

\

PHILLIPS ACADEMY

OLIVER WENDELL-HOLMES #

LIB R ARY

IN MEMORY OF

DAVID S. TOWNEND

P.A. 19Q4

, * .V

This series of books is affectionately dedicated

to the Type 650 computer once installed at

Case Institute of Technology,

in remembrance of many pleasant evenings.

DONALD E. KNUTH Stanford University

ADDISON-WESLEY PUBLISHING COMPANY

Volume 1 / Fundamental Algorithms

THE ART OF

COMPUTER PROGRAMMING

SECOND EDITION

Reading, Massachusetts .
Menlo Park, California • London • Amsterdam • Don Mills, Ontario • Sydney

\

\

This book is in the

ADD1SON-WESLEY SERIES IN

COMPUTER SCIENCE AND INFORMATION PROCESSING

richard s. varga and michael a. harrison, Editors

COPYRIGHT © 1973, 1968 BY ADDISON-WESLEY PUBLISHING COMPANY, INC. ALL RIGHTS

RESERVED. NO PART OF" THIS PUBLICATION MAY BE REPRODUCED, STORED IN A RE¬

TRIEVAL SYSTEM, OR TRANSMITTED, IN ANY FORM OR BY ANY MEANS, ELECTRONIC,

MECHANICAL, PHOTOCOPYING, RECORDING, OR OTHERWISE, WITHOUT THE PRIOR WRIT¬

TEN PERMISSION OF THE PUBLISHER. PRINTED IN THE UNITED STATES OF AMERICA.

PUBLISHED SIMULTANEOUSLY IN CANADA. LIBRARY OF CONGRESS CATALOG CARD NO.

73-1830.

ISBN 0-201-03809-9
IJKLMNOPQR-MA-89876543210

V- 1

Here is your book, the one your thousands of letters have asked us to

publish. It has taken us years to do, checking and rechecking countless

recipes to bring you only the best, only the interesting, only the perfect.

Now we can say, without a shadow of a doubt, that every single one of them,

if you follow the directions to the letter, will work for you exactly as well

as it did for us, even if you have never cooked before.

—McCall’s Cookbook (1963)

The process of preparing programs for a digital computer is especially attractive,

not only because it can be economically and scientifically rewarding, but also

because it can be an aesthetic experience much like composing poetry or music.

This book is the first volume of a seven-volume set of books that has been de¬

signed to train the reader in the various skills which go into a programmer’s craft.

The following chapters are not meant to serve as an introduction to com¬

puter programming; the reader is supposed to have had some previous ex¬

perience. The prerequisites are actually very simple, but a beginner requires
time and practice before he* properly understands the concept of a digital com¬

puter. The reader should possess:

a) Some idea of how a stored-program digital computer works; not necessarily

the electronics, rather the manner in which instructions can be kept in the

machine’s memory and successively executed. Previous exposure to machine

language will be helpful.

b) An ability to put the solutions to problems into such explicit terms that a

computer can “understand” them. (These machines have no common sense;

they have not yet learned to “think,” and they do exactly as they are told,

no more and no less. This fact is the hardest concept to grasp when one

first tries to use a computer.)

c) Some knowledge of the most elementary computer techniques, such as

looping (performing a set of instructions repeatedly), the use of subroutines,

and the use of index registers.

d) A little knowledge of common computer jargon, e.g. “memory,” “registers,”

“bits,” “floating point,” “overflow.” Most words not defined in the text

are given brief definitions in the index at the close of each volume.

* or she. Masculine pronouns in this book are usually not intended to connote gender.

Occasional chauvinistic comments are not to be taken seriously.

820310

VI PREFACE

These four prerequisites can perhaps be summed up into the single require¬

ment that the reader should have already written and tested at least, say, four

programs for at least one computer.

I have tried to write this set of books in such a way that it will fill several

needs. In the first place, these books are reference books which summarize the

knowledge which has been Acquired in several important fields. They can also

be used as textbooks for self-study or for college courses in the computer and

information sciences. To meet both of these objectives, I have incorporated a

large number of exercises into the text and have furnished answers for most of

them; I have also made an effort to fill the pages with facts rather than with

vague, general commentary.

This set of books is intended for people who will be more than just casually

interested in computers, yet it is by no means only for the computer specialist.

Indeed, one of the main goals has been to make these programming techniques

more accessible to the many people working in other fields who can make fruitful

use of computers, yet who cannot afford the time to locate all of the necessary

information which is buried in the technical journals.

The subject of these books might be called “nonnumerical analysis.”

Although computers have traditionally been associated with the solution of

numerical problems such as the calculation of the roots of an equation, numerical

interpolation and integration, etc., topics like this are not treated here except

in passing. Numerical computer programming is a very interesting and rapidly

expanding field, and many books have been written about it. In recent years,

however, a good deal of interesting work has been done using computers for

essentially nonnumerical problems, such as sorting, translating languages,

solving mathematical problems in higher algebra and combinatorial analysis,

theorem proving, the development of “software” (programs to facilitate the

writing of other programs), and the simulation of various processes from every¬

day life. Numbers occur in such problems only by coincidence, and the com¬

puter’s decision-making capabilities are being used, rather than its ability to do

arithmetic. In nonnumerical problems, we have some use for addition and

subtraction, but we rarely feel any need for multiplication and division. Note

that even a person who is primarily concerned with numerical computer pro¬

gramming will benefit from a study of the nonnumerical techniques, for these

are present in the background of numerical programs as well.

