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colored drawings and watercolors of periodic designs, but

dated them and numbered them consecutively. In a few

cases (Three Elements, Shells and Starfish, and Heaven and

Hell) names came to be associated with the drawings. In

the text, we identify each periodic design with Escher's

number and date (month and year) and give a descriptive

name.
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In Three Dimensions: Everyone loves surprises. There are two types of surprises-

Extensions of ^^^ °"^ '^ ^ happy accident or coincidence; the other is

M C Escher's Art
meticulously planned, perhaps cunningly disguised to appear
natural, and brings double pleasure. It is often hard to say

-\ w/ho has greater delight-the person who is surprised or the

1 one who devised the magic.

Doris Schattschneider The Dutch artist M.C. Escher (1898-1972) was an ingenious

planner of many surprises of the second kind. His graphic

art fairly bursts with cunningly planned visual surprises. At

first glance, much of his work appears natural, yet, at second
glance, the seemingly plausible is seen to be impossible and
the viewer is drawn to look again and again as he discovers

with delight the hidden surprises the work contains.

How did Escher do it? He was a genius of imagination, a

skilled graphic craftsman, but the key to many of his

surprising effects is mathematics. Not the mathematics of

numbers and equations that most of us envision, but

geometry in all aspects, both classical and modern. Escher

could imagine the fantastic effects he wished to express

graphically, but a necessary tool to capture these effects was
mathematics. For this reason, he read technical works and

corresponded with mathematicians and crystallographers-all

the while disclaiming his ability to understand mathematics

and yet visually expressing his understanding of the vital

principles he needed.

The kaleidoscopically designed geometric forms in this

collection are a continuation and extension of Escher's own
work. Covered with adaptations of Escher's designs, they

embody many of the themes dominant in his prints and are

related to his own explorations of three-dimensional

expression. In light of his work, it is not surprising that these

creations required the collaboration of a mathematician and

a graphic designer.

Your involvement is required also! A casual glance cannot

reveal the surprises to be discovered in Escher's prints. So,

too, the secrets to be discovered in our models are only

revealed by your creating the forms, examining them, and
yes, playing with them! Each geometric model begins as a flat

design; you bring it to "life", providing the transition from its

two-dimensional to its three-dimensional state. Once brought

to life, the models provide many surprises for both hand and
eye— the two-dimensional pattern gives few clues as to what

you will see and feel when it takes shape in three dimensions.

Before assembling the models, you are invited to explore

their various aspects: form, design, color and the relation^;' ip

to Escher's own work. The journey will touch on manv ' t itv

paths explored by Escher, as well as some newly disc



Geometric Solids

The stars which hang in Escher's black outer space (Figure

1) are geometric forms with the symmetry of faceted jewels.

Surrounded by geometric models in his studio, Escher readi-

ly admitted his awe of these forms and included them in

many of his prints.
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Tetrahedron

Octahedron

Icosahedron

Cube

Dodecahedron

Admired and exalted from earliest times, the Platonic solids

(Figure 2) are the most perfectly symmetric of all convex

polyhedra. How perfect? Each form is faceted with copies

of a single regular polygon-all sides and all angles of all

faces are equal. In addition, every corner (vertex) of the solid

is the same-the same number of faces meet there, and the

angle at which adjoining faces are inclined to each other

is always the same. Mathematicians call these regular

polyhedra. In each of them, every possible requirement that

aspects of the form be alike (congruent) is fulfilled. These
requirements are so severe that only five forms can meet
them all.

Their names come from the original Creek and tell us how
many faces they possess. Three are faceted with equilateral

triangles: tetrahedron, octahedron, icosahedron. The cube,

faceted with squares at right angles to each other, is the

most familiar form of all. Its name comes from the Greek
word for "dice'-cubos. The dodecahedron is faceted with

pentagons; it is perhaps the most admired since it is the

least obvious of the solids to imagine. Escher's little dragon,

at the pinnacle of his fanciful journey, gives a snort of power

atop a dodecahedron in the print Reptiles (Figure 3).

If just one of the requirements for a solid to be regular is

removed, a large collection of other highly symmetric forms

can be discovered. The Archimedean (or semi-regular)

polyhedra allow two or more types of regular polygons as

faces but fulfill all other requirements of regular polyhedra.

Thus all sides of all faces are equal; every corner of the solid

is the same (surrounded in the same manner by the faces

which meet there). There are thirteen semi-regular solids;

we have included just one in our collection.

The cuboctahedron (cube -t- octahedron) has as its faces six

squares and eight equilateral triangles (Figure 4). Each of

its twelve vertices (corners) is surrounded by two triangles

and two squares arranged so that the two squares separate

the two triangles. The name of this solid suggests its

derivation -it can arise either by slicing off corners of a cube

or by slicing off corners of an octahedron. It can also arise

as the solid which is the intersection of an octahedron with

a cube as shown in Escher's print Crystal (Figure 5).



5 Crystal, mezzotint, 1947.

The Cuboctahedron can be obtained from a

Cube or an Octahedron by slic ing oil their

corners (always cutting through midpoints ot the

edges which meet at a corner). If all protruding

corners are sliced off Escher's Crystal (Figure 5),

which is an interlocked Cube and Octahedron,

the Cuboctahedron is the resulting solid.



»»
6 Linking together several Tetrahedra along their

edges produces a ring of Tetrahedra. The
Kaleidocycles can arise in this way.

Kaleidocycles

A Kaleidocycle is a three-dimensional ring made from a

chain of tetrahedra. Begin with several tetrahedra, all ex-

actly alike (Figure 6a). Hinge together two of these along

an edge of each tetrahedron to begin a chain of tetrahedra,

each one linked to an adjoining one along an edge (Figure

6b). When the chain of tetrahedra is long enough, the ends
can be brought together to form a closed circle (Figure 6c).

The hinges of the chain allow the ring to be turned through

its center in a continous motion.

Contrary to the impression given by most textbooks, the

discovery of new forms and new ideas is rarely the product

of a predictable evolution. An unexpected discovery is made,

and much later, the new knowledge is placed in its "natural"

position with respect to the larger body of knowledge of

which it becomes a part. So, too, with the discovery of

Kaleidocycles. Although they naturally evolve in the man-
ner described above, it was an extremely different analysis

that led to their discovery.



First came the form IsoAxis" (U.S. Patent no. 3302321), in-

vented by Wallace Walker, a graphic designer. Walker
created IsoAxis® as a solution to a structural paper design

project in 1958 while a student at Cranbrook Academy of

Art in Michigan. In two dimensions, IsoAxis* consists of

a grid of sixty connected isosceles right triangles (Figure

7). In this two-dimensional state, the pattern gives no hint

of its surprising three-dimensional form. When folded on
the grid lines and assembled into a three-dimensional ring,

IsoAxis® assumes a bold symmetrical shape. Finally,

astonishingly, the form can be rotated through its center,

at each turn transforming its appearance (Figure 8). After

five rotations, it resumes its first shape and the cycle of

transformation can begin again.

A mathematical mind is quick to ask: What relation does
the two-dimensional grid have to the three-dimensional

form it produces? What happens if the grid is altered? In-

vestigation of these questions by the author, a mathemati-

cian, led to the discovery of an infinite family of three-

dimensional forms. The Kaleidocycles in our collection are

members of this family.

