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Preface 

Many of the brightly coloured, tile-covered walls and floors of the Alhambra in Spain 

show us that the Moors were masters in the art of filling a plane with similar inter¬ 

locking figures, bordering each other without gaps. 

What a pity that their religion forbade them to make images! It seems to me that 

they sometimes have been very near to the development of their elements into more 

significant figures than the abstract geometric shapes which they moulded. But no 

Moorish artist has, as far as I know, ever dared (or did he not hit on the idea?) to use 

as building components: concrete, recognizable figures, borrowed from nature, such 

as fishes, birds, reptiles or human beings. This is hardly believable because the recog- 

nizability of my own plane-filling elements not only makes them more fascinating, but 

this property is the very reason of my long and still continuing activity as a designer 

of periodic drawings. 

Another important question is shade contrast. For the Moors it was natural to 

compose their tiled surfaces with mutually contrasting, different-coloured pieces of 

majolica. Likewise I myself have always used contrasting shades as a simple necessity, 

as a logical means of visualising the adjacent components of my patterns. 

These two main rules could briefly be formulated as follows: without recogniza- 

bility no meaning and without shade contrast no visibility. 

I often wondered at my own mania of making periodic drawings. Once I asked a 

friend of mine, a psychologist, about the reason of my being so fascinated by them, 

but his answer: that I must be driven by a primitive, prototypical instinct, does not 

explain anything. 

What can be the reason of my being alone in this field? Why does none of my fellow- 

artists seem to be fascinated as I am by these interlocking shapes? Yet their rules are 

purely objective ones, which every artist could apply in his own personal way! 

My first periodic woodcut was made in 1922. The original woodblock presents a 

collection of eight different human heads which can be printed and multiplied by 

translation. 

In the course of the years I designed about a hundred and fifty of these tessellations. 

In the beginning I puzzled quite instinctively, driven by an irresistible pleasure in 

repeating the same forms, without gaps, on a piece of paper. These first drawings were 

tremendously time-devouring because I had never heard of crystallography; so I did 

not even know that my game was based on rules which have been scientifically in¬ 

vestigated. Nor had I visited the Alhambra at that time. 

Many years later, in 1935, I came for the first time in contact with crystallographic 

theories, which I seriously tried to understand. But they were mostly too difficult for my 

untrained mind and on the other hand they took no account of the shade contrasts 

which for me are indispensable. So in 1942 I came to formulate a personal layman’s 

theory on colour symmetries which I illustrated with many explanatory figures. 
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Though the text of scientific publications is mostly beyond my means of compre¬ 

hension, the figures with which they are illustrated bring me occasionally on the track 

of new possibilities for my work. It was in this way that a fruitful contact could be 

established between mathematicians and myself. 

The dynamic action of making a symmetric tessellation is done more or less uncon¬ 

sciously. While drawing I sometimes feel as if I were a spiritualist medium, controlled 

by the creatures which I am conjuring up. It is as if they themselves decide on the 

shape in which they choose to appear. They take little account of my critical opinion 

during their birth and I cannot exert much influence on the measure of their develop¬ 

ment. They usually are very difficult and obstinate creatures. 

The border line between two adjacent shapes having a double function, the act of 

tracing such a line is a complicated business. On either side of it, simultaneously, a 

recognizability takes shape. But the human eye and mind cannot be busy with two 

things at the same moment and so there must be a quick and continuous jumping 

from one side to the other. But this difficulty is perhaps the very moving-spring of my 

perseverance. 

This publication of my periodic drawings represents for me a crown on an impor¬ 

tant part of my life’s work. I am deeply indebted and grateful to Professor C. H. Mac- 

Gillavry, because the book would never have been accomplished without her kind and 

flattering interest in my regular plain-filling mania. 

M. C. Escher 
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Introduction 

In these days when art and science operate in different spiritual realms which seem to 

diverge ever more, it is remarkable to find an artist who in his creative work is pre¬ 

occupied with problems which lie at the base of some sciences and some branches of 

mathematics. In fact, it appears that for a similar case one has to go back to the time 

when artists discovered the laws of perspective and pioneered in the field of anatomy. 

As Mr. Escher has exposed in his preface to this monograph, one of his preoccupa¬ 

tions for long years has been the filling of the plane with mosaics, the elements of 

which give associations of, and are recognizable as, living creatures. Although this 

principle does not necessarily lead to repetitive patterns, many of his drawings are 

indeed periodical in two dimensions. 

Of course, every periodic pattern must conform to the symmetry laws dictated by 

this periodicity. It may, however, be rare that an artist, instead of intuitively obeying 

these laws, consciously explores them, and applies the various possibilities afforded by 

them. In the course of over thirty years, Escher has designed well over a hundred of 

such periodic patterns, using motifs in a large variety of symmetry combinations. 

Many of the patterns have served him as an inspiration to his graphical art (see e.g. 

Escher i960, 1961). Elements from several patterns reproduced in this monograph 

can accordingly be found in his woodcuts and lithos, where they acquire what the 

psychologists call an ‘extra dimension’. 

It is no wonder that X-ray crystallographers, confronted with the ways in which 

nature solves the same problem of packing identical objects in periodic patterns, are 

interested in Escher’s work. This interest led to the organization of an exhibition, on 

the initiative of Prof. J. D. H. and Dr. Gabrielle Donnay, during the Fifth Interna¬ 

tional Congress of the International Union of Crystallography, held in Cambridge, 

U.K., in i960. It occurred to several scientists attending this meeting that Escher’s 

periodic drawings would make excellent material for teaching the principles of sym¬ 

metry. These patterns are complicated enough to illustrate clearly the basic concepts 

of translation and other symmetry, which are so often obscured in the clumsy arrays 

of little circles, pretending to be atoms, drawn on blackboards by teachers of crystal¬ 

lography classes. On the other hand, most of the designs do not present too great 

difficulties for the beginner in the field. 

Many of Escher’s periodic drawings are based on the principles of colour symmetry. 

The simplest aspect of this, so-called black-white or anti-symmetry, was introduced in 

the crystallographic literature about 1930, on the occasion of a symposium on liquid 

crystals. Practically immediately afterwards, the notion of colour symmetry fell into 

a twenty years ‘sleeping beauty’ slumber, from which it was restored to life very vig¬ 

orously by Shubnikov’s book on symmetry and antisymmetry (1951). Polychromatic 

symmetry made its first appearance in the scientific literature about 1956. During 

this interval, Escher throughout his career has been much preoccupied with the pro- 
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blem of colour symmetry, for the reasons he has set out in his preface. The notebook 

in which he wrote his ‘layman’s theory’ has been a revelation to me. It contains prac¬ 

tically all the 2-, 3-, 4- and 6-colour rotational twodimensional groups, with and with¬ 

out glide reflection symmetry. Only one symmetry element is rather neglected, name¬ 

ly mirror symmetry. This is easily understood: since animals have rounded contours, 

it is impossible to make them fit across a mirror line. If there is mirror symmetry in 

Escher’s drawings, then it runs through the motifs, as in Plates 4, 6, 8, 19, 40. Anti¬ 

mirror symmetry is completely absent. Why? Because no animal ever shows it. 

Colour symmetry is so essential to Mr. Escher that there are among his designs 

many more representatives of colour groups than of classical symmetry. In particular, 

I missed a pattern with nothing but ‘plain’, i.e. non-colour, twofold rotation sym¬ 

metry. At my request, Plate 2 was designed especially for the purpose of this mono¬ 

graph. Plate 34 is also new, while several others, e.g. Plate 23, were redrawn for this 

publication. 

The notebook dates from 1942. Thus, in particular the possibilities of the polychro¬ 

matic groups were explored, and their symmetry elements marked, before official 

crystallography even thought about them. 

