
AltSearch
v 1.3.2

Introduction

AltSearch works just like a normal Find-and-Replace function of Writer, but the difference is that
AltSearch offers easy access to document features such as paragraph/character styles, footnotes,
tables, frames, bookmarks, hyperlinks, etc. and also powerful syntax to specify typical search and
replace conditions.

AltSearch provides many extra features compared to the standard OOo Find dialog:

• Fast selection of preset RegEx (Regular Expressions) and extended regular expressions

• Counting of the number of occurrences of the found expression using the Count button

• Search or replace strings can contain one or more paragraphs

• Search or replace strings can contain hexadecimal or decimal characters

• Searching for manual page and column breaks, and adding or removing them

• Searching for a block of paragraphs delimited by two text marks

• Once text string is found, the selection can be expanded or reduced by a specified number of
characters

• Multiple searches and replacements can be done in one step

• Searching can be done in hyperlinks, bookmarks, Notes, Text fields, Cross-references and
Reference marks, either for their content, their name or target marker.

You can also use these properties in the “Replace” operation.

• Tables, Pictures and Text frames can be searched according to their name. You can substitute
them with any text, text content, object's name or the clipboard contents.

• Searching and inserting of Footnotes and Endnotes (from OOo version 2.3). You can select
the text of all footnotes or endnotes at once and to assign them any style.

• Searching for text that is similar to, or has the same formatting as, the text at the cursor point

• Subexpressions within the search string can be replaced individually by placing them inside
parentheses () and referring to them in the replacement string as \1, \2 ...to \9 in order

• The paragraph style, character style, list style, text properties and Hyperlink URL can be set
for the search or replace text

• You can replace the found text with clipboard contents, a counter of the number of
replacements, or the page number where it is found.

• You can redirect the results of replacement to another text file

• Batch mode operation: The search and replace parameters can be saved and re-loaded.

You can save several search-and-replace operations in a sequence and quickly execute the
whole set later with a single command.

• You can assign hotkeys (keyboard shortcuts) to the saved batch operations.

• Preserve capitalization option: If the found text begins with a capital letter, you can
optionally capitalize the first word of the replacement text.

• While searching for character style, you can choose a style from the drop-down list.

• You can search for list and paragraph styles using the 'Properties' drop-down list created
from the styles used in the target document.

• Instead of using the Replace section in AltSearch, you can simply press the Find all button.
This selects all instances of text that matches the search condition.

Now switch to Writer and carry out any formatting operation, which will be applied to all
the instances of the found text simultaneously.

Understanding the AltSearch Window

As shown above, the window has four sections:

Section What functionality is involved

Search controls This section has six controls:

1. Regular drop-down list Provides RegEx patterns to be used as
flexible search patterns.

2. Extended drop-down list Extends RegEx to Writer-specific search-
situations, such as searching inside footnote,
endnote, frame, hyperlink, bookmark, cross-
reference, etc.

3. Properties drop-down list Provides properties found in a typical Writer
document (such as paragraph/character
style, hyperlink, etc.)

4. Count button Counts the occurrence of the search pattern
in the selection (or in the entire document, if
no selection is made before launching the
search.)

5. Find button Finds the next occurrence of the search
pattern in the selection (or in the entire
document, if no selection is made before
launching the search).

6. Find all button Selects all the occurrences of the search
pattern in the selection (or in the entire
document, if no selection is made before
launching the search).

The main use of this button is to highlight
all instances of matching text, and then
switch to Writer, and apply some formatting
to all instances at once.

Replace controls This section has four controls:

1. Replace Manipulates the found text block in various
ways and presents it for replacement.

2. Pick properties This control is composed of two parts: a
button and a drop-down list.

The button actually scans the document and
creates a master list of all properties related
to page, paragraphs, character, table, frames,
footnotes, endnotes, indexes, etc. This list is
now available to you as a drop-down list.

The idea is to allow you to use one or more
of these properties in the replacement.

3. Replace This button replaces the next occurrence of
the found text block with the text and/or
properties specified in this section.

(Note that sometimes you may want to only
change some properties of the found text,
rather than replacing with the text itself.)

4. Replace all This button replaces the found text block
with the replacement text and/or properties.
(Sometimes you may only change the
property of the found text, rather than
replacing with another text block.)

Search options These check boxes provide quick options for searching (similar to the options
found in the Writer's native Find dialog.)

Batch operation
controls

A batch means multiple search-and-replace operations arranged in a
particular sequence.

AltSearch allows you to create any number of batches, save them and run any
batch whenever you want.

This section has two buttons:

1. The Batch>> button launches another window to manage batch
operations (creating batch, naming them, saving them and running
any batch).

2. The Save batch button saves the current search as a batch.

@@@How does this work?

In the following chapters, we will see these sections in details.

The Search Section

To compose a search pattern, follow these two steps:

1. Select a value from the Regular, Extended or Properties drop-down list.

The equivalent markup for the selected option will appear in the Input box below.