The results of the recent research in nonnumerical analysis are scattered

throughout numerous technical journals, and at the time of writing they are

in a somewhat chaotic and disorganized state. The approach used here has

been to study those techniques which are most basic, in the sense that they can

be applied to many types of programming situations; I have attempted to

coordinate these into more or less of a “theory,” and to bring the reader up to

the present frontiers of knowledge in these areas. Applications of these basic
techniques to the design of software programs are also given.

PREFACE Vll

Of course, “nonnumerical analysis” is a terribly negative name for this

field of study, and it would be much better to have a positive, descriptive term

which characterizes the subject. “Information processing” is too broad a

designation for the material I am considering, and “programming techniques”

is too narrow. Therefore I wish to propose analysis of algorithms as an appro¬

priate name for the subject matter covered in these books; as explained more

fully in the books themselves, this name is meant to imply “the theory of the

properties of particular computer algorithms.”

It is generally very difficult to keep up with a field that is economically

profitable, and so it is only natural to expect that many of the techniques

described here will eventually be superseded by better ones. It has, of course,

been impossible for me to keep “two years ahead of the state of the art,” and

the frontiers mentioned above will certainly change. I have mixed emotions in

this respect, since I certainly hope this set of books will stimulate further re¬

search, yet not so much that the books themselves become obsolete!

Actually the majority of the algorithms presented here have already been

in use for five years or more by quite a number of different people, and so in

a sense these methods have matured to the point where they are now reasonably

well understood and are presumably in their best form. It is no longer premature,

therefore, to put them into a textbook and to expect students to learn about

them.

The complete seven-volume set of books, entitled The Art of Computer

Programming, has the following general outline:

Volume 1. Fundamental Algorithms

Chapter 1. Basic Concepts

Chapter 2. Information Structures

Volume 2. Seminumerical Algorithms

Chapter 3. Random Numbers

Chapter 4. Arithmetic

Volume 3. Sorting and Searching

Chapter 5. Sorting

Chapter 6. Searching

Volume 4- Combinatorial Algorithms

Chapter 7. Combinatorial Searching

Chapter 8. Recursion

Volume 5. Syntactical Algorithms

Chapter 9. Lexical Scanning

Chapter 10. Parsing Techniques

Vlll PREFACE

Volume 6. Theory of Languages

Chapter 11. Mathematical Linguistics

Vglume 7. Compilers

Chapter 12. ^ Programming Language Translation

I started out in 1962 to write a single book with this sequence of chapters, but

I soon found that it was more important to treat the subjects in depth rather

than to skim over them lightly. The resulting length of the text has meant

that each chapter by itself contains enough material for a one-semester college

course, so it has become sensible to publish the series in separate volumes instead

of making it into one or two huge tomes. (It may seem strange to have only one

or two chapters in an entire book, but I have decided to retain this chapter num¬

bering to facilitate cross-references. A shorter version of Volumes 1 through 5

will soon be published, intended specifically to serve as a more general textbook

for undergraduate computer courses. Its contents will be a “subset” of the

material in these books, with the more specialized information omitted; I

intend to use the same chapter numbering in this abridged edition.)

The present volume may be considered as the “intersection” of the entire

set of books, in the sense that it contains the basic material which is used in all

the other volumes. Volumes 2 through 7, on the other hand, may be read in¬

dependently of each other, except perhaps for some strong connections between

Volumes 5 and 7. Volume 1 is not only a reference book to be used in connection

with Volumes 2 through 7; it may also be used in college courses or for self-

study as a text on the subject of data structures (emphasizing the material of

Chapter 2), or as a text on the subject of discrete mathematics (emphasizing the

material of Sections 1.1, 1.2, 1.3.3, and 2.3.4), or as a text on the subject of

machine-language programming (emphasizing the material of Sections 1.3 and
1.4).

The point of view I have adopted while writing these twelve chapters

differs from that taken in many contemporary books about computer program¬

ming in that I am not trying to teach the reader how to use somebody else’s

subroutines; I am concerned rather with teaching the reader how to write better
subroutines himself!

A few words are in order about the mathematical content of this set of

books. The material has been organized so that persons with no more than a

knowledge of high school algebra may read it, skimming briefly over the more

nlathematical portions; yet a reader who is mathematically inclined will learn

about many interesting mathematical techniques related to “discrete mathe¬

matics.” This dual level of presentation has been achieved in part by assigning

“ratings” to each of the exercises so that those which are primarily mathematical

are marked specifically as such, and also by arranging most sections so that the

PREFACE IX

main mathematical results are stated before their proofs. The proofs are either

left as exercises (with answers to be found in a separate section) or they are
given at the end of a section.

A reader who is interested primarily in programming rather than in the

associated mathematics may stop reading most sections as soon as the mathe¬

matics becomes recognizably difficult. On the other hand, a mathematically

oriented reader will find a wealth of interesting material collected here. Much

of the published mathematics about computer programming has been very

faulty, and one of the purposes of this book is to instruct readers in proper

mathematical approaches to this subject. Since I myself profess to be a mathe¬

matician, it is my duty to maintain mathematical integrity as well as I can.