Since so much interest is centred nowadays on the colour groups, and since the 

notion of colour symmetry has been linked up with more formal group theory and its 

many applications in crystal physics, I have given a fairly large number of representa¬ 

tives of colour groups. With respect to the ‘classical’ (non-colour) plane groups, 

Chapter I of the monograph, I have adhered to the notation used in the International 

Tables for X-ray Crystallography, Vol. I (1952). The notation of black-white groups, 

Chapter II, has not yet been settled by international agreement. However, it appears 

that Belov’s notation is at present mostly used. See W. Holser’s introduction to Shub- 

nikov, Belov, et al. (1964). It has the advantage of being easily understood by any 

one familiar with the notation of the non-colour groups. Chapter III contains six 

examples of polychromatic groups. I could identify only four of these with cases listed 

by Belov, et al. (see Shubnikov, Belov, et al., 1964). The polychromatic groups were 

derived by Belov from those of the 230 space groups in which the equipoints are ar¬ 

ranged in equally-spaced layers, by assigning a different colour to each layer. This 

procedure does not seem to exhaust all the possibilities. I therefore refrained from 

giving a symbol to the groups in Chapter III and just described their symmetry as 

well as I could. 

In the text accompanying each Plate, the pattern’s group symbol is given at the top 

left hand corner. The meaning of the symbols is briefly explained. With the help of 

the patterns I have tried to point out the principles of symmetry in diperiodic arrays 

in a logical order and in a non-mathematical language. Although the book is meant 

primarily for undergraduate students, I hope that many people who are simply 

amused and intrigued by Escher’s designs will be interested to see how they illustrate 

the laws of symmetry, and how the trick is done. 

Occasionally I have used the designs as an illustration of principles which curiously 

enough we also find in crystals and their properties. 
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Although I have avoided the use of professional language as much as possible, a 

certain minimum of technical terms was necessary. These are collected in an index 

at the end of the book, referring to the place where they have been first used in the 

monograph. 

Some correspondents have suggested that the patterns be provided with key tem¬ 

plates, showing the lattice and the symmetry elements. I think, however, that it will 

be much more useful and also more fun to the reader if he works this all out himself. 

In the text I have given as much assistance as I thought might be needed. This may 

easily be too much in one place, too little in another, and this may vary from person 

to person. If the reader derives as much pleasure and satisfaction from unraveling the 

symmetry of these patterns as I did myself, he will feel richly awarded for his efforts. 

Artist and author wish to express their thanks to the International Union of Crys¬ 

tallography for its willingness to sponsor this work; to the Commision on Crystallo¬ 

graphic Teaching for many helpful suggestions; and to Oosthoek Publishing Com¬ 

pany for its interest and care in the preparation of the book. 

We are indebted to Dr. N. F. M. Henry for reading the manuscript and correcting 

the English. 
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Chapter I 

Patterns with Classical Symmetry 





Plate i 

pi 

The two drawings of Plate i can each be generated by repetition in a regular way of 

a given motif, always in the same orientation. This motif is clearly a fish and a boat in 

pattern ia, a fish and a frog in ib. The whole pattern of either figure is then obtained 

by fitting these motifs as in a jigsaw puzzle. It is seen that the figures could be ex¬ 

tended ad infinitum, such as to fill completely two-dimensional space. Then each motif 

is surrounded by all others in exactly the same way. This implies that such an infinite 

pattern can be brought to coincidence with itself by parallel shifts from one motif to 

any one of the others. Such a selfcovering parallel shift is called a translation of the 

pattern. In order to explore systematically all possible translations, we choose an ar¬ 

bitrary point in ia as origin, e.g. the snout of one of the fishes. Cover the figure with 

a sheet of transparent paper, and mark this point and the equivalent points in all the 

other motifs of the figure. The collection of points thus obtained is called the lattice of 

the pattern. A vector from the origin to any point of this lattice defines a possible 

translation of the pattern, and there are no other translations except these. Since the 

lattice itself is repetitive, it is arbitrary which of its points is chosen as origin. 

We now shift the transparent paper covered with lattice points across the under¬ 

lying pattern. As long as mutual orientation is kept constant, the points of the lattice 

coincide at each position of the transparent sheet with mutually equivalent points of 

the motifs. In other words: the lattice is independent of the choice of origin in the 

pattern. 

Choose a vector a between two lattice points, such that there are no other points 

on a. All vectors ua, where u is an integer, are also lattice vectors. The set of points at 

distances ua is called a row. We can collect all the lattice points into a set ofparallel, 

equidistant rows with direction a. Now choose a vector b from a point in one row to 

an arbitrary point in a neighbouring row. It is then seen that any translation can be 

thought to consist of a number u of shifts a, followed by a number v of shifts b. 

Symbolically, the lattice can thus be defined by the following equation for an arbi¬ 

trary lattice vector t: 

t = ua + vb, 

where u and v are integers, varying independently from — oo to + oo. 

The ‘basic vectors’ a and b define a parallelogram, called the unit cell, or shortly 

‘cell’. Now, instead of describing the pattern as obtained by fitting together identical 

motifs consisting of one boat and one fish, we can define it by the contents of a cell 

with edges a and b. The whole pattern can be divided into such parallelograms which 

are identical in shape and content. 

Note that, with given choice of a, the basic vector b can be chosen in an infinite 

number of ways, as a vector between two points on adjacent a-rows. On the other 

hand, there is also an infinite number of possibilities for a, such that a is the shortest 

distance between two points in a given direction. The parallelogram defined by a pair 
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of these basic vectors is in general different in shape from the first chosen cell but it is 

identical in magnitude. The total contents of the parallelogram on any pair of basic 

vectors is therefore always composed of the various parts of one fish and one boat, but 

cut out and distributed inside the cell in different ways. 

When any of these parallelograms is repeated by all the translations of the lattice, 

the original pattern is, of course, regenerated. It is convenient and conventional to 

choose the cell in such a way that one of its edges is the shortest translation in the 

lattice, and the other is the shortest point-to-point distance between two rows defined 

by the first translation. 

Find three sets of basic vectors in Plate ia, and two in Plate ib. Trace the contents 

of the corresponding unit cells, and check that they are all composed of the elements 

of one motif. 

Let a and b be two basic vectors. Two lattice vectors are defined as 

a' = uxa + vxb; b' = u2a + v2b. 

Find the condition for the parallelogram on a' and b' to be ‘primitive’, i.e. to contain 

only one motif in parallel orientation. 
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Plate 2 

P2 

This pattern is more complicated than the former two. It consists again of two dif¬ 

ferent objects, birds and fishes. The birds are all alike, but half of them appear to move 

upwards, the others move down. Translation, i.e. parallel shift, can bring the birds 

flying up to coincidence, and also the birds flying down, but it cannot shift an upward 

moving bird into one of the other set. The same holds, mutatis mutandis, for the 

fishes. When we plot the lattice according to the instructions given with Plate I, we 

must therefore take care to select identical points in identically oriented surroundings, 

for example, the beaks of all the birds flying up. When we now outline a unit cell, we 

find that it contains two white birds and two dark fishes. We now ask which operation 

can bring these two birds to coincidence, together with their surroundings of fishes 

and other birds. Move the transparent paper with the lattice points across the pattern, 

until they coincide with the points in the pattern where the right wings of two birds 

come together. At the same points the right fins of two fishes meet. Now, rotate the 

pattern in its own plane about one of these points over an angle of i8o°. If the pattern 

had been infinitely extended, it would by this operation have been brought into exact 

coincidence with its former position. The pattern is said to have twofold rotational 

symmetry. Rotation through any multiple of 36o°/n is referred to as an n-fold rotation. 

There are three other sets of translation-equivalent twofold rotation points, namely 

where (a) the heads of the birds, (b) their tails, (c) their left wings meet. Note the dif¬ 

ference in surroundings between the last-mentioned set (set c) and the set of points 

between the right wings. 