For example, if you click the Regular list and select the Tabulator (=Tab) option, AltSearch
adds \t to the input box where your cursor is.

In fact, it is not necessary to use the three drop-down lists at all: If you know the RegEx
syntax, it is easier to enter the markups directly. For example, you can enter \t in the input
box instead of using the Regular drop-down list.

The lists make the job much easier for you, especially if you use AltSearch rarely.

2. Now place the cursor in the input box and then enter the literal string you want to find, or
the value of the property (e.g. the font height) you want to find.

For example, suppose you want to find the string “here.” at the end of a paragraph. (Note
that there is a period at the end.)

In that case, you should follow these steps:

(a) Put the AltSearch in RegEx mode by ticking the Regular Expressions check box
(located at the bottom of the AltSearch window)

(b) Enter the RegEx string here\. in the input box.
(The RegEx expression \. represents the period.)

(c) Click on the Regular drop-down list and select the Paragraph (ending mark) option.

At this stage, the input box contains the entry here\.\p.

In that string, the here\. part is literal (AltSearch will look for its match exactly), and the
\p is a RegEx position marker that represents a paragraph-end.

Thus AltSearch will look for the string “here.” that is placed just before the end of a
paragraph. But if the same string is found anywhere else, AltSearch will ignore it.

3. Sometimes you may have to build a longer expression by repeating these two steps, as
appropriate.

Regular drop-down list

This list contains “standard” RegEx (regular expressions). Refer to Appendix to know how to use
RegEx in AltSearch.

The Extended drop-down list

This drop-down menu gives a few frequently occurring search conditions. When you select a
particular search condition, AltSearch inserts the equivalent code in the input box.

Sometimes the inserted code contains dummy parameters, which you have to edit. You may also
have to add RegEx patterns and/or literal strings to complete the search expression.

The details are given below:

To find- Inserted code How to use

Block of paragraphs (of
any length)
occurring between two
specified text strings

[::BigBlock::] start[::BigBlock::]end

In the above formula, enter a RegEx expression or
literal text in place of start and end.

AltSearch searches for the start string, and when
it is found, it looks for the end string. If both are
found, the whole block between them is selected.

In the replace string, you can use the following
parameters:

\b contents of the start string
& all the found block of paragraphs
\e contents of the end string

In the start and end expressions, you cannot
combine multiple expressions (using || delimiters).

Expands the found
selection by specified
number of characters on
both sides

[::Grow 1,1::] The default pair of numbers is dummy (replace
them with actual numbers you want).

[::Grow n1,n2::] Expr

AltSearch finds a match for the Expr RegEx
pattern. Then the found block of text will be
expanded by n1 characters to the left and n2
characters to the right.

• If you specify a negative number, the
selection will be shrunk instead of
expanded (those many characters are
removed from the original selection).

For example, if we use the search string to

To find- Inserted code How to use

[::Grow -1,-1::]text and if the
word text exists in the text, it will be
found, but only ex will be returned
because the expression cuts off one letter
from both ends.

Limitations:

If n1 or n2 are negative, and if they exceed the size
of the actual found block, the current search
operation will move the cursor position before the
found block. As a result, the next search will find
the same block. This will repeat endlessly.

Append mark || for
multiple find-and-
replace operations in
one step

|| This trick applies to a situation where you want to
search for multiple patterns, and if each of the
found string is to be replaced by a corresponding
replacement string.

• Delimit all search strings with the || sign.

• Also delimit all replacement strings with
the || sign.

For example,

Search for: text1||text2||text3
Replace: neco1||neco2||neco3

This will search for text1 and will replace it with
neco1, then continue the search for text2,
replace it by neco2, and then continue the search
for text3, replace it by neco3.

Limitation:

You cannot use || with subexpressions.

Text between ()
(inside of one
paragraph)

(\(([^\)])+\)) Finds the text enclosed within a pair of parenthesis
().

Text between []
(inside of one
paragraph)

(\[([^\]])+\]) Finds the text enclosed within a pair of square
brakets [].

Text between {}
(inside of one
paragraph)

({([^}])+}) Finds the text enclosed within a pair of curly
brackets {}.

http://www.volny.cz/macrojtb/HelpAltSearch_en.html#skupiny

To find- Inserted code How to use

Email address [a-zA-Z0-9_][-._a-
zA-Z0-9_]*[a-zA-
Z0-9_].?@[a-zA-
Z0-9_][-._a-zA-Z0-
9_]*[a-zA-Z0-9_]\.
[a-zA-Z0-9_]{2,4}

Finds an email address

Internet address (URL) (((news|http|ftp|
https|file):\/\/|
www\.)[a-zA-Z0-
9_]+((\.[a-zA-Z0-
9_]+)+)(([a-zA-Z0-
9_\-\.,@?^=%&:/~\
+#]*[a-zA-Z0-9_\-\
@?^=%&/~\+#])?))

Finds a URL; including the protocol-specifier
(HTTP, HTTPS, FTP, etc.).