The grid of lines which forms the fiat pattern of IsoAxis®

is like an adjustable wooden gate or a hatrack which can

be stretched or collapsed. Stretching or collapsing the

IsoAxis® grid produces new flat patterns which can be fold-

ed up in the same manner as IsoAxis® to form a ring

faceted with triangles. Surprisingly, these new forms also

rotate through the center of the ring. Kaleidocycles seems
an appropriate name for these highly symmetric forms

which turn cartwheels in an endless cycle (Greek: kalos

[beautiful] -i- efdos [form] -i- kyklos [ring]).

7 IsoAxis begins as a flat grid of isosceles triangles.

8 IsoAxis folds into the solid shown and then
transforms as its facets are pushed through its

center.



9 A grid produced by stretching the IsoAxis pattern.

10 This grid has all triangles congruent; when
folded and assembled, it produces the same
rin'g of Tetrahedra as the grid shown in Figure 9.

11a A Hexagonal Kaleldocycle.

The Kaleidocycles created when the IsoAxis® grid is col-

lapsed look like many-faceted folded-paper Danish lamp-

shades. They have great flexibility, and seem to bloom like

flowers when rotated.

When the IsoAxis® grid is stretched (Figure 9), all of the

angles in the triangles formed are less than right angles.

When this pattern is folded into three-dimensional form,

it forms a ring of linked tetrahedra! By moving the small

triangles at the top of the grid to join those at the bottom,

yet another new grid (Figure 10) is formed which produces

the same three-dimensional form. Each vertical "strip" of

four congruent triangles folds into a single tetrahedron, and

the vertical lines on the flat pattern become the hinges of

the linked chain when it is folded. By adjusting the amount
of stretch of the grid, or adding more triangles, an infinite

variety of rings of linked tetrahedra can be created.

More questions were asked: How few tetrahedra can form

a closed ring? How small can the hole in the center of the

ring be made? Experimentation, guided by facts of plane

and solid Euclidean geometry, answered these questions.

In order to form a closed ring, at least six tetrahedra are

required. The hole in the center can be made (theoretical-

ly, at least) as small as a point and still the tetrahedra will

tumble through it. Finally, rules were worked out for the

construction of triangles which produce a ring having a

point as center hole.

Now many beautiful Kaleidocycles could be constructed.

The first two in the family of forms having a point as a center

hole have familiar outlines when viewed from above. The
Kaleidocycle whose ring is formed by six tetrahedra has the

outline of a regular hexagon (Figure 11a), white the ring of

eight tetrahedra has the outline of a square (Figure lib). As

the number of tetrahedra in a Kaleidocycle is increased,

these outlines become like many-petaled flowers or stars

(Figure 12).

All the Kaleidocycles discovered thus far were beautifully

symmetric. As they turned, the triangular faces met, mat-

ched, and then parted. Another question could not be ig-

nored: Could other grids of triangles produce a different

kind of Kaleidocycle? Again, experimentation and use of

geometry produced an answer. A slanted grid of triangles

would produce a twisted ring of tetrahedra (Figure 13). Each

twisted Kaleidocycle has a jagged, uneven appearance and

its tetrahedra seem to tumble through the center hole one

at a time in sequence.

10



lib A Square Kaleidocycle.

12 A starlike Kaleidocycle of ten Tetrahedra.

The many-faceted Kaleidocycles seem to invite surface

design. Many pleasing geometric effects can be produced
by coloring the facets or adding lines to accentuate the

kaleidoscopic nature of their movement.

While investigating these forms, the author was also study-

ing and teaching the mathematical art of repeating patterns.

The designs of M.C. Escher were a major source of illustra-

tions in this study. Fragments of these patterns appear in

many of his prints. Observing his prints, it was clear that

the Kaleidocycles captured two of Escher's dominant
themes-a closed cycle and endless movement. Reptiles

(Figure 3) and Encounter (Figure 14) are just two of many
prints by Escher that contain part of an interlocking,

repeating pattern and suggest an endless cycle of motion.

An idea for surface design on the Kaleidocycles came
naturally-could they be covered continuously with Escher's

designs? If so, they would simultaneously bring to life in

three dimensions many aspects of Escher's work. Ultimately,

the answer was yes, but in order to understand how it was
accomplished, we must first discuss some aspects of

repeating patterns.

13 A Twisted Kaleidocycle.

11



14 Encounter, lithograph, 1944.



15 Periodic design 50, VII 1942. Fish and frog study

tor Verbum (Figure 47). Choose a point In a

periodic pattern (the point chosen here is where
the legs of three frogs meet), and find all

repetitions of that point. This array of points is

the lattice of the pattern. Joining rows of points

forms a parallelogram grid (red lines); these

parallelogram tiles are all alike and reproduce
the original design. Bisecting the parallelograms

(white lines) produces a triangular grid. Each

parallelogram contains exactly one frog and one
fish (even though the lines break up motifs.)

•See Escher's preface to Caroline MacCiillavryS book.

Repeating Designs

Everyone knows what it means to tile a floor: many tiles,

all alike, or perhaps of a few different shapes, are fitted

together like a jigsaw puzzle to cover the floor without gaps

or overlaps. Although the tiles can be placed in a somewhat
random manner, usually they form a pattern which repeats

itself at regular intervals. Such a pattern is called a repeating

or periodic tiling of the plane (plane tessellation). These til-

ings were a constant preoccupation of M.C. Escher-even

he called his fascination "a hopeless mania."*

The formation of such tilings is a child's exercise if.<he tiles

are restricted to the three shapes of equilateral triangle,

square, and hexagon. Escher's self-imposed restriction on
tilings was that the tiles be recognizable, animate forms

(allowing, of course, fanciful imaginary creatures). He
records his early struggles in producing such tilings, hav-

ing no other guidance than his own intellect. Later, he

became aware that mathematicians and crystallographers

had abstractly analyzed all such patterns and formulated

rules which every periodic pattern had to obey. This

knowledge was the necessary key to free Escher from

frustrating experimentation and allow the full force of his

creative talent to bring forth creatures that he could be sure

would interlock in a prescribed way. He filled notebooks

with over one hundred and fifty color sketches of fanciful

repeating patterns. In Reptiles (Figure 3) it is from the page

of one of these notebooks that an Escher-created creature

decides to escape, only to reenter its jigsaw world.

A repeating pattern by its very definition can be superim-

posed on itself by sliding it a certain distance in a prescribed

direction. This motion is called by mathematicians a transla-

tion of points in the plane. If we pick a particular point in

a pattern, then find every repetition of this same point by

translations, a lattice, or an array of points, is formed. This

lattice will have the same formation no matter what point

was first chosen. Lines can be drawn through the parallel

rows of lattice points to form a grid of parallelograms; a third

set of parallel lines can bisect these to yield a grid of

triangles (Figure 15). Every repeating pattern, no matter how
strangely shaped its tiles, has an underlying grid of lines-

and both the parallelogram grid and the triangular grid form

tilings themselves, but of simple tiles, all alike. Although

the lattice of points associated with each periodic pattern

is unique, these points can be connected in many different

ways, resulting in many different parallelogram ^

triangular grids. Mathematicians use these undt , ...q

geometric grids to analyze repeating patterns, choo '->g par

ticular standard grids for this analysis.

