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Introduction to Distributed
Systems

Computer systems are undergoing a revolution. From 1945, when the
modern computer era began, until about 1985, computers were large and expen-
sive. Even minicomputers normally cost tens of thousands of dollars each. As a
result, most organizations had only a handful of computers, and for lack of a
way to connect them, these operated independently from one another.

Starting in the mid-1980s, however, two advances in technology began to
change that situation. The first was the development of powerful microproces-
sors. Initially, these were 8-bit machines, but soon 16-, 32-, and even 64-bit
CPUs became common. Many of these had the computing power of a decent-
sized mainframe (i.e., large) computer, but for a fraction of the price.

The amount of improvement that has occurred in computer technology in the
past half century is truly staggering and totally unprecedented in other indus-
tries. From a machine that cost 10 million dollars and executed 1 instruction per
second, we have come to machines that cost 1000 dollars and execute 10 million
instructions per second, a price/performance gain of 10''. If cars had improved
at this rate in the same time period, a Rolls Royce would now cost 10 dollars
and get a billion miles per gallon. (Unfortunately, it would probably also have a
200-page manual telling how to open the door.)

The second development was the invention of high-speed computer net-
works. The local area networks or LANs allow dozens, or even hundreds, of
machines within a building to be connected in such a way that small amounts of
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2 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

information can be transferred between machines in a millisecond or so. Larger
amounts of data can be moved between machines at rates of 10 to 100 million
bits/sec and sometimes more. The wide area networks or WANs allow mil-
lions of machines all over the earth to be connected at speeds varying from 64
Kbps (kilobits per second) to gigabits per second for some advanced experimen-
tal networks.

The result of these technologies is that it is now not only feasible, but easy,
to put together computing systems composed of large numbers of CPUs con-
nected by a high-speed network. They are usually called distributed systems,
in contrast to the previous centralized systems (or single-processor systems)
consisting of a single CPU, its memory, peripherals, and some terminals.

There is only one fly in the ointment: software. Distributed systems need
radically different software than centralized systems do. In particular, the
necessary operating systems are only beginning to emerge. The first few steps
have been taken, but there is still a long way to go. Nevertheless, enough is
already known about these distributed operating systems that we can present the
basic ideas. The rest of this book is devoted to studying concepts, implementa-
tion, and examples of distributed operating systems.

1.1. WHAT IS A DISTRIBUTED SYSTEM?

Various definitions of distributed systems have been given in the literature,
none of them satisfactory and none of them in agreement with any of the others.
For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection of independent computers
that appear to the users of the system as a single computer.

This definition has two aspects. The first one deals with hardware: the machines
are autonomous. The second one deals with software: the users think of the sys-
tem as a single computer. Both are essential. We will come back to these points
later in this chapter, after going over some background material on both the
hardware and the software.

Rather than going further with definitions, it is probably more helpful to
give several examples of distributed systems. As a first example, consider a net-
work of workstations in a university or company department. In addition to each
user’s personal workstation, there might be a pool of processors in the machine
room that are not assigned to specific users but are allocated dynamically as
needed. Such a system might have a single file system, with all files accessible
from all machines in the same way and using the same path name. Furthermore,
when a user typed a command, the system could look for the best place to exe-
cute that command, possibly on the user’s own workstation, possibly on an idle
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workstation belonging to someone else, and possibly on one of the unassigned
processors in the machine room. If the system as a whole looked and acted like
a classical single-processor timesharing system, it would qualify as a distributed
system.

As a second example, consider a factory full of robots, each containing a
powerful computer for handling vision, planning, communication, and other
tasks. When a robot on the assembly line notices that a part it is supposed to
install is defective, it asks another robot in the parts department to bring it a
replacement. If all the robots act like peripheral devices attached to the same
central computer and the system can be programmed that way, it too counts as a
distributed system.

As a final example, think about a large bank with hundreds of branch offices
all over the world. Each office has a master computer to store local accounts
and handle local transactions. In addition, each computer has the ability to talk
to all other branch computers and with a central computer at headquarters. If
transactions can be done without regard to where a customer or account is, and
the users do not notice any difference between this system and the old central-
ized mainframe that it replaced, it too would be considered a distributed system.

1.2. GOALS

Just because it is possible to build distributed systems does not necessarily
mean that it is a good idea. After all, with current technology it is possible to
put four floppy disk drives on a personal computer. It is just that doing so would
be pointless. In this section we will discuss the motivation and goals of typical
distributed systems and look at their advantages and disadvantages compared to
traditional centralized systems.

1.2.1. Advantages of Distributed Systems over Centralized Systems

The real driving force behind the trend toward decentralization is econom-
ics. A quarter of a century ago, computer pundit and gadfly Herb Grosch stated
what later came to be known as Grosch’s law: The computing power of a CPU
is proportional to the square of its price. By paying twice as much, you could
get four times the performance. This observation fit the mainframe technology
of its time quite well, and led most organizations to buy the largest single
machine they could afford.

With microprocessor technology, Grosch’s law no longer holds. For a few
hundred dollars you can get a CPU chip that can execute more instructions per
second than one of the largest 1980s mainframes. If you are willing to pay twice
as much, you get the same CPU, but running at a somewhat higher clock speed.
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As a result, the most cost-effective solution is frequently to harness a large
number of cheap CPUs together in a system. Thus the leading reason for the
trend toward distributed systems is that these systems potentially have a much
better price/performance ratio than a single large centralized system would have.
In effect, a distributed system gives more bang for the buck.

A slight variation on this theme is the observation that a collection of
microprocessors cannot only give a better price/performance ratio than a single
mainframe, but may yield an absolute performance that no mainframe can
achieve at any price. For example, with current technology it is possible to build
a system from 10,000 modern CPU chips, each of which runs at 50 MIPS (Mil-
lions of Instructions Per Second), for a total performance of 500,000 MIPS. For
a single processor (i.e., CPU) to achieve this, it would have to execute an
instruction in 0.002 nsec (2 picosec). No existing machine even comes close to
this, and both theoretical and engineering considerations make it unlikely that
any machine ever will. Theoretically, Einstein’s theory of relativity dictates that
nothing can travel faster than light, which can cover only 0.6 mm in 2 picosec.
Practically, a computer of that speed fully contained in a 0.6-mm cube would
generate so much heat that it would melt instantly. Thus whether the goal is
normal performance at low cost or extremely high performance at greater cost,
distributed systems have much to offer.

As an aside, some authors make a distinction between distributed systems,
which are designed to allow many users to work together, and parallel systems,
whose only goal is to achieve maximum speedup on 2 single problem, as our
500,000-MIPS machine might. We believe that this distinction is difficult to
maintain because the design spectrum is really a continuum. We prefer to use
the term “distributed system” in the broadest sense to denote any system in
which multiple interconnected CPUs work together.

A next reason for building a distributed system is that some applications are
inherently distributed. A supermarket chain might have many stores, each of
which gets goods delivered locally (possibly from local farms), makes local
sales, and makes local decisions about which vegetables are so old or rotten that
they must be thrown out. It therefore makes sense to keep track of inventory at
each store on a local computer rather than centrally at corporate headquarters.
After all, most queries and updates will be done locally. Nevertheless, from
time to time, top management may want to find out how many rutabagas it
currently owns. One way to accomplish this goal is to make the complete sys-
tem look like a single computer to the application programs, but implement
decentrally, with one computer per store as we have described. This would then
be a commercial distributed system.

Another inherently distributed system is what is often called computer-
supported cooperative work, in which a group of people, located far from each
other, are working together, for example, to produce a joint report. Given the
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long term trends in the computer industry, one can easily imagine a whole new
area, computer-supported cooperative games, in which players at different
locations play against each other in real time. One can imagine electronic hide-
and-seek in a big multidimensional maze, and even electronic dogfights with
each player using a local flight simulator to try to shoot down the other players,
with each player’s screen showing the view out of the player’s plane, including
other planes that fly within visual range.

Another potential advantage of a distributed system over a centralized sys-
tem is higher reliability. By distributing the workload over many machines, a
single chip failure will bring down at most one machine, leaving the rest intact.
Ideally, if 5 percent of the machines are down at any moment, the system should
be able to continue to work with a 5 percent loss in performance. For critical
applications, such as control of nuclear reactors or aircraft, using a distributed
system to achieve high reliability may be the dominant consideration.

Finally, incremental growth is also potentially a big plus. Often, a company
will buy a mainframe with the intention of doing all its work on it. If the com-
pany prospers and the workload grows, at a certain point the mainframe will no
longer be adequate. The only solutions are either to replace the mainframe with
a larger one (if it exists) or to add a second mainframe. Both of these can wreak
major havoc on the company’s operations. In contrast, with a distributed sys-
tem, it may be possible simply to add more processors to the system, thus allow-
ing it to expand gradually as the need arises. These advantages are summarized
in Fig. 1-1.

Item Description
. Microprocessors offer a better price/performance
Economics .
than mainframes
Speed A distributed system may have more total computing power

than a mainframe

Inherent distribution | Some applications involve spatially separated machines

If one machine crashes, the system as a whole can

Reliabitity still survive

Incremental growth Computing power can be added in small increments

Fig. 1-1. Advantages of distributed systems over centralized systems.

In the long term, the main driving force will be the existence of large
numbers of personal computers and the need for people to work together and
share information in a convenient way without being bothered by geography or
the physical distribution of people, data, and machines.
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1.2.2. Advantages of Distributed Systems over Independent PCs

Given that microprocessors are a cost-effective way to do business, why not
just give everyone hist own PC and let people work independently? For one
thing, many users need to share data. For example, airline reservation clerks
need access to the master data base of flights and existing reservations. Giving
each clerk his own private copy of the entire data base would not work, since
nobody would know which seats the other clerks had already sold. Shared data
are absolutely essential to this and many other applications, so the machines
must be interconnected. Interconnecting the machines leads to a distributed sys-
tem.

Sharing often involves more than just data. Expensive peripherals, such as
color laser printers, phototypesetters, and massive archival storage devices (e.g.,
optical jukeboxes), are also candidates.

A third reason to connect a group of isolated computers into a distributed
system is to achieve enhanced person-to-person communication. For many peo-
ple, electronic mail has numerous attractions over paper mail, telephone, and
FAX. It is much faster than paper mail, does not require both parties to be avail-
able at the same time as does the telephone, and unlike FAX, produces docu-
ments that can be edited, rearranged, stored in the computer, and manipulated
with text processing programs.

Finally, a distributed system is potentially more flexible than giving each
user an isolated personal computer. Although one model is to give each person
a personal computer and connect them all with a LAN, this is not the only possi-
bility. Another one is to have a mixture of personal and shared computers,
perhaps of different sizes, and let jobs run on the most appropriate one, rather
than always on the owner’s machine. In this way, the workload can be spread
over the computers more effectively, and the loss of a few machines may be
compensated for by letting people run their jobs elsewhere. Figure 1-2 summar-
izes these points.

1.2.3. Disadvantages of Distributed Systems

Although distributed systems have their strengths, they also have their
weaknesses. In this section, we will point out a few of them. We have already
hinted at the worst problem: software. With the current state-of-the-art, we do
not have much experience in designing, implementing, and using distributed
software. What kinds of operating systems, programming languages, and appli-
cations are appropriate for these systems? How much should the users know

+ Please read “his’’ as “his or hers” throughout this book.
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ftem Description

Data sharing Allow many users access to a common data base

Allow many users to share expensive peripherals like color

Device sharing )
printers

Make human-to-human communication easier, for example,

ommunication . .
c by electronic mail

Spread the workload over the available machines in the most

Flexibility cost effective way

Fig. 1-2. Advantages of distributed systems over isolated (personal) computers.

about the distribution? How much should the system do and how much should
the users do? The experts differ (not that this is unusual with experts, but when
it comes to distributed systems, they are barely on speaking terms). As more
research is done, this problem will diminish, but for the moment it should not be
underestimated.

A second potential problem is due to the communication network. It can
lose messages, which requires special software to be able to recover, and it can
become overloaded. When the network saturates, it must either be replaced or a
second one must be added. In both cases, some portion of one or more buildings
may have to be rewired at great expense, or network interface boards may have
to be replaced (e.g., by fiber optics). Once the system comes to depend on the
network, its loss or saturation can negate most of the advantages the distributed
system was built to achieve.

Finally, the easy sharing of data, which we described above as an advantage,
may turn out to be a two-edged sword. If people can conveniently access data
all over the system, they may equally be able to conveniently access data that
they have no business looking at. In other words, security is often a problem.
For data that must be kept secret at all costs, it is often preferable to have a dedi-
cated, isolated personal computer that has no network connections to any other
machines, and is kept in a locked room with a secure safe in which all the floppy
disks are stored. The disadvantages of distributed systems are summarized in
Fig. 1-3.

Despite these potential problems, many people feel that the advantages
outweigh the disadvantages, and it is expected that distributed systems will
become increasingly important in the coming years. In fact, it is likely that
within a few years, most organizations will connect most of their computers into
large distributed systems to provide better, cheaper, and more convenient service
for the users. An isolated computer in a medium-sized or large business or other
organization will probably not even exist in ten years.
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Item Description
Software Little software exists at present for distributed systems
Networking The network can saturate or cause other problems
Security. Easy access also applies to secret data

Fig. 1-3. Disadvantages of distributed systems.

1.3. HARDWARE CONCEPTS

Even though all distributed systems consist of multiple CPUs, there are
several different ways the hardware can be organized, especially in terms of how
they are interconnected and how they communicate. In this section we will take
a brief look at distributed system hardware, in particular, how the machines are
connected together. In the next section we will examine some of the software
issues related to distributed systems.

Various classification schemes for multiple CPU computer systems have
been proposed over the years, but none of them have really caught on and been
widely adopted. Probably the most frequently cited taxonomy is Flynn’s (1972),
although it is fairly rudimentary. Flynn picked two characteristics that he con-
sidered essential: the number of instruction streams and the number of data
streams. A computer with a single instruction stream and a single data stream is
called SISD. All traditional uniprocessor computers (i.e., those having only one
CPU) fall in this category, from personal computers to large mainframes.

The next category is SIMD, single instruction stream, multiple data stream.
This type refers to array processors with one instruction unit that fetches an
instruction, and then commands many data units to carry it out in parallel, each
with its own data. These machines are useful for computations that repeat the
same calculation on many sets of data, for example, adding up all the elements
of 64 independent vectors. Some supercomputers are SIMD.

The next category is MISD, multiple instruction stream, single data stream.
No known computers fit this model. Finally, comes MIMD, which essentially
means a group of independent computers, each with its own program counter,
program, and data. All distributed systems are MIMD, so this classification sys-
tem is not tremendously useful for our purposes.

Although Flynn stopped here, we will go further. In Fig. 1-4, we divide all
MIMD computers into two groups: those that have shared memory, usually
called multiprocessors, and those that do not, sometimes called multicomput-
ers. The essential difference is this: in a multiprocessor, there is a single virtual
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address space that is shared by all CPUs. If any CPU writes, for example, the
value 44 to address 1000, any other CPU subsequently reading from its address
1000 will get the value 44. All the machines share the same memory.

MIMD

Parallel and
distributed
computers

Loosely
coupled

Tightly
coupled

Multiprocessors Multicomputers

(shared memory) (private memory)
Bus Switched Bus Switched
Sequent, Ultracomputer, Workstations Hypercube,
Encore RP3 ona LAN Transputer

Fig. 1-4. A taxonomy of parallel and distributed computer systems.

In contrast, in a multicomputer, every machine has its own private memory.
If one CPU writes the value 44 to address 1000, when another CPU reads
address 1000 it will get whatever value was there before. The write of 44 does
not affect irs memory at all. A common example of a multicomputer is a collec-
tion of personal computers connected by a network.

Each of these categories can be further divided based on the architecture of
the interconnection network. In Fig. 1-4 we describe these two categories as
bus and switched. By bus we mean that there is a single network, backplane,
bus, cable, or other medium that connects all the machines. Cable television
uses a scheme like this: the cable company runs a wire down the street, and all
the subscribers have taps running to it from their television sets.

Switched systems do not have a single backbone like cable television.
Instead, there are individual wires from machine to machine, with many dif-
ferent wiring patterns in use. Messages move along the wires, with an explicit
switching decision made at each step to route the message along one of the out-
going wires. The worldwide public telephone system is organized in this way.

Another dimension to our taxonomy is that in some systems the machines
are tightly coupled and in others they are loosely coupled. In a tightly-coupled
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system, the delay experienced when a message is sent from one computer to
another is short, and the data rate is high; that is, the number of bits per second
that can be transferred is large. In a loosely-coupled system, the opposite is
true: the intermachine message delay is large and the data rate is low. For
example, two CPU chips on the same printed circuit board and connected by
wires etched onto the board are likely to be tightly coupled, whereas two com-
puters connected by a 2400 bit/sec modem over the telephone system are certain
to be loosely coupled.

Tightly-coupled systems tend to be used more as parallel systems (working
on a single problem) and loosely-coupled ones tend to be used as distributed sys-
tems (working on many unrelated problems), although this is not always true.
One famous counterexample is a project in which hundreds of computers all
over the world worked together trying to factor a huge number (about 100
digits). Each computer was assigned a different range of divisors to try, and
they all worked on the problem in their spare time, reporting the results back by
electronic mail when they finished.

On the whole, multiprocessors tend to be more tightly coupled than multi-
computers, because they can exchange data at memory speeds, but some fiber-
optic based multicomputers can also work at memory speeds. Despite the
vagueness of the terms “tightly coupled” and “loosely coupled,” they are useful
concepts, just as saying “Jack is fat and Jill is thin” conveys information about
girth even though one can get into a fair amount of discussion about the con-
cepts of “fatness” and “‘thinness.”’

In the following four sections, we will look at the four categories of Fig. 1-4
in more detail, namely bus multiprocessors, swilched multiprocessors, bus
multicomputers, and switched multicomputers. Although these topics are not
directly related to our main concern, distributed operating systems, they will
shed some light on the subject because as we shall see, different categories of
machines use different kinds of operating systems.

1.3.1. Bus-Based Multiprocessors

Bus-based multiprocessors consist of some number of CPUs all connected to
a common bus, along with a memory module. A simple configuration is to have
a high-speed backplane or motherboard into which CPU and memory cards can
be inserted. A typical bus has 32 or 64 address lines, 32 or 64 data lines, and
perhaps 32 or more control lines, all of which operate in parallel. To read a
word of memory, a CPU puts the address of the word it wants on the bus address
lines, then puts a signal on the appropriate control lines to indicate that it wants
to read. The memory responds by putting the value of the word on the data lines
to allow the requesting CPU to read it in. Writes work in a similar way.

Since there is only one memory, if CPU A writes a word to memory and
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then CPU B reads that word back a microsecond later, B will get the value just
written. A memory that has this property is said to be coherent. Coherence
plays an important role in distributed operating systems in a variety of ways that
we will study later.

The problem with this scheme is that with as few as 4 or 5 CPUs, the bus
will usually be overloaded and performance will drop drastically. The solution
is to add a high-speed cache memory between the CPU and the bus, as shown
in Fig. 1-5. The cache holds the most recently accessed words. All memory
requests go through the cache. If the word requested is in the cache, the cache
itself responds to the CPU, and no bus request is made. If the cache is large
enough, the probability of success, called the hit rate, will be high, and the
amount of bus traffic per CPU will drop dramatically, allowing many more
CPUs in the system. Cache sizes of 64K to 1M are common, which often gives
a hit rate of 90 percent or more.

CPU CPU CPU Memory

] Cache I Cachel | Cache

Fig. 1-5. A bus-based multiprocessor.

However, the introduction of caches also brings a serious problem with it.
Suppose that two CPUs, A and B, each read the same word into their respective
caches. Then A overwrites the word. When B next reads that word, it gets the
old value from its cache, not the value A just wrote. The memory is now
incoherent, and the system is difficult to program.

Many researchers have studied this problem, and various solutions are
known. Below we will sketch one of them. Suppose that the cache memories
are designed so that whenever a word is written to the cache, it is written
through to memory as well. Such a cache is, not surprisingly, called a write-
through cache. In this design, cache hits for reads do not cause bus traffic, but
cache misses for reads, and all writes, hits and misses, cause bus traffic.

In addition, all caches constantly monitor the bus. Whenever a cache sees a
write occurring to a memory address present in its cache, it either removes that
entry from its cache, or updates the cache entry with the new value. Such a
cache is called a snoopy cache (or sometimes, a snooping cache) because it is
always “snooping” (eavesdropping) on the bus. A design consisting of snoopy
write-through caches is coherent and is invisible to the programmer. Nearly all
bus-based multiprocessors use either this architecture or one closely related to it.
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Using it, it is possible to put about 32 or possibly 64 CPUs on a single bus. For
more about bus-based multiprocessors, see Lilja (1993).

1.3.2. Switched Multiprocessors

To build a multiprocessor with more than 64 processors, a different method
is needed to connect the CPUs with the memory. One possibility is to divide the
memory up into modules and connect them to the CPUs with a crossbar switch,
as shown in Fig. 1-6(a). Each CPU and each memory has a connection coming
out of it, as shown. At every intersection is a tiny electronic crosspoint switch
that can be opened and closed in hardware. When a CPU wants to access a par-
ticular memory, the crosspoint switch connecting them is closed momentarily, to
allow the access to take place. The virtue of the crossbar switch is that many
CPUs can be accessing memory at the same time, although if two CPUs try to
access the same memory simultaneously, one of them will have to wait.

Memories

CPUs Memories

Crosspoint switch 2 X 2 switch
(a) {b)

Fig. 1-6. (a) A crossbar switch. (b) An omega switching network.

The downside of the crossbar switch is that with » CPUs and » memories,
n? crosspoint switches are needed. For large n, this number can be prohibitive.
As a result, people have looked for, and found, alternative switching networks
that require fewer switches. The omega network of Fig. 1-6(b) is one example.
This network contains four 2 x 2 switches, each having two inputs and two out-
puts. Each switch can route either input to either output. A careful look at the
figure will show that with proper settings of the switches, every CPU can access
every memory. These switches can be set in nanoseconds or less.
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In the general case, with n CPUs and n memories, the omega network
requires log,n switching stages, each containing n/2 switches, for a total of
(n logyn)/2 switches. Although for large » this is much better than n?, it is still
substantial.

Furthermore, there is another problem: delay. For example, for n = 1024,
there are 10 switching stages from the CPU to the memory, and another 10 for
the word requested to come back. Suppose that the CPU is a modern RISC chip
running at 100 MIPS; that is, the instruction execution time is 10 nsec. If a
memory request is to traverse a total of 20 switching stages (10 outbound and 10
back) in 10 nsec, the switching time must be 500 picosec (0.5 nsec). The com-
plete multiprocessor will need 5120 500-picosec switches. This is not going to
be cheap.

People have attempted to reduce the cost by going to hierarchical systems.
Some memory is associated with each CPU. Each CPU can access its own local
memory quickly, but accessing anybody else’s memory is slower. This design
gives rise to what is known as a NUMA (NonUniform Memory Access)
machine. Although NUMA machines have better average access times than
machines based on omega networks, they have the new complication that the
placement of the programs and data becomes critical in order to make most
access go to the local memory.

To summarize, bus-based multiprocessors, even with snoopy caches, are
limited by the amount of bus capacity to about 64 CPUs at most. To go beyond
that requires a switching network, such as a crossbar switch, an omega switching
network, or something similar. Large crossbar switches are very expensive, and
large omega networks are both expensive and slow. NUMA machines require
complex algorithms for good software placement. The conclusion is clear:
building a large, tightly-coupled, shared memory multiprocessor is possible, but
is difficult and expensive.

1.3.3. Bus-Based Multicomputers

On the other hand, building a multicomputer (i.e., no shared memory) is
easy. Each CPU has a direct connection to its own local memory. The only
problem left is how the CPUs communicate with each other. Clearly, some
interconnection scheme is needed here, too, but since it is only for CPU-to-CPU
communication, the volume of traffic will be several orders of magnitude lower
than when the interconnection network is also used for CPU-to-memory traffic.

In Fig. 1-7 we see a bus-based multicomputer. It looks topologically similar
to the bus-based multiprocessor, but since there will be much less traffic over it,
it need not be a high-speed backplane bus. In fact, it can be a much lower speed
LAN (typically, 10-100 Mbps, compared to 300 Mbps and up for a backplane
bus). Thus Fig. 1-7 is more often a collection of workstations on a LAN than a
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collection of CPU cards inserted into a fast bus (although the latter configuration
is definitely a possible design).

Workstation Workstation Workstation
Local Local Local
memory memory memory
CPU CPU CPU

Network

Fig. 1-7. A multicomputer consisting of workstations on a LAN.

1.3.4. Switched Multicomputers

Our last category consists of switched multicomputers. Various intercon-
nection networks have been proposed and built, but all have the property that
each CPU has direct and exclusive access to its own, private memory. Figure
1-8 shows two popular topologies, a grid and a hypercube. Grids are easy to
understand and lay out on printed circuit boards. They are best suited to prob-
lems that have an inherent two-dimensional nature, such as graph theory or
vision (e.g., robot eyes or analyzing photographs).

(a) (b)
Fig. 1-8. (a) Grid. (b) Hypercube.

A hypercube is an n-dimensional cube. The hypercube of Fig. 1-8(b) is
four-dimensional. It can be thought of as two ordinary cubes, each with 8 ver-
tices and 12 edges. Each vertex is a CPU. Each edge is a connection between
two CPUs. The corresponding vertices in each of the two cubes are connected.

To expand the hypercube to five dimensions, we would add another set of
two interconnected cubes to the figure, connect the corresponding edges in the
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two halves, and so on. For an n-dimensional hypercube, each CPU has n con-
nections to other CPUs. Thus the complexity of the wiring increases only loga-
rithmically with the size. Since only nearest neighbors are connected, many
messages have to make several hops to reach their destination. However, the
longest possible path also grows logarithmically with the size, in contrast to the
grid, where it grows as the square root of the number of CPUs. Hypercubes with
1024 CPUs have been commercially available for several years, and hypercubes
with as many as 16,384 CPUs are starting to become available.

1.4. SOFTWARE CONCEPTS

Although the hardware is important, the software is even more important.
The image that a system presents to its users, and how they think about the sys-
tem, is largely determined by the operating system software, not the hardware.
In this section we will introduce the various types of operating systems for the
multiprocessors and multicomputers we have just studied, and discuss which
kind of software goes with which kind of hardware.

Operating systems cannot be put into nice, neat pigeonholes like hardware.
By nature software is vague and amorphous. Still, it is more-or-less possible to
distinguish two kinds of operating systems for multiple CPU systems: loosely
coupled and tightly coupled. As we shall see, loosely and tightly-coupled
software is roughly analogous to loosely and tightly-coupled hardware.

Loosely-coupled software allows machines and users of a distributed system
to be fundamentally independent of one another, but still to interact to a limited
degree where that is necessary. Consider a group of personal computers, each of
which has its own CPU, its own memory, its own hard disk, and its own operat-
ing system, but which share some resources, such as laser printers and data
bases, over a LAN. This system is loosely coupled, since the individual
machines are clearly distinguishable, each with its own job to do. If the network
should go down for some reason, the individual machines can still continue to
run to a considerable degree, although some functionality may be lost (e.g., the
ability to print files).

To show how difficult it is to make definitions in this area, now consider the
same system as above, but without the network. To print a file, the user writes
the file on a floppy disk, carries it to the machine with the printer, reads it in,
and then prints it. Is this still a distributed system, only now even more loosely
coupled? It’s hard to say. From a fundamental point of view, there is not really
any theoretical difference between communicating over a LAN and communi-
cating by carrying floppy disks around. At most one can say that the delay and
data rate are worse in the second example.

At the other extreme we might find a multiprocessor dedicated to running a
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single chess program in parallel. Each CPU is assigned a board to evaluate, and
it spends its time examining that board and all the boards that can be generated
from it. When the evaluation is finished, the CPU reports back the results and is
given a new board to work on. The software for this system, both the applica-
tion program and the operating system required to support it, is clearly much
more tightly coupled than in our previous example.

We have now seen four kinds of distributed hardware and two kinds of dis-
tributed software. In theory, there should be eight combinations of hardware
and software. In fact, only four are worth distinguishing, because to the user,
the interconnection technology is not visible. For most purposes, a multiproces-
sor is a multiprocessor, whether it uses a bus with snoopy caches or uses an
omega network. In the following sections we will look at some of the most
common combinations of hardware and software.

1.4.1. Network Operating Systems

Let us start with loosely-coupled software on loosely-coupled hardware,
since this is probably the most common combination at many organizations. A
typical example is a network of workstations connected by a LAN. In this
model, each user has a workstation for his exclusive use. It may or may not
have a hard disk. It definitely has its own operating system. All commands are
normally run locally, right on the workstation.

However, it is sometimes possible for a user to log into another workstation
remotely by using a command such as

rlogin machine

The effect of this command is to turn the user’s own workstation into a remote
terminal logged into the remote machine. Commands typed on the keyboard are
sent to the remote machine, and output from the remote machine is displayed on
the screen. To switch to a different remote machine, it is necessary first to log
out, then to use the rlogin command to connect to another machine. At any
instant, only one machine can be used, and the selection of the machine is
entirely manual.

Networks of workstations often also have a remote copy command to copy
files from one machine to another. For example, a command like

rcp machinel:filel machine2:file2

might copy the file filel from machinel to machine2 and give it the name file2
there. Again here, the movement of files is explicit and requires the user to be
completely aware of where all files are located and where all commands are
being executed.

While better than nothing, this form of communication is extremely
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primitive and has led system designers to search for more convenient forms of
communication and information sharing. One approach is to provide a shared,
global file system accessible from all the workstations. The file system is sup-
ported by one or more machines called file servers. The file servers accept
requests from user programs running on the other (nonserver) machines, called
clients, to read and write files. Each incoming request is examined and exe-
cuted, and the reply is sent back, as illustrated in Fig. 1-9.

Clients File server
?
°
o
S Disks e D
on which
shared —— B D T
L file system
is stored
Request
LAN L J

Reply

Fig. 1-9. Two clients and a server in a network operating system.

File servers generally maintain hierarchical file systems, each with a root
directory containing subdirectories and files. Workstations can import or mount
these file systems, augmenting their local file systems with those located on the
servers. For example, in Fig. 1-10, two file servers are shown. One has a direc-
tory called games, while the other has a directory called work. These directories
each contain several files. Both of the clients shown have mounted both of the
servers, but they have mounted them in different places in their respective file
systems. Client 1 has mounted them in its root directory, and can access them as
/games and /work, respectively. Client 2, like client 1, has mounted games in its
root directory, but regarding the reading of mail and news as a kind of game, has
created a directory /games/work and mounted work there. Consequently, it can
access news using the path /games/work/news rather than /work/news.

While it does not matter where a client mounts a server in its directory
hierarchy, it is important to notice that different clients can have a different view
of the file system. The name of a file depends on where it is being accessed
from, and how that machine has set up its file system. Because each worksta-
tion operates relatively independently of the others, there is no guarantee that
they all present the same directory hierarchy to their programs.

The operating system that is used in this kind of environment must manage
the individual workstations and file servers and take care of the communication
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Client 1 Client 2 Server 1 Server 2
/ / games work
pacman mail
pacwoman news
pacchild other
(a)
Client 1 Client 2
/ /
— games | games
work — g
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(b} l
mail
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(c}

Fig. 1-10. Different clients may mount the servers in different places.

between them. It is possible that the machines all run the same operating sys-
tem, but this is not required. If the clients and servers run on different systems,
as a bare minimum they must agree on the format and meaning of all the mes-
sages that they may potentially exchange. In a situation like this, where each
machine has a high degree of autonomy and there are few system-wide require-
ments, people usually speak of a network operating system.

1.4.2. True Distributed Systems

Network operating systems are loosely-coupled software on loosely-coupled
hardware. Other than the shared file system, it is quite apparent to the users that
such a system consists of numerous computers. Each can run its own operating
system and do whatever its owner wants. There is essentially no coordination at
all, except for the rule that client-server traffic must obey the system’s protocols.