A knowledge of elementary calculus will suffice for most of the mathematics

in these books, since most of the other theory that is needed is developed herein;

there are some isolated places, however, in which deeper theorems of complex

variable theory, probability theory, number theory, etc. are quoted when

appropriate.

Even though computers are widely regarded as belonging to the domain of

“applied mathematics,” there are “pure mathematicians” such as myself who

have found many intriguing connections between computers and abstract

mathematics. From this standpoint, parts of these books may be thought of

as “a pure mathematician’s view of computers.”

To a layman, the electronic computer has come to symbolize the importance

of mathematics in today’s world, yet few professional mathematicians are now

closely acquainted with / the machines. One reason for this surprising (and

unfortunate) situation is that computers seem to have made some things “too

easy,” in the sense that people who no longer have to do so many things with

pencil and paper never discover the mathematical simplifications which would

aid the work. Some mathematicians occasionally resent the intrusion of com¬

puters, not because they are afraid they will lose their jobs to automation, but

because they fear there will perhaps be less necessity to give birth to invention.

On the other hand, there are obvious relations between computers and mathe¬

matics in the fields of numerical analysis, number theory, and statistics.

I wish to show that the connection between computers and mathematics is

far deeper and more intimate than these traditional relationships would imply.

The construction of a computer program from a set of basic instructions is very

similar to the construction of a mathematical proof from a set of axioms. Further¬

more, pure mathematical problems historically have always developed from

the study of practical problems arising in another field, and the advent of

computers has brought a number of these with it. Some of the problems in¬

vestigated in these books which are essentially of this type are (a) the study of

stochastic properties of particular algorithms: determination of how well they

may be expected to perform; (b) the construction of optimal algorithms, e.g.,

for sorting or for evaluating polynomials; and (c) the theory of languages.

\

X PREFACE

Besides the interesting application of mathematical tools to programming

problems, there are also interesting applications of computers to the exploration

of mathematical conjectures, e.g., in combinatorial analysis and algebra; and

in many of these cases there is considerable interplay between programming and

classical mathematics. Attempts at mechanization of mathematics are also

very important, since they lead to a greater understanding of concepts we

thought we knew (until we had to explain them to a computer). I believe the

connections between computers and pure mathematics which have been

enumerated in this paragraph will become increasingly important.

The hardest decision which I had to make while preparing these books

concerned the manner in which to present the various techniques. The ad¬

vantages of flowcharts and of an informal step-by-step description of an

algorithm are well known; for a discussion of this, see the article "Computer-

Drawn Flowcharts” in the ACM Communications, Yol. 6 (September, 1963),

pages 555-563. Yet a formal, precise language is also necessary to specify any

computer algorithm, and I needed to decide whether to use an algebraic language,

such as ALGOL or FORTRAN, or to use a machine-oriented language for this

purpose. Perhaps many of today’s computer experts will disagree with my

decision to use a machine-oriented language, but I have become convinced that

it was definitely the correct choice, for the following reasons:

a) Algebraic languages are more suited to numerical problems than to the

nonnumerical problems considered here; although programming lan¬

guages are gradually improving, today’s languages are not yet appropriate

for topics such as coroutines, input-output buffering, generating random

numbers, multiple-precision arithmetic, and many problems involving

packed data, combinatorial searching, and recursion, which appear

throughout.

b) A programmer is greatly influenced by the language in which he writes

his programs; there is an overwhelming tendency to prefer constructions

which are simplest in that language, rather than those which are best for
the machine. By writing in a machine-oriented language, the programmer

will tend to use a much more efficient method; it is much closer to reality.

c) The programs we require are, with a few exceptions, all rather short, so

with a suitable computer there will be no trouble understanding the
programs.

d) A person who is more than casually interested in computers should be

well schooled in machine language, since it is a fundamental part of a
computer.

e) Some machine language would be necessary anyway as output of the

software programs described in Chapters 1, 9, 10, and 12.

PREFACE XI

From the other point of view, it is admittedly somewhat easier to write

programs in higher-level programming languages, and it is considerably easier

to check out the programs; thus there is a large class of problems for which the

algebraic languages are much more desirable, even though the actual machine

language which corresponds to an algebraic language program is usually far

from its best possible form. Many of the problems of interest to us in this book,

however, are those for which the programmer’s art is most important; for ex¬

ample, with programs such as software routines, which are used so many times

each day in a computer installation, it is worth while to put an additional

effort into the writing of the program, since these programs need be written only
once.

Given the decision to use a machine-oriented language, which language

should be used? I could have chosen the language of a particular machine X,

but then those people who do not possess machine X would think this book is

only for Y-people. Furthermore, machine X probably has a lot of idiosyncrasies

which are completely irrelevant to the material in this book yet which must be

explained; and in two years the manufacturer of machine X will put out machine

X + 1 or machine iOY, and machine X will no longer be of interest to anyone.