13
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35, VII 1941. Lizards. Two kinds of
Iters of four-fold rotation of this

of the pattern 90° about any
"• superimpose the outlines

r, such a rotation about a
center marked b, a i^lid red square will
superimpose lizards ot opposite color, while a
rotation about a square within a square will
superimpose lizards of the same color. Red
circles mark centers of two-told rotation; a half
turn (180°) about these points superimposes
lizards of opposite colors.
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17 Wood engraving based on periodic design 99,

VIII 1954. Flying fish. This design has centers of

six-fold rotation ^ , centers of three-fold

rotation , and centers of two.-fold rotation

(find them). Rotating the pattern 60° about the

centers of six-fold rotation superimposes the

outlines of the fish, but interchanges the black

and white fish. Rotating the pattern 120° about

the centers of three-fold rotation superimposes
fish of the same color.

18 Periodic design 85, IV 1952. Three Elements. . An
axis of reflection (red line) bisects this design

into two parts which are mirror images of each

other. The design contains a whole grid of such

reflection axes which split each motif.

A periodic pattern may be superimposed on itself by mo-
tions other than translations; such motions are called the

symmetries of the pattern. Amazingly, there are only three

other distinct motions which can be symmetries of a pat-

tern. There may be a point in the pattern which can act like

the center of a pinwheel. The pattern can be turned about

this fixed point, and after less than a full turn, the pattern

will be superimposed on itself. This motion is called a rota-

tion (Figures 16 and 17). If a line can be drawn in the pat-

tern so that the pattern on one side of the line is the mir-

ror image of the pattern on the other side of the line, then

the pattern can be superimposed on itself by flipping it over

so that the line stays fixed (Figure 18). This motion is called

a reflection, and the mirror line is called an axis of reflec-

tion. Finally, it may be necessary to combine the motions
of translation and reflection to superimpose a pattern on
itself-first sliding along a line, then flipping the pattern over

this line (Figure 19). This motion is called a glide-reflection.

The study of these motions is called transformation

geometry, and its laws govern all repeating patterns.

Escher colored his jigsaw designs so that adjacent creatures

have different colors. Using this device, individual creatures

(even when all have the same outline) are clearly delineated.

In patterns where all creatures have the same shape, some
symmetries may superimpose the outlines of creatures but

interchange their colors, while other symmetries will

superimpose creatures of the same color (Figures 16 and

17). Escher was a pioneer in the investigation of colored

repeating designs, a field of inquiry which today is called

color symmetry.

15



19 Periodic design 63, II 1944. Study for Encounter.
Glide this pattern over itself along the red

"track" shown; flip the pattern over after

traveling the length of the track. This glide

reflection will take the optimists facing left, glide

them upward, and then superimpose them on
the next row of optimists facing right.

The actual process of creating a motif which will interlock

with replicas of itself to fill the plane is, in Escher's words,
"a complicated business." Mathematically, there are only
seventeen distinct types of patterns (that is, patterns which
have different symmetries), but artistically, there are an in-

finite number of possibilities. In creating a tile that will work,

the artist must obey the constraints on its outline dictated

by the possible symmetries of the design. Far more difficult

is the creation of an outline which simultaneously defines

the two shapes it will border in the design.

With this brief glimpse of the geometry which underlies

repeating designs, we can now explain how the models in

our collection were covered with Escher's designs.

16



20 This cardboard model of a Rhombic
Dodecahedron (twelve diamond-shaped faces)

was covered by Escher with a version of his

design shown in Figure 18.

Surface Design of Solids

Escher himself experimented with covering the surfaces of

three-dimensional objects with his repeating designs. In the

essay "Approaches to Infinity,"* he notes that the flat designs

represent the possibility of infinite repetition but only a frag-

ment of this infinity can be captured on a sheet of paper.

On the surface of a three-dimensional object, infinite repeti-

tion of design can be realized with only a finite number
of figures-the pattern on a solid has neither beginning nor

end. In his experimentation he covered a few cardboard

models with his designs (Figure 20), but only one decorated

solid was ever produced in finished form: a tin box

icosahedron with an enamel design of shells and starfish

which was commissioned by a Dutch firm to commemorate
an anniversary (Figure 21).

Escher also created spheres whose carved surfaces are filled

with a single repeated motif (Figure 22). It is likely that in

covering these spheres with adaptations of his flat designs

he first envisioned the pattern wrapped around a suitable

solid such as a cube or octahedron, then projected the

designs outward to the surface of a sphere surrounding the

geometric solid.

This is reproduced in The World of M.C. Escher.

The cube and the three Platonic solids with triangular facets

have flat patterns cut out from a grid of squares or

equilateral triangles. Finding suitable designs to cover these

solids is easy, for these grids are common for repeating

designs. Covering these solids is not totally trivial, however,

since when pieces of the repeating design are cut out

make the pattern for the solid, the designs which aie

brought together in folding up the pattern may r ' '

match.

17



The cuboctahedron is also easily covered, provided designs

filling both triangle and square grids can be matched.

Escher had produced such designs as a study for his Circle

Limit III (Figure 23). Although it was necessary to distort the

triangular and square tiles to cover a representation of a

special curved surface called a hyperbolic plane,'^ Escher's

print is one in which matching squares and triangles

alternate.

The surface design of the dodecahedron presented the

greatest challenge of all the solids. Since regular pentagons

are not the geometric grid of any repeating design,

something more complicated than just cutting out a design

and wrapping it around this solid was required. Here,

familiarity with a special tiling of the plane by nonregular

pentagons was the key to success. Combining this

knowledge with the techniques that Escher must have used

to cover his spheres achieved a successful covering of the

dodecahedron with an Escher design. (Details of the designs

on all of the solids appear later in the Notes on the Models.)

I A hyperbolic plane is a surface having the property that given a line and a point not on
the line, at least two lines can be drawn through the point which do not intersect the line.

21 Escher designed this enameled tin box
Icosahedron in 1963.

22 An ivory replica of Escher's Sphere with Fish,

carved in 1962 by Masatoshi, a Japanese netsuke

18



23 Circle Limit III, woodcut in tour colors, 1959.
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Repetition of periodic design 103, IV 1959. Fish.

This rectangular portion of a periodic design of

red. white and^black fish has left and right

edges matching, top and bottom edges
matching. A cvclinder is formed when either

pair of matching edges is brought together. If

''f design is creased along the grid lines of a

docycle. both pairs of matching edges can
ght together and the pattern is "wrapped

a '--e Kaleidocycle.