The next evolutionary step beyond this is tightly-coupled software on the
same loosely-coupled (i.e., multicomputer) hardware. The goal of such a system
is to create the illusion in the minds of the users that the entire network of
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computers is a single timesharing system, rather than a collection of distinct
machines. Some authors refer to this property as the single-system image. Oth-
ers put it slightly differently, saying that a distributed system is one that runs on
a collection of networked machines but acts like a virtual uniprocessor. No
matter how it is expressed, the essential idea is that the users should not have to
be aware of the existence of multiple CPUs in the system. No current system
fulfills this requirement entirely, but a number of candidates are on the horizon.
These will be discussed later in the book.

What are some characteristics of a distributed system? To start with, there
must be a single, global interprocess communication mechanism so that any pro-
cess can talk to any other process. It will not do to have different mechanisms
on different machines or different mechanisms for local communication and
remote communication. There@must also be a global protection scheme. Mixing
access control lists, the UNIX~ protection bits, and capabilities will not give a
single system image.

Process management must also be the same everywhere. How processes are
created, destroyed, started, and stopped must not vary from machine to machine.
In short, the idea behind network operating systems, namely that any machine
can do whatever it wants to as long as it obeys the standard protocols when
engaging in client-server communication, is not enough. Not only must there be
a single set of system calls available on all machines, but these calls must be
designed so that they make sense in a distributed environment.

The file system must look the same everywhere, too. Having file names res-
tricted to 11 characters in some locations and being unrestricted in others is
undesirable. Also, every file should be visible at every location, subject to pro-
tection and security constraints, of course.

As a logical consequence of having the same system call interface every-
where, it is normal that identical kernels run on all the CPUs in the system.
Doing so makes it easier to coordinate activities that must be global. For exam-
ple, when a process has to be started up, all the kernels have to cooperate in
finding the best place to execute it. In addition, a global file system is needed.

Nevertheless, each kernel can have considerable control over its own local
resources. For example, since there is no shared memory, it is logical to allow
each kernel to manage its own memory. For example, if swapping or paging is
used, the kernel on each CPU is the logical place to determine what to swap or
page. There is no reason to centralize this authority. Similarly, if multiple
processes are running on some CPU, it makes sense to do the scheduling right
there, too.

A considerable body of knowledge is now available about designing and
implementing distributed operating systems. Rather than going into these issues
here, we will first finish off our survey of the different combinations of
hardware and software, and come back to them in Sec. 1.5.
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1.4.3. Multiprocessor Timesharing Systems

The last combination we wish to discuss is tightly-coupled software on
tightly-coupled hardware. While various special-purpose machines exist in this
category (such as dedicated data base machines), the most common general-
purpose examples are multiprocessors that are operated as a UNIX timesharing
system, but with multiple CPUs instead of one CPU. To the outside world, a
multiprocessor with 32 30-MIPS CPUs acts very much like a single 960-MIPS
CPU (this is the single-system image discussed above). Except that implement-
ing it on a multiprocessor makes life much easier, since the entire design can be
centralized.

The key characteristic of this class of system is the existence of a single run
queue: a list of all the processes in the system that are logically unblocked and
ready to run. The run queue is a data structure kept in the shared memory. As
an example, consider the system of Fig. 1-11, which has three CPUs and five
processes that are ready to run. All five processes are located in the shared
memory, and three of them are currently executing: process A on CPU 1, pro-
cess B on CPU 2, and process C on CPU 3. The other two processes, D and E,
are also in memory, waiting their turn.

Memory
E (ready)
D {ready)
C (running)
CPU 1 CPU 2 cPU 3 B (running}
Process A Process B Process C A (running) -
running running running Run queue: D, € Disk
Cache Cache Cache Operating system .

Bus

Fig. 1-11. A multiprocessor with a single run queue.

Now suppose that process B blocks waiting for 1/O or its quantum runs out.
Either way, CPU 2 must suspend it, and find another process to run. CPU 2 will
normally begin executing operating system code (located in the shared memory).
After having saved all of B’s registers, it will enter a critical region to run the
scheduler to look for another process to run. It is essential that the scheduler be
run as a critical region to prevent two CPUs from choosing the same process to
run next. The necessary mutual exclusion can be achieved by using monitors,
semaphores, or any other standard construction used in singleprocessor systems.
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Once CPU 2 has gained exclusive access to the run queue, it can remove the
first entry, D, exit from the critical region, and begin executing D. Initially, exe-
cution will be slow, since CPU 2’s cache is full of words belonging to that part
of the shared memory containing process B, but after a little while, these will
have been purged and the cache will be full of D’s code and data, so execution
will speed up.

Because none of the CPUs have local memory and all programs are stored in
the global shared memory, it does not matter on which CPU a process runs. If a
long-running process is scheduled many times before it completes, on the aver-
age, it will spend about the same amount of time running on each CPU. The
only factor that has any effect at all on CPU choice is the slight gain in perfor-
mance when a process starts up on a CPU that is currently caching part of its
address space. In other words, if all CPUs are idle, waiting for 1/O, and one pro-
cess becomes ready, it is slightly preferable to allocate it to the CPU it was last
using, assuming that no other process has used that CPU since (Vaswani and
Zahorjan, 1991).

As an aside, if a process blocks for I/O on a multiprocessor, the operating
system has the choice of suspending it or just letting it do busy waiting. If most
I/O is completed in less time than it takes to do a process switch, busy waiting is
preferable. Some systems let the process keep its processor for a few milli-
seconds, in the hope that the I/O will complete soon, but if that does not occur
before the timer runs out, a process switch is made (Karlin et al., 1991). If most
critical regions are short, this approachcan avoid many expensive process
switches.

An area in which this kind of multiprocessor differs appreciably from a net-
work or distributed system is in the organization of the file system. The operat-
ing system normally contains a traditional file system, including a single, unified
block cache. When any process executes a system call, a trap is made to the
operating system, which carries it out, using semaphores, monitors, or something
equivalent, to lock out other CPUs while critical sections are being executed or
central tables are being accessed. In this way, when a WRITE system call is
done, the central block cache is locked, the new data entered into the cache, and
the lock released. Any subsequent READ call will see the new data, just as on a
single-processor system. On the whole, the file system is hardly different from a
single-processor file system. In fact, on some multiprocessors, one of the CPUs
is dedicated to running the operating system; the other ones run user programs.
This situation is undesirable, however, as the operating system machine is often
a bottleneck. This point is discussed in detail by Boykin and Langerman (1990).

It should be clear that the methods used on the multiprocessor to achieve the
appearance of a virtual uniprocessor are not applicable to machines that do not
have shared memory. Centralized run queues and block only caches work when
all CPUs have access to them with very low delay. Although these data
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structures could be simulated on a network of machines, the communication
costs make this approach prohibitively expensive.

Figure 1-12 shows some of the differences between the three kinds of sys-
tems we have examined above.

Network Distributed Multiprocessor
operating operating operating
{tem system system system
Does it look iike a virtual
uniprocessor? No Yes Yes
Do all have to run the
same operating system? No Yes Yes
How many copies of the N N 1
operating system are there?
How is communication Shared Shared
A - Messages
achieved? files memory
Are agreed upon network Yes Yes No
protocols required?
Is there a single run queue? No No Yes
Does file sharing have Usualiy
: A Y
well-defined semantics? no es Yes

Fig. 1-12. Comparison of three different ways of organizing n CPUs.

1.5. DESIGN ISSUES

In the preceding sections we have looked at distributed systems and related
topics from both the hardware and software points of view. In the remainder of
this chapter we will briefly look at some of the key design issues that people
contemplating building a distributed operating system must deal with. We will
come back to them in more detail later in the book.

1.5.1. Transparency

Probably the single most important issue is how to achieve the single-system
image. In other words, how do the system designers fool everyone into thinking
that the collection of machines is simply an old-fashioned timesharing system?
A system that realizes this goal is often said to be transparent.

Transparency can be achieved at two different levels. Easiest to do is to
hide the distribution from the users. For example, when a UNIX user types make



SEC. 1.5 DESIGN ISSUES 23

to recompile a large number of files in a directory, he need not be told that all
the compilations are proceeding in parallel on different machines and are using a
variety of file servers to do it. To him, the only thing that is unusual is that the
performance of the system is halfway decent for a change. In terms of com-
mands issued from the terminal and results displayed on the terminal, the distri-
buted system can be made to look just like a single-processor system.

At a lower level, it is also possible, but harder, to make the system look tran-
sparent to programs. In other words, the system call interface can be designed
so that the existence of multiple processors is not visible. Pulling the wool over
the programmer’s eyes is harder than pulling the wool over the terminal user’s
eyes, however.

What does transparency really mean? It is one of those slippery concepts
that sounds reasonable but is more subtle than it at first appears. As an example,
imagine a distributed system consisting of workstations each running some stan-
dard operating system. Normally, system services (e.g., reading files) are
obtained by issuing a system call that traps to the kemel. In such a system,
remote files should be accessed the same way. A system in which remote files
are accessed by explicitly setting up a network connection to a remote server
and then sending messages to it is not transparent because remote services are
then being accessed differently than local ones. The programmer can tell that
multiple machines are involved, and this is not allowed.

The concept of transparency can be applied to several aspects of a distri-
buted system, as shown in Fig. 1-13. Location transparency refers to the fact
that in a true distributed system, users cannot tell where hardware and software
resources such as CPUs, printers, files, and data bases are located. The name of
the resource must not secretly encode the location of the resource, so names like
machinel :prog.c or /machinel/prog.c are not acceptable.

Kind Meaning
Location transparency The users cannot tell where resources are located
Migration transparency Resources can move at will without changing their names
Replication transparency The users cannot tell hew many copies exist
Concurrency transparency Muitiple users can share resources automatically
Paralielism transparency Activities can happen in parallel without users knowing

Fig. 1-13. Different kinds of transparency in a distributed system.

Migration transparency means that resources must be free to move from
one location to another without having their names change. In the example of
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Fig. 1-10 we saw how server directories could be mounted in arbitrary places in
the clients’ directory hierarchy. Since a path like /work/news does not reveal the
location of the server, it is location transparent. However, now suppose that the
folks running the servers decide that reading network news really falls in the
category “games’’ rather than in the category “work.” Accordingly, they move
news {rom server 2 to server 1. The next time client 1 boots and mounts the
servers in his customary way, he will notice that /work/news no longer exists.
Instead, there is a new entry, /games/news. Thus the mere fact that a file or
directory has migrated from one server to another has forced it to acquire a new
name because the system of remote mounts is not migration transparent.

If a distributed system has replication transparency, the operating system
is free to make additional copies of files and other resources on its own without
the users noticing. Clearly, in the previous example, automatic replication is
impossible because the names and locations are so closely tied together. To see
how replication transparency might be achievable, consider a collection of n
servers logically connected to form a ring. Each server maintains the entire
directory tree structure but holds only a subset of the files themselves. To read a
file, a client sends a message containing the full path name to any of the servers.
That server checks to see if it has the file. If so, it returns the data requested. If
not, it forwards the request to the next server in the ring, which then repeats the
algorithm. In this system, the servers can decide by themselves to replicate any
file on any or all servers, without the users having to know about it. Such a
scheme is replication transparent because it allows the system to make copies of
heavily used files without the users even being aware that this is happening.

Distributed systems usually have multiple, independent users. What should
the system do when two or more users try to access the same resource at the
same time? For example, what happens if two users try to update the same file
at the same time? If the system is concurrency transparent, the users will not
notice the existence of other users. One mechanism for achieving this form of
transparency would be for the system to lock a resource automatically once
someone had started to use it, unlocking it only when the access was finished.
In this manner, all resources would only be accessed sequentially, never con-
currently.

Finally, we come to the hardest one, parallelism transparency. In princi-
ple, a distributed system is supposed to appear to the users as a traditional,
uniprocessor timesharing system. What happens if a programmer knows that his
distributed system has 1000 CPUs and he wants to use a substantial fraction of
them for a chess program that evaluates boards in parallel? The theoretical
answer is that together the compiler, runtime system, and operating system
should be able to figure out how to take advantage of this potential parallelism
without the programmer even knowing it. Unfortunately, the current state-of-
the-art is nowhere near allowing this to happen. Programmers who actually
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want to use multiple CPUs for a single problem will have to program this expli-
citly, at least for the foreseeable future. Parallelism transparency can be
regarded as the holy grail for distributed systems designers. When that has been
achieved, the work will have been completed, and it will be time to move on to
new fields.

All this notwithstanding, there are times when users do not want complete
transparency. For example, when a user asks to print a document, he often
prefers to have the output appear on the local printer, not one 1000 km away,
even if the distant printer is fast, inexpensive, can handle color and smell, and is
currently idle.

1.5.2. Flexibility

The second key design issue is flexibility. It is important that the system be
flexible because we are just beginning to learn about how to build distributed
systems. It is likely that this process will incur many false starts and consider-
able backtracking. Design decisions that now seem reasonable may later prove
to be wrong. The best way to avoid problems is thus to keep one’s options open.

Flexibility, along with transparency, is like parenthood and apple pie: who
could possibly be against them? It is hard to imagine anyone arguing in favor of
an inflexible system. However, things are not as simple as they seem. There are
two schools of thought concerning the structure of distributed systems. One
school maintains that each machine should run a traditional kernel that provides
most services itself. The other maintains that the kernel should provide as little
as possible, with the bulk of the operating system services available from user-
level servers. These two models, known as the monolithic kernel and micro-
kernel, respectively, are illustrated in Fig. 1-14.

User File Directory Process
User server server server
Monolithic Microkernel Microkernel Microkernel Microkernel
kernel
\ . Network
Includes file,
directory and
process management
(a) (b)

Fig. 1-14. (a) Monolithic kernel. (b) Microkernel.

The monolithic kernel is basically today’s centralized operating system aug-
mented with networking facilities and the integration of remote services. Most
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system calls are made by trapping to the kernel, having the work performed
there, and having the kernel return the desired result to the user process. With
this approach, most machines have disks and manage their own local file sys-
tems. Many distributed systems that are extensions or imitations of UNIX use
this approach because UNIX itself has a large, monolithic kernel.

If the monolithic kernel is the reigning champion, the microkernel is the up-
and-coming challenger. Most distributed systems that have been designed from
scratch use this method. The microkernel is more flexible because it does
almost nothing. It basically provides just four minimal services:

An interprocess communication mechanism.

Some memory management.

el

A small amount of low-level process management and scheduling.
4. Low-level input/output.

In particular, unlike the monolithic kernel, it does not provide the file system,
directory system, full process management, or much system call handling. The
services that the microkemel does provide are included because they are diffi-
cult or expensive to provide anywhere elsc. The goal is to keep it small.

All the other operating system services are generally implemented as user-
level servers. To look up a name, read a file, or obtain some other service, the
user sends a message to the appropriate server, which then does the work and
returns the result. The advantage of this method is that it is highly modular:
there is a well-defined interface to each service (the set of messages the server
understands), and every service is equally accessible to every client, indepen-
dent of location. In addition, it is easy to implement, install, and debug new ser-
vices, since adding or changing a service does not require stopping the system
and booting a new kernel, as is the case with a monolithic kernel. It is precisely
this ability to add, delete, and modify services that gives the microkernel its
flexibility. Furthermore, users who are not satisfied with any of the official ser-
vices are free to write their own.

As a simple example of this power, it is possible to have a distributed sys-
tem with multiple file servers, one supporting MS-DOS file service and another
supporting UNIX file service. Individual programs can use either or both, if they
choose. In contrast, with a monolithic kernel, the file system is built into the
kernel, and users have no choice but to use it.

The only potential advantage of the monolithic kernel is performance. Trap-
ping to the kernel and doing everything there may well be faster than sending
messages to remote servers, However, a detailed comparison of two distributed
operating systems, one with a monolithic kernel (Sprite), and one with a micro-
kernel (Amoeba), has shown that in practice this advantage is nonexistent
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(Douglis et al., 1991). Other factors tend to dominate, and the small amount of
time required to send a message and get a reply (typically, about 1 msec) is usu-
ally negligible. As a consequence, it is likely that microkernel systems will gra-
dually come to dominate the distributed systems scheme, and monolithic kernels
will eventually vanish or evolve into microkernels. Perhaps future editions of
Silberschatz and Galvin’s book on operating systems (1994) will feature hum-
mingbirds and swifts on the cover instead of stegasauruses and triceratopses.

1.5.3. Reliability

One of the original goals of building distributed systems was to make them
more reliable than single-processor systems. The idea is that if a machine goes
down, some other machine takes over the job. In other words, theoretically the
overall system reliability could be the Boolean OR of the component reliabilities.
For example, with four file servers, each with a 0.95 chance of being up at any
instant, the probability of all four being down simultaneously is
0.05* = 0.000006, so the probability of at least one being available is 0.999994,
far better than that of any individual server.

That is the theory. The practice is that to function at all, current distributed
systems count on a number of specific servers being up. As a result, some of
them have an availability more closely related to the Boolean AND of the com-
ponents than to the Boolean OR. In a widely-quoted remark, Leslie Lamport
once defined a distributed system as “‘one on which I cannot get any work done
because some machine I have never heard of has crashed.”” While this remark
was (presumably) made somewhat tongue-in-cheek, there is clearly room for
improvement here.

It is important to distinguish various aspects of reliability. Availability, as
we have just seen, refers to the fraction of time that the system is usable.
Lamport’s system apparently did not score well in that regard. Availability can
be enhanced by a design that does not require the simultaneous functioning of a
substantial number of critical components. Another tool for improving availa-
bility is redundancy: key pieces of hardware and software should be replicated,
so that if one of them fails the others will be able to take up the slack.

A highly reliable system must be highly available, but that is not enough.
Data entrusted to the system must not be lost or garbled in any way, and if files
are stored redundantly on multiple servers, all the copies must be kept con-
sistent. In general, the more copies that are kept, the better the availability, but
the greater the chance that they will be inconsistent, especially if updates are
frequent. The designers of all distributed systems must keep this dilemma in
mind all the time.

Another aspect of overall reliability is security. Files and other resources
must be protected from unauthorized usage. Although the same issue occurs in
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single-processor systems, in distributed systems it is more severe. In a single-
processor system, the user logs in and is authenticated. From then on, the sys-
tem knows who the user is and can check whether each attempted access is
legal. In a distributed system, when a message comes in to a server asking for
something, the server has no simple way of determining who it is from. No
name or identification field in the message can be trusted, since the sender may
be lying. At the very least, considerable care is required here.

Still another issue relating to reliability is fault tolerance. Suppose that a
server crashes and then quickly reboots. What happens? Does the server crash
bring users down with it? If the server has tables containing important informa-
tion about ongoing activities, recovery will be difficult at best.

In general, distributed systems can be designed to mask failures, that is, to
hide them from the users. If a file service or other service is actually con-
structed from a group of closely cooperating servers, it should be possible to
construct it in such a way that users do not notice the loss of one or two servers,
other than some performance degradation. Of course, the trick is to arrange this
cooperation so that it does not add substantial overhead to the system in the nor-
mal case, when everything is functioning correctly.

1.5.4. Performance

Always lurking in the background is the issue of performance. Building a
transparent, flexible, reliable distributed system will not win you any prizes if it
is as slow as molasses. In particular, when running a particular application on a
distributed system, it should not be appreciably worse than running the same
application on a single processor. Unfortunately, achieving this is easier said
than done.

Various performance metrics can be used. Response time is one, but so are
throughput (number of jobs per hour), system utilization, and amount of network
capacity consumed. Furthermore, the results of any benchmark are often highly
dependent on the nature of the benchmark. A benchmark that involves a large
number of independent highly CPU-bound computations may give radically dif-
ferent results from a benchmark that consists of scanning a single large file for
some pattern.

The performance problem is compounded by the fact that communication,
which is essential in a distributed system (and absent in a single-processor sys-
tem) is typically quite slow. Sending a message and getting a reply over a LAN
takes about 1 msec. Most of this time is due to unavoidable protocol handling
on both ends, rather than the time the bits spend on the wire. Thus to optimize
performance, one often has to minimize the number of messages. The difficulty
with this strategy is that the best way to gain performance 18 to have many
activities running in parallel on different processors, but doing so requires
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sending many messages. (Another solution is to do all the work on one
machine, but that is hardly appropriate in a distributed system.)

One possible way out is to pay considerable attention to the grain size of all
computations. Starting up a small computation remotely, such as adding two
integers, is rarely worth it, because the communication overhead dwarfs the
extra CPU cycles gained. On the other hand, starting up a long compute-bound
job remotely may be worth the trouble. In general, jobs that involve a large
number of small computations, especially ones that interact highly with one
another, may cause trouble on a distributed system with relatively slow com-
munication. Such jobs are said to exhibit fine-grained parallelism. On the
other hand, jobs that involve large computations, low interaction rates, and little
data, that is, coarse-grained parallelism, may be a better fit.

Fault tolerance also exacts its price. Good reliability is often best achieved
by having several servers closely cooperating on a single request. For example,
when a request comes in to a server, it could immediately send a copy of the
message to one of its colleagues so that if it crashes before finishing, the col-
league can take over. Naturally, when it is done, it must inform the colleague
that the work has been completed, which takes another message. Thus we have
at least two extra messages, which in the normal case cost time and network
capacity and produce no tangible gain.

1.5.5. Scalability

Most current distributed systems are designed to work with a few hundred
CPUs. It is possible that future systems will be orders of magnitude larger, and
solutions that work well for 200 machines will fail miserably for 200,000,000.
Consider the following. The French PTT (Post, Telephone and Telegraph
administration) is in the process of installing a terminal in every household and
business in France. The terminal, known as a minitel, will allow online access
to a data base containing all the telephone numbers in France, thus eliminating
the need for printing and distributing expensive telephone books. It will also
vastly reduce the need for information operators who do nothing but give out
telephone numbers all day. It has been calculated that the system will pay for
itself within a few years. If the system works in France, other countries will
inevitably adopt similar systems.

Once all the terminals are in place, the possibility of also using them for
electronic mail (especially in conjunction with printers) is clearly present. Since
postal services lose a huge amount of money in every country in the world, and
telephone services are enormously profitable, there are great incentives to hav-
ing electronic mail replace paper mail.

Next comes interactive access to all kinds of data bases and services, from
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electronic banking to reserving places in planes, trains, hotels, theaters, and res-
taurants, to name just a few. Before long, we have a distributed system with
tens of millions of users. The question is: Will the methods we are currently
developing scale to such large systems?

Although little is known about such huge distributed systems, one guiding
principle is clear: avoid centralized components, tables, and algorithms (see
Fig. 1-15). Having a single mail server for 50 million users would not be a good
idea. Even if it had enough CPU and storage capacity, the network capacity into
and out of it would surely be a problem. Furthermore, the system would not
tolerate faults well. A single power outage could bring the entire system down.
Finally, most mail is local. Having a message sent by a user in Marseille to
another user two blocks away pass through a machine in Paris is not the way to

go.

Concept Example
Centralized components A single mail server for all users
Centralized tables A single on-line telephone book
Centralized algorithms Doing routing based on complete information

Fig. 1-15. Potential bottlenecks that designers should try to avoid in very large
distributed systems.

Centralized tables are almost as bad as centralized components. How
should one keep track of the telephone numbers and addresses of 50 million peo-
ple? Suppose that each data record could be fit into 50 characters. A single
2.5-gigabyte disk would provide enough storage. But here again, having a sin-
gle data base would undoubtedly saturate all the communication lines into and
out of it. It would also be vulnerable to failures (a single speck of dust could
cause a head crash and bring down the entire directory service). Furthermore,
here too, valuable network capacity would be wasted shipping queries far away
for processing.

Finally, centralized algorithms are also a bad idea. In a large distributed
system, an enormous number of messages have to be routed over many lines.
From a theoretical point of view, the optimal way to do this is collect complete
information about the load on all machines and lines, and then run a graph
theory algorithm to compute all the optimal routes. This information can then
be spread around the system to improve the routing.

The trouble is that collecting and transporting all the input and output infor-
mation would again be a bad idea for the reasons discussed above. In fact, any
algorithm that operates by collecting information from all sites, sends it to a sin-
gle machine for processing, and then distributes the results must be avoided.
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Only decentralized algorithms should be used. These algorithms generally have
the following characteristics, which distinguish them from centralized algo-
rithms;:

No machine has complete information about the system state.

Machines make decisions based only on local information.

W

Failure of one machine does not ruin the algorithm.
4. There is no implicit assumption that a global clock exists.

The first three follow from what we have said so far. The last is perhaps less
obvious, but also important. Any algorithm that starts out with: “At precisely
12:00:00 all machines shall note the size of their output queue” will fail because
it is impossible to get all the clocks exactly synchronized. Algorithms should
take into account the lack of exact clock synchronization. The larger the system,
the larger the uncertainty. On a single LAN, with considerable effort it may be
possible to get all clocks synchronized down to a few milliseconds, but doing
this nationally is tricky. We will discuss distributed clock synchronization in
Chap. 3.

1.6. SUMMARY

Distributed systems consist of autonomous CPUs that work together to make
the complete system look like a single computer. They have a number of poten-
tial selling points, including good price/performance ratios, the ability to match
distributed applications well, potentially high reliability, and incremental growth
as the workload grows. They also have some disadvantages, such as more com-
plex software, potential communication bottlenecks, and weak security.
Nevertheless, there is considerable interest worldwide in building and installing
them.

Modern computer systems often have multiple CPUs. These can be organ-
ized as multiprocessors (with shared memory) or as multicomputers (without
shared memory). Both types can be bus-based or switched. The former tend to
be tightly coupled, while the latter tend to be loosely coupled.

The software for multiple CPU systems can be divided into three rough
classes. Network operating systems allow users at independent workstations to
communicate via a shared file system but otherwise leave each user as the mas-
ter of his own workstation. Distributed operating systems turn the entire collec-
tion of hardware and software into a single integrated system, much like a tradi-
tional timesharing system. Shared-memory multiprocessors also offer a single
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system image, but do so by centralizing everything, so there really is only a sin-
gle system. Shared-memory multiprocessors are not distributed systems.

Distributed systems have to be designed carefully, since there are many pit-
falls for the unwary. A key issue is transparency—hiding all the distribution
from the users and even from the application programs. Another issue is flexi-
bility. Since the field is only now in its infancy, the design should be made with
the idea of making future changes easy. In this respect, microkernels are supe-
rior to monolithic kernels. Other important issues are reliability, performance,
and scalability.

PROBLEMS

1. The price/performance ratio of computers has improved by something like
11 orders of magnitude since the first commercial mainframes came out in
the early 1950s. The text shows what a similar gain would have meant in
the automobile industry. Give another example of what such a large gain
means.

2. Name two advantages and two disadvantages of distributed systems over
centralized ones.

3. What is the difference between a multiprocessor and a multicomputer?

4. The terms loosely-coupled system and tightly-coupled system are often used
to described distributed computer systems. What is the different between
them?

5. What is the different between an MIMD computer and an SIMD computer?

6. A bus-based multiprocessor uses snoopy caches to achieve a coherent
memory. Will semaphores work on this machine?

7. Crossbar switches allow a large number of memory requests to be processed
at once, giving excellent performance. Why are they rarely used in prac-
tice?

8. A multicomputer with 256 CPUs is organized as a 16 x 16 grid. What is the
worst-case delay (in hops) that a message might have to take?

9. Now consider a 256-CPU hypercube. What is the worst-case delay here,
again in hops?

10. A multiprocessor has 4096 50-MIPS CPUs connected to memory by an
omega network. How fast do the switches have to be to allow a request to
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11.
12.

13.
14.
15.

16.
17.

18.

go to memory and back in one instruction time?
What is meant by a single-system image?

What is the main difference between a distributed operating system and a
network operating system?

What are the primary tasks of a microkernel?
Name two advantages of a microkemel over a monolithic kernel.

Concurrency transparency is a desirable goal for distributed systems. Do
centralized systems have this property automatically?

Explain in your own words the concept of parallelism transparency.

An experimental file server is up 3/4 of the time and down 1/4 of the time,
due to bugs. How many times does this file server have to be replicated to
give an availability of at least 99 percent?

Suppose that you have a large source program consisting of m files to com-
pile. The compilation is to take place on a system with 7 processors, where
n > m. The best you can hope for is an m-fold speedup over a single pro-
cessor. What factors might cause the speedup to be less than this max-
imum?



Communication in Distributed
Systems

The single most important difference between a distributed system and a
uniprocessor system is the interprocess communication. In a uniprocessor sys-
tem, most interprocess communication implicitly assumes the existence of
shared memory. A typical example is the producer-consumer problem, in which
one process writes into a shared buffer and another process reads from it. Even
that most basic form of synchronization, the semaphore, requires that one word
(the semaphore variable itself) is shared. In a distributed system there is no
shared memory whatsoever, so the entire nature of interprocess communication
must be completely rethought from scratch. In this chapter we will discuss
numerous issues, examples, and problems associated with interprocess commun-
ication in distributed operating systems.

We will start out by discussing the rules that communicating processes must
adhere to, known as protocols. For wide-area distributed systems these proto-
cols often take the form of multiple layers, each with its own goals and rules.
Two sets of layers, OSI and ATM, will be examined. Then we will look at the
client-server model in some detail. After that, it is time to find out how mes-
sages are exchanged and the many options available to system designers.

One particular option, remote procedure call, is important enough to warrant
its own section. Remote procedure call is really a nicer way of packaging mes-
sage passing, to make it more like conventional programming and easier to use.
Nevertheless, it has its own peculiarities and issues, which we will also look at.

34
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We will conclude the chapter by studying how groups of processes can com-
municate, instead of just two processes. A detailed example of group communi-
cation, ISIS, will be discussed.

2.1. LAYERED PROTOCOLS

Due to the absence of shared memory, all communication in distributed sys-
tems is based on message passing. When process A wants to communicate with
process B, it first builds a message in its own address space. Then it executes a
system call that causes the operating system to fetch the message and send it
over the network to B. Although this basic idea sounds simple enough, in order
to prevent chaos, A and B have to agree on the meaning of the bits being sent. If
A sends a brilliant new novel written in French and encoded in IBM’s EBCDIC
character code, and B expects the inventory of a supermarket written in English
and encoded in ASCII, communication will be less than optimal.

Many different agreements are needed. How many volts should be used to
signal a 0-bit, and how many volts for a 1-bit? How does the receiver know
which is the last bit of the message? How can it detect if a message has been
damaged or lost, and what should it do if it finds out? How long are numbers,
strings, and other data items, and how are they represented? In short, agree-
ments are needed at a variety of levels, varying from the low-level details of bit
transmission to the high-level details of how information is to be expressed.

To make it easier to deal with the numerous levels and issues involved in
communication, the International Standards Organization (ISO) has developed a
reference model that clearly identifies the various levels involved, gives them
standard names, and points out which level should do which job. This model is
called the Open Systems Interconnection Reference Model (Day and Zim-
merman, 1983), usually abbreviated as ISO OSI or sometimes just the OSI
model. Although we do not intend to give a full description of this model and
all of its implications here, a short introduction will be helpful. For more
details, see (Tanenbaum, 1988).

To start with, the OSI model is designed to allow open systems to communi-
cate. An open system is one that is prepared to communicate with any other
open system by using standard rules that govern the format, contents, and mean-
ing of the messages sent and received. These rules are formalized in what are
called protocols. Basically, a protocol is an agreement between the communi-
cating parties on how communication is to proceed. When a woman is intro-
duced to a man, she may choose to stick out her hand. He, in turn, may decide
either to shake it or kiss it, depending, for example, whether she is an American
lawyer at a business meeting or a European princess at a formal ball. Violating
the protocol will make communication more difficult, if not impossible.
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At a more technological level, many companies make memory boards for
the IBM PC. When the CPU wants to read a word from memory, it puts the
address and certain control signals on the bus. The memory board is expected to
see these signals and respond by putting the word requested on the bus within a
certain time interval. If the memory board observes the required bus protocol, it
will work correctly, otherwise it will not.

Similarly, to allow a group of computers to communicate over a network,
they must all agree on the protocols to be used. The OSI model distinguishes
between two general types of protocols. With connection-oriented protocols,
before exchanging data, the sender and receiver first explicitly establish a con-
nection, and possibly negotiate the protocol they will use. When they are done,
they must release (terminate) the connection. The telephone is a connection-
oriented communication system. With connectionless protocols, no setup in
advance is needed. The sender just transmits the first message when it is ready.
Dropping a letter in a mailbox is an example of connectionless communication.
With computers, both connection-oriented and connectionless communication
are common.