(Of course, if I invent a hypothetical computer, it may already be of interest to

no one!)
To avoid this dilemma, I have attempted to design an “ideal” computer

called “MIX,” with very simple rules of operation (requiring, say, only an hour

to learn), and which is also very much like nearly every computer now in ex¬

istence. Thus MIX programs can be readily adapted to most actual machines, or

simulated on most machines.
There is no reason why a student should be afraid of learning the charac¬

teristics of more than one computer; indeed, he may expect to meet many differ¬

ent machine languages in the course of his life, and once one machine language has

been mastered, others are easily assimilated. So the only remaining disad¬

vantage of a mythical machine is that it is difficult to execute any programs

written for it. (For this purpose it is recommended that college instructors have

a MIX simulator available for running the students’ exercises. Such a simulator

has the advantage that automatic grading routines can easily be incorporated,

but it has the obvious disadvantage that it will take a few days’ work to prepare

such a program. In order to simplify this task, Chapter 1 contains a MIX

simulator written in its own language, and this program can be readily modified

for a similar machine.)

Fortunately, the field of computer science is still young enough to permit a

rather thorough study. I have tried to the best of my ability to scrutinize all

of the literature published so far about the topics treated in this set of books,

and indeed I have also read a great deal of the unpublished literature; but of

course I cannot claim to have covered the subject completely. I have written

xn PREFACE

numerous letters in an attempt to establish correctly the history of the important

ideas discussed in each chapter. In any work of this size, however, there are

bound to be a number of errors of omission and commission, in spite of the ex¬

tensive checking for accuracy that has been made. In particular, I wish to

apologize to anyone who migjit have been unintentionally slighted in the his¬

torical sections. I will greatly appreciate receiving information about any

errors noticed by the readers, so that these may be corrected as soon as possible
in future editions.

I have attempted to present an annotated bibliography of the best papers

currently available in each subject, and I have tried to choose terminology that

is concise and consistent with current usage. In referring to the literature, the

names of periodicals are given with standard abbreviations, except for the most

commonly cited journals, for which the following abbreviations are used:

C ACA1 Communications of the Association for Computing Machinery

JACM = Journal of the Association for Computing Machinery

Comp. J. = I he Computer Journal (British Computer Society)

Math. Comp. — Mathematics of Computation

AMM = American Mathematical Monthly

As an example, “CACM 6 (1963), 555-563” stands for the reference given in a
preceding paragraph of this preface.

Much of the technical content of these books appears in the exercises.

When the idea behind a nontrivial exercise is not my own, I have attempted to

give ciedit to the person who originated that idea. Corresponding references

to the literature are usually given in the accompanying text of that section, or

in the answer to that exercise, but in many cases the exercises are based on
unpublished material for which no further reference can be given.

I have, of course, received assistance from a great many people during the

five years while I was preparing these books, and for this I am extremely thank¬

ful. Acknowledgments are due, first, to my wife, Jill, for her infinite patience,

for being the first guinea pig in reading the manuscript, for preparing several

of the illustrations, and for untold further assistance of all kinds; secondly, to

the ElectroData Division of the Burroughs Corporation, for the use of its B220

and B5500 computers in the testing of most of the programs in this book and

the preparation of most of the tables, and also for the use of its excellent library

of computer literature; also to the California institute of Technology, for its

encouragement and its excellent students; to the National Science Foundation

and fhe Office of Naval Research, for supporting part of the research work; to

my father, Ervin Knuth, for assistance in the preparation of the manuscript;

and to the Addison-Wesley Publishing Company for the wonderful cooperation
which is making these books possible.

PREFACE Xlll

It has been a great pleasure working together with Robert W. Floyd, of

Carnegie Institute of Technology, who from the beginning has contributed a

great deal of his time towards the enhancement of these books. Other people

whose assistance has been quite valuable to me, especially during the early

stages of manuscript preparation, include J. D. Alanen, Webb T. Comfort,

Melvin E. Conway, N. G. de Bruijn, R. P. Dilworth, James R. Dunlap, David

E. Ferguson, Joel N. Franklin, H. W. Gould, Dennis E. Hamilton, Peter Z.

Ingerman, Edgar T. Irons, William C. Lynch, Daniel D. McCracken, John L.

McNeley, Jack N. Merner, Howard H. Metcalfe, Peter Naur, William W.

Parker, W. W. Peterson, Paul Purdom, James C. Robertson, Douglas T. Ross,

D. V. Schorre, M. P. Schiitzenberger, E. J. Schweppe, Christopher J. Shaw,

Donald L. Shell, Olga Taussky, John Todd, Michael Woodger, John W. Wrench,

Jr., and W. W. Youden. Many of these people have kindly allowed me to make

use of some of their hitherto unpublished work.

Pasadena, California

October 1967

Preface to the Second Edition

I am very grateful for the unexpectedly favorable reception enjoyed by the

first edition of this volume. In this second edition, I have gone over the entire

manuscript, making a large number of refinements and sneaking in some new

material while retaining the original page numbering. A casual, reader will

notice hardly any difference between this edition and the first, but in fact more

than 90 percent of the pages have been improved in some way.
The most substantial revisions occur in Sections 2.3.1-2.3.3, where I have

drastically altered the previous terminology for orders of tree traversal.; for¬

tunately nobody else has adopted the poor choices of names which were intro¬

duced for these orders in the first edition. Many other changes may be found

in the historical and bibliographical sections, which have been brought up

to date. _ . ,
I wish to thank my students at Stanford and the many readers who have

sent me helpful comments, especially Ole-Johan Dahl, Peter Naur, and Maurice

V. Wilkes. By now I hope that all errors have disappeared from this book;

but I will gladly pay $2.00 reward to the first finder of each remaining error,

whether it is technical, typographical, or historical.