Since there are four different sets of twofold points, it follows that there are four 

non-equivalent twofold points per unit cell. No matter how the basic vectors are 

chosen, these points always lie at distances of |a, |b, and \ (a -f b) respectively. 

Check this by making two different choices of a and b. Choose as origin of a cell one 

of the twofold rotation points. Draw the cell and check that it contains two birds and 

two fishes in non-parallel orientation. 

Find an ‘asymmetric unit’, that is, a part of the figure from which the whole pattern 

can be generated by both translation and twofold rotation. How many asymmetric 

units are contained in one cell of this pattern? 
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Plate 3 

pg 

The pattern is again built up from two figures, a black man and a white man, each 

occurring in two different orientations. Therefore, the unit pell again contains two 

black men and two white. Note that in this case it is impossible to bring e.g. the two 

white men to coincidence by a rotation. This is immediately evident from the fact 

that the man looking towards the right end of the figure extends his right arm and 

lifts his left hand, whereas the opposite holds for the man heading towards the left. 

An operation by which ‘left’ and ‘right’ appear to be interchanged is, of course, re¬ 

flection in a mirror. Since ‘up’ remains ‘up’ in this figure, the mirror must be thought 

to be vertical. However, in the present case the covering operation of the pattern is 

not a simple reflection across a vertical line, but a reflection coupled with a shift par¬ 

allel to such a line. This complex symmetry element is called a glide-reflection line, or 

shortly, glide line, abbreviated g. Such a line runs approximately between the calves 

of black and white men. The shift p coupled with the reflection is the vertical com¬ 

ponent of the distance between equivalent points of a ‘right’ man and a ‘left’ one in 

the next horizontal row. When the glide-reflection line operates first on a right man 

and then on the generated left man, a new right man appears in exactly the same 

orientation as the first and shifted from this one over a vertical distance of 2p. Since 

the operation is repeated in principle ad infinitum, this vector 2p is a true translation 

of the pattern: a glide-reflection line generates a translation parallel to itself, the glide 

component of the operation being one half of the unit translation vector. 

We choose this translation as our basic vector a. It appears that there is also a trans¬ 

lation b in horizontal direction, normal to the glide line. This translation repeats the 

pattern and therefore also the glide-reflection line. Moreover, halfway between two 

such parallel lines at distances b, there is another glide line with different surround¬ 

ings. If the first set is chosen to run between the calves of the white and black men, 

the second set runs across the elbows of the white men. 

The vectors a and b subtend a rectangular parallelogram. In the present case, this 

parallelogram contains just the four different and differently oriented men; it is there¬ 

fore a true unit cell. There is another possibility for a repetitive pattern with glide 

reflection lines, namely, that the rectangle subtended on the vectors parallel and nor¬ 

mal to the glide lines contains two motifs in parallel orientation, at a distance of 

\ (a + b). Although the rectangle is then not the smallest possible parallelogram 

defining the pattern by repetition, it is conventional and convenient to work with 

this ‘non-primitive’, so-called centred, cell. 

In our case, as stated above, the rectangle on a and b is primitive, and is therefore 

designated as p, the initial of‘primitive’. The symbol g for the glide-reflection is added 

to this symbol, as indicated in the upper left hand corner. The notation of the former 

two cases is now clear. The patterns ia and b have a primitive cell and no symmetry 

at all, indicated by pi. Plate 2 has a primitive cell and twofold rotation points: p2. 
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PLATE 3 

Draw all the glide lines on a transparent paper covering the pattern. Choose an origin 

on one of the lines (this is conventionally done). Draw the unit cell. Convince your¬ 

self that the cell contains two men of each kind; check that not only is the right black 

(white) man in itself the exact mirror image of the corresponding left man, but also 

that their surroundings ad infinitum are each others mirror images. 

Choose a simple, asymmetric motif, e.g. a comma, and construct with this motif a 

pattern with glide lines and a centred rectangular cell. How many glide lines run 

through this cell? Are there any other symmetry elements? 
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pmm 

Plate 4 

The symmetry in this pattern is much more directly evident than that in the former 

two. It is built up of four kinds of animals, flies, falcons, bats and butterflies, each of 

which has mirror symmetry. The ‘mirror lines’ (noted m) through the flies and the 

falcons run from north west to south east, and the bats and butterflies are reflected 

by them into their vis-a-vis. On the other hand, the mirror lines running north east 

to south west bring the bats into coincidence with themselves, likewise the butterflies, 

but reflect a fly heading south east into one heading north west, vice versa, and the 

same holds for the falcons. 

The presence of two sets of reflection operators intersecting at right angles intro¬ 

duces other symmetry elements: the point of intersection of any two mirror lines is a 

twofold rotation point. 

Since in this case the twofold rotation points follow automatically from the two 

sets of mirror lines, it is not necessary to mention them in the symmetry symbol. 

Outline a unit cell with origin at the tip of the wing of a falcon. Is this cell primitive 

or centred? 

How many mirror lines run through the cell? How many twofold points does it 

contain? Are these points equivalent in the sense that their surroundings are identical, 

apart from orientation? 

Now shift the origin to one of the rotation points, and again count the symmetry 

elements. Realize that the number of each kind of symmetry element per cell must be 

independent of the choice of the origin. 
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Plate 5 

pgg 
\ 

The animals in this figure have nearly mirror-symmetry; however, it is clear that the 

symmetry of the pattern as a whole is quite different from the preceding figure. On 

closer inspection it is seen that the nearly equal right and left halves of the animals 

are surrounded in quite different ways by their neighbours. Therefore, the (pseudo-) 

symmetry of the animals is not a symmetry element of the pattern as a whole. On the 

other hand, it can be checked that all the dark animals are equal and surrounded 

similarly, only in different orientation, and the same holds for the light ones. 

The most conspicuous symmetry elements in the pattern are the twofold rotation 

points between the heads of the light animals. It is easiest to choose one of these as 

origin of the cell. It is seen that there is a twofold point in the centre with equivalent 

surroundings but different orientation, namely reflected with respect to the one at the 

origin. It is thus evident that there is glide symmetry. Actually there are two sets of 

glide lines (notation pgg), both horizontal and vertical, and cutting the edges of the 

cell at ^ and f. 

Draw the glide lines on transparent paper and mark all twofold points. Note that 

these are of two different kinds only, compared to four in the preceding figure (pmm). 

Note that these rotation points lie at the centres of the rectangles outlined by the 

symmetry lines, instead of at the corners as in Plate 4. 

Note that two sets of mutually perpendicular symmetry lines, be they mirror or 

glide lines, introduce twofold rotation symmetry, whereas this is not the case if only 

one set is present (Plate 3). 
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Plate 6 

P4g 

The pattern has evidently fourfold rotation and mirror symmetry. In order to classify 

it properly it is important (as always) to find the unit cell first. It is seen that near the 

bottom of the picture there is a row of three fourfold rotation points. Of these, only 

the first and third are equivalent by translation; the surroundings of the three points 

are alternately ‘left’ and ‘right’ since there are mirror lines running between them. 

Choose the point in the middle of this row as origin and find in the pattern three 

other fourfold points in the same orientation. These outline a square unit cell which 

is tilted at 450 to the borders of the picture. There is a fourfold point in the centre 

which is not surrounded in the same orientation as the ones at the corners of the cell. 

Moreover, halfway between the fourfold points along the axes a and b there are two¬ 

fold rotation points. The total rotation symmetry per unit cell is therefore generated 

by two fourfold and two twofold points. This combination of rotation operators is 

present in any plane pattern with fourfold rotation symmetry, whether reflection 

symmetry is present or not. 

In the present picture the orientation about the two fourfold points in the cell can 

be brought into coincidence by the mirror lines which run parallel to the diagonals of 

the cell; however, we see that this coincidence is also achieved by glide lines running 

parallel to the cell edges. 

