory locations is “hit” by Eq. 2.24. For an m x n array A, the 

storage utilization is (m x n) + (2m~l3n~l); in Figure 2.21, this corresponds to an 
efficiency of 5 percent. 

a11 a12 ai3 ai4 1 3 9 27 1 2 4 8 

a21 a22 a23 a24 2 6 18 54 3 6 12 24 

a31 a32 a33 a34 4 12 36 108 5 10 20 40 

a41 a42 a43 a44 8 24 72 216 7 14 28 56 

a51 a52 a53 a54 16 48 144 432 9 18 36 72 

(a) (b) (c) 

Figure 2.21 Arbitrary Extendibility 

The inefficiency associated with Eq. 2.24 is due in part to the fact that it maps 

the subscripts into the integers rather than onto the integers. Therefore, one would 

hope that an allocation function mapping onto rather than into the integers would 

give better results. This possibility can be realized, in the two-dimensional case at 

any rate, by means of the observation that any integer can be uniquely expressed as 

the product of an odd integer, 2i— 1, and some power of two, 2j~l. Accordingly, let 

loc (A [ij]) = b + (2i - 1) x 2/~1 (2.25) 

The effect of this mapping upon the array elements in Figure 2.21(a) is shown in 

Figure 2.21(c). Traversal to neighbors in columns is obtained by addition, and 

traversal to neighbors in rows is obtained by multiplying or dividing by a power of 

2 (which is particularly easy to do on almost all computers). Although this method 

is superior to the preceding one in both ease of traversal and in storage efficiency 

(28 percent in the figure), the exponential term in j still causes terms to be allocated 

in a manner sufficiently non-compact that extension of A by columns is impractical. 

Although the two schemes described in this section allow for arbitrary extendi- 

bility and also afford relative ease of access to neighbors, the cost of random access 

is high, and storage efficiency is poor. Section 4.3.3 discusses an alternative, more 

practical solution to the problem of arbitrary extendibility. 
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2.8 SPARSE MATRICES 

We have defined sparse arrays as those containing relatively few elements (10 
percent or less) that are non-zero in value. Such arrays are particularly common in 
the solutions of large systems of equations. Thus, for reasons of relevance as well 
as convenience, we will restrict our discussion to the two-dimensional case of sparse 
matrices. Even a modest system of simultaneous equations of order 100 would 
entail 10,000 real coefficients, or 80,000 bytes if storage were allocated for all of 
them. For larger systems, it becomes still more imperative to suppress the storage 
of full matrices consisting largely of zeros (not to mention saving the time that 
would be wasted in processing these zeros). Several techniques have been employed 
to effect this suppression [§]. Our objective here is mainly to describe what issues 

are involved in choosing one method over another. 

The important issues are as follows: 

1. Density. Each of the methods to be described shortly suppresses zero elements 
at the expense of carrying along information to identify the coordinates of the 
retained elements. The storage efficiency of these techniques varies considerably 
as a function of the density p, defined as the proportion of non-zero elements. 

2. Access requirements. Applications of sparse matrices may require easy random 
access to elements, easy traversal to elements in both rows and columns, or easy 
traversal along one dimension only. These issues are reminiscent of those 

discussed in Section 2.7. 

3. Insertion and deletion. Although there are many problems in which the 
locations of the non-zero elements do not change, there are also processes 
wherein elements may change from zero to non-zero, and vice-versa. Thus, it 
may be important to employ a technique that facilitates the continual insertion 

and deletion of elements in the matrix. 

4. Special formats. It is useful to distinguish three different types of sparsity, as 
illustrated in Figure 2.22. Here, (a) corresponds to random sparsity, (b) corre¬ 
sponds to band sparsity, and (c) corresponds to block sparsity. In cases (b) and 
(c), it is common to employ special techniques to exploit the regularity of the 
matrix structure. All of the methods that we will describe here, however, are 
for the more general case of randomly sparse matrices. 

To facilitate the description and comparison of the methods, we will use the 
sparse matrix M of Figure 2.23. It is actually rather far from being sparse accord¬ 
ing to most criteria, but it serves the purpose of providing a good example. In brief 
succession, we will consider the following methods — bit maps, address maps, 
delta-skips, and triples — for storing sparse matrices. None of these methods are 
directly supported in HLL’s. Although it is possible to carry them out within an 
HLL, the attendant overhead can be high. There is thus a strong implicit assump¬ 
tion, with all of these methods, that they are implemented in assembler language. 
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0 0 x x x 

Figure 2.22 Types of Sparsity 

The bit map scheme would represent the sample matrix M by the three items 
shown in Figure 2.24. The items are an array B of bits with values of 1/0 corre¬ 
sponding to non-zero/zero elements of M, a vector Z containing the non-zero 
elements of M, and a vector R containing the relative locations of the first element 
of each row of M in Z. The bit values of B would really be packed into machine 
words - typically 32 bits at a time, in row-major order - to match the sequence of 
elements of M in Z. The vector R is somewhat optional; its inclusion would 
depend upon the application. Let us compute the storage requirement S (in bytes) 
for this method. If we presume that the elements of M are real and require 8 bytes 
each, and that the addresses in R require 4 bytes each, then S depends upon the size 
of M, which is n2, and its density p. It is seen to be 

2 n2 
S — 8pn H—-—P 4n (2.26) 

O 

where the three terms correspond to the storage requirements for Z, B, and R. 

Succinctly, the bit map method has good storage efficiency for matrices that are not 
overly sparse. However, as the density becomes very small, then for large matrices 

the middle term in Eq. 2.26 causes the method to have excessive overhead compared 

with other methods. With respect to accessing array elements from Z using B and 

R, the method makes it fairly easy to traverse along rows of M, but considerably 
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more costly to traverse along columns of M. (It would be possible to make 
traversal easy along columns as well as rows; however, this would entail the 
expense of storing, in addition to B and R, the transpose of B and a vector C of 

column origins.) 

0 5 0 0 2 

4 0 9 0 0 

0 0 0 6 0 
1 0 0 0 3 

0 8 0 0 0 

Figure 2.23 An Example Sparse Matrix 

0 10 0 1 
10 10 0 
00010 52496138 13568 

1 0 0 0 1 
0 1 0 0 0 Z R 

B 

Figure 2.24 Bit Map Allocation 

0 10 0 2 
1 0 2 0 0 
00010 52496138 02457 

1 0 0 0 2 
0 1 0 0 0 Z R 

A 

Figure 2.25 Address Map Allocation 

The address map method is similar to the bit map method. As applied to the 
sample matrix M, it entails the three items of Figure 2.25. The items are an array A 
(to be described), a vector Z (as before), and a vector R (almost as before). In this 
scheme, the zero elements of A correspond to zero elements in M; non-zero 
elements in A are displacement values to be added to the elements of R, in order to 
access the corresponding elements in Z. The storage requirements for this method 
are quite a bit higher than in the bit map method. The saving observation is that, 
depending upon the size of M, a small number of bits, perhaps just a byte, will 
probably be sufficient to indicate the displacement in any one row. With such an 
assumption, we find for this method that 

S = 8pn2 + n2 + 4n (2.27) 

In exchange for this greater storage requirement, the address map method offers 
improved traversal capability, assuming that the underlying machine has reasonable 
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character or byte operations. In particular, it becomes reasonable to traverse along 
both rows and columns, without the necessity of storing the transpose of A. 

In the delta-skip method, the matrix M is represented by the items in Figure 
2.26. Here, C is the vector of relative locations of the first element of each column 
of M in X (4 bytes should be adequate again). An element of X is either a non-zero 
element of M, or a count of intervening zero elements in a column of M until the 
next non-zero element. In the use of this method for solving large sets of equations 
via a relaxation method, double precision integers were employed; for each element 
of X the least significant bit was used to signify the proper interpretation of the 
element. The storage requirements for this scheme depend upon a somewhat unpre¬ 
dictable factor, namely the degree to which non-zero elements and zero elements in 
M tend to be separately clustered. In the most favorable case, this could require 
just two delta elements for each column of M, for 

S = 8 pn2 + 16/i + 4 n (2.28a) 

In other cases this could require for each column of M as many delta elements as 
there are non-zero elements, giving 

S = 8 pn2 + 8 pn2 + 4 n (2.28b) 

except that Eq. 2.28a is a lower bound for Eq. 2.28b. For large systems of very 
sparse equations, the effect of the middle term in Eq. 2.28 makes the storage 
requirement of the delta-skip method superior to that of the bit map method. In 
terms of traversal, the delta-skip method is extremely fast in traversing the selected 
dimension (columns, in this case) since no scanning of a map is required; however, 
it is useless for traversing the other dimension. 

X = (1) 4 (1) 1 (1) / 5 (3) 8 / (1) 9 (3) / (2) 6 (2) / 2 (2) 3 (1) 

C = 1 6 9 12 15 

Figure 2.26 Delta-Skip Allocation 

R = 11223445 
C = 2 5 1 3 4 1 5 2 
Z = 52496138 

Figure 2.27 Triples Allocation 

In addition to their properties already cited, the bit map, address map, and 
delta-skip methods all have the limitation that they are ill suited to problems in 
which non-zero elements may vanish and/or appear, necessitating deletion and 
insertion. With the last method that we will illustrate here, the triples method, such 
a capability is at least possible, albeit somewhat awkwardly. For this method, the 
sample matrix M is represented by the items in Figure 2.27, where R is a vector of 

row indices, C is a vector of column indices, and Z is a vector of the non-zero 
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values of M. Clearly, the array elements R [/], C [z], and Z [z] specify the non-zero 
element Z [z] = M [R [z], C [z]]. The storage required for elements of R and C 
depends, of course, upon the maximum subscript value to be accommodated. 
Supposing that we generously allow 2 bytes, or 16 bits, for the subscript range, then 

we find that 

S = Spn2 + 2 pn2 + 2 pn2 (2.29) 

For not very sparse matrices, the overhead with this method is quite high. 
However, since all the terms in Eq. 2.29 are proportional to p, the triples method 
becomes more storage-efficient than any of the preceding methods for low values of 
p. Like the preceding methods, the triples method has a bias for traversal in one 
dimension over the other. Along the preferred dimension, traversal with triples is 
not as fast as with delta-skip, but faster than with either map method. 

Finally, it is possible, although slightly awkward, to accommodate insertions 
and deletions via the following strategy: 

1. Make the dimensions of the vectors R,C,Z somewhat greater than what is 
needed to accommodate all the initially non-zero elements of M\ these extra 
positions then become an overflow area. 

2. As elements of M vanish, simply allow those Z-values to go to zero. 
3. As new elements need to be inserted in M, post them as they occur in the 

unused overflow positions of R,C,Z. 
4. Any processing of the elements of M using R,C,Z must take the overflow area 

into special account. 
5. Periodically, the elements of R,C,Z can be sifted to discard zero values in Z and 

to re-establish them in sequence as desired — say, row-major order, as they are 
in Figure 2.27. 

This almost concludes our discussion of sparse matrices. To illustrate the rela¬ 
tive storage efficiencies of the four methods described, we give in Table 2.2 the 
storage requirements (in bytes) for a sparse matrix of dimensions 100 x 100, with 
values of p from .1 down to .003. For this purpose, Eq. 2.28 was evaluated by 
computing the geometric mean of Eqs. 2.28a and 2.28b — that is, the square root 
of their product. 

Density p .1 .03 .01 .003 

Bit-Map 9650 4050 2450 1890 
Address-Map 18400 12800 11200 10640 
Delta-Skip 11978 4670 2331 1260 
Triples 12000 3600 1200 360 

Table 2.2 Storage Requirements for Sparse Matrices 

There are two remaining points that should be mentioned here. First, there is 
another very important method of representation, using linked lists, that must be 
deferred to the appropriate point in Chapter 4. Second, we have characterized the 
methods solely in terms of various criteria cited at the beginning of this section. In 
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a given case, however, the type of array processing required by an application may 
substantially influence the choice of representation. For example, it might be 
important to compare two matrices of equal size to determine when corresponding 
elements are non-zero. For such a case, it is easy to see that the bit map method 
would be uniquely effective. 

f2.9 EXTENDED SEMANTICS FOR ARRAYS 

In the two preceding sections, we discussed various alternative techniques for repre¬ 
senting arrays in storage, focusing primarily on ways to compensate for some of the 
shortcomings listed in Section 2.6. In the present section, we deal with arrays at a 
much higher level, briefly citing some ways in which the ordinary concept of an 
array as a logical data structure has been extended. 

Recall that the indices into an array may be constants, variables, or even 
expressions; but they must evaluate to integer values. Some HLL’s, such as 
REXX, support arrays with a more general form of subscripting wherein the indices 
may be non-numeric symbols, such as “cow,” “moon,” “spoon,” etc. This effect is 
called associative indexing. 

A different and even more powerful generalization is found in the the language 
APL. It was originally invented by Iverson [1964, 1980] for notational purposes, 
but has since been widely implemented on many different computers [Falkoff and 
Iverson 1973], The language has many novel features, and we will not try to 
describe APL in any detail in this brief space. From our perspective, the significant 
point is that it employs the array as its single, native data structure. However, 
arrays are completely dynamic with regard to both size and base type in APL. 
Whereas all type attributes must be explicitly given in Pascal, all attributes are 
implicitly deduced in APL. Moreover, there are a great number of both arithmetic 
and structuring operators. For most computations, these can be applied directly to 
arrays without the necessity of any explicit indexing. This dispenses with the usual 
necessity to visualize array operations as being performed one element at a time, 
with index variables varying simultaneously and correctly over their appropriate 
domains. By way of illustration, the entire process for multiplying two matrices A 
and B (see Algorithm 2.4) is expressed in APL simply as C<-A+. *B. This relative 
brevity of programs in APL as compared with other languages is very typical. Such 
brevity can make it possible to conceptualize problems and their solutions in global 
terms, without regard for irrelevant and specific details. 

The diversity of data structures in this book reflects the fact that no single data 
structure is best for all purposes. Nonetheless, it is possible to construct models of 
computation in which a single data structure is sufficiently powerful to accommo¬ 
date everything else, as we will see on several occasions. It is worth comparing such 
models for computation with the ideas expressed in Section 2.4.1, wherein the devel¬ 
opment and elaboration of set theory in the last century has provided the theoretical 
underpinnings of almost all of modern mathematical analysis. Array Theory illus¬ 
trates the analogous idea of a generic basis for computation based upon the array 
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data structure [More 1973]. It is not a programming language, but rather a large 
body of axioms and proofs. As the theory has evolved, however, it has been trans¬ 
lated into various experimental programming systems, notably APL2 and NIAL 
(Nested Interactive Array Language). One of the important features of these devel¬ 
opments is that they allow the elements of an array to be heterogeneous in nature. 
The notations of both Array Theory and its programming derivatives are largely 

based upon that of APL. 

2.10 OVERVIEW 

When data is of homogeneous type and has a highly regular, fixed shape, then the 
array serves very well as a structure onto which to map the data. Under these 
circumstances, it offers maximum storage efficiency and very good access times. 
Thus, it is not surprising that the array is the first (and sometimes only) data struc¬ 

ture discussed in beginning programming courses. 

In this chapter we explored the types of calculations for which arrays are partic¬ 
ularly well suited, of which linear algebra is a prime example. From this starting 
point, we followed three paths that point the way to recurrent themes in this book. 
One important direction deals with attaining more flexibility in data structures. 
Sparse arrays illustrate a significant instance of this by relaxing the regularity of 
arrays. Another important goal is to reduce the complexity of a computation on a 
given data structure; the technique that is often appropriate for doing this with 
arrays is divide-and-conquer. A third theme investigates ways to generalize what 
can be done with the array as a logical data structure, leading to the topics of asso¬ 

ciative arrays, APL, and Array Theory. 

2.11 BIBLIOGRAPHIC NOTES 

• Extended treatments of decision tables can be found in Montalbano [1974], 
Pollack et al. [1971], and Pooch [1974], For an interesting discussion of the 
comparative power of decision tables versus other methods for representing 
algorithms (for example, flowcharts and structured programs), see Lew [1982]. 

• Closely related variations of the rule-mask technique can be found in Barnard 
[1969], Kirk [1965], and Muthukrishnam and Rajaraman [1970]. An addi¬ 
tional feature of the method is that it can be implemented in a manner to detect 
decision table ambiguities at run-time, as well as at compile time [Imbrasha and 
Rajaraman 1978]. 

• Two programming languages that are primarily set-oriented are LEAP and 
SETL. LEAP is a language similar to ALGOL, but containing several built-in 
set operations as well [Feldman and Rovner 1969]. A primary objective in its 
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design was efficiency of searching in sets; it has been used primarily for work 
in graphics and in artificial intelligence. SETL has been used for a variety of 
combinatorial problems. It primarily employs a set representation [Kennedy 
and Schwartz 1975] based upon hashing (see Section 10.4); however, a signif¬ 
icant objective in the design of the SETL compiler [Schwartz 1975] is that it 
should select the best representation for a given problem (see Section 9.3). 

• The issues of array extendibility and the resulting proximity of neighbor 
elements are explored in DeMillo et al. [1978], Rosenberg [1975], and Solntseff 
and Wood [1977], Methods for both shell storage and for arbitrary extendibil¬ 
ity are given in Rosenberg [1974], along with analyses thereof. 

• Discussions of sparse matrix representations and of basic methods of operations 
using them, can be found in MacVeigh [1977] and Pooch and Nieder [1973]. 
The delta-skip representation and its use in solving large systems of linear 
equations is described in Smith [1965], 

2.12 REFERENCE TO TERMINOLOGY 

0-origin, 34 
1-origin, 34 
action entry, 47 
action stub, 47 

f address map, 74 
t Array Theory, 77 
f associative indexing, 77 

base type, 35 
f bit map, 73 
t cardinality (of a set), 53 

Cartesian product, 54 
characteristic vector, 56 
column-major order, 38 
condensation, 48 
condition entry, 47 
condition stub, 47 
conformable (arrays), 45 
cross-section, 43 

f cubic shell, 69 
decision rule, 47 
decision table, 47 

t delta-skip, 75 
t diagonal shell, 69 

divide-and-conquer, 60 
don’t-care entry, 48 
dope vector, 41 

Gaussian elimination, 46 
hyperplane, 43 
index, 34 
index type, 35 
inner product, 44 
intension, 52 
key, 36 

lexicographic ordering, 39 
limited entry table, 48 
matrix, 44 
multiset, 53 

f particular solution, 59 
f pivot element, 47 

powerset, 53 
relation, 54 
row-major order, 38 
rule-mask technique, 50 
sentinel, 37 
sparse array, 68 
subscript, 34 
symmetric array, 41 

f tetrahedral array, 84 
transpose, 82 
triangular array, 41 
tridiagonal array, 84 
triples, 75 



80 ARRAYS and SETS 

extended entry table, 48 
extension, 52 
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tuple, 54 
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vector, 44 

2.13 EXERCISES 

Sections 2.1 — 2.2 

2.1 What is the cardinality of the array A declared by 

A: array [-3 .. 7,9 .. 13,4 .. 17,-1 .. -1] of real 

2.2 [Wirth 1973] M and N are 3x3 arrays of integers, with M initially as 

follows: 

(a) What is the value of N after executing 

for i := 1 to 3 do 
for j := 1 to 3 do 

N [i,j] := M [M [i,j],M [j,i]]; 

(b) What is the value of M after executing 

for i := 1 to 3 do 
for j := 1 to 3 do 

M [i,j] := M [M [i,j],M [j,i]]; 

2.3 Stored in row-major order starting at location 376 is 

V: array [0 .. 5,-2 .. 2,-3 .. 8,4 .. 7] of real 

(a) What is the location of the element V [2,1,3,6]? 

(b) What are the coefficients of the dope vector for V? 

f2.4 Suppose that we have T: array [1 .. n\ of integer with ordered elements. 
Write a function SEARCH_C that has as input parameters an argument key and a 
table such as T, and that does the following. If the argument is already present, it 
should return the index of its location; if the argument is not present, it should 
insert it — relocating array elements as necessary so that the ordering will be main¬ 
tained — and then return the index of the argument in the rearranged table. What 
is the computational complexity of your algorithm? What might be the hazards in 
using an algorithm with this specification? 
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Sections 2.3 — 2.4 

2.5 Consider the problem of evaluating a polynomial 

anx + an_^x + ••• + a^x + <2q 

for integer n, and real x, and with each a, stored as the ith entry of an array of 
coefficients. Assume that there is no exponentiation operator, so that the high 
degree terms must be obtained by repeated multiplication by x. Write a function to 
do this, and test it against 

y(x) = x1 + 6x6 - lx5 + 12x4 + 2x2 - 3x + 8 

for several values of x, such as 1.7 and —7.2. How many multiplications and how 
many additions does your method require, as a function of the degree of the poly¬ 
nomial? What can you say with regard to the minimum complexity of an algorithm 
for this problem? 

2.6 For a matrix A of dimensions m x n, define the vector R by rt = min(a. J for 
s = 1 ■■ an<i the vector C by cy — max(aiy) for t = 1 .. m. A is then said to have a 
saddle point if max(/*,■) = min(cy). Write a procedure to test for the presence of a 
saddle point in a matrix, and apply it to several 5x7 matrices of your choosing. 

ff2.7 [Knuth 1973a] In Exercise 2.6, assume that the m x n elements of a matrix 
have distinct values and that all permutations of these elements in the matrix 
locations are equally likely. What is the probability of there being a saddle point? 

f2.8 The array shown in Figure 2.28 is an example of a magic square of order n. 
It has the property that its entries consist of the numbers from 1 to n2, and that the 
sums along any row, any column, or the two diagonals all add up to 
'A x n x (n2 + 1). For n an odd number, a long known method of construction is as 
follows. Start with 1 in the middle of the top row, and always record the next inte¬ 
ger diagonally to the left and above the previous integer. If this causes you to fall 
off an edge of the square, then “wrap around” modulo n; if the sought-after square 
is already occupied, then drop down one row and proceed. Write a procedure to 
generate magic squares for odd values of n, and use it to compute the magic square 
of order 13. 

f2.9 Permutations form a group. The product Pa x Pb signifies the result of 
applying first Pa and then Ph. The inverse Pl is a permutation with the property 
that P x P~x leaves the elements in their original arrangement. Thus, for P analo¬ 
gous to Eq. 1.12, P~x is found by first transposing the two rows and then reordering 
the columns with respect to the new first row, as follows: 

/4 6 7 2 5 1 3\ (\ 2 3 4 5 6 7\ 
\1 2 3 4 5 6 l) \6 4 7 1 5 2 3/ 

Write a procedure that computes the inverse of P in situ; that is, it replaces the 
elements of P by the elements of P~x as it executes. Assume that P is given as in 
the second line of Eq. 1.12, but output Px in cycle notation (canonical form is not 
required). 
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28 19 10 1 48 39 30 

29 27 18 9 7 47 38 

37 35 26 17 8 6 46 

45 36 34 25 16 14 5 

4 44 42 33 24 15 13 

12 3 43 41 32 23 21 

20 11 2 49 40 31 22 

Figure 2.28 Magic Square of Order 7 

•jf 2.10 Write a procedure that takes as input parameters the coefficient matrix 

and the vector of right hand sides for a set of simultaneous linear equations, as in 

Eqs. 2.8, and then solves these equations by Gaussian elimination, returning the 

solution vector as an output parameter. Test your program by using it to solve the 

set of equations 

.410*! + .123x2 + -368*3 + .294*4 = .404 

.365*! + .192*2 + .378*3 + -064*4 = .424 

.178*! + .400*2 + .279*3 + -393*4 = -.256 

.225*i + -387*2 + .402*3 + .113*4 = .155 

and printing out the transformed coefficients at each iteration. What is the 

complexity of your algorithm? 

Straightforward Gaussian elimination has a serious potential hazard because the 

forward step involves repeated divisions by the pivot elements au. It should be 

apparent that a small pivot value (perhaps even zero) is an invitation to disaster as 

far as accuracy is concerned. One resolution is to inspect all of the coefficients 

atJ, ai+u,..., ani to find the aJ t that is greatest in magnitude. The z'th and y'th 

equations can then be swapped, in a technique known as partial pivoting. Revise 

your algorithm to incorporate partial pivoting, and use it to solve the same 

equations again. Under what circumstances will pivoting be important? 

•f-f2.ll The transpose of a matrix M, denoted by MT, is such that 

MT [ij] — M [/',/]. It is possible to transpose a matrix in memory by permuting its 

elements in situ, as opposed to getting a block of storage and copying from M to 

MT. Write a procedure to transpose a matrix in this fashion. To accomplish this, 

you should subvert the normal automatic mapping of arrays into sequential storage 

by declaring a one-dimensional array A and then mapping M into A in lexicograph¬ 

ical order. Then apply your program to obtain MT in A. Test your program by 

using it against the following 5x7 matrix, wherein the values of the elements corre¬ 

spond in fact to the indices of the elements: 
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11 12 13 14 15 16 17 
21 22 23 24 25 26 27 
31 32 33 34 35 36 37 
41 42 43 44 45 46 47 
51 52 53 54 55 56 57 

What can you say about the complexity of your program? 

2.12 For the decision table of Figure 2.11, construct the matrices truth and falsity, 
and apply the algorithm RULE_MASK to them. Trace the values assumed by the 
vector rule, for a rider who is a non-handicapped child during the commute hour. 

2.13 Rewrite the algorithm SIEVE, employing arrays of sets, and use it to search 
for prime numbers over a reasonable range. 

Section 2.5 

f2.14 Simulate the application of the algorithm MIN_MAX to the following 
array of data: 

267 399 67 871 59 767 755 599 619 879 163 71 

For each call to MIN_MAX, trace the following information: the input parameters 
lo and hi, and the output parameters mini and maxi. 

f2.15 What is the recurrence relation for the number of additions with Strassen’s 
algorithm? What is its solution? 

f2.16 [Winograd 1970] Strassen’s algorithm reduces the complexity of matrix 
multiplication from 0(n3) to 0(n2Sl); however, it also has a large constant factor. 
A method by Winograd does not attain a lower complexity, but it does have a smal¬ 
ler constant factor (less than one) than that of Algorithm 2.4. By way of 
introduction, suppose that we wish to multiply two vectors, U = (ux, u2, u3, u4) and 
V = (v„ v2, v3, v4). We can write the product as 

U X V ~ («[ + V2)(m2 + vl) + (w3 + v4)(w4 + v3) — Cwlw2 + W3W4] — [vlv2 + V3V4] 

In the general case, and restricting attention to the case n — 2m, we have 

m mm 

U x V = y>2,-l + v2i)(u2i + v2z— 1) ~ 
i=l i= 1 z=l 

This requires 3n/2 multiplications rather than n, so it is not very profitable. 
However, note that the bracketed terms can be precomputed for U and for V. 
Similarly, in multiplying two matrices A and B, the bracketed terms can be precom¬ 
puted for each row of A and each column of B\ this gives us the basis for 

Winograd’s algorithm. 

(a) Write a procedure to multiply matrices using this technique; for simplicity, let 
the matrices all be of order n — 2m. Test your program against Algorithm 2.4, 

both for correctness and for performance. 

X["2 i~\u2i\ — 
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(b) Analyze your program to determine the total number of multiplications 
required. Also, how does the number of additions for this algorithm compare 
with the number of additions in Algorithm 2.4? Finally, how do the numbers 
of storage accesses (for elements of A and B) compare in the two methods? 

t2.17 Continue the application of the algorithm RUSSIANS to the multiplication 
of the boolean matrices 2.18(a) and (b); that is, compute the matrix BCOMB and 
the updated value of C, for h = 2. 

f2.18 Strassen’s algorithm and the Four Russians’ algorithm provide two different 
approaches that can be used to multiply boolean matrices with complexity less than 
0(n3). Describe as precisely as possible the circumstances under which one would 
be preferred over the other. 

ff2.19 Assume that we have a vector V containing both positive and negative 
integer values, and we wish to find a contiguous sub-vector of V such that the sum 
of its elements is the maximum over all possible sub-vectors. Write a procedure for 
doing this with complexity that is less than 0(n2). (Hint: Try divide-and-conquer.) 
Test your program against the input vector 

29 - 38 46 - 30 35 - 52 49 - 43 78 26 - 53 58 67 - 11 

What can you say about the complexity of your algorithm? 

Sections 2.7 — 2.8 

f2.20 A common type of sparse matrix is the tridiagonal matrix, with non-zero 
coefficients on the main diagonal and the two adjacent diagonals, and with zeros 
elsewhere, as illustrated in the following sketch. Derive a storage allocation formula 
that will map the non-zero elements of a tridiagonal matrix A into consecutive 
memory locations, with A [1,1] in the first location. 

x x 0 0 0 ... 0 
x x x 0 0 ... 0 
0 x x x 0 ... 0 

0 ... 0 x x x 0 
0 ... 0 0 x x x 
0 ... 0 0 0 x x 

f|2.21 Eq. 2.6 gives a sequential storage allocation formula for a triangular 
matrix, with indices 1 <j < i < n, as 

Derive a sequential storage allocation formula for a 3-dimensional tetrahedral array, 
with indices 1 < k <j < i < n such that 

loc (jc [y,fc]) = b +f(i) + g(j) + h(k) 

(Hint: Use the results of Exercise 1.8.) 
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f2.22 Assume that we have a sparse matrix in the triples representation, with the 
riples stored m row-major order. Write a procedure to transpose the matrix (see 

txercise 2.11), obtaining the triples of the transposed matrix in the new row-major 
order, and test your program against the sparse matrix of Figure 2.23. Do not 
simply switch the indices and then sort. As an example, the original list of triples 
(see Figure 2.27) is F 

1,2,5; 1,5,2; 2,1,4; ... ; 5,2,8 
and the transposed set of triples would be 

. U2A; 1’4'.1’ 2’1-5’ ••• • w 
Wnat is the computational complexity of your algorithm? 

tf2.23 [Pfaltz 1977] Assume that we have two square, sparse matrices A and B 
with pA = Prob (atj * 0) and pB = Prob (bu ^ 0). 

(a) For S = A + B, what is ps = Prob (sLJ ^ 0)? 

(b) For T = Ax B, what is pT = Prob (ttj ^ 0)? 

(c) How do the preceding results change if the elements au and bu are known to 
be zero? non-zero? 
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RECORDS 

“Yea, from the table of my memory 
I’ll wipe away all trivial fond records.” 

Shakespeare 
Hamlet, act I, scene 5 

Records may indeed be trivial or complex, fond or bitter, but the need to transcribe 
and retain information in a usable form matters to all of us — the householder with 
a checkbook, the personnel manager, the accountant, the college registrar, even the 
bookie and the loan shark. In essence a record is a composite of data; typically, it 
may be a mixture of elements of alphabetic, numeric, and logical base types. The 
fact that the data elements may be of heterogeneous types precludes the use of an 
array structure, and we are thus led to using records. In this chapter, we will first 
look at ordinary record structures and then at means of generalizing them, all 
within the framework of HLL’s, Pascal in particular. The last section describes 
some other techniques for dealing with variability in records; these latter methods 

are more suited to assembler language programming. 

3.1 FIXED LENGTH RECORDS 

Suppose that we have a personnel record as follows: 

name John Jones 
birthday 03-31-46 
wage $ 1237.82 
marital status S(ingle), M(arried), D(ivorced), or W(idowed) 

This record is one of many, and we wish to retain all the personnel records in a 
computer in some coherent manner. It would be convenient to represent them by 

var employee: array [1 .. n,1 .. 4] of base_type 

Then, if John Jones were the z'th employee, we might have: 
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employee [i,1] = 'John Jones' 
employee [i,2] = 03,31,46 
employee [i,3] = 1237.82 
employee [i,4] = 'M' 

However, this choice of data structure is not possible because the elements are, 
respectively, a vector of characters, a vector of integers, a real number, and a char¬ 
acter; and arrays must have a homogeneous base type. Of course, one solution to 
this difficulty is to replace the array employee with four distinct arrays, as follows: 

employee_name: 
employee_bday: 
employee_wage: 
employee_status: 

array [1 .. n,1 .. 20] of char 
array [1 .. n,1 .. 3] of integer 
array [1 .. n] of real 
array [1 .. n] of char 

Indeed, such an approach is not uncommon; but it is unappealing. It forces us to 
think of several distinct arrays when dealing with what is logically one item. If 
employees are to be added or deleted in our personnel file, the programming over¬ 
head is both burdensome and error-prone. 

A better approach is to explicitly aggregate the attributes for each employee. In 
Pascal, it would be natural to do this for the preceding example via the definition in 
Figure 3.1. This would cause employee to be a new, user-defined type, always 
consisting of the four fields as shown. With this definition as a template, we might 
then declare 

var personnel: employee 

whereby we could refer to any of the following: personnel.name, personnel.bday, 
personnel.wage, personnel.status. 

type employee = record 
name: array [1 .. 20] of char; 
bday: array [1 .. 3] of integer; 
wage: real; 
status: char; 

end; 

Figure 3.1 Employee Record Format, Version 1 

These composite identifiers, selecting variable and field within the variable, are 
called qualified names. The only permissible operations with a record are those of 
retrieving from or storing into a particular field (or else the entire record) as in: 

personnel.wage := worker.wage 
test := worker.status 
personnel.bday [2] := 18 
personnel := worker 

where worker is another record of type employee. In these selection operations, the 
use of qualified names is more descriptive than the analogous use of subscripts for 
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an array. However, note that in effect qualifiers are always constants. Since they 
cannot be variables or expressions, as subscripts can be for arrays, record oper¬ 
ations tend to be rather mundane. Of course, the names of fields within a record 
must be distinct. However, the same name may be freely used as an identifier of a 
field within several types of records. 

Records are available as data structures in some languages (for example, PL/I 
and COBOL) and not in others (for example, FORTRAN and BASIC). In those 
languages that support them, the syntax for declaring them and using them varies 
considerably. For example, in PL/I they are simply called structures, and the 
syntax for declaring them is quite different from that in Pascal; yet the use of quali¬ 
fied names for referencing fields is the same in the two languages. 

In some assembly languages, such as that for the IBM 370, a record template 
can be defined very nicely with a dummy control section, whereby the fields are 
listed in sequence. Subsequently, by loading a base register with the origin of an 
actual record and by using the field name as a displacement, the effect of a qualified 
name is obtained. In fact, this suggests to us how records are mapped into storage 
in Pascal, PL/I, etc. Assuming that characters, integers, and reals occupy 1, 4, and 
8 bytes respectively, the storage mapping for our employee record of Figure 3.1 
would be as shown in Figure 3.2. That is, a personnel record of this type would 
require 41 bytes, and the offsets from the beginning of the record to the four fields 
would be 0, 20, 32, and 40. 

Field Location Length 

name 0 20 

bday 20 12 

wage 32 8 

status 40 1 

Figure 3.2 Storage Allocation Corresponding to Figure 3.1 

3.1.1 Multiple Qualification 

In the example of the employee record, we found it natural to define fields that are 
arrays. We might also have chosen to declare 

var personnel: array [1 .. n] of employee 

whereby we could refer to any of the following: personnel [Q.name, 
personnel [Q.bday, personnel IQ.wage, personnel [Q.status. An array in which every 
element is a record of the same type is sometimes called a file.1 The use of one type 

1 The term file has other meanings as well. In particular, it is often understood to be a 
sequence of items of indefinite cardinality, and stored on some secondary medium such 
as tape or disk. With this definition, a file may not have an index type that can be used 
to select an item from it. We will discuss this more common usage in Chapter 12. 
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within another type may be carried to many levels. In particular, just as arrays of 
more than one dimension can be viewed as (recursive) arrays of arrays, so we can 
have records with fields that are themselves records. 

As an example, suppose that we wished to include with each employee some 
data about his spouse. Such a record definition might look like Figure 3.3. If 
worker is a variable of type employee, then we could use multiple qualification, in a 
manner analogous to multiple subscripts, to reference fields of fields. Thus, for 
instance, worker.spouse.name = 'Elizabeth' and worker.spouse.age =32. With regard 
to the field identifiers name and age, we have two different situations. Name is used 
in both the outer and inner record definitions, and so worker.name and 
worker.spouse.name refer to distinct items. On the other hand, it would be sufficient 
to refer to worker.age without any ambiguity, since age is not a field identifier in the 
outer record definition. This is called elision. Languages that support records tend 
to have somewhat different rules about which elisions are permitted. We will 
always use fully qualified names (with no elision) when dealing with records. 

type employee = record 
name: array [1 .. 20] of char; 
bday: array [1 .. 3] of integer; 
wage: real; 
status: char; 
spouse: record 

name: array [1 .. 10] of char; 
age: integer; 

end; 
end; 

Figure 3.3 Employee Record Format, Version 2 

Nonetheless, qualification, especially if it is multiple, can cause the names of 
program variables to become tediously long. Pascal has the construction with, 
which offers some relief in this regard. For instance, if it were necessary to revise 
each field of the variable personnel [/], we could write 

with personnel [i] do begin 
name := ... 
bday := ... 
wage := ... 
status := ... 
spouse := ... 

end; 

(Note that spouse is of type record and that we can update the last field of 
personnel [z] with one assignment statement, presuming that we have a suitable vari¬ 
able of type spouse for the right hand side.) The with construction is also 
important because it can reduce the amount of computation required during 
execution. Thus, in the preceding example, the indexing required to address 
personnel [z] need only be performed once instead of for each field. 
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type spouse = record 
name: array [1 .. 10] of char; 
age: integer; 

end; 
employee = record 

name: array [1 .. 20] of char; 
bday: array [1 .. 3] of integer; 
wage: real; 
status: char; 
spice: array [1 .. n] of spouse; 

end; 

Figure 3.4 Employee Record Format, Version 3 

To carry our example one step further, suppose we are in a culture that prac¬ 
tices polygamy. In this case, we could employ the definitions of Figure 3.4. If 
worker, of type employee, is a variable that contains the data for Mr. Jones, we 

might then have: 

worker.name = 'John Jones 
worker.bday = 03,31,46 
worker.wage = 1237.82 
worker.status = 
worker.spice [1].name = 'Elizabeth '; worker.spice [1].age = 32 
worker.spice [2],name = 'Ann '; worker.spice [2].age = 28 
worker.spice [3].name = 'Susan '; worker.spice [3].age = 43 

etc. 

The foregoing suggests that there are some practical difficulties associated with 
fixed length records. Wherever a field is an array, we must decide on a maximum 
bound for the array. This constitutes a dilemma. Just as soon as we decide on a 
maximum - for example, that no name should require more than 30 characters - 
and lay out our data accordingly, we will surely find an exception that forces us to 
revise our plan. Moreover, the more that we attempt to forestall this possibility by 
making a generous initial definition, the more we then exacerbate the problem of 
wasted space in the majority of cases. 

Note that the extra blanks in the name fields are at the right, with the signif¬ 
icant data all the way to the left. Data recorded in this manner is said to be left 
justified. However, if the data corresponds to numeric values of varying sizes, such 
justification to the left would cause the corresponding fields in a succession of 

records to appear as 

12 
4872 
3 

so numeric data is always right justified, which causes the preceding values to 

appear, more appropriately, as 
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12 
4872 

3 

The dilemma cited for the case of the name fields in our employee record exam¬ 
ple becomes even worse when we consider the effects of marital status upon the 
array spice. Just how much polygamy should we allow for? And what about the 
total waste of this space when an employee is single? Two approaches to overcom¬ 
ing the rigidity of fixed length records will be discussed subsequently under the 
topics of variant records and variable length records. First, however, we give a few 
other illustrations of the utility of fixed length records. 

3.1.2 Examples of Record Usage 

Even though the use of records is largely motivated by the desire to compose data 
of different base types, their structuring effect can also be useful with data elements 
of the same type. For instance, in the situation depicted in Figure 3.5, we can oper¬ 
ate with complex numbers as generic entities, rather than having to keep track of 
their real and imaginary parts. 

procedure COMPLEX_MULT (a,b: complex; var c: complex); 

type complex = record 
real_part: real; 
imag_part: real; 

end; 

begin 

c.real_part := a.real_part * b.real_part - a.imag_part * b.imag_part; 
c.imag_part := a.real_part * b.imag_part + b.real_part * a.imag_part; 

end; 

Figure 3.5 Complex Numbers as Records 

Another useful record structure is 

date = record 
month: (Jan,Feb,Mar,Apr,May,June,July,Aug,Sept,Oct,Nov,Dec); 
day: 1 .. 31; 
year: 1 980 .. 1999; 

end; 

The cardinality of a record structure is the product of the cardinalities of its fields. 
Thus, the cardinality of the type date is 12 x 31 x 20 = 7440. Of these 7440 distinct 
values, there are 135 that are illegal, such as Feb. 29, 1983. Such possibilities for 
inconsistent sets of values are common in record structures. Note that if date were 
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implemented as an ADT, then consistency checks would be built into the proce¬ 
dures that operated on values of this type. In more conventional programming, it 
falls upon the user program to provide these checks. As another instance of poten¬ 
tially inconsistent data values, consider the case of a record for a single employee 
that contains data for a spouse. 

function BRIDGE_PLAYER (lead.follow: card): boolean; 

{compares lead and follow and decides the winner; 
takes into account trump/notrump circumstances} 

type shdc = (spade,heart,diamond,club); 
card = record 

suit: shdc; 
rank: (two,three,four,five,six,seven,eight,nine,ten, 

jack,queen,king,ace); 
end; 

var notrump: boolean; 
trump: shdc; 

function FACEOFF: boolean; 
begin 

if lead.suit <> follow.suit then FACEOFF := true 
else FACEOFF := lead.rank > follow.rank; 

end; 

begin 
if notrump then BRIDGE_PLAYER := FACEOFF 
else begin 

if lead.suit <> trump then begin 
if follow.suit <> trump then BRIDGE_PLAYER := FACEOFF 
else BRIDGE_PLAYER := false; 

end else begin 
if follow.suit <> trump then BRIDGE_PLAYER := true 
else BRIDGE_PLAYER := lead.rank > follow.rank; 

end; 
end; 

end; 

Algorithm 3.1 BRIDGE_PLAYER 

The function BRIDGE_PLAYER (Algorithm 3.1) is a more substantial exam¬ 
ple of computation based upon the record type. It compares two playing cards, 
lead and follow, and returns True if lead beats follow or False if follow beats lead. 
The determination is made according to the rules of bridge. Readers who are famil¬ 
iar with the game will easily recognize the various conditions. For those who are 
not, the following (non-independent) conditions determine the result: 

1. There is a global boolean variable no trump; if no trump is false, then one of the 
four suits - spade, heart, diamond, or club - is a trump suit. 
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2. If notrump is true, then the determination of the winning card depends upon 
two factors, whether the cards are of the same suit, and which of the two has 
the higher rank. 

3. If notrump is false, then the determination of the winning card is slightly more 
complicated, as elaborated in the algorithm. 

For the cases where the determination has been reduced to evaluating the relative 
ranks of the two cards, BRIDGE.PLAYER calls the function FACEOFF to estab¬ 
lish the result. 

3.2 VARIANT RECORDS 

There are several motivations for generalizing the fixed record format that we have 
considered so far. For example, suppose that we wish to have a single record struc¬ 
ture for maintaining data about auto, home, and life insurance policies. Some 
information pertaining to the policy holder — name, address, amount, premium, 
etc. ~ would be the same for all these kinds of insurance. But other information 
would be specific to the kind of insurance: data about the insured car, or the 
insured home, or the type of life insurance and the beneficiary, etc. This situation 
can be accommodated by placing all the common information at the beginning of 
each record in a fixed part, and placing all the unique kinds of information at the 
end of each record in a variant part. In addition, so that we can later distinguish 
what kind of record we are dealing with, we must include a tag field in the fixed 
part. In this example, the tag would have one of the values (auto, home, life) This 
technique is known as the discriminated union. 

The storage requirements for the three cases in this example will probably not 
be identical. However, the fixed fields can always be in the same locations, and the 
variant fields can be overlaid, since by the nature of our data a given record will 
have just one of the three variants. In terms of storage allocation, we have two 
possibilities: 

1. At compile time, we can statically allocate for each record a total amount of 
storage matching the requirement for the largest variant. During execution, the 
fixed fields will then be assigned their values, and the variant fields will also be 
assigned values consistent with their tag value. For some policies, we expect to 
have wasted space at the end of the record. 

2. Alternatively, during execution, we can determine what kind of policy we are 
dealing with and dynamically allocate just the proper amount of space for that 
variant. We then go on to assign the information to the fields of the record. 
There is never any wasted space. 

Note that in both of these cases, but particularly in the latter, we can cause a disas¬ 
ter by reassigning the value of the tag in a record that already contains data 
corresponding to a particular variant. 
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Figure 3.6 Variant Records 

With the first allocation policy cited, we obtain the advantage that we can have 
one record type with alternative formats, as illustrated in Figure 3.6(a). With the 
second allocation policy, we obtain this plus an additional advantage; namely, we 
can have maximal thrift in our use of storage, as illustrated in Figure 3.6(b). Both 
of these policies are available in Pascal, but we need some tools from Chapter 4 
before we can illustrate how to accomplish the latter alternative. In all, it is possi¬ 
ble to identify three uses for variant records. We have already cited alternate 
formats and storage economy. In Section 3.2.2 we will describe an additional one, 
for type conversion. 
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3.2.1 Field Discrimination 

Variant records are supported in Pascal. To illustrate their use, let us return to our 
employee record example, defining the format this time as in Figure 3.7. Here, the 
tag field is status, and its value is used, via the case construction, to selectively 
describe the format of the balance of the record. There are two significant differ¬ 
ences between the use of case to discriminate record variants and its use to control 
program statement sequencing. One is that this case is not closed with an end; 
rather the end that closes the record definition also closes the case, since the end 
of the variant definitions is necessarily the end of the record definition as well. The 
other difference is that discrimination is really based, not upon the possible values 
of a variable, but upon the possible values of a type. 

type spouse = record 
name: array [1 .. 10] of char; 
age: integer; 

end; 
employee = record 

name: array [1 .. 20] of char; 
bday: array [1 .. 3] of integer; 
wage: real; 
case status: char of 

'M': (bliss: spouse); 
(tally: 1 .. n; 

spice: array [1 .. n] of spouse); 
end; 

Figure 3.7 Employee Record Format, Version 4 

If worker is a variable of this type and is monogamous, we might refer to 
worker.bliss.name-, if worker is polygamous, we might refer to worker.spice [2],age. 
Note that records for single, divorced, or widowed employees would have no spouse 
data at all; we might want to revise our definition, however, to include next-of-kin 
information for such persons. 

There is still some inflexibility in the scheme as shown. Although we can 
discriminate on the basis of marital status, we are forced to allocate, at the outset, 
an array spice with the maximum foreseeable bounds 1 .. n. However, this is really 
a limitation of Pascal; in PL/I, for instance, it is possible under certain circum¬ 
stances to allocate the array spice with bounds of 1 .. tally rather than 1 .. n, as long 
as tally precedes spice in the record specification. 

In Pascal, the concept that a record consists of a fixed part followed by a vari¬ 
ant part can be extended recursively. That is, any variant can itself contain a fixed 
part (with a tag) followed by a variant part, as illustrated in Figure 3.8. In this 
example, the record of type r has a fixed part (d,e,a) and three variants. The first 
variant x has a fixed part (f,g,b) with two variations (h,i) or j; the second variant y 
has only a fixed part (k,l); and the third variant z has a fixed part c with two 
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type typea = (x,y,z); 
typeb = (u,v); 
typec = (s,t); 

r = record 
d,e: integer; 
case a: typea of 
x: (f: char; 

g: real; 
case b: typeb of 

u: (h: integer; 
i: boolean); 

v: (j: array [1 .. 3] of char)); 
y: (k,l: boolean); 
z: (case c: typec of 

s: (m: real; 
n: char; 
o: integer); 

t: (p: array [3 .. 7] of integer)); 
end; 

Figure 3.8 Recursively Variant Records 

variations (m,n,o) or p. As you can see, the correct placement of parentheses is vital 

for distinguishing where variants begin and end. Also, one must not use the same 

field identifier within variants at the same level. 

f 3.2.2 Type Conversion 

We have presented variant records as being primarily motivated by the need to 

discriminate among several formats that might apply to part of a record. In order 

to signal the correct format, a tag field is then required. This capability of applying 

alternate formats to data is also useful for converting between the various primitive 

(boolean, character, integer, real) types. In such a case, no tag field is required, and 

the structure is called a free union. Type conversions in this fashion are commonly 

useful, for example, in transmitting parameters across interfaces, or in I/O oper¬ 

ations; however, they must be used with care. Reading data as characters, 

operating upon it as integers, and then interpreting it as characters again would be 

likely to yield meaningless results. In assembly language, it is trivial to read data as 

characters and then access it as numerical values. In an HLL like Pascal, the user 

must be cautious, because the results can depend upon various details of compiler 

implementation. 

As an illustration of this technique, we might have the definition 
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type word = record case boolean of 
true: (int: integer); 
false: (cl ,c2,c3,c4: char); 

end; 

Then, if data is a variable of type word, we might read four characters (in EBCDIC 
code) into its four bytes, as follows: 

data.cl = 'A' { = Cl. 
data.c2 = T' {= E31 
data.c3 = '0' { = 06, 
data.c4 = 'Z' {= E9-| 

19310} 
22710} 
21410) 
23310} 

Then, a reference to data.int would immediately evaluate to 

325293437710 { - 193 x 2563 + 227 x 2562 + 214 x 256 + 233} 

Since the example has only two possibilities, it is sufficient to use the type boolean 
which has only the two possible values True and False. This, by the way, empha¬ 
sizes the point made previously, that the case discrimination for record variants is 
based upon values of a type, not values of a variable. 

As another example of this technique, let us recall from Section 2.5.3 the 
program RUSSIANS (Algorithm 2.9), for fast boolean matrix multiplication. The 
algorithm requires the ability to take the value of a set variable and convert it to an 
integer value. This conversion was performed in RUSSIANS by the function 
SET_TO_INT. Unfortunately, the complexity of SET_TO_INT is O(m), causing 
the overall time complexity of RUSSIANS to be 0(n2). By using a variant record, 
however, we can express this function so that it has complexity 0(1), thereby reduc¬ 
ing the overall time complexity of RUSSIANS to 0{n2^n). 

63 62 32 31 1 0 

(a) A Characteristic Vector Representation 

0 1 2 3 4 5 6 7 

0 1 15 16 

0 1 30 31 

0 1 254 255 

(b) Another Characteristic Vector Representation 

Figure 3.9 Alternative Set Representations 

In the original conversion routine, SET_TO_INT, we did not have to be 
concerned with the manner in which sets are implemented by our Pascal compiler. 
In the mapping of the original boolean input into the matrices A and B, it was 
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natural to associate the ith set element with the value in the ith column of the input. 
This led to the corresponding “natural” function SET_TO_INT. But now, in using 
variant records, we are escaping the consistency safeguards of Pascal typing, so that 
we must discern (by testing, for example) just how the compiler implements sets. 
One common scheme is, for a and b in the range 0 .. 63, to map set elements a.. b 
to the 64 bits of a double word, as shown in Figure 3.9(a). In discussing 
RUSSIANS, we did not worry about the issue of mapping the original boolean 

rows into sets, but it is rather natural to map the value in the ith column of a row 
onto the ith element of a set. With this implementation, the elements of the set 
appear in reversed order in the double word, leading to the function 
SET_TO_INT_V1 (Algorithm 3.2). Here, although there are again just two vari¬ 
ants, we have arbitrarily used an enumerated type with two mnemonic values, bit 
and int, instead of the type boolean. The former refers to one set of 64 bits (b) and 
the latter refers to two integers of 32 bits each (il, i2). However, we presume that 
the parameter m in RUSSIANS is such that the high order integer il is always zero. 
Since our sets in RUSSIANS were defined in terms of 1 .. m rather than 0 .. m, we 
must use the integer division operator div to discard the least significant bit. 

function SET_TO_INT_V1 (s: setm): integer; 

type flag = (bit,int); 
setm = set of 1 .. m; 

var view: record case flag of 
bit: (b: setm); 
int: (il ,i2: integer); 

end; 

begin 
view.b := s; 
SET_TO_INT_V1 := view.i2 div 2; 

end; 

Algorithm 3.2 SET_TO_INT_V1 

A different, common manner of representing sets is, for a and b in the range 
0 .. 255, to map the set elements a .. b onto the smallest unit of storage that will 
suffice - 8, 16, 32, or 256 bits - as shown in Figure 3.9(b).2 In the problem at 
hand, we expect m to be small, so one byte is all that is required. To obtain conver¬ 
sion in 0(1) time with this representation, we need to number the columns of our A 
matrix from right to left when mapping rows onto sets. In turn, this impacts the 
original conversion routine (SET_TO_INT). We can adjust to the change in repre¬ 
sentation via the conversion function SET_TO_INT_V2 (Algorithm 3.3), which 
uses an integer variant with just one byte. Since the set elements are not reversed in 

2 For 31 < b < 256, this is not quite accurate; however, that is irrelevant to our purpose 
here. 
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and Since m = 3 in our Problem> we have to divide by 16 to shift 
ott the last 4 bits. 

pr®ceding Paragraphs have been concerned with details that we would 
rather be able to ignore when discussing algorithms. If nothing else, they dramatize 
the advantages of being able to represent algorithmic processes without having to 
worry about the operations of an underlying machine. On the other hand a 
conversion routine of this nature would in practice probably be implemented’ in 
machine language anyway. In the present example, it is almost a tour-de-force to 
be able to obtain executable algorithms in an HLL. 

function SET_T0_INT_V2 (s: setm): byteint; 

type byteint = packed 0 .. 255; 
flag = (bit,int); 
setm = set of 1 .. m; 

var view: record case flag of 
bit: (b: setm); 
int: (i: byteint); 

end; 

begin 
view.b := s; 

SET_TO_INT_V2 := view.i div 16; 
end; 

Algorithm 3.3 SET_TO_INT_V2 

3.3 VARIABLE LENGTH RECORDS 

As we have seen in the preceding section, variant records offer some solution to the 
problem of adjusting the size of a record to fit the data. However, the solution is 
only partial. In the case of a polygamist with m wives, some HLL’s (such as PL/I) 
allow the construction of a record containing an array of m elements for the m 
wives; other HLL’s (such as Pascal) insist that the array must have a pre-defined 
maximum number of elements, some of which will probably be unused. But what 
if, in such a record, we need to deal with n children as well as m wives? HLL’s 
generally are not equipped to cope with even this modest amount of variability. 
Therefore, the techniques that we will describe for coping with truly variable length 
records are generally implemented in assembly language. 

The way to cope with extreme variability is to make each record self-describing 
by interspersing control information with the rest of the data. A program to 
process such a record must then start at the beginning of the record and scan fields 
from left to right, interpreting them according to the control information that is 
recognized during the scan. This control information can have either of two forms: 
separators as in the next section, or counts as in Section 3.3.2. The data that we 
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will use in our examples represents the polygamous employee of Section 3.1.1. It is 

reproduced here for convenience: 

John Jones 033146 1237.82 P 
Elizabeth 32 
Ann 28 
Susan 43 

Before embarking on the details, however, we should remark that it is possible, 

after all, to carry out such a scheme in an HLL, by the following technique. In lieu 

of all other data structures, declare 

var memory: array [0 .. memsize] of char {or integer} 

Then process the variable length records within this large array by scanning the 
data from left to right and interpreting it. Note that we must settle on a homogene¬ 
ous base type for the array memory, and then perform type conversions as needed, 
perhaps using variant record techniques. It would be sensible to choose the base 
type corresponding to that of the majority of the actual data, in order to minimize 
the number of cases requiring conversion. The manner in which this method would 
work will become apparent in the next sections. Still another technique for 
handling variable length records using an HLL will be seen in Section 11.3.1.3. 

3.3.1 Field Demarcation by Separators 

This method is basically quite simple, as illustrated by the fragment 

John Jones/033146/1237.82/ ... 

There are two points to be observed in this fragment: 

1. The real data is uniformly written in a homogeneous base type (character, in 

this case). 
2. The individual fields of the data are separated by some special separator value 

from that base type ('/', in this case). 

Thus, the nth field can be found by counting forward past n - 1 separators; the 
contents of that field can be read directly if the type of the field is character, or 

otherwise it may need to be converted. 

Usually, it is important that the separator value should not be present in any of 
the data fields. With the base type of character, this is fairly easy to ensure, since 
the set of character values is so rich. Typical characters used as separators are 

@ % 0 & * ! etc. 

In the rarer case when the base type is integer, it can be much harder to find 
distinctive values to use as separators. Moreover, even when safe values are avail¬ 
able (for example, 0 or -1) we observe that they require the standard memory space 
for an integer, usually four bytes, which is uneconomical. 

Applying this technique to the personnel data for our polygamous employee, we 

might obtain 
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John Jones/033146/123 7.82/P:Elizabeth/32 
/Ann/28/Susan/43/; (next record) 

Note that we actually used three separator characters for three different logical 
functions: to separate fields within a record, to separate records, and to 
indicate the beginning of optional data pairs following the marital status field. It is 
important to realize that the choices of which characters to employ as separators, 
and what logical functions to ascribe to them for decoding the data are arbitrary’ 
In addition, such a scheme is only meaningful when coupled with a program that 
has been written to process such a variable length record. There are likely to be 
occasions when you come across a variable length record that you need to decode 
by hand without being fully aware of the rules. When the fields are demarcated by 
separators, as in the example above, it is fairly easy to guess at the separators and 
read the record. 

The use of separator characters for variable length records is fairly congenial to 
human processing of data, because the eye can easily scan and recognize where 
fields begin and end. But this is not true for machines. If, for instance, it wished to 
find the next record after that of Mr. Jones in this example, a program would have 
to scan every character, one at a time, until it encountered the that signalled the 
end of the record. Another problem with separators is that in general they must not 
occur within the data. A way of handling exceptions to this rule is illustrated by 
the usual manner of allowing quote characters to be included within quoted charac¬ 
ter strings. Although we will not cover the string data structure until Chapter 8, 
most readers probably already have an acquaintance with literal data strings, as in 

'Hello there' and T'm tired of computing' 

Here, a single quote indicates either the beginning or the end of a string of charac¬ 
ters; two quotes indicates the occurrence of a single quote within a quoted string of 
characters. The program that reads such literal character constants contains the 
necessary logic to discriminate what is intended and to adjust the data in the 
machine; for example, it would change the latter to 

I'm tired of computing 

Although the preceding use of double separators is workable, it is awkward. It also 
is at variance with another conventional usage for repeated separator characters. 
Suppose that we have the following alterations to our personnel record for Mr. 
Jones: he is retired and thus salary does not apply, Elizabeth’s age is obscure, and 
we are not sure of the second wife’s name. The available data would then typically 
be recorded as 

John Jones/033146//P:Elizabeth///28/Susa 
n/43/; (next record) 

That is, fields for which data are missing or null are conventionally indicated by 
multiple separators. 

In summary, encoding of variable length records using separators to demarcate 
the fields is commonly used where there is an interface to people, as in data entry or 
text editing, or where the data sizes are small enough that the scanning does not 
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become too burdensome. However, this method is ill suited to the internal process¬ 

ing of large volumes of records by machines. 

3.3.2 Field Demarcation by Counts 

As an alternative to the use of separators, it is common to precede each data field 
with a fixed length count field. For data fields that are long and variable, the over¬ 
head is reasonable. For data fields that are short or intrinsically of fixed length, the 
overhead would seem to be unreasonable. Nonetheless, in the interest of uniformity 
and to make the record truly self-describing with fewer hidden assumptions, it is 

common practice to attach counts to every field. 

If the record is regarded as a succession of characters, as in the preceding 
section, then we are faced with the decision of how many character positions, or 
bytes, to allow for the count fields themselves. Of course, this depends upon the 
data sizes in the application; regardless of size, however, the necessity to convert 
between character data and numeric count data remains. For illustrative purposes, 
we use the same personnel record as before. In this case, one byte would be suffi¬ 
cient, since we can then count to 255. Unfortunately, many of the corresponding 
character codes would be gibberish to the eye, or even unprintable. Although this is 
irrelevant for internal processing of variable length records, it does complicate our 
attempts to illustrate the method. Accordingly, we will allow two character posi¬ 
tions for counts, but presume that only recognizable digit values are recorded 
therein. However, you should recognize that this is not a faithful representation of 

the actual internal record processing. 

Of course, when we precede a data field of n characters with a count field of 2 
characters, this makes the total space requirement n + 2 characters. Should the 
count field value be n, or include itself and be n + 2? It is more common to use n, 
but the decision really rests with the program for processing the record. In this 
regard, if we have a file of variable length records, it is very convenient to be able 
to skip over an entire record without having to skip over each individual field 
within the record. For this purpose, it is usual to precede each record with a count 
of the total number of characters in the record. To be useful, this count must be a 
sum of the lengths of all the data fields and their count fields. 

With all the preceding description in mind, we arrive at the record for Mr. 
Jones, as follows: 

7310John Jones06033146071237.8201P1509E1 
izabeth02 32090 3Ann02281105Susan0243 

Your first impression is probably that this is harder to read than when separators 
were used. And so it is, for humans; but a program can now skip from one field to 
the next, or from one record to the next, without the necessity of reading each indi¬ 
vidual character and interpreting it. Note that the scheme of preceding each record 
with a count of the total record length is also applied to the sub-records for each of 
the spouses. 

The story of demarcating fields by counts does not end quite yet. Another kind 
of count field is commonly employed in variable length records. In cases where a 
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field is an array of dimension 1 .. n, a count field containing the value of n may be 

inserted in the record before the array. In scanning an unfamiliar record of this 

type from left to right by hand, it can be unclear whether we are looking at a field 

size count, a record size count, a dimension count, or perhaps even data! This 

makes such variable length records even more difficult for humans to read. A 

program will necessarily contain logic to discriminate between these possibilities at 

each juncture. For a person attempting to read a memory dump containing such 

records, however, it often resembles solving a puzzle — making guesses as to what 

certain character positions signify, and occasionally revising guesses and partially 

restarting when the interpreted values become meaningless. (Note that with 

encryption, where no clues are to be found in the data itself, the puzzle may become 

extremely difficult.) With this embellishment of a third kind of count, the variable 

length record for Mr. Jones might now look as follows: 

7510John Jones06033146071237.820IP031509 
Elizabeth02320903Ann02281105Susan0243 

At the beginning of this section, we cited the importance of using counts 

systematically if they are to be used at all. What would this record look like if the 

same data values were null or missing (salary, age of Elizabeth, and name of Ann) 

as in the example of the preceding section? It would appear as follows: 

6310John Jones06033146000lP031309Elizabe 
th00060002281105Susan0243 

Although the scheme of using count fields within records to handle variable 

length is much faster for machine processing than the scheme using separators, it is 

still necessary, for example, to skip over z — 1 records one at a time in order to 

reach the zth record. A variation of the scheme using counts is to remove the 

record counts from the data and to place them in an array A, such that the value of 

Ai is the count of the size of the zth record. This can speed up access to the zth 

record to a moderate degree; however, the records are no longer self-describing, 

which may be too substantial a penalty. To make access to the zth record very fast, 

we could even use array B (compare Figure 3.2), defined by 

(3.1) 

However, such a scheme would be very inflexible with respect to insertions or 

deletions into the file of records. All in all, the scheme of having the counts in the 

records and in front of their data fields seems to be a good compromise between 

flexibility and performance. 
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3.4 OVERVIEW 

Beginning with the next chapter, we will be examining data structures that are much 
more glamorous than records. Nonetheless, we will see that this proletarian struc¬ 

ture, the record, greatly facilitates construction of the more advanced ones. With 
records, we are completely relieved of one shortcoming of arrays, the restriction to a 
homogeneous base type. In variant records we also find a moderate degree of relief 
from another shortcoming of arrays, the restriction to one predefined size. If we 
need to escape this latter restriction entirely, we can do so via variable length 
records, using either separators or count fields. But variable length records require 
attention to a very low level of detail, one that is unsuited as a base for building 

higher data abstractions. 

3.5 REFERENCE TO TERMINOLOGY 

t discriminated union, 93 
elision, 89 
field, 87 
file, 88 
fixed part, 93 

t free union, 96 
justification, 90 

multiple qualification, 89 
qualified names, 87 
self-describing (record), 99 
separator, 100 
tag field, 93 
variant part, 93 

3.6 EXERCISES 

Section 3.1 

3.1 On the left in Figure 3.10 is the logical description of a data structure in 
Pascal syntax, and on the right are some values for the same data structure. Give 
the program “name” of each of the following values from that figure (that is, how 
you would refer to it in a program statement). Use full names, not elided ones. 

(a) 13 

(b) 2.718 

(c) 10 

(d) 
/ / 

(e) 13.9 

3.2 For the structure in Figure 3.10, compute two vectors — one containing the 
locations, or offsets, for each field, and the other containing the lengths for each 
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m: record 
n: char; 

o: record 
n: array [-1 .. 2] of integer; 

p: record 
q: char; 

r: real; 

end; 
end; 
p: array [0 .. 1 ] of record 

q: array [5 .. 7] of integer; 

n: record 
o: array [-7 .. -6] of char; 

r: real; 

end; 
end; 

end; 

'Z' 

59, 54, 13, 86 

/ I 

2.718 

10,104,15 27,66,85 

'Y', 'Z' 

13.9 
' ', '5' 

0.0 

Figure 3.10 Record for Exercises 3.1 and 3.2 

field. Assume that the primitive data types character, integer, and real require 1, 4, 

and 8 bytes respectively. 

3.3 Devise a structure that might be used to capture the information for a 

student’s college transcript. Such a structure might need to include a small amount 

of personal data about the student, as well as data about courses, units, instructors, 

grades, etc. 

f3.4 The procedure shown in Figure 3.5 for performing complex multiplication 

requires 4 multiplications and 2 additions. Find a procedure that requires 3 multi¬ 

plications, albeit at the expense of more additions. Under what circumstances is 

your revised method a practical one? 

f3.5 Convert the logic of the function BRIDGE_PLAYER to a decision table 

with five condition stubs: 

Cl: contract = notrump 

C2: lead.suit = follow.suit 

C3: lead.suit = trump 

C4: follow.suit = trump 

C5: lead.rank > follow.rank 

and two action stubs: 

41: lead wins 

42: follow wins 

Discuss the relative merits of the function and the decision table for representing 

this algorithm. 
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Sections 3.2 — 3.3 

3.6 Design a structure with variant records that might be suitable for the problem, 
cited at the beginning of Section 3.2, of handling various types of insurance policies 

that have a common fixed part. 

3.7 Decode the following variable length record and rewrite it in a format appro¬ 

priate for humans. 
E30BMATHEMATICS044606LEHMER0307ALGEBRA07MWF090009P 
ROJ GEOM08TUTH101508TOPOLOGY09TUWTH14003108BOURBAK 
I0208ANALYSIS06MW13 300ACATEGORIES05F14450905POLYA0 
04C07RUSSELL0305LOGIC0BMTUWTHF11000EABELIAN GROUPS 

06MF091509DIFF EQNS08TUTH1415 

|3.8 We have the following variable length records: 

A. 8706234A5708WING NUT0513/1703122031604ACME0211043. 
191907WINSTON0245042.541406HOOVER022300 

B. 1705 32GPA000002 5400 
C. 470558BCZ12CONFABULATOR000218011607BARSTOW0003138 
d! 6906909FF008HEXAFLEX0518/35018021605JIFFYO15047.1 

11907RALSTON0245042.54 

(a) Decode them and rewrite them in a format appropriate for humans. 

(b) Rewrite them using separator characters instead of counts. 
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LISTS 

“He’s got ’em on the list - he’s got ’em on the list; 
and they’ll none of ’em be missed.” 

W.S. Gilbert, 
The Mikado, act I 

From the humdrum — eggs, milk, rhubarb, flour — to the fanciful — a partridge in 
a pear tree, two turtle doves, , twelve drummers drumming — lists pervade our 
lives. They are also pervasive in computational processes, to the extent that the 
subject matter of this book could be entitled “Lists” rather than “Data Structures.” 
For example, an array of integers is a species of list; likewise, the employee record 
of the preceding chapter is a list; and so also are queues, stacks, trees, graphs, and 

strings, as we will see. 

However, the notion of a list as a structured collection of items is too general 
for our purposes; in any computer-oriented discussion that employs the term list, 
the reader must be careful to ascertain what is actually being described. In this 
chapter, we will First refine the notion by discussing lists that incorporate explicit 
information for specifying the next item on the list. In common parlance, the items 
on a list are variously called nodes, cells, elements, etc.; and the explicit data that 

specify “next” are commonly called pointers or links. 

After illustrating the utility of this form of data structure with some applica¬ 
tions, we will look at two generalizations of the concept. The first of these is 
obtained by building structures that can specify many next values. The second, 
more powerful generalization is obtained by employing recursion in the definition of 

“List structures.” 

4.1 THE FLEXIBLE NATURE OF LISTS 

The essential aspect of a list is that we may wish to vary the sequence in which we 
consider its items. Thus, if we have the list shown in Figure 4.1(a), it may happen 
that we would really like to insert 65 as the fourth item, to obtain the list in (b), 
another possibility is that we would like to delete 29 from (a), to obtain the list in 
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(c). If we record the list values in an array, then we can achieve the effects of 
insertion/deletion by moving blocks of values away from/toward the array origin. 
However, this can be an expensive solution for a large array. Moreover, since the 
array has a fixed size, this solution also fails to reflect the fact that the list has 
changed in a more fundamental fashion (that is, its length has changed). 

24 
29 
14 
32 
59 
40 

(a) 

24 
29 
14 
65 
32 
59 
40 

(b) 

17 
14 
32 
59 
40 

(c) 

Figure 4.1 Insertion and Deletion in a List 

The difficulty lies in the fact that, in Figure 4.1, physical sequence implies 

logical sequence. The essential notion of a list for our purposes is that it should 

contain explicit information for logical sequencing. This information is commonly 

termed a link, and the two fundamental operations on a list are: 

first{p) - to access the first item on the list referenced by p; 

next(r) — to access the item that follows r in the list. 

Normally, however, we prefer to think in terms of higher-level operations, such as: 

locate(p,t) - to finds the first item containing t in the list referenced by p; 

retrieve(p,s) - to find the 5th item in the list referenced by p; 

insert{p,t) - to insert an item with value t in the list referenced by p; 

delete(p,t) — to delete the first item with value t from the list referenced by p. 

The descriptions of some of these operations lack precision. This is most evident in 

the case of insertion. Where in the list should the new item be placed? We will 

resolve such issues in the discussions that follow. 

If we reflect upon the example cited in Figure 4.1, we see that there are two 

distinct problems that we would like to solve with lists: 

1. to be able to alter logical sequencing of list items without extensive physical 

reordering, and 

2. to be able to handle lists whose lengths may vary widely and unpredictably. 

We will begin by discussing a method for implementing lists that works in all 

general purpose HLL’s. It solves the sequencing problem but is weak with respect 

to the variable length problem. Accordingly, most of our discussion has to do with 

a more dynamic method that completely solves both problems. This method is 

available in some languages, such as Pascal and PL/I, but not in others, such as 

FORTRAN and BASIC. 
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1 

2 

3 

4 

5 

6 

R S R S R S 

17 2 1 17 2 1 17 3 
29 3 2 29 3 2 29 - 

14 4 3 14 7 3 14 4 
32 5 4 32 5 4 32 5 
59 6 5 59 6 5 59 6 
40 - 6 40 - 6 40 - 

7 65 4 

(a) (b) (c) 

Figure 4.2 Insertion and Deletion Using Links 

4.1.1 Array Indices as Links 

In Figure 4.2(a), we have redrawn Figure 4.1(a). By annexing to the array R 

another array S, we have made explicit what was implicit in Figure 4.1; for the z'th 

element in R, the location of the next element in R is indicated by the value of the 

zth element in S. Although this additional information may be unnecessary baggage 

in Figure 4.2(a), its utility is apparent in Figure 4.2(b) and (c), where it enables us 

to perform the insertion of Figure 4.1(b) and the deletion of Figure 4.1(c) simply by 

adjusting one or two link values instead of by moving blocks of data. 

More generally, suppose that we have an array A, each of whose elements is an 

arbitrarily large aggregate of data. Then, let us supplement the data with linking 

information in one of two ways: 

(a) by treating the data aggregates as records and by including a new link field in 

eacfrrrecord, or 

(b) by introducing a new array B of link values. 

It is then possible to thread the data aggregates in A into any number of disjoint 

lists; all that is required is some indication of where a particular list starts and 

where it ends. The starting locations must be supplied separately, but the end of a 

list is indicated by the occurrence of an illegal index value, usually zero. Thus, in 

Figure 4.3, let listl = 20 be the beginning of one list and list! = 25 be the beginning 

of another list, in an array containing character data. Then list 1 yields “HAPPY” 

and listl yields “HOUR.” 

18 19 20 21 22 23 24 25 26 27 

A R H O Y - P H P U 

24 0 18 27 0 - 26 21 22 19 

Figure 4.3 Disjoint Lists in an Array 
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To illustrate how easily insertions and deletions can be performed at arbitrary 

points in lists constructed in this manner, let us define list nodes by 

type node = record 
data: {whatever is required} 

next: 0 .. n; 

end; 
var list: array [1 .. n] of node; 

Then, in Figure 4.4(a), suppose that we wish to insert the single node at list [n] 

between the logically successive list nodes at list [z] and list [/]• This is accom¬ 

plished by 

list [n].next := list [i].next; list [i].next := n 

On the other hand, to delete the node at list [j], which logically falls between the 

nodes at list [r] and list [/], we simply write 

list [r].next := list [s].next 

The combined effect of this insertion and this deletion is shown in Figure 4.4(b). 

That the deletion operation leaves list [s\.next = t is irrelevant for the immediate 

purpose of logically resequencing t after r. This illustration is sketchy, and it 

glosses over several aspects of using links that we prefer to defer until later sections. 

i j ... n ... r s t ... ... i j ... n ... r s t 

data 

next 

Figure 4.4 Implementing Lists with Cursors 

i S t 

(a) 

n j t t 

(b) 

Associating link information with a node is easily understood in terms of index 

values, and indices used for this purpose are sometimes called cursors. How useful 

are cursors, and why might we wish to have a more complicated approach? In 

brief, if we are dealing with lists that contain a single type of node, then cursors 

may be satisfactory. Moreover, whether we have one type of node or several, if we 

can safely estimate the maximum number of required nodes of each type, then 

cursors may still be satisfactory. However, if there are several node types, we will 

need a separate array for the lists of each type. Arrays must be declared with their 

dimensions at the outset. If even one of our estimates of dimensionality is too low7, 
our program can fail during execution. 
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4.1.2 Pointer Variables as Links 

The solution to the problem of lack of generality with the preceding approach is as 
follows. We will not declare any space for list nodes before such space is required; 
when it is required, we will ask for it via a system procedure. This procedure will 
acquire just the amount of space that we need and then tell us where it is via 
another primitive type of data, a pointer variable. Such a variable is not so mysteri¬ 
ous when we realize that it must correspond to an address in the computer 
memory.1 

This pointer variable opens the door to potentially serious programming 
hazards; we will discuss these at the end of the chapter (see Section 4.5.1), by which 
time the nature of the problems may be more easily appreciated. For now, suffice it 
to say that some of the problems associated with pointers can be avoided by insist¬ 
ing that a particular pointer variable can point only to a particular type of data 
object. For example, the Pascal definition 

type link = {node; 
node = record 

data: char; {for example} 

next: link; 

end; 

asserts that any variable of type link is a pointer, but only to a variable of type 
node. Accordingly, in Figure 4.5(a) and with the preceding type definition, we have 

var p,q,s: link; 
a,b,c,h: node; 

The notation for using pointers to access data varies considerably among those 
HLL’s that support them; for p a pointer to a node and x a field in that node, the 

syntactic styles employed to reference the x pointed to by p include; 

pf.x, p->x, x(p), [p].x, etc. 

Pascal employs the first of these styles. As examples of its use, with reference to 

Figure 4.5(a), 

p| = a; pt.data = 'A'; pt.nextf = b; pj.nextT.data = 'B' 

It is essential to distinguish between the value of a pointer/? and the value of/>|, the 
object to which it points. By way of illustration, if we started with Figure 4.5(a) 
again, then q:=p would yield (b) of the figure; however, q] : = />! would yield (c) 
of the figure. In the former case, we replicated the pointer value (address) of p into 
q; jn the latter case, we copied the contents of the list node at p s location into the 

i You have likely encountered pointer variables already, although you may not have real¬ 
ized it (and in any event, could not explicitly manipulate them). Specifically, in using 
“call by reference” (see Section 1.4.3) for passing a parameter to a procedure, you are in 
fact causing the compiler to transmit a pointer to the value rather than a copy of the 

value. 
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list node at q's location. With this background in hand, let us now explore the 

subject of sequential linked lists. 

4.1.2.1 Simple Lists. Suppose that some list nodes have been allocated, forming 
the two lists shown in Figure 4.5(a). The objects a,b,c,h are of type node, according 
to the definitions of the preceding section, and the objects p,q,s are of type link. 
When dealing with a list of linked nodes, or a linked list, there is no name for the 
entire list as there is for an array or a record. Rather, one retains in some pointer 
variable a pointer value to the first node on the list. Such a variable is commonly 
called a list head, or header, p and q are headers in Figure 4.5(a). Many operations 
with lists involve linking or “chaining” from one node to the next, until the end of 
the list is recognized via a special pointer value called nil. In pictorial represen¬ 
tations, nil is usually indicated as shown in nodes c and h, but sometimes the 

symbol A is used. 

If we wish to insert the node h pointed to by q into the list pointed to by header 
p, what is required? It is very simple to insert h at the head of the list, as shown in 
Figure 4.5(d), via the two pointer changes 

q|.next := p; p := q; 

It is more expensive to insert h at the end of the list because, in order to find the 
end of the list, it is first necessary to chain from the head to the end by performing 
p := p\.next until the nil is encountered. What if we wish to insert h at an arbi¬ 
trary point in the list, say with regard to b pointed to by si In this case, it is 
straightforward to insert it after b, again with two pointer changes 

qf.next := sf.next; sf.next := q; 

as shown in Figure 4.5(e). There is a difficulty, however, if we wish to insert h 
before b. That would require altering the pointer from node a, and we cannot get 
to it by just using the pointer values of q and s. 

One solution to this problem is to chain from the head of the list until we find a 
node pointing to b, then make our insertion after that node. But note that this may 
require 0(n) chaining operations, not a very satisfactory situation. Another possible 
approach might be as follows: 

temp := qf.data; 
q| := sf; {copy entire record from b to h} 
sf.data := temp; 
sf-next := q; 

In other words, insert the node pointed to by q after the node pointed to by s, but 
then interchange their data. In the general case, however, this latter approach can 
involve copying too much data. 

At this point, it is important to make an observation about the labels in Figure 
4.5. There, we have labelled the nodes a,b,c,h in order to facilitate talking about 
them. But it would be misleading, for instance, to then characterize inserting node 
h after node b by 

h.next := b.next; b.next := q; 
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(e) (f) 

Figure 4.5 Implementing Lists with Pointers 

In actual situations that involve computing with such nodes, they would not have 
any labels and would not be known to the program except via pointer variables that 
reference them. For our discussion, the pointers p,Q,s fortuitously have meaningful 
values; we will see in Section 4.2 how pointer variables acquire meaningful values 

in practice. 

Next, let us look at the operation of deletion, which is the converse to that of 
insertion. It is very easy to delete the first node in a list by p . — p] .next, as shown 
in Figure 4.5(0- To delete the last node in a list is more work for the same reason 
as it was to insert a node at the end — it requires chaining from the head to find 
the end More generally, suppose that we wish to delete the node pointed to by s. 
We encounter the same difficulty as in the case of inserting a node before b. 
Namely, the pointer from node a must be altered, but we do not have a means of 
accessing it. We can attempt a similar trick of copying 4 := s].next|. However, in 
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addition to potential copying overhead, there is the fundamental problem that this 

won’t work if 5 points to the last node on the list. 

4.1.2.2 Circular Lists. A serious shortcoming associated with the simple form of 
list discussed in the preceding section is that, given a pointer value into the middle 
of such a list, we can access all the nodes from that point to the end, but cannot 
access any of the preceding nodes. A simple modification solves this problem. We 
can replace the nil pointer value in the last node by a pointer to the first node, 

thereby creating a circular list. 

Figure 4.6(a) shows Figure 4.5(a) redrawn as circular lists. For this style of 
circular list, remarks about programming techniques would be similar to those made 
previously about simple lists. However, a modest change makes it easy to insert a 
node at either the first or the last position of a circular list. Namely, let the list 
header point to the last node rather than to the first node. This is shown in Figure 
4.6(b). Therein, to insert h at the front of the first list, we need 

qj.next := pf.next; pf.next := q; 

and to insert h at the rear of the first list, we need 

qfnext := pf.next; pf.next := q; p := q; 

That is, we insert h at the same place in the circle in both cases, but in the latter 
case we then move the header around the circle by one position. You should 
redraw Figure 4.6(b) for these two cases to convince yourself of this. 

(a) (b) 

Figure 4.6 Circular Lists 

Suppose that we have list A with nodes ax, a2,..., am and list B with nodes 
b\, b2,..., bn. A particular virtue of using circular lists as in Figure 4.6(b) is that it is 
then quite easy to concatenate A and B into one list C with nodes au a2, ... , 
am, bx, b2, ... , bn (see Exercise 4.3). With regard to the problems of insertion before 
an arbitrary nodeand deletion of an arbitrary node, we can now find the predeces¬ 
sor of a node by chaining all the way around the circle, although this solution is 
rather expensive. 

There are two pitfalls in what we have said so far concerning lists: 

1. If we are chaining around a circular list, how can we distinguish the first node 
from all the others? 
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2. What happens, in either a simple or a circular list, when there is only one node 
and we delete it? 

In answer to the first pitfall, we could insist upon always having the header avail¬ 
able for comparison, but this is clumsy. In answer to the second pitfall, we could 
test for, respectively, p].next = nil or p].next — p, and then set p : = nil if so. 
However, a better solution to both of these problems is to expand the header into a 
node of the same format as the other nodes in the list. Henceforth, we will refer to 
the term header as having this expanded sense. 

In spite of the overhead, an extra node is worthwhile for several reasons, many 
of which apply to simple lists as well as to circular lists: 

• It can be used for recognizing when we are at the beginning of a circular list. 
• It simplifies the representation of empty lists. For instance, there may be many 

references to a list from within a program. Without a header node, if the list 
becomes empty we must change each of these pointer references to nil. 

• It is often necessary in list operations to operate on a pointer that points to an 
arbitrary node r. If there is a possibility that r is the first one on a list, then all 
references to r must test for that possibility and do something different if it 
applies. The use of a header node removes the need for all these tests by stan¬ 

dardizing the treatment of such pointers. 
• When we have a header node, there is often extra space (where data is stored in 

non-header nodes) that can profitably be used to keep other information, such 

as extra pointers, the number of nodes on the list, etc. 

With the inclusion of header nodes, Figure 4.5(a) becomes Figure 4.7(a) and 
Figure 4.6(a) becomes Figure 4.7(b). However, the literature on lists and headers is 
lacking in consistency and preciseness; for example, the term header is applied 
sometimes to p and q in Figure 4.7, and sometimes to what we call the header nodes 

pointed to by p and q. 

p a b c 

A B c z 
H 7 

(a) 

(b) 

Figure 4,7 Header Nodes 
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S 

Figure 4.8 Bi-directional Lists 
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4.1.2.3 Bi-directional Lists. We encountered two problems with simple forms of 
lists, one having to do with inserting a node before an arbitrarily specified node in a 
list and another having to do with deleting an arbitrary node. In principle, these 
shortcomings can be overcome with a circular list; however, it is not realistic to 
chain all the way around a circular list in order to find the predecessor of a node. 
A much better resolution for both of these problems comes from introducing the list 
operation: 

previous(r) - to access the item that precedes r in the list. 

This is easily accommodated via the bi-directional list, in which two links are main¬ 
tained at each node — one to that node’s predecessor and one to its successor, as 
shown in the template: 

type link = (node; 
node = record 

data: char; (for example} 
pred,succ: link; 

end; 

Figure 4.8(a) shows Figure 4.5(a) redrawn as bi-directional lists. Note that we 
have employed header nodes again, and that both the forward and backward lists 
are circular. This would frequently be the preferred method, but it is also possible 
to have bi-directional lists that are not circular and/or do not have header nodes. It 
is now a simple matter to insert node h either before or after node b. The logic is 
similar, requiring four pointer changes in either case. For instance, in order to 

insert node h before node b, we would need 

t|.pred := sf.pred; 
t|.succ := s; 
st.predt.succ := t; 
sj.pred := t; 

as shown in Figure 4.8(b). Thus, not only do bi-directional lists require space for 

extra pointers; they also require twice as much work for insertions. However, the 
situation with respect to deleting the arbitrary node b is much more elegant. It 

requires just the two pointer changes 

st.pred|.succ := st-succ; st-succt-pred := sfpred; 

as shown in Figure 4.8(c). 

To conclude these discussions of simple, circular, and bi-directional lists, what 

would empty lists look like in each of the three cases? They would have the forms 

shown, respectively, in (a), (b), and (c) of Figure 4.9. 

5] 
J 

(a) (b) 

Figure 4.9 Empty Lists 

(c) 
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4.1.3 The Free Storage Pool 

In the beginning of our discussion of pointer variables, we said that the space for 
list nodes is acquired via system processes. More precisely, these processes cause 
the allocation and de-allocation of free space. The ramifications to this group of 
processes cause it to be a topic in its own right, called memory management, it will 
be elaborated upon in Chapter 11. For now, we will consider some of the basic 
issues. First, is the rationing of free space done explicitly by the user, does the 
system do it automatically, or is it a joint venture? In APL and LISP, for example, 
it all happens automatically; in Pascal and PL/I, on the other hand, it is done 
jointly. Second, what is the amount of free space required for list nodes? Is the size 
always the same, or does it vary? In LISP there is just one size of list cell, in APL 
and Pascal the amounts of space can vary in size. In this section we will do two 
things. We will cite the system routines by which a Pascal user controls free space. 
Then we will make a simplifying assumption, and illustrate how these system 

routines might operate under that assumption. 

In Pascal, free space is obtained from a memory area called the heap. A block 
of free space is acquired from the heap by invoking new(p) , where p is a pointer 
variable of a specified type. After new(p) is executed, p will be pointing to a block 
of the appropriate size (since the compiler can detect the size from the type defi¬ 
nition). Assuming that characters, integers, pointers, and reals require 1,4,4, and 8 
bytes respectively, then in Figure 4.10, p would contain the address of a block of 33 
bytes. Having obtained the space via new(p), we might then proceed to fill it, for 

example: 

p|.a := 'X'; p|.b [2] := 7; pfd := 3.14; pj.e := nil; 

Figure 4.10 illustrates an important additional point. Note that r and s are 
pointers for a variant type record, with variants of unequal size. The invocation 
new (r,easel) yields a block of 52 bytes, and the invocation new(s,ca.?£?2) yields a 
block of 24 bytes. You may recall from Section 3.2 that one of the reasons for 
using variant records is to economize on space by not allocating more than is 
needed for that particular variant. In Pascal, we can obtain this economy by invok¬ 
ing new with variant discriminators as additional parameters.2 

The converse of space allocation is space de-allocation. The system procedure 
for this in Pascal is dispose, as in disposed), dispose(r,casel), dispose^,easel), 
etc. Note that in many implementations of Pascal, the system procedure dispose is 
not supported; rather a more primitive de-allocation scheme is provided via the 

system procedures mark and release. 

In order to convey some idea of what new and dispose do, let us assume that 
our list nodes are all of the same size. In this simple environment, let P_NEW and 
P_ DISPOSE (for pseudo-new and pseudo-dispose) be routines to ration free space. 
In this case, free space can be one simple list of cells of the standard size, with a 

2 In reality, when a compiler allocates space for records such as these, the final sizes may 
be slightly greater. The usual cause is that fields of records are constrained to begin at 
memory locations that are some power of two, leaving “holes.” 
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program ... 

type fptr = ffnode; 
fnode = record 

a: char; 
b: array [1 .. 3] of integer; 
c,d: real; 
e: fptr; 

end; 
rectype = (easel,case2); 
vptr = fvnode; 
vnode = record 

f: array [1 .. 4] of char; 
case rectype of 

easel: (g: real; 
h: array [1 .. 10] of integer); 

case2: (i,j,k: integer; 
m: real); 

end; 

var p: fptr; 
r,s: vptr; 

begin 

new (p); 
new (r,easel); 
new (s,case2); 

end. 

Figure 4.10 Space Allocation from the Heap 

header cell Free that points to the front of the list. Then the action of P_NEW is 

given by 

procedure P_NEW (var x: link); 
begin 

x := Free; 
Free := Freef.next; 

end; 

and the action of P_DISPOSE is given by 

procedure P_DISPOSE (x: link); 

begin 
xf.next := Free; 
Free := x; 

end; 

In other words, memory management in this simple case consists of nothing more 
than removing and adding cells at the front of a list. In Figure 4.11, P_NEW(<jf) 

yields (b) from (a), and P_ DISPOSER) yields (a) from (b). (Whether 
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P_DISPOSE(<?) actually sets q to nil would depend upon the implementation.) 
Simple as this technique may be, it is all that is required in many cases. In partic¬ 
ular, when list processing must be performed in languages such as BASIC or 
FORTRAN, this technique can be used to maintain a pool of available nodes 

linked by cursors. 

When de-allocating cells on a list, it is common to wish to free an entire list at 
one time. The use of circular lists allows this operation to be performed in constant 
time - that is, independently of the number of cells on the list (see Exercise 4.4). 

(a) (b) 

Figure 4.11 Free Space as a Simple Linked List 

4.1.4 The Economy of Pointers 

Before embarking on applications of linked lists, let us consider one last basic issue. 
The use of links requires extra space. Just how much of a problem is this? Their 
overhead is really a percentage of all the other space required in the list node or cell 
or record. If that space is rather large, then the incremental cost for pointer space 
should not be significant. Also, the amount of space required for a single pointer 
might be 32 bits on some machines, but only 16 bits or less on others; this is a 
function of the available addressing space on the underlying machine.3 In the case 
of sequential lists, there is a trick that can be used. Bi-directional lists would seem 
to require twice as much link space as simple or circular lists. But two links can be 
fitted into the space required for one! We will describe two techniques for doing 
this, using the list of Figure 4.12(a), where each cell has both a backward and a 
forward link. 

In Figure 4.12(b), the cell at address at is given the composite link value 
at_x XOR aM, where XOR is the exclusive-or operation, available on many comput¬ 
ing machines. Then, to go forward from ah we combine the predecessor location 
a,_j with the ith composite link 

fl*-l XOR (a;_! XOR ai+l) = ai+l (4.1) 

3 With the List structures that we will discuss in Section 4.4, fixed-size cells are packed in 
various ways with data and/or pointers. At the assembly language level, it is often 
possible to use ingenuity in this packing to maximize storage efficiency. 
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-1 a, a»+i 

data data data 

a,2 a/—i a/ 

a,- a,+i a/+2 

(a) Successive Bi-directional Nodes, Conventionally 

-i a a/+1 

data data data 

a,_2 XOR a, 8j_ i XOR 8/+ i a, XOR a,+2 

(b) Successive Bi-directional Nodes, Encoding Links with XOR 

0 (header) 61 19 48 5 73 

61 data data data data data 

73 19 9 24 21 5 

(c) An Example, Encoding Links with MOD (r = 100) 

Figure 4.12 Bi-directional Lists with Just One Link per Node 

to yield the location of the successor cell. We can also go backward from a, by 
combining the successor location ai+l with the zth composite link 

ai+] XOR (az_, XOR ai+x) = at_x (4.2) 

to yield the location of the predecessor cell. 

If the exclusive-or operation is not available, another possibility is obtained by 
computing the zth link value as (u,_, + ai+x) MOD r, where r is any sufficiently large 

number. In this case, we can go forward from a, by computing 

i + ai+1) - at_j) MOD r = ai+x (4.3) 

and we can go backward from a, by computing 

((a,-_, + ai+ j) - ai+x) MOD r - at_, (4.4) 

This latter variant is illustrated in more detail in Figure 4.12(c) by using arbitrary 

values for the ah and with r = 100. 

Of course, these methods cannot be used with Pascal pointer variables, although 
the MOD technique could be used with cursors. Also, one needs two successive 
location values to start off rather than just one location value; however, it is then 
easy to scan the list and to have arbitrary alternations in direction as that scan 
proceeds On the other hand, if insertions or deletions are common, then the 
adjustments that must be made to the composite link values are costly. This 
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method has been characterized as referencing a list by its edges rather than its 
nodes, and has been shown to be effective for a variety of applications [Wise 1976]. 

4.2 EXAMPLES OF SEQUENTIAL LIST USAGE 

It is worth repeating the caveat from the beginning of this chapter, that lists may 
mean many different things. Our discussion so far has been restricted to sequential 
lists; we will soon move on to other forms. Even so, the simple forms of lists that 
we have described thus far are already extremely useful, as the following three 

examples illustrate. 

4.2.1 Maintenance of an Ordered List 

In Section 2.1.2 we presented two short, simple functions SEARCH_A (Algorithm 
2.1) and SEARCH_B (Algorithm 2.2) for scanning the elements of an unordered 
array in search of an input value. Both functions terminated with one of two 
values: zero if the sought after value was not in the array, or the index of the 
sought after value if it was in the array. 

We will now look at an algorithm for searching an ordered list. This time, we 
will return a pointer to the node containing the input argument if it is there; and if 
it is not already there, we will insert it in the list in the correct location to maintain 
the order of the list. The list is assumed to have a header node that contains a 
dummy value less than any data value in the list. With such an algorithmic capabil¬ 
ity, it is easy to describe the construction and use of a dictionary, or a concordance, 
or a symbol table for a compiler or assembler. Instead, however, we will illustrate a 
capability that is common to all of these. Our list searching function 
SEARCH_LIST (Algorithm 4.1) takes two input arguments: 

head — a pointer to the header node of a list (presumed to be in order), and 
id — a key value to be searched for in the list. 

It returns False if the key value was not in the list and has been inserted, or True if 
the key was in the list originally; it also has as an output argument: 

loc — a pointer (in either case) to the location of the node containing the key. 

Thus, in SEARCH_LIST the boolean result is returned by the function itself, and 
the pointer result is returned as a var parameter. Although it violates mathematical 
purity to have a function return a result via a call by reference, it is convenient for 
the typical manner in which SEARCH_LIST might be used, as in 

if SEARCH_LIST (...) then 
{do one kind of processing if the key was already there} 

else 
{do another kind of processing if it was inserted} 
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function SEARCH_LIST (head: ptr; id: integer; var loc: ptr): boolean; 

{look for id in the ordered linked list with header node head (containing 
key less than any id) and returns true/false according as it is/isn't 
already there; if it isn’t there, insert it in a new node in proper 
sequence; in any event, set loc to point to node containing id} 

type ptr = |node; 
node = record 

key: integer; 
next: ptr; 

end; 

var q,h ptr; 
state: (append,found,insert,scan); 

begin 
loc := head; 
state := scan; 
while state = scan do begin 

if locj.key = id then 
state := found 

else if locf.key > id then 
state := insert 

else if locf-next = nil then 
state := append 

else begin {keep looking} 
q := loc; 
loc := locj.next; 

end; 
end; 
if state = found then 

SEARCH_LIST := true 
else begin 

new (r); 
rf.key := id; 
case state of 

append: begin 
loc| next := r; 
rf.next := nil; 

end; 
insert, begin 

qf.next := r; 
rj.next := loc; 

end; 
end; 
loc := r; 
SEARCH_LIST := false; 

end; 
end; 

Algorithm 4.1 SEARCH_LIST 
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The finished algorithm SEARCH.LIST masks some tricky details. For 

instance, one common mistake in writing this algorithm is to use 

while (loc <> nil) and (loci'.key < id) do 

to control the scanning loop. At the end of the list, however, loc = nil, and the 
expression loc].key will cause a run time error with many compilers. To see a more 
subtle problem, note that just one of three things must be true when the scanning 

loop terminates: 

(a) the variable id is already in the list, or 

(b) a node with id is to be inserted between two other nodes, or 

(c) a node with id is to be inserted after the last node. 

It is very easy to confuse the last two cases and either cause a run-time error or 
insert a node at the wrong place in the list. Wirth [1976] gives an excellent exposi¬ 
tion of some of the hazards involved in solving what seems like an innocuous 

problem. 

In our solution, these difficulties are nicely finessed by the use of the variable 
state, of enumerated type. This technique [Atkinson 1979, 1984] makes explicit 
which conditions apply while searching through the list; it also provides an elegant 
way to discriminate what must be done when the scanning terminates. You should 
satisfy yourself how the algorithm works by trying it against a list of values (see 
Exercise 4.9). 

4.2.2 Polynomial Addition 

Lists provide a very natural representation for symbolic manipulation of algebraic 
terms. Each term can be represented by a list node; and a polynomial of such 
terms is then represented by a list of terms ordered on the values of the exponents 
of the variables. Under such operations as polynomial addition, polynomial multi¬ 
plication, and differentiation, it is characteristic that terms with given exponents are 
created and destroyed in an unpredictable manner. Thus, the ability to insert and 
delete terms is essential. 

For example, with the definition 

type link = fterm; 
term = record 

expon: integer; 
coeff: real; 
next: link; 

end; 

the polynomial P = 8. lx11 + 3.2x7 - 15 would appear as in Figure 4.13. This repre¬ 
sentation employs a simple list with a header node. Our discussion will be restricted 
to polynomials with positive, integer exponents, which enables us to denote nodes as 
headers by employing exponent values of — 1. 

The procedure POLYADD (Algorithm 4.2) takes as input p and q, pointers to 
the header nodes of polynomials P and Q. Q is added to P, with Q being 
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Figure 4.13 A Polynomial as a Linked List 

Figure 4.14 Polynomial Inputs to Algorithm POLYADD 

unchanged but P being changed “in place” to reflect the sum. Our purpose in 
doing this rather than developing the sum in a third polynomial R is to demonstrate 
some important aspects of typical list processing. Note that POLYADD employs 
two working pointer variables p\ and p2. The first is used to retain the previous 
value of p, as p chains forward through P. This solves the problems of insertion 
before a given node and deletion of an arbitrary node. The second is used when¬ 
ever we find a term in Q with no corresponding term in P. In such cases, we cannot 
simply relink that term from Q into P, for that would alter Q, contrary to the 
declared effect of POLYADD. Rather, we must get space for a new node via p2, 
copy over the data from the term in Q, and then adjust the pointers. To illustrate 

the operation of POLY ADD, assume that we have 

U = 3x9 - 2x - 4x3 - 6x, and V = 2x + 5x6 - 4x 

as shown in Figure 4.14. We have labeled the nodes for purposes of exposition, 
even though the labels are meaningless for the algorithm. A trace of 
POLYADD(m,v) is shown in Figure 4.15, and the resultant form of U is shown in 

Figure 4.16. 

Suppose that we had not chosen to represent polynomials as lists, but had 

instead employed arrays, such as 

a,b: array [0 .. n] of real 

in which a [/] contained the coefficient of x‘ in A = Oq + o.xxx + a2x2 + ••• + anxn, and 
b [/] contained the coefficient of x‘ in B = b0 + bxxx + b2x2 -l-h b„xn. In this case, 

the addition could be carried out much more simply by 
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procedure POLYADD (p,q: link); 

type link = {term; 
term = record 

expon: integer; 
coeff: real; 
next: link; 

end; 

var pi ,p2: link; 
state: (add,delete,done,insert,qonly,skip); 

begin 
state := add; 
repeat 

if state in [add,skip] then begin 
pi := p; 
p := pt.next; 

end; 
if state <> skip then 

q := qf.next; 
if q = nil then state := done 
else if p = nil then state := qonly 
else begin 

if pf.expon < qf.expon then state := insert 
else if pf.expon > qf.expon then state := skip 
else begin {exponents must be equal} 

state := add; 
p|.coeff := pt-coeff + q}.coeff; 
if pt-coeff = 0 then begin 

{delete term from P: fix up links for P, free space} 
state := delete; 
p2 := p; 
p := p|.next; 
pi {.next := p; 
dispose (p2); 

end; 
end; 

end; 
if state in [insert,qonly] then begin 

{insert term in P: get space via p2, copy q\, fix up links for P} 
new (p2); 
p2|.expon := q|.expon; 
p2|.coeff := q|.coeff; 
p2}.next := p; 
pi { next := p2; 
pi := p2; 

end; 
until state = done; 

end; 

Algorithm 4.2 POLYADD 
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Figure 4.15 Trace of Algorithm POLYADD 

Figure 4.16 Output of Algorithm POLYADD 

for i := 0 to n do 
a [i] := a [i] + b [i]; 

However, in actual situations where symbolic algebraic manipulation is needed, the 
range of the exponents is often much larger than the number of terms in any single 
polynomial. This is particularly true for polynomial multiplication, where it would 
be necessary to pre-allocate arrays of large dimension to anticipate extreme cases. 
In these cases, the arrays a and b would be sparse, and we would expend much 
space and time on zero terms. Thus, depending upon the sparsity, the list represen¬ 
tation will almost certainly save space and, in many cases, time also. 

The inappropriateness of arrays for representing symbolic polynomials is 
emphasized when we consider polynomials in several variables, because then the 
range of potential exponent combinations explodes. An array would have to have 
as many dimensions as there are variables. For lists, we can accommodate multi¬ 
variate polynomials by placing an ordering on the variables, and then retaining 
terms according to lexicographical ordering of the corresponding exponents. As an 

example 

R(x,y,z) = A x3y + B x3z + Cxy2 z3 + Dy2z3 + Ey2 + F.y + Gz2 (4.5) 

could be represented as shown in Figure 4.17. Another approach to handling multi¬ 

variate polynomials will be discussed in Section 4.4.3.3. 
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Figure 4.17 A Multivariate Polynomial as a Linked List 

4.2.3 Equivalence Classes 

Consider the following problem. We have a set of n objects {a,}. We are also given 
m statements of equivalence between pairs of members of this set, such as a2 = a5, 
a3 = a8, etc. Let us assume that the objects can be mapped into the integers 1 .. n in 
an efficient manner. If such a mapping is not already at hand by the nature of the 
data, then we will discover how to do so in Chapter 10, when we talk about hash 
functions. For definiteness, suppose that, with n = 19 and m = 16, we have the 

following objects and relationships: 

18 =12 16 = 14 
6 = 10 9=1 
8=2 3 = 13 

11=5 7 = 19 

8 = 18 16 = 6 
17 = 4 16 = 17 
9=11 3=8 
3=9 19 = 15 

(4.6) 

By the nature of equivalence, we can easily determine that for this example 

there are really just three equivalence classes, as follows: 

(1,2,3,5,8,9,11,12,13,18) (4,6,10,14,16,17) (7,15,19) 

It is frequently necessary to discover equivalence classes by processing equivalent 
pairs. The problem arises naturally in assembling programs, when different symbols 
may be declared to be synonymous, or with EQUIVALENCE statements in 
FORTRAN [Arden et al. 1961; Galler and Fisher 1964], It can also arise when 
performing set operations that are unrelated to language translation. 

A naive first approach might simply be to use an array of n slots, as follows. 

For each pair, 

(a) If the slots for both members are empty, then label both slots with a new 

class-id number. 

(b) If the slot for one member is empty and the slot for the other member is occu¬ 

pied, then copy the label from the occupied slot to the empty slot. 
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program EQUIV; 

const listsize = 32; pairsize = 16; setsize = 19; 

type cellndx = 0 .. listsize; 
setndx = 0 .. setsize; 
cell = record 

valu; setndx; link: cellndx; 
end; 

var i,cellnum,classnum: integer; 
flag: array [1 .. setsize] of boolean; 
head: array [1 .. setsize] of cellndx; 
classid: array [1 .. setsize] of integer; 
cells: array [1 .. listsize] of cell; 

procedure ADDCELL (u,v: setndx); 
begin 

cellnum := cellnum + 1; cells [cellnum].valu := v; 
cells [cellnum],link : = head [u]; head [u] := cellnum; 

end; 

procedure DOPAIR; 
var i,j: setndx; 
begin 

read (i,j); ADDCELL (i,j); ADDCELL (j,i); 
end; 

procedure DOLIST (i: setndx); 
var j: cellndx; k: setndx; 
begin 

j := head [i]; 
while j <> 0 do begin 

k := cells [j].valu; 
if not flag [k] then begin 

flag [k] := true; classid [k] := classnum; DOLIST (k); 
end; 
j := cells [j].link; 

end; 
end; 

begin 
for i := 1 to setsize do begin 

flag [i] := false; head [i]:= 0; 
end; 
cellnum := 0; classnum := 0; 
for i := 1 to pairsize do 

DOPAIR; 
for i := 1 to setsize do 

if not flag [i] then begin 
flag [i] := true; classnum := classnum + 1; 
classid [i] := classnum; DOLIST (i); 

end; 
end. 

Algorithm 4.3 EQUIV 
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(c) If the slots for both members are occupied, then select the label for one of the 
members and, for all members of the array having that label, change their 

labels to that of the other member of the pair. 

As the slots become occupied, this method will be forced to execute case (c) for 
most instances of processing a pair. With a simple array structure, that will mean 
scanning the entire array to find all members having a particular label, an operation 
0(n) in time. If m is of the same order of magnitude as n, then the total complexity 

will be 0(n2). 

head 

Figure 4.18 Action of First Phase of Algorithm EQUIV 

A much more efficient method comes from maintaining the equivalence classes 
in lists. When the situation corresponding to case (c) above arises, one need only 
relabel all the items on the shorter list, and then concatenate the two lists. It is 
fairly easy to show [Aho et al. 1974] that with this technique, the resulting algo¬ 
rithm is 0{n lg n). Rather than pursue this, however, we will describe yet a third 
approach, also using lists. In this method, we maintain the lists by using an array 
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called cells as a Free-list (in the manner of Figure 4.11), and using cursors rather 
than pointer variables. 

In the program EQUIV (Algorithm 4.3) we maintain a list head for each 
member of the set. Then, in the first stage, we process each pair in constant time, 
adding each member of the pair to a list for the other member. The effect of the 
first stage on the pairs in Eqs. 4.6 is illustrated in Figure 4.18; the total effort for 
this is 0(m). In the second stage, we process each member and its list, assigning 
class-id numbers. This is done via the recursive procedure DOLIST, which is 
executed just once for each member, so that the second stage is 0(n). In our exam¬ 
ple, DOLIST is called directly three times - for members 1, 4, and 7 - and 
recursively 16 times; it processes the members in the sequence 

1 9 3 8 18 12 2 13 11 5 / 4 17 16 6 10 14 / 7 19 15 

Combining the work in the first and second stages (and the initialization phase) we 
find that EQUIV is 0(m + n). Any algorithm for deciding equivalence classes must 
look at each pair at least once and at each member at least once, so that EQUIV is 
optimal with respect to time, at least within a constant factor. However, EQUIV 
also requires arrays of 0(n) space and list cells of 0{2m) space, for 0(m + n) space 
in total. Moreover, suppose that the problem is somewhat different, and that the 
pairs come intermixed with queries about equivalence classes that are knowable 
from the preceding pairs. EQUIV does not provide answers to such queries until all 
the pairs have been processed. In Section 6.6.5 we will present another algorithm 
for this problem that overcomes both of these deficiencies; it is 0(n) in space, is 
almost optimal in time, and allows intermixing of pair declarations and queries. 

4.3 MULTIPLE LINKING 

Our use of lists so far has involved maintaining data items in sequence. That 
sequence has usually been dictated by the value of a single key field within the item. 
In this section, we discuss some departures from this. Consider the problem of 
maintaining items in sequence on several lists simultaneously. We need a set of 
links for each of the lists. Two structures that provide this facility are the inverted 
list and the multilist. Note at the outset that these structures are very different from 
a bi-directional list. Even though the latter has two links for each node, they both 

have to do with sequence in a single list. 

Inverted lists and multilists are used primarily when recording large amounts of 
data. Real applications may have numerous variations of these structures in 
response to the characteristics of the data, on the one hand, and the storage devices, 
on the other hand. Our program is to discuss the basic ideas here and then pursue 
them in greater detail in Chapter 12. In Section 4.3.3, as an illustration of multiple 
linking techniques, we will reconsider the subjects of arrays in general, and sparse 

matrices in particular. 
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4.3.1 Inverted Lists 

In Section 2.3.1 we were concerned with the results of a survey summarizing the sex, 
education, and marital status of a group of people. These results were summarized 
in an array of dimension 2x3x5, shown in Figure 2.5 and reproduced here as 

Figure 4.19. Typical questions that we could answer from this array are: 

• How many married males are there who have not completed high school? 

• How many single females are there? 
• How many people have finished high school but not college? 

We might also wish to ask other kinds of questions, such as: 

• Who are all the widowed persons? 
• Who are all the divorced males? 
• What are the values of the attributes (sex, education, marital status) for a given 

individual who responded to the survey? 

male 

single married divorced widowed other 

primary 20 17 9 11 14 

secondary 32 13 7 5 10 

college 11 9 11 8 12 

female 

primary 33 28 6 14 17 

secondary 21 24 13 8 15 

college 19 17 4 5 20 

Figure 4.19 The Three-Dimensional Array of Figure 2.5 

For the second group of questions, the data in the array structure of Figure 
4.19 is of no use. To answer those questions, we would most likely begin by having 
a record for each person, wherein these attribute values would be transcribed. 
Suppose that we have such an array of records as shown in Figure 4.20 and 
containing name, age, sex, education, and marital status. In this figure the records 
have a de facto ordering, and we can specify a particular record by its numerical 
index. It is often more useful, though, to be able to specify a record by its primary 
key value. In this case, the names can serve as such key values; in real situations, 
of course, names would not be unique, and social security numbers, employee 

numbers, etc. would be used instead. 

We can regard these records as representing a function F, such that 

F(name, attribute) = value, as in the examples 

F(Delilah, status) = single , and F(Roscoe, education) = secondary 

If we now ask for the names of all the single persons, we can think of this question 
as inverting the function F to obtain ¥~x (attribute, value) — names, as demonstrated 

by the example 
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record name age 

1 Archie 33 
2 Beulah 23 
3 Caspar 25 
4 Delilah 46 
5 Egbert 52 
6 Gertrude 32 
7 Hector 18 
8 Jezebel 41 
9 Maisie 32 

10 Olaf 29 
11 Roscoe 49 

sex education status 

male primary divorced 
female secondary widowed 
male secondary single 
female college single 
male primary married 
female secondary widowed 
male primary single 
female primary married 
female college divorced 
male primary married 
male secondary single 

Figure 4.20 Some Example Data 

F 1 (status, single) = Caspar, Delilah, Hector, Roscoe 

This suggestive viewpoint is the origin of the term inverted list. There is one 
inverted list (possibly empty) for every combination of an attribute with its possible 
values, and this list will generally yield not one, but several names. The set of all 
the lists is called an inverted file. An inverted file for the data of Figure 4.20, except 
for the attribute of age, is shown in Figure 4.21. The list entries are recorded as 
names; the entries might alternatively have been record numbers or locations. In 
essence, however, an inverted list is a list of list pointers. 

Sex 
mate Archie, Caspar, Egbert, Hector, Olaf, Roscoe 
female Beulah, Delilah, Gertrude, Jezebel, Maisie 

Education 
primary Archie, Egbert, Hector, Jezebel, Olaf 
secondary Beulah, Caspar, Gertrude, Roscoe 
college Delilah, Maisie 

Marital Status 
single Caspar, Delilah, Hector, Roscoe 
married Egbert, Jezebel, Olaf 
divorced Archie, Maisie 
widowed Beulah, Gertrude 

other none 

Figure 4.21 Inverted File of Data in Figure 4.20 

An example of an inverted list that usually employs locations is the index of a 
book. In this book, for example, we find that the term “inverted list” is referenced 
on pages 132-134, 140, 303, 450, 551, and 656-658. Here, using page references 
serves very well because they apply just to this book, and they will change only in 
the infrequent case of a new edition. On the other hand, consider the Bible or the 
works of Shakespeare; these have been published in hundreds of editions, rarely 
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with identical pagination. In such a case, it is more appropriate to have a concor¬ 
dance that is valid for all editions, referring to occurrences of words or phrases by 

their logical locations, as exemplified by: 

perverseness: Isaiah — 30,12 
Proverbs — 2,14; 11,3; 15,4 
Psalms — 101,4 

and 

perturbation: Henry IV (2nd) — l,ii,132; IV,v,23 
Macbeth - V,i,10 
Much Ado About Nothing — II,i,268 
Richard III - V,iii,161 

4.3.2 Multilists 

Although we can use inverted lists to find those records having certain values of 
attributes, we cannot dispense with the original data records. We thus have two 
files in place of one - the original file and the inverted file. In our example of 
Figures 4.20 and 4.21, however, we find that no individual has more than one value 
for a single attribute; the inverted lists for a given attribute are all disjoint. This 
suggests the possibility of combining the lists for each attribute within a single list, 

similar to that which we saw in Figure 4.3. 

record name age sex education status link fields 

1 Archie 33 M primary divorced 8 3 5 9 

2 Beulah 23 F secondary widowed 3 4 3 6 

3 Caspar 25 M secondary single 10 5 6 4 

4 Delilah 46 F college single 11 6 9 7 

5 Egbert 52 M primary married 0 7 7 8 

6 Gertrude 32 F secondary widowed 9 8 11 0 

7 Hector 18 M primary single 2 10 8 11 

8 Jezebel 41 F primary married 4 9 10 10 

9 Maisie 32 F college divorced 1 0 0 0 
10 Olaf 29 M primary married 6 110 0 

11 Roscoe 49 M secondary single 5 0 0 0 

Figure 4.22 Multilist of Data in Figure 4.20, Version 1 

Such an organization of the data is called a multilist, and is illustrated for the 
data of our example by Figure 4.22. A multilist is a set of records wherein each 
record is simultaneously on r sequential lists. These unrelated list sequences are 
expressed by including r link fields in each record. In this instance, we have used 
record indices rather than name keys for the links; but they are in fact pointers to 
the next record on the list having the same value for that attribute. For our small 
example, it is not very helpful to maintain distinct values of age on distinct lists. 
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However, an easy and useful alternative is to incorporate a link field in the multilist 
structure for accessing the persons in increasing order of age, as shown in the figure. 
Finally, we no longer need to maintain the original file, as with inverted lists. 
However, we do need a set of list headers, one for each value of each attribute; 
these are shown in Figure 4.23. 

Age 7 

Marital Status 
single 3 
married 5 
divorced 1 
widowed 2 
other 0 

Sex 
male 1 
female 2 

Education 
primary 1 
secondary 2 
college 4 

Figure 4.23 Headers for Multilist 

With the annexation of the link field, the information in each record becomes 
somewhat redundant. For instance, starting with the fact that Caspar has 
completed high school, and then following the link to Gertrude, we can know that 
that is her educational level also. Indeed, it appears that we can compress out 
much of the original data from Figure 4.22 to yield Figure 4.24, thus saving some 
storage. Unfortunately, although we can find all the high school graduates by 
following the list header value of 2, we can now no longer access an arbitrary 
record and ascertain that person’s educational level. A final adjustment that solves 
this problem is to replace the nil link at the end of each list by a circular link back 
to the header node for that attribute value. By such a strategy, we can always chain 
far enough to identify any attribute value for a randomly accessed record. This is 

illustrated in Figure 4.25. 

record name age sex education status 

1 Archie 8 3 5 9 

2 Beulah 3 4 3 6 

3 Caspar 10 5 6 4 

4 Delilah 11 6 9 7 

5 Egbert 0 7 7 8 

6 Gertrude 9 8 11 0 

7 Hector 2 10 8 11 

8 Jezebel 4 9 10 10 

9 Maisie 1 0 0 0 

10 Olaf 6 11 0 0 

11 Roscoe 5 0 0 0 

Figure 4.24 Multilist of Data in Figure 4.20, Version 2 

J22 practice, it may be far more economical to retain all the data, as in Figure 
4 22, than to pay the cost of chaining around a large list. This is just one of many 
pragmatic details that we will defer to Chapter 12. There is one final point to be 
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made here concerning inverted lists and multilists. What if we were also maintain¬ 
ing a list of each person’s citizenship? And what if Archie had dual citizenship in 
both Egypt and Israel? There is no problem with inverted lists if attributes have 

multiple values, but this feature cannot be accommodated with multilists. 

record name age sex education status 

1 Archie 8 3 5 9 

2 Beulah 3 4 3 6 

3 Caspar 10 5 6 4 

4 Delilah 11 6 9 7 

5 Egbert 0 7 7 8 

6 Gertrude 9 8 11 (widowed) 

7 Hector 2 10 8 11 

8 Jezebel 4 9 10 10 

9 Maisie 1 (female) (college) (divorced) 

10 Olaf 6 11 (primary) (married) 

11 Roscoe 5 (male) (secondary) (single) 

Figure 4.25 Multilist of Data in Figure 4.20, Version 3 

4.3.3 Arrays Revisited 

In the discussion of arrays in Chapter 2, we saw that the usual sequential storage 
allocation method, while highly satisfactory for many applications, is too restrictive 

for cases wherein: 

(a) the array has an irregular shape, or 

(b) the array is sparse. 

We will illustrate two manners in which linked lists can be used to facilitate oper¬ 

ations on arrays of an arbitrary shape or density. 

The first technique starts from the observation that a multi-dimensional array 
can be regarded as a vector of vectors ... of vectors. Rather than unravel such an 
array into a one-dimensional representation, we can employ vectors of pointers into 
all dimensions except the last, where we finally have vectors of data values. To be 
specific, let us consider again the array of Figure 4.19. In the new scheme illus¬ 
trated in Figure 4.26, we have vector x with pointers to the vectors yl and y2; the 
latter, in turn, contain pointers to the vectors ztJ (i = 1,2; j = 1,2,3). Each z vector 
contains one row of actual data. 

The number of pointers required for this representation (8 in our example, for 
an array of 30 elements) may seem to be excessive. But consider the general case of 
a hypercube of k dimensions, with n elements on a side, and such that n is of 
respectable size. Then it can be shown [Standish 1980] that the excess space for 
pointer storage is almost independent of k and is of proportion 1 /(« — 1). More¬ 
over, on many machines, random access to an arbitrary element of the array by 
following pointers may be even faster than when using a dope vector, as in ordinary 
sequential allocation. However, this representation does have a bias toward access- 
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Figure 4.26 A Pointer-Based Array Representation 

Figure 4.27 A Ragged Array 

ing neighbors in the last dimension, with access to neighbors in the other 

dimensions being more costly. 

There are two situations in which the vector of pointers method is particularly 
advantageous. One is when the array is large, so that there is a need to segment it, 
or divide it up into logical parts. The other is in the case of a ragged array. This 
term signifies an array in which, for example, not all planes have the same number 
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of rows and/or not all rows have the same number of columns. An illustration of 
this is given in Figure 4.27. Overall, this solution to the problem of arbitrary 

extendibility is more practical than those presented in Section 2.7.2. 

As a second illustration of the utility of linked lists for dealing with arrays, we 
return to the subject of sparse matrices. Recall that these are typified by an array 
of coefficients, mostly zero in value, for the solution of a set of simultaneous 
equations. The methods of representation that we described in Section 2.8 - bit 

map, address map, delta skip, and triples — are all related in approach in that they. 

1. place the non-zero elements in sequential positions in a vector of data Z, and 
2. employ auxiliary vectors to map the row and column indices of the original 

matrix to indices in Z. 

These methods all achieve the primary goal of conserving storage, but they are 
ill suited to dynamic situations. For example, in solving a set of simultaneous 
equations by a relaxation method, where we repeatedly use an unaltered set of coef¬ 
ficients, the previously cited methods can work quite well. However, in solving the 
same equations by Gaussian elimination (see Section 2.3.2), coefficients appear and 
disappear throughout the matrix. Although the triples method allows for modest 
flexibility in dynamic situations, a better approach is to represent individual array 
elements as list nodes, in the form shown in Figure 4.28. With this method, each 
node is orthogonally linked in the row and column dimensions, using the pointer 

fields Right and Down. 

Coefficient 

Down Row Col Right 

Figure 4.28 Node Structure for Sparse Array Elements 

0 5 0 0 2 
4 0 9 0 0 
0 0 0 6 0 

1 0 0 0 3 
0 8 0 0 0 

Figure 4.29 The Example Sparse Array of Figure 2.23 

We will apply this method to the matrix of Figure 2.23, reproduced here as 
Figure 4.29. In so doing, we have to confess that we avoided an important detail 
when discussing sparse matrices in Chapter 2. Extremely sparse matrices usually 
have missing rows and columns consisting entirely of zero elements. In Chapter 2, 
we ignored this and treated the row and column numbers as consecutive values. 
But the fact that row j or column k is missing is important in a real problem. To 
redress matters, we now posit some non-consecutive row and column values for 
Figure 4.29. Applying the format in Figure 4.28 to this matrix, we obtain the struc¬ 
ture in Figure 4.30. Note that both the row lists and the column lists are circular 
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lists, and that there are header nodes for each row and column. In practice, the 
header nodes might have distinctive formats; we have chosen to give them the same 
format as data nodes. 

Figure 4.30 The Sparse Array of Figure 4.29 as a List 

How do orthogonal lists compare with other methods for representing sparse 
matrices in terms of storage efficiency? To estimate this in a manner analogous to 
that employed in Section 2.8, assume that each node requires 

8 bytes for the coefficient 
4 bytes for two subscript values (should be adequate) 
8 bytes for two pointer values (possibly overgenerous) 

or 20 bytes in all. The total space requirement is then given by 

5 = 20 pn2 + 40n (4.7) 

where p is density, and the two terms correspond to the data nodes and the header 
nodes. Finally, let us assume that n = 100 and then carry forward Table 2.2 as 

Table 4.1, with a row appended for orthogonal links. 
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Density p .1 .03 .01 .003 

Bit-Map 
Address-Map 
Delta-Skip 

Triples 
Linked List 

9650 
18400 
11978 
12000 
24000 

4050 
12800 
4670 
3600 

10000 

2450 
11200 

2331 
1200 
6000 

1890 
10640 

1260 
360 

4600 

Table 4.1 Storage Requirements for Sparse Matrices 

Not too surprisingly, the overhead for the pointers places orthogonal linking at 
a disadvantage with respect to storage efficiency. However, there are many cases 
where this is much less significant than the capacity for dynamically inserting and 
deleting elements in the array. We will explore one example of this in depth in the 
next section. But first, let us recall the discussions of the preceding two sections. 

What, in fact, are the vectors of pointers in Figures 4.26 and 4.27? They are 
inverted lists. And what is the orthogonally linked structure of Figure 4.30? It is 

another multilist. 

f4.3.3.1 Sparse Matrix Operations. Computations with sparse matrices are fairly 

common, and the subject has a fairly specialized literature, for example Bunch and 
Rose [1976]. Most of these treatments are directed at the efficient solution of 
large, sparse sets of equations. Since the associated issues are fairly complicated, 
and since we have not presented the graph-theoretical tools that underlie them, we 

will pursue the less complex issue of multiplying sparse matrices. 

In implementing the multiplication process, we need to employ a variety of util¬ 

ity routines: for input and output, for conversion between the linked list format 
and others (such as triples format), for initializing the various header nodes, etc. 
Although important, such routines are straightforward to implement, and so we will 
presume their availability in what follows. The Pascal syntax corresponding' to 

Figure 4.28 is 

type ptr = |node; 
node = record 

row,col: integer; 
coeff: real; 
rowptr,colptr: ptr; 

end; 

We assume that we can employ the following subroutines: 

1. SPARSE_SETUP (a,b: ptr, VAR c: ptr) - taking pointers to the headers of the 
matrices A and B as input parameters, and returning a pointer to the header of 
the matrix C. This initialization generates one row header in C corresponding 

to each non-zero row header in A and one column header in C corresponding 
to each non-zero column header in B. These are obviously the only positions 
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where we can develop a product in C; moreover, even some of these rows or 
columns may turn out to be empty when we are finished. 

2. SET_NODE (q: ptr, r,c: integer; valu: real; rp,cp: ptr) — which assigns the last 
five parameters to the fields of the node pointed at by the first parameter. 

3. SPARSE_TRIM (q: ptr) - which scans the row and column headers of the 
sparse matrix corresponding to q, and deletes header nodes for those rows or 
columns that are empty. 

The most natural approach to the problem is to mimic the sequence of compu¬ 
tation in MAT_MAT (Algorithm 2.4), as reproduced here: 

for i := 1 to m do 
for j := 1 to p do begin 

sum := 0; 
for k := 1 to n do 

sum := sum + A [i,k] * B [k,j]; 
C [ij] := sum; 

end; 

By transliterating this logic, we obtain the procedure SPARSE_MULT (Algorithm 
4.4). Although the amount of code is substantially larger with lists than it is with 
arrays, the pattern of scanning the elements of A and B is identical. A significant 
source of inefficiency comes from having to chain from the ith row header and the 
yth column header of C in order to insert C [ij]. Since the elements of C are devel¬ 
oped a row at a time, we mitigate this by using the variable q to remember the 
previous point of insertion in the ith row. However, we are still forced to chain 

down the yth column using the variable 5. 

Algorithm 4.4 reflects a respectable, workman-like approach to the problem of 
multiplying spars© matrices, but it is possible to do far better by analyzing where it 
spends its time. Two things cause it to be inefficient. The first of these is that in 
inserting C [ij] into two linked lists, we are able to use the variable q to expedite 
row insertion, but are unable to expedite column insertion. Another, less obvious 
shortcoming is that in the simultaneous traversal of a row in A and a column in B, 

the statement 

while (x <> u) and (y <> v) do begin 

is executed with a frequency proportional to the sum of the densities of A and B, or 
Pa + Pb- Thus there are far more comparisons than multiplications! A pretty reso¬ 
lution for this by Schoor [1982] is to perform the multiplication by the unobvious 

sequence; 

for i := 1 to m do 
for k := 1 to n do 

for j := 1 to p do 
C [ij] := C [ij] + A [i,k] * B [kj]; 

where there is no need to initialize C in the list representation. 

In other words, we pick an element A [i,&] and then scan the icth row of B to 
see where there are any multiplications to be performed. As we repeat this opera¬ 
tion for the successive elements in the ith row of A, we accumulate contributions to 
the ith row in C. As a consequence, the number of comparisons is reduced to the 
product of the densities of A and B, or pA x pB. We still have to contend with the 
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procedure SPARSE_MULT (a,b: ptr; var c: ptr); 

var p,q,r,s,t,u,v,x,y: ptr; 
sum: real; 

begin 
SPARSE_SETUP (a,b,c); 
u : = aj.rowptr; {set to first row in A} 

p := cj.rowptr; {set to first row in C} 

while u <> a do begin 
q := p; {remember beginning of ith row in C} 
v := b|.colptr; {set to first col in B} 

r := ct.colptr; {set to first col in C} 

while v <> b do begin 
x := ut-colptr; {begin /th row in A: a [/, 1 ]} 
y := vj.rowptr; {begin /th col in B: b [I,/]} 
sum := 0; 
wfiile (x <> u) and (y <> v) do begin 

if xt.col < y|.row then 
x := xf.colptr 

else if xt-col > yf.row then 
y := yf.rowptr 

else begin 
sum := sum + xf.coeff * yt.coeff; 
x := xf.colptr; 
y := yt.rowptr; 

end; 
end; 
if sum <> 0 then begin 

new (t); 
s := r; 
while s|.rowptr <> r do 

s := sj.rowptr; {find /th row in /th col of C} 

SET_NODE {t,p|.row,r|.col,sum,r,p); 
q|.colptr := t; 
s|.rowptr := t; 
q := t; {remember this entry in /th row of 

end; 
v := vf.colptr; 
r := rj.colptr; 

end; 
u := u|.rowptr; 
p := pf.rowptr; 

end; 

{go to next col in B} 
{go to next col in C} 

{go to next row in A} 

{go to next row in C} 

C} 

SPARSE_TRIM (c); 
end; 

Algorithm 4.4 SPARSE_MULT 
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(a) Use of brow for Fast Access to Rows of B 

(b) Use of colend for Fast Access to Columns of C 

Figure 4.31 Structures for Algorithm SPARSE_MULT_A 

inefficiency of random insertion into two linked lists. The resolution for this is as 

follows: 

1 Maintain an array of pointers brow to the beginning of each row in B, as illus¬ 
trated in Figure 4.31(a). We can then index this array with the column index k 

of A, in order to begin processing the row of B that corresponds to A 

Note that brow must have an entry for the entire subrange 1 .. n. 
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procedure SPARSE_MULT_A (a,b: ptr; var c: ptr); 

const max = {maximum s ze of auxiliary arrays} 

var p,q,u,v,x,y: ptr; 
s: real; 
brow,colend,rowend: array [1 .. max] of ptr; 

begin 
SPARSE_SETUP_A (a,b,c); 

{Phase I: Generate the columns of matrix C} 
u := aj.rowptr; {set to first row in A} 
while u <> a do begin 

x := uf.colptr; {begin /th row in A: a [/, 1]} 
while x <> u do begin 

v := brow [x].col]; {find Arth row in B} 
if v <> nil then begin 

y := vf.colptr; {begin Arth row in B\ b [Ar,1 ]} 
while y <> v do begin 

s := xf.coeff * y|.coeff; 
p := colend [y].col]; {find end of/th col in C} 
if p] .row = uf.row then 

pf.coeff := p|.coeff + s 
else begin 

new (q); 
SET_NODE (q,uT.row,p|.col,s,pT.rowptr,q); 
pf.rowptr := q; 
colend [yf col] := q; 

end; 
y := yj-colptr; {step along Arth row in B: b [Ar,/]} 

end; 
end; 
x := xt.colptr; {step along /th row in A: a [/,Ar]} 

end; 
u := uf.rowptr; {go to next row in A} 

end; 
{Phase II: Scan the columns of matrix C and link the rows} 

p := c|.colptr; {set to first col in C} 
while p <> c do begin 

x := p; q := pf.rowptr; {begin /th col in C: c [1,/]} 
while q <> p do begin 

if qf-coeff = 0 then begin 
q := q|.rowptr; 
dispose (xf.rowptr); 
xf.rowptr := q; 

end else begin 
y := rowend [qj.row]; {find end of /th row in C} 
qt-colptr := yf.colptr; 
yf.colptr := q; 
rowend [yf-row] := q; 
x := q; q := qf.rowptr; 

end; 
end; 
p := pj.colptr; 

end; 
{go to next col in C} 

SPARSE_TRIM (c); 
end; 

Algorithm 4.5 SPARSE_MULT_A 
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2. Do not attempt to maintain both row and column links for C throughout the 
multiplication. Rather, (a) develop C as a set of nodes linked along their 
columns only, and then (b) scan these column-lists and insert the row links after 
the multiplications are finished. 

3. For use during 2(a) above, maintain an array of pointers colend to the last 
element in each column of C, as illustrated in Figure 4.31(b). We can then 
index this array with the column index j of B, and directly find where to apply 
the next product term in C. Note that colend need have just one entry for each 
column in B (and C). 

4. For use during 2(b) above, maintain an array of pointers rowend to the last 
element in each row of C. We can then index this array with the row index j of 
C, and directly find where to row-link the next term in C. Note that rowend 
need have just one entry for each row in A (and C). 

When we put these elements together, we obtain the procedure SPARSE_MULT_A 
(Algorithm 4.5). It employs the same auxiliary procedures SET_NODE and 
SPARSE_TRIM as before. However, it employs SPARSE_SETUP_A, in order to 
include the initialization of the arrays brow, colend, and rowend. 

If we contemplate the multiplication of matrices that are sparse and very large, 
the effect of the difference between pA + pB and pAx pB can be substantial. To 
confirm this effect, we tested the two algorithms rather carefully. To begin with, in 
dealing with matrices where the product of density and size is small, so that the 
number of non-zero terms is small in an absolute sense, then the savings in the 
number of comparisons is lost in the overheads of setup, loop initializations, and 
trimming. But if the matrix sizes are truly large, or (paradoxically) if the densities 
are not too small, then the time ratios are indeed commensurate with the compar¬ 
ison ratios. All in all, SPARSE_MULT_A is a nice illustration of the effectiveness 
of choosing the right combination of algorithm and data structures. 

4.4 LIST STRUCTURES 

We will now consider list structures that are more powerful than any of those that 
we have discussed so far. Whereas the lists of Section 4.3 achieved generality by the 
use of multiple links, the lists in this section achieve generality through the use of 
recursion. The term most commonly applied to this type of list is list structure, 
although other terms, notably List, have been applied as well. Since list structure 
is more useful when speaking and ‘‘List is more useful when writing, we will think 
of them as List structures, but commonly revert to the use of List throughout the 

remainder of this text. 

Definition. A List is a finite sequence (possibly empty) of elements, each of 

which is either atomic or a List. 

The nature of an atom is not well specified, other than that it is not itself a List. 

Several specialized programming languages have been developed for List proc¬ 

essing, which is a generic term for performing computations with List structures. 
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We will examine these somewhat in Section 4.4.4, but the bulk of our discussion of 

Lists reflects the following perspectives: 

• The typical application user’s point of view of Lists and List processing is via 

some special HLL. 
• Nonetheless, our discussion will begin with some details about List structure 

implementation, which is presumably carried out in assembly language. These 
details provide interesting examples of representation choices; they also provide 
insight for the List processing algorithms that we will study subsequently. 

• In order not to burden many readers with an extra, unfamiliar language, these 
List processing algorithms are presented in Pascal. For those readers who are 
already familiar with a List processing language, the correspondence should be 

straightforward. 

4.4.1 Representation Issues 

The basic way of representing a List is illustrated pictorially in Figure 4.32(a). The 
elements of the outer List are r,s,t; r is itself the List consisting of u and v; t is the 
List consisting of w; w is the List consisting of x; and s,u,v,x are atomic. Another 
conventional manner of representing the same List is with parentheses, as 

((A,B),C,((D))). 

r s t 

(a) 

(b) 

Figure 4.32 Two Pictorial Conventions for List Structures 
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1 

0 A 

0 C 

0 B 

(a) 

(b) 

Figure 4.33 Implementing the Conventions of Figure 4.32 

An alternate pictorial scheme for this same List is shown in Figure 4.32(b). The 
distinction between (a) and (b) reflects some important points to remember when 
representing List structures. List elements are almost always mapped into cells of a 
fixed size large enough to hold two pointer values. The right field always represents 
a List, denoted by NIL if it is empty or by a pointer otherwise. The left field may 
represent either another List, denoted by a pointer, or else an atomic value. Since 
many atomic values require no more space than does a pointer value, it is common 
to store them directly in the (available) left field. However, to complete that choice 
of representation, a tag field must then be added to each List node so that the 
nature of the left field can be discerned; this yields a structure like that shown in 

Figure 4.33(a). 

In other cases, necessarily so if the atomic value will not fit, the left field has a 
pointer to the atom, and the use of tags for discrimination might result in the 
structure of Figure 4.33(b). There are still other possible representations; the actual 
choice depends upon machine architecture and other factors. Of course, an imple¬ 
mentation of Lists would very likely incorporate header nodes, for the same reasons 
cited in Section 4 1 about simple lists: to facilitate selecting the first item of a List, 
to ease the problems that arise when a List changes and there are multiple pointers 
to it etc For our investigations, however, we find it sufficient and simplest to 
employ the representation of Figure 4.33(b). We will draw upon these important 
considerations for representing Lists as necessary, but suppress them where possible. 
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In any List there are two fundamental operations: to select the head of the List 

(referenced by the left pointer) and to select the tail of the List (referenced by the 

right pointer). As an example, the head of the List (A,(B),C) is the atom A and its 

tail is the List ((B),C); for the List ((D,E),F,(G)), the head is the List (D,E) and the 

tail is the List (F,(G)). For reasons that are historical and now irrelevant, the head 

and tail selector functions are commonly termed, respectively, CAR and CDR. 

From the point of view of a user of a List processing language, CAR and CDR 

extract sub-Lists from any List that is non-atomic; note that CAR may return an 

atom and CDR may return NIL. Of course, from the implementation point of 

view, as well as from the point of view to be discussed in Section 4.4.3, we are deal¬ 

ing not with Lists but with pointers to these Lists. 

Note that the issue of representation has soiled the purity of the List concept. 

In the definition of Lists and in high-level operations on them, we speak of the 

empty List, NIL. In the machine, however, we cannot represent the nothingness of 

the empty list except by using the explicit pointer value nil. We can think of NIL 

in the List processing environment as being a special atom that denotes the empty 

List; however, this loses some of the simple elegance of the definition. 

4.4.2 Reentrant and Recursive List Structures 

The List structure in Figures 4.32 and 4.33 is, more precisely, a pure List. There are 

other possibilities, as illustrated in Figure 4.34. The List in (a) is termed a reentrant 

List, or shared List, because the element x is referred to more than once. The List 

in (b) is termed a recursive List, or cyclic List, because element y refers to itself 

directly, and element z refers to itself indirectly. Note that there is an important 

distinction between the use of the term recursive as applied to a List and to an algo¬ 

rithm. The latter usage necessarily implies a criterion for termination, whereas the 

former usage does not. 

One consequence of having these less restricted Lists is that they cannot be 

simply represented with parentheses as in the case of pure Lists. The usual way of 

coping with this situation is to label the Lists and then refer to the labels. Using 

lower case letters as labels, we could write for the List of Figure 4.34(a) 

u\ (v,C,v) v: (A,B) 

and for the List of Figure 4.34(b) we could write 

r: (j,B,(0) (s,A) M(C,t)) 

Much more serious than the issue of representing these more general Lists by a 

string of symbols, however, are the complexities involved in computing with such 

structures. We will see how this is so in the next section. 

t 
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(b) 

Figure 4.34 Reentrant and Recursive List Structures 

f4.4.3 Operations with List Structures 

It is difficult to convey the full flavor of List processing without going into details 
that are beyond the scope of this book. However, there are some very pretty and 
important ideas that can be expressed within the framework of two examples. The 
first of these has to do with the most basic operation that one can conceive of for a 
List: to traverse it, visiting each node without getting caught in an infinite excur¬ 
sion. This capability serves as a crucial first step in the process of reclaiming List 
cells, to be discussed in Section 11.2.4 After the example of traversing a List, we will 
take a different tack and illustrate the use of a more special sort of List structure, 
appropriate for the problem of adding multivariate polynomials. 

f4.4.3.1 Traversing a List Structure. The basic problem in traversing a List is that 
it may be reentrant and cause us. to visit some nodes more than once, or even recur¬ 
sive and cause us to visit some nodes an infinite number of times, unless we employ 
some strategy to block repeated visits. The strategy used for this purpose is to mark 
nodes as they are visited, and then to follow links only to unmarked nodes. 
Suppose that our objective is to count how many nodes there are in a List. For this 
purpose, we will employ the recursive function COUNT. LIST (Algorithm 4.6), and 
use the marking technique just described. In this procedure, the type definition for 
a cell corresponds to Figure 4.33(b), augmented with a mark bit. To illustrate the 

4 As a matter of fact, the techniques that are discussed in Chapter 11 provide a wealth of 
instructive examples of List processing. But they belong there and not here. 
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function COUNT_LIST (list: link): integer; 

type link = t cell; 
cel! = record 

mark: boolean; 
case isatom: boolean of 

true: (data: {atom}); 
false: (head,tail: link); 

end; 

var cnt: integer; 

begin 
cnt:= 0; 
if not list}.mark then begin 

list}.mark := true; 
cnt := 1; 
if not list}-isatom then begin 

cnt := cnt + COUNT_LIST (listj-head); 
if listj.tail <> nil then 

cnt := cnt + COUNT_LIST (listf-tail); 
end; 

end; 
COUNT_LIST := cnt; 

end; 

Algorithm 4.6 COUNT_LIST 

action of COUNT_LIST, consider the List of Figure 4.35, wherein pointer values 

are represented symbolically rather than with arrows, and the mark and isatom 

fields are not shown. Then the recursive sequence of visiting the cells is illustrated 

in Figure 4.36. In this figure, the vertical axis indicates chronological sequence and 

the horizontal axis indicates the depth of the recursive calls. Each entry in the 

figure consists of the label of a visited cell, along with the count of all the cells seen 

from it. Thus, cell c is the fourth cell to be visited. From it, we do not see cell c 

(since it is already marked), but we do see cell /, which in turn sees cell h\ that line 

of inspection ends at cell h, since cell b has already been visited. So the count for 

cell c is 1 (for itself) plus 0 (looking along its head pointer) plus 2 (looking along its 

tail pointer), for a total of 3. 

We have earlier, in Section 1.3.1, seen some evidence that recursive algorithms 

are likely to lose some efficiency in exchange for elegance of expression. Since the 

capability to visit the nodes of a List is so basic, several faster, non-recursive algo¬ 

rithms have been developed for this purpose. In Section 6.4.1, in our treatment of 

trees, we will see one such approach. However, since Lists are more general than 

trees, and in order to illustrate several other points, we will base our discussion 

upon a well-known algorithm by Schorr and Waite [1967]. In this example, we 

omit the counting and concentrate upon the marking, since it is the more essential 

issue. This algorithm uses the technique known as link inversion, whereby pointer 
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Figure 4.35 An Example List 
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Figure 4.36 Trace of Algorithm COUNT_LIST 

values are swapped back and forth between List cells in a systematic manner. To 
illustrate this, Figure 4.37 shows a portion of a List at one instant in time, and then 
again after a link inversion has been performed. In (a), the work cells P and Q 
point to cell x and its left successor y, respectively. Via the sequence of operations 

t := Qj.head; Of.head := P; 
p := Q; Q:=t {old value of Q].head) 

we have in (b) that P and Q point, respectively, to y and its left successor z. The 
fact that x is the predecessor of y has been retained by inverting the left pointer in y 
to point at x. The restoration of (b) to (a) can be obtained via the complementary 

sequence of operations 

t := Pf.head; Pf.head := Q; 
q ;= p; p := t {old value of Pf.head) 
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(a) (b) 

Figure 4.37 Link Inversion 

When we begin to implement a traversal marking procedure based on link 
inversions, we discover a complication. Namely, upon ascending to a predecessor 
node, we need to know if we are ascending from the head (left or CAR) direction or 
from the tail (right or CDR) direction. In the former case, we should investigate 
the other pointer field in the cell; in the latter case, we should ascend further. 
Accordingly, in some implementations of the Schorr-Waite algorithm, every List cell 
needs a tag bit in order to make this discrimination, as well as a mark bit. For 
example, a tag bit is necessary if the List cells are represented as in Figure 4.33(a). 
However, if the List cells are represented as in Figure 4.33(b), we can avoid this — 
instead inverting the tag information in the bit field that is used to distinguish 
atoms from List cells, in analogy to the inversion of the pointers in the other two 
fields! We will see how this works shortly when we look at the algorithm. 

Before we consider the algorithm, however, let us reflect upon what we are 
doing. By altering pointer values, we are radically, although systematically, distort¬ 
ing the topology of the List structure. Throughout the execution of this algorithm, 
the structure will be ill formed from the point of view of any other process that 
might inspect it. To compound the problem, the pointer values are reassigned one 
at a time, so that a totally inconsistent state will obtain during the middle of an 
inversion. The concept of a pointer rotation, which treats a set of pointer value 
exchanges as an indivisible action, is very useful in situations such as this [Suzuki 
1982]. Chiefly, it allows algorithms to be expressed more concisely, and it reduces 
the likelihood of inadvertently coding an inconsistent set of individual pointer 

assignments. 

Rotations can be specified among two values (that is, a swap), three values, or 
more. For the present case, we need consider just rotations among three pointer 
values. Even acquiring a node from the head of Free-list and inserting it at the 
head of another list, as in Section 4.1.3, has the effect of such a pointer rotation. 
This is illustrated in Figure 4.38, where (a) illustrates the pointer values before such 
a sequence, and (b) illustrates the pointer values after such a sequence. Deleting a 
node from the head of a list and returning it to the head of a Free-list would yield 
exactly the opposite rotation. As another example, the link inversions from (a) to 
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(a) Free = a, a\.next = b, X = m 

Free b c 

(b) Free = b, a\.next = m, X = a 

Figure 4.38 Pointer Rotations Illustrated with Free-List 

(b) and back from (b) to (a) in Figure 4.37 can be expressed as the complementary 

rotations 

ROTATE (Qf.head,P,Q), and ROTATE (P|.head,Q,P) 

We are now ready to consider the Schorr-Waite algorithm, MARK_LIST 
(Algorithm 4.7). It takes a single parameter, which is a pointer to the origin of the 
list. For each value of the variable pres, it marks the node pres] (if not already 
marked), and then explores the cells accessible through pres].head (down left) and, 
subsequently, those accessible through pres].tail (down right). The algorithm 
retains the information for backing up to parents of cells by link inversions; these 
link inversions are performed by calls upon the procedure ROTATE_3. The logic 
for detecting if the search should be extended further in the head (tail) direction is 
expressed in the function GO_HEAD (GO_TAIL). Note that these functions 
reflect the logical nature of LISP-like cells as represented in Figure 4.33(b). A 
different set of conventions about List cells would probably require a different 
implementation for GO_HEAD and GO_TAIL; however, the logic for 

MARK.LIST might be identical, or almost so. 

Note the manner in which the tag information is retained in the field isatom, 

that field contains the value True for atoms and False otherwise. Whenever the 
algorithm descends to the right, it first sets isatom to True in the List cell. Ascents 
from the left will find that value to be False, informing the algorithm to investigate 
the tail pointer; ascents from the right will find that value to be True, informing 
the algorithm to reset the value to False (it can’t really be an atom, since it has 

descendants) and then to continue ascending. 

The operation of MARK_LIST can best be understood by following its opera¬ 

tion upon a List such as that of Figure 4.35. In order to represent the trace of 
MARK_LIST, the List representation is altered to the form of Figure 4.39(a), 

displaying the values of mark, isatom, head, and tail for each cell. Figure 
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procedure MARK_LIST (list: link); 

type link = ^ cell; 
cell = record 

mark: boolean; 
case isatom: boolean of 

true: (data: char); 
false: (head,tail: link); 

end; 

var pres,prev: link; 

function GO_HEAD (ptr: link): boolean; 
begin 

if ptrf.isatom then GO_HEAD := false 
else GO_HEAD := not ptrf .headf.mark; 

end; 

function GO_TAIL (ptr: link): boolean; 
begin 

if ptrf.isatom then GO_TAIL : = false 
else if ptrj.tail = nil then GO_TAIL := false 
else GO_TAIL := not ptrt.tailf.mark; 

end; 

procedure ROTATE_3 (var p,q,r: link); 
var t: link; 
begin 

t := p; p := q; q := r; r := t; 
end; 

begin 
prev := nil; pres := list; 
repeat 

if not presf.mark then 
presf.mark := true; 

if GO_HEAD (pres) then 
ROTATE_3 (prev,pres,prest-head) 

else if GO_TAIL (pres) then begin 
presf.isatom := true; 
ROTATE_3 (prev,pres,presf.tail); 

end else if prevf.isatom then begin 
ROTATE_3 (pres,prev,prevf.tail); 
presf.isatom := false; 

end else if GO_TAIL (prev) then begin 
prevf.isatom := true; 
ROTATE_3 (prevf.head,pres,prevf.taiI); 

end else 
ROTATE_3 (pres,prev,prevf.head); 

until prev = nil; 
end; 

{down left} 

{down right} 

{up right} 

{switch} 

{up left} 

Algorithm 4.7 MARK_LIST 
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a: F F be e: F F g f f: F F h # 
(a) b: F F d c c: F F c f g: F 1 B h: F F b # 

d: F T A prev: # pres: a 

a: ©F@e e: F f g f f: F F h # 
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Figure 4.39 Trace of Algorithm MARK_LIST 
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4.39(b) -(m) displays these values as the algorithm executes; in each of these 

displays, the values that have just changed are circled for emphasis. 

Techniques for marking Lists have a great deal of relevance, as we will see in 
Section 11.2.1.1. In general, for marking unrestricted Lists, we can expect to need 
either more than linear time, or more than bounded workspace. In MARK.LIST, 
we got around the need for 0(n) separate tag bits by taking advantage of a partic¬ 
ular representation for Lists. An interesting question remains: Is it possible to 
mark unrestricted Lists in linear time and with bounded workspace, if we disregard 

the possibility of such tricks of implementation? 

f4.4.3.2 Multivariate Polynomial Addition. In Section 4.2.2 we illustrated the use 
of sequential lists for polynomial addition. Although the discussion and the algo¬ 
rithm POLYADD were centered on polynomials in one variable, we cited how the 
method using sequential lists could be extended to polynomials in several variables. 
Figure 4.17 depicted how the polynomial R(x,y,z) of Eq. 4.5 might be represented in 

this fashion. 

The method described in that section has the drawback that space for exponents 
must be allocated in each node for every variable that may be present, even though 
many terms may have zero exponents in most of the variables. An elegant alternate 
approach comes from noting that R(x,y,z) may be regarded as a polynomial t/(x), 
wherein the coefficients of U are polynomials Vj(y), and the coefficients in each Vt 
are in turn polynomials W^z). This may be seen by factoring R as 

R(x,y,z) — A x3y + B x3z + C xy2 z3 + Dy2z3 + Ey2 -T Fy + Gz2 ^ 

= (Ay + (Bz))x3 + ((Cz3)y2)x + ((Dz3 + E)y2 + Ey + (Gz2)) 

From this insight, we see that we can use a List structure of polynomials with 
generalized terms, such that the coefficients of any of these terms can themselves be 
List structures of the same form. A suitable template for this is shown in Figure 
4.40, where a tag value of 0/1 would indicate a constant/polynomial coefficient. 
The resulting form of R(x,y,z) is shown in Figure 4.41, with the tag fields 
suppressed since their values may easily be inferred. 

Tag Coefficient Exponent Link 

Figure 4.40 Node Structure for Term of Multivariate Polynomial 

This representation may be just as significant for saving time as it is for saving 
space. To demonstrate this, let us consider the general nature of an algorithm that 
would add two polynomials P and Q in this representation, replacing P with the 
sum. For every generalized term in P such that Q does not have a corresponding 
term (say for x2), the algorithm can skip that term and its entire sub-List in P. By 
contrast, with the structure suggested in Section 4.2.2, it would be necessary to step 
through every individual term in P that had a factor of x2, even though there were 
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no such terms in Q. In multivariate polynomials, the possibility of skipping over 
sub-Lists in this fashion can be very common. An algorithm for adding multivari¬ 
ate polynomials represented with a comparable but different List structure can be 
found in [Knuth 1973a]. Not surprisingly, it is considerably more elaborate than 
POLYADD. 

Figure 4.41 A Multivariate Polynomial as a List Structure 

f4.4.4 List Processing Languages - LISP 

The 1960’s saw the invention of several languages whose sole or principal data 
structure was the List. These were devised to attack problems that are character¬ 
ized by manipulation of symbols more than by numeric calculations. You have 
seen relatively simple examples of this for the case of polynomial algebra. The 
languages COMIT, IPL, and SLIP have largely disappeared as the language LISP 
[McCarthy 1960] has come to dominate List processing. To grossly oversimplify 
matters, COMIT was oriented more to sequential lists than List structures; IPL and 
SLIP burdened the user with responsibility for maintaining the free storage pool; 
SLIP was based on FORTRAN, with its attendant restrictions; and finally, none of 

the three has the expressive power of LISP [Bobrow and Raphael 1964], 

The principal manner of expressing Lists in LISP is very similar to that 
employed in Section 4.4.1, except that List items are separated by blanks instead of 
commas, as in ((A) B (C D (E))). Although the empty List is usually denoted by 

NIL, it can also be denoted by ( ). We have already talked about CAR and CDR 
for taking Lists apart. There are also built-in functions for extracting particular 
parts of a List and for constructing a new List out of other Lists. There are even 
functions for replacing the CAR and CDR fields of a List cell in order to obtain 
reentrant or recursive Lists. The unit of program, or user function, in LISP is also 
a List; in it, the first element denotes the function to be performed and all subse- 
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quent elements of the List are parameters for that function. Some simple examples 

of this are the LISP functions: 

(PLUS XI X2 ... XN) { = Xx/} 
(SUB1 7) { = 7-1=6} 
(DIFFERENCE X 3.2) { = X - 3.2} 

For general computation, we need the ability to test conditions and take alter¬ 
nate actions depending upon the results. For testing purposes, LISP uses predicate 
functions. These examine an argument and return the value T (for true) or NIL 
(for false). Some basic predicates are ATOM and NULL; they test for atomic 
Lists and empty Lists, respectively. Another is EQ, which tests for equality between 
two atoms. Predicates and actions are combined in LISP via the function 

(COND (Pl e,) (p2 e2) ...) 

where the /?, are predicates and the et are actions. COND examines each List (p, e,) 
from left to right. As soon as it finds a p, that is not NIL, it returns the value of 
the corresponding et. If no such p, is found, it returns the value NIL. 

(DEFINE (COUNT L) 
(COND ((NULL L) 0) 

((ATOM L) 1) 
(T (PLUS (COUNT (CAR L)) 

(COUNT (CDR L)))))) 

Figure 4.42 A LISP Function for Counting Cells 

In addition to using built-in functions like those we have described, a user can 
define his own functions via the LISP function DEFINE. An example of this is the 
function COUNT, for counting the number of non-NIL items in a List, as shown in 
Figure 4.42. It is instructive to compare the LISP version of this function with the 
Pascal version, COUNT_LIST (Algorithm 4.6). Except for the fact that the Pascal 
function deals with Lists that may be reentrant or recursive, the two are very simi¬ 
lar. DEFINE always takes two lists as arguments. Flere, the first of these lists, 
(COUNT L), declares a function COUNT with one parameter L; it serves the role 
that a procedure heading has in more conventional programming languages. The 
second list corresponds to the body of the function definition. Here, it specifies 
how COUNT is to be computed for the three cases: if L is empty, if L is an atom, 
or (otherwise) if L is a List. Since it can be difficult to keep track of parentheses in 
LISP, expressions are commonly printed in an indented format such as this in order 
to assist the eye. 

In the preceding remarks, we have not intended to convey more than a glimpse 
of a novel and very powerful language. The point we wish to make is that the List 
structure provides a very powerful means for expressing an algorithmic process, and 
that LISP does this without requiring any other data structures. Even more remark¬ 
ably, the semantics of LISP can be expressed with a function (called EVAL) that is 
itself written in LISP! This is in marked contrast to the situation with other HLL’s, 
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where it is necessary to employ either a meta-language or natural language in order 
to express the effect of executing a program in the HLL. 

4.5 OVERVIEW 

We have discussed lists and also Lists, both of which are logical structures. Perhaps 
more than with any other data structure in this book, we have wedded the logical 
structure to a particular physical representation, based on the pointer variable. The 
pointer is, in fact, the only tool that is usually available to us for building such 
dynamic data structures. We will elaborate upon this point in a moment, after first 
surveying the significant features of lists and Lists. 

The simple sequential list allows for flexibility of sequencing. When it is imple¬ 
mented with a free storage pool, we can “grow” one dimensional structures of 
arbitrary size. Lists of this sort are well-suited to diverse applications such as main¬ 
taining a directory in proper sequence, performing symbolic polynomial arithmetic, 
etc. If we also allow for more than one pointer from a node to other nodes, then 
we can create data structures of arbitrary shape as well as size. There are two ways 
to obtain this generality. One way is to simply allow a node to contain as many 
pointers as required by the situation, as with inverted lists and multilists. Although 
lists like these work very well for some applications with a database flavor, a more 
powerful technique has been to define List cells with just two pointers, and then 
employ recursion. The significant difference is that the first approach requires the 
user to anticipate any structures that may be needed, whereas the second approach 
allows a program to compute its own data structure requirements. 

Interestingly, on the one hand, List structures are the premier vehicle for deal¬ 
ing with a significant class of problems; on the other hand, they have given rise to 
a whole new category of problems to be solved. These new problems have to do 
with administering the pool of Free storage used by List cells. In fact, the subjects 
of Lists and the management of memory are so closely related that many authors 
treat them together; however, Memory Management is broader than just the 
administration of List cells, and so our treatment of it is deferred to Chapter 11. 