Stanford, California

October 1973

D. E. Iv.

\

Flow chart for reading this set of books.

Procedure for Reading This
Set off Books

1. Begin reading this procedure, unless you have already begun to read it.

Continue to follow the steps faithfully. (The general form of this procedure

and its accompanying flowchart will be used throughout this book.)

2. Read the Notes on the Exercises, pp. xvii-xix.

3. Set N equal to 1.

4. Begin reading Chapter N. Do not read the quotations which appear at the

beginning of the chapter.

5. Is the subject of the chapter interesting to you? If so, go to step 7; if not,

go to step 6.

6. Is N < 2? If not, go to step 16; if so, scan through the chapter anyway.

(Chapters 1 and 2 contain important introductory material and also a review

of basic programming techniques. You should at least skim over the sec¬

tions on notation and about MIX.)

7. Begin reading the next section of the chapter; if you have reached the end

of the chapter, go to step 16.

8. Is section number marked with “*”? If so, you may omit this section on

first reading (it covers a rather specialized topic which is interesting but

not essential); go back to step 7.

9. Are you mathematically inclined? If math is all Greek to you, go to step

11; otherwise go to step 10.

10. Check the mathematical derivations made in this section (and report

errors to the author). Go to step 12.

11. If the current section is full of mathematical computations, you had better

omit reading the derivations. However, you should become familiar with

the basic results of the section; these are usually stated near the beginning

or in italics right at the very end of the hard parts.

12. Work the recommended exercises in this section in accordance with the

hints given in the Notes on the Exercises (which you read in step 2).

XV

\

Xvi PROCEDURE FOR READING THIS SET OF BOOKS

13. After you have worked on the exercises to your satisfaction, check your

answers with the answer printed in the corresponding answer section at the

rear of the book (if any answer appears for that problem). Also read the

answers to,the exercises you did not have time to work. Note: In most cases

it is reasonable to read the answer to exercise n before working on exercise

n + 1, so steps 12-13 are usually done simultaneously.

14. Are you tired? If not, go back to step 7.

15. Go to sleep. Then, wake up, and go back to step 7.

16. Increase N by one. If N = 3, 5, 7, 9, 11, or 12, begin the next volume of
this set of books.

17. If N is less than or equal to 12, go back to step 4.

18. Congratulations. Now try to get your friends to purchase a copy of volume

one and to start reading it. Also, go back to step 3.

Woe be to him that reads but one book.

— GEORGE HERBERT, Jacula Prudentum, 1144 (1640)

Le dbfaut unique de tous les outrages
c’est d'etre trop longs.

— VAUVENARGUES, Reflexions, 628 (1746)

Books are a triviality. Life alone is great.

— THOMAS CARLYLE, Journal (1839)

Notes on the Exercises

The exercises in this set of books have been designed for self-study as well as

classroom study. It is difficult, if not impossible, for anyone to learn a subject

purely by reading about it, without applying the information to specific prob¬

lems and thereby forcing himself to think about what has been read. Further¬

more, we all learn best the things that we have discovered for ourselves. There¬

fore the exercises form a major part of this work; a definite attempt has been

made to keep them as informative as possible and to select problems that are

enjoyable to solve.
In many books, easy exercises are found mixed randomly among extremely

difficult ones. This is sometimes unfortunate because the reader should have

some idea about how much time it ought to take him to do a problem before

he tackles it (otherwise he may just skip over all the problems). A classic ex¬

ample of this situation is the book Dynamic Programming by Richard Bellman;

this is an important, pioneering book in which a group of problems is collected

together at the end of some chapters under the heading "Exercises and Research

Problems,” with extremely trivial questions appearing in the midst of deep,

unsolved problems. It is rumored that someone once asked Dr. Bellman how to

tell the exercises apart from the research problems, and he replied, “If you can

solve it, it is an exercise; otherwise it’s a research problem.”
Good arguments can be made for including both research problems and very

easy exercises in a book of this kind; therefore, to save the reader from the

possible dilemma of determining which are which, rating numbers have been

provided to indicate the level of difficulty. These numbers have the following

general significance:

Rating Interpretation

00 An extremely easy exercise which can be answered immediately if the

material of the text has been understood, and which can almost always

be worked “in your head.”
10 A simple problem, which makes a person think over the material just

read, but which is by no means difficult. It should be possible to do this

in one minute at most; pencil and paper may be useful in obtaining the

solution.
20 An average problem which tests basic understanding of the text material

but which may take about fifteen to twenty minutes to answer completely.

xvii

XY111 NOTES ON THE EXERCISES

SO A problem of moderate difficulty and/or complexity which may involve

over two hours’ work to solve satisfactorily.

40 Quite a difficult or lengthy problem which is perhaps suitable for a term

project in classroom situations. It is expected that a student will be

able to solve the problem in a reasonable amount of time, but the solution

is not trivial.

50 A research problem which (to the author’s knowledge at the time of

writing) has not yet been solved satisfactorily. If the reader has found

an answer to this problem, he is urged to write it up for publication;

furthermore, the author of this book would appreciate hearing about

the solution as soon as possible (provided it is correct)!