Surface Design of Kaleidocycles

In discussing the problem of representing true infinite

repetition, Escher acknowledged that the drawings of

repeating designs were inadequate tor this representation,

and he proposed a partial solution to the problem. If the

flat design sketched on a rectangle of paper (Figure 24a) is

lifted up and two opposite edges brought together, match-

ing the design, then a cylinder is formed (Figure 24b). At

least in the circular direction the design will have neither

beginning nor end on this surface. But, of course, the

cylinder has only finite height so the repetition abruptly

stops at the top and the bottom of the cylinder. A form with

true infinite repetition could be created bv beginning with

a flat re^rtangle, bringing together the top and bottom edges

to form a cylinder, and then bringing together the ends of

this cylinder to form a closed ring. An ordinarv cv linder can-

not have its ends brought together to form a ring without

crushing the paper. The reason we can accomplish this feat

in making a Kaleidocvcle is because our paper has been

scored and folded so that the first "cvlinder" we form is

creased into a chain of tetrahedra and it is easy to bring

the ends of this chain together to form a closed rino without

anv crumpling of the paper (Figure 24c). Thus, the Kaleidocv'-

cle form has infinite repetition of its triangular facets in two

distinct circular directions, like the surface of a doughnut.

Continuously covering the surface of the Kaleidocycles with

repeating designs accomplishes a solution to the problem

proposed by Escher.

The actual covering of the Kaleidocvcles with Escher's

periodic designs was not as easiiv accomplished as the pro-

cess outlined above might indicate. The hope that this could

be realized was sparked bv a simple obseryation that both

the periodic designs and the patterns for the Kaleidocvcles

have a common geometric aspect. Each of the Kaleidocvcles

grows out of a flat grid of triangles-and such a grid is also

associated with repeating patterns. Simpiv to superimpose

a repeating design with a given grid onto the pattern of a

Kaleidocycle formed from the same grid seemed to be an

obvious thing to try, but, unfortunately, this was too naive

to work. \'iewed from above, a hexagonal Kaleidocvcle ap-

pears to be six equal triangles forming a regular hexagon

(Figure 25), and a square Kaleidocycle appears to be eight

equal triangles forming a square (Figure 26). It looks as

though a repeating design with a grid of equilateral triangles

should cover the facets of the hexagonal Kaleidocycle: it

looks as though a design with a grid of isosceles right

triangles should cover the facets of the square KaleidocN'-

cle. But our eyes are playing tricks, since in the top view,

the triangular facets of these three-dimensional forms are

20
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actually slanted. Side views of the models (Figures 25 and
26), or a closer inspection of their flat patterns, reveal that

their triangular facets are not the same triangles which
underlie the repeating designs.

A camera projects the three-dimensional image it sees on-
to a flat plane. It is also possible to reverse this process and
project a design in a flat plane onto a three-dimensional
object. Why not project a design with equilateral triangles

in its grid onto the hexagonal Kaleidocycle viewed from
above? Similarly, why not project a pattern with right

triangles onto the face of a square Kaleidocycle? In order
to carry this out, another geometry was needed. Projective

geometry tells us which properties of objects are not

changed when the image of the object is projected onto
another surface.

There are two essentially different ways to project an im-

age. The first, called central projection (Figure 27a), is familiar

to us in the way a slide projector works. A single-point

source of light sends out a cone of light rays which stretch

the image and carry it onto another surface. The other type
of projection is technically harder to carry out, but

mathematically just as natural as the first. In a parallel pro-

jection (Figure 27b), the image is projected to another sur-

face by rays which are all parallel to each other, all moving
in the same direction. Each type of projection preserves

some properties and distorts some properties of the original

image. The essential properties of the repeating designs

which had to be preserved if the Kaleidocycles were to be
covered continuously were preserved by a parallel projec-

tion (Figure 28) but not by a central projection. Thus, in

theory at least, the problem of projecting the repeating pat-

terns onto the surfaces of the Kaleidocycles was solved. (The

actual process of producing a parallel projection can be
done by a computer or via photography using a complicated

system of lenses.)

Now only one question remained: What patterns could be
wrapped around the hexagonal or square Kaleidocycles? In

turning these rings of tetrahedra, the triangular faces come
together and then part. Many different edges match as the

forms turn cartwheels through their endless cycle. Patterns

suitable for covering the Kaleidocycles must have the pro-

per symmetries so that the design will always match when
edges come together. In addition, the design must fill the

flat pattern of the Kaleidocycle so that top and bottom edges

match and left and right edges match. Many patterns \*

found that fulfilled these requirements and
theoretical possibility of continuously covered Kah
became a reality.
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27a A Central Projection.

The actual process of producing the Kaleidocycles ready

for you to assemble required a most exacting procedure.

Although the sketches of repeating designs in Escher's

notebooks appear to be quite precise, the hand-drawn

repeating motifs contain tiny variations as they fill a page.

When covering a Kaleidocycle, motifs from different parts

of a pattern must match as the Kaleidocycle rotates, so ex-

treme precision is necessary for the surface design. Each

repeating design used on the solids and the Kaleidocycles

was hand-drawn to these exacting requirements. Very literal-

ly, Wallace Walker and his assistants -Victoria Vebell, Robert

McKee, and Robin McGrath-retraveled Escher's path in re-

creating the designs.

Once precise, the Kaleidocycle designs were stretched by

a special photographic process to carry out the parallel pro-

jection described earlier. Finally, the designs were careful-

ly hand-colored. In all cases, an attempt was made to match

the colors of Escher's original sketches as closely as possible.

28 An equilateral triangle drawn on ordinary

squared graph paper (top). The same triangle,

parallel-projected by a computer onto the face

triangle of a Hexagonal Kaleidocycle (bottom).

Note that the distance between parallel lines in

the graph grid remains unchanged in the

vertical direction and Is stretched uniformly in

the horizontal direction.

i:

27b A Parallel Projection
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Coloring the Designs

Escher had a rigid criterion for coloring all of his repeating

patterns. Any two adjacent motifs must have different col-

ors. Only by color contrast can a single motif be distin-

guished in a design filled with replicas of this motif.

Mapmakers are usually required to color each country with

a single color and use enough different colors so that coun-

tries which border each other have different colors. Strange

as it may seem, the problems that arise in meeting these

coloring requirements are in the domain of mathematics.

Given a design (a map of countries, a geometric design, a

tiling), mathematicians ask questions like these: How few

colors can ! use to meet the coloring requirements of the

map? How many different ways can I color it? Can it be col-

ored so that certain color combinations must occur? These
questions are often surprisingly hard to answer if the design

is complicated or the coloring must meet stringent condi-

tions. Combinatorics, graph theory, and topology are all

branches of modern mathematics in which these questions

are considered.

The problem of determining the smallest number of col-

ors that suffice to map-color any design drawn on a plane

or surface of a sphere was unsolved for over one hundred
years, although many skilled mathematicians attempted to

answer it. Many believed that four colors was the answer

since no one was able to produce a map that required five

colors. Only in 1976 was the answer proved to be correct.

(Mathematicans K. Appel and W. Haken of the University

of Illinois used tens of thousands of computer operations

to support their proof.) Although four colors are sufficient

to map-color any plane design, a repeating design is most

pleasingly colored if the coloring emphasizes the sym-

metries of the design. Escher experimented with and
categorized many of these special types of coloring long

before the subject became a field of investigation for

crystallographers and mathematicians.
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29 The fish design on the Cuboctahedron can be
map-colored evenly using a minimum of three

colors. In the coloring here, each color (white,

gray and black) is used on exactly eight of the

twenty-four fish which cover the Cuboctahedron.
Other interesting even map-colorings of this

design are possible using four colors; we chose
one of these for our model.