4.5.1 The Hazards of Pointing 

The pointer variable is dangerous because it is a “bare” address. With an address, 
we expect to retrieve or store data whatever data! at that location. If our 
program has an error, then we may easily try to retrieve nonsensical data from an 
incorrect memory location; even worse, we might easily overwrite and destroy good 
data via a wrong address. To make matters more complicated, the use of pointers 
implies that nodes will be deleted at times, and their space returned (for example, 
via dispose) for recycled usage. However, once a program has acquired an address 
value for a pointer variable, there is nothing to prevent it from using that value 
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even though the space has been recycled. Just how easily this can happen is illus¬ 

trated by the sequence 

new(p); q := p; dispose(p); 

Even if the procedure dispose sets p to nil, there is nothing to prevent the program 

from subsequently using the invalid value contained in q. A situation like this, in 

which a pointer variable has a value that is no longer valid, is termed a dangling 

reference. The hazards of using pointer variables as data are analogous to the 

hazards of using GOTO’s in program sequencing [Berry et al. 1976]. 

Pointer variables are really a means to an end — a tool for synthesizing data 

structures of arbitrary size and connectivity. Thus, it has been suggested [Kieburtz 

1976] that programming languages should provide either ADT’s or recursive data 

structures for attaining these ends without recourse to explicit pointers. Unfortu¬ 

nately, such proposals can be criticized as having two principal defects: 

1. They do not remove all the negative effects, particularly with respect to 

performance degradation, since some of these effects just get hidden under the 

covers; for example, implicit pointers can confound pipelining and caching 

mechanisms just as much as do explicit pointers. 
2. They simply do not allow for the generality and the control over data that a 

user may need for some applications. 

The remedy provided by Pascal - that all pointer variables must themselves be 

typed — imposes a significant amount of discipline. But the programmer needs to 

augment this with his own measure of disciplined use, of which pointer rotations are 

an excellent example. 

4.6 REFERENCE TO TERMINOLOGY 
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4.7 EXERCISES 

Section 4.1 

4.1 Suppose that we have a multiply-linked structure according to the Pascal 
syntax on the left, and that there are several such items as shown linked together 
(symbolically) on the right. What is e.ptry].ptrw].ptrz].ptrx].data! 

link = fitem a: 13 c e d A 
item = record b: 4 c f 9 b 

data: integer; c: 24 c 9 e f 
ptrw: link; d: 72 b h A e 
ptrx: link; e: 11 a d 9 h 
ptry: link; f: 35 d A a b 
ptrz: link; 9■ 19 b d c h 

end; h: 40 A 9 c d 

4.2 For the lists in Figure 4.5(a), write the statements required to insert node h 
after the node pointed by s. 

4.3 Suppose that we wish to concatenate two sequential lists A and B to obtain a 
list C that consists of all of the nodes from A followed by all the nodes from B. 

(a) Write an algorithm to perform this in the case that A and B are simple lists. 

(b) Write an algorithm to perform this in the case that A and B are circular lists. 

4.4 Suppose that we must return all the nodes on a sequential list to Free storage. 

(a) Write an algorithm to perform the deallocation for the case of a simple list. 

(b) Write an algorithm to perform the deallocation for the case of a circular list. 

f4.5 Write a procedure that has as its parameter a pointer to the beginning of a 
simple, sequential list without a header node, and that reverses the order of the 
nodes in the list. Your algorithm should operate on the list in situ by reversing the 
directions of the pointers, as opposed to making a reversed copy. Verify that your 
algorithm works properly for degenerate cases, such as the list being empty or 

containing just a single node. 

f4.6 Suppose that we have two non-empty circular lists without header nodes, and 
with pi pointing to the last node in one list and p2 pointing to the last node in the 

other list. 

(a) What is the effect of the following sequence? 

t:= pit-link; pi link := p2|. link; p2f.link := t; 

(b) What effect does the preceding sequence have if pi and p2 point to two differ¬ 

ent nodes in the same list? 

4.7 You and some friends are suddenly rounded up into a circle. You are told 
that, starting from the head of the circle, jcp will count to m, execute that mth 
person, close the circle, and repeat this process until just one person is left to 
escape., Given that there are n persons and that the rule is to execute every mth 
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person, you need to decide which position to take in the circle if you are to remain 
alive. This is the famous Josephus problem. Write a Pascal program to solve it, 
using a circular list with pointer variables. Begin by initializing your list header 
with the number of persons n, and your list nodes with the identifiers 1,2,3,.... 
Then proceed to count around the circle. As your program executes (literally!), 
have it print out the identity of each person as he is eliminated. Write a simple 
function to generate a circular list of size n, and use it in conjunction with your 
program to solve the Josephus problem for {m,n) = (7,11), and for several other 

pairs of your own choosing. Verify that it works properly for m = 1. 

f4.8 Consider a linked list such that the physical sequence of its nodes in memory 

is given by the locations 
52 34 117 43 95 123 88 

Using the MOD operator as in Section 4.1.4, and assuming a value of r= 128, 
compute the composite forward-backward link values for each node and for the 

header of this list. 

Section 4.2 

4.9 Trace the operation of the algorithm SEARCH_LIST by starting with an 
empty list, and then presenting to it the eight input arguments: 4 4 2 5 3 1 1 3. 

(a) For each argument, trace the distinct values assumed by the variables state, 

loc, q, r. 

(b) Draw the list as it appears when SEARCH_LIST terminates. 

|4.10 Just as the introduction of a sentinel node in SEARCH_B (Algorithm 2.2) 
caused that algorithm to be more efficient than SEARCE1_A (Algorithm 2.1), so 
can a sentinel node be employed in SEARCH-LIST. Rewrite SEARCH_LIST to 
incorporate this change, and test it against the input of Exercise 4.9. 

f4.ll Starting with the functionality in SEARCH_LIST, write a program that will 
compute a concordance, or cross-reference listing, for a set of alphabetic symbols. 
The input to your program would be a symbol and its numeric location within some 
text. The output of your program would be a listing of all the symbols, in alpha¬ 
betic order, along with all the locations at which each symbol was used. 

4.12 Draw pictures of the following polynomial as (a) a simple list, (b) a circular 
list, and (c) a bi-directional list — all with header nodes. 

V = 4jc10 — 7.lx9 + 3.9jc5 + 13 

4.13 Compute POLYADD(«,v) where 

U = 2.4.x10 + 3Ax5 + 3.6x3 - 1.7.x 

V = 3.7x20 - 2.4.x10 + 1.8.x5 + 4.5x2 + Ux + 8.3 

Trace the values assumed by the variables state and p,pl,p2,q as the algorithm 
executes. Also, draw the structure corresponding to U upon termination of the 
algorithm. 
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4.14 Write a function that takes as input a value of x and a polynomial U(x) 
represented as in Figure 4.13, and that for output evaluates U(x) at x. 

1*4.15 Write a procedure that differentiates a polynomial U(x) represented as in 
Figure 4.13, and replaces (/(x) with U'(x). 

1*4.16 Write a procedure to multiply two polynomials U and V as represented in 
Figure 4.13. Your algorithm may invoke POLY ADD as a sub-procedure. The 
product of U and V should be placed in W, a new list. What is the computational 
complexity of your algorithm? 

f4.17 Simulate the application of the algorithm EQUIV to the following sixteen 
relationships: 

1. 5 = 8 
2. 7 = 10 
3. 16 = 18 
4. 12 = 6 

5. 2 = 13 
6. 3 = 17 
7. 14 = 11 
8. 12 = 4 

9. 19 = 15 
10. 2=9 
11. 14 = 5 
12. 7 = 19 

13. 17 = 1 
14. 9 = 16 
15. 4 = 14 
16. 16 = 7 

(a) Show the resulting lists after the first stage, as in Figure 4.18. 

(b) List the contents of each equivalence class, in the order in which they are 
determined in the second stage. 

f4.18 Section 4.2.3 describes a different approach to the equivalence problem that 
leads to an 0(n lg n) algorithm. In this method, separate lists are maintained for 
equivalence classes. Upon encountering a statement of equivalence for two items 
such that both have already been assigned to classes, we first relabel all the items on 
the shorter list, and then concatenate the two lists. Write a program to compute 
equivalence classes by this method, and test it against the data of Exercise 4.17. 

tf4.19 Consider the problem of finding the largest item in a list and also the 
runner-up (the second largest). It is simple to perform n - 1 comparisons to find 
the largest, and then another n — 2 comparisons to find the second largest, for 
2n - 3 comparisons altogether. However, it is possible to find both items with 
n + ig n _ 2 comparisons, by the following observation. The runner-up item must 
have been involved in a comparison (and lost) with the largest item. If we think in 
terms of a tournament, where the number of players, or items to be compared, is 

halved at each stage, then 

(a) the largest item need have been involved in only lg n comparisons; 

(b) the runner-up must have been the loser in one of these comparisons; 

(c) we need only search the list of losers to the largest item in order to find the 

runner-up. 

Write an algorithm to accomplish what has just been described. Note that we need 
the flexible sequencing of lists, but not the dynamic size. Therefore, it is sufficient 
and also much simpler to use cursors rather than pointer variables. You will need 
lists for keeping track of two categories of items: the locations of the winners at 
each stage of the comparison tournament (they will participate in the next stage of 
the tournament), and the locations of the losers to each winner (the loser list for the 
final winner is the source for the runner-up). Test your program against the follow¬ 

ing list of items: 

267 399 67 871 59 767 755 599 619 879 163 71 
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Section 4.3 

4.20 Construct an inverted file for the following records. 

name sex politics religion 

Abigail female Democrat Jewish 

Andrea female Democrat Moslem 

Elizabeth female Republican Christian 

Foster male independent Jewish 

Harry male independent other 

Jennifer female Democrat Moslem 

Kendrick male Republican Jewish 

Malachy male Democrat Christian 

Mary female Republican Christian 

Pamela female independent other 

4.21 Construct a multilist for the records of Exercise 4.20, using the format 

employed in the ultimate version in Section 4.3.2. 

4.22 Compare bi-directional lists, inverted lists, and multilists. 

f4.23 Compare inverted files and multilists for ease of performing the standard 

operations: looking up, inserting, deleting, and updating a value. Find some 

parameters for characterizing the problem, and then perform your analysis in terms 

of these parameters. 

f4.24 Write the utility routines required to perform sparse matrix multiplication 

with Algorithms 4.4 and/or 4.5. Input one or both of those algorithms along with 

your routines, and test the package by multiplying some sparse matrices. You 

should construct test matrices having about a dozen non-zero elements apiece, and 

with row and column indices such that the product matrix has a comparable 

number of non-zero elements. Your program should read two sparse matrices in 

triples format, translate them to linked list format, multiply them, squeeze out non¬ 

zero rows and columns, and then print the product matrix in triples format. 

tf4.25 Build on Exercise 4.24 by writing a procedure that constructs a random 

sparse matrix with the parameters: 

m - range of the row index of the matrix 

n - range of the column index of the matrix 

p — the density of the matrix 

via the use of a random number generator. Then generate a series of pairs of input 

sparse matrices for various combinations of m,n,p and multiply them by both Algo¬ 

rithms 4.4 and 4.5. Obtain timings for the two multiplication methods, and distill 

your experimental results in a table. Also, have your program measure the 

observed density p for each product matrix. How do these observed densities 

compare with the theoretical values of Exercise 2.23? 
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Section 4.4 

4.26 Draw the List represented by (((A),((B),C,(D)),E),(F,(G)),(H,I)) in the style 
of Figure 4.32(a). 

+4.27 Write a non-recursive procedure to perform the transformation as in Exer¬ 
cise 4.26 — that is, to read a List specification in parenthesis notation and produce 
the corresponding List structure - but in the representation of Figure 4.33(b). Test 
your program by running it against the List of Exercise 4.26. 

+4.28 Write a procedure that takes a pure List, represented as in Figure 4.33(b), 
and reverses the order of the cells at each level; for example, it converts 
((A,B),C,((D))) to (((D)),C,(B,A)). Your algorithm should operate on the List in 
situ, as opposed to making a reversed copy. 

+4.29 Trace the operation of the algorithm MARK_LIST on the following List, 
in the manner employed in Figure 4.39. 

abed 

i A 

i 

A 

/ c 

/ 

g A 

h d 

h 

g c 

++4.30 Write a recursive function that examines a List and provides one or more 
messages indicating whether that List is pure, reentrant, or recursive. The messages 
should specify where reentrancy and/or recursiveness occurs. (Hint: What other 
information might be needed, and how might it best be represented?) Test your 
program against the Lists of Figures 4.32(b), 4.34(a) (in the alternate format for 

nodes), and 4.35. 

+4.31 Represent the following polynomial in a List structure, employing the 

scheme illustrated by Figures 4.40 and 4.41. 

R(x,y,z) = Ax4y2 + B x4yz + Cx2yz3 + Dx2/ + Ey2z + Fy3z + Gy3 
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QUEUES and STACKS 

“And, behold, there are last which will be first, 
and there are first which will be last.” 

Luke 13: 30 

In our discussions of array, record, and list structures, we have seen the need for a 
more general data structure in order to overcome various limitations. Lists actually 
have such generality, but they are more complicated to use and also more costly, 
both in time and space. Queues and stacks represent compromise solutions. They 
allow for more flexibility than is possible with arrays; yet their implementations can 
be relatively simple, and they can have performance characteristics as good as those 
of arrays. This happy situation is obtained by restricting the notion of a linked list 
so that we can reference only those data nodes at one or both of its two ends, but 
not in the middle. Thus, queues and stacks are sometimes called restricted access 

data structures. 

In a sense, we cheated in Chapter 4. Several of the list manipulations there 
already corresponded to queue and stack manipulations, but we did not disclose the 
fact! By way of compensation, you should find the early material in this chapter 
that much easier to understand. We begin with a discussion of queues and then a 
discussion of stacks - presenting their logical properties, physical representations, 
and examples of usage. The latter part of the chapter is devoted principally to the 
use of stacks for recursive algorithms, in a sense continuing the discussion of this 
topic in Section 1.3. 

5.1 QUEUES 

The queue is a familiar if not popular structure in everyday life. We spend much of 
our lives waiting in queues, comforted by the fact that they are “fair” — we are 
served in the order of our arrival. Every new arrival must go to the end of the 
queue and wait there until all who have arrived before him have been served, at 
which time he is at the front of the queue and so is the next to be served. This 
concept is captured in the acronym FIFO, or “First In, First Out.” We will first 
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model the use of a queue in an abstract manner, in the style of an ADT; subse¬ 
quently, we will demonstrate two alternate manners of realizing the model; finally, 
we will discuss some uses of queues for computation. 

5.1.1 Logical Data Structure 

Logically speaking, a queue is a structure with several associated actions, predicates, 
and conditions. By an action we mean an operation involving the queue and the 
objects (people, cars, programs, etc.) that enter and leave it; our primary examples 
of actions for a queue are: 

create(x) — to bring into existence an empty queue x; 

enqueue(x,r) — to add the object r to the rear of queue x; 

dequeue(x,s) — to remove the object at the front of queue x and assign it to 5. 

However, one can arbitrarily define other actions for a queue, such as: 

count(x,c) — to assign to c the number of objects in the queue x; 

head(x,t) - to assign to t the value of the object at the front of queue x, 
without removing the object from the queue; 

tail(x,t) — to assign to t the value of the object at the rear of queue x, 
without removing the object from the queue. 

By a predicate we mean a functional test that can be applied to a queue to yield 
an answer of either True or False. Our principal example is: 

empty{x) — to ascertain if queue x is empty or not. 

Whereas a predicate is a boolean function that is executed under user control, a 
condition is a boolean flag that is set by the underlying implementation (hardware 
and/or software) in response to an exceptional situation. Our primary examples of 

conditions are: 

overflow(x) - to recognize when an attempt to enqueue an object on queue x 
has failed because of insufficient space for the enlarged queue; 

underflow(x) - to recognize when an attempt to dequeue an object from queue 
x has failed because the queue is empty. 

There are several points that should be made about the preceding definitions. 
The number of operations required of queues is fairly small. It is particularly easy, 
in this case, to characterize the logical structure of queues in an abstract fashion 
that says nothing about how they will be implemented. Although the preceding 
definitions lack some important elements that are needed for ADT’s, they do 
convey much of the flavor. Note also the conventional use of the terms head and 
tail to refer to the front and rear of a queue, respectively. Finally, be careful not to 
confuse the semantics of these terms for queues with their semantics for Lists. The 
term head has analogous meanings for the two structures, whereas the meanings of 

the term tail in these cases are very different. 

Figure 5.1 illustrates the use of this structure. On the left side of the figure are 
a series of queue operations applied to an initially empty queue x, for simplicity, 
the objects in the queue are designated by single character identifiers. On the right 
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Operation Contents of Queue 

enqueue (x,A) A 

enqueue (x,B) A B 

dequeue (x,s) B 

enqueue (x,C) B C 

enqueue (x,D) BCD 

enqueue (x,£) B C D E 

dequeue (x,s) C D E 

dequeue (x,s) D E 

enqueue (x,F) D E F 

dequeue (x,s) E F 

dequeue (x,s) F 

Figure 5.1 Example of Operations with a Queue 

side of the figure are the states of the queue after each operation, with the head at 

the left and the tail at the right. 

5.1.2 Physical Representation 

It is fairly obvious that we can implement a queue as a linked list, with the enqueue 
and dequeue operations being applied to opposite ends, and so this method is 
shown first. It provides a pretty illustration of the use of a circular linked list. 
After that we describe a second method that is less obvious; in compensation, it 
yields the advantages of simplicity and efficiency that were touted at the beginning 

of this chapter. 

5.1.2.1 Using a Linked List. Our representation using a circular linked list demon¬ 
strates the necessary type definitions and also the procedures for initializing a queue 
(that is, setting it to the empty state), for enqueuing, for dequeuing, and for testing 
for emptiness. These elements are lumped as QUEUE_L (Algorithms 5.1). In this 
representation, the circular list has a header node, which allows us to easily recog¬ 
nize an empty queue as one in which the solitary header node points to itself. Also, 
we do not need separate working pointers for the current first and last nodes; 
following the technique of Section 4.1.2.2, a single pointer to the last node suffices. 
Several comments should be made about QUEUE_L: 

• The representation is not complete; it does not, for instance, spell out in detail 
the treatment of an underflow in DEQUEUE_L. 

• In practice, DEQUEUE_L might be implemented as a function that returns the 
dequeued value rather than as a procedure. However, this will work only if the 
objects on the queue are single-valued (such as scalars or pointers). 

• Note that each call to ENQUEUE_L causes three pointer values to be changed, 
as indicated by the dashed lines in Figure 5.2(a). 
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program QUEUE_L; 

{algorithms for maintaining queues as circular link-lists; 
items on the queue are of type qobj, the 
parameter fifo points to the last item in the queue} 

type qobj = ... 
qptr = fcell; 
cell = record 

item: qobj; 
succ: qptr; 

end; 

procedure INITQ_L (var fifo: qptr); 
begin 

new (fifo); 
fifot-succ := fifo; 

end; 

function EMPTYQ_L (fifo: qptr): boolean; 
begin 

EMPTYQ_L := (fifo = fifoj.succ); 
end; 

procedure ENQUEUE_L (var fifo: qptr; data: qobj); 
var p: qptr; 
begin 

new (p); 
pf.item := data; 
pf.succ := fifof.succ; 
fifo|.succ := p; 
fifo := p; 

end; 

procedure DEQUEUE_L (var fifo: qptr; var data: qobj); 
var p,q: qptr; 
begin 

if fifo = fifot-succ then 
{Underflow} 

else begin 
p := fifot-succ; 
q := pf.succ; 
data := q|.item; 
pf.succ := qf.succ; 
if q = fifo then {header is only cell left in queue} 

fifo := p; 
dispose (q); 

end; 
end; 

begin 

end. 

Algorithms 5.1 QUEUE_L - Implementing a Queue as a Linked-List 
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fifo 

(a) Enqueuing X 

fifo 

(b) Dequeuing Y 

fifo 

(c) Dequeuing Z 

Figure 5.2 A Queue as a Linked List 

• In the procedure DEQUEUE_L, it is necessary to make a distinction between 
the cases when the queue thereby becomes empty, and when it does not. In the 
former case, as shown in Figure 5.2(b), two pointer values must be changed; in 
the latter case, as shown by Figure 5.2(c), only one pointer value needs to be 

changed. 

5.1.2.2 Using an Array as a Circular Queue. If we naively visualize a queue in a 
one-dimensional array, we see what has been described as a rubber snake, with its 
head and its tail both steadily progressing, though at different rates, from one end 
of the array to the other. Obviously, the definite, limited size of an array makes 
this representation infeasible. However, let us declare an array large enough to 
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accommodate the maximum size of the queue at any one instant, and then imagine 

that this array is bent to form a circle. Letting the “rubber snake” chase its tail 

around the circle indefinitely, we have a viable representation termed a circular 

queue. This is illustrated in Figure 5.3, where the shaded/unshaded portions of the 

array indicate the occupied/empty portions of the queue at an instant in time. It is 

clear that we really need two distinct pointers, head and tail, in this scheme. In 

other words, our definition of a queue in this manner includes not just the array 
itself, but rather 

type qobj = ... 
queue = record 

head,tail: 0 .. qsize; 
item: array [1 .. qsize] of qobj; 

end; 

The queue be may empty, of course, and there are several techniques for represent¬ 
ing this in practice: 

• adding another field to the definition, such as state: (empty, occupied)', 

• adding to the definition a count field that contains the number of elements in 

the queue; 

• denoting emptiness by the condition, head = 0; 

• denoting emptiness by the condition, head = tail. 

Figure 5.3 A Queue as an Array 

Our form of circular queue representation is given in QUEUE_A (Algorithms 

5.2); it employs the second of the above alternatives, a count field. With this alter¬ 

native, it is convenient to have the variable tail refer to the next position in the 

queue for enqueuing, as indicated in Figure 5.3. As with the algorithms of 

QUEUE_L, the representation is not quite complete, and DEQUEUE-A might in 

practice be a function rather than a procedure. To illustrate the use of QUEUE_A, 

Figure 5.4 tabulates a sequence of (E)nqueue and (D)equeue operations for a circu¬ 

lar queue of size 4, along with the corresponding sequences of values for the queue 

variables head and tail. 
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program QUEUE_A; 

{algorithms for maintaining queues as circular arrays; items 
in the queue are of type qobj) head points to the next 
position for dequeuing, and tail points to the next 
position for enqueuing; an empty queue has count = 0} 

const qsize = {the size of the circular queue} 

type qobj = ... 
queue = record 

count,head/tail: 0 .. qsize; 
items: array [1 .. qsize] of qobj; 

end; 

procedure INITQ_A (var fifo: queue); 
begin 

with fifo do begin 
count := 0; 
head := 1; 
tail := 1; 

end; 
end; 

function EMPTYQ_A (fifo: queue): boolean; 
begin 

EMPTYQ_A := (fifo.count = 0); 
end; 

procedure ENQUEUE_A (var fifo: queue; data: qobj); 
begin 

with fifo do 
if (count = qsize) then 

{Overflow} 
else begin 

items [tail] := data; 
tail := tail mod qsize + 1; 
count:= count + 1; 

end; 
end; 

procedure DEQUEUE_A (var fifo: queue; var data: qobj); 
begin 

with fifo do 
if count = 0 then 

{Underflow} 
else begin 

data := items [head]; 
head := head mod qsize + 1; 
count := count - 1; 

end; 
end; 

begin 

end. 

Algorithms 5.2 QUEUE_A - Implementing a Queue as an Array 
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E E D E E D E D E E D E D D 

head 1 1 1 2 2 2 3 3 4 4 4 1 1 2 3 
tail 1 2 3 3 4 1 1 2 2 3 4 4 1 1 1 

Figure 5.4 Trace of Activity with a Circular Queue 

5.1.3 The Use and Behavior of Queues 

If we consider that the output of a queue is identical with the input to the queue, 
then we might reasonably conclude that queues are uninteresting data structures. 
Nonetheless, they are important as basic tools in larger problems. We will see 
examples of this in later chapters (Section 6.8.1, for example) and so we will not 
pursue that subject here. Instead we comment upon a class of applications where 
the queue is not just a utilitarian structure, but rather an essential aspect of the 
system being studied. These are applications involving simulation, where we exam¬ 
ine the behavior of a model of some particular situation instead of examining the 
actual situation. It is often advantageous to study the former instead of the latter, 

as in the examples: 

• designing an airplane; 
• assessing the likely results if various traffic control parameters - one-way 

streets, traffic light cycles, etc. - are modified; 
• assessing the effects of algorithms that might be used in a computer operating 

system to schedule various tasks; 
• predicting the outcome of applying various tactics of business or war. 

We may be able to make hundreds of simulated experiments far more cheaply, 

quickly, and safely than we could perform one real experiment. Typically, we need 
to make some simplifying assumptions to reduce the real process to a simulated 
one. So the caveats that we encountered in Chapter 1 about modeling apply here 

also: If the simulated process is not faithful to the true situation, then the answers 

from the simulation can be quite misleading. 

In the usual paradigm of simulation, a series of events takes place in some time 

sequence. Each event is represented as a node, with time as the key value, and the 
event-nodes are kept in a queue. It is possible to drive the simulation with a clock 

that is regularly compared against the item at the head of the queue. However, it is 
often more efficient to drive the simulation with a loop that removes the fiist item 
from the queue, inspects the time at which it is to be performed, and then updates 
the clock to that value and proceeds. In all, a program for simulation would 

contain at least: 

• queue data structures; 
• procedures to generate and enqueue new event-nodes with the appropriate 

values of the time; 
• procedures to dequeue event-nodes and perform the appropriate actions, 

• procedures to capture various statistical data about the process, 
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• a main program to drive all the above components. 

For many simulations, the effort of writing a program as just described is moderate, 

but not unreasonable. For a very large simulation, one might prefer to use one of a 

variety of general purpose simulation packages such as GPSS, SIMSCRIPT, 

SIMULA, etc. 

f5.1.3.1 Queue Parameters 

In analyzing the behavior of a queue, it is conventional to speak of the items of 

input — people, vehicles, messages, etc. — as customers. These customers are seek¬ 

ing some service which they may be able to obtain immediately or for which they 

may have to wait in a queue. There may be one or several servers, all taking their 

next customer from the common queue. In addition to n, the number of servers, 

two other important parameters that characterize such a system are: 

arrival times - the distribution of times between successive customer arrivals; 

service times — the distribution of times required to provide the services that 

customers are seeking. 

It is conventional to use Kendall notation to succinctly characterize a given queuing 

system [Kendall 1953]. In its briefer and more common form, it is written as 

A/S/n, where A and S have symbolic values that specify the arrival and service time 

distributions, respectively, and n is the number of servers. Two common symbolic 

values for both A and S' are M, for an exponential distribution, and D, for a deter¬ 

ministic (constant) distribution. As an example, the queuing model M/D/3 would 

describe a system with three servers, whose customers have exponential inter-arrival 

time, and with a constant amount of time required for service. 

Given values for the parameters A,S,n we then wish to determine various prop¬ 

erties such as: 

• average and maximum queue lengths; 

• average and maximum waiting times in the queue; 

• traffic intensity, which determines the minimum number of servers that are 

required in order to keep up with the arriving customers; 

• server utilization, or the probability that any given server is busy. 

For some combinations of values for A,S,n — for example, M/M/1 — Queuing 

Theory is able to derive exact analytical solutions for many of these properties. 

These matters are described comprehensively by Kleinrock [1975], and succinctly 

by Allen [1975]. For other combinations of values for A,S,n it may be necessary or 

convenient to simulate the system with a program containing the components 

outlined in the previous section [§]. To relate these matters to our earlier discussion 

of queues, the movement of a tail pointer is determined by the parameter A, and the 

movement of a head pointer is determined by the parameter S. 
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5.1.4 Generalizations of Queues 

By relaxing the logical characterization in Section 5.1.1, we can obtain other sorts 
of data structures that are related to queues. One of these is the deque, or double- 
ended queue. In this structure, insertions can be made at either end (enqueue-left or 
enqueue-right) and likewise deletions (dequeue-left or dequeue-right). A deque 
resembles a deck of cards in the hands of a sharp dealer; indeed, it even has the 
same pronunciation. It also resembles a necklace with beads that can be added 
and/or removed at either end, or the railway network of Figure 5.5. Two variants 
of the deque are the input-restricted deque, wherein the input (but not the output) is 
restricted to one end, and the output-restricted deque, wherein the output (but not 
the input) is restricted to one end. 

Figure 5.5 A Railroad Model of a Deque 

Note that if a deque is implemented as a linked list, then the functional require¬ 
ments dictate that it should be a bi-directional list. We observed earlier that the 
output of a queue is not a permutation of the input; however, this is not true for a 
deque (see Exercise 5.2). Situations that call for deques are somewhat infrequent. 

An example of their use is given in Section 8.6.2. 

An important generalization of queues is the priority queue, in which each 
object that is enqueued has a priority. It is the ranking of the priorities that prima¬ 
rily determines the order of dequeuing, except that in the case of equal priorities, 
the order of enqueuing may be used to resolve ties. We have already seen a need 
for such a structure in our discussion of simulation in Section 5.1.3. Namely, when 
an event-node (corresponding to an event that is to occur at a definite time) is 
generated, then we need a priority queue discipline rather than a FIFO discipline in 
order to ensure sequencing of events in the proper chronology. It is straightfor¬ 
ward, though not efficient, to base a priority queue upon an ordinary queue by 

either of the following two methods: 

1. Items are inserted in the queue in order of their priority, analogous to 
SEARCH_LIST (Algorithm 4.1), and then dequeued in normal fashion. The 

times required for this are 0{n) for insertion and 0(1) for deletion. 
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2. Items are enqueued in normal fashion, and then the queue is searched for the 
item with lowest priority when a dequeuing operation is to be performed. This 
times required for this are 0(1) for insertion and 0(n) for deletion. 

Priority queues can be implemented more efficiently than this, however. If there are 
relatively few levels of priority, a technique to be described in Section 5.3 may 
suffice. More generally, an entirely different sort of data structure is required, and 
this will be discussed in Section 6.6.4. 

5.2 STACKS 

A stack is a linear list that can be accessed for either input or output at just one of 
its two ends. One example of this model of access can be found in a stack of plates 
on a kitchen shelf or in a spring-loaded dispenser in a cafeteria. In both cases, the 
only two logical possibilities are to add a plate to the top of the stack or to remove 
a plate from the top of the stack. A stack is also exemplified by a railroad spur, as 
illustrated in Figure 5.6(a). In this model, we can insert a boxcar from the input to 
the open end of the spur, and we can remove a boxcar from the open end of the 
spur to the output, mixing insertions and deletions as we wish. The essence of these 
examples is that the next object to be removed will always be the last one that was 
added, whence the acronym LIFO, or “Last In, First Out.” 

In our example of the plates, the physical behaviors on the shelf and in the 
cafeteria are notably different. With the former, the stack contents do not shift 
with insertions and deletions; with the latter, the entire stack moves with each oper¬ 
ation. By analogy with the cafeteria example, stacks are sometimes referred to as 
push-down stores. However, as we will see when we discuss the implementation of 
stacks, that term can be misleading; in a computer, we do not want to imitate the 
cafeteria case and relocate the entire stack with each operation upon it. 

5.2.1 Logical Data Structure 

The basic actions with a stack are as follows: 

create(x) - to bring into existence an empty stack x; 

push(x,r) - to add the object r to the top of stack x; 

pop{x,s) — to remove the object at the top of stack x and assign it to s. 

Another action that is sometimes defined for a stack is: 

top(x,t) — to assign to t the value of the object at the top of stack x, without 
removing the object from the stack. 

The important predicate for a stack is, as with a queue: 

empty(x) — to ascertain if the stack x is empty or not; 

and the important conditions are: 
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output input 

(c) Push B 

(b) Push A 

(d) Pop B 

(e) Push C (f) Pop C 

Figure 5.6 A Railroad Model of a Stack 

overflow(x) - to recognize when an attempt to push an object on stack x has 
failed because of insufficient space for the enlarged stack; 

underflow(x) - to recognize when an attempt to pop an object from stack x 
has failed because the stack is empty. 

Note the conventional use of the term top to refer to the position in a stack where 

the last item was inserted. 

Once again, these logical characterizations do not include any suppositions 
about how the structure and its operations are to be implemented. As in the previ¬ 
ous case of the queue structure, this informal description of the stack structure has 
much of the flavor of the specification of an ADT. (A more formal specification of 
the stack as an ADT can be found in Section 9.2.1.) Figure 5.6 illustrates the stack 
notions in terms of a railroad spur model. Initially, (a) the input contains boxcars 
labeled A B C D Subsequent configurations for an arbitrary sequence of pushes 
and pops’are then shown in (b)-(f). Since P(ush) and P(op) are indistinguishable, 
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we will adopt the convention of using S(tack) and U(nstack) to describe a sequence 

of operations with a stack. 

5.2.2 Physical Representation 

Stacks are easier to implement than queues. By anchoring the closed end of the 
stack at some fixed location in memory, we need only keep track of the position of 
the top. Thus, it is easy to implement a stack with an array, as shown in Figure 
5.7. (In figures such as this, stacks are sometimes grown like stalactites, sometimes 
like stalagmites, and sometimes horizontally; the choice is arbitrary, based on 
convenience.) Our only concern is that the array be large enough to accommodate 
the maximum potential size of the stack; we do not have to worry about the stack 
“crawling” through memory. The typical declaration of a stack and some basic 
operations upon it are illustrated in STACK_A (Algorithms 5.3). Similar observa¬ 
tions apply here as cited in our discussion of queue representations in Section 5.1.2. 
One is that we have not spelled out the manner in which underflow and overflow 
would need to be handled. Another is that, for convenience, POP may often be a 
function that returns the popped object, as long as that object is a scalar. 

1 2 3 top *” n 

Figure 5.7 A Stack as an Array 

Would we ever wish to represent a stack with a linked-list? The answer may 
occasionally be yes, as we will see in Section 5.3. However, this choice is less 
common and is also trivially easy to implement, so we will not elaborate upon it 
here. In point of fact, we have already illustrated such a representation of stacks. 
In the program EQUIV (Algorithm 4.3), there is one stack for each set member, 
and the procedure ADDCELL is used to push v onto the wth stack. 

5.2.3 Applications of Stacks 

A basic point about a stack, as opposed to a queue, is that it can be used to trans¬ 
form an input sequence into a different output sequence. If we do nothing more 
than a series of S(tack) and U(nstack) operations upon the input sequence ABC, the 
possibilities that can occur are those shown in Figure 5.8. Note that of the six 
permutations on these three symbols, we are unable to attain CAB by any series of 
basic stack operations. The permutations of 1 .. n that can be obtained via a single 
stack are called stack permutations', the characterization of those permutations that 
cannot be obtained using a stack is left as an interesting exercise (see Exercise 5.7). 
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program STACK_A; 

{algorithms for maintaining stacks as arrays; items on the 
stack are of type stkobj-, top points to the position of the 
accessible item on the stack; an empty stack has top = 0} 

const stkmax = {the maximum size of the stack } 

type stkobj = ... 
stack = record 

top: 0 .. stkmax; 
items: array [1 .. stkmax] of stkobj; 

end; 

procedure INIT_STK (var lifo: stack); 
begin 

lifo.top := 0; 
end; 

function EMPTY_STK (var lifo: stack): boolean; 
begin 

EMPTY_STK := (lifo.top = 0); 
end; 

procedure PUSH (var lifo: stack; data : stkobj); 
begin 

with lifo do 
if top = stkmax then 

{Overflow} 
else begin 

top := top + 1; 
items [top] := data; 

end; 
end; 

procedure POP (var lifo: stack; var data : stkobj); 

begin 
with lifo do 

if top = 0 then 
{Underflow} 

else begin 
data := items [top]; 
top := top - 1; 

end; 
end; 

begin 

end. 

Algorithms 5.3 STACK_A - Implementing a Stack as an Array 
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Operation Sequence Output Sequence 

S U S U S U 
S U S S U U 
S S U U S U 
S S U S U U 
S S S U U U 

ABC 
A C B 

B A C 
B C A 
C B A 

Figure 5.8 Example of Operations with a Stack 

Stacks have many and varied uses. We will discuss two of these uses in general 
terms — for accomplishing procedure call and return, and for the evaluation of 
arithmetic expressions. Then we will illustrate in more concrete terms their use for 
the transformation of arithmetic expressions. Stacks are also important because of 
their role in dealing with recursive algorithms and backtracking algorithms. The 
first of these roles is dealt with in Section 5.3, and the topic of backtracking is 

explored in Section 6.8.2. 

5.2.3.1 Procedure Call and Return. Suppose that we have the situation exhibited 
in Figure 5.9, with three procedures P, Q, and R residing in memory, such that: 

P calls R from location s 
P calls Q from location t 
Q calls R from locations u and v 

Control would be passed from one procedure to another in the sequence of the 
numbering on the branches in the figure. Whenever there is such a transfer of 
control, there must be some mechanism to remember where the call was issued 
from, so that control can be returned to the proper point in the calling procedure 
when the called procedure has terminated. This corresponds to a LIFO discipline. 
For example, when P calls Q, Q calls R, and R returns, the return must be to Q, to 
resume what Q had been doing. In a HLL, the compiler provides this mechanism 
without any explicit awareness on the user’s part by (i) pushing information onto a 
stack at call-time, and (ii) popping this information off the stack upon return. 

The amount of information that needs to be kept on the stack can be as little as 
a return address, but it might also involve the contents of machine registers, the 
values of local variables, etc. In fact, since the values of local variables are required 
only during the invocation of a procedure A, and since it is possible that A is recur¬ 
sive, then it makes much more sense to allocate space for these local variables 
directly on the stack when A is called. With the alternative course of allocating 
space within the procedure A itself, every recursive call would necessitate copying 
out these values to the stack to allow for fresh values in the new invocation.1 Since 

1 In fact, the reduction in the amount of memory that is pre-allocated for local data may 
be more significant than the time that is saved in copying. We discuss such matters in 
Chapter 11. 
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p 

Figure 5.9 Procedure Segments with Procedure Calls 

procedures will in general require different amounts of space on the stack for their 
local data, we encounter the additional twist that the amount by which to pop the 
stack - that is, reset the top-of-stack pointer - on a procedure return is known 
only by the called procedure. Thus, one of the values that needs to be stacked is 
the previous value of the stack pointer itself. Note that if we are talking about 
non-recursive procedures, then we may need to save and restore just a return 
address and the values of some machine registers. But if we are talking about 
recursive procedures, then we may need to preserve much more. Since the depth of 
recursion is unpredictable, the stack is a structure perfectly suited to the problem of 

allocating this storage in a dynamic fashion. 

As the program in Figure 5.9 executes, the stack would contain a block of 
information for each active or suspended procedure, and each block would contain 
a return address, the value of the previous top-of-stack pointer, and values of local 

variables, as shown in Figure 5.10: 

(a) P calls R (e) R returns 

(b) R returns (0 Q calls R 

(c) P calls Q (g) R returns 

(d) Q calls R (h) Q returns 
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Figure 5.10 Trace of the Call Stack for Figure 5.9 

The figure reflects the assumption that P was itself called from a main program. 

5.23.2 Evaluation of Expressions. In ordinary arithmetic, we are used to the fact 
that 5 + 3 x 7 = 26, and not 56. In other words, we have learned that the multipli¬ 
cation operator always has a higher precedence than an addition operator, and so 
should be performed first in the evaluation of an expression. If we want the addi¬ 
tion to be done before the multiplication, we can modify the precedence by 

rewriting the expression as (5 + 3) x 7. 

This use of parentheses poses no difficulty to humans, but their presence in 
expressions is inconvenient with computing machines. Fortunately, it is possible to 
write arithmetic expressions in such a fashion that parentheses are never required. 
In fact, any expression can be written in three equivalent manners, as follows: 

prefix notation x + 5 3 7 (operator precedes its operands) 
infix notation (5 + 3) x 7 (operator between its operands) 
postfix notation 5 3 + 7 x (operator follows its operands) 

Note that parentheses are required only in the notation most familiar to us, which is 
infix. Prefix and postfix notations were first introduced by the Polish logician 
Lukasiewicz in order to simplify expressions in propositional calculus. This causes 
prefix notation to be known also as Polish notation, and postfix notation to be 
known as reverse Polish notation. Unfortunately, terminology occasionally gets 
sloppy, so that postfix, which is particularly convenient for computation, is some¬ 
times referred to simply as Polish notation. 
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To see why postfix notation is so convenient, suppose that we have a computing 
machine with a stack. The machine would operate on a postfix expression in the 
following manner: 

1. When the next item in the input is an operand, it is stacked. 
2. When the next item in the input is an operator, then the two top operands on 

stack are unstacked, the operation is performed, and the result is stacked. 

Let us trace the operation of this machine upon the expression 

935* + 10 6 — / 
for which the equivalent infix expression is 

(9 + 3 * 5) / (10 - 6) 
The trace is shown in Figure 5.11, and we see that a machine with a stack can 
indeed correctly evaluate an arithmetical expression in postfix notation. A stack 
used for this purpose is commonly called an evaluation stack, to distinguish it from 
the procedure-call stack of the preceding section. 

Compilers almost always get rid of parentheses, translating infix expressions 
into postfix notation as an intermediate representation of the source code. What 
happens next in the compilation process depends upon the circumstances. Most 
often, the postfix expressions undergo further translation into code for direct 
execution on some target machine, but sometimes the code is left in the intermediate 
form. For example, some machines have a stack architecture, as opposed to a regis¬ 
ter architecture, so that the machine can execute such code directly. (The relative 
advantages of stack and register architectures is a subject of contention.) Even 
when the underlying machine does not have a stack architecture, it is possible to use 
an interpreter that simulates the actions of a stack machine. In fact, this is the 
manner in which small machines commonly support Pascal — by interpreting the 

intermediate code on a simulated stack machine. 

Input Expression Stack Contents 

935* + 10 6-/ 

3 5 * + 10 6 - / 9 

5 * + 10 6 - / 9 3 

* + 10 6 - / 9 3 5 

+ 10 6 - / 9 15 

10 6 - / 24 

6 - / 24 10 

- / 24 10 6 

/ 24 4 
6 

Figure 5.11 Stack Evaluation of a Postfix Expression 

5.2.3.3 Translation of Expressions. We have seen that a machine with a stack can 
directly evaluate expressions that are in postfix notation. But people generally 
prefer infix notation, so how is the translation from infix to postfix accomplished? 
With a stack again! In order to discuss how this is performed, we need to make a 
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few background remarks concerning this common situation in computing. The text 
of a program in its source language is almost always treated as an array of charac¬ 
ters. Within this text are program tokens of various types: constants (numeric or 
character), operators, identifiers, and delimiters.2 Almost all operators and delimit¬ 
ers and some constants and identifiers require just one character in the program 

text, but most constants and identifiers consist of several characters. 

To a compiler or other language translating program, the length of a token is 
far less significant than its type; therefore, the first phase of compilation usually 
decouples these aspects by scanning the text and extracting tokens for the next 
phase. To keep our illustration of translating infix to postfix as simple as possible, 

we will restrict our input expressions as follows: 

• The tokens in an expression include just operands, parentheses, and the opera¬ 

tors for add, subtract, multiply, and divide. 
• The operand tokens are single characters. 
• The special character is used as a sentinel. 

By making these restrictions, we can compute the token types via the function 

TOKENIZE (Algorithm 5.4). 

function TOKENIZE (ch: char): token; 

type token = (null,opnd,asop,mdop,lpar,rpar); 

begin 
TOKENIZE := opnd; 
case ch of 

{default assumption} 

TOKENIZE = null; {to mark the end} 
ixi / r. 

' t ■ TOKENIZE = asop; {add or subtract} 
TOKENIZE = mdop; {multiply or divide} 
TOKENIZE = Ipar; {left parenthesis} 

end; 
TOKENIZE = rpar; {right parenthesis} 

end; 

Algorithm 5.4 TOKENIZE 

We will translate infix to postfix via two structures. One of these is a stack and 
the other is a precedence matrix. The latter contains pre-encoded values that reflect 
what action should be performed next, depending jointly upon the next token in the 
input and the token at the top of the stack. The type of the former token is used to 
select a column of the matrix, and the type of the latter token is used to select a 
row of the matrix. The precedence matrix is shown in Table 5.1. Each of its entries 
is one of the possible actions to be taken, according to the row and column indices. 

2 Identifier is the generic term applied to symbolic names of variables, procedures, 
keywords, etc. Delimiters are the punctuation of programs, such as parentheses, brack¬ 
ets, commas, periods, quote marks, etc. 
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The matrix with its action-valued entries is used in conjunction with the procedure 
IN_TO_POST (Algorithm 5.5). 

null opnd asop mdop Ipar rpar 

null done pass save save save errr 
opnd errr errr errr errr errr errr 
asop popl pass popl save save popl 
mdop popl pass popl popl save popl 
Ipar errr pass save save save P°P2 
rpar errr errr errr errr errr errr 

Table 5.1 Precedence Matrix for IN_TO_POST Algorithm 

In IN_TO_POST, defer is a stack as defined in Algorithms 5.3, and PUSH and 

POP are likewise defined therein. (In a real situation, one would probably choose 

to implement PUSH and POP in-line rather than as distinct procedures.) As the 

input line infix is scanned, operands are copied directly to the output line postfix, 

the parentheses are removed, and the operators are relocated via the interaction of 

defer and precedence. Note that the logic of the algorithm requires a usual type of 

pop operation pop\ and a second type of pop operation pop2. The latter just corre¬ 

sponds to discarding a left parenthesis when the corresponding right parenthesis is 

encountered. Note also, in the action for pop 1, that it is necessary to go back and 

reuse the precedence matrix with the same value from the input, but the uncovered 

value from the stack. These details may become clearer through examining Figure 

5.12, which contains a trace of IN_TO_POST operating upon the input expression 

'(A + B*C)/(D—E)#'. 

In the translation from infix to postfix notation, the stack is essential. The 

precedence matrix is not, however. It is common to achieve the same effect by 

employing two precedence functions - one applied to the input token and another 

applied to the token on top of the stack (see Exercise 5.11). The appropriate action 

is then determined by comparing the values of these two functions, fiinput_ token) 

versus g(stack_token). Whereas the precedence matrix requires 0(n2) space for n 

tokens, the use of precedence functions require 0(n) space. On the other hand, if 

we wish to make IN_TO_POST more realistic by extending the variety of tokens 

that it will handle, it is simpler to add extra rows or columns to the precedence 

matrix (with no alteration to the code) than it is to reconsider the interaction of the 

precedence functions and the code in the light of these new token types. The 

precedence matrix also facilitates the detection of erroneous input expressions, as in 

the case of unbalanced parentheses. 
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procedure IN_TO_POST (infix: line; var postfix: line); 

{IN_TO_ POST operates on lines of characters, transforming 

an expression from infix notation to postfix notation} 

label 1,2; 

const linmax = {maximum size of input and output lines} 

type line = array [1 .. linmax] of char; 
token = (null,opnd,asop,mdop,lpar,rpar); 

action = (pass,save,pop1 ,pop2,done,errr); 

var indx,pndx: 1 .. linmax; 

cndx,rndx: token; 

defer: stack; 
precedence: array [token,token] of action; 

begin 
pndx := 1; 

defer.top := 0; 

PUSH (defer,'#'); 
for indx := 1 to linmax do begin 

cndx := TOKENIZE (infix [indx]); 

1: rndx := TOKENIZE (defer.items [defer.top]); 

case precedence [rndx,cndx] of 
pass: begin 

postfix [pndx] := infix [indx]; 

pndx := pndx + 1; 

end; 
save: PUSH (defer,infix [indx]); 

popl: begin 
POP (defer,postfix [pndx]); 

pndx := pndx + 1; 

goto 1; 
end; 
pop2: begin 

if defer.top = 0 then 
{Underflow} 

else 
defer.top := defer.top - 1; 

end; 
done: goto 2; 

errr: {erroneous situation} 

end; 
2: end; 
end; 

Algorithm 5.5 IN_TO_POST 
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indx top action stack postfix 

1 1 save # 
2 2 pass # ( 
3 2 save # ( A 
4 3 pass # ( + A 
5 3 save # ( + A B 

6 4 pass # ( + * A B 

7 4 popl # ( + * ABC 

7 3 popl # ( + ABC* 

7 2 P°p2 # ( A BC* + 

8 1 save # ABC* + 

9 2 save # / ABC* + 

10 3 pass # / ( ABC* + 

11 3 save # ! ( ABC* + D 

12 4 pass # / ( - ABC* + D 

13 4 popl # / ( - ABC* + DE 

13 3 P°p2 # / ( A B C* + D E - 

14 2 popl # / A B C* + D E - 

14 1 done # A B C* + D E - / 

Figure 5.12 IN_TO_POST Operating upon '(A +B*C)/(D-E)#' 

f5.3 MULTIPLE QUEUES AND STACKS 

Our discussion of queues and stacks up to this point has been somewhat unrealistic, 

for two reasons. First, we have glossed over the important issue of what do to in 

the case of Overflow.3 Second, we often need several of these data structures simul¬ 

taneously. If they are implemented in terms of linked lists, then these issues do not 

arise. But if the implementation is in terms of arrays, then our alternatives may be 

either to abort a calculation, or else to dynamically reallocate space for the arrays 

as their dimensions vary, and then shuffle their contents in memory. Garwick 

[1964] has given an algorithm for accomplishing this, which we will discuss shortly. 

However, we will present some other comments first. Evidently, the issue can be 

finessed by using a linked list representation; so why bother with an array represen¬ 

tation that is prone to these difficulties? Efficiency is one very good reason, both in 

terms of time and space. Another reason is that pointer variables may not be avail¬ 

able, so that arrays are the only choice. In fact, Garwick s method was originally 

devised for the problem of handling the many one-dimensional tables needed by a 

FORTRAN compiler (with which there are no dynamic pointer variables), where it 

3 Underflow is less important to us. It reflects a possible aberration in the calling 
program rather than in the implementation of the queue or stack. Moreover, it is quite 
legitimate to keep deleting items from a queue or stack until an underflow is detected. 
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was not possible to know in advance how these tables would grow for various' 

source programs. 

There is another important point. If an application requires just two stacks, 

then it is a simple matter to share the entire pool of free memory between them, so 
that no Overflow will occur until that entire pool is exhausted. This is accom¬ 
plished by anchoring the bases of the stacks at opposite ends of the memory pool 
and growing them toward each other, as illustrated in Figure 5.13 for stacks U and 
V. In fact, this is just the scheme that is employed in the run-time environments 
generated by many Pascal compilers. There is always a procedure-call stack such as 
described in Section 5.2.3.1; and when mark and release are used instead of 
dispose, for deallocating space from the heap, then the heap can be implemented as 
a stack growing from the opposite end of available memory, as in the figure. 
However, no such simple scheme is possible when there are more than two stacks. 

1 2 **• top 

--U-- 

• • • 
top "• n-^ n 

--V-- 

Figure 5.13 Two Stacks Grown in Opposite Directions 

Let us consider now the dynamic solution given by the procedure REPACK 
(Algorithm 5.6). The strategy here is to anticipate future changes in stack size on 
the basis of past history. By reallocating the stacks on the basis of this predictive 
information, we hope to reduce the likelihood of future Overflows that must call on 
REPACK. In order to do this, we need the global declarations reproduced here. 

var Base,Oldtop,Top: array [1 .. n + 1] of integer; 
Mem: array [lomem .. himem] of ... 

The stacks are all allocated in Mem, with the zth stack located from 
Mem [Base [/]] + 1 to Mem [Top [/]]. Note that with this convention an empty zth 
stack corresponds to Base [z] = Top [z]. REPACK is called when a condition 
Top [stkno~\ — Base [stkno + 1] + 1 signals that an Overflow has occurred. In order 
for this condition to be valid for the nth stack, Base [n + 1] (and Newbase [n + 1]) 
must contain the value of himem. The strategy in REPACK is to compare the 
growth of the stacks since the last time it was called, by computing any positive 
differences Delta [z] : = Top [z] — Oldtop [z]. Thus, initially, we need to have 
Oldtop [z] = Top [/]. The variables freemem and deltasum are used to calculate, 
respectively, the total currently unused space and the total (positive) growth. From 
these data, new values for the stack limits are calculated, as follows: 

(a) Divide some fraction (commonly 0.1) of the unused space evenly among all of 
the stacks. 

(b) Reallocate the remainder of the unused space among the stacks according to 
their individual growths. 

After the values of Newbase [z] have been computed, the contents of the stacks are 
shifted up or down in memory accordingly, with due care not to overwrite items 
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procedure REPACK (stkno: 1 .. n); 

const alpha = 0.1; 

var deltasum,freemem,i,j,k,t: integer; 
p,q,r,s: real; 
Base,Newbase,Delta,Oldtop,Top: array [1 .. n + 1] of integer; 
Mem: array [lomem .. himem] of ... 

begin 
deltasum := 0; freemem := himem - lomem; 

{gather statistics} 
for i := 1 to n do begin 

freemem := freemem - (top [i] - Base [i]); 
if Top [i] <= Oldtop [i] then 

Delta [i] := 0 
else begin 

Delta [i] := Top [i] - Oldtop [i]; 
deltasum := deltasum + Delta [i]; 

end; 
end; 

{compute new stack limits} 
if freemem < 0 then 

{No more Memory!} 
else begin 

p := alpha * freemem / n; 
q := (1 - alpha) * freemem / deltasum; 
r := 0; 
Newbase [1] := Base [1]; 
for i := 2 to n do begin 

s := r + p + q * Delta [i - 1 ]; 
t := trunc (s) - trunc (r); r := s; 
Newbase [i] := Newbase [i - 1] + Top [i - 1] - Base [i - 1] + t; 

end; 
{relocate the stacks} 

Top [stkno] := Top [stkno] - 1; 
for i := 2 to n do 

if Newbase [i] < Base [i] then begin 
k := Base [i] - Newbase [i]; 
for j := Base [i] + 1 to Top [i] do 

Mem G - k] := Mem G]; 
Base [i] := Newbase [i]; 
Top [i] := Top [i] - k; 
Oldtop [i] := Top [i]; 

end; 
for i := n downto 2 do 

if Newbase [i] > Base [i] then begin 
k := Newbase [i] - Base [i]; 
for j := Top [i] downto Base [i] + 1 do 

Mem G + k] := Mem Q]; 
Base [i] := Newbase [i]; 
Top [i] := Top [i] + k; 
Oldtop [i] := Top [i]; 

end; 
Top [stkno] := Top [stkno] + 1; 

end; 
end; 

Algorithm 5.6 REPACK 
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before they have been relocated. Note the necessity to adjust the value of 

Top [stknof since it has already been incremented by PUSH; when REPACK 
returns to PUSH, the item that caused the Overflow can then be placed on its stack. 
Note also that REPACK never relocates the first stack. This suggests that it would 
be more efficient to make the largest stack the first one, thereby reducing the time 

spent in relocating items. 

(a) 

(b) 

(c) 

Figure 5.14 Effect of Algorithm REPACK 

The following example helps to convey the action of REPACK. Suppose that 
we have 100 units of Mem, and that we have allocated 20 units each to five stacks. 
Moreover, for some initial values of Oldtop, let the actual sizes be: 7,5,14,4,4. 
These conditions are illustrated in Figure 5.14(a), and also displayed on the left of 
Figure 5.15. Now suppose that a series of pushes and pops on the five stacks 
cumulates with an overflow in the third stack, and with the Delta values illustrated 
in the middle of Figure 5.15. (Here, negative values of Delta are also shown.) The 
corresponding picture of Mem is shown in Figure 5.14(b). REPACK will compute 
the values shown on the right of Figure 5.15 (with deltasum = 18 and 
freemem = 51); the readjusted picture of Mem is shown in Figure 5.14(c). 

Base Oldtop Space Size Delta Newbase Top Space' Size' 

1 100 107 20 7 -2 100 105 6 5 

2 120 125 20 5 9 106 120 37 14 

3 140 154 20 14 7 143 164 40 21 

4 160 164 20 4 -1 183 186 4 3 

5 180 184 20 4 2 187 193 13 6 

Figure 5.15 Action of Algorithm REPACK 

How effective is Garwick’s method? Some detailed analysis can be found in 
Knuth [1973a]. Most importantly, it depends upon there being sufficient space to 
accommodate the overall maximum requirement. If the ratio of deltasum to 
freemem is nearly equal to 1.0 in value, then space is being released at about the 
same rate that it is being requisitioned. If deltasum is smaller than freemem, the 
method works well; if deltasum is generally larger than freemem, our efforts are 
almost certainly wasted, since space will soon be exhausted. Moreover, as the point 
of exhaustion is approached, REPACK will be invoked more and more frequently 
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to reapportion smaller and smaller amounts of free space. This suggests that a test 
for such a condition would likely save time, by terminating an untenable situation 
earlier rather than later. 

Another factor has been noted in the effectiveness of Garwick’s method. If the 
values of the Delta [i] reflect too small a sample of the history, then the algorithm 
may oscillate wildly before arriving at stable values for the limits of the stacks. One 
proposed solution to this problem is to retain more change history, so that better 
predictive calculations can be performed [Wise and Watson 1976], However, this 
may be insufficient, particularly when the sequence of stack alterations exhibits flur¬ 
ries of activity with just a few of the stacks over a period of time. This can cause 
the values of the Delta [i] to be even more misleading. A suggestion for coping 
with this is to incorporate the relative stack sizes in the reapportionment calcu¬ 
lation, since the sizes are more stable than the changes in size [Standish 1980]. The 
two refinements of Garwick’s method that we have just described are effective 
because they provide more stable solutions. An orthogonal enhancement that can 
significantly reduce the frequency of reorganization is to alternate the direction of 
growth of the stacks, so that they occur in pairs, with each pair allocated as in 
Figure 5.13 [Fraenkel 1979; Korsh and Laison 1983]. 

Although the motivation for REPACK is to accommodate multiple growing 
and shrinking stacks, it can be adjusted to handle other instances of dynamically 
varying tables of information, such as queues or deques. In particular, suppose that 
we wish to implement a priority queue, and that there are only a modest number of 
priority levels. We could associate one ordinary queue with each level, and then 
have enqueuing and dequeuing procedures that administer the collection of queues. 
Each individual queue might be implemented as a circular queue within the bounds 

of an overall array. 

5,4 RECURSION REVISITED 

In Section 1.3.1 we discussed the issue of choosing between iteration and recursion 

for expressing an algorithm. We saw there that recursion often provides a more 
concise and intuitive definition of a quantity or a process than does iteration. In 
the first of the following sections, we call attention to a very important instance of 
this in computer science. We also saw in Chapter 1 that recursion may be dramat¬ 

ically less efficient than iteration for actual computation. Accordingly, we examine 
in Section 5.4.2 some ways to systematically transform recursive programs to more 

efficient, non-recursive ones. Finally, in the last section, we point out some interest¬ 
ing and somewhat intricate relations between the subject of recursion and the 

subject of what is fundamentally computable. We introduce these topics at this 
point because there is a close connection between recursion and the capabilities 

provided by the stack data structure. Although this connection is not relevant for 

Section 5.4.1, it is very much so for the subsequent two sections. 
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5.4.1 Backus-Naur Form 

In programming as well as in ordinary discourse, we have arrived at a variety of 
notations to express our ideas. Any such notation can be regarded as a first level of 
communication. However, it is frequently necessary to communicate at a second 
level, about the notation itself. Two examples of this are defining the nature of 
arithmetic expressions and characterizing the nature of English phrases and 
sentences. At the higher level we are no longer dealing with specific arithmetic 
factors or terms, or with specific words from a dictionary. Rather, we are dealing 
with entire syntactic categories of such objects. Two significant problems in such an 

endeavor are: 

1. How do we discriminate between the levels of communication? Is “object” an 
ordinary variable at the first level of discourse, or is it the name of a category 

at the second level of discourse? 
2. At the second level, how do we manage to specify every possible way of 

constructing an instance of a category? 

For the first problem, one device is to enclose names of categories in angle brackets. 
Thus “object” is an ordinary variable at the first level, and “ < object > ” is a cate¬ 
gory at the second level. For the second problem, we should not be surprised to 

find that recursion provides the answer. 

For the specification of arithmetic expressions, the combination of these two 
techniques leads to the scheme shown in Figure 5.16. This manner of notation is 
known as Backus-Naur Form (BNF). It was first used to describe the language 
ALGOL [Backus 1960; Naur et al. 1960], wherein it yielded a description that is 
formal, remarkably brief, and almost (but not entirely) free of ambiguity. 

<expression> ::= <term> | <expression> + <term> | <expression> — <term> 

<term> ::= <factor> | <term> * < factor > | <term> / <factor > 
<factor> ::= <variable> | ( <expression> ) 

Figure 5.16 Example of BNF 

What we see in Figure 5.16 are productions, wherein each syntactic category4 — 
< expression >, < term >, and < factor > — is defined in terms of the following: 
other categories (possibly including itself), various literal values, and various meta¬ 
linguistic symbols. Two of the latter, illustrated in this example, are ' (with the 
interpretation “is defined as”) and T (with the interpretation “or”). Such symbols 
as ' + ' and on the other hand, stand for themselves; that is, they are literal 
values from the first level of communication. To paraphrase the last of the three 
productions in the figure, a factor is either a variable or an expression enclosed 
within parentheses. 

4 You may recognize this notational device from our discussion of Pascal control struc¬ 
tures in Section 1.4.1. 
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Examination of Figure 5.16 reveals some important regularities of form. The 
left hand side of a production always contains a syntactic category, and is an 
instance of a non-terminal symbol — that is, one defined in terms of other symbols. 
The right hand specifies one or more alternative definitions, separated by These 
definitions may contain literal values, meta-linguistic punctuation, other non-termi¬ 
nal symbols, or terminal symbols, which are syntactic categories that are not further 
defined. In the figure, < variable > is allowed to remain as a terminal symbol. This 
is not very realistic. In practice, the productions would be comprehensive enough 
so that all the terminal symbols corresponded to literal values. 

This example merely touches upon a topic of substantial depth and importance. 
We will have a little more to say about the matter when we discuss parse trees in 
Section 6.6.2, and still more in Section 8.6 when we talk about languages and gram¬ 
mars. For now, the important points are as follows: 

• Recursion is essential in order to specify an infinite set of possibilities without 
constructing infinite lists, such as 

< expression > ::= <term> | <term> + <term> 
| <term> + <term> + <term> | ... 

• Note how the issue of precedence in arithmetic expressions is accounted for by 
the dependency among the productions. 

In all of this, there is an important distinction between what we are trying to 
accomplish and how we do it. BNF notation in the form illustrated here is the 
original, pioneering tool for responding to the two issues raised at the beginning of 
this section. Variations of BNF notation are widely in use, and so are flowchart¬ 
like syntax diagrams. 

f5.4.2 Transformation of Programs 

As we saw in Section 5.2.3.1, stacks play an important role in the implementation of 
recursive procedures. However, there is an even broader relation between stacks 
and recursion. It is often possible to improve the performance of an algorithm by 
transforming a recursive function (with an implicit stack) to an equivalent iterative 
function employing an explicit stack. This improvement comes about because the 
amount of information that needs to be remembered may be much less than what is 
automatically saved and restored during procedure call and return. In such a trans¬ 
formation, each recursive call causes a value of the function parameter to be pushed 
onto the stack, and built around this are stack initialization and a loop that pops 

values off the stack umtil it is empty. 

Indeed, program transformations are not limited to just this type of conversion; 
that is, the elimination of recursion may not be the primary goal. An important 
goal in computer science is to be able to perform these transformations automat¬ 
ically. With such an automatic system, we could hope to express an algorithm in a 
concise, intuitive, recursive fashion and then ultimately obtain an efficient counter¬ 
part with minimal human intervention. Even more significantly, it might be 
possible to compose a recursive algorithm that is clearly correct; then, if the trans- 
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formation process were error-free, the resulting program would also be correct 

[Burstall and Darlington 1977]. 

A catalogue of program transformations would take us too far afield. Instead, 
let us consider the program schema of Figure 5.17. Such a schema is a generalized 
description of many recursive algorithms; it can be particularized by supplying 
interpretations to the predicate p(x) and to the functions N, S, T, U,v,w. (There are 
alternative forms of recursive schemas, but this one is adequate for our purposes 
here and in what follows.) Since F calls itself twice, we might expect that a corre¬ 
sponding iterative program G would need to employ a stack at both of those points. 
But suppose now that we had an interpretation such that £/(*) was void. A very 
useful rule in this case is that we can eliminate the tail-recursion expressed by 
F(w(x)), since it is the last step within F. Thus, we can transform F to F', with only 
one recursive call, wherein the values of pertinent variables are reassigned, and then 
a branch is taken back to an early step in F'. Analogously, the iterative program G 
would need to employ a stack only for the transformation of the call F'(v(x)). 

procedure F(x); 
begin 

if p(x) then N(x) 
else begin 

S(x); F(v(x)); T(x); F(wfx)); U(x); 
end; 

end; 

Figure 5.17 A Recursive Schema 

The preceding rather abstract discussion may become much clearer with the 
following example. Recall that the Fibonacci numbers are defined by the equation 
F„ = Fn_x + Fn_2. It is straightforward to translate the corresponding recursive func¬ 
tion to an iterative one, wherein a call to F(n) causes the values n — 1 and n — 2 to 
be stacked, unless n < 2. The result is FIB_STK_A (Algorithm 5.7). However, in 
comparing the Fibonacci definition with the recursive schema of Figure 5.17, we see 
that U(pc) is essentially void (as are S(x) and T(x)). So the tail-recursion can be 
eliminated, yielding the more efficient function FIB_STK_B (Algorithm 5.7). 

Automatic program transformations are a significant issue, but for the present 

transformations by hand are the norm. With regard to the particular issue of 
converting recursion to iteration via the introduction of a stack, the details can 
become somewhat tedious [§]. We are content to make these general observations: 

• Our expressed motivation is that of efficiency, but we should realize that these 
transformations are also fundamentally important for languages that do not 

support recursion, such as FORTRAN. 
• Transformations typically involve several steps until a “finished” program is 

obtained. Throughout this book, we will see numerous instances of algorithms 
that can be represented either recursively or else iteratively with a stack; in the 
latter cases, we will expeditiously present finished programs. 
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function FIB_STK_A (n: integer): integer; 

var defer: stack; 
sum: integer; 

begin 
sum := 0; INIT_STK (defer); 
PUSH (defer,n); 
repeat 

POP (defer,n); 
if n <= 2 then 

sum := sum + 1 
else begin 

PUSH (defer,n - 1); 
PUSH (defer,n - 2); 

end; 
until EMPTY_STK (defer); 
FIB_STK_A := sum; 

end; 

function FIB_STK_B (n: integer): integer; 

var defer: stack; 
sum: integer; 

begin 
sum := 0; INIT_STK (defer); 
PUSH (defer,n); 
repeat 

POP (defer,n); 
while n > 2 do begin 

PUSH (defer,n - 2); 
n := n - 1; 

end; 
sum := sum + 1; 

until EMPTY_STK (defer); 
FIB_STK_B := sum; 

end; 

Algorithms 5.7 FIB_STK 

• The exchange of recursion for an explicit stack has the effect of reducing the 
constant factor in the complexity of an algorithm; it will not of itself reduce 

the complexity class of the algorithm. 

f5.4.2.1 Tabulation and Other Speed-Ups. The final point in the previous section 
raises an interesting question. In Chapter 1 we saw both a recursive definition (Eq. 

1.17) and an iterative function ALGOR_A (Algorithm 1.1) for computing Fibo- 
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nacci numbers. The latter did not require a stack; moreover, it reduced the 
complexity from exponential to linear (see Section 1.3.2.3). How is this possible? 

The answer has to do with the great number of redundant evaluations that 
occur when applying the recursive definition, as illustrated in Figure 1.1. Such 
redundancy is fairly common, and it can be avoided by the technique known as 
tabulation. In this method, as applied to the Fibonacci calculation, a table is main¬ 
tained for the values of Fn. We initialize the table entries to zero; thereafter, when 
a value of Fn is sought, we check the corresponding entry in the table. If it is zero, 
we perform the evaluation and then store that value of Fn in the table for possible 
future use; otherwise, we retrieve the desired value directly from the table with no 
further evaluation. In the general method of tabulation, we need to maintain a 
table with as many entries as there are values of Fn. But in the case of ALGOR_A, 
we were able to do better by allocating storage for just two values at any one time 

- for F„_y and Fn_2 ~ and then reusing that storage at each iteration. 

The use of tabulation is independent of the exchange of recursion for an explicit 
stack; that is, it is easy to find examples where either just the former, or just the 
latter, or both together might be employed. Tabulation can be an extremely effec¬ 
tive tool for reducing complexity by eliminating redundancy [§]. The principal 
hazard in its use is that, in the general case, it may not be possible to predict a 
pattern of reusage, and so a large amount of storage may be required for the table 
entries. This is particularly true when the recursion is defined in terms of two or 

more parameters, so that the table becomes multi-dimensional. 

We conclude this discussion by noting an ultimate transformation, whereby it is 
possible to compute Fn in 0(lg n) time [§] rather than in 0(n) time, as with 
ALGOR_A. The Fibonacci recurrence can be expressed in matrix form as 

(5.1) 

Applying this recurrence n — 2 times, we obtain 

(5-2) 

But the matrix product can be computed as a product of factors, each a power of 2 
of the original matrix A, in 0(lg n) time (see Exercise 1.16), giving us our promised 
result. By way of illustration, suppose that we wish to compute Fl5. Then we need 

the matrices A, A4, A8 as follows: 

whence 

(5.3) 

so that F15 — 610. 
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f5.4.3 Recursive Schema and Computability 

Figure 5.17 in the preceding section gave an example of a recursive schema which is 
one model of recursive computation. To express the full power of recursion would 
require a more generalized recursive schema R. Rather than pursue this, we note 
that it is also possible to express iteration with a generalized iterative schema I. The 
question then arises, is R more powerful than /; in other words, are there functions 
that we can compute with R but not with 7? The answer is a bit subtle, and it 
depends upon certain other factors. It is always possible to transform an iterative 
calculation to a recursive one (see ALGOR_B, Algorithm 1.2), and it is often possi¬ 
ble to transform a recursive calculation to an iterative one [Strong 1971]. An 
important feature for enabling this is that the iterative calculation should be able to 
employ “counter” variables, such as the variable i of ALGOR_A (Algorithm 1.1). 
However, there are cases wherein a recursive schema cannot be transformed to an 
equivalent iterative schema because the iterative computation would require an infi¬ 
nite set of locations for recording intermediate results. In other words, iteration is 
strictly less powerful than recursion [Paterson and Hewitt 1970]! However, if we 
amend our iterative schema / to /', allowing it to have two pushdown stores 
(unbounded stacks), then we find that /' is as powerful as R. 

The preceding result has both practical and theoretical significance. The practi¬ 
cal aspect is that it confirms the importance of the stack as a data structure. The 

theoretical significance derives from the following facts: 

• It has been proven that any of several models of computation - among them 
generalized recursion, the use of a Turing machine, or the use of a finite 
machine with two pushdown stores — all yield computational capabilities that 

are equivalent. 
• No one has been able to find a notion of effective computability that cannot be 

expressed in one of these provably equivalent models. 

As a result, we have the Church-Turing Thesis: There is no function that is effec¬ 
tively computable that cannot be obtained via any one of these equivalent 
mechanisms! In this discussion, we have overlooked numerous details in the interest 
of conveying the broader picture. These deeper matters are explored in Beckman 

[1980] and Minsky [1967]. 

5.5 OVERVIEW 

One theme that the queue and stack data structures clearly illustrate is the power of 
thinking in terms of Abstract Data Types, whereby the implementation of a struc¬ 
ture becomes a separate issue from its functional specification. They also 
demonstrate that in programming, as in everyday life, a specialized solution to a 
problem can be more cost-effective than a generalized one. Thus, these structures 
can be used for many useful purposes, with significant savings in both space and 

time compared with that required for ordinary linked lists. 
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The great utility of both queues and stacks will become even more apparent as 
they are used in algorithms in subsequent chapters. In the case of stacks, however, 
the examples in this chapter have already conveyed some of their importance, both 
practical and theoretical. The practical importance was shown primarily in the 
manipulation of expressions; the theoretical significance is most evident in the 

relationship between recursion and the use of stacks. 

5.6 BIBLIOGRAPHIC NOTES 

• Examples of queue-like data structures for simulation that are superior to ordi¬ 
nary linked lists can be found in Franta and Maly [1977] and Wyman [1975]. 
Extensive comparisons of data structures for representing queues of simulation 
events are given in Jones [1986], McCormack and Sargent [1981], and Vaucher 

and Duval [1975]. 

• Examples and “recipes” for transformations between recursive and iterative 
forms of programs can be found in Auslander and Strong [1978], Bird [1977a, 

1977b], and Horowitz and Sahni [1976]. 

• Two excellent accounts of the benefits that can be obtained with tabulation are 
Bird [1980] and Cohen [1979b]. The technique for computing Fibonacci 
numbers with 0(lg n) complexity is described in Miller and Brown [1966] and 

Shortt [1978], 
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5.8 EXERCISES 

Section 5.1 

5.1 Assume a circular queue of length 5, with index variables head and tail, as 
used in Algorithms ENQUEUE_A and DEQUEUE_A. Tabulate the values of 
head and tail, as in Figure 5.4, under the following sequence of E(nqueue) and 
D(equeue) operations: 

EEDEEDEEEDDEEEDDEDD 

If an E/D operation would cause an overflow/underflow condition, ignore it and 
continue tabulating with the next E/D operation. 

f5.2 Suppose that we have a sequence of four input symbols, A B C D. 

(a) Which permutations of the four symbols cannot be obtained using an input- 
restricted deque, such that items can be inserted at just one end but removed 
from either end? 

(b) Which permutations of the four symbols cannot be obtained using an output- 
restricted deque, such that items can be inserted at either end but removed 

from just one end? 

f5.3 Write a set of routines to implement a deque as a linked list, analogous to 
Algorithms 5.1. For the four operations 

DL — dequeue from the left EL (x) — enqueue x on the left 
DR - dequeue from the right ER (x) - enqueue x on the right 

test them against the command sequence 

EL (A), ER (.B), DL, ER (Cj, EL (D), DR, EL (E), DR, DL, DR, 

ER (/0, EL (G), DR, DL, EL (H), EL (/) 

displaying the contents of the deque after each of the commands. 

f5.4 Write a set of routines to implement a deque as a circular array, analogous 
to Algorithms 5.2. Test them against the command sequence of Exercise 5.3. 

Section 5.2 

5.5 With input A B C D E F, what will be the output under the following S(tack) 

and U(nstack) sequences? 

(a) SSUSSUSUUSUU 

(b) SSSUSUSUUSUU 

5.6 With input ABC D EF and for each of the following permutations, either 
indicate that it cannot be obtained by using a stack, or show how it can be obtained 

via a sequence of S’s and U’s. 

(a) BDCFEA 

(b) BAFDCE 

(c) CBDAFE 
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f5.7 Given an input sequence A = au a2,..., a„ and some permutation of it A', how 

can you tell by looking at A' whether it could have been obtained from A by using 

a stack? 

5.8 Simulate the operation of the algorithm IN_TO_POST in translating the 

following infix expression to postfix: 

'(A—B—C)/D + E*(F-G*(H-I))*J#' 

Show the contents of the stack, the action taken, and the output contents as the 

program executes, as in Figure 5.12. 

t5.9 Rewrite the precedence matrix of Table 5.1 to include additional operators, 

and then apply the new matrix, as follows: 

(a) Rewrite the precedence matrix to include the operators (“gets”) for assign¬ 

ment and 'X (“exop”) for exponentiation. 

(b) Simulate the operation of IN_TO_POST, using this extended precedence 

matrix, on the following expression: 

'AHB—C*DTET(F/(G/H +1)))#' 

Show the contents of the stack, the action taken, and the output contents as 

the program executes, as in Figure 5.12. 

1*5.10 We have seen how to use stacks both for the evaluation of postfix 

expressions and for the translation of infix expressions to postfix notation. In this 

problem, you are to combine these processes by using two stacks - one for opera¬ 

tors and one for operands - in order to read an infix expression from left to right, 

translating and evaluating simultaneously. For example, in processing the 

expression (11 -7) *6, we would have the parallel trace shown in Figure 5.18. 

Trace the contents of the two stacks when operating upon the expression: 

((11 - 15 + 6) t 3 t 2 — 36) / 17 /(34 - 5 * 6) 

where } denotes exponentiation. 

Operator Stack Operand Stack 

( 

( 11 

( - 11 

( - 11 7 

( 4 

4 
I * 4 

* 4 6 

24 

Figure 5.18 Parallel Stack Contents 
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tt5.ll The problem of converting an infix expression to a postfix expression is 
commonly solved by using two precedence functions rather than a precedence 
matrix. These two functions, commonly called / and g, directly reflect, for example, 
that and 'j' have higher precedence than ' + ' and Both f and g take a token 
as input and return an integer precedence value; both functions, in fact, can be 
represented as tables of value corresponding to token. The function f is used for 
examining the next position in the input, and the function g is used for examining 
the top of the stack. The corresponding algorithm is driven principally by whether 
f<g,f=g, orf>g. 

(a) Construct the two precedence functions, taking into account the following 
operators and delimiters, according to the usual mathematical interpretation of 
precedence: 

+ -*/()# as before 
«— the assignment operator (': = ') 

T the exponentiation operator 
< = * > the relational operators 
& | the logical operators and, or, not 

(b) Rewrite the algorithm IN_TO_POST to use these precedence functions. (You 
may have to make some arbitrary character substitutions in order to do this, 
such as T for "f', etc.) 

f5.12 We have seen that it is relatively straightforward, using a stack, to translate 
an infix expression to the corresponding postfix expression. What can be done for 
the problem of translating an infix expression to the corresponding prefix 
expression? 

Sections 5.3 — 5.4 

ft5.13 Rewrite the algorithm REPACK to incorporate the improvement 
mentioned at the conclusion of Section 5.3; that is, have the stacks grow in alter¬ 
nating pairs, as in Figure 5.13. 

f5.14 The following function was encountered in Exercise 1.12. 

function F (m,n: integer): integer; 
begin 

if n = 0 then F := m 
else F := F (m,n - 1) + F (m + 1 ,n - 1); 

end; 

Transform it to a function that computes F using a stack instead of recursion, and 
test your program by computing E(l,3). 

tf5.15 A sequence of parentheses is said to be balanced when the numbers of left 
and right parentheses are equal, and when each left parenthesis can be matched 
against some later right parenthesis. For three pairs, there are five possibilities. 

000 0(0) (0)0 (00) ((0)) 
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The goal of generating all balanced sequences of parentheses can be characterized in 

BNF notation by 

S ::= ( S ) S | e 

where e denotes the empty sequence. Write a recursive procedure to generate all 
balanced sequences for n pairs; then write an iterative program to generate the 
same sequences. What observations do you have about the relative ease of compos¬ 

ing the two programs? 

tf5.16 The following function was encountered in Exercise 1.14. 

function F (m,n: integer): integer; 
begin 

if m * n = 0 then F := m + n + 1 
else F := F (m - 1,F (m,n - 1)); 

end; 

Transform the function F from recursive form to (a) iterative form, and then (b) a 
form employing tabulation. After establishing that your programs are correct, try 
both of them, as well as the original function, for computing E(4,l). What do you 

observe about the relative performance of these three programs? 



6 

TREES 

“A fool sees not the same tree that a wise man sees.” 

Wm. Blake, 
Marriage of Heaven and Hell, Proverbs of Hell 

Just as Moliere’s M. Jourdain was surprised to learn that he habitually spoke prose, 
many people would likely be surprised to realize how commonly they deal with 
trees. Yet they pervade all aspects of everyday life, as witness genealogical charts, 
hierarchical organizations of management, the Dewey decimal system for books, 
etc. They occur more overtly in various aspects of computation such as parse trees, 

sort trees, decision trees, etc. 

Sometimes we think of trees in a graphical manner, and sometimes we use 
schemes that convert the graphical representation to a sequential structure. Thus, 
note that all the forms in Figure 6.1 are logically equivalent. In this figure, (a) 
displays a tree in record format (akin to the Table of Contents for a book), (b) 
displays the tree as a List structure via the use of parentheses, (c) displays the tree 
as a map, and (d) displays the tree in the convincingly tree-like format typically 

employed for discussions of this data structure. 

Figure 6.1(d) clearly delineates the appropriateness of the term tree, since it 
highlights the branching nature of the structure. Note that, contrary to nature’s 
canonical form for trees, with the root at the bottom, in computer science the root 
is generally at the top. However, this is not universally so, and one can still find 
books and articles wherein trees are drawn with the root placed at the bottom, or 
even at the left. In the next chapter, on graphs, we will see that a tree is a restricted 
form of graph, and we will characterize this assertion more precisely. For now, let 

us consider the following terminology and definitions. 

6.1 DEFINITIONS AND TERMINOLOGY 

A tree, in the most general sense, is a set of vertices, or nodes, and a set of edges, 
where each edge connects a pair of distinct vertices, such that there is one and only 
one connecting path on these edges between any pair of vertices. A tree in this 
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(a) 

A(B(D(HI)EF)C(G(JKL))) 

(b) 

A 

H I J K L 

(d) 

Figure 6.1 Alternative Forms of Trees 

most general sense is called a free tree, as in Figure 6.2(a) However, it is more 
common to impose the notion that there is a distinguished vertex, called the root. 
In this case, we have an oriented tree, as in Figure 6.2(b). One can imagine picking 
up (a) at vertex A and shaking it until the structure sags into the shape of (b). Note 
that, except in the most trivial case, there are numerous oriented trees correspond¬ 
ing to a given free tree, according to which vertex is distinguished. 

In Figure 6.2, the trees shown in (b), (c), and (d) are all equivalent in the sense 
of oriented trees. However, it is sometimes important to consider the edges from a 
vertex as having a left to right order. In this case, we have an ordered tree, and (b), 
(c), and (d) are all distinct. Note that, in the tree representations of Figure 6.1, (c) 
is an oriented tree while the other three cases are ordered trees. Ordered trees are 
more natural in computing, since most representation schemes for trees have, by 
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default, an ordering among the branches. In most published allusions to tree struc¬ 
tures, and in this book, the term tree without any qualifiers implicitly signifies an 

ordered tree. 

The degree of a node is the number of edges that impinge on it. Except for free 
trees, it is common to associate a direction with each edge, usually away from the 
root. We also distinguish between the in-degree and the out-degree. But since the 
in-degree is always one, except for the root, it is usual with trees to refer to the 
out-degree simply as the degree. Thus, in Figure 6.3, node A has degree 3 and 

nodes D,F,0,S have degree 1. 

Level 0 

Level 1 

Level 2 

Level 3 

Figure 6.3 Basic Tree Definitions 

Tree terminology borrows from both genealogy and horticulture. Thus, edges 

are sometimes called branches; also, terminal nodes, or nodes of zero out-degree, 
are usually called leaves. Note how Figure 6.3 is drawn so that nodes that are the 
same number of edges distant from the root are at the same vertical displacement, 
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or level. The height of a tree corresponds to the level of the leaf or leaves that are 
most distant from the root. The vertical predecessor of a node is its parent, or 
father; the vertical successors are children, or sons, proceeding from the eldest at 
the left to the youngest at the right; and nodes that have the same immediate 
parent are siblings, or brothers. In addition, it is common to speak of a descendant 
of a node, where the progeny may be more than one level distant, and also an 
ancestor of a node, where the patrimony may be more than one level distant. It is 
sometimes convenient to be able to compare the positions of any two nodes of a 
tree. In order to do this, we extend the notion of order among siblings to encom¬ 
pass that of “cousins.” Then, for nodes X and Y, the possibilities (as illustrated in 

Figure 6.3) are: 

• X and Y have an ancestor-descendant relationship; for example, B is an ances¬ 

tor of H, and J is a descendant of A. 
• X and Y have a left-right relationship, either as siblings or as “cousins”; for 

example, I is left of J, and D is right of B; but also B is left of G, and C is 

right of H. 

Note that a tree is a recursive structure. It can be thought of as a root node 
with zero or more children nodes, each of which is a tree. Thus, the structures 
beginning at nodes B,C,D in Figure 6.3 are called subtrees of the tree rooted at node 
A. The weight of the subtree at a node is the number of nodes in the subtree, not 
counting the node itself. Thus, node A has weight 9 and nodes B,D,M,T have 
weight 3. When there are disjoint trees, as in Figure 6.3, they are called a. forest. A 
forest can readily be converted to a tree by introducing one extra node as a parent 

to all of the roots of the trees in the forest. 

6.2 LINKED REPRESENTATION AND BINARY TREES 

How should trees be represented physically in computer memory? The most 
common case is to make each node a separate List item, and to employ pointer 
variables to make the branches explicit. There is a problem, however, in that nodes 
do not all have the same number of children. One solution to this problem, shown 
in Figure 6.4(a), is to allocate for each node a number of pointer locations equal to 
the maximum out-degree for the application at hand, and to employ nil pointers as 
necessary. Another solution, shown in Figure 6.4(b), is to have variable-size nodes, 
allocating in each of them a number of pointer locations equal to the actual out- 
degree. If there is a large amount of data associated with each node, so that the 
memory required for the pointers is a small percentage of the memory required for 
the entire node, then the first solution is feasible. But there are many cases when 
this is not so, and it becomes highly inefficient. The second solution is likely to be 
shunned because of the complications associated with having variable length items. 

The most common resolution for this representation problem is the following 
simple and ingenious construction. In Figure 6.5(a), 

1. retain branches from parents to eldest (leftmost) sons, but delete branches to 
other children; 
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(a) Fixed Size Nodes 

(b) Variable Size Nodes 

Figure 6.4 Tree Representations 

2. introduce branches from eldest children to their next youngest siblings. 

In this manner, we obtain Figure 6.5(b). If we now tilt (b) by 45 degrees, we obtain 
(c), which looks like a tree again. It is, but of a special kind called a binary tree. 
Note that a node in a binary tree always has just 0, 1, or 2 children, so that it is 
feasible to allocate all nodes with just two pointer fields. However, a binary tree is 
distinct from an ordered tree of maximum degree 2, because the left child and the 
right child pointers have special significance. Thus, in Figure 6.6, the three struc¬ 
tures are all equivalent as trees, although (b) is the preferred way of drawing it; 
however, as binary trees, (b) is ambiguous and (a) and (c) represent the distinct 

cases of nil right and nil left pointers for node C. 
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Figure 6.6 Branch Direction is Significant 

Note that the transformation from tree to binary tree has a unique inverse 
process. Thus in Figure 6.7(a), by interpreting left pointers as child pointers and 
right pointers as sibling pointers, we obtain Figure 6.7(b) as the corresponding 
ordered forest. Be careful of truly ambiguous cases where a given drawing might be 
either a tree or a binary tree. For example, in Figure 6.8, what is (b)? It could be 
either the binary tree corresponding to (a) or a tree whose binary tree is (c). 

Apropos of binary trees, a significant observation is that they correspond to 
pure Lists. Another important remark is that we sometimes deal with binary trees 
wherein each node has either no children or two children; in a case of this sort, we 
have a strictly binary tree (sometimes called a full binary tree). Most of this chapter 
will focus on binary trees rather than on trees, partly because of their storage effi¬ 
ciency. However, the reader should not infer that the only significance of binary 
trees is as efficient representations of ordered trees. Binary trees are important in 
their own right; they are commonly the natural data structure for a problem, as we 
will see in Section 6.6. 
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A C G J 

F 

(a) (b) 

Figure 6.7 Binary Tree - Ordered Forest Correspondence 

A a A 

E 

(a) (b) (c) 

Figure 6.8 Ordered Tree or Binary Tree? 

6.3 TREE OPERATIONS - TRAVERSAL SEQUENCES 

Recall that the primitive operations for “crawling” through a list are next(r) and 
previous(r). It is apparent that for a tree the analogous operations are 
oldest_child(s), next_sibling{s), and parents). Using these as a basis, the following 

common operations are useful things that we can do with trees: 
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traverse{r) 

search(r) 

look-up{r,key,p) 

insert{r,key) 

delete{r,p) 

split(r,key) 

to systematically “visit” each node of the tree rooted at r in 
some order, being certain to include each node in the tour 

once and only once; 

to examine some or all of the nodes of a tree rooted at r 
until some result is obtained, such as a maximum or mini¬ 

mum value; 

to determine whether the data key is located in the tree 
rooted at r, and to return a reference p to its location if it is; 

to insert a node containing key at some appropriate location 

in the tree rooted at r; 

to delete the node referenced by p from the tree rooted at r; 

to split the tree rooted at r into subtrees, with the form of 
the split dependent upon the location of key in the tree. 

This list is not a complete one; also, it lacks precision, which cannot be fully 
supplied until we specify which of many kinds of trees we intend to employ. 

Our initial objective is to master that operation upon which all the others 
depend, that of traversal. We will first concentrate upon traversal of binary trees, 
and then indicate the analogous process for ordered trees. Imagine that we have a 
compulsive squirrel who must visit each node of a binary tree once and only once, 
in order to gather every available nut with no wasted motion. Obviously, he can 
arrange to visit terminal nodes just once, but he must pass through non-terminal 
nodes three times: coming into the left branch, going from the left branch to the 
right branch, and leaving the right branch. But at only one of these transits does he 
really “visit,” or do the meaningful task associated with being at the node. 

A 

B 

C 

D 

E F 

G H 

Figure 6.9 Tree Traversal 

If we stipulate that the left branch should always be visited before the right 
branch, then the three cases just cited lead to three sequencing schemes for travers¬ 
ing a tree, as illustrated by reference to Figure 6.9: 

• preorder traversal: At a given node, visit the Node itself, then the Left branch, 
then the Right branch (NLR) — A B C G D E HF. 

• inorder traversal: At a given node, visit the Left branch, then the Node itself, 
then the Right branch (LNR) — CGBAHEDF. 
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• postorder traversal: At a given node, visit the Left branch, then the Right 
branch, then the Node itself (LRN) - GCBHEFD A. 

Note that the leaves occur in their left-to-right order in all three sequences. 

Since the tree structure is recursive, we can transliterate these three schemes into 
recursive procedures. In order to do this we first define a tree node as 

type link = {node; 
node = record 

data: {depends upon the application} 
left,rite: link; 

end; 

The corresponding procedures are then PREORDER_R, INORDER_R, and 
POSTORDER_R (Algorithms 6.1). The lines are used to indicate that, in 
practice, code would need to be inserted to accomplish the purpose of the traversal. 

procedure PREORDER_R (ptr: link); 

begin 
// visit the node ptr\ // 
if ptrf.left <> nil then 

PREORDER_R (ptr|.left); 
if ptr| rite <> nii then 

PREORDER_R (ptrf.rite); 

end; 

procedure INORDER_R (ptr: link); 

begin 
if ptrt-left <> nil then 

INORDER_R (ptrt-left); 

// visit the node ptr] // 
if ptr| rite <> nil then 

INORDER_R (ptrj.rite); 

end; 

procedure POSTORDER_R (ptr: link); 

begin 
if ptrt-left <> nil then 

POSTORDER_R (ptrt-left); 

if ptrt rite <> nil then 
POSTORDER_R (ptrt-rite); 

// visit the node ptr] // 

end; 

Algorithms 6.1 PREORDER_R, INORDER_R, POSTORDER_R 

Preorder traversal corresponds to the sequential listing of a table of contents. It 
also corresponds to the notion of dynastic succession, whereby when a nobleman (at 

a node) dies, the title passes to his eldest son, and then to his eldest son, etc. with 
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younger children being considered only if there are no progeny along the line of 

eldest succession. 

Inorder traversal corresponds to the way in which people construct algebraic 

expressions. Thus, in Figure 6.10, each operator at a non-terminal node is scanned 

between its left operand and its right operand, where an operand can itself be an 

expression subject to the same manner of scanning. 

Postorder traversal corresponds to the way in which we recursively decompose 

tasks into subtasks. When, for instance, we are assembling some object and each of 

its components must also be assembled, we cannot put the object together until we 

have finished putting together all of the individual components. 

+ 

A B 

Figure 6.10 Algebraic Expressions via Inorder Traversal 

Traversal of a tree is a way of imposing a linear structure upon something that 

is inherently non-linear. This notion of forced linearization occurs in other contexts 

too. For instance, the activity of thought would seem to depend a great deal upon 

extensive logical connectivity among ideas. However, when we need to communi¬ 

cate our ideas, the sequential nature of language forces us to impose a linear 

ordering on these elements. English, being highly uninflected, relies upon close 

adherence to the ordering: < subject phrase > < verb phrase > < object phrase >, 

which can be regarded as an inorder traversal of a tree with < verb phrase > at the 

root. It is interesting to note that other languages allow both preorder and post¬ 

order traversals of the same tree. Thus, in German we can have: 

preorder Gestern kletterte ich auf den Baum. 

inorder Ich kletterte gestern auf den Baum. 

postorder (Er weiss dass) ich gestern auf den Baum kletterte. 

Traversal, by linearizing a tree, loses information. Section 6.7 addresses the ques¬ 

tion of how the information present in the original branching structure might be 

recovered. 
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6.4 EFFICIENT TRAVERSAL SCHEMES 

For a variety of reasons having to do with efficiency, the preceding algorithms for 

traversing a binary tree are not likely to be used in practice. Recall from Section 

5.2.3.1 that procedure calls require a variety of bookkeeping activities to take place. 

The calling environment must be saved on a stack and the called environment must 

be initialized; the converse must take place on procedure return. The amount that 

must be saved and restored can be large if the procedures involved are recursive. 

Because of this, several alternative methods have been developed for traversing 

binary trees; we will describe them in varying detail in this section. At the outset, 

note that all of these methods go down each tree branch just once, and visit each 

node just once, so that they are all 0(n) in time, for a tree with n nodes. 

One consideration for choosing one method over another is of course the rela¬ 

tive sizes of their constant factors; we have already commented that this factor 

tends to be large for the recursive solution. Another motif is to find the minimum 

amount of working storage that is required. The traversal methods of the first two 

ensuing sections — using a stack and using threads — are practical in orientation; 

on the other hand, those of Section 6.4.3 — using tree transformations — have a 

more theoretical flavor. 

Whereas the three recursive traversal procedures (Algorithms 6.1) are symmet¬ 

rical, the corresponding non-recursive procedures are not. In all of these alternative 

traversal schemes, we will restrict our attention to the case of inorder traversal, 

since it is almost always more complicated than preorder traversal, but less compli¬ 

cated than postorder traversal. The extensions of the ensuing methods to the other 

two traversal schemes are left as exercises. 

Before we consider these methods, however, let us recall the ordered trees with 

which we started. What relationship, if any, do these three orders for traversing a 

binary tree have to do with the orders in which we might traverse an arbitrary tree? 

There is a very simple relationship, as follows: 

1. There is a preorder traversal, defined by recursively visiting first the node and 

then all the children from eldest to youngest. Moreover, preorder traversal of a 

tree and preorder traversal of the corresponding binary tree access the nodes in 

identical sequence. 
2. There is no inorder traversal for trees, since there is generally no definite middle 

position between a left and right branch. 
3. There is a postorder traversal, defined by recursively visiting first all the chil¬ 

dren from eldest to youngest and lastly the node itself. Moreover, postorder 

traversal of a tree and inorder traversal of the corresponding binary tree access 

the nodes in identical sequence. 
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6.4.1 Traversal via a Stack 

The most straightforward response to the inefficiency associated with recursive 
traversal is to transform the algorithm so that it uses an explicit stack. As the 
resulting iterative procedure traverses downward in the tree, it can record the 
location that it came from in the stack, and this information can be used subse¬ 
quently to climb back up. Since the recursive algorithm for inorder traversal calls 
itself twice, it would appear that we would need to push items onto the stack at two 
points in the iterative algorithm. However, note that INORDER_R (Algorithm 
6.1) is an instance of the recursive schema of Figure 5.17, with U(x) void. As 
discussed in Section 5.4.2, the resulting tail-recursion can be eliminated, and infor¬ 
mation for just one of the calls in INORDER_R need be pushed on the stack. A 
“finished” and efficient algorithm is the procedure INORDER_S (Algorithm 6.2). 
It employs the same type definition for a node as previously, and it takes as param¬ 

eter a pointer to the root of the tree. 

procedure !NORDER_S (ptr: link); 

var top: 0 .. smax; 
stk: array [1 .. smax] of link; 

begin 
top := 0; 
while ptr <> nil do begin {go to extreme left) 

top := top + 1; 
stk [top] := ptr; 
ptr := ptr|.left; 

end; 
while top > 0 do begin 

ptr := stk [top]; 
top ;= top - 1; 
// visit the node ptr] // 
if ptrf.rite <> nil then begin 

ptr := ptrf.rite; 
while ptr <> nil do begin {go to extreme left} 

top := top + 1; 
stk [top] := ptr; 
ptr := ptr}.left; 

end; 
end; 

end; 
end; 

Algorithm 6.2 INORDER_S 

This is a fundamental scheme for traversing trees, and you should trace its 
operation on, for example, the tree of Figure 6.9. The essential feature of 
INORDER_S is that pointers are pushed onto the stack far enough ahead so that 
when a pointer p is popped off the stack, its left subtree has already been processed; 
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thus, we can immediately process p and then go to its right subtree. For a 
discussion of the systematic transformation of INORDER_R to INORDER_S, 
consult Horowitz and Sahni [1976] and Knuth [1974]. Note that whereas we used 
calls to PUSH and POP in transforming the Fibonacci examples of Algorithms 5.7, 
we expose the stack as part of the process in INORDER_S. Since the trade-off is 
between two lines of code and one procedure call, this is a realistic approach that 
one would often choose to use. In subsequent algorithms, we will have frequent 
instances of both of these approaches. 

Two key issues arise in attempting to improve upon INORDER_S. One, of 
course, is that we would like to further reduce the constant factor associated with 
the 0(n) complexity. More significantly, in the worst case, the stack may need to be 
as large as the tree, or 0(n). So an important concern is to find a technique for 
traversing a tree such that the requirements for working storage are bounded and 
minimal. The methods to be described in the following sections place different 
emphases upon these issues. 

6.4.2 Traversal via Threads 

A binary tree of n nodes has In link fields, but each node except the root is pointed 
to exactly once. This means that there are {n — 1) non-nil pointers, leaving (n + 1) 
nil pointers in the binary tree representation. This is rather wasteful, and so it was 
proposed that the unused pointer fields should be used to assist in the traversal by 
storing appropriate pointer values in them [Perlis and Thornton I960]. What are 
the appropriate values? That depends upon the desired order of traversal. We 
confront here the tension between two notions, alluded to in Section 6.3. On the 
one hand we want to retain information in a tree structure; on the other hand, we 
must process that information in some linear sequence. 

If there is a preferred sequence in an application, then we can use the otherwise 
empty link fields in the binary tree to store threads to point to predecessors and 
successors in that sequence; this can enable us to do away with a stack entirely. 
However, since a given link field may contain either a child pointer or a thread 
pointer, it becomes necessary to associate boolean tag fields with the two link fields, 
to enable the correct interpretation. In Figure 6.11, (a) shows a binary tree with 
unused link fields, and (b) shows the same tree with tags and threads suitable for 
inorder traversal. In (b), child pointers are shown as solid lines with tag values of 
zero; predecessor threads are shown as dashed lines with left tag values of one; 
and successor threads are shown as dashed lines with right tag values of one. Note 
that node D has no predecessor and node K has no successor; the corresponding 
fields might contain nil’s. Alternatively, a threaded tree is often implemented with 
a header node, and in that case these fields in D and K would point to the header. 

An algorithm for inorder traversal of a threaded binary tree is the procedure 
INORDER_T (Algorithm 6.3). In lieu of a stack of pointers, a single pointer vari¬ 

able is all that is required for remembering enough information to perform the 
traversal. This version of the algorithm does not assume the existence of a header 
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(a) Without Threads 

I_1 

(b) With Threads 

Figure 6.11 Threads for Inorder Traversal 

node; that is, the left pointer field of node D and the right pointer field of node K 
are assumed to contain nil. 

There are other possibilities for using threads to assist in traversal. For 
instance, the threads to the predecessor nodes are commonly less useful, and so may 
be omitted, yielding a right-threaded binary tree. Similarly, one can have a left- 
threaded binary tree, with threads to predecessors but not to successors. In any 
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procedure INORDER_T (ptr: link); 

type link = {node; 
node = record 

data: {depends upon the application} 
Itag: boolean; 
left: link; 
rtag: boolean; 
rite: link; 

end; 

var tptr: link; 

begin 
while not ptrf.ltag do 

ptr := ptrt-left; 
while ptr <> nil do begin 

// visit the node ptr} // 
tptr := ptr; 
ptr := ptr}.rite; 
if not tptrj.rtag then 

while not ptrf.ltag do 
ptr := ptrt-left; 

end; 
end; 

Algorithm 6.3 INORDER_T 

event, with threads, we can traverse a tree with reductions in both time and space 

over that required to stack traversal. Threads do require memory for the tag fields. 

Depending upon the data stored at a node and whether the algorithm is coded in an 

HLL or in assembler language, it may be trivial to find space for the tags, or it may 

increase memory requirements inordinately. 

Note that threads do not make life simpler in all cases. For instance, consider 

the binary tree of Figure 6.12, which is threaded for postorder traversal, and 

observe the complexity of finding the successor to node B. More generally, if a tree 

is threaded for postorder traversal, it is awkward to discern the successor of a node 

with a right child without traversing the tree from the root; likewise, if a tree is 

threaded for preorder traversal, it is awkward to discern the predecessor of a node 

with a left child without traversing the tree from the root. However, if a tree is 

threaded for inorder traversal, one can easily discern both the predecessor and the 

successor of any node in all cases. The predecessor (successor) is either pointed to 

directly by the left (right) link, or else it can be found by following the left (right) 

child link. You should satisfy yourself that this is so by studying Figure 6.11. 

Inorder threading has still another virtue; it can be used to expedite preorder 

traversal as well as inorder traversal (see Exercise 6.9). 

Given their orientation toward preferred traversal sequences, threads provide a 

mechanism that is both simple and fast for finding a desired node in a tree. On the 



218 TREES 

Figure 6.12 Threads for Postorder Traversal 

other hand, if the operations of inserting or deleting nodes in a tree occur relatively 
frequently, then the additional overhead of updating the threads will be counter¬ 
productive. Perhaps even more important is the issue of incremental traversal, 
which is the capability of finding the successor of an arbitrary node without starting 
the search from the root every time, as alluded to in the preceding paragraphs. 
Except for the case of postorder traversal, threads provide this capability easily, 
whereas stack-based techniques do not. A thorough analysis of the relative effi¬ 
ciency of using stacks and threads can be found in Brinck and Foo [1981]. 

f6.4.3 Traversal via Tree Transformations 

Traversing a tree via threads substitutes the requirement of two additional bits at 
each tree node for the requirement of an arbitrarily large working stack. Is is possi¬ 
ble to reduce this requirement to just one additional bit, or no additional bits, and 
yet not need a stack? A moment’s reflection upon the technique of MARK_LIST 
(Algorithm 4.7) suggests that the answer is yes. If we can traverse a possibly recur¬ 
sive List with minimal additional storage, we can certainly traverse a binary tree, or 
pure List, with minimal additional storage. However, there is an important differ- 
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ence between the situation in Section 4.4.3.1 and the situation here. In the former 
case, we were able to use the isatom bit to discriminate between ascents from the 
left and the right, without introducing an explicit additional tag bit. Here, the data 
structure is different. We can essentially use MARK_LIST, but must introduce an 
additional bit in each tree node. (It is possible to do even better and get by with a 
working bit stack; the size of this stack would need to be equal to the height of the 
tree being traversed.) 

Are there any alternative approaches, such that no tag bits are needed, either in 
the tree nodes or in a working stack? There are several, and most of them employ 
the techniques of link inversion and pointer rotation discussed in Section 4.4.3.1. 
Lindstrom [1973] discusses several procedures for this type of traversal. A partic¬ 
ularly simple case is that where the tree is strictly binary and the objective is to visit 
each node at least once, but it doesn’t matter if some nodes are visited more than 
once. This is actually the case, for example, in some methods for doing garbage 
collection during memory management (see Section 11.2.1.1). 

procedure LINDSTROM (ptr: link); 

var pres,prev: link; 

begin 
pres := ptr; prev := nil; 
while pres <> nil do begin 

if ATOM (pres) then begin 
// visit the node pres| // 
ROTATE_2 (pres,prev); 

end; 
// visit the node pres\ // 
ROTATE_4 (prest.leftpresj.rite,prev,pres); 

end; 
end; 

Algorithm 6.4 LINDSTROM 

The procedure LINDSTROM (Algorithm 6.4) proceeds via two simple rules, 
which may best be understood by translating the strictly binary tree in Figure 
6.13(a) to the maze in Figure 6.13(b). A guaranteed way to get out of the maze is 
to proceed with our right hand always in contact with the wall. This corresponds to 
turning right at intersections and turning around at dead ends. In LINDSTROM, 

it corresponds to: 

(a) cyclically permuting pointer values at each non-terminal node, and 

(b) swapping two pointer values at each terminal node. 

The operations of permuting and swapping are expressed with pointer rotations (see 
Section 4.4.3.1). The algorithm is written with the assumption that non-terminal 
and terminal nodes have different structures (since the latter have no need foi link 
fields), and that this difference can be detected with the functional test ATOM (ptr). 
If this is not true, then terminal nodes can be identified as those having two nil 
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(a) (b) 

Figure 6.13 Lindstrom Traversal 

pointers. Using these rules, the algorithm LINDSTROM actually visits each termi¬ 

nal node once and visits each non-terminal node three times. 

There are a variety of other link inversion traversal schemes [§]; we will 
describe one very briefly and then another in more detail. The first one employs 
link inversions in the usual manner and also uses the empty pointer fields of the leaf 
nodes to maintain a stack [Robson 1973]. This stack contains just those nodes 
possessing a non-nil left subtree that has been visited and a non-nil right subtree 
currently being visited. (The traversal of the left subtree will always find leaf nodes 
that are available for the stack before they are actually needed.) On ascent, if the 
parent node has either a nil left or a nil right pointer, there is no ambiguity. If 
both pointers in the parent are non-nil, then a comparison of the parent pointer 
with the value at the top of the stack resolves the ambiguity. 

In answer to the question at the beginning of this section concerning the mini¬ 
mum necessary amount of working storage for tree traversal, Morris [1979] found a 
fairly simple and extremely elegant solution requiring just two temporary registers 
and no tags. Suppose that we wish to do an inorder traversal of a tree rooted at 
presf, as shown in Figure 6.14(a). Here, the circles P, correspond to individual 
nodes, and the triangles STj correspond to subtrees (possibly empty). If the tree 
were such that pres].left = nil, then (A) we could simply visit the node pres] and 
apply the process to the subtree pres].rite. But what if, as in the figure, 
pres].left ± nil? In that case, (B) we seek to transform the original tree T0 to 

another form 7j such that: 

1. The number of left edges in Tx is less than in T0. 
2. The inorder traversal of 7j is the same as that of T0. 
3. The transformation is reversible. 

If we can find such a transformation, then we can apply it until we have situ¬ 
ation (A), and the problem is solved. In fact, we can obtain Tx by finding the 
rightmost edge of T0 - that is, by following right edges in the subtree pres],left - 
and then adding the wiggly edge from pT to pres in Figure 6.14(b) and deleting the 
edge pres].left. Tx has the same inorder traversal sequence as T0 and also has one 
less left edge (and one more right edge) than T0. Finally, in order to obtain reversi- 
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(a) (b) 

bility (without a stack), we do not actually delete pres].left, rather, we transform T0 
to T2, as shown in Figure 6.14(c). This introduces a cycle, so that T2 is not really a 

tree. However, we can use the predicate 

pres] is right-reachable from pres].left 

as a boolean signal to treat pres].left as though it were nil! This logic is embodied 
in the procedure MORRIS (Algorithm 6.5). Note therein that when a node is 
visited, we reverse the transformation simply by erasing next].rite. Variations on 
this technique suitable for preorder and postorder traversal are left as exercises. 

As you can see, with all of these methods, a given link field may point, at vari¬ 
ous instants, to a child or to a parent or even to a “cousin.” This means that the 
original structure of the tree is lost until the algorithm has terminated and restored 
all links to their original values. Accordingly, traversal via tree transformations 
precludes reentrant traversal by more than one user at the same time. In addition, 
these techniques do not afford incremental traversal. Finally, most such methods 
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procedure MORRIS (ptr: link); 

var next,pres: link; 

begin 
pres := ptr; 
while pres <> nil do 

if presj.left = nil then begin 
// visit the node pres] // 
pres := pres}.rite; 

end else begin 
next := pres}.left; 
while (next}.rite <> nil) and (next}.rite <> pres) do 

next := next}.rite; {find "rightmost" node of tree; 
if next}.rite = nil then begin {mark unmarked node} 

nextt-rite := pres; 
pres := presj.left; 

end else begin {unmark marked node} 
// visit the node pres] // 
next}.rite := nil; 
pres := pres}.rite; 

end; 
end; 

end; 

Algorithm 6.5 MORRIS 

are rather complicated, with high constant factors. Morris’s algorithm is notewor¬ 
thy for its simple elegance, and is comparable in speed to traversal with a stack. 

In conclusion, we mention another traversal scheme that operates by a different 
principle. In Section 4.1.4 we discussed the use of the operators XOR or MOD to 
combine two pointers in one physical location. If we have a tree whose structure 
will not vary, then we can map it into read-only storage, and use this same tech¬ 
nique to compute the addresses for the traversal. In addition to the two 
pre-computed link values, each node requires a single, constant bit value that indi¬ 
cates whether that node is a left or a right child of its parent. Further details can 

be found in Siklossy [1972]. 

6.5 OTHER TREE REPRESENTATIONS 

The entire preceding discussion has been based upon the premise that trees are to be 
represented as binary trees with two distinguished pointers, left and right. In prac¬ 
tice, although this is very common, there are many other ways in which tree 
structures are represented in machine computation. We will briefly indicate some of 
these ways and also cite instances where they are used in subsequent sections. 
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6.5.1 Other Linked Representations 

A little reflection suggests that the complication in tree traversal algorithms is due 
to the fact that it is easier to “climb down” than it is to “climb up.” If space for 
pointers is not too tight, then the simplest solution is just to add to each node a 
third pointer, to the parent of that node (see also Exercise 6.15). In this case, a 
binary tree might appear as in Figure 6.15(a). This representation also yields the 
capability for incremental traversal. As we have seen, threads make it easy to find 
the preorder or inorder successor of an arbitrary node, but are not very helpful for 
the postorder case. Triply-linked binary trees provide a mechanism that does not 
have a preferred traversal sequence and that works for all three orderings [Fenner 
and Loizou 1981]. 

As we will see, there are many applications of binary trees in which the distin¬ 
guished links, left and right, have interpretations that are different from those 
originally introduced, eldest child and next sibling. But if we are using a binary tree 
to represent an ordered tree, note the asymmetry: It is easy to find younger siblings 
of a node, but not easy to find older siblings of a node. A representation that 
solves this problem is illustrated in Figure 6.15(b) —(d). The tree in (b) of the figure 
has been converted to a binary tree in (c), with the siblings arranged in a circular 
list. In addition, if we apply the same idea to the left links that we applied in (c) to 
the right links, we obtain Figure 6.15(d). In this ring structure, there are circular 
lists both for the relationships “next younger sibling” and “eldest child.” 

In the representations shown in Figure 6.15, the effect has been that of replac¬ 
ing sequential lists with the bi-directional lists and circular lists. The figure 
illustrates three such possibilities; there are several others. The choice among such 
representations would depend upon the relative importance of the operations of 
insertion, deletion, traversal, backing-up, etc. As a final observation about linked 
representations, consider the following. All of our schemes have employed at least 
two link fields. Is it possible to represent a tree with just one link field? Yes, if we 
are dealing with an oriented tree rather than an ordered tree! In such a case, we 
can redraw the tree of Figure 6.15(a) as Figure 6.16, employing with each node a 
single pointer to its father. Such a representation is the basis of an important appli¬ 

cation in Section 6.6.5. 

f6.5.2 Sequential Storage Schemes 

If we are dealing with a tree structure that is fairly static, it may be worthwhile to 
dispense with pointer fields altogether. Rather, the nodes can be retained in a 
vector, and additional information that encodes the tree structure can be retained in 
parallel vectors. How much additional information is required? In Figure 6.17, 
comparison of (a) and (b) suggests that two bits will suffice, as they are just enough 
to allow for the association of two binary markers, analogous to left and right 
parentheses, with each node. Figure 6.17(c) illustrates such a scheme, called marked 
preorder sequential representation, wherein the markers for a node indicate whether 
it has (i) younger siblings and (ii) any children. Note that although the nodes are 
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Figure 6.15 Alternative Pointer-Based Representations 

fixed in preorder sequence, the two bits of information with each node are sufficient 
to allow construction of the underlying tree (see Exercises 6.16 and 6.17). 

Another possibility is to associate with each node a single number that specifies 
the structure relative to that node. Such a number might be the degree of the node, 
as in Figure 6.17(d); this is referred to as preorder sequential with degrees. Alterna¬ 
tively, recalling the definition of the weight of a node and retaining that number 
with each node, we obtain Figure 6.17(e); this is referred to as preorder sequential 
with weights. Preorder sequential with degrees allows a subtree to be modified with¬ 
out having to alter parent nodes of the subtree, but it requires some computation to 
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Figure 6.16 Trees with a Single Pointer per Node 

A(B(EF(JK))C(G)D(H(LMN)I)) 

(a) An Ordered Tree (b) Corresponding List 

Node A B E F J K c G D H L M N / 

Sibling 0 1 1 0 1 0 1 0 0 1 1 1 0 0 
Child 1 1 0 1 0 0 1 0 1 1 0 0 0 0 

(c) Marked Preorder Sequential Representation 

Node ABE FJ KCGDHLMNI 

Degree 32020010230000 

(d) Preorder Sequential with Degrees 

Node A B E F J K C G D H L M N 1 

Weight 13 4 0 2 0 0 1 0 5 3 0 0 0 0 

(e) Preorder Sequential with Weights 

Figure 6.17 Sequential Representations for Trees 
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determine the extent of the subtree from the degree information. On the other 
hand, preorder sequential with weights makes it trivial to determine the extent of a 
subtree, but modification of a subtree makes it necessary to update the weights of 
all its parent nodes. (These concepts are reminiscent of the discussion of encoding 
of variable length records in Section 3.3.) The preceding schemes apply to preorder 
enumeration of the nodes of a tree; it is straightforward to devise analogous 
sequential representations for postorder enumeration of nodes. 

Just as oriented trees have a simple linked representation, as we saw in the 
preceding section, they also have a simple sequential representation. One simply 
need represent their fathers via a vector of pointers or cursors. 

6.5.3 Complete f-ary Trees 

The rest of the chapter following this section is concerned with two issues - the use 
of trees in a variety of applications, and means of obtaining efficient tree manipu¬ 
lation algorithms. With regard to efficiency, a very effective strategy is to restrict 
the variability in the tree structure, using a variety of means. Much of Chapter 10 
will be concerned with several such strategies. One such restriction is so fundamen¬ 
tal, however, that we introduce it here. With this technique it is possible to 
represent trees in sequential storage much more simply than in the preceding 
section. 

A complete t-ary tree is one with the following structure: 

1. All non-terminal nodes have degree t, except possibly the last one. 
2. All leaves are on at most two levels, k and k — 1. 
3. Leaves at level k are to the left of leaves at level k — 1. 

Thus, in Figure 6.18, (a) is a complete ternary tree and (b) is a complete binary tree. 
Complete t-ary trees admit to a particularly simple sequential storage scheme, as 
may be seen in the figure, where the information depicted at each node is the rela¬ 
tive storage address of the node. In any complete t-ary tree, the number of nodes at 
successive levels is 1, t, t2, t3,.... It is straightforward to compute the location of the 
parent, the children, and the siblings of a given node at location j, as demonstrated 
by the following equations: 

parent of j L(t +j — 2) -=-1 
t'th child of j t x (j — 1) + i + 1 (for 1 < i < t) (6.1) 
left sibling of j j — 1 (only if ((/ - 2) mod t) ^ 0) 
right sibling of j j + 1 (only if ((/' — 1) mod t) ^ 0) 

The complete binary tree is a particularly important case. Since each of us has 
exactly two natural parents, it has obvious practical value for storing a family tree 
in a compact manner. We will also see its utility in the discussion of priority queues 
in Section 6.6.4. For a complete binary tree, Eqs. 6.1 reduce to Eqs. 6.2: 

parent of j l{j h- 2) 
left child of j 2 j 
right child of j 2j + 1 (6.2) 
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(b) A Complete Binary Tree 

Figure 6.18 Complete Nary Trees 

left sibling of j j — 1 (only if j is odd) 

right sibling of j j + 1 (only if j is even) 

Complete t-ary trees are important for another reason besides their simplicity of 

representation. The regularity of a complete tree causes it to be a balanced tree: It 

has the minimum height for a tree of that degree with a given number of nodes. At 

this point, we are satisfied to use the term balance in a general, descriptive manner, 

for example, in terms of balance, the trees of Figure 6.18 are optimal, the tree of 

Figure 6.11 is (subjectively) not bad, and the right subtree of Figure 6.12 is quite 

degenerate. In Chapters 10 and 12 we will see how the concept of balance is made 

more precise in a variety of manners. 
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6.6 APPLICATIONS OF TREES 

As cited at the beginning of this chapter, tree structures pervade both everyday 
experience and computing applications. This section expounds on some of these 
applications. A significant factor is the manner in which meaning is attached to the 
nodes and to the branches; this varies with the application, as we will see. 

First, we look at the use of binary trees for maintaining a sorted list. We will 
introduce the concept here and explore it in a more quantitative form in Chapter 
10. Then we look at expression trees and, more generally, parse trees. When they 
have been constructed according to a set of grammatical rules, a compiler can use 
these trees to explicitly analyze and record the component structure of a program. 
We then return to issues from earlier chapters, first examining the relation between 
decision tables (Section 2.3.3) and decision trees, then showing how to implement 
priority queues (Section 5.1.4) via complete binary trees, and finally illustrating the 
use of oriented trees for solving the equivalence problem (Section 4.2.3). Since we 
do not call attention to the fact each time, it is well to note at the outset that trees 
are used in many of these applications as efficient representations for sets. We will 
see this accomplished in three different manners in Sections 6.6.1, 6.6.4, and 6.6.5. 

6.6.1 Binary Search Trees 

Imagine the following scenario. We are receiving data xu Xj, x3,... sequentially in 
time. Our objective is to maintain a list of the x’s that is always in order according 
to the values of the x, that have arrived. Specifically, suppose that the data consists 
of the winners of the Academy Award for Best Actress, as given in Figure 6.19, and 

that we wish to maintain them in alphabetical order. 

1961 Loren 1966 Taylor 1970 Jackson 

1962 Bancroft 1967 Hepburn 1971 Fonda 

1963 Neal 1968 Hepburn 1972 Minnelli 

1964 Andrews 1968 Streisand 1973 Jackson 

1965 Christie 1969 Smith 1974 Burstyn 

Figure 6.19 Academy Awards for Best Actress 

One approach would be to use an array A [1 .. n] with constant rearranging, as 
follows. First we have A [1] = Loren; when Bancroft arrives, we shuffle and get 
A [1] = Bancroft, A [2] = Loren; A [3] becomes Neal; when Andrews arrives, we 
shuffle and get A [1] = Andrews, A [2] = Bancroft, A [3] = Loren, A [4] = Neal; 
and so forth. This process actually corresponds to sorting by insertion, as we will 
see in Chapter 13. It is not a very good method for a large list, since it requires 
0(n) comparisons and 0(n) rearrangements for each new item. We have already 
encountered a better solution using a linked list, as exemplified by the function 
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SEARCH_LIST (Algorithm 4.1) in Section 4.2.1. In that approach, the amount of 
rearrangement for each new item is 0(1), since it requires changing just two links; 
however, there are still 0(n) comparisons for each new item. 

function BST_INSERT (nptr,rptr: link): link; 

{nptr points to node to be inserted, rptr points to root} 

type link = jnode; 
node = record 

key: {the value to be used for ordering} 
left: link; 
rite: link; 

end; 

var tptr: link; 

begin 
if rptr = nil then 

rptr := nptr; 
tptr := rptr; 
while nptrj.key <> tptrf.key do 

if nptrf.key < tptrj.key then begin {go left} 
if tptr}.left <> nil then 

tptr := tptrj'.left 
else begin {insert nptr] here} 

tptr}.left := nptr; 
tptr := nptr; 

end; 
end else begin {go right} 

if tptrj.rite <> nil then 
tptr := tptrj.rite 

else begin {insert nptr] here} 
tptrf.rite := nptr; 
tptr := nptr; 

end; 
end; 

BSTJNSERT := tptr; 
end; 

Algorithm 6.6 BST_INSERT 

Our example is somewhat fanciful. However, problems of this type, with the 
items arriving considerably faster than once a year for example, cataloging the 
identifier symbols in a program during its compilation or assembly - are very 
common. So it is important to find a solution that overcomes the 0(n) complexity. 
A common, useful method is to build a binary search tree (BST), with the property 
that the value of every node is greater than that of its left child and less than that of 
its right child. The function BST_INSERT (Algorithm 6.6) uses such an interpreta¬ 
tion of left and right to insert new nodes into the appropriate place in a constantly 
growing binary tree. It combines within one function the tree operations of look-up 
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and insertion cited in Section 6.3, but it is specific to BST’s. The algorithm reflects 
the usual assumption that a data item is generally a record containing a key, whose 
value determines the ordering, and other pertinent information as well. We assume 
that all this data is already present in the node pointed to by nptr, and that the two 
link fields in that node are both preset to nil. The input parameters are nptr, point¬ 
ing at the new node, and rptr, pointing at the root of the tree. Upon completion, 
the function returns a pointer to the location of the node in the BST containing 

nptr}.key. 

Figure 6.20 BST for Figure 6.19 

The algorithm proceeds by forking to the left or right, as determined by the 
outcomes of comparisons between the key of the new item and keys of nodes in the 
tree, until either a match or a nil pointer is found. In the former case, the key 
value is already present in the tree; in the latter case, it is not present and so it is 
inserted. In successive years, using the data from Figure 6.19 with actress name as 
key, our tree would grow to that shown in Figure 6.20. In the figure we have 
simply allocated space in each node to record the award years, including repetition. 
The actual processing requirements in real cases involving repetition would vary 

with the application. 

The binary search tree is a very important data structure. It will occupy much 
of our attention in Chapter 10, where we will also learn how to delete items from 
BST’s. One of the reasons for its importance is that it allows us to read off the 
values in order at any time during its construction simply by doing an inorder trav¬ 
ersal! Whether a BST efficiently serves its purposes of look-up, insertion, deletion, 
etc. depends greatly upon its balance (see Section 6.5.3). We will need to learn 
some additional properties of trees, in Section 10.1.2, before we can characterize the 
efficiency of BST’s for these operations. For now, making the commonly safe 
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assumption that the tree is not badly imbalanced, we can say that the times are 
proportional to the “average” height of the BST, which is 0(lg n). 

6.6.2 Recognizing Grammatical Structure with Trees 

In Section 5.2.3 we illustrated the use of stacks both to evaluate a postfix expression 
and to convert an algebraic infix expression to postfix form. The latter conversion 
corresponds to a limited form of language translation. The translation process that 
a compiler must perform is considerably more complicated; it is common for this 
process to be conducted by: 

1. constructing a tree that represents what the program intends, and 
2. traversing the tree to cause the proper machine code to be generated. 

The compiling process is a large subject in its own right [Aho and Ullman 1977; 
Gries 1971], Here, we will simply illustrate here how tree structures are commonly 
used therein. 

6.6.2.1 Expressions. In this instance, the information associated with a node is an 
operator, and the children of a node are the operands for the operator, with leaves 
corresponding to input data. If a program contains the expression 
'(A + B*C)/(D—E)', then the compiler might generate the tree shown in Figure 
6.21(a). If we perform a postorder traversal, we obtain 'ABO + DE—/', which you 
should recognize as the postfix form of our original expression. If we perform a 
preorder traversal, we obtain 7 + A*BC—DE', which corresponds to the prefix form 

of the original expression. 

Figure 6.21 Expression Trees 

If we perform an inorder traversal, we obtain /A + B*C/D-E/. This is similar to 
the original expression but algebraically different, because of the conventional 
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precedence rules. For inorder traversal to work properly, it must parenthesize 

subtrees before incorporating them at the next level. With this proviso, inorder 

traversal yields '((A+ (B*C))/(D-E))'. Note that we now have superfluous parenthe¬ 

ses, some of which can be pruned out. An advantage of both prefix and postfix 

notations is that parentheses in expressions simply disappear as an issue. 

All the discussion of this section has been predicated on the use of binary oper¬ 

ators such as of ordinary arithmetic. The unary minus sign, as in -X, can 

be treated as 0 - X. However, this raises the question of what to do with non¬ 

binary operators in general. Such might be the case, for instance, in subscripting an 

array or with a procedure call, as in the examples: 

a 15,2* j, Jfc] , or SUB1 (s, A,y + t, SUB2 (nn [z])) 

In such cases, the ordered tree corresponding to the expression might have been 

converted to a binary tree, as in Section 6.2. In Figure 6.21, if (a) is now regarded 

as such an ordered tree and converted to the binary tree in (b), recall that the post¬ 

fix expression is then obtained by an inorder traversal of the binary tree. 

Note that during compilation, expressions are being manipulated symbolically; 

they are not being evaluated. Such manipulation of expressions is not limited to the 

process of compiling. Expression trees are also used for other symbolic manipu¬ 

lations, such as polynomial arithmetic, differentiation, etc. 

< expression > 

I 
<term> 

<term> 

I 
<factor> 

< expression > 

I ^ 
<expression> + <term> 

<term> <term> * <factor> 

I I 
<factor> <variable> 

! I 
< variable > C 

I 
B 

<factor> 

I 
< variable > 

I 
A 

<factor> 

Figure 6.22 Parse Tree for the Expression '(A + B*C)/(D—E)' 
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6.6.2.2 Parse Trees. We have alluded to the fact that a compiler constructs 
expression trees from a source program. It does this by having at hand a formal set 
of rules that enables it to recognize which portions of the input text correspond to 
meaningful syntactic categories in the language. As described in Section 5.4.1, a 
very common way of specifying these rules is via BNF productions. The portion of 
compiling that has to do with comparing program text against these rules is called 
parsing. The parsing process produces an explicit parse tree to describe the intent of 
the program. We will say more about this in Section 8.6.3. For now, consider the 
application of the BNF productions of Figure 5.16 to the expression 
'(A + B*C)/(D—E)'. With these productions, a compiler would determine the parse 
tree of Figure 6.22. Note that the leaves of a parse tree are always terminal 
symbols, and that they correspond to tokens in the source program. 

In a programming language with keywords — such as if ... then ... else ..., for 
... to ... do, and the like — parsing is much more complicated than simply recog¬ 
nizing expressions and their components. In practice, the number of production 
required to specify expressions down to their terminal parts is more likely to be 
about half a dozen (rather than the three shown in Figure 5.16). In contrast, the 
number of productions required to characterize programs properly written accord¬ 
ing to the grammar of that language is commonly two hundred or so. By way of 
illustration, Figure 6.23 shows a typical parse tree for the following Pascal program 
fragment: 

fori:= 1 to 1 2 do 
if a [i] < 0 then 

x := x - a [i]; 

6.6.3 Decision Trees and Decision Tables 

Suppose that we have eight coins a,b,c,d,e/,g,h and that we are told they are all of 
equal weight except for a counterfeit one, which is lighter. With an ordinary 
balance scale, how can we determine the bad coin in just two weighings? It is fairly 
easy and very natural to depict the solution to this type of problem as a decision 
tree, as in Figure 6.24. In this figure abc: def represents balancing a,b,c against 
d,ej. There are just three possibilities - {a + b + c) is less than, equal to, or 
greater than (d + e +f) in weight. Corresponding to each of these possibilities, we 
make the appropriate second weighing at the next level of the tree. The labels on 
the leaves identify the coin that has been determined to be light, according to the 

outcomes of the weighings. 

Decision trees have many uses beyond that illustrated by this simple puzzle. 
Common examples include diagnosing situations or identifying objects, designing 
logic circuits or programs, analyzing algorithms, converting decision tables to 
machine code, etc. [Moret 1982]. In this section we confine our attention to the 
latter application. The material in Section 6.8 uses trees for analyzing more compli¬ 

cated situations. 

Decision tables were introduced in Section 2.3.3. There are two principal meth¬ 
ods for converting decision tables to executable code. One of these, the rule-mask 
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Figure 6.23 Parse Tree for a Pascal Statement 
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a~ c~ b~ h ~ g- of- t~ e~ 

Figure 6.24 A Decision Tree 

method, was illustrated in Section 2.3.3.1. This method is highly efficient in terms 
of storage utilization, but it generally requires that all the conditions be evaluated at 
the very beginning of the calculation, which may be unnecessary and wasteful. The 
second general method for translating a decision table does not have this drawback. 
It generates code for evaluating conditions sequentially, as needed; in fact, it 
constructs a decision tree. Sometimes this is done interpretively, via a special deci¬ 
sion-table language; sometimes it is done via translation to another language, such 
as COBOL or FORTRAN. In choosing among the various alternatives, a variety 
of other factors relating to efficiency are likely to be of overriding importance. 
However, our discussion is confined to the nature of the translation from decision 

table to decision tree. 

In deciding which decision tree is preferable, we must choose what measure to 
apply. In fact, there are several measures that can be applied, and they often yield 
different decision trees. The two most common ones are minimum time and mini¬ 
mum storage. These measures become both more realistic and more complicated 

when information is available about: 

pt = the probability of occurrence of rule Rh and/or 
t = the cost (time) for evaluating condition C;. 

The extent to which this additional information is useful is a moot point. The deci¬ 
sion table user must balance a potential increase in efficiency against the difficulty 

or inconvenience of providing such data. 

A more serious problem is that the determination of the best decision tree, by 
any of these measures, is an intractable (that is, exponential) problem [Hyafil and 
Rivest 1976]. We can easily see the plausibility of this claim via the following argu¬ 
ment. Let f{n) be the number of complete decision trees on n conditions. For one 
condition, /(l) = 1. For n conditions, there are n ways of choosing the condition at 
the root, and there are/(a - 1) possibilities for both of the subtrees. Since the two 
subtrees’ can be determined independently, we obtain for n> 2 the recursive 

equation 

f(n) = n x 2 x /(« - 1) (6.3) 

with solution 

m = 2”2 ><n! (6.4) 
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Because the function f{n) grows exponentially, it is important to find better 

approaches to determining the best decision tree than the brute-force method of 

simply testing all possible candidates. There are two algorithmic methods that we 

will encounter soon in this text, and that are commonly useful for coping with 

intractable problems such as this. One is the technique known as branch-and- 

bound, (see Section 6.8.3), and the other is dynamic programming (see Section 

7.4.2.1). Good results have been obtained with both of these methods for the deci¬ 

sion tree problem. Yet another possibility is to apply one of a variety of faster 

heuristic methods; these may often yield results that are within a few percent of the 

optimum [§]. 

fll R2 R3 R4 R5 

Cl Y Y N N - 

C2 Y N N Y N 

C3 - Y Y — N 

Figure 6.25 Conditions from a Decision Table 

In the interest of simplicity, we will just describe the following two heuristics 

[Montalbano 1962]: 

• the quick-rule method, which is to make those tests that will isolate a rule as 

quickly as possible; and 
• the delayed-rule method, which is to delay the tests that will isolate rules as long 

as possible. 

The quick-rule method is storage-efficient because it minimizes the number of 

conditional tests to be generated; the delayed-rule method, on the other hand, mini¬ 

mizes the average number of conditional tests to be executed. It is more common 

to assume that time is the critical resource, and to therefore use the delayed-rule 

method. Suppose, for example, that we have the decision table with the conditions 

shown in Figure 2.12, reproduced here as Figure 6.25, and that we are not using 

values for /?, or tj. Then the delayed-rule technique would cause C2 to be evaluated 

first, since it has the least number of don’t-care entries. Figure 6.26 illustrates how 

this causes the original decision table to be factored into two sub-tables, corre¬ 

sponding to the values of Y and N for C2. The process of selecting conditions and 

factoring tables continues until all the rules have been reached. As a condition is 

selected for testing, it becomes a node in a decision tree, with branches correspond¬ 

ing to Y and N. If a table is factored on a condition that has a don’t-care entry, 

then the rule corresponding to the don’t-care entry must be entered in both sub¬ 

tables. Thus, in Figure 6.26, if Cl had been selected first, then the left and right 

sub-tables would have had columns for Ri, R2, R5 and R3, R4, R5. 
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HI R4 

Cl 
C3 

Y N 

R1 R2 R3 R4 R5 

Cl Y Y N N — 

C2 Y N N Y N 
C3 — Y Y — N 

N 

R2 R3 R5 

Cl 
C3 

Y N — 
Y Y N 

^-Cc 

R^ H4 R2 R 3 

Cl Y N 

Y A k n 
r—(Ci)— 

R5 

R2 R3 

Figure 6.26 Factoring a Decision Table as a Decision Tree 

6.6.4 Heaps and Priority Queues 

Consider a data structure for a set of items, such that we can perform the following 

operations: 

insert(x,priority) — to add an item with value priority to the set referenced by x, 

remove(x,s) - to remove the item with largest (or smallest) priority value 
from the set referenced by x and assign it to 5. 

Such a structure is called a priority queue and is useful, for example, in job schedul¬ 
ing, in discrete simulations based upon event times, and within numerous 
algorithms We will encounter several of these latter applications in subsequent 
sections (see Section 6.8.3 and Section 7.4.1). The priority queue was mentioned 
originally in Section 5.1.4; however, at that point we did not know how to imple¬ 
ment it so that it would be efficient both for enqueuing and for dequeuing.1 We will 
now discover how to do this by means of a binary tree. With a BST each node is 

i Note that if successive items in time always have lower priorities, then the resulting 
priority queue functions as an ordinary queue. On the other hand, if successive items 
always have higher priorities, then the resulting priority queue functions as a stack. 
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intermediate in value to the values of its two children. For the priority queue, we 
maintain the binary tree such that the value of each node is not less in value than 

the values of either of its children. 

Suppose that our initial set of items is as follows: 
32 41 7 15 46 87 33 55 28 9 22 

We begin by placing the items at sequential locations representing the nodes of a 
complete binary tree (see Section 6.5.3), as in Figure 6.27(a). We then promote 
large values by comparing each non-terminal node with its two children. If any 
parent is less than either of its children, we exchange the parent with the larger 
child. Moreover, if a parent is demoted, we also compare it with its two new chil¬ 
dren, in case there is a downward ripple. The application of this rule to the original 

tree yields the following series of exchanges: 

15 and 55, 7 and 87, 41 and 55, 32 and 87, 32 and 33 

as shown in (b) of the figure, with the final form shown in (c) of the figure. Note 
how 32, after being demoted from the root by 87, is then further demoted by 33. 

32 

/ \ /\ 
15 46 87 33 

/\ /\ 
55 28 9 22 

(a) (b) 

/87\ 
55 33 

/ \ /\ 
41 46 7 32 

/\ /\ 
15 28 9 22 

(c) 

Figure 6.27 Complete Binary Tree as a Heap 

A complete tree with the order property among its nodes as in Figure 6.27(c) is 
called a heap',2 this use of the word heap has no relation whatsoever to its other 
meaning (a pool of storage for dynamic memory allocation, as discussed in Section 
4.1.3). A heap is useful for many applications; in particular, it provides a good 
representation for a priority queue. This is so because if we already have a heap, 
then either operation - inserting or removing an item in the heap - can be 
performed (and the heap property maintained) in 0(\g n) time. (Note that we could 
also have implemented a priority queue in an ordinary binary tree, without recourse 
to the complete binary tree representation. The choice to use a complete binary tree 
is based upon its guaranteed efficiency.) The procedures for insertion and removal 
in a heap, and for initializing it as a priority queue, are shown in P_QUEUE_H 

2 The series of promotion decisions that transforms a complete binary tree to a heap 
should be carried out by proceeding in reverse sequential order from the last non-termi¬ 
nal node to the root. Thus, in Figure 6.27(b), we began by considering 46 in location 5 
and ended by considering 32 in location 1. We will address this issue more directly in 
Section 13.2.1.2.1. Our present point of view is that the heap already exists, and our 
only concerns are how to insert another item or how to effect the removal of an item. 
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(Algorithms 6.7), analogously to the manner in which similar operations for an 
ordinary queue were shown in Chapter 5. 

For insertion, the procedure INSERT_PRQ_H takes as parameters the address 
of the heap and the value of the new object. It “activates” the next array location, 
and then shuffles objects downward in the enlarged heap until it finds the proper 
location for inserting the new object. If we originally have the heap of Figure 
6.27(c), and then insert the value 51, the node contents are exchanged as shown in 
Figure 6.28(a): 

7 and 51, 33 and 51 

It is important that the comparisons cease when the root is reached. An effective 
technique for guaranteeing this is to place a large sentinel value in the O’th location 

of the array, as illustrated by the action of INIT_PRQ_H. 

,87v 

55 

/ \ 
41 46 

/\ /\ 
15 

51 

28 9 22 

(a) Inserting 51 

33 7 \ 

/ 

55 

L 
46 

22 

/ 
41 46 

/ \ / V 
15 28 9 2$. 

51 

/\ 
33 32 

/ 

(b) Removing 87 

46 51 

/ \ / \ 
41 22 33 32 

/\ /\ 
15 28 9 7 

(c) Final Heap 

Figure 6.28 A Heap as a Priority Queue 

For removal, the procedure REMOVE_PRQ_H takes as one parameter the 
address of the heap, and returns as another parameter the object originally at the 
root of the heap. Since the heap is now smaller, the last item in the array must be 
moved. We find the proper new location for it by comparing it against the other 
heap values, starting just below the root and shuffling items upward in the heap as 
needed. The effect is the same as if we inserted the last array item at the root, 
destroying the heap property, and then restoring it via a series of comparisons and 
exchanges down just one path in the tree. We illustrate this in Figure 6.28(b) by 
starting with the final heap of (a), removing the largest value (87), and then apply¬ 

ing the changes as shown: 

7 and 55, 7 and 46, 7 and 22 

The final, restored heap is shown in (c) of the figure. 

Several minor points should be noted about the implementation shown in Algo¬ 
rithms 6 7 First, we of course have to preallocate an array adequate for the largest 
anticipated queue size; we have not spelled out the obvious necessity to guard 
against overflow. Second, we have assumed that highest priority means largest key 
value- the changes required for implementing highest priority in the sense of small¬ 

est key are trivial. Finally, in a real application, one might prefer to include a level 
of indirection to the actual queue objects, to avoid exchanging large records during 

insertion and removal. 



240 TREES 

program P_QUEUE_H; 
const inf = {a large number, forcing INSERT to terminate at root} 

prqsize = {the size of the priority queue} 
type prqobj = record 

priority: integer; 
data: ... 

end; 
prq = record 

count: 0 .. prqsize; 
items: array [0 .. prqsize] of prqobj; 

end; 

procedure INIT_PRQ_H (var heap: prq); 
begin 

heap.count := 0; 
heap.items [0].priority := inf; 

end; 

procedure INSERT_PRQ_H (var heap: prq; data: prqobj); 
var i,j: integer; 
begin 

with heap do begin 
count:= count + 1; 
i := count; j := i div 2; 
while items [j],priority < data.priority do begin 

items [i] := items [j]; 
i := j; j := i div 2; 

end; 
items [i] := data; 

end; 
end; 

procedure REMOVE_PRQ_H (var heap: prq; var data: prqobj); 
label 1; 
var i,j: integer; 

temp: prqobj; 
begin 

with heap do begin 
data := items [1 ]; 
temp := items [count]; 
count := count - 1; 
i := 1; j := 2; 
while j <= count do begin 

if j < count then {check if node has right sibling} 
if items [j].priority < items [j + 1].priority then 

j :=j + i; 
if temp.priority >= items [j],priority then 

goto 1; 
items [i] := items [j]; 
i := j; j := 2 * i; 

end; 
1: items [i] := temp; 

end; 
end; 

begin 

end. 

Algorithms 6.7 P_QUEUE_H - Implementing a Priority Queue as a Heap 
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f6.6.4.1 Alternative Implementations of Priority Queues. The preceding heap 
implementation of priority queues is hard to beat in terms of its simplicity and effi¬ 
ciency, but several factors can cause other implementations to be preferred in some 
cases. For example, suppose that there are objects with equal priorities; it might be 
important to treat them with a FIFO discipline. However, it is easy to see that the 
heap implementation gives us no guarantee of such behavior. We could remedy the 
situation by including in each queue object another field that reflects its order of 
accession, so that priority then becomes a compound value, but this solution is 
likely to be undesirable. 

There is another, more fundamental problem. Our application may need prior¬ 
ity queue operations other than just insert and remove, as listed at the beginning of 
Section 6.6.4. A common requirement is for the operation of 

merge(x,y) — to combine the priority queues referenced by x and y into one 
priority queue referenced by x. 

We could certainly accomplish this by repeatedly removing items from the priority 
queue at s and inserting them into the priority queue at r; but that method would 
be 0(n lg n), using heaps. So we seek implementations of priority queues that can 

perform all three operations in 0(lg n) time. 

Alternative implementations of priority queues include p-trees, (see Exercise 
6.25), leftist trees [Knuth 1973b], and some of the forms of balanced trees that we 
will discuss in Chapter 10. For the case that the priorities are integers in the range 
0.. n, there is an elegant, but fairly complicated implementation in which these 
values are kept as leaves in an unconstructed complete binary tree. It can be shown 
that this technique allows any of a variety of priority queue operations (including 
insert, remove, and merge) to be performed in 0(lg lg n) time [Johnson 1982; van 

Emde Boas et al. 1977]. 

Rather than pursue these, we will outline an implementation based upon bino¬ 
mial trees [Vuillemin 1978], which have interesting combinatorial properties in their 

own right. One manner of defining them is as follows: 

D.l A binomial tree B0 is a single node. 

D.2 If U and V are binomial trees Bk_x, then by adding an edge to make U the 

leftmost son at the root of V, we obtain a Bk tree. 

An alternate definition is: 

j)/ A binomial tree Bk has k children, of which the first is a Bk_j tree, the next is a 

Bk_2 tree, ... , and the last is a B0 tree. 

Both of these definitions are apparent in Figure 6.29, displaying B0 through BA. The 
figure also illustrates some of the properties of binomial trees, as follows: 

• Bk has height k and 2k nodes. 

• Bk has \ nodes on level j (whence the name). 

The nexf^tep is to generalize binomial trees to binomial forests. After that, we 
can represent a priority queue by a binomial forest that satisfies the heap condition 
(that is, the priority of a node is not lower than the priorities of any of its children). 
Two such priority queues, P of size 3 and Q of size 6, are illustrated in Figure 
6 30(a) Now, two Bk_{ trees satisfying the heap property can be merged into one Bk 
tree satisfying’the heap property simply by comparing their root nodes. The gener- 
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alized merge operation for two binomial forests representing priority queues is 

carried out by merging their constituent trees, from smaller to larger, and employing 

“carries” that are themselves binomial trees. This is diagrammed in Figure 6.30(b), 

where P and Q of (a) are combined to form the priority queue R. 

Figure 6.29 Binomial Trees 

Not only does this construction give us our merge operation in 0(lg n) time; . it 

also becomes the basis for the insertion and removal operations! Insertion, for 

example, is a special case of merging a B0 tree with the current binomial forest 

representation. For removal, we first scan the forest to find the tree B} with the 

highest priority root; then, we separate that tree from the forest and remove the 

root, splitting that tree into its children, which constitute a binomial forest of 2J — 1 

nodes; finally, we merge this forest with the original (reduced) forest. 

Binomial trees provide an effective as well as pretty implementation for priority 

queues. Their principal disadvantage is one that is shared in varying degree by all 

of the alternatives to heaps - namely, the requirement for additional storage to 

carry along various pointers. The precise amount of extra storage depends upon 

various details of implementation. For binomial trees, a discussion of these details 

and a detailed analysis of their performance as priority queues can be found in 
Brown [1978]. 
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(a) 

Figure 6.30 Merging Priority Queues as Binomial Forests 

6.6.5 Equivalence Relations 

In the beginning of this chapter, we made the distinction between oriented trees and 
ordered trees, and the subsequent discussion has been preoccupied exclusively with 
the latter and with binary trees. A representation for ordered trees requires at least 
two pointers at each node, in order to allow correct discrimination of children and 
siblings Recall from Figure 6.16, however, that an oriented tree can be represented 
using just one pointer from a node to its father; alternatively, we can use an array 
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and indices instead of pointer variables. Such an economical representation turns 
out to be entirely adequate for a variety of operations on sets. In this section, we 
will start with two very simple algorithms that provide an 0(n2) solution to the equi¬ 
valence problem, and then show how simple modifications to them improve 

performance, first to 0(n lg n) and then to essentially 0(n). 

Suppose that we have the same set of n objects, and m pairwise equivalence 
relationships between the objects, that we discussed in Section 4.2.3. Those 

relationships (Eqs. 4.6) are reproduced here for convenience: 

18 = 12 
6 = 10 
8=2 

11 = 5 

16 = 14 
9 = 1 
3 = 13 
7 = 19 

8=18 
17 = 4 
9=11 
3=9 

16 = 6 
16 = 17 
3=8 

19 = 15 

(6.5) 

We saw from the earlier discussion that there are really just three equivalence 

classes, as follows: 

(1,2,3,5,8,9,11,12,13,18) (4,6,10,14,16,17) (7,15,19) 

In a typical application, two things are needed: 

1. to process the m statements of equivalence; and 
2. to ascertain some number of times, usually proportional to n, to which equiv¬ 

alence class a given object belongs. 

We will express the fact that objects are in the same equivalence class by main¬ 
taining them in an oriented tree, and will represent oriented trees via indices in an 
array. The basic construction for building this tree will be called UNION(ij'), 
which takes two oriented trees with roots identified by indices i and j and combines 
them into one oriented tree. We assume, for brevity, that the class of an object is 
synonymous with the index of its root node in the array, and that root nodes are 
distinguishable by having index fields of zero. The basic construction for deciding 
to which equivalence class an object belongs will be called FIND(z), which takes the 
index of an object i and returns the index of the root of its tree. The type and var 
information for this development are as follows: 

type index = 1 .. n; 
extent = -n .. n; 

var father: array [index] of extent; 

To illustrate these processes, we will use the procedure UN (Algorithm 6.8(a)) 
as our first approximation to UNION and the function FI (Algorithm 6.8(b)) as our 
first approximation to FIND. By way of example, consider Figure 6.31. If we have 
the array shown in (a) representing the trees in (b), and if we then perform 
UN(FI(2),FI(4)), the resulting array values and tree structure would become as 
shown in (c) and (d). Let us apply these algorithms to Eqs. 6.5, having first initial¬ 
ized all the array values to zero. This would require the sequence of calls shown in 
Figure 6.31(e), and would yield the array shown in (f) of the figure, representing the 
oriented trees in (g) of the figure. 

Note that UN requires a constant amount of work each time it is used, and so 
the work to process m equivalence statements is simply 0(m). The work for FI, on 
the other hand, depends upon how far one must search to find the root. Thus, if 
we have the following sequence of operations: 
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procedure UN (i,j: index); 
begin 

father [i] := j; 
end; 

Algorithm 6.8(a) UN 

function FI (i: index): index; 
var k: index; 
begin 

k := i; 
while father [k] > 0 do 

k := father [k]; 
FI := k; 

end; 

Algorithm 6.8(b) FI 

UN(1,2) FI(1) UN(2,3) FI(1) UN(3,4) FI(1) ... UN(« - \,n) 

we will grow the degenerate tree shown in Figure 6.32(a), and the work to perform 

the FIND’S will be 1 + 2 + 3 + ••• + («- 1), or 0(n2). 

There are two very simple modifications that greatly improve matters. The first 

is to revise UN so that it always appends the tree of lesser weight as the child of the 
other tree. In order to accomplish this, we include with each root node the number 
of nodes in its tree; note that this is one more than the usual definition of the 
weight of a tree, wherein the root is excluded from the count. The procedure 
UNION (Algorithm 6.9(a)) incorporates this feature by interpreting a positive value 

+k of father [i] as a pointer to the father k of node i, and a negative value -k of 
father [i] as meaning that node i is a root with a count of +k. With this simple 
device, UNION is always able to append the smaller tree to the larger tree. If in 

the previous sequence of operations we now replace UN by UNION and initialize 
the elements of father to be -1 in value, we then grow the tree shown in Figure 

6.32(b). The more typical result of using UNION is demonstrated by replacing UN 
by UNION in our processing of Eqs. 6.5; this yields the array values in Figure 

6.32(c), representing the trees in (d) of the figure. It is easy to show by induction 

that a tree of n nodes grown with this weighting rule will always have maximum 
depth lg (n + 1). As a consequence, the work to perform the same sequence of FI’s 

is now 0(n lg n). 

We can enhance performance even more by making another modification, this 

time changing FI to the function FIND (Algorithm 6.9(b)). In it, we compress the 

path from a node to its father whenever a FIND(z) operation is performed, so that 

after the root has been determined, the father pointers of all the nodes on the path 

from the root to node i are set to point directly to the root. In other words, if we 

originally had the tree of Figure 6.33(a), where the circles are nodes and the trian¬ 

gles are subtrees, then a FIND operation on the node D would have the side effect 
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U N ( F I ( 1 8), F I (1 2)) 
U N ( F I ( 6 ) , F I ( 1 0)) 
U N( F I ( 8),F I ( 2)) 
U N ( F I (1 1),FI( 5)) 
U N ( F I ( 1 6), F I (1 4)) 
U N ( FI ( 9),F I ( 1 )) 
U N ( F I ( 3 ), F I ( 1 3 )) 
U N ( F I ( 7 ), F I ( 1 9 )) 
U N ( F I ( 8), F I ( 1 8)) 
UN(FI(17),FI( 4)) 
U N ( F I ( 9 ), F I ( 1 1)) 
U N(F I ( 3),F I ( 9)) 
U N(F I ( 1 6) , F I ( 6)) 
UN(FI(16),FI(17)J 
U N(F I ( 3),F I ( 8)) 
U N ( F I (1 9), F I (1 5)) 

/ father[i] 

1 5 
2 12 
3 13 
4 0 
5 12 
6 10 
7 19 
8 2 
9 1 

10 4 
11 5 
12 0 
13 5 
14 10 
15 0 
16 14 
17 4 
18 12 
19 15 

(e) (f) 

Figure 6.31 Action of Algorithms UN and FI on Eqs. 6.5 

of transforming the tree to the form in (b) of the figure. If where we originally 
applied UN and FI to Eqs. 6.5, we now apply UNION and FIND, having First 
initialized all the array values to —1, we obtain the array in Figure 6.34(a), repre¬ 
senting the oriented trees in (b) of the figure. 
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procedure UNION (i,j: index); 

var k: extent; 

begin 
k := father [i] + father [j]; 
if father [i] < father [j] then begin 

father [j] := i; father [i] := k; 
end else begin 

father [i] := j; father [j] := k; 
end; 

end; 

Algorithm 6.9(a) UNION 

Figure 6.32 Action of Algorithms UNION and FI on Eqs. 6.5 
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(a) Before (b) After FIND’ing D 

Figure 6.33 Path Compression 

function FIND (i: index): index; 

var j,k,t: extent; 

begin 
j := i; 
while father [j] > 0 do 

j := father [j]; 
k := i; 
while j <> k do begin {compress path} 

t := father [k]; 
father [k] := j; 
k := t; 

end; 
FIND := j; 

end; 

Algorithm 6.9(b) FIND 

As a consequence of adding compression to FIND, the time for a given FIND 
operation is about doubled. However, since the times for all subsequent FIND’s to 
the same object are reduced, the effect of adding compression is very significant 
when, as is common, the application has many more FIND’s than UNION’S. The 
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Figure 6.34 Action of Algorithms UNION and FIND on Eqs. 6.5 

combined effect of UNION and FIND has been analyzed and shown to yield a 
performance that is not quite as good as 0(n), but very nearly so. We will spell this 
matter out in the next section; some other comments should be made at this point: 

• The program EQUIV (Algorithm 4.3) is inferior to the UNION-FIND algo¬ 
rithm because, although they have the same time complexity, the former has 

space complexity 0(m + n), as opposed to 0(n) for the latter. 
• In using EQUIV, we cannot answer any questions about which objects are 

equivalent until all the relationships have been processed. When, as with 
EQUIV, we must read all the input before being able to obtain any answers, we 
have an off-line algorithm. By contrast, UNION-FIND constitutes an on-line 
algorithm because we can freely intersperse FIND’s with UNION’S without 

waiting for the end of the input. 
• This topic was originally motivated by the problem of determining equivalent 

sets of identifiers in a program. There are other useful applications for 

UNION-FIND, as we will see in the next chapter. 
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f6.6.5.1 The Ackermann Function. It is easy to show that the weighting rule for 

UNION in the preceding section yields 0(n lg n) performance (see Exercise 6.27). 

By using path compression with FIND as well, we obtain a complexity 0(nf(n)), for 

some function f(n) that grows extremely slowly; however, it is considerably harder 

to demonstrate this fact. One such demonstration obtains the specific result 

0{n G(n)), where 

n 2 3 ..4 5 .. 16 17 .. 216 216 _|_ 2*55536 

G(n) 1 2 3 4 5 

so that G(n) < 5 for all practical purposes [Hopcroft and Ullman 1973]. 

An even more dramatic result is obtained by using a variant of the Ackermann 

function [Beckmann 1980]. This well-known example from recursive function 

theory is usually defined to be A(m,n) as follows: 

if m = 0 then A := n + 1 
else if n = 0 then A := A (m - 1, 1) (6.6) 
else A := A (m - 1, A (m, n - 1)); 

It is also conventional to define an Ackermann function of a single variable by 

A(n) = A(n,n). The double recursion causes this function to grow extremely rapidly. 

Thus, .4(1) = 3, A(2) = 7, and (3) = 61. But remarkably, considering that the only 

increasing arithmetic operation is n + 1, 

A(4) = 2T2T2T2T2T2T2 - 3 > 10191" 

where | denotes exponentiation. This latter number vastly exceeds the estimated 

number of particles in the universe! 

Tarjan [1975] defines an even faster growing variant of the Ackermann func¬ 

tion to be A'(m,n) as follows: 

if m = 0 then A' := 2n 
else if n = 0 then A' : = 0 
else if n = 1 then A' := 2 (6.7) 
else A' := A' (m - 1, A' (m, n - 1)); 

For A'(n) = A'(n,n), as before, we find that A'(4) > 2t2f2f ... ]2 for a stack of 

65536 2’s! Finally, he introduces an inverse: 

a(n) = the least r such that n < A'(r) (6.8) 

His net result is that the UNION-FIND algorithm has a complexity that is 

&(n a(«)). We see that a(n) < 4, for all practical purposes, with a growing fantas¬ 

tically more slowly than even G(n). 
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t6.7 ENUMERATION OF TREES 

The question of how many different trees there are of a specific kind with just n 
nodes is fascinating in its own right. But also, for combinatorial applications 
involving searches in tree structures, it is important to know a priori just how large 
the search space is. By way of introduction, we address an issue that was alluded to 
when first discussing traversal. Traversal linearizes a tree structure; how can that 
structure then be recovered? Consider a binary tree with preorder traversal 
ABDEHICFJG and with inorder traversal DBHEIAFJCG. Its root must 
then be A, and its left subtree must contain DBHEI. In the left subtree, D must 
be the left child of B, and the right subtree of B must contain H EI. Going on in 
this fashion, we discover that the original tree must be as shown in Figure 6.35. 

Figure 6.35 Reconstruction of a Binary Tree From Its Traversals 

So we see that knowledge of the inorder traversal of a binary tree along with 
knowledge of the preorder traversal (or of the postorder traversal) is sufficient to 
allow reconstruction of the original binary tree. If we have a preorder traversal that 
is 1,2,... ,n, then the inorder traversal is just some permutation of the first n integers. 
How many of the n\ possible permutations correspond to attainable binary trees on 
n nodes? For n = 3, we find that the possibilities are just those in Figure 6.36(a), 
with inorder traversals shown in (b). It may seem surprising, at first, that these 
traversals are exactly the same as the output sequences that can be obtained using a 
stack on the input sequence 1,2,3 - that is, the stack permutations (see Section 
5.2.3). But this is not surprising after all, when we recognize that the stacking and 
unstacking sequences (c) used to obtain the outputs (b) are exactly the same as the 
stacking and unstacking sequences used in INORDER_S (Algorithm 6.2), when 
traversing the corresponding binary tree in (a). 