By interpolation in this "logarithmic” scale, the significance of other rating

numbers becomes clear. For example, a rating of 17 would indicate an exercise

that is a bit simpler than average. Problems with a rating of 50 which are

subsequently solved by some reader may appear with a 45 rating in later editions

of the book.

The author has earnestly tried to assign accurate rating numbers, but it is

difficult for the person who makes up a problem to know just how formidable

it will be for someone else; and everyone has more aptitude for certain types

of problems than for others. It is hoped that the rating numbers represent a

good guess as to the level of difficulty, but they should be taken as general guide¬
lines, not as absolute indicators.

This book has been written for readers with varying degrees of mathe¬

matical training and sophistication; and, as a result, some of the exercises are

intended only for the use of more mathematically inclined readers. Therefore

the rating is preceded by an M if the exercise involves mathematical concepts

or motivation to a greater extent than necessary for someone who is primarily

interested in only the programming algorithms themselves. An exercise is

marked with the letters “HM” if its solution necessarily involves a knowledge

of calculus or other higher mathematics not developed in this book. An “HM”

designation does not necessarily imply difficulty.

Some exercises are preceded by an arrowhead, this designates prob¬

lems which are especially instructive and which are especially recommended.

Of course, no reader/student is expected to work all of the exercises, and so

those which are perhaps the most valuable have been singled out. This is not

meant to detract from the other exercises! Each reader should at least make

an attempt to solve all of the problems whose rating is 10 or less; and the arrows

may help in deciding which of the problems with a higher rating should be given
priority.

Solutions to most of the exercises appear in the answer section. Please use

them wisely; do not turn to the answer until you have made a genuine effort to

solve the problem by yourself, or unless you do not have time to work this

particular problem. After getting your own solution or giving the problem a

NOTES ON THE EXERCISES XIX

decent try, you may find the answer instructive and helpful. The solution given

will often be quite short, and it will sketch the details under the assumption

that you have earnestly tried to solve it by your own means first. Sometimes

the solution gives less information than was asked; often it gives more. It is

quite possible that you may have a better answer than the one published here,

or you may have found an error in the published solution; in such a case, the

author will be pleased to know the details as soon as possible. Later editions

of this book will give the improved solutions together with the solver’s name

where appropriate.

When working an exercise you may generally use the answer to previous

exercises, unless this is specifically forbidden. The rating numbers have been

assigned with this in mind; thus it is possible for exercise n + 1 to have a lower

rating than exercise n, even though it includes the result of exercise n as a

special case.

Summary of codes: 00

10

20

Immediate

Simple (one minute)
Medium (quarter hour)

► Recommended 30 Moderately hard

M Mathematically oriented 40 Term project

HM Requiring “higher math” 50 Research problem

EXERCISES

► 1. [00] What does the rating “M20” mean?

2. [10] Of what value can the exercises in a textbook be to the reader?

3. [14] Prove that 133 = 2197. Generalize your answer. [This is an example of a
horrible kind of problem the author has tried to avoid.]

4. [M50] Prove that when n is an integer, n > 2, the equation xn + yn = 2" has

no solution in positive integers, x, y, z.

4

CONTENTS

Chapter 1—Basic Concepts. 1

1.1. Algorithms . 1

1.2. Mathematical Preliminaries.10

1.2.1. Mathematical Induction.11

1.2.2. Numbers, Powers, and Logarithms.21

1.2.3. Sums and Products.26
1.2.4. Integer Functions and Elementary Number Theory 37

1.2.5. Permutations and Factorials.44

1.2.6. Binomial Coefficients.51

1.2.7. Harmonic Numbers.73

1.2.8. Fibonacci Numbers.78

1.2.9. Generating Functions.86

1.2.10. Analysis of an Algorithm.94

*1.2.11. Asymptotic Representations.104

*1.2.11.1. The O-notation.104

*1.2.11.2. Euler’s summation formula.108

*1.2.11.3. Some asymptotic calculations.112

1.3. MIX .. 120

1.3.1. Description of MIX.120

1.3.2. The MIX Assembly Language.141

1.3.3. Applications to Permutations.'.160

1.4. Some Fundamental Programming Techniques.182

1.4.1. Subroutines.*.182

1.4.2. Coroutines.190

1.4.3. Interpretive Routines.197

1.4.3.1. A MIX simulator. 198

*1.4.3.2. Trace routines.208

1.4.4. Input and Output.211

1.4.5. History and Bibliography.225

Chapter 2—Information Structures.228

2.1. Introduction.228

2.2 Linear Lists.234

2.2.1. Stacks, Queues, and Deques.234

2.2.2. Sequential Allocation.240

2.2.3. Linked Allocation.251

2.2.4. Circular Lists.270

xx

CONTENTS xxi

2.2.5. Doubly Linked Lists.278
2.2.6. Arrays and Orthogonal Lists.295

2.3. Trees.305
2.3.1. Traversing Binary Trees.315
2.3.2. Binary Tree Representation of Trees.332
2.3.3. Other Representations of Trees.347
2.3.4. Basic Mathematical Properties of Trees.362

2.3.4.1. Free trees.362
*2.3.4.2. Oriented trees.371
*2.3.4.3. The “infinity lemma”.381
*2.3.4.4. Enumeration of trees.385

2.3.4.5. Path length.399
*2.3.4.6. History and bibliography.405

2.3.5. Lists and Garbage Collection.406
2.4. Multilinked Structures.423
2.5. Dynamic Storage Allocation.435
2.6. History and Bibliography.456

Answers to Exercises

Appendix A—Index to Notations.