In adapting Escher's designs to the surface of the geometric

models, the criterion that the design must be map-colored

was maintained. When the flat patterns of the solids are

cut out from the geometric grids underlying Escher's

periodic designs, naturally some portions of the design are

cut out. When a pattern is folded up to form a solid, dif-

ferent portions of the periodic design are brought together,

and in some cases, this causes adjacent motifs on the solid

to have the same color. In order to.have the design on these

solids map-colored, some adjustments in Escher's coloring

had to be made. Sometimes a design which required only

three colors in the plane demanded a fourth color when
applied to the surface of a geometric solid. In three cases-

the cube, the icosahedron, and the cuboctahedron — the

map-coloring requirement forced a rearrangement of colors.

On all of the models, an additional coloring requirement

was also met: Each patterned solid can be colored evenly,

that is to say, each different color is used the same number
of times. Finding such a coloring for the cube covered with

twelve identical fish has been left as a puzzle for you to

solve.
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Notes on the Models

30 Periodic design 56, XI 1942. Reptiles.

MilM
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Geometric Solids

Tetrahedron

30a Axis of three-fold rotational symmetry.

This design of reptiles was a natural choice to cover the

tetrahedron. Joining the points of six-fold rotation forms

a natural grid of equilateral triangles (one of which is shown
in Figure 30), and the tetrahedron pattern consisting of four

of these triangles easily wraps the design around the solid

with both outlines and colors of the creatures matching.

On the surface of the solid the centers of rotation of the

flat design become centers of rotation of the solid. For ex-

ample, if an axis is inserted through the tetrahedron so that

it pierces the center of one triangular face and the vertex

opposite that face, then the tetrahedron can be rotated 120°

about that axis and be superimposed on itself (Figure 30a).

This rotation of the tetrahedron about such an axis is called

a three-fold rotational symmetry of the tetrahedron. You will

see three reptiles turning around each of the points where
a three-fold rotational axis can pierce the tetrahedron. The
midpoint of each edge of the tetrahedron is a center of two-

fold rotation, both for the periodic design and for the

tetrahedron. A two-fold rotation axis for the tetrahedron will

pierce through the midpoints of two nonadjacent edges

(Figure 30b).

30b Axis of two-fold rotational symmetry.
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31 Escher's drawing with instructions and a plastic

sketch ball for a carving of an ivory sphere with

his Three Elements design. Clearly visible is the

spherical triangle which contains half of each of

the three motifs. The equilateral triangle is the

projection of one face of our Octahedron onto

the surface of a sphere.

Octahedron

The repeating design depicting the 'Three Elements" of

earth, water, and sky (Figure 18) was used by Escher as he
experimented with surface design on three-dimensional

forms. Each motif in the pattern approximately fills a dia-

mond shape (rhombus) of two joined equilateral triangles.

By altering the dimensions of these diamonds, they can

become the faces of a rhombic dodecahedron. In this way,

Escher wrapped a distortion of the flat periodic design

around the twelve-sided solid (Figure 20). He also covered

a prism with this design.

In 1963, at the suggestion of C.V.S. Roosevelt, an avid col-

lector of his work, Escher provided a detailed drawing and

plastic ball covered with the design to guide the Japanese

craftsman Masatoshi as he carved the design onto the sur-

face of an ivory sphere (Figure 31).

The most obvious adaptation of this design to the surface

of a geometric solid is to cover an octahedron. No distor-

tion of the flat pattern is required. Each equilateral triangle

containing the interlocked halves of the three motifs is a

face of the octahedron (Figure 31). Twelve motifs in all, four

of each kind, cover the octahedron, and the four replicas

of each motif form a square path traveling around adjoin-

ing edges of the octahedron.

If the octahedron is surrounded by a sphere and this design

is centrally projected onto the surface of the sphere, Escher's

decorated ball is the result. Under this projection the square

path followed by replicas of a single motif becomes a great

circle on the sphere.

Escher was very specific in his instructions as to the color-

ing of the carved ivory sphere and included samples of the

three colors he wished to be used. The coloring of our oc-

tahedron with the Three Elements design is Escher's choice

for the carved sphere. Note that this coloring differs from

the coloring of the original periodic design; we have used

the latter in our covering of a hexagonal Kaleidocycle with

the same design.
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Icosahedron

32 Periodic design 70, III 1948. Butterflies. Pink and
green butterflies alternate around the six-fold

center of rotation ><. These two colors are

sufficient to map-color this portion of this

design in the plane. However, one of the six

butterflies must be cut out in order to adapt

this design to the surface of an Icosahedron

(the center of rotation becomes a vertex of the

Icosahedron). Thus at this vertex, two butterflies

of the same color come together. In order to

have adjacent butterflies on the Icosahedron

always have different colors, four colors are

necessary to color the design on the solid.

Escher's periodic design of butterflies (Figure 32) is one of

his most intricate and carefully colored. Any of Escher's pat-

terns which contain centers of six-fold rotation could be

adapted to cover the icosahedron, but the beautiful but-

terfly design proved to be a special challenge. The flat design

requires three colors for recognition of adjacent butterflies,

and Escher provided a coloring in which just two of the

three colors alternate about each six-fold center of rotation

(where six wing tips meet). In addition, Escher emphasized

the missing third color from the butterflies about a given

center of six-fold rotation by using this third color for the

wing markings (the small circles) on the bu-tterflies whirl-

ing about that point. These rotation centers become the

vertices of the icosahedron when the flat pattern of the

icosahedron is cut out from the grid of equilateral triangles

which underlies the butterfly design. Thus, just five of the

six butterflies whirl around each vertex of the solid and the

coloring must be altered so that adjacent butterflies have

different colors.

It is quickly discovered that four colors are required on the

solid in order to fulfill this condition. The challenge was

to make the new coloring as balanced as possible. Although

the coloring achieved may appear somewhat random, it

possesses unusual balance. Around each vertex of the solid

just three of the four colors are used. Following Escher, the

wing markings of the butterflies whirling about a vertex con-

tain the fourth color not used to color the butterflies about

that vertex. Every possible combination of using two col-

ors twice and a third color once to color the five butterflies

around one vertex occurs. (For example, using the colors

green, blue, and pink, there are exactly three different col-

orings of vertices of the solid: (1) green twice, blue twice,

pink once; (2) green twice, pink twice, blue once; (3) blue

twice, pink twice, green once.) Finally, it is an even color-

ing, that is to say, of the total of sixty butterflies that cover

the solid, exactly fifteen of each color occur.

This is the only model in which a new color had to be in-

troduced. Escher used green, blue, and pink to color his

flat design of butterflies. Yellow was added to solve this

three-dimensional coloring puzzle.
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34 Escher's instructions for carving an ivory replica

of his Sphere with Fish. His outline on the

photograph of his carved beechwood sphere

shove's a projection of one face of our Cube. He
notes "The eight points A and B (of which only

four are visible) are angular points of a cube."

Cube

Directly related to Escher's own "Sphere with Fish," this cube
can be viewed as an intermediate stage in transforming a

two-dimensional tiling of the plane (Figure 33) to a tiling

on the surface of a sphere. This single fish tile fills the plane

in a pattern which has two different points of four-fold rota-

tion: four fish whirl around the point where their tails meet
and another four fish spin around the point where their

back fins meet. Escher has symbolized with small squares

these centers of rotation on his single fish tile. Joining these

points of the pattern forms a square grid from which we
cut out the pattern of a cube. Now fold up the cube- it is

covered with twelve fish and at each corner of the cube
three fish whirl. If we could inflate this cube into a sphere,

it would become Escher's own "Sphere with Fish."