In the OSI model, communication is divided up into seven levels or layers,
as shown in Fig. 2-1. Each layer deals with one specific aspect of the communi-
cation. In this way, the problem can be divided up into manageable pieces, each
of which can be solved independent of the others. Each layer provides an inter-
face to the one above it. The interface consists of a set of operations that
together define the service the layer is prepared to offer its users.

In the OSI model, when process A on machine 1 wants to communicate with
process B on machine 2, it builds a message and passes the message to the appli-
cation layer on its machine. This layer might be a library procedure, for exam-
ple, but it could also be implemented in some other way (e.g., inside the operat-
ing system, on an external coprocessor chip, etc.). The application layer
software then adds a header to the front of the message and passes the resulting
message across the layer 6/7 interface to the presentation layer. The presenta-
tion layer in turn adds its own header and passes the result down to the session
layer, and so on. Some layers add not only a header to the front, but also a
trailer to the end. When it hits bottom, the physical layer actually transmits the
message, which by now might look as shown in Fig. 2-2.

When the message arrives at machine 2, it is passed upward, with each layer
stripping off and examining its own header. Finally, the message arrives at the
receiver, process B, which may reply to it using the reverse path. The informa-
tion in the layer n header is used for the layer n protocol.

As an example of why layered protocols are important, consider communi-
cation between two companies, Zippy Airlines and its caterer, Mushy Meals,
Inc. Every month, the head of passenger service at Zippy asks her secretary to
contact the sales manager’s secretary at Mushy to order 100,000 boxes of rubber
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Fig. 2-1. Layers, interfaces, and protocols in the OSI model.

chicken. Traditionally, the orders have gone via the post office. However, as
the postal service deteriorates, at some point the two secretaries decide to aban-
don it and communicate by FAX. They can do this without bothering their
bosses, since their protocol deals with the physical transmission of the orders,
not their contents.

Similarly, the head of passenger service can decide to drop the rubber
chicken and go for Mushy’s new special, prime rib of goat, without that decision
affecting the secretaries. The thing to notice is that we have two layers here, the
bosses and the secretaries. Each layer has its own protocol (subjects of discus-
sion and technology) that can be changed independently of the other one. It is
precisely this independence that makes layered protocols attractive. Each one
can be changed as technology improves, without the other ones being affected.
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Fig. 2-2. A typical message as it appears on the network.

In the OSI model, there are not two layers, but seven, as we saw in Fig. 2-1.
The collection of protocols used in a particular system is called a protocol suite
or protocol stack. In the following sections, we will briefly examine each of
the layers in turn, starting at the bottom. Where appropriate, we will also point
out some of the protocols used in each layer.

2.1.1. The Physical Layer

The physical layer is concerned with transmitting the Os and 1s. How many
volts to use for 0 and 1, how many bits per second can be sent, and whether
transmission can take place in both directions simultaneously are key issues in
the physical layer. In addition, the size and shape of the network connector
(plug), as well as the number of pins and meaning of each are of concern here.

The physical layer protocol deals with standardizing the electrical, mechani-
cal, and signaling interfaces so that when one machine sends a 0 bit it is actually
received as a 0 bit and not a 1 bit. Many physical layer standards have been
developed (for different media), for example, the RS-232-C standard for serial
communication lines.

2.1.2. The Data Link Layer

The physical layer just sends bits. As long as no errors occur, all is well.
However, real communication networks are subject to errors, so some mechan-
ism is needed to detect and correct them. This mechanism is the main task of
the data link layer. What it does is to group the bits into units, sometimes called
frames, and see that each frame is correctly received.

The data link layer does its work by putting a special bit pattern on the start
and end of each frame, to mark them, as well as computing a checksum by
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adding up all the bytes in the frame in a certain way. The data link layer
appends the checksum to the frame. When the frame arrives, the receiver
recomputes the checksum from the data and compares the result to the checksum
following the frame. If they agree, the frame is considered correct and is
accepted. It they disagree, the receiver asks the sender to retransmit it. Frames
are assigned sequence numbers (in the header), so everyone can tell which is
which.

In Fig. 2-3 we see a (slightly pathological) example of A trying to send two
messages, 0 and 1, to B. At time 0, data message O is sent, but when it arrives,
at time 1, noise on the transmission line has caused it to be damaged, so the
checksum is wrong. B notices this, and at time 2 asks for a retransmission using
a control message. Unfortunately, at the same time, A is sending data message
1. When A gets the request for retransmission, it resends 0. However, when B
gets message 1, instead of the requested message 0, it sends control message 1 to
A complaining that it wants 0, not 1. When A sees this, it shrugs its shoulders
and sends message O for the third time.

Time A B Event
0 A sends data message 0
1 Data O B gets 0, sees bad checksum

A sends data message 1

Control 0 B complains about the checksum

3 Control O Data 1 Both messages arrive correctly

A retransmits data message 0

Data 0 B says: "t want 0, not 1"

Control 1

5 Control 1 Data O Both messages arrive correctly

oot

E

6 Data O A retransmits data message O again

I
i’

Data O B finally gets message O

Fig. 2-3. Discussion between a receiver and a sender in the data link layer.

The point here is not so much whether the protocol of Fig. 2-3 is a great one
(it is not), but rather to illustrate that in each layer there is a need for discussion
between the sender and the receiver. Typical messages are ‘“‘Please retransmit
message n,” “I already retransmitted it,” “No you did not,” “Yes I did,” “All
right, have it your way, but send it again,” and so forth. This discussion takes
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place in the header field, where various requests and responses are defined, and
parameters (such as frame numbers) can be supplied.

2.1.3. The Network Layer

On a LAN, there is usually no need for the sender to locate the receiver. It
just puts the message out on the network and the receiver takes it off. A wide-
area network, however, consists of a large number of machines, each with some
number of lines to other machines, rather like a large-scale map showing major
cities and roads connecting them. For a message to get from the sender to the
receiver it may have to make a number of hops, at each one choosing an outgo-
ing line to use. The question of how to choose the best path is called routing,
and is the primary task of the network layer.

The problem is complicated by the fact that the shortest route is not always
the best route. What really matters is the amount of delay on a given route,
which, in turn, is related to the amount of traffic and the number of messages
queued up for transmission over the various lines. The delay can thus change
over the course of time. Some routing algorithms try to adapt to changing loads,
whereas others are content to make decisions based on long-term averages.

Two network-layer protocols are in widespread use, one connection-oriented
and one connectionless. The connection-oriented one is called X.25, and is
favored by the operators of public networks, such as telephone companies and
the European PTTs. The X.25 user first sends a Call Request to the destination,
which can either accept or reject the proposed connection. If the connection is
accepted, the caller is given a connection identifier to use in subsequent
requests. In many cases, the network chooses a route from the sender to the
receiver during this setup, and uses it for subsequent traffic.

The connectionless one is called IP (Internet Protocol) and is part of the
DoD (U.S. Department of Defense) protocol suite. An IP packet (the technical
term for a message in the network layer) can be sent without any setup. Each IP
packet is routed to its destination independent of all others. No internal path is
selected and remembered as is often the case with X.25.

2.1.4. The Transport Layer

Packets can be lost on the way from the sender to the receiver. Although
some applications can handle their own error recovery, others prefer a reliable
connection. The job of the transport layer is to provide this service. The idea is
that the session layer should be able to deliver a message to the transport layer
with the expectation that it will be delivered without loss.

Upon receiving a message from the session layer, the transport layer breaks
it into pieces small enough for each to fit in a single packet, assigns each one a
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sequence number, and then sends them all. The discussion in the transport layer
header concerns which packets have been sent, which have been received, how
many more the receiver has room to accept, and similar topics.

Reliable transport connections (which by definition are connection-oriented)
can be built on top of either X.25 or IP. In the former case all the packets will
arrive in the correct sequence (if they arrive at all), but in the latter case it is
possible for one packet to take a different route and arrive earlier than the packet
sent before it. It is up to the transport layer software to put everything back in
order to maintain the illusion that a transport connection is like a big tube—you
put messages into it and they come out undamaged and in the same order in
which they went in,

The official ISO transport protocol has five variants, known as TP through
TP4. The differences relate to error handling and the ability to send several
transport connections over a single X.25 connection. The choice of which one
to use depends on the properties of the underlying network layer.

The DoD transport protocol is called TCP (Transmission Control Proto-
col) and is described in detail in (Comer, 1991). It is similar to TP4. The com-
bination TCP/IP is widely used at universities and on most UNIX systems. The
DoD protocol suite also supports a connectionless transport protocol called UDP
(Universal Datagram Protocol), which is essentially just IP with some minor
additions. User programs that do not need a connection-oriented protocol nor-
mally use UDP.

2.1.5. The Session Layer

The session layer is essentially an enhanced version of the transport layer. It
provides dialog control, to keep track of which party is currently talking, and it
provides synchronization facilities. The latter are useful to allow users to insert
checkpoints into long transfers, so that in the event of a crash it is only necessary
to go back to the last checkpoint, rather than all the way back to the beginning.
In practice, few applications are interested in the session layer and it is rarely
supported. It is not even present in the DoD protocol suite.

2.1.6. The Presentation Layer

Unlike the lower layers, which are concemned with getting the bits from the
sender to the receiver reliably and efficiently, the presentation layer is concerned
with the meaning of the bits. Most messages do not consist of random bit
strings, but more structured information such as people’s names, addresses,
amounts of money, and so on. In the presentation layer it is possible to define
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records containing fields like these and then have the sender notify the receiver
that a message contains a particular record in a certain format. This makes it
easier for machines with different internal representations to communicate.

2.1.7. The Application Layer

The application layer is really just a collection of miscellaneous protocols
for common activities such as electronic mail, file transfer, and connecting
remote terminals to computers over a network. The best known of these are the
X.400 electronic mail protocol and the X.500 directory server. Neither this
layer nor the two layers directly under it will be of interest to us in this book.

2.2. ASYNCHRONOUS TRANSFER MODE NETWORKS

The OSI world sketched in the previous section was developed in the 1970s
and implemented (to some extent) in the 1980s. New developments in the 1990s
are overtaking OSI, certainly in the technology-driven lower layers. In this sec-
tion we will touch just briefly on some of these advances in networking, since
future distributed systems will very likely be built on them, and it is important
for operating system designers to be aware of them. For a more complete treat-
ment of the state-of-the-art in network technology, see (Kleinrock, 1992; and
Partridge, 1993, 1994).

In the past quarter century, computers have improved in performance by
many orders of magnitude. Networks have not. When the ARPANET, the
predecessor to the Internet, was inaugurated in 1969, it used 56 Kbps communi-
cation lines between the nodes. This was state-of-the-art communication then.
In the late 1970s and early 1980s, many of these lines were replaced by T1 lines
running at 1.5 Mbps. Eventually, the main backbone evolved into a T3 network
at 45 Mbps, but most lines on the Internet are still T1 or slower.

New developments are suddenly about to make 155 Mbps the low-end stan-
dard, with major trunks running at 1 gigabit/sec and up (Catlett, 1992; Cheung,
1992; and Lyles and Swinehart, 1992). This rapid change will have an enor-
mous impact on distributed systems, making possible all kinds of applications
that were previously unthinkable, but it also brings new challenges. It is this
new technology that we will describe below.

2.2.1. What Is Asynchronous Transfer Mode?
In the late 1980s, the world’s telephone companies finally began to realize

that there was more to telecommunications than transmitting voice in 4 KHz
analog channels. It is true that data networks, such as X.25, existed for years,
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but they were clearly stepchildren and frequently ran at 56 or 64 Kbps. Systems
like the Internet were regarded as academic curiosities, akin to a two-headed
cow in a circus sideshow. Analog voice was where the action (and money) was.

When the telephone companies decided to build networks for the 21st Cen-
tury, they faced a dilemma: voice traffic is smooth, needing a low, but constant
bandwidth, whereas data traffic is bursty, usually needing no bandwidth (when
there is no traffic), but sometimes needing a great deal for very short periods of
time. Neither traditional circuit switching (used in the Public Switched Tele-
phone Network) nor packet switching (used in the Internet) was suitable for both
kinds of traffic.

After much study, a hybrid form using fixed-size blocks over virtual circuits
was chosen as a compromise that gave reasonably good performance for both
types of traffic. This scheme, called ATM (Asynchronous Transfer Mode)
has become an international standard and is likely to play a major role in future
distributed systems, both local-area ones and wide-area ones. For tutorials on
ATM, see (Le Boudec, 1992; Minzer, 1989; and Newman, 1994).

The ATM model is that a sender first establishes a connection (i.e., a virtual
circuit) to the receiver or receivers. During connection establishment, a route is
determined from the sender to the receiver(s) and routing information is stored
in the switches along the way. Using this connection, packets can be sent, but
they are chopped up by the hardware into small, fixed-sized units called cells.
The cells for a given virtual circuit all follow the path stored in the switches.
When the connection is no longer needed, it is released and the routing informa-
tion purged from the switches.

This scheme has a number of advantages over traditional packet and circuit
switching. The most important one is that a single network can now be used to
transport an arbitrary mix of voice, data, broadcast television, videotapes, radio,
and other information efficiently, replacing what were previously separate net-
works (telephone, X.25, cable TV, etc.). New services, such as video conferenc-
ing for businesses, will also use it. In all cases, what the network sees is cells; it
does not care what is in them. This integration represents an enormous cost sav-
ing and simplification that will make it possible for each home and business to
have a single wire (or fiber) coming in for all its communication and information
needs. It will also make possible new applications, such as video-on-demand,
teleconferencing, and access to thousands of remote data bases.

Cell switching lends itself well to multicasting (one cell going to many des-
tinations), a technique needed for transmitting broadcast television to thousands
of houses at the same time. Conventional circuit switching, as used in the tele-
phone system, cannot handle this. Broadcast media, such as cable TV can, but
they cannot handle point-to-point traffic without wasting bandwidth (effectively
broadcasting every message). The advantage of cell switching is that it can han-
dle both point-to-point and multicasting efficiently.
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Fixed-size cells allow rapid switching, something much harder to achieve
with current store-and-forward packet switches. They also eliminate the danger
of a small packet being delayed because a big one is hogging a needed line.
With cell switching, after each cell is transmitted , a new one can be sent, even a
new one belonging to a different packet.

ATM has its own protocol hierarchy, as shown in Fig. 2-4. The physical
layer has the same functionality as layer 1 in the OSI model. The ATM layer
deals with cells and cell transport, including routing, so it covers OSI layer 2 and
part of layer 3. However, unlike OSI layer 2, the ATM layer does not recover
lost or damaged cells. The adaptation layer handles breaking packets into cells
and reassembling them at the other end, which does not appear explicitly in the
OSI model until layer 4. The service offered by the adaptation layer is not a per-
fectly reliable end-to-end service, so transport connections must be implemented
in the upper layers, for example, by using ATM cells to carry TCP/IP traffic.

F Upper layers l

s T

Adaptation layer

ATM layer

Physical layer

Fig. 2-4. The ATM reference model.

In the following sections, we will examine the lowest three layers of Fig. 2-4
in turn, starting at the bottom and working our way up.

2.2.2. The ATM Physical Layer

An ATM adaptor board plugged into a computer can put out a stream of
cells onto a wire or fiber. The transmission stream must be continuous. When
there are no data to be sent, empty cells are transmitted, which means that in the
physical layer, ATM is really synchronous, not asynchronous. Within a virtual
circuit, however, it is asynchronous.

Alternatively, the adaptor board can use SONET (Synchronous Optical
NETwork) in the physical layer, putting its cells into the payload portion of
SONET frames. The virtue of this approach is compatibility with the internal
transmission system of AT&T and other carriers that use SONET. In Europe, a
system called SDH (Synchronous Digital Hierarchy) that is closely patterned
after SONET is available in some countries.



SEC. 2.2 ASYNCHRONOUS TRANSFER MODE NETWORKS 45

In SONET, the basic unit (analogous to a 193-bit T1 frame) is a 9 x 90 array
of bytes called a frame. Of these 810 bytes, 36 bytes are overhead, leaving 774
bytes of payload. One frame is transmitted every 125 usec, to match the tele-
phone system’s standard sampling rate of 8000 samples/sec, so the gross data
rate (including overhead) is 51.840 Mbps and the net data rate (excluding over-
head) 1s 49.536 Mbps.

These parameters were chosen after five years of tortuous negotiation
between U.S., European, Japanese, and other telephone companies in order to
handle the U.S. T3 data stream (44.736 Mbps) and the standards used by other
countries. The computer industry did not play a significant role here (a 9 x 90
array with 36 bytes of overhead is not something a computer scientist is likely to
propose).

The basic 51.840-Mbps channel is called OC-1. It is possible to send a
group of n OC-1 frames as a group, which is designated OC-n when it is used
for n independent OC-1 channels and OC-rnc (for concatenated) when used for a
single high-speed channel. Standards have been established for OC-3, OC-12,
OC-48, and OC-192. The most important of these for ATM are OC-3c, at
155.520 Mbps and OC-12c, at 622.080 Mbps, because computers can probably
produce data at these rates in the near future. For long-haul transmission within
the telephone system, OC-12 and OC-48 are the most widely used at present.

OC-3c SONET adaptors for computers are now available to allow a com-
puter to output SONET frames directly. OC-12c is expected shortly. Since
even OC-1 is overkill for a telephone, it is unlikely that many audio telephones
will ever speak ATM or SONET directly (ISDN will be used instead), but for
videophones ATM and SONET are ideal.

2.2.3. The ATM Layer

When ATM was being developed, two factions developed within the stan-
dards committee. The Europeans wanted 32-byte cells because these had a
small enough delay that echo suppressors would not be needed in most European
countries. The Americans, who already had echo suppressors, wanted 64-byte
cells due to their greater efficiency for data traffic.

The end result was a 48-byte cell, which no one really liked. It is too big for
voice and too small for data. To make it even worse, a 5-byte header was added,
giving a 53-byte cell containing a 48-byte data field. Note that a 53-byte cell is
not a good match for a 774-byte SONET payload, so ATM cells will span
SONET frames. Two separate levels of synchronization are thus needed: one to
detect the start of a SONET frame, and one to detect the start of the first full
ATM cell within the SONET payload. However, a standard for packing ATM
cells into SONET frames exists, and the entire layer can be done in hardware.
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The layout of a cell header from a computer to the first ATM switch is
shown in Fig. 2-5. Unfortunately, the layout of a cell header between two ATM
switches is different, with the GFC field being replaced by four more bits for the
VPI field. In the view of many, this is unfortunate, since it introduces an
unnecessary distinction between computer-to-switch and switch-to-switch cells
and hence adaptor hardware. Both kinds of cells have 48-byte payloads directly
following the header.

Bits 4 8 16 3

o=

GFC| VPI VvCi CRC

\

Payload type

GFC = Generic flow control

VP! = Virtual path idenifier

VCI = Virtual channel identifier

CLP = Cell loss priority

CRC = Cyclic redundancy checksum

Fig. 2-5. User-to-network cell header layout.

The GFC may some day be used for flow control, if an agreement on how to
do it can be achieved. The VPI and VCI fields together identify which path and
virtual circuit a cell belongs to. Routing tables along the way use this informa-
tion for routing. These fields are modified at each hop along the path. The pur-
pose of the VPI field is to group together a collection of virtual circuits for the
same destination and make it possible for a carrier to reroute all of them without
having to examine the VCI field.

The Payload type field distinguishes data cells from control cells, and
further identifies several kinds of control cells. The CLP field can be used to
mark some cells as less important than others, so if congestion occurs, the least
important ones will be the ones dropped. Finally, there is a 1-byte checksum
over the header (but not the data).

2.2.4. The ATM Adaptation Layer

At 155 Mbps, a cell can arrive every 3 usec. Few, if any, current CPUs can
handle in excess of 300,000 interrupts/sec. Thus a mechanism is needed to
allow a computer to send a packet and to have the ATM hardware break it into
cells, transmit the cells, and then have them reassembled at the other end, gen-
erating one interrupt per packet, not per cell. This disassembly/reassembly is
the job of the adaptation layer. It is expected that most host adaptor boards will
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run the adaptation layer on the board and give one interrupt per incoming
packet, not one per incoming cell.

Unfortunately, here too, the standards writers did not get it quite right. Ori-
ginally adaptation layers were defined for four classes of traffic:

1. Constant bit rate traffic (for audio and video).
2. Variable bit rate traffic but with bounded delay.
3. Connection-oriented data traffic.

4. Connectionless data traffic.

Quickly it was discovered that classes 3 and 4 were essentially the same, so they
were merged into-a new class, 3/4. At that point the computer industry woke up
from a short nap and noticed that none of the adaptation layers were suitable for
data traffic, so they drafted AAL 5, for computer-to-computer traffic (Suzuki,
1994). Its nickname, SEAL (Simple and Efficient Adaptation Layer), hints at
what its designers thought of the other three AAL layers. (In all faimess, it
should be pointed out that getting people from two industries with very different
traditions, telephony and computers, to agree to a standard at all was a nontrivial
achievement.)

Let us focus on SEAL, due to its simplicity. It uses only one bit in the ATM
header, one of the bits in the Payload type field. This bit is normally 0, but is set
to 1 in the last cell of a packet. The last cell contains a trailer in the final 8
bytes. In most cases there will be some padding (with zeros) between the end of
the packet and the start of the trailer. With SEAL, the destination just assembles
incoming cells for each virtual circuit until it finds one with the end-of-packet
bit set. Then it extracts and processes the trailer.

The trailer has four fields. The first two are each 1 byte long and are not
used. Then comes a 2-byte field giving the packet length, and a 4-byte check-
sum over the packet, padding, and trailer.

2.2.5. ATM Switching

ATM networks are built up of copper or optical cables and switches. Figure
2-6(a) illustrates a network with four switches. Cells originating at any of the
eight computers attached to the system can be switched to any of the other com-
puters by traversing one or more switches. Each of these switches has four
ports, each used for both input and output.

The inside of a generic switch is illustrated in Fig. 2-6(b). It has input lines
and output lines and a parallel switching fabric that connects them. Because a
cell has to be switched in 3 psec (at OC-3), and as many cells as there are input
lines can arrive at once, parallel switching is essential.



48 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

Outputs

e 4 177

Ouput
queue

Switching fabric

Input
queue

Inputs

(a) (b)

Fig. 2-6. (a) An ATM switching network. (b) Inside one switch.

When a cell arrives, its VPI and VCI fields are examined. Based on these
and information stored in the switch when the virtual circuit was established, the
cell is routed to the correct output port. Although the standard allows cells to be
dropped, it requires that those delivered must be delivered in order.

A problem arises when two cells arrive at the same time on different input
lines and need to go to the same output port. Just throwing one of them away is
allowed by the standard, but if your switch drops more than 1 cell in 102, you
are unlikely to sell many switches. An alternative scheme is to pick one of them
at random and forward it, holding the other cell until later. In the next round,
this algorithm is applied again. If two ports each have streams of cells for the
same destination, substantial input queues will build up, blocking other cells
behind them that want to go to output ports that are free. This problem is known
as head-of-line blocking.

A different switch design copies the cell into a queue associated with the
output buffer and lets it wait there, instead of keeping it in the input buffer. This
approach eliminates head-of-line blocking and gives better performance. It is
also possible for a switch to have a pool of buffers that can be used for both
input and output buffering. Still another possibility is to buffer on the input side,
but allow the second or third cell in line to be switched, even if the first one can-
not be.

Many other switch designs have been proposed and tried. These include
time division switches using shared memory, buses or rings, as well as space
division switches with one or more paths between each input and each output.
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Some of these switches are discussed in (Ahmadi and Denzel, 1989; Anderson
et al., 1993; Gopal et al., 1992; Pattavina, 1993; Rooholamini et al., 1994; and
Zegura, 1993).

2.2.6. Some Implications of ATM for Distributed Systems

The availability of ATM networks at 155 Mbps, 622 Mbps, and potentially
at 2.5 Gbps has some major implications for the design of distributed systems.
For the most part, the effects are due primarily to the enormously high
bandwidth suddenly available, rather than due to specific properties of ATM
networks. The effects are most pronounced on wide-area distributed systems.

To start with, consider sending a 1-Mbit file across the United States and
waiting for an acknowledgement that it has arrived correctly. The speed of light
in copper wire or fiber optics is about 2/3 the speed of light in vacuum, so it
takes a bit about 15 msec to go across the US one way. At 64 Kbps, it takes
about 15.6 sec to pump the bits out, so the additional 30 msec round-trip delay
does not add much. At 622 Mbps, it takes 1/622 of a second, or about 1.6 msec,
to push the whole file out the door. In the best case, the reply can come back
after 31.6 msec, during which time the line was idle for 30 msec, or 95 percent
of the total. As speeds go up, the time-to-reply asymptotically approaches 30
msec, and the fraction of the available virtual circuit bandwidth that can be used
approaches 0. For messages shorter than 1 Mbps, which are common in distri-
buted systems, it is even worse. The conclusion is: For high-speed wide-area
distributed systems, new protocols and system architectures will be needed to
deal with the latency in many applications, especially interactive ones.

Another problem is flow control. Suppose that we have a truly large file,
say a videotape consisting of 10 GB. The sender begins transmitting at 622
Mbps, and the data begin to roll in at the receiver. The receiver may not happen
to have a 10 GB buffer handy, so it sends back a cell saying: STOP. By the time
the STOP cell has gotten back to the sender, 30 msec later, almost 20 Mbits of
data are under way. If most of these are lost due to inadequate buffer space,
they will have to be transmitted again. Using a traditional sliding window proto-
col gets us back to the situation we just had, namely, if the sender is allowed to
send only 1 Mbit and then has to wait for an acknowledgement, the virtual cir-
cuit is 95 percent idle. Alternatively, a large amount of buffering capacity can
be put in the switches and adaptor boards, but at increased cost. Still another
possibility is rate control, in which the sender and receiver agree in advance how
many bits/sec the sender may transmit. Flow control and congestion control in
ATM networks are discussed in (Eckberg, 1992; Hong and Suda, 1991; and
Trajkovic and Golestani, 1992). A bibliography with over 250 references to per-
formance in ATM networks is given in (Nikolaidis and Onvural, 1992).

A different approach to dealing with the now-huge 30 msec latency is to
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send some bits, then stop the sending process and run something else while wait-
ing for the reply. The trouble with this strategy is that computers are becoming
so inexpensive, that for many applications, each process has its own computer,
so there is nothing else to run. Wasting the CPU time is not important, since it
is cheap, but it is clear that going from 64 Kbps to 622 Mbps has not bought a
10,000-fold gain in performance, even in communication-limited applications.

The effect of the transcontinental delay can show up in various ways. For
example, if some application program in New York has to make 20 sequential
requests from a server in California to get an answer, the 600-msec delay will be
noticeable to the user, as people find delays above 200 msec annoying.

Alternatively, we could move the computation itself to the machine in Cali-
fornia and let each user keystroke be sent as a separate cell across the country
and come back to be displayed. Doing this will add 60 msec to each keystroke,
which no one will notice. However, this reasoning quickly leads us to abandon-
ing the idea of a distributed system and putting all the computing in one place,
with remote users. In effect, we have built a big centralized timesharing system
with just the users distributed.

One observation that does relate to specific properties of ATM is the fact
that switches are permitted to drop cells if they get congested. Dropping even
one cell probably means waiting for a timeout and having the whole packet be
retransmitted. For services that need a uniform rate, such as playing music, this
could be a problem. (Oddly enough, the ear is far more sensitive than the eye to
irregular delivery.)

As a consequence of these and other problems, while high-speed networks
in general and ATM in particular introduce new opportunities, taking advantage
of them will not be simple. Considerable research will be needed before we
know how to deal with them effectively.

2.3. THE CLIENT-SERVER MODEL

While ATM networks are going to be important in the future, for the
moment they are too expensive for most applications, so let us go back to more
conventional networking. At first glance, layered protocols along the OSI lines
look like a fine way to organize a distributed system. In effect, a sender sets up
a connection (a bit pipe) with the receiver, and then pumps the bits in, which
arrive without error, in order, at the receiver. What could be wrong with this?

Plenty. To start with, look at Fig. 2-2. The existence of all those headers
generates a considerable amount of overhead. Every time a message is sent it
must be processed by about half a dozen layers, each one generating and adding
a header on the way down or removing and examining a header on the way up.
All of this work takes time. On wide-area networks, where the number of
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bits/sec that can be sent is typically fairly low (often as little as 64K bits/sec),
this overhead is not serious. The limiting factor is the capacity of the lines, and
even with all the header manipulation, the CPUs are fast enough to keep the
lines running at full speed. Thus a wide-area distributed system can probably
use the OSI or TCP/IP protocols without any loss in (the already meager) perfor-
mance. Aith ATM, even here serious problems may arise.

However, for a LAN-based distributed system, the protocol overhead is
often substantial. So much CPU time is wasted running protocols that the effec-
tive throughput over the LAN is often only a fraction of what the LAN can do.
As a consequence, most LAN-based distributed systems do not use layered pro-
tocols at all, or if they do, they use only a subset of the entire protocol stack.

In addition, the OSI model addresses only a small aspect of the problem—
getting the bits-from the sender to the receiver (and in the upper layers, what
they mean). It does not say anything about how the distributed system should be
structured. Something more is needed.

2.3.1. Clients and Servers

This something is often the client-server model that we introduced in the
preceding chapter. The idea behind this model is to structure the operating sys-
tem as a group of cooperating processes, called servers, that offer services to
the users, called clients. The client and server machines normally all run the
same microkernel, with both the clients and servers running as user processes, as
we saw earlier. A machine may run a single process, or it may run multiple
clients, multiple servers, or a mixture of the two.

Layer

7
6
5 Request/Reply

Reguest _

Reply 3
Kernel Kernel

2 Data link
1 Physical

Network

(a) (b)

Fig. 2-7. The client-server model. Although all message passing is actually
done by the kemels, this simplified form of drawing will be used when there is
no ambiguity.
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To avoid the considerable overhead of the connection-oriented protocols
such as OSI or TCP/IP, the client server model is usually based on a simple,
connectionless request/reply protocol. The client sends a request message to
the server asking for some service (e.g., read a block of a file). The server does
the work and returns the data requested or an error code indicating why the work
could not be performed, as depicted in Fig. 2-7(a).

The primary advantage of Fig. 2-7(a) is the simplicity. The client sends a
request and gets an answer. No connection has to be established before use or
torn down afterward. The reply message serves as the acknowledgement to the
request.

From the simplicity comes another advantage: efficiency. The protocol
stack is shorter and thus more efficient. Assuming that all the machines are
identical, only three levels of protocol are needed, as shown in Fig. 2-7(b). The
physical and data link protocols take care of getting the packets from client to
server and back. These are always handled by the hardware, for example, an
Ethernet or token ring chip. No routing is needed and no connections are esta-
blished, so layers 3 and 4 are not needed. Layer 5 is the request/reply protocol.
It defines the set of legal requests and the set of legal replies to these requests.
There is no session management because there are no sessions. The upper
layers are not needed either.

Due to this simple structure, the communication services provided by the
(micro)kernel can, for example, be reduced to two system calls, one for sending
messages and one for receiving them. These system calls can be invoked
through library procedures, say, send(dest, &mptr) and receive(addr, &mptr).
The former sends the message pointed to by mprr to a process identified by dest
and causes the caller to be blocked until the message has been sent. The latter
causes the caller to be blocked until a message arrives. When one does, the
message is copied to the buffer pointed to by mptr and the caller is unblocked.
The addr parameter specifies the address to which the receiver is listening.
Many variants of these two procedures and their parameters are possible. We
will discuss some of these later in this chapter.