We see that the pattern as it were combines the symmetry pmm of the pattern of 

Plate 4 and the symmetry pgg of Plate 5, with the glide lines at 450 to the mirror 

lines, such that the twofold points of pmm coincide with half of the twofolds of pgg. 

It can be shown that this combination gives rise to fourfold symmetry. Alternately: 

the combination of fourfold rotation points with glide lines parallel to the edges of the 

cell, running between its corners and its centre, introduces mirror lines through the 

twofold points parallel to the cell diagonals. Find an ‘asymmetric unit’ of the struc¬ 

ture. How many are there per unit cell? 

Try to derive another combination of the system of four- and twofold rotation points 

described above, with reflection symmetry such that no new rotation points originate. 
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Plate 7 

P3 
\ 

This pattern is composed of flowers with fivefold rotation symmetry and five mirror 

lines, superimposed on a bed of asymmetrical leaves. Even when we disregard the 

leaves, it is seen that the pattern composed by the flowers has no fivefold symmetry. 

In fact, the centres of the flowers are no symmetry elements of the pattern as a whole. 

There is, however, threefold symmetry. Threefold rotation points lie on horizontal 

rows, between the rows of flowers. On such a row, every fourth point is equivalent by 

translation to the first, so that there are three of these threefolds per unit cell. At 

first sight, two of these appear to be equivalent by reflection across a vertical line; but 

this is not really a mirror line, as is seen where it cuts through the third kind of three¬ 

fold point on the next row. By marking the translation-equivalent points on all the 

rows, the translation lattice is found.* As unit cell can be chosen a rhomb with angles 

of 120° and 6o°. This rhomb can arbitrarily be chosen in one of three equivalent ori¬ 

entations differing by 120°. The three non-equivalent threefold points are at o, ^ and 

f- respectively of the long diagonal of the rhomb. It can be shown that fivefold sym¬ 

metry in a periodic pattern is impossible, so that any trial to fit a motif with fivefold 

rotation symmetry in a periodic pattern which conserves this symmetry, is doomed to 

failure. This does not mean that one cannot build a regular pattern from objects with 

fivefold symmetry. This is always possible, even with spherical-symmetrical objects, 

only the symmetry of the object cannot be continued into its surroundings. 

Even when an object has in itself a symmetry which could be present in a periodi¬ 

cally repeated pattern, then quite often in the packing no use is made of this symme¬ 

try. We saw an example of this in Plate 5, where the animals could easily have a mir¬ 

ror line. In the same way, it is rather the exception than the rule when molecules 

with an intrinsic mirror plane crystallize in such a way that the packing is symmetric 

with respect to this plane. 

* Disregard the change of colour halfway the figure, which is irrelevant for our purpose. 
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Plate 8 

P3Im 

The symmetry of this pattern is closely related to the preceding. It is also a pattern 

with threefold symmetry. Choose as origin one of the threefold points where the abdo¬ 

mens of the insects come together, and find the translation-equivalent points. Inside a 

unit rhomb there are again two other threefold points, at ^ and § of the long diagonal, 

where the legs of bees and wasps come together; these are now truly symmetry-related, 

being brought to coincidence by the mirror line along the short diagonal. Mirror lines 

along the cell edges convert these points into the ones in neighbouring cells. Note that 

the orientation of the cell edges differs by 30° from that in the preceding figure. This 

is, of course, immaterial. 

Apart from mirror lines there are also three sets of glide lines in this pattern. 

Find these. Compare your result with that of the exercise given at the end of the 

discussion of Plate 3. 
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P3mi 

Plate 9 

This is another possible combination of threefold rotation points and mirror lines. 

These run clearly along the long diagonal of the unit cell and the two directions which 

are equivalent to it by rotational symmetry. Note that now the three rotation points 

in the cell are all differently surrounded. 

Are there any glide lines in this picture? 

The notation of the symmetry of this and the preceding pattern differ in that the sym¬ 

bols m and i are interchanged. The first symbol after the symbol 3 for the threefold 

points indicates whether there are symmetry lines normal to the cell edges and the 

equivalent short diagonal. The second symbol refers to symmetry lines normal to the 

long diagonal and the two directions equivalent by threefold rotation. The symbol 

1 means ‘no symmetry line normal to this direction’. 
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Plates io, ii, 12 

The following three patterns provide the reader with an opportunity to test his ability 

to apply the principles of symmetry set out in the preceding pages. 

Plates io and 11 are cases very similar to two others treated before. Determine the 

symmetry in the two patterns and identify it with that of former patterns. Note how 

the result of a repeating procedure depends on the motif on which it works. 

Plate 12 again represents a simple symmetry treated before. The pattern is com¬ 

plicated because the ‘motif’ on which translation and symmetry operate is very large: 

the asymmetric unit consists of twelve birds differing in colouring and attitude. The 

best approach is first to find the unit cell and then to look for possible symmetry. Note 

that each of the twelve individual birds is surrounded in a different way by the others; 

although some of them are deceptively similar, it is seen from their neighbours that 

they are not related by symmetry or translation. 

It may be remarked that analogous cases are sometimes met with in crystal chemistry. 

A crystal may be composed of organic molecules which by chemical standards are all 

alike, but in the crystal they may fall in two or more sets, each set being in itself related 

by translation and symmetry, but molecules of different sets being surrounded in dif¬ 

ferent ways. Quite often the molecules themselves are still very similar, notwithstand¬ 

ing their different surroundings. However, cases have been reported where two mole¬ 

cules in the asymmetric unit have distinctly different conformations. 
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Plate 13 

P4 

The pattern presents a tricky problem. It is formed by an array of starfishes, clams and 

snail shells. At first sight, one would mark as cell corners the points where four clams 

and four starfishes meet. However, on closer inspection it is seen that the edges of this 

square are no true translations of the pattern: the snail shells halfway between these 

pseudocell corners are not repeated in identical orientation by such shifts. Moreo¬ 

ver, although the corners of the pseudocell appear to be true fourfold rotation 

points, it is again seen on closer inspection that they are not. We saw before that there 

is always a twofold point halfway between two translation-equivalent fourfolds. 

(This twofold point may be fourfold, which includes a twofold.) Therefore, if the points 

where four clams meet had fourfold symmetry, then the snail shells halfway between 

them should have twofold rotation symmetry, and this is evidently not the case. 

On the other hand, the mid-point of the pseudo-cell, where four starfishes and four 

snail shells meet, is indeed a true fourfold rotation point, and so are three other points 

in the figure. The points where the clams meet are twofold symmetry points, which 

can be easily checked. 

Find the four true fourfold points in the figure. Which of them are equivalent by 

translation? What is the relation between the edges of the true cell and those of the 

pseudo-cell? 

The question remains whether there is any further symmetry in the pattern. This 

could only be caused by mirror or glide lines. It is immediately evident that such sym¬ 

metry is absent. The corrugation on all clam shells spirals in one sense; likewise all the 

snails are ‘of one hand’. It is therefore unnecessary to search for any mirror or glide 

symmetry. In the same way it is evident that crystals containing only one kind of op¬ 

tical antipodes, say all / molecules, can never have a symmetry plane; and that such 

a crystal must be the mirror image of a crystal containing the ^-molecules, both with 

respect to atomic arrangement and to physical properties. 

In crystal structures, the presence of pseudo-translations is not at all uncommon. As 

in the present pattern, these lead to a pseudo-cell (sub-cell) which is an integral frac¬ 

tion of the true cell. Quite often during the growth of such a crystal the sub-cells are 

stacked with faults: if two adjacent subcells erroneously become identical, then the 

pseudo-translation behaves locally as if it were a true translation. The original true 

translations then go wrong. 