To generalize our result from three nodes to n nodes, let b„ be the number of 
possible trees on n nodes. The number of such binary trees is the sum of all possi¬ 
ble binary trees containing a root and a left subtree of j nodes and a right subtree of 
n — 1 —j nodes. This can be expressed as 

K = KK-X + b\bn_2 -bn-\bo (6.9) 
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Figure 6.36 Stack Permutations 

An explicit solution for this recurrence equation can be obtained through the use of 

generating functions [Knuth 1973a; Liu 1968]. In this approach we try to find a 

polynomial in the variable x, such that the coefficient of xn is the desired number bn. 

The method proceeds along the following lines. Let 

B(x) — ^ bnxn (6.10) 

be the generating function for the number of binary trees on n nodes. Then, we 

observe that 
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B2(x) = {bG 4 bxx + b2x2 + - ) (60 + bxx 4- b2x2 + - ) 

= b0b0 4- {b(px + bxb0)x 4- (b()b2 4- bxbx 4- b2bo)x2 + ••• 
n (6-11) 

= Z Yj’h-i*" 
n> 0 7=0 

Comparing this with the equations for R(x) and bn, we see that the coefficient of xn 
in B2(x) is the same as bn+v This leads us to 

xB2(x)=B(x)- 1 (6.12) 

A solution for this quadratic equation in R(x) is 

B(x) = -^(l - 7(1 - 4x) ) (6.13) 

Finally, use of the binomial theorem to expand 7(1 — 4x) , followed by various 
simplifications, yields 

*(*) = 1)( ))"" (614) 
n>0X y 

= 1 + x + 2x2 4- 5x3 + 14x4 4 42x5 4 — (6.15) 

The coefficients bn are the intriguing Catalan numbers [Cohen 1978], which occur in 
the solutions to numerous problems of a combinatorial nature. 

Recall that there is a one-to-one correspondence between binary trees on n 
nodes and ordered forests on n nodes. If now, for each such forest on n nodes, we 
connect the root of each tree in the forest to a common parent node, then we obtain 
all ordered trees on«4l nodes. Thus, the number of ordered trees on n 4 1 nodes 
is the same as the number of binary trees on n nodes. These are shown, for n = 3, 

in Figure 6.36(d). 

What about oriented trees and free trees? For a given number of nodes n, what 
is the distinct number of each of these? These trees specify less information than is 
contained in the ordered trees on n nodes. The answers can be obtained by generat¬ 
ing functions again [Knuth 1973a]. The results are: 

C(x) = x + x2 4 2x3 4 4x4 4 9x5 + - (6.16) 

for the number of oriented trees on n nodes, and 

D(x) = x 4 x2 4- x3 4- 2x4 4 3x5 4- - (6.17) 

for the number of free trees on n nodes. Figure 6.37 depicts the 14 ordered trees on 
5 nodes (remember that the number of ordered trees on n nodes is the same as the 
number of binary trees onn-1 nodes). They are arranged in 9 boxes correspond- 
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ing to the distinct oriented trees on 5 nodes, and in 3 rows corresponding to the 

distinct free trees on 5 nodes. 

All of the preceding discussion presumes that the n nodes are indistinguishable. 
However, there are cases where this is not so, when the tree nodes are labeled. The 
enumerations in these cases are fairly simple to derive. For ordered trees, each of 
the n\ labelings of the bn_x trees is unique, so that there are n\b„_x labeled, ordered 
trees on n nodes. The formula for the case of labeled free trees was discovered by 
Cayley, one of the earliest investigators of trees, in 1889. It states that the number 
of distinct labeled, free trees on n nodes is «"~2. We will conclude this section by 
deriving Cayley’s formula. But first we observe that, having this formula in hand, 
the n choices of a root yield n distinct oriented trees for each free tree; thus the 
number of distinct, labeled oriented trees on n nodes is nn~x. Table 6.1 illustrates 
the six cases that we have discussed, for several values of n. 

Cayley’s formula can be proved by demonstrating a one-to-one correspondence 
between the labeled free trees on n nodes and the sequences of length n — 2 over the 
set of integers {1 .. n}. To do this, we systematically delete leaves and edges from a 
labeled free tree, as follows: 

(a) Find the leaf with smallest label, output the label of its father, and delete the 
leaf and the edge to its parent. 

(b) If there are just two nodes remaining, stop; otherwise, repeat step (a). 

When applied to the tree of Figure 6.38, this procedure deletes the edges in the 
order shown in the figure, and generates the sequence 7, 1, 2, 6, 7, 1, 6. 

On the other hand, any sequence S of n — 2 values from the set {1 .. n} can be 
used to generate a unique labeled, free tree. In the case of a free tree, the degree of 
a node corresponds to the total number of edges impinging on the node, and this 
value will be one more than the number of occurrences of that node label in S; to 
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n 
labeled 

ordered 
labeled 
oriented 

labeled 
free ordered oriented free 

2 2 2 1 1 1 1 
3 12 9 3 2 2 1 
4 120 64 16 5 4 2 
5 1680 625 125 14 9 3 

6 30240 7776 1296 42 20 6 
7 665280 117649 16807 132 48 11 
8 2097152 262144 429 115 23 

9 4782968 1430 286 47 

10 4862 719 106 

Table 6.1 Number of Trees of Each Type 

Figure 6.38 Cayley’s Construction 

see this, note that a node label is recorded in S only when that node is non-terminal 

at some point. This leads to the process: 

(c) Let N = {1 .. n}, and let S = su s2,..., s„_2. 

(d) For i the smallest value from the set N that does not occur in the sequence S, 
construct an edge between node i and node % and then delete i from N and sx 

from S. 

(e) If S is non-empty then repeat step (d) with the reduced values of N and S; 
otherwise, construct an edge between the two nodes left in N, and then stop. 

By referring to Figure 6.38, we see that the application of this process to the 
sequence 5 - 7, 1, 2, 6, 7, 1, 6 causes edges to be introduced with the same unique 
ordering and generates the original labeled, free tree. Thus, by the uniqueness of 
this correspondence, we have a canonical representation for free trees, and therefore 

also for oriented trees. 

\ 
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f6.7.1 Ranking Functions for Trees 

The preceding section dealt with one aspect of combinatorial reasoning about a set 
of objects, that of counting how many such objects there are. Having determined 
that there are N such objects, a further objective is to derive a correspondence 
between the values l .. N and the objects themselves. In other words, we would like 
to be able to find a ranking function from the domain of trees to the range of inte¬ 
gers, so that we could refer to the z'th tree of a certain type. This capability has 

several practical consequences: 

• If many trees must be stored or archived, there can be substantial savings in 

memory requirements. 
• We can be sure to generate all of the trees 7j, T2,..., TN. 
• Moreover, we can generate the trees “in order.” 
• We can compare two trees 7) and 7} by applying the ranking function (f> to both 

of them, and comparing </>(7}) and 0(7}). 
• We can obtain a random tree by first generating a random number i between 1 

and N, and then using the inverse ranking function 4>~l to construct the tree 

7}. = 0-HO. 

We begin by noting that for free or oriented trees with labels, the Cayley corre¬ 
spondence already gives an encoding whereby we can compute the kth Cayley 
sequence, and then construct the corresponding tree. However, we are more often 
interested in unlabeled ordered trees or, equivalently, unlabeled binary trees. There 
are actually several very different correspondences between these trees and 
subranges of the integers. A natural ordering on binary trees 7} and 7} can be 
obtained by recursively comparing the sizes of their left and their right subtrees. 
This serves as the basis for a scheme that orders binary trees lexicographically by 
their shapes, and then relates these shapes to various permutations. Such an order¬ 
ing is illustrated by the vertical sequence of trees in Figure 6.36(a). Whereas, in 
that figure we labeled the nodes in preorder and read them in inorder, it is instruc¬ 
tive now to label them in inorder, in Figure 6.39(a). Then if we read them in 
preorder, we obtain the tree permutations, as shown in (b) of the figure; and if we 
read them in postorder, we obtain the stack permutations again (though in a differ¬ 
ent sequence) in (c) of the figure. Both of these sets of permutations, and others as 
well, have been used as the bases of ranking functions for binary and t-ary trees [§]; 
that is, they are used to exhibit a correspondence between the z'th permutation and 
the zth (unlabeled) tree. 

By using the level numbers of the leaves of a tree, we can obtain an entirely 
different ranking function. We begin by appending leaf nodes to the original nodes 
of the tree wherever it is possible to do so, creating an extended tree from the 
original tree. For the five binary trees of Figure 6.36(a), we obtain the five 
extended (and strictly binary) trees of Figure 6.40, with the original internal nodes as 
circles, and the appended external nodes as squares. It is not hard to see that, if the 
original tree had n nodes, then the extended tree has n + 1 leaves. (Why?) In 

Figure 6.40, each leaf is labeled with its level, and the level sequences are shown 

below each tree. Now suppose that we are given a set of positive integers {a,}. 
Under what circumstances can these values, for some orderings, represent the level 
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Figure 6.39 Tree Permutations 

numbers of the leaves of a strictly binary tree? It can be shown (see Exercise 6.30) 

that a necessary and sufficient condition is that 

^Va'=l (6.18) 

An ordering of the set {a,} for which this condition holds is called a feasible 
sequence, and it is fairly straightforward to construct ranking functions based upon 

such sequences [§]. 

There are many variations to the solution of the ranking problem, and the best 
method is not easily chosen. Note, though, that there are three aspects to the use of 

these methods: 

1. to be able to compute i = f(T), for a tree T\ 
2. to be able to compute T = for an index value i; 



258 TREES 

3 3 3 3 

Figure 6.40 Feasible Sequences 

3. to be able to compute the next encoded representation (tree permutation, stack 

permutation, feasible sequence, etc.), in order to generate the next tree. 

Several of the methods cited provide these capabilities in 0(n) time, and they have 

been applied, for example, to the detection of isomorphic subtrees. 
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6.8 SEARCHING FOR SOLUTIONS IN TREES 

For a large class of problems, the method of solution is to search among the nodes 
of a tree. This is not the same as traversing all the nodes of a tree, since we may be 
able to find the solution without visiting some of the nodes. Nor is it like searching 
for a specific item, such as a name in a telephone directory, since the criteria for 
having a solution can be much more complicated, involving various global features 
of the tree space. Problems of the sort that we are describing are particularly 
common in the area of endeavor known as Artificial Intelligence (AI) [Nilsson 
1980; Raphael 1976; Winston 1977]. Examples include: proving theorems, play¬ 
ing non-trivial games, “understanding” natural language, “understanding” pictures, 
controlling robots, and diagnosing illness in humans. 

As a first attempt for solving such problems, we can systematically visit every 
node in the tree. After such an exhaustive search, we may know more than we need 
to know, but we will by then have found the solution. However, since a t-ary tree 
of depth d has Of*) nodes, this brute-force approach is not feasible for many large, 
real-life problems. In such cases, techniques for focusing and restricting the search 
are crucial. We will begin by examining two comparatively simple approaches; this 
material leads us, in Section 6.8.2, to the topic of backtracking. Section 6.8.3 
presents the very useful branch-and-bound technique for restricting the search space. 
Finally, we discuss the use of trees as applied to game playing. 

6.8.1 Exhaustive Search Strategies 

Let us consider the problem of finding the shortest path from the root of a tree to a 
leaf, where the branches have associated weights that we can regard as distances. 
The tree in Figure 6.41 will serve as an example. To begin with, we might look at 
all the nodes at level 1 to see if any of them are leaves. If so, we would then pick 
the leaf at minimum distance. If none of the nodes at level 1 are terminal, we could 
then examine all the nodes at level 2 and again check for any leaves, repeating this 
process for successive levels until we finally found a leaf. Of course, if the distances 
were all the same, the task would really reduce to finding the leaf at the shallowest 
level, and we would then have obtained our objective. However, the distances in 
the figure are not equal, and we do not obtain a solution so easily. Instead, we will 
examine all those non-terminal nodes with partial distances less than that of the 
leaf. For these nodes, we will keep extending them by their descendants until either 
we find a leaf that is closer, or else none of the partial distances is less than that of 

the best leaf found so far. 

This method, known as breadth-first search (BFS), can be viewed as search that 
proceeds in ever-broadening concentric circles. It calls for the use of a queue, with 
it, as nodes on level k of the tree are removed for processing, their descendants on 
level k + 1 are inserted for subsequent processing. In this approach, we can use the 

current best leaf value to restrict the search in two ways: 

• to bypass enqueuing nodes whose distance already exceeds that value, 
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Search Discard Bypass Minimum At 

A B C D E F 88 F 

G 52 G 

H 1 49 1 

J K L M N 49 1 

0 P Q R S T 42 P 

U V W X 42 P 

Figure 6.42 Breadth-First Search 

• to discard dequeued nodes whose distance exceeds that value. 

If we apply BFS to our tree of Figure 6.41, we will examine the nodes as shown in 

Figure 6.42. We know, for instance, to discard the nodes K,L,M,N, since they are 

all at a greater distance than the current best leaf value of 49 at I. We later know 

to bypass the nodes R,S,T, since they are already at a greater distance than the 

current best leaf value of 42 at P. On the other hand, even after P has been 

located, we must still examine some nodes in the subtree at node O with a distance 

of 37, until it is certain that there are no leaves with lesser distances at deeper levels. 

Note that when O is searched / is still the best leaf; thus U at 48 is enqueued and 

later discarded, whereas V at 50 is bypassed immediately. 
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Let us consider how BFS might be implemented. First, we decide to represent 
the tree of Figure 6.41 as the corresponding binary tree, as shown in Figure 6.43.3 
In so doing, we associate distances with nodes rather than branches; namely, the 
distance from a node to its zth child is uniquely associated with that child. The 

corresponding node definition is then 

type link = fnode; 
node = record 

cost: integer; 
left,rite: link; 

end; 

Next, for obtaining the queue functions, we can employ either of the queue imple¬ 
mentations, Algorithms 5.1 or 5.2. The final procedure is BFS_TREE (Algorithm 
6.10), with input parameter root pointing at the tree to be searched, and output 
parameters goal and best identifying the location and distance of the winning leaf. 

With breadth-first search, if you imagine yourself to be the searcher and the 

tree to represent alternate paths through a maze, then while you will certainly find 
your way out, it may cost incessant tracing and retracing of your steps. A different 
(more reckless? more optimistic?) method is depth-first search (.DFS). It presumes 
that the tree to be searched is of bounded depth, and it proceeds as far as it can 

3 Note that our search really applies to an oriented tree, and that the de facto ordering is 

not significant. 
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procedure BFS_TREE (root: link; var goal: link; var best: integer); 

type qobj = record 
base: integer; 
ptr: link; 

end; 

var datum,defer: qobj; 
next: link; 
total: integer; 
wait: {queue type} 

begin 
best := maxint; 
INITQ (wait); 
defer.base := 0; defer.ptr := root; 
ENQUEUE (wait,defer); 
repeat 

DEQUEUE (wait,datum); 
if datum.base < best then {test for discard} 

if datum.ptr}.left = nil then begin {a leaf} 
best := datum.base; goal := datum.ptr; 

end else begin {process children} 
next := datum.ptr}.left; 
repeat 

total := datum.base + next}.cost; 
if total < best then begin {test for bypass} 

defer.base := total; defer.ptr := next; 
ENQUEUE (wait,defer); 

end; 
next := next}.rite; 

until next = nil; 
end; 

until EMPTYQ_L (wait); 
end- 

Algorithm 6.10 BFS_TREE 

down one sequence of branches until reaching a leaf. With that leaf value in hand, 

it begins backing up and exploring other possibilities, except where the partial 

distance at a node is already greater than the distance to the best leaf so far. 

Whereas the technique of BFS called for a queue, the technique of DFS calls 

for a stack, in order to remember where to back-up to. This time the current best 

leaf value can be used to limit the work by indicating when entire subtrees should 

be pruned and not searched further. When applied to the same tree in Figures 6.41 

and 6.43, DFS causes the nodes to be examined as shown in Figure 6.44. We 

know, for instance, to prune the nodes W,T,F, since they are all at a greater 

distance than the current best leaf value of 81 at R. Later we prune the entire 

subtree at node V, since its distance of 50 is greater than the current best leaf value 
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Search Prune Minimum At 

A B E M 83 M 
N R 81 R 
S W T F 81 R 
C G 52 G 
H 0 U 48 U 
J P V (X) / 42 P 

D K L (Q) 42 P 

Figure 6.44 Depth-First Search 

We eventually locate P at 42, but must still search the subtree of distance 12 at D to 

ensure that there is not a better solution therein. 

An implementation of DFS for this problem is the procedure DFS_TREE 

(Algorithm 6.11), with input parameter root pointing at the tree to be searched, and 
with output parameters goal and best indicating the location and the distance of the 
winning leaf. Since it is natural to express depth-first search with a stack, it should 
not be surprising that it can also be expressed recursively (see Exercise 6.32). We 
choose to employ a stack not so much for reasons of efficiency as to expose the 

nature of the backtracking that takes place in DFS. In this process, we alternate 
our direction of tree exploration between forward and backward. A handy device 
to control this is the familiar use of a variable state to control the flow of calcu¬ 
lation. As a minor point, note that a boundary value of stack [0\base = 0 is used. 
There is much more to be said about backtracking per se, but that is the subject of 

the next section. 

It is easy to see that DFS can be just as inefficient as BFS, although in a differ¬ 

ent manner - in this case, by wasting a lot of time exploring sub-optimal branches. 
From the advantage of a global point of view, it is too easy to see wherein these 
methods are inefficient in the tree of Figure 6.41. But when such a perspective is 

not possible - for example, if the figure is made more complicated by several 
orders of magnitude - then our view of the problem comes closer to the myopic 

view of a computer, and it is not so easy to be so wise. Much of the remainder of 
Section 6.8 addresses ways to try to attain some of the wisdom of this global 

perspective. What can be said, in the meanwhile, about BFS versus DFS? The 
most important point is that one should try to suit the method to the problem. In 

our example, for instance, if all the distances were the same, then the problem 
would reduce to finding a leaf of minimum depth, for which BFS would clearly be 

superior. BFS is also a good method where it is possible to employ parallel search, 

and it is safer than DFS in that it will always succeed eventually (even if much later 
in some cases). The shape of the search tree is extremely significant. If problem 

states can recur, as in searching a maze, then DFS can completely fail, unless there 
is a solution along the leftmost branch. Nonetheless there are other situations 
wherein DFS will be superior. A distinct and important consideration, also, is the 

amount of working storage required. For a /-ary tree of depth d, the size of the 

DFS stack is just 0(d), but the size of the BFS queue is 0(tci). Finally, we have 

illustrated BFS and DFS with the particular example of finding the shortest path 
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procedure DFS_TREE (root: link; var goal: link; var best: integer); 

type stkobj = record 
base: integer; 
ptr: link; 

end; 

var datum: stkobj; 
next: link; 
state: (frwd,bkwd,done); 
stack: array [0 .. smax] of stkobj; 
top: 0 .. smax; 

begin 
state := frwd; 
best := maxint; next := root; 
stack [0].base := 0; top := 1; 
datum.base := 0; datum.ptr := root; 
stack [top] := datum; 
repeat 

case state of 
frwd: begin 

if datum.base >= best then {test for pruning} 
state := bkwd 

else if datum.ptr}.left = nil then begin 
best := datum.base; goal := datum.ptr; 
state := bkwd; 

end else begin {look deeper in tree} 
next := datum.ptr}.left; 
datum.base := datum.base + next}.cost; 
datum.ptr := next; 
top := top + 1; stack [top] := datum; 

end; 
end; 
bkwd: begin 

while (top > 0) and (stack [top].ptr}.rite = nil) do 
top := top - 1; 

if top = 0 then 
state := done 

else begin {adjust value on top of stack and retry} 
datum := stack [top]; 
next := datum.ptr}.rite; 
datum.base := stack [top - 1].base + next}.cost; 
datum.ptr := next; 
stack [top] := datum; 
state := frwd; 

end; 
end; 

end; 
until state = done; 

end; 

Algorithm 6.11 DFS_TREE 
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from the root to the leaf in a tree. Such search methods can be applied to many 
other problems where the criteria for a solution may be very different; correspond¬ 
ingly, the details of the new algorithms may be different. There may not even be a 
tree data structure, as we will see in the next section! Yet the paradigms of BFS in 

a solution tree (with a queue) and DFS in a solution tree (with a stack) will remain, 
causing the new algorithms to have some essential similarities. 

f6.8.2 Backtracking 

Consider the following generalized problem: 

1. We have m sets Xx, X2,..., Xm with respective cardinalities Ny, N2,..., Nm. 
2. We wish to find an m-tuple of values xXi, x2J,... from the sets Xx, X2,..., such 

that some criterion function <b(x,„ x2J,...) is satisfied; for example, <1> is true, <D 
is maximized, etc. 

There may in fact be no such m-tuples, or one, or many. We can certainly express 

the solution in terms of nested iterations, as follows: 

for i := 1 to N [1 ] do 
for j := 1 to N [2] do 

{Test that ® (x [1 ,i], x [2,j], ...) is satisfied} 

We can represent the course of the computation as a tree wherein the index i varies 
on level 1, the index j varies on level 2, etc. The complexity of such a solution will 
be 0{NxN2 ... NJ, corresponding to the number of leaves that are on the bottom 

level of the tree. 

In a sense, we could say that backtracking is taking place in the process just 

described, but it is backtracking of a very rigid sort. The true sense of the term 
refers to the case where various constraint functions are used to restrict the search by 
pruning subtrees, as in the preceding section. As we examine the members of the 
sets in lexicographical order, if we have determined candidates for the first k - 1 
positions of our H-tuple, and if the next candidate for the kth position of the tuple 
can be rejected out of hand, then we have saved Nk+X... Nm evaluations. The 

constraint functions will be very different for different problems and can also vary 
considerably at the various levels of the tree for any given problem. There is a 
trade-off between the complexity of computing constraints to avoid computation 

and the complexity of simply evaluating a subtree. In the extreme case, with suffi¬ 
ciently sophisticated constraints, we may not have to backtrack at all! The more 

common case is that it will be feasible and worthwhile to compute some constraints, 

and that some backtracking will take place [§]. We will confine our attention to 

two issues in the ensuing sections. The first is to illustrate some issues about back¬ 

tracking that did not appear in our discussion of DFS and to consider the efficiency 

of the method. The second is to relate backtracking to the concept of nondeter- 

ministic algorithms. 
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f6.8.2.1 Systems of Distinct Representatives. Suppose that we have the sets 

S{ = {2,3,4,5}, S2 = {3,5}, S3 = {1,2}, S4 = {2,5}, 55 = {2,3} (6.19) 

and that we wish to pick one element as a representative from each set, but that the 
representatives of the sets must all be distinct. Such a situation might arise when an 
organization has many committees with overlapping memberships. If this organiza¬ 
tion must send a representative from each committee to general meetings scheduled 
in parallel, then the lack of a System of Distinct Representatives (SDR) will cause 
the organization to be unrepresented in some matters. The SDR problem certainly 
fits into the general backtracking scheme that we described in the previous section. 
The criterion function in this case is that each committee should have a represen¬ 
tative, and the constraint is that no two representatives can be the same member. 
Let us see how the backtracking solution proceeds in this case. An important 
consideration at the outset is whether we wish to look for just one solution, or all 

possible solutions. Here, we will look for all of them. 

Using the backtracking technique, we generate elements xX i, Xr,j,... of our 
m-tuple solution in succession. When we have candidates in the first k — 1 posi¬ 
tions, but cannot find a candidate in the kth position, then we need to discard the 
current candidate in the (k - l)th position and try again. However, we may have to 
discard much more than the current value of the (k — l)th candidate; the values of 
many other variables may have been affected also. Sometimes we can reverse all 
the necessary calculations to undo matters. It is often easier and safer to save on a 
stack the values of variables subject to change, and simply restore them from the 

stack when backtracking. 

For the SDR problem, we can expect to find cases where there is no available 
candidate from the kth set, consistent with the first k — 1 choices. Although it is 
simple, in this case, to delete a member from a set in order to restore matters, it is 
more instructive to imagine that we maintain a global variable active that records 
which members of the universal set have already been assigned. When making a 
forward step, we stack the value of the index in the current set and the value of 
active; when making a backward step, we restore the previous values of the index 
and of active from the stack. Whichever method is used to restore the previous 
environment, the solution tree for finding SDR’s for the sets of Eqs. 6.19 is shbwn 
in Figure 6.45, where the O’s indicate nodes that are expanded, and the X’s indicate 

nodes where pruning occurs. 

One of the problems associated with backtracking is the large uncertainty about 
how effectively the constraints will prune subtrees. Apparently trivial tinkering with 
a backtrack program can cause orders of magnitude difference in their efficiency. 
Since in some problems we do not know if there exists even one solution, there is 
the prospect of having a machine run for hours, and then not knowing if an answer 
is minutes or centuries away. Some relief from this dilemma can be obtained by 
Monte Carlo estimation techniques [Knuth 1975]. Here, we will simply point out 
one commonly effective way to tinker with a backtracking algorithm. 

In our SDR problem, we examined the sets in their given order. Set Sx has 
cardinality 4 and so the branching factor at level 1 was 4; S2 has cardinality 2 and 
so the branching factor at level 2 was 2; etc. Now backtracking is able to prune 
one subtree at a time. At level 1 in our problem, this amounts to discarding 1/4 of 
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the subtrees; at level 2, it amounts to discarding 1/2 of the subtrees, etc. It is 
often more effective to rearrange the solution tree so that the nodes of lesser degree 
are nearer the root. This makes it possible to eliminate larger subtrees with single 
prunings, rather than smaller subtrees with repeated prunings. In fact, if we do this 

by relabeling the sets as follows: 

-S' \ — Sj, S 2 — ‘S'3, S3 — S4, S 4 — S5, S 5 Si 

then the solution proceeds as in Figure 6.46 rather than as in Figure 6.45. For this 
trivial example, the reordering reduces the number of nodes that have to be 
expanded from 30 to 15, and the execution time is reduced in the same ratio. For 
larger problems the difference can be enormous. The reordering that we illustrated 
with this example is a static one, wherein the nodes on a given level all correspond 
to the same set, and so have the same degree. More sophisticated forms of back¬ 

tracking allow for: 

• arranging the levels of search dynamically; 
9 suspending the search of a subtree S if it appears to be unprofitable, and exam¬ 

ining other parts of the solution tree, with the capability of resuming the search 

of S later. 

Although we are happy to have an algorithm to solve the SDR problem, as demon¬ 
strated in this section, we note that its complexity is exponential in the number of 
sets. In Section 7.4.3, however, we will discover more powerful methods for dealing 

with the problem. 

O 

X X O X 
2 3 4 5 

X X O X 
2 3 4 5 

Figure 6.46 A Superior Backtracking Solution to Eqs. 6.19 

f6.8.2.2 Nondeterministic Algorithms. One way of viewing our backtracking 
solution to the SDR problem is that we kept making guesses at the solution until we 
found it. In order to make such guessing games work properly in a program, under 
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the name of backtracking, we have to be quite careful about various bookkeeping 
details. A very useful abstraction is obtained by allowing an algorithm to employ 
the following three idealized functions: 

choice(X) — which selects values of a variable X; 

failure(node) — which causes a path of computation in a solution tree to be 
abandoned at that node; 

success(leaf) - which causes the algorithm to terminate, with the solution 
available via the selected values leading to that leaf. 

At a pragmatic level, these functions are implemented in terms of backtracking 
with a stack, in much the same manner that recursion is implemented with a stack; 
but it is useful to imagine that they are implemented by either of the following two 
methods: 

A. Whenever there is a choice to be made, the machine clones itself as many times 
as there are possibilities, and then each of the choices is investigated in parallel 
by one of these machines. 

B. Whenever there is a choice to be made, the machine is able to guess which 
choice will lead to a solution, and then that course is the one pursued. 

An algorithm operating in either of these fashions is called a nondeterministic algo¬ 
rithm. The concept of nondeterministic algorithms was pioneered by Floyd [1967], 
and a review of the subject can be found in Cohen [1979a]. 

Of course, we don’t know how to have a machine duplicate itself indefinitely, 
nor do we know how to construct a machine that will always make a correct guess. 
Nonetheless, it seems evident that either capability, A or B, should yield a signif¬ 
icant advantage in solving problems. The reason for this is simply that we could 
then explore a solution tree in time proportional to its depth rather than in time 
proportional to the exponential number of its nodes. Now, the following type of 
problem occurs rather frequently: The solution of the problem requires exponential 
time, but once knowing a solution it takes just polynomial time to confirm it. An 
example of this would be the SDR problem as we have described it. If we are told 
that a given ra-tuple is a solution to this problem, then it requires just polynomial 
time to verify the assertion. Not knowing the answer though, it requires exponen¬ 
tial time to explore all the branches of the solution tree. Nonetheless, since the time 
to explore any single path is polynomial, a nondeterministic algorithm (or machine), 
could find the solution in polynomial time. Such a Nondeterministic Polynomial 

algorithm is said to be an NP algorithm. 

There are many problems that we know how to solve with NP algorithms, but 
don’t know how to solve with P algorithms, which compute deterministically in 
Polynomial time. Such problems are then said to be in the class NP. Evidently, the 

class of NP problems properly subsumes the class of P problems; that is, the abili¬ 
ties A or B cited above should allow us to solve problems that are in the former 
class but not in the latter one. This may be so. In fact, although intuition and a 
variety of circumstantial results indicate that the class NP is larger than the class P, 
the best efforts of computer scientists to prove this supposition hqve come to nil so 
far. What would such a proof entail? It would require proving that, for even a 
single problem known to be in NP, there is no P algorithm for its solution. Even 
though there are many NP problems for which no P solutions are known, in none 
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of these cases has the impossibility of a P solution been demonstrated. (Note that 
the SDR problem is not actually in the class NP. In Chapter 7 we will encounter 
algorithms of polynomial complexity for its solution; however, these do not consti¬ 
tute such a demonstration.) So we are left with the astonishing conclusion that the 
seemingly powerful capability to always make a correct guess in the face of uncer¬ 
tainty is of no provable advantage. This leads to the most dramatic question in 

computer science at this writing: Is P — NP7 

In discussing NP algorithms and P algorithms, we need to be aware of an 
important distinction. To frame this matter, we pose our problems in such manner 
that an algorithm should either find an instance of a solution (Yes), or else inform 
us that no solution exists (No). A P algorithm will always terminate with one of 
these responses. However, we cannot expect an NP algorithm to provide a No 
answer in polynomial time, since the possibility of making the correct guesses does 
not exist in such a case. In fact an NP problem is, by definition, one for which (i) a 
Yes answer can be detected by an NP algorithm, and (ii) this answer can be verified 

by a P algorithm. 

There is more to the story in the following circumstances, suggesting that 
indeed P / NP. It is often possible to transform or reduce one problem I to a 
different problem Y such that, if we could solve 7 in a certain manner, then we 
could also solve X in this manner. Such techniques have been applied to hundreds 
of NP problems to show that they are equivalently “hardest” problems in NP. 
Moreover, these techniques have the character that the reduction can be performed 
with polynomial complexity in the size of the problem. So if we could solve one of 
these hardest problems with a polynomial algorithm, then by composing that poly¬ 
nomial algorithm with the polynomial reduction,4 we could solve any of the other 
problems in NP with a polynomial algorithm. The class of equivalently hardest 
problems is known as NP-complete. At the present time, it is conjectured that the 
relation of the sets NP, NP-complete, and P are as shown in Figure 6.47. That no 

4 This illustrates the significance of the observation, made in Section 1.3.2.1, that the class 
of polynomials is closed under composition. 
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one has been able to find a P algorithm for even one ./VP-complete problem strongly 
suggests that P ± NP. Nonetheless, this is an open question that is the subject of 
much research; two good references are Garey and Johnson [1979] and Lewis and 
Papadimitriou [1978]. 

f6.8.3 Branch-and-Bound 

Backtracking is an improvement upon the exhaustive search that underlies DFS; 
the improvement derives from being able to prune entire subtrees. It is also possible 
to improve upon exhaustive search with a variation of BFS; this strategy is known 
as branch-and-bound. The same search tree of Figure 6.41 that we used to illustrate 
BFS and DFS can be used to demonstrate the essential feature of branch-and- 
bound, which is to open nodes for consideration and selectively close them as 
candidates for follow-up. In applying the method to the problem at hand, we will 
simply use a table of the partial distances to each open node for deciding which is 
the best candidate. The basic step in branch-and-bound consists of picking the 
open node with minimum partial distance, closing it, and opening its children. The 
repetitive application of this process to the tree of Figure 6.41 is illustrated in 

Figure 6.48. 

Close Node Open Nodes Distance At 

A B - 60 
C - 20 
D - 12 12 D 

D K - 50 
L - 59 20 C 

C G - 52 
H - 30 
/ - 49 
J - 36 30 H 

H 0-37 36 J 

J P - 42 37 O 

0 U - 48 
V - 50 42 P 

P P - 42 42 P 

Figure 6.48 Branch-and-Bound Search 

The complexity of branch-and-bound is proportional to the number of nodes 

that are closed; each such operation requires selecting the open node at minimum 
partial distance, finding its successors, and computing their partial distances. In our 
example, note that as soon as the leaf node P is closed on the seventh step, it is sure 
to be the leaf of minimal distance, and no further confirmatory search is required. 
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procedure BRANCH_BOUND (root: link; var goal: link; var best: integer); 

type prqobj = record 
base: integer; 
ptr: link; 

end; 

var done: boolean; 
next: link; 
datum,defer: prqobj; 

begin 
done := false; 
INIT_PRQ_H (pq); 
defer.base := 0; 
defer.ptr := root; 

INSERT_PRQ_H (pq,defer); 
repeat 

REMOVE_PRQ_H (pq,datum); 
if datum.ptrj.left = nil then {a leaf} 

done := true 
else begin {process children} 

next := datum.ptr}.left; 
repeat 

defer.base := datum.base + next}.cost; 
defer.ptr := next; 

INSERT_PRQ_H (pq,defer); 
next := next}.rite; 

until next = nil; 
end; 

until done; 
goal := datum.ptr; 
best := datum.base; 

end; 

Algorithm 6.12 BRANCH_BOUND 

If the implementation of BFS calls for a queue, and the implementation of DFS 

calls for a stack, what structure is needed for the implementation of branch-and- 

bound? A little reflection shows that we want to employ a priority queue, in order 

to efficiently find the open node at minimum distance. For this purpose, we can 

almost use the algorithms P_QUEUE_H intact, with the definition that the open- 

node queue objects each consist of a distance and a pointer. Another minor but 

important point is to reverse the sense of the inequality operator in 

INSERT_PRQ_H, and to reverse the sense of two inequality operators in 

REMOVE_PRQ_H, since high priority for this problem means smallest distance. 

Our corresponding implementation is the procedure BRANCH_ BOUND (Algo¬ 

rithm 6.12), with input parameter root pointing at the tree to be searched, and with 

output parameters goal and best identifying the location and the distance of the 
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winning leaf. It is instructive to compare BRANCH_BOUND with BFS_TREE 
(Algorithm 6.10). Overall, they are very similar. The principal difference is that in 
BFS we can never by sure about the relative worth of a node except by extensive 
comparisons and so must keep searching until the queue is completely empty of 
prospects, whereas in branch-and-bound we explore the tree with more assurance 
and are done as soon as we remove a leaf from the priority queue. 

Recall from Section 6.8.2 that search can be described in terms of looking for a 
tuple of values that satisfies some criterion function, subject also to some constraint 
functions. In branch-and-bound, we try to simplify matters by solving a different 
problem (X') than that originally given (X). The objective is for X' to have 
constraints such that its solution encompasses that of X, and for X' to have a crite¬ 
rion function (d>') that is a good predictor for that of X ($>). It is important that O' 
be conservative, erring on the side of admitting poor candidates, rather than exclud¬ 
ing good candidates. For our sample search problem, d>' was safe but not very 
discerning as a predictor; essentially, for any open node, it predicted zero addi¬ 
tional distance to reach a leaf. A better example would be that of searching for the 
shortest highway distance to some location, and using the airline distance from an 
open node to the destination as a predictor of value. Just as there is a trade-off in 
backtracking between the effort to refine the constraints that allow pruning and the 
effort to search subtrees, so in branch-and-bound is there a trade-off between the 
effort to find a <I>' that shaves the margin of error and the effort to close nodes. 
Branch-and-bound has been found to be a highly efficient search technique for 
many problems, and we will examine one such case in Section 7.4.4.3. One of its 
principal hazards is that the amount of information that must be stored in the 
priority queue can become rather large. Further discussion of the method can be 

found in Horowitz and Sahni [1978] and Lawler and Wood [1966]. 

6.8.4 Games 

Games provide particularly appealing instances of search trees. To begin the story, 
imagine that we are playing the following simple game [Raphael 1976]. There is an 
initial pile of seven stones, and A and B alternate with each other in removing 
stones from the pile. The rules are simply that a player must take 1, 2, or 3 stones 
when it is his turn. The objective is to cause the other player to take the last stone. 

The possibilities in this game are diagrammed in Figure 6.49. Here, the infor¬ 
mation at a non-terminal node is the number of stones still in the pile before a 
move; the branches have labels corresponding to the number of stones removed on 
a move; and the leaves are marked A or B, according to whether A or B is the 
winner in the sequence of moves leading to that leaf. There is something signif¬ 
icantly different about this tree. It embodies not just one point of view, as in the 
case of the trees in the preceding sections, but two opposing points of view. At any 
given level of the tree, a player is attempting to make a choice that will cause his 
opponent to lose; but the players alternate with successive levels, so that a see-saw 
is taking place. In a game-tree such as this, these alternate levels are called plys. 
Since the outcome of a game has always been decided when we reach a leaf, a game 
tree is best analyzed starting from the leaves and working our way back up to the 
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Figure 6.49 A Game with 7 Stones 
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root, if the size of the tree does not prevent it. To see how this works, consider the 
subtree from Figure 6.49 that is shown in Figure 6.50: 

1. Node P is a winning position for A and so can be marked with an A. 
2. At node Q, since it is A’s turn, he will rationally choose the left branch, forcing 

B to lose; so node Q can be marked with an A. 
3. Node R is a winning position for B and so can be marked with a B. 
4. At node S, since it is B’s turn, he will rationally choose the middle branch, forc¬ 

ing A to lose; so node 5 can be marked with a B. 

S 

A A 

Figure 6.50 Marking Game Tree Nodes from the Leaves Upward 

This analysis can be backed up all the way to the root, using the following 

simple rules: 

1. If it is A's (B’s) turn at a node and any of the children of the node are marked 
as winning situations for A (B), then that node is marked as a winning situation 

for A (B). 
2. If it is A’s (B’s) turn at a node and none of the children of the node are marked 

as winning situations for A (B), then that node is marked as a winning situation 

for B (A). 

The results of applying these marking rules to Figure 6.49 are shown in Figure 6.51, 
which establishes that whoever moves first can win, provided he removes two stones 
on the first move and plays rationally thereafter, as indicated by the branches in 

heavy lines. 

At this point, we need to step back from our simple example and make several 
observations. For one, we can imagine actually generating the entire tree corre¬ 
sponding to a game and then marking the nodes, but this is wasteful on two 
accounts. The tree may require an enormous amount of storage; furthermore, we 
probably do not even need it explicitly. It may be possible to generate the nodes 
sequentially according to some algorithm, in which case the information already 
obtained from some subtree of a node may make it unnecessary to generate and 
mark the other subtrees of that node. This may be seen in Figure 6.52, where the 
left-most subtree (from the root) of Figure 6.51 is reproduced. If the nodes are 
generated in postorder, then those nodes below the dashed line do not need to be 
processed at all. For example, from examining the left child, node P has been 
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Figure 6.51 The Solution to the Game of Figure 6.49 
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/ 

Figure 6.52 Avoidable Subtree Evaluations in Figure 6.51 
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marked as favoring B, so the right child is irrelevant. Also, once nodes Q, R, and S 
have been marked as favoring A, their right children can be ignored, and node T 
and U are similar with respect to B. Finally, at node V, since the left child already 
favors B, the entire middle and right subtrees can be omitted from consideration. 

Our example game is necessarily rather trivial, in order to keep the tree of 
reasonable size. In fact, it is quite easy to find a strategy that will guarantee a win, 
without such elaborate analysis. In more complicated games, on the other hand, 
the application of this principle may be very appropriate. However, such a brute- 
force approach is completely inadequate for many games - for example, for chess, 
or even checkers, with the large number of possible moves at each ply and the great 
number of plys to be followed to reach terminal nodes. In such complicated games, 
we must start at the root rather than at the leaves and explore a limited number of 
moves for a limited number of plys. At the frontier of our search in this truncated 
tree, we need an evaluation function to assess how good that potential situation may 
be. For chess, such a function could measure number and quality of pieces held by 
each player, quality of board position, special situations such as pins or checks, etc. 
Since such a function is not a binary one, the marking process then proceeds by 
minimaxing, which is the process of alternately selecting maxima and minima from 
one level to the next. This will be illustrated in the next section. 

Finally, note that there is a lot of wasteful activity in Figures 6.49 and 6.51. 
The subtree of Figure 6.50 is replicated many times in Figure 6.49, both exactly and 
with reversed logic. Yet the same analysis is applied in detail each time. Have we 
encountered any technique that can avoid this? Yes, we have; by using tabulation 
(see Section 5.4.2.1) to record the values of encoded positions, we can circumvent 
the exponential behavior exhibited in the figures. 

t6.8.4.1 Alpha-Beta Search. In the preceding section, we alluded to the infeasibil¬ 
ity of evaluating large game trees from the leaves upward. As a dramatic 
illustration of this, the complete search tree for chess is estimated to have an aver¬ 
age branching factor of 35 and an average height of 100. This corresponds to about 
35I00« 2.5 x 10154 leaves to be evaluated. Even if a computer could evaluate each of 
these possibilities in a nanosecond, it would take 10138 years to examine them all. 
Thus, for efficiently searching large trees, it is important to eliminate the need to 
search some of the subtrees by using information already obtained — in other 
words, to “prune” some of the branches. This was illustrated pictorially in Figure 
6.52. We now describe this principle more precisely, in the technique known as 
alpha-beta search. It is, in fact, a specialization of branch-and-bound to the case of 
game trees. 

Recall that selection of branches in game trees is based on some evaluation 
function whose value is maximized/minimized at alternate plys. If we refer to the 
player at even levels in the tree as the maximizer and the player at odd levels as the 
minimizer, then the alpha-beta procedure associates extra information with each 
node, as follows: 

1. At maximizer plys, an alpha value is kept with each node as the tentatively 
highest value attainable at that node. 
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2. At minimizer plys, a beta value is kept with each node as the tentatively lowest 
value attainable at that node. 

Refer now to Figure 6.53, which shows an excerpt from some larger game tree. 
The minimizer, at node P, will choose the left branch, and so the beta value for 
node P is —2. Backing up to node Q, the maximizer can record a tentative alpha 
value of —2, signifying that he can expect to get at least that much, no matter what 
else happens. Next, at node R, the minimizer will choose the right branch this time 
for a beta value of 6; and this can be propagated to node Q to change its alpha 
value to 6. Finally, if we examine node S, the fact that its value is —1 implies that 
the beta value of node T is less than or equal to —1. From the point of view of 
node Q, there is no need to also examine nodes U and V, since the right branch 
from Q is already determined to be worse than the middle branch, and it doesn’t 
matter how much worse it is. 

0 

Maximizer 

Minimizer 

Maximizer 

Figure 6.53 Pruning with Alpha-Beta Values 

To summarize matters: 

1. Alpha values can never decrease, so we discontinue search below any maximizer 
node if its current alpha value is equal to or greater than the current beta value 
of any of its minimizer node ancestors. 

2. Beta values can never increase, so we discontinue search below any minimizer 
node if its current beta value is equal to or less than the current alpha value of 

any of its maximizer node ancestors. 

To illustrate this technique, consider Figure 6.54 as representing some hypothet¬ 
ical game tree in which the leaves, drawn with their values, are generated or scanned 
from left to right. The tree is then redrawn in Figure 6.55, with the varying alpha- 
beta values shown in the non-terminal nodes. Branches to those nodes that need to 
be considered are drawn with heavy lines; branches to those nodes that are pruned 
are drawn with light lines. Since this searching method can be tricky to understand, 
and since it is awkward to convey the dynamically varying alpha-beta values in a 
diagram, you would do well to test your understanding of this method by copying 
Figure 6.54 and developing on your copy what Figure 6.55 should look like. 

In case you are stuck, or in case your tree is beginning to look more butchered 
than manicured, some remarks about what happens inside the two dotted regions of 
Figure 6.55 may be helpful. Consider First what happens in the right hand excerpt 
even though, in time, it occurs after the left hand excerpt. Node P has been deter¬ 
mined to have a tentative alpha value of 17, but this is greater than the beta value 
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Figure 6.54 A Game Tree to be Searched Using Alpha-Beta 
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of 5 at node Q. The alpha value can only increase if the middle and right branches 
of node P are examined. However, they are irrelevant because the minimizer can be 
certain that the left branch from Q gives a better beta value than the right branch 
ever will. So prune the two rightmost branches from node P. 

Consider next the left hand excerpt at the point in time that it is examined. 
Node R has been determined to have a tentative beta value of 5. While no tentative 
values have yet been established for nodes Q or U, node S is already known to have 
a tentative alpha value of 7. Thus, node T is irrelevant. Even though it may reduce 
the beta value at node R, when that value is backed up to node S, it will be discrim¬ 
inated against in favor of the better value of 7 that is available from the left branch 
of S. So prune node T and propagate the beta value of 5 from node R to node U. 
This alpha value of 5 at node U is only significant as a mark against which to eval¬ 
uate the contribution from the right branch of U (the alpha value may possibly 
increase). 

How much can be pruned using this technique? It greatly depends upon the 
actual values in the tree and the order in which the subtrees are examined. In the 
worst case, there may be no improvement at all. But in the best case, assuming a 
branching factor b and a depth d, it has been shown [Slagle and Dixon 1969] that 
the number of leaf evaluations is reduced from bd to 

r(rf+i) , (rf-i) 

b 1 ~2~ + b l~2~ - 1 (6.20) 

In other words, with the optimal sequence of encountering leaf values, alpha-beta 
search allows the tree to be searched twice as deeply for the same amount of effort 
expended in ordinary minimaxing without the pruning. What can we expect from 
alpha-beta if the sequence of leaf values is random? In that case, it has been shown 
that the depth of search is 4/3 what it would be for ordinary minimaxing [Knuth 

and Moore 1975]. 

6.9 OVERVIEW 

We began this chapter by citing the pervasiveness of trees, and this should be quite 
apparent by now. For the most part, we have dealt with explicit tree data struc¬ 
tures: how' to represent them, how to traverse them, how to associate meaning with 
them, and how to search them. In the latter topic, moreover, we encountered cases 

of solution trees where no explicit tree structure even exists. 

Trees represent an interesting middle ground between linear data structures 
(arrays, queues, stacks, strings) and the more general non-linear data structures 
(Lists and graphs). The unifying principle that every node except the root has 
in-degree of precisely one has two important consequences. It allows us to find an 
efficient scheme for representation, via the correspondence between ordered trees 
and binary trees. It also enables us to develop simple, systematic algorithms for 
traversing trees, without worrying about cycles. In the extreme case of complete 
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t-ary trees, the representation collapses to being implicit, without the need of 
explicit pointers, and this yields important efficiencies in both space and time. 

Although this chapter is about trees, it should be reiterated that in some appli¬ 
cations, we have actually used trees as powerful means of dealing with sets. One 
example occurs with priority queues, where we can rephrase the capabilities as: 

• add a member to a set, and 
• extract the minimum member of the set. 

Another occurs with the UNION-FIND algorithm, for which we can rephrase the 
capabilities as: 

• add a member to a set; 
• test for membership in a set; 
• compute the union of two sets. 

Set operations carried out by these mechanisms do not have the limitations that are 
inherent with built-in set operations in Pascal, where we are restricted to a universal 
set isomorphic to 0 .. n, for small n. 

In many ways, this chapter has covered only the first half of the subject of 
trees. When we turn to Searching in Chapter 10, we will find that trees are by far 
the most important (though not the only) data structure for that purpose. In fact, 
some authors recognize this de facto situation by including searching as a sub-topic 
of trees. For us, that approach would have caused this chapter to be intolerably 
long. More significantly, it is important to look at the subject of searching without 

being restricted to trees. 

In Chapter 5, the last topic that we studied was the intimate relationship 
between stacks and effective computability. It is intriguing to find another basic 
issue of computability in our study of trees - that of nondeterministic algorithms 

and the class NP. 

6.10 BIBLIOGRAPHIC NOTES 

• Other link inversion traversal schemes, not discussed in Section 6.4.3, can be 
found in Burkhard [1975], Fenner and Loizou [1984], and Kilgour [1981]. 

• Permutations have been used as the bases of ranking functions for binary and 
t-ary trees by a variety of techniques [Knott 1977; Rotem and Varol 1978; 
Solomon and Finkel 1980; Trojanowski 1978]. Ranking functions based upon 
feasible sequences can be found in Er [1985], Ruskey [1978], and Ruskey and 

Hu [1977]. 

• Branch-and-bound solutions to the computation of time-efficient and space-effi¬ 

cient decision trees are given in Reinwald and Solano [1966, 1967], a dynamic 
programming solution is that of Schumacher and Sevcik [1976], and an 
approach combining branch-and-bound with dynamic programming is Martelli 
and Montanari [1978]. Some heuristics are presented in Ganapathy and Raja- 
raman [1973], Pollack [1965], Sethi and Chatterjee [1980], Shwayder [1974], 
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and Verhelst [1972], Yet another approach is to generate decision table code 
by applying compiler optimization techniques [Myers 1972]. For an excellent 
review and discussion of methods and results of computing optimal decision 

trees, consult Moret [1982]. 

• Good general descriptions of backtracking and suggestions for its efficient 
implementation can be found in Bitner and Reingold [1975], Fillmore and 
Williamson [1974], Francez et al. [1977], Golomb and Baumert [1965], Pren- 
ner et al. [1972], Purdom et al. [1971], and Wells [1971]. The use of 
constraints in limiting search is discussed in Freuder [1978, 1982]. 
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6.12 EXERCISES 

Sections 6.1 — 6.2 

6.1 Discuss the circumstances under which a genealogical chart is not a tree. 

6.2 Convert the trees in Figure 6.56 as indicated: 

(a) the ordered tree of (a) to the corresponding binary tree; 

(b) the binary tree of (b) to the corresponding ordered tree. 

Figure 6.56 Trees for Exercises 6.2, 6.3, and 6.11 

Section 6.3 

6.3 Traverse the binary tree of Figure 6.56(c) as follows: (a) in preorder, (b) in 

inorder, and (c) in postorder. 

6.4 [Aho et al. 1983] In the following table, the rows correspond to the nature of 
the extended relationship between two nodes m and n (see Section 6.1), and the 
column headings “...order(w) < ...order(n)” mean that m precedes n when the 
binary tree containing m and n is traversed according to that order. For this table, 
indicate by T(rue), F(alse), or ? whether the given row and column conditions 

always, never, or sometimes occur simultaneously. 

relationship 

of m to n 

preorder(m) 
< preorder(n) 

inorder(m) 
< inorder(n) 

postorder(m) 
< postorder(n) 

m left of n 

m right of n 

m ancestor of n 

m descendant of n 
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ff6.5 [Dasarthy and Yang 1980] In a binary tree B, we can construct the 
reflected binary tree BR by exchanging the left and right subtrees at each node 
except the root. Further, for an ordered tree T, we can then construct the reflected 
tree TR, via the correspondences: T-+B-*BR-*TR. Thus in Figure 6.57, for the tree 
T\ of (a), such a sequence of transformations yields the tree TlR of (b). 

(a) Construct the sequence of transformations just described, starting with the tree 

T2 of Figure 6.57(c), and arriving at T2R. 

(b) An important notion in trees is that of the total path length P in the tree, 
equal to the sum of the numbers of edges from the root to each node. Thus, 

P(T) = 3x1+4x2 + 2x3 = 17, P{TR) = 2x1+3x2 + 3x3+4 = 21 

Prove that for a tree with n nodes, P(T) + P(TR) — P{B) + n — 1. (In our 
example, we find that 17+ 21 =29+ 10 — 1.) 

(c) Denoting by E(T) the number of leaf nodes in T, prove that E(T) + E(TR) = n. 

A 

(a) 71 

Figure 6.57 Trees tor Exercises 6.5 and 6.34 

Section 6.4 

6.6 Two binary trees are similar when they have identical branching structure, 
which means that either they are both empty, or they are both non-empty and have 
similar left and right subtrees. Write a function that compares two binary trees for 
similarity. 

6.7 Write a procedure that traverses a binary tree in preorder sequence using a 
stack. Have your program print out the data contents of the nodes as it visits them. 

|6.8 Write a procedure that traverses a binary tree in postorder sequence using a 
stack. Have your program print out the data contents of the nodes as it visits them. 
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6.9 Write a procedure that traverses in preorder sequence a binary tree threaded 
for inorder traversal. 

tt6.10 For a binary tree threaded for postorder traversal, write a procedure to 
perform the postorder traversal. 

6.11 [Lindstrom 1973] A generalization of the usual traversal orders for a binary 
tree that is sometimes useful is triple-order traversal: visit node, traverse left 
subtree, visit node, traverse right subtree, visit node. Suppose that visits to nodes 
under this scheme are numbered in serial fashion. Use Figure 6.56(c) to demon¬ 
strate that we can visit each node just once by retaining only those visits with 
number equal to 0 (or 1, or 2) mod 3. 

f6.12 For the tree of Figure 6.58, add dashed lines showing all of the edges that 
would be inserted at one time or another if it were traversed by the algorithm 
MORRIS. 

A 

D E F G 

H I J K L 

M 

Figure 6.58 Tree for Exercise 6.12 

tf6.13 Write a version of the algorithm MORRIS that could be used to traverse a 

binary tree in postorder. 

Section 6.5 

f6.14 A complete /-ary tree has / internal nodes and X external nodes, with N 
nodes altogether. 

(a) Derive formulas for / and N as functions of X. 

(b) Derive formulas for I and X as functions of N. 

t6.15 [Tarjan 1983c] By associating non-standard semantics with the links in 
binary search tree nodes, it is possible to represent a BST in such fashion that any 
one of the related nodes (parent, left child, or right child) can be accessed in no 

more than two linking operations. 

(a) Illustrate how this can be accomplished. 
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(b) Sketch the algorithmic statements required for accessing each of the three 

related nodes. 

f6.16 Write a procedure that reads an ordered tree representation as in Figure 
6.17(b) and generates an internal representation in the form of Figure 6.17(d), as 

preorder sequential with degrees. 

ft6.17 Write a procedure that reads an ordered tree representation as in Figure 

6.17(b) and generates the corresponding binary tree. 

Section 6.6 

6.18 The following table shows the Best Actor Awards for 1963 - 1977. Draw the 
alphabetical BST obtained by inserting them in chronological order, as was done in 

Figure 6.20. 

1963 Poitier 1968 Robertson 1973 Lemmon 

1964 Harrison 1969 Wayne 1974 Carney 

1965 Marvin 1970 Scott 1975 Nicholson 

1966 Scofield 1971 Hackman 1976 Finch 

1967 Steiger 1972 Brando 1977 Dreyfus 

tf6.19 Write a function analogous to BST_ INSERT for inserting a node and 
updating the threads in a BST threaded for inorder traversal. 

ff6.20 [Stephenson 1980] In the usual manner of constructing a BST, new nodes 
are always inserted at the leaves. It is also possible to grow a BST at the root by 
using the search key K to split the BST into three components: a left BST contain¬ 
ing all nodes with keys less than K, the node K itself, and a right BST containing all 
nodes with keys greater than K. For the BST of Figure 6.59(a) and the search argu¬ 
ment 44, such a splitting operation would produce the three components shown in 

(b) of the figure. 

(a) Write a function analogous to BST_INSERT for constructing a BST in this 
manner. 

(b) Analyze the comparative advantages and disadvantages of the two methods for 
constructing BST’s. 

6.21 Draw the expression tree corresponding to 

(A—(B—C)*(D + E/(F—G)*H)*(I + J)—K)/L 

f6.22 Suppose that you have 12 seemingly identical balls and are told that one of 
them is either heavier or lighter than the others. Draw a decision tree for identify¬ 
ing the odd ball and determining whether it is heavier or lighter, all with just three 
weighings. 

6.23 Given a heap to be used as a priority queue, with contents as shown in 
Figure 6.60: 

(a) What does the restored heap look like after we remove 83 from the root? 

(b) What does the restored heap look like after we add 60 to the heap of (a)? 
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(a) Original BST (b) After Splitting BST on 44 

Figure 6.59 Trees for Exercise 6.20 

Figure 6.60 Tree for Exercise 6.23 
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|6.24 [Vuillemin 1980] A Cartesian tree is a tree defined on pairs of values 
(*,, y), with the properties that it is a binary search tree with respect to the xh and a 
priority queue with respect to the yt. It is simpler, but not essential, to assume that 
there are no duplicate values in either variable. Then, rephrasing the definition 
more formally, and using L and R to denote the left and right children of a node N, 

both of the following are true: 

(a) xL < xN and xN < xR 

(b) yN > yi and yN > yR 

Draw the Cartesian tree built by inserting the following pairs: 

(8,35) (21,5) (15,17) (2,22) (12,3) (28,53) (3,48) (6,97) (5,13) 

tf6.25 [Jonassen and Dahl 1975] One of the shortcomings of implementing a 
priority queue as a heap (see Section 6.6.4.1) is that when an object is inserted and 
there are already objects with the same priority, we cannot be certain which of them 
will be removed first. An alternative scheme using priority trees, or p-trees, over¬ 
comes this problem, although at a cost 0((lg n)1 2 3 4). This scheme is based upon binary 
trees, and is illustrated by Figure 6.61, where the ordering property is such that a 
right child is always intermediate in value between its parent and its left sibling. If 
we wish to insert a new object X into this priority queue, we start at T (the root) 

and apply the following rules: 

1. If T is empty or X.priority > T.priority, then insert X with T as its left subtree. 
2. Otherwise follow left pointers from T, looking for the first node Y such that 

X.priority > Y.priority. 
3. If there is no such Y, append X as the new left leaf. 
4. Otherwise repeat the entire process with the right subtree of Fs parent. 

This is almost like ordinary list insertion, except that each item may have an associ¬ 
ated sublist. Thus, to add 7 to the tree of (a) in the figure, we would start at 15 and 
apply rule (2) to get to 4, rule (4) to get to 11, rule (2) to get to 9, rule (2) to get to 
5. rule (4) to get to 6, and rule (1) to insert 7 - arriving at the tree shown in (b) of 
the figure. The highest priority item (lowest value) is in the leftmost leaf. To 
remove it and regenerate the proper ordering among the nodes in constant time 
requires that each node contain an additional pointer, to its father. Write proce¬ 
dures for initialization, insertion, and removal in a priority queue implemented via a 
p-tree. Test your program by using it with the following sequence of I(nsert) and 

R(emove) operations: 

184, 15, 179, 173, 19, 155, R, 131, 122, 153, R, 140, 140, R, 115, 147, R, 147, R 

and displaying the /7-tree structure before and after each removal. 

f6.26 Simulate the application of the UNION-FIND algorithm to the following 

relationships: 

1. 1 = 3 
2. 2 = 9 
3. 18 - 15 
4. 6=13 

5. 14 = 11 9. 12 
6. 4 = 19 10. 14 
7. 17 = 5 11. 17 
8. 6 = 10 12. 2 

16 13. 19 = 7 
8 14. 8 = 18 
1 15. 10 = 17 

12 16. 18 = 2 

Show the resulting trees after each relationship is processed. 
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Figure 6.61 Trees for Exercise 6.25 

f6.27 In order to show that UNION without FIND (that is, with FI instead) has 
complexity 0(n lg n), it is necessary to demonstrate that the height of the tree after 
a UNION operation is bounded by Llg n. Prove that this is the case. 

Section 6.7 

f f6.28 The preorder traversal of a binary tree yields GEAIBMCLDFKJH, 
and the inorder traversal of the same binary tree yields IABEGLDCFMKHJ. 

(a) Draw the binary tree. 

(b) To your tree of part (a), add threads, shown as dotted lines, for postorder 

traversal. 

tf6.29 Draw the labeled free tree that corresponds to the Cayley sequence 
6, 8, 1,2, 12, 1, 12, 1,5, 8, 12. 

ff6.30 Prove that the condition expressed by Eq. 6.18 is both necessary and suffi¬ 
cient for characterizing the leaves of a strictly binary tree. 

Section 6.8 

f6.31 Suppose that we wish to search the tree of Figure 6.62 for a leaf at mini¬ 

mum distance from the root. 

(a) Trace the order of searching using BFS, as in Figure 6.42. 

(b) Trace the order of searching using DFS, as in Figure 6.44. 

(c) Trace the order of searching using branch-and-bound, as in Figure 6.48. 
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f6.32 Write a procedure to find the shortest path from the root to a leaf using 
DFS with recursion instead of a stack. Test your program against the tree of 

Figure 6.62. 

tf6.33 It is very useful to be able to display binary trees on an ordinary line prin¬ 
ter in a format that mimics their appearance in drawings. Write a procedure to 
accomplish this under the following assumptions: the root is to appear at the top of 
the page, the width of the contents of the nodes is bounded by an input parameter, 
and trees as large as possible short of overflowing the page width will be printed 
“prettily.” Describe the principles underlying your method, and validate the good¬ 
ness of your program by applying it to several trees of moderate size and different 
character (bushy/scrawny, regular/irregular, etc.). 

f|6.34 [Kang and Ault 1975] Given a free tree T with n nodes, suppose that we 
construct an ordered tree by selecting node u as root. Then u will have k subtrees 
S\, s2,..., sk containing mb m2,..., mk nodes respectively. Define the “moment” of 
the oriented tree rooted at u to be max (rab ra2,..., mk). Finally, a centroid of a free 
tree is a node which, when chosen as root, yields an oriented tree of minimum 
moment. Thus, if the tree 71 of Figure 6.57(a) is regarded as a free tree, then the 
moment of node B is max (1,1,7) = 7, that of node C is max (1,3,5) = 5, etc.; and 
both A and C are centroids of 71. 

(a) Write a function to compute the centroid of a tree, representing the free tree 
via the standard correspondence between ordered trees and binary trees, where 
the ordering is irrelevant. Carry out DFS on the tree, starting from the arbi¬ 
trary choice of root in the representation, and implementing DFS recursively. 
For each node X in this tree, compute the number of descendants C(A) of that 
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node (counting a node as one of its own descendants). A centroid is the first 
node encountered in this search for which C(X) > n/2. Test your program 
against the tree T2 of Figure 6.57(c). 

(b) Having found one centroid by this algorithm, what can you say about the 
existence and location of other centroids in the same tree? 

tf6.35 Write a program to solve the SDR problem by backtracking, where the 
DFS is conducted via a stack, not via recursion. Apply it to finding all of the 
SDR’s for the following sets: 

Sx = {2,4,5,6} S3 = {2,6} S5 - {4,6} 

$ = {1,4,6} S4 = {3,6} S6 = {1,4} 

Discuss your choice of data structures, with regard to both the clarity and the effi¬ 
ciency of your program. 

tf6.36 The game of 31 is played with a single die according to the following rules. 
Player A begins by orienting the die with one its six faces upward, and the number 
of pips on the face becomes the initial value. Thereafter, players B and A alternate 
in selectively tilting the die so that one of the four side faces (but not the bottom 
face) becomes the new top face, and the number of pips on the new top face is 
added to the value. (Remember that the pips on opposite faces sum to seven.) A 
player who causes the value to reach exactly 31 wins, and a player who causes the 
value to exceed 31 loses. Write a program to compute the winner of this game, 
using minimaxing. Have your program count the number of nodes that it expands. 
Can you think of any ways to improve the efficiency of search? 
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GRAPHS 

“The ways ... are dark and intricate. 
Puzzled in mazes, and perplex’d with errors; 

Our understanding traces them in vain. 
Lost and bewilder’d in the fruitless search.” 

Addison, 
Cato, act I, scene 1 

A graph is a very general kind of data structure that can be used to represent 
numerous situations - maps, computer programs, electrical circuits, chemical 
compounds, sociological relationships, etc. In each of these cases, it is convenient 
to portray a graph as a set of points with connecting lines. This might suggest that 
a graph is basically a geometrical object; such an interpretation is misleading, 
however. A graph is fundamentally a combinatorial object — that is, a set of 
points and a particular set of connecting lines out of all possible sets of such lines. 
Because of the generality of graphs and the great diversity of ways that they are 
used, it is a formidable task to master all of the ideas associated with them. This 
state of affairs is reflected in the fact that whereas there are hardly any books dedi¬ 
cated to structures such as arrays or stacks or trees, there are numerous books 
devoted to graphs and their mathematical properties. You may wish to read this 
chapter in parallel with one of them [§]. This chapter has a more theoretical flavor 
than the other chapters, reflecting very modestly some of this profusion of concepts 
from graph theory. It is uncommon to include such material in a book devoted to 
data structures. We choose to do so because graphs sustain many powerful tech¬ 
niques, yet one can hardly employ them without having some awareness of the basic 
theoretical ideas that create these possibilities. 

The terminology employed for describing graphs and their properties also 
reflects their generality; this terminology is distressingly non-standard. The most 
striking evidence of this is that there are two kinds of graph, directed and symmet¬ 
ric. Some authors have the point of view that graphs are basically directed, with 
the symmetric variety as a special case; others consider graphs to be naturally 
symmetric, with the directed variety as a special variation. There is some virtue in 
this dichotomous view, in that many applications are distinctively expressed in terms 
of just one of these two kinds. But it is also the case that a great number of 
concepts and applications apply to both kinds. Therefore, our approach is to treat 
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them in parallel as much as possible, indicating to the reader whenever the 
distinction is important. 

The earlier sections of this chapter cover some of the terminology associated 
with graphs, then the most important means for representing them, and next various 
ramifications of the most evident feature of graphs - the extent to which they are 
“connected.” This coverage is sufficient to allow us to then discuss in moderate 
detail, in Section 7.4, a variety of practical applications of graphs. Yet, graphs have 
such varied and numerous uses that several important topics are not covered in that 
section. So, in Section 7.5, we endeavor to place these other topics in perspective, if 
only in summary. 

7.1 DEFINITIONS AND TERMINOLOGY 

The terminology associated with graphs is extensive and, as mentioned, notoriously 
non-standardized. This section captures in one place most of the basic terminology 
other terms will be introduced as needed. Some readers may prefer to skim it rather 
quickly, and come back to it as the need arises. 

Figure 7.1 Two Graphs 

With graphs we are concerned with two sets of entities. The first is the set 

V = {v„ v2,..., vm} of vertices, or nodes. The second is the set E = {ex, e2,..., en} of 
edges, or arcs, which connect pairs of vertices. By an abuse of notation, we will 
sometimes use V to denote the set of vertices, and other times use V in the sense of 
| V\, the cardinality of V; the same remark applies to E, for the edges. The proper 
interpretations should always be clear from the context. In Figure 7.1(a), we have 
the case of a directed graph, or digraph, as indicated by the arrows; it is common 
and useful to employ the term arc rather than edge in this case. Vertices connected 
by an arc are adjacent; more precisely, as an example from (a), B is adjacent to E, 
and E is adjacent from B. In Figure 7.1(b), we have the undirected case, which we 
will simply call graph, and wherein it is useful to employ the term edge. Here, 
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vertices joined by an edge are simply said to be adjacent to each other. If we imag¬ 
ine that each edge in (b) really denotes two arcs with opposite orientations, then 

indeed a graph can be regarded as a special, symmetrical case of a digraph. 

Conversely, we may regard a digraph as an orientation of a graph, wherein a direc¬ 

tion has been assigned to each edge; in this case, the graph is then the underlying 

graph of the digraph, wherein the former is obtained by disregarding the directions 

of the arcs in the latter. 

The notion of adjacency is so fundamental that it is often convenient to use the 

symbol T(T) to denote all the vertices that are adjacent from a given set of vertices 

X, and likewise the symbol r-’(T) to denote all the vertices that are adjacent to a 

given set of vertices X. Thus, in (a), T{A} = {B,E}, and T_1{5, E} = {A, B, C, D}; 

in an undirected graph, of course, F(A) = The notion of adjacency can be 

applied to edges as well as vertices. In (a), for instance, the arc BE is adjacent to 

the arcs ED and EF, at vertex E; in (b), on the other hand, the edges PQ, QR, and 

QS are all adjacent to one another, at vertex Q. Adjacency is a relation between 

either pairs of vertices or pairs of edges. There is also a useful relation between the 

vertices and the edges of a graph, that of incidence; each arc or edge of a graph is 

incident upon precisely two vertices that are its endpoints. 

The fact that adjacency (the presence of an arc or an edge between two vertices) 

is a relation is worth emphasizing. As an example, the graph in Figure 7.2 portrays 

the “divides” relationship on the set from Section 2.4.1.1. Note that the relation 

depicted by a digraph is asymmetric. The edges of a graph like that of Figure 

7.1(b), on the other hand, always manifest a relation that is symmetric and transi¬ 

tive; that is, the vertices of a graph form disjoint connected components. In this 

case there are two components, and for any pair of vertices in the same component, 

there exists some path of successive edges that connects them. We can specify a 

path either by listing its sequence of edges or by listing its sequence of vertices. 

Thus AB, BE, EF, FD and ABEFD describe the same path in (a) of Figure 7.1, but 

the latter notation is clearly simpler. If the graph in (b) had an appropriate, addi¬ 

tional edge, such as OT, then it would be a connected graph, with a path between 

any pair of vertices. 

Figure 7.2 A Digraph as a Relation 
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The concept of connectivity for a digraph is less simple. The example in (a) is 
said to be weakly connected because the underlying graph is connected. However, 
the more important issue in a digraph is whether it satisfies the condition that from 
any vertex, we can find paths to every other vertex. In the present case, for exam¬ 
ple, even though there is a path from A to D (ABCD), there is no path from D to 
A. When a digraph does satisfy this condition, however, it is said to be strongly 
connected. The graph in (a) can be made strongly connected by the addition of an 
arc from F to A. 

In talking about paths in graphs, we may be concerned more with the vertices 
that we visit, or more with the edges that we traverse, as we will see in Section 
7.4.4. In either event though, paths that contain (a) repeated edges or (b) repeated 
vertices may be disallowed for a given problem. In such cases, where neither (a) 
nor (b) occurs, the path is said to be simple. Implicitly, most of the paths discussed 
in this chapter are simple ones. Also, if the final vertex of a path is the same as the 
initial vertex, then the path is a circuit, or cycle. It is legitimate to have a circuit of 
length two in a digraph, but in the undirected case we insist that the term is not 
meaningful unless the length is at least three. 

It should be apparent that a tree is really a restricted instance of a graph, satis¬ 
fying the three conditions: 

1. It is connected. 
2. It has no circuits. 
3. It has a distinguished node, called the root. 

As a direct consequence of these conditions, a tree with V vertices must have V — 1 
edges. Because it has a distinguished node, a tree may be thought of as a digraph, 
with all arcs either pointing away from the root or toward the root. In fact, as we 
have seen in the preceding chapter, this common polarity allows the arrows to be 
omitted, unless we wish to emphasize either logical dependency or physical linking. 

In the case of a tree, each node except the root has precisely one arc entering it, 
and the term degree refers to the number of arcs leaving it. In the case of a 
digraph, we have to distinguish between the in-degree (| F—1 (AT) |) and the out-degree 
(| T(A) |) of a vertex X. For example, in Figure 7.1(a), vertex C has in-degree 1 and 
out-degree 2, while vertex D has in-degree 3 and out-degree 1. In the undirected 
case, the degree of a vertex is simply the number of edges incident upon the vertex; 
thus, in (b) of the figure, vertices S and W are, respectively, of degrees 4 and 1. A 
graph wherein all the vertices have the same degree is said to be regular. Note that 

a 2-regular graph simply consists of one or more cycles. 

The graph of Figure 7.3(a) has a new feature, the association of numerical 
weights with its edges. Typically, these weights correspond to distance, time, cost, 
etc. It is equally feasible to have weights on the arcs of a digraph, perhaps with 
unequal weights on some opposing arcs. Such might be the case for a map of a 
city, wherein the nature of one-way streets would cause it to take longer to go from 
A to B than from B to A. In the graph of Figure 7.3(b), we see symbolic labels 
associated with the arcs rather than weights. Labels are often used to specify which 
course of action T(v,i) is to be followed, depending upon which vertex v we are at, 
and what input i we next receive. Whereas there are many examples employing 
weighted edges in this chapter, it is more convenient to explore the utility of labeled 

edges in Section 8.5.2, with reference to Finite State Machines. 
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(a) Weights (b) Labels 

Figure 7.3 Edges with Values 

Consider next the graphs in Figure 7.4. They illustrate two complications that 
may arise when dealing with graphs. In the digraph of (a), we have cases of an arc 
going from a vertex to itself; such an arc is called a loop. In the graph of (b), we 
have multiple edges connecting the same two vertices, yielding a multigraph. Note 
that we may also have loops in graphs and multiple edges in digraphs. Loops pose 
a minor complication and multiple edges pose a larger one. When a graph has 
neither of these features, it is said to be a simple graph4, for most applications, 
simple graphs are sufficient. Except for some passing references to multigraphs, the 
graphs in this chapter are always assumed to be simple. 

(a) Loops (b) A Multigraph 

Figure 7.4 Non-Simple Graphs 

Fortified by these basic definitions, let us conclude this section with some intro¬ 
ductory remarks concerning computations with graphs. At the outset, you may ask 
what makes a graph different in principle from a generalized form of a list, such as 
a multilist or a List structure. After all, they both seem to consist of nodes and 
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links. There are some important differences, and these distinctions also convey 
some of the nature of “graph processing.” For one, the structure of generalized lists 
is usually very regular, with each node containing the same number of links to other 

nodes. The degrees of the vertices in a graph may vary independently, however, 
from 0 to V — 1. 

More importantly, the edges in graphs are of equal importance with the 
vertices, whereas in generalized lists they are simply the “glue” that binds the nodes 
together. Thus, the edges in graphs will often have functions defined upon them, 
such as weights, labels, etc. Many algorithms on graphs start with a given graph 
G — (V,E) and derive from it a subgraph H = (V', E'), wherein V'^V and E'^E, 
according to various constraints and conditions. Clearly, the edges in a graph have 
an importance beyond that of mere glue. 

A final remark in this introductory section has to do with the complexity of 
computations with graphs. With other data structures, we have been able to char¬ 
acterize algorithms operating upon them in terms of one size parameter, as in 
0{f(n)). With graphs, it is necessary to characterize complexity in terms of two size 
parameters, number of vertices V and number of edges E, or 0(f(E,V)). Given the 
value of V, then evidently E can vary from 0 to C{n,2), which is OiV2). The relative 
sparsity or density of edges in a graph is significant both for issues of representation 
and for choice of an algorithm to solve a particular problem. In the maximal case, 
where there is an edge or arc connecting each of the C(n,2) pairs of vertices (v„ vj), 
then the graph is complete. The complete graph on n vertices is commonly denoted 
by Kn; thus the graph of Figure 7.5 is K5. 

Figure 7.5 The Complete Graph K5 

7.2 OPERATIONS AND REPRESENTATIONS FOR GRAPHS 

It is fairly easy to specify the basic operations on graphs by generalizing those that 
we encountered with trees. To begin with, we need the following operations: 

successors(V) - to locate all vertices IF) in T(F); 
predecessors{V) - to locate all vertices {/, in T_1(F); 
vertices(E) - to locate the endpoint vertices Vl and Vj of the edge E. 
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At a slightly higher level, we need operations for inserting and deleting edges; less 
commonly, we need operations for inserting and deleting vertices. However, the 
diversity of uses for graphs is so great that it becomes difficult to generalize to the 
next higher level of operations. More so than in any other part of this book, each 
of the major sections of this chapter should be approached as a brand new topic. 

With regard to representation, we saw in Section 6.2 that trees could be “regu¬ 
larized” by virtue of a one-to-one correspondence between ordered trees and binary 
trees. Is such a scheme possible with graphs? The answer is Yes for graphs that are 
restricted in various ways [Pfaltz 1975; Smyth and Radaceanu 1974], but such 
solutions are too limited in application for our purposes. Moreover, in the case of a 
tree, it was possible to associate directly with each vertex its list of successors. In a 
graph, however, a given vertex may be a successor (and a predecessor) to several 
other vertices; so the references between X and r(Y), or between X and r_1(Y), 
need to be indirect (that is, via links), so that sharing can take place. The usual 
choices for representing a graph are to use either a set of lists or an array. We will 
begin by illustrating these two methods and their variations, as applied to the 
digraph of Figure 7.6. After reflecting upon the issues affecting a choice of repre¬ 
sentation, we conclude by citing some alternative possibilities. 

a 

Figure 7.7 shows an adjacency structure for the example digraph. (The term 
adjacency list is often used, but it fails to convey the more specialized nature of the 
representation.) This structure contains a list of vertex nodes, and each of these 
vertex nodes serves as a header for a list of edge nodes for that vertex. The amount 
of information that is stored in each vertex node or edge node would, of course, 
vary with the given circumstances. In this case, each edge node must specify the 
identity of the vertex adjacent from the header vertex via that edge, and also the 
value of the label on that edge. An adjacency structure for an undirected graph 
would differ from that of Figure 7.7 only in that each edge would have to appear 
on the edge list for two vertices. It is important to realize that a representation via 
an adjacency structure is not unique, because of the arbitrary order within each 
edge list. Therefore, an algorithm applied to two representations of the same graph, 
different only with respect to their edge list orderings, can yield two dissimilar 
results. We will see this demonstrated in Section 7.3.1. 
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Figure 7.7 Adjacency Structure for Figure 7.6 

In Figure 7.7, the vertex list is maintained in an array, and the individual edge 
lists are maintained as linked lists. Alternatively, the vertex and edge lists might 
both be in arrays or both be in linked lists. The choice would depend principally 
upon the relative importance of having random access to the vertex/edge data 
versus being able to modify the lists of vertices/edges. Figure 7.8 illustrates the use 
of arrays for both the vertex and edge lists. This structure is sometimes called an 
indexed list.1 The data values associated with a given entry in the vertex-list array 
specify (a) how many members belong to that vertex in the edge-list array, and (b) 
the offset of those members from the beginning of the edge-list array. 

The principal alternative to an adjacency structure is the adjacency matrix, as 
illustrated in Figure 7.9 for our example digraph. Such a matrix has one row and 
one column corresponding to each vertex. Edges correspond to non-null entries; a 
value in the ith row and y'th column indicates relevant information about an edge 
from vertex i to vertex j - in this case the value of the corresponding label. Thus, 
in an adjacency matrix, each edge is implicitly determined by a tuple < v,-, v,- >. 
Note that this implied determinacy fails in the case of a multigraph, since there may 
be several edges with the same tuple values! (This limitation does not apply in the 
case of an adjacency structure.) For some computational processes, it is useful to 
store something other than a null where there is no edge; an example of this is 
storing a very large number instead of a zero, in the case of weights. Of course, in 
the case of an undirected graph, the adjacency matrix would be symmetric. 

How do we choose between an adjacency structure and an adjacency matrix 
representation? Some of the relevant factors are space, computational efficiency, 
and flexibility. Let us consider each of these in turn. 

Space. The space for an adjacency structure is 0(V + E), which is fine when a 
graph is sparse, but can become very cumbersome (especially with the overhead of 

i We have seen such structures earlier, without making special note of them. Examples 
include the representation of sparse matrices, in Section 2.8, and the representation of 
variable length records, in Section 3.3.2 (see Eq. 3.1). 
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a C 

c D 

d E 

d D 

b A 

a E 

c B 

Figure 7.8 Indexed List for Figure 7.6 

A B C D E 

A 0 0 a c 0 
B 0 0 0 0 d 
C b 0 0 d a 
D 0 c 0 0 0 
E 0 0 0 0 0 

Figure 7.9 Adjacency Matrix for Figure 7.6 

the pointers) when the graph is dense with edges. The adjacency matrix always 
requires OiV2) space, which is inefficient for a sparse graph and very efficient for a 
dense one. Particularly if there is extensive auxiliary information associated with 
each edge in a sparse graph, then it would be inefficient to store that information in 
the matrix locations, and so an auxiliary edge vector would be required as well. On 
the other hand, if the edges have no associated weights, labels, etc., then a bit 
matrix should suffice, and this will almost always be efficient in space. 

Computational efficiency. An algorithm that operates on a graph represented as 
an adjacency structure may have a complexity as low as 0(V + E), which may be as 
low as 0{V) for a sparse graph. For the adjacency matrix, however, the corre¬ 
sponding complexity can hardly be less than OiV2) (see Section 7.5.3). This is 
counterbalanced by two factors - the capability of accessing information about a 
random edge in constant time, and the compact manner in which the adjacency 
matrix can be manipulated. 
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Flexibility. With an adjacency structure, it is cumbersome to vary the edges 
incident with a vertex; with an adjacency matrix, it is easy to insert or delete edges. 
The organization of an adjacency structure makes it straightforward to find F(X) 
for a vertex X, but to locate r-'(X) would require either extensive searching or an 
auxiliary, inverted list structure. With an adjacency matrix, on the other hand, it is 
just as easy to find either of the sets T and T_1. 

There are other representations for a graph. The most significant of these alter¬ 
natives is the incidence matrix, containing V rows and E columns. Each column has 
just two non-zero entries, in the rows corresponding to the two ends of an edge. 
Incidence matrices do not have the problem of ambiguity for representing multi¬ 
graphs that adjacency matrices have. In terms of space, an incidence matrix is as 
good as an adjacency matrix for a sparse graph, OiV2), but it could require an exor¬ 
bitant number of entries for a dense graph, OiV3). An incidence matrix for our 
example graph is shown in Figure 7.10. Note the use of positive and negative 
entries to denote the polarity of the arcs; in the case of an undirected graph with 
no values on its edges, we see that an incidence matrix could be efficiently repre¬ 
sented as a bit matrix. For still another representation possibility, see Exercise 7.3. 

1 2 3 4 5 6 7 

A a c 0 -b 0 0 0 
B 0 0 d 0 0 0 -c 

C —a 0 0 b d a 0 
D 0 —C 0 0 -d 0 C 

E 0 0 -d 0 0 —a 0 

Figure 7.10 Incidence Matrix for Figure 7.6 

7.3 CONNECTIVITY 

Under the subject of connectivity in graphs, we subsume several related topics 
related to the notion of reachability T*, which means that “we can get to vertex B 
(for example) from vertex A.” The concept is rather straightforward for undirected 
graphs; we have already seen that the adjacency relation causes the graph to be 
partitioned into connected components. We have only to start at vertices and 
search for all their neighbors, a process that can be carried out in several manners. 
With digraphs, the issue is more complicated because of the distinction between 
weak and strong connectivity. In the succeeding sections we consider first: 

• the implications of various manners of searching a graph, and 
• how to find the articulation points of a graph, which are the vertices whose 

removal would cause a graph to become disconnected. 

We then turn to digraphs and investigate: 

• how to construct a reachability relation between vertices, and 

• how to find the strong components of a digraph. 
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7.3.1 Search Trees in a Graph 

In Section 6.8.1 we examined two different techniques for searching trees, breadth- 
first (BFS) and depth-first (DFS). These same techniques are used for searching 
graphs, subject to two complications: We may encounter some vertices more than 
once in our search, and we may not encounter other vertices at all. In order to 
solve the first problem, we must mark vertices when they are visited; this is reminis¬ 
cent of the technique of Algorithms 4.6 (COUNT_LIST) and 4.7 (MARK_LIST). 
The second problem is solved by looking for unmarked vertices after such a search, 
and then initiating further searches as needed. Every time that we initiate a new 
search, we construct a new search tree in the graph. When we are done, the trees of 
this forest will span every vertex in it, and so they are called spanning trees.2 

In describing the application of BFS and DFS to graphs, we will assume an 
adjacency structure representation like that of Figure 7.7. The corresponding Pascal 
syntax is shown in Figure 7.11. Instead of placing a boolean marker in the vertex 
nodes, we have included the field data in which to record the sequence numbers of 
the visits, and also the field dad by which to point to the parent of the vertex in the 
search tree. Also, we will assume that vnode \Y].vid— 'A', vnode [2].vid =/B/, etc. 
Note that the vertices reference the edges via pointers, whereas the edges reference 
vertices via cursors. 

type vndx = 0 .. vmax; 
eptr = jenode; 
enode = record 

vno: vndx; 
data: {depending upon the application) 
next: eptr; 

end; 
vnode = record 

vid: char; 
dad: vndx; 
data: {depending upon the application) 
head: eptr; 

end; 

var vlist: array [vndx] of vnode; 

Figure 7.11 Pascal Syntax for Adjacency Structure 

In breadth-first search, we treat vertices X in the order in which they occur in a 
queue. As we dequeue vertices that are at distance k from the root, we enqueue any 
vertices in T(A) that have not yet been visited. Thus, vertices at distance k + 1 

2 In the case of trees, we used the term traversal for a systematic visit to each node, and 
reserved the term search for a more conditional exploration of the nodes. For graphs, 
with their much more general structure, we have to use search techniques even for the 
equivalent of traversal. 
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procedure BFS_GRAPH (vertex: vndx); 

var defer: vndx; 
link: eptr; 
seq: integer; {a global variable, initially 0} 
vlist: array [vndx] of vnode; 
wait: {queue type} 

begin 
INITQ (wait); 
seq := seq + 1; 
vlist [vertex].data := seq; 
vlist [vertex],dad := 0; 
ENQUEUE (wait,vertex); 
repeat 

DEQUEUE (wait,vertex); 
link := vlist [vertex].head; 
while link <> nil do begin 

defer := link[.vno; 
if vlist [defer].data = 0 then begin 

seq := seq + 1; 
vlist [defer].data := seq; 
vlist [defer].dad := vertex; 
ENQUEUE (wait,defer); 

end; 
link := link}.next; 

end; 
until EMPTYQ (wait); 

end; 

Algorithm 7.1 BFS_GRAPH 

from the root are not visited until all vertices at distance k have been visited. This 

search process is expressed in the procedure BFS_GRAPH (Algorithm 7.1), wherein 

the text of Figure 7.11 is implicitly included, and the implementation of the queue 

might be via either of the Algorithms 5.1 or 5.2. There are two related issues for 

our implementation of BFS. One is whether to visit a vertex when it is enqueued or 

when it is dequeued; the other is how to minimize the enqueuing of vertices that 

have already been visited. In response to the second issue, and in contrast to the 

choice employed in BFS_TREE (Algorithm 6.10), it is expedient to visit and mark 

vertices when they are enqueued, thereby immediately eliminating them from subse¬ 

quent consideration. 

In illustration of the method, suppose that we have the graph of Figure 7.12(a). 

Then BFS, starting at the first vertex A, will cause one group of vertices to be 

visited, in the numerical sequence shown in (b) of the figure. A scan of the vertex 

list will then discover the unmarked vertex /, and initiate a second call to BFS that 

reaches the remaining vertices. The solid edges in (b) are tree edges', they corre¬ 

spond to edges in the graph which were followed to find unmarked vertices. The 
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(a) 

A-1 /-9 

(b) 

/\-1 /-9 

(d) 

A-1 /-9 

/A-1 /■ 9 

Figure 7.12 BFS and DFS in a Graph 
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wiggly lines are cross edges', they correspond to the “left-over” edges in the graph. 
We can observe two facts about cross edges: 

• They always occur between vertices that are in a left-right relationship in the 
spanning tree (see Section 6.1). 

• They always link vertices on the same or adjacent levels of the tree. 

Depth-first search is best understood as a recursive process. We visit and mark 
a vertex X, and then we examine the elements of T(T) one at a time. If a vertex Y 
in T(X) is unmarked, we immediately apply DFS to it. This is simply expressed, as 
in DFS_GRAPH (Algorithm 7.2). As in the case of BFS, the algorithm reflects an 
adjacency structure representation, per the program text of Figure 7.11, and it 
records sequence numbers and fathers rather than merely marks. The result of 
applying DFS(1,0) and then DFS(9,0) to the graph of Figure 7.12(a) is the search 
forest of (c) in the figure, again displaying the numerical sequence of the visits. 
DFS search yields tree edges again, but this time the “left-over” edges are back 
edges (dashed fines) rather than cross edges. A back edge of DFS always goes from 
a vertex to one of its ancestors in the spanning tree; thus, for any edge XY in the 
tree, either X is an ancestor of Y or Y is an ancestor of X. To demonstrate this, 
assume that there is a cross edge between X and Y. We can arbitrarily assume that 
X is visited first in the search; but then DFS at X cannot terminate until the edge 
from X to Y is searched, making Y a child of X, and leading to a contradiction. 

procedure DFS_GRAPH (vertex,father: vndx); 

var index: vndx; 
link: eptr; 
seq: integer; {a global variable, initially 0} 
vlist: array [vndx] of vnode; 

begin 
seq := seq + 1; 
vlist [vertex],dad := father; 
vlist [vertex],data := seq; 
link := vlist [vertex],head; 
while link <> nil do begin 

index := linkj.vno; 
if vlist [index],data = 0 then 

DFS_GRAPH (index,vertex); 
link := linkj-next; 

end; 
end; 

Algorithm 7.2 DFS_GRAPH 

Both BFS and DFS are conceptually simple and can be employed with either an 
adjacency structure, as we have shown, or with an adjacency matrix. But remember 
that with the former structure, the order in which vertices are visited will depend 
upon the order of the edge nodes in their fists. The spanning trees of Figure 7.12(b) 
and (c) reflect the assumption that the adjacency structures are ordered lexicograph- 
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ically. For comparison, the trees of (d) and (e) in the figure illustrate the results, 
respectively, of BFS and DFS when the ordering in the edge lists is reversed. 

Search techniques such as BFS and DFS are important because they form the 
basis for many other graph algorithms. In these other processes, we overlay the 
basic search paradigm with the desired computation, rather than merely marking 
the vertices as they are visited. In their basic forms, either BFS or DFS is effective 
for finding the connected components of an undirected graph, in the manner 
demonstrated. In addition, they can easily detect the presence of circuits in a graph 
if they reach, via cross edges or back edges, a vertex that has already been marked. 
When applied to the adjacency structure representation, both BFS and DFS process 
each vertex just once and examine each edge just twice, so that their complexity is 
0(V + E). In the case of an adjacency matrix, on the other hand, they both require 
Oiy2) operations. The algorithms shown here employ queues and stacks imple¬ 
mented in straightforward manners. It is also possible to reduce the storage 
requirements for these working structures by folding them into the representation of 
the graph [Tarjan 1983a]. Although we do not pursue that idea here, such a tech¬ 
nique is illustrated with relation to topological sorting in Section 7.4.5.1. 

What if our only concern is to find the connected components of a graph? We 
have just seen that we can find them in time 0(V + E), using an adjacency struc¬ 
ture, and this representation also requires 0(V + E) space for storing the graph. 
However, the edges in a graph express a symmetric and transitive relationship (that 
is, equivalence classes), and we saw in Section 6.6.4 a way of computing equivalence 
classes in time almost 0(V + E) and in space 0(V). That is, we could apply 
UNION and FIND (Algorithms 6.9) to the edges without even storing them. At 
the conclusion, we would have one oriented tree for each component of the graph, 
wherein the edges in these trees would not have any certain correspondence to the 
original edges in the graph. Nonetheless, for a large, dense graph that might have 
O(103) vertices and contain 0(1O6) edges, the savings in space would be enormous. 

f7.3.1.1 The Number of Trees and Cycles in a Graph. In general, we can construct 
many different spanning trees for a graph, depending partly upon its representation 
and, more importantly, upon various criteria that may be applied to the selection' of 
edges. It is sometimes important to be able to determine the total number of 
distinct spanning trees in a graph, and it might be supposed that a combinatorial 
search is required to answer the question. In fact, the number can be computed 
much more directly, via a result known as the Matrix-Tree Theorem. To do this, 
we first construct the degree matrix B of the graph, where bu = | T(i) |, and 
btJ = -1 or 0 according as there is or is not an edge (ij). Then the theorem states 
that the number of spanning trees is given by the value of the cofactor of any 
element of B. Thus, for the graph of Figure 7.13(a), the corresponding degree 
matrix is shown in (b) of the figure. Arbitrarily expanding about B [2,3], we find 
that the number of spanning trees is three, since the value of the 2,3 cofactor is 

( _i)(2+3) x {1 x [( 1) x 3 ( 1) x ( -1)] 

+ ( —1) x [0 x ( —1) — ( —1) x ( —1)]} = 3 

These three trees are shown in (c) of the figure. 
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(C) 

Figure 7.13 Spanning Trees of a Graph 

Once we have a spanning tree for a graph, then the addition of any other edge 
must create a cycle. Moreover, each edge induces a cycle that canhot be obtained 
as a combination of any other cycles. Thus, for a connected graph, there will be 
E — V + 1 independent cycles. Any particular cycle in the graph can be expressed as 
a linear combination of these, where edges are combined using addition modulo 2, 
although not all linear combinations will yield a cycle. We can generalize this 
notion to that of a graph G which may not be connected, and which may even be a 
multigraph. If G has V vertices, E edges, and P components, then the cyclomatic 
number v is defined as v = E - V + P. Even for G of the general nature that we 
have described, v is precisely equal to the maximum number of independent cycles. 

f7.3.2 Blocks and Articulation Points of a Graph 

By means of spanning trees, we obtain a minimal connectivity among the vertices of 
the graph. However, there are many instances where such a minimal connectivity is 
inadequate. In a tree structure, the removal of any interior node would leave the 
remaining nodes disconnected. In a graph, a vertex whose removal would separate 
the remainder of the graph is called an articulation point, or cut vertex. A 
connected graph that has no articulation points is said to be bi-connected, and the 
maximal bi-connected subgraphs of a graph are called blocks. If we imagine that a 
graph represents a communication network or a railway system, then articulation 
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points represent facilities whose failure or destruction would sever communication. 
Not only are articulation points strategically “critical”; their presence allows a 
divide-and-conquer approach to be applied to the analysis of a graph. Many 
computations involving the use of a graph can be performed more easily by first 
finding the blocks of the graph, and then applying the computation to the individ¬ 

ual blocks. 

An equivalent characterization for bi-connectedness is that there are two inter¬ 
nally disjoint paths connecting any pair of vertices. The fact that any two vertices 
in the DFS spanning tree are in an ancestor-descendant relationship allows for an 
ingenious solution based upon this criterion. More precisely, a node x is an artic¬ 
ulation point if it has a subtree wherein none of the nodes have back edges to any 
ancestors of x. The truth of this condition for x dictates that any path between an 
ancestor of x and a descendant of x must pass through x. This ingenious use of 
DFS is due to Tarjan [1972], as illustrated by the program CUT_NODES (Algo¬ 
rithm 7.3); another solution to the problem can be found in Paton [1971]. We 
begin by finding the DFS spanning tree, recording for each vertex its depth-first 
sequence DFN(v), as we did in the previous section. This process is equivalent to a 
preorder processing of the nodes in that tree. We also process the tree nodes in 
postorder, computing for each a value LOW(v), according to the following rule: 

LOW(v) = min (DFN(v), DFN(w), LOW(w)} (7.1) 

where u is any ancestor of v (connected via a back edge), and w is any child of v. In 
CUT_NODES, the test j < low [vertex'] looks for cases of smaller LOW(w), and the 
test vlist [index].data < low [vertex] looks for cases of smaller DFN(m). A compli¬ 
cation that comes with either an adjacency structure or an adjacency matrix is that 
each edge is represented twice, and so the second inspection of an edge must be 
suppressed if the algorithm is to work properly. This is easily accomplished by the 
test vlist [vertex].dad < > index. 

As we work our way in the postorder processing from the leaves of the tree up 
to the root, the articulation points are precisely those vertices v with a child w such 
that DFN(v) < LOW(w). At the root, this rule will not apply; however, the root is 
easily seen to be an articulation point in just those cases when it has more than one 
child. In CUT_NODES, we have simply written out the articulation points. In 
practice, one might wish to do more; for example, we could record the edges that 
occur within each block in the following manner. Stack each edge (w,v) the first 
time that it is encountered; subsequently, when an articulation point is discovered, 
as above, pop from the stack all edges up to and including (w,v). This group of 
edges constitutes one block in the graph. 

As an illustration of this computation, consider the graph in Figure 7.14(a). In 
(b) of the figure, the DFS spanning tree is shown starting from vertex A, along with 
the DFN and the final LOW values. The articulation points are the starred vertices 
A, F, and /; the resulting blocks are shown in (c) of the figure. Initially, for exam¬ 
ple, the vertex C is marked (3,3), but the ancestor A with DFN(yl) = 1 causes C to 
be relabeled as (3,1). The vertex B is initially marked (2,2), but the child C with 
LOW(C) = 1 causes B to be relabeled as (2,1). In similar fashion, the nodes E, G, 
and H reflect the influence of ancestors, and the nodes D and F reflect the influence 
of children. 
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program CUT_NODES; 
var flag: boolean; 

i,root,t: vndx; 
low: array [1 .. vmax] of vndx; 

function CUT_SCAN (vertex,father: vndx): vndx; 
var index,j: vndx; 

link: eptr; 
begin 

seq := seq + 1; 
vlist [vertex],data := seq; 
vlist [vertex],dad := father; 
if father = root then begin 

if not flag then flag := true 
else writeln (root); {root is a cut-node} 

end; 
low [vertex] := seq; {initialize LOW(v) to DFN(v)} 
link := vlist [vertex],head; 
while link <> nil do begin 

index := linkf.vno; 
if vlist [index],data = 0 then begin 

j := CUT_SCAN (index,vertex); 
if j < low [vertex] then 

low [vertex] := j; {LOW(w) < LOW(v)} 
if (j >= vlist [vertex],data) and (vertex <> root) then 

writeln (vertex); {vertex is a cut-node} 
end else 

if vlist [vertex],dad <> index then {avoid copy of edge} 
if vlist [index],data < low [vertex] then 

low [vertex] := vlist [index],data; {DFN(tv) < LOW(v)} 
link := link}.next; 

end; 
CUT_SCAN := low [vertex]; 

end; 

begin 
for i : = 1 to vsize do 

vlist [i].data := 0; 
seq := 0; 
for i := 1 to vsize do 

if vlist [i].data = 0 then begin 
flag := false; root := i; 

t := CUT_SCAN (i,0); 
end; 

end. 

Algorithm 7.3 CUT_NODES 
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Figure 7.14 Cut Vertices and Blocks 

It should be emphasized that CUT_NODES, although it performs a distinctly 
more sophisticated operation than does plain DFS, is just an elaboration of 
DFS_GRAPH. In particular, each vertex is still processed just once and each edge 
is examined just twice, so that the overall complexity for CUT_NODES applied to 
an adjacency structure representation is 0(V + E). 

The concept of connectivity can be generalized to the case of a set of cut 
vertices, the removal of which leaves a graph disconnected. The minimum size of 
such a set for a graph G is called the connectivity k(G); furthermore, for any 
k < k(G), the graph is said to be k-connected. Just as bi-connectedness is equivalent 
to the existence of two internally disjoint paths connecting any pair of vertices, 
Menger’s Theorem shows that /c-connectedness is equivalent to the existence of k 
internally disjoint paths connecting any pair of vertices. A complicated but still 
linear algorithm for finding the tri-connected components of a graph (by DFS 
again) is given in Hopcroft and Tarjan [1973a]. In a different vein, and analogous 
to the manner in which a cut vertex separates a graph, we speak of a cut edge, or 
bridge, the removal of which causes a graph to be disconnected; such an edge in 
Figure 7.14(a) is FI. Such edges are easily determined after the articulation points 
are known (see Exercise 7.11). As with vertices, the notion of edge connectivity can 
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be generalized to the case of a set of edges that disconnects a graph; it is conven¬ 
tional to reserve the term cut-set to denote a minimal such set of edges. 

7.3.3 Transitive Closure of a Digraph 

We turn our attention now to the investigation of search trees in directed graphs. 
Specifically, suppose that we have the digraph in Figure 7.15(a), and that we apply 
DFS to it. The result is shown in (b) of the figure. We no longer have just tree 
edges (solid lines) and back edges (dashed lines). There are cross edges (wiggly 
lines) and also another category, forward edges (dotted lines). The cross edges are 
between vertices with a left-right relationship, as in BFS, and the forward edges go 
from a vertex to one of its non-child descendants. An important feature of such a 
spanning tree is that it does not capture all of the reachability relationships among 
the vertices by partitioning the vertices and edges into equivalence classes, as in the 
undirected case. For example, since we started from vertex A, the tree conveys that 
r*(.4) = {4, B, C, F, G}. But it fails to convey other reachability relationships, such 
as F from I. Since the manner in which DFS partitions the vertices of a digraph 
into spanning trees is dependent upon the starting vertices, then in order to be 
certain to obtain r*(T) for each vertex in a digraph, we must conduct DFS from 
each vertex. This causes the complexity of computing the reachability relationship 
in a digraph to be OiV2 + EV), which in the worst case can be OjF3). 

Figure 7.15 DFS in a Digraph 

Are there any other solutions? The fact that the reachability relation will typi¬ 
cally have a dense set of arcs suggests that an adjacency matrix representation might 
be efficient. To begin with, suppose that our adjacency matrix A is a boolean 
matrix, wherein a value of True denotes a directed path of length 1 between the 
corresponding vertices. Then the matrix A- captures information about directed 
paths of length 2. If we perform boolean multiplication, we simply get a value of 
True where such a path exists; if we perform integer multiplication, we obtain a 
count of the number of directed paths of length 2 between the corresponding 
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vertices. In similar fashion, A' can be used to obtain information about paths of 
length i. Presume now that we are performing boolean multiplication and addition, 

and that we compute A + A2 + A3 + - + Av~x. Since a simple path between any 
two vertices cannot employ more than V — 1 arcs, this boolean sum will evidently 
represent the union of all paths of all possible lengths, and so we will have 
computed the reachability relationship, more commonly termed transitive closure. 

The corresponding matrix is called the path matrix. 

Unfortunately, each of the preceding matrix multiplications is 0(1/3), so that the 
total computation would appear to be 0(F4). But this is not really the case. There 
are two arguments that demonstrate that it is possible to do better. One of these is 
a constructive one. If A is any boolean matrix and / is the identity matrix, then it is 

easy to show by induction that 

I+A+A2 + - + AV~l = (I+A)V~1 (7.2) 

Since the right hand side can be obtained via lg F repeated squarings (see Exercise 
1.16), we can obtain transitive closure in OiV3 lg F). However, the other argument 
yields the astonishing result that the problems of multiplying two boolean matrices 
and of computing the transitive closure of a boolean matrix are of the same 
complexity [Aho et al. 1974; Fisher and Meyer 1971]. Thus, we should expect to 
be able to compute transitive closure in OiV3). 

procedure WARSHALL_B (adjacent: adj_mat_b; var path: adj_mat_b); 

type vndx = 0 .. vmax; 
adj_mat_b = array [vndx,vndx] of boolean; 

var i,j,k,vsize: vndx; 

begin 
path := adjacent; 
for k := 1 to vsize do 

for i := 1 to vsize do 
if path [i,k] then 

for j := 1 to vsize do 
path [i,j] := path [i,j] or path [k,j]; 

end; 

Algorithm 7.4 WARSHALL_B 

In fact, a method developed by Warshall [1962], shown as WARSHALL_B 
(Algorithm 7.4), does just that. It accomplishes this with a series of three nested 
loops. The rationale for the order of the nesting is rather unobvious. To under¬ 
stand the process, realize that we are finding, for successively larger values of k, 
paths between the vertices i and j that employ only the first k vertices as intermedi¬ 
ate points. Conceptually, we are iterating 

pathk [ij] =pathk_x [y] or (pathk_x [z',/i] and pathk_x [Ay]) 
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to express that there is a path (ij) employing just the first k vertices as intermediate 
points if either (a) there is already such a path employing the first k — 1 vertices, or 
(b) there are paths (i,k) and (Ay) that employ just the first k — 1 vertices. This is 
illustrated in Figure 7.16. Within the actual machine procedure, in order to avoid 
needless computation of and’s and or’s, we employ the test if pathk [z,A;]. Now the 
notation pathk and pathk_x in the above expression implies that we would need 
distinct iterated copies of the path array. However, we note that 

pathk U->k~\ = pathk_y [z,W] , and pathk [Ay] = pathk_j [Ay] 

Thus, during the A:th iteration, there is no change in any entry that has either index 
equal to k, and so the algorithm can operate upon a single copy of the path matrix. 

Suppose that we have the digraph of Figure 7.17. Then the original value for 
path is shown in Figure 7.18(a), and the results of the five iterations that transform 
it to the transitive closure are shown in (b) - (f) of the figure. There are many uses 
for the information in the path matrix. As a simple example, suppose that the 
original adjacency relationship indicates calling relationships between procedures; 
for example, from (a) of the figure, B calls C and E. Then path [z,z] = 1 indicates 
that the zth procedure is recursive, as in the case of procedures B, C, D, E from (f) 

of the figure. 

Figure 7.17 An Example for Transitive Closure 

Since we have observed that transitive closure is analogous to the multiplication 
of boolean matrices, we are led back to some of the ideas that we explored in 
Section 2.5.2. In particular, we saw there that it is often possible to speed up this 
type of operation by employing sets as variables, thereby gaining access to parallel 
bit operations at the hardware level. The corresponding embodiment in the present 
case is WARSHALL_S (Algorithm 7.5), yielding transitive closure in OiV2). It is 
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0 10 0 1 
0 0 10 1 

(a) 0 10 10 
0 0 0 0 1 
0 0 0 1 0 

0 10 0 1 
0 0 10 1 

(b) 0 10 10 
0 0 0 0 1 
0 0 0 1 0 

0 110 1 
0 0 10 1 

(c) 0 1111 
0 0 0 0 1 
0 0 0 1 0 

0 1111 
0 1111 

(d) 0 1111 
0 0 0 0 1 
0 0 0 1 0 

0 1111 
0 1111 

(e) 0 1111 
0 0 0 0 1 
0 0 0 1 1 

0 1111 
0 1111 

(f) 0 1111 
0 0 0 1 1 
0 0 0 1 1 

Figure 7.18 Trace of Algorithm WARSHALL_B 

instructive to compare WARSHALL_S with BOOL_MULT (Algorithm 2.9). They 
look so similar, and yet they compute such different quantities! As we saw in 
Chapter 2, there are still other techniques available for reducing the complexity of 
boolean multiplication, such as RUSSIANS (Algorithm 2.10). This is not quite the 
final word with respect to efficiency; we will find still another approach to transi¬ 

tive closure in the next section. 

procedure WARSHALL_S (adjacent: adj_mat_s; var path: adj_mat_s); 

type vndx = 0 .. vmax; 
adj_mat_s = array [vndx] of set of vndx; 

var i,k,vsize: vndx; 

begin 
path := adjacent; 
for k := 1 to vsize do 

for i := 1 to vsize do 
if k in path [i] then 

path [i] := path [i] + path [k]; 
end; 

Algorithm 7.5 WARSHALL_S 

f7.3.4 Strongly Connected Components of a Digraph 

As we have seen, DFS does not, by itself, yield equivalence classes of vertices in a 
digraph. However, there are such equivalence classes, and these are the strongly 
connected components of the digraph. Many operations upon digraphs can be 
greatly simplified by finding the strong components as a first step, just as finding 
the blocks of a graph can simplify matters. There is an important difference, 
however, between the components of a graph and the strong components of a 
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digraph. The former partition all of the vertices and all of the edges, whereas the 
latter partition all of the vertices but only some of the arcs. 

We saw earlier, with Figure 7.15, that DFS of a digraph yields trees that, in the 
general case, may contain four types of edges: tree edges, backward edges, cross 
edges, and forward edges. An important fact about DFS of a digraph is that the 
cross edges always point from right to left, under the assumption that spanning tree 
branches are drawn in order of discovery from left to right. The reasoning for this 
is similar to that in Section 7.3.1, whereby we established that back edges in the 
undirected case must always go to ancestors. In the present case, cross edges must 
always go from a vertex with a higher DFS number to one with a lower DFS 
number. 

In a manner remarkably similar to that of CUT_NODES (Algorithm 7.3), DFS 
can be embellished to perform both preorder and postorder processing of the 
vertices and yield the strong components in 0{V + E). Such an algorithm is due to 
Tarjan again [1972], and is illustrated by the program STRONG_COMPONENTS 
(Algorithm 7.6). An alternative approach can be found in Sharir [1981]. Starting 
at vertex A, we once again compute for each vertex a value LOW(v), as follows: 

LOW(v) - min {DFN(v), DFN(w), LOW(w)} (7.3) 

where u is any ancestor of v (that is, connected via a back edge), or where u is any 
“cousin” of v (connected via a cross edge) leading to such an ancestor, and where w 
is any child of v. This has the effect that as we process the vertices in postorder, we 
look for larger and larger subtrees with the property that all nodes of the subtree 
can reach the root. When we find a vertex x such that LOW(x) is still equal to 
DFN(x), then we have found the root of a strong component. By stacking vertices 
when they are first encountered, and then - when this latter condition is met - 
popping vertices from the stack up to and including x, we capture the components 
for output. One more thing is needed to make this process work. There may be 
cross edges from one tree to another tree, as well as cross edges within trees. So 
that the low DFN values to the left will not cause incorrect values on the right, all 
the vertices in a strong component are marked as they are removed from the stack. 

The action of STRONG_COMPONENTS is illustrated in Figure 7.19 for the 
digraph of Figure 7.15. The original digraph is reproduced in (a) of Figure 7.19. 
The spanning trees with the final DFN and LOW values are shown in (b) of the 
figure, where the starred vertices are the roots of the strong components. The 
strong components themselves are shown in (c) of the figure. Initially, for example, 
the vertex F is marked (3,3), but the ancestor A with DFN(v4) = 1 causes F to be 
relabeled as (3,1). The vertex C is initially marked (4,4) and is never changed, so it 
is a strong component. The vertex B is initially marked (2,2), but the child F with 
LOW(jF) = 1 causes B to be relabeled as (2,1). The vertex G is initially marked 
(5,5), but the cross edge to F with DFN(F) = 3 causes G to be relabeled as (5,3). In 
a similar fashion, the vertices H and / reflect their ancestral relation with vertex D; 
however, the effects of the cross links to the first spanning tree are suppressed. 

An important consequence of having found the strong components of a digraph 
D is that we can then construct its condensation D*. In the condensed graph, each 
strong component is replaced by a single vertex, and there are no cycles. The 
condensation of our digraph of Figures 7.15 and 7.19 is shown in Figure 7.20. An 
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program STRONG_COMPONENTS; 
var i,t,top: vndx; 

flag: array [1 .. vmax] of boolean; 
low: array [1 .. vmax] of vndx; 
stack: array [1 .. stkmax] of vndx; 

function STRONG_SCAN (vertex,father: vndx): vndx; 
var index,j: vndx; 

link: eptr; 
begin 

seq := seq + 1; 
vlist [vertex],data := seq; 
vlist [vertex],dad := father; 
low [vertex] := seq; {initialize LOW(v) to DFN(v)} 
top := top + 1; 
stack [top] := vertex; 
link := vlist [vertex],head; 
while link <> nil do begin 

index := linkj.vno; 
if vlist [index],data = 0 then begin 

j := STRONG_SCAN (index,vertex); 
if j < low [vertex] then 

low [vertex] := j; {LOW(w) < LOW(v)} 
end else 

if flag [index] and (vlist [index],data < low [vertex]) then 
low [vertex] := vlist [index],data; {DFN(t/) < LOW(v)} 

link := link}.next; 
end; 
if low [vertex] = vlist [vertex],data then begin 

repeat 
write (stack [top]); {stack [top] is part of component} 
flag [stack [top]] := false; 
top := top - 1; 

until stack [top + 1] = vertex; 
writeln; {end of strong component} 
vlist [vertex],data := vsize + 1; 

end; 
STRONG_SCAN := low [vertex]; 

end; 

begin 
for i := 1 to vsize do begin 

flag [i] := true; 
vlist [i].data := 0; 

end; 
seq := 0; top := 0; 
for i := 1 to vsize do 

if vlist [i].data = 0 then 

t := STRONG_SCAN (i,0); 
end. 

Algorithm 7.6 STRONG_COMPONENTS 
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Figure 7.19 Strongly Connected Components 

Figure 7.20 Condensation of Figure 7.19 

immediate application of this is an alternative method of computing transitive 
closure [Munro 1971]. We saw that Warshall’s algorithm yields the closure in 
OiV3) or OiV2), depending upon the use of parallel bit operations. However, 

consider the following sequence of operations: 

1. Find the strong components, and thus D*, in 0(V + E). 
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2. Apply Warshall’s algorithm to D*. 
3. Construct the closure of D by inserting l’s everywhere in each strong compo¬ 

nent subarray, and by filling in the remaining subarrays according to the result 

of the second step — all in OiV2). 

Since the condensation will often have far fewer vertices than the original digraph, 
the second step may be much faster with D* than with D. Indeed, the major part of 
the time may be spent in just filling in the reachability matrix in the third step. 
While there is a possible reduction in time when using this method, there is also a 

substantial increase in the programming task. 

7.4 APPLICATIONS OF GRAPHS 

Graphs can be used for solving so many diverse kinds of problems that it is difficult 
to do the subject justice at this point. We have tried to choose areas that illustrate 
a variety of problem types and solution methods for both graphs and digraphs. The 
first two topics, minimal spanning trees and shortest paths, are fairly conventional. 
The third section deals with matchings and coverings; less likely to be familiar, this 
topic is an entree to many interesting and practical problems. The fourth section 
discusses Eulerian and Hamiltonian traversals of a graph; and the final section 
concentrates upon the ordering relationships that the arcs of a digraph impose on 

its vertices. 

7.4.1 Minimal Spanning Trees in a Graph 

A simple and important use of undirected graphs is the following. G is a connected 
graph with V vertices, and a set E of weighted edges connecting them. We wish to 
select a subset of V — 1 edges that will form a spanning tree connecting the vertic.es, 
subject to the criterion that the subset of edges selected will have the lowest possible 
sum of associated weights. These weights might represent lengths of wire in a 
circuit or pipe in a house, or they might represent other costs that are not related to 
distance. In either event, there are commonly real savings associated with finding a 
set of edges that yield such a minimal spanning tree (MST) of the network. 

There are two principal methods for finding a minimal spanning tree, and they 
both employ the following principle: 

In the construction of an MST, there will be two sets of vertices, U and 
its complement V — U. If (w,v) is an edge of lowest cost such that u e U 
and v e (V— U), then there must be an MST that contains (w,v). 

If we assume the contrary, then let T be some MST for the original graph, and 
consider the graph H obtained by adding («,v) to T. H must have a cycle contain¬ 
ing the edge (w,v) and another edge (u',V) e T that connects the same components. 
Since the edge (w,v) is by definition a lowest cost edge connecting the two compo- 
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nents, then we can safely delete edge (u',v') from H to obtain an MST containing 
the edge (w,v). This confirms the original claim. 

One classical use of this principle, by Prim [1957], proceeds along the following 
lines. We imagine that the vertices are divided among three sets: U containing 
vertices that are already in the MST, V containing vertices that are not yet in the 
tree but are in r(U), and W containing the remaining vertices. We start by placing 
any single vertex in U. Thereafter, one iteration consists of the following steps: 

1. Find the shortest edge that connects a vertex in V with a vertex in U. 
2. Add that edge to the tree and update the sets U, V, and W. 

We iterate these steps until all the vertices of the graph are included in U. This is 
conceptually simple, as illustrated by the graph in Figure 7.21(a). Here, if we start 
with vertex A, the edges are selected in the sequence shown in (b) of the figure. 

24 B 

H 

(a) 

H 

(c) 

Figure 7.21 Minimal Spanning Trees 

The actions “find the shortest edge” and “update the sets U, V, and W” require 
some attention if we are not to spend an inordinate amount of time examining 
edges and vertices. The crucial insight for performing these operations efficiently is 
that, on every iteration, we can associate with each of the vertices v, in V some 
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procedure PRIM (cost: adj_mat_i; var least: distance; 
var closest: parent; var sum: integer); 

const inf = {some suitably large number, such as maxint} 

type vndx = 0 .. vmax; 
adj_mat_i = array [vndx,vndx] of integer; 
distance = array [vndx] of integer; 
parent = array [vndx] of vndx; 

var i,j,k,min: integer; 
undone: array [vndx] of boolean; 

begin 
least [1] := 0; closest [1] := 0; undone [1] := false; 
sum := 0; 
for j ;= 2 to vsize do begin {find smallest edge} 

least [j] := cost [1 ,j]; 
closest Q] := 1; 
undone G] := true; 

end; 
for k := 2 to vsize do begin {reach other V — 1 nodes} 

min := inf; 
for j := 2 to vsize do {update tree data} 

if undone G] and (least G] < min) then begin 
min := least G]; i : = j; 

end; 
sum := sum + min; 
undone [i] := false; 
for j := 2 to vsize do 

if undone G] and (cost [i,j] < least G]) then begin 
least G] •' = cost [i,j]; closest G] := i; 

end; 
end; 

end; 

Algorithm 7.7 PRIM 

smallest edge et linking it to the set U. Therefore, when we have selected the short¬ 

est of these particular edges and thereby moved a vertex X from V to U, we need 

just examine the effect of this upon the sets {e,}, U, V, and W. But this can be 

simplified even further. We choose to employ an adjacency matrix representation 

for illustrating Prim’s method. As discussed in Section 7.2, this allows us to repre¬ 

sent “no edge” by some arbitrarily large number. Then the distinction between the 

sets V and W vanishes, and we need only update the sets {c,}, U, and V. The result 

is the procedure PRIM (Algorithm 7.7). The progress of the algorithm is illustrated 

by the partial trace in Figure 7.22, starting from vertex A and thereafter showing 

successive values of closest and least — that is, the v,- and their corresponding et — 

and of sum. 
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/ closest [/] least [/] sum B C D E F G H / J 

24 23 20 * * * * * * 

A A A A A A A A A 

D A 20 20 24 21 20 5 7 2 7 * * 

A D A D D D D A A 

G D 2 22 24 19 20 5 7 2 5 12 11 
A G A D D D G G G 

E D 5 27 24 19 20 5 7 2 3 12 11 
A G A D D D E G G 

H E 3 30 24 19 20 5 7 2 3 12 10 
A G A D D D E G H 

F D 7 37 24 18 20 5 7 2 3 12 10 
A F 4 D D D E G H 

B A 24 101 24 18 20 5 7 2 3 12 10 
A F A D D D E G H 

Figure 7.22 Partial Trace of Algorithm PRIM 

The other classical technique for constructing an MST is by Kruskal [1956]. In 
this case, we start with all the vertices as separate components, and we examine the 
edges in increasing order of their cost. For each edge, if it connects two previously 
distinct components, we include it in the spanning tree; if it connects two vertices 
already in the same component, so that its inclusion would create a cycle, we 
discard it. Let us apply this method to the same graph of Figure 7.21(a). The 
edges are selected in the sequence shown in (c) of the figure. Observe that at the 
third step, there is a choice between two edges of cost 5. It does not matter which 
is chosen, and we assume that the edge GH is chosen rather than DE. As a result, 
we find in the figure an illustration of the fact that the MST need not be unique 
with respect to its set of edges. Nonetheless, the value of the MST (101, the sum of 

the weights) is unique. 

Although conceptually simple, the description in the preceding paragraph 
glosses over two significant sub-problems: how to find the next smallest edge, and 
how to discover when two vertices are already connected. The first problem can be 
handled by sorting all the edges before beginning, and this is 0(E lg E), as we will 
see in Chapter 13. However, we need only V — 1 edges, which will in most cases be 
much less than all E of them. A much better answer to the first sub-problem is to 

use a priority queue. For the second sub-problem, the resolution is to use 

UNION-FIND (Algorithms 6.9)! 

Having indicated how to solve the associated sub-problems, we leave the 

detailed algorithm for Kruskal’s method as an exercise (see Exercise 7.17). 
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However, it is valuable to consider here the circumstances under which one would 
choose between Prim’s and Kruskal’s methods. It is easy to see that Prim s method 
as applied to an adjacency matrix is OiV2); if applied to an adjacency structure in 
the most obvious fashion, the complexity would still be the same. The use of a 
priority queue to find the smallest edge connecting U and V — [/ would reduce this 
for a sparse graph, but would increase it for a dense graph. Originally, Kruskal s 
method was not very competitive with Prim’s because of the high cost then associ¬ 
ated with both of its sub-problems. Since the discovery of efficient means for 
dealing with these problems, the balance has shifted somewhat. In particular, we 
will learn in Section 13.2.1.2.1 that a priority queue of the edges can be constructed 
in 0(E) if we process all of them at the beginning. Thereafter, for each iteration of 
Kruskal’s method, finding the next smallest edge is 0(lg E) and testing for “equiv¬ 
alent” vertices is almost 0(1). In the extreme case, it might be necessary to examine 
all the edges, so that the worst-case complexity is 0(E lg E); typically, however, 
Kruskal’s algorithm would perform better than this. A generalization, confirmed by 
experiment, is that Prim’s method is better for a dense graph, while Kruskal s 

method is better for a sparse graph [§]. 

Both Prim’s and Kruskal’s methods illustrate what are known as greedy algo¬ 
rithms; this means that they attain globally optimal solutions by means of locally 
optimal decisions. There are many other problems associated with graphs for whicl 
this tactic does not work very well, as we will see in Section 7.4.4.3. The methods 
of Prim and Kruskal represent two extremes: picking the next edge so as to add 
one vertex to a single tree, and picking the next shortest edge while ignoring the 
internal nature of the various trees already formed. By taking the latter details into 
account - for example, via a priority queue for each tree - still more efficient 
(and more complicated) MST algorithms can be obtained.3 These methods attain 
complexity 0(E lg lg V), and they appear to have average performance 0(V + E). 

7.4.2 Shortest Paths in Graphs and Digraphs 

Another extremely common problem that arises with weighted graphs is that of 
finding the shortest (minimum time or other cost) path between two vertices. As 
opposed to our discussion of MST’s, the logic of this problem, and therefore the 
discussion in this section, applies equally well to digraphs. More general than the 
problem of finding the minimum distance between two particular vertices is a 
second one of finding the minimum distances between a given source vertex and all 
of the other vertices of the graph. If all the weights have the value 1, then the first 
problem is trivially solved by BFS (recalling our discussion in Section 7.3.1). In the 
general case of unequal weights, however, it appears to be no easier to solve the 
first problem than it is to solve the second. Thus, our interest is in a means for 

3 However, an implementation of priority queues in terms of heaps will not serve us in 
this case, because we need to merge priority queues when we merge the corresponding 
subtrees, and such an operation is 0(V lg V) with heaps. Some of the other priority 
queue implementations discussed in Section 6.6.4.1 do not have this drawback. 
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solving the latter. This can be accomplished by Dijkstra’s method [1959]. (His 
article actually contains an independent exposition of Prim’s method as well as the 
present algorithm.) 

The ideas behind Dijkstra’s method have a very familiar ring. During the 
course of the algorithm, we imagine that the vertices are divided among three sets: 
U containing vertices that are already processed, V containing vertices that are not 
yet processed but are in T(C/), and W containing the remaining vertices. We start 
by placing the source vertex v0 in U; thereafter, one iteration consists of the follow¬ 
ing steps: 

1. Find the shortest edge that connects a vertex in V, via the vertices in U, to v0. 
2. Add that edge to the tree, and update the sets U, V, and W. 

We iterate these steps until all the vertices of the graph are included in U. The 
crucial difference between Prim’s method and this process is that the former looked 
for the next minimum distance vertex from the partial tree, whereas Dijkstra’s algo¬ 
rithm looks for the next minimum distance vertex from v0. Once again, we employ 
an adjacency matrix representation, and we obtain the procedure DIJKSTRA 
(Algorithm 7.8), remarkably similar in form to PRIM. 

For an example of this method, consider the digraph of Figure 7.23. The corre¬ 
sponding adjacency matrix is shown in Figure 7.24(a), and a trace of DIJKSTRA, 
with E (the fifth vertex) as the source, is shown in Figure 7.24(b), for successive 
values of least and father. By tracing out the final values of father, we see that the 
corresponding spanning tree of shortest paths from E is completely degenerate in 
this case: E-B — A — F-C-D. As in the case of the MST algorithms, the short- 
est-paths spanning tree need not be unique, but the minimum costs will be unique. 
In general the spanning tree constructed for this problem will bear no relation to 
the spanning tree generated for the MST problem. To see this, suppose that we 
apply DIJKSTRA to the graph of Figure 7.21(a), starting at vertex J. The span¬ 
ning tree for this case is shown in Figure 7.25; it is indeed very different from those 

of Figure 7.21(b) and (c). 

2 

Figure 7.23 An Example for Shortest Paths 

Dijkstra’s algorithm is remarkably similar in form to Prim’s but subtly different, 
so that it is not as obvious why it works. To understand it, note that we always 
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procedure DIJKSTRA (source: vndx; cost: adj_mat_i; 
var least: distance; var father: parent); 

const inf = {some suitably large number, such as maxint} 

type vndx = 0 .. vmax; 
adj_mat_i = array [vndx,vndx] of integer; 
distance = array [vndx] of integer; 
parent = array [vndx] of vndx; 

var i,j,k,vsize: vndx; 
min: integer; 
undone: array [vndx] of boolean; 

begin 
for i := 1 to vsize do begin 

least [i] := cost [source]]; 
father [i] := source; 
undone [i] ;= true; 

end; 
least [source] := 0; undone [source] := false; 
for k := 2 to vsize do begin {reach other V — 1 nodes} 

min := inf; 
for j := 1 to vsize do {find smallest edge} 

if undone [j] and (least Q] < min) then begin 
min := least [j]; i := j; 

end; 
undone [i] : = false; 
for j := 1 to vsize do {update tree data} 

if undone [j] and (min + cost [i,j] < least [j]) then begin 
least [j] := min + cost [i,j]; father [j] := i; 

end; 
end; 

end; 

Algorithm 7.8 DIJKSTRA 

select the next closest vertex v to the source such that v can be reached via vertices 
already in the set U. Then the cost of this path to v via vertices in U must be the 
minimum cost path to v. Suppose the contrary, that there exists some first vertex w 
not in U, such that a path from the source to w and then ultimately to v has lower 
cost, as illustrated in Figure 7.26. But then the distance just to w in such a path 
must be less than the distance to v, and w would have to have been selected before 
v, according to the original selection criterion. Since the assumption of such an 
alternate, lower cost path leads to a contradiction, it cannot exist, and so the 
process works. 

We see that DIJKSTRA, like PRIM, has a complexity of OiV2) when imple¬ 
mented for an adjacency matrix; once again, for a sparse graph, an implementation 
based upon an adjacency structure and employing priority queues could yield a 
lower complexity. If we merely want to find the least distance from the source to a 
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A B C D E F 

(a) Adjacency Matrix 

/ least [/'] father [/'] A B C D £ F 

* 2 * 14 0 * 

E E £ £ £ £ 

B 2 E 5 2 * 12 0 * 

B E £ B £ £ 

A 5 B 5 2 10 12 0 7 

B E A B £ A 

F 7 A 5 2 8 11 0 7 

B £ F F £ A 

C 8 F 5 2 8 9 0 7 

B £ F C £ A 

D 9 C 5 2 8 9 0 7 

B £ F C £ A 

(b) Trace 

Figure 7.24 Trace of Algorithm DIJKSTRA 

A B 

Figure 7.25 Shortest Paths from J in Figure 7.21 

particular other vertex, then we could revise DIJKSTRA so that it terminated as 

soon as that vertex had been reached; however, the complexity would still be OiV2). 
To go to the other extreme, suppose that we wished to find the matrix of minimum 
distances between every pair of vertices (v„ vy). We could obtain this with DIJK¬ 

STRA, starting from each vertex in turn, with a complexity of OiV3). However, 

there is an attractive alternative due to Floyd. Although still OiV3), it is more 

compact, being entirely analogous to WARSHALL_B (Algorithm 7.4). In 

Warshall’s algorithm, we detect a path from v, to v, by iterating (conceptually) 

pathk_x [z'j] or ipathk_x [i,fc] and pathk_x [/cj]) 
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Figure 7.26 Rationale of Dijkstra’s Method 

In Floyd’s algorithm, we obtain the minimum distance from v, to y, by iterating 

(conceptually) 

min {leastk_i [ij], leastk_\ [z,/t] + leastk_\ [/cj]} 

The resulting procedure is FLOYD (Algorithm 7.9). Note that it is conventional to 
set the diagonal entries in the cost matrix to zero in order to model the underlying 
reality of the problem. If this were not done, the final diagonal entries would not 
correspond to shortest paths, but rather to the shortest circuits incident upon these 
vertices. Analogously to WARSHALL_B, we test for least [z,&] < > oo in order to 
eliminate unnecessary computations. The result of applying FLOYD to the digraph 
of Figure 7.23 is illustrated by the trace in Figure 7.27. The initial value of least is 
that of cost from Figure 7.24(a), and the final shortest paths are those given by 

Figure 7.27(f)- 

procedure FLOYD (cost: adj_mat_i; var least: adj_mat_i); 

const inf = {some suitably large number, such as maxint} 

type vndx = 0 .. vmax; 
adj_mat_i = array [vndx,vndx] of integer; 

var i,j,k: vndx; 

begin 
least := cost; 
for k := 1 to vsize do 

least [k,k] := 0; 
for k := 1 to vsize do 

for i := 1 to vsize do 
if least [i,k] <> inf then 

for j := 1 to vsize do 
if least [i,k] + least [k,j] < least [i,j] then 

least [i,j] := least [i,k] + least [k,j]; 
end; 

Algorithm 7.9 FLOYD 
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We stated earlier that using FLOYD is preferable to making V calls on DIJK- 
STRA. But this once again depends upon the relative density of the graph; for a 
sparse graph the repeated use of DIJKSTRA could be significantly better. There is 
another factor that is also important in choosing between these two algorithms. 
For some applications it makes sense to have edges with negative weights. In these 
cases, Dijkstra’s algorithm does not work properly. Although it can easily be modi¬ 
fied to accommodate negative weights (see Exercise 7.20) - as long there are not 
negative cycles as well — the resulting complexity can then be exponential [Johnson 
1973]. Floyd’s algorithm handles negative weights with no attendant difficulties, 
but the case of negative cycles poses an obvious problem. 

0 * 5 * * 2 0 * 5 6 * 2 0 * 5 6 * 2 

3 0 8 10 * 5 3 0 8 9 * 5 3 0 8 9 * 5 
* * 0 1 * * (c) * * 0 1 * * (e) 7 * 0 1 * 9 

6 * 11 0 * 8 6 * 11 0 * 8 6 * 11 0 * 8 
* 2 * 14 0 * 5 2 10 11 0 7 5 2 10 11 0 7 
* 17 1 4 9 0 20 17 1 2 9 0 8 11 1 2 9 0 

0 * 5 * * 2 0 * 5 6 * 2 0 13 3 4 11 2 

3 0 8 10 * 5 3 0 8 9 * 5 3 0 6 7 14 5 
* * 0 1 * * (d) 7 * 0 1 * 9 (f) 7 20 0 1 18 9 

6 * 11 0 * 8 6 * 11 0 * 8 6 19 9 0 17 8 
5 2 10 12 0 7 5 2 10 11 0 7 5 2 8 9 0 7 

20 17 1 4 9 0 8 17 1 2 9 0 8 11 1 2 9 0 

Figure 7.27 Trace of Algorithm FLOYD 

f7.4.2.1 Dynamic Programming. In previous sections, we have encountered several 
algorithmic techniques for contending with the complexity associated with solving 
problems: divide-and-conquer, backtracking, and branch-and-bound. By reexamin¬ 
ing some of the material from the preceding section, we now find another important 
technique, dynamic programming. In the case of divide-and-conquer, we saw how 
some problems can be broken up into smaller problems that can be solved and 
composed independently. However, there are instances where we can decompose a 
problem and solve its parts independently, and yet the resulting sub-solutions 
cannot be composed independently. In such cases, if two specific conditions apply, 
then we can use dynamic programming to reduce the exponential costs associated 
with evaluating a large tree of possibilities. The first necessary condition is that an 
optimal solution of a sub-problem should always be optimal no matter how that 
sub-solution is combined in a larger problem. The second necessary condition is 
that sub-problems should recur in several larger problems; this allows us to 
compute the solutions for sub-problems just once and then store them in tables, 
where they can be looked up when needed within larger problems. 

Let us reexamine Floyd’s algorithm in the light of these remarks. There, for all 

pairs ij, we look for 

min {leastk_i [ij], lcastk_j [z',/c] + leastk_j [kj]} 
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over successively larger sets of intermediate vertices Vj.. vt_j. On the Ath iteration, 
the values of leastk_x [z',A] and leastk_x [Aj] always represent the shortest distances 
(i,k) and (kj) over paths wherein the first k — 1 vertices are intermediate, so that the 

first of the above conditions applies. Moreover, since 

leastk [z',A] = leastk_x [*,A] , and leastk \kj] = leastk_x \kj] 

then table entries having A: as a subscript will not change on the Ath iteration. Thus 
the intermediate tables, corresponding to the second of the above conditions, can be 
maintained in the same table where the final answer is developed! The fact that the 
storage for the solutions for the sub-problems is essentially free is key to the success 

of dynamic programming in this situation. 

The method of tabulation for the transformation of a recursive program to a 
more efficient one (see Section 5.4.2.1) is related to dynamic programming in a 
limited sense. In this former technique we also store values in tables so that they 
can be reused rather than recomputed. Dynamic programming is a more general 
process in that it involves an optimization using such tabulated values. That 
Floyd’s algorithm is an instance of dynamic programming almost escapes our notice 
because of the fortuitous manner in which storage is reused. We will encounter 
other, more distinctive uses of dynamic programming in Sections 7.4.4.3, 8.3.3, 

8.6.3, and 10.3.2.1. 

7.4.3 Matchings and Coverings in a Graph 

Suppose that we have a group of persons and that we must pair them off, perhaps 
as roommates. We can represent the persons as vertices of a graph in which, for 
every compatible pair, there is a corresponding edge. Is there an efficient algorithm 
that will either find a compatible roommate for every person, or else determine that 
no such pairing exists? We will return to the question after posing it in the termi¬ 
nology of graph theory. A matching in a graph is an independent subset of its edges 
(such that no two of the edges are adjacent), and a maximum matching in a graph 
G is synonymous with the largest possible set of independent edges in G. An impor¬ 
tant numerical parameter of a graph is the cardinality of a maximum matching, a 
quantity known as the edge independence number IE of the graph. If a matching is 
such that it covers, or includes, all of the vertices, then we have a complete 
matching. 

We can also inquire as to the minimum number of (not necessarily independent) 
edges that are required to obtain a covering of all the vertices of the graph — that 
is, a set of edges such that all the vertices are incident to at least one edge in the set. 
This quantity is known as the edge covering number CE of the graph. By reversing 
the roles of the vertices and the edges, we obtain two analogous parameters for 
vertices. One of these is the vertex independence number Iv, equal to the cardinality 
of a maximal independent (non-adjacent) set of vertices in the graph. The other is 
the vertex covering number Cv, equal to the cardinality of a smallest (not necessarily 
independent) set of vertices that covers all the edges of the graph. It is straightfor¬ 
ward to see that, given any set S of independent vertices in a graph G, the 
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complementary set of vertices V — S' must be a covering of G, and vice-versa. To 
see this, note that S is an independent set if and only if there exists no edge with 
both ends in S; however, this is equivalent to the condition that every edge in G 
has at least one of its ends in the set V — S. In particular, this is true for the case 
of a maximal independent set of vertices and a minimum vertex cover, yielding 

Cy + ly = V (7.4) 

The analysis is slightly more complicated for the edge parameters, but as long as 
there are no isolated vertices (that is, of degree 0), then also 

Ce+Ie—V (7-5) 

These notions are illustrated in Figure 7.28, where the graph in (a) has a maximal 
matching as shown in (b); thus, we have that IE = 3. In addition, it is easily veri¬ 
fied that CE = 4, Iv = 2, and Cv = 5. 

Figure 7.28 Independent Edges 

Our original question was how to compute the maximum matching in a graph. 
There is an efficient algorithm, but it is too complicated for us to consider here. 
However, there are several variations on the problem of finding a maximum match¬ 
ing. We will begin by introducing one of these simpler variations, and will then 
illustrate its relevance to the SDR problem first considered in Chapter 6. Section 
7.4.3.3 calls attention to an important, alternative point of view for matching prob¬ 
lems. Finally, Section 7.4.3.4 briefly deals with matching in the general case. 

7.4.3.1 Bipartite Graphs. Suppose that the vertices of our graph comprise two 
independent sets, U and W; in other words, all edges in the graph are of the form 
(u,xv), with wet/ and w e W, for U and W disjoint sets of vertices, not necessarily 
of the same cardinality. Graphs of this form are called bipartite;4 a complete bipar¬ 
tite graph Kmn is one in which every vertex of U, of cardinality m, is adjacent to 

* Note that a tree is a bipartite graph. 
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every vertex of W, of cardinality n. For many applications, a bipartite graph is 
conveniently represented via an adjacency matrix wherein the rows correspond to 
elements of U and the columns correspond to elements of W. Thus, for the graph 

of Figure 7.29(a), such a representation is shown in (b) of the figure. 

Figure 7.29 A Bipartite Graph 

There are many natural applications of bipartite graphs to matching problems. 
For example, the two vertex sets in the figure might represent men and women, and 
the edges might again denote compatibility. Then the issue might be to maximize 
the number of compatible marriages (with no polygamy). Or perhaps the vertex 
sets might represent workers and jobs, and the objective could be to try to assign 
every worker to a job for which he is qualified. Even though our example of Figure 
7.29 is small, it can still be tricky to find a maximum matching in it. Before reading 
the next paragraph, you are encouraged to try to do so. 

Happily, the matching problem is fairly simple for bipartite graphs. An under¬ 
lying reason is that in this case the edge independence number is equal to the vertex 

covering number; that is, 

IE = CK (7.6) 

an equality that does not hold in the general case. The method for finding such a 
maximum matching is to start with a given matching and then repeatedly try to 
enlarge it by the following strategy. Let the given matching be M, consisting of 
some subset of the edges; and let O be the remaining edges of the graph. We then 
construct a path P whose edges are alternately in O and in M. More precisely, we 
construct such a path starting with a vertex Wq e U that is not covered by M. From 
Wo we visit and mark unmarked vertices, building a BFS tree. In this tree, in going 
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from an even level of the tree to an odd level, we may have zero, one, or many 
edges in O to choose from. But in going from an odd level of the tree to an even 
level, we can have just zero or one edges in M to choose from. If we arrive at a 
vertex w0e W and there is no edge in M to carry us back to U, then our path 
consists of j edges from M and j + 1 edges from O. Such a path P is called an 
augmenting path, and it can be employed to construct a larger matching M'. We 
do this by deleting from M those edges in M \J P, and then adding to M those 
edges in O U P; another way of expressing this is that M' — M XOR P. For the 
graph of Figure 7.29(a), this process is illustrated in Figure 7.30(a), where the solid 
lines are in O and the wiggly lines are in the matching M. An augmenting path has 
been derived by starting from G and building the tree shown in Figure 7.30(b). By 
reversing the roles of the solid and the wiggly edges in the path G~7 — C— 1—^ — 3, 
we obtain the larger matching shown in (c) of the figure. Note that it would have 
been possible to extend the tree in (b) by adding the edge 2 — E. But that is irrel¬ 
evant. We are happy to be “stuck” at an unmatched vertex (3), so that we can stop 

building the tree and construct an augmenting path. 

Figure 7.30 Bipartite Matching 

If we try to apply this process again, we are unable to find an augmenting path. 
Such a condition corresponds to the fact that M' is a maximal matching for this 
graph. What is the complexity of this algorithm? We note first that the number of 
searches for an augmenting path is 0(V), actually 0(m\n(U,W)). For each search, 
if the graph is represented by an adjacency structure, then the time to build the tree 
is 0{E). Thus, the overall complexity of this method is 0(VE). There is a still 

faster algorithm for this problem, as we will see in Section 7.4.3.3. 

f7.4.3.2 Systems of Distinct Representatives Again. The Systems of Distinct 
Representatives (SDR) problem was introduced in Section 6.8.2.1, where it was 
solved by means of backtracking. An unfortunate aspect of that approach, of 
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course, it that it has exponential complexity in the number of sets. With graphs, 
however, we can obtain both theoretical insight about the problem and considerably 
better methods for solving it. We begin by constructing a bipartite graph that 
models the statement of the problem. In this graph, the vertex set U corresponds to 
the sets, the vertex set W corresponds to the members, and an edge (u,w) corre¬ 
sponds to the fact that w e U. With regard to insight, a necessary and sufficient 
condition for the existence of a solution, in the case of finite sets, is given by Hall’s 
Theorem. The union of any k distinct sets from the given collection of sets {5,} 
should have at least k distinct members [Hall 1935]. In applying this to the graph 
in Figure 7.29(a), we find that (J (B,D,F) = {4,6}, so that indeed we cannot expect 
to find a complete matching. Unfortunately, there are two reasons that cause Hall’s 
Theorem to have more theoretical than practical significance. For one, it is not a 
constructive criterion for a solution; for another, the application of this condition 
requires 0(2") tests for a problem dealing with n sets. 

The SDR problem of Eqs. 6.19 is reproduced here as Eqs. 7.7: 

The bipartite graph corresponding to these equations is shown in Figure 7.31(a). 
By repeatedly applying to it the method of the preceding section, we readily obtain 
a complete matching, such as the one shown in (b) of the figure. For large 
instances of the SDR problem, the solution based upon the graph structure will be 
much more efficient than the previous one using an implicit tree structure. 

We have used the SDR problem as a vehicle here and in Chapter 6 for illustrat¬ 
ing various points about graphs and trees, and we will now take leave of it. 
However, there is a great deal more to be said on the topic, particularly with regard 
to generalizations of it. Expositions of these further details can be found in Brualdi 
[1977] and Korfhage [1974a], 

A A 

B 2 

C 3 

D 4 

E 5 

(b) 

Figure 7.31 SDR Solution by Matching 

f7.4.3.3 Networks and Flows. At this point, it is worthwhile to introduce a 
related, important topic concerning computations on graphs. While we do not have 
the space to treat it fully, it would be remiss not to at least mention it. The digraph 
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in Figure 7.32(a) is called a network. It has a distinguished beginning vertex, the 
source s, and a distinguished ending vertex, the sink t. The weights on the edges 
represent the capacities c(u,w) of those edges. We wish to find a function defined 
on each edge, the flow (j)(u,w), such that for all {u,w) e E 

0 < 4>{u,w) < c(u,w) (7.8) 

and such that for all v e V 

^ <p(u,v) = ^ (p{v,w) (7.9) 

ue r~*(v) weT(v) 

Figure 7.32 Network Flows 
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Eq. 7.8 expresses that the flow along an edge cannot exceed its capacity. Eq. 
7.9 is a conservation condition: The total flow into a vertex must equal the total 
flow out of it. A problem characterized in this manner can be easily understood in 
terms of flow of liquid through a pipe. The subject of flows in networks was 
pioneered by Ford and Fulkerson [1962], The usual objective is to find values for 
0 that maximize the total flow — that is, the equal amounts of flow leaving the 
source s and entering the sink t. For instance, a non-maximal flow for the network 
of Figure 7.32(a) is shown in (b) of the figure. The general method of solution is to 
iteratively improve such a situation until it is maximal, as illustrated in (c) of the 
figure. There has been a remarkable history of better and better algorithms for this 
purpose [§]. We will simply point out that these methods commonly use BFS and 
cut-sets (see Section 7.3.2) to iteratively find sequences of augmenting flows, analo¬ 
gous to the augmenting paths of the preceding section. 

Figure 7.33 Network Model of SDR Problem 

One of our motivations for introducing the subject of networks, albeit briefly, is 
that the matching problem on a bipartite graph can be reduced to a network prob¬ 
lem by a very trivial construction. In illustration of this, the matching problem of 
Figure 7.31 corresponds to the network problem of Figure 7.33. We simply add a 
source node and a sink node, and we set all the capacities equal to 1; then the 
value of the maximal flow is equal to the value of the maximal matching. As a 
result of this correspondence, some of the effective techniques for dealing with 
network flows can be used to solve the bipartite matching problem. In particular, 
the algorithm described in Section 7.4.3.1 has complexity 0(VE), which can be 
OjF3) in the worst case. However, the network of Figure 7.33 is especially simple, 
leading to a solution for the bipartite matching problem with complexity OiV2-5) 
[Hopcroft and Karp 1973], 

f7.4.3.4 Matching in the General Case. There are two principal ways in which to 
generalize the previous results concerning the matching problem. One is to discard 
the bipartite restriction. Another is to introduce weights on the edges, and then 
look for a matching that maximizes the weighted sum of the matching edges. Let 
us consider both of these in turn. 
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For the general matching problem, the method of augmenting paths still applies 

[Berge 1957], except that we may now encounter circuits of odd length. The pres¬ 

ence of certain types of odd circuits, known as blossoms, makes the analysis much 

more difficult [Edmonds 1965]. There are several fairly complicated algorithms 

that master the problem; the best of these has complexity 0(F° 5E) [Micali and 

Vazirani 1980]. 

Under the heading of weighted matching, there are a variety of distinctive prob¬ 

lems. A particularly appealing example, for the bipartite case, is the Stable 

Marriage Problem [Gale and Shapley 1962] (as opposed to the merely compatible 

marriage situation). Herein, we may suppose that each boy and each girl ranks all 

the members of the opposite sex in terms of their relative desirability in his or her 

eyes. There then begins a series of proposals by the boys to the girls on their lists. 

After every round of proposals, each girl accepts her best suitor, perhaps jilting a 

previous choice in the process. Boys who are rejected or jilted simply propose to 

the next choices on their lists in the next round. The final set of matchings, or 

marriages, is said to be stable if there does not exist any boy-girl pair who mutually 

prefer each other to their respective spouses. The question arises: Is it even possi¬ 

ble for all the eager boys and girls to attain simultaneous, stable connubial bliss? 

The answer is that a stable situation does always exist. To see this, suppose that 

Alice and Bob are not married, but that Alice likes Bob better than her husband 

Arthur, and Bob likes Alice better than his wife Betty. But then, during the court¬ 

ship sessions, Bob must have proposed to Alice, only to lose out to someone she 

preferred over him, perhaps Arthur. So instability cannot occur; in fact, there may 

be several stable solutions [McVitie and Wilson 1971]. The one that we have 

described is optimal for the men; if the women do the proposing, we may obtain a 

different solution that is optimal from their point of view; and there may exist still 

other stable solutions. There are many realistic analogues of the Stable Marriage 

Problem. One example is the process by which college applicants and colleges 

become matched every year (in which situation, please note, the colleges do the 

proposing). 

Another example of bipartite weighted matching occurs in matching workers to 

jobs, with the proviso that the workers have numerically ranked skill levels relative 

to the different jobs. The objective is to maximize the skills utilized by the workers. 

This is known as the assignment problem, and the preferred method of solution is 

the so-called Hungarian method, with complexity OiV3) [Kuhn 1955]. 

What about weighted matching in the non-bipartite case? To begin with, there 

may not be an analogue of Stable Marriage. In other words, it may be impossible 

to obtain a matching among homosexuals that is stable, as in the heterosexual case. 

For the more general case of finding a maximal weighted matching, the presence of 

blossoms again makes the solution complicated; nonetheless, it can be attained with 

complexity 0(F3). Our discussion of matching has necessarily gotten skimpier as we 

considered more involved variations. Excellent sources for amplifiying these 

matters are Galil [1986], Lawler [1976], and Papadimitriou and Steiglitz [1982]. 
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7.4.4 Traversals of a Graph or Digraph 

Sections 7.4.1 and 7.4.2 discussed finding trees in a graph - in one case to mini¬ 
mize the sum of the weights on the edges of the tree, and in the other case to 
minimize the distances between pairs of nodes. In this section, we consider two 

problems relating to paths in a graph: 

I. Is it possible to traverse each edge of a connected graph G once and only 

once? 

II. Is it possible to visit each vertex of a connected graph G once and only once? 

In both cases, we may insist that our initial and final vertices are the same, so that 
we have a circuit, or we may be content to have an unclosed path. A cyclic 
solution to problem I is called an Eulerian tour, in which case the graph is said to 
be Eulerian-, a non-cyclic solution is called an Eulerian path. A cyclic solution to 
problem II is called a Hamiltonian cycle, in which case the graph is said to be 
Hamiltonian-, a non-cyclic solution is called a Hamiltonian path. The two problems 
are meaningful for both graphs and digraphs. The nature of these properties, and 
their independence, may be more easily appreciated by reference to Figure 7.34. 
There, the graph in (a) is both Eulerian and Hamiltonian, that in (b) is Eulerian but 
not Hamiltonian, that in (c) is Hamiltonian but not Eulerian, and that in (d) is 
neither Eulerian nor Hamiltonian. 

Figure 7.34 Eulerian and Hamiltonian Properties 

Although the statements of the two problems have a nice symmetry, their 
solutions are very different. The first has a very easy solution, and the second is 
AP-complete. Our objectives in this section are rather limited: 
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• to acquaint the reader with these important aspects of graphs, and 
• to relate these problems to some things that we have already learned. 

The statements of problems I and II make no mention of weights. If a graph is 
Eulerian, then the effect of weights is of course irrelevant. For the Hamiltonian 
problem, however, the influence of weights is very important, giving rise to the 
Traveling Salesman problem, wherein a Hamiltonian cycle of least cost is sought. 
That is the third and the most substantial topic of this section. 

7.4.4.1 Eulerian Tours. The genesis of graph theory occurred in 1736 when Leon¬ 
hard Euler solved the following problem: Was there a way in which the 
townspeople of Konigsberg could take a walk that crossed each of the seven bridges 
over the Pregel River, depicted in Figure 7.35(a), once and just once? Euler showed 
that such a walk is impossible. It is easy to see why by reference to Figure 7.35(b). 
This multigraph is derived from (a) by shrinking the land masses to points. If a 
vertex in a graph is of even degree, then after arriving at it by one edge, we are sure 
to have another edge by which to leave it; for a vertex of odd degree, however, this 
is not the case. The net result is that if a graph has no vertices of odd degree, then 
it is Eulerian, and the tour is easily found. If the graph has two vertices of odd 
degree, then it admits an Eulerian path with these two vertices as the endpoints.5 
Since Figure 7.35(b) has four vertices of odd degree, the original question about the 

bridges must be answered in the negative. 

C 

(a) 

Figure 7.35 The Konigsberg Bridges 

5 By counting the number of edges incident to each vertex, we can see that there must be 

an even number of vertices with odd degree. 



340 GRAPHS 

We can see from this example that the criterion is equally applicable to graphs 
and multigraphs (including loops). For digraphs, the requirement is simply that of 
equality between the in-degrees and out-degrees of each of the vertices. Euler’s 
condition is quite useful in that it is both necessary and sufficient. It is easily evalu¬ 
ated for a given graph G, and if the answer is affirmative then it can also be used to 
guide the construction of a tour of G: We simply employ the auxiliary condition 
that whenever there is a choice about which edge to use next, we should not select a 
bridge — that is, an edge that would disconnect the untraversed portion of the 

graph (see Section 7.3.2). 

Unfortunately, Euler’s condition is not likely to be satisfied in many real-life 
situations. Thus, a postmen must deliver mail along each street even though his 
route probably contains many intersections (vertices) with odd degree; the same 
problem is faced in garbage collection and many other services. In these cases, we 
are forced to traverse some of the edges in the graph more than once. To 
compound the problem, the graphs for these practical situations are weighted, so 
that the selection of the repeated edges is non-trivial. This is known as the Chinese 
Postman Problem. The solution is somewhat lengthy, but it involves two concepts 
that we are already familiar with. We begin by computing the shortest distances 
between all pairs of vertices. Next, on the subgraph consisting of the nodes of odd 
degree, we solve a minimum weighted matching problem. The matching identifies 
which edges should be traversed twice. The details of this approach can be found in 
Edmonds and Johnson [1973], 

7.4.4.2 Hamiltonian Cycles. There is no known succinct property for infallibly 
characterizing Hamiltonian graphs, as there is for Eulerian graphs. However, there 
are a variety of sufficient conditions, of which the following is representative: If G 
is a graph with V vertices such that, for all distinct non-adjacent vertices x and y, 
the sum of the degrees of x and y is not less than V, then G is Hamiltonian 

However, it is easy to find Hamiltonian graphs for which such conditions are not 
necessary, such as a 2-regular graph, or cycle. When confronted with a graph that 
does not satisfy any of the various sufficient conditions, we are reduced to combin¬ 
ing various heuristics with backtracking in order to resolve the matter [Rubin 
1974]. Most heuristics are based upon the following principles: 

• Once we have picked the two edges to be used in passing through a vertex, then 
the remaining edges incident upon that vertex can be eliminated from 
contention. 

• We must never construct a circuit that does not include all the vertices. 

Thus, we begin by including any edges incident upon vertices of degree 2; these 
restrict the inclusion of other edges at other vertices, and either force the inclusion 
of edges, or at least reduce the number of cases to be examined. We proceed in this 
manner until either a Hamiltonian cycle has been constructed, or its impossibility 
has been deduced. In particular, if we start from an independent set of vertices 
vx, v2,..., vk, (see Section 7.4.3) then there can be just 2k edges through them. This 
dictates that the number of edges in the graph that cannot occur in a Hamiltonian 

circuit is given by t = £ I r(v.) I - 2k. If t < V, we then have obtained a conclusive 
negative result. For an interesting variation on the problem of Hamiltonian cycles, 
see Exercise 7.36. 
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f7.4.4.3 The Traveling Salesman Problem. The Traveling Salesman Problem (TSP) 
is the vertex analogue of the Chinese Postman problem, and has many important 
applications. Besides the obvious cases suggested by the name - that is, minimiz¬ 
ing the cost of providing service to V geographically separated facilities - there are 
others. One common example arises when V different jobs must be scheduled for 
some production facility, and there is a cost ctJ associated with switching between 
the ith and yth jobs; the goal here is an optimal cyclical schedule for the jobs that 
minimizes the aggregate changeover times. 

There are some important distinctions between this problem and that of ascer¬ 
taining if a graph has a Hamiltonian cycle. For one, it is common to assume that 
there is an edge between every pair of vertices, although it may be infinite in value 
for some pairs. Thus the issue is not so much to determine if there is a cycle as it is 

to determine the shortest cycle that visits each vertex once and only once. Another 
issue is that, for some problems, the weights on the edges will satisfy the triangle 

inequality of Euclidean plane geometry; that is, the sum of the values of any two 
edges of a triangle cannot be less than the value of the third edge. For such prob¬ 
lems, this property can be used to advantage. Note that there are problems, such as 

the job scheduling example, for which this need not be the case. 

From the preceding discussion, you might easily infer that the Hamiltonian 

cycle problem (A) and the Traveling Salesman problem (B) are distinct in their 
complexities. But this would be an erroneous inference. By the process known as 
problem reduction, we can transform (A) to (B), as follows. Wherever there is an 
edge in (A), let the distance in (B) be 1; wherever there is not an edge in (A), let 
the distance in (B) be 2. Then look for a solution of (B) such that the total distance 

is not greater than V, the number of vertices. If there were a polynomial-time algo¬ 
rithm to solve (B), then that coupled with the trivial polynomial-time algorithm for 
this reduction would yield a polynomial-time algorithm to solve (A). But since (A) 

is known to be AT-complete, this is impossible, and so (B) must be AP-complete 
also. Reductions such as this, though typically more complicated, have been used 

extensively to establish that hundreds of problems are equivalently “hard” (see 
Section 6.8.2.2). To illustrate just how hard TSP is, note that a backtracking 
solution with no pruning would have to examine (V — 1)! paths (it doesn’t matter 

where we start). This is worse than the worst complexity illustrated in Table 1.3, 

and an exact solution for even moderate values of V would require centuries on the 

fastest known computer. 

One of the earlier, serious approaches was to apply dynamic programming. In 

this formulation, we start at an arbitrary first city, and then successively consider 
tours on larger and larger sets of cities. Let us denote by C(S,k) the cost of the 

shortest path that starts at 1, visits (once) each city in the set S, and ends at k. 
Now, for each such city k, the cost of that shortest path consists of the minimum, 

over all predecessor cities j, of the quantity C{(S - {k})J) + djk. Starting with the 
trivial values C({k},k) = dhk, we can then compute the values C{S,k) for all sets of 

successively larger sizes, and do so for every city in each such set in terms of the 

C(S,k) on the smaller sets. Finally, we obtain C((V - (1}),1), yielding the optimal 
tour on all the cities. Dynamic programming reduces the time complexity from 
0(F!) to 0(V22V). Although enormously better than the factorial complexity of 

ordinary backtracking, it is still exponential; more significantly, the tables of inter- 
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mediate solutions require 0(V2y) space, a dramatically less auspicious situation than 

that which prevailed with Floyd’s algorithm. 