Appendix B—Tables of Numerical Quantities

1. Fundamental Constants (decimal).
2. Fundamental Constants (octal).
3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers

Index and Glossary.

607

613
614
615

617

/
/

\

CHAPTER ONE

Many persons who are not conversant with mathematical studies

imagine that because the business of [Babbage’s Analytical Engine] is to

give its results in numerical notation, the nature of its processes must

consequently be arithmetical and numerical, rather than algebraical and

analytical. This is an error. The engine can arrange and combine its

numerical quantities exactly as if they were letters or any other general

symbols; and in fact it might bring out its results in algebraical notation,

were provisions made accordingly.

— ADA AUGUSTA, Countess of Lovelace (1844)

Practise yourself, for heaven’s sake, in little things;
and thence proceed to greater.

— EPICTETUS (Discourses IV. i)

1.1. ALGORITHMS

The notion of an algorithm is basic to all of computer programming, so we should

begin with a careful analysis of this concept.
The word “algorithm” itself is quite interesting; at first glance it may look

as though someone intended to write “logarithm” but jumbled up the first four

letters. The word did not appear in Webster’s New World Dictionary as late as

1957; we find only the older form “algorism” with its ancient meaning, i.e., the

process of doing arithmetic using Arabic numerals. In the middle ages, abacists

computed on the abacus and algorists computed by algorism. Following the

middle ages, the origin of this word was in doubt, and early linguists attempted

to guess at its derivation by making combinations like algiros [painful] +

arithmos [number]; others said no, the word comes from “King Algor of Castile.”

Finally, historians of mathematics found the true origin of the word algorism:

it comes from the name of a famous Persian textbook author, Abu Ja'far

Mohammed ibn Musa al-Khowarizmi (c. 825)—literally, “Father of Ja'far,

Mohammed, son of Moses, native of Khowarizm.” Khowarizm is today the

small Soviet city of Khiva. Al-Khowarizmi wrote the celebrated book Kitab at

jabr w’al-muqabala (“Rules of restoration and reduction”); another word,

“algebra, ” stems from the title of his book, although the book wasn’t really very

algebraic.

2 BASIC CONCEPTS 1.1

Gradually the form and meaning of “algorism” became corrupted; as ex¬

plained by the Oxford English Dictionary, the word was “erroneously refash¬

ioned” by “learned confusion” with the word arithmetic. The change from

“algorism” to “algorithm” is not hard to understand in view of the fact that

people had forgotten the original derivation of the word. An early German

mathematical dictionary, V ollstandiges Mathematisches Lexicon (Leipzig, 1747),

gives the following definition for the word Algorithmus: “Under this designation

are combined the notions of the four types of arithmetic calculations, namely

addition, multiplication, subtraction, and division. ” The latin phrase algorithmus

infinitesimalis was at that time used to denote “ways of calculation with infinitely
small quantities, as invented by Leibnitz. ”

By 1950, the word algorithm was most frequently associated with “Euclid’s

algorithm,” a process for finding the greatest common divisor of two numbers
which appears in Euclid’s Elements (Book 7, Propositions 1 and 2.) It will be
instructive to exhibit Euclid’s algorithm here:

Algorithm E {Euclid's algorithm). Given two positive integers m and n, find

their greatest common divisor, i.e., the largest positive integer which evenly
divides both m and n.

El. [Find remainder.] Divide m by n and let r be the remainder. (We will
have 0 < r < n.)

E2. [Is it zero?] If r = 0, the algorithm terminates; n is the answer.

E3. [Interchange.] Set m <— n, n <— r, and go back to step El. |

Of course, Euclid did not present his algorithm in just this manner. The

above format illustrates the style in which all of the algorithms throughout
this book will be presented.

Each algorithm we consider has been given an identifying letter (e.g., E in

the above) and the steps of the algorithm are identified by this letter followed by

a number (e.g., El, E2, etc.). The chapters are divided into numbered sections;

within a section the algorithms are designated by letter only, but when algo¬

rithms are referred to in other sections, the appropriate section number is also

used. For example, we are now in Section 1.1; within this section Euclid’s

algorithm is called Algorithm E, while in later sections it is referred to as
Algorithm 1.1E.

Each step of an algorithm (e.g., step El above) begins with a phrase in

brackets which sums up as briefly as possible the principal content of that step.

This phrase also usually appears in an accompanying flow chart (e.g., Fig. 1),

so the reader will be able to picture the algorithm more readily.

Fig. 1. Flow chart for Algorithm E.

1.1 ALGORITHMS 3

After the summarizing phrase comes a description in words and symbols of

some action to be performed or some decision to be made. There are also occa¬

sionally parenthesized comments (e.g., the second sentence in step El) which are

included as explanatory information about that step, often indicating certain

characteristics of the variables or the current goals at that step, etc.; the paren¬

thesized remarks do not specify actions which belong to the algorithm, they

are only for the reader’s benefit as possible aids to comprehension.