It is quite possible that Escher devised his own carved

wooden sphere in this manner. In giving instructions (Figure

34) for a small replica of the sphere to be carved from ivory

(Figure 22), Escher noted that the three-fold points of sym-

metry on the sphere should be where an inscribed cube
would touch the surface of the sphere.

In his notebook, Escher remarks below his repeating design

with fish that it is possible to use just three colors to map-
color the design. However, he chose to use four colors since

this coloring was more compatible with the symmetry of

the design. The design wrapped around the cube demands
four colors to be map-colored. Escher's carved sphere with

fish is uncolored, and so we have left our cube uncolored.

You are challenged to solve the following coloring puzzle:

Color the fish on the cube so that all of the following con-

ditions are met: (1) Each fish is one color. (2) No two adja-

cent fish' have the same color. (3) Exactly four colors are used.

(4) Each color is used to color exactly three of the twelve

fish. (Yes, it can be done!) When you have accomplished

this, you have an example of an even coloring of a "map"

on a sphere which requires four colors.
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Dodecahedron

35 One ot Escher's favorite geometric patterns was

the tiling by congruent pentagons.

Regular pentagons cannot be used as tiles to fill the plane-

there will always be gaps in such a tiling. How, then, could

the dodecahedron be covered with a repeating design?

One of Escher's favorite geometric patterns was the tiling

by congruent pentagons shown (Figure 35). These pentagons

are not regular since their angles are not all equal. On the

pattern we have marked the centers of four-fold rotation:

these can be joined to form a square grid of lines. From

this grid we can cut out the flat pattern of a cube and fold

it up into a solid cube.

Escher's periodic design "Shells and Starfish" is based on

this geometric pentagonal tiling, with each starfish occu-

pying one pentagon (Figure 36a). To cover our dodecahedron

with this design, we first wrapped it around the cube (Figure

36b). Examining the pentagon-covered cube, two exciting

observations indicate how to solve the original problem.

First exactly twelve pentagons are in the design covering

the cube-and the dodecahedron has twelve pentagonal

faces. Second, we know it is possible to inscribe a cube in-

side a dodecahedron so that each of its edges lies on a face

of the dodecahedron, and each of its corners is at a vertex

of the dodecahedron (Figure 36c). The lines of the pentagon

pattern drawn on our cube are in the currect position so

as to appear as though the edges of the dodecahedron have

been projected onto the cube. The cube in Figure 36b was

thus inscribed in a dodecahedron, and then the pattern was

projected outward onto the surface of the dodecahedron.

In this way the pattern was preserved (though distorted from

its two-dimensional beginning), and continuously covered

the most unusual Platonic solid.
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36 Periodic .

with a netUv

Cube is cove,

pattern, and thi

VIII 1941. Shells and Starfish.

ntagons outlined. The
'^e shells and starfish

' of pentagons
containing the de^,^; ,; projected outward from
the surface of the Cube to the surface of a
Dodecahedron containing the Cube.
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Cuboctahedron

37 Three triangles and two squares fit exactly

around a point in two distinct ways.

38 Periodic designs 122 and 123, IV 1964. Study tor

Circle Limit III.

A floor can be tiled in a variety of ways using equal-sided

triangles and squares so that their edges are matched. Three

triangles and two squares fit exactly around a point in two
distinct ways (Figure 37). In any tiling using both types of

tiles, one or both of these arrangements must occur.

A single page in Escher's notebook contains a triangular til-

ing and a square tiling with the same fish motif (Figures

38a and b). If we attempt to use both Escher's triangular and
square fish tiles to fill a plane, we quickly note that in either

arrangement of the tiles around a point it is impossible to

have all of the fish "match" (Figure 39). (This is because an

odd number of tiles surrounds a point.) However, a flat pat-

tern of a cuboctahedron can be cut out from a plane-filling

design of squares and triangles (Figure 40) in which the odd
nonmatching tile is omitted at each vertex so the fish will

match when the pattern is wrapped around the solid

cuboctahedron.

Circle Limit III (Figure 23) was Escher's solution to combin-
ing these tiles in a two-dimensional representation. He
distorted them mathematically so they could fill a non-

Euclidean plane with an even number of tiles surrounding

each vertex, and thus achieved a matching of tiles.

Escher's periodic fish tiling using all square tiles requires

only two colors; the one with all triangular tiles needs three.

In combining the two types of tiles in Circle Limit III, Escher

used four colors for the design. The map-coloring criterion

did not force him to do this, but he wanted to emphasize

the "traffic flow" of fish swimming along the curved paths

of the design. In his coloring, all fish along one path are

of the same color and are surrounded by fish of different

colors. This scheme made four colors necessary.

I There are many pleasing ways to color the fish design cover-

ing the cuboctahedron, all of which meet the map-coloring

requirement and use the colors "evenly."

The minimum number of colors necessary to map-color the

design on our cuboctahedron is three, and a mathematically

balanced coloring using just three colors is shown in Figure

29. In this coloring each triangular tile contains all three

colors and each square tile contains just two of the three

colors. Each color is used on exactly eight of the twenty-

four fish covering the solid.

If we follow Escher and choose to use four color";

design, two particularly interesting colorings re

follow a chosen aspect of Escher's coloring of C

33



39 Square and triangular tiles can fill the plane, but

Escher's fish tiles will not all match in such a

planar tiling.

///. To emphasize the "traffic flow" of fish around natural

paths encircling the cuboctahedron is one possibility. On
the surface of the cuboctahedron there are four natural hex-

agonal paths formed by six adjacent edges which encircle

the solid. Using Escher's idea, we can color all fish on a

single path the same color. In doing so, all twenty-four fish

are colored, six of each color, and the coloring produced

has all possible circular arrangements of four colors occur-

ring on the square faces and all possible circular ar-

rangements of three out of four colors occurring on the

triangular faces.

Another possibility is to create an even four-coloring of the

design in which square faces contain just two colors and

triangular faces, three colors, as in Circle Limit III. Such a

coloring is the one we have chosen for our pattern. Visual-

ly, this coloring appears to be the more closely related to

the two-dimensional coloring by Escher.

40 A Cuboctahedron pattern can be cut from the

plane tiling, resulting in a matching fish design

on the three-dimensional solid.
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Hexagonal Kaleidocycles

Every pattern which decorates these Kaleidocycles begins
with an underlying grid of equilateral triangles. All the pat-
terns have three-fold centers of rotation; some have two-
fold and thus six-fold centers of rotation as well. Some have
reflection symmetries. Look for these symmetries as you ex-
amine the assembled models.

Bugs

This pattern (Figure 41) appears almost abstract, like a rich
brocade, when viewed from a distance-only close examina-
tion reveals the interlocked bugs. Each triangle, like the one
outlined, covers a single face of the Kaleidocycle. At the
center of this triangle is a three-fold center of rotation; the
edges of the triangle are reflection axes for the pattern. Turn-
ing the Kaleidocycles matches mirror images of bugs. This
completes the design, and reveals another three-fold center
of rotation at the center hole of the closed ring.