HTML tag (<("[^"]*"|'[^']*'|
[^'">])*>)

Finds the HTML tag

Opening HTML tag <[^/][^>]+> Finds the opening HTML tag

Closing HTML tag </[^>]+> Finds the closing HTML tag

Searches the contents of
Notes for a string

[::Note::] All these can be used in two different ways:

1. If you don't add any arguments, AltSearch
will find the next item of the specified type:
(note, field, frame, table or picture)

2. If you add a literal string after the code,
AltSearch will find the next item that
contains that literal text (either in the name
or contents, as listed in the first column).

Limitations:

1. You can search for literal strings only: You
cannot search for a RegEx pattern.

2. In case of fields, special fields (e.g. hidden)
are not found1.

Searches the contents of
fields for a string

[::Field::]

Searches the names of
frames for a string

[::TextFrame::]

Searches the names of
tables for a string

[::TextTable::]

Searches the names of
pictures for a string

[::Picture::]

Footnote [::Footnote::] Both footnote and endnote codes behave
identically. Therefore only footnote example is
given here.

Depending upon the desired functionality, you
Endnote [::Endnote::]

1 If you have turned off the display of notes (View >Comments menu), the notes are still searchable.

To find- Inserted code How to use

have to edit the basic code as follows:

[::Footnote::] (without any argument) will
find the anchor spot of the next footnote2.

[::Footnote::]LiteralString will find the
anchor that contains the literal string3
LiteralString.

[::Footnote::]\\ will find the text of the next
footnote.

[::Footnote::]\\text will find the footnote
that contains the string text in its text (it won't
search in the anchor)

If you enter [::Footnote::]\\ and click the
Find all button, AltSearch will select the text of all
footnotes. This is handy for assigning a paragraph
style to all footnotes at once.

If you enter [::Footnote::]\\text and click
the Find all button, AltSearch will select the text
of all footnotes that contain the literal string text.

Cross-reference marker [::ReferenceMark::
]

Depending upon the desired functionality, you
have to edit the basic code as follows:

[::ReferenceMark::] will find any text set as
a reference marker

[::ReferenceMark::]text will find any text
set as a reference marker that contains substring
text

[::ReferenceMark::]\\ref1 will find any
text set as a reference marker whose name contains
the substring ref1

[::ReferenceMark::]\\\\ will find any text
set as a reference marker whose text is empty

Cross-reference

[::Reference::] Depending upon the desired functionality, you
have to edit the basic code as follows:

[::Reference::] will find all text fields of the

2 This refers to a footnote that is inserted without highlighting a text first. The anchor of such a footnote appears as a
thin vertical line where the cursor was placed while inserting the footnote. This footnote itself is an example of such
a footnote.

3 This refers to a footnote that was inserted after highlighting some text. Such a footnote is anchored to (-and applies
to-) the entire highlighted text. This footnote itself is an example of such a footnote.

To find- Inserted code How to use

cross-reference type

[::Reference::]above will find cross-
references that contain the substring above

[::Reference::]\\ref1 will find cross-
references whose name contain the substring ref1

[::Reference::]\\\\ will find cross-
references whose text is empty

Tip: First click in text that is a Reference Mark
and then choose the Reference option from
the Extended list. AltSearch copies the
corresponding source name to the Search for
box automatically. Now you can search for it
immediately.

The Properties drop-down list

This list allows you to search using type or values of the properties (attributes) of paragraphs, fonts,
etc.

When you select an option from the drop-down list, AltSearch inserts basic code in the
[:::PropertyName::] pattern. (Note that the number of colons are not equal on both sides.)

• In case of styles, it inserts the basic code in [:::PropertyName=::] pattern, where you
have to specify the desired style name after the = sign. AltSearch also pops up another
window listing the styles available in the current document. Select the desired style to
complete the search expression.

For example, [:::ParaStyleName=Heading 1::].

You can search for diverse types of properties and specify their values in a single operation. For
this, you have to delimit the property=value pairs with a | character.

For example,
[:::PropertyName1=value1|PropertyName2=value2|PropertyName3=value3::]

Limitation: The OOo search engine does not support all the existing paragraph and character
properties. Not all combinations work as expected.

Here are the specific details. (In the following table, the code looks folded only because the column
is not wide enough. The actual code is a continuous string.)

Option Inserted code Actual usage

Paragraph style [:::ParaStyleName=::
]

[:::ParaStyleName=::] will find all
whole paragraph with paragraph style other

than the Default style

[:::ParaStyleName=Example::] will find
whole paragraph with paragraph style Example

[:::ParaStyleName=Example::]
something will find text something, but
only if it is formatted with paragraph style
Example.

Limitations:

Cannot find some parts of the text with zero
length, for example, an empty paragraph.

Can not be combined simultaneously with other
text properties.

Character style [:::CharStyleName=::
]

[:::CharStyleName=::] will find part of
the text with character style another than the
Default style

[:::CharStyleName=Example::] will find
part of the text with character style Example

[:::CharStyleName=Example::]
sometext will find text sometext, but only if
it is formatted with character style Example.