For smaller size instances of TSP, dynamic programming works fairly well, but 
for larger problems, branch-and-bound has been found to be more successful. As 
an example of this latter approach, let us suppose that the distances are given by an 
adjacency matrix A. We begin by subtracting from each entry in every row the 
value r, of the smallest entry in that row, to obtain A'. Since one entry from each 
row of A must occur in the solution, then the solution to TSP on A is the same as 
2>, plus the solution to TSP on A'. Next, subtract from each entry in every column 
of A' the value Cj of the smallest entry in that column, to obtain A”. The same 
reasoning as used before tells us that the solution to TSP on A is the same as ^r,- 

plus Y.cj Plus the solution to TSP on A". In other words, Yji + is a bounding 
value. Let us denote this transformation process A^A'-^A" by 0. Next, we look 
for a branching entry aT S among the zero values in A". If we do not include a^ s in 
the tour, then we can effectively replace its value by infinity oo. If we do include ar s 
in the tour, then there are two consequences. One is that we must effectively set as r 
equal to oo in order to avoid a cycle of length 2; the other is that we cannot use 
any further entries in row r or column s. So the choice of whether or not to employ 
the edge ars in the tour corresponds to a branch point. If we do not include it, we 
can apply 0 to an altered A"; if we do include it, we can apply 0 to a submatrix of 
an altered A". The branch-and-bound solution to TSP proceeds by alternately clos¬ 
ing a branch point and evaluating the bounds associated with the two choices, then 
picking the open branch with lowest bound for further exploration, etc. Several 
branching criteria can be applied; a common one is to look for that zero value in 
A" whose selection will maximize the increase in the lower bound. 

Another successful class of techniques for solving TSP operates by local search; 
with this method, one first obtains an approximate or a partial solution, and then 
modifies it by local improvements. We shall not pursue local search here. 
However, the concept of applying approximate solution methods to intractable 
problems is an important one. With them, it is often possible to come reasonably 
close to the elusive exact solution, but at far less cost. We will illustrate how some 
of the concepts arising from more tractable graph problems are very useful for find¬ 
ing approximate solutions to TSP. The simplest method of all is to try a greedy 
approach, as follows. Start with the shortest edge. Thereafter, consider adjacent 
edges in order of their length, appending them to the tour if (a) they would not 
cause any vertex to have degree three or more, and (b) they would not create a 
cycle (unless that cycle includes all the vertices). Suppose that we had to pack our 
sample case and visit the following cities: (A)tlanta, (B)ismarck, (D)enver, 
(H)ouston, (J)acksonville, (L)ouisville, (M)emphis, (O)maha, (P)ortland, (S)an 
Diego, and (W)ichita. They are depicted in Figure 7.36(a), and the intercity mile¬ 
ages are given in Table 7.1. The greedy method would select the edges in the 
sequence shown in Figure 7.36(b), for a tour of 8678 miles. 

We can generally expect to do better if the triangle inequality is satisfied, as 
cited at the beginning of this section. In that case, consider the following simple- 
minded approach. First, find the MST for the graph; then consider the tour 
obtained by using each edge of the MST twice; and finally introduce “shortcuts” 
by bypassing the second occurrence of each vertex. Note the relevance of the trian¬ 
gle inequality for guaranteeing that a shortcut will always live up to its name. As 
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(a) 

(b) 

Figure 7.36 The Greedy Heuristic for Solving TSP 
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A B D H J L M O P S W 

Atlanta 0 1483 1385 780 307 383 369 962 2569 2106 899 

Bismarck 1483 0 668 1383 1790 1106 1209 576 1265 1639 781 

Denver 1385 668 0 1014 1692 1118 1038 534 1234 1086 510 

Houston 780 1383 1014 0 869 922 557 858 2189 1470 602 

Jacksonville 307 1790 1692 869 0 690 672 1269 2876 2319 1202 

Louisville 383 1106 1118 922 690 0 367 693 2302 2069 702 

Memphis 369 1209 1038 557 672 367 0 633 2240 1778 530 

Omaha 962 576 534 858 1269 693 633 0 1648 1619 297 

Portland 2569 1265 1234 2189 2876 2302 2240 1648 0 1083 1735 

San Diego 2106 1639 1086 1470 2319 2069 1778 1619 1083 0 1373 

Wichita 899 781 510 602 1202 702 530 297 1735 1373 0 

Table 7.1 Mileage Chart for TSP 
(Standard Highway Mileage Guide, Rand McNally & Co, 1982) 

applied to the graph of Figure 7.36(a), this method first computes the MST shown 
by dashed lines in Figure 7.37(a). Now we need to be more specific about various 
details such as where to start, which edge of the MST to traverse next when there is 
a choice, which shortcut to take, etc. Let us make the arbitrary assumption that we 
start with A(tlanta), and the reasonable assumptions that we always choose the 
shortest adjacent edge in traversing the MST, and that we are likewise greedy in 
making shortcuts. If we double each edge in the MST and use these assumptions, 
we obtain the preliminary tour 

AJAMLMWOBOWDSPSDWMHMA 

When we introduce the greedy shortcuts, the repeated values drop out of this 
sequence, yielding the tour 

AJMLWOBDSPHA 

for a total of 8727 miles, as shown by solid lines in Figure 7.37(a). 

In this particular instance, the more sophisticated method failed to outperform 
the greedy approach! Nonetheless, the MST method is important in that it is rela¬ 
tively simple, and yet guaranteed to produce a tour no worse than twice the 
optimum. To see this, observe that the optimal tour minus an edge is a spanning 
tree T, and the weighted value |MST| cannot exceed the weighted value | T\; that 
is, | MST| < \T\. But then, twice around the MST cannot exceed 2x |r|, a 
bound that can only be improved by the shortcuts. If we consider the deviation of 
our approximate solution from the optimal solution, and take the ratio of the 
former to the latter, then that ratio is bounded by 1. Thus, the tree method is said 
to be a 1-approximate solution. 

One of the better heuristics for solving the TSP is a lA-approximate solution, 
based upon matching. We commence by computing the MST again. Then, on the 
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(a) 

(b) 

Figure 7.37 Other Heuristics for Solving TSP 
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vertices of the MST that are of odd degree, we solve a minimum weighted matching 
problem. We (i) add these edges M to the MST, (ii) construct an Eulerian tour 

employing the edges in MST (J M, and (iii) apply shortcuts again. It is fairly easy 

to show that, just as | MST | < | T\, so also \M\ < V2 x | T\, which establishes the 
Vi-approximate character of the solution. As applied to our test data, we start with 

the same MST as before, and note that the vertices of odd degree correspond to 

Bismarck, Houston, Jacksonville, Louisville, Portland, and Wichita. A minimum 

weight matching for these is: B — P, H— W, J—L. By adding these matching edges 
to the MST, we obtain the Eulerian graph shown by dashed lines in Figure 7.37(b). 

Starting at A again, and with similar assumptions as for Figure 7.37(a), we first 

construct the preliminary tour 

AJLMWOBPSDWHMA 

This is already close to a good solution, and we need introduce only one shortcut 

from D to H and another from H to A, to obtain 

AJLM WOBPSDHA 

for a total of 7995 miles, as shown by solid lines in Figure 7.37(b). 

It is possible to construct examples where the 1-approximate and 
V2-approximate algorithms of the last two paragraphs will actually attain their 
maximum relative errors. In practice, however, these algorithms tend to yield 

results much closer to the optimum. We should hasten to add that approximation 
methods for TSP without the triangle inequality do not have such nice worst-case 
bounds. In fact, if there were an r-approximate method, for any bounded value of 
r, then P = NP - a most unlikely result! Our objective in this section has been 

primarily to introduce TSP and to demonstrate how methods for attacking it are 
related to other, familiar techniques for dealing with graphs. For the rest, we 
supply several references [§], and leave the details of algorithms as exercises. 

7.4.5 Precedence Relations in a Digraph 

We have emphasized that the edges of a graph represent a mathematical relation 
among the vertices. An important special case of this occurs in a digraph where 

there are no cycles, otherwise known as a directed acylic graph (DAG).6 In a DAG, 
the arcs represent a partial ordering among the vertices. We can represent the pres¬ 

ence of an arc from A to B by A<B. In the case of a total ordering (for example, 
the points on a line) we always have a relation between two distinct objects A and B 

- either A < B or B < A. The nature of a partial ordering relationship is such that 
there may exist distinct pairs A,B where neither A<B nor B<A, and thus we 

6 Note that a whereas a tree corresponds to a pure List and a graph to a recursive List, a 
DAG corresponds to a reentrant List. 
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cannot construct a unique sequential ordering of our set of objects.7 As an example, 
the digraph of Figure 7.2 is a DAG. We may know, for instance, that 4 < 6; but 
that doesn’t alter the fact that neither integer divides the other, and so there is no 
partial (divisibility) ordering between them. Given that there are no cycles in a 
DAG, we can always construct a linear ordering with the property that if A<B, 
then A will occur to the left of B in this sequence. In fact, we can in general 
construct many topological orderings that have this property. As an illustration of 
these notions, consider the digraph of Figure 7.38(a). Two topological orderings of 
the vertices are 1BDGCEFJ AH and CEGAIBFJDH\ there are many 
others. Note that if we place the vertices in topological order, and then insert the 
arcs from the original graph, they will all point from left to right. Thus, the effect 
of a topological ordering is to embed a partial ordering in a total ordering. 

Figure 7.38 Precedence in a Digraph 

DAG’s are one special case of a digraph. Another important, special case is a 
flow graph, which has a unique entry-point node s0, from which all other nodes can 
be reached. The significance of flow graphs is that they can be used to model 
programs. The more sophisticated methods of detecting errors in programs and of 
optimizing their compilation all make extensive use of various concepts associated 

with flow graphs. 

In the ensuing three sections, we will first consider how to check for topological 
orderings in a digraph. This capability is important as an initial step of other, more 
complicated processes, and our second area of discussion consists of an example in 
this spirit. Section 7.4.5.3 describes some of the concepts and techniques associated 

with using flow graphs to analyze programs. 

7 Technically, since we do not allow for the reflexive case what we have described 

is a quasi ordering. But this strict form of partial order is what we want here. 
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7.4.5.1 Topological Sorting. The process of discovering topological orderings of 
the vertices of a digraph is known as topological sorting, and the problem presents 
itself in various guises. For instance, we may be presented with a set of partial 
orderings, analogous to the equivalence relations of Eqs. 4.6 and 6.5, or we may 
already have their representation as a graph. Another consideration is that we may 
already be certain that there are no cycles, or the existence of cycles may be an open 
and important issue. As one concrete example, suppose that we think of these 
relationships as signifying “A is defined in terms of B,” and that our goal is to write 
a dictionary. Then it would be desirable to use an algorithm that would either find 
some topological ordering, or else report that we had circular definitions. For 
another example, suppose that the relationships expressed facts such as: “Course P 
of r units is a prerequisite for course Q of s units.” Our chief interest then might be 
to find a sequence of courses that would allow us to graduate in reasonable time. 
In still another variation, our objective might be to enumerate all possible topologi¬ 

cal orderings. 

The usual approach to the latter type of problem is not to generate permuta¬ 
tions, but to use the precedence relations in a clever manner to prune subtrees (in 
other words, to employ backtracking) [Knuth and Szwarcfiter 1974; Varol and 
Rotem 1981]. An interesting, alternative technique employs a ternary tree in a 
manner analogous to the use of a BST for ordinary sorting [Szwarcfiter and Wilson 
1978]. In this method, the middle child of a ternary tree node corresponds to the 
case where neither A<B nor B<A\ after all the relationships have been processed, 
the topological orderings can be obtained by a traversal of the final ternary tree. 

Procedures for solving the other types of problems (that is, where enumeration 
of all possible orderings is not the objective) are fairly simple. As a first comment, 
the technique of DFS is directly applicable to either computing a valid topological 
ordering, or else reporting that there is a cycle. We simply need modify DFS so 
that (a) it still marks a node as soon as it reaches it, but (b) it labels the node with 
its topological value just before exiting. The labels will actually be generated in 
reverse topological order, but it is trivial to complement them. Note that if this 
modified form of DFS encounters a node that is marked but not labeled, then a 
cycle has been detected. A final observation is that we must attend to one other 
detail in order for DFS to work — we must have a unique node of in-degree zero, 
from which to start the search. Thus, the method would not work as described for 
Figure 7.38(a). However, in most cases this can easily be taken care of by inserting 
a dummy node S0 that has arcs to the original nodes of in-degree zero, as illustrated 
in Figure 7.38(b). 

In a case where we have a large set of partial ordering relationships with no 
prior awareness about their nature, a somewhat different approach is called for. 
We cannot use DFS directly; however, the solution is obtained by a similar 
process. We need to maintain counts of the in-degrees of the nodes in the digraph, 
corresponding to the relationships. We then proceed as follows: 

(a) Begin by making a list of the nodes with in-degree zero. 

(b) Look for any node X on the list, remove it, and decrement the in-degree 
counts of the nodes in T(X) by one. 

(c) As each of the counts is decremented in step (b), test to see if it is now zero; if 
it is then add that node to the list. 
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program TOPO_SORT; 

label 1; 

var elink: eptr; 
i,k,top,vlink: vndx; 

begin 
top := 0; 
for i := 1 to vsize do {build initial stack} 

if vlist [i].indegree = 0 then begin 
vlist [i].indegree := top; top := i; 

end; 
for k := 1 to vsize do 

if top = 0 then begin 
write (' Cycle at remaining nodes'); 
goto 1; 

end else begin 
write (' ',vlist [top].vid); 
elink := vlist [top].head; 
top := vlist [top].indegree; 
while elink <> nil do begin 

vlink := elink].vno; 
vlist [vlink].indegree := vlist [vlink].indegree - 1; 
if vlist [vlink].indegree = 0 then begin 

vlist [vlink].indegree := top; top := vlink; 
end; 
elink := elink],next; 

end; 
end; 

1: writeln; 
end. 

Algorithm 7.10 TOPO_SORT 

(d) If we have processed all n nodes then we are done, else if the list is non-empty 

then repeat step (b); otherwise, there must remain some node(s) with non-zero 

counts, indicating that there is a cycle. 

Either a queue or a stack can be used for the list; the list order is not impor¬ 

tant. We can obtain an algorithm that is economical in terms of space by threading 

a stack where the in-degree values were maintained; that is, once such a field has 

been determined to contain a zero, it will never be referenced by step (b) again, and 

so is “free.” A program that implements this strategy is TOPO_SORT (Algorithm 

7.10). Figure 7.39 illustrates the method as applied to the original digraph of 

Figure 7.38(a). The structure before the process commences is illustrated in Figure 

7.39(a). The program begins by building a stack in the count fields of I,G,C, as 

shown in (b) of the figure. By the time / and B have been output by the algorithm, 

the count fields appear as in (c) of the figure, where the link values associated with I 
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and B are no longer meaningful. When the process terminates, it has discovered the 

topological ordering IBDGCEFJAH. 

Node Count Successors 

1—4 2 H 

0Q 1 
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(c) 

Figure 7.39 Progress of Algorithm TOPO_SORT 

f7.4.5.2 Critical Path Analysis. Throughout life, we often must complete certain 
tasks before we can embark upon others. An earlier example of this was the neces¬ 
sity to take certain courses as prerequisites before taking others. A much more 
complicated example is that of constructing a material object such as a building or 
an airplane. In such an endeavor, the discrete activities that compose it will have 
associated time values, and there will often be a strong economic incentive to make 
the total time from start to finish as short as possible. Moreover, it is often possible 
to allocate resources so that some number of these activities can be conducted in 
parallel. Such a situation is readily modelled by a weighted DAG, because the pres¬ 
ence of a cycle would correspond to the unreasonable circumstance that an activity 
would have to be completed before it could be started! Several techniques have 
been devised for analyzing such projects by the use of graphs. Prominent examples 
are PERT (Progress Evaluation Review Technique) and CPM (Critical Path 
Method). They typically allow the user to determine the shortest overall time that is 
possible, given the constituent times and the dependencies; they also identify those 
activities that are most critical, in the sense that any shortening (lengthening) of 
their elapsed times may be directly reflected in a shortening (lengthening) of the 
overall time. 

To illustrate these ideas, we will consider the making of an omelette, with 
several kitchen helpers available as needed. Be forewarned that our motivation is 
more mathematical than culinary, and we do not guarantee the recipe! As a first 
step, we need to identify the separate, atomic activities to be performed; for our 
omelette, these activities and their times are shown in Figure 7.40. Next we need to 
make a DAG, with activities as vertices, that captures all of the dependencies; in 
our case, we obtain Figure 7.41(a). It is possible to perform some analysis directly 
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Activity Duration in seconds 

A — Crack eggs 40 
B - Put butter in pan 15 
C — Slice mushrooms 170 
D — Beat eggs 50 
E - Heat butter in pan 90 
F — Add some of melted butter to eggs 10 
G - Add some milk to eggs 15 
H - Saute the mushrooms 40 
1 - Reserve mushrooms in side dish 10 
J - Add special seasonings to mushrooms 105 
K — Pour egg mixture into pan 5 
L - Cook one side 90 
M — Add mushrooms to eggs in pan 5 
N - Turn omelette 15 
O — Cook other side 75 

Figure 7.40 Omelette Preparation Activities 

on this activity-node graph. However, it is more common to transform the activity- 
node graph to an event-node graph, wherein the original activities become the edges, 
and the nodes are events. Each event corresponds to the completion of all activities 
preceding it, and no successor activity can take place until the event has occurred. 
Such an event-node graph for our omelette is shown in Figure 7.41(b). In making 
this transformation, we find that we must often insert dummy activities, of zero time 
duration, in order to prevent false dependencies. For the present case, we need a 
dummy activity PI between nodes 5 and 6, and another dummy activity P2 between 
nodes 8 and 11. The former is necessary, for instance, because activities G and H 
both depend upon activity F, and activity H also depends upon activity C; 
however, G does not depend upon C. Without the dummy activity, events 5 and 6 
would collapse into a single event, introducing a false dependency of activity G 
upon activity C. 

Most or all of the work described in the preceding paragraph has to be done by 
hand; it requires judgement and skill, and it is often accomplished by a series of 
successive refinements to an initial model of the process. With regard to the trans¬ 
formation from activity-node graph to event-node graph, we would like the latter to 
have the minimum number of nodes and arcs. There are algorithms to accomplish 
this transformation, but it turns out that this can be a non-trivial problem in its 
own right [Corneil et al. 1973]. 

Now we are ready to start cooking! In essence, we need to compute the longest 
path through the graph from Start (event 1) to Finish (event 14). In our computa¬ 
tion, we begin by having an array of values as in Figure 7.40: 

T:, - the duration of the activity between events i and j. 
*i/ 

We then compute, successively, three other arrays of values: 

1. ETj - the earliest time at which event j can occur; 
2. LTj - the latest time at which event i can occur without causing the final event 

to be delayed; 
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Figure 7.41 Precedence Graphs for Figure 7.40 

3. Floaty - the amount of time to spare in the activity between events i and j. 

These calculations require us to process the event-nodes in the proper order. Not 
surprisingly, this corresponds to their topological ordering, so that a topological 
sort must be incorporated in the process. Although no cycles should be present, we 
cannot rule out the possibility that the input data contains errors; therefore, in a 
large real-life problem, the sort operation should check for this eventuality. For our 
simple example, we have bypassed this step by assigning event-node numbers that 

are already in topological order. 

The earliest times ETj are computed in topological sequence by the rule 

ETy = 0 ; ETj = max.g r-i(j) {ETj + Tt} (7.10) 

This must be so because the jth event cannot occur until all of the activities origi¬ 
nating from predecessor events have been completed. By analogous reasoning, the 
latest times LTt are computed in reverse topological sequence using the rule 

LTn = ET„ ; LTi = min^ {LTj - rj (7.11) 

Having the earliest and latest times for the events, it is finally a simple matter to 
compute the floats by the rule 

Float jj = LTj- ETj - Tjj (7.12) 

The application of Eqs. 7.10 — 7.12 to the data of Figure 7.40 is shown in 
Figure 7.42. We note that activities A,B,D,E, among others, have non-zero floats, 
and thus are not so urgent. On the other hand, activities C,H,I,J,M,N,0 have zero 
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floats, and thus they are critical activities; if any of these are not commenced at 
their earliest possible times, the Finish time will be delayed. There will always be at 
least one critical path from Start to Finish, consisting entirely of critical edges. One 
of the principal objectives of this type of analysis is to identify such edges. The 
corresponding activities can then be closely monitored in an effort to prevent slip¬ 
page in completing the project. It may even be possible to concentrate more 
resources on some critical activities in an effort to speed up the project. However, 
increased attention to a particular critical activity will be beneficial only if that 
activity lies on all critical paths; in general, there may be more than one critical 
path, with some critical activities present in only some of the paths. 

Event ET LT Activity Duration Float 

1 0 0 A ( 1, 2) 40 110 — 0-40 = 70 
2 40 110 B ( 1. 3) 15 70 - 0- 15 = 55 
3 15 70 C ( 1. 6) 170 170- 0-170 = 0 
4 105 160 D ( 2, 4) 50 160 - 40 - 50 = 70 
5 115 170 E ( 3. 4) 90 160- 15- 90 = 55 
6 170 170 F ( 4, 5) 10 170- 105- 10 = 55 
7 210 210 P1 ( 5, 6) 0 170- 115- 0 = 55 
8 220 220 G ( 5, 9) 15 230 - 115- 15 = 100 
9 220 230 H ( 6, 7) 40 210- 170- 40 = 0 

10 225 235 1 ( 7, 8) 10 220 - 210- 10 = 0 
11 325 325 P2 ( 8, 9) 0 230 - 220 - 0 = 10 
12 330 330 J ( 8,11) 105 325- 220- 105 = 0 
13 345 345 K ( 9.10) 5 235 - 220 - 5 = 10 
14 420 420 L (10.11) 90 325 - 225 - 90 = 10 

M (11,12) 5 330 - 325 - 5 = 0 
N (12.13) 15 345 - 330 - 15 = 0 
O (13,14) 75 420 - 345 - 75 = 0 

Figure 7.42 Critical Path Analysis of Omelette 

f7.4.5.3 Data Flow Analysis of Programs. Anyone who is familiar with program 
flowcharts can well appreciate that a program can be modelled by a graph, wherein 
the nodes represent segments of code, and the edges represent the flow of control 
between these segments. A segment of code might be as small as a single machine 
instruction or a single HLL statement. However, it is much more efficient to equate 
each node with a basic block of instructions, with the property that if the first 
instruction in the block is executed, then so must the remainder of the block be 
executed. We said earlier that a flow graph of a program has the special property 
of possessing a unique entry-point node Sq, from which all other nodes can be 
reached. It is easy to search the graph of a program from its starting location to 
check for various types of errors, such as the existence of nodes that are not reach¬ 
able from s0. However, most of the effort of program analysis is concerned with 
interactions between the use of variables in the various nodes. Thus, the major 
topic is global data flow analysis, where the term global refers to the fact that the 
entire graph (program) is being considered, and the term data refers to that which is 
under investigation. Because of the multiplicity of possible execution sequences in a 
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program, the aliasing of variables, and the possibility of external procedure calls, 

such analyses can be non-trivial to perform. 

The techniques of global data flow analysis are primarily useful for optimiza¬ 

tion purposes in compilers, and include: 

• Common expression elimination. If the same expression is computed in several 
nodes of a flow graph, and if each of these nodes has a common ancestor, then 
it may be possible to remove that duplicated code from these nodes to their 

ancestor. 
• Live variable detection. Within a block, the values of various variables are 

computed. If any such value is (is not) used in any successor blocks, then that 
variable is said to be a live (dead) variable at the conclusion of the block, and its 

value need (need not) be saved at that point. 
• Available expression detection. Within a block, the computation of an 

expression may be redundant if (i) it was previously computed in every prede¬ 
cessor block, and (ii) none of the variables in the expression were subsequently 

assigned new values. 

Typically, a bit vector is associated with each block, with one bit position for 
each data object. The solution of a data flow problem is related in some fashion to 
the propagation of these bit values through the nodes of the graph. Historically, 
there have been two alternative approaches to organizing these calculations. We 
will illustrate one of these, in the first section, as applied to the computation of 
dominators. To describe the other technique, we need to introduce the notion of 

reducibility in the second section. 

f 7.4.5.3.1 Dominance. A node U in a digraph is a dominator of another node W if 
every path from s0 to W contains U. Dominance is another type of partial ordering 
on the nodes of a graph, but it is stronger than the type discussed in Section 7.4.5. 
In the former case, if A^C and B~<C, we could not make any statement about 
partial ordering between A and B. In the present case, if A dominates C and B 
dominates C, then either A must dominate B or B must dominate A. To see why 
this is so, consider any path from .s0 to C that contains A before B. If A did not 
dominate B, then we could construct another path from s0 to C, going through A 
and avoiding B. But that would violate the dominance relation between B and C. 
Similarly, if B precedes A on any path to C, then B must dominate A. An impor¬ 
tant consequence of this stronger form of relationship is that, for any node of a 
graph, its dominators form a linear sequence. Thus, every node has a unique imme¬ 
diate dominator from this sequence, and consequently we can form a dominator 
tree of the nodes. For the flow graph of Figure 7.43(a), the dominator tree is 
shown in (b) of the figure. Dominators have several uses in data flow analysis, 
examples being common expression elimination and the detection of loops. Loops 
are present, for instance, whenever we have an arc whose head dominates its tail. 

Dominators can be computed rather easily by iteratively propagating bit values 
among the nodes of the flow graph. Intuitively, the computation expresses that if 
node A is a dominator of node B, then A must be a dominator of all the immediate 
predecessors of node B. For the present purpose, we find it convenient and suffi¬ 
cient to represent the graph by an array of type vsets, containing for each node X 
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(a) 

(b) 

Figure 7.43 Dominators in a Flow Graph 

the information r-1(T), represented as set of 1 .. vmax. The dominators of a node 
form a set of the same type, and the computation is expressed by the procedure 
DOMINATORS (Algorithm 7.11). It begins by initializing the dominator sets 
doms, and it then processes the nodes in some order, propagating information 
among these sets. Any processing sequence, as specified by the parameter domseq, 
would eventually produce the same final result. For now, we will simply assume 
that domseq [i] = i. When, after an entire iteration, there has been no change in 
any of the sets in doms, then the final values in doms contain the sets of dominators 
for each node. As applied to the flow graph of Figure 7.43(a), it requires two iter¬ 
ations (plus one to determine that there has been no change) in order for 
DOMINATORS to converge. These two iterates of doms are shown in Figure 7.44. 
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procedure DOMINATORS (domseq: vseq; vpred: vsets; var doms: vsets); 

type vndx = 1 .. vmax; 
vseq = array [vndx] of vndx; 
vset = set of vndx; 
vsets = array [vndx] of vset; 

var change: boolean; 
i,j,k: vndx; 
newdom: vset; 

begin 
doms [1 ] := [ ]; {corresponds to the node s0) 
for j := 2 to vsize do 

doms [j] := [1 .. vsize] - [j]; 
change := true; 
while change do begin 

change := false; 
for i := 2 to vsize do begin 

j := domseq [i]; 
newdom := [1 .. vsize] - [j]; 
for k := 1 to vsize do 

if k in vpred [j] then 
newdom := newdom * (doms [k] + [k]); 

if doms [j] <> newdom then 
change := true; 

doms [j] := newdom; 
end; 

end; 
end; 

Algorithm 7.11 DOMINATORS 

DOMINATORS is not the fastest algorithm for the purpose; we will discuss its 
performance in the next section. The best algorithm for computing dominators has 
complexity 0(E <x(Ej) [Lengauer and Tarjan 1979], where a is the Ackermann 

inverse function described in Section 6.6.5.1. DOMINATORS has the two virtues 
that it is extremely simple, and that it illustrates several important notions in data 
flow analysis. We will return to this algorithm in the next section, after broaching 
some other concepts. What is worth noting here is that it is possible to solve the 

live variable and the available expression problems by processes that are remarkably 
similar. Such algorithms involve the manipulation of several sets for each node, 

instead of just one (doms); however, the concept in both cases is to scan through all 
the nodes of the graph, computing new values for these sets until we have an iter¬ 
ation in which none of them has changed. 

f 7.4.5.3.2 Reducibility. For a program of any significant size, data flow analysis 
in terms of basic blocks is too large a computation, and needlessly so. What is 
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doms [1] := {} doms [1] := {} 

doms [2] := {1} 

doms [3] : = {1,2} 

doms [4] := {1,2} 

doms [5] := {1,2,4} 

doms [2] := {1} 

doms [3] := {1,2} 

doms [4] := {1,2} 

doms [5] := {1,2} 

doms [6] : = {1} 

doms [7] : = {1,2} 

doms [8] : = {1} 

doms [9] : = {1,8} 

doms [10] := {1,8} 

doms [11] := {1,8} 

doms [6] : = {1,2,4,5} 

doms [7] := {1,2} 

doms [8] := {1} 

doms [9] := {1,8} 

doms [10] := {1,8,9} 

doms [11] := {1,8} 

doms [12] := {1,8,11} doms [12] := {1,8,11} 

First Iteration Second Iteration 

Figure 7.44 Iterations of the Sets doms 

desired is a technique for partitioning the flow graph into meaningful units that are 
larger than basic blocks. We encountered one such partitioning of a digraph, the 
condensed graph, in Section 7.3.4; it is based upon detecting the strong components 

of the digraph. Some of the earlier data flow analyses were, in fact, based upon 
nested, strongly connected subgraphs [Lowry and Medlock 1969]. However, in 
such a partitioning, we have the undesirable feature that a strong component may 

have multiple entry points. 

The concept of an interval, on the other hand, leads to a set of disjoint parti¬ 

tions, each with a single entry point [Allen 1970; Cocke 1970]. An interval of a 
node v is the maximal, single entry subgraph such that v is the only entry node, and 
all loops contain v. The notion is applied by finding a sequence of reductions, or 
transformations, to the original flow graph, according to various rules.8 If the 

reductions can be carried out to the point that the reduced flow graph consists of a 
single interval, then the original flow graph is said to be reducible. Conversely, if 

the reductions terminate leaving more than one interval, then the original flow 

graph is said to be irreducible. 

The definition of what constitutes a reducible flow graph depends upon the 

allowable transformations, and there is some inconsistency in this regard. The most 

common definition employs two transformations 71 and 72, as follows: 

• 71 — If there is an arc (v,v) in a flow graph, delete it. 
• 72 - If there is a node v2 (not s0 ) with a single predecessor v„ then replace v, 

and v2 and the arc (v1? v2) by a single new node node v0. 

8 In addition to condensation and reduction as techniques for simplifying a digraph, there 
is yet another transformation. It consists of deleting as many arcs as possible without 
affecting the reachability properties. The result is the minimum equivalent graph {MEG) 
of the digraph. Quite aside from its utility for data flow analysis, however, the problem 
of finding the MEG of a digraph is MP-complete. 
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Figure 7.45 Reduction of a Flow Graph 

These transformations are illustrated in Figure 7.45, where they are applied in the 
sequence 72, 71, 72, 72, 71 to the original flow graph. Note that the first applica¬ 
tion of 71 is essential in order to be able to make the subsequent application of 72. 
Since the final graph consists of a single node, the original graph is a reducible one. 
An example of a flow graph that is irreducible because neither of these transforma¬ 
tions can be applied is shown in Figure 7.46. In fact, this particular example is the 
paradigm of an irreducible flow graph, in the sense that any irreducible graph 

contains it as a subgraph. 

In describing the transformations 71 and 72, we have not made any reference 
to the intervals cited at the beginning of this section. However, it can be shown 
that successful reduction to a single node by use of 71 and 72 is equivalent to 
reduction in terms of intervals [Hecht and Ullman 1972], Moreover, reduction in 
terms of 71 and 72 is simpler than the direct calculation of intervals. The principal 
consequences of having a reducible flow graph are: 

• Every loop has a unique entry point from the starting block. 
• The edges in the flow graph can be partitioned into two sets, advancing edges 

and retreating edges; the advancing edges form a DAG in which every node is 
reachable from % and the retreating edges consist of just those edges whose 
heads dominate their tails. 

These properties are sufficient, as well as necessary. Moreover, the latter can be 
used as the basis for establishing reducibility. In fact, a flow graph can be tested 
for reducibility in 0(E) time [Gabow and Tarjan 1985]. The cited algorithm 
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employs DFS, and uses a linear variant of UNION-FIND (Algorithms 6.9) to keep 
track of the necessary information. In contrast to the iterative approach in DOMI¬ 
NATORS, it is essentially based upon interval analysis. An approach combining 
iterative and interval analysis techniques has also been found to be usually linear 
[Graham and Wegman 1976], 

The concept of reducibility is of practical importance for several reasons. It 
happens that the iterative procedure DOMINATORS of the previous section works 
whether a flow graph is reducible or not. Some of the earlier analyses in terms of 
intervals, on the other hand, either would not work for an irreducible flow graph, or 
would only work after making complicated adjustments. More recent analyses in 
terms of intervals do not have this dependency [Allen and Cocke 1976]. Nonethe¬ 
less, even though reducibility is no longer such a critical factor for performing data 
flow analysis, it can still make a significant difference in terms of efficiency. To 
illustrate this, consider again the algorithm DOMINATORS. It iterates until there 
has been no change in any of the sets of doms. If the graph is reducible, however, 
and if we also process the nodes in a certain order, then we can compute the domi- 
nators in one direct pass, without iteration! 

The simplification to DOMINATORS just described depends upon a variant of 
DFS. Given that DFS from s0 generates a spanning tree of the flow graph, our 
numbering of the nodes heretofore (see Algorithm 7.2) has corresponded to a 
preorder traversal of the spanning tree. What we need now is to vary DFS slightly 
so that it numbers the nodes in reverse postorder sequence; that is, we need to 
change DFS_GRAPH as follows: 

(a) Start with seq = V (the number of nodes) instead of 0, and decrement seq 
rather than increment it. 

(b) Label the nodes in postorder — that is, just before exiting DFS_GRAPH, 
rather than just after entering it. Note that we still need to mark nodes on 
entry, and so the DFS numbers can no longer serve as marks. 

By way of illustration, Figure 7.47 shows both the preorder numbering and the 
reverse postorder numbering of the nodes in our flow graph of Figure 7.43(a). 
Now, by inverting the numberings on the nodes, we obtain the desired order of 
processing the nodes in DOMINATORS. Given that the DFS numbers are stored 
in the field data for each vertex, the inversion can be computed by 

for i := 1 to vzsize do 
domseq [vlist [ij.data] := i; 

It is not too hard to show that the dominators of a reducible flow graph can always 
be computed in one direct pass via this sequence, significantly simplifying the algo¬ 
rithm [Hecht and Ullman 1975]. The reason is related to the fact that the 
retreating edges of a reducible graph will always correspond to back edges in its 
DFS spanning tree. To recapitulate, by processing the nodes of Figure 7.43(a) in 
the order AHKLIJBGCDEF, just one pass is needed in DOMINATORS to 

compute the values of doms, rather than two plus one as in Figure 7.44. 

It is worth reflecting upon the appropriate graph representation to accomplish 
these operations. When we first discussed DOMINATORS, it might have seemed 
that an adjacency matrix would be a more serviceable representation in this problem 
than an adjacency structure. The columns of the matrix would provide T1 at no 
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additional storage cost. One factor that would be overlooked by such a choice is 

the desirability of being able to use set operations rather than the slower boolean 

operations. We now see that another factor is that of being able to do DFS 

quickly, via the adjacency structure. 

4(1,1) 

/(9,5) K(ll,3) 

L( 12, 4) 

E( 5, 11) 

F(6, 12) (preorder, reverse postorder) 

Figure 7.47 Ordering the Nodes in a Flow Graph 

DFS also optimizes the performance of other flow analyses, even though it does 

not always produce a linear algorithm. Its wider significance is related to an addi¬ 

tional, important concept — that of interval depth d, or loop-interconnectedness. 

This depth is equal to the largest number of retreating edges on any cycle-free path. 

If DOMINATORS is applied to an irreducible flow graph, then the use of DFS as 

described in the preceding paragraph will guarantee an upper bound of d 4- 2 iter¬ 

ations. In other flow analysis computations (for example, live variables) the use of 

DFS provides a similar bound. 

How do results such as these relate to programs in the real world? Surveys of 

actual programs are encouraging in two respects. In one examination of a large set 

of flow graphs, the average value of the depth d was found to be about 2.75 [Knuth 

1971a]. A second significant point concerning actual programs is that most of them 

— 90 percent in one study, and 100 percent in another — do have reducible flow 

graphs! In fact, it is commonly thought that any program without this property is 

not well-structured and should be revised. 
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7.5 OTHER ISSUES RELATING TO GRAPHS 

Even with all that has been said, there are many significant matters relating to 
graphs that we have failed to mention. The purpose of this last section is to briefly 
acquaint you with these. It may be useful to explain why these items have been 
relegated to this final section, rather than earlier ones. Sections 7.5.1 and 7.5.2 
discuss the two graph issues of coloring and planarity. Although there are many 
graph theoretical ideas associated with both of these, we find that coloring, on the 
one hand, is an intractable problem, and planarity, though a linear problem, has 
very complicated algorithms. Thus, there is less immediate value for us in analyzing 
the solutions of these problems than there was for those of the preceding section. 
Sections 7.5.3 and 7.5.4 deal with the complexity of graph algorithms and with 
graph isomorphism. The former really constitutes a summing-up of many of the 
ideas in the chapter; the latter is an appropriate finale that hearkens, after all that 
we have discussed, to the basically combinatorial nature of graphs. 

f7.5.1 Graph Colorings 

There are a variety of problems that can be formulated in terms of: 

• coloring the vertices of a graph in such manner that no adjacent pair of vertices 
has the same color, or 

• coloring the edges of a graph in such manner that no adjacent pair of edges has 
the same color. 

As in the case of traversals of a graph, the vertex-oriented and the edge-oriented 
problems have very different characteristics. 

Historically, vertex coloring has been more significant. An example is the situ¬ 
ation wherein final examinations or other sorts of meetings must be scheduled, and 
where participants have potential conflicts with regard to these schedules. This can 
be represented by a graph wherein the meetings are vertices, and an edge is drawn 
between every pair of vertices where there is a conflict (some individual must partic¬ 
ipate in both meetings). We now look for an assignment of colors to the vertices 
such that no adjacent pair of vertices has the same color. If distinct colors corre¬ 
spond to unique meeting times, then there will be no meetings that involve conflicts 
for the participants. An obviously desirable feature is for the number of 
colors/meeting times to be minimal. The minimum number of colors required for 
the vertices of a graph is known as the chromatic number x of the graph; if 
X(G) = k, then G is said to be k-chromatic. Another way of viewing the chromatic 
number is that it is the minimum number of independent subsets (see Section 7.4.3) 

into which the vertices of a graph can be partitioned. 

For certain types of graphs, the chromatic number is easily determined. For 
example, Kn is n-chromatic, and any bipartite graph is 2-chromatic. In the general 
case, let A be the largest degree of any of the vertices in a graph. Then it is easy to 
see that / < A + 1. Thus, begin by coloring an arbitrary vertex, and then repeatedly 
look for any uncolored vertex and color it; in iterating this latter step until all 
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vertices are colored, we can always be certain of having an unused color, since the 
number of adjacent vertices is always less than A + 1. Graph theorists have 
obtained tighter bounds on %. In the general case, however, to determine the 
precise value of the chromatic number or to compute a minimal assignment of 
colors to vertices is an VP-complete problem. Algorithms employing a variety of 
heuristics are available [§]. Note, by the way, that the exponential character of 
these methods can always be mitigated by first finding the blocks of the graph, in 
effect employing divide-and-conquer. Nonetheless, for any one of these algorithms, 
it is possible to find input graphs for which they will perform arbitrarily poorly, and 
this seems to be a fundamental aspect of the problem. For TSP with the triangle 
inequality, we exhibited both 1-approximate and Vi-approximate methods. For 
vertex coloring, there are no methods known to be r-approximate, for any fixed r. 
The best known approximation algorithm has r(V) = Vj lg V; indeed, it has been 
shown that if there were an algorithm that was 1-approximate or better, then there 

would also have to be a O-approximate algorithm [Garey and Johnson 1976]! 

Situations modeled by edge coloring seem to be less common. The minimum 
number of colors required for the edges of a graph is known as the chromatic index 
x', or edge chromatic number. It is obvious that A < x', but a remarkable result 
known as Vizing’s Theorem establishes also that x' < A + 1. For a bipartite graph 
X' = A always, but in the general case it can be difficult to ascertain which value 
applies. Many instances of edge coloring are concerned with bipartite graphs, so 
that efficient algorithms based upon matching are available. Thus, a coloring of the 
edges corresponds to a set of disjoint matchings, with a distinct color for each 
matching. This happy situation is complicated, however, by the fact that many 
applications involve additional constraints, leading to NP-complete problems again. 

f7.5.2 Planarity 

When confronted with graphs such as those in Figure 7.48(a) and (b), an important 
issue may be whether they are actually planar — meaning that they can be drawn in 
such manner that the edges do not intersect each other except at the vertices where 
they are adjacent. The issue is extremely important, for instance, in the fabrication 
of VLSI components, and it occurs naturally when we are dealing with maps. It 
also has a fundamental significance for the applicability of divide-and-conquer to a 
given graph. To be precise, if a graph is planar, then we can be certain of being 
able to divide it into two components of roughly equal size by removing 0(kV2) 

vertices [Lipton and Tarjan 1979, 1980], 

In any discussion of planarity, it is usual to restrict attention to graphs wherein 
there are no vertices with degree less than 3. A feature of planar graphs of this type 
is that the edges form a number of closed regions and one infinite region. Now, 
there are several ways to go about testing a graph for planarity, depending upon 
our point of view. 

A. A relatively simple approach is to try to apply Euler’s formula 

V-E+ R = 2 (7.13) 
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(b) 

Figure 7.48 Planarity 

which relates the numbers of vertices, edges, and regions in a planar graph.9 Since 
we are not considering multigraphs, then each region must be bounded by three or 
more edges, and so the total number of edges over all the regions cannot be less 
than 3R. In this inventory, each edge is counted as belonging to two regions, and 
so 2E > 3R. Combining this fact with Euler’s formula gives us the result that in 

any planar graph 

E< 3V-6 (7.14) 

Thus, when confronted with a particular graph, we can apply the criterion of Eq. 
7.14. If it is violated, then the graph cannot be planar. For the graph of Figure 
7.48(a), for example, we have 8 vertices and 19 edges, so that it cannot be planar. 
On the other hand, Eq. 7.14 is satisfied both for Figure 7.48(b), with 8 vertices and 
16 edges, and for Figure 7.34(d), with 10 vertices and 15 edges; yet one is planar 

and the other is not. 

9 Note that Euler’s formula is actually a special case of the cyclomatic number v (see 
Section 7.3.1.1), since the value of v equals the number of finite regions; that is, 

v = R- 1 =E- V+ 1. 
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B. Unfortunately, Eq. 7.14 is a necessary condition for planarity, but not a suffi¬ 
cient one. For a graph theorist, therefore, it is very satisfying to learn that 
Kuratowski’s Theorem gives an exact characterization of planar graphs. Namely, 
the non-planar graphs are precisely those that have embedded (as subgraphs) either 
the complete graph K5 or the complete bipartite graph K3 3, as illustrated in Figure 

7.49.10 (Is Eq. 7.14 relevant for either of these? If not, then is Eq. 7.13?) 

K3,3 
i-Planar Graphs 

*5 

Figure 7.49 Kuratowski’s Non 

C. Although Kuratowski’s theorem is conclusive, its computational complexity 
causes it to have limited value. Happily, there are several (rather complicated) 0(V) 
methods to test for planarity. Once again, an effective first step is to find the 
blocks of the graph, and then apply one of these algorithms [§]. 

7.5.3 Complexity of Graph Algorithms 

In this section, we will summarize two quite different issues that we have already 
encountered many times in this chapter. We denote them here as the intrinsic and 
extrinsic complexity of algorithms for dealing with graphs. 

Intrinsic complexity. There are literally hundreds of meaningful problems that 
can be posed about graphs. Some, such as finding a minimal spanning tree, are 
very easy; others, such as determining planarity, are quite complicated. Aside from 
their relative difficulty, they are both tractable problems. In fact, planarity has 
complexity O(V) and is even more efficient than the minimal spanning tree, with 
typical complexity 0(E lg E). However, the combinatorial nature of graph prob¬ 
lems causes many of them to be TVP-complete. The two chief instances of this that 
we have discussed are the traveling salesman problem, and the coloring of the 
vertices of a graph. The list of problems determined to be AP-complete grows 
every month [§]. 

10 Actually, in looking for the two forbidden subgraphs of Figure 7.49 in a graph G, we 
should ignore any vertices of degree 2 in G. 



7.5.3 COMPLEXITY OF GRAPH ALGORITHMS 365 

Extrinsic complexity. Anyone who wishes to solve a graph problem on a 
computer must first decide upon the best choice of representation. Our two most 
common choices have been the adjacency structure and the adjacency matrix. We 
have also referred to indexed lists and incidence matrices, as well as sets (Section 
7.4.5.3.1) and edge multilists (Exercise 7.3). We have seen several examples wherein 
the choice of an adjacency structure leads to an 0(V + E) algorithm, whereas the 
choice of an adjacency matrix leads to an OiV2) algorithm. So the question arises, 
is this as fundamental a distinction as it appears to be? For any non-trivial problem 
dealing with a graph, must the use of an adjacency matrix always entail an algo¬ 
rithm of complexity 0(^)7 In response, it is possible to find somewhat non-trivial 
problems for which there are 0(V) algorithms, even with an adjacency matrix (see 
Exercise 7.48). However, the Aanderaa-Rosenberg conjecture, which is carefully 
worded to exclude certain instances, seems to demonstrate that the answer is affir¬ 
mative [Rivest and Vuillemin 1975; Rosenberg 1973]. Thus, for most problems 
on sparse graphs, we are well advised to avoid an adjacency matrix in favor of an 

adjacency structure. 

f7.5.4 Graph Isomorphism 

Two graphs are isomorphic if there is a one-to-one correspondence between their 
vertex sets such that the adjacency relationships are preserved. In deciding about 
graph isomorphism, we ignore any values attached to the vertices or edges and 
consider only the adjacency relationships. Thus, in Figure 7.50, the graphs of (a) 
and (b) are isomorphic to each other under the mapping: A^I, B^K, C^>M, D^>J, 
E-+L, F^N; but they are both non-isomorphic to that of (c). (Why?) The issue of 
graph isomorphism is central to a variety of problems having to do with pattern 

recognition, such as the following: 

• In chemistry, are two molecules, whose structures are modelled by multigraphs, 

equivalent? 
• In information retrieval, what database items match a request? 
• In artificial intelligence, to what recognizable objects might parts of a visual 

scene correspond? 

One of the intriguing aspects of this problem is that, in distinction to almost all 
the other problems relating to graphs, its complexity is uncertain. Technically, it is 
an NP problem, since no polynomial algorithm is known; however, it has not been 
demonstrated to be 7V.P-complete. The reader has the chance to attain fame and 
glory by resolving the issue! Actually, as with so many graph problems, by either 
specializing it or generalizing it, we change the complexity picture. Thus, if we 
restrict ourselves to planar graphs, there is an O(V) algorithm for complexity 
[Hopcroft and Wong 1974], On the other hand, if the question is whether a graph 
G\ is isomorphic to a subgraph of another graph G2, then the problem is known to 

be AR-complete. 

For our stated problem of testing for graph isomorphism, we again need to find 
good heuristics to employ with a backtracking approach. But first, perhaps we can 
learn something from our treatment of trees (see Sections 6.7 and 6.7.1). There, we 
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ABC 

(a) 

/ 

Q 

(c) 

(b) 

Figure 7.50 Isomorphic and Non-Isomorphic Graphs 

were able to completely encode the structure of a tree as either a single number or 
sequence of numbers, such as a Cayley sequence or a feasible sequence. By now, we 
have encountered a great number of graph parameters. In addition to the values V 
and E, we also have the following: the cyclomatic number (Section 7.3.1.1); the 
vertex connectivity and edge connectivity (Section 7.3.2); the vertex covering 
number, vertex independence number, edge covering number, and edge indepen¬ 
dence number (Section 7.4.3); the chromatic number and chromatic index (Section 
7.5.1); and the dominance number (Exercise 7.29). Moreover, there are still quite a 
few others that we have not introduced. Can any two sets of such parameters for 
two graphs be used to infallibly determine isomorphism? Quite aside from the 
exponential complexity associated with computing some of these parameters, the 
answer for the general case is No. 

There are several graph isomorphism algorithms, employing a variety of heuris¬ 
tics [§]. We will illustrate the idea with one of these heuristics, which is quite 
simple and can be very effective. It uses the invariant of a graph known as the 
degree spectrum, which is an ordered list (d$, dx,..., dv_x) where dx equals the number 
of vertices of degree i. For the graph of Figure 7.51, the degree spectrum is 
(0, 0, 3, 2, 1,0). Since this graph has six vertices, an unrestricted attempt to find a 
correspondence between G and any other graph G' with six vertices would have 
complexity 0(6!) = 0(720). But by comparing the degree spectrum S of G with the 
spectrum S' of G', we could immediately discern many non-isomorphic cases. 
Moreover, for the case S = S', we could accomplish the backtracking analysis with 
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complexity 0(0! 0! 3! 2! 1! 0!) = 0(12), since we would only have to look for matches 
among the three vertices of degree two and the two vertices of degree three. 
Although the degree spectrum is a highly effective tool in many cases, as with our 
example, note that that it does not help at all in other cases, such as regular graphs. 

Figure 7.51 Example for the Degree Spectrum 

7.6 OVERVIEW 

In our catalogue of data structures, graphs unquestionably provide a wider variety 
of interpretations than any other structure. The notion of a set of objects (vertices) 
and adjacency relationships among them (edges) is deceptively simple. In fact, as 
we have seen, the adjacency relationship leads to many others - connectivity, 
reachability, independence, covering, dominance (in two different interpretations), 
traversability, reducibility, colorability, planarity, etc. Each of these notions can be 
used to model problems that are real and significant. This diversity of interpreta¬ 
tion and the basically combinatorial nature of graphs have caused this chapter to be 

more mathematical in content than the others. 

Another aspect of this diversity is that we are much more conscious of making 
choices of data structure representation and of algorithmic method. Thus, for a 
given problem, are we better off using an adjacency structure, an indexed list, an 
adjacency matrix, an incidence matrix, sets, or perhaps some other representation? 
And should we use BFS, DFS, a greedy approach, matching, branch-and-bound, 
dynamic programming, or some heuristics? (These algorithmic possibilities are not 
distinct; for example, a given method might simultaneously involve BFS, matching, 
and heuristics.) For some problems, we are pleased to find that good choices of 
data structure representation and algorithmic method can have a decided effect 
upon the efficiency of our solution. Other problems seem to be intrinsically diffi¬ 
cult, and the best we can hope for is that a good heuristic will work well for most of 

the cases. 

We have made the point that graphs sustain more variety and complexity than 

any other data structure that we have studied. It is intriguing to close the circle and 
point out some strong commonalities between problems couched in terms of graphs 
and problems couched in terms of the most basic data structure, the array. This 
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duality is visible both in terms of representation (the adjacency matrix) and in terms 
of theoretical insight (for example, the Matrix-Tree theorem in Section 7.3.1.1). 

Other examples of co-extensiveness include: 

• the relationship between matrix multiplication and transitive closure; 
• the related techniques for dealing with sparse matrices and with strong compo¬ 

nents [Cuthill and McKee 1969; Tarjan 1976]; 
• the intimate relationship between cut-sets and vector spaces. 

This symbiosis works both ways. Arrays yield powerful techniques for dealing with 
graphs, and graphs yield powerful insights for dealing with arrays. 

7.7 BIBLIOGRAPHIC NOTES 

• Several good expositions of graph theory are Behzad et al. [1979], Berge 
[1962], Bondy and Murty [1976], and Harary [1969]. 

• Discussions of the relative merits of Prim’s method and Kruskal’s method can 
be found in Brennan [1982], Jarvis and Whited [1983], and Kershenbaum and 
Van Slyke [1972]. The method of building MST’s with average cost 0(V + E) 
is given in Cheriton and Tarjan [1976]. 

• An early, significant method for solving network flow with complexity Oiy3E) 
was Edmonds and Karp [1972], A steady series of improvements are Dinic 
[1970] with complexity OjETE), Karzanov [1974] and Malhotra et al. [1978] 
with complexity OiV3), and Tarjan [1983c] with complexity 0(VE lg V). 

• The early, dynamic programming approach to solving TSP was formulated by 
Bellman [1962] and Held and Karp [1962], Subsequently, branch-and-bound 
was employed rather successfully [Held and Karp 1970, 1971], More recent 
and highly viable is the technique of local search found in Lin and Kemighan 
[1973] and Rosencrantz et al. [1977]. The 14-approximate solution that we 
describe is based upon Christofides [1976], For a good, up-to-date account of 
the history and methods of solution for TSP, consult Held et al. [1984], 

• Some of the more significant heuristics for the vertex coloring problem are 
Brelaz [1979], Christofides [1971], Corneil and Graham [1973], Dutton and 
Brigham [1981], Wang [1974], and Welsh and Powell [1967], For edge color¬ 
ing, consult Cole and Hopcroft [1982] and Gabow and Kariv [1982]. 

• Testing for planarity by application of Kuratowski’s Theorem leads to an 0(V6) 
algorithm [Mei and Gibbs 1970]. Two good methods that are O(V) proceed by 
successively adding either edges [Hopcroft and Tarjan 1974] or vertices [Even 
and Tarjan 1976; Lempel et al. 1966] to an internal representation. Both tech¬ 
niques continue until either the entire graph has been represented or 
non-planarity has been detected. Two other algorithms that have been found 
good in practice, though not quite linear, are Rubin [1975] and Yeh [1982], 
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• An assortment of approaches to the graph isomorphism problem are Berztiss 
[1973], Corneil and Gotlieb [1970], Corneil and Kirkpatrick [1980], Schmidt 
and Druffel [1976], and Ullman [1976]. 

• The pioneering account of problems shown to be jVP-complete is Karp [1972]. 
A comprehensive catalogue of the situation is Garey and Johnson [1979]; some 
excellent overviews are Cook [1983], Karp [1986], and Tarjan [1978]. 
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7.9 EXERCISES 

Sections 7.1 — 7.2 

7.1 Given the following two adjacency matrices, draw their corresponding graphs. 

A e c D E F G H / J K L 

A 0 i i 0 1 0 G 0 13 2 0 0 11 
B 1 0 0 1 0 1 H 13 0 8 0 5 0 
C 1 0 0 1 1 0 1 2 8 0 0 7 4 
D 0 i i 0 1 1 J 0 0 0 0 6 17 
E 1 0 0 1 0 0 K 0 5 7 6 0 0 
F 0 i 0 1 0 0 L 11 0 4 17 0 0 

(a) (b) 

7.2 For the graph of Figure 7.52, show the representations as: 

(a) an adjacency structure, 

(b) an indexed list, 

(c) an adjacency matrix, 

(d) an incidence matrix. 

f7.3 The fact that edge nodes are duplicated in the adjacency structure for an 
undirected graph can be an annoyance. One manner of circumventing this is to 
maintain the edges in a multilist, with links for the two vertices of each edge. 
Depict such a representation for the graph of Figure 7.52. 

f7.4 The line graph of a graph G is the graph L(G) wherein the vertices corre¬ 
spond to edges in G, and wherein two vertices in L(G) are adjacent if and only if 
those edges in G are incident on a common vertex. 

(a) Draw the line graph corresponding to the graph of Figure 7.52. 

(b) Derive a formula, based upon properties of G, that counts the number of edges 
in L(G). 
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Figure 7.52 Graph for Exercises 7.2, 7.3, 7.4 

7.5 Write a procedure that reads a list of records capturing the structure of a 
graph and generates the corresponding adjacency structure representation. For 

example, for Figure 7.6 we might have 

A: a C c D 

B: d E 
C: d D b A a E 

D: c B 
E: 

Section 7.3 

7.6 For the graph of Figure 7.53(a), assuming that the adjacency structure is in 

lexicographical order, do the following: 

(a) Starting from vertex A, draw the BFS spanning forest and show the BFS 

numbers and the cross edges. 

(b) Starting from vertex A, draw the DFS spanning forest and show the DFS 

numbers and the back edges. 

Figure 7.53 Graphs for Exercises 7.6 and 7.8 
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f7.7 Derive a relationship between the adjacency, incidence, and degree matrices 

of a graph. 

t7.8 Use the Matrix-Tree theorem to compute the number of spanning trees of 

the graph of Figure 7.53(b). Draw them. 

ff7.9 Use the Matrix-Tree theorem to derive Cayley’s formula (see Section 6.7) 

for the number of labeled free trees on n nodes. 

ff7.10 In the graph of Figure 7.54(a), assuming that the adjacency structure is in 

lexicographical order, do the following: 

(a) Starting from vertex A, draw the DFS spanning forest and show the DFS 

numbers and the back edges. 

(b) Add the values of LOW(v) to your figure, indicate the articulation points, and 

draw the blocks. 

Figure 7.54 Graphs for Exercises 7.10, 7.11, 7.12, 7.13, 7.15 

tf7.ll In Section 7.3.2 we stated that one can rather easily determine the bridges 
of a graph after using CUT_NODES; this remark is based on the fact that a bridge 
will have an articulation point for at least one of its vertices. Describe how the 
algorithm CUT_NODES can be modified to locate the bridges of a graph explicitly. 
Demonstrate your technique by applying it to the graph of Figure 7.54(a). 

tf7.12 Write a procedure to perform DFS on a graph via an explicit stack instead 
of recursively, assuming that the graph is represented by an adjacency structure 
again. Test your program against the graph of Figure 7.54(a). 
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tf7.13 In the digraph of Figure 7.54(b), assuming that the adjacency structure is 
in lexicographical order, do the following: 

(a) Starting from vertex A, draw the DFS spanning forest and show the DFS 
numbers and the other classes of edges. 

(b) Add the values of LOW(v) to your figure, and draw the strong components; 
also, show the condensation graph D*. 

t7.14 Prove the validity of Eq. 7.2. 

f7,15 Write a procedure that uses DFS to determine the type of each edge in a 
digraph — tree, forward, backward, or cross. Test your program against the 
digraph of Figure 7.54(b). 

Sections 7.4.1 — 7.4.2 

7.16 For the graph of Figure 7.55(a), do the following: 

(a) Starting from node A, find an MST by Prim’s algorithm, numbering the edges 
in the order of their selection; 

(b) Find an MST via Kruskal’s algorithm, numbering the edges in the order of 
their selection. 

A 

Figure 7.55 Graphs for Exercises 7.16, 7.17, 7.18, 7.19, 7.21, 7.22 

f7.17 Write a procedure to find an MST using Kruskal’s technique. Test your 

program against the graph of Figure 7.55(a). 

7.18 Compute the shortest distances from node #3 to all the other nodes in the 
graph of Figure 7.55(b), using Dijkstra’s algorithm and tracing the values assumed 

by the variables least and father, as in Figure 7.24(b). 
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|7.19 For the graph of Figure 7.55(b), use branch-and-bound to find the shortest 

distance from node #3 to node #6. In doing so, you will need to choose between 

some alternative details of technique. Discuss these alternatives, and compare the 

use of Dijkstra’s algorithm and branch-and-bound for solving this problem. 

tf7.20 We have cited that Dijkstra’s algorithm will fail in the presence of negative 

edge costs. 

(a) Give an example of this phenomenon. 

(b) Describe a modification of the algorithm that allows shortest distances to be 

computed correctly even in this case, as long as there are not also cycles with 

negative cost. 

tf 7.21 If we want to know the shortest distance between just two specific vertices 

of a graph, a source and a sink, then we could implement a bi-directional form of 

Dijkstra’s algorithm. With this method, we would alternate between adding an edge 

from the source end and adding an edge from the sink end. Write a procedure to 

accomplish this, and test it against the graph of Figure 7.55(b). Can the alternation 

be terminated when the two search trees meet? 

ff7.22 The algorithms PRIM and DIJKSTRA, very similar in form, solve two 

different problems related to finding trees with minimum properties. Consider the 

same two problems wherein we want the maximal solutions — the spanning tree 

with maximum weight, and the longest paths between a source vertex and the other 

vertices. For both PRIM and DIJKSTRA, either show how they can be modified 

to produce the desired answer, or show why they cannot be so modified. Apply 

your modifications to the graphs of Figure 7.55(a) (starting at node A) and Figure 

7.55(b) (starting at node 3), respectively. 

tf7.23 Given an n x n array M of positive integer elements, write a procedure to 

find a sequence of horizontally or vertically adjacent entries such that (a) it starts at 

71/[1,1] and ends at M [«,«], and (b) the sum of the squares of the differences 

between adjacent entries is a minimum. As an example, for the matrix Ml of 

Figure 7.56, such a minimum sequence is given by 4, 1, 3, 5, 4, 2, 7, 12, 7 with value 

97. Test your program by finding the solution for the matrix M2 of the figure. 

14 6 10 14 20 14 10 
19 18 9 1 17 16 12 

11 20 17 8 20 9 13 

15 9 18 17 2 5 17 

18 20 19 3 5 9 10 

9 19 6 17 20 15 4 

11 15 9 15 17 7 3 

4 8 10 5 7 

1 3 6 9 5 

6 5 4 2 7 

10 3 8 5 12 

4 9 6 13 7 

Ml M2 

Figure 7.56 Two Mazes 
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Section 7.4.3 

7.24 For the graph of Figure 7.28, exhibit a minimum edge cover, a maximal 
independent vertex set, and a minimum vertex cover. 

f7.25 Starting from the unmatched vertex D in Figure 7.30(c), draw the BFS tree 
to verify that no augmenting path is possible. 

f7.26 Use augmenting paths to discover the solution to the SDR problem of Exer¬ 
cise 6.35, reproduced here: 

51 = {2,4,5,6} 

52 = {1,4,6} 

Start with the initial matching: 

S3={2,6} S5={4,6} 

S4 = {3,6} S6 = {1,4} 

5, - 2, S2 - 4, S3 - 6, S4 - 3, 56 - 1 

tf7.27 Write a program to solve the maximal bipartite matching problem by 
constructing BFS trees from unmatched vertices. Test your program against the 
following bipartite graph: 

A: 4 8 
S: 5 7 
C: 4 9 
D: 13 5 
E: 6 8 

F 
G 
H 
I: 
J: 

5 6 
9 10 
2 8 
7 10 

ff7.28 Write a procedure to find a minimum vertex cover for an arbitrary graph. 

tf7.29 Whereas a vertex cover of a graph G is a set of vertices S' such that all 
edges of G are incident with at least one vertex in S, a dominating set of vertices S is 
one such that all vertices of G are either in S or adjacent to vertices in S. The 
cardinality of a minimum (vertex) dominating set for a graph is the (vertex) domi¬ 

nance number of the graph. 

(a) Give an example of a graph such that the minimum dominating set is not an 

independent set. 

(b) Write a procedure to find a minimum dominating set for an arbitrary graph. 

ff7.30 The famous 8-Queens problem in chess is that of finding a set of squares 
where 8 queens can be placed such that none threatens any other. In fact, this 
problem corresponds to finding a maximal independent vertex set of a graph. Write 
a program to solve the n-queens problem for an n x n chessboard. 

tf7.31 A somewhat different problem than that of Exercise 7.30 is to find a small¬ 
est set of squares on a chessboard such that queens placed upon those squares will 
dominate every square on the board. For example, it is possible to achieve this for 
an 8 x 8 chessboard with five queens; that is, the dominance number of the corre¬ 
sponding graph problem is five. Write a program to solve this problem for an nxn 

chessboard. 

ff7.32 Write a program to solve the Stable Marriage Problem. Test it against the 
data in Figure 7.57, where the men are denoted by upper case letters and the 
women are denoted by lower case letters. The two matrices represent their orders 
of preference; for example, man B prefers the women in the order b c e daf. Use 
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your program to compute both the male-optimal and female-optimal solutions. 
How might you construct a solution that has neither male nor female bias? 

1 2 3 4 5 6 1 2 3 4 5 6 

A e a b f d c a £ C F A B D 

B b c e d a f b F C E B A D 

C c d e b f a c A £ F B D C 

D c b d a f e d C B D A E F 

E b e a c f d e F D C A B E 

F a f e d b c f B E D F C A 

Figure 7.57 Marriage Partner Preferences 

Section 7.4.4 

f7.33 Prove the following facts relating to line graphs (see Exercise 7.4). 

(a) If G is Eulerian, then L(G) is both Eulerian and Hamiltonian. 

(b) If G is Hamiltonian, then L(G) is Hamiltonian. 

(c) Demonstrate that the converses of (a) and (b) are false. 

f7.34 An orientation of a complete graph (see Section 7.1) is a tournament. In 
other words, the arc that exists between each pair of vertices can be interpreted as a 
relative ranking between that pair of “players.” Prove that a tournament always has 
a Hamiltonian path. 

f7.35 Write a program to find an Eulerian tour in an Eulerian graph. Test your 
program against the graph of Figure 7.58. Hint: The method described in the text 
depends upon diagnosing the presence of bridges, an easy capability for the human 
eye. A more effective algorithm for a machine is one that, for every vertex on an 
initial tour, endeavors to incorporate (recursively) any detours along unmarked 
edges from that vertex. Two strategies will help in carrying this out efficiently. One 
is to allow edges to be deleted from the adjacency structure as they are used. The 
other is to employ bi-directional linked lists, to facilitate inserting one list within 
another list. 

tf7.36 In chess, the knight always moves to the opposite comer of a 2 x 3 rectan¬ 
gle; as long as it stays on the board, it has eight possible moves, as shown in Figure 
7.59(a). A classical problem is to find a Knight's Tour, in which it visits every 
square just once; thus, we have a special case of finding a Hamiltonian path. A 
solution for the case of a 5 x 5 chessboard is shown in Figure 7.59(b), where the 
numbers indicate the sequence of visitation. Write a non-recursive program to solve 
this problem for the n x n case. Try to find a good heuristic to limit the amount of 
search. Explain your approach, and try to estimate its effectiveness. 

ff7.37 Write a program to solve TSP using dynamic programming, and test it 
against the data of Table 7.1. Your program should display enough information 
about optimal sub-tours to demonstrate how it works. 
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M- N-O- P 

Q-R-S- T 

Figure 7.58 Graph for Exercise 7.35 

X X 

x X 

Kt 

X X 

X X 

(a) 

23 10 15 4 25 

16 5 24 9 14 

11 22 1 18 3 

6 17 20 13 8 

21 12 7 2 19 

(b) 

Figure 7.59 Knight’s Tour 

ff7.38 Write a program to solve TSP using branch-and-bound, and test it against 
the data of Table 7.1. Be sure to describe your criterion for picking branch nodes. 
Also, your program should display enough intermediate information to demonstrate 

how it works. 

Section 7.4.5 

7.39 Find a topological ordering for the digraph of Figure 7.60(a). 

tf7.40 Write a procedure to discover all the topological orderings of a DAG. 

Test your program against the digraph of Figure 7.60(a). 

f7.41 For the event-node digraph of Figure 7.60(b), compute the early times, late 

times, and floats. Also, indicate the critical path(s). 
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Figure 7.60 Graphs for Exercises 7.39, 7.40, 7.41, 7.42 

tf7.42 For the problem of performing critical path analysis on an event-node 
digraph, first discuss the relative merits of the three graph representations: adja¬ 
cency structure, adjacency list, and indexed list. Then write a program to perform 
such an analysis; that is, compute the early times, late times, and floats. Test your 
program against the digraph of Figure 7.60(b). 

f7.43 For the flow graph of Figure 7.61, do the following: 

(a) Draw the dominator tree. 

(b) Use variant DFS to label the nodes with the reverse postorder numbering 
required for efficient use of the algorithm DOMINATORS. 

f7.44 Explain the relationship between the advancing and retreating edges of a 
reducible flow graph and the four categories of edges discovered by ordinary DFS? 
How is this relationship different for an irreducible flow graph? 

Section 7.5 

f7.45 Write a procedure to find a minimal vertex coloring for an arbitrary graph. 
Try to find a good heuristic to limit the amount of search. Explain your approach, 
and try to estimate its effectiveness. 

f7.46 Prove Euler’s formula (Eq. 7.13) by induction. 

|7.47 Prove that for every planar graph there must be at least one vertex with 
degree 5 or less. 

f7.48 For a digraph represented by its adjacency matrix, consider the problem of 
determining whether it contains a vertex with in-degree V — 1 and out-degree 0. 
Write an O(V) procedure to solve the problem. 
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Figure 7.61 Graph for Exercise 7.43 

f7.49 The complement of a simple graph U is the graph W with the same vertex 
set, such that vertices are adjacent in W if and only if they are not adjacent in U. 

(a) Show that if a graph G is isomorphic to its complement, then the number of 

vertices in G is congruent to 0 or 1 (mod 4). 

(b) Prove that if a graph is not connected, then its complement must be connected. 

(c) Prove that for any graph G with seven or less vertices, either G or its comple¬ 

ment must be planar. 

(d) Prove that for any graph G with eleven or more vertices, either G or its 

complement must be non-planar. 
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STRINGS 

“ ... untune that string, 
And, Hark! What discord follows.” 

Shakespeare, 

Troilus and Cressida, act I, scene 3 

The string is no doubt a familiar data structure to most readers, and familiarity may 
have bred a measure of indifference. After all, isn’t a string simply an array of 
characters? In terms of implementation, it commonly is. Nonetheless, strings illus¬ 
trate the adage that “the whole can be greater than the sum of its parts.” For 
instance, when considered solely as a sequence of letters from the alphabet, this 
paragraph has no meaning; it acquires meaning only via the two-step process: 
letters aggregated as words, and words aggregated as sentences. Thus, the subject 
of string processing is not single characters, but rather groups of characters consid¬ 
ered as entities. Moreover, note that strings tend to be of widely varying lengths. 

This example of composing a paragraph from groups of characters also illus¬ 
trates another point. Although we may wish to compute with multi-linked 
structures such as trees and graphs, we are constrained to encode our ideas into a 
string of symbols for most communication purposes. However, this is not a severe 
limitation, since it is a trivial matter to encode the description of a graph in a string. 
More significantly, the common way of expressing an algorithm for any possible 
computation is as a string of symbols in a programming language. Also, as we will 
see, the performance of that computation can be modelled, in turn, by a sequence of 
string operations whereby the input (program string) is transformed to the output 
(result string). Evidently the string, although not as flashy a data structure as the 
graph, sustains a great deal of power. In fact, the ubiquity of string processing 
causes our treatment of strings to be far longer than one might naively suppose 
would be adequate. 

We start by looking at strings logically and then physically. Thereafter, we 
examine first some simpler uses of strings and then some more advanced ones, such 
as cryptography and pattern matching. This culminates in an expansion of the 
concept of pattern, via grammars, to encompass a more general type of recognition. 
We conclude by describing how more general kinds of grammars open the door to 
still more general types of recognition, and by characterizing the aforementioned 
model of computation via string transformations. 



8.1 STRINGS AND STRING OPERATORS 381 

8.1 STRINGS AND STRING OPERATORS 

A string is a sequence (possibly empty) of symbols from some alphabet. From now 
on, we will speak of characters rather than symbols, since the difference is rather 
subtle and irrelevant to our purposes. The necessity of distinguishing between a 
named string and a literal string value gives rise to two common systems of deno¬ 
tation for dealing with strings:1 

I. Names of strings and values of strings are distinguished by using different 
alphabets or type fonts (for example, S, bd, si, 4, etc. as literal values; and a, 
($, <5, etc. as the names of strings). 

II. String values are distinguished by delimiting them within quotation marks (for 
example, 'S', 'bd', 'si', '4', etc. as literal values; and S, bd, si, etc. as the 
names of strings). 

One immediate issue is how to specify the length of a string; this is usually indi¬ 
cated as | a | in notation I, and as LENGTH(sl) in notation II. Another immediate 
issue is how to specify an empty string; this is usually denoted by £ in notation I, 
and as " in notation II. Note that an empty string is not the same as a string 
consisting of a blank character, commonly denoted by 'b'. 

Although most programming languages allow for string constants via notation 
II, it is less common for them to support variables of type string. Moreover, in 
cases where they do, the terminology and notation for expressing operations with 
string data are woefully non-standardized. The standard definition of Pascal 
supports string constants in a limited fashion; several implementations of Pascal 
extend the language to support string variables as well. For the purposes of this 
book, we make no assumptions, but rather build our string facilities from scratch. 

The fundamental operations with strings are concatenation, comparison, 
insertion, deletion, and substitution. The most basic of these is the concatenation of 
two strings to form a string whose length is the sum of the lengths of the two 
components. This operation is denoted by various symbols in different program¬ 
ming languages: '||' (PL/1), ',' (APL), ' + ', or merely juxtaposition (SNOBOL). 
Using juxtaposition, and for a = is and /? = land, we would then have a/? = island. In 
Section 8.2.3 we introduce the procedure CONCAT that accomplishes this purpose. 

Comparison of strings is performed lexicographically, using the same rules 
whereby words are ordered in a dictionary. Thus, in comparing two strings 

a = ala2 ... am and fi — b\b2 ... bn 

to determine whether a < /?, a = /?, or a > /J, we examine successive pairs a, and bh 

starting with i — 1, until either: 

(a) the first pair is found for which a, ^ bh or 

(b) no inequalities have been found but one string is longer than the other, or 

(c) no inequalities have been found and the strings are of the same length. 

i Note that this necessity does not occur with numerical data. There, for example, '1234' 
is evidently a numerical constant, and 'R2D2' is implicitly a numerical variable. 
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In the first case, the ordering between a and /? has the sense of the inequality; in 

the second case, the shorter string precedes the longer one; and in the third case, 

the strings are equal. Examples are 'plow' < 'pray' and 'pray' < 'prayer'. Compar¬ 

ison of strings is commonly supported directly in HLL’s, via the same six relational 

operators that are used for numerical data. 

The (conditional) substitution of one string as part of another string involves a 

subject string k, a pattern string n, and a replacement string v, as follows: 

1. k is searched to determine if it is equivalent to a/q3 (where a and /J may be null); 

in case there are multiple instances of /x, the first one is selected. 

2. If the search succeeds, then v is substituted for fx, so that k is transformed to 

av/J; otherwise, no action is performed. 

We have described substitution in “non-procedural” terms; that is the way it is 

accomplished in a language specialized for string processing, such as SNOBOL. 

For our exposition, we will employ the non-standard symbols Y to denote testing 

and Y to denote replacement. Then for k — banana, fi = na, and v = ndan, we 

would obtain: 

H i k j v = bandanna 

v K i A4 = banana 

In the other notation, let m = 'an', s ='distant', and n = 'omin'; we would then have: 

1st' i s i 'ec' = 'decant' 

m i s j 'inc' = 'distinct' 

'ist' i s i n = 'dominant' 

The substitution operation is powerful enough that it encompasses two other funda¬ 

mental operations - inserting one string within another, and deleting a portion of a 

string. This can be seen from the further examples: 

'sta' i s j " = 'dint' 

'nt' i s j 'ntly' = 'distantly' 

In general purpose HLL’s, substitution is usually broken out into two explicit 

procedures. Typically, in string processing, a function called INDEX or MATCH is 

provided to perform the equivalent of Y> returning an indication of the presence of 

the pattern string in the subject string. A procedure by the name of SUBSTR is 

typically provided for performing the actual replacement, at the location determined 

by INDEX or MATCH. In PL/1 it is actually possible to use SUBSTR on either 

side of an assignment statement. On the right side, it specifies the selection of a 

substring from a string; on the left side, it specifies the replacement of a substring 

of a string, as in our previous discussion. Note that the latter usage poses some 

problems. What if the replacement string does not have the same length delineated 

by SUBSTR? Ideally, the subject string should be shrunk or expanded to fit the 

situation; PL/1 instead pads or truncates the replacement string to match the length 

delineated by SUBSTR. In Section 8.2.3 we introduce the algorithms MATCH_0, 

SUBSEL, and SUBREP that accomplish these purposes, but without this shortcom¬ 

ing of PL/1. 
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8.2 REPRESENTATIONS FOR STRINGS 

Since strings are sequences of characters from some alphabet, we will first consider 
how individual characters are commonly represented, and then how sequences can 
be represented. The choice for the representation of characters in a particular code 
set is not likely to be an accessible parameter for many applications, but it is still an 
important topic. On the other hand, the choice for the representation of sequences 
is a significant one, as we will see. Having examined these latter choices, we will 
subsequently choose one of them, and then map the logical string operations that 
we discussed in Section 8.1 into Pascal procedures. 

Sections 8.2.4 and 8.2.5 are concerned with other aspects of string represen¬ 
tation. Since codes are largely arbitrary, it is sometimes possible to construct a 
code that gains efficiency by squeezing out redundancy in the underlying binary 
representation. In particular, we will see how to do this with a structure called the 
Huffman tree. On the other hand, we must frequently be concerned with the likeli¬ 
hood of data being corrupted by errors, usually in communication channels rather 
than in computers per se. In this case, the resolution is to deliberately introduce 
redundancy into code sets! As we will see, if this is done in a careful manner, then 
the correct data values can often be determined despite errors. 

8.2.1 Character Code Sets 

As we observed in Section 1.1.1, a code set is a mapping from a set of characters to 
an arbitrary set of bit patterns. All such sets in general use employ a constant 
number of bits for each character in their set, so that the number of distinct charac¬ 
ters for a representation with k bits is evidently 2*. In the 1950’s and 1960’s, a 
prevailing standard code set was the six-bit BCDIC (Binary Coded Decimal Inter¬ 
change Code). BCDIC was itself derived from the earlier Hollerith code whereby 
characters are represented by combinations of holes in punched cards. Six-bit codes 
such as BCDIC are still in use on some computers; they are adequate for represent¬ 
ing the 26 upper case letters, 10 digits, a score or more special characters, and a few 
control characters which are used, for example, for directing an output device to 
perform a carriage return, a line feed, or a horizontal tab. Whereas control charac¬ 
ters are not supposed to correspond to a visual symbol, the majority of the bit 
patterns in a code set are visible for input and output, and they are termed graphics. 

A six-bit code allows an insufficient number of symbols by present-day stand¬ 
ards. In BCDIC, for example, there is no room for the 26 lower case letters. Even 
with this limitation, however, the demand for a variety of special characters causes 
the existence of several duals in BCDIC - that is, two graphics sharing the same 
bit pattern, as with '%' and '{'. Most computers today utilize either seven-bit 
ASCII {American Standard Code for Information Interchange) or eight-bit EBCDIC 
{Extended Binary Coded Decimal Interchange Code). With both of these codes, a 
great deal of deliberation went into assigning characters to bit patterns in an intelli¬ 
gent fashion. Some of the more important considerations were as follows: 
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• Control characters and graphics should have bit patterns that are easily distin¬ 

guishable. 
• Corresponding letters in upper and lower case should differ in only their high 

order bits. 
• There should be no duals. 
• Compatibility with previous codes (such as BCDIC) should be sought-after. 
• The consecutive letters of the alphabet should have consecutive bit patterns. 

Some of these considerations, particularly the last two, are conflicting. For 
such reasons, and for a host of personal and national reasons, the designers of 
EBCDIC and ASCII arrived at the two different code sets displayed in Table 8.1.2 
The most significant difference is that the sequence of the graphics is different in the 
two codes. These represent distinct collating sequences for purposes of arranging 
character strings in lexicographic order — that is, sorting. Thus, comparisons of 
strings in the two codes yield different results. In particular, ASCII has the prece¬ 
dence: digits, upper case, lower case; and EBCDIC has the precedence: lower 
case, upper case, digits. If the choice of collating sequence among lower case, upper 
case, and digits is a difficult one, the choice of collating sequence among the scores 
of special characters is much more so. Yet, this sequence has great implications in 
that it manifests a canonical order for storing and retrieving indexed items within a 
database. By inspecting Table 8.1, we can observe various other significant features 

of ASCII and EBCDIC, as follows: 

• The first 32 characters in ASCII and the first 64 characters in EBCDIC are 

control characters. 
• The letters of the alphabet are contiguous in ASCII, but broken into three 

groups in EBCDIC, for compatibility reasons. 
• the character for “space” ('b') collates low to all other graphics in both ASCII 

and EBCDIC; 
• EBCDIC still has unassigned code positions. 

Many of the control characters are for use in data transmission: ACK (acknowl¬ 
edge), STX (start of text), ETX (end of text), CR (carriage return), LF (line feed), 

BEL (ring the bell), etc. 

The historical development of various character code sets is thoroughly docu¬ 
mented in Mackenzie [1980]. We will pursue one final point before moving to the 
next topic. Consider one of the oldest codes of all, the teletype code (CCITT). 
This code includes the 26 upper case letters, 10 digits, and various other characters; 
yet it is a five-bit code! How is this possible? The answer can be seen by looking at 
any typewriter keyboard. Certain characters are shift characters that change the 
mode of translation of subsequent characters — for example, from lower case to 
upper case. Thus, teletype code is almost a six-bit code, with one bit stripped off 
and carried along as context. In point of fact, the five-bit code is used only for data 
transmission. At the sending location, a shift character is generated whenever the 

2 One of the major reasons for designing EBCDIC as an eight-bit code was to gain effi¬ 
ciency in representing the decimal data that pervades commercial data processing. The 
choice of eight bits allows two binary-coded decimal digits (BCD) to be packed into a 
single byte. 
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Dec. Hex. EBCDIC ASCII 

0 00 NUL NUL 
1 01 SOH SOH 
2 02 STX STX 
3 03 ETX ETX 
4 04 PF EOT 
5 05 HT ENQ 
6 06 LC ACK 
7 07 DEL BEL 
8 08 BS 
9 09 HT 

10 0A SMM LF 
11 OB VT VT 
12 OC FF FF 
13 OD CR CR 
14 OE SO SO 
15 OF SI SI 
16 10 DLE DLE 
17 11 DC1 DC1 
18 12 DC2 DC2 
19 13 TM DC3 
20 14 RES DC4 
21 15 NL NAK 
22 16 BS SYN 
23 17 IL ETB 
24 18 CAN CAN 
25 19 EM EM 
26 1A CC SUB 
27 IB CU1 ESC 
28 1C IFS FS 
29 ID IGS GS 
30 IE IRS RS 
31 IF IUS US 
32 20 DS SP 

33 21 SOS ! 

34 22 FS " 

35 23 # 
36 24 BYP $ 
37 25 LF % 
38 26 ETB & 

39 27 ESC ' 

40 28 < 
41 29 ) 
42 2A SM * 

43 2B CU2 + 

44 2C , 

45 2D ENQ - 

46 2E ACK 

47 2F BEL / 

48 30 0 

49 31 1 

50 32 SYN 2 

51 33 3 

52 34 PN 4 

53 35 RS 5 
54 36 UC 6 

55 37 EOT 7 

56 38 8 

57 39 9 

58 3A 

59 3B CU3 ] 

60 3C DC4 < 

61 3D NAK = 

62 3E > 

63 3F SUB ? 

Dec. Hex. EBCDIC ASCII 

64 40 Sp @ 
65 41 A 
66 42 B 
67 43 C 
68 44 D 
69 45 E 
70 46 F 
71 47 G 
72 48 H 
73 49 1 
74 4A J 
75 4B K 
76 4C < L 
77 4D ( M 
78 4E + N 
79 4F 1 0 
80 50 & P 
81 51 Q 
82 52 R 
83 
84 

53 S 
54 T 

85 55 U 
86 56 V 
87 57 w 
88 58 X 
89 59 Y 
90 5A ! z 
91 5B $ [ 
92 5C * \ 

93 5D > ] 
94 5E j 

95 5F —i 

96 60 - 
\ 

97 61 / a 
98 62 b 
99 63 c 

100 64 d 
101 65 e 
102 66 i 
103 67 g 
104 68 h 

105 69 i 

106 6A t i i 
107 6B , k 

108 6C % 1 

109 6D m 

110 6E > n 

111 6F ? 0 

112 70 p 
113 71 q 
114 72 r | 

115 73 s 

116 74 t 

117 75 u i 
118 76 V 

119 77 w 

120 78 X 

121 79 > y 
122 7A Z 

123 7B # t 
124 7C @ ] 
125 7D } 
126 7E = ~ 

127 7F " DEL 

Dec. Hex. EBCDIC 

128 80 
129 81 a 
130 82 b 
131 83 C 

132 84 d 
133 85 e 
134 86 t 
135 87 g 
136 88 h 
137 89 i 
138 8A 
139 8B 
140 8C 
141 8D 
142 8E 
143 8F 
144 90 
145 91 i 
146 92 k 
147 93 1 
148 94 m 

149 95 n 
150 96 o 
151 97 p 
152 98 q 
153 99 r 
154 9A 

155 9B 
156 9C 
157 9D 

158 9E 

159 9F 

160 A0 
161 A1 
162 A2 s 
163 A3 t 
164 A4 u 
165 A5 V 

166 A6 w 
167 A7 X 

168 A8 y 
169 A9 z 

170 AA 
171 AB 
172 AC 
173 AD 
174 AE 
175 AF 
176 B0 
177 B1 

178 B2 

179 B3 

180 B4 

181 B5 
182 B6 
183 B7 
184 B8 

185 B9 
186 AA 
187 AB 

188 AC 
189 AD 

190 AE 

191 AF 

Dec. Hex. EBCDIC 

192 CO { 
193 Cl A 
194 C2 B 
195 C3 C 
196 C4 D 
197 C5 E 
198 C6 F 
199 C7 G 
200 C8 H 
201 C9 1 
202 CA 

203 CB 
204 CC S 
205 CD 
206 CE V 
207 CF 

208 DO } 
209 D1 J 
210 D2 K 
211 D3 L 
212 D4 M 

213 D5 N 
214 D6 0 
215 D7 P 
216 D8 Q 
217 D9 R 
218 DA 
219 DB 
220 DC 
221 DD 
222 DE 

223 DF 
224 E0 \ 

225 El 
226 E2 S 
227 E3 T 
228 E4 U 
229 E5 V 
230 E6 W 
231 E7 X 
232 E8 Y 
233 E9 Z 
234 EA 
235 EB 

236 EC rl 
237 ED 
238 EE 
239 EF 

240 FO 0 
241 FI 1 
242 F2 2 
243 F3 3 
244 F4 4 

245 F5 5 
246 F6 6 
247 F7 7 
248 F8 8 
249 F9 9 

250 FA 1 
251 FB 
252 FC 

253 FD 
254 FE 

255 FF 

Table 8.1 EBCDIC and ASCII Character Codes 
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value of the sixth bit changes from the preceding character; at the receiving 
location, a sixth bit - the value of which depends upon the most recent shift char¬ 
acter — is appended to each incoming character. There may in fact be several shift 
codes, allowing several modes of operation. Of course, it is important to distribute 
the characters among the modes so that the expected frequency of shifts between 
modes is low; for example, all the digits should be in the same mode. In addition, 
very common characters, such as space, should occur in both modes, again to 

reduce extra shift characters. 

Let’s investigate the circumstances under which a shift code (one employing 
shift characters) is more economical than a non-shift code, for the same alphabet 
[Karlgren 1963]. To begin with, let’s do this for the teletype code. The two shift 
characters and three other control characters occur in both modes, and the bit 
pattern '00000' is unused in either mode. The other 26 bit patterns each have two 
graphics, so that the total alphabet offers 2 x 26 + 6 = 58 possibilities. With an 
unshifted code of six bits, the average character length will be exactly 6; with a 
shifted code of five bits, the average character length will be 5 x (1 + Ps), where Ps is 
the probability that a shift between modes will be required. Then the shift code is 

superior whenever 

5 x (1 + P5) < 6, or P,<y (8.1) 

More generally, for an alphabet of N characters, an unshifted code will require 
[ \g N bits, and a shift code with c characters common to both modes will require 
T lg {(N — c)/2 + c) bits. So there will be a net gain in efficiency whenever 

(T lg {(N - c)/2 + c)) x (1 + Ps) < T lg N (8.2) 

A variation upon the use of shift characters occurs with the escape character. 
This is analogous to using shift without shift-lock on a typewriter, for the purpose 
of changing the mode for only the next character. For infrequently used characters, 
this is superior to the use of a shift code, since it requires two characters instead of 
three for transmission. The effect is to impart a double length to such characters 
whenever they occur. Both ASCII and EBCDIC contain an escape character 
(ESC), although its precise use remains to be specified. In general, ESC followed by 
any other character, or possibly a sequence of characters, may have a variety of 
meanings; in particular, ESC followed by another character could signal a shift to 

an alternate mode. 

8.2.2 Data Structure Choices 

The choice of a representation for strings requires careful attention to their expected 
manner of use. We will describe six possibilities and then make some generaliza¬ 
tions about their applicability. To illustrate these schemes, let us suppose that we 
have the sample line 

'LI CMPR BANANAS,WATERMELONS,12' 
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This might, for instance, represent one line (or card) containing an instruction in 
some assembly language. There will be some program that extracts the two fixed- 
length fields ('Llbbbb' and 'CMPRbbb') and the three variable-length fields 
('BANANAS', 'WATERMELONS', and '12'), storing each of them in the given string 
representation. 

1 

2 

3 

4 

5 

L 1 

C M P R 

B A N A N A S 

W A T E R M E L 0 N S 

1 2 

Figure 8.1 Fixed-Length String Representation 

The simplest method of all is to represent fixed-length strings by means of 
arrays, as shown in Figure 8.1. Here, each string is padded with extra blanks on the 
right (in other words, left justified) to fill its array. A more sophisticated technique 
is to use varying-length strings. A fixed-length array is used as before, but each 
array also has an associated integer value that specifies the number of meaningful 
characters in the string; note that there could just as well be meaningful, embedded 
blanks. This representation is shown in Figure 8.2, and the corresponding Pascal 
syntax is simply 

type string = record 
size: 0 .. maxstring; 
data: array [1 .. maxstring] of char; 

end; 

1 

2 

3 

4 

5 

Figure 8.2 Varying-Length String Representation 

02 L 1 

04 C M P R 

07 B A N A N A S 

11 W A T E R M E L 0 N S 

02 1 2 

The remaining four schemes all address the issue of truly variable-length strings. 
This is important for reasons of storage efficiency, and also because the two simpler 
representations run the risk (depending upon the application) of being too short for 
some strings. We have already faced this issue in Section 3.3, in discussing varia¬ 
ble-length records. From the techniques presented there, we know that we can 
delimit variable-length strings using either separators or count fields. The latter are 
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superior for machine processing of data, and so the third representation for our 
example is as shown in Figure 8.3. The fourth scheme should by now be fairly 
familiar; it is the indexed list, formally introduced in Section 7.2 for representing 
the edge list of a graph, and used earlier in Section 2.8 for representing sparse 

matrices. As applied to our example, it yields Figure 8.4. 

0 2 L 1 0 4 C M P R 07BANANAS 1 1WATERMELONS 0 2 12 

Figure 8.3 Count-Delimited String Representation 

Figure 8.4 Indexed List String Representation 

Not surprisingly, the technique that offers the most flexible representation is 
that of a linked list, and this is shown in Figure 8.5. Here each cell represents a 
machine word, containing a one byte character and a three byte pointer value. The 
patent storage inefficiency in such a scheme suggests using a blocked linked list. 
For the blocking illustrated in Figure 8.6, each cell is a machine double-word 
containing four one byte characters and a three-byte pointer; the unused byte 
might contain a fifth character or be used for other purposes. 

Figure 8.5 Linked List String Representation 

Of the various measures that might be applied to these choices for representing 
strings, three are particularly important: efficiency of storage use, ease of look- 
ing-up (matching) an argument string, and ease of modifying (substituting) a given 
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Figure 8.6 Blocked Linked List String Representation 

string. When we apply these three criteria to our six representation choices, we 
obtain Table 8.2. Let’s look at the values of some of the entries in the table. 

storage 
efficiency 

ease of 
look-up 

ease of 
modification 

fixed-length poor fair fair 

varying-length poor good fair 

count delimiters excellent fair poor 

indexed list excellent good poor 

linked list fair poor excellent 

blocked linked list good fair good 

Table 8.2 Relative Merits of String Representations 

Fixed-length strings evidently do not have much to commend them. Nonethe¬ 
less, their extreme simplicity causes them to be worthwhile for applications where 
the intrinsic variability in length is not significant, as with punched cards or line 
printers. Varying-length strings offer superior performance with only a trivial incre¬ 
ment in complexity. They do not save space but they save significantly in time, 
since processing of irrelevant character positions is avoided. With both of these 
methods, we find that the presence of unused character positions causes string 

modification to be reasonably easy in many circumstances. 

The count delimiter and indexed list techniques are actually rather similar - 
the counts being with the data in the former case, and in a separate array in the 
latter case. However, in processing strings, as opposed to records, it is usually 
important to have all the descriptive information (counts and pointers) in the latter 
form; this facilitates dealing with the zth string, for example. The indirection also 
makes it possible to deal with substrings without the necessity of replicating charac¬ 
ter data, as illustrated in Figure 8.7. The capability can be more useful than is 
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suggested by this humorous example. For instance, systems that interact with 
people may have hundreds of messages, requiring a large amount of storage, and 
the words and phrases of these messages typically have a great deal of redundancy. 
An indexed list can be used to overlap portions of text, with significant savings in 
storage [Wagner 1973a]. The count delimiter and indexed list techniques are hard 
to beat in terms of storage efficiency. Their biggest drawback is that string modifi¬ 
cation becomes extremely expensive unless the replacement string is never longer 
than the pattern string. However, applications that require insertion and look-up, 
but not string modification, occur rather frequently. A notable example is in the 
building and use of symbol tables during assembly or compilation of programs. 

Figure 8.7 Overlapped Messages 

The linked list methods trade storage efficiency for ease of string modification. 
Since a character usually requires one byte and a pointer usually requires three 
bytes, the efficiency of the simpie linked list representation is only 25 percent. The 
blocked linked list technique brings the efficiency up to 50 percent or more, depend¬ 
ing upon the blocking factor, but causes string modification to become more 
complicated. It may be necessary to have an “empty” character, such as '#'. Thus, 
suppose that we wish to change 'DISTANT', in Figure 8.8(a), to 'DOMINANT'. If 
accomplished as in (b) of the figure, we must shuffle characters around; if accom¬ 
plished as in (c) of the figure, we must waste block space. Even so, for general 
string processing the blocked linked list seems to offer a favorable combination of 
characteristics. 

D l S T ANT 

(a) 

D 0 M 1 N A N T / 

(b) 

D # # # 0 M N ANT 

(c) 

Figure 8.8 Complications with Blocked Linked Lists 

As a postscript to the subject of string representations, the addressing capabili¬ 
ties of the underlying machine are a factor that is outside the implementer’s control. 
If the machine is only word-addressable, and if several characters are packed into a 
word, then the cost of operating upon individual characters can be high. A 
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machine that is addressable by characters (bytes) will perform much better for string 
processing. Many machines, of course, offer both byte and word addressing. 

8.2.3 A Set of String Manipulation Algorithms 

For the purpose of illustrating string manipulation algorithms here and in the rest 
of this chapter, we need to select a representation. The one that we will employ 
throughout is that of varying-length strings, as was illustrated in Figure 8.2. As 
mentioned earlier, this choice is inferior for some applications, but in many cases it 
is a good choice, and it also has the virtue of simplifying the exposition of string 
algorithms. To begin with, we will employ the definitions: 

type extent = 0 .. maxstring; 
string = record 

size: extent; 
data: packed array [1 .. maxstring] of char; 

end; 

The keyword packed is used to specify that characters should be stored densely in 

words, rather than singly. 

procedure CONCAT (s1,s2: string; var s3: string); 

var b,i: extent; 

begin 
if si .size + s2.size > maxstring then 

{Overflow} 

else begin 
b := 0; 
for i := 1 to si .size do 

s3.data [b + i] := si .data [i]; 

b := si .size; 
for i := 1 to s2.size do 

s3.data [b + i] := s2.data [i]; 

s3.size := b + s2.size; 

end; 
end; 

Algorithm 8.1 CONCAT 

The procedure CONCAT (Algorithm 8.1) is straightforward, concatenating the 

contents of strings si and s2 in the string s3; note that, with this representation, a 
test for potential overflow is imperative. The function MATCH_0 (Algorithm 8.2) 
warrants a modest amount of explanation. It tests for the presence of pattern 
within text, returning either a zero if it is not present, or else the index in the text 
where the first match begins. Within the repeat ... until loop, a successful compar¬ 
ison of the jth text character and the Ath pattern character causes both indices to be 
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function MATCH_0 (pattern,text: string): extent; 

label 1; 

var j,k: extent; 

begin 
j := 1; k := 1; 
repeat 

if text.data G] = pattern.data [k] then begin 

j :=j + i; 
k := k + 1; 

end else begin 
j := j - k + 2; 
if j + pattern.size <= text.size + 1 then 

k := 1 
else 

goto 1; 
end; 

until (j > text.size) or (k > pattern.size); 

1: if k > pattern.size then MATCH_0 := j - pattern.size 

else MATCH_0 := 0; 
end; 

Algorithm 8.2 MATCH_0 

12345678901234567890123456 
aal f lal fatal fal I a I fatal f a f 

a I 

a I f a 
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a 

a 
a I f a I a I f a f 

a 

a 

a I f 

a 

a I f a I a 

a 

a 

a I f 

a 

a 

a I f a I a I f a f 

Figure 8.9 Trace of Algorithm MATCH_0 
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advanced by one; an unsuccessful comparison causes the text cursor to be backed 
up and the pattern cursor to be reset to one. In looking for the pattern 'alfalalfaf 

in the text 'aalflalfalalfallalfalalfaf', MATCH_0 would perform the individual 
comparisons indicated in Figure 8.9 before returning a value of 17. 

procedure SUBSEL (si: string; base,span: extent; var s2: string); 

var i: extent; 

begin 
for i := 1 to span do 

s2.data [i] := si .data [base - 1 + i]; 
s2.size := span; 

end; 

Algorithm 8.3 SUBSEL 

procedure SUBREP (var si: string; base,span: extent; s2: string); 

var delta,i,p: integer; 

begin 
delta := s2.size - span; 
if si .size + delta > maxstring then 

{ Overflow }; 
if delta < 0 then 

for p := base + span to si .size do 
si .data [delta + p] := si .data [p]; 

if delta > 0 then 
for p := si .size downto base + span do 

si .data [delta + p] := si .data [p]; 
for i := 1 to s2.size do 

si .data [base - 1 + i] : = s2.data [i]; 

si .size := si .size + delta; 
end; 

Algorithm 8.4 SUBREP 

The procedure SUBSEL (Algorithm 8.3) selects a substring from the string si, 
with base and span specifying the beginning index in si and the length of the 
substring; the result is assigned to s2. Thus, let u be the string 'abcdefghij'; then 
SUBSEL (u,3,4,z) would cause z to be the string 'cdef'. The procedure SUBREP 
(Algorithm 8.4) replaces a substring of si with the string s2. There are the same 
parameters as in SUBSEL, but now si is the output string and s2 is an input string. 
The first concern is to discover whether the “tail” of the string si must be moved 
left/right because the substring to be replaced is longer/shorter in length than s2. If 
so, those characters are relocated appropriately. Finally, the contents of s2 are 
copied into the “hole.” Note that replacing a longer substring with a shorter one 
will leave extra characters at the end of the target si. However this doesn’t matter, 
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since sl.size is the determining factor. To illustrate matters, let u be abcdofghij 

again, and let v be '12345'. Then we would obtain results such as. 

for SUBREP (m,3,0,v) , u = 'abl2345cdefghij/ 
for SUBREP (w,3,l,v), u = 'ab12345defghij' 

for SUBREP (m,3,5,v) , u = 'abl 2345hij' 
for SUBREP («,3,7,v), u = 'abl 2345j' 

With regard to complexity, we see that CONCAT, SUBSEL, and SUBREP are 
linear algorithms; however, the function MATCH_0 is more costly. In fact, for 
pattern.size — m and text.size = n, MATCH_0 is 0(mn)', for the usual case of 
n » m, we can see this from the example of pattern = amb and text = an, where am 
represents m concatenations of a. In Section 8.5.1, we will examine ways in which 

this can be improved. 

8.2.4 Minimum Redundancy Codes 

The significance of strings is that they carry meanings. In this sense, strings are 
messages. In a finite collection of strings/messages, some are usually more likely to 
occur than others. This spread of likelihoods can be viewed at the level of charac¬ 
ters, words, or even sentences, as illustrated in Figure 8.10. If we have a set of 
messages U = {mu rr^,..., mN}, with respective probabilities {pup2, ... ,PN}, then the 
“surprise” associated with receiving any one of the m, is defined as — lg pr These 
ideas originated with Shannon’s Information theory [Shannon 1948], wherein the 
quantity of information H associated with the entire set of messages U is defined as 

the average surprise 

N 

H(U) = - 'Yfi te Pi 
i= 1 

(8.3) 

characters words sentences 

E the How are you? 
A bird Give it to me. 

N futility It’s a double feature. 
0 abomination Grammars describe languages. 
Y oxymoron The purple door sagged open. 

Figure 8.10 Messages in Order of Decreasing Probability 

This quantity H, called the entropy, is a minimum bound on the number of 
binary decisions required to discriminate the value of a message. Thus, suppose 
that we have the candidate messages and probabilities shown in the first two 
columns of Figure 8.11. A binary decision tree for discriminating which data struc¬ 
ture is intended might look like Figure 8.12. An important quantity associated with 
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such a tree is its weighted path length (w.p.l.). This is obtained by multiplying each 
frequency by its level in the tree and them summing; it corresponds to the average 
value for the number of decisions that will be required. For the tree of Figure 8.12, 
the w.p.l. is 

3 x .17 + 2 x .24 + 4 x .12 + 3 x .11 + 4 x .15 + 3 x .01 + 2 x .20 = 2.83 

Evaluating Eq. 8.3 for the same case, we obtain 

H=. 17 x 2.56 + .24 x 2.06 + .12 x 3.06 + .11 x 3.18 + .15 x 2.74 
+ .01 x 6.64 + .20 x 2.32 = 2.59 

message probability code A code 6 

tree .17 010 010 
array .24 00 001 
graph .12 0110 011 
stack .11 111 100 
list .15 0111 111 
queue .01 110 101 
string .20 10 110 

Figure 8.11 Example Messages, Probabilities, and Codes 

Queue 

Stack 

Figure 8.12 A Decision Tree for Data Structures 

The definition in Eq. 8.3 has several desirable properties: 

• It is always positive. 
• It attains its maximum value when all the pt — 1 jN. This corresponds to the 

intuitively reasonable notion that there is the most surprise when all outcomes 

are equally likely. 
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• It is additive. If we have two independent sets of messages U and V, with infor¬ 
mation contents H{U) and H(V), then the information contained in the 

cross-product of messages from U with messages from V is 

H(UV) = -lg pq = -lg p~\gq = H{U) + H(V) 

Since a given set of messages contains a fixed amount of information, we can 
try to reduce the aggregate storage requirements for their recording or transmission 
by mapping the messages {m,} into codewords of non-uniform lengths {$,}, assigning 
more likely messages to shorter codes. In general, the codeword symbols can be 
selected from an alphabet with K symbols. Then the expected character length will 
be given by L = A fundamental result from information theory states that 

this average length is bounded from below by H(U)I lg K; that is, 

(8.4) 

with the bound being attainable only in those rare cases where the st = -lg pt are 
integers. In general, our encoding scheme will have redundancy, defined as 
1 — H(U)I(L lg K). We are particularly interested in applying this idea to the repre¬ 
sentation of a set U of characters by binary codewords, for which K= 2. An 
illustration is given by the Code A in Figure 8.11 (representing the decision tree of 
Figure 8.12) with a redundancy of 1 — 2.59/2.83 — 0.085. Although this is not the 
best possible encoding, it is clearly better than any fixed-length code could be. 
Compare it, for example, with the Code B in Figure 8.11, where we find 

L = Yj>di = s^^Pi = 3x1=3, and the redundancy is 1 — 2.59/3 = 0.137. 

In the general case of trying to find a set of codes to represent a set of 
messages, one must be careful to choose a set that can be decoded uniquely, and 
also instantaneously - that is, without the necessity to look ahead of the current 
position in the input. Such a code set is said to have the prefix property. By way of 
illustration, the code in Figure 8.13(a) is not uniquely decipherable;3 the message 
'01 O' could be decoded as either 'uw' or 'vu'. The code in (b) of the figure is 
uniquely decipherable but not instantaneous; the message '0000001' corresponds to 
'yyyz', but the 'y' values canno^ be determined without scanning ahead each time. 

Huffman [1952] found an elegant, yet simple algorithm for constructing a mini- 
mum-redundancy code with the prefix property, given a set of messages with 
associated probabilities. The method proceeds by building a strictly binary tree (see 
Section 6.2), wherein the message elements are leaves. His construction can be 
applied either with a set of weights (unnormalized frequencies) or with a set of 
probabilities (normalized frequencies). We begin by arranging the elements in a list, 
from bottom to top, in order of increasing frequencies. We then remove the two 
elements with lowest frequencies f and f2, and combine them in a new element with 
frequency f -t-f2. In the binary tree this new element becomes a parent node to its 
two summands, and in the list it is inserted so as to maintain the ascending 

3 Note that the Morse code, using dots and dashes, does not have the prefix property. 
How then can a message in Morse code be unambiguously decoded? 
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message code 

u 0 
V 01 
w 10 

message code 

y 
z 

0 
0001 

(a) (b) 

Figure 8.13 An Ambiguous and a Non-lnstantaneous Code 

sequence. Then the two elements/nodes with lowest frequencies are selected as 

before, and the process is repeated. This continues until the list contains just one 
node, corresponding to the root of the binary tree. Here, we illustrate the algorithm 

with the data of Figure 8.14 rather than that of Figure 8.11. Figure 8.15 shows 

successive values for the list and for the tree as the algorithm progresses. When the 
tree has been completed, a code is immediately forthcoming, by mapping left/right 

branches in the tree to 0/1 bit values to reach the messages at the leaves. This is 

shown in Figure 8.15(b), where the (square) terminal nodes are the original data 

and the (circular) non-terminal nodes are generated by the algorithm. The final 
code is also summarized in Figure 8.14. Huffman’s algorithm yields a tree with the 

minimum weighted path length (w.p.l.) that can be obtained via an encoding. In 

our example, it is 

2 x 50 + 3 x (13 + 16 + 26 + 28) + 4 x (8 + 9 + 11) + 5 x (6 + 7) = 526 

message weight code message weight code 

A 11 0110 N 13 000 

C 16 001 O 50 10 

D 8 0100 R 9 0101 

E 26 110 T 28 111 

L 7 01111 Y 6 OHIO 

Figure 8.14 Huffman Encoding for Weighted Messages 

Eq. 8.4 stated a lower bound for the average path length, and it can easily be 

shown that the tree obtained by Huffman’s construction has the minimum possible 

w.p.l. (see Exercise 8.5). In fact, more can be said. A minimum encoding satisfies 

H{U) < 
lg K ~ 

(8.5) 

[Ash 1965; Gallagher 1968]; thus, for a binary Huffman tree with normalized 

frequencies, we are assured that 
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Figure 8.15 Applying Huffman’s Algorithm to Figure 8.14 



8.2.4 MINIMUM REDUNDANCY CODES 399 

H(U) < Yfft < H{U) + 1 (8.6) 

In other words, a minimum binary encoding will never cost more than one extra 
access beyond the limiting entropy value. 

Having derived the code of Figure 8.14, how do we decode a message such as 
'001100100110'? We start at the root of the tree and the beginning of the message, 
branching according to successive bits until we find the first symbol at a leaf, 'C'. 
We continually restart at the next bit in the message and at the root of the tree 
again, finally obtaining the complete message, 'CODE'. Note how the prefix prop¬ 
erty guarantees a unique decoding. 

It should be apparent that the Huffman construction does not yield a unique 
tree/encoding scheme, although the w.p.l. value is unique. In fact, it may not even 
yield a unique oriented tree; an alternative tree and code for the data of Figure 
8.14 are shown in Figure 8.16. Although the two trees/codes have the same w.p.l., 
note that the second one is better balanced, with a lesser depth. It is straightfor¬ 
ward to modify the Huffman algorithm to guarantee the latter result [Schwartz 
1964], When a non-terminal node has been formed and is to be inserted into the 
list, there may be bther nodes in the list with the same weight. In such a case, the 
new node should be inserted after such nodes. You should verify that such a 
modification does in fact lead to Figure 8.16. The implementation of Huffman’s 
algorithm is left as a fairly easy programming exercise. Note that, with one compli¬ 
cation (see Exercise 8.8), the priority queue is a natural choice of data structure for 
the necessary operations of inserting a new node and removing a minimum node. 

Figure 8.16 Alternative Huffman Tree of Minimum Height 

Huffman’s algorithm responds to the objective of reducing the storage require¬ 
ments for data recording and transmission. In fact, the net savings by this method 
may not be very great unless we are dealing with a rather small collection of 
messages in which some are much more likely than others. It is often possible to 
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obtain an improved compression of redundancy by considering larger segments of 
the message string than just individual symbols, as we will see in Section 8.4.1. 
Another drawback to this method is that the decoding process requires the serial 
examination of a bit string, which is difficult to implement efficiently on most 
computers. On the other hand, the logic of Huffman tree construction can be 

useful in instances unrelated to data compression (see Section 13.4.3). 

8.2.5 Error Detecting and Correcting Codes 

While the objective in the preceding section was efficiency, in this section it is reli¬ 
ability. We should expect that errors will cause changes in code values and corrupt 
the associated meanings. This is particularly so when information is transmitted 
between locations, and noise perturbs the information carrier. A sensible response 
to this situation is to deliberately provide redundant information with a message. 
Ordinary discourse contains a great deal of redundancy, thereby enabling humans to 
detect and correct mistakes in communication in an unsystematic manner. 

However, to provide this facility with machines, we need to incorporate redun¬ 
dancy of a more systematic nature, such as a checksum or an odd/even parity 
check. With such a scheme, the sender computes some redundant information as a 
function of the data, and attaches it to the message. The receiver recomputes the 
same redundant information, and compares it to the received redundancy values. 

At that point, one of three possibilities can be decided upon: 

Acceptance — There are, with high probability, no errors. 

Correction — Errors are present in locations that can be computed, so that 
they can be corrected. 

Rejection — Errors are present in unknown parts of the message, so that they 
cannot be corrected. 

A central idea for constructing codes that allow error detection and error 
correction, as suggested above, is that errors are often independent. In this case, the 
probability of multiple errors in a given code sequence will be much less than ,the 
probability of a single error. Now let Bn be the set of binary n-tuples, and suppose 
that we have a code C that is a subset of Bn. Two important concepts are the 
Hamming weight of a codeword, defined to be its number of non-zero coordinates, 
and the Hamming distance between any pair of codewords from C, defined to be the 
number of coordinates in which their values differ. For concreteness, let us consider 
B6 and the code C of Figure 8.17. We can regard this code as follows. The data is 
contained in the leftmost three bits, the fourth bit is an even parity check on the 
two leftmost data bits, the fifth bit is an even parity check on the first and last data 
bits, and the sixth bit is an even parity check on the two rightmost data bits. The 
significant fact is that for any pair of codewords in the set, the minimum Hamming 
distance is three. This means that three or more independent errors are required in 
order to change one codeword into another one. In the much more likely event of a 
single error, we will obtain a faulty codeword Y at Hamming distance one from 
some word X in C, and at Hamming distance two or more from all the other words 
in C. It is then reasonable to conclude that the correct value of Y must be X. 
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message code C 

0 0 0 0 0 0 0 
1 0 0 10 11 
2 0 10 10 1 
3 0 11110 
4 10 0 110 
5 10 110 1 
6 110 0 11 
7 1110 0 0 

Figure 8.17 A Code with 3 Data Bits and 3 Check Bits 

What if we have a code such that the minimum Hamming distance between any 
two codewords is two? In this event, we may receive a faulty codeword Y that is at 
Hamming distance one from two different codewords. It will not be possible to 
correct the error, other than with a guess; on the other hand, we can be sure that 
no single error can get by without our being aware of it. This is the function that 
use of a single parity bit provides. 

In general, as first shown by Hamming [1950], codes with a minimum distance 
of d + 1 enable detection of d errors, and codes with a minimum distance of 2d + 1 
enable correction of d errors. This can be visualized in geometric terms such that 
each codeword is a point in space. When we speak of detection, we find that d 
errors are insufficient to reach one codeword from another because they are at 
Hamming distances d -f 1. When we speak of correction, we find that each code¬ 
word is surrounded by a “sphere” of radius d, and that none of the spheres can 
intersect because the centers are at Hamming distances 2d + 1. Thus, as illustrated 
in Figure 8.18, any codeword with k < d errors can safely be corrected to the value 
of the codeword at the center of one particular sphere. Note that these two 
distance conditions interact. A code with minimum distance of three can be used 
either to correct single errors or to detect double errors, but not both. A code with 
a minimum distance of five can be used either to correct double errors, correct 
single errors and detect triple errors, or to detect quadruple errors. The choice of 
whether to opt for more detection or more correction depends upon the application. 
For example, it is common to have a situation where error detection could be used 
to signal a request for retransmission. In such cases, we could emphasize rejection 
(that is, detection without correction) in order to reduce the likelihood of an unde¬ 
tected multiple error. On the other hand, where retransmission is impossible or 
irrelevant, as in the case of reading corrupted data from a magnetic tape, it would 
make more sense to opt for as much correction as possible. 

One potentially troublesome point is that, by introducing check bits, we have 
lowered the efficiency, or the rate, of the code. In the example of Figure 8.17, we 
have halved the effective transmission rate by including as many check bits as infor¬ 
mation bits. What is the trade-off in general terms? If we have codewords with 
n — m + r bits, where m bits carry the information and r bits provide the checking, 
how big must r be for a given m, in order to provide single-error correction? It 
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Figure 8.18 Hamming Distances for Correction 

must be such that 2r >m + r + 1; this is so because there must be sufficient infor¬ 
mation in the r bits to distinguish among the m + r + 1 cases: 

(a) there is an error in one of the m data bits; 

(b) there is an error in one of the r check bits; 

(c) there is no error. 

This is equivalent to 

m = n — r <2r — r — 1 (8.7) 

When equality holds, we can construct a corresponding perfect Hamming code, of 
length n = 2r — 1 and size (that is, number of messages) 22r~r~1. Some pairs (n,m) 
for which perfect Hamming codes can be constructed are (3,1), (7,4), (15,11), 
(31,26), etc. As you can see, efficiency ceases to be an issue as n increases. 

One can carry out similar arguments to obtain various upper or lower bounds 
for multiple-error correcting codes. For example, referring to Figure 8.18 again, 
suppose that we have codewords of n bits and that we want d-bit error correction. 
Then the “sphere” about each codeword must contain the codeword itself and all 
the points reachable in d or fewer errors. The total number of points is P = 2", and 
the total number in each sphere is S = ^C(nJ), for 0 <j <d. The ratio P/S is 
known as the Hamming bound, corresponding to the maximum number of distinct 
messages on n bits with d-bit error correction. For a single-error correcting code, 
the Hamming bound reduces to 2"/(l + «); for n = 2r — 1, this tells us that we can 
have 2"~r = 2m messages, agreeing with the results of the preceding paragraph. One 
must be careful, however, because the Hamming bound is a necessary but not suffi¬ 
cient condition, and a code satisfying the bound may not exist. 
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f8.2.5.1 Group Codes. In the preceding section, we showed the existence of 
single-error correcting codes with good rates. Actually finding such codes and 
determining how to use them efficiently is another matter. For instance, if we 
receive a faulty codeword Y that does not match any of the messages of an (n,m) 
code, we might try comparing Y with each of the 2m messages to see which it is 
closest to. For m of even modest size, however, just the storage requirements of this 
approach render it completely infeasible. Therefore, we want codes for which we 
can find good encoding and decoding algorithms. Beyond this, if we can solve these 
problems for single-error correcting codes, can we solve them for multiple-error 
correcting codes? In this section, we will sketch how group codes provide a 
solution for the single-error case. The demonstration suppresses a great deal of 
theoretical underpinning which comes from linear algebra and group theory; a 
fuller treatment can be found in Blahut [1983]. 

To be specific, what is an example of the Hamming (7,4) code, and how would 
we use it to correct a faulty codeword? It is effective to represent the coding 
process as the multiplication of the input vector 7 = (i\, h, 4) by a (4 x 7) genera¬ 
tor matrix G, as shown in Figure 8.19(a), yielding a codeword in the desired code C. 
It is possible for G to have other forms, but the G of the figure makes the encoding 
particularly simple. The leftmost four columns of G are the identity matrix, and the 
rightmost three columns of G compute three parity bits to be appended to 7, via the 
multiplication A = 7 x G ( mod 2). As an example, the input 7=1011 would 
become the codeword X = 1011010. An essential feature of this process is that any 
codeword in C is a linear combination of the four rows of G, causing C to be a 

subgroup of B1. 

110 110 0 
10 110 10 
0 1110 0 1 

1 0 0 0 1 1 0 
0 10 0 10 1 
0 0 1 0 0 1 1 

0 0 0 1 1 1 1 

(a) Generator Matrix G (b) Parity-Check Matrix H 

Figure 8.19 Coding Matrices for Hamming (7,4) Code 

Suppose now that we receive Y instead of X; that is, Y = X + Z { mod 2), for Z 
an error vector. The value of Z can be determined in an ingenious fashion by using 
the (3 x 7) parity-check matrix 77 of Figure 8.19(b). Observe that the rightmost 
three columns of 77 are an identity matrix once again, and the leftmost four 
columns of 77 are the transpose of the rightmost three columns of G. We begin by 
computing S = 77 x YT (mod 2); the quantity S is called the syndrome. Now the 
multiplication of YT by 77 is a mapping from B1 to B3. The set C of codewords 
form a kernel of this mapping, for which 5 = 0. Moreover, the remaining values in 
B1 form seven cosets of C, or equivalence classes, each with sixteen members. The 
significance of the syndrome is that it depends only upon Z and not upon X, since 
H x YT = H x (X + Z)T = 0 + 77 x ZT, for X in C. If 5 = 0, then we know that 
Z = 0; if S 0, then it specifies a coset of sixteen possible error vectors. As an 
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example, suppose that we receive Y = 0110101. Multiplying YT by H, we obtain the 

syndrome 5 = 011. In fact, any of the following Z values 

0000011 
0001100 

ooioooo 
0011111 

0100110 
0101001 
0110101 
0111010 

1000101 
1001010 
1010110 
1011001 

1100000 
1101111 
1110011 
1111100 

could have caused this value of S. But since we assume that single errors are much 
more likely than multiple errors, then the underlined one, known as the coset leader, 

is deemed to be the desired value of Z. So the message is decoded as the first four 

bits of X = 0110101 +0010000 = 0100101, or as '0100'. 

In the process just described, the use of the syndrome to pick a coset leader 

reduces the number of items to be searched from 2m to 2n~m. For the case in ques¬ 
tion - n = 7 and m = 4 - this is not significant; however, it rapidly does become 
significant for larger codes, such as (15,11). The solution for the Hamming perfect 

codes is even more elegant than we have described, in that the syndrome can be 
used to determine Z without the necessity of storing 2n~m coset leaders. But for an 
arbitrary (n,m) single-error correcting code, we must find the coset leaders. It can 
be a sizeable task to determine them (without computing H x ZT, for every possible 
Z, and recording the Z of smallest Hamming weight for each value of S). On the 
other hand, they need be computed only once. The reader encountering these ideas 

for the first time may find them slightly overwhelming. The significant point to 
comprehend, however, is that by choosing a code to be a subgroup of Bn, one can 
fairly directly and elegantly obtain efficient decoding algorithms for singe-error 

correction. 

The construction of codes that can correct multiple errors is an advanced topic, 
as is the design of algorithms that efficiently decode (that is, accept, correct, or 
reject) the codewords [§]. Some of the techniques, such as the use of a syndrome as 
an error-locator function, carry over, but the details become much more compli¬ 

cated. They depend heavily upon arithmetic over finite fields GF(q). 

8.3 TEXT PROCESSING 

We can look forward to a society that uses less real paper, but it will also be one in 
which there is assuredly more paperwork. Word-processors and general-purpose 
computing machines assist us in the preparation and generation of ever more 

memos, letters, programs, reports, etc. The preparation phase is typically an elec¬ 

tronic “cut-and-paste” one, in which we interactively edit the text of a document. 
We may also invoke programs that detect or even correct misspellings. Finally, in 

the generation phase, a formatting program processes the text file to yield a docu¬ 
ment that is aesthetically pleasing. Our discussion of text processing is based upon 
these three principal themes. 
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8.3.1 Text Editing 

The most common conceptual model of text editing is that the user has a document 
consisting of lines of characters. A moderate number of contiguous lines (about 
twenty) are presented to the user on a video screen; at a given instant, a cursor 
indicates a particular character position on a particular line. The user can position 
the cursor underneath any character position on his screen, and he can also cause 
the screen contents to scroll up or down to reveal lines that are above or below the 
text on the screen. In addition, since some lines in his document may be too wide 
for the screen, he can scroll left or right to reveal portions of lines that are off the 
sides of the screen. The editor program that supports such operations usually has 
two modes - one in which the user can type in new lines of text, and one in which 
he can operate upon the existing lines of text. Typical capabilities in the latter 
mode are: 

• to cause the aforementioned scrolling over the two dimensional document — 
up, down, left, or right; 

• to locate occurrences of a given pattern anywhere in the document; 
• to insert, change, or delete a specified substring in a line; 
• to insert, change, or delete some or all occurrences of a specified substring in 

the document; 
• to insert or delete entire lines; 
• to delete a block of lines from the document; 
• to move or copy a block of lines from one portion of the document to another. 

This model deals in terms of lines that can readily be displayed to the user, and 
thus we do not expect the lines to be extremely wide. It is common to employ 
varying-length strings for individual fines, and an array of pointers to keep track of 
the relative sequence of the fines. Thus, a fragment of a document might look like 
Figure 8.20, with string data as in (a) and with pointers as in (b). It is easy to see 
how the editing operations cited above could be supported by the data organization 
in this figure — using the string manipulation routines of Section 8.2.3, manipulat¬ 

ing pointer values, etc. 

There are other text editing models. In discussing these models, the issue of 
fines and lengths is paramount. For instance, suppose that we edit the fine with 
relative number 329 in Figure 8.20, changing 'echo' to 'reverberation'. Suppose 
also that the resulting fine exceeds the limit of the varying-length string implementa¬ 
tion. This would cause a failure in a primitive editor. However, other editors 
would automatically split the fine in two, depending perhaps upon the type of the 
document. Still more sophisticated is to dispense with underlying fines altogether, 
treating the text file as one long super-string, or stream, of characters. In this 
model, carriage returns and fine feeds can be left in the text, and they can be edited 
like ordinary characters; however, the editor program does not use them for 
control when displaying the text to the user, and substring searching can be done in 
a manner that ignores them. Among other things, this solves the following common 
problem. If we are looking for a substring with a line-oriented editor, and it 
happens to span the end of one fine and the beginning of the next, then we will not 
find it. However, this same situation will be treated properly in the case of a 

stream-oriented editor. 
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Figure 8.20 A Text Editing Example 

This discussion has been limited to conveying just a few of the more important 

notions in text editing. Other important topics include: 

• the capability of pointing directly at a block of text with a mouse; 
• the ability to mix text with line-drawings and pictures; 
• the editor function of displaying the document so that “What You See Is What 

You Get” (WYSIWYG). 

Readers interested in pursuing these matters can find a comprehensive survey of text 

editing in Meyrowitz and van Dam [1982]. 

8.3.2 Spelling Correction 

It has long been recognized that there are four typical kinds of spelling mistakes in 
a document: (a) omission of a letter, (b) insertion of a letter, (c) substitution of one 
letter for another, and (d) transposition of adjacent letters. These are meaningful 
categories of errors, in that they correspond to real-world mistakes in the typing of 
input. But note that their relative importance depends upon the source of the docu¬ 
ment; for example, we would not expect to find transposition errors when using 
optical character reading devices. 

The four types of errors are important also because they form a basis for a 
metric of the difference between a pair of strings. More precisely, one can define 
the edit-distance between a pair to be the minimum number of editing changes 
(insertions, deletions, substitutions, or transpositions) required to transform one 
string to the other (see Exercise 8.24). This notion is fundamental in attempting to 
correct spelling errors [Lowrance and Wagner 1975; Wagner and Fischer 1974]. 
But first, let us deal with the simpler issue of detection. 
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In any language, we have a higher expectation of encountering some successive 
pairs of letters - for example, 'TH' or 'EFT - than others - such as 'GY' or 'QZ 
These letter pairs are called digrams, and statistics concerning their relative 
frequency in ordinary English text are readily obtained. A generalization that is 
also useful is to employ statistics concerning n-grams, or successive groupings of n 
letters. One can detect a great many typical spelling errors simply by scanning the 
text of a document and flagging words that seem to be exceptional according to 
these standards [McMahon et al. 1978]. 

In common practice, it is preferable to use a program that helps in correcting 
errors by suggesting what was intended. Although the concept of edit-distance is 
useful in this regard, it is not as powerful as the analogous idea of Hamming 
distance. With the former, codes are designed so that some minimum distance is 
maintained between any pair of codewords. In natural language, however, it is triv¬ 
ial to find numerous pairs of words, wherein both words are valid and yet their 
edit-distance is just one; in such cases, not even detection is possible, much less 
correction. Fortunately, most random single errors will not produce another valid 
word, so that one can attempt to find the correct word that is “closest” to an incor¬ 
rect word, either in terms of edit-distance or some other criteria. It is relatively easy 
to compensate for errors of insertion and transposition, requiring 0{n) trials for a 
word of length n. To compensate for errors of omission and substitution is more 
costly, requiring 0(kn) trials, where k is the size of the alphabet. 

Correction is harder than detection because of the difficulties cited in determin¬ 
ing what is the most likely correct word. Correction is also more expensive; a 
significant part of this cost arises from the need to be able to employ a large dictio¬ 
nary efficiently. Diverse techniques are employed for shoehoming a large 
dictionary into a computer, and we will not encounter most of these (such as hash¬ 
ing and superimposed coding) until Chapters 10 and 12. But data compression is 
also important for this purpose (see Section 8.4.1). A discussion of spelling 
correction in general, with particular emphasis upon the dictionary problem, is 
Peterson [1980]. 

8.3.3 Text Formatting 

The text that was created via the techniques of the preceding section may have been 
a program, a letter, a report, a book, etc. In all but the first of these instances, the 
author would most likely want a printed copy that is formatted in some prescribed 
and/or pleasing manner. Formatting is a rather broad topic that includes such 

matters as: 

• generating output that is fairly uniform with respect to spacing between words, 
width of lines, and number of lines per page; 

• displaying functionally distinct parts of the document (parts of a letter, section 
headings, running headers and footers, etc.) in distinctive manners; 

• employing special fonts, such as bold or italic, where appropriate; 
• capturing information that can be used for automatically generating special 

document parts, such as a table of contents or an index; 
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• defining and using macros to effect parameterized textual substitution. 

Fortunately, there are numerous program tools to assist the author in accomplishing 
these objectives. In many cases, the author actively directs the process by incorpo¬ 
rating verb-like commands (as in the IBM SCRIPT language) or adjective-like 
descriptors (as in the IBM GML language) with the text. Both of these tools were 
used, for example, in causing this book to be typeset by computer. Using these 
tools is really a form of programming in a specialized language, and it is too exten¬ 
sive a topic for us to pursue here. An excellent treatise on text processing functions 

in general is Kernighan and Plauger [1981]. 

The first item in the preceding list is somewhat different from the others in that 
it is accomplished with very little participation by the author, and we will devote 
our attention to it here. It basically requires three related decision processes that 

are as old as printing: 

1. Between which words of a paragraph should line-breaking be performed? 

2. When and where should words be hyphenated? 
3. If the right margins are to be even and not ragged, where should the extra space 

be placed within each line? 

If these matters are decided poorly, the result is a printed page that is aesthetically 
displeasing. The three questions are answered in very different fashion by a 
commercial printer and by a word-processing program. Commercial printing is 
usually synonymous with typesetting (although movable type has largely disap¬ 
peared), where the characters are of varying width. Because of this variability, the 
printer can answer the second and third questions in many different ways, adjusting 
even the space between letters of a word as well as the space between words of a 
line. In typical word-processing, on the other hand, character width is a constant, 
and hyphenation is likely to be impossible. We will discuss both cases in brief, 

general terms. 

The simplest approach used by printers is to keep adding words to a line until 
no more will fit, using normal spacing, and then to try to expand the spacing to 
absorb what is left over at the right margin. If this cannot be done without leaving 
too much space, then the printer can try to shrink the spacing and add one more 
word to that line. The same approach can be used in typesetting by computer, wjth 
the distinction that the spacing resolution may be finer. This simple, “greedy” 
approach may do well, but it may also lead to poorly set lines later in the para¬ 
graph. However, using a computer makes it feasible to look ahead in the text and 
assess the effects of a more general set of line-breaks — not just those variations 
attained by moving a word from the beginning of the (i+ l)st line to the end of the 
z'th line. This is a problem in optimization that is readily amenable to dynamic 
programming, since the principle of optimality applies with respect to sub-segments 
of the paragraph. Even so, the time and memory requirements for a straightfor¬ 
ward dynamic programming solution make it unacceptable in many applications, 
and better approaches have been sought. The most conspicuous and thorough 
solution maintains a list of feasible breakpoints as nodes of a digraph [Knuth and 
Plass 1981]. An arc from node U to node V corresponds to a line of text between 
these breakpoints, and attached to each such arc is a penalty metric. The penalty 
figure reflects how unsatisfactory that line is; its computation depends in a some¬ 
what subjective fashion upon many factors that we will not describe here. Under 
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this formulation, the solution corresponds to finding the shortest distance from the 
start node to the end node. There are many less feasible breakpoints than there are 
words, and breakpoints are even discarded at times. Thus, the complexity of this 
solution is significantly better than that obtained by dynamic programming over all 
sub-segments of the paragraph. 

Line-breaking and spacing are much simpler problems in the typical word¬ 
processing program, but the corresponding solutions are both interesting and of 
value. Once again, dynamic programming provides a starting point of view from 
which simpler algorithms are derived. Assume, for instance, that we first apply the 
simple process described at the beginning of the previous paragraph. If this tenta¬ 
tive output has m lines, and if we decide that our solution should have m lines also, 
then the total amount of spacing in the resultant paragraph, and so also the average 
interword spacing, are essentially known constants. (This is not quite true when we 
consider the effects of periods at the ends of lines, and the extra space at the right 
margin of the last line in the paragraph.) One approach uses properties of the 
breakpoint indices to limit the range of dynamic search [Achugbue 1981]; another 
moves words between adjacent lines until the variance of the interword spacing is 
minimized [Samet 1982], 

8.4 STRING TRANSFORMATIONS 

In discussing codes in Sections 8.2.4 and 8.2.5, we considered alternate ways to 
represent a string via recodings of individual characters in the string. Although 
these recodings might take into account overall statistical properties of the character 
set, the actual context of a given character occurrence never influenced the recoding 
process. To illustrate this in plain words, the high conditional probability Pr('h'|T) 
that an 'W might follow a T would not be taken into consideration. Our concern 
in this section is with alternate ways to represent strings, taking into account a 
larger context, perhaps a few adjacent characters or words or even the entire string. 
However, these techniques have the property that they are not concerned at all with 
the meaning of these larger units. String transformations that do operate with 
“meaningful” substrings are the subject of Section 8.6. The first string transforma¬ 
tions that we will consider now are for compression, wherein redundancy is squeezed 
out of data; this is an extension of the ideas in Section 8.2.4. The second class of 
transformations, although they do not recognize the meaning in a string, have the 
express purpose of concealing its meaning from unauthorized persons. 

8.4.1 Data Compression 

To begin with, recall that the objective of a Huffman encoding of a character set is 
to minimize the redundancy that is usually present. The redundancy arises from the 
unequal (unconditional) probabilities of characters occurring in an average string. 
This encoding, by assigning shorter codewords to more probable characters, yields a 
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shorter expected length for messages containing them. One consequence is reduced 
cost of storage, of course, and another is reduced cost of transmitting such messages 
over communication lines. The Huffman encoding has a rather simple elegance and 
is useful in various situations, but it has three practical shortcomings as a 

compression technique: 

1. It cannot detect and eliminate more global forms of redundancy that follow 
from the conditional probabilities cited in the preceding section. 

2. Although the encoding process can be done fairly efficiently, the decoding 
process requires extensive bit manipulation, which tends to be inefficient on 

most machines. 
3. It requires an a priori knowledge of the probabilities. 

In this section, we will survey some techniques that respond to one or more of these 

difficulties. 

There is a type of redundancy that is fairly common and also quite easily 
compressed. Typically, we see it in text with long sequences of blank characters, or 
in numbers with long sequences of zeros. It is also very prevalent in pictures, where 
there are usually large homogeneous areas. An effective scheme in this case is run- 
length encoding. We simply encode a run of K homogeneous values C as a three 
character sequence: an escape character (see Section 8.2.1), the value of K (as a 
byte), and the character C itself. Thus, in EBCDIC and postulating '%' as the 
escape character, if we encountered a sequence of 76 periods, we could replace these 
76 periods with '%</. Here the '<' corresponds to the fact that '</ = chr(76) in 
EBCDIC (see Table 8.1) and the V is the compressed character itself. It is easy to 
see that run-length encoding has none of the three shortcomings listed above. 
However, its usefulness is limited to those situations where redundancy occurs in the 
form of runs; in many applications, such redundancy has already been removed by 
other means. 

Huffman’s method uses the unconditional probabilities of single symbols; the 
simplest extension of this idea is to utilize expectations concerning the occurrence of 
digrams (see Section 8.3.2). Typically, in this method, the most common digrams 
would be translated to unused byte values in the character code set. This is partic¬ 
ularly easy to do in EBCDIC, since many of the 256 values are commonly unused. 
Note that with this method we also avoid the problem of having to decode a serial 
bit string. Of course, it is possible to extend the technique even further to consider 
groups of n-grams; however, a more effective technique is to look for text frag¬ 
ments of varying size, solely on the basis of their relative frequencies. Note the 
contrast here: 

• Huffman’s technique is a fixed-to-variable encoding that minimizes redundancy 
by converting fixed-length symbols of unequal likelihood to variable-length 
symbols, composed of equally likely binary values. 

• The objective in the present instance is a variable-to-fixed encoding that mini¬ 
mizes redundancy by looking for fragments of variable-length but equal 
likelihood. These fragments are then translated, via a dictionary, to equiproba- 
ble fixed-length encodings [Cooper and Lynch 1982]. 

In the methods of the preceding paragraph, we saw the need for a dictionary of 
digrams or other text fragments. The further these methods are carried, the more 
the size of the resulting dictionary becomes an issue. Thus, although effective for 



8.4.1 DATA COMPRESSION 411 

large, relatively static databases [Schuegraf and Heaps 1973], these ideas are not 
economical for the compression of a transient message. Another issue with the use 
of such dictionaries is that there will be overlap among the fragments, as illustrated 
by both 'TH' and 'HE' in 'THE'. It then becomes a significant computation to 
decide which fragments to employ in order to maximize the compression. 

There is in fact no single best compression method; the choice depends upon 
the nature of the text and the manner in which it is to be used. For the methods 
described thus far, we have to strike a balance among the four associated costs of 
(a) preprocessing the text to determine what code to use, (b) generating and carry¬ 
ing along the dictionary, (c) performing the encoding, and (d) performing the 
decoding. It may be effective to combine two simple methods, perhaps run-length 
encoding followed by Huffman encoding. 

In a different category are dynamic compression schemes that require no 
preprocessing. Rather, as a message is scanned, statistics about it are used to 
continually update a data structure according to which the message is compressed. 
Basically, the same algorithm is used by both sender and receiver, with an identical 
dynamic dictionary being built for decompression. There are several of these 
dynamic compression schemes [§]. One principal category is that of dynamic Huff¬ 
man compression, which is still an encoding of individual characters. The method 
known as universal compression operates on an entirely different principle; it uses 
the statistics to maintain a dynamic dictionary of strings. In its simplest form, this 
latter scheme corresponds to a variable-to-variable encoding, although it can also be 

cast into variable-to-fixed form. 

8.4.2 Cryptography 

By the encryption of a message into a cipher, we attempt to make it unintelligible to 
eavesdroppers, wiretappers, spies, etc. At the same time we must have a reverse 
decryption process by which authorized parties can recover the original message 
from the cipher. The need for such capabilities resided largely with diplomatic and 
military operations until fairly recently. But we now have phenomena such as elec¬ 
tronic mail systems, electronic fund transfers, and databases containing billions of 
banking and medical records. Moreover, issues of privacy, authenticity, tampering, 
etc. make cryptographic techniques relevant to a much larger community. Of 
course, whether it is good to be able to “break” a code depends upon your point of 
view; so this topic has two perspectives - that of the cryptographer who devises 
the code, and that of the cryptanalyst, or adversary, who tries to solve it. In 
discussing these dual perspectives, we will find some insights from both information 

theory and computational complexity. 

Although cryptography has been employed for centuries, its first solid founda¬ 
tion was provided by Shannon [1949]. We begin with his model, shown in Figure 
8.21, wherein A sends a message to B over an insecure channel. An adversary may 
listen to the message traffic on this channel. The sender and the receiver overcome 
this insecurity by having a key The sender applies the key to the plaintext message 
to produce a ciphertext message; and the receiver applies the key to the ciphertext 
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Figure 8.21 A Communication Channel 

to recover the plaintext. Even though the adversary may know the general nature 
of the encryption and decryption processes, he does not know the key and so 
cannot understand the message. None of this is feasible, of course, unless the key is 
secret; and so a secure channel is required for the communication of the key(s), as 
shown in Figure 8.21. It might seem that we have just shifted the problem without 
solving it; however, we might use a courier as the secure channel and have him 
transmit a set of keys well in advance. Also, we can try to find clever schemes 
whereby, although relatively small keys are employed, their effects are magnified by 
the encryption/decryption processes. 

From the preceding paragraph, we infer that there are two issues: to find good 
encryption/decryption algorithms, and to find good ways to generate and employ 
keys. Two diverse manners of handling the latter issue - one corresponding to 
“classical” cryptography, and the other corresponding to recent invention - lead to 
the treatments in the ensuing two sections. Superimposing cryptographic techniques 
upon conventional data processing has a substantial cost, and thus the marketplace 
has adopted them only in certain instances, such as for bank teller machines. 
However, the cost of not adopting them more generally is potentially much higher, 
and so they are likely to be very important in years to come. To supplement our 
coverage of the topic, the encyclopedia of classical cryptography is Kahn [1967], 
and an excellent extended account of modern developments is Lempel [1979], 

8.4.2.1 Private-Key Systems. The most familiar manner of applying a key for 
encryption purposes is to perform a character-by-character substitution of symbols 
in an output alphabet for symbols in the input alphabet. Commonly, the alphabets 
are the same, and the key amounts to a permutation of the alphabet symbols, as in: 

ABCDEFGH I JKLMNOPQRSTUVWXYZ 
QWERTYU I OPASDFGHJ KLZXCVBNM 

Thus, if we apply this substitution to the plaintext 'CRYPTOGRAM', we obtain the 
ciphertext 'EKNHZGUKQD'. There is another basic encryption method. To apply it. 



8.4.2.1 PRIVATE-KEY SYSTEMS 413 

we must first break the message into blocks of size n; we then use a permutation of 
1 •• n as a rule defining a transposition of the symbols in each block. For the same 
plaintext as before, with block-size 5 and with key of (1 5 3 2 4) (see the discussion 
of cycle notation for permutations in Section 1.2), the corresponding ciphertext 
would be 'PYTRCARMGO'. 

These basic methods are astonishingly poor for concealing ordinary plaintext. 
In substitution, we see that there are 26! possible transformations for an alphabet of 
just upper-case letters, and so the complexity of discriminating among them might 
appear to make for a good code. However, ordinary English text is estimated to 
have a redundancy of 3.2 bits per character. Although there are lg (26!) = 88.4 bits 
of equivocation introduced by the uncertainty as to which key is in use, this equiv¬ 
ocation is reduced by 3.2 bits for each character in the ciphertext. Thus, only 25 to 
30 ciphertext symbols (that is, 88.4/3.2) are required, on the average, to dispel ambi¬ 
guity and allow decryption. This point in analyzing ciphertext where its content 
becomes unequivocal is called the unicity point. The primary clues for solving a 
substitution cryptogram come from the known, unequal frequencies of single char¬ 
acters, alluded to in our discussions of redundancy and compression. This 
vulnerability is made worse by the similar phenomena with respect to digrams and 
n-grams, yielding further clues for the cryptanalyst. Transposition ciphers are 
perhaps slightly superior to substitution ciphers in that such higher order statistics 
are obscured; nonetheless, they too readily succumb to a skilled adversary. 

Since the inherent redundancy in a message allows simple ciphers to be broken 
so easily, one possible remedy is to use compression in order to diminish that effect. 
Indeed, this will push back the unicity point; however, if the adversary has suffi¬ 
cient ciphertext, the eventual outcome will be the same. A more effective solution is 
to have the key introduce equivocation into the cipher as steadily as the message 
dissipates it. In fact, this can be done by using a completely random string of 
symbols as a key. If we map the letters of the alphabet to the integers 0 .. 25, then 
encryption is performed character by character, using addition modulo 26. One 
simply combines successive characters of the message with successive characters of 
the key. Decryption is accomplished by the inverse process of subtracting (modulo 
26) successive characters of the key from successive characters of the ciphertext. 
This type of code is referred to as a one-time pad. It is completely secure against 
cryptanalysis, since no amount of previous ciphertext provides any clues for inter¬ 
preting succeeding ciphertext. Unfortunately, it requires large amounts of secure 
key data at both ends of the communication channel. Thus, it is used only in very 
special situations, such as the Hot Line between Moscow and Washington. 

One technique for bypassing the large key requirements of one-time pads is to 
have a true key cause the generation of a pseudo-key of much greater length, akin 
to the manner in which a seed value can be used to control pseudo-random number 
generation. Although appealing, such generation schemes tend to have dependen¬ 
cies that a skilled cryptanalyst can exploit to find the true key, given sufficient 
ciphertext. A more effective approach is to combine repeated applications of substi¬ 
tution and transposition in a product cipher. As implemented in hardware in the 
IBM Lucifer system, the substitutions and transpositions are accomplished via 
5(ubstitution)-boxes and P(ermutation)-boxes operating upon blocks of symbols 
[Feistel 1973]. A typical P-box with a block of 8 binary inputs and 8 binary 
outputs is illustrated in Figure 8.22(a); a typical 5-box with 3 binary inputs and 3 
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binary outputs is illustrated in (b) of the figure. The effect of an 5-box is to convert 
its n-bit input to a number in the range 0 .. 2" — 1, then to permute these possible 
converted values, and finally to convert the result of the permutation back to 
binary. Thus, there are (2")! possible wirings for an 5-box with n inputs. It is not 
technologically feasible to build 5-boxes for large values of rv, therefore, neither 
P-boxes nor 5-boxes, used alone, provide cryptographic strength. But their combi¬ 
nation does, in the manner illustrated in Figure 8.22(c). The effect of the 5-boxes is 
to confuse the single character statistics via complicated, non-linear bit mappings, 
and the effect of the /"-boxes is to diffuse these mappings over wide spacings, 
making their analysis (and also that of tt-grams) very difficult. In practice, the 
P-boxes and the 5-boxes have predetermined input-output mappings. Note, 
however, that the layers of 5-boxes really consist of pairs of boxes (50, 5j). This is 
where the keys enter the picture. For every such pair, the selection between 50 and 
5[ is conditioned by a bit in the key. An example of this effect is illustrated by the 
shading of one member of each pair in Figure 8.22(c). 

Figure 8.22 captures the essence of a product cipher, but the actual parameters 
in Lucifer are quite a bit greater. It calls for P-boxes that permute 128 bits, 
5-boxes that make substitutions on 4-bit groups, keys that consist of 128 bits, and 
devices that contain many P and 5 layers. These same ideas are now embodied in 
the Data Encryption Standard (DES) adopted by the National Bureau of Standards 
[1977] for use by federal and other agencies. The DES is actually a reduced variant 
of Lucifer, employing a key of 56 bits. This reduction in key size has sparked a 
great deal of controversy [Diffie and Heilman 1977]. It is argued that even though 
56 bits are adequate for a while, advances in technology will make it economically 
feasible for motivated adversaries to break DES-based ciphers within a decade or 
so. Only time will settle the question; for now, however, the DES has stood up 
very well under cryptanalysis. 

f8.4.2.2 Public-Key Systems. Cryptography was originally employed by limited 
numbers of people — diplomats, soldiers, lovers, thieves, etc. — who found it 
reasonable to exchange secret keys in advance of their communications. As the .use 
of cryptography becomes more widespread via DES or other means, it becomes an 
overwhelmingly large task to manage the keys and keep them secret (for example, 
by a master encryption scheme) [Ehrsam et al. 1978; Matyas and Meyer 1978]. 
Moreover, if there are n parties, then 'An x (n - 1) keys are required corresponding 
to the 'An x (n - 1) possible pairs of communicants, so that the sheer volume of key 
administration is a nuisance. Finally, there will be numerous situations in which A 
will wish to send a confidential message to a stranger B, for whom he has no key. 
An ingenious proposal for solving these problems (and others also, as we will see) is 
to employ two keys instead of one, in a public-key cryptosystem [Diffie and Heilman 
1976]. Every user u has his own public encryption key Pu that is maintained in a 
public directory; he also has his own secret decryption key Su that is known only to 

himself. For M a message, C the corresponding cipher, E an encryption algorithm, 
and D a decryption algorithm, we arrange matters such that 

C - E(M,PU) and M = D(C,SU) = D(E(M,PU),SU) (8.8) 
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(a) P-Box (Transposition) (b) S-Box (Substitution) 

(c) Combining P-Boxes and S-Boxes 

Figure 8.22 Product Ciphers 

The E and the D algorithms are designed to be easily computable, but to have 
the property that it is computationally very difficult to invert E and find D. A 
function / with the property that /_I is much harder to compute than / is called a 
one-way function. A moderate instance of this occurs when dealing with polyno¬ 
mials y(x), where it is easy to compute the value of y corresponding to a value of x, 
but it is generally much more work to find the value(s) of x corresponding to a 
value of y. However, for a public-key cryptosystem, we also arrange that E and D 
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are trapdoor one-way functions. This means that with the right sort of knowledge — 
namely, the value of the secret key — the receiver can “push the hidden button” to 
spring the one-way function in the opposite direction and perform the decryption. 
The net result is as follows. If any other user wishes to send a secret message to 
user u, he simply looks up Pu in the public directory, applies the known algorithm E 
using the first of Eqs. 8.8, and transmits the message. Even though the algorithms 
D and E and the key Pu are generally known, no one but u is able to decrypt it 
using the second of Eqs. 8.8, since only he knows the value of Su. Finding good 
trapdoor one-way functions is a challenging quest, and we will get to that issue 
shortly. But first, we comment about other uses of public-key directories. 

A one-way function is useful in cryptography even when it doesn’t have the 
trapdoor feature. With such a function, two users u and v can use their keys Pu and 
Pv in the public directory to create a private key Su v, and they can then use this key 
for any subsequent private messages, as in the discussion of the previous section. 
This technique also makes it possible to use DES without many of the awkward key 
management problems cited earlier. A candidate function of this sort is exponentia¬ 
tion modulo q, for q a properly chosen prime number and for a a fixed primitive 
element in the finite field GF(q). Exponentiation has complexity 0(lg q) (see Exer¬ 
cise 1.16), but the best known algorithm for the inverse function of finding the 
logarithm modulo q has complexity 0(q1/2). Each user u posts as his public key the 
value Pu — asu (mod q), for some secret value Su in the set {1, 2,..., q — 1}. Then 
exponentiation is all that is required for user u to compute 

su,v = pvu = a‘Sv‘S" (mod 4) 

and for user v to compute 

su,v = Pu = a‘SuS'' (mod <?) 

But any other user would have to employ the more costly logarithmic process in 
order to compute 

Su,v = Pi°Sa Pv ( mod 4) 

As an example, if q is slightly less than 2200, then exponentiation would be 0(200), 
whereas finding the logarithm would be 0(2100) = O(1030) using the best known 
method. Further details can be found in Pohlig and Heilman [1978]. 

There is a more profound benefit to be derived from public-key directories, 
however. Secrecy is just one of a set of related requirements that occur when 
computer-based methods replace more conventional ones; it protects against the 
extraction of information. Every bit as serious is the necessity to protect against 
tampering with information in a message, or the forging of messages. For example, 
hard-copy signatures are fundamentally important for bank checks and for legal 
contracts. If hard-copy documents are to be replaced by electronic messages, there 
must be corresponding guarantees of authenticity, or that: 

(a) a message purporting to come from user v really did originate with v, and 

(b) nobody else could have performed an electronic cut-and-paste upon it. 

Ingeniously, by adding to Eqs. 8.8 the condition 
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M = E(D(M,SU),PU) (8.9) 

for any message M, then D (as well as E) has a unique inverse in the message space. 

This means that both of the conditions (a) and (b) can then be validated. In order 

for user v to send a certified message M to user u, he first decrypts M with his Sv 

and then encrypts the result with us Pu, obtaining C = E(D(M,SV),PU). Upon receipt 

of C, user u first decrypts C with his Su and then encrypts the result with v’s Pv. He 

then has the original message; moreover, it could have come only from v, since 

only v has Sv. There are interesting and subtle ramifications in these matters of 

authentication; a much fuller discussion can be found in Simmons [1979]. 

In the quest for trapdoor one-way functions, an obvious place to start is with 

problems known to be hard to solve, such as the NP problems. If the process of 

trying to invert E to obtain D can be structured in such terms, then intuitively we 

may have succeeded. Since public-key systems were first described, two well-known 

trapdoors and a few lesser ones have been discovered. One is based upon an 

./VP-complete problem, the knapsack problem [Merkle and Heilman 1978], The 

other is based upon an NP problem, the factorization of large numbers, which will 

be described in the next section. For both methods, the process of inverting E to 

obtain D has seemed to be exponentially difficult, as desired. Nonetheless, there are 

serious pitfalls in proceeding on such bases. It is a fairly common error to infer 

difficulty of decipherment from the presence of a large number of possibilities. We 

have already seen one instance where this argument is totally without merit, in our 

information-theoretic analysis of simple substitution (see Section 8.4.2.1). Analo¬ 

gously, the arguments relating to NP problems are worst-case arguments, subject to 

much simpler exceptions. In fact, a cipher that is AP-complete, yet easily broken, 

has been demonstrated by Lempel [1979]. More recently, the knapsack trapdoor, 

or at least the basic variation thereof, has been broken [Shamir 1982], reinforcing 

the observation that it may be inappropriate to utilize arguments based upon 

computational complexity. 

Mathematical arguments are useful in cryptography, but the ultimate demon¬ 

stration is the pragmatic one that a given cipher be able to resist sustained 

cryptanalysis. In this regard, we always presume that the method (that is, the E and 

D algorithms) is completely known, and beyond that we distinguish three levels of 

threat by an adversary: 

• Unlimited ciphertext attack is his minimal capability, and a cipher that cannot 

withstand it is worthless. 

• Known plaintext attack (where the adversary can obtain corresponding plain¬ 

texts and ciphertexts) is harder to defend against. It is also a realistic 

capability, since encrypted announcements are commonly sent prior to some 

point in time and then disclosed at a later date. Susceptibility to this form of 

attack can cause substantial embarrassment or worse inconvenience to the 

communicants. 

• Chosen plaintext attack can occur when the adversary is able to plant or stimu¬ 

late a plaintext and then look for the appearance of the corresponding 

ciphertext. A cipher must be very strong to withstand this attack. 
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f8.4.2.2.1 The RSA System. RSA refers to a trapdoor scheme by Rivest, Shamir, 
and Adleman [1978], It depends upon the fact that there are good algorithms to 
determine if a number is prime, but only exponential algorithms to find the actual 
factors of a number known not to be prime. We begin by finding two large random 
primes q and r, and then computing their product n = q x r. The next step is to use 
Euler’s totient function f{n), which is equal to the number of integers less than n 
and relatively prime to n. For n a prime, </>(«) —n — 1; in the present case with 
n = q x r, <f>(n) = (q - 1) x (r - 1). The secret key is then chosen as an integer 5' that 

is simultaneously: 

(a) larger than either q or r, 

(b) less than </>(«), and 

(c) relatively prime to </>(«). 

By a variant of Euclid’s algorithm for finding the GCD (greatest common divisor) 
of two integers, the public key p is computed as the multiplicative inverse of s 
modulo 4>{n). Finally, both n and p are inserted in the public directory. A message 
is segmented into blocks M in a manner such that the value of each block can be 
mapped into the range 0.. n — 1. Then each block M is encrypted via 
C = Mp (mod n); also, each block C is decrypted via M — Cs ( mod n). Exponenti¬ 
ations such as this are not as formidable as they might seem, since they can be 
computed modulo n; as already cited in the preceding section, this can be 
performed with complexity 0(1 g n). 

The method is easily illustrated by an example with q — 47, r = 59, and s — 157. 
From these, we first obtain n — 41 x 59 = 2773, and f(n) = 46 x 58 = 2668. The 
value of p is then computed to be the inverse to s modulo 2668, or p = 17. In other 
words, p x s = 2669 = 1 (modulo 2668).4 The choice of parameters conveniently 
allows us to use the correspondence 'b' = 0, 'A'= 1, ... , 'Z' = 26 to map two charac¬ 
ters at a time into four digit integers in the range 0 .. 2626. For the message 'PLAY 
IT AGAIN SAM', the numeric blocks are then 

1612 0125 0009 2000 0107 0109 1400 1901 1300 

The encryption for each four digit block M is given by 

C = MX1 = (((M2)2)2)2 x M (mod 2773) 

so that the resulting ciphertext is 

1908 0164 2072 0317 2287 0170 0982 1281 0446 

To decrypt the message, each block C is raised to the 157th power modulo 2773. 