Try to check this from the pattern, by imagining one of the snail shells to be rotated 

through 1800. 

Such stacking faults can occur so often that only the subcell is found in first instance 
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by physical methods such as X-ray diffraction. As in the pattern, the trickery is dis¬ 

covered because the pseudosymmetry of the subcell would imply a symmetry of the 

building units (molecules or ions) which from chemical evidence they cannot possess. 

For example, a nitrate group could be placed on a pseudo-sixfold axis, whereas we 

know that it can only have trigonal symmetry. 

Coming back to Plate 13, we find that it only has fourfold rotation points, and the 

twofolds that are generated by the fourfolds arranged in a translation lattice. The 

symmetry symbol is therefore P4. 

28 



Chapter II 

Patterns with Black-white Symmetry 





Plate 14 

Pb1 

Comparing Plate 14 with the patterns ia and ib, both similarity and difference is 

found. As in the Plates 1 a and 1 b, the motif consists of two items, a white winged horse 

and a black one. However, while in Plate 1 the two items, e.g. boat and fish, were 

quite different, in the present case the two horses, apart from their colour, are exactly 

similar, both in contour and in orientation. Also in surroundings: a black Pegasus is 

surrounded by white and black ones in exactly the same way and in the same orien¬ 

tation as a white horse is surrounded by black and white ones. We could therefore 

bring the pattern to coincidence with itself by shifting over a distance between a black 

and a white Pegasus, at the same time changing white to black and vice versa. Ob¬ 

viously, this is a new symmetry operation which is closely related to, but not identical 

with the one we defined as ‘translation’. Both operations would become identical to an 

observer who could see the contours but would be unable to distinguish between light 

and dark colour. 

Although this seems a rather hypothetical viewpoint, very analogous cases are met 

with in crystal chemistry and physics. For example, in the cubic structure of potassium 

chloride, K+ and CP ions alternate at equal distances along the cell edges. If such a 

crystal is put in the path of an X-ray beam, then both kinds of atoms scatter the X- 

rays in practically the same way. Therefore, whereas a chemist readily distinguishes 

between Cl- and K+, to an X-ray beam they ‘look’ the same. Thus, although the real 

translation along a cube edge of KC1 is from one K+ to the next K+, from X-ray 

scattering one finds half this distance, namely from K+ to the next Cfo, and again 

from Cl- to K+. The cross sections of the two ions for neutron scattering are different, 

so by this technique one does find the proper translation period. 

More subtle differences exist in crystals containing atoms with magnetic moments 

pointing in different directions. X-rays are ‘colour blind’ to the orientation of the 

magnetic moments, but neutrons are again sensitive to this phenomenon. 

With respect to Plate 14, we define a colour translation as a parallel shift, coupled 

with a change of colour, which brings the pattern to self-coincidence. In this Chapter, 

Plates 14 to 35, there are always only two colours. The colours of the original draw¬ 

ings are reproduced here as dark and light, and we will call them symbolically black 

and white for convenience. In such two-colour patterns, two successive colour trans¬ 

lations bring back the unit cells in the original orientation and colour, and are there¬ 

fore equivalent to an ordinary translation. 

In a plane pattern with colour translation it is always possible to choose as basic 

vectors one which is an ordinary translation vector, and one which implies a colour 

change. In the pattern 14 one could, for instance, choose the vertical shift from black 

to nearest white horse as the basic colour vector a', where the prime indicates a colour 

shift. The shortest horizontal shift b' would also be of the colour kind; the parallelo¬ 

gram subtended on these two vectors would contain in total one horse, some parts 
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being white and some black. However, a parallelogram of the same size is obtained by 

choosing as edges b' and a new vector a = a' + b'. Since the new vector is the sum 

of two colour shifts, the original colour is retained over the shift a. On the other hand, 

the parallelogram on the vectors a = a' -f- b' and b = a' — b' would contain two 

horses, one black and one white, and would be a unit cell in the classical sense, de¬ 

fining a lattice of pure shifts without change of colour, and regarding a black and a 

white horse as two objects not related by any symmetry operation. 

Prove by vector multiplication that the cell on a and b is twice that on a and b'. Find 

other sets of basic vectors, (i) both colour translations, (ii) one colour, one non-colour. 

In the notation of black-and-white symmetry groups a prime indicates a change of 

colour, p' therefore indicates a primitive cell, containing one motif in parallel orien¬ 

tation, disregarding its colour, p'b means that subsequent cells in the b-direction are 

related by a colour shift so that white parts in one cell are black in the next, vice versa. 

To this symbol is added T’ to show that the rotation symmetry is ‘one-fold’: coinci¬ 

dence is only obtained after rotation of 360°. 
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PLATE 14 



Plate 15 

p2' 

Like the former, this pattern consists of identical animals, dark and light. However, 

these are not in the same orientation, the dark fish swimming to the right, the light 

ones towards the left. It would then seem that they are related by a glide operation, as 

for instance the manikins in Plate 3, but closer inspection shows that this is not the case. 

White and black fishes change place by a rotation of 180° about e.g. a point be¬ 

tween the left eyes of a dark and a light fish. The operation can therefore be described 

as a twofold colour rotation, symbol 2'. 

Since no black fish is in the same orientation as any white one, translations are all 

of the ordinary, non-colour type. The lattice is primitive, the unit parallelogram con¬ 

tains one dark and one light fish related by twofold colour rotation. As in the analogous 

non-colour case p2 (Plate 2), there are four non-equivalent twofold points in the cell. 

Find these, and express their mutual distances in the cell edges a and b. 



PLATE 15 



Plate i6 

p;2 

The pattern combines the operations of the two preceding ones. The shortest trans¬ 

lation, running in the direction from the middle of the lower edge of the figure towards 

the left top corner, is evidently a colour one. - It is conventional, but immaterial, to 

choose the b-axis in the direction of the colour translation.- A second basic vector, 

from one b' row to the next row of figures in parallel orientation, can always be chosen 

as a non-colour translation. The colour unit then contains two lizards, partly black 

and partly white, which coincide by a colour rotation of i8o°. Rows of such colour 

twofolds run parallel to the (non-colour) a-axis: they lie between the heads and the 

tails of black and white lizards. The rows of colour rotation points alternate with rows 

of ordinary twofolds. The presence of the latter is easily explained. A twofold point 

repeated by translation generates a second set of twofold points. If the first twofold 

changes the colour, and the translation does so too, then the original colour is restored. 

Conversely, a plain twofold point multiplied by a colour translation gives rise to a 

new set of twofold colour points alternating with the first set. Therefore, in the nota¬ 

tion given above it is sufficient to indicate the colour translation and a twofold rota¬ 

tion, because these two generate the colour rotation. 

Find the four different kinds of twofold points. Outline a ‘colour’ cell and an ordinary 

cell. Note that the symmetry of the latter, in which white and black figures are con¬ 

sidered as different things, is the same as in the pattern of Plate 2. 
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Plate 17 

pg' 

_ « 

This pattern has acquired some fame in the world of science. It figured as front plate 

in a book on the derivation of crystal symmetries, and served as dust cover to a book 

on elementary particles. 

At first sight, the pattern seems related to the fishes of Plate 15: here also there are 

horizontal rows of figures heading right, alternating with rows of figures heading left 

However, whereas fishes can still swim when rotated in their own plane through 18o°, 

our horsemen certainly could no longer ride when submitted to this operation. Instead 

of by rotation, the black horsemen are transformed into white ones, vice versa, by a 

vertical colour glide operation. We realize gradually that all the operations we met in 

the first chapter of this book can one by one be coupled with a colour change and 

thus give rise to new possibilities. 