Limitations:

It works in forward direction only- The
Backward option does not work (AltSearch
gives a “not found” message even when
matching text exists).

Cannot find some parts of the text with zero
length, for example, an empty paragraph.

Cannot be combined simultaneously with other
text properties.

List style [:::NumberingStyleNa
me=::]

Use is similar to searches for the paragraph
style (see above).

Hyperlink [:::HyperLinkURL::] [:::HyperLinkURL::] will find all
hyperlinks

[:::HyperLinkURL::]link will find the
part of the hyperlink containing the text link.

String in URI4 [:::HyperLinkURL=fil [:::HyperLinkURL=file:///c:/

e:///::] pokus.odt::] will search for a hyperlink
with the specified URI of the file
(c:/pokus.odt).

[:::HyperLinkURL=file:///c:/
pokus.odt::]link will find part of a
hyperlink in which the URL is the string
file:///c:/pokus.odt and in which the
text contains the text link.

Italic [:::CharPosture::] To search for bold and italic text, use-
[:::CharPosture|CharWeight::]

Bold [:::CharWeight::]

Font Name
(manually changed
name)

[:::CharFontName::]

Font Size [:::CharHeight::]

Font Color [:::CharColor::]

Font background
(Highlighting)

[:::CharBackColor::]

Underline [:::CharUnderline::]

Index (any) [:::CharEscapement::
]

AltSearch will search for a subscript or
superscript.

Subscript (Auto) [:::CharAutoEscapeme
nt=true|
CharEscapementHeight
=58|CharEscapement=-
101::]

This code looks for the subscripts with the
default settings.

Superscript (Auto) [:::CharAutoEscapeme
nt=true|
CharEscapementHeight
=58|
CharEscapement=101::
]

This code looks for the subscripts with the
default settings.

Index defined by
font size and
escapement

[:::CharEscapementHe
ight=70|
CharEscapement=30::]

This setting will search for superscript that has
relative font size of 70% and is raised/lowered
by 30%. (If the CharEscapement is -ve,
AltSearch will search for a subscript)

Similar format of [:::CharWeight::] This function loads any of the character

4 URI (Uniform Resource Identifier) is a more general form of URL (Uniform Resource Locator).

http://en.wikipedia.org/wiki/Uniform_resource_identifier

characters (based
on cursor)

attributes of the current selection that have been
manually changed and searches for similarly
formatted places.

For example, if the cursor is on text for which
the name of the font has been manually
changed, all places with a changed name of font
will be found.

In this example, the search box will contain
[:::CharFontName::].

@@@What if multiple things are changed
manually?

For example, what if font size, type are
changed; and also multiple font effects are
applied manually?

Same format of
characters (based
on cursor)

[:::CharWeight=100::
]

This function loads any of the character
attributes of the current selection that have been
manually changed and searches for identically
formatted places.

For example, if the cursor is on text where the
name of the font has been manually changed,
AltSearch will search for the same font name.

In our example, the search box will contain
[:::CharFontName=Arial::].

The Pick Properties Button

AltSearch can find all text attributes and their values used in the current selection@@@or current
document?. Just click on the Pick properties button. AltSearch scans the document and loads all
attributes and their values used in the current selection@@@or current document? in the list box
next to this button. Now click on the down-arrow and select any attribute/value.

A brief description of most of these properties can be found here.

http://api.openoffice.org/docs/common/ref/com/sun/star/style/module-ix.html

The Replacement Section

This section derives much of its content from what is actually found during the search.

Let us see how the various controls in this section handle the found text.

The Replace drop-down list

This is a heart of the replace section.

Option Inserted Code Actual usage

Whole found text & The symbol & represents the entire block of text
captured by the Search section, without any
alterations.

If the search expression used [::BigBlock::],
& represents only the block of paragraphs found
between the start and end texts.

If the search expression used [::Note::],
[::Field::], [::TextFrame::],
[::Picture::], or [::TextTable::], &
represents exactly these objects (which are
inserted using the clipboard).

This code is useful if you want to change only the
formatting of the found text.

Text content of object
(frame, table, etc)

\o Same as &. (see above)

@@@But what is the difference? Is \o a more
limited version of &, in the sense that \o works
only within objects, and not in the main
running text?

Content of start block \b Recall that the Search section uses RegEx pattern
(and not literal text) around some of the blocks.

A given RegEx pattern can match a huge variety
of actual text blocks. That is why the matched
text is represented by these codes.

Limitation: these cannot be used together with
backreferences.

@@@Does AltSearch find all possible
matches for a RegEx Pattern as it scans a
document, or does it stop looking for other
matches when it finds its first match?

Content of end block \e

Delimiting series of \b\e @@@What does this actually represent: (a)

http://www.volny.cz/macrojtb/HelpAltSearch_en.html#skupiny

paragraphs the actual found text blocks at the beginning
and end, or-

(b) The text found between the beginning and
end blocks?