The validity of the RSA scheme depends upon the fact that 

D(E(M,p),s) = Mps = M (modulo n) (8.10) 

It has the nice feature that encryption and decryption really use the same, relatively 
simple algorithm. Although some misgivings have been expressed about its crypto- 

4 The notation a _ b (modulo n) states that a is congruent to b modulo n, meaning that 
(a — b) is a multiple of n, or (a — b) mod n = 0. 
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graphic strength, it is easy to choose the primes q and r in a way that seems to 
guarantee a strong cipher [Rivest 1978b; Simmons and Norris 1977], For exam¬ 
ple, it is recommended that primes q and r of 100 digits each be used; such values 
can be located in a few seconds on a large computer [Solovay and Strassen 1977]. 
Moreover, for maximum security, both {q - 1) and (r — 1) should contain large 
prime factors, and their GCD should be small. In summary, the cryptosecurity of 
an RSA cipher is related to the known difficulty of factoring large numbers, in the 
sense that nobody knows how to attack it except by trying to factor n as a crucial 
first step in finding s. This is implied security rather than demonstrated security. 
Recently, however, it has been shown that cryptanalysis of a variant of the RSA 
method is really equivalent in difficulty to factoring, and this provides increased 
confidence in its importance. 

t8.5 PATTERN MATCHING 

In Section 8.2.3 we encountered the problem of looking for a pattern string in a text 
string, for which we saw a solution with the function MATCH_0 (Algorithm 8.2). 
MATCH_0 has the disappointing worst-case characteristic of being 0{mn), the 
product of the lengths of the two strings. Indeed, until the mid-1970’s, no better 
algorithm was known. In Section 8.5.1 we will find that several linear algorithms 
have since been discovered for solving this problem. The remaining sections 
expound on several manners in which those powerful ideas can be generalized. 

f8.5.1 Substring Matching 

The results of these sections sustain one of the more dramatic stories in computer 
science. The account begins in 1970, when Cook proved the theoretical result that 
if a machine known as a 2DPDA (two-way deterministic pushdown automaton)5 could 
recognize a string in any amount of time, then a random access machine could 
recognize the string in linear time. Intrigued by this result and aware of its rele¬ 
vance to the string matching problem, Knuth and Pratt tediously unravelled his 
proof until they found a way to do substring matching in linear time, via a tech¬ 
nique that was independently discovered by Morris. If the Knuth-Morris-Pratt 
algorithm (KMP) is surprising, a slightly later algorithm by Boyer and Moore 
(B&M) is even more so. It matches substrings with a performance that is often 
sub-linear! More recently, still a third linear solution has been discovered. We will 

5 A 2DPDA is a machine with two tapes, one of which is read-only for input, and the 
other of which can be used as a stack. For the substring matching problem, the 
2DPDA keeps a record of successfully matched characters using the pushdown tape; 

when a mismatch occurs, the values of these matched characters can be reconstructed 
from the pushdown tape, without rescanning that portion of the input tape. 
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study the KMP algorithm in detail, say something about the other methods, and 
then step back to evaluate the significance of the various substring matching algo¬ 

rithms from a practical point of view. 

t8.5.1.1 The Knuth-Morris-Pratt Algorithm. It is instructive to reexamine 
MATCH_0 (Algorithm 8.2) and its trace in Figure 8.9. In particular, let us concen¬ 
trate upon the early part of the trace, as reproduced in Figure 8.23. We are looking 
for an instance of the substring 'alfalalfaf'. After finding a mismatch between 
pattern [2] and text [2], we conceptually move the pattern one position to the right 
and start again, with pattern [1] and text [2]. We then find that pattern [1 .. 3] 
matches text [2 .. 4], but pattern [4] fails to match text [5]; so we naively restart 
with pattern [1] and text [3]. However, it is really not essential to reexamine 
text [3 .. 4], We already know what they are; they must, from the previous 
comparisons, correspond to pattern [2 .. 3]. Moreover, in this particular case, 
pattern [4] ('a') matches pattern [1], but no other positions pattern [2 .. 3], so that 
pattern [1] therefore matches no positions text [3 .. 5]. More generally, we can 

conclude that if: 

(i) we have a partial match of k — 1 characters ending at text [j — 1], as in 

pattern [1 .. k — 1] = text \j — k + 1 ..j — 1] 

(ii) pattern [fc] fails to match text [/'], and 

(iii) pattern [It] matches pattern [1] but no intermediate characters in the pattern, 

then pattern 1] cannot occur anywhere in text \J — k + 1 ..j — 1]. So we can 
conceptually slide the pattern all the way past text [j — 1]. 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 ... 
a a 1 f 1 a 1 f a 1 a 1 f a 1 ... 

a i 
a 1 f a 

a 
a 

a 
a 1 f a 1 a 1 f a f 

Figure 8.23 Partial Trace of Algorithm MATCH_0 

This is helpful in some cases, but we need to deal with situations that are more 
general yet, as when pattern [k] occurs in pattern [2 .. k — 1], which means that it 
also occurs in text [j - k + 2 ..j - 1]. We will do this by finding a vector 
next [1 .. m] of displacements such that, upon a mismatch at pattern [k], we can use 
next [k] to direct the amount by which we should slide the pattern. Let us defer for 
a moment the issue of how such a vector can be computed, and follow the conse¬ 
quences of having it available. We are led to the function MATCH_ 1 (Algorithm 
8.5), rather similar in form to MATCH_0, but with an important difference. Now, 
upon an unsuccessful comparison, we do not backup the index j and reset the index 
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function MATCH_1 (pattern,text: string): extent; 

label 1; 

type offset = array [1 .. maxstring] of extent; 

var j,k: extent; 

next: offset; 

begin 

SCAN_1 (pattern,next); {generate next from pattern) 
j ;= 1; k := 1; 

repeat 
if text.data [j] = pattern.data [k] then begin 

j := j + 1; 
k := k + 1; 

end else 
if next [k] > 0 then 

k := next[k] 

else if j + pattern.size > text.size then 
goto 1 

else begin 

j :=j + 1; 
k := 1; 

end; 
until (j > text.size) or (k > pattern.size); 

1: if k > pattern.size then MATCH_1 := j - pattern.size 

else MATCH_1 := 0; 
end; 

Algorithm 8.5 MATCH_1 

k to one; rather we reset k to next [k], and j is never decremented. This last point 

is important when dealing with a text file that is too large to fit in main memory, so 

that it is being accessed via buffers, which could make backup very awkward. 

The operation of MATCH_ 1 is illustrated in Figure 8.24, where (a) displays the 

value of the vector next, and (b) traces the comparisons that are performed. In the 

vector next, a value of zero signifies that comparisons should resume with 

text [/ + 1] and pattern [1]. A non-zero value specifies that comparisons should 

resume with text [/] and pattern [next [k]]. The underlined values in (b) of the 

figure do not correspond to comparisons. They represent places where comparisons 

have been avoided, by virtue of knowing from previous successful comparisons what 

the corresponding text values must be. Note that the amount of shift upon a 

mismatch is given by k - next [k]; for example, 4 - 0 = 4 for j = 5, 6-3 = 3 for 

j= 16, etc. It is straightforward to demonstrate that MATCH_1 has complexity 

0(n). We add one to the index variable k a maximum of n times, and we sometimes 

decrement it, but it always stays positive. Therefore, the maximum number of iter¬ 

ations is bounded by 2n. 
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1 2 3 4 5 6 7 8 9 10 

pattern a 1 f a 1 a 1 f a f 

next 0 1 1 0 1 3 1 1 0 5 

(a) 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 

a a 1 f 1 a 1 f a 1 a 1 f a 1 1 a 1 f a 1 a 1 f a f 

a i 
a 1 f a 

a 1 f a 1 a 1 f a f 
a 1 f a 1 a 

a 1 f 

a 
a 1 f a 1 a 1 f a f 

(b) 

Figure 8.24 Trace of Algorithm MATCH_1 

Examination of Figure 8.24(b) helps us to decide what we need to compute for 
the vector next. When there has been a partial match of k — 1 characters ending at 

text [/ - 1], as in 

pattern [1 .. k — 1] = text [/ — k + 1 ..j — 1] 

but such that pattern [A:] < > text [/'], then we wish to find the largest prefix of 
pattern [1 .. k — 1] that matches a suffix of it, and thus also matches some of text 
preceding the cursor j. In other words, we seek the largest i < k such that 

pattern [1 .. i — 1] = pattern [k — i + 1 .. k — 1] 

This means that we need to compare the pattern against itself, in much the same 
manner as we compared the pattern against the text. It is instructive to retain in 
another vector fail [1 .. m] the values of i just described, with fail [1] = 0, by defi¬ 
nition. For our sample pattern 'alfalalfaf', the values are as shown in Figure 8.25. 
Thus, fail [9] = 4 indicates that pattern [1 .. 3] = pattern [6 .. 8]. 

1 2 3 4 5 6 7 8 9 10 

pattern a 1 f a 1 a 1 f a f 

fail 0 1 1 i 2 3 2 3 4 5 
next 0 1 1 0 1 3 1 1 0 5 

Figure 8.25 SCAN Computation for 'alfalalfaf 

Having fail [k] and next [A:], we can compute fail [k + 1] by the following 
argument. If pattern [k] matches pattern [fail [A:]], then fail [k + 1] = fail [/c] + 1; 
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procedure SCAN_1 (pattern: string; var next: offset); 

var i,t: extent; 
fail: offset; 

begin 
i:= 1; t := 0; 
fail [1] := 0; 

next [1 ] := 0; 

with pattern do 
repeat 

while (t > 0) and (data [i] <> data [t]) do 
t := next [t]; 

i:= i + 1; 

t := t + 1; 

fail [i] := t; 

if data [i] = data [t] then next [i] := next [t] 

else next [i] := t; 
until i >= size; 

end; 

Algorithm 8.6 SCAN_1 

that is, we have extended the match by one character, as in the case k = 9. If 

pattern [k~\ fails to match pattern [fail [A:]], then we need to try t = next [A:], or 

next [next [A:]], or .... In other words, we slide the pattern against itself until we 

find pattern [A:] — pattern [/]. For example, with k = 6 the search within the 

pattern proceeds to the point that 

pattern [6] = pattern [next [next [6]]] = pattern [next [3]] = pattern [1] 

The corresponding value of t then determines the next entry in fail, by means of 

fail [k + 1] = t + 1. Thus, for k — 6, we have fail [6 + 1] = 1 + 1. Moreover, as 

soon as we find fail [k + 1] = t + 1, then we also know how to compute 

next [k + 1]. Namely, if pattern [t + 1] = pattern [k + 1], the character in the 

(t + l)th position must lead to a mismatch, since the character in the (k + l)th posi¬ 

tion did; in this case, then, we must use a shorter prefix. Otherwise, we can use 

next [fc+l] = /+ l. 

The logic for computing the vectors fail and scan is given in the procedure 

SCAN_1 (Algorithm 8.6).6 Note that the vector fail is never accessed and is not 

explicitly needed; it is present solely for edification. SCAN_1 can be seen to be 

6 Actually, there is a subtle bug in SCAN_ 1. What happens when t — 0, and reference is 
made to data [t] in testing the while condition? (Compare the discussion of the algo¬ 
rithm EQUIV in Section 4.2.1.) Happily, a great many Pascal compilers bypass the 
second test when the first one fails, so that this scenario never occurs. Where this is not 

the case, a clumsy circumlocution is required. 
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0(m) by a similar argument to that used with MATCH_1. Specifically, the variable 
t is incremented by one at most m times, is sometimes decremented, and never goes 

negative. 

MATCH. 1 and SCAN_1 constitute the KMP algorithm [Knuth et al. 1977]. 
The pragmatic value of this method will be addressed in the next section. However, 
note that the presentation here is designed to stress comprehensibility rather than 
efficiency. Some refinements that can be added to emphasize efficiency over 

comprehensibility are: 

• inserting special code to speed up the common case of finding a mismatch at 

the first position of the pattern; 
• employing sentinel characters at the ends of the pattern and the text, in order to 

reduce the overhead in the compound test for termination of the repeat loop. 

f8.5.1.2 State-of-the-Art of Substring Matching. We usually think of substring 
matching in terms of aligning the pattern against the left end of the text, comparing 
characters from left to right, and sliding the pattern to the right on mismatches. 
Suppose, instead, that we align the pattern against the left end of the text, as before, 
but then compare characters from right to left. On a mismatch, we still shift the 
pattern right, but we can now employ other information as well. Specifically, if the 
character text [/] that caused the mismatch does not occur anywhere in pattern, then 
we can effectively slide pattern all the way past text [/], and resume our right-to-left 
comparison scheme with pattern [m] and text [/ + m]. In general, whenever there is 
a mismatch and the corresponding text character does not occur in the pattern, we 
can then completely ignore some number of characters in the text. There are 
several components to the Boyer-Moore (B&M) substring matching algorithm 
[1977], but what we have just described is the most important one. In the most 
favorable situation, if we find a mismatch between the last position of the pattern 
and a position of the text on every comparison, it may take just n\m comparisons to 
determine that there is no substring match! 

Just as with the KMP algorithm, we evidently need a table that tells how much 
to shift the pattern when a mismatch occurs. In fact, the B&M algorithm employs 
two tables, Delta_ 1 and Delta_2. Delta_ 1 requires one entry for each symbol in the 
alphabet being employed, with Delta_ 1 [char] equal to m if char does not occur in 
pattern and otherwise equal to m — i, for the largest i such that char = pattern [z], 

Delta_ 2 is very similar to the table next in the KMP algorithm, except that it is 
computed from the right of the pattern instead of the left. It serves the same 
purpose of precluding 0(mn) comparisons should the pattern happen to be highly 
repetitive (and should Delta_ 1 happen to be ineffectual). With these two tables in 
hand, the Boyer-Moore algorithm resembles the Knuth-Morris-Pratt algorithm, 
with the following principal differences: 

• On a match, the indices j and k step downward rather than upward. 
• On a mismatch, the pattern index k is reset to w, and the text index j is incre¬ 

mented by the greater of Delta_ 1 [text [/]] and Deltajl [£]. 

Thus, suppose that we had text = 'pepper nutmeg onion tarragon', and pattern = 
'tarragon'. Then the Delta_ 1 values for 'a,g,n,o,r,t' would be 3,2,0,1,4,7; and all 
other Delta_\ values would be 8. A trace of the comparisons that would be 
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performed is shown in Figure 8.26, with the periods indicating omitted comparisons. 

On the first two mismatches, the shift would be determined by Delta_ 1 ['b'] = 8, 
and on the third mismatch by Delta_ 1 [V] = 4. 

1 2 3 4 5 6 7 8 9 0 i 2 3 4 5 6 7 8 9 0 i 2 3 4 5 6 7 8 
p e P P e r n u t m e 9 0 n i o n t a r r a 9 0 n 

0 n 

9 0 n 

n 

t a r r a 9 0 n 

Figure 8.26 Trace of Boyer-Moore Algorithm 

The relative importance of Delta_ 1 and Delta_ 2 depends primarily upon the 

size of the alphabet in use. With a binary alphabet, it is very unlikely that Delta_ 1 

will discriminate very effectively (although this can be overcome by comparing 

blocks of bits rather than single bits); on the other hand, for a large alphabet such 

as ASCII or EBCDIC, the work to initialize Delta_ 1 will not be trivial. How good 

is the B&M algorithm? Although its average behavior is sub-linear, typically requir¬ 

ing just one comparison for every four text characters, its worst case complexity is 

still 0{n). However, we should not be too disappointed, since the worst-case behav¬ 

ior for any string matching algorithm must be 0(n) [Rivest 1977]. 

What can be said about the practical significance of the KMP and B&M algo¬ 

rithms? Drawing upon several different studies [§], we can conclude: 

• Most patterns are such that an unsophisticated algorithm like MATCH_0 will 

detect a mismatch, for a given alignment of the pattern and the text, in just 

slightly more than one comparison. In the average case, the KMP algorithm 

may not do much better. 

• If the pattern is small, then the overhead of preprocessing it to generate the 

tables causes these sophisticated techniques to be less efficient than a naive 

method. This is especially true with the B&M algorithm. 

• The previous remark applies also in the case that the penetration (how far into 

the text the search proceeds) is not large. 

• For a small alphabet, KMP may perform significantly better than B&M. 

• For B&M the table Delta_ 1 is much easier to compute than Delta_2, and it is 

also far more effective in reducing the number of comparisons with typical text. 

Thus, it is reasonable to implement B&M using just Delta_ 1, if we are not 

concerned about worst-case possibilities. 

• If the pattern is not too small (that is, m > 5) and if the alphabet is reasonable 

in size, then B&M is superior to any other method. 

This does not exhaust all the possibilities for substring matching. There are other 

methods, including another linear one, but they are based upon hashing, and so we 

must defer their description until Section 10.4.4. 
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f8.5.2 Finite State Machines 

At this juncture, we need to revert to a subject that was postponed when we studied 
graphs. The labeled digraph of Figure 8.27(a) is called a transition diagram, its 
most common use is to represent a Finite State Machine (FSM), wherein the nodes 
represent states and the arcs represent transitions between states in response to 
possible values of input. Each arc is labeled with the input value causing that tran¬ 
sition, and each node is labeled with the value of the output for that state.7 Thus, if 
this FSM is in state 3 and the input 'b' is seen, then it will go to state 1 and output 
'O'. Formally, an FSM is characterized by a quintuple (/, S, O, d, 2), where: 

/ is a set of symbols from an input alphabet; 
S' is a set of machine states; 
O is a set of symbols from an output alphabet; 
d is a mapping from 5 x / to 5; 
A is a mapping from S to O. 

In other words, d determines the next state as a function of the current state and the 
input symbol, and X determines the output symbol (possibly null) as a function of 
the input symbol. Examples of FSM’s from everyday life are elevators and vending 
machines; each of them reacts in accordance with a set of internal states and a set 
of external stimuli. Note that the amount of memory that such a device can have 
of past events is limited by the finiteness of its set of states. 

A special variant of an FSM is a Finite Automaton (FA), which is characterized 
by a slightly different quintuple (I, S, 50, S, F), where: 

/ is a set of symbols from an input alphabet; 
5 is a set of machine states; 
50 is a distinguished initial state; 
<5 is a mapping from 5 x I to 5; 
F is a set of final, or accepting, states. 

The main difference is that whereas an FSM produces various outputs, an FA 
simply has a set of final states F^S. The principal role of an FA is to decide, via 
the finite sense of history implied by its state transitions, whether a given input 
sequence meets certain criteria. Thus, an FA does have a limited form of output, 
namely “accept” or “reject.” An example of an FA is shown in Figure 8.27(b). 
Starting in state 50, and in response to a binary input string, this FA will be in state 
53 whenever the last three symbols in the input are '101' (that is, if the numeric 
value is divisible by 5). It is customary, as in the figure, to denote final states by 
double circles. 

In fact, the distinction between FSM and FA is often blurred, depending mostly 
upon the context of their application. In the present instance, the notion of an FA 
can appreciably increase our understanding of the KMP substring matching algo- 

7 What we are describing is a Moore machine, where the output is a function of just the 
current state. In a Mealy machine, the output is a function of the input symbol and the 
current state. The difference is not significant, since either one can be modelled in 
terms of the other. 
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(a) Finite State Machine (FSM) 

Figure 8.27 FSM and FA 

rithm. To see this, consider the machine shown in Figure 8.28. This FA is atypical 

in that it has precisely two transitions for every input character. If the input corre¬ 

sponds to the desired character, the machine goes to the succeeding state and reads 

the next input; if the input fails, the machine goes to the designated failure state 

(dashed lines) with the same input. The failure transitions do not have to be 

labeled, since they correspond to the negations of the successful transitions. State 

SO is special in that it makes the transition to -SI with the next input in all cases. 

What process does this machine represent? It corresponds to our example of 'alfa- 
lalfaf' from Figure 8.25! In other words, the action of SCAN_1 is to construct an 

FA, as represented by the table next, which MATCH_ 1 then interprets to decide if 

there is a match. This pictorial representation helps us understand how to construct 

the ultimate optimization of the KMP algorithm, by having the preprocessing func¬ 

tion generate in-line code rather than the vector next. In other words, we can just 

as well “hardwire” the effect of next rather than interpret its values. Figure 8.29 

shows the code that does this. 
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Figure 8.28 FSM for 'alfalalfaf' 

SO: j := j + 1; 
SI: if text [j] <> 'a'then goto SO; 

j := j + 1; 
S2: if text G1 <=> '•' then goto SI; 

j := j + 1; 
S3: if text G] 'f' then goto SI; 

j := j + 1; 
S4: if text G] <> 'a'then goto SO; 

j ;= j + i; 
S5: if text G] <:> 'I' then goto SI; 

j := j + 1; 
S6: if text G1 <=> 'a'then goto S3; 

j := j + i; 
S7: if text G] <> 'I' then goto SI; 

j :=j + i; 
S8: if text G] <> 'f' then goto SI; 

j := j + 1; 
S9: if text G] <> 'a'then goto SO; 

j := j + i; 
S10: if text G1 'f' then goto S5; 

j := j + 1; 
{final state: pattern matched in text} 

Figure 8.29 In-line Code for 'alfalalfaf' 

f8.5.3 Generalizations of Substring Matching 

From the discussion of Section 8.5.1.2, it might be concluded that the Knuth-Mor- 
ris-Pratt algorithm has relatively little practical utility. But such is not the case; it 
is a paradigm for many generalizations of the matching problem [§] (see also Exer¬ 
cise 8.23). We will now illustrate a particularly useful one, that of finding all 
occurrences of a fixed set of patterns in a text string. For depicting this process, the 
notion of an FA is no longer ancillary; it is central. 
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Suppose that we have a set of words or phrases, and that we wish to find all 
occurrences of any them in some text. This is a typical requirement in applications 
involving information retrieval or text editing. We could look for each of these 
patterns in turn, employing the insights of Section 8.5.1; however, by constructing 
an appropriate FSM, we can look for them all in parallel, with considerable savings 
in time. Thus, suppose that our set of words is {'chin', 'ice', 'itch', 'with'}. The 
essential aspects of such a machine are described by the transition diagram in 
Figure 8.30. For each state, there are one or more labeled successful transitions, 
and one unlabeled failure transition (dashed lines). In the figure, we have shown 
only those failure transitions that do not return to SO; the others, returning to SO, 
are implicit. As in the case of Figure 8.28, successful transitions call for the next 
input character, and failure transitions (except in the case of SO) employ the same 
input character. The provision of failure transitions from the leaves of this tree-like 
structure reflects the desire to find all occurrences of patterns in the text, even when 
they overlap. 

Figure 8.30 FSM for {'chin', 'ice', 'itch', 'with'} 

The algorithm to search a text string, using this FSM, is very similar to 
MATCFL1. A successful comparison of a text position against a state advances 
the text pointer and the state, as indicated in the transition diagram. In the case of 
an unsuccessful comparison, a failure state is selected, according to Figure 8.31(a), 
and the comparison cycle is repeated. Whenever a successful comparison leads to 
one of the final states {4, 7, 10, 14}, an appropriate output message is generated and 
the failure transition is made. Thus, in applying this FSM to the input text 'witch¬ 
ing', the state transitions would be as shown in Figure 8.31(b), where horizontal 
progression corresponds to successful transitions and vertical progression to failure 

transitions, and where underlined transitions would generate output. 
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state 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

transition 0 0 0 5 0 0 1 0 0 1 2 0 5 8 0 

(a) Failure Transitions 

w i t c h i n 9 

11 12 13 
8 9 10. 

2 3 i 

0 0 

(b) Trace of State Transitions 

Figure 8.31 Parallel Pattern Search 

Of course, there is a glaring omission in the preceding discussion. Given a fixed 
set of patterns, how do we construct the corresponding FSM? More precisely, it is 
rather easy to see how to perform the construction by hand, but what is the algo¬ 
rithm for a machine to do it? Not surprisingly, such an algorithm is reminiscent of 
SCAN_1 in many ways, although the details are different. In SCAN_1, we 
computed later values of fail [i] and next [z] in terms of earlier values of next [/]. 
In this case, noting that the successful transitions form a tree, we would compute 
the failure transitions first for nodes at distance 1 from SO in this tree, then at 
distance 2, etc. An important question is just how much effort is required for this 
computation; it can be shown that the complexity is linear in the sum of the 
lengths of the patterns. In a large application involving bibliographic retrieval, the 
cost of searching in this manner was found to be approximately independent of the 
number of keywords specified, and the overall search was speeded up by a factor of 
5 to 10 over that of previous methods [Aho and Corasick 1975]. 

f8.5.4 Suffix Trees 

In the preceding sections, we have seen how to improve the efficiency of matching 
patterns against a text string by preprocessing the patterns. With text editing, for 
example, this is an appropriate strategy. However, there are other applications in 
which efficiency is derived by preprocessing the text rather than the patterns. This 
can be accomplished fairly efficiently with suffix trees, which effectively provide 
indices into a text string S [McCreight 1976; Weiner 1973]. In this structure, we 
must impose the condition that the final character of S does not occur anywhere 
else in S. This is easily handled by placing a sentinel value at the end of S; thus S 
— 'ababc' becomes 5, = ,ababc$'. In the suffix tree, each edge corresponds to a 
substring, and each leaf corresponds to the index of the last occurrence of the suffix 
spelled out by the edges leading to that leaf. The suffix tree for our example S is 
shown in Figure 8.32(a). We see, for instance, that 'ab' occurs twice; one time it is 
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part of 'ababc' starting in the first position, and the other time it is part of 'abc' 

starting in the third position. As a practical matter, we do not need to store the 

substrings with the edges; rather we store S once, and then place in each node V a 

pair of indices. These indices delineate that portion of 5 corresponding to the 

in-edge of V (compare Figures 8.4 and 8.7), as shown in Figure 8.32(b) for the 

suffix tree in (a) of the figure. 

(a) 

(b) 

Figure 8.32 Suffix Tree for'ababc' 

With suffix trees, it is possible to efficiently answer questions such as: 

• What are all the occurrences of a pattern in a text? 

• What is the longest repeated substring in a string? 

• What is the longest string that occurs as a substring in two other strings? 

Suffix trees can also be used to implement the dynamic dictionary used for universal 

data compression, as cited in Section 8.4.1 [Rodeh et al. 1981]. Algorithms for the 

construction of suffix trees are linear in the length of the text string, and substring 

searches are then linear in the length of the pattern; however, both time and space 

requirements grow with the size of the alphabet. 
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8.6 LANGUAGES 

The most important purpose of strings, as indicated earlier, is to convey meaning. 
But meaning depends upon understanding, which brings us to the problem of recog¬ 
nizing a sentence in a language. This recognition really has two parts: 

Syntax — Does the given sentence have a valid structure to be meaningful? 

Semantics — Can a meaningful interpretation be supplied to the parts of the 
sentence that have been perceived syntactically? 

As an example of this distinction, the sentence “The pencil’s purple concepts snored 
pungently” is impeccable by syntactic standards; but it is nonetheless gibberish 
when we try to supply semantics. We will not be concerned with semantic issues 
here; rather, we will demonstrate how the pattern matching ideas of Section 8.5 can 
be generalized to deal with broader and broader problems of syntactic pattern 
recognition. Many of these ideas were originally motivated by the study of natural 
language. Subsequently, it has been found that natural language is only moderately 
amenable to analysis by these methods. However, the same techniques have been 
enormously useful for the study of computer languages. Our objective here is 
merely to show the forest of these activities. It is an extremely dense forest, with 
perhaps the most extensive theoretical foundation of any in computer science. For 
extensive details, you may wish to consult Hopcroft and Ullman [1979], 

Our first concern is to communicate an appreciation of the mechanisms by 
which languages can be specified. We will then consider a concrete example of the 
recognition process for a restricted but important class of languages. After some 
general discussion about recognition in less restricted classes of languages, we will 
conclude with some comments concerning the inherent power of expressing compu¬ 
tation in terms of string operations. 

8.6.1 Grammars 

To begin with, a language L is simply a set of sentences, or strings over some alpha¬ 
bet of symbols. It is perfectly possible for L to be a finite set; however, most 
languages of interest are infinite sets. A very useful way of specifying a language is 
by finding a grammar G, or set of rules, that characterizes it. We had a glimpse of 
this previously, when we discussed BNF in Chapter 5. One of the significant 
features of BNF is that it easily allows the definition of an infinite set of sentences, 
via recursion. 

Given some grammar G, we can use it derive in a systematic fashion all the 
legal sentences in L(G), the language defined by the grammar. A harder problem is 
to take a language L and find a grammar G that specifies L and all of L and noth¬ 
ing but L. Although this can often be done, the answer may not be unique; there 
may be several grammars that generate the same language. Another problem, 
harder than simply enumerating all the sentences of a grammar, is that of recogniz¬ 
ing whether a given string a is in L{G) (without simply searching for a in all of 
L(G), of course). This latter issue is our principal concern. 
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At this point, it is useful to compare the discussion of BNF in Section 5.4.1 
with the discussion of logical operations on strings in Section 8.1. As you can see, 
applying a production is simply a matter of performing a string substitution: Given 
a sentence ap/i, we can transform it to av/i whenever there is a production p^v. 
The BNF grammar for a language must always have a distinguished non-terminal 
symbol from which any derivation of a sentence starts. We then apply productions, 
obtaining for a time mixtures of non-terminal and terminal symbols, and eventually 
winding up exclusively with terminals — that is, a sentence in L(G). Although finite 
languages may be of limited value, they have some charming uses. The familiar 
instance shown in Figure 8.33(a) serves as a vehicle for illustrating the substitution 
process. Starting from < sentence > we can derive a variety of actual sentences. 
One such is illustrated in Figure 8.33(b), where we apply successively the 
productions 1, 2, 5, 6, 3, 4, 7, 2, 5, 6. 

1. <sentence> ::= <noun phrase> <predicate> 
2. < noun phrase> ::= <noun> | <article> <noun> 
3. < predicate > ::= < verb phrase > I < verb phrase> <nounphrase> 
4. < verb phrase > ::= <verb> | <verb> < adverb > 
5. < article > ::= a | the 
6. <noun> ::= farmer | wife | child | nurse | dog | cat | rat | cheese 

7. <verb> ::= takes | leaves | stands 
8. <adverb> ::= alone 

(a) BNF for “Farmer in the Dell’’ 

< sentence > -> < noun phrase> <predicate> 
-> < article > <noun> < predicate > 
-> the <noun> < predicate > 
-> the farmer < predicate > 
-> the farmer < verb phrase > < noun phrase > 
-► the farmer <verb> <nounphrase> 
-» the farmer takes < noun phrase > 
-> the farmer takes < article > <noun> 
-+ the farmer takes a <noun> 
-*■ the farmer takes a wife 

(b) Derivation Using BNF of (a) 

Figure 8.33 A Familiar Finite Language 

We are now ready to make some crucial distinctions. What kinds of string 
substitutions does our grammar specify in its productions; that is, how general in 
nature are they? A pioneering classification by Chomsky [1959] recognizes four 
progressively more restricted types of substitution rules, or classes of grammars: 

• Type 0 grammars, or phrase-structure grammars, allow the substitution <xpfi-+av(5 

whenever p->v is a production. 
• Type 1 grammars, or context-sensitive grammars, impose the restriction that the 

length of v cannot be less than that of p. 
• Type 2 grammars, or context-free grammars, impose the additional restriction 

that the left hand side of any production must consist of a single non-terminal 
symbol. In other words, the applicability of a production does not depend 

upon particular contexts a and /? in which p occurs. 
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• Type 3 grammars, or regular grammars, impose one of the additional 
restrictions: (a) the right hand side of any production must have the form t or 
tV, or (b) the right hand side of any production must have the form t or Vt, 
where t is a terminal symbol and V is a non-terminal symbol. 

Corresponding to each class of grammars is a class of languages; thus, we speak of 
context-sensitive languages (CSL), context-free languages (CFL), and regular 
languages. Intuitively (and provably) regular languages are properly contained in 
context-free languages, context-free languages are properly contained in context- 
sensitive languages, and context-sensitive languages are properly contained in those 
derived from phrase-structure grammars. 

The example in Figure 8.33(a) is a context-free grammar, and we illustrated its 
use in the derivation of a sentence in Figure 8.33(b). Recall, however, that we are 
more concerned about recognizing a given sentence as part of L(G) than we are 
about generating sentences. How is this done? In short, one must be able to 
deduce from the sentence itself an appropriate sequence of productions that leads 
from the start symbol to that sentence. This can be tricky, and the difficulty 
increases enormously as we proceed up the hierarchy from Type 3 to Type 0. In the 
next section we show how it can be done for regular languages, and in the subse¬ 
quent section we comment upon the more difficult cases. 

f8.6.2 Recognizing Regular Expressions 

In Section 8.5 we saw how to recognize fixed patterns or even fixed sets of patterns 
in a text string. We now wish to recognize variable patterns, as specified by some 
grammar. For some significant applications, the amount of variability provided by 
a regular grammar is sufficient. The sentences that can be defined by regular gram¬ 
mars are called regular expressions (R.E.'s), and they have a comparatively simple 
structure. For an alphabet I, any symbol x 6 / is a regular expression, and further 
expressions can be composed recursively by the following operations: 

Concatenation — If a and P are regular expressions, then so is a/I, or writing a 
followed by /?. 

Union — If a and P are regular expressions, then so is a + p, by which 
is meant writing either a or writing p. 

Closure - If a is a regular expression, then so is a*, which signifies writ¬ 
ing any number of instances (possibly none at all) of a. 

It is useful to relate these three operations to familiar ones of ordinary arithmetic, 
as follows: 

regular expressions arithmetic 

union 
concatenation 

closure 

addition 
multiplication 

exponentiation 

This analogy is especially useful because the relative precedence is the same in both 
columns. Thus, the regular expression '((A + BC)* B + AC)A' denotes (((any number 
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of'A' or 'BC') followed by 'B') or 'AC') followed by 'A'. Some particular sentences 
that correspond to this specification are 'BA', 'ABCABA', 'ACA', etc. 

We could have defined the same language by means of BNF, as in: 

<expression> ::= <a> A 
<a> ::= <fi> B | A C 
<P> e | <j?> <y> 
<y> ::= A | B C 

where e denotes the empty string. However, the simpler notation makes it possible 
to specify a regular expression in one short phrase. Such conciseness is useful, for 
instance, in specifying a pattern that a text editor should look for. In any event, we 
now know of two ways to specify a regular language, but how can we recognize 
one? Finite state machines again provide the answer. In this case, to recognize an 
expression of the form '((A + BC)* B + AC)A', we need the machine shown in Figure 
8.34. It is different from those we have seen before, in that it has no failure transi¬ 
tions; however, it does have e-transitions, which are transitions that can occur 
without any input! The reason for this is that we have to deal with a nondeter- 
ministic situation. Both the union and the closure operators allow for alternate 
paths to the final state; the e-transitions provide the mechanism whereby we can 
pursue these alternate paths in parallel in order not to miss a valid expression. 

In fact, the machine in Figure 8.34 is an example of a Nondeterministic Finite 
Automaton (NFA). Such machines have one or both of the characteristics: 

• There are e-transitions. 
• The transition labels for some nodes are not distinct, so that the same input 

symbol may evoke transitions to any of several other states. 

Remarkably, although an NFA seems to be “more” than an FA, it really is not; 
there is a straightforward procedure, given an NFA, to construct an equivalent FA. 

This procedure entails two steps: 
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1. The e-transitions are eliminated by constructing the e-closure — that is, by 
taking the transitive closure of the transition diagram under the e’s. 

2. An FA is generated whose states are the powerset of the states of the NFA. If 
the NFA has n states, then the equivalent FA could have 2" states, of course, 
but the actual number is very often much less. 

The construction just described is significant because it shows that there are two 
distinct strategies that we could employ to build a regular expression recognizer: 

• We already know how to build an interpreter for an FA; so we could (i) do the 
construction, and then (ii) build such an interpreter. 

• We could build an interpreter for the NFA. 

Now constructing the FA from the NFA is straightforward, but it can be costly, so 
that the first route makes sense only when the resulting FA will be used many 
times. When the FA will be used only a few times the second route is better, and 
that is the method that we will use here. Also, this will allow us to demonstrate 
some techniques tjiat are much more instructive than the details of building the FA 
from the NFA. 

We begin by considering Figure 8.34 again. It appears that there is some arbi¬ 
trariness about the use of e-transitions, and that some of them might have been 
omitted. Toward the end of this section, we will comment on how we obtained this 
diagram from the regular expression '((A + BC)* B + AC)A', and why it has the form 
that it does. Our interpreter will examine the text string without ever backing up; 
for each input character X, we will build a set St of states, where each S', is obtained 
from Sj_i in two stages: 

1. The initial value of S’, is computed as those states of the NFA that we can tran¬ 
sit to from states in S,-_l5 according to the value of X. 

2. The final value of S', is computed as the 8-closure of the initial value of S',-. 

This sounds rather complicated, but a clever choice of data structure leads to a 
fairly simple algorithm, as you will soon see. We will use a deque, more precisely 
an output-restricted deque. Relative to a given input character X, we will remove 
and examine each of the states u e S, in the left end of the deque: 

(a) if u is a final state, we have found a regular expression; 

(b) if X causes a non-e-transition from u to another state v, we insert v in the right 
end of the deque, as part of the initial value of Si+l; 

(c) if u is a state with one e-transition v (or two e-transitions v and w), we insert it 
(them) in the left end of the deque, as part of the e-closure of St. 

By this process, we are both adding to and subtracting from the final value of S, on 
the left, until ultimately it has disappeared, leaving just the initial value of Si+1' on 
the right. One other thing is necessary - that we keep the growing and shrinking 
value of S, separate from the growing value of SM. This can be accomplished by 
putting a special marker value between them in the deque. When we remove a 
value from the left end of the deque and find that it is the marker, then we know 
that S, is exhausted; so we are ready to work with the next text character and the 
initial value of S,-+1; but first we reinsert the marker at the right end to keep SM 
separate from Si+2. 

Having fixed the nature of the interpreter, we also need to fix the nature of the 
representation for the NFA. For this purpose, and with the transition diagram as 
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we have constructed it, each state can be represented by a record with one label 
field and two transition fields; the entire NFA can be represented by an array of 
these states. The values of such an array for the NFA of Figure 8.34 are shown in 
Figure 8.35(a). We adopt the following conventions for programming convenience: 

• state = 1 is the initial state and state = 0 is the final state; 
• the marker corresponds to state = — 1; 
• for states with just one e-transition, we duplicate the value of that transition. 

Regarding the manner of implementation of the deque, it could of course be a 
linked list (see Exercise 5.3) or a circular array (see Exercise 5.4). The operations 
for our output-restricted deque are then available as: 

INITDQ — to initialize a deque; 
ENQ_L - to insert a value at the left end of the deque; 
ENQ_R — to insert a value at the right end of the deque; 
DEQ_L — to remove a value from the left end of the deque. 

1 2 3 4 5 6 7 8 9 10 11 12 13 

label 
nex fl 
next2 

A C B A C BA 
2 5 4 6 11 8 9 10 10 3 13 13 0 
30 12 70000 10 3 13 00 

(a) Encoded Form of NFA of Figure 8.34 

Examine States from Deque Accept 

1 3 12 4 7 6 2 B 

13 8 C 

10 1 12 j 7 6 A 

910312 4 7 6 B 

13 8 A 

0 

(b) Trace of Transitions for'BCABA' 

Figure 8.35 Interpretation of an NFA 

Putting the pieces all together, the function RE_COGNIZER (Algorithm 8.7) 
searches for an occurrence of pattern in text, beginning at start. If there is no 
match beginning at start, the function returns a zero; if there is a match, the func¬ 
tion returns the index in text of the end of the pattern. For example, with the 
pattern encoded as in Figure 8.35(a), and with text = 'CABBCABAABCBAC', 
RE_COGNIZER would fail to find a match for start = 1,2,3; but for start = 4, it 
would find a match. In doing so, it would make the transitions and accept the 
input characters as shown in Figure 8.35(b), where the underlined transitions corre¬ 
spond to the correct sequence of “guesses.” As a result, RE_COGNIZER would 
return a value of 8, signifying that 'BCABA' in text [4 .. 8] is an instance of 

'((A+BC)* B + AC)A'. 
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function RE_COGNIZER (pattern: fsm; text: string; start: extent): extent; 

type state = record 
ch: char; 
nextl ,next2: 0 .. maxstate; 

end; 
fsm = array [1 .. maxstate] of state; 

var dq: deque; 
found: boolean; 
i,j: integer; 
pattern: fsm; 
stat: state; 

begin 
RE_COGNIZER := 0; 
found := false; j := start; 
INITDQ (dq); 

ENQ_L(dq,1); ENQ_R (dq,-1); {start and marker symbols} 
repeat 

DEQ_L (dq,i); 
if i < 0 then begin {marker} 

j := j + 1; 

ENQ_R (dq,-1); {recycle marker} 
end else if i = 0 then begin {final state} 

found := true; 

RE_COGNIZER := j - 1; 
end else begin 

stat := pattern [i]; 
if stat.ch = text.data [j] then 

ENQ_R (dq,stat.nextl) 
else if stat.ch = ' ' then begin 

ENQ_L (dq,stat.nextl); 
if stat.nextl <> stat.next2 then 

ENQ_L (dq,stat.next2); 
end; 

end; 
until found or (j > text.size) or (dq.count = 1); 

end; 

Algorithm 8.7 RE_COGNIZER 

What is the complexity of recognizing a regular expression of length m in a 

string of length «? As a first step, we draw upon the fact that for a regular 

expression of length ra, the number of states in an NFA for recognizing it can be 

bounded by 2m. Moreover, (a) no input character is matched against any state 

more than once, and (b) no state has more than two transitions. Thus, the 

complexity of this matching problem is 0(mn). Crucial to this bound is the nature 

of the transition diagram as we have drawn it. In essence, we are computing the 
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e-closure every time we need it, but the cost of each such computation is strictly 
bounded. By contrast, if e-transitions are contracted - that is, if an NFA with 
partial or complete e-closure is used — then the complexity may actually increase 
because conditions (a) and (b) may no longer be true. 

We promised to describe how the transition diagram of Figure 8.34 was 
obtained from the regular expression '((A + BC)* B + AC)A'. In brief, this is done by 
building bigger machines from smaller ones, where there is a rule for each of the 
operations — concatenation, union, and closure. The most elementary machine is 
one that recognizes a character, as in Figure 8.36(a). For concatenation, we merge 
a final state with a succeeding initial state to obtain the machine in (b) of the figure. 
For union, we need an initial state with two e-transitions, and we also introduce an 
e-transition from the final state of one alternative to the final state of the other 
alternative, as in (c) of the figure. Lastly, for closure, we make the construction 
shown in (d) of the figure, where we make an initial state out of what was the final 
state, and then introduce a new final state. 

®-JL0JL-0 
(a) (b) 

Figure 8.36 Composition Rules for NFA’s 

The pattern matching method that we have just described is used in text editors, 
where the cost of constructing the equivalent FA would far outweigh the benefit of 
having it [Thompson 1968], There are other applications where the reverse is true. 
This is well exemplified in the process of scanning the text of a program to find the 
tokens (see Section 5.2.3.3). Tokens are easily described using regular expressions. 
Identifiers are usually a letter followed by some optional number of letters, digits, 
and special characters. Numbers are composed from digits and also {+ - . , etc.}. 
Just as there is a straightforward procedure to construct an FA equivalent to an 
NFA, so is it possible to construct an NFA that will recognize a given regular 
expression, by following the technique of our construction for '((A + BC)* B + AC)A'. 



440 STRINGS 

These two steps are usually combined with a third one for minimizing the number 
of states in the FA, since it could have 2" of them if the NFA has n states. An 
optimized FA for finding program tokens is one of the easier and major compo¬ 

nents of any compiler. 

Our final remark serves as a climax to our discussion, and also as prelude to the 
next section. We employed FSM’s in an ad hoc manner for the purpose of recog¬ 
nizing regular expressions. In fact, not only can FSM’s recognize all regular 
expressions; the cognitive power of FSM’s extends precisely to sentences generated 
by a Type 3 grammar, and no further! In the next section, we will encounter analo¬ 
gous characterizations of the other classes of grammars in terms of what is required 
in order to recognize their languages. 

f8.6.3 Parsing in General 

Pattern recognition by now has become a familiar two-step: 

1. We translate the pattern to some representation. 
2. We interpret that representation against some input string. 

For simple substring matching, the first step is fairly simple; for regular expression 
recognition, it is straightforward but no longer simple; and for recognizing 
sentences higher up in the Chomsky hierarchy, the first step can be a large task with 
many subtleties. We will content ourselves in this section with describing how the 
distinctions among the four types of grammars are significant, and what sorts of 
recognition mechanisms are required. 

Context-free grammars (CFG’s) are the next most difficult after regular gram¬ 
mars. Happily, they suffice (almost) for HLL’s as we know them. Two instances 
where they are inadequate for the purpose are that of enforcing that variables must 
be declared before they are used, and that of monitoring that the actual parameters 
in a procedure call match the formal parameters of the procedure. However, such 
issues can be dealt with by other parts of a compiler. The fact that most of a 
programming language can be characterized by a CFG expressed in BNF has a very 
important consequence. Specifically, there are algorithms to perform the first step 
above in a clean fashion, culminating in tables that can then be interpreted to guide 
the parsing (that is, recognition of the syntactic components) of a program. The 
output of a parser usually takes the form of a parse tree, such as those we described 
in Section 6.6.2.2. As it turns out, even unrestricted CFG’s are troublesome for 
programming languages for reasons having to do with efficiency and ambiguity. 
Both of these items merit a descriptive paragraph. 

The first parsers for CFL’s employed backtracking and were rather inefficient. 
A major improvement came with the realization that they can be parsed using 
dynamic programming to find longer and longer valid substrings. This leads to 
algorithms of complexity 0(«3), for an input string of length n. More astoundingly, 
it can be shown that this problem is equivalently hard to the familiar ones of matrix 
multiplication and transitive closure [Valiant 1975a]. The latter parallel should not 
be too surprising in the light of the e-closure discussion in the preceding section. 
Since parsing is such an important issue for programming, it is common to describe 
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HLL’s by CFG’s that are restricted in various fashions in order to simplify and 

speed up the parsing process. (Recall that a given language may be specifiable by 

many different grammars.) As a consequence of these restrictions, it is common to 

find parsers for HLL’s that operate linearly for almost all programs. 

Another reason for having restricted context-free grammars is to avoid ambigu¬ 

ity in the derivation of the parse tree. Sometimes, the ambiguity is not serious, as 

when the BNF production 

< expression > ::= < expression > + < expression> 

would allow the derivation of either (x + y) + z or x + {y + z) for the expression 

x + y + z. In any event, this is easily made unambiguous by including extra 

productions, along the lines of Figure 5.16. The infamous dangling else, in the case 

of the BNF production 

<if_stmt> ::= if <condition> then <stmt> 
| if <condition> then <stmt> else <stmt> 

is more of a problem, since the statement 

if A then if B then C else D 

can be parsed as either 

if A then (if B then C else D), or if A then (if B then C) else D 

with quite different meanings. It is possible to augment the productions so that this 

is unambiguous also, but the resulting grammar in this case is distinctly harder to 

understand. Moreover, whenever we augment the grammar with extra productions 

to remove ambiguity, the parsing process takes significantly longer. It is often 

simpler and more convenient to allow the grammar to be ambiguous, but to disam¬ 

biguate it by applying various rules in other parts of the compiler [Aho et al. 1975]. 

As a capstone to this discussion, some CFL’s are inherently ambiguous, making it 

impossible to find an unambiguous CFG for them. 

We promised to characterize languages of Types 0, 1, and 2 in terms of their 

recognition mechanisms. Briefly put, the story is as follows: 

• Context-free languages can be recognized by a pushdown automaton (PDA)\ this 

is essentially an FSM enhanced with an infinite stack. 
• Context-sensitive languages can be recognized by a linear bounded automaton 

(LBA)\ this is essentially an FSM enhanced with a finite rewritable tape that 

originally contains the input. 
• Phrase-structure languages can be recognized by a Turing machine; this is 

essentially an FSM enhanced with an infinite, rewritable tape that originally 

contains the input. 

To sum it up, the notion of pattern recognition embraces matters from the most 

prosaic, as exemplified by the algorithm MATCH_0, to the most fundamental in 

computer science. 
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f8.6.4 String Processing as a Model of Computation 

We have seen ample evidence that the simple notion of string substitution is power¬ 
ful enough to support very complex processes, such as the compilation of programs. 
It is useful at this point to recall the programming language LISP (see Section 
4.4.4). LISP was, in fact, modelled very deliberately upon the lambda calculus 
[Landin 1964] as a means of expressing recursive computations. As we saw in 
Section 5.4.3, this notation is powerful enough to represent any function that is 
computable. Another formalism that has been demonstrated to have the same 
power as that of lambda calculus is that of Markov algorithms [Tremblay and 
Sorenson 1984], We will not try to describe them here, partly for reasons of space, 
but also because we have already illustrated the essence of this algorithmic notation 
in our discussion of string substitution at the very beginning, in Section 8.1. The 
analogy with Lists is completed when we realize that the language SNOBOL 
[Griswold et al. 1971] is a string-processing language closely modeled upon the 
Markov formalism. It includes all of the string substitution capabilities that we 
have described in this chapter, and many more. In particular, it is easy in 
SNOBOL to specify patterns that are as general as any that can be defined via BNF 
[Gimpel 1973]. SNOBOL is very useful for certain types of calculations, and it 
possesses the same theoretical power as List-processing languages. Nonetheless, 
HLL’s based upon strings seem not to be as generally useful as those based upon 
Lists. In part, this is due to the lack of standardization with respect to string nota¬ 
tion and string operations. More compellingly, whereas it is often natural to think 
of computations in List-processing terms, it is less natural to think of them in 
string-processing terms. 

8.7 OVERVIEW 

Wherever we turn in dealing with strings, we are reminded that they sustain mean¬ 
ing that is expressed via patterns. Most of the ways of dealing with strings that we 
have discussed reflect this fact: 

• transforming strings to more efficient representations that still retain all the 
information; 

• transforming strings to representations that can retain the meaning even in the 
face of errors; 

• transforming strings to disguise the meaning; 
• recognizing meaningful phrases within strings. 

The operations just described are all based upon string transformations. This is 
true even for the recognition problem, which is usually couched in terms of recog¬ 
nizing which transformations will have a desired effect. It is remarkable that the 
concept of string transformation is so effective over such a wide range of applica¬ 
tions, even though the notation for expressing it is so poorly standardized. 

In earlier chapters, we encountered two types of searching - one in which we 
looked for a specific value of a key in a data structure, and one in which we looked 
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for the optimization of some criterion function. By the time we finished the last of 
the topics on the preceding list, we had discovered a third, more general type of 
search. This hidden power in string processing accounts for the election of strings 

as our ultimate data structure. 

8.8 BIBLIOGRAPHIC NOTES 

• Much material on single-error correcting codes, such as the construction of a 
generator matrix G and parity-check matrix H for a given (n,m) pair, can be 
found in Berlekamp [1968], Blahut [1983], and Peterson and Weldon [1972]. 
These also contain a wealth of information about more general kinds of codes. 

• For discussions of dynamic Huffman coding, consult Gallagher [1978], Knuth 
[1985], and Vitter [1985]. Universal compression is described in Ziv and 
Lempel [1977, 1978], and an efficient variable-to-fixed implementation is given 
in Welch [1984], Yet another dynamic compression scheme is that of Bentley 

et al. [1986]. 

• Two broader applications of the KMP matching technique are comparing poly¬ 
gons for similarity [Manacher 1976], and matching arbitrary patterns in two 
dimensions [Baker 1978b; Bird 1977c]. The summary conclusions about string 
matching are drawn from Davies and Bowsher [1986], Horspool [1980], and 

Smit [1982]. 
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8.10 EXERCISES 

Sections 8.1 — 8.2 

8.1 What are the results of the following string operations, given that l = 'SISS', 

P = /ISSI/, and S = 'MISSISSIPPI'? 

(a) 'SPIS' !| I 

(b) 'MIS' i S j I 

(c) USjP 

(d) P i S i 'UDDY' 

8.2 Indicate by T(rue) or F(alse) the results of the following string comparisons, 
both in EBCDIC and in ASCII. 

(a) 'Aa1'<='aA1' 

(b) 'Aa10' < 'Aa2' 

(c) 'blah' = 'blah ' 

(d) 'X(I)' > = 'X(I)' 

8.3 Let w = 'abce' and v = 'aababcabcdabcde'. Trace the operation of 
MATCH_0 (w,v), as in Figure 8.9. How many character comparisons are made? 

8.4 We have the following frequencies for symbols in a set of strings: 

A - .18 D -.16 G -.06 
B - .07 E - .23 H - .03 
C-.ll F — .04 I - .12 

Compose a Huffman tree of minimum height, and also the corresponding binary 
codes for the symbols. What is the weighted path length of the coding tree? 
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+8.5 Prove that the tree obtained by Huffman’s algorithm must have a minimum 
weighted path length. 

f8.6 [Schwartz and Kallick 1964] Show how the ideas of Exercise 6.30 can be 
used to obtain a canonical Huffman tree in which the weights appear at the leaves 
in ascending order from left to right. For the data of Exercise 8.4, what is the 
canonical tree, what is the corresponding code, and what is the w.p.l.? 

+8.7 Huffman t-ary trees can be constructed similar to Huffman binary trees, with 
the t smallest weights being combined each time. We have a set of messages with 
frequencies as follows: 

A - 15 D - 13 G -70 
B — 7 E — 51 H — 6 
C - 64 F - 4 1-75 

J - 25 M - 9 
K - 80 N - 11 
L - 5 

Construct a Huffman ternary tree of minimum height over the alphabet (0,1,2) for 
these messages, show the codes for the messages, and compute the w.p.l. 

+8.8 Write a program to compute a Huffman tree for a given set of symbols and 
frequencies. In doing so, you will have to decide whether it is important to 
construct the tree of minimum height; the heap implementation of a priority queue 
does not handle this requirement very well. There are other possibilities, as exem¬ 
plified by the /?-tree of Exercise 6.25. After writing your program, test it against the 
data of Exercise 8.4. 

8.9 Prove that the minimum Hamming distance for a group code is equal to the 
minimum weight of its non-zero codewords. 

+8.10 Applying the Hamming bound, 

(a) What is the maximum number of possible messages, if we wish to have a code 
of sixteen bits with double-error correction? 

(b) What is the minimum number of bits required to send five messages and have 
single-error correction? Find a code that satisfies this objective. 

t+8.11 For the (7,4) code of Figure 8.19, 

(a) What are the codeword values? 

(b) What are the coset leaders for each of the non-zero syndromes? 

t+8.12 Describe how the syndromes for the (7,4) code of Figure 8.19 can be used 

to effect error correction without using coset leaders. 

Sections 8.3 — 8.4 

++8.13 Write a set of procedures to extract statistics from a file of English text; 
these might include, for example, counts of individual characters, word counts, 
sentence counts, etc. State your assumptions about recognizing word breaks 
(blanks, hyphen, end-of-line, etc.) and sentence breaks (period, semi-colon, etc.), 
and demonstrate that your procedures handle them properly. Describe how such 
statistics can be used, separately and in combination, to make judgements about 
issues such as compression and readability. Apply your procedures to three differ- 
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ent types of input text - adult, juvenile, and technical prose - and summarize 

your conclusions. 

ff8.14 Write an algorithm to do line-breaking of paragraphs by dynamic 
programming, and apply it to various test paragraphs. As part of doing this, you 
will have to choose a cost function that your solution minimizes; explain the 

rationale for your choice. 

f8.15 We discussed fixed-to-variable, variable-to-fixed, and variable-to-variable 
encodings. When might a fixed-to-fixed encoding be applicable, and how might it 

be accomplished? 

f8.16 Write functions to implement the RSA encryption/decryption scheme, 
presuming that the parameters n,p,q,r,s are integers that fit in the word of your 
underlying machine. Test these by decoding the following message, where the 
parameter values are the same as those employed in Section 8.4.2.2.I. 

1510 0731 2049 1904 0741 1964 0962 2624 2417 1908 2326 0363 
2624 0542 1655 1717 1567 0219 0521 1684 1007 1787 2342 

tf8.17 Write functions to implement RSA encryption/decryption under the more 
realistic assumption that multi-precision arithmetic is required. 

ff8.18 Prove the validity of Eq. 8.10. 

Sections 8.5 — 8.6 

tf8.19 Use the Knuth-Morris-Pratt algorithm to do the following: 

(a) Compute the failure transitions fail and next for the pattern 'pollopolop', as in 
Figure 8.25. 

(b) For te.xt = 'pollopollopolloppollolop', trace the values of the indices over 
pattern and text, as in Figure 8.24. 

(c) Draw the equivalent FSM, as in Figure 8.28. 

f8.20 Construct the FSM (by hand) for searching in parallel for the words {AAB, 

ABAB, ABC, BAA, BBC, CAB, CBC, CCAA}. Show the FSM as in Figure 8.30, and 
also the failure transitions as in Figure 8.31(a). 

f8.21 Write a procedure analogous to MATCH_1 to do parallel searching for 
several patterns, using the FSM approach. Apply your program to the data of 
Figures 8.30 and 8.31. 

ft8.22 Write a program analogous to SCAN_1 that generates the FSM (that is, 
the nodes and their success and failure transitions) for a given set of patterns. 
CHint: Write one procedure that generates the success transitions, and then a 
second one that scans the success transitions to generate the failure transitions.) 
Give some thought to your choice of data structure. It should be possible to take 
the structure encoding any given set of patterns and add other patterns to it, with¬ 
out having to reorganize everything. Test your program by applying it to the data 
of Exercise 8.20. 
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tf8.23 Write a function that searches an input string and finds the first palin¬ 
drome therein. Your algorithm should scan the string and stop as soon as it finds 
such a palindrome. 

++8.24 [Hirschberg 1975] Given a string A = axa2... a„, then S = aaai2... aip is a 
subsequence of A when 1 < z'l < i2 < - < ip < n; thus S =/bcfk/ is one of many 
possible subsequences of A = 'abcdefghijk'. An important issue in comparing two 
strings for their “closeness” is to determine the longest common subsequence (LCS) 
between them. For example, with A = /xyzwtwxzx/ and B = 'ywxzxyxw', the LCS is 
'ywxzx'. This problem has many important applications. One is that of computing 
the edit-distance between two text strings. Another is that of comparing strands of 
genetic material to determine their evolutionary distance, regarded as the number of 
mutations required to produce one strand from another strand. Although it is not 
the fastest method, a fairly simple algorithm for the problem can be developed via 
the following recursive function definition: 

if (A [j] = B [k]) then f(j,k) := 1 + f(j-1 ,k-1) 
else f(j,k) := Max (f(j,k-1 ),f(j-1 ,k)) 

with f(j,k) = 0 at the low boundaries. This definition expresses the length of the 
LCS on prefixes of the two strings in terms of the lengths on shorter prefixes, with 
the final LCS length determined by f(m,n). It is straightforward to express the 
above formulation iteratively rather than recursively, using the technique of 
dynamic programming (see Section 7.4.2.1). 

(a) Apply this process, by hand, to find the LCS of the strings 'abbcabacb' and 
'cacbcbbac'. 

(b) Write a procedure to compute and display the LCS of two strings, and test 
your program against the data of part (a). 

(c) What are the time and space requirements of your program? Can you find a 
way to reduce the space requirement? 

ff8.25 Suppose that we call RE_COGNIZER with the same pattern and the same 
text as in Section 8.6.2, but with start = 8. Trace the corresponding state transitions 
and other data as in Figure 8.35(b). 

ff8.26 Construct an NFA that can be used for recognizing regular expressions of 
the form '(0+1)((01 )* +1)* 1', as in Figure 8.34. Also construct the corresponding 
array of state information, as in Figure 8.35(a). 

f|8.27 In order to search text to find the leftmost occurrence of a regular 
expression, no matter where it occurs, we need (a) to enhance the algorithm 
RE_COGNIZER, and (b) to construct a somewhat different NFA. Describe what 
is required for (a) and (b), then implement these requirements, and finally apply 

your results to the data of Exercise 8.26. 
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STRUCTURE and COMPLEXITY 

“Structure without life is dead. 
But Life without structure is un-seen.” 

John Cage, 
Silence, Lecture on Nothing 

We have studied in considerable detail the data structures: array, set, record, list, 
queue, stack, tree, graph, and string. In this brief chapter, we present a more 
general essay on their nature. To begin with, consider the following questions: 

• Are any of these structures more fundamental than the others? Is there any 
way to relate them to one another? 

• More generally, what theoretical bases can we find for the use of data struc¬ 
tures? What are the advantages and shortcomings of these bases? 

• From a practical point of view, how do we choose a good implementation for a 
data structure? 

Of course, this list of questions is by no means comprehensive. Over the past years, 
there have been numerous attempts to deal with questions such as these, leading to 
elegant formal methods in some cases. Unfortunately, because of their formality 
and because of lack of consistency among the approaches, few programmers have 
deemed it worth the effort to master such concepts. Our objective is to present the 
essential characteristics of a few of the more promising ideas. Some other useful 
points of view include dTmperio [1969], Fleck [1978], Korfhage [1974b], and 
Mealy [1967], 

9.1 BUILDING DATA STRUCTURES 

We begin by referring to the summary of the advantages and limitations of arrays 
(see Section 2.6). After all, in those cases where none of the shortcomings apply, 
there is little reason to look beyond the array data structure. But many problems, 
of course, are not so tractable. Thus we find the need to use, alone or in combina¬ 
tion, the several other structures discussed in this book. Is the diversity that we 
have seen really necessary? Is any one of these structures powerful enough to 
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subsume all the others? In terms of computability, we have previously alluded to 
four structures that have been employed as universal data types: 

1. Arrays have been used in APL, and their theoretical adequacy and power have 
been developed in Array Theory. (See Section 2.9 and Gull and Jenkins [1979] 
for a discussion of this). 

2. Sets have been used in SETL (see Section 2.4.3). 

3. Lists have been used in LISP. (For a discussion of this, see Section 4.4.4 and 
McCarthy [1963]). 

4. Strings have been used in SNOBOL (see Section 8.6.4). 

However, the issue here is the narrower and more difficult one of represen¬ 
tational power. This is analogous to the issue of comparing the power of various 
programming control structures (goto, repeat ... until, etc.), in that the choices of 
data structure and its representation can affect the complexity of a computation; 
but it is complicated in a way that comparison of control structures is not. The 
difficulty arises in trying to separate two aspects of a data structure: 

(a) the specification of its semantic intent - the “what,” and 

(b) the details of its realization — the “how.” 

This latter point is less of an issue with control structures, since it is their nature to 
express “how”; so the issue there is simply concern for the power and convenience 
of alternative constructs for “how,” rather than confusion of “what” and “how.” 

In the ensuing three sections, we begin by reexamining the role of pointers in 
data structuring. Then we examine some results concerning the explicit represen¬ 
tation of one data structure by another. Lastly, we consider the interesting case of 
implicit data structures. 

9.1.1 Pointers Reconsidered 

We have stressed that programming with pointer variables is hazardous (see Section 
4.5.1). Their improper use is a frequent source of errors; moreover, the errors thus 
created are typically much harder to diagnose than are other sorts of errors. The 
pointer issue is worth reexamining since it relates directly to the difficulty cited in 
the preceding section — that of trying to distinguish between the semantic specifica¬ 
tion of a data structure and the details of its implementation. 

If we think about it, we realize that pointers are used for three principal 
purposes: 

1. They express as connectors that we want to tie together other structures. 
2. They express as relators that two nodes bear some semantic relationship to one 

another. 
3. They bind a variable to a particular value. 

The latter usage may arise implicitly, in the disciplined context of passing a parame¬ 
ter to a procedure by reference (as opposed to value); it may also arise explicitly, as 
when referring to the head of a list or to the root of a tree. But the use of a pointer 
(that is, a location) to effect such a binding is a consequence of the way in which 
the structure has been declared. We could alternatively have a manner of declara- 
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tion in which the binding was accomplished using a name rather than a location 

[Kieburtz 1976].1 

The major difficulty in using pointer variables stems from the confusion 

between using them as connectors and as relators. Indeed, there is ample reason for 

such confusion, since a pointer may be serving both purposes at once; an example 

of this is the use of pointers to connect and relate the nodes of a BST. On the other 

hand, the fact that one node follows another on a sequential linked list may convey 

no essential relationship. (The only thing that I have in common with the person 

next to me in the grocery line is that we both wish to purchase food.) At the other 

extreme, we could have an r-regular graph, with the vertices represented by an array 

of nodes, and with each of these vertices adjacent to r — 1 other vertices. In such a 

case, it would be natural and efficient to express these fundamental relationships via 

links to the adjacent vertices. 

The one pointer mechanism can serve the two purposes, connector and/or rela¬ 

tor. But which of these is meant to apply in a given instance often cannot be 

discerned by looking at code employing pointers, any more than one can easily tell 

by looking at some assembly code what is intended. In both of these cases, the 

problem is that the level of expression is too low to sustain the true meaning. An 

apt example of this in the case of pointer-based data structures is the following. 

Consider two record structures — one for bi-directional linked lists, and one for 

binary trees. Either structure will have, in addition to its ordinary data fields, two 

pointer fields to other records of its type. However, there is nothing to distinguish 

which of the two very different logical structures this one physical structure 

embodies, other than by the haphazard manner in which the programmer supplies 

names to the structure. 

Unfortunately, there are no magic answers to these difficulties. What is needed 

is a method of abstracting above the level of operations with pointer variables. In 

Section 9.2 we will confront the important topic of data abstraction in general. 

When pointers must be used there are only a few remedies, each with its shortcom¬ 

ings. One is to provide an environment where explicit pointer freeing is not 

allowed. This is done at the cost of significant run-time overhead, as we will see in 

Chapter 11. Another proposal allows for explicit pointer freeing, but again with 

compensating overhead, this time via a “bump” imposed upon dynamic structures, 

and called a tombstone [Lomet 1985], The tombstone remains even when the 

dynamic structure is discarded, and thus is able to catch and invalidate subsequent 

references to the structure. Many users work in environments where these methods 

are not available. Their only recourse is to adopt their own disciplined program¬ 

ming mechanisms, of which pointer rotations are a good example. 

1 A similar remark applies to a fourth use of pointer variables, not listed above. In our 
discussion of inverted lists (see Section 4.3.1), we found that there were two possibilities 
- to use locations (either pointers or cursors), or to use keys (names). 
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f9.1.2 Data Encodings 

The concept of a data encoding, wherein one data structure is represented in another 
one, is not completely novel to us. We have already seen several instances of it. 
The most pervasive one is that of encoding a multi-dimensional array in a line (a 
one-dimensional array), reflected in our discussion of storage allocation functions in 
Section 2.2.1. Another rather elegant one is that of encoding any ordered tree as a 
corresponding binary tree (see Section 6.2); still others include the encoding of any 
ordered tree in a line (see Sections 6.5.2 and 6.5.3). In general terms, we speak of a 
guest structure G, which is to be encoded in a host structure H. To accommodate 
the most general case, it is conventional to regard both G and H as graphs, with G 
being embedded in H. A primary issue with any data structure is the set of usage 
patterns characterizing access from one atomic item to another. In the embedding, 
vertices in G become vertices in H, but edges in G become paths in H, with the 
costs of traversing paths representing a dilation of the access costs in H over those 
in G [Rosenberg 1978]. This dilation can occur with respect to both space and 
time, where the former may partly be due to the overhead of pointers. Restricting 
our attention to the time dilation, the concepts that we have been describing can be 
expressed as G <TH whenever G can be encoded in H such that no adjacent nodes 
in G have path length greater than T in H. More generally, T may be some func¬ 
tion T(n), where n characterizes the size of G in the usual way. 

One of the issues to which these ideas have been successfully applied is that of 
loss of proximity between array elements under various encodings (see Section 2.7 
for a related discussion). In the preceding paragraph, we alluded to the usage 
patterns of access within a data structure. In a ^-dimensional array, an element in 
general has 2d immediate neighbors. For d > 1, when the array is represented in 
the conventional manner by a linearizing storage allocation function, it has been 
rigorously shown that there is an unbounded loss of proximity in at least some of 
the dimensions [Rosenberg 1975]. This is easy to visualize intuitively when we 
consider that an element in a 2-dimensional array cannot “squeeze” n2 neighbors 
(from the array) into 2n neighbors (on the line). In many cases, this loss of proxim¬ 
ity may not be serious. For example, patterns of array usage are often confined to 
traversals in a single dimension, as in ordinary matrix multiplication, so that dila¬ 
tion in the other dimensions is irrelevant. Also, the effects of the dilation will only 
become significant when the array is so large that it must be decomposed, explicitly 
or implicitly, into sub-arrays for processing.2 However, it is easy to find examples 
where both of these issues do matter. One instance is that of multiplying large 
matrices by Strassen’s method (see Section 2.5.1.1), which proceeds by recursively 
decomposing matrices into sub-matrices. 

We might ask what would be the effect of having a host H of more general 
character than a line — perhaps a binary tree. (In such an encoding, the vertices of 
G are understood to be embedded at the leaves of H). Even in this case, for G an 

2 By implicit decomposition, we refer to the effects of virtual memory. In such an envi¬ 
ronment, there is always the hazard of degradation in performance when data accesses 
must cross page or cache boundaries (see Section 12.2.2). 
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n x n matrix, it has been shown that loss of proximity is still unbounded; more 

precisely, in this case T{n) > (lg n - 2) / 3 [Lipton et al. 1976]. So far, we have 
been speaking of the worst-case loss of proximity. When we consider the average 
loss of proximity, however, the situation is different. Arrays encoded as lines must 
still have unbounded loss of average proximity, but arrays can be encoded as binary 
trees in such a manner that the average loss in proximity is bounded [DeMillo et al. 
1978]. In fact, there is a result of immediate practical use. Consider two possible 
ways of encoding a two-dimensional array, as illustrated in Figure 9.1. The encod¬ 
ing in (a) is via a 2-tree (a binary tree), and the encoding in (b) is via a 22-tree (a 
quaternary tree)? The encoding in (b) has been shown to be superior to that in (a) 

in the following respects [Wood 1978]: 

• Under reasonable assumptions about relative costs of primitive machine oper¬ 

ations, access time will be 30 percent higher with (a) than with (b). 
• The binary encoding of (a) requires 50 percent more pointer locations than the 

quaternary encoding of (b). 
• Average loss in proximity will be 75 percent worse with (a) than with (b). 

Evidently, 22-trees are considerably superior to 2-trees for the encoding of two- 
dimensional arrays. Even more generally, it has been shown that for encoding a 
d-dimensional array in a tree, the choice of a 2^-tree as a host is always nearly opti¬ 

mal [Rosenberg 1979], 

(a) Binary Tree Encoding 

Figure 9.1 Encodings of 2k x 2k Arrays 

f 9.1.3 Implicit Data Structures 

The notion of order among data values is often a crucial issue in a data structure. 
One example of this is a BST, wherein recursively all the values in the left/right 
subtrees of a node are smaller/greater than the value at the node itself; here the 
ordering is explicitly maintained via the use of pointers. An even more basic exam¬ 
ple is that of an array whose elements are in sequence; in this case the ordering is 
maintained among the array locations, and no pointers are required. A third exam¬ 
ple is the heap. The ordering in this elegant structure is partial, not total, but again 

3 Quaternary trees are conventionally termed quad trees. We will say a little bit about 
them in Section 12.4.3.1. 
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the ordering is maintained among the data locations rather than via pointers. Data 
structures such as the ordered array and the heap are called implicit data structures. 
Since they don’t use pointers, they are efficient in terms of space; they also avoid 
the problems cited in Section 9.1.1. In this section we will meet some more exotic 

examples in this useful category. In order to appreciate the discussion, you may 
wish to skim Sections 10.2.2 and 10.3.1, if you are not already familiar with the 
material therein. 

To begin with, we note some performance characteristics of the ordered array 
and the heap. Three measures are significant for our purpose: 

• the complexity of searching for an arbitrary item; 

• the complexity of inserting or deleting an item; 

• the complexity of finding a distinguished (minimum or maximum) item. 

Drawing upon what we know already and/or anticipating some of the subject 
matter of Chapter 10, the complexities are as follows: 

structure search insert/delete distinguished 

ordered array 0(lg n) 0(r>) 0(1) 
heap O(n) 0(ig n) 0(1) 

In particular, we see that the product of the search and the insert/delete complexi¬ 
ties is 0(n lg n) for both structures, and that both are imbalanced with respect to 
these two capabilities. For a BST, the search time is <9(lg n) and so is the 

insert/delete time (inclusive of the associated search time), yielding a product of 
0(lg n)1. However, this increased efficiency is purchased at the expense of addi¬ 
tional storage for the pointers. This suggests the question: Are there any implicit 
data structures such that (1) the product of the complexities of search and 

insert/delete is better than 0(n lg n), and/or (2) there is better balance between the 

complexities? 

One such structure is the bi-parental heap, or heap. It is like a heap except that 

each child must satisfy the partial ordering relationship with respect to two parents. 
An example of a beap with example data obeying such an ordering is shown in 

Figure 9.2(a). In terms of implementation, however, we perceive a triangular 
matrix, more particularly a diagonal shell matrix as discussed in Section 2.7.1. This 
is apparent from Figure 9.2(b), shown with array locations. The storage allocation 

formula for such a representation is reproduced here from Eq. 2.23: 

, , , r. ^ , , (i +j\ ■ L , (i2 + 2iJ + / ~ 3i ~J) 
loc (A [ij]) = k + ( 2 ) - 1 = b +-3- l9-1) 

However, the manner of using a beap is to travel (up,down,left,right) between adja¬ 

cent nodes, and the formulas for such transitions are fairly simple. The beap is 
treated as though each diagonal were a separate block, with the z'th diagonal 

containing i elements. The bi-parental ordering is such that the kth element of the 

y'th block is less than both the kth and (k + l)th elements of the (j + l)th block. 

These ordering constraints in a beap are stronger than in a heap, and they make it 

possible to search for an arbitrary item X with time complexity 0(nxl2). Any such 
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search is initiated at the top right node in Figure 9.2(b), and always proceeds either 

leftward or downward, as follows: 

(a) if X < atJ then move left; 

(b) if X > atj then move downward, and also move left if atJ is beyond the fringe 

diagonal. 

Since the longest path that can be traversed in this manner is 0(n1'2), we have the 
cited result. The technique for insertions and deletions is analogous to that for a 
heap, except that the longest path is once again 0(n1/2). In other words, the beap is 
an implicit data structure for which the complexities of search and insert/delete are 

balanced, and such that their product is 0(n). 

14 an = 14 /-"ai2 = 21 ^"ai3 = 33 ^'au = 45 

^ ^ 
321 = 16 ,^''322 = 27 ^-"^323 = 38 

331 = 19 ^^a32 = 32 833 = 59 

841 =25^^^842 = 40 

351 =31 

(b) Diagonal Shell Mapping 

Figure 9.2 Bi-Parental Heaps (Beaps) 

But this is just the beginning of the story! Consider next the data structure 
illustrated in Figure 9.3. It is a sequence of blocks such that (1) the zth block has z 
elements, and (2) each element in the zth block is less than every element in the 
(z + l)th block. But also, the zth block is a rotated list - that is, a cyclic shift of a 
sorted list. A crucial feature of our intended use of such a structure is that the 
elements in a block must all be distinct. Assuming that this is so, note that we can 
then always find the minimum element in a block B [5.. t] in 0(1 g zj comparisons. 
We simply need apply a variant of binary search (see Section 10.2.2). With this 
variant we first compute m — {s + t) div 2; we then look for the minimum in 
B [5 .. m] if B [m] < B [f], or in B [m + 1 .. t] if B [m] > B [t]. 

24 16 20 23 33 38 39 28 30 

Figure 9.3 Rotated Lists 

Because we can find the minimum element in a block in 0(lg z) time, we can 
also find any arbitrary element X in the data structure of Figure 9.3 in 0(lg n) time, 
by the following process: 
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(a) First apply ordinary binary search, discovering that X must be in either one of 
two consecutive blocks. 

(b) Next apply the variant method of binary search on the larger rotated list to 
find its minimum element Mint. 

Depending upon the comparison of X and Minh then proceed as follows: 

(c) If X > Minh re-apply the variant method to find X in the larger block. 

(d) If X < Minh apply the variant method twice to the smaller block, finding first 
its minimum Mini_l and then X. 

Finally, we can insert or delete an element X in 0(n1'2 lg n) time. The technique 

to perform insertion is as follows. We begin by finding the block i to which X 

belongs. This can be found in 0(lg n) time by searching in the manner described in 

the preceding paragraph. We then perform a “hard exchange,” in which X is 

inserted in its proper place. This requires 0(n112) data shifts in the worst case, since 

that is the magnitude of the largest block. As a result of the insertion of X, we can 

expect that the former maximum element Maxt in that block may now have to be 

relocated to the (i + l)th block, in turn bumping Maxi+l to the next block, etc. 

However, each of these bumping operations is an “easy exchange”: The minimum 

and maximum in the new block are found in 0(lg i) time once again, and then the 

old maximum is displaced by a new minimum - without any data shifts! The 

process for deletion in a rotated list is completely analogous. The summary 

accounting for insertion/deletion is 0(n112 lg n) comparisons and 0(nl/2) moves. In 

other words, for the rotated lists structure of Figure 9.3, the product of the 

complexities for searching and insertion/deletion is 0(nlj2 (lg n)2). 

The beap and the rotated lists structure and others as well, including a beap of 

rotated lists, are described in Munro and Suwanda [1980]. Table 9.1 summarizes 

the complexities for the implicit data structures that have been cited in this section. 

There are still other possibilities; as an example, we can have rotated lists of 

elements that are (recursively) rotated lists [Frederickson 1983], 

structure search insert/delete 

ordered array 

heap 

beap 

rotated lists 

beap of rotated lists 

0(lg n) 

O(n) 

0(n^2) 

0(lg n) 

0(n1/3 lg n) 

O(n) 

0(lg n) 

Oin1'2) 

0(n1/2 lg n) 

0(n1/3 lg n) 

Table 9.1 Complexities of Implicit Data Structures 
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9.2 MASTERING COMPLEXITY 

As our starting point, let us consider the following parable by Simon [1962]. There 
once were two watchmakers, Hora and Tempus, who both made highly regarded 
timepieces. However, their methods of operation differed. Tempus constructed his 
watches by carefully assembling 1,000 components. Hora, on the other hand, first 
constructed 100 sub-assemblies of 10 components each, then assembled these into 10 
larger units of 10 sub-assemblies each, and finally obtained a finished watch by 
putting these 10 units together. Since their watches were so highly regarded, they 
received frequent phone calls from eager customers. Unfortunately, whenever they 
answered their phones, the assembly that was being worked upon would fly apart, 
making it necessary to restart after the phone call. As the demand for their 
products increased and their phones began to ring more often, a strange thing 
happened. Hora prospered, but Tempus was driven out of business. 

We can see why this happened when we compute their respective probabilities 
of finishing a watch between phone calls. Let p — .01 be the probability that a call 
occurs while adding a part to an assembly. In Hora’s case, he has to make 111 
assemblies altogether. The probability of his finishing any of his 10-part assemblies 
without interruption is (1 — ,01)10 = 0.9, and he will have lost the effort of assem¬ 
bling 5 components, on average, whenever it is necessary to restart. Now Tempus 
has to perform just one assembly of 1,000 components, but his probability of 
accomplishing this without interruption is (1 — .01)1000 — 44 x 10-6. Moreover, he 
will have assembled l/p=100 components, on average, before an interruption. 

Summarizing these figures, 

• Tempus makes just 1/111 as many assemblies as Hora. 
• Tempus loses 100/5 = 20 times as much work as Hora per interruption. 
• Tempus has to restart 0.9910 / .991000 = 20,000 times more frequently than Hora. 

By multiplying these three ratios, we find that it takes Tempus about 4,000 times 
longer than Hora to obtain one finished watch. No wonder his business failed! 

Simon presents several other conclusions from his parable, two of which, are 
particularly noteworthy. First, in order to master complexity it is crucial to super¬ 
impose structure upon it. Second, an eminently useful structure for this purpose is 
a hierarchy, or tree. One of the most obvious features in biology is the hierarchical 
organization of living creatures into stable “building blocks” — first by cells, then 
by tissues, then by organs, etc. If we relate biological assemblages to those of the 
watchmakers, it is strikingly clear that evolution works as well as it does because it 
models Hora rather than Tempus. 

In programming also, we are incapable of mastering complexity except by 
decomposing it via structure. With respect to data structures, one can cite several 
objectives of such an approach: 

• We hope first of all to obtain a higher-level point of view that will help us 
better understand and solve certain problems. Thus, to the undiscerning eye, a 
heap might be just an array used in some strange fashion. But viewed in terms 
of the notion of a priority queue, it is much more. 
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• By structuring data in coherent and meaningful fashion, we also hope to gain 
some leverage for achieving reliability in our programming. In particular, a 
formal treatment of data structures provides the opportunity of conjoining them 
with other formal constructs that can facilitate proof of correctness. 

• If we are successful in separating the issue of semantic specification from that of 
implementation, then we have the opportunity to select at a later time which¬ 
ever representation is best for a given set of operating circumstances. 

Mechanisms for attaining these objectives are the abstract data types (ADT’s) 
discussed in Section 1.1.2. At the very least, an ADT specifies both the set of 
permissible values that a variable of this type may assume and also the permissible 
operations on instances of ADT’s. It may or may not include mechanisms for facil¬ 
itating proofs of correctness, or for automatically choosing an optimal 
representation. A variety of methods have been employed for specifying ADT’s. In 
the next section we characterize these methods, and then illustrate one of them in 
brief detail. 

f9.2.1 The Specification of Abstract Data Types 

The earliest formal techniques for the specification of data types had some of the 
flavor of the data encodings described in Section 9.1.2. In particular, data struc¬ 
tures were commonly modelled by graphs because of their generality [Earley 1971]. 
However, such schemes were primitive in the sense that they did not bundle a data 
structure and its operations into a package. The language Simula was the first to 
provide facilities for constructing such packages of data types and associated oper¬ 
ations, calling them classes [Dahl and Nygaard 1966]. As with Pascal, however, 
the representation details are completely visible in Simula, so that there is no 
protection against misuse of a data structure. Some examples of languages that do 
provide facilities for defining and using protected ADT’s are Alphard via forms 
[Shaw et al. 1977], CLU via clusters [Liskov et al. 1977], and Mesa and Modula 
via modules [Geschke et al. 1977; Wirth 1985]. The provision for ADT’s as pack¬ 
ages in Ada is destined to have even more impact [U.S. Dept, of Defense 1983], 
The methods of specifying data abstraction in these languages are explicit; that is, 
the semantics of the new data type are modelled constructively, in terms of oper¬ 
ations upon more basic data types. With this technique, it is also straightforward to 
incorporate axiomatic assertions for establishing proof of correctness. In cases such 
as these, the method is termed axiomatic specification; the classic description of 
such a process is Hoare [1972b], 

From a purist viewpoint, the preceding constructive approach toward ADT’s is 
just a modelling of desired behavior, not a theoretical specification of the desired 
abstract properties. The explicit approach has some practical drawbacks as well, 
related to the fact that the model is essentially a program. The intent of abstraction 
is to reduce matters to easily comprehended units. But a program is likely to 
become too long and to contain details that are irrelevant to the intended 
abstraction. These facts, in conjunction with the combinatorial buildup of inter¬ 
action among the program parts, can soon thwart easy comprehension. Finally, 
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such a program model of an ADT is likely to bias one’s perspective about how that 

ADT should ultimately be implemented. 

By appealing to some notions of abstract algebra, however, it is possible to 
remove the “how” from specifications. By way of introduction, an algebra is char¬ 

acterized in terms of four entities: 

1. A set, called the carrier of the algebra; typical carriers are the boolean values 
True and False, the set of integers, the set of character strings, etc. 

2. Various operations upon the carrier; typical operations for these carriers 
include, respectively: AND, OR, NOT; addition and multiplication; concat¬ 

enation and comparison. 
3. The presence of some distinguished constant elements from the carrier. 
4. Some number of axioms relating the first three items. 

Depending upon the richness of the carrier and operations and axioms, one can 
obtain many different kinds of algebraic systems [Stanat and McAllister 1977], 
Some examples are semigroups, monoids, groups, rings, lattices, fields, etc. 

The axioms of an algebra for ADT’s usually have to express relations simul¬ 
taneously involving several carriers, as we will see momentarily.4 The corresponding 
terminology is to refer to these different carriers as sorts', and so the algebraic spec¬ 
ification technique is in terms of a many-sorted algebra. There have been two major 
expositions of algebraic specification. One is known as ADJ [Goguen et al. 1978], 
and the other is known as ADT [Guttag 1977]. We employ the notation of the 
latter to illustrate in Figure 9.4 the algebraic specification of a stack. It is a very 
time-honored example for readers unfamiliar with these techniques (and a very 
time-worn example for some other readers). 

Let us examine Figure 9.4. You may wish to compare it with the informal 
specification of a stack that was presented in Section 5.2.1. After the introduction 
of the ADT that is being defined (via the label type), it has a declarative section (via 
the label syntax) that specifies the domains and ranges of the five stack operations. 
For example, PUSH takes as arguments a Stack and an element, and then returns a 
Stack. The final section (via the label semantics) defines the “what” of Stack in 
terms of relations, or axioms, that must hold between the various operations. In 
both form and intent, the organization in Figure 9.4 can be likened to that of a 
program with its heading, declarative part, and procedural part. An important 
distinction, however, is that in this case the procedural part contains just functions, 
and these functions have no side effects. The fact that the heading of the ADT 
Stack is parameterized by element causes Stack to be a generic data type. As a 
consequence, there is no necessity to have separate Stack ADT’s for each distinct 
type of stackable item. 

The crucial feature of the specification in Figure 9.4 is that it in fact defines an 
algebra, of the many sorts: Stack, element, and Boolean. As such, it can be manip¬ 
ulated algebraically to derive proofs of theorems from the axiom-relations. 
Moreover, the specification is concise, and any properties algebraically proved 

4 There is an important distinction here. While both axiomatic specification and algebraic 
specification incorporate axioms, the former yields a constructive definition, and the 
latter yields a non-constructive one. 
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type Stack [element] 

syntax 
NEWSTK -+ Stack 

PUSH (Stack,element) -> Stack 
POP (Stack) -> Stack 

TOP (Stack) -> element |J {UNDEFINED} 
ISNEW (Stack) -> Boolean 

semantics 
declare stk: Stack; item: element; 

POP (NEWSTK) = NEWSTK 

POP (PUSH (stk,item)) = stk 

TOP (NEWSTK) = UNDEFINED 

TOP (PUSH (stk,item)) = item 

ISNEW (NEWSTK) = TRUE 

ISNEW (PUSH (stk,item)) = FALSE 

Figure 9.4 Algebraic Specification of a Stack 

about it do not depend in any way upon extraneous details of representation. The 

idea here is first to prove the correctness of the simple, abstract specification. Then, 

when the abstract description is mapped to a concrete one, all that is required for 

establishing the correctness of the resulting implementation is to demonstrate that 

this mapping is a homomorphism that preserves the necessary algebraic properties. 

The details of the agenda described in the two preceding sentences can become 

fairly complex, but they can also be partially automated [Guttag et al. 1978a]. The 

essential point is that such an agenda factors the proof-of-correctness problem into 
two stages, and this constitutes a significant advantage. 

This algebraic specification gives us a set of axioms rather than a model. In all 

fairness, however, it would be hard to imagine how these axioms were originally 

conceived, other than through the imagery of a model. Although there is no bias of 

representation, there is one in the choice of identifiers; for example, the terms POP, 

PUSH, etc. strongly suggest the intent. Moreover, the stack is just about the 

simplest data structure that we can define in this manner. If we were to illustrate 

the technique with a more complicated structure, such as a BST, and if the identifi¬ 

ers were to be nonsensical, then it would be a much harder task to understand the 

“what” of the structure. In short, systems of axioms have been termed “systems 

designed to reason about not to reason in”; finding the right set of axioms for spec¬ 

ifying an ADT can require a great deal trial and error. Note that on the one hand, 

the absence of a model is one of the important features of this technique; on the 

other hand, the implementor of such an ADT then has no guidelines as to how to 

proceed, which may be a source of difficulty in some cases. 

In addition to the practical considerations just discussed, there are some theore¬ 

tical issues relating to the use of algebraic specifications. In any axiom system we 

must be concerned with completeness, consistency, and power. A set of axioms 

about an ADT is complete if any true statement characterizing the ADT can be 
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derived from the axioms; the set is consistent if it is impossible to derive contradic¬ 
tory statements from the axioms. In practice, the issue of completeness is the more 
pressing one. As an example, does the given set of axioms completely specify the 
behavior of the ADT under various boundary conditions? For example, what is the 
proper interpretation of applying a POP to an empty stack? Also, our specification 
in Figure 9.4 really needs to be expanded to deal with Stacks of bounded size, 
imposing another boundary condition. Lastly, with regard to power, we find that 
some ADT’s can be completely specified only via the introduction of axioms 
employing hidden operators, or even hidden sorts. These hidden entities are not visi¬ 
ble or accessible to the user of the ADT, but the specification axioms are necessarily 

incomplete without them. 

In this section, we have been concerned simply with introducing some of the 
increasingly important concepts about data structure specification. For a more 
general survey of specification techniques consult Liskov and Zilles [1975], For 
illustrations of the algebraic specification of a wide variety of ADT’s — including 
stacks, queues, binary trees, BST’s, sets, and strings — consult Guttag et al. 
[1978b]. Finally, for a good survey of all aspects of the issue of data abstraction, 

see Ford [1979]. 

9.3 CHOICE OF DATA STRUCTURE IMPLEMENTATION 

We learned in the preceding section of the many advantages gained by describing 
the solution of a problem at a very high level, incorporating abstract data struc¬ 
tures. Work in this direction will very likely cause a substantial transformation in 
what it means to program in years to come. However, two developments must take 
place before such techniques come into widespread use. We have alluded to one of 
them, the automation of some of the logical processes involved in deriving a specifi¬ 
cation. It is also important that computers assist in automatically choosing 
representations that will yield efficient overall programs. The automation is desir¬ 
able both to relieve the burden on the programmer, and to bypass the potential, for 
human clerical error. Before describing the relatively few results in automated 
selection, let us consider how people deal with the matter. 

To begin with, this concern does not arise for the majority of FORTRAN users. 
They operate with only the most basic data structure, the array, and usually have 
no reason to employ anything other than the standard representation via sequential 
storage. As the logical data structures become more complicated, however, possibil¬ 
ities for representation become more numerous. And when a problem requires 
several logical data structures, each with its choices for representation, we have the 
familiar phenomenon of combinatorial explosion in ensuring that they interface 
properly. At present it falls upon the user to sort out these possibilities. This is 
very much an art, and explains why it may be profitable to write a book about 
Data Structures. One important point relates to a generalization about program¬ 
ming. It is often possible to trade space for time. As the following examples 
illustrate, one must be very careful in applying that generalization to a choice of 
data structure representation: 
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• In deciding to use a linked list rather than an array to represent a dynamic 

ordered sequence, it is true. 

• In deciding to use a bi-directional list rather than a simple linked list, it is false 

at the level of list operations — that is, both space and time increase with the 

former - but very likely to be true at the higher level of the problem that is to 

be solved. 

• In using one of the representations of Section 2.8 for a very sparse matrix, it is 

absolutely false; the sequential allocation representation method can take 

orders of magnitude more space and time. 

• There are so many ways to represent trees that we simply leave it to the reader 

to sort out the possibilities and their consequences. 

• The two principal representations for a graph are the adjacency structure and 

the adjacency matrix. Applied to the extremes of graph density, the generaliza¬ 

tion is false; but there are very likely some intermediate situations where it is 

true. By the way, you should feel pleased if you recognize that this is basically 

the same statement as the earlier one about sparse matrices. 

One of the very first efforts in automated choice of representation took the 

approach of incorporating just one standard possibility for each structure, and then 

applying some of the techniques of data flow analysis (see Section 7.4.5.3) to opti¬ 

mize the resulting program [Schwartz 1975]. A later, more ambitious effort 

employed a library of alternative possibilities for each logical data structure, and 

then attempted to analyze the user’s high-level program to ascertain which combina¬ 

tions of representations would most likely yield the best performance. The selection 

program depended upon a variety of heuristics that in many cases achieved reason¬ 

ably good results. In many cases, however, the heuristic would guess incorrectly 

about the intent of the user program, and then the quality of the final program 

could be extremely bad [Low 1978]. By using a more formal approach, in which 

the selection program is allowed to better “understand” the user program, there is 

hope of avoiding such bad outcomes [Rowe and Tonge 1978]. 

The success of automated efforts at selection ultimately depends upon being 

able to use one of three means for extracting the intentions of a user program. The 

most desirable possibility is for the selection program to be able to make a correct 

analysis on its own, but this appears to be extremely difficult. In lieu of or in 

conjunction with analysis, there is the option that the user interactively assist in the 

process. Unfortunately, the user often has either no ideas or incorrect ideas about 

what is really likely to happen. The last option is to rely upon test runs employing 

alternative representations. This is likely to be unsatisfactory because the test data 

may predict poorly the results with typical data, and also because of the combina¬ 

torial growth in cost of cases to be tried. In fact, it may be unwise to beat one’s 

head against the issue of having one best representation, and then having to 

compute numerous conversions to interface properly. Rather, it may be much more 

efficient at times to have redundant representations that incorporate more than one 

view of a structure, and do not require any conversions. 
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SEARCHING 

“Seek not the things that are too hard for thee, 
Neither search the things that are above thy strength.” 

Ecclesiasticus 3: 21 

The notion of searching is familiar to us both in everyday life and from earlier 
topics in this book. In fact, we have encountered in previous chapters three very 

different paradigms of searching: 

1. The most common use of the term is that we have a set of records, and that 
one field of each record has a value (the key) that uniquely identifies it. We 
are then presented with an input key value, for which we are to find the corre¬ 
sponding record. We have seen such a set of values maintained as an array in 
Section 2.1.2 and also as a linked list in Section 4.2.1. 

2. A different interpretation is that we wish to search for a value that optimizes 
some criterion function, possibly also subject to some constraint function(s). 
In particular, we saw in Section 6.8 the use of breadth-first search, depth-first 
search, and other techniques for exploring solution trees. 

3. We encountered still another interpretation when we discussed pattern match¬ 
ing in strings in Section 8.5. In its simplest form, that of looking for the 
occurrence of pattern as a substring of text, this does not appear to be signif¬ 
icantly different from the first paradigm. However, as the specification of the 
pattern becomes more and more general in nature, as in the case of a regular 
expression or a sentence in a context-free language, we find that the relatively 
simple idea expressed by the first paradigm has grown to become a very 

powerful concept. 

Search can also be understood in a very narrow sense, as exemplified by using 
an index value to retrieve a desired value from an array. Indeed, as we will see 
when we study hashing, this is not a completely ridiculous interpretation. In addi¬ 
tion to encountering imprecision relative to the paradigm of searching, we also 
encounter it with respect to the domain of searching. We speak at various times of 
searching a table or a file or a database. What distinctions are intended in these 
cases? The conventional sense of these three search domains is as follows: 
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• A table of data is an ephemeral set of values held in main memory during the 
course of a calculation, with just one key field per item. 

• A file of data is a permanent set of values that resides in secondary memory, so 
that it must be retrieved in order to be used. There is usually just one key field 

per item. 
• A database is a set of related files in secondary memory. The records typically 

have many key fields per item and many items for each key value; so retrieval 
is no longer a matter of finding the single record whose single key matches the 

given key. 

Most of this chapter will be concerned with the first search paradigm, of look¬ 
ing for the occurrence of a key in a table of data (but not necessarily an array!) in 
main memory. Implicitly, every item is a record with the key as just one field, but 
we will almost always deal with just keys, for the sake of simplicity. We will 
develop this paradigm of searching under four different categories: linear data 
structures, tree structures, hash tables, and digital structures. At the end of this 
chapter, we will allude briefly to still other searching paradigms; however, we will 
not really be finished with the topic of Searching until we study Secondary Memory 
in Chapter 12. 

10.1 THE ISSUES INVOLVED 

As we confront the task of searching, we find that there are a substantial variety of 
choices among interrelated data structures and algorithms. Depending upon the 
circumstances, almost every one of the methods that we will discuss can be the best 
one for a given situation. We will make some comparative comments as we proceed 
through the various methods, and then present an overall comparison in the Over¬ 
view. The factors to which we have just alluded are principally: 

• How large is the table? 
• What action is required if the search succeeds? if it fails? 
• Which actions are required against the table - look-up? insertion? deletion? 
• Is there any a priori knowledge of the relative likelihoods pt for searches on the 

various keys Kp. 
• Is there a possibility of equal keys? 
• For a given method, what is its efficiency? 

• For a given method, what other criteria are important for deciding when it is 
appropriate to use? 

Situations in which it it necessary to allow for equal keys tend to be less 
common. They are also contrary in spirit to the first paradigm, with which we are 
mostly concerned. So we will ignore that possibility, obtaining the welcome bonus 
that our algorithms are thereby relieved of the clutter that equal keys sometimes 
introduce. A comparatively trivial issue is whether the keys are alphabetic or 
numeric in character; we will see examples of both types. The bottom line in most 
of our discussions will be the efficiency of a given method, as measured by the aver- 
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age number of comparisons required between key values. We will refer repeatedly 
to the two quantities: 

CS„ - the average number of comparisons in searching a table of size n when 
the search succeeds; 

CFn — the average number of comparisons in searching a table of size n when 
the search fails. 

In order to obtain rigorous answers to questions concerning efficiency, we will need 
the material in the next two sections, dealing with harmonic numbers and with path 
length properties of trees. 

10.1.1 Harmonic Numbers 

The harmonic series defined by 

h= 1+L + L + ... + -I + ... (io.i) 

is a divergent one that is frequently encountered in mathematics. The partial sums 
given by the first n terms of Eq. 10.1 are known as harmonic numbers Hn. They 
occur in diverse applications. As an example, suppose that we are recording a 
sequence of random independent values about some phenomena, such as the heights 
of adult persons passing by. How many times should we expect to see someone 
taller than anyone seen previously? The first person is automatically taller than any 
predecessors, the second person is the taller of the first two with probability 1/2, the 
third person is the tallest of the first three with probability 1/3, ... , and the nth 
person is the tallest of the first n with probability 1 In. So the total number of cases 
of “tallest so far” when observing n random independent values is given by H(ri). 
In more mathematical terms, the average number of left-to-right maxima in a 
sequence of n elements is given by Hn; and the same argument can be applied for 
observing minima rather than maxima. Now recall that the canonical represen¬ 
tation of a permutation P in cycle notation (see Section 1.2) is itself a unique 
parenthesis-free permutation Q, with one cycle in P for every left-to-right minimum 
in Q. So as one surprising and rewarding consequence of our knowledge of 
harmonic numbers, we learn that the average number of cycles in a random permu¬ 

tation on n elements is given by Hn. 

Although the harmonic series diverges, it does so very slowly. (Yet remarkably, 
if each term r1 in Eq. 10.1 is replaced with i~s for any 5 > 1, then the corresponding 
series converges!) Just how slowly the values of H„ diverge is conveyed by the 

following data [Boas and Wrench 1971]: 

H„> 5 only for n > 83 
Hn> 10 only for n > 12367 
Hn > 15 only for n > 1835421 
Hn > 20 only for n > 272400600 
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Fortunately, if we need the value of Hn for some large n, we can approximate it 

quite well by 

Hn = In n+ y + 
2 n \2n 

+ 
120 n 

+ (10.2) 

[Knuth 1973a], where y — 0.57721 ... is Euler’s constant. Thus, Hn — 0( In n). 

10.1.2 Path Length Properties of Trees 

We will commonly represent the search process by a binary tree (even in some cases 
where there is no explicit tree structure) such that each node denotes a distinct 
search outcome. An important notion is that of an extended binary tree, wherein 
leaves are appended wherever possible to the nodes of the original tree. The 
original nodes are then called internal nodes (denoted by circles), and the appended 
nodes are called external nodes (denoted by squares). The resulting tree is a strictly 
binary one, with each of the original nodes having degree two. This process is illus¬ 
trated in Figure 10.1, with a binary tree in (a) and the corresponding extended tree 
in (b). The original nodes now constitute n internal nodes, each with two non-nil 
pointers, and there are x external nodes. Since the 2n pointers point to n + x — 1 of 
the nodes in the extended tree, we must then have x — n + 1. Extended trees have 
many uses (see Sections 6.7.1 and 8.2.4); their significance in this chapter is that the 
external nodes will be used to denote distinct unsuccessful outcomes of searches. 

(a) (b) 

Figure 10.1 Extending a Binary Tree 

An important notion in any tree is that of path length, which is the sum of the 
lengths of the paths from the root to each node. More particularly, we will be 
speaking of internal path length I and external path length E in binary trees, where 
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the sums are restricted to internal and external nodes, respectively. Thus, in Figure 
10.1(b), we find 

7=2x1+3x2+1x3—11, and £=1x2 + 5x3 + 2x4 = 25 

An important relation between these two quantities for binary trees is 

E = I+2n (10.3) 

To see this, suppose that we convert an external node at level k to an internal node 
at level k and two external nodes at level k + 1, as shown in Figure 10.2. The net 
change in E is — k + 2 x (k + 1), and the net change in 7 is +k; thus the net change 
in (E - 7) is +2, and Eq. 10.3 is easily established by induction. 

Figure 10.2 Change in Path Lengths, / and E 

For our purposes, we will be concerned with the minimum, average, and maxi¬ 
mum values of the path lengths for various binary trees having n internal nodes. 
The maxima, over all binary trees, are readily seen to occur when the tree is 
completely degenerate — that is, when each internal node has at least one external 
node as a child. The precise average values depend upon the set of binary trees 
under consideration. But assuming that all successful outcomes are equally likely 
and likewise that all unsuccessful outcomes are equally likely, then these averages 
correspond, in fact, to our parameters CSn and CFn. In order to compute the 
former value, we need to include the cost of the comparison at the root for each 
internal node and divide by n\ in the case of failure, we have simply the average 
over the n + 1 external nodes. That is, for equally probable situations, 

CS„ = -t±+ and (10.4) 

Moreover, combining Eqs. 10.3 and 10.4, we find that 

CS„=(l +7r)CT»-1 <‘0.5) 

When do the minimum values occur? A very convenient characterization is that 
the minimum path lengths will occur for just those trees where the external nodes 
all lie on either one level or two adjacent levels (see Exercise 10.4), resulting in a 
completely balanced binary tree (but not necessarily a complete binary tree). In such 
a case, with j of the x external nodes on level k — 1 and x — j of them on level k, we 



468 SEARCHING 

must have j x 2~k+l + (x -j) x 2~k = 1 (see Eq. 6.18), whence x +j = 2k. Since also 
x < 2k < 2x, we have shown that k = L lg x = L lg {n + 1); thus, a binary tree on n 
internal nodes and with minimum path length must have height L lg (n + 1). 

10.2 SEARCHING LINEAR DATA STRUCTURES 

The two types of (unrestricted) linear data structures that we have studied are one¬ 
dimensional arrays and linked lists, and searching was illustrated with both of them. 
In the array case we dealt with an unordered sequence of keys, and in the linked list 
case we dealt with an ordered sequence of keys. In the three sections that follow, 
we will reexamine these two basically different situations in some detail. We 
consider first the case of unordered keys, then a workhorse method for ordered 
keys, and finally some other techniques that can be used with ordered keys. 

10.2.1 Sequential Search 

We saw two versions of sequential search in Section 2.1.2, SEARCH_A and 
SEARCH_B (Algorithms 2.1 and 2.2). Although a pragmatic modification causes 
the latter to have a significantly better constant factor than the former, the two 
algorithms have the same computational complexity. What is that complexity? Let 
us assume for now that the probabilities pt of searching for the keys Kt are all equal 
to lIn, for a table of size n. Then the quantity CSn for successful search will be n/2, 
on the average; however, the quantity CFn for unsuccessful search must always be 
n. There are several avenues for improving upon this. Presuming still that the pi 
are all equal, and in the expectation that unsuccessful searches are common, then 
we are somewhat better off if the keys are ordered, as in SEARCELLIST (Algo¬ 
rithm 4.1) in Section 4.2.1. This allows us to always terminate the search for K as 
soon as we reach a key K( such that Kt > K. In other words, CFn will now have an 
average value of n/2 also. However, note that the worst case still requires n 
comparisons, for both success and failure, so that sequential search is 0(n). We will 
presently see a variety of better methods for taking advantage of ordered keys. 

On a different tack, if the probabilities p, are not equal, we can find other 
avenues for improvement. Suppose that the values of the p, are known, and that 
they do not vary with time. Then we can optimize matters by arranging our 
sequence of keys from most probable to least probable (see Exercise 10.7). In other 
words we have, after relabeling them, KUK2,..., Kn such that px>p2> - > p„, and 
this minimizes the expected value 

CSn = \xp]+2xp2-\-h n x pn (10.6) 

The relevance of this approach is apparent from Zipf’s Law, which demonstrates 
repeatedly the validity of the following observation with respect to natural phenom- 
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ena: The nth most likely value seems to occur with probability proportional to 1/n 
[Zipf 1949],1 For such data, we would have 

P\ = y. P2 = f. - > Pn = jr (10.7) 

where c = l/Hn (the reciprocal of the nth harmonic number). This combined with 

Eq. 10.6 leads immediately to CSn = njH„. Since Hn — 0( In n), we see that pre¬ 

ordering of data that satisfies Zipfs law speeds up search by a factor of (lnn)/2. 

Similar improvements can be noted for other probability distributions. In partic¬ 

ular, there is another empirical observation known as the 80-20 rule: 80 percent of 

the activity deals with 20 percent of the data, with the same rule applying recur¬ 

sively to the data in that 20 percent, etc. [Heising 1963]. For a set of keys 
conforming to this statistic and pre-ordered accordingly, it can be shown that 
CS„ = 0.122n [Knuth 1973b], 

Although the approach just described can work very well for applications with 

known and static probabilities, it does not help for those cases where the p, are 

unknown in advance or where they vary in time. For these dynamic probabilities, 

we can employ a self-organizing list, wherein the chronological sequence of requests 
causes the keys to be continually reordered in the list: 

• For example, when the key Kt is retrieved, we can employ the move-to-front 

heuristic, moving Kx to be Kx and shifting Kx.. Kl_l to the rear, in anticipation 

that Kt is likely to be a target again fairly soon. 

• A less drastic strategy is the transposition heuristic, whereby Kt is swapped with 
its predecessor Kx_x in the list. 

The transposition strategy has been shown to have some theoretical advantage. If 

there is no correlation among the requests, it yields asymptotically fewer compar¬ 

isons than any other reorganizing heuristic [Rivest 1976a]. However, it is fairly 
common for there to be such correlation, leading to situations where move-to-front 

yields better performance. A good example of this is seen with the pattern of refer¬ 

ences to variables in a local section of a program. An extreme example where 

transposition performs poorly is the case of several items being permuted repeatedly 

near the end of the list, with none of them making any progress toward the front of 

the list. Another problem with the transposition heuristic is that its superiority is 

asymptotic. Convergence to asymptotic behavior may be slow, and a more mean¬ 

ingful measure may be amortized performance, wherein the cost is averaged over the 

actual sequence of requests. From this perspective, the move-to-front heuristic will 

often be more effective, since it may converge more quickly toward a low-cost 

ordering of the list. Thus, we see that there are several reasons for the move-to- 

front heuristic to be preferred in practice [§]. In comparing these two heuristics, 

however, we cannot overlook the issue of whether the sequential search is being 

conducted in an array or in a linked list. With a linked list, either strategy is cheap 

i Zipf found this to be true of words in natural language, population figures of cities, etc. 
Also, the most common words tend to be the shortest ones, yielding some minimization 

of effort - that is, built-in minimal-redundancy. 
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and easy; with an array, transposition is still cheap, but move-to-front has 0(n) 

complexity. 

Although the search methods in the remainder of this chapter will have lower 
complexities, they will usually have higher constant factors. Therefore, for small 
tables, and particularly where the search probabilities are unequal, one of the tech¬ 

niques described in this section may often be the method of choice. 

10.2.2 Binary Search 

We consider now the case in which there is an ordered set of keys in an array. In 
applying sequential search, by key comparisons, to such an array, every comparison 
divides the table into one element that may or may not be the desired value, and the 
remainder of the table that may contain the desired value. A much more effective 
technique is to use divide-and-conquer, such that each comparison either locates the 
desired value or else splits the remainder of the table into two halves, only one of 
which need be searched. This approach, known as binary search, is comparatively 
simple and is one of the truly venerable computing techniques. Yet, remarkably, 
even experienced programmers seem to have trouble in getting it right the first time. 
You are encouraged to try to do so before proceeding. 

In this algorithm for searching, we once again use a function that returns either 
the location of the sought-after key value, or else a zero to signify that it is absent. 
Our function in this case is SEARCH_BINARY (Algorithm 10.1), employing three 
local variables: lo and hi delimit the subrange of the array where the input key 
must occur if present, and i is computed (using integer division, div) as the 
midpoint of that range. The algorithm actually makes two comparisons for every 
iteration, which affects the constant factor but not the complexity class; in some 
circumstances, this can be finessed by using a 3-way compare instruction. Suppose 
now that we invoke SEARCH_ BINARY to search for 93 in the table of Figure 
10.3; the corresponding trace of the variables lo, hi, i, tbl [z] is shown in Figure 
10.4(a). Similar trace sequences for input arguments of 58 and 20 are shown in (b) 
and (c) of the figure. Note the importance of the while condition in the case of 
key = 20; because this value is not in the table, the condition lo > hi ultimately 
causes the search to terminate. 

/ tbl [/] /' tbl [/] i tbl [/] / tbl [/] 

1 3 8 33 15 61 22 87 
2 8 9 34 16 62 23 89 
3 11 10 39 17 69 24 93 
4 15 11 47 18 74 25 96 
5 17 12 50 19 78 26 97 
6 24 13 52 20 81 
7 28 14 58 21 83 

Figure 10.3 Binary Search Data 



10.2.2 BINARY SEARCH 471 

function SEARCH_BINARY (key: integer; tbl: table): integer; 

{given the key, the function returns the value 0 if it is not in 
the table, and returns the index of the key in the table if it is} 

label 1; 

const n = {size of the table} 

type table = array [1 .. n] of integer; 

var i,hi,lo: 0 .. n; 

begin 
SEARCH_BINARY := 0; 
lo := 1; hi := n; 

while hi >= lo do begin 
i := (lo + hi) div 2; 
if key > tbl [i] then 

lo := i + 1 
else if key < tbl [i] then 

hi := i - 1 
else begin 

SEARCH_BINARY := i; 

goto 1; 
end; 

end; 
1: 
end; 

Algorithm 10.1 SEARCH_ BINARY 

lo hi / tbl [/] 

1 26 13 52 
14 26 20 81 
14 19 16 62 
14 15 14 58 

lo hi / tbl [/] 

1 26 13 52 
1 12 6 24 
1 5 3 11 
4 5 4 15 
5 5 5 17 
6 5 — — 

lo hi / tbl [/] 

1 26 13 52 
14 26 20 81 
21 26 23 89 
24 26 25 96 
24 24 24 93 

(a) key = 93 (b) key = 58 (c) key = 20 

Figure 10.4 Trace of Algorithm SEARCH_BINARY 

Binary search is sometimes called logarithmic search because it has complexity 
0(lg n). We can see this easily by drawing the binary tree traced by the search 
process for various arguments, as in Figure 10.5. The logarithmic height can be 
established by an inductive argument on the subrange size, hi — lo + 1. The 
external nodes are not drawn, but adding them shows that the tree is completely 
balanced, and thus has the minimum possible path lengths. By evaluating / and E 
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for this tree and applying Eqs. 10.4, we find that CSn = 4.00 and CFn = 4.81. In 

the general case and with the assumption that all keys are equally likely to be 

accessed, it can be shown that the average numbers of comparisons for binary 

search are approximated by 

CSn = (l + lg (n + 1) - 1 , and CFn = lg (n + 1) (10.8) 

The imprecision in these formulas is slight (« 0.086); a more precise treatment can 

be found in Reingold and Hansen [1983]. Eqs. 10.8 do more than confirm that 

binary search on an ordered table has average performance of lg n. With sequential 

search, the worst case is n, twice its average cost of n\2. The worst case with binary 

search corresponds to failure, for which the cost is only slightly worse than the aver¬ 

age performance! 

Figure 10.5 Tree Followed by SEARCH_BINARY 

The principal disadvantage of binary search is that it is ill-suited to a table 

where the contents must be modified by insertions or deletions. This is because the 

method depends upon the table being in an array, so that index arithmetic can be 

performed; and both insertion and deletion may require that half the table (on the 

average) be shifted in order to open or close a hole in the array. Thus, this method 

would work very well for a telephone directory that is issued once a year, but would 

be quite unsuitable for the guest listing in a large hotel. In most other respects, if 

insertions and deletions are not an issue, binary search is a very good method. 
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f 10.2.3 Other Methods for Ordered Tables 

For some computing machines, the division step in each iteration of binary search 

may be a source of significant inefficiency. With Fibonacci search, it is possible to 

avoid this and derive successive sub-intervals entirely by subtraction. Just as binary 

search is most easily understood in terms of completely balanced trees, Fibonacci 

search is most easily understood in terms of Fibonacci trees. Each such tree 

contains Fn_x nodes, and has as left child a Fibonacci tree with Fn_x — 1 nodes and 

as right child a Fibonacci tree with Fn_2 — 1 nodes. As an example, the Fibonacci 

tree with 20 nodes is shown in Figure 10.6. Each new subrange can be computed 

from that of its parent by using the two properties: 

1. The difference between a node and its two children is the same (and is a Fibo¬ 

nacci number), both to the left and to the right. 

2. If the difference between a node and its parent is Fn, then the next difference on 

the left is Fn_x, and the next difference on the right is Fn_2. 

Analysis of Fibonacci search shows it to require only about 4 percent more compar¬ 

isons than binary search on the average (see Exercise 10.11). Because the subranges 

are of unequal sizes, however, Fibonacci trees are less well balanced, and the worst- 

case performance is severely degraded. In fact, although the average cost of 

Fibonacci search is only 4 percent greater than that of binary search, the worst case 

can have a cost of 44 percent more comparisons, as we will see in Section 10.3.3.1. 

Stated in other terms, we have already seen that the worst case of binary search is 

not significantly worse than the average case; in Fibonacci search, however, the 

worst case is 40 percent worse than the average case [Overholt 1973]. 

Figure 10.6 A Fibonacci Tree 
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Human beings learn to be quite efficient in searching, as when looking for a 

word in a dictionary, or for a name in a telephone book. Clearly, we use a method 

more sophisticated than binary search. In fact, we employ a predictive element, 

basing our next search location upon how nearly correct the previous search 

location was. We can attempt the same thing with an algorithm, leading to the 

method of interpolation search. If the current search interval in an ordered table is 

lo .. hi, then a good guess as to the location of an input key K is given by 

(10.9) 

(The use of (hi - lo - 1) rather than (hi - lo) causes the search to converge better 

near the boundaries.) Thus, for an input value of K = 93, interpolation search 

would first examine location 

in Table 10.3, as compared to location 13 on the first trial with binary search. 

Interpolation search has been demonstrated to have average complexity 

0(lg lg n) [Perl et al. 1978]; this demonstration is fairly complex and not readily 

apparent. However, imagine that we are performing ordinary binary search, 

wherein the path length is 0(lg n), and that we then discover a way to perform 

binary search on the correct path for finding the input key - for an overall 

complexity of 0(1 g lg n)\ It’s not that simple, since we don’t know the correct path 

until after we have found the key. Nonetheless, this “quadratic” view of binary 

search provides a useful insight about interpolation search [Perl and Reingold 

1977]. As a standard against which to measure all other methods for searching an 

ordered table, interpolation search is optimal if the distribution of key values is 

fairly uniform [Yao and Yao 1976]. This latter result is reasonable because, if the 

distribution were absolutely uniform, then interpolation would always compute the 

exact location on the first try. 

Unfortunately, the distribution of key values is usually far from being uniform, 

with the unpleasant result that the worst-case behavior of interpolation search is 

0(n). (This can be overcome by employing alternate cycles of binary and interpo¬ 

lation search.) Another consideration about this method is that its complexity has a 

large constant factor because of the overhead of the interpolation computations. 

Consequently, the table has to be very large before this technique is significantly 

better than binary search. Despite these rather discouraging remarks, interpolation 

search is sometimes worth the trouble. This is particularly so when it can save even 

one access to secondary memory, or when the keys are such that the basic cost of a 
comparison is high. 
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10.3 SEARCHING TREE STRUCTURES 

In the preceding section, we found that thinking of binary search and Fibonacci 
search in terms of trees greatly enhanced our understanding and analysis of them. 
The principal drawback with these methods was their inflexibility with respect to 
insertions and deletions. Thus, it is very plausible to think of employing explicit 
tree structures in order to obtain flexibility. There is another trade-off as well. In 
binary search and Fibonacci search, consider how often we recompute the next left 
child or right child, even though they are always the same for a given table. 
Although the explicit tree structure costs more in terms of space for pointers, it 
saves the time spent in blindly repetitive address calculations. 

Felicitously, we are already familiar with many of the basic ideas about BST’s 
from our study of them in Section 6.6.1. Our first task at this point is to extend 
those ideas by considering the problem of deletion from BST’s, and then to analyze 
the efficiency of random BST’s. After that we will look for improvements upon the 
basic scheme. Analogous to sequential search, there are methods appropriate to 
static trees wherein the keys have unequal probabilities, and where insertion and 
deletion are not an issue. In a different cateory, there are a variety of methods for 
dealing with the potential imbalance in trees that vary dynamically. 

10.3.1 Random BST’s 

In Section 6.6.1 we saw how to “grow” BST’s, adding new nodes as leaves in such a 
manner that we could at any time retrieve all the nodes in the tree in proper 
sequence by performing an inorder traversal. The function for doing this, 
BST_INSERT (Algorithm 6.6), has a great deal of symmetry and is fairly simple.2 
When we consider how to delete a node from a BST, we find that it is a bit more 
complicated. We are constrained to adjust the pointers in the tree in such fashion 
that an inorder traversal of the reduced BST will encounter the remaining nodes in 
proper sequence. In fact, there are two ways to do this - by “promoting” either 
the predecessor or the successor of the node to be deleted; what we mean by 
promoting will become clear shortly. Note that as human agents we can easily use 
an overview to select whichever is easier in the particular circumstances. However, 
it would be uneconomical to embody this approach in a machine algorithm. We 
will elect to present a deletion algorithm that proceeds by first finding the inorder 
successor of the node X to be deleted. Where is the successor of A? A little 
thought shows that we must go right from X and then proceed as far left as we can 
until we find a nil left pointer. After we start to travel leftward, any node Y that 
we encounter with a non-nil left pointer cannot be the successor of X, since there 

then exists some other node Z that follows X but precedes Y. 

2 Recall that it is more than just an insertion algorithm; it is really a search algorithm 
that automatically performs an insertion if the input key is not already in the tree. 
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7 

(a) Original BST 

7 

(c) Deleting 29 

24 24 

(d) Deleting 5 

47 

50 

7 13 42 

(e) After 5 Deleted 

Figure 10.7 Deletion from a BST 

In order to illustrate the deletion process, let us imagine that we have built the 
BST shown in Figure 10.7(a) as a result of the following sequence of insertions: 

24 47 29 5 11 16 31 13 27 3 8 50 6 42 7 

Now there are actually two very simple cases, corresponding to when one (or both) 
of the pointer values in a node X is nil; in those cases, we simply cause the father 
of X to point to the only child of X. Thus, suppose that we wish to delete either 16 
or 31; the changed pointer values for these two deletions are shown by the dashed 
lines in Figure 10.7(b). If we look now at the procedure BST_DELETE (Algorithm 
10.2), we find those cases represented and dealt with by the first four lines in the 
body of the code. When the node to be deleted has two non-nil pointer values, 
however, we must find its successor, as described previously. For the case of delet- 
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ing 29 from (a), we make the adjustments illustrated in Figure 10.7(c); here, 
tptr].left = nil in BST_DELETE, and so the corresponding if statement is not 
executed. The most complicated possibility is illustrated by the deletion of 5 from 
(a), for which the necessary adjustments are illustrated in Figure 10.7(d), and the 
resulting BST is completely redrawn in (e). In this case, the variable tptr succes¬ 
sively takes the values 11,8,6 until a nil left pointer is encountered, with the variable 
sptr then having the value 8. Note that the input argument nptr is called by refer¬ 
ence, since it is one of the pointer variables that must be reassigned. 

procedure BST_DELETE (var nptr: link); 

{nptr points to the node to be deleted from the tree} 

type link = }node; 
node = record 

key: {the value to be used for ordering} 
left: link; 
rite: link; 

end; 

var sptr,tptr: link; 

begin 
if nptr}.left = nil then 

nptr := nptr}.rite 
else if nptr}.rite = nil then 

nptr := nptr}.left 
else begin 

tptr := nptr}.rite; 
if tptr}.left <> nil then begin 

repeat 
sptr := tptr; 
tptr := tptr}.left; 

until tptr}.left = nil; 
sptr}.left := tptr}.rite; 
tptr}.rite := nptr}.rite; 

end; 
tptr}.left := nptr}.left; 
nptr := tptr; 

end; 
end; 

Algorithm 10.2 BST_DELETE 

BST’s and their associated algorithms are very convenient for searching, 
insertion, and deletion. How efficient are they? In the case of binary search, the 
completely balanced character of the implicit search tree guarantees logarithmic 
behavior. For dynamically varying BST’s, there is the hazard that they may 
become very imbalanced. Fortunately, the imbalance is not likely to be bad, in a 
probabilistic sense. We will show that BST’s grown with random insertions behave 
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only 39 percent worse than completely balanced trees. For the case of deletions, 
only partial analyses exist, but we will see that these are reassuring, nonetheless. 

We assume that CSn and CFn are average values over all possible random BST’s 
with n nodes - that is, over all n\ orderings of the input keys. The simplest way to 
establish the result for the case of random insertions is to note that the number of 
comparisons when finding a key must be one more than the number of comparisons 
when it was first inserted. Averaging these over CF0 (for the first node inserted), 
CF\ (for the second node inserted), ... , CFn_x (for the last node inserted), we have 

CFn + CFj + ••• + CFn_ j 
cs„=i+ —-4-— (10.10) 

Combining this with Eq. 10.5 we get 

(n + 1) CFn = In + CFq + Ciq + - + CFn__x (10.11) 

The next step is to subtract from this equation the corresponding equation with 

(n — 1) in place of n, yielding the recurrence equation 

(n + 1) CFn - nCFn_i = 2 + CFn_x (10.12) 

which is readily solved as 

CF„ = CF„_, + = 2if„+1 - 2 

Finally, combining this with Eq. 10.5 again, we have 

cs„ = 2(1 + A)i/„ - 3 

(10.13) 

(10.14) 

Since Hn is approximated by In n (see Eq. 10.2), then CS„ is approximated by 2 In n, 
or about 1.386 lg n. In other words, search in a BST grown by random insertions 
will, on the average, cost just 39 percent more comparisons than for one that is 
completely balanced. This is all the more remarkable when we learn that if the 
average is taken over all binary trees, rather than over all BST’s, the average pdth 
length does not grow as In n, but rather as nM2 [Knuth 1973a]! 

One of the earliest derivations of these results about BST’s and about the path 
length properties in Section 10.1.2 is by Hibbard [1962]. Hibbard also established 
the result that a random deletion from a random BST leaves a random BST. In 
order to clarify the meaning of this last statement, we need to define what is meant 
here by random. Although we speak of a set of distinct keys {KUK2,..., Kn) we can 
just as well, for the present purpose, speak of the integers Sn = {1,2,...,«}. The 
trees formed by insertion and deletion operations on the {AT,} will be isomorphic to 
the trees formed by insertion and deletion operations on permutations of Sn. In this 
manner, the problem of dealing with random trees is converted to the problem of 
dealing with random permutations (see Section 6.7.1). As an example, if we 
compute the 24 BST’s generated by S4, we find the 14 distinct trees of Figure 10.8, 
with frequency of shapes: 1, 1, 2, 1, 1, 3, 3, 3, 3, 1, 1, 2, 1, 1. We can reverse the 
point of view and decide about the randomness of any set of BST’s on n nodes by 
comparing their shape distribution with that obtained by growing all n\ BST’s on Sn. 
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Figure 10.8 Shape Distribution of BST’s on 4 Nodes 
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This is the manner of proving the assertion at the beginning of the paragraph. 
More precisely, if we tabulate the composition of each of the n\ random insertion 
sequences with each of the n possible random deletions, we find that the resulting 
BST’s on n — 1 nodes have the same shape distribution as the (n - 1)! BST’s on 

(see Exercise 10.14). 

Does this mean that a sequence of random, interspersed insertions and deletions 
is guaranteed to be random? No; in fact, after a sequence of random insertions 
and one deletion, the BST obtained by just one more random insertion is no longer 
random! Succinctly, the problem is that after the deletion, one of the gaps into 
which the next insertion might be made has relative width 2l(n + 1), and all the 
other gaps have relative width 1 /(« + 1). Also, recall that our deletion algorithm is 
asymmetrical, always promoting the successor and never the predecessor. We 
should anticipate that this bias will cause the root of the BST to move inexorably to 
the right, and thus lead to increased average search length after many 
insertion/deletion pairs. Early analyses of the exact behavior of random BST’s were 
complex and not definitive [Knuth 1977]. It was subsequently shown by simulation 
[Eppinger 1983] that, paradoxically, the average path length improves (for a while, 
anyway)! These experiments also showed that after a very large number of 
insertion/deletion pairs, the average path length steadily worsens, particularly for 
larger BST’s. Finally and very significantly, this same study demonstrated that the 
use of a symmetrical deletion algorithm always causes the average path length to 
become better than random. The symmetrical effect can be obtained either by 
strictly alternating between predecessor and successor, or by using a random 
number generator to “flip a coin.” More recent analytical results confirm the 
observed phenomena by proving that, after a great many insertions and asymmet¬ 
rical deletions, the average search length approaches 0(nl/2) [Culberson 1985]. 
There is as yet no corresponding theoretical basis for the observed phenomena that 
symmetrical deletion improves matters. 

10.3.2 Static BST’s with Unequal Frequencies 

In the case of sequential search for keys with unequal frequencies of access, we saw 
in Section 10.2.1 several methods for using these frequencies to reduce the average 
search time. Similar opportunities present themselves with BST’s. It is useful in 
this case to associate p- s (i = 1 .. n) with successful search terminating at an internal 
node, and to associate q- s (i = 0 .. n) with unsuccessful search terminating at an 
external node. Search terminating at a node labeled #,■ corresponds to an argument 
key that falls between the keys Kt_x and Kt located at nodes labeled /?,•_, and p(; the 
node labeled q0 (qn) corresponds to an argument key that is less than Kx (greater 
than Kn). Now consider the two BST’s in Figure 10.9, where the first row of adjoin¬ 
ing numbers tabulates the path lengths. Then, for the hypothetical values of ph qt in 
the second row, we see that the overall average weighted path length (see Section 
8.2.4) is 1.8 in (a) of the figure and 2.2 in (b) of the figure; thus, the better 
balanced tree of (a) is superior. However, this comparative advantage is easily 
reversed if we use the hypothetical values of ph qt in the third row, leading to aver- 
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age weighted path lengths of 1.9 for (a) and 1.8 for (b). Note that these path length 
values are a combination of both CS„ and CFn. 

We see from Figure 10.9 that the optimal shape for a BST varies with the 
values of the p, and qh The determination of the optimal shape, given a set of 
frequencies, affords a pretty illustration of dynamic programming, as we will see in 
the next section. Following that, we will discuss several methods for computing 
quasi-optimal solutions. Then, in the last two sections, we will reconsider the prob¬ 
lem of optimality from entirely different viewpoints. 

(a) 

Figure 10.9 Variation of Path Length with p„ qi 

10.3.2.1 Optimal BST’s. It would be very natural at this point to wonder why the 
computation of optimal BST’s presents an issue. In Section 8.2.4 we saw Huffman’s 
simple but elegant construction for finding a code tree with minimal weighted path 
length. How is this different? In fact, there are two significant differences: 
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• In Chapter 8, the input data was associated with just the external nodes, but 
now we have input data (frequencies) at both internal and external nodes. 

• Our binary tree is now a BST, with the requirement that the keys must be main¬ 

tained in inorder sequence. 

We might simply generate all the possible BST’s for the given set of data, 
compute their weighted path lengths, and retain the best one. But recall that there 
are C{2n,n)l{n + 1) such BST’s (see Eq. 6.14), and so this approach is completely 
impractical. We are saved, however, by the principle of optimality (see Section 
7.4.2.1). For any optimal tree T, its descendants TL and TR must also be optimal 
BST’s. If not and (for example) TL is not optimal, then by finding the optimal 
version TL' and constructing T' from TL' and TR, we have T' superior to T, 
which is a contradiction. So we can start with single internal nodes and then 
proceed by successively constructing larger BST’s from smaller ones. Since we can 
tabulate and reuse the values for the smaller trees over and over again, this compu¬ 
tation is not exponential after all. As with the Huffman construction, we can work 
with either (normalized) probabilities or (unnormalized) frequencies. We will illus¬ 
trate matters with the latter. In doing this computation, we will be concerned with 
subtrees Tu spanning the leaves from qt to qp and for which we have the following 

three quantities: 

wtj - the sum of the weights in Tip note that wu = qh and that for j — i = 1, 

then = q, + Pj + qP 

cu - the cost (that is, weighted path length) of Tip note that cu = 0, and that 

for j -i = 1, then cu = wy. 

rtJ - the root of the optimal TtJ spanning q, to q-, note that for j — i = 1, then 

rU=j- 

In the general case, since the depth of the vertices in the subtrees TL and TR is 
increased by one when they are combined in T, we have the formula 

cij = wi,k-1 + Pk + wkj + ci,k-1 + ckj (10.15) 

relating the cost of TtJ with root at k to the values on the corresponding subtrees. 
The sum of the first three terms is simply wtJ, and the essential calculation is to find 
the value of k that minimizes c, „ as follows: 

cii = wtJ + minkfej (cik_, + ckJ) (10.16) 

To illustrate matters, suppose that we have the following set of frequencies: 

P\ ~~ 2> Pi ~ 4, Pi — 1, p<$ — 3, /?s 1 (10 171 
= 01=3, q2=l, ?3 = 3> tf4 = 2> ?5 = 7 V ' 

The computation can be laid out as in the tableaux of Figure 10.10, where each box 
contains the values of wip cip and rt j for the indicated pair ij. As an example of the 
optimization, consider the calculation of c15. It is the minimum of the cases: 

Wj_5 + Cj | + c2 5 = 25 + 0 + 33 = 58 
Wi;5 + c^2 + C35 = 25 + 8 + 24 = 57 
W15 + C\ 3 + C4 5 = 25 + 17 + 10 = 52 
W15 + cli4 + C55 = 25 + 32 + 0 = 57 
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Figure 10.10 Computation of an Optimal BST 

from which we conclude that cl 5 = 52. Moreover, since this minimum occurs for 

k = 4, then rI 5 = 4 is the root of the optimal subtree Tus spanning qx to q5. The 

final optimal BST is shown in Figure 10.11(a), in the same style as Figure 10.9, 

thereby confirming the final value of c0 5. In this final tree, it is straightforward to 

see from the tableaux that r0 5 = 4. Moreover, this has the further consequence that 

the left subtree of K4 is T0 3 spanning the leaves q0 to q3, so we look for the value 

r0 3 = 2 and find that the root of T0 3 is K2. 

This calculation can be expressed rather concisely, as shown in the program 

OPT_BST (Algorithm 10.3). The algorithm has three nested loops, one for 

computing the subtrees of successively greater widths, one for computing all the 

subtrees of a given width, and one for minimizing a given subtree. Thus, the 

complexity is apparently 0(n3) for both time and storage. However, it can be 

shown that the roots of the subtrees satisfy the property 

rij-l — rij — ri+lj (10.18) 

and this allows a reduction of the search interval in the inner loop. To see this 

informally, note that the tree TtJ can be obtained from by adding pj and q] and 



484 SEARCHING 

program OPT_BST; 

const size = {number of internal nodes} 

type ndx = 0 .. size; 

var h,i,j,k,m,min: integer; 
p,q = array [ndx] of integer; 
cost,weight: array [ndx,ndx] of integer; 
root; array [ndx,ndx] of ndx; 

begin 
for i := 0 to size - 1 do begin 

j := i + 1; 
weight [i,j] := q [i] + P D] + d GD; 
cost [i,j] ;= q [i] + p G] + q G]; 
root [i,j] := j; 

end; 
for h := 2 to size do begin 

for i ;= 0 to size - h do begin 

j := i + h; 
weight [i,j] := weight [i,j - 1] + p Q] + q GD; 
k := root [i,j - 1 ]; 
min := cost [i,k - 1] + cost [k,j]; 
for m := k + 1 to root [i + 1 ,j] do 

if (cost [i,m - 1] + cost [m,j]) < min then begin 
k ;= m; 
min ;= cost [i,m - 1] + cost [m,j]; 

end; 
cost [i,j] := weight [i,j] + min; 
root [i,j] := k; 

end; 
end; 

end. 

Algorithm 10.3 OPT_BST 

re-optimizing. Intuition suggests that the root could move right in this process, but 

should never move left. A similar remark applies to Ti+ij’ By proving Eq. 10.18 

rigorously, it can be shown that both the time and space requirements for this 

calculation are reduced to 0(n2) [Knuth 1971b], This shortcut is reflected in the 

algorithm OPT_BST. With regard to our example of Figure 10.10, since 

r0 3 = 2 = r1>4, then we need consider only the case k — 2 in computing c0 4. 

We can observe the separate impact of the pt and the qt by recomputing the 

optimal BST for the data of Eqs. 10.17, but in one case treating the p, as identically 

zero, and in another case treating the qt as identically zero. The resulting “leaf’ 

form of the BST (for p, — 0) is shown in Figure 10.11(b), and the resulting “node” 

form of the BST (for qt = 0) is shown in Figure 10.11(c). We see that the three trees 

in the figure are all quite different. 
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(a) Optimal BST 

(b) Optimal BST with p,- = 0 

(c) Optimal BST with p, = 0 

Figure 10.11 Optimal BST’s 
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For certain problems, it is natural to regard the probabilities p,- of successful 
search as all being identically zero, as when the values Kt are boundaries separating 
items to be distributed into an ordered set of categories. In this case, the optimal 
BST can be computed in 0(n lg n) time and 0(ri) space. However, both the original 
algorithm for this [Hu and Tucker 1971] and a subsequent refinement [Garsia and 
Wachs 1977] are fairly complicated, in terms of both implementation and proof of 

correctness. 

The problem of the optimal BST can be generalized by assigning other cost 
functions, by constraining the maximum height of the tree, by using multiway trees, 
etc. In all these various possibilities, how does the problem of computing an opti¬ 
mal alphabetic tree (that is, with traversal constraints on the node ordering) 
compare with the problem of computing an optimal non-alphabetic tree? Do the 
constraints always make the problem harder, as in this case, or do they sometimes 
make it easier, by reducing the number of cases to be investigated? In fact, both 

situations can occur; an example of the latter is given in Itai [1976]. 

flO.3.2.2 Quasi-Optimal Methods. For large sets of keys, not even the quadratic 
method of Algorithm 10.3 is very satisfactory, particularly with regard to space. 
Also, the Pi are not usually all zero, and so the 0(n lg n) method cited near the end 
of the last section is often not applicable. Therefore, a number of heuristic methods 
have been proposed for finding BST’s that may be slightly less than optimal, by 
means of algorithms that are 0(n lg n) or even 0(n) [§]. When we consider that the 
probabilities ph qt are often known only approximately, this becomes a very good 

trade-off. 

As an initial approach to the problem, we might try inserting keys in order of 
decreasing probabilities pf, for the same data of Eqs. 10.17, this method yields the 
BST of Figure 10.12(a), with a cost of 69. It is not hard to see that this monotonic 
heuristic is a poor one that can lead to a completely degenerate BST, having corre¬ 
spondingly large cost. Even in the average case, this heuristic yields BST’s that are 
no better than random BST’s — that is, with an average cost of 1.4 lg n. 

It would be nice if we could employ divide-and-conquer, first finding the root of 
the final BST by some criterion, and then recursively applying that same criterion to 
the two subtrees. Several such criteria have been tried. For one, we can pick the 
root so that the sums of the weights in the two subtrees are balanced as closely as 
possible; for the same data again, this heuristic yields the BST of Figure 10.12(b), 
with a cost of 72. This balanced heuristic can be implemented in 0(n) time and 
space, and it yields BST’s that are probabilistically as good as completely balanced 
ones - that is, with an average cost of lg n. Nonetheless, this method can yield 
moderately poor results if the root thus selected has itself a particularly low proba¬ 
bility, as in our example. 

In another variation of balancing, the root is picked in such a manner that the 
maximum of the weights of the two subtrees is minimized; for our example, this 
happens to produces the optimal BST, with cost of 67. This min-max heuristic can 
also be implemented in 0(n) time and space, and it has been found to be generally 
superior to the balanced heuristic. 



110.3.2.2 QUASI-OPTIMAL METHODS 487 

22341 13321 7 

(a) Monotone Heuristic (- 69) 

(c) Greedy Heuristic (= 69) 

Figure 10.12 Quasi-Optimal BST’s 
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A completely different approach is to employ a greedy heuristic. In this 
method, the tree is built from the bottom rather than the top by repeatedly (a) look¬ 

ing for a triple qt_u p„ qt with the property that its sum is a local minimum, scanning 
left to right, and then (b) replacing the triple with one external node (as in 
Huffman’s method). The result of the greedy heuristic applied to the same example 
data is again the BST of Figure 10.12(c), with a cost of 69. This technique can also 
be implemented in 0(n) time and space, and experiments suggest that it yields even 

better results than the balanced or min-max heuristics. 

To put things in perspective, the quasi-optimal BST’s obtained by methods such 
as these are typically only a few percent inferior to the optimal BST’s, indicating 
that they are pragmatically quite acceptable. Even so, if we have a static set of 
items from which an optimal or quasi-optimal BST might be constructed, we should 
consider the possibility that the same set of items might better be handled in an 
array, using ordinary binary search. Whether or not an optimal or quasi-optimal 
BST will buy as much as it costs depends upon how heavily the BST will be used 
and how widely the ph q, values are skewed. (We will illustrate the comparative 
performance of binary search and an optimal BST for a realistic set of data in 
Section 10.3.2.4.) This is not the last word about optimal BST’s. In the succeeding 
two sections, we will examine the issue from other points of view. 

flO.3.2.3 Information-Theoretic Considerations. It is interesting to examine the 
issue of optimal BST’s from a theoretical point of view. In Section 8.2.4 we intro¬ 
duced the notion of the entropy H(U) associated with a set of messages U = {m,} of 
varying probabilities pt. One of the principal results described there is that, for K 
the number of code symbols, the average codeword length is bounded from below 
by H(U)I lg K, or (Eq. 8.4) 

Moreover, for a minimum binary encoding with normalized frequencies, we also 
had (Eq. 8.6) 

Consider next the case of an optimal BST with the /?, identically zero, with 
normalized qt and with H — — lg <7,-. In that case, it has been shown that 

(10.19) 

[Gilbert and Moore 1959]. In other words, the imposition of the alphabetic 
constraint in going from a minimum binary encoding to a leaf form of an optimal 
BST causes the upper bound to increase by just one more comparison, on the aver¬ 
age. Other authors have since discovered even better bounds for optimal BST’s, 
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and also for various types of quasi-optimal BST’s. For example, with Copt denoting 
the cost of optimal BST’s, it has been shown that 

tf/lg3<tf- \gH-{\ge-l)<Copt<Cwb<// + 2 

HI\g3<H- lg // — (lg e — 1) < Copt < Cmm < H + 2 (1°'20) 

where Cwb and Cmm denote the cost of the balanced and min-max quasi-optimal 
BST’s of the preceding section [Bayer 1975]. The bound HI lg 3 is not as tight as 
the other lower bound, but it has an easy intuitive interpretation. Namely, a BST 
corresponds to a ternary search tree with the information removed to a leaf node; 
then the term Hj lg 3 follows from Eq. 8.4. 

flO.3.2.4 An Alternative — Median Split Trees. If we step back from the problem 
of finding the optimal shape for a BST to support efficient searching, we could say 
that there is a conflict between two objectives: 

• balancing the tree, and 

• placing frequently accessed items near the root. 

A thoughtful way to overcome this is to allocate two key values at each node of the 
tree, with one reflecting the first objective, and the other reflecting the second objec¬ 
tive. Such search trees are called split trees, with one key serving as the target of a 
successful match, and the other key serving to split unsuccessful matches to the left 
and to the right. We might ask what would be the optimal form of a split tree, 
given a set of ph qt. The computation to determine an optimal split tree is evidently 
of complexity 0(n5) [Huang and Wong 1984], However, the original proposal for 
this type of tree uses the lexical median of the set of keys as a splitting value [Sheil 
1978], The resulting structure is called a median split tree, and it can be constructed 
in 0(n lg ri) time. A median split tree is either empty or else consists of: 

(a) a root containing Kpt (the key with highest frequency of access in the tree) and 
Ks, (the median value of the keys K ^ Kp,); 

(b) a left subtree that is a median split tree containing the remaining keys K such 
that K ^ Kpi and K < Kst; 

(c) a right subtree that is a median split tree containing the remaining keys K such 
that K ^ Kp; and K > Ksf; 

It might be objected that both the space for an extra key and the time for an 
extra comparison would make such a method less efficient than one based upon 
pure BST’s, or would at least cause attempts to compare this method with other 
methods to be suspect. As far as time is concerned, the extra comparison will in 
many cases be insignificant within the overall computation associated with a node.3 
It is the number of distinct node accesses (the path length) that is usually most 
important. The extra space is also likely to be insignificant for a real application. 
Moreover, using the median as the split value allows us to obtain a net space saving 
in all cases! This is because the resulting tree can then be compactly represented as 

3 Recall that binary search, as commonly implemented (Algorithm 10.1), also involves 
two comparisons at each node of the search tree. 
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a complete binary tree stored in an array. There is one complication. In a 
complete binary tree, as opposed to a completely balanced binary tree, all the leaves 
at level k should be to the left of leaves at level k-l. In order to force this condi¬ 
tion, we do not choose the median as split value; rather, for a set of n ordered 
keys, we use a pseudo-median according to the following pattern: 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

f(n) 1 2 2 3 4 4 4 5 6 7 8 8 8 8 8 9 10 

Note that this also takes care of the fact that the median is not well-defined for an 

even number of items. 

/ word Pi Fi / word Pj Fi / word Pi Fi 

1 a .068 5 10 from .013 26 19 of .106 2 

2 and .084 3 11 had .015 22 20 on .020 16 

3 are .013 24 12 he .028 10 21 that .031 7 

4 as .021 14 13 his .020 15 22 the .204 1 

5 at .016 18 14 1 .015 20 23 this .015 21 

6 be .019 17 15 in .062 6 24 to .076 4 

7 but .013 25 16 is .029 8 25 was .029 9 

8 by .015 19 17 it .026 12 26 with .021 13 

9 for .028 11 18 not .013 23 

Table 10.1 26 Most Common Words in English Text 

By way of illustration, consider Table 10.1, wherein the 26 most common words 
in typical English text have been taken from Kucera and Francis [1967] and listed 
in lexical order, along with their normalized relative frequencies ph and also their 
frequency rank order Ft. If ordinary binary search is performed, then the structure 
of the search tree is that of Figure 10.5, and we readily find that CSn = 4.43. (This 
is markedly inferior to the value CS„ = 4.00 in Section 10.2.2, where the 26 keys 
were assumed to have equal likelihood of access.) If the optimal BST is 
constructed, as shown in Figure 10.13(a), then CS„ = 3.24. Finally, if the pseudo¬ 
median split tree is constructed, as shown in Figure 10.13(b) with nodes written as 
Kpj/KSi, then CSn — 2.95. Thus, there can be substantial advantage in separating the 
issues of lexical ordering and frequency ordering. Note that the median split tree is 
simultaneously a heap with respect to the frequencies and a complete BST with 
respect to the key splitting! This is similar to the Cartesian tree of Exercise 6.24, in 
that one structure embodies both a BST and a priority queue, but it is different in 
that here we are dealing with only one variable, and also in that this priority queue 
is a heap. We have seen that the interaction of lexical and frequency orderings can 
lead to serious degradation for optimal BST’s. However, it has been shown that 
this is much less likely to occur with split trees; they are relatively stable about 
their optimal conjunctions of lexical/frequency orderings. 
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Figure 10.13 Optimal Search Trees for Table 10.1 
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As a final comment about the construction of split trees, we have not taken into 
account the effects of unsuccessful searches. However, it is important to consider 
the q, only when their values are known to be highly skewed. In many cases their 
values will be very uncertain compared to those for the ph and in other cases it will 
be reasonable to assume that they are not highly skewed. Thus, omitting their 

influence from the computation is unlikely to be a serious matter. 

10.3.3 Dynamically Balanced BST’s 

For the Best Actresses data of Figure 6.19, we obtained the BST of Figure 6.20 
when we used BST_ INSERT (Algorithm 6.6) repeatedly. What if we now try this 
with another list of Best Actresses, as given in Figure 10.14? The resulting BST in 
this case is shown in Figure 10.15; it illustrates how easily a random input sequence 
can lead to an unbalanced tree with very poor search characteristics. In fact, this 
eventuality is a realistic one, since many BST’s are not grown randomly. There is 
no possibility of pre-constructing an optimal BST in these cases. Instead, the tree is 
reorganized dynamically whenever insertions or deletions cause it to become imbal¬ 
anced. As we will see, depending upon the criteria that are used to characterize the 
balance of the tree, there are several methods for deciding when and how to do this 

restructuring. 

1944 Bergman 1949 de Havilland 1954 Kelly 

1945 Crawford 1950 Holliday 1955 Magnani 

1946 de Havilland 1951 Leigh 1956 Bergman 

1947 Young 1952 Booth 1957 Woodward 

1948 Wyman 1953 Hepburn 1958 Hayward 

Figure 10.14 Academy Awards for Best Actress 

As an extreme measure, we might insist that the BST be completely balanced at 
every step. Unfortunately, the original algorithm for enforcing this condition has 
complexity 0{n) for each rebalancing, and requires two stacks [Martin and Ness 
1972], Although it is possible to reduce the workspace required, it is still the case 
that the tree needs to be rebalanced for a high proportion of insertions, and the 
rebalancing can have global consequences. This latter point is illustrated in Figure 
10.16, where (a) depicts a complete binary tree before insertion of node A, and (b) 
depicts the rebalanced tree after insertion. Note that it was necessary to alter the 
position of every single node in the tree in order to rebalance it. 

Felicitously, we can obtain a great deal by settling for less than perfection. The 
first and still most common technique is that of balancing (recursively) the heights 
of the two subtrees of every node; we will discuss this method in the first section. 
Following that, we will examine a technique that balances the weights of the two 
subtrees; and then we will consider several other alternatives, some of which just 
respond to local imbalance without guaranteeing any global criteria. 



10.3.3.1 HEIGHT-BALANCED TREES 493 

Figure 10.15 BST for Figure 10.14 

Figure 10.16 Completely Rebalancing a BST 
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10.3.3.1 Height-Balanced Trees. Height-balanced trees were discovered by two 
Russian mathematicians, Aderson-Vel’skii and Landis, from whom their more 
common name of AVL trees derives [Adel’son-Verskii and Landis 1962]. They 
have the property that for every node the balance factor, or height of left subtree 
minus height of right subtree, is —1, 0, or +1. Thus, in Figure 10.17, (a) is an AVL 
tree, but (b) is not because the AVL property is violated at node K. In order to 
manipulate AVL trees, it is necessary to retain the value of the balance factor with 
each node, which requires a minimum of two bits of extra storage. It is common to 
speak of a node with a balance factor of +1, 0, or —1 as being left heavy, balanced, 
or right heavy. 

(a) AVL (b) Non AVL 

Figure 10.17 Example Binary Trees 

Just how unbalanced can a binary tree be and yet retain the AVL property? 
This question is readily answered by turning it around and constructing min trees of 
successively greater heights; that is, for a given value of height h, we want the AVL 
tree Th with the minimum number of nodes. Each such mintree must consist of a 
root, one subtree that is the AVL mintree of height h - 1, and another subtree that 
is the AVL mintree of height h- 2. The mintrees Tx - TA are, for example, as 
shown in Figure 10.18. We see that the number of nodes n(Th) is given by the 
recurrence relation 

n(Th) = 1 + n{Th_x) + n(Th_2) (10.21) 

This is remarkably similar to the recurrence relation for Fibonacci numbers, 
Fn = Fn_y + F„_2; and we find that the successive values of n(Th) - 1, 2, 4, 7, 12,... 
- are each just one less than a value in the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13,...; 
thus, we have that 

n(Th) = Fh+l ~ 1 (10.22) 

Not surprisingly, the mintrees of AVL type are also called Fibonacci trees. We have 
already encountered them in Section 10.2.3, with T5 illustrated in Figure 10.6. 
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T1 

/ 

Figure 10.18 Fibonacci Trees 

AVL trees are quite good as BST’s. One important reason is that the path 
length for an AVL tree containing n items can never exceed by more than 44 
percent the path length of a completely balanced tree containing those n items 
[Adel’son-VeFskii and Landis 1962; Foster 1965]. To show this, we note that a 
closed form solution of Eq. 10.21 can be obtained on the basis of our earlier closed 
form Fibonacci solution in Eq. 1.29. Since we have just shown that the number of 
nodes n in an AVL tree of height h cannot be less than Fh+2 1, then 

(10.23) 

where rx, r2 are given in Eqs. 1.26, and where the second inequality follows from the 
fact that r2< 1. Substituting the value of r„ taking logarithms to the base 2, and 

simplifying yields 

(10.24) h< 1.44 lg (a + 2) — 0.33 

for the promised result. This is the worst-case figure; in fact, we will see that the 

average path length is lg n plus a small constant. 

All of the preceding might be somewhat academic were it not for another 
important feature of AVL trees - that it is relatively simple to perform rebalanc¬ 
ing, when it becomes necessary to do so. If an insertion causes a tree to lose its 
AVL property, then a few local readjustments are sufficient to restore the AVL 
property. This is in contrast to the global readjustments that were required in 
Figure 10.16. In Figure 10.19, nodes are drawn as circles and show their balance 
factors, and subtrees are drawn as triangles and show their height. Looking in the 

figure, we see: 

(a) an AVL tree; 

(b) the tree after adding a new node and causing imbalance; 

(c) the tree after rebalancing. 
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Figure 10.19 Single Rotations 
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The type of rebalancing illustrated in this sequence is called a single right rotation. 
It has two important features: 

1. It preserves the in-order traversal of the tree: 71, A, 72, B, 73. 
2. The height of the tree at the root is the same after rebalancing as it was before 

the new node was added. 

The last point is at the heart of the matter. If the tree shown in Figure 10.19 is 
really a subtree in a larger tree that has the AVL property, then the fact that the 

height of the subtree is invariant under rebalancing means that the balance factors 

of the ancestor nodes cannot be affected. Only the balance factors between the root 
of the subtree and the point of insertion are subject to change. Moreover, a little 
reflection shows that the root of the affected subtree, known as the critical node, is 

that closest ancestor to the new node that has a non-zero balance factor. There is a 
mirror-image case of a single left rotation, illustrated in Figure 10.19(d) — (f)- Note 
that single rotations rebalance trees in which the balance factor has the same sense 
for a critical node and its child, either left-left for a single right rotation, or else 
right-right for a single left rotation. Single rotations require changes in just two 

pointer values. 

In order to implement AVL trees, we define nodes as 

type link = fnode; 

node = record 
key: {the value to be used for ordering } 

tilt: -1 .. +1; 
left,right: link; 

end; 

The actions of single right and single left rotation are then reproduced by the proce¬ 
dures ROTATE_LL and ROTATE_RR (Algorithms 10.4). Be careful to observe 

that the suffixes '_LL' and _RR' refer to the sense of imbalance, which is opposite 

to the sense of the corrective rotation. 

procedure ROTATE_LL (dad,son: link); 

begin 
dadf.tilt := 0; 

sonf tilt := 0; 
dadf.left := sonf.rite; 

sonf.rite := dad; 

end; 

procedure ROTATE_RR (dad,son: link); 

begin 
dadj-tilt := 0; 

sonf.tilt := 0; 
dadj.rite := sonj.left; 

son|.left := dad; 

end; 

Algorithms 10.4 ROTATE_LL and ROTATE_RR 



*
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Figure 10.20 Double Right Rotation 
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procedure ROTATE_LR (dad: link; var son: link); 

var gson: link; 

begin 
gson := sonj.rite; 
son).rite := gsonj.left; 
dadf.left := gson).rite; 
gsonf.left := son; 
gson|.rite := dad; 
case gsont-tilt of 

-1: begin 
sonf.tilt := +1; 
dadt-tilt := 0; 

end; 
0: begin 

sonj.tilt := 0; 
dadt.tilt := 0; 

end; 
+ 1: begin 

son t-tilt := 0; 
dad t-tilt := -1; 

end; 
end; 
gson t-tilt := 0; 
son := gson; 

end; 

Algorithm 10.5 ROTATE_LR 

When the sense of the balances of the critical node and its child are opposite, 

then we have a more complicated situation that requires a double rotation. This is 

illustrated in Figure 10.20, wherein we see: 

(a) an AVL tree; 

(b) the tree after adding a new node as a child of either 73 or 73, causing the 

balance at node B to be +1 (for 72) or -1 (for 73), and causing imbalance at 

node C; 

(c) the tree after performing a left rotation at node A, causing the balance at 

nodes A and B to be either 0 and +2 (for 73) or +1 and +1 (for 73); 

(d) the rebalanced tree, after performing a right rotation at node B, causing the 

balance at nodes A and C to be either 0 and —1 (for 73) or +1 and 0 (for 73). 

Here, the critical node is heavy to the left and its child is heavy to the right; this 

left-right combination is rebalanced by performing a single left rotation at the child 

and then a single right rotation at the critical node. The composite effect is called a 

double right rotation, as illustrated in procedure ROTATE_LR (Algorithm 10.5). 

There is, of course, the mirror image case of right-left imbalance; the composite 

rebalancing for it is termed a double left rotation. Note that, as with the single 
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procedure AVL_INSERT (var nptr,rptr: link); 

label 1; 

var kkey: {same type as link].key} 
del: -1 .. +1; 
dad,gdad,ptr,qtr,son: link; 

begin 
{Phase I - locate insertion point for new node} 

if rptr = nil then begin 
rptr := nptr; 
goto 1; 

end; 
gdad := nil; 
dad := rptr; 
qtr := nil; 
ptr := rptr; 
kkey := nptrf.key; 
while ptr <> nil do begin 

if ptrf.tilt <> 0 then begin 
gdad := qtr; 
dad := ptr; 

end; 
if kkey = ptrfkey then begin 

nptr :s= ptr; 
goto 1; 

end else begin 
qtr := ptr; 
if kkey < ptrf.key then ptr := ptr|.left 

else ptr := ptrf.rite; 
end; 

end; 

Algorithm 10.6 AVL_INSERT (1 of 2) 

rotations, tree height is preserved; so also is the inorder traversal: T\, A, T2, B, 
73, C, T4. 

The complete algorithm for inserting a new node in an AVL tree is given in the 

procedure AVL_INSERT (Algorithm 10.6), which uses the rotation procedures of 

Algorithms 10.4 and 10.5 ^nd also an analogous procedure ROTATE_RL. In 

order to identify those nodes for which the balance factors may need to be changed 

after the insertion, we could use a stack. Much more efficient is the use of the 

variables dad and gdad to simply record the identity of the critical node. Though 

slightly long, AVL_ INSERT is straightforward, with logic that parallels what is 
depicted in Figures 10.19 and 10.20. If we now build a BST for the data of Figure 

10.14, using AVL_INSERT rather than BST_INSERT, the tree will grow as in 

Figure 10.21. In the top part of the figure, the tree is shown as it appears just prior 

to each rotation, and the names on the nodes have been abbreviated to the first two 

letters. Also, critical nodes are circled and wiggly arrows pointing to transformed 
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{Phase II - insert as child of qtr, and rebalance} 
if kkey < qtr}.key then qtrj.left := nptr 

else qtrf.rite := nptr; 
if kkey < dad}.key then begin 

son := dadt-left; del := +1; 
end else begin 

son := dad}.rite; del := -1; 
end; 
ptr ;= son; 
while ptr <> nptr do 

if kkey < ptr}.key then begin 
ptr}.tilt := +1; ptr := ptr}.left; 

end else begin 
ptr}.tilt := -1; ptr := ptr}.rite; 

end; 
{If tree is balanced then adjust and return, else rotate} 

if dad}.tilt = 0 then 
dad}.tilt := del 

else if dad}.tilt + del = 0 then 
dad}.tilt := 0 

else begin 
if del = +1 then begin 

if son}.tilt = +1 then ROTATE_LL (dad,son) 
else ROTATE_LR (dad,son); 

end else begin 
if son}.tilt = -1 then ROTATE_RR (dad,son) 

else ROTATE_RL (dad,son); 
end; 
if gdad = nil then rptr := son 
else if dad = gdad}.left then gdad}.left := son 
else if dad = gdad}.rite then gdad}.rite := son; 

end; 
1: 
end; 

Algorithm 10.6 AVL_INSERT (2 of 2) 

trees are labeled with the type of imbalance. The final tree at the bottom is compa¬ 
rable to Figure 10.15. 

The story of deletions in AVL trees is somewhat analogous to that of insertions, 
but a little more complicated. If the AVL property is destroyed by a deletion, then 
the property can be restored by applying the same LL, RR, LR, or RL rotations as 
for insertion. However, it may be necessary to apply not just one such rotation, but 
<9(lg ri) of them. In order to see this possibility, imagine that the rightmost node is 
deleted from a Fibonacci tree (see Figures 10.6 or 10.18). We leave the details of 
the complete algorithm for AVL deletion as an exercise (see Exercise 10.22). 