2.3.2. An Example Client and Server

To provide more insight into how clients and servers work, in this section
we will present an outline of a client and a file server in C. Both the client and
the server need to share some definitions, so we will collect these into a file
called header.h, which is shown in Fig. 2-8. Both the client and server include
these using the

#include <header.h>

statement. This statement has the effect of causing a preprocessor to literally
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insert the entire contents of header.h into the source program just before the
compiler starts compiling the program.
/* Definitions needed by clients and servers. */

#define MAX_PATH 255 /* maximum length of a file name */
#define BUF_SIZE 1024 /* how much data to transfer at once */
#define FILE_SERVER 243 /* file server’'s network address */

/* Definitions of the allowed operations. */
#define CREATE 1 /* create a new file */

#define READ 2 /* read a piece of a file and return it */
#define WRITE 3 /* write a piece of a file */

#define DELETE 4 /* delete an existing file */

/* Error codes. */

#define OK 0 /* operation performed correctly */
#define E_BAD_OPCODE -1 /* unknown operation requested */

#define E_BAD_PARAM -2 /* error in a parameter */

#define E_IO -3 /* disk error or other I/0 error */

/* Definition of the message format. */
struct message {

long source; /* sender’s identity */

long dest; /* receiver’s identity */

long opcode; /* which operation: CREATE, READ, etc. */

long count; /* how many bytes to transfer */

long offset; /* where in file to start reading or writing */
long extrat; /* extra field */

long extra2; /* extra field */

long result; /* result of the operation reported here */
char name[MAX_PATH]; /* name of the file being operated on */

char data[BUF_SIZE]; /* data to be read or written */

h

Fig. 2-8. The header.h file used by the client and server.

Let us first take a look at header.h. It starts out by defining two constants,
MAX_PATH and BUF_SIZE, that determine the size of two arrays needed in the
message. The former tells how many characters a file name (i.e., a path name
like /usr/ast/books/opsys/chapterl .t) may contain. The latter fixes the amount of
data that may be read or written in one operation by setting the buffer size. The
next constant, FILE_SERVER, provides the network address of the file server so
that clients can send messages to it.

The second group of constants defines the operation numbers. These are
needed to ensure that the client and server agree on which code will represent a
READ, which code will represent a WRITE, and so on. We have only shown four
here, but in a real system there would normally be more.

Every reply contains a result code. If the operation succeeds, the result code
often contains useful information (such as the number of bytes actually read). If
there is no value to be returned (such as when a file is created), the value OK is
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used. If the operation is unsuccessful for some reason, the result code tells why,
using codes such as E_BAD_OPCODE, E_BAD_PARAM, and so on.

Finally, we come to the most important part of header.h, the definition of
the message itself. In our example it is a structure with 10 fields. All requests
from the client to the server use this format, as do all replies. In a real system,
one would probably not have a fixed format message (because not all the fields
are needed in all cases), but it makes the explanation simpler here. The source
and dest fields identify the sender and receiver, respectively. The opcode field
is one of the operations defined above, that is, CREATE, READ, WRITE, or
DELETE. The count and offset fields are used for parameters, and two other
fields, extral and extra2, are defined to provide space for additional parameters
in case the server is expanded in the future. The result field is not used for
client-to-server requests but holds the result value for server-to-client replies.
Finally, we have two arrays. The first, name, holds the name of the file being
accessed. The second, data, holds the data sent back on a reply to READ or the
data sent to the server on a WRITE.

Let us now look at the code, as outlined in Fig. 2-9. In (a) we have the
server; in (b) we have the client. The server is straightforward. The main loop
starts out by calling receive to get a request message. The first parameter identi-
fies the caller by giving its address, and the second parameter points to a mes-
sage buffer where the incoming message can be stored. The library procedure
receive traps to the kernel to suspend the server until a message arrives. When
one comes in, the server continues and dispatches on the opcode type. For each
opcode, a different procedure is called. The incoming message and a buffer for
the outgoing message are given as parameters. The procedure examines the
incoming message, m/, and builds the reply in m2. It also returns a function
value that is sent back in the result field. After the send has completed, the
server goes back to the top of the loop to execute receive and wait for the next
incoming message.

In Fig. 2-9(b) we have a procedure that copies a file using the server. Its
body consists of a loop that reads one block from the source file and writes it to
the destination file. The loop is repeated until the source file has been copied
completely, as indicated by a zero or negative return code from the read.

The first part of the loop is concerned with building a message for the READ
operation and sending it to the server. After the reply has been received, the
second part of the loop is entered, which takes the data just received and sends it
back to the server in the form of a WRITE to the destination file. The programs
of Fig. 2-9 are just sketches of the code. Many details have been omitted. For
example, the do_xxx procedures (the ones that actually do the work) are not
shown, and no error checking is done. Still, the general idea of how a client and
a server interact should be clear. In the following sections we will look at some
of the issues that relate to clients and servers in more detail.
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#include <header.h>
void main(void)

{
struct message mi, m2; /* incoming and outgoing messages */
int r; /* result code */
while (1) { /* server runs forever */
receive(FILE_SERVER,&m1); /* block waiting for a message */
switch(mi.opcode) { /* dispatch on type of reguest */
case CREATE: r = do_create(&mi, &m2); break;
case READ: r = do_read(&m1, &m2); break;
case WRITE: r = do_write(&mi, &m2); break;
case DELETE: r = do_delete(&m1, &m2),; break;
default: r = E_BAD_OPCODE;
}
m2.result = r; /* return result to client */
send(mt.source, &m2); /* send reply */
}
} (a)
#include <header.h>
int copy(char *src, char *dst) /* procedure to copy file using the server */
{
struct message mi; /* message buffer */
long position; /* current file position */
long client = 110; /* client’'s address */

initialize(

) /* prepare for execution */
position = O;

do {
/* Get a block of data from the source file. */
m1.opcode = READ; /* operation 1is a read */
mi.offset = position; /* current position in the file */
mi. count = BUF_SIZE; /* how many bytes to read */
strcpy(&m1.name, src); /* copy name of file to be read to message */
send(FILE_SERVER, &m1); /* send the message to the file server */
receive(client, &mi); /* block waiting for the reply */
/* Write the data just received to the destination file. */
mi1.opcode = WRITE; /* operation is a write */
mi.offset = position; /* current position in the file */
m1. count = mi1.result; /* how many bytes to write */
strcpy(&mt.name, dst); /* copy name of file to be written to buf */
send{FILE_SERVER, &m1}); /* send the message to the file server */
receive(client, &mi); /* block waiting for the reply */
position += mi1,result; /* m1.result is number of bytes written */

} while (mi.result > 0); /* iterate until done */

return{mi.result >= 0 ? OK : mi.result); /* return OK or error code */

}
(b}

Fig. 2-9. (a) A sample server. (b) A client procedure using that server to copy
a file.
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2.3.3. Addressing

In order for a client to send a message to a server, it must know the server’s
address. In the example of the preceding section, the server’s address was sim-
ply hardwired into header.h as a constant. While this strategy might work in an
especially simple system, usually a more sophisticated form of addressing is
needed. In this section we will describe some issues concerning addressing.

In our example, the file server has been assigned a numerical address (243),
but we have not really specified what this means. In particular, does it refer to a
specific machine, or to a specific process? If it refers to a specific machine, the
sending kernel can extract it from the message structure and use it as the
hardware address for sending the packet to the server. All the sending kernel
has to do then is build a frame using the 243 as the data link address and put the
frame out on the LAN. The server’s interface board will see the frame, recog-
nize 243 as its own address, and accept it.

If there is only one process running on the destination machine, the kernel
will know what to do with the incoming message—give it to the one and only
process running there. However, what happens if there are several processes
running on the destination machine? Which one gets the message? The kernel
has no way of knowing. Consequently, a scheme that uses network addresses to
identify processes means that only one process can run on each machine. While
this limitation is not fatal, it is sometimes a serious restriction.

An alternative addressing system sends messages to processes rather than to
machines. Although this method eliminates all ambiguity about who the real
recipient is, it does introduce the problem of how processes are identified. One
common scheme is to use two part names, specifying both a machine and a pro-
cess number. Thus 243.4 or 4@243 or something similar designates process 4
on machine 243. The machine number is used by the kernel to get the message
correctly delivered to the proper machine, and the process number is used by the
kernel on that machine to determine which process the message is intended for.
A nice feature of this approach is that every machine can number its processes
starting at 0. No global coordination is needed because there is never any ambi-
guity between process 0 on machine 243 and process 0 on machine 199. The
former is 243.0 and the latter is 199.0. This scheme is illustrated in Fig. 2-10(a).

A slight variation on this addressing scheme uses machine.local-id instead
of machine.process. The local-id field is normally a randomly chosen 16-bit or
32-bit integer (or the next one in sequence). One process, typically a server,
starts up by making a system call to tell the kernel that it wants to listen to
local-id. Later, when a message comes in addressed to machine.local_id, the
kernel knows which process to give the message to. Most communication in
Berkeley UNIX, for example, uses this method, with 32-bit Internet addresses
used for specifying machines and 16-bit numbers for the local-id fields.
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Fig. 2-10. (a) Machine.process addressing. (b) Process addressing with
broadcasting. (c) Address lookup via a name server.

Nevertheless, machine.process addressing is far from ideal. Specifically, it
is not transparent since the user is obviously aware of where the server is
located, and transparency is one of the main goals of building a distributed sys-
tem. To see why this matters, suppose that the file server normally runs on
machine 243, but one day that machine is down. Machine 176 is available, but
programs previously compiled using header.h all have the number 243 built into
them, so they will not work if the server is unavailable. Clearly, this situation is
undesirable.

An alternative approach is to assign each process a unique address that does
not contain an embedded machine number. One way to achieve this goal is to
have a centralized process address allocator that simply maintains a counter.
Upon receiving a request for an address, it simply returns the current value of
the counter and then increments it by one. The disadvantage of this scheme is
that centralized components like this do not scale to large systems and thus
should be avoided.

Yet another method for assigning process identifiers is to let each process
pick its own identifier from a large, sparse address space, such as the space of
64-bit binary integers. The probability of two processes picking the same
number is tiny, and the system scales well. However, here, too, there is a prob-
lem: How does the sending kernel know what machine to send the message to?
On a LAN that supports broadcasting, the sender can broadcast a special locate
packet containing the address of the destination process. Because it is a broad-
cast packet, it will be received by all machines on the network. All the kernels
check to see if the address is theirs, and if so, send back a here I am message
giving their network address (machine number). The sending kernel then uses
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this address, and furthermore, caches it, to avoid broadcasting the next time the
server is needed. This method is shown in Fig. 2-10(b).

Although this scheme is transparent, even with caching, the broadcasting
puts extra load on the system. This extra load can be avoided by providing an
extra machine to map high-level (i.e., ASCII) service names to machine
addresses, as shown in Fig. 2-10(c). When this system is employed, processes
such as servers are referred to by ASCII strings, and it is these strings that are
embedded in programs, not binary machine or process numbers. Every time a
client runs, on the first attempt to use a server, the client sends a query message
to a special mapping server, often called a name server, asking it for the
machine number where the server is currently located. Once this address has
been obtained, the request can be sent directly. As in the previous case,
addresses can be cached.

In summary, we have the following methods for addressing processes:

1. Hardwire machine.number into client code.
2. Let processes pick random addresses; locate them by broadcasting.

3. Put ASCII server names in clients; look them up at run time.

Each of these has problems. The first one is not transparent, the second one
generates extra load on the system, and the third one requires a centralized com-
ponent, the name server. Of course, the name server can be replicated, but
doing so introduces the problems associated with keeping them consistent.

A completely different approach is to use special hardware. Let processes
pick random addresses. However, instead of locating them by broadcasting, the
network interface chips have to be designed to allow processes to store process
addresses in them. Frames would then use process addresses instead of machine
addresses. As each frame came by, the network interface chip would simply
examine the frame to see if the destination process was on its machine. If so,
the frame would be accepted; otherwise, it would not be.

2.3.4. Blocking versus Nonblocking Primitives

The message-passing primitives we have described so far are what are
called blocking primitives (sometimes called synchronous primitives). When
a process calls send it specifies a destination and a buffer to send to that destina-
tion. While the message is being sent, the sending process is blocked (i.e.,
suspended). The instruction following the call to send is not executed until the
message has been completely sent, as shown in Fig. 2-11(a). Similarly, a call to
receive does not return control until a message has actually been received and
put in the message buffer pointed to by the parameter. The process remains
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suspended in receive until a message arrives, even if it takes hours. In some sys-
tems, the receiver can specify from whom it wishes to receive, in which case it
remains blocked until a message from that sender arrives.
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running running

Trap to Return from
kernel, kernel,
process process
blocked released

l-d; Message being sent ———>‘

(a)

Client
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Trap Return
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Message
copied to
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Fig. 2-11. (a) A blocking send primitive. (b) A nonblocking send primitive.

An alternative to blocking primitives are nonblocking primitives (some-
times called asynchronous primitives). If send is nonblocking, it returns con-
trol to the caller immediately, before the message is sent. The advantage of this
scheme is that the sending process can continue computing in parallel with the
message transmission, instead of having the CPU go idle (assuming no other
process is runnable). The choice between blocking and nonblocking primitives
is normally made by the system designers (i.e., either one primitive is available
or the other), although in a few systems both are available and users can choose
their favorite.

However, the performance advantage offered by nonblocking primitives is
offset by a serious disadvantage: the sender cannot modify the message buffer
until the message has been sent. The consequences of the process overwriting
the message during transmission are too horrible to contemplate. Worse yet, the
sending process has no idea of when the transmission is done, so it never knows
when it is safe to reuse the buffer. It can hardly avoid touching it forever.
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There are two possible ways out. The first solution is to have the kernel
copy the message to an internal kernel buffer and then allow the process to con-
tinue, as shown in Fig. 2-11(b). From the sender’s point of view, this scheme is
the same as a blocking call: as soon as it gets control back, it is free to reuse the
buffer. Of course, the message will not yet have been sent, but the sender is not
hindered by this fact. The disadvantage of this method is that every outgoing
message has to be copied from user space to kernel space. With many network
interfaces, the message will have to be copied to a hardware transmission buffer
later anyway, so the first copy is essentially wasted. The extra copy can reduce
the performance of the system considerably.

The second solution is to interrupt the sender when the message has been
sent to inform it that the buffer is once again available. No copy is required
here, which saves time, but user-level interrupts make programming tricky, dif-
ficult, and subject to race conditions, which makes them irreproducible. Most
experts agree that although this method is highly efficient and allows the most
parallelism, the disadvantages greatly outweigh the advantages: programs based
on interrupts are difficult to write correctly and nearly impossible to debug when
they are wrong.

Sometimes the interrupt can be disguised by starting up a new thread of con-
trol (to discussed in Chap. 4) within the sender’s address space. Although this is
somewhat cleaner than a raw interrupt, it is still far more complicated than syn-
chronous communication. If only a single thread of control is available, the
choices come down to:

1. Blocking send (CPU idle during message transmission).
2. Nonblocking send with copy (CPU time wasted for the extra copy).

3. Nonblocking send with interrupt (makes programming difficult).

Under normal conditions, the first choice is the best. It does not maximize the
parallelism, but is simple to understand and simple to implement. It also does
not require any kernel buffers to manage. Furthermore, as can be seen from
comparing Fig. 2-11(a) to Fig. 2-11(b), the message will usually be out the door
faster if no copy is required. On the other hand, if overlapping processing and
transmission are essential for some application, a nonblocking send with copy-
ing is the best choice.

For the record, we would like to point out that some authors use a different
criterion to distinguish synchronous from asynchronous primitives (Andrews,
1991). In our view, the essential difference between a synchronous primitive
and an asynchronous one is whether the sender can reuse the message buffer
immediately after getting control back without fear of messing up the send.
When the message actually gets to the receiver is irrelevant.
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In the alternative view, a synchronous primitive is one in which the sender is
blocked until the receiver has accepted the message and the acknowledgement
has gotten back to the sender. Everything else is asynchronous in this view.
There is complete agreement that if the sender gets control back before the mes-
sage has been copied or sent, the primitive is asynchronous. Similarly, everyone
agrees that when the sender is blocked until the receiver has acknowledged the
message, we have a synchronous primitive.

The disagreement comes on whether the intermediate cases (message copied
or copied and sent, but not acknowledged) counts as one or the other. Operating
systems designers tend to prefer our way, since their concemn is with buffer
management and message transmission. Programming language designers tend
to prefer the alternative definition, because that is what counts at the language
level.

Just as send can be blocking or nonblocking, so can receive. A nonblocking
receive just tells the kernel where the buffer is, and returns control almost
immediately. Again here, how does the caller know when the operation has
completed? One way is to provide an explicit wait primitive that allows the
receiver to block when it wants to. Alternatively (or in addition to wait), the
designers may provide a test primitive to allow the receiver to poll the kernel to
check on the status. A variant on this idea is a conditional_receive, which either
gets a message or signals failure, but in any event returns immediately, or within
some timeout interval. Finally, here too, interrupts can be used to signal com-
pletion. For the most part, a blocking version of receive is much simpler and
greatly preferred.

If multiple threads of control are present within a single address space, the
arrival of a message can cause a thread to be created spontaneously. We will
come back to this issue after we have looked at threads in Chap. 4.

An issue closely related to blocking versus nonblocking calls is that of
timeouts. In a system in which send calls block, if there is no reply, the sender
will block forever. To prevent this situation, in some systems the caller may
specify a time interval within which it expects a reply. If none arrives in that
interval, the send call terminates with an error status.

2.3.5. Buffered versus Unbuffered Primitives

Just as system designers have a choice between blocking and nonblocking
primitives, they also have a choice between buffered and unbuffered primitives.
The primitives we have described so far are essentially unbuffered primitives.
What this means is that an address refers to a specific process, as in Fig. 2-9. A
call receive(addr, &m) tells the kernel of the machine on which it is running that
the calling process is listening to address addr and is prepared to receive one
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message sent to that address. A single message buffer, pointed to by m, is pro-
vided to hold the incoming message. When the message comes in, the receiving
kernel copies it to the buffer and unblocks the receiving process. The use of an
address to refer to a specific process is illustrated in Fig. 2-12(a).

Client Address refers to Server Address

a process refers toa
\ \ mailbox
A

Kernel A

- —

Network

(a) (b)

Fig. 2-12. (a) Unbuffered message passing. (b) Buffered message passing.

This scheme works fine as long as the server calls receive before the client
calls send. The call to receive is the mechanism that tells the server’s kernel
which address the server is using and where to put the incoming message. The
problem arises when the send is done before the receive. How does the server’s
kernel know which of its processes (if any) is using the address in the newly
arrived message, and how does it know where to copy the message? The answer
is simple: it does not.

One implementation strategy is to just discard the message, let the client
time out, and hope the server has called receive before the client retransmits.
This approach is easy to implement, but with bad luck, the client (or more likely,
the client’s kernel) may have to try several times before succeeding. Worse yet,
if enough consecutive attempts fail, the client’s kernel may give up, falsely con-
cluding that the server has crashed or that the address is invalid.

In a similar vein, suppose that two or more clients are using the server of
Fig. 2-9(a). After the server has accepted a message from one of them, it is no
longer listening to its address until it has finished its work and gone back to the
top of the loop to call receive again. If it takes a while to do the work, the other
clients may make multiple attempts to send to it, and some of them may give up,
depending on the values of their retransmission timers and how impatient they
are.

The second approach to dealing with this problem is to have the receiving
kernel keep incoming messages around for a little while, just in case an
appropriate receive is done shortly. Whenever an “unwanted”” message arrives,
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a timer is started. If the timer expires before a suitable receive happens, the
message is discarded.

Although this method reduces the chance that a message will have to be
thrown away, it introduces the problem of storing and managing prematurely
arriving messages. Buffers are needed and have to be allocated, freed, and gen-
erally managed. A conceptually simple way of dealing with this buffer manage-
ment is to define a new data structure called a mailbox. A process that is
interested in receiving messages tells the kernel to create a mailbox for it, and
specifies an address to look for in network packets. Henceforth, all incoming
messages with that address are put in the mailbox. The call to receive now just
removes one message from the mailbox, or blocks (assuming blocking primi-
tives) if none is present. In this way, the kernel knows what to do with incoming
messages and has a place to put them. This technique is frequently referred to
as a buffered primitive, and is illustrated in Fig. 2-12(b).

At first glance, mailboxes appear to eliminate the race conditions caused by
messages being discarded and clients giving up. However, mailboxes are finite
and can fill up. When a message arrives for a mailbox that is full, the kernel
once again is confronted with the choice of either keeping it around for a while,
hoping that at least one message will be extracted from the mailbox in time, or
discarding it. These are precisely the same choices we had in the unbuffered
case. Although we have perhaps reduced the probability of trouble, we have not
eliminated it, and have not even managed to change its nature.

In some systems, another option is available: do not let a process send a
message if there is no room to store it at the destination. To make this scheme
work, the sender must block until an acknowledgement comes back saying that
the message has been received. If the mailbox is full, the sender can be backed
up and retroactively suspended as though the scheduler had decided to suspend
it just before it tried to send the message. When space becomes available in the
mailbox, the sender is allowed to try again.

2.3.6. Reliable versus Unreliable Primitives

So far we have tacitly assumed that when a client sends a message, the
server will receive it. As usual, reality is more complicated than our abstract
model. Messages can get lost, which affects the semantics of the message pass-
ing model. Suppose that blocking primitives are being used. When a client
sends a message, it is suspended until the message has been sent. However,
when it is restarted, there is no guarantee that the message has been delivered.
The message might have been lost.

Three different approaches to this problem are possible. The first one is just
to redefine the semantics of send to be unreliable. The system gives no guaran-
tee about messages being delivered. Implementing reliable communication is
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entirely up to the users. The post office works this way. When you drop a letter
in a letterbox, the post office does its best (more or less) to deliver it, but it
promises nothing.

The second approach is to require the kernel on the receiving machine to
send an acknowledgement back to the kernel on the sending machine. Only
when this acknowledgement is received will the sending kernel free the user
(client) process. The acknowledgement goes from kernel to kernel; neither the
client nor the server ever sees an acknowledgement. Just as the request from
client to server is acknowledged by the server’s kernel, the reply from the server
back to the client is acknowledged by the client’s kernel. Thus a request and
reply now take four messages, as shown in Fig. 2-13(a).
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Fig. 2-13. (a) Individually acknowledged messages. (b) Reply being used as
the acknowledgement of the request. Note that the ACKs are handled entirely
within the kernels.

The third approach is to take advantage of the fact that client-server com-
munication is structured as a request from the client to the server followed by a
reply from the server to the client. In this method, the client is blocked after
sending a message. The server’s kernel does not send back an acknowledge-
ment. Instead, the reply itself acts as the acknowledgement. Thus the sender
remains blocked until the reply comes in. If it takes too long, the sending kernel
can resend the request to guard against the possibility of a lost message. This
approach is shown in Fig. 2-13(b).

Although the reply functions as an acknowledgement for the request, there is
no acknowledgement for the reply. Whether this omission is serious or not
depends on the nature of the request. If, for example, the client asks the server
to read a block of a file and the reply is lost, the client will just repeat the
request and the server will send the block again. No damage is done and little
time is lost.

On the other hand, if the request requires extensive computation on the part
of the server, it would be a pity to discard the answer before the server is sure
that the client has received the reply. For this reason, an acknowledgement from
the client’s kernel to the server’s kernel is sometimes used. Until this packet is
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received, the server’s send does not complete and the server remains blocked
(assuming blocking primitives are used). In any event, if the reply is lost and the
request is retransmitted, the server’s kernel can see that the request is an old one
and just send the reply again without waking up the server. Thus in some sys-
tems the reply is acknowledged and in others it is not [see Fig. 2-13(b)].

A compromise between Fig. 2-13(a) and Fig. 2-13(b) that often works goes
like this. When a request arrives at the server’s kemel, a timer is started. If the
server sends the reply quickly enough (i.e., before the timer expires), the reply
functions as the acknowledgement. If the timer goes off, a separate ack-
nowledgement is sent. Thus in most cases, only two messages are needed, but
when a complicated request is being carried out, a third one is used.

2.3.7. Implementing the Client-Server Model

In the preceding sections we have looked at four design issues, addressing,
blocking, buffering, and reliability, each with several options. The major alter-
natives are summarized in Fig. 2-14. For each item we have listed three possi-
bilities. Simple arithmetic shows that there are 3* = 81 combinations. Not all of
them are equally good. Nevertheless, just in this one area (message passing),
the system designers have a considerable amount of leeway in choosing a set (or
multiple sets) of communication primitives.

item Option 1 Option 2 Option 3
. . Sparse process ASCII names
Addressing Machine number addresses looked up via server
. ; L Nonblocking with Nonblocking with
Blocking Blocking primitives copy to kernel interrupt
Unbuffered, Unbuffered,
Buffering discarding unexpected temporarily keeping Mailboxes
messages unexpected messages
Reliability Unreliable Request-Ack-Reply Ack Request-Reply-Ack

Fig. 2-14. Four design issues for the communication primitives and some of
the principal choices available.

While the details of how message passing is implemented depend to some
extent on which choices are made, it is still possible to make some general com-
ments about the implementation, protocols, and software. To start with, virtu-
ally all networks have a maximum packet size, typically a few thousand bytes at
most. Messages larger than this must be split up into multiple packets and sent
separately. Some of these packets may be lost or garbled, and they may even
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arrive in the wrong order. To deal with this problem, it is usually sufficient to
assign a message number to each message, and put it in each packet belonging
to the message, along with a sequence number giving the order of the packets.

However, an issue that still must be resolved is the use of acknowledge-
ments. One strategy is to acknowledge each individual packet. Another one is
to acknowledge only entire messages. The former has the advantage that if a
packet is lost, only that packet has to be retransmitted, but it has the disadvan-
tage of requiring more packets on the network. The latter has the advantage of
fewer packets, but the disadvantage of a more complicated recovery when a
packet is lost (because a client timeout requires retransmitting the entire mes-
sage). The choice depends largely on the loss rate of the network being used.

Another interesting issue is the underlying protocol used in client-server
communication. Figure 2-15 shows six packet types that are commonly used to
implement client-server protocols. The first one is the REQ packet, used to send
a request message from a client to a server. (For simplicity, for the rest of this
section we will assume that each message fits in a single packet.) The next one
is the REP packet that carries results back from the server to the client. Then
comes the ACK packet, which is used in reliable protocols to confirm the correct
receipt of a previous packet.

Code Packet type From To Description

REQ Request Client | Server | The client wants service

REP Reply Server | Client | Reply from the server to the client
ACK Ack Either | Other | The previous packet arrived

AYA Are you alive? Client | Server | Probe to see if the server has crashed
1AA I am alive Server | Client | The server has not crashed

TA Try again Server | Client | The server has no room

AU Address unknown Server | Client | No process is using this address

Fig. 2-15. Packet types used in client-server protocols.

The next four packet types are not essential, but often useful. Consider the
situation in which a request has been sent successfully from the client to the
server and the acknowledgement has been received. At this point the client’s
kernel knows that the server is working on the request. But what happens if no
answer is forthcoming within a reasonable time? Is the request really that com-
plicated, or has the server crashed? To be able to distinguish these two cases,
the AYA packet is sometimes provided, so the client can ask the server what is
going on. If the answer is IAA, the client’s kernel knows that all is well and just
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continues to wait. Even better is a REP packet, of course. If the AYA does not
generate any response, the client’s kernel waits a short interval and tries again.
If this procedure fails more than a specified number of times, the client’s kernel
normally gives up and reports failure back to the user. The AYA and IAA packets
can also be used even in a protocol in which REQ packets are not acknowledged.
They allow the client to check on the server’s status.

Finally, we come to the last two packet types, which are useful in case a REQ
packet cannot be accepted. There are two reasons why this might happen, and it
is important for the client’s kernel to be able to distinguish them. One reason is
that the mailbox to which the request is addressed is full. By sending this packet
back to the client’s kernel, the server’s kernel can indicate that the address is
valid, and the request should be repeated later. The other reason is that the
address does not -belong to any process or mailbox. Repeating it later will not
help.

This situation can also arise when buffering is not used and the server is not
currently blocked in a receive call. Since having the server’s kernel forget that
the address even exists in between calls to receive can lead to problems, in some
systems a server can make a call whose only function is to register a certain
address with the kernel. In that way, at least the kernel can tell the difference
between an address to which no one is currently listening, and one that is simply
wrong. It can then send TA in the former case and AU in the latter.

REQ —
) REQ —» —— ACK
Client Server Client Server
—«— REP —&— REP
ACK —»
(a) (b}
REQ
REQ — -a— ACK
Chient —-«— REP Server Client AYA IAA Server
ACK — -¢— REP
ACK —»
{c) (d)

Fig. 2-16. Some examples of packet exchanges for client-server communication.

Many packet sequences are possible. A few common ones are shown in
Fig. 2-16. In Fig. 2-16(a), we have the straight request/reply, with no ack-
nowledgement. In Fig. 2-16(b), we have a protocol in which each message is
acknowledged individually. In Fig. 2-16(c), we see the reply acting as the
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acknowledgement, reducing the sequence to three packets. Finally, in Fig. 2-
16(d), we see a nervous client checking to see if the server is still there.

2.4. REMOTE PROCEDURE CALL

Although the client-server model provides a convenient way to structure a
distributed operating system, it suffers from one incurable flaw: the basic para-
digm around which all communication is built is input/output. The procedures
send and receive are fundamentally engaged in doing I/O. Since 1/O is not one
of the key concepts of centralized systems, making it the basis for distributed
computing has struck many workers in the field as a mistake. Their goal is to
make distributed computing look like centralized computing. Building every-
thing around 1/O is not the way to do it.

This problem has long been known, but little was done about it until a paper
by Birrell and Nelson (1984) introduced a completely different way of attacking
the problem. Although the idea is refreshingly simple (once someone has
thought of it), the implications are often subtle. In this section we will examine
the concept, its implementation, its strengths, and its weaknesses.

In a nutshell, what Birrell and Nelson suggested was allowing programs to
call procedures located on other machines. When a process on machine A calls
a procedure on machine B, the calling process on A is suspended, and execution
of the called procedure takes place on B. Information can be transported from
the caller to the callee in the parameters and can come back in the procedure
result. No message passing or I/O at all is visible to the programmer. This
method is known as remote procedure call, or often just RPC.

While the basic idea sounds simple and elegant, subtle problems exist. To
start with, because the calling and called procedures run on different machines,
they execute in different address spaces, which causes complications. Parame-
ters and results also have to be passed, which can be complicated, especially if
the machines are not identical. Finally, both machines can crash, and each of
the possible failures causes different problems. Still, most of these can be dealt
with, and RPC is a widely-used technique that underlies many distributed
operating systems.

2.4.1. Basic RPC Operation

To understand how RPC works, it is important first to fully understand how
a conventional (i.e., single machine) procedure call works. Consider a call like
count = read(fd, buf, nbytes);

where fd is an integer, buf is an array of characters, and nbytes is another
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integer. If the call is made from the main program, the stack will be as shown in
Fig. 2-17(a) before the call. To make the call, the caller pushes the parameters
onto the stack in order, last one first, as shown in Fig. 2-17(b). (The reason that
C compilers push the parameters in reverse order has to do with printf—by
doing so, printf can always locate its first parameter, the format string.) After
read has finished running, it puts the return value in a register, removes the
return address, and transfers control back to the caller. The caller then removes
the parameters from the stack, returning it to the original state, as shown in
Fig. 2-17(c).

Local Local Local
variables variables variables
for main [-— SP for main for main |-— Sp
bytes
buf

fd

Return address

read’s
local
variables <— SP

(a) (b) (c)

Fig. 2-17. (a) The stack before the call to read. (b) The stack while the called
procedure is active. (c¢) The stack after the return to the caller.

Several things are worth noting. For one, in C, parameters can be call-by-
value or call-by-reference. A value parameter, such as fd or nbytes, is simply
copied to the stack as shown in Fig. 2-17(b). To the called procedure, a value
parameter is just an initialized local variable. The called procedure may modify
it, but such changes do not affect the original value at the calling side.

A reference parameter in C is a pointer to a variable (i.e., the address of the
variable), rather than the value of the variable. In the call to read, the second
parameter is a reference parameter because arrays are always passed by refer-
ence in C. What is actually pushed onto the stack is the address of the character
array. If the called procedure uses this parameter to store something into the
character array, it does modify the array in the calling procedure. The differ-
ence between call-by-value and call-by-reference is quite important for RPC, as
we shall see.