Content of nth group
found inside () in
search expression

\n

Where n is serial
number of the
backreference (n ≤ 9)

Note that there is no offset in the value of n (for
example, n=2 means the second backreference.)

Only 1st level parentheses are valid; nested levels
inside them are ignored.

Example:
In order to find dates in the dd.mm.yyyy format
and replace them with dates in the yy.mm.dd
format, use the search expression (\d{1,2})\.
*(\d{1,2})\. *\d{2,2}(\d{2,2}) and use
the replace expression \3-\2-\1.

If you need to switch off the processing of
subexpressions (e.g. to preserve compatibility
with the regular expressions in Writer), you must
put the whole search expression within an
additional pair of parentheses. Then all other
nesting levels of parentheses for replacement will
be ignored.

Limitation: Using subexpressions is relatively
slow and not fully compatible with the original
search function in Writer.

There is an in incompatibility with search
wildcards placed immediately after a
subexpression, such as (opak)*, which is caused
by the principle of sequential searching of
sequential blocks of text; see here. In these cases
the Count and Find all functions return the
correct counts, but other functions (without
switching to compatibility mode) will not find
anything. In more complicated cases you will
need to examine what happens, and experiment to
get the best results.

End of paragraph
(new paragraph)

\p Use to begin a new paragraph at any specific
place in the replacement text.

Tabulator \t Use to insert a tab at any specific place in the
replacement text. (equivalent to \x0009 and \
#9)

Non-breaking space \S Use to insert a non-breaking space at any specific

place in the replacement text. (equivalent to\
x00A0 and \#160)

Manual line break \n Use to insert a manual line break at any specific
place in the replacement text. (equivalent to \
x000A and \#10)

Manual column break
before

\c Use to insert a manual column break at any
specific place in the replacement text.

Manual page break
before

\m Use to insert a manual page break before the
replacement text.

Manual page break
after

\M Use to insert a manual page break after the
replacement text.

Dissolve manual page
or column break

\r @@@How is this used?

A space inserted by
code

\x0041 (hexadecimal)

\#65 (decimal)

@@What is a typical use?

Replace the found URL
by specified URL

\h{URL} \h{}, \h (without arguments) changes the
found text to a hyperlink with a URL of an empty
string. (It effectively deletes the found URL.

The text of hyperlink stays unchanged.

Replace found
SubString by
'ReplString' in URL

\H{ReplString} To be used when search field has
[:::HyperLinkURL=substr::]. only
hyperlinks will be found whose URLs include the
substring substr. Now use \H{repl} in the
replace box to replace substr in the URLs with
replString.

Returns hyperlink's
URL of found link

\u If a URL is found, this expression represents the
found URL. If no URL is found, the expression
returns nothing.

@@@Does it capture URIs also (references to
file in the folder system)?

Paragraph style \P{Text} Sets up Paragraph style Text in the found
paragraph(s).

The style is applied to the paragraph containing
the text of the replaced expression.

To set the style to "Default", use \P or \P{}.

If this parameter is used a number of times with
inserted paragraph(s), the style is changed with
every new parameter, and is valid as far as the
end of the paragraph.

Example: If the expression is replaced using
block1\P{Subtitle}\p block2\
P{Heading 1} so block1 will be inserted and
assigned the style Subtitle, and after it a new
paragraph with text block2 will be inserted and
assigned the style Heading 1.

Character style \C{Quotation} sets up the Character style Quotation in the
found text

The style is applied on the whole text of the
replaced expression. To set to the "Default" style
use \C or \C{}. If this parameter is used a
number of times, the character style is changed
with every new parameter, and the last is valid as
far as the end of replacing expression. Example:
If the expression was replaced using block1\
C{Quotation}block2\C{Example}, block1
will be inserted with the character style
Quotation, and after it block2 will be
inserted and assigned the character style
Example.

List style \N{List 3} Sets up List style List 3 in the found
paragraph(s)

Applies analogous usage rules to those for the
parameter \P{}. List style can be removed with
\N or \N{}.

Set up property of
object to value

\
A{CharBackColor=s
Hffcc00}

Set up default
formatting by char
style

\D sets up the default formatting for the found text,
just like using Ctrl+Shift+Space

Applies analogous usage rules to those for the
parameter \C{}.

ResetAttributes in
place of use

\d resets text attributes to default only in the place of
use.

Contrary to \D it has no effect on the previously
inserted text.