Our final concern has to do with the efficiency of the algorithms for search, 
insertion, and deletion in AVL trees. This depends significantly upon the average 
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Figure 10.21 Growth of AVL Tree for Figure 10.14 



10.3.3.1 HEIGHT-BALANCED TREES 503 

frequency of single and double rotations under random sequences of insertions and 
deletions, and also upon the average length of the path that is retraced when adjust¬ 
ing balance factors. Extensive simulations indicate the average values shown in 
Table 10.2 [Karlton et al. 1976]. We see that deletions, although somewhat more 
complicated to implement, are less likely to incur rebalancing. But most impor¬ 
tantly, the average value for the path length in an AVL tree is empirically found to 
be approximated by lg n + c, where c % 0.25. 

Insertions Deletions 

no rebalancing .535 .785 
single rotations .233 .132 
double rotations .232 .083 
traceback length 2.78 1.91 

Table 10.2 AVL Rebalancing Statistics 

If there are advantages to using trees with the AVL property (height of left 
subtree minus height of right subtree equal to -1 .. 1), then what might be the case 
for trees where the balance factor is allowed to be -2 .. 2, -3 .. 3, or —k .. k? These 
generalizations of AVL trees are called height-balanced HB[k~]trees [Foster 1973]. 
On the one hand, the worst-case height increases as k increases [Karlton et al. 
1976]; thus, 

for k = 2, h = 1.81 lg « — 0.71: 
fork = 3, A = 2.15 lg n - 1.13: 

etc. 

as compared to Eq. 10.24 for k = 1. On the other hand, the frequency of rebalanc¬ 
ing is less, declining from .465 for k = 1 (see Table 10.2) to about 0.2 for k = 2. 
The optimal value of k depends upon the relative importance of searches, insertions, 
and deletions in a given application — being a trade-off between increased average 
search length and decreased cost of restructuring. However, one comparison via 
simulation strongly suggests that HB [1] trees (pure AVL trees) are often better 
than their generalizations [Baer and Schwab 1977]. 

Just as HB [k] trees are a generalization of AVL trees, one-sided height- 
balanced (OSHB) trees, are a specialization of AVL trees. For these, the condition 
is imposed that the balance factor is never positive (or negative). Their motivation 
is that the balance factor can then be stored in just one bit. Whether or not this is 
significant depends very much upon the details of the implementation. Although 
there are algorithms for performing insertion and deletion in OSHB trees with the 
same 0(lg n) complexity as for HB trees, they are considerably more complicated 
[Raiha and Zweben 1979; Zweben and McDonald 1978]. If it is really important 
to find a balancing scheme that requires just one bit per node, then we will find 
better ways to accomplish this in Section 10.3.5. 

f 10.3.3.2 Weight-Balanced Trees. In the preceding section, we saw how to obtain 
BST’s with good performance by imposing the criterion of height-balance. Similar 
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success has been obtained by imposing the criterion of weight-balance, in two differ¬ 
ent manners. In the original method, for a tree T with left and right subtrees TL 
and Tr, the node balance of a node T is defined as 1/2 if T is an external node, and 
as P(T) = | Tl \ I | T\ otherwise, where | T\ denotes the number of external nodes in 
T [Nievergelt and Reingold 1973]. Obviously, we must have 0 < P(T) < 1. Then T 
is said to be of bounded balance a, or in BB [a], if 

(i) a < P(T) < 1 — a; 

(ii) both Tl and TR are also in BB [a]. 

Although originally characterized as “bounded balance,” this criterion is now 
commonly described as “weight-balance.” But the reader should beware on this 
point. The term “weight-balance” was in fact originally applied to a different 
method that is now less widely in vogue. In this other method, the weight is stored 
at each node X, and rotations are applied in a fashion to reduce the value of the 
internal path length at X whenever possible [Baer 1975]. Trees constructed by this 
method have the same worst-case search length of 1.44 lg n as AVL trees, and a 
worst-case value of internal path length that is better than for either AVL trees or 
BB [a] trees [Gonnet 1983]. Unfortunately, a rotation at one node according to 
this criterion can cause imbalance at other nodes, and lead to a “chain-reaction” of 
rotations both upward and downward. Thus, we turn our attention to BB [a] trees. 

A tree in BB [1/2] is a complete binary tree with a full complement of 2h leaves. 
Some other examples of weight balanced trees are shown (without external nodes) in 
Figure 10.22, with each node displaying its value of p. Note that the BB [a] cate¬ 
gory of a tree is not the same as the value of P at the root of the tree. Curiously, 
there can be no trees with 1/3 < a < 1/2. If there were such a tree, it would have to 
have subtree(s) not in BB [1/2]. Let 7 be a smallest such subtree. Then the 
subtrees of T are both in BB [1/2], and have 2L - 1 and 2R — 1 internal nodes, 
respectively. However, L + R since T is not in BB [1/2]. In that case, the balance 
of T is P(T) = 2L I (2L + 2R) = 1 / (1 + 2R~L). If L<R then p(T) < 1/3, and if L > R 
then P(T) > 2/3. Thus there cannot be a tree T in BB [a] with 1/3 < a < 1/2. 

How are weight-balanced trees related to height-balanced trees? In answer, 
there is no relationship; neither class is properly contained in the other. For exam¬ 
ple, the tree of Figure 10.22(c) is BB [1/3], and we learned in the preceding 
paragraph that this is the best that can be obtained, short of completely balanced 
trees. But it is obvious that this tree is not height-balanced (and neither is the 
BB [1/4] tree of (b) in the figure). In the other direction, let T be a tree such that 
Tl is a Fibonacci tree of height h and TR is a complete binary tree with 2h leaves. 
Then the ratio | TL\ / | T\ can be made smaller than any a, for h sufficiently large. 
So T is then height-balanced but not weight-balanced. 

The crucial property of height-balanced trees is that balance can be maintained 
globally, in the face of insertions and deletions, via simple rotations. A similar 
property exists for weight-balanced trees, but it is not so elementary. In the case of 
insertions, a BB [a] tree can be maintained as such via the same single or double 
rotations as for height-balanced trees, whenever 0 < a < 1 — 2~1'2. The case of 
deletions is more complicated, leading to the bounds 2/11 < a < 1 — 2~ll2 (approxi¬ 
mately, 0.182 < a < 0.293 ) [Blum and Mehlhorn 1980]. Moreover, the height of 
weight-balanced trees is logarithmic in the number of nodes, and also the rotations 
can be applied in logarithmic time. The effects of rotations upon the node balances 
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Figure 10.22 BB [a] Trees 

is illustrated in Figure 10.23; the derivation of the formulas therein are left as an 
exercise (see Exercise 10.24). 

How do weight-balanced trees compare with height-balanced trees in terms of 
performance? This question has several answers: 

• Even for the (best possible) case of BB [1/3] trees, the average search length is 
1.09 lg n and the worst search length is 1.70 lg n, as compared with lg n and 

1.44 lg n for HB [1] trees. 

• Weight-balance is certainly a more expensive criterion, both in terms of the time 
required to perform divisions and in terms of the space required to store the 
balance information. But note that it is much more useful to store the weight 
| T| and to compute the /? values as needed, rather than to store f}(T). 
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Figure 10.23 Weight Balance Transformations 

• Although it costs more space to store weights than to store height differentials, 
the weight information has the additional advantage that it can be quite useful 
for finding an item in a BST according to its rank. Thus, suppose that we wish 
to retrieve the y'th item out of the n items stored in a BST. An algorithm for 
this need simply compare the argument j against the weight w of the left subtree 
of a node X; as a result, 

(a) if j < w then proceed to the left subtree; 
(b) if j — w then X is the y'th node; 
(c) if j > w then proceed to the right subtree with j: = j — w. 
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• Height-balancing requires a retracing of part of the insertion path to restore 

balance, after the point of insertion is determined. Weight-balancing, on the 

other hand, can be performed as the search proceeds top-down from the root. 

• One of the principal motivations for the weight-balancing method was to be 

able to “fine-tune” the performance by using a stringent (relaxed) value of a, 

according as searches (insertions) are more important. Although it is also possi¬ 

ble to relax HB [1] to HB [&], the consequences in that case are abrupt rather 
than gradual. 

• Overall, the additional complications of weight-balancing do not seem to be as 

cost-effective as the simpler techniques of height-balancing. They require a bit 

more time and produce slightly inferior results [Baer and Schwab 1977; Walker 

and Wood 1976]. The differences are slight, however, and the choice between 

them might reasonably depend upon the importance of satisfying rank queries, 

as described above. 

110.3.3.3 Restructuring Without Balance Criteria. The methods of the two preced¬ 

ing sections have relied upon the retention of balance criteria at each node. The 

essential point of those methods is that whenever an insertion or a deletion causes 

the criterion to be violated at any node(s), then it can always be efficiently restored 

by means of rotations. It is possible to use the same rotations without reference to 

explicit balance criteria. The two obvious ways to do this are analogous to the 

move-to-front rule and transposition rule for linear search (see Section 10.2.1). A 

transposition can be accomplished by one rotation, and a move-to-root can be 

accomplished by a series of rotations. One advantage of this approach is the 

savings in space and time for storing and manipulating the balance data. Another 

is that the rotations can be applied even in the case of search, and not just with 

insertions and deletions; thus the resulting BST might be able to converge steadily 

toward its optimal form. In fact, the transposition rule “flirts with disaster” when 

applied to BST’s [Allen and Munro 1978]. The performance of the move-to-root 

rule is distinctly better, but it can very easily lead to monotonic trees with 0(n) 

worst-case search times (see Section 10.3.2.2). Whether or not this is a serious 

possibility depends upon the entropy of the keys in the BST (see Section 10.3.2.3) 

[Bitner 1979]. If the entropy is high (the access probabilities are fairly uniform), 

then the shape of the tree becomes important and the move-to-root rule does not 

perform too well. But if the entropy is low, as it is for example with Zipf s law, 

then the keys with high access probabilities will all tend to be near the root, so that 

this approach is reasonable. Even so, there is another problem with the practical 

implementation of such self-organizing BST’s. They tend to cause many more 

rotations than do the methods of the two previous sections. One technique for 

bounding the cost of restructuring to an amortized value of 0(lg n) is to split the 

original BST into two BST’s that are then concatenated [Sleator and Taijan 1983] 

(see also Exercise 6.20). 
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110.3.4 Multiway Trees. Although several criteria were employed for balancing 
search trees in the preceding section, one property was kept inviolate, that the 
search trees should always be binary. The effects of the different balancing criteria 
were reflected in the varying heights of the subtrees, although height was not always 
the criterion per se. A different strategy is to insist that subtrees should always be 
equal in height, but allow the width or arity (that is, branching factor) of the nodes 
to vary. Such trees are called multiway trees. As in the case of the trees of the 
preceding section, by imposing conditions upon the manner in which the arity is 
allowed to vary, it is possible to define closed classes of trees, such that a specified 
property is maintained under insertions and deletions. Consequently, one can 
analyze such a class of trees and obtain various properties about it. The original 
notion of multiway trees balanced in this fashion corresponds to that of B-trees 
having large arity, for use with secondary memory. We will study them in Section 
12.3.4. Here we will consider the viability of trees of low arity, for dynamic search¬ 

ing in main memory. 

The simplest case that we encounter is that of 2-3 trees,4 in which each node is 
either a 2-node containing one key and two children, or a 3-node containing two 
keys and three children. Search and insertion for a key K both begin at the root. 
In the case of insertion, this process carries us to an external node X, and the 
insertion proper proceeds bottom-up from that point. If the parent of X is a 
2-node, then K is placed therein and the 2-node becomes a 3-node. But if the 
parent of X is a 3-node, then the insertion of K causes node-splitting; in this 
process, the 3-node is replaced by two 2-nodes, and a key K' is promoted upward 
in the 2-3 tree into its parent node. The promotion may cause a similar split and 
promotion in the parent node, and this process can continue all the way to the root. 
Balancing by splitting is conceptually easy to follow, as we can see by applying the 
method to our Best Actress data of Figure 10.14. The corresponding growth to the 
final 2-3 tree is shown in Figure 10.24. Splittings occur with the insertions of 
de Havilland, Wyman, and Leigh. The last of these also splits its parent, causing 
the entire tree to grow in height and to acquire a new root node. Subsequent split¬ 
tings occur for Magnani and Hayward. 

If we consider how to implement 2-3 trees, we are led to adopt a node structure 
in the nature of 

type Iink23 = |node23; 
node23 = record 

full: boolean; 
kl ,k2: integer; 
p0,p1 ,p2: Iink23; 

end; 

In order to insert a new value, we need to use a stack to retain pointers along the 
path from the root to the point of insertion. Subsequently, in the procedure for 
inserting a key into a node X, if the insertion causes X to split, then the pointer to 
the parent of X can be retrieved from the stack, and the procedure can recursively 
call itself to insert a promoted key into the parent. (Note that pointers as well as 

4 2-3 trees are B-trees of order 3, as we will see in Chapter 12. 
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Figure 10.24 Growth of 2-3 Tree for Figure 10.14 

keys are promoted upward during splits.) The details of an algorithm to do this are 
left as an exercise (see Exercise 10.26). 

It was fairly straightforward to compare various balancing criteria for binary 
search trees. In order to compare these previous techniques with 2-3 trees, however, 
we need to ask more general questions: 
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I. In terms of space, for a binary tree with n keys, there are n nodes, but in a 2-3 

tree with n keys, there can be anywhere from n/2 to n nodes. Is it possible to 

obtain bounds better than (0.5, 1.0) for the average storage efficiency of 

random 2-3 trees? 

II. The normal expectation is that one key comparison is required to search a 

2-node and two key comparisons are required to search a 3-node. In terms of 

time, are we more concerned about the average number of key comparisons 

required, or are we more concerned about the average number of nodes that 

will be accessed? Either of these measures might be the more significant one, 

depending upon underlying details of implementation. What shapes of 2-3 

trees are optimal with respect to the two measures? 

The answer to the first question - the average number of nodes Nn in a 

random 2-3 tree with n keys - can be obtained by a very pretty combinatorial tech¬ 

nique by Yao [1978], known as fringe analysis. Since most of the keys must occur 

at the lo,wer levels of the tree, it is effective to concentrate our attention upon the 

subtrees at those levels. Thus, the only two possibilities for subtrees at the very 

lowest level are 2-nodes and 3-nodes. An arbitrary 2-3 tree T is said to be of 

class (1; a,b) if its subtrees of height one consist of a 2-nodes and b 3-nodes. As an 

example, the 2-3 tree of Figure 10.24 is of class (1; 4,2). In a tree with n keys, and 

therefore n + 1 external nodes, we must have 

2a + 3b = n + 1 (10.25) 

Denoting by N(T) the number of nodes in a particular 2-3 tree T, there are 

a + b — 1 keys in the internal nodes above the lowest level, so that the number of 

nodes, N(T) — a — b, above the lowest level must satisfy 

(a + b~l\ < N(T) -{a + b)<{a + b- 1) (10.26) 

Let Pr„{a,b) be the probability of obtaining a tree of class (1; a,b) after n 

random insertions. Also define An to be the average value of a for a random 2-3 

tree with n keys, and similarly for Bn with respect to b. Then averaging over all 2-3 

trees with n keys, and using Eq. 10.26, we obtain 

3 (An + Bf) i 
2 - y < < 2(An + Bn)-l (10.27) 

Now if T is a 2-3 tree with n — 1 keys, of class (1; a,b), then a random insertion into 

T will yield a tree either of class (1; a — \,b + 1) or of class (1; a + 2,b — 1). The 

former case will happen with probability 2a/n, and the latter with probability 

1 — 2a/n. Accordingly, 



110.3.4 MULTIWAY TREES 511 

An ^,^rn-1 (a’b) (—^(a — 1) + ^1 + 2)^ 

= ^Prw_!(a,6)(a - -f- + 2) (10.28) 

= (* “ ir)An-1 + 2 

We find that the first few values for this recurrence are Ax — 1, A2 — 0, A3 — 2, etc.; 
and the general solution for n > 6 is given by A„ = 2(n + l)/7. With this result and 
Eq. 10.25, we also find that B„ = (n + l)/7, for n> 6. Combining these latter two 
formulas with Eq. 10.27 leads to the improved bounds on N„ 

°-64« < + ±-<Nn<-jn--j< 0.86 n (10.29) 

for all n > 6. 

This calculation of the bounds (0.64, 0.86) can be regarded as a first-order anal¬ 
ysis, with the bounds (0.5, 1.0) being a zero-order analysis. By considering all 

classes of subtrees of height two on the bottom fringe, it is possible to conduct a 
second-order analysis, leading to improved bounds (0.70, 0.79). However, this anal¬ 
ysis and others of still higher order become exponentially more difficult to conduct 
[Eisenbarth et al. 1982]. 

With regard to the second question raised above, concerning the optimal shape 
of 2-3 trees, elegant answers have been obtained for both measures - number of 

key comparisons [Rosenberg and Snyder 1978] and number of node accesses 

[Miller et al. 1979]. As it turns out, the best 2-3 for our data of Figure 10.14 is the 

same under either measure (see Exercise 10.27), and has the form shown in Figure 
10.25. However, such a coincidence occurs only for some 16 values of n within the 

range 2 .. 31. In general, striving for the objective of minimum number of node 

accesses leads to “bushy” trees containing a large number of 3-nodes. On the other 

hand, striving for the objective of minimum number of comparisons leads to 

“scrawny” trees, with 3-nodes permitted only on the leftmost path from the root to 

the leaves. Unfortunately, these answers to the second question raised above are 

somewhat academic for dynamic tree search; they refer to the best possible 2-3 
trees, not to 2-3 trees as they occur randomly in practice. 

Figure 10.25 Optimal 2-3 Tree for Figure 10.14 
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f 10.3.5 A Unifying Perspective 

We have now discussed several tree structures suitable for dynamic searching. 
There are still several others. In this last section on the subject we will introduce 
one more tree structure, by means of which we are able to illustrate some surprising 
commonality among many of the methods. To begin with, let us reconsider the 2-3 
trees of the last section. Although that section expressed the attitude that we would 
be willing to spend (and possibly waste) extra space in tree nodes, it is still true that 
programs are commonly constrained to be economical in their use of main memory. 
It is easy to do this for a 2-3 tree by binarizing it, and converting every 3-node to 
two 2-nodes. For example, the binarized version of Figure 10.24 is shown in Figure 
10.26. This latter figure is drawn in a manner emphasizing that the original solid 
links have not changed, but now some dashed links have been inserted between keys 
in the same 3-node. Frequently the solid links are described as “vertical” links, and 
the dashed links are drawn and described as “horizontal” links. Note that a data 
structure for this representation still needs just one boolean value in each node. In 
this case, the boolean value for a node indicates whether the right link from that 

node is horizontal or vertical. 

Holliday 

Booth deHavilland Hepburn Magnani Young 
\ 
\ 
\ 
\ 
\ 
\ 

Woodward ■ 

Figure 10.26 Binarized Form of Figure 10.24 

The fact that the left links in binarized 2-3 trees do not likewise have a dual 
interpretation suggests the tree structure known as a symmetric binary B-tree (SBB 
tree), in which either link may be either horizontal or vertical [Bayer 1972]. In 
non-binarized form, this corresponds to a 2-3-4 tree,5 with rules for insertion and 
rebalancing by splitting that are analogous to those for a 2-3 tree. A very impor¬ 
tant property of the splitting rules is that there can never be two horizontal links in 
succession on any path from the root. Evidently, we now need two boolean values 
in each node, one for each link. This is similar to the situation for AVL trees, 

5 2-3-4 trees are B-trees of order 4, as we will see in Chapter 12. 
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where we needed two bits to represent the three possible values of balance factor at 
a node. This suggests the question, “How well do SBB trees, using the same 2-bit 
quantity of balance information, perform compared to AVL trees?” 

First, note that there are SBB trees that are not AVL trees. It is easiest to 
illustrate this with reference to Figure 10.26, the binarized form of a 2-3 tree, where 
we see that the AVL property does not hold at the node for Leigh. SBB trees are 
still logarithmic, but in the longest comparison path we can find alternating hori¬ 
zontal and vertical links. As a result, the worst case is given by 2 lg n, as compared 
to 1.44 lg n for AVL trees (see Eq. 10.24). On the other hand, there seems to be 
less of splitting reorganization in SBB trees than there is of rotational reorganiza¬ 
tion in AVL trees. 

Now let us make the following alteration in our conception of SBB trees. 
Think of the horizontal links as being red and the vertical links as being black, and 
then use one bit in each node to indicate the color of its link to its parent. This 
formulation is that of red-black trees. By this invention, many of the methods for 
constructing balanced trees can be shown to share certain themes. Among these are 
that (i) every path from the root to a leaf must contain the same number of black 
links, and (ii) no path from the root can ever encounter two red links in succession. 
Depending upon the rules used to redress exceptions to (ii), when they arise, we can 
obtain a variety of methods. One particularly simple rule is to rebalance from the 
top-down on insertions, always splitting a 4-node (that is, one with two red links) 
into two 2-nodes. But such a splitting involves nothing more than color flips of 
three links and possibly a single or double rotation! These matters are illustrated in 
Figure 10.27, where the solid links denote black and the dashed links denote red. 
In each of the cases (a) and (b) and (c), we see a 2-3-4 tree on the left, then the 
binarized form of the tree, then the effects of a split, and finally the corresponding 
2-3-4 tree after the split. When the 3-node containing D and E is oriented as in (a) 
of the figure, only the color flips are required. But if the 3-node is oriented the 
other way, as in (b) of the figure, we see that a single rotation is required as well as 
the flips. Finally, in (c) of the figure, we see a case requiring flips and a double 
rotation. The beautifully simple reason that this is guaranteed to work is that since 
4-nodes are split on the way down, then it will always be possible to insert a value 
with its parent if necessary (that is, change the color of that link to red), because its 
parent must be a 2-node or a 3-node. 

This colorful approach has many more nuances and possibilities than we have 
space to describe in detail, and the original paper is well worth reading [Guibas and 
Sedgewick 1978]. We simply make these final observations: 

• There are other possibilities besides the top-down balancing method just 
described. A very efficient bottom-up alternative, never requiring more than 
0(1) rotations for either insertion or deletion, is that of Tarjan [1983b]. 

• Search (without insertion) in a red-black tree is “color-blind” ordinary BST 
search, in which the colors of the links can simply be ignored. 

• Although 2-3-4 trees are not AVL trees, they properly include AVL trees. A 
nice way to demonstrate this is with a construction that transforms an AVL tree 
to a 2-3-4 tree by coloring its links. As an example, consider the AVL tree of 
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D mE 

A 
,A.B.C rn\ 

71 72 73 74 

75 76 

75 76 

71 72 73 74 71 72 73 74 

(a) Flip Only 

71 72 73 74 

71 72 73 74 71 72 73 74 

(b) Flip and Single Rotation 

(c) Flip and Double Rotation 

Figure 10.27 Top-Down Splitting in Red-Black Trees 
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Figure 10.21, and define the height of a node as the length of the longest path 
to an external node. Then apply the color red to any link connecting a parent 
of even height and a child of odd height. In Figure 10.28(a), the original AVL 
tree is redrawn showing the height values and the colors; the corresponding 
2-3-4 tree is shown in (b) of the figure. 

Leigh 

Young 

Woodward 

/ 
/ 

Hayward 
1 

(a) “Colored” AVL Tree 

(b) Corresponding 2-3-4 Tree 

Figure 10.28 “Colored” AVL Tree of Figure 10.21 

10.4 HASHING 

Binary search and the explicit tree search methods that we have studied are all of 
complexity Odg n). Thus their performance is fairly good for tables of moderate 
size, but the inexorable growth causes these methods to be less satisfactory for very 
large tables. A radically different approach is to proceed not by comparisons 
between key values, but by finding some function h(K) that can directly yield the 
location of K in the table. In fact, the storage allocation formulas that map array 
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elements to memory locations as functions of their indices provide examples of this 
facility (see Sections 2.2.1 and 2.7). An important aspect of such storage allocation 
functions is that they are one-to-one from a limited domain of index values to a 
corresponding range of memory locations. But in the present case we are usually 
dealing with a very large potential name space of keys and a much smaller actual 

address space of table locations. 

These ideas are readily illustrated in terms of the mapping from the set of all 
possible identifiers in a programming language to a compiler symbol table. For 
example, there are over 109 legal six-character identifiers in FORTRAN, and many 
more in Pascal. Of course, only a minuscule proportion of these will actually occur 
in any given program; thus, a symbol table of about 103 locations is typically 
adequate. Mappings h(K) for such situations are called hash functions, with the 
property that we can expect h{Kf = h{Kf for many different pairs if. With the 
numbers from our FORTRAN example, we see that any hash function must inevi¬ 
tably map a minimum of at least 106 synonym keys, out of all possible ones, to some 
table locations. The objective, then, is to find a hash function that, when applied to 
any typical set of keys, will produce relatively few collisions, - that is, occurrences 
of synonyms. Note that it is crucial to store the key K itself at a hash table 
location, since there is no unique reverse mapping h(K)-+K to determine which 
synonym is present. (See Exercise 10.35 for a method of partially subverting this 

requirement.) 

Finding hash functions that minimize collisions is just one aspect of the prob¬ 
lem, and we will consider this matter in Section 10.4.1. But we must still deal with 
those synonyms that do occur, in the process known as collision resolution, in 
Section 10.4.2. After these two principal concerns, we devote the remaining sections 

to some other issues relating to hashing. 

10.4.1 Hash Functions 

Over the years, about half a dozen distinct hashing techniques have been employed. 
In practice, the method of division has been found to be distinctly superior to all 
the rest. Therefore, except for some preliminary mention of the other techniques, 
we will concentrate our attention upon hash functions using division. As we said in 
the preceding paragraph, an important criterion for a hash function is that it should 
minimize collisions. A second important factor is that it be relatively fast and 
simple to compute if it is not to lose its advantage over comparison-based methods. 
Thirdly, h(K) should usually be a function of all the bits in the machine represen¬ 
tation of K. A technique that violates this latter principle is to extract some subset 
of the bits in K in order to compose h{K). Extraction is acceptable when it is 
known in advance that the discarded bits convey very little distinguishing informa¬ 
tion; the hazard in the general case is that the discarded bits may be just the ones 
needed to thwart the generation of synonyms. 

In addition to extraction and division, there are techniques that employ folding, 
radix transformation, algebraic coding, and multiplication. Folding is the combin¬ 
ing of multi-word keys into single-word quantities, typically by exclusive-OR’ing; it 
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is used singly and also as a prelude to the other techniques. The radix transforma¬ 
tion and algebraic coding techniques are of theoretical interest but computationally 
expensive and less effective than division, so they are seldom employed. Nonethe¬ 
less, it is instructive to consider the rationale for algebraic coding. In Section 8.2.5 
we saw that by constructing codes with redundancy in an appropriate manner, it is 
possible to create codeword clusters. This clustering property can then be used to 
facilitate error detection and correction in codewords. In hashing, we find that 
actual sets S{ of keys usually do not have the character of being randomly drawn 
from the universe U of possible keys. Rather, they tend to exhibit natural cluster¬ 
ing. It is often possible to obtain many other words from a given word by changing 
just one letter; a good example of this is provided by the word “band.” Given that 
clusters tend to occur, we find a fourth important criteria for a hash function - 
that it should separate clusters. In fact, there is a great deal of similarity between 
the methods that algebraic coding employs for separating clusters and the methods 
cited in Section 8.2.5.1 for generating clusters via group codes. More precisely, 
both employ arithmetic over finite fields GF(q). 

The next hashing technique to consider is multiplication. Although less popular 
than division, it is still a very viable method. It entails multiplying the key K either 
by itself or by some constant, and then using some portion of the bits from the 
product as the hash table location. When the choice is to multiply K by itself, we 
have the mid-square method. If K is 20 bits then the product is 40 bits, wherein the 
middle 10 bits satisfy the criterion that they are a function of all the original bits of 
K. The method also satisfies the criteria of simplicity, but it does have two draw¬ 
backs. One is that degenerate keys, with many leading or trailing zeros, will be 
reflected in hash values containing many zeros; the other is that the size of the hash 
table is constrained to be a power of two. 

A much safer multiplicative method, avoiding both the degeneracy and the 
constraint on table size, is to compute h(K) = L(M x ((C x K) mod 1)). In this 
expression, M is the size of the table and 0 < C < 1. It is important to choose C 
with some circumspection in order to avoid various ill effects, such as causing an 
alphabetic key K to be synonymous with other keys obtained by permuting the 
characters of K. An example of a value which has been found to be theoretically 
sound is C = .6180339887 ...6 [Knuth 1973b], 

We come now to the method of hashing by division. The hash function is 
computed simply as h(K) = /fmod M, using 0-origin indexing and for a table of size 
M. Although the formula is applicable for tables of any desired size, it is nonethe¬ 
less important to choose the value of the divisor M with care, as with the choice of 
C for multiplicative hashing. For instance, if M were even, then all even (odd) keys 
would be mapped to even (odd) table locations - a severe bias. More generally, a 
good rule is to choose M to be a prime number, but to avoid primes that divide 
rk + 1, for the case that a and k are small and r is the radix of the character set 
(presuming alphabetic keys). To illustrate the simplest case of the reason for this 
restriction, suppose that characters are treated as integers to the radix r, and that M 

6 This value of C is called the golden ratio. It is the reciprocal of r{= 'A(l + \fT), 
obtained in Section 1.3.2.3 (Eqs. 1.26) as one of the roots of the Fibonacci recurrence 
equation. 
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is a prime that divides r — 1. Another way of expressing the latter fact is as a state¬ 
ment of congruence', r is said to be congruent to 1 modulo M, or r = 1 (mod M) 
(see also Section 8.4.2.2.1). Note that if r = 1 (modulo M), then also rk = 1. Now 
consider the case of h(K) applied to the alphabetic key K = anan_x... a0. We find that 

h{K) = ^ mod M 

= mod M) (/•' mod M)) 

= ^(a(- mod M) (modulo M) 

= mod M 

(10.30) 

In other words, this h(K) will compute the same hash value for any permutation of 
the characters of K. Similar clustering effects occur for other small values of a and 
k? In practical terms, for a byte oriented character set, one should avoid choosing 
M to be a prime close to 256fc, as in the example 65537 = 2562 + 1. There is one 
final comment concerning the choice of divisor M. The foregoing has stressed the 
choice of M as a suitable prime. In fact, a value of M that is non-prime, but that 
has no small primes p < 20 as factors is often just as satisfactory [Lum et al. 1971]. 

We have described several hash function methods. By what standard(s) can 
they be evaluated for their efficacy? A very common one is to compare their 
performance against that of random hashing. This corresponds to the assumption 
that every input key is equally likely to be hashed to any one of the hash table 
locations, disregarding collisions. For a table of size M and a set of keys of cardi¬ 
nality n, the probability that a single key will hash to any particular location is 1/M, 
and the probability p(i) that a given table location will correspond to i synonyms 
can be expressed in terms of the binomial distribution as 

*«-(")(■£)' 0-■£)-' 
In most cases of interest, we will have that n » 1 and M » 1, with the average 
density of hashing being given by n\M. In such cases, where the likelihood of 
“hitting” a given location with any one key is rare and the overall probability nIM 
of a hit is not large, it is convenient to approximate p(i) by the Poisson distribution 

(10.31) 

The Poisson probability distribution has the appearance of a skewed normal 
distribution, with the amount of skew dependent upon the first parameter. A few 
values of P{i) are shown in Table 10.3, for n/M = 0.5 and for n\M = 1.0. Examin- 

7 This is essentially the same reasoning by which one can show that a poor choice of C, in 
multiplicative hashing, can lead to clusters among permutations of an alphabetic key K. 
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ing this table and disregarding the effects of collision resolution, we see that the 
overall likelihood of finding synonyms (that is, i > 1) at any one location is 0.09 for 
a hash table that is half-full (n/M — 0.5), and 0.26 for one that is full (n/M — 1.0). 
It is reasonable to evaluate any given hashing method by comparing its performance 
to that of this random hashing criterion. By this standard, the division method has 
been found to be quite good, subject to the restriction from the preceding paragraph 
concerning choice of divisor; surprisingly, it often performs even better than 
random hashing! The reason for this lies with our earlier remark that typical sets of 
input keys do not conform to the assumptions for random hashing. Rather, they 
commonly contain clusters such as {SUM1, SUM2, SUM3, ...}; and the division 
method tends to exploit such non-randomness to separate the clusters. 

/ 0.5 1.0 / 0.5 1.0 

0 .60653 .36788 4 .00158 .01533 
1 .30327 .36788 5 .00016 .00307 
2 .07582 .18394 6 .00001 .00051 
3 .01264 .06131 7 .00007 

Table 10.3 Sample Poisson Values P 

There is much more to be said about hash functions and how to choose among 
them [§]. We have cited the division method as being generally superior. But for a 
large application that relies extensively upon hashing, one dare not ignore the statis¬ 
tical nature of the sets of input keys; the performance of any of the methods can be 
greatly influenced by it. 

10.4.2 Collision Resolution 

The second major issue in hashing is that of resolving collisions among synonyms. 
Indeed, as long as the hash function is not a poor one, the choice of collision reso¬ 
lution technique tends to be distinctly more important for success of hashing 
performance. In the previous section we referred to the Poisson model to predict 
the likelihood that there would be collisions at any one location. Suppose that we 
ask, instead, about the likelihood of collisions anywhere in the table. The probabil¬ 
ity of this is high, even in the event that the table is relatively empty. An appealing 
illustration of this is the famous birthday paradox: In an assembly of 23 persons, 
there is a better than even chance that some two of them will have exactly the same 
birthday of the year! In more prosaic terms, hashing just 23 keys into a hash table 
of size 365 will, with probability 0.5072, produce at least one collision. 

There are four basic methods of collision resolution, two of which depend upon 
the idea of maintaining linked lists of synonyms, and two of which depend upon the 
idea of computing a sequence of hash table locations until an empty slot is found. 
In all of these, the comparative measure is the number of probes - that is, the 
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number of memory locations that must be examined in order to determine the 

location of a key in the table. We will examine these basic methods in Sections 

10.4.2.1 and 10.4.2.2, and then evaluate their performance in Section 10.4.2.3. 

However, there is more to the story. Specifically, in the last two sections we will 

examine first the issues of deletion and overflow in hash tables, and then ways of 

rearranging hash tables to enhance performance. 

In order to illustrate matters, we need to introduce some sample keys and to 

choose a hash function. For all of our illustrations, the table size will be M — 13, 

and the prevailing definitions will be those of Figure 10.29. Into this table, we will 

successively insert the keys from Figure 10.30. The hash function hx{K) will be 

implemented as HASH : = key mod hsiz, for which the values are also shown in the 

figure. By assuming that K = 0 does not occur naturally, we can mark all hash 

table locations as initially empty by initializing them to zero. Since the operations 

of search and insertion are so closely related, we will present algorithms that (a) 

search for an item and insert it if necessary (unless this would cause table overflow), 

and (b) return either the location of the item in the table, or a —1 in the case of 

overflow. They are easily modified if one wishes to have algorithms that perform 

just one of the two operations 

const hsiz = 13; 

type hash_ndx = 0 .. 12; 

hash_link = -1 .. 1 2; 

hash_item = record 
key; integer; 
data: {depending upon the application) 

link: hash_link; {necessary for some methods) 
end; 
hash_table = array [hash_ndx] of hash_item; 

Figure 10.29 Type Definitions for Hashing 

i Ki HKj) i Ki MKy) 

i 119 2 7 109 5 

2 85 7 8 147 4 

3 43 4 9 38 12 

4 141 11 10 137 7 

5 72 7 11 148 5 

6 91 0 12 101 10 

Figure 10.30 Sample Keys with Initial Hash Values 
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10.4.2.1 Chaining. There are two variants of chaining. In the simpler of these, the 
locations in the hash table serve as list heads, and all the keys that hash to a given 
location are maintained dynamically in a linked list. This method is commonly 
called separate chaining. Of course, there is further variability if we allow for differ¬ 
ent methods of maintaining the linked synonym lists, such as FIFO, LIFO, or by 
key value. But in most implementations of separate chaining, the individual lists 
will tend to be so short that there is little reason not to make the simplest choice, 
which is LIFO. For the example keys of Figure 10.29, the resulting hash table will 
be as shown in Figure 10.31. 

91 
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H0 

OH- 

10 

10 

137 72 85 [ 

Figure 10.31 Separate Chaining 

As we will see in Section 10.4.2.3, the method of separate chaining has the best 
performance of any of the collision resolution methods. However, it is frequently 
inconvenient to dedicate the hash table entries to the role of list heads, especially if 
the number of entries in the hash table is relatively moderate. This leads to the 
other chaining method, known as internal chaining. In this case, the linking among 
synonyms is within the hash table itself, via cursor fields that are all initialized to 
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-1 (for nil).8 The method requires one global cursor value finger, initialized to the 

value hsiz - 1 and used in resolving collisions. Search commences at the location 

h(K). If the location is empty then K is inserted there; otherwise that location and 

others linked to it are probed in search of K. If K has not been found before a nil 

cursor value is encountered, then the value of the global cursor finger is used to 

initiate a search for an empty table location. When (and if) such a location i is 

found, then K is inserted there and the last cursor value in the linked list is updated 

to the value i. 

For example, after the insertion of the first eight keys from Figure 10.29, the 

resulting hash table will appear as in Figure 10.32(a), with linked lists for h(K) — 4 

and h(K) = 7. For the next key (38) the location 6(38) = 12 is already occupied and 

the link field for location 12 is nil, so the variable finger is employed to find the 

empty location 9. Note that this has caused the linked lists for 7 and 12 to coalesce, 

as shown in (b) of the figure. Indeed, because of this characteristic phenomenon, 

the method of internal chaining is more commonly known as coalesced chaining. 

Figure 10.32(c) displays the final appearance of the hash table after all the keys 

have been inserted. It also shows the number of probes required to insert each key 

and, in parentheses, the lesser number of probes required to subsequently find some 

keys. The detailed algorithm to accomplish coalesced chaining as we have just 

described it is the function HASH_COALESCE (Algorithm 10.7). In this algorithm 

note that the effect of repeatedly using finger to find the next empty table location 

is bounded in its potential cost. Its value starts at hsiz — 1 and always decreases 

toward zero; thus the average cost per entry, in a table that is reasonably full, 

cannot be more than one extra probe per access. 

/ Key Link Probes 

0 91 -1 1 

1 0 -1 

2 119 -1 1 

3 101 -1 4(2) 

4 43 10 1 

5 109 6 1 

6 148 -1 3(2) 
7 85 12 1 

8 137 -1 4(4) 

9 38 8 2(2) 

10 147 3 3(2) 
11 141 -1 1 

12 72 9 2(2) 

/' Key Link 

0 91 -1 

1 -1 

2 119 -1 

3 -1 

4 43 10 

5 109 -1 

6 -1 

7 85 12 

8 -1 

9 38 -1 

10 147 -1 

11 141 -1 

12 72 9 

1 / Key Link 

0 91 -1 

1 -1 

2 119 -1 

3 -1 

4 43 10 

5 109 -1 

6 -1 

7 85 12 

8 -1 

9 -1 

10 147 -1 

11 141 -1 

12 72 -1 

(a) (b) (c) 

Figure 10.32 Illustration of Coalesced Chaining 

8 Note that in assembly language, it may be possible to conserve additional space by using 
short cursors rather than full-length pointers. 
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function HASH_COALESCE (arg: integer; var htbl: hash_table): hash_link; 

var finger: hash_ndx; {a global variable, initially hsiz — 1} 

i: hash_ndx; 

begin 
i := HASH (arg); 
if htbl [i].key = 0 then begin 

htbl [i].key := arg; 
htbl [i].link := -1; 

HASH_COALESCE := i; 
end else begin 

while (htbl [i].key <> arg) and (htbl [i].link <> -1) do 
i := htbl [i].link; 

if htbl [i].key = arg then 

HASH_COALESCE := i 
else begin 

while (htbl [finger],key <> 0) and (finger > 0) do 
finger := finger - 1; 

if htbl [finger].key <> 0 then {table is full} 

HASH_COALESCE := -1 
else begin {insert arg in table} 

htbl [finger],key := arg; 
htbl [finger],link := -1; 
htbl [i].link := finger; 

HASH_COALESCE := finger; 
end; 

end; 
end; 

end; 

Algorithm 10.7 HASH_COALESCE 

We defer discussion about the expected complexities of the chaining methods 

until Section 10.4.2.3. However, it is appropriate to point out now some avenues 

for improving upon these two basic methods of resolution. With separate chaining, 

we may be able to eliminate the necessity of storing the entire key in each node. 

This becomes possible when we find a quantity g{K) such that K is uniquely deter¬ 

mined as a function of g(K) and h(K). For this, the quantities g(A] = K div M and 

h(K) = K mod M are likely candidates. Moreover, it is possible to modify internal 

chaining so that the chains do not coalesce (see Exercise 10.35), thereby gaining the 

same advantage for this method also. A different tactic for improving upon 

coalesced chaining is to reserve a part of the table area outside of the range of the 

hash function; such a region is called a cellar. All collisions are chained to the 

cellar until it is full, and only after that to the main hash area. If the proportion of 

the table memory reserved for the cellar is small (as in ordinary coalesced chaining, 

where there is no cellar), then coalescing will begin to happen early, with an 

increase in the average number of probes. On the other hand, too large a cellar 
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will, by diminishing the range of the hash function, also increase the average 
number of probes. The optimum occurs when the hash and cellar areas are appor¬ 
tioned approximately in the ratio 0.86:0.14; however, this varies somewhat with 

the influence of other factors [Vitter 1982]. 

10.4.2.2 Open Addressing. In many applications, any pointer overhead at all is 
unacceptable. This leads to the technique as known as open addressing, in which a 
sequence of table locations is inspected until either the desired key or an empty slot 
is found. The original technique for doing this simply calls for starting at the 
location hx(K) and examining locations sequentially (mod M). This is called linear 
probing. After the first seven keys from Figure 10.29 have been inserted, the hash 
table will appear as in Figure 10.33(a). When the key 147 is presented, it will be 
inserted in location 6, after failing to find an empty slot in locations 4,5. Before 
147 was inserted, there were clusters of keys in locations 4,5 and 7,8. After the 
insertion of 147, these two clusters have been combined into one large primary clus¬ 
ter. Any keys that subsequently hash to locations near the beginning of the cluster 
unavoidably require a relatively large number of probes, and the clustering phenom¬ 
enon gets worse with increasing cluster size! In order for hashing to work well, we 
need to have the “holes” distributed randomly; however, linear probing propagates 
primary clusters that thwart this property. Ultimately, when all the keys have been 
inserted, the hash table will appear as in Figure 10.33(c). Once again, appended to 

each entry in (c) is the number of probes required for its insertion. 

/ Key Probes 

0 91 1 

1 101 5 

2 119 1 

3 0 
4 43 1 

5 109 1 
6 147 3 
7 85 1 
8 72 2 

9 137 3 
10 148 6 
11 141 1 
12 38 1 

/ Key 

0 91 
1 
2 119 
3 
4 43 
5 109 
6 147 
7 85 
8 72 
9 

10 
11 141 
12 

/ Key 

0 91 
1 
2 119 
3 
4 43 
5 109 
6 
7 85 
8 72 
9 

10 
11 141 
12 

(a) (b) (c) 

Figure 10.33 Illustration of Linear Probing 

At first glance, we might try to redress the primary clustering problem by 
computing successive probe locations as h^K) = hx(K) + {i — 1) x c rather than 
hi{K) = hx{K) + (i - 1). Although this does eliminate primary clustering, it does not 
prevent the formation of secondary clusters. The basic problem with this attempt is 
that any two keys that probe a given location will then probe the identical sequence 
of successor locations (as when we walk in another person’s footsteps on the beach). 
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What is needed is for the values in the probe sequence for a key to be random in 

character; in fact, the term random probing is sometimes employed. But what we 

look for, practically speaking, is a probe sequence that is simple to compute, yet 

sufficiently scrambled that it thwarts clustering. The sequence should also access 

every location in the table, since that may be necessary as the table becomes full. 

A method that is good in all of these respects is that known as double hashing. 

In this case the value of the increment to hx(K) is determined from an auxiliary hash 
function and the probe sequence is computed as 

hjiK) = (/z,_](/Q + h0(K)) mod hsiz (for i = 2, 3,...) (10.32) 

The value of h$ should not be zero, of course, and should be relatively prime to the 

table size, thereby guaranteeing access to each location. In practice, it works well to 

use a function such as l%{K) = 1 + Kmod(hsiz — 2). This form of double hashing is 
particularly good when hsiz and hsiz — 2 are twin primes. 

Ki h:(Kj) h0(Kj) 

119 2 10 

85 7 9 

43 4 11 

141 11 10 

72 7 7 

91 0 4 

109 5 11 

147 4 5 

38 12 6 

137 7 6 

148 5 6 

101 10 3 

(a) 

i key Probes 

0 91 1 
1 72 2 

2 119 1 

3 101 3 
4 43 1 

5 109 1 

6 137 3 
7 85 1 

8 

9 147 2 

10 148 4 

11 141 1 

12 38 1 

(b) 

Figure 10.34 Illustration of Double Hashing 

The application of this method is illustrated in Figure 10.34, for hsiz — 13 and 

hsiz — 2= 11. In (a) of this figure, the values K and hx(K) are reproduced from 

Figure 10.30, and the values of h^{K) are appended. We can see, for example, that 

the probe sequence for the key 38 is 

12 5 11 4 10 39281706 

Figure 10.34(b) displays the final locations of the keys in the hash table, along with 

the corresponding number of probes required for their insertions. The algorithm to 
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function HASH_DOUBLE (arg: integer; var htbl: hash_table): hash_link; 

var found: boolean; 
hcnt: hash_ndx; {a global count of table entries} 
i,j: hash_ndx; 

begin 
found := false; 
i := HASH (arg); j := INCR (arg); 
while (htbl [i].key <> 0) and (not found) do 

if htbl [i].key <> arg then 
i := (i + j) mod hsiz 

else 
found := true; 

HASH_DOUBLE := i; 
if not found then begin 

if hcnt = hsiz - 1 then {table is full} 
HASH_DOUBLE := -1 

else begin {insert arg in table} 
hcnt:= hcnt + 1; 
htbl [i].key := arg; 

end; 
end; 

end; 

Algorithm 10.8 HASH_DOUBLE 

accomplish this is the function9 HASH_DOUBLE (Algorithm 10.8), wherein h$(K) 
is implemented as INCR : = 1 + key mod (hsiz — 2). A critical detail in this imple¬ 
mentation is the use of hcnt to keep track of the number of entries. In particular, 
by never allowing hcnt to exceed hsiz — 1, we guarantee that there will always be at 
least one empty location for forcing termination of the while loop in the event that 
a key is not in the table. 

10.4.2.3 Evaluation of Resolution Methods. The significant aspect of searching by 
hashing is that its average performance depends upon the ratio nfM, for n the 
number of items and M the table size, rather than upon just n. This ratio is 
denoted a, the load factor. We have already seen it, in effect, in the discussion of 
the Poisson distribution in Section 10.4.1. In the present section our principal 
concern is the average number of probes for each of the four collision resolution 
methods, in terms of PS (successful searches) and PF (unsuccessful searches). 
Approximate formulas for each of the eight cases are derived in Knuth [1973b]. 
For the most part, we are content to quote the formulas and comment upon them. 

9 An algorithm for linear probing is not shown; with the proviso that h0(K) = 1 for all K, 
it would be identical to HASH_ DOUBLE. 
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a PS PF PS PF PS PF PS PF 

.25 1.12 1.03 1.14 1.04 1.17 1.39 1.15 1.33 

.50 1.25 1.11 1.30 1.18 1.50 2.50 1.39 2.00 

.75 1.38 1.22 1.52 1.49 2.50 8.50 1.85 4.00 

.90 1.45 1.31 1.68 1.81 5.50 50.50 2.56 10.00 

(a) Separate (b) Coalesced (c) Linear (d) Random 
Chaining Chaining Probing Probing 

Table 10.4 Values of PS(a) and PF(a) 

To assist in their comprehension, all eight of them are evaluated for several values 
of a, in Table 10.4. 

The first method that we discussed was that of separate chaining. It can be 
somewhat misleading to compare this method with the other three, since in fact one 
can have a > 1 in this case. Nonetheless, for separate chaining, the approximate 
formulas are 

PS = 1 + y , and PF = e a + a (10.33) 

These expressions apply even when a >> 1. Thus, for n » M, the average length 
of each list will be a, and we should expect to search half of a list, on average, 
before finding an item. For coalesced chaining, the approximate formulas are 

2a , 
PS = 1 + — + -— 

4 8a 
and PF = 1 + 

2a , e — 1 2a 
(10.34) 

We can see from Table 10.4 that both chaining methods are superior to either open 
addressing method. In particular, even as a approaches one, the expected number 
of probes with coalesced chaining is still close to just two! Next, the approximate 
formulas for linear probing are 

PS = 
1 +(1 - a)-1 

2 
and 

1 + (1 -a)“2 

2 
(10.35) 

Inspection of Table 10.4 confirms that linear probing, while satisfactory for small a, 
is extremely poor as a approaches one. In fact, the average values of PS and PF at 
this limit are, respectively, nM/'Js' and M/2. 

For the case of double hashing, recall that the intent is to generate a probe 
sequence that is random in character. This is commonly described by employing 
the concept of uniform hashing, wherein the probe sequence is equally likely to be 
any of the M! permutations (0 .. M — 1). This has the consequence that the C(M,n) 
possible empty/full configurations are all equally likely to occur. It is instructive to 
compute the expected values of PS and PF under such idealized circumstances. 
Suppose that a hash table of M locations has a loading factor a, and that we 
conduct an unsuccessful search for an entry. Then the probability of an initial colli- 
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sion (and at least a second probe) is a, and the probability pt of i successive 
collisions and at least an (i + l)th probe is a'. We can compute PF as the sum of 
the probe lengths k weighted by the probabilities qk that exactly k probes are 

required - that is, ^Jk x qk. Thus, 

PF = q\ + 2q2 + 3 q2 + - 

= <7i + <h + + "■ 

+ #2 + ?3 + ■" 
+ #3 + ■" 

(10.36) 

Now, for each key that is in the table, the number of probes required to find it is 
the same as the number of probes required in the unsuccessful search preceding its 
insertion.10 Averaging this quantity over all values of PF as the table grows from 0 

entries to n — 1 entries, we find 

(10.37) 

If we examine double hashing closely, we find that the probe sequences are far from 
being random. In fact, they are always arithmetic progressions determined by hx(K) 
and h$(K). Thus the likelihood of having the same probe sequences for two keys 
under double hashing is 0(1/M2); yet the likelihood of having the same probe 
sequences under uniform hashing is 0(1/M!). So it is somewhat surprising to find 
that both in theory and in practice, the performance of double hashing closely 
approximates that of random probing, as expressed in Eqs. 10.36 and 10.37 [Guibas 
and Szemeredi 1978]. The average values of PS and PF as a approaches one are, 
respectively, In M and M/2. 

In comparing coalesced chaining, linear probing, and double hashing, we find 
that the probe sequences of double hashing approximate those of random probing, 
the probe sequences of linear probing are significantly inferior, and the probe 
sequences of coalesced chaining are significantly superior. The improvement of 
coalesced chaining over that of random probing comes, of course, at the expense of 
carrying along additional information in the form of the links. In general, we might 
be tempted to conclude that either chaining method requires more space than either 
open addressing technique. However, this is not always true. Observe that separate 
chaining requires space for M pointers of size P and n records of size R + P, 
whereas open addressing requires space for M table slots of size R. When R » P 
then separate chaining may be more efficient in space. For example, suppose that 
M — 200, n — 150, P— 1, and R = 24. Then separate chaining would require 

10 The validity of this remark depends upon the details of the hashing scheme (compare 
this with Section 10.3.1). It is true for linear probing and double hashing, but not true 
for coalesced hashing. 
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200 x 1 + 150 x 25 = 3950 units of storage, and open addressing would require 
200 x 24 = 4800 units of storage. 

Overall, hashing has some distinct advantages and some distinct disadvantages 
relative to comparison-based searching methods. When we can afford to trust in 
the laws of probability, then for large values of n (and reasonable values of a), a 
good hashing scheme usually requires less probes (on the order of 1.5-2.0) than 
does any other method that we have examined thus far, including search in a binary 
tree. On the other hand, we should realize that hashing may perform abominably, 
requiring 0(n) probes in the worst case. Thus, we would not care to use it where 
timely responsiveness is critical, as in an air-traffic control system. Two other prob¬ 
lems with hashing are (i) the need to have some a priori estimate of the maximum 
number of items to be accommodated in the hash table, and (ii) ways to handle 
deletions. These problems are somewhat related, and we will discuss responses to 
both of them in the next section. For now, we note that where there is not an 
advance estimate of the number of items, separate chaining would be recommended, 
since overflow is then not a problem. Finally, none of the advantages of ordered 
relationships are available in a hash table. For example, we cannot process the 
items in the table sequentially. Neither can we conclude, after an unsuccessful 
search, anything about items that are “close” to the one that we sought. 

10.4.2.4 Deletions and Rehashing. When we first have the need to delete a value A, 
from a hash table that has been generated by coalesced hashing or open addressing, 
we encounter a surprising fact. If A, precedes any other value A) in a probe 
sequence, then we cannot simply discard A,. If we did, then subsequent probes for 
Kp on encountering the “hole” left by A„ would conclude that A) was not present. 
We can see the truth of this in any of the Figures 10.32, 10.33, or 10.34. The 
solution is that we need to regard each hash table location as being in one of three 
states: empty, occupied, or deleted. Then as far as searches are concerned, a 
deleted cell is treated just like an occupied one. In the case of insertions, we can 
arrange to use the first empty or deleted location that is encountered in the probe 
sequence. Observe that this problem does not arise with deletions from the lists of 
separate chaining. Also, with linear probing it is fairly simple to relocate values 
backward in their probe sequence when a deletion occurs, so that no “deleted” 
values are introduced (see Exercise 10.37). 

For coalesced hashing and double hashing, however, the problem of deletions is 
more serious. Although the introduction of a tag value for marking deletions will 
make it possible for the algorithms FIASFI_COALESCE and HASH-DOUBLE to 
work properly, that is only a partial solution. There is still the problem that if 
deletions are common, then unsuccessful searches will begin to require 0(M) probes 
in order to detect that a value is not present. (Exercise 10.38 presents a more subtle 
problem.) When a hash table overflows absolutely, or when its performance 
becomes too degraded because of deletions, the only recourse is to rehash it into 
another table of a more appropriate size. The value of a at which this becomes 
worthwhile can be characterized in terms of the expected savings in subsequent 
accesses [Hopgood 1968]. Note that since deleted entries will not be rehashed, then 
the new table might be either larger or smaller, or even the same size. Rehashing is 
a simple matter if the new table area is distinct from the old table area; however, 
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one may wish to rehash into a new table area that is not distinct. An algorithm to 
accomplish this, using a boolean array to distinguish relocated/unrelocated values, is 

the subject of Exercise 10.39. 

110.4.2.5 Hash Table Rearrangement. If we peruse Table 10.4, we observe that 
when the load factor is high then open addressing, by either linear or random prob¬ 
ing, is distinctly worse for unsuccessful searches than it is for successful ones. The 
reason is not hard to see. It is the familiar issue that we cannot detect an unsuc¬ 
cessful search in an unordered list until we reach the end of the list. For the 
moment, let us suppose that the keys had been arranged in sequence by decreasing 
value, and that they had then been hashed into the table from this sequence. As a 
result, the probe sequence of any key K must consist of keys that are already pres¬ 
ent and larger than it. So we could detect an unsuccessful search for a key Kj 
whenever, in the probe sequence for key Kp we encountered another key Kt such 
that Kj > Kt. (By assumption, if Kj were present, it would have been inserted before 
Kj). Moreover, such a situation would relieve the necessity of the compound termi¬ 
nation condition that we see in the while loop of HASH_DOUBLE. 

In fact, it is not necessary that the keys have been inserted in decreasing order 
of their values. The technique known as ordered hashing compensates for this via 
the following search/insertion algorithm [Amble and Knuth 1974], When a new 
key Kj is to be inserted, we can follow its probe sequence until either an empty slot 
is found or else a smaller key Kt is found. In the latter event, Kj “bumps” Kt from 
its location, and Kj is directed to proceed further along its probe sequence. The 
entire affair has been likened to a game of musical chairs, wherein many keys may 
be bumped before matters settle down. This logic is captured in the function 
HASH_ORDERED (Algorithm 10.9), which you should compare carefully with 
HASH_ DOUBLE. The application of this method to the keys of Figure 10.29 is 
shown in Figure 10.35. Things proceed uneventfully for the first few keys. When 
the key 72 is presented, it collides with 85; but it is smaller and so we proceed to 
location 1. However, when the key 147 is presented, it bumps the key 43 from 
location 4. The subsequent probe sequence for 43 is 2, 0, 11, 9 (since /io(43) = 11 ); 
but because locations 2, 0, 11 are already occupied by keys larger than 43, we do 
not stop looking until location 9. Later, the key 137 bumps 85 along to location 3. 
The real chase comes when the key 148 is presented; it bumps 109 from location 5 
to location 3, in turn bumping 85 to location 12, in turn bumping 38 to location 10. 
On the final insertion, the key 101 bumps 38 from location 10 to location 8. 

0 1 2 3 4 5 6 7 8 9 10 11 12 

91 72 119 85 43 109 85 38 43 38 141 38 
109 147 148 137 101 85 

Figure 10.35 Illustration of Ordered Hashing 

It is easy to see that this scheme must work when insertions are performed by 
decreasing order of the key values. Therefore, we know how to generate at least 
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function HASH_ORDERED (arg: integer; var htbl: hash_table): hash_link; 

var hcnt: hash_ndx; {a global count of table entries} 
i,j: hash_ndx; 
k: integer; 

begin 
i := HASH (arg); j := INCR (arg); 
while arg < htbl [i].key do 

i := (i + j) mod hsiz; 
if arg = htbl [i].key then 

HASH_ORDERED := i 
else begin 

if hcnt = hsiz - 1 then {table is full} 
HASH_ORDERED := -1 

else begin {insert arg in table} 
while htbl [i].key <> 0 do begin 

if arg > htbl [i].key then begin {bump the key} 
k := htbl [i].key; 
htbl [i].key := arg; 
arg := k; 

end; 
i := (i + INCR (arg)) mod hsiz; 

end; 
hcnt:= hcnt + 1; 
htbl [i].key := arg; 

HASH_ORDERED := i; 
end; 

end; 
end; 

Algorithm 10.9 HASH_ORDERED 

one arrangement of the table for which ordered hashing is viable. Remarkably, no 

matter what input permutation of the keys is employed, the algorithm 

HASH_ ORDERED will always generate the same final hash table! To see this, 

suppose that there are in fact two or more table arrangements. Then let A, be the 

largest key with a different location in two distinct arrangements. Necessarily, all 

the keys A, > A, have identical locations in all possible arrangements, by the manner 

in which A, was chosen. But then, in the probe sequence for A, - in any arrange¬ 

ment - all the keys greater than A, reside in fixed locations, and any keys less than 

Kj must occur later in the probe sequence. Accordingly, A; must reside in the first 

probe location not occupied by larger keys, and must do so for all arrangements. 

This contradicts the existence of Ay and thus the possibility of more than one hash 

table arrangement. 

Ordered hashing was introduced with the motive of improving the performance 

of unsuccessful searches. It is fairly easy to see that it does so. To begin with, since 

we have seen that the final hash table arrangement is independent of the insertion 
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sequence, let us presume that the keys have been inserted in sequence by decreasing 
value, as suggested at the beginning of this section. This amounts to ordinary 
double hashing, and we have already seen (Eq. 10.37) that in this case 
PS — ( —1/a) x ln(l — a). But since this corresponds to the unique sequence in the 
ordered hash table, then PS for ordered hashing must have the same value. In the 
case of an unsuccessful search for a key K, the significant observation is that the 
number of probes PF is the same as it would have been if K did occur in the table 
in its proper place, after any keys Kt > K in its probe sequence. In other words, for 
ordered hashing, PF = PS. What about the cost, during randomly ordered 
insertions, of relocating items? Although the average cost of insertions is the same 
as in the case of double hashing, the probability distribution is not the same. In 
particular, some insertion sequences can require 0{n2) “demotion” iterations in the 
algorithm HASH_ORDERED. Our final observation is that if an unsuccessful 
search is always followed by an insertion, as in typical compiler and assembler 
applications, then there is not much reason to employ the method. But when there 
are relatively many unsuccessful searches compared to the number of successful 
searches, then ordered hashing is strongly recommended. Note the implication of 
these last two statements - the advantage of the method will be gained via a vari¬ 
ant of HASH_ ORDERED that searches but does not insert. 

We have seen that ordered hashing does not improve matters for successful 
searches. Is there any technique that does? In fact, there have been several 
approaches to this problem. One of these is illustrated in Figure 10.36(a). A new 
key Kq has the probe sequence indicated in the first row of the diagram, where 
circles denote occupied locations and squares denote empty locations. We see that 
five probes would be required to find an empty location for K$. Shown vertically 
are the probe sequences for the keys Ka, Kb,... that occupy the locations along s 
sequence. Although the locations are shown as being distinct, they need not be, of 
course. What really counts is whether, by bumping one of the keys out of KJs 
sequence, we can reduce the aggregate probe lengths of all the keys. The first 
choice would be to bump Ka by one if the next location in its probe sequence were 
empty, but that is not the case here. The second choice would be either to bump Ka 
by two or Kb by one, but this does not help either. However, on the next diagonal, 
by bumping Kc by one to an empty location, there is a change of +1 for accessing 
Kc and —2 for accessing K0. All in all, this method has been shown to lead to an 
average PS = 2.49 as a approaches one, and to an expected worst case cost of 
0(«‘/2) [Brent 1973]. 

A more general approach is illustrated in (b) of Figure 10.36. In this diagram, 
search is not limited just to the probe sequences of those keys on s sequence. 
Rather, a binary tree of choices is explored. Whenever the probe sequence of a key 
Kj finds that location occupied by another key Kp then the next locations in the 
sequences for both keys are examined. (Once again, note that the locations corre¬ 
sponding to these nodes need not be distinct.) The sense of the figure is that the 
probe sequence for the bumping key Kt continues to the left, and that the probe 
sequence for the bumped key K} extends to the right. For the case illustrated in the 
figure, the optimum strategy would be to bump the key X from node A to node B 
and the key Y from node B to node C, thus allowing the insertion of Kq at node A. 
This method has been shown to lead to an average PS = 2.13 as a approaches one, 
and to an expected worst case cost of 0(lg n) [Gonnet and Munro 1979], 
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hi(K0) 

Figure 10.36 Two Rearrangement Schemes for Hash Tables 

There is a limitation with either of the two methods illustrated in Figure 10.36, 
in that probe sequences are explored only in a forward direction. This causes some 
of the arrangements that they compute to be sub-optimal. The computation of an 
optimal arrangement (apparently yielding 1.83 for the average value of PS as a 
approaches one) would also, in effect, have to allow for exploring probe sequences 
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in a backward direction [Lyon 1978; Rivest 1978a], Such a computation would 
correspond, in fact, to solving the assignment problem; this was cited in Section 
7.4.3.4 as one of the variations of computing a minimum weighted matching for a 
bipartite graph. In practice, one would seek to adapt the amount of rearranging 
activity to the expected savings in subsequent accesses, along the lines depicted in 
Figure 10.36. Is it likely to be worthwhile to rearrange hash tables to reduce the 
average value of PS? For the symbol table for a compiler, it might well be, since 
there the ratio of subsequent (successful) searches to initial (unsuccessful) searches 

can be high; and for a fixed dictionary, it almost certainly would be. 

110.4.3 Hashing Optimality 

In our evaluation of open hashing performance in Section 10.4.2.3, we found that 
the average value of PS is 0(log/t), and that the worst-case value of PS is 0(n). 
Subsequently, in Section 10.4.2.5, we saw how to improve these values by means of 
collision resolution methods that rearrange the hash table. By these rearrange¬ 
ments, the average value can be reduced to 0(1) (a constant), and the worst-case 
value can be reduced to 0{ log n). In this section we consider the question of the 
absolutely best hashing performance that can be obtained. These improvements are 
obtained both via the choice of hashing function and via the choice of collision 
resolution method. There are several variations on this theme, all of them sustain¬ 
ing the central idea that it is possible to use a hash table with 0(1) worst-case 

performance. 

In order to discuss these matters, we will speak of a universe U of possible key 
values and a subset S of keys, chosen from U and to be hashed into a table of size 
M. Also, the size \U\ is N and the size | S| is n. Now the most desirable situation 
would be to find a perfect hashing function that would engender no collisions, and 
so would map each key in S into a distinct location in the table with a single probe. 
It is extremely unlikely that an arbitrary hashing function will have this property. 
As an illustration, suppose that n — 30 and M = 40. Then there are 4030 « 1048 
mappings from S into the table; only 40 x 39 x — x 11 = 401/10! « 2 x 1041 of these 
do not have collisions, however. In other words, only about two in every 10 million 
will be perfect for these values of n and M. Nonetheless, Sprugnoli [1977] discusses 
two heuristics for finding for such a function, once having been presented with some 
fixed, unchanging set S. We can impose the additional condition that M = n — 
that is, that there be no empty table slots; in this case we have a minimal perfect 
hash function. In one attack upon this problem, a hash value is constructed using 
the first character, the last character, and the length of the key [Cichelli 1980]. 
Various heuristics are then employed to guide a backtracking search for an assign¬ 
ment of values to the characters that will produce a minimal perfect hash function. 
In one example of this method, a minimal perfect hash function is obtained that 
maps the reserved words of Pascal into the range 2 .. 37; for example, with 15 for 
'B' and 13 for 'NT, this function hashes 'BEGIN' to 33. 

For small, static sets of keys, as with the reserved words in an HLL, the idea of 
a perfect or minimal perfect hash function can be extremely worthwhile. As a 
general approach to hashing, however, the idea has some practical shortcomings. It 
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is totally unsuited for a varying set of keys, where a single insertion makes it neces¬ 
sary to compute an entirely new hash function. Moreover, even for static sets of 
keys, the methods just described have limited applicability except for small n. One 
reason is because of the use of heuristics with exponential complexity; thus, we may 
not be able to ascertain in any reasonable amount of time whether a solution exists 
for a given set S, much less the value of a solution. Another reason is that the 
methods can generate hash constants so large with respect to the fixed word size of 
the underlying machine that they cannot reasonably be employed. Nonetheless, the 
search for perfect and minimal perfect hash functions has attracted a large amount 
of effort [§]. 

In addition to the pragmatic results outlined in the preceding paragraphs, some 
remarkable theoretical results have been obtained concerning the possibility of hash¬ 
ing a sparse table; by this, we mean hashing an arbitrary subset S from a universe 
U of size TV to a table of size M, where M is suitably less than TV. For M > 2 and 
TV < 2M - 2, as an example, it is always possible to determine (with a single probe!) 
whether or not any given member of U is present in the table. This is possible by 
means of an ingenious assignment of keys to table locations, such that examination 
of the location specified by h(K) has one of three results: 

(a) K is there and so is present in the table; 

(b) some different key from U is there, such that we can infer that K is somewhere 
else in the table; 

(c) some different key from U is there, such that we can infer that K is absent 
from the table. 

On the one hand, this result is true for any subset of elements of U (as long as 
TV < 2M — 2). On the other hand, it may not actually retrieve K if it is present; 
rather, the result has the effect of determining set membership. This unusual 
demonstration is coupled with further conclusions concerning the sufficiency of 0(1) 
probes (but not single probes), subject to restrictions on the relative values of M 
and TV [Yao 1981]. These restrictions are removed in Fredman et al. [1984], where 
it is shown how hashing can be used to store and retrieve a sparse subset of items 
from a universe U in a table M with 0(1) worst-case performance - regardless of 
the relative values of M and TV! 

Thus far, we have viewed the question of hashing optimality as one of trying to 
find a hash function h for which the worst-case performance will not be too bad, no 
matter what subset S of U is presented to it. More precisely, we look for an h such 
that, averaged over all sets of input keys, the number of collisions produced by h is 
bounded relative to the size of the set. The approach known as universal hashing 
uses separate chaining and deals not with a single hash function, but with a set H of 
hash functions [Carter and Wegman 1979]. One chooses an h at random from H 
and then averages the expected number of collisions over all the members of H, 
rather than over all the possible input sets S. The effect of this is to provide relief, 
in a technical sense, for the possible worst-case behavior that any single hash func¬ 
tion can have for certain inputs. In other words, universal hashing guarantees that 
the expected time to process any input sequence is linear in the length of the 
sequence. For a suitable prime p, one example of a class H of universal hash func¬ 
tions is given by H\ hs,(K) = (s x K + t) mod p. The idea is that one chooses a 

function from H at random and then monitors its operation on the input set S at 
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hand. In the event of unsatisfactory performance, one just randomly chooses 

another function from H. 
Alas, we must note that the results described in the two preceding paragraphs 

do not come without cost. In both cases, although the expected time complexities 
of the methods are guaranteed to be 0(1), the cost in the size of the information 
(that is, program and/or data) required to specify them is unbounded. (We are 
reminded of the unlimited growth of hash constants in some of the perfect hashing 
methods.) Quantitative discussions of these compensating costs can be found in 

Mairson [1983] and Mehlhom [1982a]. 

flO.4.4 Predictive Hashing 

The conventional use of hashing is for determining the location of an item in a table 
or file. Sometimes we encounter situations wherein an item is very unlikely to be 
present and where it is not disastrous to mistakenly decide that it is, as long as we 
don’t decide that it is not present when it really is. This leads to a different and 
powerful use of hashing for predicting whether an item is likely to be present in a 
table or file. Actually, the idea is to be able to compute rather quickly, and with no 
error, whenever a value is not present. We accept, however, that the computation 
may erroneously predict that an item is present when it is not. In other words, this 
method will filter out all the values that are really present, but will also filter out 
some number of false drops — that is, values that seem to match the cri teria but 
really do not. Thus, suppose that we are checking a credit card number to see if the 
card is suspect. In the vast majority of cases no action is required. However, the 
cost of looking for the card number in a large reference file is likely to be high; the 
complete file may not even fit in main memory. So it is better to be able to deter¬ 
mine quickly when a complete search is not required, even at the expense of 
occasionally being misled that a number is in the file and looking for it without 

finding it. 

For the situation just described, we employ a large bit table b0bx... bM_x and a 
set of hash functions hx, h2,..., hs. These functions are chosen to be completely inde¬ 
pendent of each other, but each of them hashes input keys into the range 0 .. M — 1. 
The hash table (the bit values) is generated by applying each hash function to each 
key in the file. For a given key Kh the effect will be to set to one those bits 
addressed by the union of hx(Kt), hfKf ... , hs{Kf When the entire set of keys has 
been hashed to this bit array, then bk will have the value one only if some hash 
function applied to some key returned the value k. Now when an input key K is 
presented, we simply test whether bh.(K) = 1 for all 1 < j < s. If the test fails for any 
j, then K cannot be in the file and we can proceed with other matters. Otherwise, 
we should assume that K is present and search for it in the file. For maximum 
effectiveness, the parameters 5 and M for this Bloom filter [Bloom 1970] should be 
chosen such that approximately half of the M hash bits get set to one. We will 
analyze a closely related situation very shortly, from which it can be seen that for a 
file of N records, the probability of getting a false drop is approximated by 
(1 — e~fr)s- Moreover, even if there are a moderate number of false drops in the 
“hits” to the file, that is much less significant than the time that is saved by not 
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doing a full search for the majority of items that are not in the file. In situations 
for which this approach is appropriate, the hash table is typically large, but not too 
large to fit in main memory, whereas a conventional hash table for the file would 
not fit in main memory. 

In the method just described, we constructed a large hash table that could be 
used as a predictor for all the items in a table or file. A closely related approach 
can be used for speeding up the search for a string pattern in a text file. In this 
scenario, we have a large, fairly static text file that is to be searched many times, 
perhaps a file used for information retrieval. Such a file is typically organized in 
terms of text lines (see Figure 8.20). Rather than laboriously searching for an input 
pattern in each line of such a file, we can construct a small hash table for each line, 
as a predictor for substrings that occur in that line [Harrison 1971], In particular, 
we construct a hashed k-signature by applying a hash function h to each of the 
substrings a,-ai+l... ai+k_x of length k in that line. The range of h is 0 .. m — 1, and 
the hash table is a bit table b0bx... bm_x. After the signature is constructed for a line, 
then bj in that signature will have the value one only if h applied to some substring 
in that line returned the value j. Now when an input pattern is presented, we first 
compute the hashed /c-signature of all its substrings of length k. Then the pattern 
cannot be in a text line if, for any 0 <j < m - 1, the jth bit of the pattern signature 
is one and the y'th bit of the line signature is zero, whereupon we can skip with 
certainty to the next text line. If the signature of the text line does “cover” that of 
the pattern, however, we must employ conventional pattern matching on that line. 

Of course, there may be false drops. Let us estimate the probability of this, 
using 2-signatures and assuming that there is no correlation among substrings of 
length two — that is, digrams. (From our mention of digrams in relation to spell¬ 
ing correction in Section 8.3.2, we know that this assumption is not really justified.) 
The probability that any single digram in a line of text will not hash to a particular 
location in the bit table is (1 — 1/m). For an average number t of digrams in a text 
line, the probability that none of them will hash to that particular location is there¬ 
fore (1 — 1/m)'; and the probability that at least one of them will hash to that 
location and set it to one is (1 - (1 - 1/m)'). Therefore, if the pattern has s 
digrams, the probability that each of them will hash onto one of these locations in 
the line signature having value one is Pr = (1 — (1 - l/m)')s. Finally, since 
(1 — l/m)m « e~\ we can substitute e~‘lm for (1 — 1/m)' and rewrite this as 

Pr = (l - e~tlm)s (10.38) 

(The analysis of false drops for a Bloom filter is almost identical.) As an example, 
suppose that we have a 12-character pattern (with 11 adjacent pairs) and an 
80-character text line (with 79 adjacent pairs). Then for a hash table of 64 bits, 
Pr = (1 — e~79l64)n — .02275. In other words, for these parameters, the signature 
test allows almost 98 percent of the non-matching substrings to be discarded with¬ 
out further testing. 

The signature method is certainly useful for a large static text file that will be 
searched often, but it is not practical for spontaneous searching of text files. More¬ 
over, it requires that extra space be allocated with each text line for its signature. 
Our last example of predictive hashing responds to both of these objections. It is in 
fact a third 0(n) method for general substring matching (see Section 8.5.1), by Karp 
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and Rabin [1981]. In this algorithm (K&R), hashing is used to construct a finger¬ 
print of a pattern. In order to be useful, the fingerprint function must be so concise 
and easily computable that there is a savings in comparing fingerprint values rather 
than directly comparing substrings. It should also, of course, yield a small percent¬ 
age of false drops. With this scheme, we need to construct the fingerprint of the 
pattern just once. But since we have to construct the fingerprints of many succes¬ 
sive substrings of the text, we need some method that allows for very efficient 

“updating” of the fingerprint from one substring to the next. 

In the K&R substring matching method, the characters a, of a substring are 
treated as digits dt relative to the radix r of the character set. Then the fingerprint 

of a substring D = d^+i... di+m_u of length m, is defined by 

(j>{D) = dfm~X + di+lrm~2 + - + di+m_x (modulo p) (10.39) 

where p is a latge prime. For p < 232, we see that comparing fingerprints reduces to 
comparing full-word integers in common machine architectures. What is 0 for D', 
the successor to D, when we shift right one place? The crux of this method is that 

we can compute 0(D') fairly simply by 

0(D') ee (0(D) - djrm~1) x r + di+m (modulo p) (10.40) 

An important reason that Eq. 10.40 is easy to evaluate is that, for prime p, the 
modulus operation can be applied after each operation rather than at the end of the 
evaluation. Now observe that 0 is a hash function, but we do not need a hash table 
like that required in the signature method. Rather, the fast update of Eq. 10.40 

takes its place! 

One more thing is required in order for the K&R method to be useful. The 
probability of a false drop has to be suitably small. In Karp and Rabin [1981] it is 
shown that for a text string of length n and a suitable choice of prime p, this proba¬ 
bility is 2.511/m and the expected complexity of looking for a match is 0(n). Since 
we know that any hashing function can yield very bad performance for certain 
inputs, their method also incorporates a notion akin to that of uniform hashing (see 
Section 10.4.3). In particular, if the number of false matches with a given 
pattern/text combination is excessive, then one can interrupt the process, randomly 
choose a different suitable prime, and then continue the process with the new defi¬ 
nition of 0. In conclusion, note that good performance for the K&R algorithm 
depends upon two capabilities that are not required with the earlier KMP and B&M 
algorithms; we must be able to do multiplication and modulus operations quickly, 
and we must be able to obtain random prime numbers easily. 

10.5 DIGITAL SEARCHING 

Most of our searching methods have been based upon binary comparisons of keys. 
Hashing was a notable exception, substituting properties of key transformations for 
the natural ordering among the keys. Now let’s suppose that instead of organizing 
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the data, we organize the search space. We can do this by regarding a key in terms 
of its representation as a sequence of “digits” — characters or actual digits or bits 
— and then using the values in this sequence to guide our search. Indeed, we do 
this very naturally when we use the thumb-indices of a large dictionary to find the 
first entries for each letter of the alphabet. We will examine two rather different 
ways of operating with the digits of the key. The first conforms to the thumb-index 
analogy; the second combines elements of digital searching with those of BST’s. 

10.5.1 Tries 

The word trie comes from the word retrieval and is pronounced like “try” so that it 
will not be confused with tree. It is particularly appropriate for alphabetic keys, 
where the radix is 27, allowing for a space character. For illustrative purposes, 
however, that is too “branchy,” and so we will use just the eight most common 
letters {e, t, a, o, i, n, s, t}. In particular, we will compose examples from the 26 most 
common words that employ only these (non-blank) letters, as shown in Table 10.5 
(and as opposed to Table 10.1 in Section 10.3.2.4). Ordinary words do not have the 
prefix property (see Section 8.2.4), and we can see several instances of this in the 
table; for example, 'the' is a prefix of 'then' and 'these'. When using tries, there¬ 
fore, it becomes necessary to employ some distinct terminator character to 
discriminate such cases. We will employ '#' for that purpose. At each node of a 
trie for our example words, we will make a nine-way branch, corresponding to the 
nine possible values a, e, h, i, n, o, s, t' of the examined character. This process is 
illustrated in Figure 10.37, where the value used for branching at the yth level is the 
yth character of the argument key. Since the initial portions of the keys are deter¬ 
mined by the search path, there is a choice between storing an entire key at a leaf 
(as in the figure), or just the suffix portion of a key. One or the other is required, 
however, in order to prevent a partial match from being falsely interpreted as a 
complete match. 

/ word / word / word / word 

1 the 8 it 15 not 22 its 
2 to 9 as 16 an 23 into 
3 a 10 his 17 one 24 than 
4 in 11 on 18 she 25 these 
5 that 12 at 19 has 26 then 
6 is 13 i 20 no 
7 he 14 this 21 so 

Table 10.5 26 Most Common Words Using {e, t, a, o, i, n, s, h} 

Two things are apparent from Figure 10.37. First, this structure allows us to 
make more elaborate discriminations and so find keys faster, on average, than is 
possible with a BST. In particular, if there are n keys and we are performing ra-way 
branching on their digits, then with the best of circumstances we should be able to 
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discriminate among them with logw n = lg n/ lg m tests. In the case of a full alpha¬ 
bet of 27 characters, this would suggest that only 1/ lg 27 ~ 0.21 as many tests 

would be needed as with ordinary binary comparisons. Even in the worst case, 
moreover, the number of tests is bounded by the number of characters in the long¬ 
est key, and this is far less than the 0{n) worst-case for unbalanced BST’s. Another 
feature of Figure 10.37 is that, in fact, many of the branch possibilities are empty. 
This increases the actual number of discriminations required, and also leads to 
extravagant use of space in tries. A realistic expected value for the number of 
nodes, under the assumption that the keys are random, can be shown to be «/ In m 
[Knuth 1973b]; accordingly, the average amount of space is mn/ In m. There are 
several avenues to explore for reducing the wasted space that we see in Figure 
10.37.11 But first, let us take up the matter of implementing tries. 

Dealing with tries in an HLL like Pascal reveals some interesting problems. A 
fundamental one is that the pointers in Figure 10.37 may refer either to other nodes 
containing vectors of pointers or to nodes containing keys. Since the keys are likely 
to be of widely varying length, they might preferably be placed in a string table 
rather than in the trie nodes. But that doesn’t alter the fact that the pointers must 
be able to reference two very different sorts of structures, for which the remedy is to 
use variant records. In our case, we will have one variant that contains a vector of 
pointers, and another variant that contains an alphabetic key. The reason for using 
a vector of pointers is that the multiway branch can thereby be accomplished in one 
machine operation, by indexing the vector with the character at hand. We will use 
V' .. 'Z' as the index type for the vector of pointers. The value is arbitrarily 
chosen as the terminator character because it closely precedes the range 'A' .. 'Z' in 
the EBCDIC character set; a different choice would doubtless be made for ASCII 
(see Table 8.1). 

Incorporating these observations, we arrive at the function TRIE_INSERT 
(Algorithm 10.10) for searching a trie, inserting arg if it is not already there, and (in 
any case) returning a pointer to the node containing arg. Note that there are two 
circumstances under which an argument key will be inserted. The simpler case 
occurs when one of the appropriate pointers is nil and so a new word node must be 
created and attached to the trie. A trickier situation occurs when a pointer chain 
terminates with an unequal match between arg and the key K at a leaf. In this case, 
it is first necessary to insert intervening vect node(s) up to the point of the earliest 
level j at which arg and K differ in the jth position; and then the trie pointers must 
be updated to reflect this.12 

In selecting the representation in Figure 10.37 and in developing the algorithm 
TRIE_ INSERT, we were guided by the desire to be able to build a trie dynam¬ 
ically. We may have a simpler situation where just searches need be performed, and 
not insertions, as in the case of the reserved words of an HLL. In that case, we 

11 The non-contiguity of the alphabetic characters in EBCDIC is particularly distressing at 
this point. It exacerbates the phenomenon of wasted space in tries by interspersing 
extra unused pointer positions in the nodes. 

12 In TRIE_INSERT, we could have written ne\N(r,vect) and new(?,vtwaf) in order to 
preclude wasted space (see Figure 4.10). For the sake of simplicity, this was not done. 
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function TRIE_INSERT (arg: key_id; var tbl: trie_ptr): trie_ptr; 

const first = V'; last = 'Z'; 

type alf = first .. last; 
key_range = 1 .. key_max; 
key_id = packed array [key_range] of char; 
nodetype = (vect,word); 
trie_ptr = |trie_node; 
trie_node = record 

case tag: nodetype of 
vect: (ptrs: array [alf] of trie_ptr); 
word: (key: key_id); 

end; 

var ch: alf; 
done: boolean; 
i,j: key_ range; 
p,q,r,s: trie_ptr; 

begin 
done := false; i := 1; q := tbl; 
while done = false do begin 

done := true; 
case qt-tag of 

vect: if qj.ptrs [arg [i]] <> nil then begin 
p := q; q := qj.ptrs [arg [i]]; 
done := false; i := i + 1; 

end else begin {hang a new word node from vect node} 
new (s); sj.tag := word; 
qt-Ptrs [arg [i]] := s; 
s[.key := arg; 
TRIE_INSERT := r; 

end; 
word: if arg = qf.key then {found it} 

TRIE_INSERT := q 
else begin {need new vect node(s) and a new word node} 

i := i - 1; j := i; 
repeat 

new (r); rf.tag := vect; 
for ch := first to last do 

rI.ptrs [ch] := nil; 
Pt-Ptrs [arg [j]] := r; 
j := j + 1; P := r; 

until arg [j] <> q| key [j]; 
rt-ptrs [qt-key Q]] := q; 
new (s); sf.tag := word; 
rt-ptrs [arg [j]] := s; 
s[.key := arg; 
TRIE_INSERT := r; 

end; 
end; 

end; 
end; 

Algorithm 10.10 TRIE_INSERT 
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might represent the trie as a two-dimensional array, where each member of the 
array is either a keyword or else an index of another column in the array, according 
to the following definitions: 

type col_ndx = 1 .. col_max; 
member = (link,word); 
trie_member = record 

case tag: member of 
link: (cursor: 0 .. col_max); 
word: (key: key_id); 

end; 

trie_a = array [alf,col_ndx] of trie_member; 

An algorithm to perform searching in such a structure is likewise much simpler than 
Algorithm 10.10. Figure 10.38(a) exhibits an array representation corresponding to 
the original trie of Figure 10.37. 

It is certain that we can expect to have a shorter search path with a trie than 
with a BST. How this will affect search times is less clear. It depends largely upon 
the relative speeds of doing character extraction and word comparison on the 
underlying machine, and so is mostly outside of our control. However, a major 
concern with using tries has always been how to implement them efficiently in terms 
of space. Some of these efforts are summarized in the following paragraphs. 

A. Tries were first proposed by Fredkin [1960] and also by de la Briandais [1959]. 
These two proposals have a significant difference. The former presents tries as we 
have described them. The latter characterization retains just the non-void siblings 
within a node, and then transforms this ordered tree with nodes of variable degree 
to the corresponding binary tree. When this transformation is applied to Figure 
10.37, we obtain the binary tree in Figure 10.39. Now there is less wasted space, 
but it is no longer possible to accomplish fast branching by indexing on an array of 
pointers. Exactly how much space is saved depends upon several factors. The 
savings will be greater as the sparsity of the vector increases. Don’t forget, though, 
that each non-void entry now requires space for a digit label and two pointers, as 
opposed to just one pointer in Figure 10.37. Because the fast multi-branching is 
lost, the representation in Figure 10.39 is generally less popular. However, it is 
possible to recoup some of the loss by familiar techniques. One is to link sibling 
nodes in decreasing order of their expected usage. Another might be to replace 
linked lists of siblings by BST’s of siblings. 

B. Trie nodes are usually space efficient near the root and less so further away 
from the root, as in Figure 10.37. A sensible response to this is to employ a hybrid 
data structure that is like a trie near the root, but reverts to linked lists or BST’s 
near the leaves, when the number of children becomes less than some value b. As 
cited at the beginning of this section, the average number of nodes for a random 
trie is n/ In m. Employing a hybrid random trie in this manner, the node require¬ 
ment is approximately #ln m), for b and m small and n large [Knuth 1973b]. 
The optimal overall strategy is to switch at about b = 6, thereby reducing the 
number of nodes by a factor of six [Sussenguth 1963]. 

C. In realistic sets of alphabetic keys for information retrieval, we often encounter 
words that have identical prefix portions - for example, physical, physician, physi- 
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Figure 10.39 Tree Form of Trie of Figure 10.37 
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cist, physics. Because of this non-random property, many more trie nodes are 
required to discriminate such words than we would otherwise expect. In particular, 

it causes “one-way” branching; we see two such nodes (marked with *’s) in Figure 

10.37. It is not hard to “collapse” tries so that one-way nodes are deleted. We 
simply incorporate in each node an additional field that specifies how many digits 

should be skipped over until finding one that is significant for discrimination. 

D. It was natural to build the trie in Figure 10.38(a) by examining the characters 
from left to right. But there are other possibilities. For example, by examining the 
characters from right to left, we can construct the trie in Figure 10.38(b), which 
requires only thirteen nodes of pointers rather than fifteen. Can we discover an 
optimal sequence of character positions to test and thus construct the optimal trie, 
as we did the optimal BST in Section 10.3.2.1? Unfortunately, this problem and 
several alternate phrasings of it have all been shown to be AP-complete [Comer and 
Sethi 1977]. Therefore, in lieu of exact answers, we look for heuristics. The prob¬ 
lem of finding an optimal sequence of character positions for discriminating 
between words has been investigated in the context of finding optimal rules for 
abbreviation of words. In an excellent study of this matter, many rules were tried, 
and one of the simplest was found to be generally superior [Bourne and Ford 
1961]. Specifically, a good rule is simply to skip over all the characters in the even- 
numbered positions. In particular, this discards the second characters of words. 
Second characters are very commonly vowels, and accordingly provide less discrimi¬ 

natory power than do characters in other positions. 

E. Lastly, there are techniques for retaining the branching structure of a trie, but 
“squeezing” out the excess space. Examine Figure 10.38 again, and imagine that we 
slice such an array into its columns. Then suppose that we slide these columns up 
and down beside a large empty vector of slots in such manner that there are no 
multiple entries in any row, and as few empty rows as possible. We can then super¬ 
impose the vertically shifted columns upon the vector of slots, and this elongated 
vector can be used in lieu of the two-dimensional array, with subsequent savings in 
space. The result is known as a compacted trie. It is illustrated in Figure 10.40, 
where (a) is the original trie for the words {APE, ATE, PAT, PEA, PET, TAP, 
TEA}, and where (b) shows a compacted trie for the same words; the values abdve 
the compacted trie mark the beginnings in (b) of the corresponding columns from 
(a). Exact and approximate algorithms for finding compacted tries in this manner 
are given in Al-Suwaiyel and Horowitz [1984], and they tend to reduce the space 
requirement by 70 percent. The exact algorithm is exponential in the number of trie 
nodes examined. However, the simplest of the approximate algorithms compacts 
almost as well in practice and yet has complexity 0(mn), for m the branching factor 
and n the number of nodes. The goodness of the compacted result depends much 
more heavily upon m than upon n. Interestingly, repeated use of the KMP string 
matching technique (see Section 8.5.1.1) is central to all of these algorithms. Of 
course, the technique of compaction is useful only for static tries. Another way of 
squeezing space out of tries is to construct compressed tries, in which the essential 

point is to replace vectors of pointers by vectors of boolean indicators [Maly 1976]. 

This typically reduces storage requirements by an order of magnitude, with no 
diminishment of accessing speed. The resulting structure is very cumbersome to 

update; so it too is suitable only for static tries. 
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1 2 3 4 5 

A 2 - PAT TAP PEA 
E - 5 TEA — 

P 3 APE - — — 

T 4 ATE - - PET 

(a) Original Trie 

1 2,3 54 

LEE 5 10 PAT 9 APE ATE PEA TAP TEA PET — 

1 2 3 4 5 6 7 8 9 10 11 12 13 

(b) Compacted Trie 

Figure 10.40 Compacting a Trie 

Now that we have dealt at length with the issue of space in tries, what can be 
said about their usefulness as compared with other structures for searching? First, 
they are particularly useful for dealing with long, variable-length keys. Most trie 
searches on such keys need examine only the first few characters. Moreover, in the 
event of an unsuccessful search, we will know the longest partial match. By 
contrast, methods based upon key comparisons or hashing may cost more because 
of the need to deal with the entire key; also, hashing is useless for indicating partial 
matches. A significant hazard with unbalanced BST’s and with hashing is their 
0(n) worst-case behavior. This is far less of a problem with tries. We have already 
mentioned that the longest path can be no longer than the longest key. The possi¬ 
bility of this happening depends upon non-randomness in the distribution of digits 
in the keys. Unlike the BST case, however, it is completely independent of the 
sequence in which the keys are inserted. For a given set of keys, the same trie will 
be obtained for any sequence of insertions! 

f 10.5.2 Binary Digital Searching 

In contrasting tries with BST’s, we might conclude that comparison searching is 
intrinsically binary and that digital searching is intrinsically multiway. This is not 
true, however. Multiway comparison trees were introduced in Section 10.3.4; we 
will now encounter a binary form of digital searching. In this method, the bit 
representation of a key is used rather than its character representation. That makes 
it more appropriate for implementation in assembly language than in an HLL, 
where bit extraction is awkward. We can illustrate the concept nonetheless, using 
the hypothetical mapping from characters to bits illustrated in Figure 10.41(a). 
Under this mapping, the keys of Table 10.5 would appear as in (b) of Figure 10.41. 
An algorithm for inspecting the binary digits from left to right and 
searching/inserting in a binary tree would be very similar to BST_INSERT (Algo¬ 
rithm 6.6). When the search has reached a node X, the first step is to compare the 
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argument key with the key at X. If they are equal, the argument has been found. 
Otherwise, for X at the fth level of the tree, the search goes left or right from X, 
according to whether the ith bit of the argument has the value 0 or 1. When the 
words of Figure 10.41(b) are inserted in their listed sequence, from more probable 
to less probable, we obtain the binary digital search tree of Figure 10.42. It is some¬ 
what disconcerting at first glance; it resembles an ordinary BST with some keys out 

of place, as though it might have been constructed by a novice. 

binary octal binary octal 

a 000 0 n 100 4 

e 001 1 0 101 5 

h 010 2 s 110 6 

i 011 3 t 111 7 

(a) Binary/Octal Encoding of {e, t, a, o, i, n, s, h} 

word octal word octal word octal word octal 

1 the 721 8 it 37 15 not 457 22 its 376 

2 to 75 9 as 06 16 an 04 23 into 3475 

3 a 0 10 his 236 17 one 541 24 than 7204 

4 in 34 11 on 54 18 she 621 25 these 72161 

5 that 7207 12 at 07 19 has 206 26 then 7214 

6 is 36 13 1 3 20 no 45 

7 he 21 14 this 7236 21 SO 65 

(b) Words and Octal Equivalents 

Figure 10.41 Binary Representation of the Words of Table 10.5 

We learned in the preceding section that the shape of a trie is dependent upon 
the distribution of the digits in the keys, but is independent of the order of 
insertion. This is in contrast to BST’s, in which the shape is independent of the key 
values, but very dependent upon the order of insertion. Since binary digital search 
trees are intermediate in character to tries and BST’s, it is not completely surprising 
to learn that their shapes depend upon both of these factors. The good news is that 
their dependence upon order of insertion is much less than with BST’s. Therefore, 
as with tries, the worst-case performance of binary digital search trees is much 
better than that of BST’s. We can observe that this is so by taking the keys from 
Figure 10.41(b) and building an ordinary BST with them, as in Figure 10.43. This 
latter tree is badly unbalanced, with an average path length of 152/26 = 5.846. By 
contrast, the tree of Figure 10.42 has an average path length of 111/26 = 4.269. 
What if the keys are distinctly non-random, such that there are many instances of 
equality among the prefix portions of their binary representations? In this case we 
could first hash the keys to scramble their bit values, and then proceed as before. 
In fact, the original description of binary digital searching is couched in these terms 

[Coffman and Eve 1970]. 

Whereas in trie searching the keys are at the leaves, in binary digital searching 
they are at the nodes; thus, this latter method requires many more key comparisons 
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Figure 10.43 Ordinary BST for Figure 10.41 
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than trie searching does. An example of a digital search method that does not have 
this drawback is the elegant technique known as Patricia (Practical Algorithm to 
Retrieve Information Coded in Alphanumeric) [Morrison 1968]. On the way down 
in the search path from the root, the keys are examined from left to right, and one¬ 
way branching is eliminated because each node has a field specifying the index of 
the next bit that is significant for discrimination. The sequence of examined bit 
values on the way down then corresponds to just one legitimate entry. The last 
node along any valid, unique sequence does not have a downward link to an 
external node containg the key, as in a trie, but rather an upward link to one of the 
nodes on the search path — with the unique key matching the search stored therein. 
This means that comparisons do not have to be made against keys on the way 
down, but only after following a back pointer; and this is easily recognized because 
it leads to a node with a smaller bit index. So Patricia requires just one type of 

node and just one full key comparison per search! 

fl0.6 OTHER PARADIGMS OF SEARCH 

In the beginning of this chapter, we cited three paradigms of searching that had 
been encountered throughout the book. We called attention to them at that point 
expressly for the purpose of distinguishing the paradigm of this chapter from other, 
familiar possibilities. We now return to the subject. There are, in fact, yet other 
types of search that one may want to perform; corresponding to all these possible 
paradigms, there is a substantial body of study. Our intent here is simply to give a 

brief overview of them. 

Range search. The objective in this case is to find all the values that lie between 
two limiting values, L(ower) and C(pper). This is fairly easily accomplished by 
building upon familiar methods. One approach would be to first sort all the input 
values. It would then be straightforward to find both L and U in the sorted array 
via binary search, and then return all the values between those two locations. Alter¬ 
natively, we could construct a BST of the input values and then traverse the BST 

selectively, as follows: 

(a) if the value at a node X is greater than L, traverse the left subtree of X; 

(b) if the value at a node X falls between L and U, output X; 

(c) if the value at a node X is less than U, traverse the right subtree of X. 

Closest-match search. In this case we presume that the search will not succeed 
in finding an exact match, and so we seek the value in the table that is closest to the 
search argument. An appropriate response to this situation is to preprocess the 
original input values xt to ranges by finding the midpoints y, between them. Then 
binary search on the table of yt will indicate the value of xt that is closest to the 
input argument. We have already seen this paradigm, in more complicated form, in 
our discussion of spelling correction in Section 8.3.2. 

Multi-dimensional search. This is the issue that can cause search to “blow-up.” 
There is the obvious case of looking for an exact match for a key containing several 
attributes or dimensions. But also, all the other paradigms, such as range searching 
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and closest-match searching, generalize to it as well. Multi-dimensional search 
could be explored at this juncture, with some profit. In many cases of practical 
interest, however, the quantity of multi-dimensional data is so large that the issues 
of secondary memory are very significant. Accordingly, we defer discussion of this 
topic to Section 12.4. 

10.7 OVERVIEW 

When viewed in all its paradigms, the notion of search, in the sense of looking for 
the correct or the best answer to a problem, is broad enough to encompass much of 
computing. What is the best way to search greatly depends upon the relative costs 
of those two basic resources, time and space. Consider the case of finding the value 
of sin(xr). If memory is relatively more precious, then it is better to rely solely upon 
an approximation formula to evaluate sin(x:). But if computing cycles are relatively 
more precious, then it is better to store tabular values that can be used to expedite 
the numeric calculation of sin(x). Trade-offs like this assumed great importance in 
the infancy of computing, when cycles and memory were both comparatively dear. 
The issue is still important in many instances, as witness the immense potential 
benefit of trading space for time with the techniques of tabulation (see Section 
5.4.2.1) and dynamic programming (see Section 7.4.2.1). Stated simply, we should 
always remember that it is sometimes better to recompute, and sometimes better to 
search for a precomputed value in a table. 

Recomputing is one way of recasting the problem of search. The use of asso¬ 
ciative memory is yet another way. With machines having this form of memory, 
one can specify a desired value of an attribute and then access all records possessing 
this property, via one operation of parallel search over all the records in the 
memory [Gotlieb and Gotlieb 1978; Pfaltz 1977]. Indeed, hashing provides a 
mapping from a key value to a location value and so has much of the flavor of 
associative search, except that it is complicated by the occurrence of synonyms. One 
can also look at inverted lists as providing associative retrieval. 

Returning to the narrower view of search that we have explored in this chapter, 
let us reflect in broad terms upon four typical techniques for this purpose: binary 
search, search trees, hashing, and digital search. Most of our discussion has been 
directed at the time complexities for conducting searches and insertions/deletions in 
the associated structures. However, just as we found a time-space trade-off in the 
preceding paragraphs, we find another trade-off at this lower level of problem solv¬ 
ing. Not including insertions and deletions, there are three costs to consider: 

P(n) — the preprocessing time to build the search structure 
S(n) — the space required for the search structure 
Q(n) — the time required for querying the search structure 

Table 10.6 shows these three costs for each of the four searching techniques. We 
can see that binary search is superior in terms of space and competitive in terms of 
query time; it is nonetheless inappropriate, even for a static set of data, when only 
a few queries will be conducted, because of the relatively high preprocessing cost. 
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Of course, the table tells only part of the story. Besides the neglected issues of 

insertion/deletion, there are others: the relative significance of average as opposed 

to worst-case performance, the importance that the structure manifest the order 

relationship between keys, etc. There is clearly no one best search method. The 

choice depends both upon the requirements of the application and upon the charac¬ 

teristics of the data (see Exercise 10.46). Moreover, as we particularly saw in the 

discussion of digital search, it is quite possible that the best solution is a combina¬ 

tion of methods. 

Method P(reprocess) S(pace) Q(uery) 

Binary Search 
Search Trees 
Hashing 
Digital Search 

0(n Ig n) 
0(1) 
0(n) 
0(1) 

O(n) 
0(3n) 
0(n/a) 

0({nm)l(b In m)) 

0(lg n) 
0(lg n) 

0(1) 
0( logm n) 

Table 10.6 Costs of Search Techniques 

10.8 BIBLIOGRAPHIC NOTES 

• For analyses and comparisons of the move-to-front and transposition heuristics 

for self-organizing lists, consult Bentley and McGeoch [1985], Bitner [1979], 

and Sleator and Tarjan [1985]. For a general discussion of self-organizing 

linear search, see Hester and Hirschberg [1985]. 

• Exposition and comparison of various heuristics for constructing quasi-optimal 

binary search trees can be found in Fredman [1975], Korsh [1981, 1982], 

Mehlhorn [1975, 1977], and Walker and Gotlieb [1972], 

• A good theoretical discussion of hashing functions can be found in Knott 

[1975], and a comprehensive evaluation of their performance against a variety 

of representative inputs can be found in Lum et al. [1971]. For a more detailed 

discussion of the paradoxically good behavior of the division method consult 

Ghosh and Lum [1975]. 

• Examples of different approaches to the construction of perfect and minimal 

perfect hash functions can be found in Cormack et al. [1985], Jaeschke [1981], 

Sager [1985], and Yang and Du [1985]. 
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t split tree, 489 
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trie, 539 

f uniform hashing, 527 

f universal hashing, 535 
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weighted path length, 480 
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10.10 EXERCISES 

Section 10.1 

flO.l Prove the following facts about harmonic numbers: 

(a) 1 4—~ < 1 4- yyi 

(b) YH, = (n + \)Hn-n 
/=i 

10.2 Compute the values of the internal and external path lengths for the BST in 

Figure 10.15 and for the BST at the bottom of Figure 10.21. 

10.3 Derive expressions for the internal and external path lengths of an extended 
binary tree that has n nodes and is degenerate - that is, each internal node has at 

least one external node as a child. 

fl0.4 Prove that an extended binary tree with all of its leaves on at most two 
adjacent levels has the minimal value of path length for any such tree with the same 

number of nodes. 

fl0.5 Derive (a) a relationship between the number of external nodes and the 
number of internal nodes in an extended f-ary tree, and (b) a relationship between 
the external path length and the internal path length in an extended r-ary tree. 

Section 10.2 

10.6 Name four things that one might do (not all at the same time) to improve 

the performance of sequential search. 

f 10.7 In sequential search with known and unequal probabilities, 

(a) Prove that the sequence px>p2> - > pn yields the minimum average time for 
searching. 

(b) What sequence yields the maximum average search time? Derive a relation¬ 
ship between the minimum and maximum average search times. 

ff 10.8 In sequential search with known and unequal probabilities, one can opti¬ 
mally arrange the keys in decreasing order of these probabilities. When the 
probabilities are not known in advance, one remedy is the move-to-front self-organ¬ 
izing heuristic. Prove that the asymptotic cost (number of comparisons) for the 
latter can never be worse than that for the optimal static ordering by more than a 

factor of two. 

10.9 Using the data of Figure 10.3, show the execution of SEARCH_BINARY 
for (a) key = 33 and (b) key — 75, tracing the values of lo, hi, i, and tbl [z] as in 

Figure 10.4. 
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f 10.10 How would you generalize Fibonacci search so that it works for any size 

table? Write an algorithm for this general case of Fibonacci search, and test your 

program by applying it to the same input data and input arguments used in the text 
for binary search (see Figures 10.3 and 10.4). 

ft 10.11 Derive expressions for the internal and external path lengths of Fibonacci 
trees, and calculate the asymptotic values of these expressions. 

Sections 10.3.1 - 10.3.2 

10.12 Presume the following sequence of I(nsert) and D(elete) operations for a 
binary search tree: 

I 32 I 17 I 14 I 47 I 35 I 20 14 I 51 I 38 I 40 I 16 D 35 I 28 

I 57 I 62 I 39 I 45 I 25 I 22 I 23 I 24 D51 I 18 D20 I 35 D22 

Draw the tree as it appears immediately before and immediately after each of the 

four deletions (that is, eight sketches of the tree), with deletions performed accord¬ 
ing to BST_DELETE. 

f 10.13 How many permutation sequences on 1 .. 10 will yield the following cases 
of BST’s: 

(a) for Figure 10.44(a)? 

(b) for Figure 10.44(b)? 

(c) for completely degenerate trees (each internal node has at least one external 
node as a child)? 

Figure 10.44 Trees for Exercise 10.13 
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ttl0.14 Suppose that we have a random permutation of {1,2,3,4} and that we 

perform the following sequence of operations: 

(a) insert the first three elements into a BST; 

(b) randomly delete one of these three elements from the BST per BST_DELETE; 

(c) insert the left-over element into the BST. 

Do this for all possible permutations and deletions, and compare the shape distribu¬ 

tion of the final BST’s with that of random BST’s on three elements. 

110.15 Compute (by hand) the optimal BST for the following frequencies: 

P\ = L Pi - 3, />3 = 2’ Pa = 4> Ps = 5 
% — 4, cj\ = 5, q2~ cfo — 2, ?4 = 4, q$ — 3 

tlO.16 For the frequencies in Exercise 10.15, compute the quasi-optimal BST’s 

(and their costs) according to the four heuristics - monotonic, balanced, min-max, 

and greedy — of Section 10.3.2.2. 

f 1*10.17 The balanced and min-max heuristics for quasi-optimal BST’s are very 

similar. Write a better-than-0(«2) algorithm that can be used to compute either 

tree, along with its associated cost. First, test your program against the data of 
Exercise 10.15 Next, use your program to compute the balanced tree and the min- 

max tree for the data of Table 10.1 in Section 10.3.2.4 (where all the <?, = 0). 

tflO.18 Assume that the words in Table 10.5 of Section 10.5.1 obey Zipfs Law 

(see Section 10.2.1), and then construct the median split tree for them. Compute 
the resulting value of CSn. What is the value of CSn for binary search on these 

words, under the same assumption of Zipf s Law? 

Sections 10.3.3 — 10.3.5 

f 10.19 By definition, the AVL mintree Th contains the minimum number of nodes 

n(Th) for any AVL tree of that height. Does it also have the maximum (internal) 

path length for any AVL tree that contains n(Th) nodes? (Hint: Consider the case 

of « = 20.) 

110.20 The Best Actor Awards for 1944—1958 have the sequence shown in the 

following figure. 

(a) Generate the BST for the sequence. 

(b) Generate the AVL tree for the sequence, showing the tree just prior to each 

rotation, according to AVL_ INSERT. 

1944 Crosby 1949 Crawford 1954 Brando 

1945 Milland 1950 Ferrer 1955 Borgnine 

1946 March 1951 Bogart 1956 Brynner 

1947 Colman 1952 Cooper 1957 Guinness 

1948 Olivier 1953 Holden 1958 Niven 
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flO.21 Derive an expression for the minimum proportion of nodes in an AVL tree 
that must have zero balance factors. 

ft 10.22 Analyze the problem of deletion from AVL trees, and construct figures 
showing how the various cases should be handled. (Hint: You can first reduce the 
problem of deleting a node X at an arbitrary position to that of deleting a leaf, by 
finding the successor Y to X and then exchanging them.) Use your analysis to write 
an algorithm that does AVL deletions, and test your program by deleting Leigh 
from the tree of Figure 10.21. 

flO.23 Prove that Fibonacci trees are BB [1/3]. 

fflO.24 In Figure 10.23, derive the formulas shown for the new balance factors in 
terms of the original balance factors, after the rotations. 

tflO.25 For the data of Figure 10.14, construct the corresponding BB [1/4] tree, 
showing the tree before and after each rotation, and displaying the balance factors 
at each node. 

ffl0.26 Analyze and diagram the various cases for splitting a node in a 2-3 tree. 
Then write an algorithm to accomplish search and insertion in a 2-3 tree. Test your 
program by inserting the values 1 .. 20 into an originally empty tree, displaying the 
tree immediately after each insertion that has affected more than a single node. 

10.27 What is the comparison cost (sum over all keys of the number of compar¬ 
isons required) for the 2-3 tree of Figure 10.24? for that of Figure 10.25? What are 
these costs directly related to? 

flO.28 The first step in performing a second-order fringe analysis of 2-3 trees is to 
classify the subtrees of height two that can occur. Show the subtrees that result 
from such a classification. 

fflO.29 [Aho et al. 1974] From time to time, we have alluded to the need for a 
representation of priority queues such that not only the operations of insertion and 
removal can be performed in 0(lg n) time, but also that of merging queues. 
Describe in detail how 2-3 trees can be used to provide such an implementation. 

fl0.30 Construct the 2-3-4 tree obtained by applying the top-down method of 
splitting and rotations to the data of Figure 10.14. Show the tree before and after 
each split and/or rotation. 

flO.31 Name the motion pictures for which the actresses of Figure 10.14 won 
their Academy Awards. 

Section 10.4 

fl0.32 Prove that the step from the first to the second line in Eq. 10.30 is valid 
when M is a prime; also, show by a counterexample that it is not valid when M is 
not a prime. 

flO.33 Obtain characterizations of poor multipliers for multiplicative hashing. 
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110.34 Presume that we have the following sequence of input keys 

185 99 145 71 197 129 72 172 48 108 142 122 

for a table of size 13, and that we use double hashing with hx{K) = K (mod 13) and 

hv(K) = 1 + K ( mod 11). Then display the following data: 

(a) the contents of each hash table location, and the number of probes required 

for the corresponding insertion, using the above algorithm; 

(b) the same quantities as in (a), but with linear probing — that is, with h$(K) = 1; 

(c) the same quantities as in (a), but with coalesced chaining; 

(d) the final insertion location of each key when ordered hashing is used. 

f 10.35 Describe how to implement internal chaining so that lists do not coalesce. 
One motive for doing this is to be able to save space by storing abbreviated keys 
(for example, K div M) at table locations. Another is to facilitate the process of 
deletion. Modify HASH_COALESCE to incorporate the ideas of no coalescing 
and abbreviated keys, and then test your program against the example data of 

Figure 10.29. 

flO.36 [Maurer 1968] The earliest collision resolution method for overcoming 
primary clustering was that known as quadratic residue search, according to the 

probe sequence 

hi+l{K) = (/q(A) + a x i + b x i2) mod (hsiz) (for i = 1,2,...) 

Aside from the question of how well it approximates random probing, there is also 
an issue as to whether this will probe every table location. Derive relations among 
a, b, and hsiz that affect how much of the table is probed. 

10.37 Write an algorithm that performs deletions from a hash table constructed 
by linear probing, and that rearranges the table in the process so that valid probe 
sequences are maintained. Test your program by deleting the entries from the table 
of Figure 10.33, in the sequence in which they were originally inserted. 

flO.38 Consider the case where double hashing is employed and deletions' are 
performed. What should be done about the value of the global variable hcnt that is 
used in HASH_ DOUBLE? Explain the reasoning behind your answer. 

flO.39 [Bays 1973] Write an algorithm to rehash a hash table in situ, as 
mentioned in Section 10.4.2.4. First, test your program by applying it to the data 
of Figure 10.34, rehashing the table contents to array [0.. 18] in place of 
array [0 .. 12]. For the new hash functions, use hx(K) = K (mod 19) and 
/jo(A] = 1 + K(mod 17). Second, test your program again by rehashing the table 
contents back to array [0 .. 12]. 

110.40 For very large hash tables, a serious drawback can be the time required to 
initialize them. Describe a method whereby initialization can be avoided (at the 
expense of using extra space). 

ft 10.41 Write a function that implements the Karp and Rabin substring matching 
algorithm. Employ an auxiliary function to convert characters to integers in a suit- 
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able range, try using p = 33554393, and test your program against the data of 
Section 8.5.1.1. 

Sections 10.5 — 10.7 

10.42 We wish to keep track of all twelve 4-character substrings that occur in 
'POPOLLOPPOLOOPO', using a trie. First show the trie that we would have if we 
branched on the substring characters from left to right, and then show the trie that 
we would have if we branched on the substring characters from right to left. 
Presuming that trie nodes are not overlapped, how many nodes are required in the 
two cases? 

ftl0.43 Find the most compacted form that you can for the trie of Figure 
10.38(a). How does this compaction affect the cost of searching the trie with an 
input key? 

tflO.44 Write an algorithm to do trie deletion, and test your program by deleting 
'TO' from the trie of Figure 10.37. 

fflO.45 If we enlarge the alphabet used in Figure 10.41(a) to that of Figure 10.45, 
we can then encode the words in Table 10.1 of Section 10.3.2.4. Use this encoding 
to construct the binary digital search tree for those words, assuming that they are 
inserted in order of decreasing probability. 

binary binary binary binary 

a 0000 f 0100 n 1000 t 1100 
b 0001 h 0101 0 1001 U 1101 
d 0010 i 0110 r 1010 w 1110 
e 0011 m 0111 s 1011 y 1111 

Figure 10.45 Alphabet for Exercise 10.45 

fl0.46 For the paradigm of search studied in this chapter, give a general analysis 
of how to choose a particular method. Your presentation should be fairly 
complete, comprising a few pages. You might choose to employ a decision table as 
part of your analysis. 
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MANAGING PRIMARY MEMORY 

“Memory [is] like a purse — if it be overfull 
that it cannot shut, all will drop out of it. 

Take heed of a gluttonous curiosity to feed 
on many things, lest the greediness of the appetite 

of thy memory spoil the digestion thereof.” 

Thomas Fuller, 
Holy and Profane States: of Memory 

Our discussions of computational efficiency have focused mostly on execution time, 

with an occasional nod to memory requirements, even though the limits imposed by 

a finite memory size are certainly more rigid than the usual constraints of time. 

The earlier chapters in this book might lead one to believe that he can always get as 

much space as he needs, either by explicitly asking for it, as with new in Pascal, or 

simply because the program needs it, as in LISP or APL. Fortunately, memory is a 

reusable resource. So this attitude will work — but only if there is some means to 

effectively recycle the chunks of memory that programs discard during execution. 

In discussing this problem, we find that the dynamic data structures that can cause 

us to run out of memory space can also be important tools for managing it. 

The problem is a complex one, with many contributing factors. We will begin 

by painting, in the next section, a broad picture of what the issues are. As we will 

see, perhaps the most significant of these issues is whether the pieces of memory are 

all of one size or of various sizes. The two major sections of this chapter corre¬ 

spond to this dichotomy. 

An additional point is that we will be describing memory management algo¬ 

rithms in Pascal, even though in practice they would largely be implemented in 

assembly language. But Pascal imposes some restrictions upon pointer operations; 

for example, only the two most basic relational operators {=, < >} are allowed, 

and not {<,< = ,> = ,>}. Thus, although we will sometimes model situations in 

terms of pointer variables, at other times we will employ cursors (see Section 4.1.1) 

in order to sidestep these restrictions. 
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11.1 MEMORY MANAGEMENT ISSUES 

The issues that concern us in this chapter recur at several different levels when we 
use a computer. At most or all of these levels, the matter is out of our hands, with 
“the system’’ providing the services that we need. For instance, most of our work 
may be done under one operating system. If this system provides multiprogram¬ 
ming services on one underlying machine to a set of users, then it must apportion 
the available memory space among these users, with the active requirements for 
each member of this set tending to fluctuate dynamically. At a lower level, one 
such user may be using some HLL, or editor, or other system program. The 
execution environment for each of these programs must, in turn, divide the piece of 
memory pie given to it by the system among the procedures and data that constitute 
that total program. As we go to deeper levels, with our own program executing, we 
may have to solve a memory resource problem that mimics, with smaller pieces, 
what transpired at a higher level. We will explore these matters further under the 
heading of “The Environment.” 

At each level, the system and/or the user must make various choices that direct 
how this dividing-up process is to be regulated. We will investigate these choices 
under the heading of “Memory Management Policies.” For now, the relevant 
points are two: Depending upon the user’s relationship to the environment, he may 
be responsible for some or all of these choices; and a poor set of policies can have 
dire consequences, making computation very inefficient or even impossible. 

11.1.1 The Environment 

The most conspicuous part of our programming environment is usually determined 
by the HLL’s in which we do the bulk of our work. It is the built-in characteristics 
of these languages that shape the memory management problem in our eyes. For 
instance, various languages allow the requisition of space in any of three distinct 
fashions, as follows: 

1. Static Allocation. When a program is to be executed, the fixed, total memory 
requirement for that program has already been calculated by the compiler, and 
so memory in this amount is obtained from the system before the program is 
loaded and given control. This is the only possible manner of using memory 
in FORTRAN, for instance. As long as the operating system can supply the 
necessary total requirement, there is no memory management problem at the 

user program level. 

2. Automatic Allocation. Languages such as ALGOL, Pascal, and PL/1 are 
block-structured. This means that they can (recursively) have nested sub-proce¬ 
dures, each with their own set of local variables. To reduce the memory 
demand on the system, space for the local variables of any such procedure is 
automatically obtained on procedure entry and automatically released on 
procedure exit. In this manner, sibling procedures can share from a common 
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pool of working memory. The pool is administered via a run-time stack (see 

Section 5.2.3.1), and there is relatively little problem. 

3. Dynamic Allocation. Many languages — ALGOL, APL, LISP, Pascal, PL/1, 
and SNOBOL, for example - support the ability to requisition space dynam¬ 
ically; it is this facility that raises the memory management problem. The 
request for space may be explicit (as with new in Pascal), or it may be implicit 
(as in APL or LISP). Similarly, the release of space may be explicit or 
implicit. Also, the size of the request may be a constant (as with LISP), or it 
may be a variable amount (as with APL or Pascal). Fixed-size units of 
memory are commonly termed cells, and variable-sized units are usually called 
blocks. In order to keep track of which memory locations are in use and 
which are not, the user program and the run-time environment divide the 
responsibility in manners that vary with the language. APL and LISP, for 
instance, do it all for the user; in Pascal, the responsibility is shared; and in 
PL/1, the burden is even more upon the user program. Unfortunately, as 
more responsibility is shifted away from the system to the user, this added 

burden is not only complex, but also highly error-prone! 

Note that all three allocation policies may be in use at one time. For instance, a 
Pascal program has a static requirement equal to the total size of all its code 
segments plus the amount needed for global variables. As the program executes, 
sub-procedures will automatically acquire and release space for parameters and 
local variables on the the run-time stack. Finally, any user calls to new or dispose 

will dynamically use space from the Pascal heap. 

The issue of whether we are dealing in fixed-size cells or variable-size blocks 
makes a great deal of difference for memory management. We will look at the 
former case in Section 11.2, and then deal with the latter case in Section 11.3. It 
would be misleading, however, to suggest that the items we have cited so far are the 
only environmental factors. An extremely important issue is how the areas of 
dynamic memory may reference one another with pointer variables, as illustrated by 
the following examples: 

• Memory mamagement in a multiprogramming operating system is not trivial. 
The jobs that the system must schedule tend to have widely varying require¬ 
ments for both amount and duration of memory occupancy. Nonetheless, the 
different jobs do not reference one another, and this greatly simplifies matters. 

• In the programming environment of APL or SNOBOL, the pointer links to 
areas of dynamic memory form a bipartite graph; pointers are from system 
“names” in a symbol table to dynamic objects, or vice versa. Thus, although 
dynamic objects can reference one another, these references are disciplined by 
the symbol table. 

• In the most complicated cases, a dynamic object may contain pointers directly 
to other dynamic objects. This may be slightly less complex when, as in LISP, 
the number of such references is limited to two. In ALGOL or Pascal, 
however, the possibilities for multi-linking can vary widely from one dynamic 
block to the next. 
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To recapitulate, the chief environmental issues are: 

• modes of memory usage — static, automatic, and dynamic; 
• responsibility - user, system, or shared; 
• fixed-size cells versus variable-size blocks; 
• pointer “connectivity.” 

To restate the problem in its worst form, there may be dynamic memory objects of 
variable sizes, containing variable numbers of pointer links to each other. The 
moment of truth in memory management comes when we must shift all of these 
objects in memory and correctly reestablish all the pointer references to reflect these 
shifts. Fortunately, some of the programming environments that we have been 
describing yield situations that are much simpler to manage than this. 

11.1.1.1 Virtual Memory. There is another environmental factor whose presence 
causes the memory management problem to be completely recharacterized, and that 
is whether we are operating with virtual memory. At this point we will be brief and 
consider only the logical nature of this facility; the physical realization of virtual 
memory depends upon secondary memory, which is the subject of Chapter 12. 

The entire rationale for memory management is that the machine has a fixed, 
inflexible amount of main memory. Since even one memory location in excess of 
this limit spells disaster, we must be niggardly and strive to contain our total 
memory appetite to what is available. Now virtual memory gives a computer the 
functional appearance of having much more main memory available than is really 
present in the hardware. This fiction is maintained at some cost (paid to the oper¬ 
ating system), as we will see in Chapter 12; however, this cost is amply 
compensated by the fact that user programs can now become much simpler. What, 
then, of the battle to hold the breach against a mythical limit? 

There are two answers to this question. The first is that many user programs 
do not operate in virtual memory environments, and so these concerns are still vital. 
The second is that even with virtual memory, some management policy is required 
for dynamic allocation. In fact, the policies will be not be very different in either 
case. The result of poor policies in one case is catastrophic degradation of perform¬ 
ance (that is, program failure); in the virtual memory case it is progressive 
degradation of performance. 

11.1.2 Memory Management Policies 

Whatever the environment in which memory must be managed, and no matter how 
responsibility is shared among the system and the user, policies must be chosen and 
implemented to cover three major issues: memory organization, memory allocation, 
and memory reclamation. At this point we will just introduce each of these prob¬ 
lems; the details of specific solutions will be developed in Sections 11.2 and 11.3. 

At any instant in time, some cells and/or blocks of dynamic memory will be in 
use and others will be free. How should these two sets of memory areas be organ¬ 
ized? Should they all be linked together in one list? or should there be a linked list 
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of just the free areas? or should there be several lists, corresponding to various sizes 
of blocks? If there is a single list, should it be maintained as a stack? or a queue? 

or by order of the block addresses? or by order of block sizes? 

Given a definite memory organization policy, the next question is how a request 
for a block of a specific size should be serviced. Should we simply allocate the first 
block of adequate size from the free storage list? Or should we try to respond in 
some more sophisticated fashion, for possibly better overall performance? If we do 
not find a block of exactly the desired size, what do we do with the excess memory 

in the block that is chosen for allocation? 

The number of meaningful combinations of an organization policy with an allo¬ 
cation policy is great enough that it requires care to discriminate among the 
combinations. Nonetheless, the implementation details tend to be relatively 
straightforward. On the other hand, storage reclamation can be fairly tricky. In 
part, this stems from the asymmetrical attitude we express toward memory blocks 
(or anything that we “need”). When we need something, we are impatient to have 
it immediately; when we no longer need it, we are more likely to forget about it 
than to make an explicit effort to return it. Thus, in writing a program with pointer 
variables, we cannot forget new where it is required, but we may remember 
dispose only as an afterthought, if at all. So the first problem in storage reclama¬ 
tion is that it may be non-trivial to answer the question: Which memory blocks are 
still in use and which no longer are (and therefore should really be considered free)? 
In answering this question, the environment is very important. Storage reclamation 
also has another component. Once it has been determined which blocks are no 
longer in use, it is necessary to make them explicitly available as part of the free 
pool. In fact, the variety of methods that are employed for solving this problem, 
including special techniques of organization, account for much of this chapter. 

11.2 FIXED-SIZE CELLS 

In this section we restrict our attention to the case when all memory requests are of 
one fixed size. What happens when, in addition, these cells never reference one 
another? The memory management for such a situation is very simple. We can 
organize our Free pool as q stack. Requests can always be satisfied by the top cell 
on the stack; cells that are released can be pushed back on the stack. Indeed, we 
described just such a simplified mechanism in Section 4.1.3. Note the assumption, 
in this scheme, that cells are explicitly pushed on the stack, and not abandoned 
when no longer needed. 

In practice, there are two issues that complicate memory management for cells. 
One is that it is common to abandon cells that are no longer needed, and the other 
is that each cell may contain pointers to other cells. Cells are the data structure in 
languages that operate on Lists, such as LISP; and the majority of the literature on 
the topics of this section is best understood in the context of memory management 
for LISP-like systems. The logical structure and various physical representations of 
cells for these List processing environments were explored in Section 4.4.1; recall 
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that such a cell never contains more than two pointers to other cells, so that pure 
Lists are binary trees. 

List-processing languages in general, and LISP in particular, assume all of the 
responsibility for reclaiming memory, with no cooperation required of the user 
program. They must therefore have a mechanism for discovering which cells are no 
longer in active use. If a pointer variable P is pointing at cell X, and if the value of 
P is changed so that it no longer points at X, then cell X cannot automatically be 
returned to the Free pool, for X may still be pointed at by some other List cell. 
Two distinct approaches are used to solve this problem. 

In one of these, called garbage collection, no effort is expended until the time 
arrives when a request for a cell cannot be satisfied because the Free pool is 
exhausted, or almost so. At that juncture, the normal course of user computation is 
suspended, and the system performs a phase of following all the pointers that lead 
to active memory cells, marking those cells as being in use. After the active cells 
have been marked, the system performs a second phase of incorporating the 
unmarked (and therefore unused) cells into the Free pool, thereby allowing them to 
be reused. Except in the case when no garbage cells have been found, the system 
then honors the memory request that precipitated this activity and returns control 
to the user program. We will look at these matters in detail in Section 11.2.1. 

An alternative approach is for the system to try to keep track of which cells are 
in active use by maintaining, for each cell or each sub-List, a reference count of the 
number of pointers to that cell or sub-List. Then, whenever one of these counts is 
decremented to zero, that cell or sub-List can be reclaimed by the Free pool. We 
will look at this approach in Section 11.2.2. 

11.2.1 Garbage Collection 

As stated above, garbage collection basically consists of a marking phase followed 
by a collection phase. We will begin by exploring these two phases. Later on, we’ll 
step back to consider first some of the difficulties associated with garbage collection, 
and then some sophisticated variations that have been developed in response to 
these difficulties. These variations deal with such matters as compaction, hybrid 
methods, and parallel garbage collection. 

11.2.1.1 Marking. You might well be having a sensation of deja vu at this point. 
After all, we discussed basically the same problem in Section 4.4.3.1; we also 
encountered a generalization of it in Section 7.3.1, in connection with depth-first 
search of a graph. In the context of garbage collection, however, there are some 
important distinctions. One difference is the importance of efficiency, since garbage 
collection can constitute as much as 10 — 30 percent of program execution. Other 
issues are related to the environment in which garbage collection is conducted. 

For one, in our earlier, brief characterization of marking, we ignored a simple 
but important detail. The marking phase must initialize the marks of all the cells of 
memory to “unused” before it begins to mark active cells as “used.” Fortunately, 



566 MANAGING PRIMARY MEMORY 

because the cells are all of the same size, it is easy to sweep through memory to 
perform this initialization. Another issue is that although pure Lists are binar\ 
trees, reentrant and recursive Lists are graphs. In order to find all the acti\e cells, 
or nodes of this graph structure, we must do a search from each base pointer into 
the structure. Where these base pointers are to be found depends upon the environ¬ 
ment, but the same algorithm for searching is applied to each of them. Taking 
these comments into account, we will proceed to discuss marking under the assump¬ 

tions that: 

1. The initialization has already been performed. 
2. Any algorithm that we discuss is applied to each base pointer. 

In Section 4.4.3.1 we first examined the recursive algorithm COUNT_LIST 
(Algorithm 4.6) for examining all the cells of a List, and then raised the issue of 
efficiency. We saw in Sections 5.4.2 and 6.4.1 that a very common manner of elimi¬ 
nating recursion in the interest of efficiency is to introduce an explicit stack. 
However, this technique presents us with a dilemma in the case of garbage 
collection. The marking that precedes collection is invoked when the Free pool is 
almost exhausted. If the marking algorithm then uses a stack, that stack may 
require 0{n) entries, for a memory with O(n) cells. There may not be that much 

available space for the garbage collector to do its thing! 

An ingenious resolution to this dilemma is to use link inversions, as we saw in 
MARK_LIST (Algorithm 4.7). The information that would otherwise be retained 
in a stack is therewith retained in the link fields of the List itselt. Although 
MARK_LIST has complexity 0(n), it visits each cell three times. Because of this 
and the inherent overhead in the rotations, it is slower than an algorithm that 
simply uses a stack. A compromise solution is to combine stack traversal with link 
inversions, employing the first technique until the stack becomes full, at which point 

we fall back upon the second technique for a while. 

There are other ways too. In Section 4.4.3.1 we pointed out that the Schorr- 
Waite algorithm could require space for an explicit tag bit in each node, depending 
upon the representation for cells. Lindstrom [1973] has shown how to mark a List 
without employing any tag information at all, but this technique has an average 
complexity of 0(n lg ri) and a worst-case complexity of 0{nz). An algorithm by 
Wegbreit [1972] is 0(n) and does not require any tag bits in the cells. This method 
employs link inversion again, but it records tag information in a bit stack only as 
needed; in practice, the size of this bit stack can be fixed, and yet still be adequate 
for all but extreme cases. Moreover, stack entries (and revisits) are required for just 
those cells in which both CAR and CDR reference sub-Lists. Even so. careful anal¬ 
ysis of the operations required to implement a variety of marking algorithms shows 
that the Schorr-Waite algorithm is commonly faster — unless, of course, there is 
space for a pointer stack, thereby eliminating link inversions [Baer and Fries 1977], 

Still other possibilities are obtained if we consider why certain List structures 
cause various marking algorithms to perform poorly. As an example. Wegbreits's 
algorithm will stack each cell of the List in Figure 11.1. but no stacking is really 
required if we look ahead in the List. Rather than presume, for a List cell with two 
successor links, that w?e must stack one and follow the other, we can first check to 
see that both of the cells pointed to are unmarked (and not an atom). Since stack¬ 
ing is faster than link inversion and since this technique reduces the stack depth in 
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some cases, it is worthwhile [Kurokawa 1981], Nonetheless, even this method will 

fail to secure any advantage if, for instance, the List is a balanced binary tree. 

-ATOM 

Figure 11.1 Wasted Marking Effort 

In summarizing this discussion of marking, we find that a simple stack algo¬ 

rithm provides the best performance, but that there is the hazard of running out of 

space. Although this may be less significant with virtual memory, it is frequently 

important to use methods that do not have this drawback, even at the cost of 

decreased performance. Of these methods, MARK_LIST is particularly noteworthy 

because it serves as a model for other algorithms with Lists. Also, note that 

MARK_LIST operating upon List cells with two link fields requires one bit of tag 

information to discriminate between the links. For marking fixed-size List cells 

with m link fields, the algorithm can be generalized to use lg m bits of tag informa¬ 

tion. MARK_LIST and the alternative techniques cited in this section all have the 

feature that for unrestricted Lists, they require either more than linear time or more 

than bounded workspace. If we disregard tricks of implementation (as in 

MARK_LIST), we are left with the interesting theoretical question: Is it possible to 
mark unrestricted Lists in linear time and with bounded workspace? 

11.2.1.2 Collection. The second phase of garbage collection may be quite simple; 

it might consist of just scanning all of memory and linking together the unmarked 

cells. Such a method is given by COLLECT_0 (Algorithm 11.1). The area of 

memory to be collected is represented as a global array of cells, and cursors are 

employed rather than pointer variables, in anticipation of studying more compli¬ 

cated reclamation schemes later on. The collection is conducted downward from hi 

to lo so that the resulting Free-list will be ordered by ascending addresses. This 

allows subsequent allocations of cells from Free to come from the lower end of 

memory. Note that collection also turns off mark bits, in anticipation of the mark¬ 

ing phase of the next garbage collection cycle. In COLLECT_0 we have ignored 

some considerations that might prompt more complicated reclamation policies; 

these will be explored in Section 11.2.3. 
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procedure COLLECT_0; 

type cursor = lo .. hi; 
cell = record 

mark: boolean; 
case isatom: boolean of 

true: (data: char); 
false: (head,tail: cursor); 

end; 

var free,p: cursor; 
store: array [cursor] of cell; 

begin 
free := 0; 
for p := hi downto lo do 

with store [p] do 
if mark then 

mark := false 
else begin 

isatom := false; 
tail := free; 
free := p; 

end; 
end; 

Algorithm 11.1 COLLECT_0 

11.2.2 Reference Counters 

With reference counters, either every cell or every List (and sub-List) has a field in 

which the number of references to that cell or List is dynamically maintained. It is 
considerably more economical to maintain these counts at the sub-List level, in the 

header nodes. Such a List structure, with its counts, is illustrated in Figure 11.2(a). 

Here we see Lists U, V, W, X with reference counts of 1, 2, 1, 4 in their header cells. 

Suppose that, in this figure, the reference to the List U is released. The reference 

count for U then goes from 1 to 0. However, before deallocating the cells on List 

U, it is necessary to trace out the “closure” of U, to decrement the reference counts 

of Lists referred to from cells of U. Note that this process is very similar to the 

marking process in garbage collection; it can be carried out recursively, or by using 

a stack, or by a more sophisticated method. The decrementing ultimately reduces 

the Lists of (a) in Figure 11.2 to those of (b), leaving Lists U and W freed, while 

Lists V and X still have non-zero counts. There is no periodic collection process, as 

with garbage collection. Rather, as soon as a reference counter goes to zero, all of 
the corresponding cells are added to the Free-list immediately after their references 

are checked. 

Imagine that we are using reference counters, and that we deallocate a tree by 

setting its root pointer to NIL. For a tree of appreciable depth, the scheme just 
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Figure 11.2 Reference Counting 

described can cause a significant cascade of dereferencing activity. The List 
processing language SLIP introduced an ingenious variation of reference counting 
that simultaneously eliminates both this burst of activity and also any need for a 
stack for finding the closure [Weizenbaum 1963, 1969]. When a List U is deallo¬ 
cated, its successor Lists are not traced immediately. Rather, the cells of U are 
added to the end of the Free-list — that is. Free is maintained as a queue - and 
references from cells of U are not checked until those cells reach the front of Free. 

11.2.3 Compaction 

Either with garbage collecting or with reference counting, the cells in active use will 
eventually become interspersed with the Free-list cells throughout the memory avail¬ 
able to the List processing environment. In some cases this dispersion needs to be 
counteracted by compacting the active cells into a contiguous storage area. As one 
example, available memory for a process may consist of two dynamic areas that 
grow from the opposite ends of a region (see Figure 5.13). Indeed, dynamic 
memory for Pascal is often administered in this fashion, with the run-time stack and 
the heap being the two areas. If such a heap area is used for List cells, then it may 
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be important to restrain the sprawl of the heap so that the stack may have sufficient 

space for expansion. 

Another instance arises when the system is operating with virtual memory. As 

the active cells become interspersed with the Free cells throughout a large address 

space, program execution will generate more and more page faults (see Section 12.2) 

in order to retrieve cells. The only manner in which to hold down the large ineffi¬ 
ciency of execution caused by these faults is, once again, to compress the active cells 

into contiguous pages. 

We will discuss one particular method for compacting fixed-size cells and then a 
class of different methods. The first and simpler technique, exchanging cells, relies 

upon a conventional, initial marking phase, and it especially reflects the stack/heap 
situation. The second class of methods involves relocation of entire Lists. These 

latter methods have wider applicability; also, they can be used to compact memory 

without an initial marking phase. 

11.2.3.1 Exchanging Cells. With this method we employ two cursors, p and q, that 
start at opposite ends of memory and move toward each other until they meet. 
First the cursor p is incremented until it references an unmarked cell, and then the 
cursor q is decremented until it references a marked cell. This pair of cells is 

exchanged and the cycle is repeated, until eventually p and q meet. Such a process 
physically relocates the free and active cells into two disjoint areas; however, some 
additional logic is needed to adjust the inter-cell links so that they retain the proper 
connectivity. The technique for accomplishing this is to place in each old active cell 
location a link, known as a forwarding address, to the new active cell location. 
Then, when the swapping phase is concluded, a second pass through just the active 

cells can retrieve updated link values via these forwarding addresses. 

A procedure for accomplishing what has been described is COLLECT_ 1 (Algo¬ 

rithm 11.2); it requires several comments: 

• Store [lo] and store [hi] are reserved as marker locations, so that the algorithm 

can be guaranteed to work properly in degenerate cases. 
• The Free-list is regenerated, in order of ascending addresses as in COLLECT_0, 

during the swapping phase rather than in a separate phase. 
• Mark bits are turned off (as in COLLECT_0), in anticipation of the next 

garbage collection cycle. 
• In the old active locations, the head cursor is used as the forwarding address, 

and the tail cursor is used to link the Free-list. 

• The algorithm requires one-and-a-half passes through memory. 

Its operation can be seen with the List shown in Figure 11.3(a). The same List is 

shown in (b) of the figure, scattered in hypothetical memory locations between 

lo = 0 and hi = 21. After the swapping phase is concluded, the relevant List cells 

appear as in (c) of the figure; for example, the active cell originally in location 13 is 

now relocated to location 5. Finally, Figure 11.3(d) shows the contents of the old 

and new List cells after the pointers have been updated in the second phase of 

COLLECT. 1. 
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procedure COLLECT_1; 

type cursor = lo .. hi; 

cell = record 
mark: boolean; 

case isatom: boolean of 
true: (data: char); 

false: (head,tail: cursor); 
end; 

var free,p,q: cursor; 

store: array [cursor] of cell; 

begin 
free := 0; 

p := lo; store [pj.mark := true; 

q := hi; store [qj.mark := false; 
repeat 

{match active cell from one end with free cell from other end} 
repeat 

P := P + 1; 
until not store [p].mark; 

repeat 
{ build new Free-list as we go } 

store [q].tail := free; 

free := q; 

q := q - 1; 

until store [q].mark; 

if p < q then begin 
{swap active cell with free cell, leave forwarding address} 

store [p] := store [q]; 

store [qj.mark := false; 

store [qj.isatom := false; 

store [qj.head := p; 

end; 
until p >= q; 

{use forwarding addresses to update links, as required} 

for p := lo + 1 to q do begin 
store [pj.mark := false; 

if not store [pj.isatom then begin 
if store [pj.head > q then 

store [pj.head := store [store [pj.head].head; 

if store [pj.tail > q then 
store [pj.tail := store [store [pj.tail],head; 

end; 
end; 

end; 

Algorithm 11.2 COLLECT_1 
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11.2.3.2 Relocating Lists. There are two unsatisfactory features about 
COLLECT_ 1. First, it scans all of the addressable List space (which can be quite 
large under virtual memory). Second, the physical sequence of the cells of a List 
after collection will most likely bear no relation either to (a) the logical sequence of 
the cells, or (b) the physical sequence of those cells before collection. By relocating 
entire Lists, rather than operating upon cells, it is possible: 

• to limit the work to the size of the Lists rather than the memory size; 

• to obtain desirable properties in the address sequence of cells in the new List; 
• to dispense with a separate marking phase. 

Studies of the empirical properties of Lists in LISP show that most such Lists 
contain long linear segments [Clark 1979; Clark and Green 1977], Therefore, it 
may be desirable, when compacting a List, to “linearize” it by causing cells to 
become physically adjacent to predecessors as much as possible. 

The most widely used technique for compaction under these considerations is to 
move a List that is dispersed in one area of memory to a fresh area. A variation is 
to copy the List, rather than move it. The distinction is that the moving process 
may destroy the old List, whereas the copying process will leave the old List intact. 
Note that the utility of both of these techniques is certainly not restricted to the 
cause of memory management. But for memory management, an important issue 
once again is the potential shortage of working storage at the instant when moving 
or copying needs to be performed. Some of the techniques for overcoming this 
hazard are the familiar ones of forwarding addresses and link inversions. In our 
discussion of marking algorithms for Lists (see Section 11.2.1.1), we encountered an 
apparent requirement for either more than linear time or more than bounded work¬ 
space. Yet for the more complicated operations of moving or copying a List, we 
will find that linear time and bounded workspace are simultaneously achievable. 
This is so because, in both cases, we are able to employ the doubled space (for the 
original and for the copy) to record temporary values during the construction of the 
new List. Of course, relocation cannot be guaranteed to yield compaction unless 
the new area is contiguous. One method for insuring this is to divide the List 
memory into two semi-spaces and to alternate their usage, relocating active Lists 
from one semi-space to the other when performance monitoring dictates it [Fenichel 
and Yokelson 1969]. 

f 11.2.3.2.1 Moving Lists. The problem is to move an arbitrary List from one 
memory area to another. As with marking, we wish to avoid recursion in the inter¬ 
est of efficiency, and we are precluded from using an explicit stack since that might 
consume more space than is available at this juncture. The challenge is to find an 
algorithm that is 0{n) in time (for a List with n cells) and that requires just a 
constant amount of workspace. Two earlier algorithms attain this goal [Cheney 
1970; Reingold 1973], but with the requirement that each cell of the List be visited 
twice. A study of List-processing programs found that only about 1/3 of CAR’s 
and 3/4 of CDR’s typically have sub-Lists [Clark and Green 1977], This led to an 
algorithm by Clark [1976] that we will present here. It achieves better performance 
by following tail pointers before following head pointers. Assuming that these 
proportions are independent, then this algorithm will only revisit about 1/4 of the 
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List cells in typical cases. Moreover, the relocated Lists become CDR-linearized, 

which is important with virtual memory. 

As a cell is visited, 

(a) its contents are moved to a new location; 

(b) a forwarding address is placed in the head link at the old location, 

(c) when the head link points to a non-atomic sub-List, then the tail link at the 
old location is used as part of an implicit stack for recording cells that must be 

revisited. 

The algorithm for this is the function MOVE_LIST. It uses the procedure 

NEWCELL to obtain and initialize new cells, as follows: 

procedure NEWCELL (var ptr: link); 

begin 
new (ptr); 
ptrf.mark := true; 
ptrf.isatom := false; 

end; 

In the repeat ... until loop, the algorithm chains through an outer List, setting 
the forwarding addresses and developing the implicit stack, all within the pointer 
fields at the old locations. In the while loop, cells in the stack are picked off for 
processing, unless the associated sub-Lists have already been moved. In many 
applications of this algorithm, it is even possible to dispense with the mark field, 
using machine address values to distinguish original cells from new cells. 

The operation of MOVE_LIST is illustrated in terms of the List of Figure 
11.3(a) again, with the actual trace displayed in Figure 11.4. The original List is 
shown in (a). At the conclusion of the first pass over the outer List, the situation is 
as shown in (b), wherein cells n,o,p,q have been allocated for the new List. Note the 
forwarding addresses in the old List, and also the stack of deferred sub-Lists associ¬ 
ated with cells / and a. The pass over the sub-List from cell / yields the situation 
shown in (c), with deferred sub-Lists associated with cells h and a. At the conclu¬ 
sion of the pass over the sub-List from cell h, the situation is as shown in (d), 
wherein all of the cells in the new List have by now been allocated; however, there 
are still deferred sub-Lists associated with cells c and a. The final pass finds no new 
cells, but adjusts pointer values in cells n and u to yield the situation shown in (e). 

Upon termination, we find that: 

• The original List has been destroyed. 
• Both List cells and atomic cells have been relocated. 
• The new List is CDR-linearized. 
• MOVE_LIST returns with a pointer to the new List. 

f 11.2.3.2.2 Copying Lists. Since algorithms for copying a List must not destroy 
the original List, they are somewhat more complicated. An important requirement, 
again, is that these schemes have a bounded requirement for working storage. 
There has been a succession of algorithms with complexities diminishing from 0{n2) 
to 0(n lg n) to 0(n) [§]. One of the latter, by Robson [1977a], requires no mark 
bits and has no dependency (as have some) upon either the address ordering or the 
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function MOVE_LIST (list: link): link; 

label 1; 

type link = 'f cell; 
cell = record 

mark: boolean; 
case isatom: boolean of 

true: (data: char); 
false: (head,tail: link); 

end; 

var endlist: boolean; 
atom,copy,left,rite,next,temp,top: link; 

begin 
next := list; 
NEWCELL (copy); 
list := copy; 
MOVE_LIST := copy; 
top := nil; 

1: repeat 
endlist := true; 
left := next|.head; rite := next|.tail; 
nextf.head := copy; copy!.head := left; 
if leftf.isatom then begin 

NEWCELL (atom); 
atom|.isatom := true; atom|.data := leftj.data; 
copyf.head := atom; leftj.isatom := false; 
leftf.head : = atom; leftf.tail := nil; 

end else if not left|.mark then begin 
nextf.tail := top; top := next; 

end; 
if rite = nil then 

copyj.tail := rite 
else if rite|.head|.mark then 

copyf.tail := ritef.head 
else begin 

endlist := false; 
NEWCELL (copyj.tail); 
copy := copyf.tail; next := rite; 

end; 
until endlist; 
NEWCELL (copy); 
while top <> nil do begin 

next := topj.headf.head; 
temp := top; top := top|.tail; 
if nextt.headf.mark then 

temp|.head|.head := next|.head 
else begin 

temp|.head|.head := copy; 
goto 1; 

end; 
end; 

end; 

Algorithm 11.3 MOVE_LIST 
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Figure 11.4 Trace of Algorithm MOVE_LIST 

contiguity of List cells. Although it is somewhat slower than the other algorithms, 
the lack of restrictions makes it more useful for the general case of copying a List. 
The ideas behind Robson’s technique are interesting, and we will sketch these ideas 
without presenting the algorithm explicitly. 

The method proceeds in two phases. In the first phase, the cells of the old List 
are scanned and cells of the new List are generated. At the conclusion of this 
phase, the head fields of the old List cells have forwarding addresses, as in 
MOVE_LIST, but the tail fields of the old List cells contain special marks. The 
original contents of cells from the old List have been copied into their counterpart 
cells in the new List. Atomic cells are not copied; to do so would likely cause 
unnecessary duplication, since their values can be shared. 

As cells of the old List are scanned, one of four constant mark values - 
denoted by marks [/] (i = 0,1,2,3) - is stored in each tail field. These mark values 
symbolically encode information about forward and backward pointers in the 
original List cell contents. In scanning a List and following either head or tail poin¬ 
ters, a pointer is a forward pointer if it points to an unexamined sub-List, and a 
backward pointer if it points either to an atom or to a sub-List that has been exam¬ 
ined. Obviously, this depends upon the order in which pointers are followed - 
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head and then tail, or tail and then head. The choice employed, systematically and 
recursively, in the first phase is head and then tail. 

The meaning attached to the four constant, symbolic values in the marks array 
is as follows: 

marks [0] - The original head and tail pointers of a cell having this value are 
both backward pointers. 

marks [1] - The original head pointer of a cell having this value is a backward 
pointer, and the original tail pointer is a forward pointer. 

marks [2] - The original head pointer of a cell having this value is a forward 
pointer, and the original tail pointer is a backward pointer. 

marks [3] — The original head and tail pointers of a cell having this value are 
both forward pointers. 

Note that the forward pointers discovered in the first phase define a spanning tree 
for the structure, with the cells on this tree being visited in preorder. In the second 
phase the List is scanned again; but this time the pointers are followed, systemat¬ 
ically and recursively, in the order tail and then head. As cells are scanned in this 
phase, two things are done simultaneously: 

1. The original contents of the old List cells are restored from their counterparts in 
the new List. 

2. The correct pointer values for the new List cells are inserted, using the forward¬ 
ing addresses from the old List cells. 

a 

Figure 11.5 Forward and Backward Pointers (Robson) 

We can illustrate these ideas by describing the operation of the algorithm upon 
the sample List of Figure 11.3(a) again, redrawn as Figure 11.5. By applying the 
definition (following head pointers before tail pointers), we find that the solid lines 
in the figure are forward pointers and that the dashed lines in the figure are back- 
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ward pointers. At the conclusion of the first phase, the situation is as shown in 
Figure 11.6(a), where the marks {mO, ml, ml, m3} in the tails of the original List 
cells indeed correspond to the four cases for the pointers in those cells, according to 
Figure 11.5. At the conclusion of the second phase, the situation is as shown in 

Figure 11.6(b). 
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Figure 11.6 Progress of Robson’s Copy Algorithm 

11.2.4 Garbage Collection versus Reference Counters 

There are some important caveats attached to both garbage collecting and reference 
counting, particularly in the straightforward versions that we have described so far. 
For instance, it is imperative with either scheme that the implementation leave no 
loopholes such that a List is deallocated while a pointer variable still references it; 
this creates a dangling reference which, if then used, can create havoc (see Section 
4.5.1). This problem can arise in garbage collection if base pointers, that may for 
an instant reside in temporary registers, are missed in the marking phase. It can 
also arise with reference counters if the bookkeeping is done improperly. It is 
usually very difficult to ferret out program errors of this sort, for two reasons. 
First, the system will usually not manifest a malfunction until much later in time, 
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when the evidence is diluted or lost. Second, the state of the system that invoked 
the error may not be reproducible. Many of the other difficulties associated with 
garbage collection and reference counting are more complementary in nature, so 
let’s consider these in turn. 

With garbage collection, the danger of developing a dangling reference is 
compounded because the state of the system upon initiation of marking is unpre¬ 
dictable. At that instant, some List structures may be ill-formed, perhaps because 
the user program is in the middle of constructing the Lists, or because the user 
program is doing its own link inversions upon a List, etc. A different and signif¬ 
icant problem with the use of garbage collection is that when it is invoked, the user 
task stops until the marking and collection cycle is completed. In the A.I. environ¬ 
ment, where List processing is the general method of choice, this can have severe 
consequences. It is not feasible to control a robot in real-time, for example, with 
the expectation that it may have to “freeze” for substantial intervals (perhaps 
10-20 seconds) while garbage collection takes place. 

Still another problem arises with garbage collection when the Free-list becomes 
nearly exhausted. At this point, the collection process will be invoked more and 
more often, and reclaim less and less space. Therefore, it is a good idea to have the 
garbage collector count the number of cells reclaimed, and - if that number is less 
than some limit - abort the job immediately rather than thrash itself to an 
ungraceful termination. Alternatively, it is often possible to vary the amount of 
space allocated by the system, either initially or dynamically. Under the assumption 
that computing cost is proportional to the product of storage size and execution 
time, we can then ask what is the optimal amount of storage, such that we are 
neither paying for too much unused memory, nor wasting too much time in garbage 
collection instead of in useful computation. If M is the available memory size, and 
n is the average number of cells still in use after each collection, then let p = njM. 
Also, let c, be the cost of marking and unmarking a cell in use, and let c2 be the 
cost of collecting a cell not in use, where we expect to find c, >> c2. Then the 
average cost per cell returned to Free is given by 

C = 
c{n + c2{M — n) 

M — n 

C\P 

1 - p + c2 (11.1) 

For p = 1/4, this yields C = cj3 + c2; but for p = 3/4, we find that C = 3cx + c2. In 
other words, the cost per liberated cell rises sharply as p increases. A more detailed 
analysis shows curves that have shallow cost minimums in the range 0.6 < p < 0.8, 
but that escalate steeply as p approaches 1.0 [Hoare 1974], A subsequent analysis 
with somewhat different assumptions suggests that it is better to operate with p 
closer to 0.5 [Campbell 1974], 

The reference counter method avoids the abrupt pause associated with garbage 
collection, because the reclamation is incremental. However, there is a high cost 
involved in performing the bookkeeping. There is the obvious cost of finding space 
for counts rather than just mark bits. At the List-header level there is ample room, 
but at the level of individual cells this may be a severe problem. The cost in terms 
of execution overhead is even worse. Thus, consider the work associated with the 
statement p := {pointer expression}: 

(a) decrement the count of the List p]\ 
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(b) if this count is zero, free the List p}\ 

(c) evaluate the expression and then increment the count for that List; 

(d) finally, assign the pointer value to p. 

Moreover, if the above statement is p: = p, then even this simple-minded sequence 

is insufficient to prevent the reference by p on the left-hand side from being lost 

before it is needed by the right-hand side. 

Another major difficulty associated with reference counters is that they are 
unable to cope with circular, or recursive. Lists since the counts therein can never 
go to zero. This is illustrated by Figure 11.7, wherein the two Lists U and F mutu¬ 
ally prevent their reclamation. Thus, even ordinary sequential lists of the circu ar 
and bi-directional type cannot be managed by reference counts, which is a serious 
handicap. One rather unsatisfactory remedy is to have the user explicitly free such 
recursive Lists. A second solution is to isolate circular structures via header nodes, 
and then count just the external references to such a structure [Bobrow 1980; 

Friedman and Wise 1979]. The next section provides still another remedy. 

U ' ’ 

2 -► ATOM •- 

ATOM 

Figure 11.7 Reference Counting Circularity 

A different perspective on the relative merits of garbage collection and reference 
counting can be obtained by examining how their costs are assessed. In a multipro¬ 
gramming environment, the time penalty for the former can fall upon everyone, 
regardless of the nature of the particular programs. The situation is somewhat 
fairer with reference counting, where the overhead for maintaining proper counts is 

always charged directly to the program that is using them. 

Clearly, neither of the straightforward methods that we have examined for 
reclaiming unused memory is entirely satisfactory. In the next two sections, we will 
investigate some fancier techniques that offer ways to overcome the principal diffi¬ 

culties associated with garbage collection and reference counting. 

111.2.5 Hybrid Reclamation 

As we have seen, one problem associated with garbage collection is the large 
amount of time required to mark and reclaim all of memory. A related problem is 
the impact that such a computation can have upon the feasibility of real-time appli¬ 
cations. Since reference counting has neither of these drawbacks, a useful idea is to 
employ a hybrid scheme wherein counting is the primary method, but garbage 
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collection is used occasionally. Collection is essential in this hybrid scheme both for 
reclaiming the circular structures that reference counting cannot detect, and for 
providing compaction of the active cells. Although this hybrid of garbage collection 
and reference counting is feasible, it fails to take into account some of the other 
shortcomings of counting. In particular, we have seen that this method is costly in 
terms of space for the counts, and also with respect to the time spent in continually 
updating them. 

The scheme just described can be substantially improved by making use of the 
observation [Clark and Green 1977] that, in typical LISP programs, about 90-98 
percent of the reference counts are one! Therefore, it is much more economical to 
keep track of just those items with counts of zero and counts of greater than one. 
In order to do so, the counts are placed in hash tables, using a technique known as 
hash linking [Bobrow 1975], which we will explain briefly. Suppose that we have a 
set of keys and a table T, and that for most keys the table locations are adequate to 
store the associated information. However, we find that some small proportion of 
the keys require additional information to be associated with them. In such a case, 
we can either use a bit flag at the corresponding table address A, or store some 
exceptional value at A, signifying that special treatment is required. Then a hash 
function h is applied to A, and h(A) serves as an implicit -link to an entry in an 
auxiliary table T', without requiring space to store an explicit link at A to the entry 
in T ’. As an illustration of the utility of this technique, suppose that we wish to 
maintain counts in a table T of 16-bit words (allowing a range of 0 .. 65535), and 
that some small percentage of the counts will reach or exceed the upper limit. This 
is easily handled with hash linking by storing counts less than 65535 just as they are, 
but storing 65535 in any location Aj where the inequality fails. For the latter cases, 
we compute h{A}) to direct us to an entry in a snail hash table T', where that entry 
in T' contains space for a key Aj and its count value. 

We will now consider a hybrid reclamation scheme [Deutsch and Bobrow 1976] 
that uses hash linking to maintain three tables, as follows: 

1. Multiple Reference Table (MRT) — Each entry corresponds to an address and a 
corresponding count of two or more. 

2. Zero Count Table (ZCT) - Each entry corresponds to an address for which the 
corresponding count is zero. An address can be in this table either because the 
corresponding datum is truly unreferenced, or because the datum is referenced 
only externally - that is, from a program variable or from the run-time stack. 

3. Variable Reference Table (VRT) - Each entry corresponds to an address refer¬ 
enced externally, as described for the ZCT. 

Note that the large majority of data, with reference counts of one, will not appear 
in either the MRT or the ZCT. Conversely, we can determine that the count is one 
whenever the corresponding address does not appear in either table. 

The use of the hash tables solves the problem of excessive space for reference 
counts, but it does not respond to the problem of time spent in updating them. The 

answer here is to generate a sequential file (see Section 12.3.1) of reference count 
transactions, rather than applying them as they occur. This file can then be read at 

suitable intervals, and the transactions can be applied to the hash tables in batches. 
A transaction of type allocation of a new datum causes an address to be placed in 
the ZCT. For a transaction of type pointer creation: 



582 MANAGING PRIMARY MEMORY 

(a) if the datum is in the ZCT, then delete it (the count is now one); 

(b) else if the datum is in the MRT, then increment it unless the count is at its 

maximum; 

(c) else enter it in the MRT with default count of two. 