Define a unit cell with horizontal and vertical edges, and draw the glide lines. As in 

the plain case pg, Plate 3, two glide lines run through each cell, both being of the 

colour kind. These two glide lines are not surrounded in the same way. 
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Plate 18 

Pbig 
* 

A horizontal colour translation (b-axis) is combined with glide lines normal to this 

axis. The colour translation b' repeats the glide lines and, as in the pattern of Plate 3, 

introduces new glide lines halfway between those of the first set. Since the new glide 

lines are generated by a plain glide, which leaves colour unchanged, and a colour 

translation, the new set of glide lines is of the colour kind: they run just behind the 

dogs’ front paws, whereas the plain glide lines run between the hind paws of dogs of 

the same colour. 

Note the ingenious way in which the toes of the black dogs ‘act’ as teeth to the 

white dogs. By analogy to the convention mentioned with respect to Plate 9, the sym¬ 

metry symbol indicates that there is no symmetry line normal to the a-axis (symbol 

T’), and glide lines (g) normal to the colour translation b'. 
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Plate 19 

p;m 

The natural mirror symmetry of the beetles is used as mirror symmetry of the whole 

pattern. The mirror lines, running vertically from top to bottom, transform all white 

beetles into white ones and black beetles into black. It is clear though, that black and 

white beetles are identical and identically surrounded, apart from colour difference. 

The operation by which black beetles are transformed into white ones, vice versa, is 

again a colour glide line, parallel to, and halfway between, two adjacent plain mirror 

lines. We remarked (Plate 3) that it is customary in the case of mirror or glide lines, 

to choose one cell edge parallel to the symmetry lines, and the other normal to them. 

If we outline a cell in this way, we see that it contains in total one white and one black 

beetle. Note that these two are related by a colour translation over half a diagonal of 

the cell. Therefore, apart from the change of colour, the pattern presents the case of a 

‘centred’ cell, the construction of which was given as a problem in the discussion of 

the pattern of Plate 3. The presence of a colour translation is indicated by the prime 

to the lattice symbol p, while the subscript c indicates that this colour translation is 

over half the diagonal of the rectangular cell. 

This colour translation was described above as generated by a mirror line, and par¬ 

allel to this a glide line. One can also start with either the combination of mirror line 

and colour translation at an oblique angle, or the combination of colour glide line 

plus oblique colour translation. Note again that in two-colour symmetry, the original 

colour is restored after an even number of colour operations, and changed after an odd 

number, no matter how many plain operations take part. 
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PLATE 19 



Plate 20 

pmg' 

The next four patterns give examples of combinations of two mutually orthogonal sets 

of symmetry lines, one or both of the colour kind. Moreover, the symmetry lines can 

be either mirror or glide lines. As in the analogous cases with only plain symmetry 

(Plates 4 and 5), these combinations generate twofold rotation points. If the two sets 

of symmetry lines are either both coloured or both plain, the twofold rotations do not 

involve colour change. If one of the symmetry lines is plain, the other coloured, then 

the twofold rotation points are ‘coloured’. 

One of the latter cases is presented in the pattern of Plate 20. The fishes possess 

mirror symmetry and they fit together so that this symmetry extends throughout the 

pattern. Black and white fishes are converted into each other by the operation of col¬ 

our glide lines normal to the mirror lines, c.q. by colour-twofold points lying on the 

glide lines, halfway between the mirror lines. It is interesting to compare the pattern 

with Plate 15, which shows essentially the same fishes as those in the upper part of 

Plate 20. 

How many non-equivalent sets of twofold points are there in each of these patterns? 
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PLATE 20 



Plate 21 

pg'g 

The pattern is somewhat complicated because the unit which is repeated by the sym¬ 

metry operations consists of two fishes with different attitudes, for example, the light 

and the dark fish in the upper right hand corner. As Mr. Escher has marked the two¬ 

fold rotation points, it is easily seen how these points generate horizontal rows of fishes. 

Note that the twofold points are all of the colour kind. The first and the third row of 

fishes are equivalent by translation. Subsequent horizontal rows are clearly also equi¬ 

valent by symmetry, but not by translation. They are connected e.g. by a set of hori¬ 

zontal colour glide lines, the traces of which are still just visible in the drawing. The 

combination of these colour glide lines with the coloured twofold points must lead to 

a second set of symmetry lines, orthogonal to the first, and of the ‘plain’ kind. If the 

twofolds had been situated on the colour glide lines, this would have led to the same 

case as in Plate 20, and the new set would consist of mirror lines. However, we see 

that in the present pattern the rotation points lie halfway between the horizontal glide 

lines. This gives vertical glide lines between the vertical rows of symmetry points. In 

this respect the situation is the same as in Plate 5. 

Construct the unit cell, choosing one of the symmetry points as origin, and count the 

number of symmetry points and of each set of symmetry lines in the cell. Check that 

there is no colour translation. How many fishes are there in one cell? How many in a 

rectangle with adjacent twofold points at the corners? 
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Plate 22 

pg'g' 

The most conspicuous symmetry elements in this picture are twofold rotation points, 

between the heads of the black and the white beetles respectively. By outlining the 

unit cell, it is evident that there must be two other sets of twofold points. Find these. 

None of the twofolds involves a colour change. Since the dark and the light beetles 

are clearly similar in shape and surroundings, there must be further symmetry ele¬ 

ments, of the colour type, which transform them into each other. This is carried out 

by two mutually orthogonal sets of glide lines. The symmetry is therefore related to 

that of the previous pattern; only the colour characters of the twofold points and one 

set of glide lines are interchanged. 
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Plate 23 

Pbmg 

4 

The colour translation indicated in the symbol runs vertically. The corresponding 

unit cell edge is conventionally called b'. Parallel to this edge is a set of ordinary mir¬ 

ror lines. Furthermore, there is a set of horizontal glide lines. Since these are repeated 

by the vertical colour translation, they must be alternately of the plain and of the col¬ 

our kind. The order of m and g in the symbol again indicates that m is normal to the 

horizontal a-axis, and g normal to b. It is not necessary to indicate the colour glide lines 

as such, because they are generated by the colour translation between two subsequent 

plain glide lines. 

There must be twofold rotation points; find them and state whether they are ‘colour’ 

or ‘plain’. Compare the result with Plate 20. 
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Plate 24 

P4' 

This is one of Escher’s earlier patterns reproduced in this monograph. When we first 

concentrate on the arrangement of the white lizards, we see twofold rotation points 

between their lower jaws, their right knees, their left feet and their right front paws. 

Considering now the black lizards, we see that these same points are located between 

their right knees, lower jaws, left feet, and right front paws respectively. In other 

words, the latter two sets of twofold rotation points are also points of rotation of go0 

coupled with change of light to dark, vice versa. This operation converts the horizontal 

white lizards into the black ones crawling up and down. If the operation is repeated, 

the pattern is rotated in total through 2 X 90° = 180°, while the colour has changed 

from white to black, and black to white again. 

Mark all the 4' points and note that they are not all symmetry-equivalent but fall in 

two sets, as said above. Check that fourfold and twofold points are arranged exactly 

as those in Plate 13. The difference is that the pattern of that plate has only plain 

symmetry. 
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Plate 25 

Pc4 

The symmetry is again fourfold. Ordinary fourfold points are spotted easily where the 

heads of four white lizards meet, and others where four white tails come together. 

However, at the latter points four heads of black lizards also meet, whose tails point 

to the first set of fourfolds. Apart from a change of colour, these two sets of plain 

fourfolds are translation-equivalent, symbol p'. The obligatory twofold rotation 

points halfway between two subsequent p'-equivalent fourfolds must also change the 

colour, as in Plate 16. You will find these 2' points between the left front of each 

black and its neighbour white lizard. Moreover, there are 4/ points where the right 

elbows of two black and two white lizards meet. 