Insert Footnote \F{NewFootnote} Inserts a new footnote that contains the text New
footnote in the place of replacement

Inside the curly brace it is possible to use any of
following parameters: \i, \I, &, or \1

Insert Endnote \E{NewEndnote} Inserts a new endnote in the place of
replacement; similar to \F

Insert marker+text for
cross-reference

\B{ref1|text} Inserts the text text with the marker ref1 for a
cross-reference

Inside the curly brace it is possible to use any of
following parameters: \i, \I, &, or \1

Insert cross-reference
to marker

\L{0,0,ref1} inserts a cross-reference (field) with the
parameters 0,0 and reference marker ref1

Meaning of numeral parameters:

first number Type of reference: 0 - page
number in Arabic numerals, 1 -
chapter number, 2 - the
reference text , 3 - above/below ,
4 - page number using the
numbering type defined in the
page style, 5 - category and
number of a caption, 6 - caption
text, 7 - number of a sequence
field (caption)

second number Type of the source of a reference
field; the source is : 0 -
a reference mark, 1 - a number
sequence field, 2 - a bookmark,
3 - a footnote, 4 - an endnote

Text content of object
(frame, table, picture,
etc)

\o Inserts the text content of the found object

If the expression was searched for using
[::Note::], [::Footnote::],
[::Endnote::], [::TextFrame::],
[::Picture::], or [::TextTable::], the
text inside this object will be inserted. Tables
come out with tabs between columns and
paragraphs between rows.

Limitation: The maximum size of the whole

resulting text after converting a table is limited to
65 kB.

If the expression was searched for using
[::Field::], [::Reference::], or
[::ReferenceMark::] , the displayed text of
the anchor or field will be inserted.

Name of object
(frame, table, picture,
etc)

\O Inserts the name of the found object

If the expression was searched for using:

[::TextFrame::], [::Picture::], or
[::TextTable::], the name of this object will
be inserted.

[::Note::] or [::Field::], the type of the
text field will be inserted

[::Reference::] or
[::ReferenceMark::], the name of the
reference mark will be inserted

[::Footnote::] or [::Endnote::], the
displayed text of the anchor will be inserted

Paste content of
clipboard

\v inserts the contents of the clipboard

Paste unformatted text
only

\V inserts contents of the clipboard as unformatted
text

Preserve formatting
with replace (replace
& by clipboard)

\f If & or \0 is used in the replace expression,
replacement will be realized using the clipboard.
If the found text contains text fields, notes,
references etc, they will be preserved in their
original state.

Insert counter of
replace (with Replace
all only)

\i Inserts the occurrence number of the found object
or text in a count of the occurrences in the text -
this works only if Replace all button is clicked.

Insert page number \I

Page number on which
search expression is
found

\r Inserts the page number on which the search
expression is found.

If redirection of the replace expression to another
file (\R) is used (see below), the number of the
page containing the starting position of the found

text is inserted in the other file.

Limitation: this does not work correctly in
footnotes, headers and footers.

Redirect of replacing
expression to another
file

\R Redirects the replace expression to another text
file.

This option causes the replace expression to be
inserted into new .odt file instead of replacing the
found text. The original file will stay as it is,
without changes. To enter the name of the output
file, use the format \R{filename}. The name
must have the accurate OOo window header
format, including the text " - OpenOffice.org
Writer". New records from this redirection are
always added to the end of the file.

Example:

If the search expression was searched for using
[:::HyperLinkURL::] and the replace
expression is Link \i, page \I: &
(URL: \u)\p\R, when you click the [Replace

all] button all the hyperlinks found in original file
will be listed in a new file in the form Link 1,
page 1: textOfHyperlink (URL: URLaddress) in
separate paragraphs.

Insert a character using
the hexadecimal
character code

\xhhhh

Insert a character using
the decimal character
code

\#ddddd

Pick properties Button and Drop-List

Using the Pick properties button, you can update the list of properties and their values for the
currently selected object. Now browse the drop-list and choose a property. This adds the
corresponding code in the Replace field in this format: \A{properties=value}

The rules for this are same as for \C{} (see the table above).

Running AltSearch

To launch AltSearch, click on the button in the Writer's toolbar.

Running AltSearch in Batch mode

Batch mode enables saving and loading of preset search and replace parameters. You can save
several search-and-replace operations, arrange them in a sequence and then quickly load and
execute the whole set.

You can set all parameters using the Save Batch button. In the dialog that is then shown, you will
be offered the name used for the last batch, which can be renamed. If you enter a name that already
exists, you can choose whether the old content will be overwritten or whether it will be preserved
and new content added onto the end. At the same time, the command "ReplaceAll" will
automatically be saved, with which the batch will be subsequently executed. This command can
later be changed by manually editing the batch rule file.

The Batch >> button the Batch manager dialog where you can run and edit batches. To return back
to the search dialog, use the [<< Searching] button.

All batch parameters are saved to the text file AltSearchScript.txt into the user's directory
…/OpenOffice.org2/user/config/, and you can open and edit it using the [Edit] button in the
Batch manager dialog. For editing the text, the program notepad is used by default, but you can
set it to use any other text editor by editing the file AltSearchEditor.ini in the same directory.
After manual changing and saving the file using the batch manager you can then refresh the list of
batch names using the [Refresh] button. The syntax used in the file AltSearchScript.txt is
described at the beginning of the same file, using UTF-8 encoding (from v1.1.1).

When you double-click on an item in the list, or click the [Execute] button, the chosen sequence will
be loaded and the search and replace operations will be executed. When using batches on selections
I advise leaving 1-2 empty paragraphs at the beginning and the end of the selection.