One other parameter passing mechanism also exists, although it is not used
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in C. Tt is called call-by-copy/restore. It consists of having the variable copied
to the stack by the caller, as in call-by-value, and then copied back after the call,
overwriting the caller’s original value. Under most conditions, this achieves the
same effect as call-by-reference, but in some situations, such as the same param-
eter being present multiple times in the parameter list, the semantics are dif-
ferent.

The decision of which parameter passing mechanism to use is normally
made by the language designers and is a fixed property of the language. Some-
times it depends on the data type being passed. In C, for example, integers and
other scalar types are always passed by value, whereas arrays are always passed
by reference, as we have seen. In contrast, Pascal programmers can choose
which mechanism they want for each parameter. The default is call-by-value,
but programmers can force call-by-reference by inserting the keyword var
before specific parameters. Some Ada® compilers use copy/restore for in out
parameters, but others use call-by-reference. The language definition permits
either choice, which makes the semantics a bit fuzzy.

The idea behind RPC is to make a remote procedure call look as much as
possible like a local one. In other words, we want RPC to be transparent—the
calling procedure should not be aware that the called procedure is executing on a
different machine, or vice versa. Suppose that a program needs to read some
data from a file. The programmer puts a call to read in the code to get the data.
In a traditional (single-processor) system, the read routine is extracted from the
library by the linker and inserted into the object program. It is a short pro-
cedure, usually written in assembly language, that puts the parameters in regis-
ters and then issues a READ system call by trapping to the kernel. In essence, the
read procedure is a kind of interface between the user code and the operating
system.

Even though read issues a kernel trap, it is called in the usual way, by push-
ing the parameters onto the stack, as shown in Fig. 2-17. Thus the programmer
does not know that read is actually doing something fishy.

RPC achieves its transparency in an analogous way. When read is actually
a remote procedure (e.g., one that will run on the file server’s machine), a dif-
ferent version of read, called a client stub, is put into the library. Like the origi-
nal one, it too, is called using the calling sequence of Fig. 2-17. Also like the
original one, it too, traps to the kernel. Only unlike the original one, it does not
put the parameters in registers and ask the kernel to give it data. Instead, it
packs the parameters into a message and asks the kernel to send the message to
the server as illustrated in Fig. 2-18. Following the call to send, the client stub
calls receive, blocking itself until the reply comes back.

When the message arrives at the server, the kernel passes it up to a server
stub that is bound with the actual server. Typically the server stub will have
called receive and be blocked waiting for incoming messages. The server stub
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Fig. 2-18. Calls and messages in an RPC. Each ellipse represents a single

process, with the shaded portion being the stub.
unpacks the parameters from the message and then calls the server procedure in
the usual way (i.e., as in Fig. 2-17). From the server’s point of view, it is as
though it is being called directly by the client—the parameters and return
address are all on the stack where they belong and nothing seems unusual. The
server performs its work and then returns the result to the caller in the usual
way. For example, in the case of read, the server will fill the buffer, pointed to
by the second parameter, with the data. This buffer will be internal to the server
stub.

When the server stub gets control back after the call has completed, it packs
the result (the buffer) in a message and calls send to return it to the client. Then
it goes back to the top of its own loop to call receive, waiting for the next mes-
sage.

When the message gets back to the client machine, the kernel sees that it is
addressed to the client process (to the stub part of that process, but the kernel
does not know that). The message is copied to the waiting buffer and the client
process unblocked. The client stub inspects the message, unpacks the result,
copies it to its caller, and returns in the usual way. When the caller gets control
following the call to read, all it knows is that its data are available. It has no
idea that the work was done remotely instead of by the local kernel.

This blissful ignorance on the part of the client is the beauty of the whole
scheme. As far as it is concerned, remote services are accessed by making ordi-
nary (i.e., local) procedure calls, not by calling send and receive as in Fig. 2-9.
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All the details of the message passing are hidden away in the two library pro-
cedures, just as the details of actually making system call traps are hidden away
in traditional libraries.

To summarize, a remote procedure call occurs in the following steps:

—_—

The client procedure calls the client stub in the normal way.
The client stub builds a message and traps to the kernel.

The kernel sends the message to the remote kernel.

The remote kernel gives the message to the server stub.

The server stub unpacks the parameters and calls the server.
The server does the work and returns the result to the stub.
The server stub packs it in a message and traps to the kernel.

The remote kernel sends the message to the client’s kernel.

I R N

The client’s kernel gives the message to the client stub.
10. The stub unpacks the result and returns to the client.

The net effect of all these steps is to convert the local call by the client pro-
cedure to the client stub to a local call to the server procedure without either
client or server being aware of the intermediate steps.

2.4.2. Parameter Passing

The function of the client stub is to take its parameters, pack them into a
message, and send it to the server stub. While this sounds straightforward, it is
not quite as simple as it at first appears. In this section we will look at some of
the issues concerned with parameter passing in RPC systems. Packing parame-
ters into a message is called parameter marshaling.

As the simplest possible example, consider a remote procedure, sum(i, j),
that takes two integer parameters and returns their arithmetic sum. (As a practi-
cal matter, one would not normally make such a simple procedure remote due to
the overhead, but as an example it will do.) The call to sum, with parameters 4
and 7, is shown in the left-hand portion of the client process in Fig. 2-19. The
client stub takes its two parameters and puts them in a message as indicated. It
also puts the name or number of the procedure to be called in the message
because the server might support several different calls, and it has to be told
which one is required.

When the message arrives at the server, the stub examines the message to
see which procedure is needed, and then makes the appropriate call. If the
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Fig. 2-19. Computing sum(4, 7) remotely.

server also supports the remote procedures difference, product, and quotient, the
server stub might have a switch statement in it, to select the procedure to be
called, depending on the first field of the message. The actual call from the stub
to the server looks much like the original client call, except that the parameters
are variables initialized from the incoming message, rather than constants.

When the server has finished, the server stub gains control again. It takes
the result, provided by the server, and packs it into a message. This message is
sent back to the client stub, which unpacks it and returns the value to the client
procedure (not shown in the figure).

As long as the client and server machines are identical and all the parame-
ters and results are scalar types, such as integers, characters, and Booleans, this
model works fine. However, in a large distributed system, it is common that
multiple machine types are present. Each machine often has its own representa-
tion for numbers, characters, and other data items. For example, IBM main-
frames use the EBCDIC character code, whereas IBM personal computers use
ASCIIL. As a consequence, it is not possible to pass a character parameter from
an IBM PC client to an IBM mainframe server using the simple scheme of
Fig. 2-19: the server will interpret the character incorrectly.

Similar problems can occur with the representation of integers (1s comple-
ment versus 2s complement), and especially with floating-point numbers. In
addition, an even more annoying problem exists because some machines, such
as the Intel 486, number their bytes from right to left, whereas others, such as
the Sun SPARC, number them the other way. The Intel format is called little
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endian and the SPARC format is called big endian, after the politicians in
Gulliver's Travels who went to war over which end of an egg to break (Cohen,
1981). As an example, consider a server with two parameters, an integer and a
four-character string. Each parameter requires one 32-bit word. Figure 2-20(a)
shows what the parameter portion of a message built by a client stub on an Intel
486 might look like. The first word contains the integer parameter, 5 in this
case, and the second contains the string “JILL™.
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Fig. 2-20. (a) The original message on the 486. (b) The message after receipt
on the SPARC. (c) The message after being inverted. The little numbers in
boxes indicate the address of each byte.

Since messages are transferred byte for byte (actually, bit for bit) over the
network, the first byte sent is the first byte to arrive. In Fig. 2-20(b) we show
what the message of Fig.2-20(a) would look like if received by a SPARC,
which numbers its bytes with byte O at the left (high-order byte) instead of at the
right (low-order byte) as do all the Intel chips. When the server stub rcads the
parameters at addresses 0 and 4, respectively, it will find an integer equal to
83,886,080 (5 x 2°4) and a string “JILL”.

One obvious, but unfortunately incorrect, approach is to invert the bytes of
each word after they are received, leading to Fig. 2-20(c). Now the integer is 5
and the string is “LLIJ”’. The problem here is that integers are reversed by the
different byte ordering, but strings are not. Without additional information
about what is a string and what is an integer, there is no way to repair the dam-
age.

Fortunately, this information is implicitly available. Remember that the
items in the message correspond to the procedure identifier and parameters.
Both the client and server know what the types of the parameters are. Thus a
message corresponding to a remote procedure with » parameters will have n + 1
fields, one identifying the procedure and one for each of the n parameters. Once
a standard has been agreed upon for representing each of the basic data types,
given a parameter list and a message, it is possible to deduce which bytes belong
to which parameter, and thus to solve the problem.

As a simple example, consider the procedure of Fig.2-21(a). It has three
parameters, a character, a floating-point number, and an array of five integers.
We might decide to transmit a character in the rightmost byte of a word (leaving
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the next 3 bytes empty), a float as a whole word, and an array as a group of
words equal to the array length, preceded by a word giving the length, as shown
in Fig. 2-21(b). Thus given these rules, the client stub for foobar knows that it
must use the format of Fig. 2-21(b), and the server stub knows that incoming
messages for foobar will have the format of Fig. 2-21(b). Having the type infor-
mation for the parameters makes it possible to make any necessary conversions.

foobar (x, vy, z) foobar

char x;

float y; X

int z[5]; v

{

I 5

}
2[0]

(a) 2[1]

z(2]
z[3]
z[4]
(b)

Fig. 2-21. (a) A procedure. (b) The corresponding message.

Even with this additional information, there are still some issues open. In
particular, how should information be represented in the messages? One way is
to devise a network standard or canonical form for integers, characters, Boole-
ans, floating-point numbers, and so on, and require all senders to convert their
internal representation to this form while marshaling. For example, suppose that
it is decided to use two’s complement for integers, ASCII for characters, 0
(false) and | (true) for Booleans, and IEEE format for floating-point numbers,
with everything stored in little endian. For any list of integers, characters,
Booleans, and floating-point numbers, the exact pattern required is now deter-
ministic down to the last bit. As a result, the server stub no longer has to worry
about which byte ordering the client has because the order of the bits in the mes-
sage is now fixed, independent of the client’s hardware.

The problem with this method is that it is sometimes inefficient. Suppose
that a big endian client is talking to a big endian server. According to the rules,
the client must convert everything to little endian in the message, and the server
must convert it back again when it arrives. Although this is unambiguous, it
requires two conversions when in fact none were necessary. This observation
gives rise to a second approach: the client uses its own native format and indi-
cates in the first byte of the message which format this is. Thus a little endian
client builds a little endian message and a big endian client builds a big endian
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message. As soon as a message comes in, the server stub examines the first byte
to see what the client is. If it is the same as the server, no conversion is needed.
Otherwise, the server stub converts everything. Although we have only dis-
cussed converting from one endian to the other, conversions between one’s and
two’s complement, EBCDIC to ASCII, and so on, can be handled in the same
way. The trick is knowing what the message layout is and what the client is.
Once these are known, the rest is easy (provided that everyone can convert from
everyone else’s format).

Now we come to the question of where the stub procedures come from. In
many RPC-based systems, they are generated automatically. As we have seen,
given a specification of the server procedure and the encoding rules, the mes-
sage format is uniquely determined. Thus it is possible to have a compiler read
the server specification and generate a client stub that packs its parameters into
the officially approved message format. Similarly, the compiler can also pro-
duce a server stub that unpacks them and calls the server. Having both stub pro-
cedures generated from a single formal specification of the server not only
makes life easier for the programmers, but reduces the chance of error and
makes the system transparent with respect to differences in internal representa-
tion of data items.

Finally, we come to our last and most difficult problem: How are pointers
passed? The answer is: only with the greatest of difficulty, if at all. Remember
that a pointer is meaningful only within the address space of the process in
which it is being used. Getting back to our read example discussed earlier, if
the second parameter (the address of the buffer) happens to be 1000 on the
client, one cannot just pass the number 1000 to the server and expect it to work.
Address 1000 on the server might be in the middle of the program text.

One solution is just to forbid pointers and reference parameters in general.
However, these are so important that this solution is highly undesirable. In fact,
it is not necessary either. In the read example, the client stub knows that the
second parameter points to an array of characters. Suppose, for the moment,
that it also knows how big the array is. One strategy then becomes apparent:
copy the array into the message and send it to the server. The server stub can
then call the server with a pointer to this array, even though this pointer has a
different numerical value than the second parameter of read has. Changes the
server makes using the pointer (e.g., storing data into it) directly affect the mes-
sage buffer inside the server stub. When the server finishes, the original mes-
sage can be sent back to the client stub, which then copies it back to the client.
In effect, call-by-reference has been replaced by copy/restore. Although this is
not always identical, it frequently is good enough.

One optimization makes this mechanism twice as efficient. If the stubs
know whether the buffer is an input parameter or an output parameter to the
server, one of the copies can be eliminated. If the array is input to the server
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(e.g., in a call to write) it need not be copied back. If it is output, it need not be
sent over in the first place. The way to tell them is in the formal specification of
the server procedure. Thus associated with every remote procedure is a formal
specification of the procedure, written in some kind of specification language,
telling what the parameters are, which are input and which are output (or both),
and what their (maximum) sizes are. It is from this formal specification that the
stubs are generated by a special stub compiler.

As a final comment, it is worth noting that although we can now handle
pointers to simple arrays and structures, we still cannot handle the most general
case of a pointer to an arbitrary data structure such as a complex graph. Some
systems attempt to deal with this case by actually passing the pointer to the
server stub and generating special code in the server procedure for using
pointers. ‘

Normally, a pointer is followed (dereferenced) by putting it in a register and
indirecting through the register. When this special technique is used, a pointer is
dereferenced by sending a message back to the client stub asking it to fetch and
send the item being pointed to (reads) or store a value at the address pointed to
(writes). While this method works, it is often highly inefficient. Imagine having
the file server store the bytes in the buffer by sending back each one in a
separate message. Still, it is better than nothing, and some systems use it.

2.4.3. Dynamic Binding

An issue that we have glossed over so far is how the client locates the
server. One method is just to hardwire the network address of the server into the
client. The trouble with this approach is that it is extremely inflexible. If the
server moves or if the server is replicated or if the interface changes, numerous
programs will have to be found and recompiled. To avoid all these problems,
some distributed systems use what is called dynamic binding to match up
clients and servers. In this section we will describe the ideas behind dynamic
binding.

The starting point for dynamic binding is the server’s formal specification.
As an example, consider the server of Fig. 2-9(a), specified in Fig. 2-22. The
specification tells the name of the server (file_server), the version number (3.1),
and a list of procedures provided by the server (read, write, create, and delete).

For each procedure, the types of the parameters are given. Each parameter
is specified as being an in parameter, an out parameter, or an in out parameter.
The direction is relative to the server. An in parameter, such as the file name,
name, is sent from the client to the server. This one is used to tell the server
which file to read from, write to, create, or delete. Similarly, bytes tells the
server how many bytes to transfer and position tells where in the file to begin
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#include <header.h>
specification of file_server, version 3.1:

long read(in char name{MAX_PATH], out char buf [BUF_SIZE],
in long bytes, in long position};

long write(in char name [MAX_PATH], in char buf [BUF_SIZE],
in long bytes, in long position);

int create(in char[MAX_PATH], in int mode) ;
int delete(in char[MAX_PATH]);

end;
Fig. 2-22. A specification of the stateless server of Fig. 2-9.

reading or writing. An out parameter such as buf in read, is sent from the server
to the client. Buf is the place where the file server puts the data that the client
has requested. An in out parameter, of which there are none in this example,
would be sent from the client to the server, modified there, and then sent back to
the client (copy/restore). Copy/restore is typically used for pointer parameters in
cases where the server both reads and modifies the data structure being pointed
to. The directions are crucial, so the client stub knows which parameters to send
to the server, and the server stub knows which ones to send back.

As we pointed out earlier, this particular example is a stateless server. For a
UNIX-like server, one would have additional procedures open and close, and dif-
ferent parameters for read and write. The concept of RPC itself is neutral, per-
mitting the system designers to build any kind of servers they desire.

The primary use of the formal specification of Fig. 2-22 is as input to the
stub generator, which produces both the client stub and the server stub. Both are
then put into the appropriate libraries. When a user (client) program calls any of
the procedures defined by this specification, the corresponding client stub pro-
cedure is linked into its binary. Similarly, when the server is compiled, the
server stubs are linked with it too.

When the server begins executing, the call to initialize outside the main loop
[see Fig. 2-9(a)] exports the server interface. What this means is that the server
sends a message to a program called a binder, to make its existence known.
This process is referred to as registering the server. To register, the server
gives the binder its name, its version number, a unique identifier, typically 32
bits long, and a handle used to locate it. The handle is system dependent, and
might be an Ethernet address, an IP address, an X.500 address, a sparse process
identifier, or something else. In addition, other information, for example,
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concerning authentication, might also be supplied. A server can also deregister
with the binder when it is no longer prepared to offer service. The binder inter-
face is shown in Fig. 2-23.

Call Input Qutput
Register Name, version, handle, unigue id
Deregister Name, version, unigque id
Lookup Name, version Handle, unique id

Fig. 2-23. The binder interface.

Given this background, now consider how the client locates the server.
When the client calls one of the remote procedures for the first time, say, read,
the client stub sees that it is not yet bound to a server, so it sends a message to
the binder asking to import version 3.1 of the file_server interface. The binder
checks to see if one or more servers have already exported an interface with this
name and version number. If no currently running server is willing to support
this interface, the read call fails. By including the version number in the match-
ing process, the binder can ensure that clients using obsolete interfaces will fail
to locate a server rather than locate one and get unpredictable results due to
incorrect parameters.

On the other hand, if a suitable server exists, the binder gives its handle and
unique identifier to the client stub. The client stub uses the handle as the
address to send the request message to. The message contains the parameters
and the unique identifier, which the server’s kernel uses to direct the incoming
message to the correct server in the event that several servers are running on that
machine.

This method of exporting and importing interfaces is highly flexible. For
example, it can handle multiple servers that support the same interface. The
binder can spread the clients randomly over the servers to even the load if it
wants to. It can also poll the servers periodically, automatically deregistering
any server that fails to respond, to achieve a degree of fault tolerance. Further-
more, it can also assist in authentication. A server could specify, for example,
that it only wished to be used by a specific list of users, in which case the binder
would refuse to tell users not on the list about it. The binder can also verify that
both client and server are using the same version of the interface.

However, this form of dynamic binding also has its disadvantages. The
extra overhead of exporting and importing interfaces costs time. Since many
client processes are short lived and each process has to start all over again, the
effect may be significant. Also, in a large distributed system, the binder may
become a bottleneck, so multiple binders are needed. Consequently, whenever
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an interface is registered or deregistered, a substantial number of messages will
be needed to keep all the binders synchronized and up to date, creating even
more overhead.

2.4.4. RPC Semantics in the Presence of Failures

The goal of RPC is to hide communication by making remote procedure
calls look just like local ones. With a few exceptions, such as the inability to
handle global variables and the subtle differences introduced by using
copy/restore for pointer parameters instead of call-by-reference, so far we have
come fairly close. Indeed, as long as both client and server are functioning per-
fectly, RPC does its job remarkably well. The problem comes in when errors
occur. It is then that the differences between local and remote calls are not
always easy to mask. In this section we will examine some of the possible
errors and what can be done about them.

To structure our discussion, let us distinguish between five different classes
of failures that can occur in RPC systems, as follows:

1. The client is unable to locate the server.
The request message from the client to the server is lost.

The reply message from the server to the client is lost.

The server crashes after receiving a request.

SARE T

The client crashes after sending a request.

Each of these categories poses different problems and requires different solu-
tions.

Client Cannot Locate the Server

To start with, it can happen that the client cannot locate a suitable server.
The server might be down, for example. Alternatively, suppose that the client is
compiled using a particular version of the client stub, and the binary is not used
for a considerable period of time. In the meantime, the server evolves and a new
version of the interface is installed and new stubs are generated and put into use.
When the client is finally run, the binder will be unable to match it up with a
server and will report failure. While this mechanism is used to protect the client
from accidentally trying to talk to a server that may not agree with it in terms of
what parameters are required or what it is supposed to do, the problem remains
of how this failure should be dealt with.

With the server of Fig. 2-9(a), each of the procedures returns a value, with
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the code —1 conventionally used to indicate failure. For such procedures, just
returning —1 will clearly tell the caller that something is amiss. In UNIX, a glo-
bal variable, errno, is also assigned a value indicating the error type. In such a
system, adding a new error type “Cannot locate server” is simple.

The trouble is, this solution is not general enough. Consider the sum pro-
cedure of Fig. 2-19. Here —1 is a perfectly legal value to be returned, for exam-
ple, the result of adding 7 to —8. Another error-reporting mechanism is needed.

One possible candidate is to have the error raise an exception. In some
languages (e.g., Ada), programmers can write special procedures that are
invoked upon specific errors, such as division by zero. In C, signal handlers can
be used for this purpose. In other words, we could define a new signal type SIG-
NOSERVER, and allow it to be handled in the same way as other signals.

This approach, too, has drawbacks. To start with, not every language has
exceptions or signals. To name one, Pascal does not. Another point is that hav-
ing to write an exception or signal handler destroys the transparency we have
been trying to achieve. Suppose that you are a programmer and your boss tells
you to write the sum procedure. You smile and tell her it will be written, tested,
and documented in five minutes. Then she mentions that you also have to write
an exception handler as well, just in case the procedure is not there today. At
this point it is pretty hard to maintain the illusion that remote procedures are no
different from local ones, since writing an exception handler for ““Cannot locate
server’” would be a rather unusual request in a single-processor system.

Lost Request Messages

The second item on the list is dealing with lost request messages. This is the
easiest one to deal with: just have the kernel start a timer when sending the
request. If the timer expires before a reply or acknowledgement comes back, the
kernel sends the message again. If the message was truly lost, the server will
not be able to tell the difference between the retransmission and the original, and
everything will work fine. Unless, of course, so many request messages are lost
that the kernel gives up and falsely concludes that the server is down, in which
case we are back to “Cannot locate server.”

Lost Reply Messages

Lost replies are considerably more difficult to deal with. The obvious solu-
tion is just to rely on the timer again. If no reply is forthcoming within a reason-
able period, just send the request once more. The trouble with this solution is
that the client’s kernel is not really sure why there was no answer. Did the
request or reply get lost, or is the server merely slow? It may make a difference.

In particular, some operations can safely be repeated as often as necessary



82 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

with no damage being done. A request such as asking for the first 1024 bytes of
a file has no side effects and can be executed as often as necessary without any
harm being done. A request that has this property is said to be idempotent.

Now consider a request to a banking server asking to transfer a million dol-
lars from one account to another. If the request arrives and is carried out, but
the reply is lost, the client will not know this and will retransmit the message.
The bank server will interpret this request as a new one, and will carry it out too.
Two million dollars will be transferred. Heaven forbid that the reply is lost 10
times. Transferring money is not idempotent.

One way of solving this problem is to try to structure all requests in an idem-
potent way. In practice, however, many requests (e.g., transferring money) are
inherently nonidempotent, so something else is needed. Another method is to
have the client’s kernel assign each request a sequence number. By having each
server’s kernel keep track of the most recently received sequence number from
cach client’s kernel that is using it, the server’s kernel can tell the difference
between an original request and a retransmission and can refuse to carry out any
request a second time. An additional safeguard is to have a bit in the message
header that is used to distinguish initial requests from retransmissions (the idea
being that it is always safe to perform an original request; retransmissions may
require more care).

Server Crashes

The next failure on the list is a server crash. It too relates to idempotency,
but unfortunately it cannot be solved using sequence numbers. The normal
sequence of events at a server is shown in Fig. 2-24(a). A request arrives, is car-
ried out, and a reply is sent. Now consider Fig. 2-24(b). A request arrives and
is carried out, just as before, but the server crashes before it can send the reply.
Finally, look at Fig. 2-24(c). Again a request arrives, but this time the server
crashes before it can even be carried out.

Server Server Server

REQ REQ REQ
\ Receive \ Receive \ Receive
Execute Execute
Reply Phe -Crash e
REP/ No 4 No &
REP REP
(a) (b) {c)

Fig. 2-24. (a) Normal case. (b) Crash after execution. (c) Crash before execution.

The annoying part of Fig. 2-24 is that the correct treatment differs for (b)
and (c). In (b) the system has to report failure back to the client (e.g., raise an
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exception), whereas in (c) it can just retransmit the request. The problem is that
the client’s kernel cannot tell which is which. All it knows is that its timer has
expired.

Three schools of thought exist on what to do here. One philosophy is to wait
until the server reboots (or rebinds to a new server) and try the operation again.
The idea is to keep trying until a reply has been received, then give it to the
client. This technique is called at least once semantics and guarantees that the
RPC has been carried out at least one time, but possibly more.

The second philosophy gives up immediately and reports back failure. This
way is called at most once semantics and guarantees that the RPC has been car-
ried out at most one time, but possibly none at all.

The third philosophy is to guarantee nothing. When a server crashes, the
client gets no help and no promises. The RPC may have been carried out any-
where from O to a large number of times. The main virtue of this scheme is that
it is easy to implement.

None of these are terribly attractive. What one would like is exactly once
semantics, but as can be seen fairly easily, there is no way to arrange this in
general. Imagine that the remote operation consists of printing some text, and is
accomplished by loading the printer buffer and then setting a single bit in some
control register to start the printer. The crash can occur a microsecond before
setting the bit, or a microsecond afterward. The recovery procedure depends
entirely on which it is, but there is no way for the client to discover it.

In short, the possibility of server crashes radically changes the nature of
RPC and clearly distinguishes single-processor systems from distributed sys-
tems. In the former case, a server crash also implies a client crash, so recovery
is neither possible nor necessary. In the latter it is both possible and necessary
to take some action,

Client Crashes

The final item on the list of failures is the client crash. What happens if a
client sends a request to a server to do some work and crashes before the server
replies? At this point a computation is active and no parent is waiting for the
result. Such an unwanted computation is called an orphan.

Orphans can cause a variety of problems. As a bare minimum, they waste
CPU cycles. They can also lock files or otherwise tie up valuable resources.
Finally, if the client reboots and does the RPC again, but the reply from the
orphan comes back immediately afterward, confusion can result.

What can be done about orphans? Nelson (1981) proposed four solutions.
In solution 1, before a client stub sends an RPC message, it makes a log entry
telling what it is about to do. The log is kept on disk or some other medium that
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survives crashes. After a reboot, the log is checked and the orphan is explicitly
killed off. This solution is called extermination.

The disadvantage of this scheme is the horrendous expense of writing a disk
record for every RPC. Furthermore, it may not even work, since orphans them-
selves may do RPCs, thus creating grandorphans or further descendants that
are impossible to locate. Finally, the network may be partitioned, due to a failed
gateway, making it impossible to kill them, even if they can be located. All in
all, this is not a promising approach.

In solution 2, called reincarnation, all these problems can be solved
without the need to write disk records. The way it works is to divide time up
into sequentially numbered epochs. When a client reboots, it broadcasts a mes-
sage to all machines declaring the start of a new epoch. When such a broadcast
comes in, all remote computations are killed. Of course, if the network is parti-
tioned, some orphans may survive. However, when they report back, their
replies will contain an obsolete epoch number, making them easy to detect.

Solution 3 is a variant on this idea, but less Draconian. It is called gentle
reincarnation. When an epoch broadcast comes in, each machine checks to see
if it has any remote computations, and if so, tries to locate their owner. Only if
the owner cannot be found is the computation killed.

Finally, we have solution 4, expiration, in which each RPC is given a stan-
dard amount of time, T, to do the job. If it cannot finish, it must explicitly ask
for another quantum, which is a nuisance. On the other hand, if after a crash the
server waits a time T before rebooting, all orphans are sure to be gone. The
problem to be solved here is choosing a reasonable value of T in the face of
RPCs with wildly differing requirements.

In practice, none of these methods are desirable. Worse yet, killing an
orphan may have unforeseen consequences. For example, suppose that an
orphan has obtained locks on one or more files or data base records. If the
orphan is suddenly killed, these locks may remain forever. Also, an orphan may
have already made entries in various remote queues to start up other processes at
some future time, so even killing the orphan may not remove all traces of it.
Orphan elimination is discussed in more detail by Panzieri and Shrivastava
(1988).

2.4.5. Implementation Issues

The success or failure of a distributed system often hinges on its perfor-
mance. The system performance, in turn, is critically dependent on the speed of
communication. The communication speed, more often than not, stands or falls
with its implementation, rather than with its abstract principles. In this section
we will look at some of the implementation issues for RPC systems, with a spe-
cial emphasis on the performance and where the time is spent.
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RPC Protocols

The first issue is the choice of the RPC protocol. Theoretically, any old pro-
tocol will do as long as it gets the bits from the client’s kernel to the server’s
kernel, but practically there are several major decisions to be made here, and the
choices made can have a major impact on the performance. The first decision is
between a connection-oriented protocol and a connectionless protocol. With a
connection-oriented protocol, at the time the client is bound to the server, a con-
nection is established between them. All traffic, in both directions, uses this
connection.

The advantage of having a connection is that communication becomes much
easier. When a kernel sends a message, it does not have to worry about it get-
ting lost, nor does it have to deal with acknowledgements. All that is handled at
a lower level, by the software that supports the connection. When operating
over a wide-area network, this advantage is often too strong to resist.

The disadvantage, especially over a LAN, is the performance loss. All that
extra software gets in the way. Besides, the main advantage (no lost packets) is
hardly needed on a LAN, since LANs are so reliable. As a consequence, most
distributed operating systems that are intended for use in a single building or
campus use connectionless protocols.

The second major choice is whether to use a standard general-purpose proto-
col or one specifically designed for RPC. Since there are no standards in this
area, using a custom RPC protocol often means designing your own {or borrow-
ing a friend’s). System designers are split about evenly on this one.

Some distributed systems use IP (or UDP, which is built on IP) as the basic
protocol. This choice has several things going for it:

1. The protocol is already designed, saving considerable work.

2. Many implementations are available, again saving work.

3. These packets can be sent and received by nearly all UNIX systems.
4. IP and UDP packets are supported by many existing networks.

In short, IP and UDP are easy to use and fit in well with existing UNIX systems
and networks such as the Internet. This makes it straightforward to write clients
and servers that run on UNIX systems, which certainly aids in getting code run-
ning quickly and in testing it.

As usual, the downside is the performance. IP was not designed as an end-
user protocol. It was designed as a base upon which reliable TCP connections
could be established over recalcitrant internetworks. For example, it can deal
with gateways that fragment packets into little pieces so they can pass through
networks with a tiny maximum packet size. Although this feature is never
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needed in a LAN-based distributed system, the IP packet header fields dealing
with fragmentation have to be filled in by the sender and verified by the receiver
to make them legal IP packets. IP packets have in total 13 header fields, of
which three are useful: the source and destination addresses and the packet
length. The other 10 just come along for the ride, and one of them, the header
checksum, is time consuming to compute. To make matters worse, UDP has
another checksum, covering the data as well.

The alternative is to use a specialized RPC protocol that, unlike IP, does not
attempt to deal with packets that have been bouncing around the network for a
few minutes and then suddenly materialize out of thin air at an inconvenient
moment. Of course, the protocol has to be invented, implemented, tested, and
embedded in existing systems, so it is considerably more work. Furthermore,
the rest of the world tends not to jump with joy at the birth of yet another new
protocol. In the long run, the development and widespread acceptance of a
high-performance RPC protocol is definitely the way to go, but we are not there
yet.

One last protocol-related issue is packet and message length. Doing an RPC
has a large, fixed overhead, independent of the amount of data sent. Thus read-
ing a 64K file in a single 64K RPC is vastly more efficient than reading it in 64
1K RPCs. It is therefore important that the protocol and network allow large
transmissions. Some RPC systems are limited to small sizes (e.g., Sun
Microsystem’s limit is 8K). In addition, many networks cannot handle large
packets (Ethernet’s limit is 1536 bytes), so a single RPC will have to be split
over multiple packets, causing extra overhead.