A ‘colour-blind’ person would choose as cell edges the vectors from head to tail tip 

of two lizards at an angle of 90°. This cell contains in total four lizards. On the other 

hand, a colour-conscious person would mark as cell corners for instance the points 

where four white heads meet. The edges of the colour-blind cell are colour transla¬ 

tions which center the cell of the colour-conscious person. Therefore, the same lattice 

symbol p'c is chosen as in the case of Plate 19. Further, it is only necessary to indicate 

the presence of ordinary fourfolds by their symbol 4; all other rotation points then 

follow automatically. Note again that the 4' points act as plain twofolds when the 

attention is focused on animals of one colour only. 
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Plate 26 

P4g 

We recognise the insects that stood model for Plate 22, and in their arrangement the 

symmetry elements of that pattern are found again. However, Plgte 26 has evidently 

more symmetry. Here, the insects have preserved their natural mirror symmetry: 

their mirror lines are lines of symmetry of the whole pattern. They include angles of 

450 with the glide lines that also were present in the pattern of Plate 22. 

Now, we saw in Plate 6 that a combination of two orthogonal sets of mirror lines, 

with two sets of glide lines at angles of 45 0 to the mirror lines leads to fourfold rotation 

symmetry. Since the mirror lines are plain, but the glide lines involve a colour change, 

a rotation of 90 c about the fourfold points must also lead to change of colour. Again, 

as in Plate 24, a rotation of two times 90 c then brings back the original colour, and the 

additional twofold points are therefore also of the ‘non-colour’ sort. The latter are 

easier to find than the fourfolds. Therefore it is best to mark the twofolds first. As the 

pattern also contains the symmetry elements of Plate 4, we must find these points in 

analogous positions, viz. at the intersection of the mirror lines. It is then easy to find 

the fourfold rotation points. 
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Plate 27 

p6' 

The pattern shows horizontal rows of three-fold non-colour rotation points. Consider 

for example the top row of these points. It is seen that the first two from the left are 

surrounded in the same way, apart from a rotation of 1800 coupled with a colour 

change. The twofold rotation point is halfway between the two threefolds. The third 

point of the row is of a different surrounding altogether. There are four of these points 

in the pattern, all showing the same orientation and thus connected by translation. 

We can therefore take them as the corners of the unit cell. On closer inspection it is 

seen that their symmetry is higher than just threefold: they are sixfold rotation points, 

with a colour change for all odd orders of rotation through 6o°. 

Among the examples of plain symmetry in this monograph, Plates 1—13, we have 

not come across sixfold symmetry. It can be proved, and is moreover easily found by 

trial, that the combination of a sixfold rotation and a translation generates a two- 

dimensional array of sixfold points at the corners of equilateral triangles. The unit cell, 

a rhomb with angles of 120° and 6o°, contains two of these triangles, just as in the 

case of threefold symmetry, see Plates 7, 8 and 9. 

Since a rotation of 6o° repeated three times gives a twofold rotation, there must 

be twofold points between each pair of subsequent sixfold axes, that is, halfway along 

the edges of the triangles. In the present pattern, the twofolds are generated by transla¬ 

tion of sixfolds which introduce a colour change after rotation through 3 x 6o°; there¬ 

fore these twofolds also involve a colour change, as was already found above. 

On the other hand, rotation through 120° or 240° does not change colour in the 

pattern. In fact, a ternary point in a two-colour pattern can never be anything but 

an ordinary rotation point. If it did change the colour from black to white after rotation 

through 1200, then a rotation of 240° would restore the original colour, and rotation 

through 3 X 1200 = 360° would again lead to white. Then the original object would 

be both black and white, that is, gray, and all the symmetry-equivalent objects would 

have the same colour, which is in contradiction to the original assumption. Since a 

sixfold point is also a threefold, this means that in a two-colour pattern with sixfold 

symmetry a colour change can only occur after an odd number of rotations of 6o°. 

The symmetry is thus fully described by the symbol p for a primitive cell and the 

symbol 6' for the sixfold black-white rotation. 
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Plate 28 

This pattern was once used as the cover picture of a journal of popularized science. It 

was described in the text as presenting the case of glide symmetry, presumably a back- 

white glide transforming white birds into dark ones, and vice versa. 

Trace a white bird and check that it is not the same shape as any black one. There¬ 

fore, black and white birds are not equivalent by symmetry. Trace a cell, find its con¬ 

tents and give the symmetry symbol of the pattern. 

Readers familiar with Escher’s art will recognize that this pattern of birds was used 

in his well-known woodcut called Day and Night. 
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PLATE 28 



Plate 29 

This pattern was included in the monograph because it gives an insight into Mr. 

Escher’s methods. 

On the left the pattern is composed of ferocious-looking fishes, on the right of more 

sweet-tempered birds. The outlines of bird and of fish are exactly the same, as shown 

below in the picture, so they fit in the same way, according to the simple rules of p^ 

(Plate 14). 

From left to right, there is a gradual change from fish to bird, first the black ones, 

then the white. Therefore, in the middle the pattern consists of white fishes heading 

left, and black birds flying towards the right. Here the pattern is analogous to Plate 1, 

there is only ordinary translation. 

An analogy can be seen with mixed crystal formation. A general condition for this 

process is that the particles, ions, atoms or molecules, which replace each other in the 

structure, should have similar shape and dimensions, although the crystal does not 

adhere to this principle with the same strictness as the animals in Escher’s drawing. 

The pattern can also be used as illustrating interdiffusion of atoms in two adjoining 

crystals which have the same or nearly the same lattice dimensions and way of 

packing. 
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Plates 30-35 

x 

The next six patterns provide some material for exercise. They present symmetry 

combinations which were treated before. The first three should not give any difficulty. 

33, 34 and 35 are a little more tricky. In 33 and 34 it is best to establish first the system 

of symmetry lines. The position and character of the symmetry points, if present, then 

follows automatically. As always, it also helps to outline a unit cell. 

In Plate 35 twofold points are fairly conspicuous. It is also seen that black and 

white lizards are equivalent by colour symmetry. 

Find the elements by which black and white ones are interconverted. 
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PLATE 30 



PLATE 31 



PLATE 32 



PLATE 33 



PLATE 34 



PLATE 35 



Chapter III 

Patterns with Polychromatic Symmetry 



Plate 36 

Among the two-colour groups of Chapter II, there were several in which translation 

was coupled with interchange of black and white. In Plate 36 we see vertical rows of 

unicorns, all identical in shape, orientation and surroundings, apart from their colour 

which changes, from top to bottom, always in the order . . . yellow, green, red, yellow, 

etc. . . . Unicorns in neighbouring rows are not in the same orientation; they are con¬ 

nected by vertical glide symmetry lines which transform a yellow unicorn looking 

right into a yellow one heading left. As always, by repeating this plain glide operation 

we obtain the plain vertical translation from yellow to yellow, red to red, etc. How¬ 

ever, these same vertical glide lines act as colour symmetry elements, namely, trans¬ 

forming the animals left-right-left, etc. from top to bottom in the colour order yellow- 

red-green-yellow. Note how this operation generates the colour translation with the 

opposite sequence of colours, and that the vertical glide component coupled with 

colour change is one third of the plain glide. 

Outline a colour cell and mark the glide lines. Compare the result with those of 

Plates 3 and 18. In the last-mentioned pattern, black-white glide lines alternate with 

plain glide lines. In Plate 36, which also combines a colour glide with one plain and 

one colour translation, all the glide lines are of the same colour type. What is the 

reason for this difference in behaviour? 
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PLATE 36 



Plate 37 

This is a more typical case of colour symmetry. 