The Transfer button is used for transferring the parameters for searching, replacing and setting to
the search dialog without executing them. If the batch contains a sequence of several searches and
replacements, only the last part of the sequence will be transferred.

The Key shortcut button opens a dialog that allows you to assign a keyboard shortcut to an existing
batch. To use this:
First select the name of batch from the drop-down menu box
Second, if required, change the name of the auxiliary subroutine for OOo Basic
Third set the desired keyboard shortcut
Finally press the button [Assign]

In order for the shortcut to function, at the time of assignment an auxiliary procedure is created in
the Basic module Standard.AltSearchBatchs with a name that is adjusted according to Basic
syntax. This name is displayed in the second drop-down menu box of the dialog. When this
auxiliary procedure is run, the AltSearch dialog will be opened and immediately the specified batch
will be executed. Correct functioning depends on the compliance of the batch name listed inside the
procedure and the name of existing batch. If you change the name of batch to which a shortcut key
was previously assigned, you will need to re-assign a key shortcut (the old auxiliary procedure to
the original name can be deleted by selecting it in the second drop-down box and using the side
button [x]). Any keyboard shortcut that is used in OOo writer can be released using the lower

button [x] . So be careful not to inadvertently remove an important shortcut.

Limitations:

If limitations are known, they are mostly mentioned near of the description of individual
parameters. Generally applicable limitations:

• If the option "Current selection only" is active, pieces of text that are inside frames or tables
will not be found, even if they are inside selected blocks. Searching inside blocks is limited
to only the same text area as the selected block. Multiple selection of blocks isn't supported.

• The function "Find all" will fail to select the paragraph mark \p, because the property
"Highlighting" (the character's background colour) is used for selection, and you cannot use
this to highlight a paragraph mark. It follows that, in addition, this function is limited to texts
in which highlighting isn't used. If the document contains highlighting, a warning dialog will
appear when "Find all" is used.

• With replacement with more complicated expressions, the function "Undo" is fragmented
into partial replacement steps, so that it can easily happen that the number of undo steps
needed to restore the document to its original state will not match the expected number.

Customizing LibreOffice for frequent use of
AltSearch

if you use AltSearch frequently, it is recommended to customize LibreOffice, by following these
steps:

1. In Writer, use the menu Tools - Customize...

2. In the window that pops up, select the Keyboard tab

3. In the Category field, navigate to OpenOffice.org Macros - User - AltSearch - AltSearch

3. In the Function field, select and assign the following (suggested) shortcuts using the Modify
button:
_AltSearch: Ctrl+H (to open the Search dialog);
_FindNext: Ctrl+L (to find the next occurrence of the search string after the cursor point, without
opening the search dialog);
_FindBack: Ctrl+Shift+L (to find the occurrence of the search string before the cursor point,
without opening the search dialog).

[v1.2] From version 1.2 onwards you also can assign shortcuts directly from the AltSearch dialog -
see Batch mode

Limitations of the find-and-replace process:

1. When using the Find button, you will find the next text frame only if the frame is selected
or if the cursor is inside the frame. If the cursor is a long way away in the text, the first text
frame from the internal list of frames in the document is found. @@@Note clear: Please
explain

The Current selection only option doesn't work currently.

2. As a consequence of the problem above, the practical usability of the Replace button is very
limited.

3. The order of searching matches the order in which the text frames have been inserted into
the document and not the order within the pages of the document from the start to the end.

4. You can search only for a substring in the name of frame - you cannot use full regular
expressions. @@@what is a “frame”?

5. The regular expression syntax used in this addon is not fully compatible with OOo.

There are problems especially with searching when using the wildcard *, +, ? or
{n,n} just after subexpressions determined by parentheses ().

For example,(Mi)?ster will not be found (however, when using Count button the true
count will be returned - this function works only when using the compatible mode).
@@@explain what is “compatible mode”

Further, subexpression of the type (.*)any or (.+)any are searched for, the shortest
matching occurrence is found (In non-Greedy mode, contrary to the OOo standard search,
which will find the longest matching occurrence (in Greedy mode).

http://www.volny.cz/macrojtb/HelpAltSearch_en.html#davky

6. If it is necessary to preserve compatibility, you can delimit the whole search expression with
an extra pair of parentheses: ((Mi)?ster). But this will lose the capability to cite the
subexpression in the replace expression as a reference, i.e. \# where # is a reference number
(max. 9) of the subexpression.

7. It is also not possible to use a reference on the subexpression (determined by parentheses
()) in the search expression at the same time as in the replace expression. See also
subexpressions. @@@explain: How can back-references be used in search field?

The Find all and Replace all functions are fully functional, including the Current selection only
option. @@@explain

http://www.volny.cz/macrojtb/HelpAltSearch_en.html#skupiny

Appendix: Regular Expressions (RegEx)

The RegEx can match the literal text that you enter, just like the normal search function. RegEx
expressions are always case-sensitive. Thus cat, Cat, cAt, caT, cAT are not equivalent.

But its power lies in specifying the precise search conditions, using special RegEx patterns.