41 Periodic design 54, X 1942. Bugs.

35



Fish

The symmetries of this repeating design (Figure 24) are ex-

actly the same as those of "Bugs" (Figure 41), if we ignore

coloring. Map-coloring each design reveals its difference:

The bug design with two different creatures requires only

two colors, while the design with just one motif requires

three colors. Without color, the design formed by the fish

has an underlying grid of triangular tiles like the small one
shown in Figure 42a.

In order to have this 3-color fish pattern wrap around the

Kaleidocycle, it is necessary to use a larger triangular tile

(Figure 42b) for each face of the Kaleidocycle. At the center

of each face is a three-fold center of rotation which is also

the point of intersection of three reflection axes of the

pattern.

42 Although a triangle of three half-fish generates

the design in the plane, the larger triangle is

needed as the face of a continously covered

kaleidocycle.

b
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Bird / Fish

43 A silhouette ot a bird in flight or a soaring fish?

Look at the shape in Figure 43. What do you see? A silhouet-

ted bird in flight? Yes, and look again with the imagination

of a child. It is a soaring fish. One shape, yet two creatures

can occupy that outline. The shape is a tile which can fill

the plane, and thus the pattern it creates can contain both

creatures, one merging with the other (Figure 44).

How we perceive or interpret outlines-the fact that one
silhouette can have many interpretations- provides paM of

the magical surprise of Escher's work. As you turn this

Kaleidocycle, you will witness a seeming metamorphosis of

birds into fish and back again in an endless cycle. Yet if the

detail of the creatures were blotted out, an allover pattern

of one tile would be all that remained.

44a Periodic design 44, XII 1941. Birds. Here the

silhouette from Figure 43 is a bird.

44b The silhouette becomes a flying fish in this

woodcut from Escher's Regelmatige
vlakverdeling (Regular Division of the Plane,

1958.) (See also Figure 17.) Escher's study for

this woodcut contains the note "See No. 44".
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Three Elements

Escher's 'Three Elements" design (Figure 18) has three dif-

ferent centers of three-fold rotation. At one center, the heads

of three fish meet; at another, the heads of three lizards

meet; at the third, the heads of three bats meet (Figure 45).

We can animate this design by choosing as faces for the

Kaleidocycle the small triangles of the pattern which form

the faces of our decorated octahedron (Figure 31). Imitating

the action of a Kaleidoscope, each turn of this Kaleidocy-

cle clicks a new image into view. The design which covers

three faces of this model cannot be continued onto the

fourth face because a fact from the geometry governing the

periodic design comes into conflict with a fact governing

the three-dimensional form: The periodic design repeats

the triangles we have chosen as faces for our model in strips

of six, but the tetrahedra which make up the model have

as their flat pattern triangles in strips of four. Thus, we have

designed the fourth face of our model to contain Escher's

name.

45 Water, land, and air— each of the three elements

is the central focus in a hexagon.
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Fish / Duck / Lizard

This repeating design (Figure 46) is mathematically the same
as 'Three Elements" (Figure 18). (Its creatures also represent

air, land, and water.) Although we could have used this

design to cover a Kaleidocycle in the same manner as the

'Three Elements" model described above, we decided to

wrap this design continuously around a Kaleidocycle. To ac-

complish this, a triangle larger than the one used for the

'Three Elements" model (Figure 31) is necessary to design

the faces of the Kaleidocycle. The triangles formed by join-

ing the points of the design where the heads of three fish

meet successfully cover the Kaleidocycle.

46 Periodic design 69, III 1948. Fish, Duck, Lizard.

{First version of Three Elements.)
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48 The periodic design on the cover of Regelmatige
vlakverdeling appears in the interlocked bird

portion of Verbum at the top of the print. See
Figure 15 for the periodic design of the frog and
fish portion at the bottom of the print.

Verbum

Fragments of Escher's repeating patterns most often occur
in prints which depict metamorphosis. The lithograph Ver-

bum (creation) is one of the most skillful of these (Figure

47). The interlocking pairs of creatures were first sketched

as simple plane-filling designs (Figures 48, 15) in which
parallel rows of the creatures form a grid of intersecting

lines. However, in incorporating these designs into Verbum,
Escher used a subtle mathematical device to" capture the

themes of explosion, evolution, interdependence and cycle.

Verbum contains two distinct kinds of development. From
the center outward, vague amorphous shapes gradually

evolve into recognizable creatures which escape into their

natural element. In a circular sweep around the hexagonal

ring, creatures metamorphose- bird into fish into frog in-

to bird, tracing the ecological cycle of air, water, land. This

double system of development, consisting of rays emanating
from a single center and concentric circles about that center,

is familiar to mathematicians in the polar coordinate system.

The design has been adapted to the Kaleidocycle so that

beginning with the explosion at the center of the print, each

inward turn of the Kaleidocycle produces a multiplication

and evolution of the creatures, culminating in the total view

of the print.
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Square Kaleidocycles

Each of the patterns adapted to cover the surface of a square

Kaleidocycle has as its underlying grid a mesh of squares

like ordinary graph paper. All designs have centers of two-

fold rotation; some also have reflection axes. At the center

"hole" of each Kaleidocycle will occur a center of four-fold

rotation.

Watch closely as you turn these models — each turn will

change the image you view.

Shells and Starfish

This pattern has been discussed in describing the decora-

tion of the dodecahedron (Figure 36a). This time we join

the points in the pattern where four shells of the same kind

meet to form a square grid. Each square is bisected into

right triangles. (One of these bisected squares outlined in

Figure 49.) Each of these triangles becomes a face of the

Kaleidocycle. As you turn the Kaleidocycle watch the change

of shells occur at the center point.

49 Periodic design 42, VIII 1941. Shells and Starfish.
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50 Periodic design 132, XII 1967. Flowers.

51 Fragment of Metamorphosis III, woodcut,
1967-1968.

Flowers

The geometric network of pentagons in this design (Figure

50) is boldly visible. It is the same grid which invisibly

underlies "Shells and Starfish" (see Figure 36a). Escher used
this design as a fragment in his extended Metamorphosis
print (Figure 51); see The Graphic Wor/c of M.C. Escher for

a reproduction of the complete 700-centi meter-long print.

A startling change in design takes place as you transform

this Kaleidocycle to its three-dimensional form. The design

on the flat pattern is created by a red grid of hexagons in-

tersecting at right angles a blue grid of hexagons; thus, each

pentagon formed by these super-imposed grids has some
red edges and some blue edges. When viewing the design

on the three-dimensional Kaleidocycle, however, you will

see that the pentagons now have all edges of the same col-

or! Each turn of the Kaleidocycle changes the color of the

pentagons and their direction of rotation about the center

point.
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Heaven and Hell

Interlocking motifs depicting opposites is a device frequent-

ly used by Escher to portray the inability to recognize one
without the other. "Heaven and Hell" is such a design (Figure

52). (The print Encounter [Figure 14] interlocks a pessimist

and an optimist.) Although this periodic design of angels

and devils w^as never incorporated in this form into a print,

Escher produced a version of "Heaven and Hell" in Circle

Limit IV, which is a hyperbolic tessellation. He also used

the periodic design as the basis for covering a sphere with

a carved version of interlocked angels and devils. (If the

periodic design is wrapped around a cube, as we have done
with the cube with fish, the projection of the cube onto

a sphere surrounding it is exactly Escher's carved "Heaven

and Hell" sphere.)