Acknowledgements

When large RPCs have to be broken up into many small packets as just
described, a new issue arises: Should individual packets be acknowledged or
not? Suppose, for example, that a client wants to write a 4K block of data to a
file server, but the system cannot handle packets larger than 1K. One strategy,
known as a stop-and-wait protocol, is for the client to send packet 0 with the
first 1K, then wait for an acknowledgement from the server, as illustrated in
Fig. 2-25(b). Then the client sends the second 1K, waits for another ack-
nowledgement, and so on.

The alternative, often called a blast protocol, is simply for the client to send
all the packets as fast as it can. With this method, the server acknowledges the
entirc message when all the packets have been received, not one by one. The
blast protocol is illustrated in Fig. 2-25(c).

These protocols have quite different properties. With stop-and-wait, if a
packet is damaged or lost, the client fails to receive an acknowledgement on
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Fig. 2-25. (a) A 4K message. (b) A stop-and-wait protocol. (c) A blast proto-
col.

time, so it retransmits the one bad packet. With the blast protocol, the server is
faced with a decision when, say, packet 1 is lost but packet 2 subsequently
arrives correctly. It can abandon everything and do nothing, waiting for the
client to time out and retransmit the entire message. Or alternatively, it can
buffer packet 2 (along with 0), hope that 3 comes in correctly, and then specifi-
cally ask the client to send it packet 1. This technique is called selective repeat.

Both stop-and-wait and abandoning everything when an error occurs are
easy to implement. Selective repeat requires more administration, but uses less
network bandwidth. On highly reliable LANSs, lost packets are so rare that
selective repeat is usually more trouble than it is worth, but on wide-area net-
works it is frequently a good idea.

However, error control aside, there is another consideration that is actually
more important: flow control. Many network interface chips are able to send
consecutive packets with almost no gap between them, but they are not always
able to receive an unlimited number of back-to-back packets due to finite buffer
capacity on chip. With some designs, a chip cannot even accept two back-to-
back packets because after receiving the first one, the chip is temporarily dis-
abled during the packet-arrived interrupt, so it misses the start of the second one.
When a packet arrives and the receiver is unable to accept it, an overrun error
occurs and the incoming packet is lost. In practice, overrun errors are a much
more serious problem than packets lost due to noise or other forms of damage.

The two approaches of Fig. 2-25 are quite different with respect to overrun
errors. With stop-and-wait, overrun errors are impossible, because the second
packet is not sent until the receiver has explicitly indicated that it is ready for it.
(Of course, with multiple senders, overrun errors are still possible.)

With the blast protocol, receiver overrun is a possibility, which is
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unfortunate, since the blast protocol is clearly much more efficient than stop-
and-wait. However, there are also ways of dealing with overrun. If, on the one
hand, the problem is caused by the chip being disabled temporarily while it is
processing an interrupt, a smart sender can insert a delay between packets to
give the receiver just enough time to generate the packet-arrived interrupt and
reset itself. If the required delay is short, the sender can just loop (busy wait-
ing); if it is long, it can set up a timer interrupt and go do something else while
waiting. If it is in between (a few hundred microseconds), which it often is,
probably the best solution is busy waiting and just accepting the wasted time as
a necessary evil.

If, on the other hand, the overrun is caused by the finite buffer capacity of
the network chip, say n packets, the sender can send n packets, followed by a
substantial gap (or the protocol can be defined to require an acknowledgement
after every n packets).

It should be clear that minimizing acknowledgement packets and getting
good performance may be dependent on the timing properties of the network
chip, so the protocol may have to be tuned to the hardware being used. A
custom-designed RPC protocol can take issues like flow control into account
more easily than a general-purpose protocol, which is why specialized RPC pro-
tocols usually outperform systems based on IP or UDP by a wide margin.

Before leaving the subject of acknowledgements, there is one other sticky
point that is worth looking at. In Fig. 2-16(c) the protocol consists of a request,
a reply, and an acknowledgement. The last one is needed to tell the server that it
can discard the reply as it has arrived safely. Now suppose that the ack-
nowledgement is lost in transit (unlikely, but not impossible). The server will
not discard the reply. Worse yet, as far as the client is concerned, the protocol is
finished. No timers are running and no packets are expected.

We could change the protocol to have acknowledgements themselves ack-
nowledged, but this adds extra complexity and overhead for very little potential
gain. In practice, the server can start a timer when sending the reply, and dis-
card the reply when either the acknowledgement arrives or the timer expires.
Also, a new request from the same client can be interpreted as a sign that the
reply arrived, otherwise the client would not be issuing the next request.

Critical Path

Since the RPC code is so crucial to the performance of the system, let us
take a closer look at what actually happens when a client performs an RPC with
a remote server. The sequence of instructions that is executed on every RPC is
called the critical path, and is depicted in Fig. 2-26. It starts when the client
calls the client stub, proceeds through the trap to the kernel, the message
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transmission, the interrupt on the server side, the server stub, and finally arrives
at the server, which does the work and sends the reply back the other way.

Client machine Server machine
Client { Call stub procedure Perform service } Server
. Prepare message buffer Call server S
Client Marshal parameters into buffer Set up parameters on stack \ ervber
stub 1 Fill in message header fields Unmarshall parameters st
Trap 1o kernel é )
. Context switch to server stub
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Copy message to kernel See if stub is waiting
Kerne! < Determine d'estnnanon address Decide which stub 1o give it to > Kernel
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Set up network interface Process interrupt
Start timer A
] J
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Fig. 2-26. Critical path from client to server.

Let us examine these steps a bit more carefully now. After the client stub
has been called, its first job is to acquire a buffer into which it can assemble the
outgoing message. In some systems, the client stub has a single fixed buffer that
it fills in from scratch on every call. In other systems, a pool of partially filled
in buffers is maintained, and an appropriate one for the server required is
obtained. This method is especially appropriate when the underlying packet for-
mat has a substantial number of fields that must be filled in, but which do not
change from call to call.

Next, the parameters are converted to the appropriate format and inserted
into the message buffer, along with the rest of the header fields, if any. At this
point the message is ready for transmission, so a trap to the kernel is issued.

When it gets control, the kernel switches context, saving the CPU registers
and memory map, and setting up a new memory map that it will use while run-
ning in kernel mode. Since the kernel and user contexts are generally disjoint,
the kernel must now explicitly copy the message into its address space so it can
access it, fill in the destination address (and possibly other header fields), and
have it copied to the network interface. At this point the client’s critical path
ends, as additional work done from here on does not add to the total RPC time:
nothing the kernel does now affects how long it takes for the packet to arrive at
the server. After starting the retransmission timer, the kernel can either enter a
busy waiting loop to wait for the reply, or call the scheduler to look for another
process to run. The former speeds up the processing of the reply, but effectively
means that no multiprogramming can take place.
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On the server side, the bits will come in and be put either in an on-board
buffer or in memory by the receiving hardware. When all of them arrive, the
receiver will generate an interrupt. The interrupt handler then examines the
packet to see if it is valid, and determines which stub to give it to. If no stub is
waiting for it, the handler must either buffer it or discard it. Assuming that a
stub is waiting, the message is copied to the stub. Finally, a context switch is
done, restoring the registers and memory map to the values they had at the time
the stub called receive.

The server can now be restarted. It unmarshals the parameters and sets up
an environment in which the server call be called. When everything is ready,
the call is made. After the server has run, the path back to the client is similar to
the forward path, but the other way.

A question that all implementers are keenly interested in is: “Where is most
of the time spent on the critical path?”’ Once that is known, work can begin on
speeding it up. Schroeder and Burrows (1990) have provided us with a glimpse
by analyzing in detail the critical path of the RPC on the DEC Firefly multipro-
cessor workstation. The results of their work are expressed in Fig. 2-27 as histo-
grams with 14 bars, each bar corresponding to one of the steps from client to
server (the reverse path is not shown, but is roughly analogous). Figure 2-27(a)
gives results for a null RPC (no data), and Fig. 2-27(b) gives it for an array
parameter with 1440 bytes. Although the fixed overhead is the same in both
cases, considerably more time is needed for marshaling parameters and moving
messages around in the second case.

For the null RPC, the dominant costs are the context switch to the server
stub when a packet arrives, the interrupt service routine, and moving the packet
to the network interface for transmission. For the 1440-byte RPC, the picture
changes considerably, with the Ethernet transmission time now being the largest
single component, with the time for moving the packet into and out of the inter-
face coming in close behind.

Although Fig. 2-27 yields valuable insight into where the time is going, a
few words of caution are necessary for interpreting these data. First, the Firefly
is a multiprocessor, with five VAX CPUs. When the same measurements are
run with only one CPU, the RPC time doubles, indicating that substantial paral-
lel processing is taking place here, something that will not be true of most other
machines.

Second, the Firefly uses UDP, and its operating system manages a pool of
UDP buffers, which client stubs use to avoid having to fill in the entire UDP
header every time.

Third, the kernel and user share the same address space, eliminating the
need for context switches and for copying between kernel and user spaces, a
great timesaver. Page table protection bits prevent the user from reading or
writing parts of the kernel other than the shared buffers and certain other parts
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Fig. 2-27. Breakdown of the RPC critical path. (a) For a null RPC. (b) For
an RPC with a 1440-byte array parameter. (c) The 14 steps in the RPC from
client to server.
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intended for user access. This design cleverly exploits particular features of the
VAX architecture that facilitate sharing between kernel space and user space,
but is not applicable to all computers.

Fourth and last, the entire RPC system has been carefully coded in assembly
language and hand optimized. This last point is probably the reason that the
various components in Fig. 2-27 are as uniform as they are. No doubt when the
measurements were first made, they were more skewed, prompting the authors
to attack the most time consuming parts until they no longer stuck out.

Schroeder and Burrows give some advice to future designers based on their
experience. To start with, they recommend avoiding weird hardware (only one
of the Firefly’s five processors has access to the Ethernet, so packets have to be
copied there before being sent, and getting them there is unpleasant). They also
regret having based their system on UDP. The overhead, especially from the
checksum, was not worth the cost. In retrospect, they believe a simple custom
RPC protocol would have been better. Finally, using busy waiting instead of
having the server stub go to sleep would have largely eliminated the single larg-
est time sink in Fig. 2-27(a).

Copying

An issue that frequently dominates RPC execution times is copying. On the
Firefly this effect does not show up because the buffers are mapped into both the
kernel and user address spaces, but in most other systems the kernel and user
address spaces are disjoint. The number of times a message must be copied
varies from one to about eight, depending on the hardware, software, and type of
call. In the best case, the network chip can DMA the message directly out of the
client stub’s address space onto the network (copy 1), depositing it in the server
kernel’s memory in real time (i.e., the packet-arrived interrupt occurs within a
few microseconds of the last bit being DMA’ed out of the client stub’s
memory). Then the kernel inspects the packet and maps the page containing it
into the server’s address space. If this type of mapping is not possible, the ker-
nel copies the packet to the server stub (copy 2).

In the worst case, the kernel copies the message from the client stub into a
kernel buffer for subsequent transmission, either because it is not convenient to
transmit directly from user space or the network is currently busy (copy I).
Later, the kernel copies the message, in software, to a hardware buffer on the
network interface board (copy 2). At this point, the hardware is started, causing
the packet to be moved over the network to the interface board on the destina-
tion machine (copy 3). When the packet-arrived interrupt occurs on the server’s
machine, the kernel copies it to a kernel buffer, probably because it cannot tell
where to put it until it has examined it, which is not possible until it has
extracted it from the hardware buffer (copy 4). Finally, the message has to be
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copied to the server stub (copy 5). In addition, if the call has a large array
passed as a value parameter, the array has to be copied onto the client’s stack for
the call stub, from the stack to the message buffer during marshaling within the
client stub, and from the incoming message in the server stub to the server’s
stack preceding the call to the server, for three more copies, or eight in all.

Suppose that it takes an average of 500 nsec to copy a 32-bit word; then
with eight copies, each word needs 4 microsec, giving a maximum data rate of
about 1 Mbyte/sec, no matter how fast the network itself is. In practice, achiev-
ing even 1/10 of this would be pretty good.

One hardware feature that greatly helps eliminate unnecessary copying is
scatter-gather. A network chip that can do scatter-gather can be set up to
assemble a packet by concatenating two or more memory buffers. The advan-
tage of this method is that the kernel can build the packet header in kernel space,
leaving the user data in the client stub, with the hardware pulling them together
as the packet goes out the door. Being able to gather up a packet from multiple
sources eliminates copying. Similarly, being able to scatter the header and body
of an incoming packet into different buffers also helps on the receiving end.

In general, eliminating copying is easier on the sending side than on the
receiving side. With cooperative hardware, a reusable packet header inside the
kernel and a data buffer in user space can be put out onto the network with no
internal copying on the sending side. When it comes in at the receiver, however,
even a very intelligent network chip will not know which server it should be
given to, so the best the hardware can do is dump it into a kernel buffer and let
the kernel figure out what to do with it.

In operating systems using virtual memory, a trick is available to avoid the
copy to the stub. If the kernel packet buffer happens to occupy an entire page,
beginning on a page boundary, and the server stub’s receive buffer also happens
to be an entire page, also starting on a page boundary, the kernel can change the
memory map to map the packet buffer into the server’s address space, simul-
taneously giving the server stub’s buffer to the kernel. When the server stub
starts running, its buffer will contain the packet, and this will have been
achieved without copying.

Whether going to all this trouble is a good idea is a close call. Again assum-
ing that it takes 500 nsec to copy a 32-bit word, copying a 1K packet takes 128
microsec. If the memory map can be updated in less time, mapping is faster
than copying, otherwise it is not. This method also requires careful buffer con-
trol, making sure that all buffers are aligned properly with respect to page boun-
daries. If a buffer starts at a page boundary, the user process gets to see the
entire packet, including the low-level headers, something that most systems try
to hide in the name of portability.

Alternatively, if the buffers are aligned so that the header is at the end of one
page and the data are at the start of the next, the data can be mapped without the
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header. This approach is cleaner and more portable, but costs two pages per
buffer: one mostly empty except for a few bytes of header at the end, and one
for the data.

Finally, many packets are only a few hundred bytes, in which case it is
doubtful that mapping will beat copying. Still, it is an interesting idea that is
certainly worth thinking about.

Timer Management

All protocols consist of exchanging messages over some communication
medium. In virtually all systems, messages can occasionally be lost, due either
to noise or receiver overrun. Consequently, most protocols set a timer whenever
a message is sent and an answer (reply or acknowledgement) is expected. If the
reply is not forthcoming within the expected time, the timer expires and the ori-
ginal message is retransmitted. This process is repeated until the sender gets
bored and gives up.

The amount of machine time that goes into managing the timers should not
be underestimated. Setting a timer requires building a data structure specifying
when the timer is to expire and what is to be done when that happens. The data
structure is then inserted into a list consisting of the other pending timers. Usu-
ally, the list is kept sorted on time, with the next timeout at the head of the list
and the most distant one at the end, as shown in Fig. 2-28.

When an acknowledgement or reply arrives before the timer expires, the
timeout entry must be located and removed from the list. In practice, very few
timers actually expire, so most of the work of entering and removing a timer
from the list is wasted effort. Furthermore, timers need not be especially accu-
rate. The timeout value chosen is usually a wild guess in the first place (“a few
seconds sounds about right”’). Besides, using a poor value does not affect the
correctness of the protocol, only the performance. Too low a value will cause
timers to expire too often, resulting in unnecessary retransmissions. Too high a
value will cause a needlessly long delay in the event that a packet is actually
lost.

The combination of these factors suggests that a different way of handling
the timers might be more efficient. Most systems maintain a process table, with
one entry containing all the information about each process in the system.
While an RPC is being carried out, the kernel has a pointer to the current pro-
cess table entry in a local variable. Instead of storing timeouts in a sorted linked
list, each process table entry has a field for holding its timeout, if any, as shown
in Fig. 2-28(b). Setting a timer for an RPC now consists of adding the length of
the timeout to the current time and storing in the process table. Turning a timer
off consists of merely storing a zero in the timer field. Thus the actions of set-
ting and clearing timers are now reduced to a few machine instructions each.
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Fig. 2-28. (a) Timeouts in a sorted list. (b) Timeouts in the process table.

To make this method work, periodically (say, once per second), the kernel
scans the entire process table, checking each timer value against the current
time. Any nonzero value that is less than or equal to the current time
corresponds to an expired timer, which is then processed and reset. For a system
that sends, for example, 100 packets/sec, the work of scanning the process table
once per second is only a fraction of the work of searching and updating a linked
list 200 times a second. Algorithms that operate by periodically making a
sequential pass through a table like this are called sweep algorithms.

2.4.6. Problem Areas

Remote procedure call using the client-server model is widely used as the
basis for distributed operating systems. It is a simple abstraction that makes
dealing with the complexity inherent in a distributed system more manageable
than pure message passing. Nevertheless, there are a few problem areas that
still have to be resolved. In this section we will discuss some of them.

Ideally, RPC should be transparent. That is, the programmer should not
have to know which library procedures are local and which are remote. He
should also be able to write procedures without regard to whether they will be
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executed locally or remote. Even stricter, the introduction of RPC into a system
that was previously run on a single CPU should not be accompanied by a set of
new rules prohibiting constructions that were previously legal, or requiring con-
structions that were previously optional. Under this stringent criterion, few, if
any, current distributed systems can be said to be completely transparent. Thus
the holy grail of transparency will remain a research topic for the foreseeable
future.

As an example, consider the problem of global variables. In single CPU
systems these are legal, even for library procedures. For example, in UNIX, there
is a global variable errno. After an incorrect system call, errno contains a code
telling what went wrong. The existence of errno is public information, since the
official UNIX standard, POSIX, requires it to be visible in one of the mandatory
header files, errno.h. Thus it is not permitted for an implementation to hide it
from the programmers.

Now suppose that a programmer writes two procedures that both directly
access errno. One of these is run locally; the other is run remote. Since the
compiler does not (and may not) know which variables and procedures are
located where, no matter where errno is stored, one of the procedures will fail 1o
access it correctly. The problem is that allowing local procedures unconstrained
access to remote global variables, and vice versa, cannot be implemented, yet
prohibiting this access violates the transparency principle (that programs should
not have to act differently due to RPC).

A second problem is weakly-typed languages, like C. In a strongly-typed
language, like Pascal, the compiler, and thus the stub procedure, knows every-
thing there is to know about all the parameters. This knowledge allows the stub
to marshal the parameters without difficulty. In C, however, it is perfectly legal
to write a procedure that computes the inner product of two vectors (arrays),
without specifying how large either one is. Each could be terminated by a spe-
cial value known only to the calling and called procedure. Under these cir-
cumstances, it is essentially impossible for the client stub to marshal the parame-
ters: it has no way of determining how large they are.

The usual solution is to force the programmer to define the maximum size
when writing the formal definition of the server, but suppose that the program-
mer wants the procedure to work with any size input? He can put an arbitrary
limit in the specification, say, 1 million, but that means that the client stub will
have to pass 1 million elements even when the actually array size is 100 ele-
ments. Furthermore, the call will fail when the actual array is 1,000,001 cle-
ments or the total memory can only hold 200,000 elements.

A similar problem occurs when passing a pointer to a complex graph as a
parameter. On a single CPU system, doing so works fine, but with RPC, the
client stub has no way to find the entire graph.

Still another problem occurs because it is not always possible to deduce the
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types of the parameters, not even from a formal specification or the code itself.
An example is printf, which may have any number of parameters (at least one),
and they can be an arbitrary mixture of integers, shorts, longs, characters,
strings, floating point numbers of various lengths, and other types. Trying to
call printf as a remote procedure would be practically impossible because C is so
permissive. However, a rule saying that RPC can be used provided that you do
not program in C would violate transparency.

The problems described above deal with transparency, but there is another
class of difficulties that is even more fundamental. Consider the implementation
of the UNIX command

sort <fl >f2

Since sort knows it is reading standard input and writing standard output, it can
act as a client for both input and output, performing RPCs with the file server to
read fI as well as performing RPCs with the file server to write f2. Similarly, in
the command

grep rat <f3 >f4

the grep program acts as a client to read the file f3, extracting only those lines
containing the string “rat” and writing them to f4.
Now consider the UNIX pipeline

grep rat < f5 | sort >f6

As we have just seen, both grep and sort act as a client for both standard input
and standard output. This behavior has to be compiled into the code to make the
first two examples work. But how do they interact? Does grep act as a client
doing writes to the server sort, or does sort act as the client doing reads from the
server grep? Either way, one of them has to act as a server (i.e., passive), but as
we have just seen, both have been programmed as clients (active). The diffi-
culty here is that the client-server model really is not suitable at all.
In general, there is a problem with all pipelines of the form

pl <f1 | p2 | p3 > f2

One approach to avoiding the client-client interface we just saw is to make the
entire pipeline read driven, as illustrated in Fig. 2-29(b). The program p/ acts
as the (active) client and issues a read request to the file server to get fI. The
program p2, also acting as a client, issues a read request to p/ and the program
p3 issues a read request to p2. So far, so good. The trouble is that the file server
does not act as a client issuing read requests to p3 to collect the final output.
Thus a read-driven pipeline does not work.

In Fig. 2-29(c) we see the write-driven approach. It has the mirror-image
problem. Here p/ acts as a client, doing writes to p2, which also acts as a client,
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Fig. 2-29. (a) A pipeline. (b) The read-driven approach. (c) The write-driven
approach.
doing writes to p3, which also acts as a client, writing to the file server, but there
is no client issuing calls to p/ asking it to accept the input file.

While ad hoc solutions can be found, it should be clear that the client-server
model inherent in RPC is not a good fit to this kind of communication pattern.
As an aside, one possible ad hoc solution is to implement pipes as dual servers,
responding to both write requests from the left and read requests from the right.
Alternatively, pipes can be implemented with temporary files that are always
read from, or written to, the file server. Doing so generates unnecessary over-
head, however.

A similar problem occurs when the shell wants to get input from the user.
Normally, it sends read requests to the terminal server, which simply collects
keystrokes and waits until the shell asks for them. But what happens when the
user hits the interrupt key (DEL, CTRL-C, break, etc.)? If the terminal server
just passively puts the interrupt character in the buffer waiting until the shell
asks for it, it will be impossible for the user to break off the current program.
On the other hand, how can the terminal server act as a client and make an RPC
to the shell, which is not expecting to act as a server? Clearly, this role reversal
causes trouble, just as the role ambiguity does in the pipeline. In fact, any time
an unexpected message has to be sent, there is a potential problem. While the
client-server model is frequently a good fit, it is not perfect.
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2.5. GROUP COMMUNICATION

An underlying assumption intrinsic to RPC is that communication involves
only two parties, the client and the server. Sometimes there are circumstances in
which communication involves multiple processes, not just two. For example,
consider a group of file servers cooperating to offer a single, fault-tolerant file
service. In such a system, it might be desirable for a client to send a message to
all the servers, to make sure that the request could be carried out even if one of
them crashed. RPC cannot handle communication from one sender to many
receivers, other than by performing separate RPCs with each one. In this section
we will discuss alternative communication mechanisms in which a message can
be sent to multiple receivers in one operation.

2.5.1. Introduction to Group Communication

A group is a collection of processes that act together in some system or
user-specified way. The key property that all groups have is that when a mes-
sage is sent to the group itself, all members of the group receive it. It is a form
of one-to-many communication (one sender, many receivers), and is contrasted
with point-to-point communication in Fig. 2-30.

(a) (b}

Fig. 2-30. (a) Point-to-point communication is from one sender to one re-
ceiver. (b) One-to-many communication is from one sender to multiple re-
ceivers.

Groups are dynamic. New groups can be created and old groups can be des-
troyed. A process can join a group or leave one. A process can be a member of
several groups at the same time. Consequently, mechanisms are needed for
managing groups and group membership.
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Groups are roughly analogous to social organizations. A person might be a
member of a book club, a tennis club, and an environmental organization. On a
particular day, he might receive mailings (messages) announcing a new birthday
cake cookbook from the book club, the annual Mother’s Day tennis tournament
from the tennis club, and the start of a campaign to save the Southern groundhog
from the environmental organization. At any moment, he is free to leave any or
all of these groups, and possibly join other groups.

Although in this book we will study only operating system (i.e., process)
groups, it is worth mentioning that other groups are also commonly encountered
in computer systems. For example, on the USENET computer network, there
are hundreds of news groups, each about a specific subject. When a person
sends a message to a particular news group, all members of the group receive it,
even if there are tens of thousands of them. These higher-level groups usually
have looser rules about who is a member, what the exact semantics of message
delivery are, and so on, than do operating system groups. In most cases, this
looseness is not a problem.

The purpose of introducing groups is to allow processes to deal with collec-
tions of processes as a single abstraction. Thus a process can send a message (0
a group of servers without having to know how many there are or where they
are, which may change from one call to the next.

How group communication is implemented depends to a large extent on the
hardware. On some networks, it is possible to create a special network address
(for example, indicated by setting one of the high-order bits to 1), to which mul-
tiple machines can listen. When a packet is sent to one of these addresses, it is
automatically delivered to all machines listening to the address. This technique
is called multicasting. Implementing groups using multicast is straightforward:
just assign each group a different multicast address.

Networks that do not have multicasting sometimes still have broadcasting,
which means that packets containing a certain address (e.g., 0) are delivered to
all machines. Broadcasting can also be used to implement groups, but it is less
efficient. Each machine receives each broadcast, so its software must check to
see if the packet is intended for it. If not, the packet is discarded, but some time
is wasted processing the interrupt. Nevertheless, it still takes only one packet to
reach all the members of a group.

Finally, if neither multicasting nor broadcasting is available, group com-
munication can still be implemented by having the sender transmit separate
packets to each of the members of the group. For a group with n members, n
packets are required, instead of one packet when either multicasting or broad-
casting is used. Although less efficient, this implementation is still workable,
especially if most groups are small. The sending of a message from a single
sender to a single receiver is sometimes called unicasting (point-to-point
transmission), to distinguish it from multicasting and broadcasting.
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2.5.2. Design Issues

Group communication has many of the same design possibilities as regular
message passing, such as buffered versus unbuffered, blocking versus nonblock-
ing, and so forth. However, there are also a large number of additional choices
that must be made because sending to a group is inherently different from send-
ing to a single process. Furthermore, groups can be organized in various ways
internally. They can also be addressed in novel ways not relevant in point-to-
point communication. In this section we will look at some of the most important
design issues and point out the various alternatives.

Closed Groups versus Open Groups

Systems that support group communication can be divided into two
categories depending on who can send to whom. Some systems support closed
groups, in which only the members of the group can send to the group. Outsid-
ers cannot send messages to the group as a whole, although they may be able to
send messages to individual members. In contrast, other systems support open
groups, which do not have this property. When open groups are used, any pro-
cess in the system can send to any group. The difference between closed and
open groups is shown in Fig. 2-31.

Closed group Open group

Group
member

Not

allowed Allowed
Process Process
that is not a that is not a
member of member of
the group the group
(a) (b}

Fig. 2-31. (a) Outsiders may not send to a closed group. (b) Outsiders may
send to an open group.

The decision as to whether a system supports closed or open groups usually
relates to the reason groups are being supported in the first place. Closed groups
are typically used for parallel processing. For example, a collection of processes
working together to play a game of chess might form a closed group. They have
their own goal and do not interact with the outside world.
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On the other hand, when the idea of groups is to support replicated servers,
it is important that processes that are not members (clients) can send to the
group. In addition, the members of the group may also need to use group com-
munication, for example to decide who should carry out a particular request.
The distinction between closed and open groups is often made for implementa-
tion reasons.

Peer Groups versus Hierarchical Groups

The distinction between closed and open groups relates to who can com-
municate with the group. Another important distinction has to do with the inter-
nal structure of the group. In some groups, all the processes are equal. No one
is boss and all decisions are made collectively. In other groups, some kind of
hierarchy exists. For example, one process is the coordinator and all the others
are workers. In this model, when a request for work is generated, either by an
external client or by one of the workers, it is sent to the coordinator. The coordi-
nator then decides which worker is best suited to carry it out, and forwards it
there. More complex hierarchies are also possible, of course. These communi-
cation patterns are illustrated in Fig. 2-32.

Peer Hierarchical

group group
Coordinator

Worker

(a) (b)

Fig. 2-32. (a) Communication in a peer group. (b) Communication in a sim-
ple hierarchical group.

Each of these organizations has its own advantages and disadvantages. The
peer group is symmetric and has no single point of failure. If one of the
processes crashes, the group simply becomes smaller, but can otherwise con-
tinue. A disadvantage is that decision making is more complicated. To decide
anything, a vote has to be taken, incurring some delay and overhead.

The hierarchical group has the opposite properties. Loss of the coordinator
brings the entire group to a grinding halt, but as long as it is running, it can make
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decisions without bothering everyone else. For example, a hierarchical group
might be appropriate for a parallel chess program. The coordinator takes the
current board, generates all the legal moves from it, and farms them out to the
workers for evaluation. During this evaluation, new boards are generated and
sent back to the coordinator to have them evaluated. When a worker is idle, it
asks the coordinator for a new board to work on. In this manner, the coordinator
controls the search strategy and prunes the game tree (e.g., using the alpha-beta
search method), but leaves the actual evaluation to the workers.

Group Membership

When group communication is present, some method is needed for creating
and deleting groups, as well as for allowing processes to join and leave groups.
One possible approach is to have a group server to which all these requests can
be sent. The group server can then maintain a complete data base of all the
groups and their exact membership. This method is straightforward, efficient,
and easy to implement. Unfortunately, it shares with all centralized techniques a
major disadvantage: a single point of failure. If the group server crashes, group
management ceases to exist. Probably most or all groups will have to be recon-
structed from scratch, possibly terminating whatever work was going on.

The opposite approach is to manage group membership in a distributed way.
In an open group, an outsider can send a message to all group members
announcing its presence. In a closed group, something similar is needed (in
effect, even closed groups have to be open with respect to joining). To leave a
group, a member just sends a goodbye message to everyone.

So far, all of this is straightforward. However, there are two issues associ-
ated with group membership that are a bit trickier. First, if a member crashes, it
effectively leaves the group. The trouble is, there is no polite announcement of
this fact as there is when a process leaves voluntarily. The other members have
to discover this experimentally by noticing that the crashed member no longer
responds to anything. Once it is certain that the crashed member is really down,
it can be removed from the group.

The other knotty issue is that leaving and joining have to be synchronous
with messages being sent. In other words, starting at the instant that a process
has joined a group, it must receive all messages sent to that group. Similarly, as
soon as a process has left a group, it must not receive any more messages from
the group, and the other members must not receive any more messages from it.
One way of making sure that a join or leave is integrated into the message
stream at the right place is to convert this operation into a message sent to the
whole group.

One final issue relating to group membership is what to do if so many
machines go down that the group can no longer function at all. Some protocol is
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needed to rebuild the group. Invariably, some process will have to take the ini-
tiative to start the ball rolling, but what happens if two or three try at the same
time? The protocol will have to be able to withstand this.

Group Addressing

In order to send a message to a group, a process must have some way of
specifying which group it means. In other words, groups need to be addressed,
just as processes do. One way is to give each group a unique address, much like
a process address. If the network supports multicast, the group address can be
associated with a multicast address, so that every message sent to the group
address can be multicast. In this way, the message will be sent to all those
machines that need it, and no others.

If the hardware supports broadcast but not multicast, the message can be
broadcast. Every kernel will then get it and extract from it the group address. If
none of the processes on the machine is a member of the group, the broadcast is
simply discarded. Otherwise, it is passed to all group members.

Finally, if neither multicast nor broadcast is supported, the kernel on the
sending machine will have to have a list of machines that have processes
belonging to the group. The kernel then sends each one a point-to-point mes-
sage. These three implementation methods are shown in Fig. 2-33. The thing to
notice is that in all three cases, a process just sends a message to a group address
and it is delivered to all the members. How that happens is up to the operating
system. The sender is not aware of the size of the group or whether communica-
tion is implemented by multicasting, broadcasting, or unicasting.

Kernel
discards
message
9597 P3999 FPOPS
0 W A 1 L S S . [ s A
) J T J J J k J
1 Multicast 1 Broadcast 3 Unicasts
(a) (b} (e}

Fig. 2-33. Process O sending to a group consisting of processes 1, 3, and 4.
(a) Multicast implementation. (b) Broadcast implementation. (c¢) Unicast im-
plementation.