Finally, for a transaction of type pointer destruction: 

(d) if the datum is not in the MRT, then enter it in the ZCT (the count was one); 

(e) else (the datum is in the MRT), then delete it if the count is two; 

(f) else do nothing if the count is at its maximum, else decrement it. 

As a result of processing a sequence of transactions against the hash tables, if any 
datum D has an entry in the ZCT but not in the VRT, then after decrementing the 

counts of data to which it refers, D can safely be recycled back to Free. 

The foregoing hybrid scheme was designed specifically for use with a second 
level of memory (see Section 12.1). A large measure of the efficacy of this approach 
comes as a result of the transactions being accumulated in primary memory before 
being written out, so that many of them can be cancelled against one another with¬ 
out ever being written to the file. This can be seen from observation again [Clark 
and Green 1977]. For example, it is very common to have an allocation trans¬ 
action for an address followed by a pointer creation transaction for it, whereby the 
datum is “nailed down”; the net result is no change in the hash tables. Another 
example is that of a datum created and rapidly abandoned, again resulting in no 
change. Where the List-processing program is compiled, then the methods of global 
data flow analysis (see Section 7.4.5.3) can be used to further advantage; they can 
detect a variety of situations that lead to cancellation, and so require no transaction 

posting at all [Barth 1977]. 

It is also possible to implement a form of hybrid reclamation without recourse 
to secondary memory. With this scheme, a one-bit reference count is kept with 
each datum, such that a value of one denotes multiple references [Wise and Fried¬ 
man 1977]. Once this condition applies to a datum, it can be reclaimed only by 
marking and garbage collection. But as discussed above, multiple references are 
relatively infrequent. Moreover, by maintaining and consulting a table of the most 
recent activity, it is possible to reduce the number of instances where a multiple 
reference is recorded and a datum is “lost.” Another useful benefit of this tech¬ 
nique is that the bit used for the reference count can also be employed as a tag 

during the marking phase of garbage collection. 

f 11.2.6 Parallel Garbage Collection 

By providing a measure of incremental reclamation, the hybrid scheme of the previ¬ 
ous section can significantly reduce the total amount of time spent in garbage 
collection. However, another problem still remains - collection engenders a pause 
that can completely disrupt a real-time application. In response to this, there have 
been several proposals to interleave the activity of the user process with that of the 
collection process. Some of these are of the mark-and-collect variety, as in Section 
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11.2.1, and others are of the relocation variety, as in Section 11.2.3.2. We will look 
at both of these in turn. 

In the paradigm for parallel garbage collection, there are two distinct process¬ 
ors, with the mutator doing the useful work of the user, and the collector reclaiming 
cells soon after they are abandoned. Since the mutator may cause the pointers from 
a cell to change after the cell has been marked but before marking has terminated 
and collection has begun, some new ideas are required. A very elegant solution to 
this problem employs three colors — white, gray, and black — with which to mark 
cells [Dijkstra et al. 1978], Marking begins by graying the roots of the mutator 
graph and the Free-list. Thereafter, the basic marking operation is to find a gray 
cell X and then to gray any of its white descendants, at the same time blackening X. 
In essence, a white cell is unmarked, a gray cell is marked but its descendants are 
not, and a cell that is black has both itself and its descendants marked. Also, the 
mutator must cooperate by graying any white cell that it acquires. The marking 

phase eventually alternates with a collection phase, during which white cells are 
recognized as “quick garbage” and returned to the Free-list, and black cells are 
whitened. Black cells that have in fact been abandoned are “slow garbage”; they 
will fail to be marked in the next cycle, and so be reclaimed at that time. 

A mutator-collector parallel garbage collector is not a simple algorithm, because 
of the delicate possibilities for interaction between the two processes. For instance, 
marking must be prohibited from altering the pointer topology of Lists, as happens 
in MARK_LIST (Algorithm 4.7). In one detailed description of this method, 
marking is performed via repeated linear scans of memory in search of gray cells, 
which is clearly inefficient. However, the issue there was not efficiency in the first 

place [§]; rather, it was to obtain an algorithm for which correctness could be 
demonstrated [Gries 1977], An example of a more efficient mutator-collector is 
provided by Kung and Song [1977], By employing four colors, it avoids the neces¬ 
sity of having to mark the Free-list as well as the mutator graph. It presumes the 
availability of space for a deque, thereby attaining respectable marking efficiency. 

For the relocating variant of reclamation, recall from Section 11.2.3.2 that two 
semi-spaces E and F are employed. The user process runs in E until it becomes full, 
then active data is moved from E to F, then operation resumes in F until it becomes 

full, then active data is moved from F to E, etc. By itself, this does not eliminate 

the pause, but the following scheme does [Baker 1978a]. In equilibrium, as the user 
program is running, some number of cells have been copied from fromspace to the 

bottom end of tospace via a pointer B. If the user program requires a new cell, it is 

allocated from the top end of tospace via a pointer T. Interleaved with user 
program operations are collection operations that scan the cells in tospace from the 

bottom end via another pointer S. When the pointer S reaches a cell in tospace 
with a link A to a cell in fromspace, the collector moves that cell to the bottom end 

of tospace (via pointer B), updates the link X, and leaves a forwarding address in 
the old cell location. After a while, the pointer 5 will have caught up with the 

pointer B, and the moving activity will have incrementally cleaned out fromspace, at 

which point the two spaces can “flip.” A further embellishment comes from the 

observation that young objects have a high mortality rate, but old objects die hard, 
and so it is a waste of time to keep moving the latter. Therefore, it is worthwhile to 

operate with several smaller segments of memory rather than two large semi-spaces, 
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separating objects into different segments according to their age, and eventually not 

examining segments filled with old objects [Lieberman and Hewitt 1983]. 

The mutator-collector approach described at the beginning of this section would 
appear to be quite different from the relocation method just described. But think of 

the cells still in fromspace as being white, of those copied to tospace but with 
descendants that have not yet been examined as being gray, and of those copied and 
examined as being black. We see that the two approaches do in fact share some 
very basic concepts of graph marking. One of the significant distinctions in the 
relocation approach is that the graph is scanned in breadth-first order, the cells in 

tospace serve as a queue for this purpose, and no explicit stack is required. 

11.3 VARIABLE-SIZE BLOCKS 

In order to convey the nature of the problem with variable-size blocks, let us inves¬ 
tigate the consequences of some particular, arbitrary assumptions concerning 
storage organization, allocation policy, and deallocation policy. Suppose that we 
have a memory of twelve units (initially empty) and that we are presented with a 
series of requests involving allocation and deallocation, yielding the states shown in 
Figure 11.8(a). In order to portray what is happening, we label empty blocks with 
the number of units they contain, and active blocks with the name of the item they 
contain. In general, when a request for R units is matched against a block contain¬ 
ing S units, we will allocate the rightmost R units to the request, and the leftmost 
(S' - R) units as a smaller empty block. The Free space of empty blocks is main¬ 
tained as a linked list, with returned blocks being inserted at the front. The reason 
for allocating from the right will be described in Section 11.3.1.1; the reason for 
maintaining Free-space as a stack is that it is the simplest way to manage a linked 
list. One final point is that we will encounter situations where there are two or 
more contiguous empty blocks; for now, we will presume that they are left in that 
state. Figure 11.8(a) speaks for itself. When we try to obtain space for E, we fail 
because memory has become checkerboarded with active blocks and small empty 
blocks. There are actually five unused units of memory, but they are unavailable to 
us because unused memory has become fragmented into useless blocks. Coping with 
fragmentation causes memory allocation to be a problem for blocks, whereas allo¬ 

cation was trivial for cells. 

The example in Figure 11.8(a) is based upon some definite but simplistic poli¬ 
cies of organization (a stack), allocation (first-fit), and deallocation (do nothing). 
Now let us consider another example, using some different policies. In particular, 
suppose that requests for variable-size allocations are always honored by rounding 
them up to the nearest multiple of some standard size Bstd, say 1000 units. This 
example typifies the way in which an operating system would respond to requests 
for storage for program tasks. It is illustrated in Figure 11.9 for a hypothetical 
series of requests, and with a total available memory of 10,000 units. Here, we are 
unable to satisfy the request for 900 units for E even though there are 2100 unused 
units of memory. In this case, the unused but unavailable memory locations occur 
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(a) First-Fit (b) Best-Fit 

Figure 11.8 External Fragmentation 

within allocated blocks, and so the phenomenon is termed internal fragmentation. 
The phenomenon portrayed in Figure 11.8 is termed external fragmentation. 

We can regard the examples of Figure 11.8 as having a basic block size 
Bstd = 1. Then it is easy to see that as we vary Bstd from small values to large 
values, the external fragmentation will decrease but the internal fragmentation will 
increase. Moreover, it has been observed that the increase in internal fragmentation 
sharply exceeds the decrease in external fragmentation [Randell 1969], 

In this section, we will examine several variations in each of the three policies 
- organization, allocation, and reclamation. Initially, we will restrict our attention 
to various manners of dealing with memory as one storage pool. Subsequently, we 
will look first at a class of methods known as buddy systems, and then at the use of 
multiple storage pools. 

The number of combinations of policies soon becomes cumbersome to grasp 
even conceptually, much less in terms of performance characteristics. Memory 
management strategies are generally measured with respect to two performance 
parameters - the degree to which they are able to satisfy various sequences of stor- 
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Figure 11.9 Internal Fragmentation 

age requests from a finite available memory, and their execution overhead. In order 

to fully characterize such sequences of requests, we must consider: 

• the distribution of request sizes; 
• the distribution of arrival times of these requests; 
• the distribution of occupancy times of these requests. 

Clearly, to measure each of the sizable number of combinations of policies against a 
representative set of request sequences is a large task. So we conclude with a 
section that will hopefully bring some order out of chaos for the reader, drawing 

upon several excellent published analyses and simulation studies. 

11.3.1 Single Storage Pool 

The idea here is that blocks of memory are strung together as one sequential linked 
list, with various possibilities for organizing that list. When a request is received for 
a block of a given size, the allocation policy must actually perform two tasks: 

1. select a free block from which to satisfy the request; 
2. decide what to do about the difference between the request size and the selected 

block size. 

The policy of reclamation includes actions that can happen either at storage release 
time, or when an allocation request cannot be satisfied. The former type of action 
is suggestive of the incremental reclamation of storage with reference counts; the 
latter type is analogous to a compaction phase of garbage collection. 

11.3.1.1 Organization. Our meaningful unit of storage is now a block rather than 
a cell; therefore, we need to examine what must be included in the structure of a 
block. As a minimum, an unused block would need the format shown in Figure 
11.10(a), and an active block might have either the format shown in (b) or (c) of the 
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Count Tag = 1 Succ Link Junk 

(a) Empty Block 

Count Tag = 0 Data 

(b) Active Block — Format 1 

Count Tag = 0 Succ Link Data 

(c) Active Block — Format II 

Figure 11.10 Memory Block Formats 

type cursor = lo .. hi; 
blockl = record 

count: cursor; 
case tag: boolean of 

false: (data: {string of data bytes}); 
true: (succ: cursor; 

junk: {string of empty bytes}); 
end; 
block2 = record 

count: cursor; 

case tag: boolean of 
false: (succ: cursor; 

data: {string of data bytes}); 
true: (succ: cursor; 

junk: {string of empty bytes}); 
end; 

Figure 11.11 Pascal Syntax for Memory Blocks 

figure. In Pascal terms we would have either blockl or blockl, as illustrated in 
Figure 11.11. 

One of the first consequences that follows from these formats is that an unused 
block must have a minimum size bmin that is large enough to contain the count, 
tag, and succ fields; an allocation policy must never split off an empty block smal¬ 
ler than this limit. It is also easy to see from these formats why - in splitting an 
empty block into a reduced empty part and an active part, as in Figure 11.8 - we 
make the active part on the right. By so doing, we have only to reduce the count to 
reestablish the empty block; if we made the active part on the left, we would also 
have to reestablish the tag and link fields. The choice between the block 1 and the 
blockl alternatives depends upon whether or not our linked list of blocks is to be 
just a Free-list, or should include all the blocks in memory. The blockl format will 
speed up searching for an empty block because the list is shorter. The blockl 
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format, with all the blocks in order of address, can facilitate the process of reclama¬ 
tion but it requires both more space and more time. In the block 1 case, it is 
possible to maintain the Free-list in several ways. In Figure 11.8, we employed a 
stack; you may recall that in SLIP a queue is used (see Section 11.2.2). A common 
choice is to maintain the Free-list by address, although the block size is sometimes 

used as the criterion. 

11.3.1.2 Allocation. As we have said, an allocation policy includes both selecting 
an empty block and possibly having to dispose of an excess in that block. Let s 
consider the problem of excess capacity first. One possibility is to simply include 
the excess in the allocated block. Indeed, that is what happens when memory is 
allocated in multiples of a fixed block size Bstd, as in Figure 11.9, and it leads to 
internal fragmentation. This is also what must happen if the excess is too small, as 
we discussed in the previous section. Note that this manner of handling the excess 
may necessitate extra information in an active block, to distinguish data from junk. 
The other way of handling excess capacity is the one illustrated originally in Figure 
11.8; namely, we split the excess off into a new and smaller unused block, leading 

to external fragmentation. 

Allocation is essentially the process of searching a list to find a block that is 
large enough. We see that external fragmentation complicates allocation in two 
ways. It simultaneously causes this list to be longer and the entries in the list to be 
smaller, both of which increase the search overhead. In our example of Figure 
11.8(a), the allocation selection policy specified the first unused block that was large 
enough, no matter how much larger; this is known as first-fit. It would appear 
that such a policy is imprudent, causing us to be unable to allocate 3 units to E 
because we had previously split a 3-unit block to satisfy D, when a 2-unit block 
would have worked just as well. This suggests that a better policy might be best-fit, 
whereby we would look for the smallest unused block that is just large enough to 
satisfy the request. Indeed, if we apply such a policy to that same series of requests, 
as shown in (b) of Figure 11.8, we are rewarded with greater success. However, it is 
easy to construct a counter-example where best-fit fails and first-fit succeeds, as 
illustrated in Figure 11.12. More generally, a problem with best-fit is that it may 
rarely find a block of exactly the desired size, and so will split an empty block into 
an active part and a splinter, an empty block so small that it is of little practical 
value. Over a period of time, if Free-list accumulates many such splinters, it may 
both worsen execution overhead and reduce memory availability. 

Note that if the linked list is maintained by address, then the process of search¬ 
ing for a best-fit means searching the entire list (unless we find an exact-fit), and so 
will be more expensive than searching for a first-fit. For this reason, the Free-list 
might be maintained by block size to shorten the searching process of best-fit. 
What happens if we use the first-fit method with a Free-list ordered by block size? 
It depends upon whether the blocks are in increasing or decreasing order of size. If 
they are in increasing order, first-fit becomes best-fit; if they are in decreasing 
order, first-fit will succeed (or fail) on the very first try, yielding a policy known as 
worst-fit. This policy, which always splits up the largest unused block, is not neces¬ 
sarily a bad one; it definitely tends to oppose the formation of small fragments. 
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Figure 11.12 External Fragmentation, Again 

Let’s attempt to apply intuition again, as when we decided to try best-fit rather 
than first-fit. If first-fit is applied to a lengthy series of allocation and deallocation 
requests, then the continual activity at the front end of the Free-list can be expected 
to bias Free toward having more small blocks at the front and more large blocks at 
the rear. This in turn will cause any requests for large blocks to have long searches. 
It would seem that an improvement upon this situation would be to have each 
search cycle begin at that point in the list where the previous search cycle ended. In 
such a next-fit policy, the distribution of block sizes in the list should be more 
random, and the average search length should be shorter. In fact, as we will see in 
Section 11.3.4.2, the observed results with next-fit need careful interpretation. 

Our final allocation policy derives from the optimal stopping policy for Markov 
chains, and is dramatically illustrated by the following hypothetical situation. You 
are presented with a sequence of choices, one after the other. If you could “spread 
them out” and go back and forth, it would be easy to pick the best. However, you 
are required to examine them in sequence, with no knowledge about the values of 
the still unseen choices. As each choice is paraded before you, you can pass on it, 
which eliminates it from further consideration, or you can select it, which concludes 
the game. An example of this might be a motorist trying to pick a motel without 
going back over his tracks. 
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To illustrate the principle in a different manner, suppose that you are playing 
the following card game. The value of the cards in the deck is considered to run, 
from lowest to highest: 2,3, ... , ace of clubs; 2,3, ... , ace of diamonds, and so on, 
for hearts and then spades. The dealer shuffles the cards, takes the first one, and 
then begins to look at the other cards one at a time. As he looks at each card in 
turn, the dealer compares it with the one in his hand, retaining the higher one and 
discarding the lower one. Obviously, by the time he reaches the end of the deck, he 
will be holding the ace of spades. What is your role in this game? You are watch¬ 
ing him as he does this, but you cannot see the faces of the cards, only his actions 
in exchanging one card for another. Nonetheless, you are asked to identify the ace 
of spades when it comes by, not after the fact. If you were challenged to play this 
game with odds of 3 to 1 in your favor, would it be a favorable bet? Surprisingly, it 

would be! 

The unaided probability of identifying the ace of spades as the cards go by you, 
face unseen, is certainly just 1/52. So how is this a favorable bet? A key observa¬ 
tion is that a candidate for best must be better than any that has been seen so far. 

Your strategy is: 

1. to allow S out of the total of A to go by, simply noting the best candidate in 

this initial segment from 1 to S; and then 
2. to pick the first candidate after that point. 

What is the probability that this strategy will find the best candidate X in the y'th 
position, if you allow S of them to go by? It is the joint probability Pr (SJ) of the 

two events that: 

(a) X occurs in the yth location, and 

(b) there will be no candidates in the interval S to j — 1. 

The probability of event (a) is given by 1/A. Also, if Y is the best candidate in the 
first j - 1 positions, then the probability of event (b) that Y will occur within the 
first S positions, so that no candidates occur between S and j - 1, is given by 
S/(j - 1). In other words, Pr (SJ) = (1/A) x (Sl(j - 1)). Summing this over the like¬ 
lihoods of finding the best candidate in positions 5 + 1 through N, we obtain 

wjh=i{i+^TT+-+ttt) - - "*-■> (1L2) 
j=S+1 

For large values of N, the value of S that maximizes this summation is closely 
approximated by N/e « 0.368 A, and this strategy will succeed in correctly identify¬ 
ing the best candidate with probability 1/e « 0.368. In other words, for the card 
game, if you picked the first candidate, as indicated by an exchange of cards on the 
dealer’s part, after the nineteenth card, you would have a better than even chance of 
winning with the 3 to 1 odds. If the game is instead to try to identify one or both 
of the two of clubs and the ace of spades, at even money, the prospects are even 

more favorable. 

As applied to the storage allocation problem, this is called the optimal-fit policy. 
It suggests (1) examining 0.368 of the blocks on the Free-list and recording the 
block Y in this sample that is closest in size to the request, and (2) picking the first 
block X thereafter that gives a closer fit than Y. Compared to first-fit, we would 
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expect it to require more searching but to give a better fit; compared to best-fit, we 
would expect it to require less searching but to yield, on the average, a poorer fit. 
This is a very pretty method, but its validity rests upon certain assumptions that do 
not always apply with the storage allocation problem: 

• that the blocks in the Free-list are statistically independent in terms of size; 
• that the number of blocks is both large and known; 

• that it is impossible to return to a block once it is passed over [Leung 1982b]. 

When the latter assumption is false there is some benefit, because it may happen 
that no candidate block is found after the sample, and yet a candidate existed in the 
sample. In the original description of optimal-fit, reversion to a candidate from the 
sample was employed about 25 percent of the time, and the method was found to 
be generally superior to first-fit [Campbell 1971], However, as we will see in 
Section 11.3.4.2, the first assumption above is usually not true with first-fit - that 
is, the block sizes are not independent. Therefore, the observed results with opti¬ 
mal-fit also need careful interpretation. 

Except for some very different storage organizations that we will examine in 
Sections 11.3.2 and 11.3.3, the methods that we have described here encompass 
most of the techniques used in organizing memory for dynamic allocation of varia¬ 
ble-size blocks. Still, there are other possibilities. For example, Free-list might be 
organized as a binary search tree (see Exercises 11.10 and 11.11). However, this 
introduces overhead that may not be worthwhile unless Free-list is fairly long. 
Extra space is required for the tree pointers, thereby increasing bmin. Also, time 
must be spent maintaining the pointers and (possibly) keeping the tree in balance. 
Still another idea is to have the allocation policy take into account the anticipated 
release times of already allocated blocks [Beck 1982], 

11.3,1.3 Reclamation. With fixed-size cells, we found that it is sometimes neces¬ 
sary to compact them in order to reduce their dispersion in memory. In the case of 
variable-size blocks, a more pressing need is to counteract the trend toward frag¬ 
mentation of memory. This was evident in the examples of Figures 11.8 and 11.12, 
where the reclamation policy was the trivially simple one of pushing deactivated 
blocks onto a stack. There are two approaches that can be used for the purpose. 
One idea is to determine, upon the return of a block, if either adjacent block in 
memory is also an empty block. If so, they can be coalesced into one larger block. 
(The terms “collapsed” and “consolidated” are also used.) Although effective, 
coalescing has its limitations. Therefore, the more drastic step of compaction may 
be required; however, compaction is considerably more complicated with blocks 
than it is with cells. We will now look at coalescing and compaction in turn. 

11.3.1.3.1 Coalescing. The goal in coalescing is to merge adjacent empty blocks. 
The basic problem in implementing it is to find the two blocks that are adjacent to 
a given block and, if necessary, adjust the chain of Free-list pointers. When a block 
at location Q of size C is returned, it is simple to investigate the block that follows 
it in memory, by looking in or around location R = Q + C (taking into account 
prefix space). If the block at R is empty, it is also simple to combine it with the 



592 MANAGING PRIMARY MEMORY 

block at Q. However, it is not so simple to adjust the relevant Free-list pointer to 

point to Q instead of R: 

• If the Free-list is in arbitrary sequence, then we must search the entire list to 

find the predecessor to R, which will typically require 0(n) probes. 
• If the Free-list is maintained by address, then the block at location Q is the 

predecessor of the block at location R. However, the operation of inserting the 
block Q (or any block) into such an ordered Free-list will have required 0(n) 

comparisons, so that we are no better off. 

One apparent solution is to organize the empty blocks as a bi-directional list, in 

arbitrary sequence. Then, when a block Q is returned, and if the succeeding block 
R in memory is also empty, we can combine Q and R and adjust the pointers, all in 
constant time. However, what we have described still only accounts for coalescing 
with an empty neighbor block on the right. The problem of finding and coalescing 
with an empty neighbor block on the left is a bit more complicated. We first have 
to find the beginning of the left neighbor block, in order to test if it is empty; and 
the bi-directional list does not help with this, unless the Free-list is maintained by 
location. (If it is, we can link to the predecessor of Q, and then test to see whether 
it extends as far as Q, or if there is an intervening active block.) Unfortunately, we 
saw with the second case above that it costs 0(n) operations to maintain the Free¬ 

list by location. 

Is there any solution that can deactivate a block and coalesce on both sides, 
and do so in constant time? There is, but at the expense of requiring additional 
information in active blocks as well as empty blocks. Note that we should not 
mind having extra information in empty blocks, since most of their space is unused 
anyway. With regard to active blocks, on the other hand, the additional overhead 
may be a substantial proportion of the allocation or it may be insignificant. A very 
effective manner of including additional information in active and empty blocks to 
facilitate coalescing is to use boundary tags. Such a scheme is illustrated in Figure 
11.13, wherein each block has a suffix containing count and the boolean value 
empty, this suffix can easily be interrogated by any procedure working in another 
block to its immediate right. Note that an empty block requires several items of 
information, while the only essential extra information for an active block is a 
duplicate of its tag. With boundary tags, when a block Q is deactivated, we can 
find the adjacent block R on the right by using Qs count, as before. We can also 
test the suffix of the block P to the left of Q; if P is active, there is nothing further 
to do; but if P is empty, we can use the duplicate count value in P’s suffix to reach 
the beginning of P. Since the Free-list is bi-directional, we can combine Q with P 
and/or R and restructure the list, as appropriate, all in constant time. 

Count Empty = 1 Pred Link Succ Link Junk Count Empty = 1 

(a) Empty Block 

Count Empty = 0 Data Count Empty = 0 

(b) Active Block 

Figure 11.13 Boundary Tag Formats 
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const bdry_size = 1; 
bmin = 3; 

type cursor = lo .. hi; 

itemicity = (boundary,fill,links); 
item = record 

case itemicity of 
boundary: (count: integer; 

empty: boolean); 
fill: (byte: char); 

links: (pred.succ: integer); 
end; 

var free: integer; 

store: array [cursor] of item; 

Figure 11.14 Boundary Tag Item Formats 

Of course, it is unlikely that we can allocate a one-bit suffix in an active block 
without sacrificing an entire word, or at least an entire byte. Thus, it is common to 
show the same suffix form, containing duplicate values of count and empty, for both 
active and empty blocks. It is awkward to illustrate the boundary tag method in 
Pascal if we try to represent entire blocks via variant records. However, we can do 
almost as well if we use variant records to represent items within blocks. In partic¬ 
ular, we will use the global information shown in Figure 11.14, such that an item is 
one of the three types: boundary, fill, or links. For the sake of simplicity, a 
boundary item has the same format for prefix and suffix and for both empty and 
active blocks; however, our algorithms will not use the count information in the 
suffix item of an active block. 

Cursor Itemicity Contents 

lo 

lo + 1 
lo + 2 

boundary 
links 
boundary 

count = 1 , empty = 1 

pred = 0 , succ = lo + 4 
count = 1 , empty = 1 

lo + 3 boundary count = —1 , empty = 0 

lo + 4 
lo + 5 
hi - 1 

boundary 
links 
boundary 

count = hi — lo - 6 x bdry_size , empty = 1 
pred - lo , succ — 0 
count = hi - lo + 6 x bdry size , empty = 1 

hi boundary count = -1, empty = 0 

Figure 11.15 Initialization for FIRST-FIT and COALESCE 

We now present algorithms to do first-fit allocation and also deallocation with 

coalescing, using these formats. Store is considered to be an array of items, and 
free identifies the head of our bi-directional, non-circular Free-list. We assume that 



594 MANAGING PRIMARY MEMORY 

the items in the first six and the final two locations of store are initialized as shown 
in Figure 11.15. The contents of lo + 3 and hi are dummy active blocks needed for 
the coalescing process; note that with a block size of —1, the same boundary item 
serves as both prefix and suffix. The small empty block from lo to lo + 2 serves as 
the head of the Free-list. Its size and position guarantee its permanence - that is, 
it will never be either allocated or coalesced. By using bdry_size to parameterize the 
size of a boundary item, we facilitate transcribing these algorithms to assembly 
language, should that be desired. We are not so concerned about introducing a 
similar parameter for the size of a links item, since that can easily be provided for 

by the choice of bmin. 

function FIRST.FIT (n: integer): integer; 

var done: boolean; 
p,q,size: integer; 
u: item; 

begin 
p := free; done := false; 
FIRST_FIT := 0; {in case no space is available} 
repeat 

size := store [p].count; 
if size < n then begin 

p := store [p + 1].succ; 
done := (p = 0); 

end else begin 
if (size = n) or (size - n < bmin) then begin 

store [p].empty := false; 
store [store [p + 1].pred + 1].succ := store [p + 1].succ; 
store [store [p + 1].succ + 1].pred := store [p + 1].pred; 
store [p + size + bdry_size].empty := false; 

FIRST_FIT := p; 
end else begin 

q := size - n - 2 * bdry_size; 
store [p],count := q; store [p + q + bdry_size].count := q; 
q := p + size - n; 
u.count := n; u.empty := false; 
store [q] := u; store [q + n + bdry_size] := u; 
FIRST_FIT := q; 

end; 
done := true; 

end; 
until done; 

end; 

Algorithm 11.4 FIRST_FIT 

The function FIRST_FIT (Algorithm 11.4) searches the Free-list for the first 
block that is not less than the desired size «, returning either the address of that 
block, or a zero if there is none. If a block is found such that it has size n or such 
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procedure COALESCE (q: cursor); 

var glued: boolean; 
p,r,size: integer; 

begin 
glued := false; 
store [q],empty := true; 
size := store [q],count; 
if store [q - 1 ].empty then begin 

p := q - store [q - 1],count - 2 * bdry_size; 

size := size + store [p],count + 2 * bdry_size; 
glued := true; 

q := p; 
end; 

r := q + size + 2 * bdry_size; 
if store [r],empty then begin 

size := size + store [r].count + 2 * bdry_size; 
if glued then begin 

store [store [r + 1].pred + 1].succ := store [r + IJ.succ; 
store [store [r + 1].succ + 1].pred := store [r + 1].pred; 

end else begin 
store [store [r + 1].pred + 1].succ := q; 
store [store [r + 1].succ + Ij.pred := q; 
store [q + Ij.pred := store [r + Ij.pred; 
store [q + IJ.succ := store [r + IJ.succ; 
glued := true; 

end; 
end; 
if not glued then begin 

r := store [free + IJ.succ; 
if r <> 0 then 

store [r + 1 J.pred := q; 
store [q + 1 J.succ := r; 
store [q + Ij.pred := free; 
store [free + IJ.succ := q; 

end; 
store [qj.count := size; 

store [q + size + bdry_sizej := store [qj; 
end; 

Algorithm 11.5 COALESCE 

that its size is in excess of n by less than bmin, then the entire block is removed 

from the the Free-list and allocated. If the excess size of this block equals or 

exceeds the minimum, then it is split. The procedure COALESCE (Algorithm 11.5) 

is called with the address q of the block Q. It first checks the block P on the left, 

coalescing if appropriate. It next checks the block R on the right. If R is to be 

coalesced and P already was, then R is de-linked as a distinct block on the Free-list; 
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if R is to be coalesced and P was not, then the appropriate link adjustments are 
made. Finally, if Q was not coalesced with either P or R, then it is inserted at the 

front of the Free-list. 

The process of coalescing has several virtues. It reclaims memory incrementally 
rather than in the spasmodic style of garbage collection. It can also be accom¬ 
plished quickly in time and with little space overhead. In particular, since blocks 
are not relocated, we do not have to worry about updating pointer values. Note 
that there are alternative ways to coalesce, if we separate the issues of what to do 
(that is, coalesce) and when to do it. The usual policy with regard to “when” is at 
deallocation time. One alternative policy is to coalesce at allocation time; if an 
allocation request causes an empty block to be split, then the resulting smaller 
empty block can be tested for coalescing with an adjacent empty block at that time. 
Still another alternative policy is not to coalesce at either allocation or deallocation, 
but to wait until an allocation request fails. At that time, all the blocks in memory 
can be scanned in address sequence, to simultaneously coalesce adjacent empty 

blocks and also regenerate the Free-list. 

f 11.3.1.3.2 Compaction. Unfortunately, coalescing cannot by itself prevent situ¬ 
ations where memory may be only 50 percent utilized, and yet unable to satisfy a 
reasonable request. For example, memory could consist of alternating active and 
empty blocks all of size X, and the request could be for a block of size X + 1. In 
such situations, we need to compact the active blocks toward one end of the 
dynamic memory area, leaving the remainder as one large free block. In the 
discussion of compaction in Section 11.2.3.1, we were able to employ the regular 
structure of cells to advantage in two ways. First, COLLECT. 1 (Algorithm 11.2) 
was able to swap active and empty cells between locations at opposite ends of 
memory, since all cells are of the same size. Second, it was straightforward to 
update pointers by means of forwarding addresses left in the old locations, since the 
detection of pointer values within cells obeyed easily computable rules. 

The irregular structure of blocks makes swapping impossible; also, the 
detection of pointers within blocks can be difficult. Since the latter issue depends 
heavily upon details of implementation, we will not pursue it here. We simply note, 
in passing, two different approaches to the problem. One is to program for each 
block type (that is, record) a corresponding routine that knows how to find the 
pointers in such a block. Another is to make each block self-describing (see Section 
3.3), and then use an interpreter to extract pointers. An interesting discussion of 

this problem can be found in Wodon [1969], 

We turn from the issue of detecting pointers within blocks to that of computing 
the compaction. Since swapping is impossible, the general technique is that of slid¬ 
ing compaction, wherein all of the active blocks slide to one end, squeezing out the 
empty blocks in the process. The earliest algorithms for doing this were rather 
expensive in either time or space; so compaction of blocks, with associated pointer 
adjustment, was often regarded as a means of last resort. Several methods traded 
space for time by specifying that each block should contain extra space that would 
always be available to the compactor. We will refer to such an area within each 
block as the utility field. Compaction can then be conducted with three left-to-right, 
or lo to hi, passes over the blocks, as follows: 
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(a) As each active block Q is reached in the first scan, its forwarding address is 
stored in its utility field. The value of the forwarding address is easily 
computed as the value of the present address of Q minus the sum of the space 
in all the holes (empty blocks) to the left of Q. 

(b) As each active block is reached in the second scan, the pointers are extracted 
and updated, using the forwarding addresses in the blocks to which they refer. 
Any pointers to the blocks from outside the dynamic memory area are also 
updated at this point. 

(c) Now that all pointers are updated, the third scan can safely relocate each 
block, using its forwarding address again. 

z 

z 

(b) Threaded Links 

Z_ 

X 

ABC 

Figure 11.16 Pointer Transformations for Compaction 

A significant improvement over earlier methods is a linear algorithm by Morris 
[1978] that requires just two passes, and also one extra bit for each pointer field. 
The essence of the method is the reversible transformation illustrated in Figure 
11.16. We see in (a) of the figure a block at location Z that is referenced by several 
pointers. In (b) the tree pointers of (a) are threaded to form a sequential list, with 
the initial location Z now acting as list head, and with the non-pointer item X that 
originally resided at Z now serving to terminate the list. Subsequently, the 
forwarded location of the block is computed to be Z', after which the list in (b) is 
converted back to a tree in (c), with the pointer values being updated to the value 
Z'. Since all the pointers have now been updated, there is no further need to access 
them in their original locations; thus, it is safe to conclude the process by sliding 
the block to Z 
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There is one complication in performing the sequence of transformations shown 

in Figure 11.16 without an extra scan. It depends upon the links all being up-poin¬ 

ters - that is, pointing in the direction from lo to hi. This allows the updating to 

be applied as soon as the block at Z is reached, thereby restoring the information X 

that may be required in order to interpret the contents of the block. However, this 

complication can be remedied by treating the up-pointers in one scan, and then 

treating the down-pointers in a second scan from hi to lo. Morris’s algorithm actu¬ 

ally compacts memory by sliding active blocks from lo toward hi at the same time 

that it processes the down-pointers, and it presupposes a previous marking phase, as 

in garbage collection. We will illustrate the sequence of events during compaction 

using, instead, a variation by Jonkers [1979].1 It does not depend upon prior mark¬ 

ing, it does not require an extra bit per pointer, it uses two lo to hi scans, and it 

compacts memory from hi toward lo. Figure 11.17(a) depicts memory checker- 

boarded with active and empty blocks, and containing both up-pointers and 

down-pointers to block Q. There are pointers to the other blocks as well, but they 

are omitted in the interest of clarity. By the time that the first scan reaches Q, the 

up-pointers to Q have been threaded, as in (b). But now the sum of the holes to the 

left of Q is known, and the up-pointers can be updated, as in (c). Note that this 

also restores the contents of the header for block Q, thereby facilitating the interpre¬ 

tation of its contents. The first scan then continues to the end of the memory 

region and threads the down-pointers to Q as it does so, as in (d). Now when Q is 

reached in the second scan, it is safe to update all the down-pointers originating 

from blocks to the right, as in (e). Moreover, all blocks to the left of Q will have 

been relocated, and so Q can also be moved to its new location, as in (f). 

The discussion of compaction in this section would appear to be very different 

from that of Section 11.2.3. They actually have much in common. In particular, 

one view of compaction in the earlier section was as a means of reclaiming garbage, 

following one of a variety of marking algorithms. The compaction techniques of 

this section are also relevant for garbage collection. We do not explicitly discuss the 

marking of multi-linked blocks, since it is the familiar business of searching a graph. 

But note that if blocks contain utility fields, these fields also provide an easy 

solution to the problem of finding space for a stack. Marking techniques based 

upon the utility field approach are described in Thorelli [1972]. But there is an 

even stronger common ground between compaction as discussed earlier and as 

treated here. Even for compacting fixed-size cells, the techniques of this section are 

sometimes preferred to that of COLLECT_l. This is so because of the sliding 

nature of the compaction. The original physical memory sequence of the cells of a 

List can be important in some applications, and COLLECT_l jumbles this 

sequence.2 Sliding compaction, on the other hand, preserves the so-called genetic 

ordering of the original physical sequence [Terashima and Goto 1978]. 

1 For still another variation see Martin [1982]. 

2 Recall that the list-moving method of Section 11.2.3.2.1 has a different type of virtue; it 
provides a linearizing compaction. 
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Figure 11.17 Progress of Jonkers’ Compaction Algorithm 

11.3.2 Buddy Systems 

If we reflect upon what we have encountered so far in managing storage for 
variable-size blocks, it appears that allocation is moderately expensive, because it 
involves searching the Free-list, and reclamation is very expensive whenever 
compaction is required. Both of these problems can be side-stepped by choosing a 
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different form of storage organization that leads to simpler algorithms for allocation 
and reclamation. The idea is that blocks should only exist in a fixed number of 
sizes s{<s2< - < sm, and that a split should always break a block B of size st into 

two buddies BL and BR of sizes si_l and st_K. Thus, 

Subsequently, whenever BL and BR are both free, they can be recombined to recon¬ 
stitute the original block. Moreover, neither B^ nor BR can recombine except with 
its buddy. Reclamation is thus efficient because buddies always have a fixed 
address relationship, making it easy for a block to determine if its buddy is avail¬ 
able for recombination. Allocation is made efficient by maintaining separate 
bi-directional lists for each block size st. (Why bi-directional?) 

The original and simplest buddy system is the binary buddy system, correspond¬ 
ing to K = 1 in Eq. 11.3 [Knowlton 1965], In this case, it is easy to see that blocks 
always split by dividing in half. With any of the buddy systems, it is important to 
be able to locate the buddy of a block quickly. For binary buddies, we can see that 
this is simply a matter of regarding the addresses of the blocks as binary numbers. 
The addresses of two buddies — for example, 'abcOOOOO' and 'abclOOOO' — will 
always agree in their prefix portions, be opposite in one bit position, and have all 
zeros in their suffix portions. Thus, we can find the buddy of a block by simply 
inverting a particular bit position. Another way of regarding this is that the split of 
a block of size s, = 2' at location L will give rise to two blocks of size 5;_j = 2,_1, at 
locations L and L + 2'-1. These matters are illustrated in Figure 11.18, which 
exhibits a hypothetical snapshot of a dynamic memory area organized as binary 
buddies. In this figure we can observe the following details: 

• Blocks that have been split are denoted by empty circles, allocated blocks are 
denoted by solid circles, and empty blocks are denoted by rectangles. 

• With each block is shown its address, in binary on the upper levels and in deci¬ 
mal on the lower levels. 

• All empty blocks of a given size are linked together. 

Details about the effectiveness of this organization will be addressed in Section 
11.3.4. In general terms, however, we can see that this method engenders both 
internal fragmentation (any request must be rounded up to the next largest size 
Si = 2') and external fragmentation (it may be impossible to satisfy a request, even 
though there are unallocated buddies with aggregate space in excess of the request). 
If the request sizes all happen to be slightly in excess of a power of two (such as 9, 
17, 33, etc.) then the internal fragmentation for a binary buddy system can 
approach 50 percent. The problem is that the set of allowable sizes {s,} is too 
coarse. A resolution for this is to vary K in Eq. 11.3.3 In particular, for K=2, we 
have as {s,} the familiar Fibonacci numbers, yielding the Fibonacci buddy system 
[Hirschberg 1973]. When K>2, we encounter generalized Fibonacci buddy systems 

[Hinds 1975]; for example, K = 3 leads to block sizes {I, 2, 3, 4, 6, 9, 13, 19,...}. 

3 More accurately, specification of a solution for Eq. 11.3 depends not only upon a value 

for K, but also upon values for the K initial sizes s1; s2,... . 
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Figure 11.19 Fibonacci Buddies 
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Let us consider how a generalized Fibonacci buddy system might be imple¬ 
mented. As a starting point, Figure 11.19 is a hypothetical snapshot of an ordinary 
Fibonacci buddy organization analogous to Figure 11.18. It is easy to locate the 
binary buddy of a block, but the logic for computing a buddy block in the general¬ 
ized case is apparently not so simple: 

• If a block B is a left buddy of size st at location L, then its right buddy is of size 
Si_K+, at location L -l- sh and they combine to form a block of size sM at 
location L. 

• If a block B is a right buddy of size st at location L, then its left buddy is of size 
si+K_i at location L — si+K_u and they combine to form a block of size si+K at 
location L — si+K_v 

L S 

F L S i Pred Link Succ Link Junk 

(a) Empty Block 

F L S i Data 

(b) Active Block 

Figure 11.21 Buddy Block Formats 

In fact, it is possible to keep track of the buddies elegantly and simply, as illus¬ 
trated in Figure 11.20, by means of two boolean values L(eft) and S(ave) in each 
block [Cranston and Thomas 1975], When a block X splits into a left buddy block 
Y and a right buddy block Z, where Y is by convention the larger of the two, then 
we assign LY : — 0 and SY ■= Lx on the left, and Lz : = 1 and Sz : — Sx on the right. 
Recombination is accomplished by discarding the L bits of the offspring and assign¬ 
ing Lx := SY and Sx: = Sz. In addition to the L and 5 bits, we need other 
information in the blocks. Each block requires, of course, a boolean value F(ree). 
It also needs the value of i, as an encoding of the size, for indexing into a vector of 
sizes Note that it is quite easy to pack F, L, S, i together on most machines. 
Finally, each empty block must have space for its two bi-directional pointers. 
Combining these items, we obtain the pictorial formats shown in Figure 11.21 and 
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const K = {1 for binary, 2 for Fibonacci, etc.} 

type cursor = lo .. hi; 

sizcod = 1 .. sizmax; 

itemicity = (fill,links,tags); 

item = record 
case itemicity of 

fill: (byte: char); 

links: (pred,succ: integer); 

tags: (free,left,save: boolean; 

code: sizcod); 

end; 
list = record (header for a list of size s/} 

size: integer; 

pred,succ: integer; 

end; 

var lists: array [sizcod] of list; 

store: array [cursor] of item; 

Figure 11.22 Pascal Syntax for Buddy System Data 

the Pascal formats shown in Figure 11.22. In the latter figure, the values of 

lists IQ.size must be initialized to the values corresponding to the choice of K — for 

example, the ordinary Fibonacci numbers for K = 2. 

The logic of requesting a block under the buddy system is spelled out in the 

function RQST_BUDDY (Algorithm 11.6). It first looks for the smallest adequate 

size with a non-empty list.4 If that size is too large then a block from that list is 

split, and this process is iterated with the buddy closer in size (with the unused 

buddy being inserted in the proper list). Three auxiliary routines of a straightfor¬ 

ward nature are not shown but are required, as follows: 

1. DETACH (p: cursor) — which deletes the block located at p from its doubly 

linked list. If either the predecessor or the successor link is zero (indicating the 

list head), then the size code in store [p] can be used to index the proper list. 

2. ATTACH (i: sizcod; p: cursor) — which inserts the block located at p in the ith 
doubly linked list. 

3. SET_TAGS (p: cursor; a,b,c: boolean; s: sizcod) — which assigns the parame¬ 
ters a,b,c,s to the tags in the block located at p. 

The reverse process is illustrated by the procedure RTN_BUDDY (Algorithm 

11.7). The returned block is iteratively combined with any buddy blocks that are 

completely empty, and finally the largest possible combined block is inserted in its 

proper list. Note that the algorithms RQST_ BUDDY and RTN_ BUDDY will 

4 In practice, one would have to decide whether to adjust the parameter n in either 
RQST_ BUDDY or in the caller in order to account for the space required by the 
header tags. 
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function RQST_BUDDY (n: integer): integer; 

var i,j: integer; 
p,q: cursor; 

begin 
RQST_BUDDY := 0; {in case no space is available} 
if n <= lists [sizmax].size then begin 

i := 1; 
while n > lists [ij.size do 

i := i + 1; {find smallest adequate size} 

j := i; 
while lists [j].succ = 0 do 

j := j + 1; {find non-empty list} 
if j <= sizmax then begin 

p := lists [j].succ; 
DETACH (p); 
while (j > i) and (j - K >= 1) do begin {split} 

q := p + lists [j - 1 ].size; 
SET_TAGS (q,true,false,store [p].save,j - K); 

SET_TAGS (p,true,true,store [p].left,j - 1); 
if i > j - K then begin {use larger buddy} 

ATTACH (j - K,q); 

j := j -1; 
end else begin {use smaller buddy} 

ATTACH (j - 1 ,p); 
j := j - K; p := q; 

end; 
end; 
store [pj.free := false; 

RQST_BUDDY := p; 
end; 

end; 
end; 

Algorithm 11.6 RQST_BUDDY 

work for any value of K, with proper initialization of lists [Q.size. However, for the 

case of K= 1 (that is, binary buddies), one might choose to simplify them slightly. 

In accordance with the objective stated at the beginning of this section, buddy 

system organizations are generally able to allocate and deallocate blocks of storage 

faster than any of the methods of Section 11.3.1. (However, what would happen if 

the activity consisted alternately of requests and returns of a block of smallest size?) 

We will say more about this, and about the relative merits of the method for vari¬ 

ous values of K, in Section 11.3.4. 
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procedure RTN_BUDDY (p: cursor); 

var buddy: item; 
done: boolean; 
j,j0: sizcod; 
p0,q: cursor; 

begin 
done := false; store [p].free := true; 
pO := p; jO := store [p0].code; 
while (store [p].code < sizmax) and (not done) do begin 

j := store [p].code; 
if store [p].left then begin 

q := p + lists G]size; buddy := store [q]; 
if not ((buddy.free) and (buddy.code = j - K + 1)) then 

done := true 
else begin 

DETACH (q); 

SET_TAGS (p,true,store [p].save,buddy.save,j + 1); 
end; 

end else begin 
q := p - lists [j + K - 1].size; buddy := store [q]; 
if not ((buddy.free) and (buddy.code = j + K - 1)) then 

done := true 
else begin 

DETACH (q); 

SET_TAGS (q,true,buddy.save,store [p].save,buddy.code + 1); 

p := q; 
end; 

end; 
end; 
if done then ATTACH (j,p) 

else ATTACH (sizmax,p); 
end; 

Algorithm 11.7 RTN_BUDDY 

11.3.3 Multiple Storage Pools 

One of the oldest ideas for organizing storage to satisfy requests of different sizes is 

still one of the best, albeit somewhat more complicated [Ross 1967]. It is to main¬ 

tain separate lists of blocks of various sizes, as in the buddy system. As with 

buddies, if the list with the optimum size for a request is empty, then a block from a 

larger size list may be split. One difference between this method and the buddy 

system is that now recombination does not follow such simple rules; in practice, 

boundary tags might be used for the purpose. Another difference is that the set of 

sizes can be chosen arbitrarily, to try to match the actual pattern of request sizes. If 

the number of distinct sizes is moderately large, then it would be sensible to organ- 
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ize the list heads as a binary search tree, thereby guaranteeing logarithmic rather 
than linear search times. The issue of overhead is not important in this case 
because the tree structure is superimposed upon the list heads rather than upon the 
individual blocks (compare the remark in the last paragraph of Section 11.3.1.2). 
Note that with multiple storage pools, as with buddy systems, allocation policy is a 
matter of finding the right list as opposed to selecting an item from a list. 

If the pattern of request sizes is accurately known, as is often the case - for 
example, the sizes requested by an operating system for its various standard data 
structures — then the multiple storage pool idea can work very well. In cases where 
these sizes are not known, however, the sizes “in stock” may correspond very 
poorly, and thus lead to fragmentation that is actually much worse than with a 
single storage pool. An effective way to deal with this is to have the storage allo¬ 
cation system vary its inventory of block sizes dynamically, as a function of the 
recent history of requests [Leverett and Hibbard 1982; Oldehoeft and Allan 1985]. 

11.3.4 Analyses and Comparisons 

At the very beginning of our discussion of variable-size blocks, we stressed the 
extreme difficulty of obtaining precise measures of the goodness of various policies 
of organization, allocation, and reclamation. For one, there are a very large 
number of possible combinations of these policies. For another, orthogonal to this 

combinatorial complexity are the issues of: 

• the distribution of request sizes; 
• the distribution of arrival times of these requests; 
• the distribution of occupancy times of these requests. 

Although theoretical results are meager in comparison to what is known for other 
areas, such as searching and sorting, they are nonetheless interesting and helpful. 
However, most of the available wisdom about choosing an optimal combination of 
policies derives from a variety of simulation experiments. In the next two sections, 

we will discuss these two approaches in turn. 

fll.3.4.1 Theoretical Results. Suppose that we have a storage policy that is in 
equilibrium, such that there are M empty blocks and N active blocks; then let p be 
the probability that a request for a block of a given size cannot be matched exactly, 
so that an empty block must be split. In such an equilibrium situation, it can be 
shown that M = pN\2 (see Exercise 11.14). For the not uncommon situation where 
p & 1, this yields M — A/2, otherwise known as the fifty-percent rule. With these 
circumstances, in other words, there will tend to be half as many empty blocks as 

active blocks. 

Now let M,N,p retain their meaning, and denote by / the average size of an 
empty block and by r the average size of an active block. The effective storage 
utilization can then be expressed as p = rNffM + rN). It can be shown that in 
equilibrium f=r, and so p = 1/(1 + Vzp). For p « 1 again, this yields p = 2/3, 
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otherwise known as the two-thirds rule [Gelenbe 1971]. In such an equilibrium situ¬ 

ation, in other words, storage utilization will be about two-thirds. 

Although the two preceding results are generalizations that do not take into 

account much of the dynamic variability in storage policies, they are nonetheless 
helpful in interpreting the behavior of such policies. Of a different nature, a 

number of more precise results have been obtained by Robson. They characterize 
the worst-case amount of memory required to satisfy a sequence of storage allo¬ 
cations and deallocations, under the assumption that coalescing is performed but 

not compaction. More formally, let N{M,n) be the smallest amount of memory N 

such that: 

(i) the size of an individual block never exceeds n, and 

(ii) the total amount of allocated space never exceeds M. 

Robson [1971] has shown that N{M,2) = L(3M - l)/2. In other words, even when 
blocks are requested only in sizes one and two, then no matter what allocation 
policy is used, it is possible to have memory just two-thirds full and yet not be able 
to satisfy a request. Note that this result, although consonant with the two-thirds 

rule of the preceding paragraph, is very specific and much stronger. Exact values 
for other values of n are not so easily obtained; however, Robson has shown that 

with N(n) = limM^00N(M,n)!M, then 

0.5 lg n < N(n) < .84 lg n + 0(1) (11.4) 

The preceding results indicate the limits that can be obtained with any storage 
allocation policy. What can be said about specific policies? Robson [1977b] has 

also shown that first-fit is not far from optimal, with lower and upper bounds (anal¬ 
ogous to Eq. 11.4) of 0.5 lg n and lg n. For best-fit, on the other hand, Robson 

demonstrates a sequence of requests such that Mn words are needed — that is, 
N(n) > n. 

Turning to the buddy systems, there is the following analogous result [Knuth 
1973a] for binary buddies: 

r < N(2r) < 2(r + 1) (1'1.5) 

A more practical question concerns the relative usefulness of buddy systems for 
various values of K in Eq. 11.3. Recall that the rationale for Fibonacci buddies was 

that providing more block sizes would serve to reduce the internal fragmentation. 

It has been shown analytically that this does occur over a broad range of request 

size distributions, with typical internal fragmentation (expressed in terms of overal¬ 

location) of 1.24 for K = 2, as opposed to 1.33 for K = 1 [Peterson and Norman 
1977; Russell 1977]. 

Although it was not stated and may not have been apparent, all but the last of 

the results cited in this section are derived solely through combinatorial reasoning. 

None of the probabilistic concerns cited at the outset play any part in this section, 
although they do so in the next. There are many other pretty combinatorial results 

pertaining to storage allocation, often in terms of the well-known bin-packing prob¬ 

lem. A good introduction to these more general results is Coffman [1983]. 
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til.3.4.2 Experimental Results. Since the analysis of storage allocation is intracta¬ 

ble in its full generality, we must fall back upon well-conceived and carefully 

executed simulations for guidance in choosing among dynamic storage policies. 

There are really two types of simulations. Some are primarily directed at tuning a 

particular system [§], and others are concerned to obtain more general conclusions. 

We will not say much about the former here but just abstract from some of them, 

for the benefit of the interested reader. Two features are of particular interest: 

1. In actual practice, the distribution of block sizes is usually very irregular, char¬ 
acterized by several sharp peaks. 

2. The most effective way to deal with this irregularity seems to be to use multiple 
storage pools. 

The input parameters to a simulation have already been cited: policies for stor¬ 

age organization, allocation, and reclamation; and distributions characterizing 

request sizes, arrival times, and occupancy times. With regard to output, there are 

two principal figures of merit. One is a measure of the efficiency of memory utiliza¬ 

tion, and the other is a measure of the speed of the algorithms that implement the 

different policies. There is no difficulty in measuring time, but the measurement of 

storage efficiency must be somewhat indirect. We know that the two ways in which 

memory becomes unavailable are through internal fragmentation and external frag¬ 

mentation. The first of these is easily computed as the excess of what is allocated 

over what was requested; but the second is a relative matter. Empty blocks that 

are too small for one series of requests may be just fine for a different series. 

Therefore, external fragmentation is usually computed by running until a request 

cannot be satisfied, and then computing the total percentage of unallocated memory 

at that point. 

The fifty-percent rule tells something about the degree of external fragmenta¬ 

tion. In practice, however, the ratio M/N is often closer to 40 percent than to 50 

percent. This is partly due to the systematic splitting of active blocks from the right 

end of empty blocks (see Section 11.3.1.2). It is also a consequence of the fact that 

the release sequence of active blocks is not random, but rather is correlated with 

their age. These observations, found in Shore [1977], follow from an earlier exper¬ 

iment measuring the relative amounts of external fragmentation under first-fit and 

best-fit [Shore 1975]. In this earlier study, the difference in storage efficiency for 

the two allocation policies was not great (only about 3 percent), and it varied with 

the nature of the request size distributions.5 Storage efficiency also varied with the 

frequency of requests that were large compared to the average request. A useful 

conclusion is that when this frequency is large, then first-fit is to be preferred over 

best-fit, and vice-versa. The reason is that first-fit, by preferentially allocating from 

one end of memory, tends to encourage the formation of large available blocks at 

the other end. There are also two slightly subtle corollaries to this conclusion. The 

next-fit allocation policy systematically eliminates the bias toward one end of 

memory in first-fit, and the optimal-fit policy assumes that no such bias exists. In 

fact, the elimination of bias can cause next-fit to have storage utilization inferior to 

5 These included uniform, normal, exponential, and hyperexponential distributions. 
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that of either first-fit or best-fit [Bayes 1977]. Also, the effects of this bias can 

cause first-fit to typically outperform optimal-fit after all [Page 1982]. 

There are also interesting experimental results concerning external fragmenta¬ 
tion in buddy systems. We saw in the preceding section that Fibonacci buddies 
definitely have less internal fragmentation than binary buddies, typically 24 percent 
overallocation as compared with 33 percent. Unfortunately, they accomplish this 

by introducing split-off blocks that are smaller and less useful. Simulations show 
that, in fact, the sum of the internal and external fragmentations is relatively 
constant [Peterson and Norman 1977]. This total fragmentation seems to be in the 

range 35-45 percent, no matter what buddy system is employed! 

Remember, though, that storage utilization is only half of the story. Let us 

turn now to the issue of how quickly dynamic storage can be managed with various 
combinations of policies. One early simulation compared three very different poli¬ 
cies6 — first-fit, binary buddy, and multiple storage pools [Purdom et al. 1971]. In 
terms of storage utilization, multiple storage pools were slightly better than first-fit, 
and both were much better than binary buddy. With regard to speed, however, 
binary buddy was always much faster than first-fit and often faster than multiple 

storage pools. 

Nielsen [1977] conducted an extremely ambitious and thorough series of simu¬ 
lation experiments. First, he constructed a base test load of storage requests 
founded upon a mixture of distributions, and then he developed 17 other test loads 
as variations of the base load. He also combined organization, allocation, and 
reclamation policies in various manners to obtain 35 distinct dynamic storage poli¬ 
cies. Rather than conduct 18 x 35 = 1890 experiments, he began by applying all 35 
policies to the base test load. After analyzing those results, he selected 7 of the best 
storage policies and then applied them to the other 17 test loads in a second phase. 
The 35 policies fell into 6 categories according to the method of storage organiza¬ 

tion, as follows: 

I all blocks in one list ordered by address 
II a Free-list ordered by address 
III a Free-list organized as a stack or a queue 
IV multiple storage pools 
V binary buddies 
VI a Free-list ordered by size 

The individual policies within these categories tested allocation strategies of first-fit, 
best-fit, and next-fit. The reclamation strategies included garbage collection, 
coalescing, and compaction. 

The first phase yielded the following general conclusions: 

• Reclamation is slower with just the Free-list organized by address than it is with 
all the blocks ordered by address, but allocation is faster. 

• Next-fit is slightly inferior with respect to storage utilization, but it is dramat¬ 
ically faster. 

6 The probability distributions employed here were Poisson for arrival, geometric for size, 
and exponential for life. 



fll.3.4.2 EXPERIMENTAL RESULTS 611 

• Organizing the Free-list as a stack or a queue is a poor idea in terms of both 

storage utilization and speed. 

• Multiple storage pools are decidedly effective in terms of both storage utiliza¬ 
tion and speed. 

• Buddy systems are very fast but are the worst in terms of storage utilization. 

• A Free-list ordered by size provides acceptable storage utilization, but it is 

non-competitive in speed with the other organizations. 

• A good dynamic storage policy can typically provide better than 80 percent 

storage utilization (except for buddy systems). 

The detailed results from the first phase led Nielsen to choose the following 7 

particular policies for more extensive testing in the second phase: 

A organization I next-fit coalesce upon allocation 

B organization I next-fit coalesce upon deallocation 

C organization II next-fit coalesce upon deallocation 

D organization II next-fit garbage collect and compact 

E organization IV garbage collect 

F organization V combine upon deallocation 

G organization V combine only when out of space 

Policy E performed the best both in terms of storage utilization and speed. Policy 

B performed surprisingly well except when storage was heavily used, leading to 

somewhat longer allocation searches. In the two buddy system strategies, policy G 

was distinctly superior to policy F, which frequently would combine buddies and 

then immediately have to split them again. The wisdom of deferring recombination 

was also reflected in the superiority of policy B to policy A. Finally, neither policy 

C nor D was as good as either policy A or B. In other words, these experiments 

indicate that linking all blocks into one address-ordered list is better than just link¬ 

ing empty blocks into a Free-list. Nielsen’s overall ranking of the policies was as 

follows: E, G, B, F, A, D, C. 

As ambitious and comprehensive as Nielsen’s results are, it is wise to exercise 

some caution in selecting a policy for dynamic storage management. Just as in the 

case of choosing a hashing function, the selection depends a great deal upon the 

particular application. The degree of ambiguity in these matters is well illustrated 

by the question, "Which is relatively better, first-fit or best-fit?" We saw with the 

theoretical treatment of the previous section that best-fit has a disastrous worst case 

compared to that of first-fit. However, such worst-case behaviors are not encount¬ 

ered in practice. With regard to the experimental side, there is poor agreement. 

Some find best-fit to be better, and others find that first-fit is superior. The latter 

conclusion is related to the earlier cited tendency to generate large blocks at one 

end; this tendency has the paradoxical effect that it also causes first fit to yield a 

psuedo-best fit! 
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11.4 OVERVIEW 

The objective in this chapter is simple to state. It is the dynamic management of 
pieces of memory so that a user program will always be able to obtain a piece when 
it needs it, and be able to do so economically. However, the problem is not a trivial 
one to solve, as evidenced by the great number of approaches that have been tried. 
This diversity reflects the fact that the successful use of modem programming envi¬ 
ronments, with ever larger address spaces and with increasing use of dynamic 
structures, is critically dependent upon efficient solutions to the problem. Although 
this chapter is organized principally along the dichotomy between fixed and variable 
size pieces of memory, many of the same concerns — marking, pointer updating, 
etc. - can be found in both contexts. An excellent alternative survey of many of 
these pervasive issues is provided by Cohen [1981]. Hopefully, it is clear by now 
why we have chosen to treat this subject after that of searching. An efficient imple¬ 
mentation of memory management depends, after all, upon skillful use of the 

techniques of Chapter 10. 

Sections 11.2.4 and 11.3.4 already distill many of the significant conclusions 
about alternative ways to solve the memory management problem, so we will simply 
conclude with a few remarks of a more general nature. First, we cannot obtain a 
solution “for free.” We must plan, except in rare circumstances, to spend extra 
memory resource if we do not want to see the storage manager usurp most of the 
cycles of the computer. In the case of garbage collection, we saw in Section 11.2.4 
that an efficient equilibrium point occurs when the actual requirements are only 
about two-thirds of the total available space. Remarkably, we saw the same operat¬ 
ing ratio of two-thirds in our discussion of management of blocks in Section 
11.3.4.1. The two-thirds ratio is of course only a generalization, but we can expect 
to run into severe degradation when we operate much beyond it. Much of the abil¬ 
ity to crowd this ratio successfully, to better than 80 percent, depends upon tailoring 
the memory management strategy to the environment in which it will be used. This 
is reminiscent of the importance of analyzing an application before adopting a hash 
function. Our final advice concerns the benefits of being “lazy.” One extreme opin¬ 
ion on the topic of memory management is that it is profitable to trivialize ,the 
allocation problem by combining or compacting blocks of memory as frequently as 
possible. (The analogous point of view for cells is to use reference counts.) In quite 
a few cases, as evidenced in the investigations of Section 11.3.4.2, it is really more 
economical to defer such activity until it cannot be avoided. 

11.5 BIBLIOGRAPHIC NOTES 

• One early algorithm for copying a List is 0(n2) in time without mark bits, and 
still another is 0(n lg n) in time by using mark bits [Lindstrom 1974]. The 
earliest 0(n) algorithm requires that the new List be allocated in a contiguous 
block of storage; moreover, it also requires arithmetic upon the pointer values 
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[Fisher 1975], There is a later 0(n) algorithm with better performance that 
again requires contiguity [Clark 1978]. 

• There are several measures by which to assess the relative advantage of parallel 
garbage collection over serial garbage collection. These matters are discussed in 
Hickey and Cohen [1984] and Wadler [1976]. 

• Experiments conducted with memory management for the purpose of tuning 
particular systems are Bozman et al. [1984] directed at the IBM VM/SP operat¬ 
ing system, Hanson [1977] directed at a SNOBOL4 system, Margolin et al. 
[1971] directed at the IBM CP/CMS operating system, and Marlin [1979] 
directed at a Pascal system. 
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11.7 EXERCISES 

Section 11.2 

11.1 If the algorithm COLLECT. 1 is used to compact the following scattered 
List, then what will be the contents of the old and the new List locations after the 
compaction? Show your results in the style of Figure 11.3. 

14 17 6 9 

31 9 

29 

5 2 

5 

14 0 

29 6 

31 

11 17 

11 

9 35 

ffll.2 [Dijkstra 1976] A generalization of COLLECT. 1 is the problem of the 
Dutch National Flag. Imagine that we have a row of cans, each of which contains a 
single red or white or blue pebble. The object is to exchange pebbles between cans 
until their contents are: all those with red pebbles, then all those with white 
pebbles, then all those with blue pebbles. The two permissible operations are (i) to 
inspect the contents of a can, and (ii) to exchange the contents of two cans. Write a 
procedure that mimics this situation by operating upon a one-dimensional array. 
Your algorithm should use only a few working registers, should never inspect a 
given pebble more than once, and should strive for the minimum number of 
exchanges. Demonstrate the correctness of your program by applying it to a few 
sets of cans with random contents, and also to some degenerate cases — for exam¬ 
ple, all red or white or blue pebbles, pebbles already sorted, etc. What can you say 
about the average number of exchanges performed by your algorithm? 

fll.3 Trace the operation of the algorithm MOVE.LIST on the following List, 
showing the symbolic values of the pointers in the old List and in the new List at 
each iteration, as in Figure 11.4. 

e b 

e 

c f 

h d 

h 

g c 

fll.4 Assume that Robson’s List-copying technique is applied to the accompany¬ 
ing List. 

(a) Redraw the List to show the forward and backward pointers, in the style of 
Figure 11.5. 
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(b) Show the contents of the old List after the first phase, as in Figure 11.6(a), 
and the contents of the new List after the second phase, as in Figure 11.6(b). 

a b 

e b i c 

e f 

i f j g 

i j 

j f A 

c d 

+11.5 Derive the expected number of exchanges performed by the algorithm 
COLLECT_l, assuming that the expectation of a cell being free is given by the 

probability /. 

t+11.6 Write a procedure that implements Robson’s List copying algorithm. Test 

your program by using it to copy the List of Figure 11.3(a). 

Section 11.3 

11.7 Explain as concisely as possible the terms external and internal fragmenta¬ 

tion, and the distinction between them. 

11.8 Explain as concisely as possible the terms coalescing and compaction, and 

the distinction between them. 

11.9 Suppose that we have a memory of the indicated number of units, and the 

following sequence of allocations and deallocations: 

A — 4 units 
B — 7 units 

release B 
C — 1 unit 
D — 1 unit 

E — 1 unit 
F — 3 units 

release A 
G - 1 unit 

release E 

H — 3 units 
release F 

1—2 units 
release D 
release G 

Draw pictures of memory, showing the locations of A, B, etc., and the disposition 

of free storage at the conclusion of this sequence. (Note: Give some thought to 

displaying this data in a clear fashion.) 

(a) Do so for a first-fit strategy with 15 units, LIFO return, no coalescing. 

(b) Do so for a best-fit strategy with 15 units, LIFO return, no coalescing. 

(c) Do so for a binary buddy strategy with 16 units. 

(d) Do so for a Fibonacci buddy strategy with 13 units, splitting the larger buddy 

to the left. 

fll.10 [McCreight 1985] Organizing memory blocks in a binary tree presents two 
problems. The first is that we need to be able to retrieve blocks along two different 
dimensions — location and size. The Cartesian tree of Exercise 6.24 might be used 
for this. However, it does not solve the second problem, that the resulting binary 
tree can become very imbalanced. The priority search tree, using rebalancing tech¬ 
niques from Section 10.3.3, solves both problems. In a priority search tree used for 
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memory management, location is a primary dimension of organization, and the size 
of the largest node (block) in the left subtree is a secondary dimension of organiza¬ 
tion. The resulting structure can be used to support both first-fit and best-fit 
allocation with <9(lg n) complexity. Describe in detail the formats of the tree nodes 
and the rules to be used for insertion and deletion in order to obtain this capability. 

Write procedures to allocate and reclaim storage blocks using first-fit, for 
the case that the blocks are organized as a priority search tree, as in Exercise 11.10. 

ffll.12 Assume that memory blocks contain just two types of items, the first type 
being a header that contains both a label and a count of the number of pointers in 
that block, and the second type being pointers to the beginning locations of blocks 
in the memory region. Write a program to implement Jonkers’ compaction algo¬ 
rithm for such blocks. Test your program against the memory blocks shown 
scattered in locations 1 through 50 in the following table. Display the memory 
contents after both passes of the algorithm. 

location items 

3 A - 3, 15, 3, 40 
9 B - 2, 40, 3 

15 C - 1, 15 
21 D - 4, 27, 9, 3, 27 
27 E - 0 
34 F - 2, 9, 40 
40 G - 5, 9, 15, 9, 40, 34 

11.13 Prove that splitting and recombination of Fibonacci buddies cannot be 
accomplished with less than two bits per block. 

fll.14 [Knuth 1973a] Suppose that memory is checkerboarded with M empty 
blocks and N active blocks, of the four types: 

H — a hole (that is, an empty block) 
A — an active block between two holes 
B — an active block between a hole and an active block 
C - an active block between two active blocks 

Also, let p be the probability that a request for a block of a given size cannot be 
matched exactly, so that an empty block must be split. Assuming that blocks are 
released at random, show that if the storage policy is in equilibrium, such that the 
value of M tends to remain constant under insertions and deletions, then M = pN\2. 

tfH.15 Write a set of programs with which to conduct your own simulation 
experiments with dynamic memory algorithms. In addition to particular allocation 
and reclamation algorithms, such as Algorithms 11.4-11.7, you will need to 
develop (a) procedures to generate requests of various sizes and lifetimes, (b) a 
driver program to control the simulation, and (c) auxiliary procedures to gather and 
display pertinent data. 
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ISSUES WITH SECONDARY MEMORY 

“Teach me not the art of remembering, but the art 
of forgetting, for I remember things I do not wish to 

remember, but I cannot forget things I wish to forget.” 

Cicero, 
Themistocles in De Finibus, 

Bk ii, Ch 32, Sec 104 

It is a familiar observation that when the dimensions of a phenomenon change by 
orders of magnitude, then we have not just a qualitatively different phenomenon, 
but a completely different one. This is clearly so when we compare travelling 
between two locations by foot, and by car, and by airplane. It is also a conspicuous 
feature in the transition from primary memory to secondary memory for a 
computer. In all the preceding chapters, the fact that primary memory is directly 
addressable, fast, volatile, and relatively expensive was responsible for numerous 
choices about data structures and algorithms in the interests of efficiency. 

Secondary memory is not directly addressable from within a program; data 
must be explicitly transmitted from secondary memory to primary memory before it 
can be used. Secondary memory may be very fast by human standards, but it is 
several orders of magnitude slower than primary memory. For any computation 
that depends heavily upon the use of secondary memory, this difference will be 
directly reflected in an execution time that is very much greater. On other side of 
the coin, the data in secondary storage can persist for long periods; so the greatly 
reduced cost over that of primary memory makes it the only viable medium when 

we must retain large volumes of data. 

With secondary memory, sizes as well as speeds typically vary by several orders 
of magnitude from those of primary memory. We will see that this causes the 
quest for optimum performance to lead to representation choices that are very 
different from some choices made in earlier chapters. This will be notably true, for 
example, in the way we use trees, and in the way we deal with overflow when hash¬ 
ing. Also, pointers are powerful agents for constructing data structures in primary 
memory, but “bare” pointers are generally unacceptable in secondary memory. 

Secondary memory actually serves another purpose as well, that of providing a 
reservoir of working memory during large calculations. Thus, during operations 
upon large arrays that cannot all fit in main memory at the same time, we might 
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partition the arrays and then explicitly transfer sub-arrays back and forth between 
primary and secondary memory during the calculation. Or if a program is so large 
that it will not all fit in main memory at the same time, then we might repeatedly 
overlay one piece of program (that is no longer needed) with another piece of 
program. If an excess of needed working memory over available primary memory 
were the only problem, then by using virtual memory (to be described in Section 
12.2) we could practically make that reason disappear. However, the second need 
still remains - to be able to save or archive data over a period of time. For this, 
there is no substitute for having non-volatile secondary storage. 

Our first concern will be to describe the principal types of secondary storage, 
for the benefit of readers not already acquainted with them. Section 12.2 is then 
devoted to an account of virtual memory. The major part of this chapter is Section 
12.3, wherein we explore several alternative schemes for allocating files of data to 
secondary memory. Finally, in Section 12.4, we consider the important topic of 
multi-attribute files, which are the basis for various database organizations. 

12.1 STORAGE DEVICES 

The general character of all storage devices is that performing input from a device 
to main memory or output from main memory to a device involves two time inter¬ 
vals, as follows: 

1. There is a delay time while finding the location of the information on the stor¬ 
age medium; the length of this delay depends upon the device (and the 
location), but not upon the quantity of information to be transferred. 

2. There is a transfer time for actually sending the information; this transfer time 
depends both upon the device and upon the quantity of information that is to 
be transmitted. 

In almost all cases, the rate of data transfer, expressed in bytes per second, is at 
least an order of magnitude slower than the corresponding rate for accessing data 
from main memory, and the delay time is usually several orders of magnitude worse 
than the transfer time. With these factors, it is important to minimize having the 
computer wait for the completion of input/output, or I/O. There are two means for 
accomplishing this. 

One is to transmit a large block of information on each I/O operation, thus 
amortizing the delay time per byte of data transferred. Another means, available in 
all except the simplest of current machines, is to attach the storage devices to chan¬ 
nels, which are in reality computers dedicated to performing the I/O. A channel can 
run independently of the CPU, after the CPU has presented it with a special 
program that specifies what is required of it. Thus, the CPU and the channels on a 
computer can be running simultaneously, and the CPU is. not required to sit and 
wait until I/O is completed. There is one situation where the CPU may have to 
wait for the channel to finish an operation - when they both try to access main 
memory at the same time. Whenever the channel needs to do I/O of an item of 
data in the main memory, it usurps control from the CPU for just long enough to 
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accomplish it. This is called cycle stealing, and is transparent to the user. Although 
there are a variety of storage devices, we will concentrate our attention upon tapes, 
disks, and drums since they are by far the most important devices. 

12.1.1 Tapes 

The most common size of magnetic tape for computers is 1/2 inch in width and 
2400 feet long. Data is recorded as bits along a number of parallel tracks, usually 
eight for data and one for parity (see Section 8.2.5). With this arrangement one 
byte, or character, can be recorded at a time across the width, and so the important 
parameter is density of recording along the length. This is designated in terms of 
bpi, or bits per inch (although it would perhaps be more meaningful to speak of 
bytes per inch). Recording densities have steadily increased over the years, with 
800, 1600, and 6250 bpi now being common. A fundamental fact about tapes is 
that they do not move except when performing I/O. Therefore, any operation using 
a tape must first accelerate it from rest to its operating speed (typically, 125 inches 
per second), then do the data transfer, and finally decelerate it to rest again. This 
means that for typical figures of 1600 bpi and 125 inches per second, we have a 
data transfer rate of 200,000 bytes/second. The starting and stopping have several 
consequences. One is a delay time on the order of 20 milliseconds before the next 
record can be read or written, and another is a necessarily unused area on the tape, 
or inter-record gap (IRG), between successive blocks of data. There is also a more 
subtle consequence. It is not possible to change a block of data on the tape unless 
it is the last block, because there is no guarantee of controlling the tape motion with 
sufficient precision to over-write a block and yet accurately maintain the IRG for 
reading the next block. In other words, we can read a tape or write it, but not 
perform some interspersed sequence of these operations; thus, a process involving 
change to data on tape necessitates rewriting an entirely new tape. 

The IRG typically varies in size from 3/10 to 3/4 inch, depending upon the 
characteristics of the tape drive. If we are not careful about the size of the blocks, 
or physical records, we may wind up with a tape that consists of mostly blank IRG’s 
and relatively little data. One extreme (and unrealistic) alternative would be to 
write one physical record as long as the tape. With a length of 2400 feet and a 
recording density of 1600 bpi, we could store more than 46 million bytes on one 
tape. This would be enough for about 23 copies of the entire text of this book. 
For a more realistic objective, suppose that we wanted to store the data of punched 
cards as discrete physical records. Each card has 80 columns and can be recorded 
as 80 bytes. With the same density of 1600 bpi, this amounts to 0.05 inch for each 
card image. For the typical case of 0.6 inch IRG’s, we are left with the situation 
illustrated in Figure 12.1, and with a tape holding only 44,300 card images, or 3.5 
million bytes, for less than 8 percent of its maximum storage capacity. 

The resolution for this situation is to group some number of logical records 
(cards in this case) into one physical record. This number of logical records per 
physical record is called the blocking factor. Suppose that we employed a blocking 
factor of 20. In that case the physical record length would be 1.0 inches, and the 
tape could hold 18,000 physical records (but 360,000 logical card records) for 63 
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percent of its maximum storage capacity. A large blocking factor helps us in terms 
of tape capacity, and it also helps to amortize the delay time per byte of data, as 
mentioned in Section 12.1. However, there is another side to the coin. We must 
have a correspondingly large block of main memory, called a buffer, for completing 
the data transfer. In practice, the choice of size for I/O buffers reflects a compro¬ 
mise between attaining reasonable I/O performance and not consuming too much 
primary memory. 

12.1.2 Disks and Drums 

Tapes are very useful for storage if we use them in the mode of reading or writing 
records in successive positions. But since it typically takes about two minutes to 
scan a tape from beginning to end, it is hopelessly ineffective to try to retrieve 
random records from a tape — the average delay is an intolerable one minute for 
each record. By contrast, disks and drums are direct-access devices, with the prop¬ 
erty that it is feasible to access any of their storage locations at random. Disks are 
much more common and also more generally useful than drums, so we will mpstly 
talk about them. We will be describing typical large-capacity disks that are 
employed with a medium-sized or large computer, not the small floppy disks that 
are now so common with personal computers. These large disks can typically hold 
100 million bytes of data. 

A disk consists of a number of platters, typically between six and thirty, stacked 
one above another on a spindle. Data is recorded on both the top and bottom 
surfaces of each platter except for the two outermost surfaces, and there is usually 
one read/write head for each surface. All the heads are physically ganged together 
in a comb-like arrangement, which causes them to move in lock-step between the 
outer periphery of the platters and the center. The data on each surface is recorded 
in concentric tracks (not in a spiral, as with a phonograph record). There are typi¬ 
cally 200 to 800 tracks, plus a few spare ones in case a track becomes unusable, and 
each of these is composed of several sectors. Finally, the collection of tracks at the 
same radial distance on all the surfaces is termed a cylinder. Figure 12.2 illustrates 
the features just described. 
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READ/WRITE 
Heads per Arm 

Figure 12.2 Disk Storage 

We can see that it is natural to regard the location of an item of data on a disk 
as being determined by a three-level address: cylinder number, track (that is, 
surface) number, and angular position. In fact, access to a disk location is specified 
by: (a) using the cylinder number to control the radial positioning of the read/write 
heads, (b) using the track number to select the proper head, and then (c) using a 
coordinate related to angular position. The delay time for accessing a disk location 

thus has two components: 

• a seek time to accomplish the radial positioning, if the read/write heads are not 

already at the proper cylinder; 
• a rotational latency while waiting for the correct angular position to occur 

under the heads. 

The seek time is significantly larger, because it involves mechanical motion of the 
heads over some number of cylinders; representative minimum/average/maximum 
values are 10/30/55 milliseconds. At typical rotational speeds of 3600 rpm, the 
average latency, on the other hand, is 8.3 milliseconds. Finally, for a typical 
recording density of about 13,000 bytes/track and with the same 3600 rpm, the data 

transfer rate would be 800,000 bytes/second. 

Just as with tapes, we look for ways to use disks efficiently. Blocking can again 
be used for improving both storage utilization and average access rate, by the same 
reasoning used with tapes. There is one difference, however, in that the blocking is 
pre-defined by the sector sizes. For some disks, there is just one immutable sector 
size, and the user simply packs as many logical records in a sector as possible. With 
the larger and more expensive disks, it is common to be able to pre-format tracks to 
have sectors of customized sizes. This pre-formatting may not be under the control 
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of the end-user; on the other hand, there is another factor that he more likely can 
control. By allocating his data on a single cylinder, or at least on consecutive cylin¬ 
ders, the user can make the seek time non-existent, or at least minimal. 

Drums typically have several hundred tracks around the circumference of a 
rotating drum, with one read/write head permanently positioned over each track, as 
in Figure 12.3. Thus, drum locations are determined by two-level addresses, as 
opposed to the three levels for disks. The total capacity of a drum is significantly 
smaller than that of a disk, being on the order of 5 million bytes. Drums tend to 
have smaller latencies than disks, due to higher rotational speeds; even more signif¬ 
icantly, they have no seek delays. As we will see in Section 12.2, this combination 
of characteristics makes them well-suited for supporting virtual memory. 

READ/WRITE Heads 

o o o o 

Figure 12.3 Drum Storage 

1*12.1.2.1 Disk Fragmentation. A single disk for the IBM 3350 contains over 
16,000 tracks of about 19,000 bytes each. Allocation of data will typically be in 
terms of entire tracks, for very large blocks of data that may require from one to a 
dozen tracks. Over a period of time, as tracks are allocated and deallocated, the 
storage on the disk will become fragmented into varying-size extents - that is, sets 
of logically contiguous tracks on the same cylinder. Some of these extents will be 
occupied and some will be empty, in a manner analogous to the fragmentation of 
main memory, but now on a much larger scale. A severe consequence of external 
fragmentation in main memory is that we may be unable to find a large enough 
contiguous extent. With disk space this is not a problem, however, because we can 
spread a large data block over several extents that are chained together. Instead, 
we encounter a different problem - the extended time required to access the sepa¬ 
rate extents. This is especially severe when the tracks must be spread over two or 
more cylinders, thus requiring additional seek delays. Theoretical models of disk 
fragmentation in terms of the geometric distribution and of Markov chains can be 
found in Leung [1982a, 1983]. 

In order to limit the cumulative degradation in performance, it is expedient to 
reorganize the entire contents of a disk periodically. A common technique for 
doing this is just to copy all the data, in logical sequence, from the fragmented disk 
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onto a new disk; this is such a lengthy operation that it must be done at off-hours. 
In an alternative, pragmatic approach, only about 10 percent of the extents are 
selectively relocated, so this can be interwoven with normal processing. Yet the 
reduction in fragmentation is substantially equivalent to that obtained with the 

slower, naive process [Franaszek and Considine 1979]. 

12.1.3 Storage Devices — A Reprise 

The nature of tapes is such that they usually retain data for just one user or process 
over long periods of time, and they are retrieved from a tape library when required 
by that user or process. It is not uncommon for a computing center to have just a 
few tape drives, but a library containing thousands of tape reels. At the other 
extreme, drums cannot be removed, and they are used to retain data for many proc¬ 
esses for relatively short periods of time. The average computing center has either 
no drums or just one, which is then used for special purposes. Disks are a good 
compromise. It is often possible to exchange disk packs in a disk drive. Also, while 
some disks are used to retain data for many users or processes, others are used to 
retain data that is private to a single user or process. Because of these features and 
because they are intermediate in performance to tapes and drums, disks are the 
most versatile and useful of the storage devices. Typically, a computing center may 
have a dozen disk drives and a library of several score disk packs, some public and 
some private. A representative comparison of the values for average delay and 
access speed is shown in Table 12.1 for typical main memory, drum, disk, and tape. 
The two delay figures represent the average values for (a) locating an arbitrary 
block of data, and (b) beginning to access the next block of data in physical 
sequence. Note that all of these values are an order of magnitude better than those 
for a typical personal computer, and at least an order of magnitude inferior to those 
of state-of-the-art devices with large computers. The principal intent of the table, 

however, is to illustrate relative speeds rather than absolute speeds. 

Average Delay 
(milliseconds) 

(a) (b) 

Access Speed 
(microseconds/byte) 

main memory 0 0 0.050 

drums 5 5 0.300 

disks 30 8 1.250 

tapes 105 20 5.000 

Table 12.1 Representative Timing Figures 

There are many variations upon the ideas presented here, as illustrated by disks 

with several sets of read/write heads, “electronic” disks that have no mechanical 
arms at all, drums that do have movable read/write heads, etc. More significant 
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than these, however, is the point that since tapes and disks can be removed from the 

machine and stored in libraries, we can effectively have a tertiary level of storage. 

This third level is of indefinitely large capacity, but with correspondingly larger 

delays to allow for human intervention. Some applications need to have a third 

level of storage that is more automatic and has shorter delays. One such storage 

device is the IBM 3850 Mass Storage System. It can backup a disk storage unit 

with as much as 472 billion bytes of data, stored in 4,000 tape cartridges, and it has 

the capability of streaming data between the disk and a selected tape cartridge at 

high speed. 

12.2 VIRTUAL MEMORY 

If the memory requirements for a problem exceed the main memory that is available 

to us, then we can explicitly shuffle portions of our data or program between main 

memory and secondary memory, as we described at the beginning of this chapter. 

But this is a very unpleasant route to have to take. It is cumbersome to program, 

resulting in a solution that has no flexibility with regard to alternative memory 

configurations, and it is simply a distraction so far as our principal endeavor is 

concerned [Sayre 1969]. Virtual memory, if available, relieves us of these difficul¬ 

ties. With it, we are able to use a program-address space that can be much larger 

than the memory-address space available to us.1 The hardware and the system soft¬ 

ware then contrive to swap blocks of data between main and secondary memory as 

needed, pushing out a block that hopefully won’t be needed again soon, in order to 
make room for the block that is now required. 

If the parameters of the computing system are chosen with care, virtual memory 

can work very well. But if they are not chosen with care, and the amount of swap¬ 

ping becomes excessive, then the several orders of magnitude difference in access 

speeds illustrated in Table 12.1 spell disaster. In the next section we will describe 

how virtual memory is accomplished, and call attention to the most important 

factors determining its effectiveness. Following that, we will illustrate how the pres¬ 

ence of virtual memory does not completely relieve the user of care; rather, it 

presents strong implications about how he should organize a large problem for effi¬ 
cient machine solution. 

1 A less common situation that is sometimes confused with this one is that of a program- 
address space that is smaller than the memory-address space, because the machine 
architecture develops an address of restricted size (perhaps 16 bits) when decoding 
instructions. In such cases the issue is not to map a large logical address space to a 
small physical address space, but rather to map many small logical address spaces to 
one large physical address space. 
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f 12.2.1 Implementation Issues 

We have said that the system can, by a combination of hardware and software, 
bring absent blocks into main memory on demand. A basic issue is whether the 
blocks should be of fixed or variable size. Blocks of variable size, or segments, 
correspond to logical units of programming, such as structured data items, compiled 
procedures, etc. On the other hand, blocks of fixed size, or pages, correspond to 
convenient physical units of data transfer. With the former we encounter the famil¬ 
iar phenomenon of external fragmentation, and with the latter that of internal 
fragmentation (see Section 11.3). We saw in Chapter 11 that the problem of 
managing primary memory in order to accommodate variable-size blocks is much 
more difficult than that of managing fixed-size blocks. So when there are no other 
issues, we find that virtual memory is almost always implemented with pages, in the 

interest of simplicity. 

However, it is also very common for a computer with virtual memory to be 
operating in a multiprogramming mode, in which it is servicing several users simul¬ 
taneously; additionally, it is common for these users to wish to share programs and 
data. The conduct of this multi-user activity (and the related issue of protecting the 
shared objects from misuse) depends upon the concept of logical segments. There¬ 
fore, in order to satisfy both logical and physical considerations, virtual memory is 
commonly implemented in terms of segments that are then partitioned into pages. 
In this case there is a need for a segment table and also a number of page tables, 

one for each segment. 

The details of the organization just described are conveyed by Figure 12.4, 
where a program address is shown as consisting logically of a segment identifier 3, a 
page identifier 14, and a displacement 159 within the page. The translation of the 
program address is carried out in two phases. First, the value 3 is found in the 
segment table. In our case, it is present, and the corresponding table entry points to 
a page table; if the reference had been to segment 6, then the setting of the presence 
bit would have signalled its absence. In the latter case, (i) the data in the pointer 
field would indicate the location of the segment in secondary memory, (ii) a page 
table for that segment would be allocated, (iii) the entry in the table for segment 6 
would be updated to reflect this change, and (iv) the translation would then proceed 

in normal fashion. 

The second translation step is similar to the first. The page identifier 14 
becomes an offset in the page table for segment 3, and the corresponding entry 
points to the location of that page in main memory at location 18000. If the refer¬ 
ence had been to the second page of that segment, then the setting of the presence 
bit would have signalled its absence. In this latter case, (i) the data in the pointer 
field would indicate the location of the page in secondary memory, (ii) the page 
would be swapped into a page frame in main memory, (iii) the entry in the table for 
page 2 would be updated to reflect this change, and (iv) the translation would then 
proceed in normal fashion. At the conclusion of the translation steps described in 
these two paragraphs, the data is finally accessed at location 18000 + 159 = 18159. 

The translation process just described requires several comments. Even when 
there is no segment fault or page fault, corresponding to the circumstance that data 
is not already in main memory, it would seem that the amount of work required for 
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Segment Page Main Memory 
Table Tables (Page Frames) 

Figure 12.4 Virtual Address Translation 

decoding addresses is three times that required in the absence of virtual memory, 
making this feature uneconomical in practice. In fact, although the segment and 
page tables are usually just arrays in main memory, special hardware is provided to 
accomplish the translation, and the net overhead is commonly just a few percent. 
Also, for a single user system, there is no need for segments, which simplifies the 
translation. Unavoidably, however, there is the potential that the computer will 
spend almost all of its time waiting for a needed page to be swapped in. There are 
three steps involved in thwarting this: 

1. Make the access ratio between secondary and main memory as low as possible. 
2. Adopt a policy for replacing pages that will tend to minimize the likelihood of 

subsequent page faults. 
3. Multiprogram, so that while waiting upon a page for one user, the machine can 

be executing the program of another user. 

With regard to the first point, a common tactic has been to use a drum as the 
paging device, although of late this role is sometimes taken over by disks with very 
high performance. The second and third points are more complicated and very 
interrelated. Consider, for example, the paging behavior of a single user’s program 
with relation to the fraction / of its total pages that are in main memory. If / is 
close to 1, then page faults will be relatively infrequent; if /is small, then a fault 
will occur very quickly. Overall, the incidence of faulting as a function of / is 
shown in Figure 12.5, where the shaded area represents the variation induced by 
various choices for page replacement strategies. It is clear that although the choice 
of such a strategy is important, it is much less significant than having a substantial 
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proportion of a program’s pages already in main memory. Even though the precise 
value of this proportion varies from one program to the next, the general phenome¬ 
non indicated by the figure always exists; and the minimum number of pages that 
should be present before it is sensible for a program to start executing is called its 
working set2 [Denning 1968]. In a multiprogramming environment, each of the 
programs manifests this same need to have its working set resident in main memory. 
Thus, as an initial fact of life, the very act of multiprogramming drastically expands 
the minimum amount of main memory required. 

Proportion of 
Resident Pages 

Figure 12.5 Page Faulting Behaviour 

Assuming that we do have an adequate amount of main memory, then two 

policies interact very strongly: 

• selecting the page to be replaced; 
• choosing which program to schedule for execution next, when the one that was 

executing cannot proceed. (This may be because of a page fault, an incomplete 
I/O operation, the expiration of a time quantum, or some other reason.) 

When these policies are poorly coordinated, the executing program will engender a 
page fault rather quickly, leading to another pair of decisions with similar bad 
consequences, and degenerating into what is termed thrashing. At that point the 
system spends almost all of its time juggling pages and never doing any useful work. 
We will not discuss scheduling policies further, but it should be clear that they are 

very much related to the page replacement policies. 

Several replacement policies have been studied, including random selection, 
organizing pages as a circular queue and replacing their contents in cyclical fashion 
(see Exercise 12.2), and various other strategies. One that works well and is 
commonly used is to replace the page that was least recently used (LRU). The LRU 

2 What constitutes the working set for a program depends upon the time interval over 
which its behavior is observed. It is obviously a monotonic function of the length of the 
interval; moreover, it is fairly easy to conclude that a plot of the function is concave 

downward. 
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algorithm requires the effect of a list wherein the identifier of a page is moved to 
the front of the list whenever the page is referenced (analogously to the move-to- 
front heuristic of Section 10.2.1). In practice, special hardware in the machine 
provides the LRU function at high speed, without the necessity to explicitly manip¬ 
ulate such a list. Another effective strategy is to try to capture sufficient data to be 
able to identify the working set, and then to release pages that have dropped out of 

the working set. 

In order to assess the effectiveness of these various policies, we can ignore the 
multiprogramming issue and ask the following question: If we had perfect hind¬ 
sight, what replacement policy applied to the stream of addresses generated by a 
program would result in the minimum number of page faults? This question can be 
answered by the artifice of first generating the stream of addresses and then 
computing from that stream the optimal policy. Such an experiment was 
performed. It yields, not an implementable policy (since we cannot expect to have 
the necessary vision in practice), but one against which other policies can be meas¬ 
ured [Belady 1966]. Briefly stated, a good policy such as LRU is found to lead to 
a faulting rate that differs from the optimum by only about 30 percent. 

At this point, let us recapitulate some of the various factors that affect how well 
virtual memory will work. A system designer must balance the effects of total main 
memory, access ratio between main and secondary memory, the multiprogramming 
load (that is, maximum number of active users), working set sizes, scheduling 
policy, and replacement policy. Some comments are in order about the relative 
significance of some of these. In particular, it is much less effective to have a good 
replacement policy than it is to have a page allocation of adequate size for the 
working set. And even if both of these factors are satisfactory, a high access ratio 
will still vitiate the entire scheme. A clever way of capitalizing upon the importance 
of the access ratio is to introduce a high-speed cache memory between the CPU and 
the main memory, giving two levels of virtual access. A cache memory will typi¬ 
cally be about 1/10 the size but about 10 times as fast as the main memory. Yet it 
can enable a computer to operate within 80 — 90 percent of the performance that it 
would have if the entire main memory were of the higher speed [Liptay 1968; 
Smith 1982]! 

The low access ratio of a cache memory serves another useful purpose. Page 
sizes for virtual memory are typically IK or 4K bytes. This has two harmful 
effects. One is substantial internal fragmentation. Another is that much of that 
large block of data may not be referenced and so is superfluous; yet we paid the 
cost of fetching it, and it takes up valuable space in main memory.3 Although the 
large page size would appear to be inefficient, it is only relatively so; because of the 
high access ratio, a smaller choice for the page size would yield worse overall 
performance. The numbers change in the case of a cache, however. Typical cache 
sectors are 64 or 128 bytes in size, and the efficiency of their use tends to be high. 

An extensive discussion of virtual memory can be found in Denning [1970]. 
We turn our attention, in the next section, to the user side of the matter. 

3 Note that this is an additional argument against a virtual memory scheme based solely 
upon segments. 
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112.2.2 Efficient Use of Virtual Memory 

Ideally, the presence of virtual memory would be transparent to our programs in 
their use of an artificially large address space. In fact, it is important for working 
sets not to become too large, but rather to migrate through the address space in 
nice clusters. This translates into having programs that manifest a high degree of 
locality — that is, the addresses generated over a period of time should not cross 
too many page boundaries. It is for this reason that the CDR-linearization 
discussed in Section 11.2.3.2.1 is significant. Still another consequence of operating 
with virtual memory is illustrated by the semi-spaces described in Section 11.2.3.2. 
Further analysis of the related roles of garbage collection and virtual memory can 

be found in Baecker [1972]. 

Although the design techniques just cited are important, they are not under 
control of the average user. So we will focus, instead, upon the remarkable conse¬ 
quences that simple variations in ordinary programming can have upon 
performance. These effects have been commonly appreciated for many years; we 
will confine our discussion to one example from a more recent treatment. Specif¬ 
ically, let us consider the program MAT_MAT (Algorithm 2.4) for multiplying two 
matrices, with m = n = p for the sake of simplicity. The executable code is then 

for i := 1 to n do 
for j := 1 to n do begin 

sum := 0; 
for k := 1 to n do 

sum := sum + A [i,k] * B [k,j]; 
C [i,j] : = sum; 

end; 

In the ordinary case, with all data in main memory, the multiplications are the 

dominant steps and the complexity is 0(n3). 

But now let the sizes be such that each matrix A,B,C resides on several pages of 
k elements each, so that each requires n2jk pages. Furthermore, let us assume that 

n < k « n2 (12.1) 

Since the time to service a page fault is several orders of magnitude greater than the 
time for performing a multiplication, the page faults now become the dominating 

steps (see Section 1.3.2.2) that we should count in analyzing this version of matrix 
multiplication. Finally, recall that the conventional method of storing matrices is in 
row-major order (see Section 2.2.1). In that case the nested loops of the algorithm 

are such that the elements A [z,k] and also the elements C [ij] will be accessed in 
the order in which they occur in storage. Thus, there will be n2lk faults associated 
with accessing each of them. However, the references to the elements B [kj] will 
cause n2/k faults for every complete cycle through the inner loop, or n4//c faults for 
the entire program. The total number of faults is is therefore (nA -I- 2n2)/k - which 

is less than «3, by Eq. 12.1. 

These circumstances can be dramatically improved by first computing the trans¬ 

pose T of B, as follows: 
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for i := 1 to n do 
for j := 1 to n do 

T D/i] := B [i,j]; 

The revised multiplication step for MAT_MAT is then 

sum := sum + A [i,k] * T [j<k] 

During the transposition, the matrix B will generate n2\k page faults, and the matrix 
T will generate a like number for each value of i, or n2/k faults in all. In the matrix 
multiplication per se, A and C will still cause 2n2/k faults between them, and the 
matrix T will generate n2lk faults for each value of i — or n3/k faults in all. Adding 
these up, the final fault count is (2n3 + 3n2)lk, and this is less than 2n2, by Eq. 12.1. 
In other words, simply by first transposing B, we have reduced the complexity by an 
order of magnitude. This can be more fully appreciated by making a plausible 
assumption — for example, k = 512 and n — 256, which yields 8,400,000 faults with¬ 
out transposition and 66,000 faults with transposition. A fuller treatment of this 
example, and other examples as well, can be found in Moffatt [1983]. 

12.3 FILE ORGANIZATIONS 

If the operating economics of virtual memory were favorable enough, we would 
never have to be concerned about the issues we address in this section. We would 
not need to maintain files as distinct entities in secondary memory. Instead, we 
could regard them as always being directly addressable in our large virtual memory 
when we needed them, and the same kinds of data structuring that we have used 
heretofore could in principal be applied without any change. However, the operat¬ 
ing economics of virtual memory do not yet sustain such a casual attitude. For the 
time being, for a file in secondary storage, we must first identify the records from 
the file that we wish to access, and then explicitly copy them back and forth. 

Since it is common to be dealing with many thousands or even millions of 
records, and since each individual access to secondary memory is orders of magni¬ 
tude slower than ordinary computational steps, it is imperative to organize the data 
so that just a few accesses are required. In almost all cases, this organization is 
based upon the primary key associated with each record. This necessitates search¬ 
ing, and so it might be tempting to try to use storage addresses directly, in order to 
avoid the searching problem. But these addresses have an an artificial device¬ 
dependency, and are generally awkward to employ for most practical situations. 
Even worse, the data on secondary storage devices will almost inevitably be subject 
to reorganization, causing physical addresses to lose their validity. 

Accepting that records are identified by their keys, one of the major issues is 
whether we should: 

1. simply deal with the keys in their records; 
2. employ a subset of the key values in a sparse index-, 
3. employ all of the key values in a dense index. 
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Assuming that the keys constitute just a small fraction of the total storage require¬ 

ment, we can expect that the use of an index will reduce the overall number of 

storage accesses, since most of the search can then be conducted within the index in 

main memory. The use of a dense index has two additional advantages. One is 

that there is more freedom about where the records are actually placed, since every 

record is pointed to from the dense index by its key. Another is that variable-length 

records are thereby easily accommodated. In the common case that an index is 

employed, it will often be inefficient to fetch or retain in main memory the entire set 

of indices for a large file; rather, the search will proceed by accessing a block of 

typically hundreds of index entries, searching it, and then making subsequent 

access(es) as a result.4 

Quite apart from the relationship between the index entries and the final 

record(s) that are sought, there are some choices concerning the index entries them¬ 

selves. For one, since these entries are understood to be keys in sequence, the 

redundancy between successive key values is usually high. Thus, it is possible to 

employ key compression techniques that are considerably more efficient than the 

compression techniques discussed in Section 8.4.1. Typically, this involves suppress¬ 

ing leading characters that can be derived from the preceding keys in the sequence. 

The advantage of compression, of course, is that it accommodates having many 

more key values in a block. It has several disadvantages, however, one being the 

additional computation required for decompression, and another that we will 

mention very shortly. Still another choice is whether a block of indices should have 

the structure of a simple list, or perhaps that of a tree. In the former case, one 

could then employ either sequential or binary search of the block. Other techniques 

from Chapter 10 apply in the latter case, of course. The choices as to compression 

and structure are not independent. Thus, binary search of a sequential list structure 

is more effective than ordinary sequential search, and so is tree search, given the 

usual size of the index blocks. When the keys are compressed, however, sequential 

search is the only possibility. The interplay of factors in designing indices for files 

draws upon our previous studies in several ways, and it is one of the principal 

themes of this chapter. A further treatment of some of the particular points 

addressed in this paragraph can be found in Maruyama and Smith [1977]. 

In the following two sections, we will examine file organizations, or access 

methods, that correspond in natural fashion to the basic types of storage devices, 

tape and direct-access. Sections 12.3.3 and 12.3.4 then discuss the two principal 

ways in which tree structures are built in secondary memory. Lastly, we examine 

some more recent techniques that guarantee a small, fixed number of accesses. 

4 With or without an index, there is another possibility. Some disk storage devices are 
able to scan a track and search for a record with a specified key, thus obviating the need 
for search of a block in main memory. However, the circumstances in which this capa¬ 

bility exists and can be put to use are relatively less common. 
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12.3.1 Sequential Files 

This is the simplest organization, and the only one that can be used with data 
stored on tape. It depends upon the records being in key sequence within the file, 
so that they can be processed one after the other in their physical sequence. In 
reality, there is a distinction to be made, depending upon whether or not keys are 
present and relevant for the operation being performed. The use of keys implies 
that the presence or absence of a record with a given key can be significant, and we 
are then truly performing sequential access. It is also possible to perform the same 
operation upon each record in the physical sequence, regardless of its key value. In 
this case, we are performing serial access. This distinction becomes inescapable 
when we reach the last record in our file. With sequential access, it is common to 
rely upon a signal from the data, in the form of a sentinel record with an artificial 
key. With serial access, we must rely upon an indication from the device that no 
more records exist; in the case of tape, this signal from the device is called an end- 

of-file (EOF). 

In the earliest days of computing, sequential and serial access were the only file 
organizations, reflecting the fact that tape and punched cards were then the only 
physical file media. Even though other possibilities now exist, sequential access is 
still very useful for applications where data is accumulated, sorted, and then batch 
processed at the convenience of the system, as opposed to responding in a timely 
manner to requests from users. Batch processing is appropriate in the preparation 

of account statements and bills every month, in doing payroll calculations, etc. 
Note, by the way, that even though we can have much fancier file organizations 
with a disk than with a tape, what we sometimes want on a disk is nothing more 

than sequential access. However, the definition of sequential access files retains a 
feature deriving from their origin with tapes and cards: They cannot be modified, 
only read or written. In terms of computation, there is not a great deal to be said 
with regard to sequential files, because their organization is so simple. (But see 
Exercise 12.4, which demonstrates that this is not entirely true.) 

For searching ordered files in main memory, we saw that binary search was 
much more effective than sequential search. Binary search applied to blocks of data 
on tape, however, would involve costly backward and forward motion and would 
perform worse than sequential search. There is a different, fairly obvious technique 
for reducing the amount of search in that sort of situation. If we are looking for a 

particular key K somewhere in a set of sequential blocks, we can access blocks and 
just examine the last key Kj in each block until K < K-, when that happens, K must 
be in that block, and we can look for it by either sequential or binary search. This 

method is called either jump search or, for obvious reasons, block search 
[Shneiderman 1978], The performance of jump search depends upon the relative 
costs Cj of jumping and cs of searching a block, and also upon the number of records 

N and the size of the blocks B. We should expect to jump over half of the blocks, 

for a cost of N/2B, and we can assume sequential search within the final block, for 
a cost of B/2. Then the total cost is 

C = (12.2) 
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We can look for the minimum value of C by differentiating this equation with 
respect to B and setting the result equal to zero. From this process, we find the 
optimum value of B and the corresponding minimum value of C as 

(12.3) 

In the case of tape, c} is so much higher than cs that the advantage of jump search 
over sequential search is scarcely noticeable. But there are other cases of sequential 
files where binary search is either inefficient (as with sequential files on disk) or 
impossible (as with compressed indices). For these, the square root complexity of 
jump search is quite respectable — not as good as the logarithmic complexity of 
binary search, but much better than the linear complexity of sequential search. 

12.3.2 Random Access Files 

Random access files depend upon direct-access devices for implementation, and the 
term random access can easily be misinterpreted. It should not be thought of in 
terms of independence of access time as a function of the key, since in fact the seek 
and rotational delays cause the access behavior not to be random with respect to 
where the key is located. Rather, the term signifies a method for dealing with keys 
that appear in random sequence from the key space. Thus, whereas sequential 
access is appropriate for applications such as account billing or payroll, random 
access would be the method of choice for an application such as inventory control, 
where it is important to maintain up-to-date status of stock on hand. In some rare 
cases where the key space is not too large and the user can control the assignment 
of keys, it may be possible to use disk addresses directly as keys, as mentioned in 
Section 12.3. For example, a manufacturer might assign disk addresses as part 
numbers (and might regret it when the need arose to obtain a disk with a different 
address structure). Such situations are very uncommon, however, and the standard 

way of implementing random access is via hashing. 

There are some important differences between our use of hashing in Chapter 10 
and its application to secondary memory. For one, it is no longer relevant that the 
hash function be simple to compute. For another, the optimal manner of handling 
collisions is different. Principally, however, it is expedient to partition storage into 
blocks called buckets, with each bucket containing some fixed number of slots for 
synonymous keys. Thus, the hash function is used to compute a bucket number, 
and then that entire bucket is read into main memory and searched for the desired 
key. Depending upon the nature of the search outcome, retrieval and search of 
additional bucket(s) may be required. The principal objective is no longer to limit 
the number of key probes, but rather to limit the number of bucket accesses. It is 
usually advantageous to have a moderately large bucket size, and this will in fact 
tend to increase the average number of key probes (equal to the product of the 
number of slots and the average number of accesses). However, the larger buckets 
will tend to absorb the fluctuations from the average, leading to less accesses and 

thus reduced overall cost. 
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It is implicit in the above discussion that sequential search is employed when 
looking for a key in a bucket. In reality, the keys might be maintained in order 
within a bucket, thus allowing binary search. Since bucket sizes tend to be moder¬ 
ate, however, and since it is usually too costly to maintain such ordering within 
buckets, the choice of sequential search is a reasonable one. On the other hand, it 
is sometimes plausible to load the keys into the buckets in decreasing order of prob¬ 
ability of reference. As in previous discussions (see Section 10.2.1), this can be very 
effective in reducing the average number of accesses during sequential search. 

In our study of collision resolution in Chapter 10, we encountered two chaining 
techniques — separate and coalesced — and two open addressing techniques — 
linear probing and random probing. Of these four methods, linear probing defi¬ 
nitely yielded the worst performance; the choice among the other three methods 
depended upon various factors. When we reconsider these techniques in the context 
of secondary memory, we find that random probing is distinctly the worst method, 
since it implies disk accesses with significant delay times. Linear probing, on the 
other hand, implies accesses to buckets in successive logical tracks in the same cylin¬ 
der. So linear probing, conventionally referred to simply as open addressing in this 
context, is one of the two acceptable and commonly used techniques for dealing 

with bucket overflow. 

The other method of choice is a variation of separate chaining. In Chapter 10 
each home address contained just a pointer and no keys. In this case, the home 
buckets are called the prime area, and each such bucket can contain several keys, as 
well as a pointer. In the event of bucket overflow, synonyms are stored in buckets 
in an overflow area, and these buckets are chained to buckets in the prime area. 
The chaining in the overflow area is between records rather than between buckets, 
but this should not create excessive overhead in a well-designed system having a low 
percentage of overflow entries. In the typical situation of a disk having 20 surfaces, 
16-19 of the tracks in each cylinder might be treated as distinct prime buckets, and 
the remaining 1—4 tracks in a cylinder might be treated as an overflow area for 
retaining the overflow chains from the prime buckets. 

In this section, we have lightly sketched some of the issues having to do with 
random access; in the ensuing section, we will look more closely at some of the 
details. One curious aspect of all this is that we are encountering hashing - in 
secondary storage as an addendum to hashing in main memory. In fact, the history 
of hashing is just the reverse! It was devised originally as a means of providing 
random access to secondary storage, and subsequently adopted for searching main 
storage [Morris 1968]. Two excellent, pioneering references that demonstrate the 
original emphasis are Buckholz [1963] and Peterson [1957]. 

f 12.3.2.1 Random Access Parameters. In our closer look at random access, we will 
find that the determination of an optimal set of design parameters is a fairly compli¬ 
cated business, for which both simulation and analysis techniques have been 
employed. Two of the most critical parameters are B, the number of buckets, and 
S, the number of slots in each bucket. In terms of these and the loading factor a, 
the principal figures of merit in evaluating a particular design are: 

OP - the percentage of records that overflow from their home bucket, and 
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AA — the average number of bucket accesses that are required. 

In Section 10.4.1 the Poisson distribution was used to predict the number of syno¬ 
nyms that will hash to a given location, as a function of the loading factor a = n\M 
(see Eq. 10.31). In this case, we wish to know the likelihood that a bucket will 
overflow. The total available memory is M — BS, and the average loading per 
bucket is ^ = n/B = aS. Then the distribution of bucket occupancies can be approx¬ 
imated by the Poisson distribution as 

P M = (12-4) 

where M is presumed to be fixed, with S varying. As an example, Table 12.2 
displays P (n,i) for a range of i, for the values fx — 5 and n = 8. The overflow can 
be found by summing terms of Eq. 12.4 for which i > S. 

/ 5 8 / 5 8 / 5 8 

0 .007 6 .146 .122 12 .003 .048 

1 .034 .003 7 .104 .139 13 .001 .030 

2 .084 .011 8 .065 .139 14 .017 

3 .140 .029 9 .036 .124 15 .009 

4 .176 .057 10 .018 .099 16 .005 

5 .176 .092 11 .008 .072 17 .002 

Table 12.2 Sample Poisson Values P (/*,/) 

Recall that the Poisson model reflects the assumption that the hash function 
completely randomizes the assignment from key space to address space, and that the 
use of division for a hash function will often yield results that are better than 
predicted by this random model. On the other hand, as we also discussed in Chap¬ 
ter 10, the divisor should be chosen with some circumspection. For that matter, the 
effectiveness of any particular hash function depends upon the nature of the set of 
given keys, considered as a subset from the entire key space. Suppose that hashing 
by division is employed and yields relatively poor performance for a particular set 
of keys. Then there will be an increase in the collision rate. This is of far more 
consequence with secondary storage than with main memory, since it can lead to an 
increase in the average number of costly bucket accesses; therefore, it can be worth¬ 

while to expend effort to compute a better hash function. 

As an example of a situation where extra care may be warranted, consider the 

case where the keys consist of digits expressed as EBCDIC characters; thus, we 
would have 'O'= 11110000, '1' = 11110001, ... , '9' = 11111001 (see Table 8.1). When 
four-character groups are treated as 32 bit integers, then for some choices of divi¬ 
sors, congruential relationships will cause distinctly worse than random clustering of 
synonyms (compare Section 10.4.1). This effect is aggravated when the keys are 
non-random (such as sequential numbers) and for small bucket sizes S. An effective 
manner to cope with this phenomenon in such cases is to use two division steps 

[Clapson 1977]. The first one employs a “good” divisor for the purpose of smooth- 
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ing the keys; the second one is a conventional division by B for the purpose of 

mapping into the address space. 

Turning from the issue of choosing a hashing function to that of handling colli¬ 

sions, we can single out two factors that are particularly important: 

• the choice of number of bucket slots S, and 
• the choice between chaining and open addressing. 

In fact, the values for both the overflow percentage OP and the average number of 
accesses AA are decreasing functions of S (and of B as well). As a primitive means 
of visualizing the effects of these choices, Figure 12.6 displays two collision patterns, 
one for a bucket size of one, and another where the bucket size has been doubled 
and the hash function has been adjusted correspondingly. For S — 1 in (a) of the 
figure, we can see that the average value of OP is 4/11 =0.36; if chaining is 
employed the value of A A is 16/11 = 1.45, and if open addressing is employed the 
value of AA is 24/11 = 2.18. For S = 2 in (b) of the figure, we can see that the 
average value of OP is 2/11 =0.18; if chaining is employed the value of A A is 
13/11 = 1.18, and if open addressing is employed the value of AA is 14/11 = 1.27. 
These reductions in OP and AA correspond to what we would expect, since statis¬ 
tical variations should tend to cancel out with larger values of S. The extent to 
which this is true is illustrated by Figure 12.7, where the value of AA with open 
addressing is plotted as a function of a for several values of S. We see that AA 
decreases dramatically as S increases from 1 to 20. But of course we can only 
increase S within the constraint that the available memory M = BS. Eventually, the 
space and data transmission costs associated with a large buffer impose limits upon 
the effective size for S. 

(a) Bucket Size = 1 

(b) Bucket Size = 2 

Figure 12.6 Two Collision Patterns 

Both simulation and analysis have been applied to such questions as finding 
optimum bucket sizes, deciding between open addressing and chaining, and dealing 
with other random access issues [§]. The principal conclusions are as follows: 

• At the outset, we cannot attach the same significance to a in chaining that we 
do in open addressing, since the former case does not take into account the 
space allocated for the overflow area. 

• In fact, whereas a can never be greater than 1.0 in open addressing, it is possi¬ 
ble and even reasonable to have a > 1.0 with chaining, since the overflow area 
can be arbitrarily large. 
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s = 1 

S = 2 

S = 5 

S = 10 

S = 20 

Figure 12.7 AA versus a for Various Values of S(lots) 

• A common rule of thumb is to make a bucket the size of a track. Although 
this is a good first approximation, it can be better for some combinations of 
device and application parameters to have a bucket be either more or less than 

a single track. 
• For small S, or as a approaches 1.0, open addressing is inferior to chaining. 
• For S > 10, the value of A A is good with both overflow methods. Open 

addressing has the virtue of being simpler, and tends to be slightly faster. 
Chaining is less susceptible to statistical variations; it also can be pushed to 

yield very good space utilization, for a ^ 1.5 and S > 10. 

As a final point, if we are contemplating the use of overflow chaining, there is 
an additional issue that must be taken into consideration - the effects of insertions 
and deletions. For example, suppose that we wish to design a random access file 
that will hold 64,000 records distributed among 8,000 buckets, with S = 10 and 
a = 0.8. Then, from Table 12.2, we can expect to encounter as overflow: 

corresponding to i = 11, lx 0.072 x 8000 = 576 records 
corresponding to i — 12, 2 x 0.048 x 8000 = 768 records 
corresponding to i — 13, 3 x 0.030 x 8000 = 720 records 

etc. 

for a total of 3,384 overflow records. Since these amount to only about 5 percent 
of the 64,000 original records, we might be tempted to allocate 95 percent of the 
tracks on a cylinder as a prime area and 5 percent of the tracks as an overflow area. 
But we must realize that whereas a deletion has only a 5 percent chance of remov¬ 
ing a record from the overflow area, an insertion has more than a 28 percent chance 
of encountering a full track (from summing terms in Table 12.2 for i ^ 10 ) - 
thereby adding a record to the overflow area! Thus, the overflow area will exhibit 
substantial net growth until equilibrium is reached, and so the initial file design 
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must anticipate this situation. In the example just cited, this would correspond to 
allocating 15 — 20 percent of the tracks in a cylinder for overflow. A detailed treat¬ 
ment of this issue, along with graphs and tables to assist in planning a file layout, 
can be found in Olson [1969]; an even more complete analysis can be found in van 

der Pool [1973a], 

12.3.3 Indexed Sequential Files 

For many applications with files, it is satisfactory to “give up” sequential access in 
order to obtain random access.5 But it is worth reflecting upon what has been lost. 
Keys that are missing or duplicated in an input file may be significant. They are 
trivially recognizable in sequential processing, but not in random processing. A 
similar remark applies to near misses between keys. For many applications, there¬ 
fore, it is important to be able to obtain both sequential and random access. As an 
example, credit card issuers must be able to access their files sequentially in order to 
prepare monthly account statements; they also must be able to access their files 
randomly in order to check for cardholders exceeding their credit limits, for lost or 
stolen cards, etc. A file organization with this capability is the indexed sequential 
access method (ISAM). The idea is conveyed by Figure 12.8, wherein we have a 
sparse index, each of whose entries corresponds to the last key in a block of data. 

The file might be small enough that the entire index could reside in main 
memory and thus could be binary searched, or the file might be so large that the 
index would also be partitioned into blocks. In the latter case, we might use jump 
search on the index. More likely, however, we would prefer to introduce a second 
level of indexing, as in Figure 12.9, that could reside in main memory. The total 
cost of finding a record is then the sum of: (i) an access to a lower-level index 
block, (ii) an access to a data block, and (iii) the costs of searching within the two 
index blocks and the data block. With respect to (iii), note that the comments in 
Section 12.3 apply; that is, within each block we can choose among sequential 
search, binary search, tree search, jump search, etc. 

When we look at the issue of using a disk to implement ISAM with two levels 
of indexing, we find a very natural match: The first-level index should direct the 
search to the proper cylinder, and the first track in each cylinder should contain a 
second-level index directing the search to the proper track in that cylinder. Alterna¬ 
tively, one might consider using a single level of indices along with interpolation 
search, rather than two levels of indices. Although this can reduce the number of 
index accesses from 2.0 to an average between 1.1 and 1.7, for typical sets of keys, 
there is no guarantee against a particular set of keys having an average that is 
greater than 2.0 [Ghosh and Senko 1969], In particular, such a set of keys could 
then cause an extra disk seek. 

5 Note that although we cannot obtain sequential access on a random access file, we can 
obtain serial access. 
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Key Data 

Figure 12.8 Indexed Sequential File 

The structures in Figures 12.8 and 12.9 serve very well for a file that is static, or 
comparatively so. In reality, it is also necessary to allow for the possibility of 
insertions, and also deletions. In part, insertions can be handled by allowing extra 
initial space in the ISAM blocks, but eventually this must lead to overflow. The 
method of handling overflow in ISAM is similar to the technique of separate chain¬ 
ing into overflow areas in the case of random access. To be precise, each track 

index entry would contain the following data: 

(a) the highest key for the associated track T (in either prime or overflow area); 

(b) the prime track number T; 

(c) the highest key for T in the overflow area (same as (a) if there are no overflow 

keys for T); 
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Key Data 

Figure 12.9 Secondary Indices 

(d) the overflow track and record numbers for the lowest key for T in the overflow 
area (same as (b) if there are no overflow keys for T). 

This is illustrated in Figure 12.10(a). For example, the highest key for track 1 is 
285, and it has not overflowed, so the prime and the overflow entries for track 1 
have the same key and pointer values. On the other hand, track 2 has overflow 
entries; this is conveyed by the dissimilar entries for prime and overflow for track 
2, where track r is understood to be an overflow track. Note that the overflow 
record in track r with key 549 carries a pointer linking it back to its home track. 

With the situation shown in (a) of the figure, if the key 427 were to be 
presented, the prime track 2 would be searched; but if the key 533 were presented, 
then the overflow chain beginning at track r and record 1 would be searched. On 
the other hand, if the key 168 were presented and not found in track 1, then the 
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Prime Overflow 1 Prime Overflow 

Index Trk 285 Track 1 285 Track 1 513 Track 2 549 Trk r, Rec 1 

Track 1 

Track 2 

117 Data 132 Data 285 Data 

302 Data 330 Data 513 Data 

549 Data Trk 2 

(a) Originally 

Index Trk 

Prime Overflow Prime Overflow 

285 Track 1 285 Track 1 501 Track 2 549 Trk r, Rec 2 

Track 1 

Track 2 

117 Data 132 Data 285 Data 

302 Data 318 Data 501 Data 

Track r 549 Data Trk 2 513 Data Trk r, Rec 1 

(b) After Inserting 318 

Figure 12.10 ISAM Details 

replicated value of 285 in that track index would signify that the overflow area need 
not be searched. In other words, a search in ISAM examines either the prime area 
or the overflow area, but never both. This is different from random access, where 
the prime area is always searched first and then, if that fails, the overflow area is 
examined second. Figure 12.10(b) illustrates the effect of inserting 318. Since the 
prime tracks are maintained in key sequence, this insertion causes the record with 
key 513 to be moved from prime to overflow. The primary index value for track 2 
is then adjusted to be 501 to reflect this change. Meanwhile, 549 remains as the 
highest overflow key for track 2, but now 513 becomes the lowest overflow key for 
track 2. Note that the data in the overflow tracks is maintained in linked list form, 

with the end of a list denoted by the appropriate prime track number. 

As long as overflow can be contained within the same cylinder, ISAM perform¬ 
ance is quite acceptable. When the overflow area on a particular cylinder is full, 
however, and further insertions must be chained to a separate overflow cylinder, 

performance can rapidly degrade. The resolution is to reorganize the contents of 
the disk. One must then decide how to balance the cost of reorganization against 
the cumulative degradation of performance caused by the extra accesses; several 
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analytical models have been described for estimating this trade-off [Shneiderman 

1973; Tuel 1978], 

12.3.4 Tree-Structured Files 

Searching an ISAM file corresponds, in large part, to searching a multiway tree, 
wherein each node can have many children (see Section 10.3.4). Moreover, in the 
absence of insertions, it has the pleasing property of requiring just two accesses to 
retrieve any item. Unfortunately, these characteristics are soon lost when insertions 
are common, and the search path to an item involves overflow chaining. Let us 
then ask the general question: How feasible is it to use tree searching techniques 
when the data occupies secondary storage? At the outset, we have two choices 

about the nature of our links between nodes: 

• If we are relying upon virtual memory to implement a large, transitory tree, 

then ordinary pointer variables will work. 
• In the absence of virtual memory, or if the large tree is to endure after the 

computation, then we must use explicit secondary storage addresses rather than 

pointer variables. 

In primary memory, a principal concern in dealing with binary trees was to mini¬ 
mize wasted storage for empty pointer values; the resulting BST’s can be 
characterized as skinny and deep. Suppose that we apply the same reasoning in the 
case of secondary memory. Then for a BST with a million nodes, even if it is 
completely balanced, the path length to the leaves is twenty since 106 « 220. If each 
inter-node reference were to cause a disk access, the cost would be insupportable. 
But with balanced and comparatively bushy and shallow multiway tree of order 32, 
for example, the number of references would be reduced to five, since 106 « 325. 
Sections 12.3.4.1 and 12.3.4.2 explore efficient ways in which to implement multi¬ 
way trees. Before that, however, we consider more carefully the viability of binary 
trees in secondary memory. 

The high number of accesses cited in the preceding paragraph is misleading; it 
does not take into account that closely related nodes will tend to cluster on a page. 
Suppose, in fact, that we are growing a BST, and that its nodes spread over more 
and more pages (or blocks). The simplest strategy is to assign successive nodes to 
successive locations within a page, allocating a new page whenever the current one 
becomes full. We can illustrate the results of this approach by the following exam¬ 
ple. If we have 2048 keys, then the argument of the preceding paragraph suggests a 
total of 11 accesses, for a completely balanced BST; by comparison, the use of Eq. 
10.14 suggests a total of 14 accesses for a random BST. In fact, for a page size of 
32 keys and for a random BST, it has been shown that this sequential allocation 
strategy would entail an average of just 7 accesses [Muntz and Uzgalis 1970]. Even 
better than this naive strategy, however, is the following grouped allocation strat¬ 
egy. Whenever a new node is to be assigned a location, it is placed in the same 
page as its father if there is room; otherwise, it is placed in a brand-new page. 
With this strategy, for n the number of keys and b the number of keys per page, the 
average number of page accesses is approximated by HJ{Hb - 1) [Knuth 1973b]. 
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For our same example (that is, 2048 keys, page size of 32 nodes, and random BST), 
this strategy entails just three accesses, on the average. Now the average number of 
accesses in a complete t-ary tree is optimal, of 0( log, n) = 0( In «/ In t)\ so we see 
that the grouped allocation strategy is actually close to this in performance. 

A little reflection suggests a drawback. The method tends to cause the allo¬ 
cation of a large number of pages that remain partially empty. A resolution for this 
is to allow just k unfilled pages at any one time. Then when a node cannot fit in its 
father’s page, it is assigned to one of these k pages. (Note that k = 1 corresponds 
to sequential allocation, and k = oo corresponds to grouped allocation.) Simu¬ 
lations suggest that a value of k = 8 is almost as good as k = oo, but without the 
correspondingly poor storage utilization [Sprugnoli 1981]. 

These results are certainly encouraging. Nonetheless, they are inadequate to 
recommend the use of BST’s in secondary storage, in most instances. One reserva¬ 
tion is that these results are averages, and the number of accesses in the worst case 
can be horrendously higher. Also, any insertions or deletions or rebalancings in 
BST’s seriously compound the number of additional accesses. So we turn instead to 
a method that is stable with respect to the cost of search, and also with respect to 
the costs of insertion, deletion, and rebalancing. 

12.3.4.1 B-Trees and B+-Trees. We will use the definition that a B-tree of order m 
is a tree with the following properties: 

1. The root is a leaf, or else has j sons and contains j — 1 keys, where m>j> 2. 
2. The internal nodes have j sons and contain j — 1 keys, where m>j> m/2. 
3. The leaves have no sons and contain j — 1 keys, where m>j> m/2. 
4. The leaves are all on the same level. 

The original definition of B-trees of order m is in terms of 2 m>j>m [Bayer and 
McCreight 1972]; that definition and the one employed here are both in current 
vogue. Our choice is motivated by the fact that the balanced trees that we discussed 
in Section 10.3.4 are, in fact, B-trees of low order. The definition m>j> m/2 
encompasses both 2-3 trees as B-trees of order 3 and 2-4 trees as B-trees of order 4. 
The definition 2m>j>m encompasses 2-4 trees as B-trees of order 2, but it fails to 

encompass 2-3 trees. 

Figure 12.11 AB-TreeNode 

The logical structure of a B-tree internal node is shown in Figure 12.11. If an 
argument key K is not found (by sequential or binary search) in this node, and if K 
falls between Kt and Ki+U then search continues in the son pointed to by pt. A 
concrete example of a B-tree of order 5 is shown in Figure 12.12. If search in a 
B-tree terminates unsuccessfully at a leaf and if K is then to be inserted in the tree, 
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Figure 12.12 B-Tree of Order 5 

there may well be space for it in the leaf. But if there is no room because the leaf 
node is full, then 

(a) K is logically inserted in the proper order; 

(b) the full node is split and half of its contents are relocated into a newly allo¬ 
cated node; 



ctf 
PQ 
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Figure 12.13 Insertion of 983 in Figure 12.12 

(c) the median key value is removed and migrated up to the parent node. 

As a result of the last step, the parent node will need to find room for the migrated 
key, and also a new pointer. If the parent is already full, then it will itself undergo 

split according to the same rules (a) —(c). Finally, if a split occurs at the root, the 
-tree grows upward one level, with two new nodes being allocated. In illustration, 
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Figure 12.13 depicts the result of adding 983 to the B-tree of Figure 12.12. Node R 
is forced to split, causing a key to migrate up to node P and an additional pointer 
to be inserted in P. But P has no room for another key/pointer pair; so it also 
splits, in turn affecting the root. It is easy to see that since splits migrate median 
key values upward, they serve to balance the B-tree with respect to width. 

When a value is deleted from a B-tree, the process that takes place is the reverse 
of what happens during insertion, with one additional twist. A key may be deleted 
from a leaf Q as long as it remains half-full. When that condition is violated, then 
the first recourse is to pick either of the closest siblings of the affected node, and to 
rebalance the contents between the two nodes. However, if the sibling Q' is just 
half-full also, then the two half-full nodes are joined as one almost full node Q 
Because of this joining, the parent node must shed a pointer and migrate a key 
downward into Q in fact, the deletion from Q guarantees that there will be space 
in Q " for the extra key. As with splitting, joining can be repeated upward to the 
root. The twist in this operation occurs when the key Kt to be deleted is in an 
internal node P rather than a leaf. In this case, we look for the successor Kj to Kt in 
some descendant of P, swap Kt into the descendant node and Kj into P, and then 
delete Kt from the descendant. In fact, we see from the nature of the B-tree struc¬ 
ture that the successor must be located in the first position of a leaf. (Whether this 
is the leftmost or the uppermost position in a picture depends upon the orientation 
of the picture.) These interactions are illustrated by the deletion of 367 from the 
B-tree of Figure 12.13. The deletion initially causes the successor to 367 (that is, 
408) to be swapped into the root. Since the node U is then too sparse, it is joined 
with node V, pulling 492 from node T into the combined node. This in turn leaves 
node T too sparse; so it must be joined with node S, pulling 408 from the root into 
that combined node. The final B-tree is then as shown in Figure 12.14. 

It is important to determine the maximum number of accesses required to find a 
key in a B-tree. We can see that a B-tree of order m must have at least two nodes 
at level one, and at least 2( [(m/2)y~l nodes at each level j > 0. Now think of the 
leaves as internal nodes, and imagine that there are external nodes at one level 
below the leaves. Then a B-tree of n total internal nodes, with its leaves at level h, 
must have a minimum of n + 1 external nodes at level h + 1. But these n + 1 
external nodes correspond to the n keys in the B-tree of height h. Thus, we find 
that n + 1 > 2( f (m/2))A_1, or 

(12.5) 

In practice, m is usually chosen to be in the range 50-300. The exact choice 
depends both upon the record size for the given application and, not surprisingly, 
upon the characteristics of the underlying secondary storage medium. If the record 
sizes are either large or variable, it is common to employ indirection - that is, 
place pointers to data records in the nodes, rather than the actual records. This has 
the effect of causing an extra access. But without this step, extra accesses would 
doubtless be required anyway, since the large records would effectively reduce the 
attainable branching factor m. A final point about the choice of node size is that it 
is common to design B-trees so that the size of a node corresponds to the size of a 
page in virtual memory. This allows the fast paging hardware to assume responsi¬ 
bility for fetching and retaining the required pages/nodes in main memory. 
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Figure 12.14 Deletion of 367 from Figure 12.13 

Disregarding the possibility of indirection, let us employ Eq. 12.5 to evaluate 
h(n,m) over the indicated range of 50-300 for m, and for various values of n. 

What we find are relatively flat curves; for example, 

h( 104, 100) < 3 h{ 104, 200) < 2 
/z(106, 100) <4 h(\0\ 200) < 3 
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Thus a cost of just three accesses is representative for searching a B-tree with a 
million keys; moreover, if the root node is kept in main memory at all times, just 
two accesses are required. What about the number of accesses required for 
insertion and deletion? When conducting the top-down search, the h nodes on the 
search path would be retained in memory; then the bottom-up insertion or deletion 
processes would require no more than 0(h) additional accesses. In fact, the average 
number of additional accesses is much less. To illustrate this for the case of 

insertions, we note two facts: 

• The minimum number of keys in a B-tree of order m with p nodes is 

1 + (T(m/2) — \) (p — 1). 
• For a tree with p nodes, the number of splits is given by p — h (allowing for the 

creation of two new nodes each time that the root splits). 

Dividing the latter by the former, we find that the average number of splits is less 

than 1 /(T(m/2) - 1). 

We might be able to obtain even fewer splits by the following strategy. In the 
example of adding 983 to the B-tree of Figure 12.12, it would have been possible to 
“overflow” 956 to node Q; this would have perturbed nodes P, Q, R somewhat, but 
not as much as with the splitting operation. In similar fashion, when keys are 
deleted in a B-tree, it is possible to “underflow” with a neighbor rather than 
perform joining operations. Still more generally, rather than rotate just one p,K 
pair from (to) a node on overflow (underflow), we could attempt to balance the 
number of p,K pairs in two adjacent sibling nodes. Even without this overflow 
technique, however, we see from the preceding paragraphs that the algorithms for 
search, insertion, and deletion in B-trees of reasonable order are all of low complex¬ 
ity. They are also straightforward as to logic, but fairly tedious in their details 
[Wirth 1976], 

A closer scrutiny of B-trees suggests several ways in which their performance 
might be improved. We will defer most of these ideas until Section 12.3.4.2, but 
one variation is so important that we will describe it now. Our discussion of the 
B-tree of Figure 12.12 was entirely in terms of random access. Suppose that we also 
wished to perform sequential access upon the same set of keys. It is relatively easy 
to do so with a preorder traversal of the B-tree; however, the resulting performance 
compares unfavorably with that of sequential access in an ISAM file. The B+-tree 
offers a resolution for this unsatisfactory state of affairs. It is based upon two 
simple ideas: 

• The internal nodes should be used only for indexing, with all real data stored at 
the leaves (thus, some keys will occur both in internal nodes and in leaves). 

• Each leaf should contain a pointer whereby the leaves can be chained together 
in logical sequence. 

With the provision of a header node, it is then trivial to access the keys of a B + -tree 
sequentially. It is also cheaper in terms of space, requiring just one node in main 
memory at any instant, rather than all the nodes on the path from the root to the 
current node. This new structure is illustrated in Figure 12.15, for the same data of 
Figure 12.12. You should compare the two figures to note the differences. B+-trees 
have another significant advantage beyond their principal one of expediting sequen¬ 
tial access; namely, deletion is simplified. If the key to be deleted occurs in both an 
internal node and a leaf, we need simply remove it from the leaf, and the value in 
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Figure 12.15 B+-Tree Corresponding to Figure 12.12 
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the internal node can be left intact — it still serves to direct the search path to the 
proper son! In other words, any key value that serves to separate two leaves is 

permissible, whether it exists in a leaf or not. 

The characteristics of B + -trees are so good that they have become somewhat of 
a standard for file organization. This is exemplified by IBM’s Virtual Storage 
Access Method {VSAM). The implementation details and the terminology of 
VSAM are different, but the organization is nonetheless that of a B+-tree. We 

sketch the major differences, as follows: 

• The basic node of data storage is the control interval, located at the bottom 
level of the tree, and with the format shown in Figure 12.16. Control intervals 
usually have the size of a disk track. Since all data records are retrieved via the 
control information, it is easy to handle variable-size records. Also, in the proc¬ 
esses of insertion and deletion, the free area is maintained as one contiguous 
block. A group of control intervals in one disk cylinder is a control area. 

• The level just above the control intervals is that of the sequence set. Typically, 
each node in the sequence set corresponds to one control area and is stored in 
the same cylinder as its control area, thereby reducing seek activity. Links 
between the nodes in the sequence set are used to facilitate sequential process¬ 
ing. The levels above the sequence set constitute the index set. 

• Compression is applied to both the keys and the pointers, allowing more of 
them to be stored in a node and thereby gaining a higher branching factor. 

We will say a bit more about B-trees in the next section; a good general survey of 
the topic is Comer [1979]. Further details about VSAM, in particular, can be 
found in Keehn and Lacey [1974] and Wagner [1973b]. 

Data Records Free Space Control Info 

R^ R2 Rs Rn 
Record Cont. Int. 
Defn’s. Defn. 

Figure 12.16 Format of the VSAM Control Interval 

fl2.3.4.2 Additional B-Tree Considerations. With B-trees, reorganization is done 
dynamically, as contrasted with the off-line reorganization that is required with 
ISAM, and this causes them to have superior performance in most cases. But a 
B-tree does have an Achilles’ heel, having to do primarily with inefficient use of 
storage. This is partly because of the use of pointers, but also because of unused 
space within the nodes. To appreciate the first of these reasons, suppose that we 
are able to treat the tree of Figure 12.15 as a static structure, in which nodes will 
seldom be reorganized. Then we can economize on pointers as in Figure 12.17, 
allocating sibling nodes in sequential locations. As a result, we can increase the 
branching factor. Then, for some combinations of the parameters (number of keys, 
node size, pointer size, etc.), a static structure like that of Figure 12.17 may have a 
shorter height than that of the corresponding B-tree. By including one overflow 
pointer (not shown) in each leaf node, the possibility of handling insertions exists. 
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For a file with only moderate numbers of insertions and deletions, the reduced 
number of accesses with this structure might more than compensate for the over¬ 
head of occasional reorganizations [Held and Stonebraker 1978]. 

Figure 12.17 A Static File Corresponding to Figure 12.12 

With respect to the issue of unused space in B-trees, an immediate observation 
is that since the leaves have no children, then we may as well employ an alternate 
format for them, one without space for pointers. A more fundamental issue is that 
of discovering where in the 50-100 percent range their average storage efficiency 
actually lies. The fringe analysis technique provides an elegant solution to this 
problem (see Section 10.3.4). As a matter of fact, such an analysis for B-trees of 
typical order m is simpler than it is for 2-3 trees. This is so because a much higher 
proportion of the keys reside in the bottom layer of the fringe, and therefore it 
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suffices to analyze just that layer and ignore the others. By this means, for a B-tree 
obtained by random insertions, it has been shown that the average storage efficiency 

is In 2 = 69 percent [Yao 1978]. 

If we are concerned with worst-case storage efficiency or if we wish to improve 
the average efficiency, then we can think of increasing the minimum proportion of 
fullness above 1/2, thereby obtaining a dense multiway tree [Culik et al. 1981]. The 
case of B*-trees, with a minimum proportion of 2/3, is particularly common, and is 
implemented as follows. Overflow in a node Q (unless Q is the root) is handled by 
attempting first to redistribute keys and pointers between Q and a non-full left or 
right sibling Q', in order to balance their contents (compare this with the discussion 
of “overflow” and “underflow” on page 648). Only if both sibling nodes are full is 
splitting performed. In this case, a new node Q " is allocated, and the contents of 
the full node Q and a full sibling Q' are redistributed so that Q, Q', and Q " each 
have at least (2m — l)/3 children apiece. Note that this not only increases storage 
efficiency, but also improves the average search length, since the resulting tree may 

have a shorter height. 

Still another means of increasing storage efficiency is suggested by the fact that 
in B +-trees, we can employ any “key” values at the upper levels of the tree, as long 
as they properly separate the keys at the lower levels. For the common case of 
alphabetic keys, this leads to the concept of prefix B- trees [Bayer and Unterauer 
1977]. The idea is to compress separator keys into minimal prefix strings of charac¬ 
ters. Since the number of prefix characters required in order to distinguish between 
a consecutive pair of keys will vary for different pairs, this suggests the possibility of 
adjusting the breakpoints between nodes in a fashion that minimizes the aggregate 
prefix lengths. The rationale for this is that shorter prefixes can enable a higher 
branching factor, and thus once again a tree with possibly shorter height. 

f 12.3.5 Extendible Hashing 

One way of viewing B-trees is that they are “elastic,” being able to grow and shrink 
to conform to the storage requirement, without imposing a costly worst-case 
penalty. The hashing schemes that we examined in Section 12.3.2 have an excellent 
0(1) average performance under reasonable operating conditions, but they are unac¬ 
ceptable in some applications because of their very poor worst-case cost. Elasticity 
is not present in hash tables except by costly rehashing (see Section 10.4.2.4), and 
even then the worst-case feature does not go away. Of rather recent invention are 
several hashing schemes, designed specifically for secondary memory, where these 
failings are removed. We will describe one of these methods in modest detail, and 
then comment about another. 

The concepts in extendible hashing [Fagin et al. 1979] are reminiscent of those 
employed in constructing binary digital search trees in Section 10.5.2. In order to 
describe the method, we will initially use the keys in their natural form, ignoring the 
hashing aspect until later. The technique employs a directory filled with pointers to 
leaf pages that hold the actual data. Associated with the directory is a parameter d, 
the depth, that indicates how many leading bits of a key are to be used. When a 
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d' = 2 
d' - 2 

000 

001 

010 

011 

100 

101 

110 

111 

d' = 2 

(a) Initial Table 

(b) Adding 1010, 

Figure 12.18 Illustration of Extendible Hashing 

key is presented, its first d bits are used to index an entry in the directory that 
contains the pointer to the leaf page for that key, as shown in Figure 12.18(a). In 
the figure, we see that d = 3 and so the directory has eight slots. In general, there 
may be more than one pointer from the directory to a given leaf page, as with the 
pointers for '000' and 'OOF in the figure. The central idea in extendible hashing is 
that it can never take more than two secondary memory references to find an item 
of data. The first of these accesses the correct directory page P (presuming that the 
directory is typically far too large to fit in main memory), and the second uses the 

appropriate pointer in P to fetch the desired leaf page. 

How is this two-access figure maintained when pages overflow, without the 
usual overhead of chaining or open addressing? When an insertion exceeds the 
capacity of a page, which we assume here to be four for illustrative purposes, then 
d', the local depth, of that page becomes important. Suppose that we add the key 
'1010../ to the structure of Figure 12.18(a). The directory uses the initial bits '101' 
to point to the appropriate page. The fact that d' = 1 < d for this page indicates 
that keys beginning with '100', '110', and '111' also reside there, and that there are 
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other pointers to this page corresponding to such key values. So the response is to 

split the page on the value of the second bit of its keys, just as a B-tree page is split 

when it becomes full. There is a difference, of course, in that the new pages in a 

B-tree will both be half-full, whereas here the contents may split unevenly. After 

the page has split, the table appears as in (b) of Figure 12.18, with the directory 

updated. Consider next the consequence of adding '010111../ to the table of Figure 

12.18(b). Now the directory uses '01 Cf to point to the appropriate page, and it must 

be split again. This time, however, the fact that d' = 3 = d serves as a signal that 

the value of d must be incremented, and the size of the directory must be doubled. 

The final effect is shown in (c) of Figure 12.18. We see that the number of accesses 

to find a key is still just two. 

One of the nice features of this scheme is that the structure can also contract, 

when warranted by a deletion, thus creating a hash table that is as elastic as a 

B-tree. The scheme is also reminiscent of the binary buddy system that we studied 

in Section 11.3.2, since splitting and recombination are based upon leading bits. 

Still another advantage of extendible hashing is that, if the directory entries are 

based upon the leading bits of the keys (and not hashed keys, which we will come 

to momentarily), then it is possible to process the hash file (in a weak sense) sequen¬ 

tially! More precisely, the leaf pages are in the correct natural order. So sequential 

processing can be obtained by fetching each one in turn and sorting its relatively 

small number of items. 

How well does extendible hashing work in a real application? There are two 

principal issues to consider. One is that it could perform very poorly with a bad set 

of keys, such that their prefixes are all very similar. This is where hashing comes 

into the picture. By using hashed keys instead of the keys themselves, the prefix 

bits become randomly distributed, particularly so if a technique like universal hash¬ 

ing is used (see Section 10.4.3), and the splittings subsume the role of collision 

resolution. One slight drawback, of course, is that this curtails the possibility of 

weak sequential processing. A second area of concern with extendible hashing is 

the size of the directory. It can theoretically become extremely large in the worst 

case; however, analysis indicates that this “never” happens in a probabilistic sense. 

Both simulations and usage suggest that extendible hashing is very competitive with 

B-trees. In terms of storage utilization, the average value is the same, being 

In 2 = 69 percent. With regard to secondary accesses, the number is always just 
two, as opposed to three or four for large B-trees. 

There are other hashing schemes that attain performance comparable to that of 

extendible hashing by different techniques. To give just one example, in the method 

known as dynamic hashing [Larson 1978], the directory is maintained as a binary 

tree rather than as the “squashed trie” of extendible hashing. This causes the direc¬ 

tory to grow and shrink less abruptly, and it also means that the total space for the 

directory is probably less, even allowing for the pointer overhead. Nonetheless, 

there is no longer any guarantee that one access will be sufficient to find the correct 
portion of the directory. 
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12.4 MULTI-DIMENSIONAL SEARCH 

In Chapter 10 and in the earlier parts of this chapter, we have encountered a 
remarkable variety of techniques for searching for a record that matches a given key 
value. Unfortunately, these many methods are, in themselves, inadequate for a 
variety of other important paradigms of search. Some of these other paradigms 
were cited at the beginning and at the end of Chapter 10, particularly in Section 
10.6. It happens that a number of data structures and algorithmic techniques suited 

to these other purposes are available. Some of them are of comparatively recent 
invention, and it would not be surprising to see further, substantial growth of capa¬ 
bility in these areas. In this section, we will try to convey a modest appreciation of 
the issues and of the possibilities. The most pressing issue is where the underlying 
data records have secondary keys in addition to the primary keys by which they are 

uniquely identified. Effective means for dealing with this issue are important 
because they underpin the vast enterprise known as database, which we will not 
address [§]. Search in terms of just one key reflects underlying many-to-one 
relationships that can be described in terms of trees, and for which a single index 

structure is sufficient. Search in terms of several keys reflects the more complicated 
case of underlying many-to-many relationships. Here the natural description is in 
terms of graphs, and one solution is to provide a separate index structure for each 

secondary key. 

There are several progressively more complicated ways in which one can query a 

set of records having multiple keys. Some of these other ways are as follows: 

• simple queries - for example, to find all students who are majoring in 

Computer Science; 
• boolean queries - for example, to find all male students who are married and 

without children; 
• range queries - for example, to find all students between the ages of 20 and 25; 
• closest-match queries - for example, to find the student with hometown closest 

to Wichita, Kansas. 

In the most general case, a boolean query can contain conjunction (AND), disjunc¬ 
tion (OR), and negation (NOT). Very commonly, of course, there are queries in 

which no operators are applied to one or more keys; that is, any values of those 
keys are acceptable. This corresponds to a partial-match query, it is conventional 

to denote unspecified attributes in such a query by Thus, for a crossword- 

puzzler, 'H * S *' might be any member of the set of words {HASP, HISS, HOSE, 
HOST, HUSH, HUSK}. As we will see, the various methods for multi-dimensional 

searching are not all equally adept at handling these four possibilities ~~ conjunc¬ 

tion, disjunction, negation, and partial-match. 

Although it is possible to conduct any of the queries just cited by performing a 

search of the entire data file and applying the appropriate tests to each record, that 

is precisely what we would rather not do, except in the case when the data file is 

very small. And we particularly wish to avoid this when the data file is so large 
that it resides in secondary memory. In our survey of multiple-dimensional search, 

Section 12.4.1 treats search that is conducted via multiple sets of indices, and 
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Section 12.4.2 explores some sophisticated variants of hashing. The last section 
describes two data structures that are useful for multi-dimensional binary search. 

12.4.1 Multiple Sets of Indices 

Two structures that have long been used for searching on multiple keys are the 
inverted files and multilists encountered in Chapter 4. There we introduced and 
illustrated them. Here we will examine them more critically for their relative 
performance with respect to space, query time, and update time. 

The relative suitability of inverted files depends very much upon the number of 
attributes (that is, keys), the nature of the values assumed by these attributes, and 
the type of query to be conducted. Recall from Section 4.3.1 that with this struc¬ 
ture, index information about the data is maintained in a separate file of inverted 
lists. This is a great advantage when the inverted file is smaller than the data file 
itself and can be retained in primary memory. In that case, simple queries and 
boolean queries can be performed efficiently by first operating upon the inverted 
file, and then retrieving just the pertinent records from the data file in secondary 
memory. In order for this to pay off, it is important that there be neither too few 
nor too many values for an attribute. For example, consider the attribute sex, with 
values male and female. The lists for male and for female would be very large, so 
searching on this attribute would not significantly reduce the proportion of the data 
file that must be retrieved. At the other extreme, consider the attribute salary, with 
discrete values from $300.00 to $1000.00. Unless these values are grouped into 
ranges, we are faced with the unsatisfactory situation that there are likely to be as 
many distinct lists for salary value as there are records in the data file. Inverted 
files are very commonly used, because of the convenience that they provide for 
many and varied types of boolean queries. However, this convenience is purchased 
at the price of having inverted lists for each attribute, and the aggregate size of the 
inverted file may come to exceed the size of the data file. The inverted file will 
often no longer even fit in primary memory, thereby .vitiating one of its main 
advantages. In this case, it can become a major issue to organize the inverted fiie in 
a manner that minimizes the number of secondary accesses to it! We will refer to 
this problem in the next section, but first let us consider the use of multilists. 

First of all, recall that there is much less of a problem with space when using 
multilists (see Section 4.3.2). On the other hand, queries against multilists will be 
somewhat slower because of the necessity to thread through the data file. For 
simple queries, this can be acceptable. Also, a conjunctive query can be performed 
rather efficiently by following the links for the list with the smallest number of 
records and discarding those records for which the conjunction fails. However, 
searching a multilist with a disjunctive query is very inefficient, requiring the search 
of g list for each term in the disjunction. 

The issue of update efficiency for inverted files and multilists cannot be resolved 
quite as summarily as the issues of space and query efficiency. Suppose that we 
wish to change the value of an attribute. Recall that it is common to link records 
in a multilist with forward pointers to physical locations. This is all the more 
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important if we wish to minimize accesses to secondary storage. So changing the 
value of an attribute requires searching two link lists and changing the appropriate 
pointer values. With bi-directional lists, this can be done fairly readily. In the case 
of inverted files, it is more common to employ logical pointers (in terms of primary 
key values). Although this causes data retrieval to be somewhat slower, it allows 
the contents of the inverted file to be unaffected by any relocation of records in the 
data file. Changing the value of an attribute, however, requires that the list for the 
old value be searched, followed by a deletion, and then an insertion in the new list. 
Depending upon the details of implementation, these update operations might 

require more or less work than those required for the multilist. 

12.4.1.1 Bitmaps. We have seen that an inverted file provides more flexible query 
capability than a multilist, but that a serious problem is the large amount of space 
that may be required for the inverted lists. One remedy is to just partially invert the 
data file (that is, invert on only certain attributes), but this may not be satisfactory 
in many applications. For attributes that have only a small number of values, an 
effective alternative is to employ a bitmap [§]. This is a matrix B with one row for 
each record and one column for each value of each attribute, so that B \ij\ = 1 if 
the z'th record has the y'th attribute value. Whereas a small number of values for an 
attribute is inefficient for an inverted file, it works very well with bitmaps. Consider 
a file of n records that have the attribute class, with values {freshman, sophomore, 
junior, senior}. Inverted lists on this attribute would require a minimum of n lg n 
bits to store either n pointers or n keys, whereas a bitmap for this attribute would 
require just 4n bits. (The four values could be encoded in two bits, of course, but it 
is better to retain them unencoded to facilitate query processing.) In other words, a 
bitmap B is likely to be preferable whenever there are less than lg n values for an 
attribute. In addition to conserving space, bitmaps greatly facilitate boolean 
queries. A fairly obvious reason for this is that conjunctions and disjunctions can 
be performed directly on the columns of B, without the necessity of scanning 
inverted lists and comparing their entries. A more subtle reason is that now 
negated queries are easily obtained by complementing the appropriate bit, whereas 
negated queries against an inverted file require the merging of all the complemen¬ 

tary inverted lists. 

f 12.4.2 Multiple-Key Hashing 

Just as hashing eliminates the need for an index when searching on a single key, so 
all the more does it eliminate the need for the multiple sets of indices employed in 
inverted files. Hashing also helps solve another problem. If a partial-match query 
is fairly general, many records may satisfy the request. Suppose for example that 10 
percent of the records in a large data file satisfy a query, and that a file “page” 
contains 20 records. If the records {/?,} satisfying the query are distributed 
randomly throughout the file, then the probability that none of the 20 records in a 
page will be accessed is (1 - (0.9)20) = 0.12. So 88 percent of the pages will have to 
be accessed in order to retrieve the 10 percent of the {/?,} that satisfy the query. 
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The performance will be little better than that of searching the entire data file! As 

we will see, hashing can be used to mitigate this effect. 

To begin with, suppose that a string of bits b{b2... bw of width w is used to 
address a bucket of records. Then a straightforward technique is that of partitioned 
hashing, in which a hash function hj is applied to each key Kh such that the range of 

^ is v, bits, and Xv< = w- These hash values can then be concatenated to provide 
one composite hash value for the entire set of keys. In general the v, may vary, and 
it is appropriate to assign longer bit fields to keys that are more commonly used in 
queries, and also to keys with greater numbers of values. Both of these allocations 
have the effect of reducing the number of accesses to secondary memory against 
those keys. Moreover, by choosing the hash functions properly, we can try to form 
clusters, consisting of groups of records having similar attribute values. In one 
investigation, a mixed approach using inversion and hashing was found to reduce 
the number of secondary accesses by a factor of two or three [Rothnie and Lozano 
1974]. A word of caution is that the success of this approach is relative to the 
intrinsic clustering of the data values and to the nature of the queries conducted 
against them. 

Hashing provides still another advantage. What happens with an inverted file 
as a partial-match request becomes more specific? The number of records that are 
retrieved will almost certainly decrease, but the amount of work will increase with 
each attribute that must be examined! Considering that rather precise queries are 
common, it would be nice to have a method such that fewer retrievals coincided 
with less work. Let us assume that we use partitioned hashing with k attributes, 
and with the same number of bits v for each attribute — that is, w = kv. Then the 
search space is reduced by a factor of 2V for each attribute that is specified. 
Conversely, if t is the number of unspecified attributes, then the number of hash 
buckets to be searched is proportional to n‘lk. 

Rivest has shown how to extend this to handle negation as well as conjunction, 
in a method called associative block design (ABD). To set the background, we will 
restrict the discussion to binary attributes. (It is straightforward to encode non¬ 
binary attributes as binary ones.) Then an ABD (k,w) is characterized by a table 
with b = 2W rows and k columns, where the values '0, 1, *' signify, respectively, that 
an attribute is absent, present, or arbitrary. In such a table, 

(a) Each row has w bit values and k — w asterisks. 

(b) For any two rows, there is at least one column that is different with respect to 
the bit values (0,1). 

(c) Every column contains b (k — w)jk asterisks. 

These properties are illustrated in the ABD(4,3) of Figure 12.19. The significance 
of such a design is that each row corresponds to a list of records answering that 
description and maintained in a corresponding hash bucket. With hash functions 
properly chosen to yield this partitioning, the number of buckets that must be 
searched is a decreasing function of the number of unspecified attributes. The 
intent of condition (a) is to restrict the maximum size of each bucket, the intent of 
condition (b) is to guarantee that lists are disjoint, and that of condition (c) is to 
restrict the worst-case behavior. For the 81 possible queries on {0, 1, *}4, Figure 
12.20 tabulates the number of buckets (lists) that must be searched as a function of 
t, the number of unspecified attributes. For example, the query '* * 1 *' would 
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require searching of the five buckets 2, 4, 5, 6, 7, and so would any other query with 

three unspecified attributes. However, the query '1 * * O' would require searching of 

just the three buckets 1,4,8, and so would any other query with two unspecified 

attributes. In the case of just one unspecified attribute, 8 of the possible 32 such 

queries would need to search only one bucket (for example, '0 1*0' with bucket 5), 

and the other 24 would require searching of two buckets (for example, '0 1 * T with 

buckets 2 and 3). 

Bucket Bit Position 
12 3 4 

Bucket Bit Position 
12 3 4 

1 * 0 0 0 5 0 1 * 0 

2 * 1 1 1 6 1 0 * 1 
3 0 * 0 1 7 0 0 1 * 

4 1 * 1 0 8 1 1 0 * 

Figure 12.19 Associative Block Design (4,3) 

The significant fact in Figure 12.20 is the close correspondence between the 

computed averages in the third column and the theoretical values in the fourth 

column. That is, the number of lists to be searched decreases as t decreases, again 

in proportion to ntlk. Now the construction of associative block designs is a non¬ 

trivial combinatorial problem [Rivest 1976b]. For many parameter pairs (k,w), no 

corresponding ABD {k,w) exists; an instance of this is the pair (5,4). Our example 

ABD(4,3) is too small to be practical per se. However, given an ABD (k,w), it is 

possible to use it as a basis for larger ABD’s, of type (rk,rw) and also of type 

(,kr, wr). Aside from the difficulty in finding ABD’s, one of their principal draw¬ 

backs is the complexity of the hash function computation. However, this cost is 

very worthwhile for data files stored in secondary memory because of the large 

reductions in the number of accesses. Related combinatorial designs for partial- 

match retrieval are given in Burkhardt [1976a, 1976b], 

t No. Queries Avg. No. Buckets 
gf/4 

4 1 X 1 = 1 8 8.000 

3 4 x 2= 8 5 4.757 

2 b x 4 = 24 3 2.828 

1 4 x 8 = 32 56/32 = 1.75 1.682 

0 1 x 16 = 16 1 1.000 

Figure 12.20 Retrieval Costs for ABD(4,3) 
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fl2.4.2.1 Superimposed Codes. In Section 10.4.4 we saw several variations on the 

theme of predictive hashing. The essence of those methods was the multiple use of 

hash function(s). Each hash computation would turn on a small number of bits in 

a large boolean vector, and the multiple hash values were superimposed by OR’ing 

them together in this vector. This is the basis for a method of information retrieval 

that antedates all the others in this chapter. In the context of partial-match 

retrieval (rather than text searching, as in Chapter 10) it is known as superimposed 

coding [Mooers 1951]. The analogy between the text searching point of view and 

the partial-match point of view can best be understood by referring to the Bloom 

filters discussed earlier. In that technique any key present in a file is hashed onto a 

large bit vector T with each of several independent hash functions, and this opera¬ 

tion is done for each key in the file. Subsequently, in order to predict if a specific 

key K is in the file, the same hash functions are applied to K. If any of the bit 

locations that must be turned on for K to be present are not found turned on, then 

K assuredly cannot be in the file. On the other hand, the outcome that they are all 

turned on does not guarantee that K is in the file; the key K might be a false 

match, or false drop. 