To cover the Kaleidocycle, wingtips of angels and devils are

joined to form the outline of right triangles contained in

a square; these triangles are the faces of the Kaleidocycle.

With each turn of the Kaleidocycle the angels and devils

change their direction of rotation about the center point

of the model — rotating clockwise, then counterclockwise.

52 Periodic design 45, Christmas 1941. Heaven and Hell.
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53 Division, woodcut 1956.



Lizards

Escher's print Division (Figure 53) may at first glance appear
to be a periodic design of lizards. However, closer examina-
tion reveals many ambiguities (indeed;'divisions" of lizards)
and no true repetition of the motifs. His colored drawing
of lizards from which the print is derived (Figure 16) is tru
ly periodic, and he also produced a four color version of
this same design (Figure 54).

To cover a Kaleidocycle with this design, we form a square
grid by joining the centers of four-fold rotation (where heads
of four lizards meet), and then bisect these squares into
isosceles triangles. The outlined square containing eight
triangles (Figure 54) is the view you will see looking at the
completed model from above.

From a distance, Escher's four-color design appears to be
interlocked circles of different colors. We have map-colored
our decorated model with a rearrangement of Escher's four
colors. Each turn of the Kaleidocycle brings a different col-
oration into view.

54 Periodic design 118, IV 1963. Lizards (four-color
variation of design.) See Figure 16.
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Twisted Kaleidocycle

The interlocking design (Figure 19) from which emerge the

pessimist and optimist in the print Encounter (Figure 14)

cannot be adapted to a symmetric Kaleidocycle; however,

it easily wraps around the surface of a twisted Kaleidocycle.

The lattice of points which underlies this periodic design

is one of rectangles (to see this, find all repetitions of a

chosen point in the pattern -for instance, the tip of the nose

of a pessimist facing right). To cover the twisted model, a

slanted grid of triangles was super-imposed on the periodic

design so that top and bottom edges woulfi match and right

and left edges would match. The dimensions of the rec-

tangles in the lattice of the periodic design dictated the edge

length of the triangles and the steepness of slant in the flat

pattern for the model.

As you turn this jigged ring, the interlocked figures will tum-

ble in an endless cyclic procession.

Encounter



Assembly Instructions for All Models

1 Carefully pull away the extra paper surrounding the

flat pattern of the model. The edges of the pattern

should be clean-cut.

2 Follow directions below for folding the patterns on
the score lines. Take care not to crease the pattern

except on these score lines.

3 Before gluing, fold up each model as directed, to test

that you understand its proper assembly.

4 Use a quick-drying glue suitable for paper, such as a

clear cement or white glue. Do not use an "instant

bond" glue, since you will need to slide the glued

edges to obtain a perfect match of the design. Paste

or other thick glue is also unsuitable.

5 Apply a small amount of glue to tabs and glue one
tab at a time. Rub finger over glued seam to obtain

tight bond, without air pockets. Wipe off any excess

glue which may squeeze out of a seam onto the face

of the model.

6 Glue tabs to the inside of each model so that each

edge of the model has a perfectly matched
continuous design.

7 Let glue dry thoroughly before handling the

completed models.
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Assembly of Solid Models

Fold the pattern back to back along all scored lines,

including those which adjoin tabs. Fold up each model
as indicated in the diagrams below and then glue each
tab to the inside of the adjoining face. In every case
carefully match the design at the joined edges. Rub the
seams which have been glued in order to obtain a

secure bond.

Tetrahedron

Fold up and glue tabs to inside of edges as shown in

Figure 55. Glue remaining edge.

55 Tetrahedron Assembly.

Octahedron

Join two halves of model, gluing tab A to matching

edge to form flat pattern shown in Figure 56. Fold up
and glue tabs to inside of edges as shown: this forms

two hinged pyramids. Join the matching edges of the

pyramids.

56 Octahedron Assembly.
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Icosahedron

Join two halves of model, gluing tab A to matching

edge to form flat pattern shown in Figure 57. Fold up
and glue tabs to inside of edges as shown: this forms

two joined "caps." Join the matching edges of the caps.

57 Icosahedron Assembly.

Cube

Join two halves of model, gluing tab A to matching

edge to form flat pattern shown in Figure 58. Fold up

and glue tabs to inside of edges as shown. Now
complete by joining edges of the box.

58 Cube Assembly.
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Dodecahedron

join two halves of model, gluing tab A to matching

edge to form flat pattern shown in Figure 59. Fold up
and glue tabs to inside of edges of the "petals" as

shown; this forms two hinged "caps." Join the matching
edges of the caps.

59 Dodecahedron Assembly.

Cuboctahedron

Fold up and glue tabs to inside of edges as shown in

Figure 60; this forms two hinged "caps." Join matching

edges of the caps, always joining a triangle to a square.

60 Cuboctahedron Assembly.
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61 Hexagonal Kaleidocycle Grid. Square

Kaleidocycle Grid. Twisted Kaleidocycle Grid.

Assembly of Kaleidocycles

Figure 61 shows grids of the three types of

Kaleidocycles. The two halves of the twisted

Kaleidocycle should be joined, gluing tab A to matching

edge. Thick lines on these diagrams are vertical: other

lines are diagonal.

All patterns are folded on the scored lines as follows:

Fold face to face on all vertical scored lines, including

those which adjoin tabs. Fold back to back on all

diagonal scored lines. The folded pattern will begin to

naturally curl into shape.

Gently cup the pattern in your hands so that the

bottom triangles come around to meet the triangular

blank white tabs at the top of the pattern. Put glue on

these white tabs and glue the triangles to these tabs.

Match designs exactly and make sure that all seams are

completely sealed. You now have a chain of linked

tetrahedra. Let glue dry before proceeding to the next

step.

Hold the chain of tetrahedra in both hands and bring

its ends together to form a ring. You may need to turn

the ring to accomplish this. The double tab on one end
will be fitted inside the slot at the other end of this

ring (For the twisted model, the ring must be twisted to

accomplish this.)

Put glue on each of the outer sides of the double tab

and slide it into the open slot at the other end of the

ring. Adjust its position for a perfect match of design.

Turn the ring so that you can apply pressure with your

finger to seal the seam. Wipe off excess glue and let

the seam set for several seconds, holding the model in

position so that the seam does not separate. Now
gently turn the model over and rotate it slightly to

bring into view the seam on the opposite side. Match
the design and seal this seam, again holding the model

so that the seam does not separate.

When these seams have "set," let the model dry

thoroughly (preferably overnight) before attempting to

rotate it. When dry, it can be rotated in a continuous

cycle of motion by pushing the points of the tetrahedra

through the center hole.
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Hexagonal Kaleidocycles

62 Hexagonal Kaleidocycle Assembly.
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Square Kaleidocycles

63 Square Kaleidocycle Assembly.
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Twisted Kaleidocycle

64 Twisted Kaleidocycle Assembly.
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