You can also create a RegEx pattern that matches a lot of different text in the document. For
example, a RegEx patten can match any email address. Another pattern can match any type of URL,
regardless of its domain (.com, .org, .gov, etc.)

The following sections explain the RegEx syntax. For more explanation, see OOo help List of
Regular Expressions.

Characters

To represent- Use RegEx- Remarks

Any character (letter/number) . c.t matches cat, cbt...czt, cAt, cBt...cZt,
c0t...c9t,

Any character from a set [characters] b[ae]t matches with bat or bet, but not bit.

Notes:

1. The characters are not to be
separated with comma or spaces.

2. The actual sequence of the character
does not matter ([ae] and [ea] are
equivalent)

3. If any character is repeated, the
duplicates are ignored. ([ae] and
[eaeeaa] are equivalent)

Repetition of a pattern

RegEx has tokens that specify repetition of a single character or a string. The repetition token acts
on the character that precedes it.

To represent- Use RegEx- Remarks

Repetition by 0 or more times * ab*c matches ac, abc, abbc, abbbc, etc.

Repetition by 0 or 1 times ? colou?r matches both color and colour

Repetition for one or more times (at
least once)

+ ab+c matches abc, abbc, abbbc, etc, but
not ac. (b has to occur at least once).

vnd.sun.star.help://sbasic/text%2Fshared%2F01%2F02100001.xhp?Language=en&System=UNIX
vnd.sun.star.help://sbasic/text%2Fshared%2F01%2F02100001.xhp?Language=en&System=UNIX

To represent- Use RegEx- Remarks

Repetition between a min and a max
number

{min,max} p{2,3} means pp or ppp; but not p, pppp,
etc.

You can omit either of the numbers.

For example, {,3} means repeat < 3 times
and {2,} means repeat >2 times.

The Escape character \

The character \ is called escape character.
It reverses the usual meaning of the character that follows.

Let us understand this with two examples:

• A period . represents a single character in RegEx. But \. means a period (literally).

• The character t (without the \) means just the literal character t, but \t means a tab.

Here are some important RegEx patterns:

To represent- Use RegEx- Remarks

Any letter (capital/small) \l Same as [:alpha:]{1,1}

Any decimal digit \d Same as [0-9]

Tab \t

Manual line break \n n stands for newline

Manual column break \c Limitation: Slow when used separately.

Manual page break \m Limitations:

Slow when used separately.

If subexpression () is used, the parameter
\m must be at the start of the search string,
and it must not be alone: \m(...) but not
(...)\m.

White space \s Same as [\xA0\x9\xA]

Non-breaking space \S \x00A0 or \#160

Custom hyphens \x00AD

To represent- Use RegEx- Remarks

Non-breaking dash \x2011

A space inserted by decimal code \#65

Dot (period) \.

Parentheses () \(\)

Square brackets [] \[\]

Some useful ReEx examples are as follows:

Expression Function Remarks

\p{1,} Will find the next end of paragraph
followed by any number of empty
paragraphs.

Same as \p*.

\p{2,4} Will find the next end-of-paragraph,
followed by at least one and at most
three consecutive empty paragraphs.

Limitations: Slow when used
separately. Sometimes there are
problems when searching
backwards.

\xhhhh A character's code as a hexadecimal
number (hhhh)

\#ddddd A character's code as a decimal number
(ddddd).

If the next character is a digit, it is
necessary to fill in zeros from the
left (pad with zeros to make up five
digits). Otherwise it is not necessary
to keep all 5 places of ddddd.

Place markers

RegEx syntax also contains some position-markers, which you can embed in the RegEx patterns:

To represent- Use RegEx- Remarks

Beginning of a paragraph ^ ^This searches for the word This, but only
if it occurs at the beginning of a paragraph.

End of a paragraph $ here\.$ will search for the string here. only
if it occurs at the end of a paragraph.

\p Similar to $ (see above)

To represent- Use RegEx- Remarks

Beginning of a word \< \<father will match father but not
grandfather or godfather.

End of a word \> father\> will match grandfather or
godfather but not fatherhood.

You can combine the markers in a single expression. For example, ^$ represents an empty
paragraph, because ^ is the position-marker for the beginning of a paragraph, and $ is the position-
marker for the end of a paragraph. So this combination (without any content in-between) represents
an empty paragraph.

Credits:

Author: Tomas Bilek – © 2007-2008
Licence: LGPL, see http://www.volny.cz/macrojtb/0gnu-lgpl_en.html

Disclaimer:

This macro is distributed WITHOUT ANY WARRANTY. Use at your own risk!

http://www.volny.cz/macrojtb/0gnu-lgpl_en.html
http://www.volny.cz/macrojtb/

	Regular drop-down list
	The Extended drop-down list
	The Properties drop-down list
	The Pick Properties Button
	The Replace drop-down list
	Pick properties Button and Drop-List
	Running AltSearch in Batch mode
	Limitations:

	Characters
	Repetition of a pattern
	The Escape character
	Place markers