A second method of group addressing is to require the sender to provide an
explicit list of all destinations (e.g., IP addresses). When this method is used,
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the parameter in the call to send that specifies the destination is a pointer to a list
of addresses. This method has the serious drawback that it forces user processes
(i.e., the group members) to be aware of precisely who is a member of which
group. In other words, it is not transparent. Furthermore, whenever group
membership changes, the user processes must update their membership lists. In
Fig. 2-33, this administration can easily be done by the kernels to hide it from
the user processes.

Group communication also allows a third, and quite novel method of
addressing as well, which we will call predicate addressing. With this system,
each message is sent to all members of the group (or possibly the entire system)
using one of the methods described above, but with a new twist. Each message
contains a predicate (Boolean expression) to be evaluated. The predicate can
involve the receiver’s machine number, its local variables, or other factors. If
the predicate evaluates to TRUE, the message is accepted. If it evaluates to
FALSE, the message is discarded. Using this scheme it is possible, for example,
to send a message to only those machines that have at least 4M of free memory
and which are willing to take on a new process.

Send and Receive Primitives

Ideally, point-to-point and group communication should be merged into a
single set of primitives. However, if RPC is the usual user communication
mechanism, rather than raw send and receive, it is hard to merge RPC and group
communication. Sending a message to a group cannot be modeled as a pro-
cedure call. The primary difficulty is that with RPC, the client sends one mes-
sage to the server and gets back one answer. With group communication there
are potentially n different replies. How can a procedure call deal with n replies?
Consequently, a common approach is to abandon the (two-way) request/reply
model underlying RPC and go back to explicit calls for sending and receiving
(one-way model).

The library procedures that processes call to invoke group communication
may be the same as for point-to-point communication or they may be different.
If the system is based on RPC, user processes never call send and receive
directly anyway, so there is less incentive to merge the point-to-point and group
primitives. If user programs directly call send and receive themselves, there is
something to be said for doing group communication with these existing primi-
tives instead of inventing a new set.

Suppose, for the moment, that we wish to merge the two forms of communi-
cation. To send a message, one of the parameters of send indicates the destina-
tion. If it is a process address, a single message is sent to that one process. If it
is a group address (or a pointer to a list of destinations), a message is sent to all
members of the group. A second parameter to send points to the message.
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The call can be buffered or unbuffered, blocking or nonblocking, reliable or
not reliable, for both the point-to-point and group cases. Generally, these
choices are made by the system designers and are fixed, rather than being select-
able on a per message basis. Introducing group communication does not change
this.

Similarly, receive indicates a willingness to accept a message, and possibly
blocks until one is available. If the two forms of communication are merged,
receive completes when either a point-to-point message or a group message
arrives. However, since these two forms of communication are frequently used
for different purposes, some systems introduce new library procedures, say,
group_send and group_receive, so a process can indicate whether it wants a
point-to-point or a group message.

In the design just described, communication is one-way. Replies are
independent messages in their own right and are not associated with previous
requests. Sometimes this association is desirable, to try to achieve more of the
RPC flavor. In this case, after sending a message, a process is required to call
getreply repeatedly to collect all the replies, one at a time.

Atomicity

A characteristic of group communication that we have alluded to several
times is the all-or-nothing property. Most group communication systems are
designed so that when a message is sent to a group, it will either arrive correctly
at all members of the group, or at none of them. Situations in which some
members receive a message and others do not are not permitted. The property
of all-or-nothing delivery is called atomicity or atomic broadcast.

Atomicity is desirable because it makes programming distributed systems
much easier. When any process sends a message to the group, it does not have
to worry about what to do if some of them do not get it. For example, in a repli-
cated distributed data base system, suppose that a process sends a message to all
the data base machines to create a new record in the data base, and later sends a
second message to update it. If some of the members miss the message creating
the record, they will not be able to perform the update and the data base will
become inconsistent. Life is just a lot simpler if the system guarantees that
every message is delivered to all the members of the group, or if that is not pos-
sible, that it is not delivered to any, and that failure is reported back to the
sender so it can take appropriate action to recover.

Implementing atomic broadcast is not quite as simple as it looks. The
method of Fig. 2-33 fails because receiver overrun is possible at one or more
machines. The only way to be sure that every destination receives every mes-
sage is to require them to send back an acknowledgement upon message receipt.
As long as machines never crash, this method will do.
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However, many distributed systems aim at fault tolerance, so for them it is
essential that atomicity also holds even in the presence of machine failures. In
this light, all the methods of Fig. 2-33 are inadequate because some of the initial
messages might not arrive due to receiver overrun, followed by the sender’s
crashing. Under these circumstances, some members of the group will have
received the message and others will not have, precisely the situation that is
unacceptable. Worse yet, the group members that have not received the mes-
sage do not even know they are missing anything, so they cannot ask for a
retransmission. Finally, with the sender now down, even if they did know, there
is no one to provide the message.

Nevertheless, there is hope. Here is a simple algorithm that demonstrates
that atomic broadcast is at least possible. The sender starts out by sending a
message to all members of the group. Timers are set and retransmissions sent
where necessary. When a process receives a message, if it has not yet seen this
particular message, it, too, sends the message to all members of the group (again
with timers and retransmissions if necessary). If it has already seen the mes-
sage, this step is not necessary and the message is discarded. No matter how
many machines crash or how many packets are lost, eventually all the surviving
processes will get the message. Later we will describe more efficient algorithms
for ensuring atomicity.

Message Ordering

To make group communication easy to understand and use, two properties
are required. The first one is atomic broadcast, as discussed above. It ensures
that a message sent to the group arrives at either all members or at none of them.
The second property concerns message ordering. To see what the issue is here,
consider Fig. 2-34, in which we have five machines, each with one process.
Processes 0, 1, 3, and 4 belong to the same group. Processes 0 and 4 want to
send a message to the group simultaneously. Assume that multicasting and
broadcasting are not available, so that each process has to send three separate
(unicast) messages. Process 0 sends to 1, 3, and 4; process 4 sends to 0, 1, and
3. These six messages are shown interleaved in time in Fig. 2-34(a).

The trouble is that when two processes are contending for access to a LAN,
the order in which the messages are sent is nondeterministic. In Fig. 2-34(a) we
see that (by accident), process 0 has won the first round and sends to process 1.
Then process 4 wins three rounds in a row and sends to processes 0, 1, and 3.
Finally, process O gets to send to 3 and 4. The order of these six messages is
shown in different ways in the two parts of Fig. 2-34.

Now consider the situation as viewed by processes 1 and 3 as shown in
Fig. 2-34(b). Process 1 first receives a message from 0, then immediately
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Fig. 2-34. (a) The three messages sent by processes 0 and 4 are interleaved in
time. (b) Graphical representation of the six messages, showing the arrival
order.

afterward it receives one from 4. Process 3 does not receive anything initially,
then it receives messages from 4 and 0, in that order. Thus the two messages
arrive in a different order. If processes 0 and 4 are both trying to update the
same record in a data base, 1 and 3 end up with different final values. Needless
to say, this situation is just as bad as one in which a (true hardware multicast)
message sent to the group arrives at some members and not at others (atomicity
failure). Thus to make programming reasonable, a system has to have well-
defined semantics with respect to the order in which messages are delivered.

The best guarantee is to have all messages delivered instantaneously and in
the order in which they were sent. If process O sends message A and then
slightly later, process 4 sends message B, the system should first deliver A to all
members of the group, and then deliver B to all members of the group. That
way, all recipients get all messages in exactly the same order. This delivery pat-
tern is something that programmers can understand and base their software on.
We will call this global time ordering, since it delivers all messages in the
exact order in which they were sent (conveniently ignoring the fact that accord-
ing to Einstein’s special theory of relativity there is no such thing as absolute
global time).

Absolute time ordering is not always easy to implement, so some systems
offer various watered-down variations. One of these is consistent time order-
ing, in which if two messages, say A and B, are sent close together in time, the
system picks one of them as being “first” and delivers it to all group members,
followed by the other. It may happen that the one chosen as first was not really
first, but since no one knows this, the argument goes, system behavior should
not depend on it. In effect, messages are guaranteed to arrive at all group
members in the same order, but that order may not be the real order in which
they were sent.

Even weaker time orderings have been used. We will study one of these,
based on the idea of causality, when we come to ISIS later in this chapter.
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Overlapping Groups

As we mentioned earlier, a process can be a member of multiple groups at
the same time. This fact can lead to a new kind of inconsistency. To see the
problem, look at Fig. 2-35, which shows two groups, 1 and 2. Processes A, B,
and C are members of group 1. Processes B, C, and D are members of group 2.

Fig. 2-35. Four processes, A, B, C, and D, and four messages. Processes B
and C get the messages from A and D in a different order.

Now suppose that processes A and D each decide simultaneously to send a
message to their respective groups, and that the system uses global time ordering
within each group. As in our previous example, unicasting is used. The mes-
sage order is shown in Fig. 2-35 by the numbers 1 through 4. Again we have the
situation where two processes, in this case B and C, receive messages in a dif-
ferent order. B first gets a message from A followed by a message from D. C
gets them in the opposite order.

The culprit here is that although there is a global time ordering within each
group, there is not necessarily any coordination among multiple groups. Some
systems support well-defined time ordering among overlapping groups and oth-
ers do not. (If the groups are disjoint, the issue does not arise.) Implementing
time ordering among different groups is frequently difficult to do, so the ques-
tion arises as to whether it is worth it.

Scalability

Our final design issue is scalability. Many algorithms work fine as long as
all the groups only have a few members, but what happens when there are tens,
hundreds, or even thousands of members per group? Or thousands of groups?
Also, what happens when the system is so large that it no longer fits on a single
LAN, so multiple LANs and gateways are required? And what happens when
the groups are spread over several continents?

The presence of gateways can affect many properties of the implementation.
To start with, multicasting becomes more complicated. Consider, for example,
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the internetwork shown in Fig. 2-36. It consists of four LANs and four gate-
ways, to provide protection against the failure of any gateway.

LAN 1
G1 G2
LAN 2 r LAN 3
Multicast
K Gateway
G4

G3
LAN 4

Fig. 2-36. Multicasting in an internetwork causes trouble.

Imagine that one of the machines on LAN 2 issues a multicast. When the
multicast packet arrives at gateways G and G3, what should they do? If they
discard it, most of the machines will never see it, destroying its value as a multi-
cast. If, however, the algorithm is just to have gateways forward all multicasts,
then the packet will be copied to LAN 1 and LAN 4, and shortly thereafter to
LAN 3 twice. Worse yet, gateway G2 will see G4’s multicast and copy it to
LAN 2, and vice versa. Clearly, a more sophisticated algorithm involving keep-
ing track of previous packets is required to avoid exponential growth in the
number of packets multicast.

Another problem with an internetwork is that some methods of group com-
munication take advantage of the fact that only one packet can be on a LAN at
any instant. In effect, the order of packet transmission defines an absolute glo-
bal time order, which as we have seen, is frequently crucial. With gateways and
multiple networks, it is possible for two packets to be “on the wire”’ simultane-
ously, thus destroying this useful property.

Finally, some algorithms may not scale well due to their computational com-
plexity, their use of centralized components, or other factors.

2.5.3. Group Communication in ISIS

As an example of group communication, let us look at the ISIS system
developed at Cornell (Birman, 1993; Birman and Joseph, 1987a, 1987b; and Bir-
man and Van Renesse, 1994). ISIS is a toolkit for building distributed applica-
tions, for example, coordinating stock trading among all the brokers at a Wall
Street securities firm. ISIS is not a complete operating system but rather, a set
of programs that can run on top of UNIX or other existing operating systems. It
is interesting to study because it has been widely described in the literature and
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has been used for numerous real applications. In Chap. 7 we will study group
communication in Amoeba, which takes a quite different approach.

The key idea in ISIS is synchrony and the key communication primitives
are different forms of atomic broadcast. Before looking at how ISIS does
atomic broadcast, it is necessary first to examine the various forms of synchrony
it distinguishes. A synchronous system is one in which events happen strictly
sequentially, with each event (e.g., a broadcast) taking essentially zero time to
complete. For example, if process A sends a message to processes B, C, and D,
as shown in Fig. 2-37(a), the message arrives instantaneously at all the destina-
tions. Similarly, a subsequent message from D to the others also takes zero time
to be delivered everywhere. As viewed by an outside observer, the system con-
sists of discrete events, none of which ever overlap the others. This property
makes it easy to understand system behavior.

A B C D A B C D A B C D

M, A M,é:'\_{\__ . M, "
N,
—

M,

)
y

M, arrives M, arrives
before M, before M,

(a) (b) (c)

Fig. 2-37. (a) A synchronous system. (b) Loose synchrony. (c) Virtual synchrony.

Synchronous systems are impossible to build, so we need to investigate
other types of systems, with weaker requirements on time. A loosely synchro-
nous system is one like that of Fig. 2-37(b), in which events take a finite
amount of time but all events appear in the same order to all parties. In particu-
lar, all processes receive all messages in the same order. Earlier, we discussed
essentially the same idea under the name consistent time ordering.

Such systems are possible to build, but for some applications even weaker
semantics are acceptable, and the hope is to be able to capitalize on these weak
semantics to gain performance. Fig. 2-37(c) shows a virtually synchronous
system, one in which the ordering constraint has been relaxed, but in such a way
that under carefully selected circumstances, it does not matter.
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Let us look at these circumstances. In a distributed system, two events are
said to be causally related if the nature or behavior of the second one might
have been influenced in any way by the first one. Thus if A sends a message to
B, which inspects it and then sends a new message to C, the second message is
causally related to the first one, since its contents might have been derived in
part from the first one. Whether this actually happened is irrelevant. The rela-
tion holds if there might have been an influence.

Two events that are unrelated are said to be concurrent. If A sends a mes-
sage to B, and about the same time, C sends a message to D, these events are
concurrent because neither can influence the other. What virtual synchrony
really means is that if two messages are causally related, all processes must
receive them in the same (correct) order. If, however, they are concurrent, no
guarantees are made, and the system is free to deliver them in a different order
to different processes if this is easier. Thus when it matters, messages are
always delivered in the same order, but when it does not matter, they may or
may not be.

Communication Primitives in ISIS

Now we come to the broadcast primitives used in ISIS. Three of them have
been defined: ABCAST, CBCAST, and GBCAST, all with different semantics.
ABCAST provides loosely synchronous communication and is used for
transmitting data to the members of a group. CBCAST provides virtually syn-
chronous communication and is also used for sending data. GBCAST is some-
what like ABCAST, except that it is used for managing group membership
rather than for sending ordinary data.

Originally, ABCAST used a form of two-phase commit protocol that
worked like this. The sender, A, assigned a timestamp (actually just a sequence
number) to the message and sent it to all the group members (by explicitly nam-
ing them all). Each one picked its own timestamp, larger than any other time-
stamp number it had sent or received, and sent it back to A. When all of these
arrived, A chose the largest one and sent a Commit message to all the members
again containing it. Committed messages were delivered to the application pro-
grams in order of the timestamps. It can be shown that this protocol guarantees
that all messages will be delivered to all processes in the same order.

It can also be shown that this protocol is complex and expensive. For this
reason, the ISIS designers invented the CBCAST primitive, which guarantees
ordered delivery only for messages that are causally related. (The ABCAST
protocol just described has subsequently been replaced, but even the new one is
much slower than CBCAST.) The CBCAST protocol works as follows. If a
group has n members, each process maintains a vector with n components, one
per group member. The ith component of this vector is the number of the last
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message received in sequence from process i. The vectors are managed by the
runtime system, not the user processes themselves, and are initialized to zero, as
shown at the top of Fig. 2-38.

(0,0, 0) (0,0, 0) {0, 0, 0) Initial vector

My (1,0,0)

——— Time

Message M arrives but
cannot be delivered yet

After My arrives and is
delivered to the application
program, M, can also be
delivered to it

Fig. 2-38. Messages can be delivered only when all causally earlier messages
have already been delivered.

When a process has a message to send, it increments its own slot in its vec-
tor, and sends the vector as part of the message. When M in Fig. 2-38 gets to
B, a check is made to see if it depends on anything that B has not yet seen. The
first component of the vector is one higher than B’s own first component, which
is expected (and required) for a message from A, and the others are the same, so
the message is accepted and passed to the group member running on B. If any
other component of the incoming vector had been larger than the corresponding
component of B’s vector, the message could not have been delivered yet.

Now B sends a message of its own, M,, to C, which arrives before M.
From the vector, C sees that B had already received one message from A before
M, was sent, and since it has not yet received anything from A, M, is buffered
until a message from A arrives. Under no conditions may it be delivered before
A’s message.

The general algorithm for deciding whether to pass an incoming message to
the user process or delay it can now be stated. Let V; be the ith component of
the vector in the incoming message, and L; be the ith component of the vector
stored in the receiver’s memory. Suppose that the message was sent by j. The
first condition for acceptance is V; =L; + 1. This simply states that this is the
next message in sequence from j, that is, no messages have been missed. (Mes-
sages from the same sender are always causally related.) The second condition
for acceptance is V; <L; for all i # j. This condition simply states that the
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sender has not seen any message that the receiver has missed. If an incoming
message passes both tests, the runtime system can pass it to the user process
without delay. Otherwise, it must wait.

In Fig. 2-39 we show a more detailed example of the vector mechanism.
Here process O has sent a message containing the vector (4, 6, 8, 2, 1, 5) to the
other five members of its group. Process 1 has seen the same messages as pro-
cess 0 except for message 7 just sent by process 1 itself, so the incoming mes-
sage passes the test, is accepted, and can be passed up to the user process. Pro-
cess 2 has missed message 6 sent by process 1, so the incoming message must
be delayed. Process 3 has seen everything the sender has seen, and in addition
message 7 from process 1, which apparently has not yet gotten to process 0, so
the message is accepted. Process 4 missed the previous message from O itself.
This omission is serious, so the new message will have to wait. Finally, process
5 is also slightly ahead of 0, so the message can be accepted immediately.

Vectorin a
message sent
by process 0 State of the vectors at the other machines
\o_ "1 2 3 4 5
— il i - —
[ 4 ] 3 | 3 | 3 | 2 | 3]
| 6 ] 17 ] Ex [ 7 ] 6 | 7 |
8, |8] 8 | 8 | 8 | 8 |
2 2 | 2 ] 2 | 2 | 3]
[ 1] [ 1] [ 1] 1) [ 1] [ 1|
5 | 5 | 5 ] |5 | 5 | 5 |
Accept Delay Accept Delay Accept

Fig. 2-39. Examples of the vectors used by CBCAST.

ISIS also provides fault tolerance and support for message ordering for over-
lapping groups using CBCAST. The algorithms used are somewhat compli-
cated, though. For details, see (Birman et al., 1991).

2,6. SUMMARY

The key difference between a centralized operating system and a distributed
one is the importance of communication in the latter. Various approaches to
communication in distributed systems have been proposed and implemented.
For relatively slow, wide-area distributed systems, connection-oriented layered
protocols such as OSI and TCP/IP are sometimes used because the main prob-
lem to be overcome is how to transport the bits reliably over poor physical lines.
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For LAN-based distributed systems, layered protocols are rarely used.
Instead, a much simpler model is usually adopted, in which the client sends a
message to the server and the server sends back a reply to the client. By elim-
inating most of the layers, much higher performance can be achieved. Many of
the design issues in these message-passing systems concern the communication
primitives: blocking versus nonblocking, buffered versus unbuffered, reliable
versus unreliable, and so on.

The problem with the basic client-server model is that conceptually inter-
process communication is handled as 1/O. To present a better abstraction,
remote procedure call is widely used. With RPC, a client running on one
machine calls a procedure running on another machine. The runtime system,
embodied in stub procedures, handles collecting parameters, building messages,
and the interface with the kernel to actually move the bits.

Although RPC is a step forward above raw message passing, it has its own
problems. The correct server has to be located. Pointers and complex data
structures are hard to pass. Global variables are difficult to use. The exact
semantics of RPC are tricky because clients and servers can fail independently
of one another. Finally, implementing RPC efficiently is not straightforward
and requires careful thought.

RPC is limited to those situations where a single client wants to talk to a sin-
gle server. When a collection of processes, for example, replicated file servers,
need to communicate with each other as a group, something else is needed. Sys-
tems such as ISIS provide a new abstraction for this purpose: group communica-
tion. ISIS offers a variety of primitives, the most important of which is
CBCAST. CBCAST offers weakened communication semantics based on
causality and implemented by including sequence number vectors in each mes-
sage to allow the receiver to see whether the message should be delivered
immediately or delayed until some prior messages have arrived.

PROBLEMS

1. In many layered protocols, each layer has its own header. Surely it would
be more efficient to have a single header at the front of each message with
all the control in it than all these separate headers. Why is this not done?

2. What is meant by an open system? Why are some systems not open?

3. What is the difference between a connection-oriented and connectionless
communication protocol?
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. An ATM system is transmitting cells at the OC-3 rate. Each packet is 48

bytes long, and thus fits into a cell. An interrupt takes 1 usec. What frac-
tion of the CPU is devoted to interrupt handling? Now repeat this problem
for 1024-byte packets.

What is the probability that a totally garbled ATM header will be accepted
as being correct?

Suggest a simple modification to Fig. 2-9 that reduces network traffic.

If the communication primitives in a client-server system are nonblocking, a
call to send will complete before the message has actually been sent. To
reduce overhead, some systems do not copy the data to the kernel, but
transmit it directly from user space. For such a system, devise two ways in
which the sender can be told that the transmission has been completed and
the buffer can be reused.

. In many communication systems, calls to send set a timer to guard against

hanging the client forever if the server crashes. Suppose that a fault-tolerant
system is implemented using multiple processors for all clients and all
servers, so the probability of a client or server crashing is effectively zero.
Do you think it is safe to get rid of timeouts in this system?

When buffered communication is used, a primitive is normally available for
user processes to create mailboxes. In the text it was not specified whether
this primitive must specify the size of the mailbox. Give an argument each
way.

In all the examples in this chapter, a server can only listen to a single
address. In practice, it is sometimes convenient for a server to listen to mul-
tiple addresses at the same time, for example, if the same process performs
a set of closely related services that have been assigned separate addresses.
Invent a scheme by which this goal can be accomplished.

Consider a procedure incr with two integer parameters. The procedure adds
one to each parameter. Now suppose that it is called with the same variable
twice, for example, as incr(i, i). If i is initially O, what value will it have
afterward if call-by-reference is used? How about if copy/restore is used?

Pascal has a construction called a record variant, in which a field of a record
can hold any one of several alternatives. At run time, there is no sure-fire
way to tell which one is in there. Does this feature of Pascal have any
implications for remote procedure call? Explain your answer.

The usual sequence of steps in an RPC involves trapping to the kemel to
have the message sent from the client to the server. Suppose that a special
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co-processor chip for doing network I/O exists and that this chip is directly
addressable from user space. Would it be worth having? What steps would
an RPC consist of in that case?

The SPARC chip uses a 32-bit word in big endian format. If a SPARC
sends the integer 2 to a 486, which is little endian, what numerical value
does the 486 see?

One way to handle parameter conversion in RPC systems is to have each
machine send parameters in its native representation, with the other one
doing the translation, if need be. In the text it was suggested that the native
system could be indicated by a code in the first byte. However, since locat-
ing the first byte in the first word is precisely the problem, can this work, or
is the book wrong?

In Fig. 2-23 the deregister call to the binder has the unique identifier as one
of the parameters. Is this really necessary? After all, the name and version
are also provided, which uniquely identifies the service.

Reading the first block of a file from a remote file server is an idempotent
operation. What about writing the first block?

For each of the following applications, do you think at least once semantics
or at most once semantics is best? Discuss.

(a) Reading and writing files from a file server.
(b) Compiling a program.
(c) Remote banking.

Suppose that the time to do a null RPC (i.e., 0 data bytes) is 1.0 msec, with
an additional 1.5 msec for every 1K of data. How long does it take to read
32K from the file server in a single 32K RPC? How about as 32 1K RPCs?

How can atomic broadcast be used to manage group membership?

When a computation runs for a long time, it is sometimes wise to make
checkpoints periodically, that is, to save the state of the process on disk in
case it crashes. In that way, the process can be restarted from the check-
point instead of from the beginning. Try to devise a way of checkpointing a
computation that consists of multiple processes running in parallel.

Imagine that in a particular distributed system all the machines are redun-
dant multiprocessors, so that the possibility of a machine crashing is so low
that it can be ignored. Devise a simple method for implementing global
time-ordered atomic broadcast using only unicasting. (Hint: Arrange the
machines in a logical ring.)



Synchronization in Distributed
Systems

In Chap. 2, we saw how processes in a distributed system communicate with
one another. The methods used include layered protocols, request/reply mes-
sage passing (including RPC), and group communication. While communica-
tion is important, it is not the entire story. Closely related is how processes
cooperate and synchronize with one another. For example, how are critical
regions implemented in a distributed system, and how are resources allocated?
In this chapter we will study these and other issues related to interprocess
cooperation and synchronization in distributed systems.

In single CPU systems, critical regions, mutual exclusion, and other syn-
chronization problems are generally solved using methods such as semaphores
and monitors. These methods are not well suited to use in distributed systems
because they invariably rely (implicitly) on the existence of shared memory.
For example, two processes that are interacting using a semaphore must both be
able to access the semaphore. If they are running on the same machine, they can
share the semaphore by having it stored in the kernel, and execute system calls
1o access it. If, however, they are running on different machines, this method no
longer works, and other techniques are needed. Even seemingly simple matters,
such as determining whether event A happened before or after event B, require
careful thought.

We will start out by looking at time and how it can be measured, because
time plays a major role in some synchronization methods. Then we will look at
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mutual exclusion and election algorithms. After that we will study a high-level
synchronization technique called atomic transactions. Finally, we will look at
deadlock in distributed systems.

3.1. CLOCK SYNCHRONIZATION

Synchronization in distributed systems is more complicated than in central-
ized ones because the former have to use distributed algorithms. Itis usually not
possible (or desirable) to collect all the information about the system in one
place, and then let some process examine it and make a decision as is done in
the centralized case. In general, distributed algorithms have the following pro-
perties:

1. The relevant information is scattered among multiple machines.
2 Processes make decisions based only on local information.

3. A single point of failure in the system should be avoided.

4. No common clock or other precise global time source exists.

The first three points all say that it is unacceptable to collect all the information
in a single place for processing. For example, to do resource allocation (assign-
ing 1/O devices in a deadlock-free way), it is generally not acceptable to send all
the requests to a single manager process, which examines them all and grants or
denies requests based on information in its tables. In a large system, such a
solution puts a heavy burden on that one process.

Furthermore, having a single point of failure like this makes the system
unreliable. Ideally, a distributed system should be more reliable than the indivi-
dual machines. If one goes down, the rest should be able to continue to func-
tion. Having the failure of one machine (e.g., the resource allocator) bring a
large number of other machines (its customers) to a grinding halt is the last thing
we want. Achieving synchronization without centralization requires doing
things in a different way from traditional operating systems.

The last point in the list is also crucial. In a centralized system, time is
unambiguous. When a process wants to know the time, it makes a system call
and the kernel tells it. If process A asks for the time, and then a little later pro-
cess B asks for the time, the value that B gets will be higher than (or possibly
equal to) the value A got. It will certainly not be lower. In a distributed system,
achieving agreement on time is not trivial.

Just think, for a moment, about the implications of the lack of global time on
the UNIX make program, as a single example. Normally, in UNIX, large pro-
grams are split up into multiple source files, so that a change to one source file
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only requires one file to be recompiled, not all the files. If a program consists of
100 files, not having to recompile everything because one file has been changed
greatly increases the speed at which programmers can work.

The way make normally works is simple. When the programmer has fin-
ished changing all the source files, he starts make, which examines the times at
which all the source and object files were last modified. If the source file
input.c has time 2151 and the corresponding object file input.o has time 2150,
make knows that input.c has been changed since input.o was created, and thus
input.c must be recompiled. On the other hand, if output.c has time 2144 and
output.o has time 2145, no compilation is needed here. Thus make goes through
all the source files to find out which ones need to be recompiled and calls the
compiler to recompile them.

Now imagine what could happen in a distributed system in which there is no
global agreement on time. Suppose that output.o has time 2144 as above, and
shortly thereafter output.c is modified but is assigned time 2143 because the
clock on its machine is slightly slow, as shown in Fig. 3-1. Make will not call
the compiler. The resulting executable binary program will then contain a mix-
ture of object files from the old sources and the new sources. It will probably
not work, and the programmer will go crazy trying to understand what is wrong
with the code.

Time according

Computer on 2144 21.45 21‘46 21,47 to local clock

which compiler t + }
runs

output.o created

Time according

Computer on 21142 2143 21‘44 21‘45 0 local clock

which editor & +

runs \
output.c created

Time —»

Fig. 3-1. When each machine has its own clock, an event that occurred after
another event may nevertheless be assigned an earlier time.

Since time is so basic to the way people think, and the effect of not having
all the clocks synchronized can be so dramatic, as we have just seen, it is fitting
that we begin our study of synchronization with the simple question: Is it possi-
ble to synchronize all the clocks in a distributed system?

3.1.1. Logical Clocks

Nearly all computers have a circuit for keeping track of time. Despite the
widespread use of the word ““clock” to refer to these devices, they are not actu-
ally clocks in the usual sense. Timer is perhaps a better word. A computer
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timer is usualtly a precisely machined quartz crystal. When kept under tension,
quartz crystals oscillate at a well-defined frequency that depends on the kind of
crystal, how it is cut, and the amount of tension. Associated with each crystal
are two registers, a counter and a holding register. Each oscillation of the
crystal decrements the counter by one. When the counter gets to zero, an inter-
rupt is generated and the counter is reloaded from the holding register. In this
way, it is possible to program a timer to generate an interrupt 60 times a second,
or at any other desired frequency. Each interrupt is called one clock tick.

When the system is booted initially, it usually asks the operator to enter the
date and time, which is then converted to the number of ticks after some known
starting date and stored in memory. At every clock tick, the interrupt service
procedure adds one to the time stored in memory. In this way, the (software)
clock is kept up to date.

With a single computer and a single clock, it does not matter much if this
clock is off by a small amount. Since all processes on the machine use the same
clock, they will still be internally consistent. For example, if the file input.c has
time 2151 and file input.o has time 2150, make will recompile the source file,
even if the clock is off by 2 and the true times are 2153 and 2152, respectively.
All that really matters are the relative times.

As soon as multiple CPUs are introduced, each with its own clock, the situa-
tion changes. Although the frequency at which a crystal oscillator runs is usu-
ally fairly stable, it is impossible to guarantee that the crystals in different com-
puters all run at exactly the same frequency. In practice, when a system has n
computers, all n crystals will run at slightly different rates, causing the
(software) clocks gradually to get out of sync and give different values when
read out. This difference in time values is called clock skew. As a consequence
of this clock skew, programs that expect the time associated with a file, object,
process, or message to be correct and independent of the machine on which it
was generated (i.e., which clock it used) can fail, as we saw in the make exam-
ple above.

This brings us back to our original question, whether it is possible to syn-
chronize all the clocks to produce a single, unambiguous time standard. In a
classic paper, Lamport (1978) showed that clock synchronization is possible and
presented an algorithm for achieving it. He extended his work in (Lamport,
1990).

Lamport pointed out that clock synchronization need not be absolute. If two
processes do not interact, it is not necessary that their clocks be synchronized
because the lack of synchronization would not be observable and thus could not
cause problems. Furthermore, he pointed out that what usually matters is not
that all processes agree on exactly what time it is, but rather, that they agree on
the order in which events occur. In the make example above, what counts is
whether input.c is older or newer than input.o, not their absolute creation times.
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For many purposes, it is sufficient that all machines agree on the same time.
It is not essential that this time also agree with the real time as announced on the
radio every hour. For running make, for example, it is adequate that all
machines agree that it is 10:00, even if it is really 10:02. Thus for a certain class
of algorithms, it is the internal consistency of the clocks that matters, not
whether they are particularly close to the real time. For these algorithms, it is
conventional to speak of the clocks as logical clocks.