In the case of a Bloom filter, one bit vector T serves as a predictor for the 

occurrence of keys in the entire file. In the present context, we are hashing the 

presence of binary attributes in a record Rh and so we associate with each record a 

bit vector P, that is the superimposed encoding of the attributes of that record. 

When presented with a conjunctive query, we hash the attributes that are specified 

and then compare this vector Q of superimposed codes with the vectors {/*,-}. Any 

record P, potentially satisfies the query if the ones in its P, include all of those in Q. 

Of course, since an P, may be a false drop, it is always necessary to verify that it 

does indeed match the query specifications. However, the possibility for error exists 

only in one direction; that is, no valid record will be missed. The trick in using 

superimposed coding is to properly adjust two principal parameters — the width w 

of the vector Q, and the number of bits k that are turned on in Q for each attri¬ 

bute. When these are well chosen, there are just a few false drops, and the fact that 

the bulk of the non-matching records never need to be accessed amply compensates 
for the cost of the false drops. 

In many ways, the vectors {P,} are like the bitmaps that we encountered in 

Section 12.4.1.1, and some of those same bit processing techniques are applicable 

here. There are also important differences. Superimposed codes do not support 

disjunction and negation, as do bitmaps; on the other hand, they can efficiently 

encode thousands of binary attributes in less than a hundred bits. A comprehen¬ 

sive, up-to-date account of superimposed coding and a realistic application of it are 

given in Roberts [1979]. In a typical large information retrieval system, even the 

compression provided by superimposed codes may not relieve the necessity of 

having the {P,} in secondary memory. An effective solution in this case is to struc¬ 

ture the codes in two levels, analogous to the use of a secondary index in ISAM, 

thereby sharply reducing the number of secondary accesses [Sacks-Davis and 
Ramamohanarao 1983]. 
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fl2.4.3 Structures for Generalized Binary Search 

In dealing with attributes of data, we find that there are various modalities. The 
most important of these are: 

• qualitative data - the possible values are descriptive only, such as male for sex, 
Protestant for religion, etc.; 

• ordinal data — a discrete number of possible values can be ranked, but not 
measured against one another, such as sophomore for class, blue for color, etc.; 

• quantitative data — some metric such as time or length exists for comparing any 
two values, such as years for age, miles for distance, etc. 

Most of our treatment of multi-dimensional search has until now been concerned 
with data that has many dimensions, or attributes, each of which is qualitative, or 
perhaps ordinal. The structures that we examine now are particularly well suited 
for dealing with data that has few dimensions, each of which is quantitative. The 
simplest case, of course, is the familiar one of geometrical space of two or three 
dimensions. For this reason, search employing these structures is commonly charac¬ 
terized as geometric search. In the same vein, typical search paradigms for these 
structures are range-search and closest-match search, as described in Section 10.6. 
Several data structures have been devised for these purposes; we will describe just 
two of the most common ones. They represent two different manners in which to 
generalize the technique of binary search. A broader treatment of structures for 
these purposes is found in Bentley and Friedman [1979]. 

f 12.4.3.1 Quad Trees. The term quad tree actually describes several structures that 
recursively decompose a region of two-dimensional space into four sub-regions, or 
quadrants. As originally proposed and still commonly used, the recursion proceeds 
on the locations of points in this space [Finkel and Bentley 1974], For a large class 
of applications, it is more useful to decompose space into successively smaller 
squares, as illustrated in Figure 12.21. The shaded regions and the clear regions in 
(a) of this figure represent two classes of data in those areas, such as binary pixel 
values. The quad tree representation of the entire region is shown in (b) of the 
figure. It is conventional to attach the four child quadrants of a node in the order 
N(orth)W(est), N(orth)E(ast), S(outh)W(est), S(outh)E(ast). Recursive decomposi¬ 
tion proceeds until each square is homogeneous. The leaves are tagged as being 
black or white, according to the value of the data in that area, and internal nodes 
are tagged as being gray. More efficient in many cases, however, is to terminate the 
recursion at some threshold, and then apply a gray-scale value to the leaves. The 
regularity of decomposition that we see in Figure 12.21 is beneficial in that it might 
be used to good purpose via a parallel processing mechanism. It can also be a 
source of complication when, for example, the natural form of input consists of 
rectangles that overlap the quadrant regions. One of the principal reasons for using 
quad trees to represent regions is that they can significantly reduce the space 
required to store data. The space for a two-dimensional array of values is 0{n2). 
For many types of two-dimensional images, however, the space requirement for the 

corresponding quad tree is 0(n). 
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Figure 12.21 The Quad Tree Structure 

The use of quad trees for storing point data is different in character and easily 
described. In this case each node might represent a city, with its latitude and longi¬ 
tude as the two keys. Then, when presented with the latitude and longitude of a 
search location, each iteration of an algorithm analogous to binary search would 
discard three quadrants and look in the remaining quadrant. We will not pursue 
their use in this regard, since the structure of the next section has been found to be 
much better for many purposes. An extensive survey of quad trees and their repre¬ 
sentations is Samet [1984]. 
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112.4.3.2 k-d Trees. The k-d tree (^-dimensional tree) is a binary tree such that 
the left (right) subtree of a node contains items with keys having values less than 
(equal to or greater than) the value of a key stored at the node. (It is important to 
accommodate the case of equality, since there may be many non-unique secondary 
key values.) The decisive feature with k-d trees is that the comparison relation is 
computed with different attributes, or keys, at successive levels of the tree. If the 
keys were geographic coordinates, for instance, then latitude might be employed at 
odd levels and longitude at even levels. Felicitously, k-d trees are useful for data¬ 
base types of search as well as for geometric search paradigms [Bentley 1979a], We 
will employ the data of Figure 12.22 to try to illustrate the flexibility they bring to 
the former type of search. The data in the figure might pertain to a history of 
accomplishments by some precocious undergraduates. Each record contains values 
for the attributes of name, age, and class. The simplest way to implement k-d trees 
is according to the original proposal, whereby the attributes are used cyclically 
[Bentley 1975]. An instance of a k-d tree built by cycling on them in the order of 
class, age, name, and then class again is shown in Figure 12.23(a). 

Record Name Age Class 

1 Hoare 21 junior 
2 Ullman 20 freshman 
3 Knuth 21 senior 
4 Tarjan 18 freshman 
5 Codd 20 freshman 
6 Graham 20 junior 
7 Hoare 24 junior 
8 Graham 19 sophomore 
9 Tarjan 19 sophomore 

10 Knuth 20 freshman 
11 Bentley 24 senior 
12 Tarjan 17 freshman 
13 Yao 18 sophomore 

Figure 12.22 Multi-dimensional Data 

In practice, there are several ways to improve upon the k-d tree construction of 
Figure 12.23(a). One is to employ a threshold, as with quad trees, to terminate 
branching when there are only a few items left in a subtree. Another is to look for 
a way to obtain more balanced trees. Clearly, whichever attribute is used at a given 
level, the optimal choice of an attribute value is the median of those in that tree. 
Even so, the cyclic choice of attributes can easily lead to comparatively unbalanced 
subtrees. A way to avoid this is to employ adaptive partitioning, which means to 
employ at each root of a subtree that attribute having the maximum dispersion of 
values in that subtree [Friedman et al. 1977]. For this, each node must carry 
along an explicit discriminator, or index, of the attribute to be used for the next 
level in the tree. Applying this idea to the data of Figure 12.22 leads to the better 
k-d tree of Figure 12.23(b), with the discriminator values (1) name, (2) age, and (3) 
class shown with each node. Note that an attribute may be employed two times in 
a row; an instance of this is age in the case of records #4 and #9. Also, we can 
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Class 

Age 

Name 

Class 

(a) Cyclic Attributes 

(b) Adaptive Partitioning 

Figure 12.23 Examples of a k-d Tree 
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expect to see records on a given level of the tree employing different attributes for 
discrimination at the next level; an example of this is records #7 and #8 using class, 
#4 using age, and #10 using name. 

The adaptive partitioning approach causes a k-d tree to be sensitive to the data 
from which it is built, and this is one of its particular advantages. Even so, a k-d 
tree can be somewhat inefficient for queries with respect to just one dimension. The 
problem is that there may be many dimensions, and branching might occur on the 
desired dimension at just every #th level of the tree. Thus, the work to compute a 
partial-match with just one key specified may be 2k times what it would be in a BST 
on that key. The good news, on the other hand, is that k-d trees share an impor¬ 
tant characteristic with the hashing techniques of Section 12.4.2. Specifically, the 
work associated with a partial-match query goes down exponentially with the 
number of attributes that are specified. With respect to range queries and closest- 
match queries, k-d trees evidently have an average cost of 0(lg n). 

There are some limitations to k-d trees, a principal one being a paucity of good 
methods for using them dynamically. It is fairly easy to insert new nodes, and a 
random k-d tree has the same expected value for maximum path length of 
1.386 lg n as does a random BST (see Eq. 10.14). However, deletions present more 
of a problem. Moreover, there are not as yet any good methods for rebalancing k-d 
trees, and this is certainly an important issue for dynamic situations. 

12.5 OVERVIEW 

In Chapter 1 we stated that data structures are often fundamentally more significant 
than algorithms for determining how efficiently or conveniently a task can be 
performed. The consequences of choosing between algorithms are typically 
expressed in varying complexity classes, and ultimately these differences prevail. 
But the constant factors are also important. This is particularly true with secondary 
memory, where the constants may vary by many orders of magnitude. The influ¬ 
ence of these constant factors upon the choice of data structure is substantial, and it 
accounts for the variety of structures in this chapter. One can avoid deciding 
between all of these structures by relying upon virtual memory, but this only hides 

the issue and does not solve it, as we illustrated in Section 12.2. 

In the progression of the file organizations in Section 12.3, we find parallels to 
much of the previous course of this entire book. The earliest file organization (and 
the only one for many years) was the sequential file; its analogues in primary 
memory are the array and queue and stack. The first way of responding to the 
need for dynamic structures in secondary memory was via hashing, which typically 

relies upon linked lists (explicitly or implicitly) of synonyms. Another response was 
via indexed sequential files, which are trees. And just as structures for maintaining 
tree balance are important in primary memory, they are also vital in secondary 
memory with B-trees. Lastly, although the issue was beyond the scope of this book 
and thus barely exposed, the requirement to deal with multi-dimensional data has 
analogues with graphs. In particular, some database models make use of the struc- 
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ture known as a hypergraph. Succinctly, whereas a graph conveys relationships 
between pairs of vertices via edges, a hypergraph is a generalization that conveys 

relationships among sets of vertices. 

12.6 BIBLIOGRAPHIC NOTES 

• Simulation is employed in Lum et al. [1971] as the basis for answering ques¬ 
tions about optimum bucket sizes, for deciding between open addressing and 
chaining, and for responding to other random access issues. Analytical answers 
to some of these questions can be found in Severance and Duhne [1976] and 
van der Pool [1972, 1973b]. 

• The problem of designing files with multiple attributes so that they provide 
good performance for many kinds of queries is a very difficult one, and it has 
inspired a variety of ideas far beyond what we have room to describe. Among 
the more interesting approaches are those of Abraham et al. [1968], Bolour 
[1979], Bose and Koch [1969], Chow [1969], Ghosh [1972], Hsiao and Harary 
[1970], Lum [1970], Schkolnick [1975], Shneiderman [1977], and Wong and 
Chiang [1971], 

• Data structures texts that treat the subject of database are Gotlieb and Gotlieb 
[1978] and Tremblay and Sorenson [1984]. Texts devoted entirely to the topic 
are Date [1981, 1983] and Ullman [1982], 

• For alternative methods of employing bitmaps, particularly with regard to mini¬ 
mizing the number of accesses to secondary memory, and for analyses of their 
performance, consult Burke and Rickman [1973], Pfaltz et al. [1980], and 
Vallarino [1976], 

12.7 REFERENCE TO TERMINOLOGY 

t adaptive partitioning, 663 t least recently used (LRU), 627 
f locality, 629 

logical record, 619 
multilist, 656 
negation, 655 

t associative block design, 658 
B-tree, 643 
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f B*-tree, 652 
batch processing, 632 
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block search, 632 
blocking factor, 619 
boolean query, 655 
bucket, 633 
buffer, 620 t partitioned hashing, 658 

t ordinal data, 661 
overflow area, 634 
page, 625 
page fault, 625 
page frame, 625 

partial-match query, 655 

f cache memory, 628 
channel, 618 

physical record, 619 
t prefix B-tree, 652 

primary key, 655 t closest-match query, 655 
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conjunction, 655 
cycle stealing, 619 
cylinder, 620 
dense index, 630 

f dense multiway tree, 652 
direct-access device, 620 
disjunction, 655 

t dynamic hashing, 654 
end-of-file (EOF), 632 

f extendible hashing, 652 

t false drop, 660 
| geometric search, 661 

indexed sequential access, 638 
inter-record gap (IRG), 619 
inverted file, 656 
jump search, 632 

t k-d tree, 663 
f key compression, 631 

latency, 621 

prime area, 634 
t quad tree, 661 
f qualitative data, 661 
t quantitative data, 661 

random access, 633 
range query, 655 
secondary key, 655 
sector, 620 
seek time, 621 
segment, 625 
sequential access, 632 
serial access, 632 
simple query, 655 
sparse index, 630 

f superimposed coding, 660 
thrashing, 627 
track, 620 
VSAM, 650 
working set, 627 

12.8 EXERCISES 

Sections 12.1 — 12.4 

12.1 How many logical records of 100 bytes each can be stored on a tape that is 
2000 feet long with a recording density of 1600 BPI (a) if the blocking factor is 5? 

(b) if the blocking factor is 40? 

12.2 [Belady et al. 1969] We can model the behavior of a paging algorithm 
against the execution of a given program as follows. Let the pages that are succes¬ 
sively referenced by the program be given by a string of page numbers, as for 
example: 12341251234 5. Suppose now that a FIFO replacement algo¬ 

rithm is used, and that we have slots A,B,C for three pages in main memory. Then 
the history of the page slots in time will be as follows, where a period indicates an 

empty slot and an underscore indicates the most recent reference. 

A: l 1 1444555555 

B: . 22211 1 11 33 3 

C: . . 3332222244 

We can see that this set of circumstances incurs nine page faults: 1,4, 5 in A and 
2 1 3 in B and 3, 2, 4 in C. Suppose that we now try to improve matters by allo¬ 
cating four page slots instead of three. Trace the paging activity for this case, as 

above, and describe what happens. 
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12.3 Describe briefly the essential differences between serial and sequential access. 

fl2.4 [Dijkstra 1976] Even though batch processing is a venerable style of 
computation, it engenders the File Update Problem. Even after many years of exist¬ 
ence, it is frequently solved in a clumsy fashion. This is a pity, because it has clean 
and elegant solutions. In this problem, there are two sequential files as input: 

1. An Old Master File, consisting of one record per key, and (for our purposes) 
containing an account key and an account balance in each record. 

2. A Transaction File, consisting of possibly many records per key. Each record is 
one of three types: (I)nsertion, specifying that a new account with the given key 
and a zero balance is to become part of the Master File; (U)pdate, applying a 
positive or negative increment to the balance; or (D)eletion, specifying that the 

given record for that key is to be removed from the Master File. 

It is neither possible nor efficient to update the Old Master File directly, and so we 
construct as output a New Master File, consisting of one record per key, with 
balances reflecting the contributions from the two inputs. Artificially high keys are 
used as sentinels to mark the ends of all three files. 

The reason that solutions to this problem are often clumsy has to do with their 
manner of dealing properly with exceptional conditions. In particular, various 
combinations of missing and repeated keys in the two input files make it tricky to 
synchronize matters. Thus, an attempt to insert a key already present in the Master 
file, or to delete a key not already present, signals an error, as does an attempt to 
update a key that is not currently valid. However, the transaction file may contain 
a succession of records such that a key is deleted, then reinserted, then updated 
several times, then deleted again, etc. Write a program to perform Sequential File 
Update, and test it against the following input: 

Old Masters: 5, 21 / 8, 9 / 10, 7 / 18, 31 / 999, 0 
Transactions: U, 8, 3 / D, 8 / U, 8, 2 /1, 8 / U, 8, 40 /1, 10 / D, 15 / 

U, 18, -1 / U, 18, 11 / U, 18, -4 / I, 24 / U, 24, 5 / 1, 999 

12.5 Describe briefly the essential differences between indexed-sequential and 
direct access. 

12.6 What are the significant differences between using hashing for main memory 
and using it for secondary memory? 

12.7 For the following two patterns of collisions, compute the corresponding 
values of overflow percentage OP, and also the average number of accesses AA, 
both with chaining and with open addressing. 

x 
x 

Bucket Size = 1 

Bucket Size = 2 
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f 12.8 Assume that the keys 1 .. 29 are inserted, in that sequence, into initially 
empty B-trees, for the cases (a) and (b) below. Draw the trees as they appear imme¬ 
diately after each insertion that has affected more than a single node. For this 
exercise, when equality of balance is not possible, always split off nodes with greater 
numbers of entries to the left. Take care to be exact in applying the various rules. 

(a) Do this for a B-tree of order 6. 

(b) Do this for a B*-tree of order 6. 

tfl2.9 The “other half’ of Exercise 10.26 is deletion from a 2-3 tree. Analyze 
and diagram the various cases for this, making note of any arbitrary algorithmic 
choices. Then write the program and test it in the following manner. Start with the 
2-3 tree obtained by inserting 1 .. 20 as in Exercise 10.26, and then try four patterns 
of deletions. For each pattern, start counting with the first item and then delete 
exactly 13 items, each time selecting the next item to be deleted as the rath of the 
remaining items, in the style of the Josephus problem (see Exercise 4.7). Do this for 
ra = 2, 3, 5, and 8. What are the final 2-3 trees for the four cases? 

ff 12.10 Write an algorithm to perform search and insertion for extendible hash¬ 
ing, such that if search fails then the item is inserted. Presume that initially the 
depth of the directory is d = 2, and do not consider the possibility that the directory 
may require more than one “page.” Also assume that leaf pages hold just four 
items and that they are initially empty. Test your program against a random 
sequence of 40 insertions, and display the contents of the directory and the hash 

table just before and just after each split. 

•ftl2.ll Prove the following about an ABD (k,w) design: 

(a) Each column contains a total of bit values. 

(b) For any 0 < u < w, there are (^j rows which agree in exactly u positions with 

any given record in {0,1}*. 

(c) 
wb 

w ~ 2(b - 1) 

fl2.12 Draw the k-d tree that is obtained for the data of Figure 12.22 when the 

attributes are employed in the cycle: name, age, class, etc. 

ffl2.13 Write an algorithm to do insertion into a k-d tree. Test your program by 
applying it to the data of Figure 12.22, using the cycle: name, age, class, etc. 
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SORTING 

“Light shone, and order from disorder sprung.” 

Milton, 

Paradise Lost, Bk III 

“Better late than never, as Noah remarked 
to the Zebra, which had understood 

that passengers arrived in alphabetical order.” 

Bert Leston Taylor, 
The So-Called Human Race 

The advantages of having items ordered according to the values of their keys are 
very compelling. We find data arranged this way in dictionaries, in libraries, in 
timetables, and in countless other places. Much of the motivation for having this 
orderliness stems from the needs of humans. For example, although hashing can be 
very efficient as a means of searching for an item with a computer, it is decidedly 
inconvenient for use by people. Sorting is also commonly used as a preprocessing 
step for expediting subsequent searches with computing machines. Thus, whether 
for the sake of people or machines or both, this need for order is reflected in the 
commonly accepted statistic that computers spend more than one-quarter of their 
time performing the sorting function. 

Sorting is a fundamental process, and it also illustrates very nicely the practical 
benefits of many of our previous studies. Thus, even though much of the story of 
sorting relates to discoveries now one or two decades old, and which are treated 
definitively in Knuth [1973b], it behooves us to give it the special attention of this 
chapter. Our objective is to be thorough, though not nearly so complete as Knuth, 
and to bring the subject up to date in the areas where there is recent invention. 

Just as in the case of searching, we need to begin with a few mathematical 
concepts, dealing in the present case with some properties of permutations. After 
that, most of Section 13.2 is drawn from the “classical” material on sorting 
described in the preceding paragraph. More precisely, it discusses internal sorting 
methods that can be used when main memory is large enough to hold all the data 
to be sorted. A problem that is related to sorting, yet simpler, is that of selection, 
as in the example of finding the third largest item from a set; this is the topic of 
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Section 13.3. When main memory is not large enough to hold all the data to be 
sorted, some very different methods in Section 13.4 for external sorting are appro¬ 
priate. The final topic is an active area of current research, that of methods for 
parallel sorting. 

13.1 THE ISSUES INVOLVED 

Given a sequence of items that have keys, we say that they are sorted if Kt < Kj 
whenever i < j. When we are dealing with numeric keys, the proper ordering 
between pairs of keys is clear. The situation for alphabetic keys is less obvious, 
being crucially dependent upon the collating sequence of the character set (see 
Section 8.2.1). But there are few differences in principle between alphabetic keys 
and numeric ones, and for the most part we we will employ numeric keys in the 
interests of simplified exposition. We can regard a sequence that is in order as the 
identity permutation, and a sequence S that is not in order as some permutation P 
applied to the identity. Then sorting amounts to finding the inverse permutation 
P~x that should be applied to the sequence S so that it will be in order. A very 
useful concept in this regard is that of the number of inversions in a permutation, to 

be discussed in Section 13.1.1. 

It is possible, of course, that values of keys may be repeated within a sequence; 
such a case would occur, for example, when sorting a group of transactions based 
upon account numbers. However, this is somewhat of a distraction from our princi¬ 
pal objective of elucidating the various methods; so we will not treat the case of 
repeated key values in any systematic fashion. In fact, we will commonly use the 
following sequence in the course of illustrating a variety of methods: 

33 41 7 15 55 87 28 22 9 46 32 (13.1) 

There is one aspect of the repeated-key case that cannot be ignored, however. 

Suppose that we have the data items 

3 lj 5 12 4j 2i 42 22 13 

where equal keys are distinguished by subscripts corresponding to their relative 
positions originally. Then it may be important that the sorted sequence should 

retain this secondary ordering, as in 

ll 12 13 2X 22 3 4j 42 5 

If a sorting technique is guaranteed to preserve this secondary ordering, it is said to 
be a stable sort. Although stability is important in some applications, it is irrelevant 
in others. The latter fact is a fortunate one, since several of the sorting methods 

that are fastest are also unstable. 

The principal criteria for comparing sorting methods are, as heretofore, time 
complexity foremost, and space complexity secondarily. For searching, most of our 
discussions centered on the number of comparisons required in order to locate a 
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record with a given key. An important difference now is that the output of a sort is 

a permutation of the input, and so we need to measure work in terms of moving 
data as well as comparing keys. Moreover, some sorting algorithms perform the 
same amount of work regardless of the actual input; that is, they are oblivious (see 
Section 1.3.2.2). On the other hand, many methods are not oblivious, so that their 
minimum and maximum complexities are very different from their average complex¬ 

ities. This sometimes gives rise to what could be termed “pathologies,” or perverse 
behaviors, associated with certain combinations of sorting method and input permu¬ 
tation. We will find that the time complexities of the sorting methods do not vary 
greatly, with 0(n2) and 0{n lg n) being most typical. In practice, the size n is often 

very large, so that even this modest difference becomes extremely significant. 

type index = 0 .. size; {size = n} 
item = record 

key: integer; 

end; 
items = array [index] of item; 

Figure 13.1 Type Definitions for Sorting 

Sorting is conveniently characterized in terms of permuting the elements of an 
array from an input sequence to an output sequence. With this in mind, we will 

presume throughout this chapter that the type definitions of Figure 13.1 apply. 
Given that n may be very large and that arrays are highly efficient in use of storage, 
this is also by far the most natural characterization. When we account for the 
movement of records, however, and particularly if the records are large, then two 
other possibilities might be considered - the use of linked lists, and the use of a 
table for indirection. By way of illustration, suppose that we have the array 

elements shown in Figure 13.2(a). Then the sorted array, would be, of course, as 
shown in (b). The effect of sorting the same data using cursors as links is shown in 
(c) of the figure. Finally, we see in (d) of the figure the use of a table for indi¬ 
rection; sorting via this latter technique is called an address table sort. In 

employing this last method, it may happen that the records are long but the keys 
are short. It would probably be better in that case to operate upon direct copies of 
the keys rather than indirectly upon the keys in the original records; this variation 
is known as key sorting. For many (but not all) of the sorting methods, we can 

always incorporate one of these structures if it is warranted, so we lose little and 
gain simplicity in exposition by sticking with the array representation. 

As a concluding note, output in the form of a linked list or an address table 
may be adequate, or we may still need to physically permute the records. The prob¬ 

lem of generating the rearrangement corresponding to an address table is closely 
related to the generation of the inverse of a permutation, using its cycle structure 

(see Exercise 2.9). The problem of generating the rearrangement corresponding to a 
linked list is the subject of Exercise 13.5. 
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1 25 1 25 0 
2 13 2 13 4 
3 20 3 20 1 
4 16 4 16 3 

(a) Unsorted Data (c) Linked List Sort 
(head = 2) 

1 13 1 2 1 25 
2 16 2 4 2 13 
3 20 3 3 3 20 
4 25 4 1 4 16 

(b) Sorted Data (d) Address Table Sort 

Figure 13.2 Structures for Sorting 

13.1.1 Inversions 

If a sequence is not in order, it is useful to quantify its relative unsortedness. A 
convenient measure for this is the number of inversions by which the corresponding 
permutation differs from the identity. There is an inversion for every pair (j,i) such 
that j > i and j is to the left of i. Moreover, for a given permutation, let bk repre¬ 
sent the number of inversions in which k is the second member of a pair. The 
sequence bx, b2,..., bn is called the inversion table of the permutation. Thus the 
permutation 279485361 would have the inversion table 805233010 where, 
for example, b5 = 3 because of the three inversions (7,5), (9,5), and (8,5). The inver¬ 
sion table entries must clearly have the property that 0 <bk<n-k. The greatest 
number of inversions in a permutation will occur for n, n — 1,..., 1; it will have the 
corresponding inversion table n — 1, n — 2,..., 0. Summing these entries, we find 
that the maximum is 0(n2/2); the average number of inversions in a permutation is 
easily found to be 0(n2/4). Inversions have the remarkable property that it is easy 
to go in the opposite direction, constructing the permutation corresponding to a 
given inversion table. We simply start with b„ and work our way to the left, drop¬ 
ping each value k into the permutation sequence in the manner dictated by bk. To 

illustrate using our original example, 

for Z>8 = 1, place 8 with 9 yielding 9 8 
for b7 = 0, place 7 with 9 8 yielding 7 9 8 
for b6 = 3, place 6 with 7 9 8 yielding 7 9 8 6 
for b5 = 3, place 5 with 7 9 8 6 yielding 7 9 8 5 6 

etc. 

In constructing a random permutation of 1 .. n, we have to be careful that the 
generated elements are distinct. If we define a random permutation in terms of its 
inversion table, however, we can take advantage of the fact that the bk are inde¬ 
pendent of one another. For example, what is the average number of maxima seen 
in scanning a permutation from right to left? (In our example there are four such 
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maxima, at 1, 6, 8, 9.) Now for any such maximum k, all the values j > k must 
occur to the left of it; in other words, for that value of k, bk has its maximum value 
of n - k. The average number of right-to-left maxima is then equal to the sum of 

the independent probabilities that bk — n — k, which is 

i+y + + + 7T 

This sum is instantly recognizable as the nth harmonic number Hn. In fact, from 
our discussion of harmonic numbers in Section 10.1.1, we see that this is really a 
familiar problem. In that section we recounted that permutations can be expressed 
in cycle notation in a canonical manner (see Section 1.2) by arranging for each cycle 
to begin with its smallest element, and then writing the cycles in decreasing order of 
these first elements. In this fashion, our sample permutation 279485361 
becomes (5 8 6) (4) (1 2 7 3 9). Recall that we can omit the parentheses and write 
this as 58641273 9, because the parentheses (and thus the cycles) can be recon¬ 
structed by looking for left-to-right minima. But looking for minima is isomorphic 
to looking for maxima, and looking from left to right is isomorphic to looking from 
right to left. In other words, in analyzing permutations in terms of inversions, we 
once again discover that the average number of cycles in a random permutation on 
n elements has the value Hn. 

13.2 INTERNAL SORTING 

We have spoken of the variety of sorting methods. How many are there, really? 
From one point of view, there are just five generic methods. Four of them operate 
via comparisons between pairs of keys in one manner or another, and we will 
describe them first. The fifth generic method can be lumped under the category of 
distribution sorting, and we treat it distinctly from the other methods, in Section 
13.2.2. These generic methods are “no-frills” offerings that have the virtues of 
simplicity and low programming effort. However, most of them have complexity 
0(n2)\ and so for large n, it is worthwhile to consider “brand-name” offerings that 
are not as simple but have lower complexity. There are scores of such sorting meth¬ 
ods. Generally, though, we will examine just one efficient counterpart for each of 
the generic methods. 

13.2.1 Comparison-Based Methods 

The comparison-based methods are: insertion sorting, selection sorting, exchange 
sorting, and merge sorting. At first acquaintance, the distinctions among the first 
three of these will seem to be rather illusory, in that the operations of insertion, 
selection, and exchanging can be found to occur in all three of them. Indeed, some 
of the earlier surveys of sorting methods (such as Martin [1971]) employ classifica¬ 
tions different than those employed here. However, the distinctions that we will be 
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making are useful ones that are by now well accepted. Before proceeding, we 
should ask whether these methods (and distribution sorting) are really the only 
generic methods. The answer is, not quite. 

We are already familiar with the possibility of using BST’s for the purpose of 
sorting (see Section 6.6.1); this method even has good complexity (see Section 
10.3.1). Nonetheless, because of the space requirement for two link variables with 
each key, it is unlikely to be used for large values of n. Another method is enumer¬ 
ation sorting. Imagine that a list of unique values of numerical grades has been 
posted, and that we wish to determine our relative rank in the class. We can ascer¬ 
tain the rank by using that list to count j, the number of grades that are greater 
than ours. Our rank is then given by j + 1. Indeed, every student in the class can 
determine his rank in the class in the same fashion. Note that we have not actually 
permuted the data items by this process. Rather, the array of rank values that we 
obtain is related to the auxiliary array of values in an address table sort. To be 
precise, the permutation specified in the counting case is the inverse of the permuta¬ 
tion specified in the address table case. It is easy to see that enumeration sorting is 
0(n2), so that it is neither better nor worse than the generic methods that we have 
cited. Since there does not seem to be any way to improve enumeration sorting so 
that it is better than 0(n2), as with the other methods, it is rarely accorded equal 
status with them. (However, we will see an exception to this in Section 13.5.) 

13.2.1.1 Insertion Sorting. Insertion sorting is easily understood in the familiar 
terms of repeatedly picking up playing cards and inserting them into the proper 
position in a partial hand of cards, thereby maintaining the cards in order. Let us 
apply this process to our sample input of Eq. 13.1. Matters progress as illustrated 
in Figure 13.3, with the numbers below (above) the diagonal constituting the sorted 
(unprocessed) portions of the input. The work for each new number Kj (just above 
the diagonal) consists of comparing it with numbers Kt to its left until we find 
K, < Kj, or until we reach the left end of the list. Rather than test for both eventu¬ 
alities each time, it is better to put a sentinel at the left end. Corresponding to this, 
we have the procedure INSERT_SORT (Algorithm 13.1), wherein the text of 
Figure 13.1 is implicitly included. The method would also sort properly if the 
comparison were K, < Kp rather than Kt < Kj. But then, for equal keys, the 
execution time would increase; more significantly, the method would change from 

being stable to being unstable. 

For random data, each of the n keys must be compared against a sequence to 
its left of average length n/2, and each of those searches will be of average length 
nj4. Moreover, compares and moves are interspersed in this algorithm. Thus, 
insertion sort entails 0(n2/4) comparisons and 0{n2/4) moves. We can obtain a 
more meaningful picture, however, by reflecting upon the work performed by the 
inner loop. Each comparison that results in a move is the result of an inversion in 
the input permutation, and each such move reduces the number of inversions by 
one. Since the average number of inversions is 0(n2l4), we thus have direct confir¬ 
mation of the expected complexity of insertion sort. Of greater significance, we see 
that since the work is proportional to the number of inversions, then insertion sort 
will perform much better than average with input data for which the degree of 
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procedure INSERT_SORT (var data: items); 

const ninf = {a large negative value as sentinel} 

var i,j: index; 
rcrd: item; 

begin 
data [0].key := ninf; 
for i := 2 to size do begin 

j := i - 1; rcrd := data [i]; 
while rcrd.key < data [j].key do begin 

data Q + 1] := data [j]; 

end; 
data G + 1 ] := rcrd; 

end; 
end; 

Algorithm 13.1 INSERT_SORT 

unsortedness (the number of inversions) is low.1 In fact, because of its extreme 
simplicity and because it performs so well in this case, insertion sort as in Algorithm 
13.1 is the recommended method for data that is nearly sorted. 

In analyzing the performance of any algorithm, we must be very careful to 
understand the assumptions underlying the analysis. The importance of this is illus¬ 
trated when we examine insertion sort more closely, seeking ways in which to 
improve it. Since the search is conducted on an ordered array, we might try replac- 

1 The number of inversions is not the only possible measure of unsortedness. Other 
measures of disorder are discussed in Section 13.2.4. 
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ing the sequential search with binary search, leading to the method known as binary 
insertion. This would reduce the overall complexity of the search from 0(n2) to 
0(n lg n). Unfortunately, there is no corresponding reduction in the complexity of 
the moves, so this approach has limited practical utility. In fact, for the occasions 
when insertion sort is most appropriate - that is, with data that is nearly in order 
— binary search might even be less efficient than sequential search. There is a 
significant way to improve the performance, however. We should recognize that the 
process of inserting an element into an array by shifting some of the array contents 
is much less efficient than inserting an element into a linked list, which requires 
changing two link values. By the latter approach, although we still have 0{n2l4) 
comparisons, we have only 0(n) moves! Although this modification is very worth¬ 
while (see Exercise 13.4), it still does not overcome the 0(n2) barrier. That is the 
subject of the next section. 

13.2.1.1.1 Shellsort. In order to break the 0(n2) barrier with insertion sorting (and 
for that matter with any of the generic methods), we need to reduce the number of 
inversions by more than one on each iteration. A method that accomplishes this in 
the present case is Shellsort, named after its discoverer [Shell 1959]. It is also called 
diminishing increment sort, which captures the essence of the method — to perform 
insertion sorts with a series of increments hs that diminish to one on the last pass. 
In the earlier stages, each move of an element from the ith to the (z + hs)th position 
can have the effect of eliminating several inversions. Since the last pass employs an 
increment of one, it is equivalent to ordinary insertion sorting, and so the output of 
the pass must necessarily be sorted. Because of the previous stages, however, this 

last pass will encounter relatively few inversions. 

We illustrate the technique for our example data, employing increments of 
5, 3, 1. Each pass with a particular hs consists logically of hs distinct insertion sorts, 
conducted upon values that are hs apart in the data. This is not as complicated as it 
may sound, as can be seen by reference to Figure 13.4. In (b) of the figure, we have 
offset the five chains corresponding to /z3 = 5 on five lines, and in (c) and (d) of the 
figure we see the final values of this pass. The sequence is now said to be 5-sorted. 
The next pass uses h2 = 3, and parts (e) and (f) of the figure show the corresponding 
chains before and after sorting. The sequence at this point is said to be 3-sorted. 
In fact, the transition from (e) to (0 has required just four upward moves, but it has 
reduced the number of inversions from 18 to 8. The chains for hx = 1 are shown 
before sorting in (g) and after sorting in (h). The detailed procedure to perform all 
of this is SHELLSORT (Algorithm 13.2). In reducing the above description to 
code, it is expedient to have each pass scan the array just once from left to right, 
rather than trying to isolate hs chains each time. Thus, the algorithm rotates among 
the distinct chains as it proceeds, rather than following the sequence just described. 

The logical effect is identical though. 

Two related and unresolved issues about Shellsort are the optimum choice of a 
sequence of increments, and its complexity. These matters are explored masterfully 
in Knuth [1973b], and the remainder of this section draws heavily upon it. 
Suppose, to begin with, that we have just two increments, the last being hx = 1. 
Then it can be shown that the optimum choice for h2 is approximately 1.72n1/3, 
yielding an average performance of 0(zz5/3). However, it is more effective to employ 
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(a) 33 41 7 15 55 87 28 22 9 46 32 

33 
41 

87 
28 

32 

(b) 7 
15 

55 

22 
9 

46 

32 
28 

33 
41 

87 

(c) 7 
9 

46 

22 
15 

55 

(d) 32 28 7 9 46 33 41 22 15 55 87 

32 9 41 55 

(e) 28 
7 

46 
33 

22 
15 

87 

9 32 41 55 

(0 22 
7 

28 
15 

46 
33 

87 

(g) 9 22 7 32 28 15 41 46 33 55 87 

(h) 7 9 15 22 28 32 33 41 46 55 87 

Figure 13.4 Trace of Shellsort 

procedure SHELLSORT (var data: items); 

const t = 3; {for this example} 

var done: boolean; 
h,j,s: index; 
i: integer; 
incr: array [1 .. t] of index; 
rcrd: item; 

begin 
incr [1 ] := 1; incr [2] := 3; incr [3] : = -5; 
for s : = t downto 1 do begin 

h := incr [s]; 

for j := h + 1 to size do begin 
done := false; i := j - h; rcrd := data Q]; 
while (i > 0) and (not done) do 

if rcrd.key >= data [i].key then 
done := true 

else begin 
data [i + h] := data [i]; 
i ! = i - h; 

end; 
data [i + h] := rcrd; 

end; 
end; 

end; 

Algorithm 13.2 SHELLSORT 
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a greater number of increments. The original description of Shellsort suggested the 
sequence L(n/2), L(«/4), L(«/8), .... However, it has been shown that if a sequence of 
hs satisfies such a divisibility property with respect to any set of divisors, then it 
cannot yield an average performance better than 0(n312). Moreover, the worst-case 
performance with such a sequence is 0{n2). For maximum effectiveness, the hs 
should be relatively prime to one another; in this case, there is more mixing among 
the data items, which leads to a faster reduction in the number of inversions. In 
this mixing, a remarkable property becomes significant. If we have a sequence that 
has already been y-sorted and we then A>sort it, the output of this latter pass is still 
y-sorted! We leave the proof of this fact as an exercise (see Exercise 13.7), but its 
truth can be seen in Figure 13.4. 

Despite considerable research, no one knows even the optimal number of incre¬ 
ments to employ for a sequence of size n, much less the optimal set of values. 
Knuth suggests using hx — 1 and hs+l = 3hs+ 1, stopping with h, when ht+2 > n; the 
sequence in this case is 1, 4, 13, 40,.... This suggestion and several others seem to 
yield a performance that can be approximated either as 0(n lg2«) or as 0(«5/4), with 
some evidence that the exponential form is closer to reality. There is still the tantal¬ 
izing possibility, however, that some sequence may be found which will yield an 

0{n lg n) average performance. 

13.2.1.2 Selection Sorting. With this method we repeatedly look for the smallest 
remaining key and then move it to its final position. It is instructive to compare the 
effect of insertion sort with that of selection sort. With the former we examined 
one new key each cycle and maintained the growing output in correct relative order, 
but could not be sure that any item was in its final location until the last cycle. 
With selection sort we examine the entire (remaining) input each cycle, and we 
always know that the initial portion of the output contains its final values. This is 
illustrated with our example data in Figure 13.5, wherein the numbers below 
(above) the diagonal constitute the sorted (remaining) portions of the input. The 
corresponding procedure is SELECT_SORT (Algorithm 13.3), with the text of 

Figure 13.1 implicitly included once again. 

Selection sorting requires about twice as many comparisons as insertion sorting, 
on the average, since each outer loop examines the entire remaining sequence, yield¬ 
ing 0(n2l2) comparisons. However, it requires just 0(n) moves. This latter fact 
suggests that selection sort might be appropriate when the underlying records are 
large. Nonetheless, the method is still 0(n2) overall. This shortcoming is more 
significant here than it was with insertion sorting, because selection sorting is an 
oblivious method. That is to say, selection sorting will execute its 0{n2/2) compar¬ 
isons and 0(n) moves even if the input is already sorted! Thus, it is not a good 

method to apply to input data that is nearly in order. 

13.2.1.2.1 Heapsort. With ordinary insertion sorting, we saw a fundamental limi¬ 
tation due to the necessity to make as many data moves as there are inversions. 
The fundamental shortcoming with ordinary selection sorting, on the other hand, is 
that we are obtaining a great deal of information in each outer loop, but then ignor¬ 
ing it and reconstructing the same information again in the next cycle. One way to 
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Figure 13.5 Trace of Selection Sort 

procedure SELECT_SORT (var data: items); 

var i,j,k: index; 
lo: integer; 
rcrd: item; 

begin 
for i : = 1 to size - 1 do begin 

k := i; rcrd := data [i]; lo := rcrd.key; 
for j:= i + 1 to size do 

if data [j].key < lo then begin 
k := j; lo := data [jj.key; 

end; 
data [i] := data [k]; data [k] := rcrd; 

end; 
end; 

Algorithm 13.3 SELECT_SORT 

redress this situation would be to employ divide-and-conquer, splitting our original 
data into nl'2 groups of nll2 items each, and using a work area of size nl>2. We begin 
by placing the smallest item from each group in a corresponding work location. 
Then we repeatedly (a) select the smallest item from the work area, and (b) replace 
it with the next largest item out of the group from which it originated. Such a 
method is called quadratic selection sort, and has complexity 0(n3'2). Better still, 
however, is to organize our comparisons as a tournament, in the manner shown in 
Figure 13.6 for our example data. In other words, we could place our data at the 
leaves of a complete binary tree and make a series of pairwise comparisons, always 
promoting the smallest value to be the parent. By this process, the smallest key will 
be promoted to the root. Then, when we remove the lowest key from the root, we 
can determine the next “winner” with just fig n further comparisons. Indeed, such 
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a method is feasible, and is termed a tournament sort. However, it requires space 
for 0(n) internal nodes in addition to the 0(n) leaves, and we must be careful to 
mark the empty nodes as promotions drain the tree. The latter effect is illustrated 
in Figure 13.7. 

7 

33 7 55 28 22 9 46 32 

33 41 7 15 55 87 

Figure 13.6 Tournament Sort 

7 

OO OO 00 00 OO 87 

Figure 13.7 A Tournament with Promotions 

An ingenious method that attains the effect of a tournament sort without the 
shortcomings just described is Heap sort. It operates, as the name suggests, by 
employing the heap data structure of Section 6.6.4. To be precise, we regard our 
array of data as a complete binary tree, with the data at all of the nodes, and not 
just the leaves. The method has two phases. In the first we convert the tree to a 
heap by iteratively applying the heap condition to each internal node, starting at the 
last and working our way up to the root. Thus, our example data as a complete 
binary tree is shown in Figure 13.8(a). In (b) of the figure we begin applying the 
heap condition at location 5 (value 55), and repeatedly apply it until we get to 

location 1. The following exchanges take place: 

15 and 22, 7 and 87, 41 and 55, 41 and 46, 33 and 87 

Note how the exchange of 41 and 55 forces a subsequent exchange of 41 and 46. 
At the conclusion of the first phase, we then have the heap as in (c) of Figure 13.8. 

It may seem strange that we have applied the heap condition in the sense of 
promoting the largest value each time, rather than the smallest. Even stranger 
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33 

41 7 

15 55 87 28 

22 9 46 32 

(a) Complete Binary Tree 

87 

55 33 

22 46 7 28 

15 9 41 32 

(c) Initial Heap 

46 

22 32 7 28 

15 9 55 87 

(e) After 2nd Pass of 2nd Phase 

87 

55 

46 33 

22 41 7 28 

15 9 32 87 

(d) After 1st Pass of 2nd Phase 

7 

22 28 32 33 

41 46 55 87 

(f) Sorted Array 

Figure 13.8 Trace of Heapsort 

perhaps, the second phase of Heapsort proceeds by repeatedly truncating the heap, 
exchanging the value at the root with the value at the truncated position, and then 
restoring the heap property. Thus, the first pass in the second phase exchanges 87 
and 32, and then restores the heap property by the further exchanges: 

32 and 55, 32 and 46, 32 and 41 

leading to the situation in Figure 13.8(d). The second pass of the second phase 
exchanges 55 and 32, and then restores the heap property by the further exchanges 

32 and 46, 32 and 41 

All of this leads to the situation shown in (e) of the figure, and eventually we obtain 
the sorted arrangement shown in (f) of the figure. In fact, this mechanism is exactly 
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procedure HEAPSORT (var data: items); 
var i: index; 

rcrd: item; 

procedure SIFT (left,rite: index); 
label 1; 
var j: integer; 
begin 

j := 2 * left; rcrd := data [left]; 
while j <= rite do begin 

if j < rite then 
if data [j].key < data G + 1].key then 

j := j + 1; 
if rcrd.key >= data Gl-key then 

goto 1; 
data [left] := data Q]l 
left := j; j := 2 * j; 

end; 
1: data [left] := rcrd; 
end; 

begin 
for i := size div 2 downto 1 do 
{transform original tree into heap} 

SIFT (i,size); 
for i := size - 1 downto 1 do begin 
{swap root (largest) with last and restore heap} 

rcrd := data [i + 1]; 
data [i + 1 ] := data [1 ]; 
data [1] := rcrd; 
SIFT (1 ,i); 

end; 
end; 

Algorithm 13.4 HEAPSORT 

the same that we used for removing an item from a priority queue implemented as a 

heap. It is also the basis for accomplishing the first phase of Heapsort; we just 

vary the subrange of the array upon which we operate! 

Putting all of this together leads to the procedure HEAPSORT (Algorithm 

13.4), where the sub-procedure SIFT is almost identical to REMOVE_PRQ_H 

(Algorithm 6.7). One might easily suppose, because of all the data motion, that 

Heapsort is not very efficient. Not only that, in converting our original array of 

values to a heap, we have actually increased the number of inversions, from 27 to 

38. Nonetheless, for large n, Heapsort is the most efficient method that we have 

encountered so far. Both the heap creation phase and the selection phase consist of 

0(n) calls upon the procedure SIFT, and each such call can involve no more than 

0(lg n) exchanges along a path from an internal node to a leaf. (Note that, for a 

series of n related exchanges, we do not actually perform 3n moves, but rather n + 2 
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moves.) Thus Heapsort is 0(n lg n), even in the worst case; that is, it is a &{n lg n) 
sorting method. In fact, the first phase can be shown to be 0{n) (see Exercise 
13.11). This is not very relevant for sorting with a heap, since the second phase is 

still 0(n lg n), but it is significant for other applications of heaps. 

There is a distinction between tournament sort and Heapsort that is a bit subtle 
and sometimes significant. With the former, we know exactly the number of 
comparisons and promotions that are required. Namely, there are n — 1 for setting 
up the tournament and Tig {n - 1) for promoting a winner out of the tournament. 
With the latter, we know that the number of comparisons (and exchanges) is 0(n) 
for setting up the heap and 0(lg n) for promoting a winner out of the heap; 
however, we do not know the exact values. Consequently, if our focus is on devel¬ 
oping a good algorithm, we would probably prefer to use a heap; on the other 
hand, if our focus is on getting accurate counts in developing complexity bounds, 
we should employ a tournament. Instances where this distinction matters can be 

found in Sections 13.3 and 13.4.2. 

Although analysis of the average complexity of Heapsort is incomplete, the 
average amount of computation is found to be fairly stably approximated by n lg n. 
Thus, the best case of Heapsort for 8 items is exemplified by 87632451, with 21 
comparisons and 13 exchanges. Yet the corresponding worst case, as exemplified by 
1 5 2 6 4 3 7 8, is not that much worse; it requires 29 comparisons and 24 
exchanges. These results also illustrate a general feature of the method, that 
performance is better for input data that tends toward descending order than it is 
for data that tends toward ascending order. 

13.2.1.3 Exchange Sorting. In the generic form of exchange sorting, we repeatedly 
compare pairs of elements, exchanging them if they are out of order, until no out- 
of-sequence pairs remain. The most common method for doing this is to start at 
the beginning of the sequence and compare Kt and + 1 for successive values of i 
from 1 to n — 1. This will sweep the largest value to the last position. The entire 
process is then repeated for values of i from 1 to n — 2, then from 1 to n — 3, etc. 
The observed behavior has been likened to that of bubbles rising in a liquid, with 
the result that this method is called bubble sort. We observe that successive cycles 
can terminate with successively smaller values: n — 1, n — 2, etc. In fact, we can do 
even better by keeping track of the last location bound where an exchange occurred 
during a cycle of the outer loop. Because no exchanges occurred thereafter, the 
remainder of the sequence must be order; so bound — 1 is an appropriate right- 
hand limit for comparisons on the next cycle of the outer loop. With this 
refinement, a trace of bubble sort upon our example data is shown in Figure 13.9; 
included in the trace is the value of bound after each cycle of the outer loop. The 
corresponding procedure is BUBBLE_SORT (Algorithm 13.5). 

For estimating the efficiency of bubble sort, we find that inversions are useful in 
two ways. Since each basic exchange operation reduces the number of inversions by 
just one (as in insertion sorting), and since the average number of inversions is 
0(n2/4), we can see that bubble sort is basically an 0{n2) method. However, each 
exchange involves three moves, so that the average number of moves is actually 
0(3n2/4) - far inferior to either insertion or selection sorting. The estimation of 
the average number of comparisons is more complicated, since it depends upon the 
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procedure BUBBI_E_SORT (var data: items); 

var bound,i,j: index; 
rcrd: item; 

begin 
bound := size; 
repeat 

j := 0; 
for i := 1 to bound - 1 do 

if data [ij.key >= data [i + 1].key tnen begin 
rcrd := data [i]; 
data [i] := data [i + 1 ]; 
data [i + 1] := rcrd; 
j : = i; 

end; 
bound := j; 

until bound = 0; 
end; 

Algorithm 13.5 BUBBLE_SORT 

average number of iterations of the repeat ... until loop. In this regard, it is useful 
to look at the complete inversion table. We find that each outer iteration of bubble 
sort reduces each non-zero value of bt by one. For example, with reference to 
Figure 13.9, the initial value of the inversion table is 2725450020 0, after the 
first pass it’ is 1 6 1 4 3 4 0 0 1 0 0, etc. Thus, the number of outer cycles is deter¬ 
mined by the largest expected value among the b,. This can be shown to lead to the 
result that the average number of comparisons is given by n x (n - In n)l2. So in 
number of comparisons, bubble sort is inferior to insertion sorting and of no signif¬ 
icant advantage over selection sorting. All in all, considering both comparisons and 
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moves, we see that bubble sort is inferior to either insertion sort or selection sort, 

despite its catchier name. 

Once again, we can look for ways to improve upon the basic method. In exam¬ 
ining Figure 13.9, we notice an asymmetry: large values propagate to the right 
quickly, but small values (for example, 9) propagate to the left slowly. This obser¬ 
vation has inspired the cocktail shaker sort, which is basically bubble sort with 
alternation of direction on successive passes. Although this method seems to 
perform marginally better than bubble sort, it does not overcome the basic 0(n2) 
character of the method [Wirth 1976]. A better idea is to incorporate diminishing 
increments into bubble sort, yielding complexity analogous to that of Shellsort 
[Dobosiewicz 1980]. But the best way to use exchanges is that of the next section. 

13.2.1.3.1 Quicksort. The method we now describe was dubbed Quicksort by its 
inventor Hoare [1962]. This title is well-deserved, since it was then and still is the 
fastest known method for internal sorting based upon comparisons of keys. It is 
also known as partition-exchange sort, since that term captures the basic idea of the 
method, as follows. One of the items is selected as a partitioning element; the 
remaining items are compared with it, and a series of exchanges is performed. At 
the conclusion of this series of exchanges, the original sequence has been partitioned 
into three subsequences: 

(a) all the items less than the partitioning element; 

(b) the partitioning element in its final place; 

(c) all the items greater than the partitioning element. 

At this stage, we have finished with (b) and can recursively apply Quicksort to the 
items in (a), and also to the items in (c); when the recursion terminates, the entire 
sequence will be sorted. 

If we pay close attention to the description in the preceding paragraph, we note 
that there are two distinct processes that have to be spelled out: how to select the 
partitioning element at each stage, and how to perform the exchanges. For now, we 
will simply choose the first element in a sequence as its partitioning element, and 
concentrate our attention upon the exchanges. This latter process is conducted with 
the aid of two cursors, i starting from the left of the sequence and j starting from 
the right. First i is incremented until it references an item greater than the parti¬ 
tioning element, and then j is decremented until it references an item less than the 
partitioning element. This pair of items is exchanged and the cycle is repeated, until 
i and j cross. When they do, the point at which they cross identifies the proper 
place to insert the partitioning element in order to obtain the three subsequences 
described in the previous paragraph. More precisely, the cycle terminates with 
i =j+ 1. At this point, we have data [left + 1 ../] less than the partitioning element 
and data [/-hi.- rite'] greater than the partitioning element; thus, an exchange of 
the items referenced by left and j achieves the desired partitioning. This mechanism 
is spelled out in the procedure QUICKSORT (Algorithm 13.6); you would do well, 
before continuing, to compare it with the procedure COLLECT_l (Algorithm 11.2) 
of Section 11.2.3.1. 

Once again, we illustrate matters with our example data. Note that QUICK¬ 
SORT has as input parameters a pair of indices delimiting the subrange of data to 
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procedure QUICKSORT (var data: items; left,rite: index); 

var i,j: integer; 
part,rcrd: item; 

begin 
i := left; j := rite + 1; part ;= data [left]; 
repeat 

repeat 
i:= i + 1; 

until data [i].key >= part.key; 
repeat 

j := j - 1; 
until part.key >= data [j].key; 
if i < j then begin 

rcrd := data [i]; 
data [i] ;= data [j]; 
data [j] := rcrd; 

end; 
until i >= j; 
data [left] := data [j]; data [j] := part; 
if left < j -1 then 

QUICKSORT (data, I eft,j - 1); 
if i < rite then 

QUICKSORT (data,i,rite); 
end; 

Algorithm 13.6 QUICKSORT 

which the current procedure invocation applies. Accordingly, the trace in Figure 

13.10 is segmented vertically according to recursive calls, with the first line of each 

segment showing the corresponding values of the parameters left and rite. The 

underlined items in each line are those referenced by i and j (or by left and J), and 

the circled items are those that are in their final place, either because of an 

exchange, or because they are sequences consisting of a single item. The efficiency 

of Quicksort is illustrated by the fact that only four exchanges are performed in the 

first procedure invocation, and yet the number of inversions has been reduced from 

27 to 15. On occasion, we see that left and j reference the same item, as indicated 

by the double underline for 41 in the sixth invocation in Figure 13.10. The resulting 

exchange is indeed wasteful, but less so than it would be to insert a test for equality. 

All that we have said about Quicksort so far is by way of introduction, to 

convey the basic principles of the method. To use it practically, one needs to intro¬ 

duce several refinements. In fact, since it seems to be the best method, it has been 

the target of numerous suggested refinements. Since some of these suggestions are 

of dubious benefit, some discretion is required in choosing among them. In the 

remainder of this section we will first describe the more important refinements, and 

then discuss the efficiency of Quicksort. 
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left rite 1 2 3 4 5 6 7 8 9 10 11 

1 11 33 41 7 15 55 87 28 22 9 46 32 

33 32 7 15 55 87 28 22 JL 46 41 

33 32 7 15 9 87 28 22 55 46 41 

33 32 7 15 9 22 28 87 55 46 41 

28 32 7 15 9 22 © 87 55 46 41 

1 6 28 32 7 15 9 22 33 87 55 46 41 

28 22 7 15 9 32 33 87 55 46 41 

9 22 7 15 © © 33 87 55 46 41 

1 4 9 22. _7 15 28 32 33 87 55 46 41 

9 _7_ 22 15 28 32 33 87 55 46 41 

© © 
22 15 28 32 33 87 55 46 41 

3 4 7 9 22 J5. 28 32 33 87 55 46 41 

7 9 © © 28 32 33 87 55 46 41 

8 11 7 9 15 22 28 32 33 87 55 46 41 

7 9 15 22 28 32 33 41 55 46 © 

8 10 7 9 15 22 28 32 33 41 55 46 87 

7 9 15 22 28 32 33 
© 55 46 87 

9 10 7 9 15 22 28 32 33 41 55 46 87 

7 9 15 22 28 32 33 41 © 87 

Figure 13.10 Trace of Algorithm QUICKSORT 

To begin with, the procedure as shown masks a bug. We see from Figure 13.10 
that the sort is accomplished via an initial call specifying the bounds of the input 
array as parameters. Depending upon the actual data values, however, either i or j 
could run off the ends of the array in the initial pass. Thus, sentinel values are 
needed at both ends in order to guarantee the termination of the inner repeat 
until loops. 

A more profound point is that we have shown Quicksort as a recursive proce¬ 
dure. This has the usual benefits of perspicuity and brevity, at the expense of 
efficiency. Since efficiency is much more important in a procedure that may be 
heavily used, we should convert it to an iterative procedure, using a stack to record 
pairs of indices that correspond to sub-arrays yet to be sorted. Moreover, the 
procedure QUICKSORT exhibits tail recursion (see Section 5.4.2). Therefore, the 
corresponding iterative procedure need push just one pair of indices onto the stack, 
and then loop to sort the sub-array corresponding to the other pair of indices. In 
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our simplified version, we have always sorted the leftmost sub-array before the 
rightmost sub-array. It is not hard to find an input sequence such that this rigid 
policy would require a working stack of size 0(n). This is easily remedied, however, 
if we compare the relative sizes of the two subsequences, and then always save the 
larger subsequence and sort the smaller subsequence first. By this device, we can be 

sure that the size of the stack is 0(lg n). 

As the subsequences become smaller and smaller, the comparatively elaborate 
machinery of Quicksort becomes counter productive, so it is better to switch to a 
simpler method for small sequences. Since by then we are dealing with items that 
are almost sorted, it is an ideal situation for applying insertion sort to finish the 
task. The best cutover value at which to make this switch depends, in practice, 
upon details of implementation and the underlying machine; typically, it has been 
observed to be in the range 6-15. Even better than invoking insertion sort sepa¬ 
rately for each small subsequence is to simply ignore such sequences during 
Quicksort, and then make one call on insertion sort after Quicksort terminates! The 
number of residual inversions is the same in either case, and the overhead of numer¬ 

ous distinct procedure calls is thereby avoided. 

The nature of our last basic refinement to Quicksort is best motivated by the 
following question. What will happen if we apply Algorithm 13.6 to a sequence 
that is already completely sorted? The first and smallest item will become the parti¬ 
tioning element, and j will subsequently be decremented n times in search of a 
smaller value, with the result that the first item will be exchanged with itself. This 
will be followed by the call QUICKSORT(data,2,«), with n - 1 comparisons, etc - 
for a total complexity of 0(n2). Data that is already sorted, or nearly so, is a very 
significant possibility; yet this highly touted method is totally inefficient for such a 
case. What went wrong? The answer has to do with the issue that we bypassed 
when beginning to discuss Quicksort; it lies with the choice of the partitioning 
element. For this method to work well, the partitioning element should on the 
average divide its sequence into two subsequences of comparable size. By defi¬ 
nition, the median of a sequence would accomplish exactly this. A pragmatic 
technique that works well is to choose the partitioning element as the median of a 
small sample — commonly as the median of the three elements at the first, middle, 
and last locations in the sequence. Although this will not eliminate the worst-case 

complexity of 0(n2) , it will make it much less likely to occur. 

The refinements discussed in the preceding paragraphs are summarized in the 

following considerations: 

• Sentinels need to be placed at either end of the input array. 
• Iteration should be substituted for recursion. 
• The subsequence to be stacked should always be the longer one. 
• Small subsequences should be deferred for one final invocation of insertion sort. 
• The partitioning element should be chosen with discretion, perhaps with the 

median-of-three technique. 

A more detailed discussion of these and other issues relating to practical implemen¬ 

tation of Quicksort can be found in Sedgewick [1978]. 

We turn now to the issue of the efficiency of Quicksort. We stated at the begin¬ 
ning of this section that it is the fastest known method based upon comparisons of 
keys. It is not hard to see why this might be so, since the two main inner loops are 
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simply i: — i + 1 and j: = j — 1. Detailed proofs of its 0{n lg n) average complexity 
are rather elaborate [Sedgewick 1977]. An easier, informal approach comes from 
noting the close correspondence of Quicksorting a random permutation to that of 
constructing a BST from the same random permutation. The root of the BST 
corresponds to the partitioning element, with each other item in the tree being 
compared with the root during its insertion. The same remarks apply with respect 
to the left (right) child of the root and all the other nodes in the left (right) subtree 
of the root; likewise, they apply at successively lower levels in the BST. This is 
illustrated, for our example data, by the BST of Figure 13.11. This argument can 
be made more precise, along the lines of the derivation of Eqs. 10.10—10.14 in 
Section 10.3.1. The result is completely analogous; the expected number of 
comparisons for Quicksort applied to a random input sequence is given by 
1.386n lg n. Be aware that a rigorous proof of this result depends upon the input 
subsequence for each pass being a random permutation. It is not uncommon to 
tinker with Quicksort in an attempt to improve it, and inadvertently destroy the 
property of randomness in the subsequences.2 For several such cases, it has been 
shown that the “improvement” in fact degrades performance. 

Figure 13.11 BST Analogous to Quicksort 

How does Quicksort compare with Heapsort, the other 0{n lg n) algorithm? 
Quicksort has commonly been found to be about twice as fast as Heapsort, owing 
largely to its fast inner loops. Another important advantage is that it easily allows 
the incorporation of a simpler sorting method to handle small subsequences. There 
are two words of caution though. For one, Heapsort is 0(n lg n) in the worst case. 
With Quicksort, although the median-of-three approach can reduce the likelihood of 
quadratic worst-case complexity, the possibility still exists, just as it does with 
random BST’s. Finally, Heapsort operates in situ, requiring a small, bounded 
amount of working storage, whereas Quicksort requires an 0(lg n) stack. 

13.2.1.4 Merge Sorting. Another way of thinking about Quicksort is that it is an 
application of divide-and-conquer. It has good average performance because the 

2 This matter is particularly sticky when equal keys are present. It then matters greatly 
whether the inner loops terminate on equality or continue until inequality. 
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partitioning element on the average divides input sequences into two subsequences 
of approximately equal size. Merge sorting is a method in which divide-and- 
conquer is applied without leaving anything to chance, by recursively dividing input 
sequences into two subsequences that are invariably of the same size. Thus, the 
complexity of merge sort is 0(n lg n) even in the worst-case. Unfortunately, this 
method also tends to require a fair amount of working storage, thereby reducing its 
appeal as an internal sorting method. Nonetheless, it has two features that cause it 
to be highly important. For one, it is a stable 0(n lg n) method, and the other two 
0(n lg n) methods, Heapsort and Quicksort, are not. Even more significantly, it is 
the method that we must employ, eventually at least, when the volume of the data 

forces us to use external sorting methods. 

Output W Input U Input V 

14 
14 17 
14 17 23 
14 17 23 24 

17 23 38 ... 
17 23 38 ... 
23 38 39 ... 
38 39 55 ... 
38 39 55 ... 

14 24 32 ... 
24 32 41 ... 
24 32 41 ... 
24 32 41 ... 
32 41 44 ... 

Figure 13.12 The Merging Process 

Before discussing merge sorting, we need to focus upon the process of merging 
two ordered input sequences to form one ordered output sequence. In fact, this is a 
familiar concept, although previous examples were encumbered with various, partic¬ 
ular details. An example was the addition of polynomials represented as linked 
lists, using POLYADD (Algorithm 4.2) in Section 4.2.2. The essentials of merging 
are illustrated in Figure 13.12, where the basic step is to compare the first items of 
two input sequences U and V, and to promote the smaller one to the output 
sequence W. This is mirrored in the procedure MERGE (Algorithm 13.7), where 
input arrays U of size p and V of size q are combined to yield an output array W of 
size r. A significant aspect of merging is that it is linear in the combined sizes of 
the two inputs, since each comparison results in the production of one of the 
r =p + q outputs. Implemented in the obvious manner with arrays, however, it 
requires 0(n) space both for the input sequences and for the output sequence. 
Although there are methods for merging arrays with a bounded amount of work¬ 
space, they tend to be impractical. A better resolution is to employ linked list 

techniques. The inclusion of cursors with each record 

type item = record 
key: integer; 
link: index; 

end; 

will usually be less costly than doubling the entire data space. And there is the 
additional, significant advantage that cursor assignments can then be employed, 
rather than costly record moves. If it is necessary to conclude with the records 

physically in sequence, we can resort to the technique of Exercise 13.5. 
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procedure MERGE (U: items; p: index; V: items; q: index; 
var W: items; var r: index); 

const inf = {a large positive value as sentinel} 

var ,j,k: index; 

begin 
i := 1 U [p + 1 ].key := inf; 
j := 1 V [q + 1 ].key = inf; 
r := p + q; 
for k := 1 to r do 

if U [i].key <= V [j].key then begin 
W [k] := U [i]; i := i + 1; 

end else begin 
W [k] := v 0]; j:=j + i; 

end; 
end; 

Algorithm 13.7 MERGE 

Assuming that all the cursor fields have been initialized to zero, our sorting 
technique will be to divide the input array of records into two sub-arrays (larger on 
the left, if there are an odd number of items), recursively sort both sub-arrays, and 
then merge them. This process is spelled out in the procedure MERGE_SORT and 
the sub-procedure MERGE_LIST (Algorithm 13.8). Although the details are 
dissimilar, you should be able to recognize that MERGE_LIST is indeed the linked 
list analogue of the procedure MERGE. Two of its input parameters are cursors p 
and q, pointing to the beginnings of two linked lists of records in data-, and it 
returns output parameter r, the initial cursor for the merged combination. For 

MERGE_SORT, the input parameters left and rite specify the subrange of the 
array data to be sorted; and the output parameter head is the initial cursor for the 
sorted array. A trace of the action of Algorithm 13.8 upon our sample data is given 
in Figure 13.13. The figure shows the contents of the link fields for the records 

data [left.. rite}, and also the corresponding value of head. The initial index param¬ 
eters supplied to MERGE_SORT are of course 1, 11; however, the trace output in 
the figure reflects the order in which the recursion “unwinds” with its results. 

The form of MERGE_SORT suggests the following recurrence equation 

Tin) = 2T(nl2) + cn (13.2) 

where the first term reflects the costs of the two recursive calls to sequences of size 

«/2, and the second term reflects the fact that merging is linear in the combined 
sizes of its two inputs. It is fairly easy to establish from this that 

T{n) = an lg n + b (13.3) 

from which we can infer that merging is indeed 0(« lg n). We could not apply this 

argument to Quicksort, since there the partitioning does not always yield 
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procedure MERGE_SORT (var data: items; left,rite: index; 
var head: index); 

var headl,headr,midi,midr: index; 

procedure MERGE_LIST (var data: items; p,q: index; var r; index); 
var s: index; 
begin 

if data [p].key <= data [q].key then begin 
r := p; p ;= data [p].link; 

end else begin 
r := q; q ;= data [q].link; 

end; 
s := r; 
while ((p > 0) and (q > 0)) do 

if data [p].key <= data [q].key then begin 
data [s].link := p; s := p; p := data [p].link; 

end else begin 
data [s].link := q; s := q; q := data [q].link; 

end; 
if p > 0 then data [s].link := p; 
if q > 0 then data [s].link := q; 

end; 

begin 
midi := (left + rite) div 2; midr := midi + 1; 
if (rite - left < 2) then headl := left 

else MERGE_SORT (data,left,midl,headl); 
if (rite - left < 3) then headr := midr 

else MERGE_SORT (data,midr,rite,headr); 
if (rite - left < 1) then head := headl 

else MERGE_LIST (data,headl,headr,head); 

end; 

Algorithm 13.8 MERGE_SORT 

left rite head 1 

33 

2 

41 

3 

7 

4 

15 

5 

55 

6 

87 

7 

28 

8 

22 

9 

9 

10 

46 

11 

32 

1 2 1 2 0 

1 3 3 2 0 1 

4 5 4 5 0 

4 6 4 5 6 0 

1 6 3 2 5 4 1 6 0 

7 8 8 0 7 

7 9 9 0 7 8 

10 11 11 0 10 

7 11 9 11 7 8 0 10 

1 11 3 2 10 9 8 6 0 11 7 4 5 1 

Figure 13.13 Trace of Algorithm MERGE_SORT 
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33 41 7 15 55 87 28 22 9 46 32 
1-' 

33 
-1 

41 , 7. 15 55 87 28 22 9 46 32 
1- 

7 33 41 15 55 87 28 22 9 46 32 

7 33 41 ' 15 55 87 28 22 9 46 32 

7 33 41 , ' 15 55 
-1 

87 _._| 28 22 9 46 32 
1- 

7 15 33 41 55 87 28 22 
1 

9 46 32 

7 15 33 41 55 87 ' 22 28 i 9 46 32 

7 15 33 41 55 87 1 9 22 28 ' i^£| 

7 15 33 41 55 87 9 22 28 32 46 
_I 

7 15 33 41 55 87 ' 9 22 28 32 46 i 
l~T~ 9 15 22 28 32 33 41 

(a) Top-Down Recursive Merging 

46 55 87 

33 41 7 15 55 87 28 22 9 46 32 
1- 

33 
1 

41 , ^ , 15 1 
55 87 28 22 9 46 32 

33 41 7 15 55 
, 87 28 22 9 46 32 

33 41 7 15 55 87 28 22 9 46 32 

33 41 7 15 55 87 
1 

22 28 , 9 , 48 , 32 

33 41 7 
15 1 

55 87 22 28 9 46 32 
1 

7 15 33 41 55 87 , 22 28 1 
9 46 32 

7 15 33 41 22 28 55 87 9 46 32 

7 15 33 41 22 28 55 87 1 9 32 46 1 

' 7 15 22 28 33 41 55 87 1 9 32 46 

' 7 9 15 22 28 32 33 41 

(b) Bottom-Up Straight Merging 

46 55 87 1 

41 , 7 15 55 
87 1 

28 22 9 46 32 

1 15 33 41 55 87 28 22 9 46 32 

7 15 33 41 55 87 
1 

22 28 ' , 9 46 , , 32 
7 i 15 33 41 55 87 22 28 9 32 46 
7 l—-- 15 22 28 33 41 55 87 ' , 9 32 46 
7 9 15 22 28 32 33 41 46 55 

-1 
87 

(c) Natural Merging 

Figure 13.14 Alternative Merge Patterns 

subsequences of equal length. Nonetheless, it is instructive to compare the recursive 
formulations of Quicksort and merge sort. They both represent divide-and-conquer 
solutions. In Quicksort, all of the work goes into splitting the original sequence 
into subsequences that are then joined trivially by juxtaposition. In merge sort, on 
the other hand, the splitting is performed very simply, and all of the work goes into 
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joining the resulting parts. In the terms in which we usually think of divide-and- 
conquer, merge sort is much more typical; yet they are both instances of the 
paradigm, coming at the problem from opposite directions. 

As with Quicksort, if we intend to implement merge sorting for extended use, 
we should introduce refinements for the sake of efficiency. Some examples of these 
might be exchanging recursion for iteration, applying insertion sort to small initial 
subsequences, etc. In the course of making these changes, we might also choose to 
merge bottom-up rather than in the top-down manner of Algorithm 13.8. In this 
case, unless n is a power of two, we will merge different sequences than previously. 
Even if n is a power of two, it is simpler to merge all pairs of one-item sequences 
first, then all pairs of two-item sequences, etc. The difference is illustrated in Figure 
13.14, where (a) shows the logical effect of the top-down merge from Figure 13.13, 
and (b) shows the logical effect of a bottom-up merge on the same data. 

There is yet another important variation of merge sorting. The methods 
discussed so far are oblivious to any pre-existing order in the input, and are called 
straight merging. The “order” with which we are concerned here is that expressed 
by the runs in the input sequence. A run is a maximal subsequence Kr... K, such 
that Kr <KS < K, for all r < s < t. Although a random permutation will have runs 
with an average length of about 2, we may be dealing with non-random input, with 
runs of substantial length. We can take advantage of this order by looking for and 
merging naturally occurring runs, with the expectation that fewer merge passes will 
be required overall. This technique is called natural merging, and it constitutes an 
alternative bottom-up approach to the problem. The logical effect of applying 
natural merge to the same data as before is illustrated in (c) of Figure 13.14. 

The traces in Figure 13.14 illustrate some shortcomings associated with these 
techniques. In both (b) and (c), we see that the later passes may not have a partner 
with which to merge. If we are merging by copying back and forth between two 
areas, this will lead to unproductive copying of “bachelors”; in any event, it will 
lead to sequences of varying length. This latter phenomenon is even worse in (c), 
since we can expect that the initial runs will vary considerably in length. All in all, 
merge sorting is slightly inferior as an internal sorting method. It has been found to 
be about as fast as Heapsort (that is, half as fast as Quicksort), but it cannot be 
reasonably performed except with 0{n) working storage. The real utility of merge 
sorting will become apparent when we discuss external sorting in Section 13.4. 

13.2.2 Distribution Methods 

The preceding methods are all based upon comparisons between pairs of keys. We 
will see in Section 13.2.3 that this leads to the fundamental lower bound Q{n lg n). 
The methods of the present section are able to break this bound by means of 
performing other kinds of operations upon the keys. In all cases, some arithmetic 
function of the key value is used to map the key to one of a number of buckets. 
The effect is to allow multi-way decisions instead of just two-way decisions based 
upon comparisons. This is the sorting analogue to the use of tries in searching, 
wherein we find a method of very different character from the usual methods based 
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upon binary comparison trees. After one or more functional applications of a 
distribution method, the last distribution of the keys among the buckets yields all of 
the keys in sorted sequence. This general principle gives rise to several different 
methods: radix sorting, radix exchange sorting, and value distribution sorting. 

13.2.2.1 Radix Sorting. Radix sorting corresponds to the method of sorting used 
with electro-mechanical card sorting machines before computers became so powerful 
and ubiquitous. In more familiar terms, it is analogous to the use of tries as data 
structures for searching. Using our familiar example data of Eq. 13.1, each key 
can be expressed in radix ten as Kt— 7) x 10 + Uh with 0 < Tf, U{ < 9. The basic 
operation of radix sorting is to distribute each key into one of ten buckets, corre¬ 
sponding to the ten possible values for a digit in a particular position of each key. 
In our case, we have only tens and units digits. Although it may not be obvious at 
first, we need to begin with the least significant digit (LSD), and end with the most 
significant digit (MSD). The distribution of our eleven keys on the value of their 
units digits is shown in Figure 13.15(a). In terms of a card sorter, we see ten card 
pockets; in terms of data structures, we see ten queues. In either interpretation, we 
next collect and concatenate the contents of the ten sequences into one sequence 

41 22 32 33 15 55 46 7 87 28 9 (13.4) 

We then apply the distribution operation to the tens digits, being careful to treat 
leading blanks as zeros, with the result shown in Figure 13.15(b). Since the keys 
have only two digits, we have only to collect the contents of the ten queues/pockets 
once again, and we have a sorted output. Radix sorting is stable. Indeed, the 
stability between successive passes is an essential reason that the method works. 

32 55 87 
41 22 33 15 46 7 28 9 

0 1 2 3 4 5 6 7 8 9 

(a) First Pass of Radix Sort 

9 28 33 46 
7 15 22 32 41 55 87 

0 1 2 3 4 5 6 7 8 9 

(b) Second Pass of Radix Sort 

9 22 32 46 
7 15 28 33 41 55 87 

0 1 2 3 4 5 6 7 8 9 

(c) Radix Sort on MSD Only 

Figure 13.15 Illustration of Radix Sort 

We have alluded to the implementation of radix sort in terms of queues. In the 
present case the radix value was r = 10, but other values are possible. We must be 
careful about the possibility of data such that all of the records are distributed to 
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the same queue on a given pass; this would lead to an 0(nr) space requirement for 
the queues. A better strategy is to allocate a link field in each record, and to use 2r 
locations to identify the head and the tail for each queue. This yields an improved 
space 0(n + r) requirement. An algorithm to perform radix sorting would then 
consist of alternate phases: distribution, wherein the items are distributed among 
the r queues; and collection, wherein the contents of these queues are concatenated 
into one list again. The work associated with each distribution is 0(ri), and that 
associated with each collection is 0(r). If the keys consist of p “digits,” then the 
total complexity is evidently 0(p(n + r)). For cases where both p and r are fixed 
and not too large, we have found an 0(ri) sorting method. 

The method just described for decimal keys can be generalized to other kinds of 
data. If the keys are binary, then it would be inefficient to employ r — 2, since the 
resulting value of p would cause too many passes to be required; clearly, radix sort 
is not an improvement over comparison-based sorts unless p < lg n. For binary 
keys, it is better to extract b bits at a time, and to distribute the data among r — 2b 
buckets. However, if the range of the key values is much greater than n, then even 
this approach may not be feasible, in terms of either space or time. Note that we 
can also apply this approach to alphabetic strings, or even to enumerated types such 
as date in Section 3.1.2; in this latter case, the value of r will be different for each 
pass, but that is a fairly simple matter to take care of. We leave the detailed imple¬ 
mentation of a radix sorting algorithm as an exercise; the operations of distribution 
and collection of linked-records in the queues do not, after all, involve anything 
very new to us. However, one comment about such an endeavor is worthwhile. 
Although it is possible to extract bits or digits from keys in HLL’s such as Pascal, 
the costs of doing so will almost certainly vitiate any advantage that radix sorting 
might have — at this level of programming. The one circumstance that might 
counteract this would be if we were to extract bytes (r = 256), since some compilers 

are clever enough to find simple translations for such extractions. 

Radix sorting, as described thus far, requires that we process the keys from 
LSD to MSD. If the range of the keys is large, however, we should note two 
undesirable consequences. One is that so many passes are then required that the 
method becomes non-competitive. The other is that the activity of the earlier passes 

will tend to be irrelevant, being of consequence only in the unlikely event that we 
have keys that are equal with respect to all of their higher-order “digits.” A very 
worthwhile approach for such cases is to first perform a radix sort on k of the 
MSD’s, thereby partitioning the data into rk buckets, and then apply insertion sort 
to each bucket [MacLaren 1966]. Be careful here, for the radix sort of the k 

MSD’s must still proceed from the least to the most significant of the MSD’s! As a 
concrete example, in sorting n four-byte integers, we might do a radix sort on the 
two high-order bytes, and then apply a comparison-based sort to each resulting 
bucket.3 We can expect to accomplish this latter phase efficiently since each bucket 

3 This “sophisticated” approach comes more naturally than you might suppose. It is the 
technique that you might use for sorting playing cards into order by rank within suit. It 
is also the technique that the Postal Service uses for classifying mail by Zip Code, with 
the additional advantage that the second phases can be off-loaded to the corresponding 

Post Offices. 



698 SORTING 

is small, and since not many inversions can occur in any of the buckets. By way of 
illustration, Figure 13.15(c) shows the effect of doing a radix sort on just the MSD 
of the example data. If we now collect the contents of these queues as 

7 9 15 28 22 33 32 41 46 55 87 (13.5) 

we find that the number of inversions has been reduced from 27 to 2. To put 
matters more precisely, if radix sort is applied to the first k of the “digits,” then the 
expected number of inversions remaining is n(n — 1)/(4r*) — if the values of the keys 
have a uniform distribution. If the latter condition is not fulfilled, then this tech¬ 
nique is subject to the degenerate possibility that most of the n keys may wind up in 
just one of the final buckets, so that the second phase is no longer efficient. A good 
rule of thumb for coping with deviations from uniformity is to choose r and k such 

that nlrk <0.1. 

13.2.2.2 Radix Exchange Sorting. Radix exchange sorting is unlike the other distri¬ 
bution methods in two ways: It specifically operates upon the binary 
representations of the keys, and it operates in situ [Hildebrandt and Isbitz 1959]. 
We begin by examining the leftmost bit of each key, and rearranging the data so 
that all keys with a zero in this position are placed to the left, and all keys with a 
one in this position are placed to the right. We then apply the method recursively 
to the two subsequences, using the next bit to the right. The method of rearranging 
each time is a familiar one. It is the exchange method that we have seen both in 
COLLECT. 1 (Algorithm 11.2) in Section 11.2.3.1, and also in QUICKSORT 
(Algorithm 13.6) in Section 13.2.1.3.1. A principal difference in this case is that the 
partitioning value of 2b may not actually occur in the data. For keys that are 
uniformly distributed, radix exchange is another 0(n lg n) method, with perform¬ 
ance comparable to that of Quicksort (which it actually predates). However, it 
rapidly degenerates whenever the assumption of uniformity fails to hold. In partic¬ 
ular, it performs very poorly when there are many equal keys, or even when most of 
the keys have the same value in some bit positions. Note that this can easily occur 
with numeric data having leading zeros, or with alphabetic character codes. 

13.2.2.3 Value Distribution Sorting. If the analogue of radix sorting is trie search¬ 
ing, then the analogue of value distribution sorting is hash searching. We seek to 
map keys directly to their final locations via an order-preserving function F - that 
is, one such that F(K,) < F(K;) whenever Kt < Kj. Such a method has long been 
known, under the name of address calculation sorting [Isaac and Singleton 1956]. If 
the keys are uniformly distributed over the range Klo.. Khi, then we can allocate B 
buckets, with the range of the y'th bucket defined as 

Klo + 
(j - l) x (Khi - Kl0) 

B 
to Kio + 

j x (Khi - Kl0) 

B 
(13.6) 

As With hashing, we can anticipate collisions. The best way to handle them is to 
maintain each bucket as a linked list. We can either maintain each list in order as 
keys are distributed to individual buckets, or we can perform a comparison-based 
sort upon each bucket at the conclusion of the distributions. There is an obvious 
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resemblance to radix sorting coupled with insertion sorting, except that the distribu¬ 

tion is determined by one arithmetic function applied to the entire key rather than 
by multiple radix distributions. There is the impediment, once again, that 0(n) 
space is required. There is also the practical hazard that non-uniformly distributed 
keys may occur frequently. In such cases, the method can easily degenerate, with 

most of the keys falling into one bucket, so that we wind up with a quadratic 
method rather than a linear one. A technique for combatting this degeneration is to 
use a cumulative distribution function of the key values, thereby allowing the 
construction of a more accurate address function F. This is fine if such a function 
can be determined in advance, but not very cost effective if it must be constructed 
for every set of data to be sorted. One proposal for confronting this issue employs 
a double level of distribution, where one of the levels is determined by sampling the 

input [Noga and Allison 1985]. 

More recently, this approach has attracted attention in the form of distributive 
partitioning [Dobosiewicz 1978]. The crucial difference with this method is that for 
predictive purposes, only the minimum, median, and maximum key values in the 
input need be determined. With these data at hand, the method proceeds by divid¬ 
ing both of the intervals minimum.. median and median.. maximum into «/2 
sub-intervals of equal length. The keys are then distributed into these sub-intervals. 
After that, if any sub-interval has received more than one key, the same process is 
applied recursively to it. For a variety of distributions of the input keys (for exam¬ 
ple, uniform or normal), this method has been shown to have 0(n) average 
complexity. Moreover, for any input distribution, it has a worst-case complexity of 
Oin lg n), by an argument similar to that for Eqs. 13.2 and 13.3 with merge sorting, 
in Section 13.2.1.4. An essential part of this argument depends upon the fact that 
the median can be determined in linear time, as we will see in Section 13.3. Even 
though linear, that process is somewhat complicated; nonetheless, several exper¬ 
iments indicate that distributive partitioning is commonly faster than Quicksort. 

The conclusions of the preceding paragraph are so provocative that it is helpful 

to step back and try to place them in perspective. Since we have an 0{n) expected 
sorting method, why might it not be the method of choice? Three factors contribute 

to the answer: 

• As with merge sorting, the method requires 0(n) space. 
• The details of its implementation are fairly complicated, owing largely to the 

nature of the median-finding process. 
• The method is still somewhat controversial. 

As noted in previous discussions, the complexity of an algorithm depends upon 
the model of computation that is employed. Thus, we will see in the next section 
that comparison-based sorting is necessarily £l{n lg n). An essential aspect of 

distributive partitioning is that of being able to include a floor operator in the 
computational model; this enables one to compute n-way branches efficiently 

[Schmitt 1983]. Implicit here is the assumption (usually justified) that the key can 
be treated as a single-precision real number. (This has the unexpected result that 

the floating-point performance of the underlying machine then becomes an issue!) 

Just as the success of Quicksort has inspired many variations, so has the success of 

distributive partitioning engendered variations, usually in combination with one or 

more comparison-based techniques (see Section 13.2.4). 
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13.2.3 Theoretical Considerations 

We have now encountered several sorting methods that are 0(n2), and several others 
that are 0{n lg n). Implicit throughout has been the contention that sorting is 
Q(n lg n). In this section, our first order of business is to demonstrate the true sense 
of this implied statement. The result will be a lower bound on the number of 
comparisons needed to sort n items. The existence of such a lower bound confers 
no guarantee that a sorting method conforming to it exists, or that we can find it if 
it does. So we will follow the presentation of the lower bound with two sections 
wherein we look at methods and results that approach the lower bound in practice. 

(a) Insertion Sort Comparisons 

(b) Selection Sort Comparisons 

Figure 13.16 Sort Comparison Trees 

A useful manner of depicting sorting by comparisons is via a decision tree. In 
this tree, a node with a label a:b represents the comparison of two items, with the 
left branch corresponding to the outcome a < b, and the right branch corresponding 
to the outcome a > b. We have seen decision trees before, in Figure 6.24 of Section 
6.6.3, and in Figure 8.12 of Section 8.2.4. Nodes in the present decision trees have 
just two outcomes rather than three. However, we can increase our understanding 
by allowing for the realistic case a < b rather than just a < b. The tree of Figure 
13.16(a) depicts the comparisons made by insertion sort in ranking three elements 
a,b,c. The effect of the tree is to “unwind” the loops of the algorithm and show 
each comparison explicitly. In interpreting a comparison tree such as this, it is 
important to realize that the labels are associated with the items and not the 
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locations, although the sorting method may cause items to be moved as a result of a 
comparison. For example, if a > b, then the insertion sort algorithm will cause the 
sequence at the node on the right branch from the root to become b a c. 

Figure 13.16(b) depicts the tree of comparisons made by selection sort for the 
same input. Note that this tree contains two extra comparisons and two leaves 
marked as X, to denote impossible outcomes; their occurrence reflects that 
selection sort is an oblivious technique. For either tree in Figure 13.16, there are 6 
possible leaves, or outcomes, corresponding to the 3! input permutations. In 
general, for any such decision tree on n inputs, there must be n\ leaves. We also 
know from Section 10.1.2 that the minimum, height for a binary tree with x leaves is 
L lg x. Accordingly, our decision tree with n\ leaves has a minimum height of 
L lg (n!). By observing that 

n< > n(n-!)(*-2)... 2 (13.7) 

we then obtain lg («!) > («/2) lg (n/2), or lg («!) = Q(n lg n). In other words, no 
method of sorting n items can discriminate among the n\ possible orderings in less 
than Q(« lg ri) comparisons. By using Stirling’s formula for n\, we obtain a more 
precise value for the Information Theoretic Bound 

L(n) = Tig («!) = n lg n — n + 0.5 lg n + 0(1) 
In 2 & (13.8) 

= n lg n — 1.443« + 0(lg n) 

on the minimum number of comparisons L(n) to sort n items. 

fl3.2.3.1 Sort Optimality. The Information Theoretic Bound L(n) yields a mini¬ 
mum value for the maximum number of comparisons required to sort n items in the 
worst case. That still leaves us with the task of finding a sequence of comparisons 
that has this minimax property; the redundant comparisons in Figure 13.16(b) read¬ 
ily suggest how an injudicious sorting method could far exceed the bound. We have 
already alluded to a technique that focuses upon comparisons, downplaying other 
considerations, and that is the binary insertion method (see Section 13.2.1.1). Let 
us see how well this method performs for n = 6. It is fairly easy to see that the 
maximum number of comparisons in building an ordered sequence with successive 
lengths 2, 3,4, 5, 6 is 1,2, 2, 3, 3 - for a worst case total of 11 compares. But 
L(6) = 10. In general, the maximum value for binary insertion is given by 

n 

Bin) = ^ Tig k = n Tig n - 2rlg " + 1 (13.9) 

k= 1 

Except for n < 5, B(n) is always in excess of L(n), and the excess grows steadily. 

However, it is possible to sort 6 elements with a maximum of 10 comparisons. 
To do so, we first make three pairwise comparisons, leading to the digraph depicted 
in Figure 13.17(a). In this and subsequent digraphs the relation x <y is denoted by 
placing x to the left of y, and so the arrows can be omitted. The second step is to 
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(c) (d) 

Figure 13.17 Minimum Sorting for n = 6 

sort the top three elements with a maximum of three comparisons, leading to. the 
(possibly relabeled) configuration shown in (b) of the figure. The final step of 
merging c and e into the sequence a, b, d,f is the crucial one. If we first insert c, 
then we will require a maximum of two comparisons and obtain one of the three 
configurations shown in (c) of the figure, leaving e to be inserted with a maximum 
of three comparisons. The three steps then total 3 + 3 + 5 = 11. It is better to first 
insert e. This requires exactly two comparisons and leads to one of the four config¬ 
urations depicted in (d) of the figure; in either event, the element c can then be 
inserted with two more comparisons. Altogether, the three steps establish that 
L(6) = 3+ 3+4= 10. 

The method just described can be extended recursively to handle any number of 
elements; it is known as the Ford-Johnson algorithm [Ford and Johnson 1959], and 
also as merge insertion. As an example, suppose that we wish to sort 17 elements by 
this method. We first make 8 pairwise comparisons to obtain eight pairs 6, < ah 
leaving the odd element as b9; next we apply the method recursively to the ah arriv¬ 
ing at the situation represented by the graph of Figure 13.18(a). As in the case of 
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Figure 13.17, we now merge the remaining bt into the sorted chain bxax.. a8 in such a 
manner as to maximize the efficiency of the binary search at each stage — by caus¬ 
ing the number of relevant items in the chain to be 2* — 1, or somewhat less. 
Figure 13.18(b) shows the appropriate order of insertion, and also the number of 
comparisons, in parentheses, for each b(. The total number of comparisons is 8 for 
the first step, 16 for the second (recursive) step, and evidently 26 for the third step, 
for 50 altogether. By contrast, 5(17) = 54, and L(17) = 49. 

3i 32 83 S4 85 36 87 dg 

61 £>2 bg £>4 £>5 £>6 £>7 £>8 69 

(a) Sorted Chain b\, a-i, ••• a8 

3-1 82 33 84 85 36 37 38 

£>2 63 £>4 £>5 £>6 by £>8 69 

2 1 4 3 8 7 6 5 

(2) (2) (3) (3) (4) (4) (4) (4) 

(b) Inserting b’s with a’s 

Figure 13.18 Merge Insertion 

The insertion order sequence follows the pattern b3, b2; b5, 64; bn, bl0,..., Z>6;.... 
By characterizing it more precisely (see Exercise 13.19), it is possible to show that 

the number of comparisons in merge insertion is given by 

FM = |>g(^) (1310) 
k.— 1 

= n lg n — c(n) n + 0(lg n) 

where 1.329 < c{n) < 1.415. It is interesting to study the values of Lin), F(n), and 
B[n) for n from 2 to 22, as recorded in Table 13.1. It has been shown that 
F{n) > L{n) for all n > 22 [Hwang and Lin 1969]. Nonetheless, Eq. 13.10 is so 
close to the Information Theoretic Bound of Eq. 13.8 that we have to wonder 
whether merge insertion is the best attainable method, or if there exists a better 
minimax method for some values of n. In fact, the Ford-Johnson algorithm misses 

being optimal for infinitely many n > 189 [Manacher 1979]. 

The minimax behavior that we have just studied is often of less concern than an 
examination of minimean behavior - that is, measuring the average number of 
comparisons of various algorithms over all inputs, and trying to find a particular 
algorithm that minimizes this average. This is a potentially harder problem in that 
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it may require a knowledge of the probability distribution for various inputs. 
Assuming that all permutations of an input sequence are equally likely, however, we 
find that the problem is actually a familiar one. We wish to find a sorting method 
that guarantees that all leaves of the comparison tree lie on two adjacent levels, 
thereby minimizing the external path length (see Section 10.1.2). For n < 6, merge 
insertion is minimean optimal, as well as minimax optimal; for n — 6, although the 
process of Figure 13.17 is minimax optimal, it is not minimean optimal. The 
discovery of a method that is minimean optimal for n — 6, and no worse than mini¬ 
max optimal, is left as an exercise (see Exercise 13.17). For large n, it has been 
speculated that a minimean solution may fail to be a minimax solution. 

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

L(n) 1 3 5 7 10 13 16 19 22 26 29 33 37 41 45 49 53 57 62 66 70 

F(n) 1 3 5 7 10 13 16 19 22 26 30 34 38 42 46 50 54 58 62 66 71 

B(n) 1 3 5 8 11 14 17 21 25 29 33 37 41 45 49 54 59 64 69 74 79 

Table 13.1 Values of L(n), F(n), B(n) 

fl3.2.3.2 Merge Optimality. The circumstances of merging — that it operates 
upon two files already in sequence, and that it is so fundamental to sorting when n 
is large — single it out for special analysis. To dispel possible confusion, recall the 
distinction between linear merging (Algorithm 13.7) and merge-sorting (Algorithm 
13.8), where the former is implicitly a basic step in the latter process. We have seen 
that the maximum number of comparisons in merging two ordered files 
U: ux, w2,..., u„ and V: vl5 v2,..., vm is given by n + m — 1. Denoting by M(n,m) the 
number of comparisons for any optimal, alternative merging method, then evidently 
M{n,m) <n + m — 1. But suppose that m= 1. Then it requires just Tig [n + 1) 
comparisons to merge the solitary item with the other file, and so M(n, 1) is much 
less than what can be obtained via linear merging. Perhaps information theory can 
guide us here, as it did in the discussion of sort optimality. In merging U with n 
elements and V with m elements, there are C(n + m,m) possible outcomes, corre¬ 
sponding to the m ways in which the v,- can be placed in the output file of size 
n + m. For m = n, we find that M{n,m) > lg C(n + m,m) = 2n — 0.5 lg n + 0(1), 
from application of Eq. 13.8. Which is more accurate - the upper bound of 2n — 1 
from linear merging, or the lower bound of 2n — 0.5 lg n from information theory? 

The answer to this question is that M(n,n) =2n — 1. For m = n, the Informa¬ 
tion Theoretic Bound is weak, and linear merging is actually optimal. To see why 
no fewer comparisons will suffice in the worst case, let the two sequences U and V 
be chosen such that ut < Vj whenever i < j and w, > v, whenever i > j. Then the 
output sequence must be ul<vl<u2<v2< - <un< v„. Moreover, each of the 
2n — 1 comparisons ux:v1? vx\u2, u2:v2, ... , un:v„ must have been made. Without 
comparing vx:u2, for example, the above sequence would be indistinguishable from 
ux < u2 < Vj < v2 < - <un< vn. And without comparing u2:v2, it would be indistin¬ 
guishable from ux < Vj < v2 < u2 < - <un< v„. 
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V u 

^ m ^ 1 

(a) Before Merging 

V U W 

(b) During Merging 

(c) After Merging 

Figure 13.19 Merging (n + m) Items in (n + 2m) Space, n > m 

From the optimality of binary insertion when m — 1 and the optimality of linear 
merging when m = n, we are led to the Hwang-Lin algorithm [Hwang and Lin 
1972], also known as binary merging, which combines the best features of these two 
approaches. Suppose that we wish to merge file U with n elements and file V with 
m elements, where n>m. Binary merge is usually programmed to examine the two 
input files from right to left and write the output file in the same direction. With 
this technique, we are able to use the diminishing values of n and m to keep track of 
the unprocessed portions of U and V. Moreover, if m is much less than n, we can 
obtain significant efficiency of space by using the technique illustrated in Figure 
13.19, thereby performing the merge in a total of n + 2m space. The rationale of 
binary merge is to partition U into m + 1 segments of about L{n/m) elements each, 
and to compare vm with up, which is chosen to be the last element of the next-to-last 

segment of U. As a result of the comparison, 

• If up > vm, then the elements up .. un are written out, and the method resumes 

with v, .. vm and ux .. up_x. 
• If up < vm, then binary search (requiring an additional t comparisons) is used to 

find the largest index q such that uq < vm; the values vm, uq+l.. un are written out; 

and the method resumes with v, .. vm_, and ux.. uq. 

To optimize the efficiency of binary search in the second of these two cases, we 
choose t = Llg (n/m), and then p = n + 1-2', causing the size of the last segment of 

U to be 2‘ — 1. 
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We will illustrate these matters for the case n — 35 and m = 5. Rather than 
portray actual input values, we will simply make arbitrary decisions as to the 
outcome of each comparison step, and thus the consequent action. Figure 13.20 
describes the sequence of events, showing for each step the values of m, n, t, p, and 
the output values, and also the value of q if it is relevant. It is easy to see that for 
this example there are 8 comparisons made by the main loop and a total of 11 
comparisons made in the binary search, for a total of 19 comparisons altogether. 
Linear merge, on the other hand, would require about twice as many comparisons. 

n m f P Compare q Output 

35 5 2 32 
U32 > ^5 U32 - U35 

31 5 2 28 
U28 < V5 

30 
^5 “31 

30 4 2 27 
“27 < 27 

^4 U28 ‘ ‘ U30 

27 3 3 20 
U20 < V3 

23 V3 U2A '' U27 

23 2 3 16 
“16 > ^2 U-\6 ■■ U23 

15 2 2 12 
U12 < ^2 

15 
V2 

15 1 3 8 
U8>V1 U8 - “ 15 

7 1 2 4 5 V1 U6 U7 

5 0 “i “5 

Figure 13.20 Binary Merging Example 

Let us denote the complexity of binary merge as H(n,m). Then we can see that 
it satisfies the recurrence equation 

H(n,m) = max{H(n — 2t,m) + 1, H(n,m — 1) + t + l) (13.11) 

reflecting the two possible outcomes of each comparison, and assuming the worst- 
case eventuality that binary search will alway terminate with q — n. The solution of 
Eq. 13.11 is 

H(n,m) = m + - 1 + mt (13.12) 

where t= Llg (n\m). It is straightforward to see that for m= 1, Eq. 13.12 yields 
H(n, 1) = Tig (n + 1), which is the same as the best performance via ordinary binary 
insertion. Likewise, it is straightforward to see that for m = n, Eq. 13.12 yields 
H(n,n) =2n — 1, which is the same as the best performance via linear merging. The 
Hwang-Lin algorithm does indeed capture the best aspects of the two more basic 
methods. It also works well for intermediate values of m, although it is not always 
optimal. We should note that when m and n are close in value, then the roles of 
“smaller” and “larger” may oscillate between the two files U and V. So each step 
of binary merging should begin by comparing m and n to determine the sense of the 
merging logic. 

As we have said, binary merging is not always optimal. The determination of 
the optimal values M(n,m) is a difficult problem in the general case. It is fairly easy 
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to extend the result that =2m-l to show that M(m + l,m) = 2m. This 
can also be generalized to show that M(m + d,m) = 2m + d - 1 whenever 
m<n< L(3m/2) + 1, so that linear merge is optimal over a large range of d 
[Stockmeyer and Yao 1980]. At the other extreme — that is, the determination of 
M(n,d) for small values of d — only isolated results are known. 

13.2.4 Translating Theory into Practice 

The difficulty of finding the best sorting algorithm for all situations can be better 
appreciated when we step back to list some of the qualities that it ought have: 

• It should have good average performance and good worst-case performance. 
• It should be stable. 
• It should use minimum storage. 

There is also another less obvious quality: 

• It should respond with better performance to inputs that have a measure of 
pre-sortedness, with the complexity improving from 0(n lg n) to 0(n) as we go 
from random input to input that has a high degree of pre-sortedness. 

This last issue can be very influential in evaluating different methods. 

Since the answers that we obtain about these concerns will vary considerably 
with the yardstick used for measuring order, we need to say a little about various 
measures. The one that we have used most frequently is the number of inversions. 
If we consider an input such as 

n + 1, n + 2,..., 2n, 1, 2,..., n 

its measure is 0(n2). Yet this sequence is intuitively nearly sorted, and in fact can 
easily be put in order via merging. So inversions have shortcomings as a measure. 
Since runs provide a good measure for natural merging, are they appropriate in 
general? Once again we find a counter-example, as demonstrated by 

2, 1,4, 3,... ,n,n- 1 

which has O(n) runs. Yet this sequence is easily placed in order via insertion sort in 

just O(n) time. 

Still another possible measure is the minimum number of compound delete- 
insert operations required to sort a sequence. This number, in turn, is equal to n 
minus the length of the longest ascending subsequence (LAS) in the sequence. For 

our example data 

33 41 7 15 55 87 28 22 9 46 32 

the longest ascending subsequences are all of length 4 (for example, 7 15 28 32); in 
other words, 11 -4 = 7 such compound operations would be required. Unfortu¬ 
nately, the realization of an efficient sorting method based upon this measure is 
another matter. There are also some other less common measures [Manilla 1985], 
but let us instead return to the central issue of choosing among sorting methods. 
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If we look at comparison-based methods pragmatically, some of the highlights 

are as follows: 

• Insertion sort is one of the simplest (thereby having an excellent constant 
factor), and it is particularly appropriate whenever the input has relatively few 

inversions. It is also stable. 

• Heapsort has 0(n lg n) complexity in both the average and the worst case; 
however, it is not stable and it tends to be only half as fast as Quicksort. 

• Quicksort is one of the two methods more commonly preferred, primarily 
because of its speed. This is counterbalanced by its 0(n2) worst-case complexity 
and its lack of stability. Since it is the winner in terms of raw, average speed, it 
has been the target of numerous attempts (not always successful) at improve¬ 
ment. These attempts have focused on making it even faster, making it stable, 

overcoming its worst-case complexity, etc. [§]. 

• Merging is the other of the two methods more commonly preferred. Although 
not quite as fast as Quicksort, it has the advantages of stability and of 0{n lg n) 
complexity in both the average and worst case. Straight merging is usually not 
as good as natural merging because it does not capitalize on pre-sortedness. A 
recommended technique, in fact, is to convert Algorithm 13.8 so that it does 
natural merge. The inferior features of merging are the amount of space 
required and the amount of data movement. One proposal for merging with 
reduced data movement suggests using balanced trees, of either the AVL or 2-3 
variety [Brown and Tarjan 1979]. 

On the theoretical side, some of the more important insights are those concern¬ 
ing pre-sortedness, cited earlier. From Section 13.2.3, the Ford-Johnson and 
Hwang-Lin algorithms are concerned with minimizing comparisons, which they do 
admirably. They are not equally good with respect to data movement, however, 
and we know that this is a significant part of the cost of sorting. Historically, the 
Hwang-Lin algorithm was designed for external sorting with tapes. For this, it does 
have practical significance, since the issues of space and data movement are then 
absorbed within the larger paradigm. 

The distributive methods are in a special category, of course, since they are not 
restricted by the Information Theoretic Bound. The simplest distributive method is 
radix sort, which clearly merits consideration when the keys are short. The more 
general question is, “With arbitrary keys, should one aim for an 0(n) sort via 
distributive partitioning?” As we have seen, this approach requires more space, and 
there is also the hazard of getting an 0(n2) result if the chosen algorithm fails to 
cope with a particular input distribution. 

In the final analysis, if the sorting requirement is large, it may be worthwhile to 
go to the trouble of implementing a hybrid sorting method that couples two or more 
methods. We have seen this idea before - for example, in coupling Quicksort with 
a final insertion sort, and in one of the variants of radix sorting. A particularly 
common idea is to combine distributive partitioning with a comparison-based 
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method. The goal is to dispense with the median-finding process, and yet to attain 
0(n) expected complexity and 0(n lg n) worst-case complexity [§]. 

fl3.3 SELECTION 

We all know, in computing or in real life, how to effectively identify the item or 
person that wins a contest. Techniques for properly identifying runners-up are 
much less well known. For instance, in the typical situation that the winner has 
been determined by a randomly composed tournament of comparisons, the second 
best is very likely not the one who lost to the winner on the final round. Half of the 
time, the second best will have been eliminated by the winner in an earlier round of 
the tournament. This is the reason for seeding top-rated players in sports contests, 
thereby making it highly likely that the best players will reach the finals. 

The problem of finding the second best was discussed earlier, and it can be 
done in 0(n 4- lg n) time (see Exercise 4.19). What about the more general problem 
of finding the kth best? One possibility is to sort all the items and then simply 
extract the kth best, but this approach requires 0(n lg n) work, most of which is 
wasted in the general case. For small, constant values of k, either of the selection 
sorts, SELECT,SORT or HEAPSORT, will do the job simply and efficiently. We 
can simply insert a test to terminate after the kth iteration. With HEAPSORT, we 
do not even require that k be a constant. As long as k < (n / lg n), then we can 
build the heap in 0(n) time and select the k smallest elements in 
0{n + k\gn) = 0(n) time. It should be apparent that, by symmetry, all of the 
remarks in this paragraph apply equally well to finding the (n — k + l)th element. 
The most difficult case occurs for k = T(«/2), which corresponds to the median. 

The major result that we will develop in this section is that, in fact, there are 
0(n) algorithms for all of these selection problems. But either they are somewhat 
complicated and/or they have large constant factors. So first let us look at a very 
pretty technique discovered by Hadian and Sobel [1969], We begin by making a 
tournament of n — k + 2 items, using n-k+l comparisons. Since the largest item 
is greater than n — k + 1 others, it cannot be the kth largest. So for each of the 
remaining k - 2 items, we replace the largest item in the tournament and recompute 
the tournament, using Tig (n — k + 2) comparisons. We then finish off by finding 
the desired item as the second largest item in the final tournament. Adding up all 

of these leads to 

Vk{n) <n - k + (k - 1) Tig {n - k + 2) (13.13) 

as a minimax bound Vk(n) on the cost for finding the kth largest of n items. Note 
that we were careful to employ a tournament rather than a heap, since we were 
anxious to get precise upper bounds on the number of comparisons. The values 
predicted by this construction are optimal for small values of k and n; a few such 

values are shown in Table 13.2. 

In the two preceding paragraphs, we have described first some practical 
approaches to solving the selection problem and then a more theoretical approach. 
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n Vfn) Vfn) V3(n) Vfn) V5(n) V6(n) 

2 1 1 
3 2 3 2 
4 3 4 4 3 
5 4 6 6 6 4 

6 5 7 8 8 7 5 

Table 13.2 Values of Vk(n) 

Is there anything to add to the story? There is, and it begins with Quicksort. 

Suppose that we are looking for the kth smallest element. Then let us apply Quick¬ 

sort, with the result that the partitioning value winds up in the y'th location. If 

k = j, we are done; if k < j, we should look in the left partition; and if k > j, we 

should look in the right partition [Hoare 1971]. It is that simple! Moreover, since 

we use just one of the two partitions each time, there is no longer any need to 

employ either recursion or a stack. It can be shown that this method has average 

complexity 0(n) (see Exercise 13.26). Unfortunately, the example of trying to find 

the smallest item from input such as n, 1, 2,..., n — 1 shows that it has 0{n2) worst- 

case complexity, just as with ordinary Quicksort. 

Let us now concentrate upon the case of finding the median. The Quicksort 

variation is linear on the average, but quadratic in the worst case. The Hadian-So- 

bel method is close to optimal for small values of k, but we can see that it requires 

Oi'An lg n) comparisons for finding the median. Thus, we can appreciate the signif¬ 

icance of more recent methods that compute the median (or any other kth best 

value) with worst-case linear complexity. The idea is to choose a partitioning 

element for the Quicksort variation in such a manner that the two partitions cannot 

be degenerate, thus guaranteeing linear performance. To do this, we first pick some 

small, odd number r and then divide the original sequence of items into 2*7+1 

groups, each containing r items apiece (inserting dummy items if required). The 

second step is to sort each of the 2q + 1 small groups to find their medians. 

Thirdly, we make a recursive application of this entire method to the set of medi¬ 

ans, thereby discovering the median of medians, mm. At this point we have the 

situation depicted in Figure 13.21 for the case r = 7. In this figure the open circles 

denote the medians, and the open square denotes the median of medians. The 

points other than mm fall into four regions A,B,C,D with: 

4*7 + 3 items that must be greater than mm in region B 

4*7 + 3 items that must be less than mm in region C 

6q items with unknown relationship to mm in regions A and D 

In our Quicksort variation we now choose mm as the partitioning element, and then 

recursively continue the search in regions A,B,D or in regions A,C,D. In either 

event, we are left with no more than (10<7 + 4)/(14<7 + 7) < 5/7 of the original items 
that need to be searched. 
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Increasing Order- 

Medians 

Figure 13.21 The Median of Medians Construction 

We will now show that this process never requires more than 20n comparisons, 
so that we indeed have a linear algorithm for selection. The bookkeeping to estab¬ 

lish this must include the comparisons for: 

(a) the sorting of the 2*7+1 small groups; 

(b) the recursive sorting of the «/7 medians to find the median of medians; 

(c) the partitioning of the original data about mm; 

(d) the recursive sorting of the 5«/7 (maximum) items in the relevent partition. 

For (a) we know from Table 13.1 that r = 7 items can be sorted with 13 compar¬ 
isons; thus, all the groups can be sorted in 13«/7 comparisons.. For (b) we can find 
the median of medians in 20n/7 comparisons, by our inductive hypothesis. The 
partitioning (c) can trivially be performed in n comparisons. And finally, applying 
our hypothesis again, the sort of the smaller set of items can be accomplished in 
100rt/7 comparisons. Adding these gives us a total of (13 + 20 + 7 + 100)n/7 = 20n 

comparisons, as promised! 

The accounting in our demonstration was very loose in order to make the expo¬ 
sition easier. We also neglected the possibility that there may be repeated data 
items. Improvements for the purposes of handling duplicate values and of attaining 
better bounds are left as exercises (see Exercises 13.27 and 13.28). The best bound 
in the original version of this technique was 5.43« comparisons [Blum et al. 1973]; 
this was subsequently improved to about 3n comparisons [Schonhage et al. 1976]. 

Both of the cited constructions have high constant factors. More useful is a method 
based upon sampling; although not guaranteed to be linear in all cases, it works 

very well in practice [Floyd and Rivest 1975]. 
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13.4 EXTERNAL SORTING 

In many real-life applications that require sorting, the number of items far exceeds 

the capacity of primary memory, and so it becomes imperative to employ sorting 

methods that make efficient use of secondary memory - that is, tapes or disks - 

to accomplish the process. We have seen, in Chapter 12, that a dominating concern 

in using these devices efficiently is to minimize the number of separate accesses that 

are required. Also, both of these storage mediums have a physical structure that 

causes certain accessing behaviors to be strongly preferred — sequential access in 

the case of tapes, and minimal number of seek operations with disks. The weight of 

all of these considerations will now cause us to completely revise some opinions 

derived in the case of internal sorting. 

The usual paradigm of external sorting is first to construct sorted initial runs by 

employing familiar sorting techniques in internal memory, and then to complete the 

sort by successively merging these into larger and larger runs. At the outset, one 

might question the necessity of these basic assumptions. With virtual memory, we 

might simply apply one of the techniques already studied, and hope for the best. 

This is not a completely ridiculous idea if the number of items is only moderately 

large, and it is worth considering briefly. The most important issue is that the 

pattern of references to the data should have a high degree of locality. Thus, Shell- 

sort or a distributive sort would be very poor in this regard. However, one of the 

best methods for internal sorting, Quicksort, is also very good with respect to local¬ 

ity. Quicksort with virtual memory (or Quicksort applied directly to data in 

secondary memory) is just barely feasible for moderately large values of n [Brawn et 

al. 1970]; however, it does not compare favorably with the better variations of the 

sort-merge paradigm, particularly as n increases. Moreover, its worst-case 0(n2) 
behavior is intolerable in this context. 

It is very typical in large sorting applications for the records to be big. It might 

seem particularly appropriate, therefore, to use a key sort (see Section 13.1). 

Appearances can be deceiving though. The use of an address table with a large 

amount of data can usurp a significant amount of primary memory better used for 

the original data. And paradoxically, even though it may be possible to sort the 

keys very fast, the final pattern of secondary accesses to rearrange the records in 

order may lead to a total performance far worse than would occur without key sort 
[Hubbard 1963]! 

Our first concern in the succeeding sections is to explain multiway merging, the 

basic version of the sort-merge paradigm. Subsequent sections explore various 

avenues for improving this basic approach - first by obtaining better initial runs, 

then by employing more sophisticated merge patterns that take into account the 
idiosyncrasies of secondary memory devices. 
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13.4.1 Multiway Merging 

Most of the early invention with regard to external sorting was directed toward effi¬ 
cient uses of tapes, since they were by far the more prevalent medium when these 
problems were first confronted. The subsequent prevalence of disks does not render 
these ideas irrelevant, since we know that it is often useful to employ a disk as a 
sequential access device. Thus, although our discussion in this and the next two 
sections is in terms of the number t of tapes employed as input — or the order of 
merge, t - much of it is relevant for disks also, and we will tidy up matters in 
Section 13.4.3.2. Suppose that we have four tapes 71, 72, 73, 74, and that 74 
contains r runs, where r = 57. We will also assume for now that all the runs have 
the same length m; that is, the total number of items to be merged is n = m x r. 
One possibility is to first distribute the runs as evenly as possible from 74 to 71, 
72, 73; then merge the runs from 71, 72, 73 back to 74; then distribute the new 
runs of length 3m back to 71, 72, 73; etc. Four distributions and four merges are 
plainly sufficient to complete the process, since the number of distinct runs is 
reduced by a factor of three each time, and [ log3 57 = 4. Altogether, we have 
made 8 passes (read/write operations) over each item, although the distributions 
seem to contribute less to the solution than the merges. It is convenient to depict 
this pattern of activity as in Figure 13.22, where successive lines show the contents 
of 71, 72, 73, 74 at successive stages of the merging operation. The meaning of an 
entry such as 9631 for 74 is that 74 currently contains 6 runs of length 9m and 1 run 

of length 3m. 

71 72 73 74 

_ — — 157 

119 I19 I19 — 

— — — 319 

37 36 36 - 

— — — 96 31 

92 31 92 92 - 

— — - 272 31 

271 271 31 - ’ 

- — — 571 

Figure 13.22 Merging with 3 Input and 1 Output Tapes 

We can employ the same four tapes more usefully in a balanced merge, wherein 
there are always the same number of tapes for input and for output, with their roles 
being alternated. Suppose that we have the same initial runs on 74, and that we 
begin by distributing them to 71, 72. Then the first runs from 71, 72 are merged 
and written on 73; the second runs from 71, 72 are merged and written on 74; 
and this alternation to 73, 74 continues. When the input on 71, 72 is exhausted, 
then 73, 74 become the input tapes and 71, 72 become the output tapes; when the 
input on 73, 74 is exhausted, the roles are switched again; etc. After the initial 
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n 72 73 74 

_ — — I57 
f29 I28 — — 

— 214 I1 214 

47 I1 47 — - 

— — 84 83-!1 

162 161 91 — - 

— - 321 251 

571 — — — ! 

Figure 13.23 Balanced 2-way Merging 

distribution, six merging phases are plainly sufficient to complete the process, since 

the number of distinct runs is reduced by a factor two each time, and T log2 57 = 6. 

Figure 13.23 depicts the pattern of merging activity in this case. Although there are 

more merges than before, we have eliminated the useless copying, and the total of 7 

passes is a distinct improvement over the previous 8. Actually, by rotating which 

tape receives the output and by copying just 2/3 of the items from the output tape 

each time, we could have improved the 3-way merging scheme to the point that it 

outperformed this balanced 2-way merging scheme. But for 21 tapes, where t > 3, 

balanced merging will always be the better alternative. 

Although simple, these two examples convey several important points. First, 

we are led to compare the efficiency of various merging schemes in terms of the 

total number of passes over the data. Secondly, if there are n items and they are in 

initial runs of size m, then balanced multiway merging with It tapes requires 

T log, (w/m) passes. In looking for better ways to accomplish merging, one obvious 

approach is to use larger values of t, and another is to start with larger values of m 

— in other words, larger initial runs. In fact, we will find that sophisticated merg¬ 

ing patterns overcome the apparent dilemma encountered in this section — that we 

must settle for either wasteful copying (Figure 13.22) or reducing the order of merge 

(Figure 13.23). 

f 13.4.1.1 Buffer Management. The multiway merging scheme that we have just 

examined is a combination of input, trivial computation, and output. We have 

stressed that for efficiency, it is important to minimize the number of distinct 

accesses. There is more to it than that. While an input buffer is being filled, no 

computation can safely be performed with its contents. Therefore, it is conventional 

to use double buffering, wherein the contents of buffer A are available for use while 

buffer B is being filled with the next block of data from the input. As long as 

buffer B is filled and ready when the computation finishes with buffer A, then their 

roles can be switched with no loss in time. Similar remarks apply to the use of 

output buffers and to the use of pairs of buffers for multiple input streams. Thus, 
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(a) 

1 5 6 11 12 14 15 16 

2 3 4 7 8 9 10 13 

Figure 13.24 The Insufficiency of Paired Buffers 

for multiway merging of order t, one would want 2 buffers for each input and 2 

buffers for output, for a total of 21 + 2. 

However, simply having It + 2 buffers allocated in pairs is not a good enough 

strategy. The merging process should, at any time, be able to find m items to fill 

the next output buffer, and should not have to wait for an input buffer to be filled 

in order to do so. The example in Figure 13.24 demonstrates that, in fact, this may 

not be possible if the 21 input buffers are simply assigned in pairs to the t inputs. In 

(a) of the figure we see the contents of input tapes U and V, in blocks of size two. 

The remainder of the figure traces the double buffering activity, with buffers A and 

C dedicated to tape U and buffers B and D dedicated to tape V. Of course, double 

buffering would also be used for the output buffers for tape W, but we disregard 

this and simply show the output blocks. As we follow the progress of the merging 

activity, we observe 

(b) initial loading of buffers A and B from U and V; 

(c) loading of buffers C and D from U and V; 

(d) emptying of buffer B; 

(e) emptying of buffer A and reloading of buffer B from V; 

(f) emptying of buffer D and reloading of buffer A from U. 
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Now the merging process is delayed because the next block is needed from tape V, 

however, this must be loaded into buffer D, which was just depleted on this step 

and will not be reloaded until the next step. 

There is a resolution for this type of situation, and that is to anticipate which of 

the active input buffers will be the first to be depleted. In the technique ot forecast¬ 

ing, one simply looks at the last items in these buffers, and deduces from the 

smallest of those values which input will first need replenishing. With this method 

the pool of 21 buffers becomes a set of floating buffers, with many of them possibly 

being assigned to a single input for some interval. Suppose that this policy were in 

effect upon reaching the state toward the bottom of Figure 13.24. Then, upon 

comparing the 9 in buffer B with the 11 in buffer C, the next input would have been 

directed from tape V to the available buffer A, thereby avoiding the delay. 

14 

28 38 40 35 

(a) Initial Heap 

23 

34 38 40 35 

(b) replace (a) with 34 

27 

34 38 40 35 

(c) replace (b) with 31 

Figure 13.25 The Heap replace Operation 
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13.4.2 Replacement Selection 

Suppose that we have space in primary memory for a buffer of size m, to be used 

for producing initial runs. The obvious approach is to repeatedly (a) fill the buffer 

with the next m items, (b) sort them with some efficient method from Section 13.2, 

and (c) write out the run of length m. A much better scheme is to use the buffer as 

a heap, along with a new priority queue operation: 

replace(pq,min,next) — to remove the smallest item from pq, assigning it to min, 
and to insert next in pq, restoring the heap property as 

required. 

In illustration of the replace operation, suppose that we have the heap shown in 

Figure 13.25(a), with m — 1. Output of 14 and input of 34 leads to the situation 

shown in (b) of the figure; output of 23 and input of 31 leads to the situation 

shown in (c); etc. 

Let us now assume that m = 4, and use this operation with the input sequence 

shown in Figure 13.26(a), in the technique known as replacement selection. In 

generating runs, as shown in (b) of the figure, we repeatedly select the smallest of 
the current items in the buffer. The underlying mechanism for this is, of course, the 

heap strategy of Figure 13.25;4 however, for long records it would probably be pref¬ 

erable to use a level of indirection, storing pointers in the heap rather than the 
actual records. Also, we must not select any item from the buffer if it is smaller 

than the last value that has been output in the current run. Items in this category 

(marked with *’s in the figure) are ineligible for the current run, and must wait for 

the next run. This requirement is easily implemented by keeping track of the 
current run number; keys of eligible items are then prefixed with the current run 

number, and keys of ineligible items are prefixed with the next run number. 

We observe from Figure 13.26 that although the buffer size is four, the lengths 

of the first two initial runs are six and nine. There is nothing particularly contrived 

about this example. It is in the nature of replacement selection that, for random 

input, it generates initial runs with an average length of twice the buffer size. The 

practical results are even better than this theoretical value,. because it is fairly 

common for the input to be already partially sorted (see Section 13.2.4). In this 

event, the method will perform even better than predicted by theory, generating 

initial runs that may be much longer than 2m (see Exercise 13.31). All of this is 

important because, as we have seen in the preceding section, longer runs mean fewer 

runs, and this can shorten the merging phase. Another advantage of replacement 

selection is that it lends itself very well to overlapping of input, computation, and 

output. On the other hand, we should note two slight disadvantages. The runs 

produced are not of fixed length; neither can we divide the number of items n by a 

chosen buffer size m to obtain some known number of final runs r. Both of these 

matters may cause some inconvenience in the ensuing merge phase. 

4 Note that since our interest is in a good, convenient algorithm and not in precise counts 
of comparisons, we choose to use a heap rather than a tournament (see Section 13.3). 
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37 63 21 89 14 40 66 18 03 43 69 10 22 72 24 76 98 01 84 27 59 

(a) Input Sequence 

Buffer (m = 4) Output 

37 63 21 89 

37 63 14* 89 21 

40 63 14* 89 21 37 

66 63 14* 89 21 37 40 

66 18* 14* 89 21 37 40 63 

03* 18* 14* 89 21 37 40 63 66 

* C
O

 
o

 18* 14* 43* 21 37 40 63 66 89 

(First run completed) 

03 18 14 43 

69 18 14 43 03 

69 18 10* 43 03 14 

69 22 10* 43 03 14 18 

69 72 10* 43 03 14 18 22 

69 72 10* 24* 03 14 18 22 43 

76 72 10* 24* 03 14 18 22 43 69 

76 98 10* 24* 03 14 18 22 43 69 72 

01* 98 10* 24* 03 14 18 22 43 69 72 

01* 84* 10* 24* 03 14 18 22 43 69 72 

(Second run completed) 

01 84 10 24 

27 84 10 24 01 

27 84 59 24 01 10 

(b) Generating Initial Runs 

Figure 13.26 Replacement Selection 

13.4.3 Merge Patterns 

We will be examining patterns of merging in which intermediate runs of varying 

lengths are created. If at some point in this process we think of the existing sets of 

runs as leaves in a /-ary tree, then Huffman’s algorithm (see Section 8.2.4) suggests 

a simple and elegant solution to the problem of minimizing the amount of work 

required to merge them. That is, one would always combine at the deepest level of 

the tree the contents of those tapes containing the least amount of data. Unfortu¬ 

nately, this simple perspective ignores the idiosyncrasies of the two chief external 

mediums, tape and disk. These generate other concerns, as we will see in the 
following two sections. 
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113.4.3.1 Tape Sorting. To begin with, we cannot do f-way merging with tapes 

unless we have at least t + 1 of them — t for input and 1 for output. Thus, there is 
a pragmatic upper limit for any user who must depend upon the computing facilities 
available to him. A more fundamental fact about tapes is that they are efficient 
only when used as sequential access devices. In fact, the methods that we are 
describing use them as queues, but with a strong additional restriction - that the 
queue be completely filled before it is emptied.5 Moreover, after a tape is written, it 
must be rewound before it can be read, and this can take a significant portion of a 
minute. Therefore, it is important that successive merge passes leave their output 
on tape in such fashion that there be no waste tape motion, and that they deliver 
the most work per pass. Although balanced multiway merging is quite respectable, 
it is not optimal in this respect, as we will now see. 

Let us reconsider the same set of four tapes 71, 72, 73, 74 and the same set of 
57 runs that we discussed in Section 13.4.1. We found there that 3-way merging 
was inferior to balanced multiway merging because of the unproductive nature of 
the distributive, or copying, passes. Is there a more efficient way to employ 3-way 
merging, using those same four tapes? There is, and since we are by now familiar 
with the format established in Figures 13.22 and 13.23, the easiest recourse is to 
demonstrate the technique by a similar figure. In the method of polyphase merging 
depicted in Figure 13.27, we begin by distributing unequal numbers of runs from 74 
to 71, 72, 73. We then merge from 71, 72, 73 to 74 until 73 becomes empty, 
producing 13 runs of length 3m on 74; then 73 and 74 are rewound, and the next 
merge step produces 7 runs of length 5m on 73; etc. Note that we now have a fifth 
column in the figure, showing the amount of data that is processed at each step, as 
a fraction of the number of initial runs. There are altogether 7 merge steps in this 
example, the same as for multiway merging. In that case, however, each of the 57 
initial runs was processed 7 times; now those 57 runs have been processed an aver¬ 

age number of times equal to 

57 + 39 + 35 + 36 + 34 + 31 + 57 _^ ^ 

57 

The trick here is to wind up at the last step with exactly one run on each of 

input tapes, and then conclude with a t-way merge of these t runs for the final 
output. It was not just luck that we succeeded in this case. Rather, the value 57 is 

one of a series of numbers that are perfect for the purpose of doing polyphase 
merging with four tapes. We can rather easily discover what those numbers are by 

building a table backwards, as shown in Figure 13.28. In this scheme, we let 
a > b > c represent the numbers of runs on the non-empty tapes at successively 

higher levels. This condition implies that the largest number in a row must be the 
same as the smallest number in the next row, since a step must end when the tape 

with the smallest number of runs is depleted. In fact, we have this relation and two 

others, as follows: 

s There are also tape merging schemes that use tapes as stacks, by reading tape backward 
as well as forward. Although these have a slight advantage in some cases, we will not 

pursue them here. 
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71 72 73 74 File Fraction 

— — — I57 (Initial) 

I24 I20 I13 — 57/57 

I11 I7 - 313 39/57 

I4 - 57 36 35/57 
- 94 53 32 36/57 

172 92 51 - 34/37 

171 91 — 311 31/57 
— — 571 — 57/57 

Figure 13.27 Polyphase Merging for t = 4 

an cn+1 ’ bn an+\ an » cn ^n+1 an (13.14) 

from which we find that 

an - an-\ + an-2 + an-3 (13.15) 

with initial conditions ax = 1, a2 = 2, a3 — 4. In other words, this method will work 
with r = 9, 17, 31, 57, 105,.... The scheme can also be generalized for any number 
of tapes p + 1, yielding a p-way polyphase merge, for which the perfect initial values 
are the pth order Fibonacci numbers 

fip)_ /•(?) i fte) i fip) i i /-O7) 
Jn -Jn-\ +Jn-2+Jn-3 ^-V Jn-p (13.16) 

Some examples of these values for different values of p are shown in Table 13.3. 

Level a 5 c Total 

0 i 0 0 1 
1 i 1 i 3 
2 2 2 i 5 
3 4 3 2 9 
4 7 6 4 17 
5 13 11 7 31 
6 24 20 13 57 
7 44 37 24 105 

Figure 13.28 Perfect Polyphase Distributions for t = 4 

An obvious question at this point is what to do if the number of initial runs 
does not match one of the values in the desired column of Table 13.3. The easy 
answer is that we should insert a number of dummy runs equal to the difference. 
However, the issue of where they should be inserted is a more subtle one. To begin 
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Level P = 2 P = 3 II -u
 

P = 5 

C
D

 

II Q
. 

1 2 3 4 5 6 

2 3 5 7 9 11 

3 5 9 13 17 21 

4 8 17 25 33 41 

5 13 31 49 65 81 

6 21 57 94 129 161 

7 34 105 181 253 321 

8 55 193 349 497 636 

Table 13.3 pth Order Fibonacci Numbers 

with, we do not really need to insert the dummies; rather, we can just use counters 

to keep track of the numbers of these fictitious runs on each tape. Then we note 

that merging a dummy run with a real run amounts to copying, and that merging 

two dummy runs amounts to simply decrementing two counters. So there is much 

advantage in dividing the total number of required dummy runs equally (in some 

sense) among the tapes in the initial distribution. The details are more intricate 

than this simple observation suggests, with the surprising result that it is sometimes 

better to operate with more than the minimum number of dummy runs and passes 

[Shell 1971]! 

Figure 13.29 Cascade Merging for t = 5 
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We have alluded previously to two sources of wasted tape motion, copying and 
rewinding. Rewinding is actually much more of a culprit than is copying (see Exer¬ 
cise 13.29), and polyphase merging as we have described it still has this problem. In 
each merge step, in fact, the tape last depleted and the tape just filled both have to 
be rewound by sizeable amounts. There are variations of polyphase sorting that 
directly confront this issue. However, it is more instructive to examine briefly the 
pattern known as cascade merging. As with polyphase merging, we start with a 
perfect distribution of initial runs on the tapes. To illustrate this method, we will 
use five tapes rather than four; a viable distribution of initial runs in this case is 
30, 26, 19, 10. We see in the ensuing pattern, as shown in Figure 13.29, that a given 

merge step has sub-steps. In this case, for example, 

a first sub-step does 4-way merging from 71, 72, 73, 74 to 75 
a second sub-step does 3-way merging from 71, 72, 73 to 74 
a third sub-step does 2-way merging from 71, 72 to 73 
a final sub-step copies from 71 to 72 

The number of runs that are copied (marked with *’s) is so small as to be of little 

consequence. 

We see that this method employs merges of orders t, t— 1,... ,2 and that it 
always processes all of the runs on each step. This might seem to place it at a 
disadvantage compared to polyphase, which always does merges of order t and 
processes just a fraction of the runs at each step. Nonetheless, for t > 6, cascade 
merge is asymptotically superior to polyphase merge. The reason is that the tapes 
containing the most initial runs are written earlier in each step, and can then be 
rewound while the tapes with lesser numbers of runs are being written; thus, much 
of the rewind activity is overlapped with useful computation. 

f = 4 t = 6 t = 8 f = 10 

Balanced Merge, f/2 1.000 Ig r 0.631 Ig r 0.500 Ig r 0.431 Ig r 
Ordinary Merge, f — 1 1.262 Ig r 0.861 Ig r 0.712 Ig r 0.631 Ig r 
Polyphase Merge, t— 1 1.042 Ig r 0.598 Ig r 0.528 Ig r 0.509 Ig r 
Cascade Merge, t — 1 1.042 Ig r 0.622 Ig r 0.479 Ig r 0.407 Ig r 

Table 13.4 Asymptotic Numbers of Tape Passes 

Let us summarize this matter of merge patterns by tabulating their asymptotic 
behavior, in terms of fractional number of runs processed, for various values of t. 
We do this in Table 13.4 for balanced multiway merging, for multiway merging 
with copying, for polyphase merging, and for cascade merging. It is important to 
realize that these are asymptotic, theoretical numbers. In many computing environ¬ 
ments, for example, balanced multiway merge and polyphase merge may differ only 
slightly in their efficiency. Moreover, a fortuitous number of initial runs, or 
perhaps the characteristics of a particular device, can easily tip the balance. None¬ 
theless, when external sorting is a major activity, it is sensible to investigate 
alternatives such as these, with the possibility of saving substantial amounts of time. 
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fl3.4.3.2 Disk Sorting. Many of the limitations with tape do not apply with disks. 
One need not have t + 1 disks to do t-way merging; in fact, just two will suffice, 
one for the inputs and one for the output. Neither do we have to contend with 
rewinding. So there is much more flexibility in composing merge patterns, and one 
might be encouraged to employ large merge orders, thereby decreasing the number 
of passes. But now we discover a different kind of limitation. If the order of merge 
is high, then space must be allocated for buffers for each of the inputs. Since the 
buffers are obtained by dividing up some fixed amount of space t ways, this leads to 
smaller buffers as t gets larger. Now transmission time is a decreasing function of 
the merge order, as we wished, but seek time is an increasing function of the merge 
order, since smaller buffers require more seeks to fill them. In other words, to do a 
Away merge of n items will require time proportional to {St + T)n, where S and T 
are constants related to the seek and transmission costs, and where normally S < T. 
These dependencies usually yield an operating curve with a moderately shallow 
minimum. For a given computing environment, it is fairly easy to obtain usable 
estimates for the relative importance of seek and transmission times, and to thereby 
locate a good operating point. 

Figure 13.30 A Disk Merge Tree 

An idealized model of the situation just described is given by the cost function 

C = SxD + TxE (13.17) 

To see the significance of the variables D and E, let us draw a tree representing a 
hypothetical merge sequence, as in Figure 13.30, where the leaves all contains initial 
runs of length m. If we compute the costs as tabulated in Figure 13.31, then the 
value of E for this merge tree is 29, which we recognize as external path length. But 
what is D1 It is the degree path length, which can alternatively be expressed as the 
sum, over all leaf nodes, of the degrees of the internal nodes on the path from the 
leaf to the root. Thus, D for the tree of Figure 13.30 can be obtained as: 

4 x (4 + 3) + 3 x (3 + 2 + 3) + 1 x (2 + 3) + 2 x (2 + 3 + 3) + 2 x (3 + 3) = 85 

If we have values for 5 and T, then we can construct an optimal merge tree by 
using the principle of optimality in a fashion reminiscent of, but different from, the 
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principle that we used for building optimal binary search trees in Section 10.3.2.1 

(see Exercise 13.38). 

Node Cost 

13 ( 3 S + 7) X 3m 

14 ( 2S + T) X 2m 

15 ( 4S + T) X 4m 
16 ( 2S + T) X 4m 
17 ( 3 S + T) X 4m 

18 ( 3S + T) x 12m 

Total (85S + 297) X m 

Figure 13.31 Cost Computation for the Tree of Figure 13.30 

f 13.5 PARALLEL SORTING SCHEMES 

For the preceding sections of this chapter, most of the results were discovered well 
before the 1970’s. Although the concerns of this section likewise date from that 
time, they also reflect more recent invention. Our starting point is the Information 
Theoretic Bound of 0(n lg n) from Section 13.2.3. If sorting is so important, then 
perhaps we can circumvent this bound by having many processors operating in 
parallel. In particular, we inquire whether n processors can be employed in such a 
fashion that the time is reduced to <9(lg «)? The first order of business in looking 
for answers to such questions is to define the model of computation, and we will 
speak to that very shortly. From first principles, however, we are able to see that 
no comparison-based method can hope to do better than 0(lg n) time. This is so 
because there are that many levels in the comparison tree, and the tests on each 
level depend upon the test results from preceding levels, but no assemblage, of 
processors can produce results any faster than dictated by this number of levels. 

Before describing models of parallel computation, it might be well to explain 
why we tolerate the notion of having n processors, where n could be very large. 
One reason is the historical one that these issues were first raised in the context of 
building fast switching, or permutation, networks. This is a somewhat simpler 
problem than sorting, and an important one, for which n is commonly of reasonable 
size. So it has practical appeal. Another, obvious reason is that the enormous 
advances in VLSI fabrication techniques now make such devices plausible. Finally, 
even if some of the ideas are not yet feasible, the unrestricted models of parallel 
computation have theoretical importance in their own right. 

There are two broad models for parallel computation. In the network model, 
the processors are autonomous, having their own memories, and communicating via 
a network of connections. In the shared memory model, all the processors can 
communicate freely via their shared memory. In almost all of the former models, 
the links tend to be few in number and very regular in their topology. These 
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features are conventionally imposed because of their practical significance; the end 
result is that these models are less powerful than the shared memory models, due to 
the constricted communication among the processors. There are many variations 
upon both of these models, reflecting very significant concerns. Examples of these 
are the quantity of information that must be exchanged among processors (the 
network model), the handling of memory contention (the shared memory model), 
and the cost of setting up a computation (both models). It is curious that, in either 
model, attempts to parallelize the more efficient 0(n lg n) serial sorting methods 
have not succeeded. It seems as though they are inherently serial to some degree. 
Thus, it is easy to apply multiple processors to the early steps of merging or later 
steps of Quicksort, but seemingly not possible to do so with the final steps of merg¬ 
ing or initial steps of Quicksort. The methods that have responded well to 
parallelization are some of the more lowly 0(n2) methods! 

(a) 

(b) 

Figure 13.32 Sorting with a Network of Comparators 

In speaking of network models, we need to distinguish between those that are 
intended to serve a wide variety of computational purposes and those that are 
designed strictly for sorting. The logic required for sorting is extremely simple, and 
so it is comparatively easy to design a network when that is the only operation 
required of it. The basic logical unit required is a comparator with two inputs A 
and B, and two outputs S and L, such that the output S receives the smaller of the 
two inputs, and the output L receives the larger of the two. A useful convention for 
representing a network of such comparators is depicted in Figure 13.32(a), with the 
inputs on the left and the outputs on the right. A comparator is a vertical bridge 
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between a pair of inputs; it will cause that pair to be exchanged, if necessary, so 
that the S output is above the L output. Thus, Figure 13.32(b) illustrates the action 
of this network in sorting the input sequence 3, 2, 4, 1. Note that two comparisons 
are performed in parallel each time, and that three time steps are required. 

Using comparators in sorting networks is like doing bubble sort comparison- 
exchanges in parallel. With 0(n) comparators, we could hope to translate the 0(nf 
character of that method into an 0(n) parallel sorting method. How much better 
can we do in reality? In this regard, Batcher [1968] demonstrated two different 
schemes that sort n items in 0(lg2 n) time by using networks of 0(n lg2 n) compara¬ 
tors. A more recent result uses a graph-theoretic construction to demonstrate that a 
network of 0(n lg n) comparators can sort n numbers in <9(lg n) time [Ajtai et al. 
1983]. Unfortunately, whereas Batcher’s schemes admit of practical implementa¬ 
tion, this more recent method does not at present. 

If the paradigm of most network models is the comparison-exchange of bubble 
sort, the paradigm of most shared memory models is enumeration sorting! Since 
the processors can freely compare any pair of values, then counting can be used to 
determine the ranks of the items. To cite the power of this technique, we know that 
serial computation requires n — 1 comparisons to find the maximum of n items. Yet 
in the shared memory model of computation, it has been shown, by another graph- 
theoretic construction, that n processors can find the maximum in time lg lg n + c, 
for c a constant [Valiant 1975b]! Related arguments there and elsewhere show how 
to apply enumeration to the problems of sorting and merging. These methods do 
attain our goal of having n processors sort n items in 0(lg n) time. However, the 
final remark at the end of the previous paragraph applies here also - it is not pres¬ 
ently feasible to implement these methods. 

The preceding remarks appear to leave the issue of fast parallel sorting unre¬ 
solved. Although the theoretical outlook is good, those methods with best 
asymptotic performance seem to have unreasonably high costs, in either the network 
or the shared memory model. Moreover, the economics of building special purpose 
devices has never generated more than limited enthusiasm. It is only a matter of 
time until parallel computing architectures begin to proliferate though. At that 
point, it is likely that economics will dictate the adoption of general purpose 
network architectures, perhaps shuffle-exchange networks [Stone 1971] or cube- 
connected-cycles [Preparata and Vuillemin 1979], to name just two. The issue will 
then become that of discovering what parallel sorting algorithms can best be 
adapted to these general purpose schemes for parallelism. 

13.6 OVERVIEW 

In several ways, this final chapter is broader in scope than any of the others. 
Computer science is now several decades old, and the topic of sorting has played a 
central role from the very earliest years until the present. The number of published 
sorting algorithms, with all their variations, is very large. And although the prob¬ 
lem statement of sorting is relatively simple, compared to that of searching, the 
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choice of which method to use is not so simple. The numerous alternatives have 
been classically used to illustrate the benefits of various computing trade-offs at all 
levels of pedagogy. Thus, sorting teaches us about the “engineering” side of 
computer science. At the same time, as the discussion of Section 13.5 reveals, sort¬ 
ing is a very active area of research in contemporary computer science. 

The broad scope is also apparent when we contrast some of the real-world 
concerns (buffer management, and merge patterns that cater to tape and disk 
behaviors) with some of the theoretical results. In the latter regard, there is pleasing 
symmetry in the following observation. For each of the issues — sorting optimality, 
merging optimality, and selection optimality — a pair of investigators have made 
major contributions by using very pretty combinatorial analysis and sophisticated 
data structures. We refer, of course, to the algorithms by Ford and Johnson, 
Hwang and Lin, and Hadian and Sobel. The virtue of breadth in this final sense — 
of having one’s feet planted both in the real world and in theory — is a fitting note 
on which to close. 

13.7 BIBLIOGRAPHIC NOTES 

• Some Quicksort variations include sampling to determine the partitioning 
element [Frazer and McKellar 1970], computing the mean rather than the 
median to determine the partitioning element [Motzkin 1983], and exploiting 
pre-sortedness [Dromey 1984], 

• One proposal for hybrid sorting is essentially address calculation sorting 
followed by Heapsort, thus bounding the worst-case complexity [Meijer and 
Akl 1980]. Another is a combination of distribution and merging [van der Nat 
1980]. And still another employs three phases: distribution, then Quicksort on 
each bucket, and finally insertion sorting to clean up remaining inversions 

[Allison and Noga 1982]. 
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13.9 EXERCISES 

Sections 13.1 — 13.2.2 

13.1 What is the inversion table for the permutation 53721986 4? 

f 13.2 Write an algorithm to compute a permutation, given its inversion table. 
Test your program against the inversion table 7664022 1 0. What is the 
complexity of your program? 

fl3.3 In enumeration sorting, how are the final counts related to the permutation 
P l that is needed to rearrange the input values in order? Write an algorithm that 
accomplishes this rearrangement. 

13.4 Write a version of insertion sort that uses a linked list, using cursors rather 
than pointer variables. Test your program against the data of Eq. 13.1, displaying 
the cursor values after each major iteration. 

f 13.5 Assume that cursors have been employed in performing a linked list 
insertion sort, as in Exercise 13.4. Write an algorithm that will permute the result¬ 
ing records (in the final array, after that sort) to their proper sequence, using as 
little working storage as possible. What is its complexity? Test your program 
under the assumption that the input data to the linked list insertion sort was that of 
Eq. 13.1, displaying the cursor values after each major iteration. 

13.6 Sort the following input via a Shellsort, using increments of 5,3,1 and show¬ 
ing the sequence of the keys after each pass. 

74 95 26 66 36 24 1 60 70 2 25 22 31 
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tfl3.7 [Gale and Karp 1972] Prove that a sequence that is first y-sorted and then 
k-sorted still remains y'-sorted. 

13.8 Demonstrate either that selection sort is stable or that it is not stable. 

13.9 Show the effect of transforming the sequence of keys from Exercise 13.6 into 
a heap. Then perform a Heapsort, displaying the heap after each sift-up operation. 

fl3.10 Write an algorithm to perform tournament sorting. Test your program 
against the input from Exercise 13.6. 

f 13.11 Prove that the complexity of initially creating the heap in Heapsort is 0{n). 

13.12 Sort the sequence of keys from Exercise 13.6 via Quicksort. Show the 
values of the parameters left and rite for each invocation, and show the sequence of 
the keys after each exchange. 

|13.13 Write a version of Quicksort incorporating all of the basic refinements 
discussed in Section 13.2.1.3.1, and implementing the median-of-three function as a 
sub-procedure. Test your program against three sample sets of data, each of size 
about one hundred; try it with data in order, data in reverse order, and data in 
random order. Compare its execution times against these test inputs with those of 
Algorithm 13.6 for the same inputs. 

13.14 Use merging to sort the sequence of keys from Exercise 13.6, doing so for: 

(a) a two-way top-down recursive merge, 

(b) a two-way bottom-up straight merge, 

(c) a natural merge. 

Show the sequence of the keys after each pass, as in Figure 13.14. 

13.15 Sort the sequence of keys from Exercise 13.6 via a radix sort, showing the 

sequence of the keys after each pass. 

Sections 13.2.3 — 13.3 

ffl3.16 Draw the comparison trees that correspond to applying Heapsort and 
Quicksort to a sequence of three elements a,b,c. Your trees should be done in the 

style of Figure 13.16. 

tfl3.17 What is the external path length for the comparison tree corresponding to 
the method of Figure 13.17? Demonstrate a minimean sorting method for six 

elements that has a smaller external path length. 

tfl3.18 [Knuth 1973b] Given a digraph G as in Figure 13.17, one can define the 
efficiency of G as E(G) = n\ / (2kT(G)), where k is the number of comparisons made 
in obtaining the configuration G, and T(G) is the number of ways in which G can 
be topologically sorted (see Exercise 7.40). Initially k = 0 and T(G) = »!, so that 
E(G) = 1. In the final graph (a line) T(G) = 1, so that the efficiency depends upon 
the number of comparisons made to complete the sort. Since F(6) = 10, from Table 
13.1, the final graph for this merge insertion has an efficiency of 6!/210 = 45/64. 
With reference to Figure 13.17(b), calculate the efficiency of the graph obtained by 
inserting c before e, and the efficiencies of the graphs obtained by inserting e before 
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c (the values of T(G) can easily be computed by hand). The significance of this 
process is that a comparison always leads to a graph of lower efficiency; therefore, 
it can be determined a priori that inserting c before e could never lead to a graph 
with final efficiency of 45/64, as above, whereas inserting e before c could do so. 

tfl3.19 Obtain a formula that describes the insertion order sequence for merge 
insertion. Starting from this formula, derive the summation form of Eq. 13.10. 

f 13.20 For the following input files, trace the action of binary merge as in Figure 
13.20; however, show the actual comparisons and actual outputs that result from 

merging these inputs. 

U: 15 19 20 25 28 31 37 42 44 48 51 52 54 55 
56 61 63 67 69 72 73 76 78 83 85 89 90 96 

V: 23 57 79 88 

ffl3.21 Write a program to perform binary merging. Test it by applying it to the 
data of Exercise 13.20, and printing out the same values asked for in that exercise. 

fl3.22 Write an algorithm to find the length L of the longest ascending subse¬ 
quence of a sequence. Test your program against the sequence 

23 11 24 25 14 15 17 22 12 26 13 21 16 

What is the complexity of your program? Finally, revise your algorithm so that it 
actually finds an instance of such a longest subsequence of length L. 

f 13.23 [Pohl 1972] The problem of finding the maximum (or the minimum) in 
an array of n elements by a sequence of comparisons can be characterized as 
follows. To simplify matters, assume that the elements all have distinct values. 
Then the elements of the array are in one of two disjoint sets: A containing 
elements that could be the maximum, and B containing elements that cannot be the 
maximum. Any comparison must be of one of three forms: 

a ? a between elements from set A 
alb between elements from sets A and B 
bib between elements from set B 

Initially, set A has cardinality NA = n and set B has cardinality NB = 0. The three 
types of comparisons alter the cardinalities as follows: 

ala alb 

a < b a > b 

bib 

ANa - 1 - 1 0 0 
AA/e + 1 + 1 0 0 

Since the goal is to have NA = 1 and NB = n - 1, then the best we can do is always 
make comparisons of the form a 1 a, and a minimum of n - 1 of these will be 
required to reach the desired final state. 

In Section 2.5.1 we saw how to find both the minimum and maximum values in 
an array of n elements at a cost of 3/2n — 2 comparisons, using the recursive proce¬ 
dure MIN_MAX (Algorithm 2.8). Analyze this problem afresh in terms of four 
disjoint sets: 
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A — containging elements that could be either the minimum or the maximum 
B — containing elements that could be the minimum but not the maximum 
C — containing elements that could be the maximum but not the minimum 
D — containing elements that can be neither the minimum nor the maximum 

with initial cardinalities NA = n, NB = 0, Nc = 0, ND = 0. Construct a table contain¬ 
ing an analysis of all possible comparisons (like that above), and then demonstrate 
that a minimum of 3/2« — 2 comparisons are required. 

fl3.24 According to Table 13.2, the value of V2(5) is 6. Even so, show how to 
find the two largest of five items, without necessarily knowing which is greater, in 

just five comparisons. 

tfl3.25 [Hyafil 1976] An upper bound on the complexity of selection is given by 

Eq. 13.13. Prove that a lower bound is given by 

(Hint: Use a technique like that of Exercise 13.23.) 

tfl3.26 Prove that in using the ordinary variation of Quicksort to perform 
selection (that is, without linear median-finding), the average complexity is 0(n). 

ft 13.27 Demonstrate whether or not the linear median-finding construction will 
work for r = 5. What about r = 3? Finally, show the effect of repeated data values 

upon the choice of r. 

tf 13.28 Demonstrate an improved bound for linear median-finding, either by 
using a larger value of r and/or by using more careful techniques than those 

employed in the text. 

Sections 13.4 — 13.5 

13.29 Suppose that we are merging n runs with three tapes, and that the initial 
distribution is 1 run on T\ and n - 1 runs on T2. Is any copying required? How 

many passes will be required? 

13.30 What would be the initial runs obtained via replacement selection, assuming 

a buffer size of 5, for the following input sequence? 

56 12 68 22 76 29 80 31 81 30 77 24 70 15 59 
02 44 86 26 65 04 41 78 13 48 82 14 46 77 07 

113.31 Under what circumstances will replacement selection transform the input 

sequence to a single initial run, thereby accomplishing the sort without any need of 

subsequent merging operations? 

f 13.32 If we define a random input sequence of elements xb x2,..., xn in terms of a 
random permutation of 1 .. n, then what is the expected length of the first run 

encountered in the input to replacement selection? 
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tf 13.33 Write an algorithm to perform replacement selection. Test your program 

against the data of Exercise 13.30. 

f 13.34 Generate a table, like that of Figure 13.28, showing perfect polyphase 
distributions for t = 6. Then generate the analogue of Figure 13.27, showing how 
65 initial runs would actually be merged. 

ffl3.35 Investigate the action of polyphase merge on 17 initial runs with four 
tapes. Label the runs in their initial locations on 71, 72, 73; then use a merge tree 
to keep track of their activity throughout the merging process. Use this to draw 
conclusions about the disposition of dummy runs. 

ff 13.36 Write an algorithm to perform polyphase merging, assuming that tapes 
are modelled by arrays. You may ignore the issue of dummy runs by assuming a 
perfect initial distribution, but your algorithm should be general enough to handle 
any reasonable number of tapes. Test your program against three initial distribu¬ 
tions (n > 100 in each case) for each of the cases t — 3, t = 5, t = 8. 

f 13.37 Describe in moderate detail how one might best do sorting if just two tapes 
were available. 

ffl3.38 Suppose that we have 24 initial runs of equal sizes. Using Eq. 13.17, 
compute and draw the optimal merge patterns corresponding to three different sets 
of assumptions: 5 - 1 and T = l, S = l and 7=0, S' = 0 and 7=1. 

fl3.39 The sorting network of Figure 13.32 uses six comparisons to sort four 
numbers. Try to find a network that sorts four numbers in fewer comparisons. 
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6.12 BRANCH_BOUND Branch-and-bound search of tree 272 
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7.1 BFS_ GRAPH Breadth first search of graph 305 

7.2 DFS_ GRAPH Depth-first search of graph 307 

7.3 CUT_ NODES Find cut-nodes and blocks of graph 311 

7.4 WARSHALL_B Compute transitive closure of digraph - I 314 

7.5 WARSHALL_S Compute transitive closure of digraph — II 316 

7.6 STRONG_ COMPONENTS Find strong components of digraph 318 

7.7 PRIM Compute minimal spanning tree 322 

7.8 DIJKSTRA Shortest paths from single source 326 

7.9 FLOYD Shortest paths for all pairs of vertices 328 

7.10 TOPO_SORT Topological sort of acyclic digraph 349 

7.11 DOMINATORS Find dominators in a flow graph 356 

8.1 CONCAT Concatenate two strings 391 

8.2 MATCH_0 Quadratic pattern matching 392 

8.3 SUBSEL Extract substring from a string 393 

8.4 SUBREP Replace substring in a string 393 

8.5 MATCH_ 1 Linear pattern matching 421 

8.6 SCAN_1 Compute shift vector for Algorithm 8.5 423 

8.7 RE_ COGNIZER Look for regular expression in a string 438 

10.1 SEARCH. BINARY Binary search in ordered array 471 

10.2 BST_ DELETE Delete node from binary search tree 477 

10.3 OPT.BST Construct optimal (static) BST 484 

10.4 ROTATE. LL, ROTATE. RR AVL single rotations 497 

10.5 ROTATE. LR AVL double rotation 499 

10.6 AVL. INSERT Search/insert in AVL tree 500, 501 

10.7 HASH. COALESCE Coalesced hashing (search/insert) 523 

10.8 HASH. DOUBLE Double hashing (search/insert) 526 
10.9 HASH.ORDERED Ordered hashing (search/insert) 531 
10.10 TRIE. INSERT Search/insert in dynamic trie 542 

11.1 COLLECT.0 Collecting memory cells — I 568 
11.2 COLLECT.1 Collecting memory cells — II 571 
11.3 MOVE. LIST Move a recursive List structure 575 
11.4 FIRST. FIT First-fit allocation of memory block 594 
11.5 COALESCE Coalescing blocks with boundary tags 595 
11.6 RQST. BUDDY Allocate a (generalized) buddy block 605 
11.7 RTN.BUDDY Deallocate a (generalized) buddy block 606 

13.1 INSERT. SORT Insertion sort 676 
13.2 SHELLSORT Shellsort 678 
13.3 SELECT. SORT Selection sort 680 
13.4 HEAPSORT Heapsort 683 
13.5 BUBBLE. SORT Bubble sort 685 
13.6 QUICKSORT Quicksort 687 
13.7 MERGE Linear merging 692 
13.8 MERGE. SORT Sorting by merging 693 
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total ordering 346 
tournament in a graph 376 
transitive closure of a digraph 312-316 
transposition heuristic 469, 507 
trapdoor one-way function 415 
Traveling Salesman Problem 

(TSP) 340-346 
traversal of a tree 

incremental traversal 218 
inorder traversal 211 
Lindstrom’s method 219-220 
Morris’s method 220-222 
postorder traversal 211 
preorder traversal 211 
triple-order traversal 287 

tree 
ancestor-descendant relationship 206 

B-tree 643-652 
B + -tree 648 
prefix B-tree 652 

centroid 292 
complete t-ary tree 226 
decision tree 233, 394 

degree of a node 205 
dense multiway tree 652 
extended tree 256 

external nodes 256 
free tree 204 

A 6 height 205 
b 7 height-balanced tree 

d 9 See AVL tree 

f i internal nodes 256 
G 2 
H 3 

I 4 
J 5 

k-d tree 663 
leaves 205 
left-right relationship 206 
level of a node 205 
median split tree 489 
ordered tree 205 
oriented tree 204 

p-tree 290 
parse tree 233 

quad tree 451, 661 
red-black tree 512 
reflected tree 286 
root 204 
split tree 489 
suffix tree 430 
weight 206 
weight-balanced tree 503-507 

2-3 tree 508 
2-3-4 tree 512 

tree permutations 256 
trie 540-547 

compacted trie 546 
compressed trie .546 

tuples 54 
Turing machine 441 
two-thirds rule 607 

unicity point 412 
universal compression 410 

universal set 55 
up-pointers 597 
utility field 596, 599 

vector 44 
virtual memory 563, 624-630, 712 

Virtual Storage Access Method 
(VSAM) 650 

Vizing’s Theorem 362 

Warshall’s algorithm 314-316 
watchmaking 455 
weighted path length (w.p.l.) 394, 480 

Winograd’s algorithm 83 

working set 626 
worst-fit allocation 589 

ZipPs Law 468 
