The pattern is composed of fishes in four different colours and orientations. All the 

fishes of one colour have the same orientation and surroundings, so there is one fish of 

each colour per cell. Since they are of identical shape and surroundings, and since 

there is a 90° difference in orientation between the pairs brown-red, red-blue, blue- 

white, and white-brown, there must be fourfold colour-rotation points. These are easi¬ 

ly found in the pattern. There are two of them per cell, with the same colour permuta¬ 

tion order but with different surroundings. In this respect, the situation is the same 

as in Plate 24. Again, there must be twofold rotation points halfway along the cell 

edges, if we choose the origin on one of the fourfolds. Since a rotation of two times 

90° now does not restore the original colour, as was the case in Plate 24, these twofolds 

also include colour changes, namely from red to white, from blue to brown, and vice 

versa. 

Check that this is the case for each rotation through 1800. 
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PLATE 37 



Plate 38 

The pattern shows the simplest possible case of threefold colour rotation symmetry. A 

symmetry point between the heads of three differently coloured lizards is probably 

spotted first. From here the cell is easily traced, as all lizards of one colour are in the 

same orientation. As with plain threefold symmetry (Plates 7, 8, 9) the cell is a rhomb 

with angles of 120° and 6o°, containing in total three threefolds along the long dia¬ 

gonal. Since in the present case there is no other symmetry, these three are all different 

in surroundings. 

Check that they have the same scheme of colour change. 

Whereas a threefold rotation cannot be coupled with an interchange of two colours, 

as stated in the discussion of Plate 27, we see here that an interchange of three colours 

is possible, since it brings back a motif in the original colour after a rotation of 

3 X 1200 = 360°. 
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PLATE 38 

V 



Plate 39 

This pattern is an example of sixfold rotation with three colours related by symmetry. 

The most prominent symmetry elements are plain twofolds, between the tail tips of 

two lizards of equal colour. At these same points two right paws of lizards of another 

colour meet; the twofolds occur in surroundings of three different colour combinations. 

Mark all the seventeen twofold points in the pattern; they are equivalent by colour 

symmetry. Note that they are arranged in a net of equilateral triangles and regular 

hexagons. In the middle of each triangle is a threefold rotation point, changing the 

colours in the order white-red-black for each clockwise rotation through 120°. In the 

centre of the hexagons we expect, and find, sixfold rotation points. These combine the 

colour scheme of the threefolds with the plain rotation character of the twofolds, result¬ 

ing in a colour order white-black-red-white-etc. for each clockwise rotation through 6o°. 

It is interesting to compare the pattern with Plate 27. Both are colour variants of the 

plain sixfold symmetry p6; they have the same system of sixfold, threefold and two¬ 

fold rotation points. In 27 rotation about the sixfolds is coupled with alternation of 

the two colours black and white, leading to plain threefolds and coloured twofolds, 

because these are the colour characteristics of rotation of 2 X 6o° and 3 X 6o° re¬ 

spectively about the sixfold points. On the other hand, if a rotation of 600 leads to a 

permutation of three colours, as in the present case, then the original colour is restored 

after rotation of 3 X 6o° = 1800, so that also the subsidiary twofolds in the cell 

give ‘plain’ rotations, whereas the threefolds are all coloured. 

Note how Escher has used practically the same motif to achieve the patterns of 

Plates 38 and 39 with different packing and symmetry. Clearly the lizards of Plates 16 

and 25 are also closely related. We meet the same sort of phenomenon in crystal chem¬ 

istry, where sometimes quite awkward-looking organic molecules manage to crystal¬ 

lize according to different packing laws, forming polymorphs with often small dif¬ 

ference in stability. 
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PLATE 39 



Plate 40 

Compare this pattern with Plates 9, 8 and 36. It has the same ‘plain’ symmetry as 

Pattern 9, namely, when we consider black, grey and red tadpoles as different animals 

altogether. There are then three different threefold points on the long diagonal of a 

cell with e.g. ‘black’ threefolds at the corners. Mirror lines run through the long dia¬ 

gonal of the cell and its symmetry-equivalent directions. However, the animals of three 

different colours are all of the same shape, orientation and surroundings, so that they 

are interconverted by a three-colour translation along the long diagonal, just as the 

three unicorns in Plate 36. Even the glide lines parallel to this translation, with their 

mixed plain and colour character, are present. We can define a ‘colour’ cell, ^in size 

of the plain cell, with four plain threefold points at the corners, differing in nothing 

but colour scheme of their environment. This small trigonal cell must again have 

threefolds at ^ and | of its long diagonal, and these must permute the colours black, 

grey, red. (Disregard the eyes of the animals which are all the same colour.) The col¬ 

our-threefold points are found where three paws of different colour come together. 

They are each others mirror image by the symmetry line along the short diagonal of 

the colour cell. The colour cell is therefore analogous to the cell of Plate 8, whereas 

the arrangement of mirror lines in the plain cell is the same as in Plate 9. 
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Plate 41 

This most complicated three-colour pattern is similar to the preceding one in showing 

a threecolour translation in a net of equilateral triangles. There is no mirror symmetry 

here. On the other hand, the plain threefolds are also points of sixfold colour sym¬ 

metry. Each of these points leaves one colour invariant and interchanges the other 

two. Therefore, between two subsequent sixfolds of one ‘colour’, there must be a two¬ 

fold of the same colour characteristics. These same twofolds, being also halfway be¬ 

tween two sixfolds of different colour, interchange the colour schemes of the latter. 

The colour threefolds are of the same type as in the previous pattern. 

Perhaps a more logical, though more abstract, interpretation of the colour sym¬ 

metry in this pattern is the following. The ‘asymmetric motif’ is clearly a three-col¬ 

oured moth. It occurs in six different colour combinations, as given in the following 

table: 

A B C D E F 

body yellow red brown brown red yellow 

front wings red brown yellow red yellow brown 

back wings brown yellow red yellow brown red 

A, B and C are interchanged by a cyclic permutation of the three colours, and so are 

D, E and F. We arrive from an element of the first set to one of the second by an anti- 

cyclic permutation of colours, i.e. a change of two colours only. 

The six- and twofold points interchange two by two an element of the first and one 

of the second set, e.g. A E, B F, and C D. The threefolds, non-sixfolds, carry 

out cyclic permutations A, C, B, A, etc., and F, D, E, F, etc. So the pattern could 

have been made with unicoloured moths in six different colours, corresponding to the 

six different types A, B, C, D, E and F. 

Symbolically, we can compare the threecoloured moths with atoms or molecules 

having three properties (‘body, front wings, back wings’) which can assume three dif¬ 

ferent values (‘brown, yellow, red’). The values of these properties should not affect 

the packing in a crystal structure and could be not easily detected by physical meth¬ 

ods. If they are detected, then we find the colour symmetry, and distinguish between 

colour and plain translation; if the physical methods fail to distinguish between the 

different atomic states, then we find the small sub-cell, which is in reality a colour 

cell. Cases of such multiple ‘crypto-symmetry’ have been treated in the literature. 

A further analysis of this highly intriguing pattern has been given by A. L. Loeb, 

Color and Symmetry (1. c., p. XI). 
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PLATE 41 



Index 

of some Cry stalkgraphical Expressions 

The number indicates the Plate in the discussion of which 

the expression is defined or mentioned. 

asymmetric unit 2 magnetic moment T4 
basic vector 1 mirror line 4 
basic colour vector 14 mixed crystal 29 

cell 1 neutron scattering x4 
cell, primitive 1 non-primitive cell 3 
cell, non-primitive 3 polymorphs 39 
centred cell 3j x9 primitive cell 1 

colour cell 16 pseudo-cell ■3 
colour glide line *7 pseudo-translation 13 
colour rotation x5 pseudo-symmetry 5> :3 
colour translation x4 rotation, n-fold 2 

conformation 12 row 1 

cryptosymmetry 41 sub-cell x3 
diffusion 29 translation 1 

glide line 3 translation, pseudo *3 
glide component 3 translation, colour x4 
lattice 1 unit cell 1 

lattice vector 1 unit, asymmetric 2 

lattice symbol 3 X-ray scattering *3> x4 
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