When the additional constraint is present that the clocks must not only be
the same, but also must not deviate from the real time by more than a certain
amount, the clocks are called physical clocks. In this section we will discuss
Lamport’s algorithm, which synchronizes logical clocks. In the following sec-
tions we will introduce the concept of physical time and show how physical
clocks can be synchronized.

To synchronize logical clocks, Lamport defined a relation called happens-
before. The expression ¢ — b is read “‘a happens before b and means that all
processes agree that first event a occurs, then afterward, event b occurs. The
happens-before relation can be observed directly in two situations:

1. If @ and b are events in the same process, and a occurs before b,
then ¢ — b is true.

2. If a is the event of a message being sent by one process, and b is
the event of the message being received by another process, then
a — b is also true. A message cannot be received before it is sent,
or even at the same time it is sent, since it takes a finite amount of
time to arrive.

Happens-before is a transitive relation, soif a > b and b — ¢, then a — c.
If two events, x and y, happen in different processes that do not exchange mes-
sages (not even indirectly via third parties), then x — y is not true, but neither is
y — x. These events are said to be concurrent, which simply means that noth-
ing can be said (or need be said) about when they happened or which is first.

What we need is a way of measuring time such that for every event, a, we
can assign it a time value C(a) on which all processes agree. These time values
must have the property that if @ — b, then C(a) < C(b). To rephrase the condi-
tions we stated carlier, if @ and b are two events within the same process and a
occurs before b, then C(a) < C(b). Similarly, if @ is the sending of a message
by one process and b is the reception of that message by another process, then
C(a) and C(b) must be assigned in such a way that everyone agrees on the
values of C(a) and C(b) with C(a) < C(b). In addition, the clock time, C,
must always go forward (increasing), never backward (decreasing). Corrections
to time can be made by adding a positive value, never by subtracting one.

Now let us look at the algorithm Lamport proposed for assigning times to
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events. Consider the three processes depicted in Fig. 3-2(a). The processes run
on different machines, each with its own clock, running at its own speed. As
can be seen from the figure, when the clock has ticked 6 times in process 0, it
has ticked 8 times in process 1 and 10 times in process 2. Each clock runs at a
constant rate, but the rates are different due to differences in the crystals.
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Fig. 3-2. (a) Three processes, each with its own clock. The clocks run at dif-
ferent rates. (b) Lamport’s algorithm corrects the clocks.

At time 6, process 0 sends message A to process 1. How long this message
takes to arrive depends on whose clock you believe. In any event, the clock in
process 1 reads 16 when it arrives. If the message carries the starting time, 6, in
it, process 1 will conclude that it took 10 ticks to make the journey. This value
is certainly possible. According to this reasoning, message B from 1 to 2 takes
16 ticks, again a plausible value.

Now comes the fun part. Message C from 2 to 1 leaves at 60 and arrives at
56. Similarly, message D from 1 to O leaves at 64 and arrives at 54. These
values are clearly impossible. It is this situation that must be prevented.

Lamport’s solution follows directly from the happened-before relation.
Since C left at 60, it must arrive at 61 or later. Therefore, each message carries
the sending time, according to the sender’s clock. When a message arrives and
the receiver’s clock shows a value prior to the time the message was sent, the
receiver fast forwards its clock to be one more than the sending time. In Fig. 3-
2(b) we see that C now arrives at 61. Similarly, D arrives at 70.

With one small addition, this algorithm meets our requirements for global
time. The addition is that between every two events, the clock must tick at least
once. If a process sends or receives two messages in quick succession, it must
advance its clock by (at least) one tick in between them.
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In some situations, an additional requirement is desirable: no two events
ever occur at exactly the same time. To achieve this goal, we can attach the
number of the process in which the event occurs to the low-order end of the
time, separated by a decimal point. Thus if events happen in processes 1 and 2,
both with time 40, the former becomes 40.1 and the latter becomes 40.2.

Using this method, we now have a way to assign time to all events in a dis-
tributed system subject to the following conditions:

1. If a happens before b in the same process, C (a) < C (b).

2. If a and b represent the sending and receiving of a message,
C(a) < C(b).

3. For all events a and b, C (a) # C (b).

This algorithm gives us a way to provide a total ordering of all events in the sys-
tem. Many other distributed algorithms need such an ordering to avoid ambigui-
ties, so the algorithm is widely cited in the literature.

3.1.2. Physical Clocks

Although Lamport’s algorithm gives an unambiguous event ordering, the
time values assigned to events are not necessarily close to the actual times at
which they occur. In some systems (e.g., real-time systems), the actual clock
time is important. For these systems external physical clocks are required. For
reasons of efficiency and redundancy, multiple physical clocks are generally
considered desirable, which yields two problems: (1) How do we synchronize
them with real-world clocks, and (2) How do we synchronize the clocks with
cach other?

Before answering these questions, let us digress slightly to see how time is
actually measured. It is not nearly as simple as one might think, especially
when high accuracy is required. Since the invention of mechanical clocks in the
17th century, time has been measured astronomically. Every day, the sun
appears to rise on the eastern horizon, climbs to a maximum height in the sky,
and sinks in the west. The event of the sun’s reaching its highest apparent point
in the sky is called the transit of the sun. This event occurs at about noon each
day. The interval between two consecutive transits of the sun is called the solar
day. Since there are 24 hours in a day, each containing 3600 seconds, the solar
second is defined as exactly 1/86400th of a solar day. The geometry of the
mean solar day calculation is shown in Fig. 3-3.

In the 1940s, it was established that the period of the earth’s rotation is not
constant. The earth is slowing down due to tidal friction and atmospheric drag.
Based on studies of growth patterns in ancient coral, geologists now believe that
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Earth’s orbit

A transit of the sun
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Fig. 3-3. Computation of the mean solar day.

300 million years ago there were about 400 days per year. The length of the
year, that is, the time for one trip around the sun, is not thought to have changed;
the day has simply become longer. In addition to this long-term trend, short-
term variations in the length of the day also occur, probably caused by tur-
bulence deep in the earth’s core of molten iron. These revelations led astrono-
mers to compute the length of the day by measuring a large number of days and
taking the average before dividing by 86,400. The resulting quantity was called
the mean solar second.

With the invention of the atomic clock in 1948, it became possible to meas-
ure time much more accurately, and independent of the wiggling and wobbling
of the earth, by counting transitions of the cesium 133 atom. The physicists took
over the job of timekeeping from the astronomers, and defined the second to be
the time it takes the cesium 133 atom to make exactly 9,192,631,770 transitions.
The choice of 9,192,631,770 was made to make the atomic second equal to the
mean solar second in the year of its introduction. Currently, about 50 labora-
tories around the world have cesium 133 clocks. Periodically, each laboratory
tells the Bureau International de I’'Heure (BIH) in Paris how many times its
clock has ticked. The BIH averages these to produce International Atomic
Time, which is abbreviated TAI. Thus TAI is just the mean number of ticks of
the cesium 133 clocks since midnight on Jan. 1, 1958 (the beginning of time)
divided by 9,192,631,770.

Although TAI is highly stable and available to anyone who wants to go to
the trouble of buying a cesium clock, there is a serious problem with it; 86,400
TAI seconds is now about 3 msec less than a mean solar day (because the mean
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solar day is getting longer all the time). Using TAI for keeping time would
mean that over the course of the years, noon would get earlier and earlier, until it
would eventually occur in the wee hours of the morning. People might notice
this and we could have the same kind of situation as occurred in 1582 when
Pope Gregory XIII decreed that 10 days be omitted from the calendar. This
event caused riots in the streets because landlords demanded a full month’s rent
and bankers a full month’s interest, while employers refused to pay workers for
the 10 days they did not work, to mention only a few of the conflicts. The Pro-
testant countries, as a matter of principle, refused to have anything to do with
papal decrees and did not accept the Gregorian calendar for 170 years.
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Leap seconds introduced into UTC to
get it in SYNC with TAI

Fig. 3-4. TAI seconds are of constant length, unlike solar seconds. Leap
seconds are introduced when necessary to keep in phase with the sun.

BIH solves the problem by introducing leap seconds whenever the
discrepancy between TAI and solar time grows to 800 msec. The use of leap
seconds is illustrated in Fig. 3-4. This correction gives rise to a time system
based on constant TAI seconds but which stays in phase with the apparent
motion of the sun. It is called Universal Coordinated Time, but is abbreviated
as UTC. UTC is the basis of all modemn civil timekeeping. It has essentially
replaced the old standard, Greenwich Mean Time, which is astronomical time.

Most electric power companies base the timing of their 60-Hz or 50-Hz
clocks on UTC, so when BIH announces a leap second, the power companies
raise their frequency to 61 Hz or 51 Hz for 60 or 50 sec, to advance all the
clocks in their distribution area. Since | sec is a noticeable interval for a com-
puter, an operating system that needs to keep accurate time over a period of
years must have special software to account for leap seconds as they are
announced (unless they use the power line for time, which is usually too crude).
The total number of leap seconds introduced into UTC so far is about 30.

To provide UTC to people who need precise time, the National Institute of
Standard Time (NIST) operates a shortwave radio station with call letters WWV
from Fort Collins, Colorado. WWY broadcasts a short pulse at the start of each
UTC second. The accuracy of WWYV itself is about £1 msec, but due to random
atmospheric fluctuations that can affect the length of the signal path, in practice
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the accuracy is no better than £10 msec. In England, the station MSF, operating
from Rugby, Warwickshire, provides a similar service, as do stations in several
other countries.

Several earth satellites also offer a UTC service. The Geostationary
Environment Operational Satellite can provide UTC accurately to 0.5 msec, and
some other satellites do even better.

Using either shortwave radio or satellite services requires an accurate
knowledge of the relative position of the sender and receiver, in order to com-
pensate for the signal propagation delay. Radio receivers for WWV, GEOS, and
the other UTC sources are commercially available. The cost varies from a few
thousand dollars each to tens of thousands of dollars each, being more for the
better sources. UTC can also be obtained more cheaply, but less accurately, by
telephone from NIST in Fort Collins, but here too, a correction must be made for
the signal path and modem speed. This correction introduces some uncertainty,
making it difficult to obtain the time with extremely high accuracy.

3.1.3. Clock Synchronization Algorithms

If one machine has a WWYV receiver, the goal becomes keeping all the other
machines synchronized to it. If no machines have WWV receivers, each
machine keeps track of its own time, and the goal is to keep all the machines
together as well as possible. Many algorithms have been proposed for doing this
synchronization (e.g., Cristian, 1989; Drummond and Babaoglu, 1993; and
Kopetz and Ochsenreiter, 1987). A survey is given in (Ramanathan et al.,
1990b).

All the algorithms have the same underlying model of the system, which we
will now describe. Each machine is assumed to have a timer that causes an
interrupt H times a second. When this timer goes off, the interrupt handler adds
1 to a software clock that keeps track of the number of ticks (interrupts) since
some agreed-upon time in the past. Let us call the value of this clock C. More
specifically, when the UTC time is 7, the value of the clock on machine p is
Cp(#). In a perfect world, we would have Cp(t) =t for all p and all ¢. In other
words, dC /dt ideally should be 1.

Real timers do not interrupt exactly H times a second. Theoretically, a timer
with H =60 should generate 216,000 ticks per hour. In practice, the relative
error obtainable with modern timer chips is about 107>, meaning that a particular
machine can get a value in the range 215,998 to 216,002 ticks per hour. More
precisely, if there exists some constant p such that

ac
l-p<—< 1+
P dt P

the timer can be said to be working within its specification. The constant p is



128 SYNCHRONIZATION IN DISTRIBUTED SYSTEMS CHAP. 3

specified by the manufacturer and is known as the maximum drift rate. Slow,
perfect, and fast clocks are shown in Fig. 3-5.

Clock time, C

UTC, t

Fig. 3-5. Not all clocks tick precisely at the correct rate.

If two clocks are drifting from UTC in the opposite direction, at a time Az
after they were synchronized, they may be as much as 2p Ar apart. If the operat-
ing system designers want to guarantee that no two clocks ever differ by more
than 8, clocks must be resynchronized (in software) at least every 8/2p seconds.
The various algorithms differ in precisely how this resynchronization is done.

Cristian’s Algorithm

Let us start with an algorithm that is well suited to systems in which one
machine has a WWYV receiver and the goal is to have all the other machines stay
synchronized with it. Let us call the machine with the WWYV receiver a time
server. Our algorithm is based on the work of Cristian (1989) and prior work.
Periodically, certainly no more than every 8/2p seconds, each machine sends a
message to the time server asking it for the current time. That machine responds
as fast as it can with a message containing its current time, Cyyc, as shown in
Fig. 3-6.

As a first approximation, when the sender gets the reply, it can just set its
clock to Cyye. However, this algorithm has two problems, one major and one
minor. The major problem is that time must never run backward. If the
sender’s clock is fast, Cyre will be smaller than the sender’s current value of C.
Just taking over Cyre could cause serious problems, such as an object file com-
piled just after the clock change having a time earlier than the source which was
modified just before the clock change.
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" Fig. 3-6. Getting the current time from a time server.

Such a change must be introduced gradually. One way is as follows. Sup-
pose that the timer is set to generate 100 interrupts per second. Normally, each
interrupt would add 10 msec to the time. When slowing down, the interrupt rou-
tine adds only 9 msec each time, until the correction has been made. Similarly,
the clock can be advanced gradually by adding 11 msec at each interrupt instead
of jumping it forward all at once.

The minor problem is that it takes a nonzero amount of time for the time
server’s reply to get back to the sender. Worse yet, this delay may be large and
vary with the network load. Cristian’s way of dealing with it is to attempt to
measure it. It is simple enough for the sender to record accurately the interval
between sending the request to the time server and the arrival of the reply. Both
the starting time, T, and the ending time, T 1, are measured using the same
clock, so the interval will be relatively accurate, even if the sender’s clock is off
from UTC by a substantial amount.

In the absence of any other information, the best estimate of the message
propagation time is (T — T,/2. When the reply comes in, the value in the mes-
sage can be increased by this amount to give an estimate of the server’s current
time. If the theoretical minimum propagation time is known, other properties of
the time estimate can be calculated.

This estimate can be improved if it is known approximately how long it
takes the time server to handle the interrupt and process the incoming message.
Let us call the interrupt handling time /. Then the amount of the interval from
Ty to T that was devoted to message propagation is 7| — T — I, so the best
estimate of the one-way propagation time is half this. Systems do exist in which
messages from A to B systematically take a different route than messages from B
to A, and thus have a different propagation time, but we will not consider such
systems here.

To improve the accuracy, Cristian suggested making not one measurement,
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but a series of them. Any measurements in which T — T exceeds some thres-
hold value are discarded as being victims of network congestion and thus unreli-
able. The estimates derived from the remaining probes can then be averaged to
get a better value. Alternatively, the message that came back fastest can be
taken to be the most accurate since it presumably encountered the least traffic
underway and thus is the most representative of the pure propagation time.

The Berkeley Algorithm

In Cristian’s algorithm, the time server is passive. Other machines ask it for
the time periodically. All it does is respond to their queries. In Berkeley UNIX,
exactly the opposite approach is taken (Gusella and Zatti, 1989). Here the time
server (actually, a time daemon) is active, polling every machine periodically to
ask what time it is there. Based on the answers, it computes an average time and
tells all the other machines to advance their clocks to the new time or slow their
clocks down until some specified reduction has been achieved. This method is
suitable for a system in which no machine has a WWV receiver. The time
daemon’s time must be set manually by the operator periodically. The method
is illustrated in Fig. 3-7.
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Fig. 3-7.(a) The time daemon asks all the other machines for their clock
values. (b) The machines answer. (c) The time daemon tells everyone how to
adjust their clock.

In Fig. 3-7(a), at 3:00, the time daemon tells the other machines its time and
asks for theirs. In Fig. 3-7(b), they respond with how far ahead or behind the

time daemon they are. Armed with these numbers, the time daemon computes
the average and tells each machine how to adjust its clock [see Fig. 3-7(c)].
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Averaging Algorithms

Both of the methods described above are highly centralized, with the usual
disadvantages. Decentralized algorithms are also known. One class of decen-
tralized clock synchronization algorithms works by dividing time into fixed-
length resynchronization intervals. The ith interval starts at T + iR and runs
until Ty + (£ +1)R, where T is an agreed upon moment in the past, and R is a
system parameter. At the beginning of each interval, every machine broadcasts
the current time according to its clock. Because the clocks on different
machines do not run at exactly the same speed, these broadcasts will not happen
precisely simultancously.

After a machine broadcasts its time, it starts a local timer to collect all other
broadcasts that arrive during some interval S. When all the broadcasts arrive, an
algorithm is run to compute a new time from them. The simplest algorithm is
Just to average the values from all the other machines. A slight variation on this
theme is first to discard the m highest and m lowest values, and average the rest.
Discarding the extreme values can be regarded as self defense against up to m
faulty clocks sending out nonsense.

Another variation is to try to correct each message by adding to it an esti-
mate of the propagation time from the source. This estimate can be made from
the known topology of the network, or by timing how long it takes for probe
messages to be echoed.

Additional clock synchronization algorithms are discussed in the literature
(e.g., Lundelius-Welch and Lynch, 1988; Ramanathan et al., 1990a; and Sri-
kanth and Toueg, 1987).

Multiple External Time Sources

For systems in which extremely accurate synchronization with UTC is
required, it is possible to equip the system with multiple receivers for WWV,
GEOS, or other UTC sources. However, due to inherent inaccuracy in the time
source itself as well as fluctuations in the signal path, the best the operating sys-
tem can do is establish a range (time interval) in which UTC falls. In general,
the various time sources will produce different ranges, which requires the
machines attached to them to come to agreement.

To reach this agreement, each processor with a UTC source can broadcast
its range periodically, say, at the precise start of each UTC minute. None of the
processors will get the time packets instantaneously. Worse yet, the delay
between transmission and reception depends on the cable distance and number
of gateways that the packets have to traverse, which is different for each (UTC
source, processor) pair. Other factors can also play a role, such as delays due to
collisions when multiple machines try to transmit on an Ethernet at the same
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instant. Furthermore, if a processor is busy handling a previous packet, it may
not even look at the time packet for a considerable number of milliseconds,
introducing additional uncertainty into the time. In Chap. 10 we will examine
how clocks are synchronized in OSF’s DCE.

3.1.4. Use of Synchronized Clocks

Only quite recently has the necessary hardware and software for synchroniz-
ing clocks on a wide scale (e.g., over the entire Internet) become easily avail-
able. With this new technology, it is possible to keep millions of clocks syn-
chronized to within a few milliseconds of UTC. New algorithms that utilize
synchronized clocks are just starting to appear. Below we summarize two of the
examples discussed by Liskov (1993).

At-Most-Once Message Delivery

Our first example concerns how to enforce at-most-once message delivery to
a server, even in the face of crashes. The traditional approach is for each mes-
sage to bear a unique message number, and have each server store all the
numbers of the messages it has seen so it can detect new messages from
retransmissions. The problem with this algorithm is that if a server crashes and
reboots, it loses its table of message numbers. Also, for how long should mes-
sage numbers be saved?

Using time, the algorithm can be modified as follows. Now, every message
carries a connection identifier (chosen by the sender) and a timestamp. For each
connection, the server records in a table the most recent timestamp it has seen.
If any incoming message for a connection is lower than the timestamp stored for
that connection, the message is rejected as a duplicate.

To make it possible to remove old timestamps, each server continuously
maintains a global variable

G = CurrentTime — MaxLifetime — MaxClockSkew

where MaxLifetime is the maximum time a message can live and MaxClockSkew
is how far from UTC the clock might be at worst. Any timestamp older than G
can safely be removed from the table because all messages that old have died
out already. If an incoming message has an unknown connection identifier, it is
accepted if its timestamp is more recent than G and rejected if its timestamp is
older than G because anything that old surely is a duplicate. In effect, G is a
summary of the message numbers of all old messages. Every AT, the current
time is written to disk.

When a server crashes and then reboots, it reloads G from the time stored on
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disk and increments it by the update period, AT. Any incoming message with a
timestamp older than G is rejected as a duplicate. As a consequence, every mes-
sage that might have been accepted before the crash is rejected. Some new mes-
sages may be incorrectly rejected, but under all conditions the algorithm main-
tains at-most-once semantics.

Clock-Based Cache Consistency

Our second example concerns cache consistency in a distributed file system.
For performance reasons, it is desirable for clients to be able to cache files
locally. However, caching introduces potential inconsistency if two clients
modify the same. file at the same time. The usual solution is to distinguish
between caching a file for reading and caching a file for writing. The disadvan-
tage of this scheme is that if a client has a file cached for reading, before another
client can get a copy for writing, the server has to first ask the reading client to
invalidate its copy, even if the copy was made hours ago. This extra overhead
can be eliminated using synchronized clocks.

The basic idea is that when a client wants a file, it is given a lease on it that
specifies how long the copy is valid (Gray and Cheriton, 1989). When the lease
is about to expire, the client can ask for it to be renewed. If a lease expires, the
cached copy may no longer be used. In this way when a client needs to read a
file once, it can ask for it. When the lease expires, it just times out; there is no
need to explicitly send a message telling the server that it has been purged from
the cache.

If a lease has expired and the file (still cached) is needed again shortly
thereafter, the client can ask the server if the copy it has (identified by a time-
stamp) is still the current one. If so, a new lease is generated, but the file need
not be retransmitted.

If one or more clients have a file cached for reading and then another client
wants to write on the file, the server has to ask the readers to prematurely ter-
minate their leases. If one or more of them has crashed, the server can just wait
until the dead server’s lease times out. In the traditional algorithm, where
permission-to-cache must be returned explicitly from the client to the server, a
problem occurs if the server asks the client or clients to return the file (i.e., dis-
card it from its cache) and there is no response. The server cannot tell if the
client is dead or merely slow. With the timer-based algorithm, the server can
Just wait and let the lease expire.

In addition to these two algorithms, Liskov (1993) also describes how syn-
chronized clocks can be used to time out tickets used in distributed system
authentication, and handle commitment in atomic transactions. As timer syn-
chronization gets better, no doubt new applications for it will be found.
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3.2. MUTUAL EXCLUSION

Systems involving multiple processes are often most easily programmed
using critical regions. When a process has to read or update certain shared data
structures, it first enters a critical region to achieve mutual exclusion and ensure
that no other process will use the shared data structures at the same time. In
single-processor systems, critical regions are protected using semaphores, moni-
tors, and similar constructs. We will now look at a few examples of how critical
regions and mutual exclusion can be implemented in distributed systems. For a
taxonomy and bibliography of other methods, see (Raynal, 1991). Other work is
discussed in (Agrawal and El Abbadi, 1991; Chandy et al., 1983; and Sanders,
1987).

3.2.1. A Centralized Algorithm

The most straightforward way to achieve mutual exclusion in a distributed
system is to simulate how it is done in a one-processor system. One process is
elected as the coordinator (e.g., the one running on the machine with the highest
network address). Whenever a process wants to enter a critical region, it sends a
request message to the coordinator stating which critical region it wants to enter
and asking for permission. If no other process is currently in that critical region,
the coordinator sends back a reply granting permission, as shown in Fig. 3-8(a).
When the reply arrives, the requesting process enters the critical region.

© 066 000 ONONO
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Request eques A No reply Release
OK OK
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Queue is
empty
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Fig. 3-8. (a) Process 1 asks the coordinator for permission to enter a critical
region. Permission is granted. (b) Process 2 then asks permission to enter the
same critical region. The coordinator does not reply. (c) When process 1 exits
the critical region, it tells the coordinator, which then replies to 2.

Now suppose that another process, 2 in Fig. 3-8(b), asks for permission to
enter the same critical region. The coordinator knows that a different process is

already in the critical region, so it cannot grant permission. The exact method
used to deny permission is system dependent. In Fig. 3-8(b), the coordinator just
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refrains from replying, thus blocking process 2, which is waiting for a reply.
Alternatively, it could send a reply saying “permission denied.” Either way, it
queues the request from 2 for the time being.

When process 1 exits the critical region, it sends a message to the coordina-
tor releasing its exclusive access, as shown in Fig. 3-8(c). The coordinator takes
the first item off the queue of deferred requests and sends that process a grant
message. If the process was still blocked (i.e., this is the first message to it), it
unblocks and enters the critical region. If an explicit message has already been
sent denying permission, the process will have to poll for incoming traffic, or
block later. Either way, when it sees the grant, it can enter the critical region.

It is easy to see that the algorithm guarantees mutual exclusion: the coordi-
nator only lets one process at a time into each critical region. It is also fair,
since requests are granted in the order in which they are received. No process
ever waits forever (no starvation). The scheme is easy to implement, too, and
requires only three messages per use of a critical region (request, grant, release).
It can also be used for more general resource allocation rather than just manag-
ing critical regions.

The centralized approach also has shortcomings. The coordinator is a single
point of failure, so if it crashes, the entire system may go down. If processes
normally block after making a request, they cannot distinguish a dead coordina-
tor from ‘“‘permission denied” since in both cases no message comes back. In
addition, in a large system, a single coordinator can become a performance
bottleneck.

3.2.2. A Distributed Algorithm

Having a single point of failure is frequently unacceptable, so researchers
have looked for distributed mutual exclusion algorithms. Lamport’s 1978 paper
on clock synchronization presented the first one. Ricart and Agrawala (1981)
made it more efficient. In this section we will describe their method.

Ricart and Agrawala’s algorithm requires that there be a total ordering of all
events in the system. That is, for any pair of events, such as messages, it must
be unambiguous which one happened first. Lamport’s algorithm presented in
Sec. 3.1.1 is one way to achieve this ordering and can be used to provide time-
stamps for distributed mutual exclusion.

The algorithm works as follows. When a process wants to enter a critical
region, it builds a message containing the name of the critical region it wants to
enter, its process number, and the current time. It then sends the message to all
other processes, conceptually including itself. The sending of messages is
assumed to be reliable; that is, every message is acknowledged. Reliable group
communication if available, can be used instead of individual messages.
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When a process receives a request message from another process, the action
it takes depends on its state with respect to the critical region named in the mes-
sage. Three cases have to be distinguished:

1. 1If the receiver is not in the critical region and does not want to
enter it, it sends back an OK message to the sender.

2 If the receiver is already in the critical region, it does not reply.
Instead, it queucs the request.

3. If the receiver wants to enter the critical region but has not yet done
so, it compares the timestamp in the incoming message with the
one contained in the message that it has sent everyone. The lowest
one wins. If the incoming message is lower, the receiver sends
back an OK message. If its own message has a lower timestamp,
the receiver queues the incoming request and sends nothing.

After sending out requests asking permission to enter a critical region, a pro-
cess sits back and waits until everyone else has given permission. As soon as all
the permissions are in, it may enter the critical region. When it exits the critical
region, it sends OK messages to all processes on its queue and deletes them all
from the queue.

Let us try to understand why the algorithm works. If there is no conflict, it
clearly works. However, suppose that two processes try to enter the same criti-
cal region simultaneously, as shown in Fig. 3-9(a).
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8 critical
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Fig. 3-9. (a) Two processes want to enter the same critical region at the same
moment. (b) Process 0 has the lowest timestamp, so it wins. (¢) When process
0 is done, it sends an OK also, so 2 can now enter the critical region.

Process O sends everyone a request with timestamp 8, while at the same
time, process 2 sends everyone a request with timestamp 12. Process 1 is not
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interested in entering the critical region, so it sends OK to both senders.
Processes 0 and 2 both see the conflict and compare timestamps. Process 2 sees
that it has lost, so it grants permission to O by sending OK. Process 0 now
queues the request from 2 for later processing and enters the critical region, as
shown in Fig. 3-9(b). When it is finished, it removes the request from 2 from its
queue and sends an OK message to process 2, allowing the latter to enter its crit-
ical region, as shown in Fig. 3-9(c). The algorithm works because in the case of
a conflict, the lowest timestamp wins and everyone agrees on the ordering of the
timestamps.

Note that the situation in Fig. 3-9 would have been essentially different if
process 2 had sent its message earlier in time so that process 0 had gotten it and
granted permission before making its own request. In this case, 2 would have
noticed that it itself was in a critical region at the time of the request, and
queued it instead of sending a reply.

As with the centralized algorithm discussed above, mutual exclusion is
guaranteed without deadlock or starvation. The number of messages required
per entry is now 2(n — 1), where the total number of processes in the system is 7.
Best of all, no single point of failure exists.

Unfortunately, the single point of failure has been replaced by n points of
failure. If any process crashes, it will fail to respond to requests. This silence
will be interpreted (incorrectly) as denial of permission, thus blocking all subse-
quent attempts by all processes to enter all critical regions. Since the probability
of one of the n processes failing is n times as large as a single coordinator fail-
ing, we have managed to replace a poor algorithm with one that is n times worse
and requires much more network traffic to boot.

The algorithm can be patched up by the same trick that we proposed earlier.
When a request comes in, the receiver always sends a reply, either granting or
denying permission. Whenever either a request or a reply is lost, the sender
times out and keeps trying until either a reply comes back or the sender con-
cludes that the destination is dead. After a request is denied, the sender should
block waiting for a subsequent OK message.

Another problem with this algorithm is that either a group communication
primitive must be used, or each process must maintain the group membership
list itself, including processes entering the group, leaving the group, and crash-
ing. The method works best with small groups of processes that never change
their group memberships.

Finally, recall that one of the problems with the centralized algorithm is that
making it handle all requests can lead to a bottleneck. In the distributed algo-
rithm, all processes are involved in all decisions concerning entry into critical
regions. If one process is unable to handle the load, it is unlikely that forcing
everyone to do exactly the same thing in parallel is going to help much.

Various minor improvements are possible to this algorithm. For example,
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getting permission from everyone to enter a critical region is really overkill. All
that is needed is a method to prevent two processes from entering the critical
region at the same time. The algorithm can be modified to allow a process to
enter a critical region when it has collected permission from a simple majority of
the other processes, rather than from all of them. Of course, in this variation,
after a process has granted permission to one process to enter a critical region, it
cannot grant the same permission to another process until the first one has
released that permission. Other improvements are also possible (e.g., Mackawa
et al., 1987).

Nevertheless, this algorithm is slower, more complicated, more expensive,
and less robust that the original centralized one. Why bother studying it under
these conditions? For one thing, it shows that a distributed algorithm is at least
possible, something that was not obvious when we started. Also, by pointing out
the shortcomings, we may stimulate future theoreticians to try to produce algo-
rithms that are actually useful. Finally, like eating spinach and learning Latin in
high school, some things are said to be good for you in some abstract way.

3.2.3. A Token Ring Algorithm

A completely different approach to achieving mutual exclusion in a distri-
buted system is illustrated in Fig. 3-10. Here we have a bus network, as shown
in Fig. 3-10(a), (e.g., Ethernet), with no inherent ordering of the processes. In
software, a logical ring is constructed in which each process is assigned a posi-
tion in the ring, as shown in Fig. 3-10(b). The ring positions may be allocated in
numerical order of network addresses or some other means. It does not matter
what the ordering is. All that matters is that each process knows who is next in
line after itself.

When the ring is initialized, process 0 is given a token. The token circulates
around the ring. It is passed from process k to process k +1 (modulo the ring
size) in point-to-point messages. When a process acquires the token from its
neighbor, it checks to see if it is attempting to enter a critical region. If so, the
process enters the region, does all the work it needs to, and leaves the region.
After it has exited, it passes the token along the ring. It is not permitted to enter
a second critical region using the same token.

If a process is handed the token by its neighbor and is not interested in enter-
ing a critical region, it just passes it along. As a consequence, when no
processes want to enter any critical regions, the token just circulates at high
speed around the ring.

The correctness of this algorithm is evident. Only one process has the token
at any instant, so only one process can be in a critical region. Since the token
circulates among the processes in a well-defined order, starvation cannot occur.
Once a process decides it wants to enter a critical region, at worst it will have to
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Fig. 3-10. (a) An unordered group of processes on a network. (b) A logical
ring constructed in software.

wait for every other process to enter and leave one critical region,

As usual, this algorithm has problems too. If the toke