The ” arrow in step E3 is the all-important replacement operation (some¬

times called assignment or substitution); “m <— n” means the value of variable m
is to be replaced by the current value of variable n. When Algorithm E begins,

the values of m and n are the originally given numbers; but when it ends, these

variables will have, in general, different values. An arrow is used to distinguish

the replacement operation from the equality relation: We will not say, “Set

m = n,” but we will perhaps ask, “Does m = nt” The “=” sign denotes a

condition which can be tested, the sign denotes an action which can be

performed. The operation of increasing n by one is denoted by “n <— n + 1 ”

(read “n is replaced by n + 1”); in general, “variable <— formula” means the

formula is to be computed using the present values of any variables appearing

within it, and the result replaces the previous value of the variable at the left

of the arrow. Persons untrained in computer work sometimes have a tendency

to denote the operation of increasing n by one by “n —» n + 1, ” saying “n becomes

n + 1 ”; this can only lead to confusion because of its conflict with the standard

conventions, and it should be avoided.

Note that the order of the actions in step E3 is important; “set m <— n,

n <— r” is quite different from “set n <— r, m <— n,” since the latter would imply

that the previous value of n is lost before it can be used to set m. Thus the

latter sequence is equivalent to “set n <— r, m *— r.” When several variables are

all to be set equal to the same quantity, we use multiple arrows; thus “n <— r,

m <r— r” may be written as “n <— m <— r. ” To interchange the values of two

variables, we can write “Exchange m <-> n”; this action may also be specified

by using a new variable t and writing “set t <— m, m <— n, n t.”

An algorithm starts at the lowest-numbered step, usually step 1, and steps

are executed in sequential order, unless otherwise specified. In step E3, the

imperative “go back to step El ” specifies the computational order in an obvious

fashion. In step E2, the action is prefaced by the condition “if r = 0”; so if

r ^ 0, the rest of that sentence does not apply and no action is specified. We

might have added the redundant sentence, “If r ^ 0, go on to step E3. ”

The heavy vertical line, “|”, appearing at the end of step E3 is used to

indicate the end of an algorithm and the resumption of text.

We have now discussed virtually all the notational conventions used in the

algorithms of this book, except for a notation used to denote “subscripted” or

“indexed” items which are elements of an ordered array. Suppose we have n

quantities, V\, v2, ■ ■ ■ , vn‘, instead of writing Vj for the jth element, the notation

v[j] is often used. Similarly, a[i, j] is sometimes used in preference to a doubly-

subscripted notation like a;y. Sometimes multiple-letter names are used for

4 BASIC CONCEPTS 1.1

variables and are usually set in capital letters, e.g., TEMP might be the name of
a variable used for temporarily holding a computed value, PRIME [K] might
denote the Kth prime number, etc.

So much for the form of algorithms; now let us perform one. It should be

mentioned immediately that the reader should not expect to read an algorithm

as he reads a novel; such an attempt would make it pretty difficult to under¬

stand what is going on. An algorithm must be seen to be believed, and the best

way to learn what an algorithm is all about is to try it. The reader should always

take pencil and paper and work through an example of each algorithm imme¬

diately upon encountering it in the text. Usually the outline of a worked

example will be given, or else the reader can easily conjure one up. This is a

simple and painless method for obtaining an understanding of a given algorithm,

and all other approaches are generally unsuccessful.

Let us therefore work out an example of Algorithm E. Suppose that we are

given fn = 119 and n — 544; we are ready to begin, at step El. (The reader

should now follow the algorithm as we give a play-by-play account.) Dividing

m by n in this case is quite simple, almost too simple, since the quotient is zero

and the remainder is 119. Thus, r <— 119. We proceed to step E2, and since

r 9^ 0 no action occurs. In step E3 we set m <— 544, n <— 119. It is clear that

if m < n originally, the quotient in step El will always be zero and the algorithm

will always proceed to interchange m and n in this rather cumbersome fashion.
We could add a new step:

“EO. [Ensure m > n.] If m < n, exchange m <-> n.”

if desired, without making an essential change in the algorithm except to increase

its length as well as to decrease the time required to perform it in about one
half of the cases.

Back at step El, we find that yff = 4^^, so re- 68. Again E2 is inap¬

plicable, and at E3 we set m <— 119, n <— 68. The next round sets r <— 51,

and ultimately m <— 68, n *— 51. Next r <— 17, and m <— 51, n <— 17. Finally,

when 51 is divided by 17, r ♦— 0, so at step E2 the algorithm terminates. The
greatest common divisor of 119 and 544 is 17.

So this is an algorithm. The modern meaning for algorithm is quite similar

to that of recipe, process, method, technique, procedure, routine, except that the

word “algorithm” connotes something just a little different. Besides merely

being a finite set of rules which gives a sequence of operations for solving a

specific type of problem, an algorithm has five important features:

1) Finiteness. An algorithm must always terminate after a finite number of

steps. Algorithm E satisfies this condition, because after step El the value of r

is less than n, so if r 5^ 0, the value of n decreases the next time that step El is

encountered. A decreasing sequence of positive integers must eventually ter¬

minate, so step El is executed only a finite number of times for any given

original value of n. Note, however, that the number of steps can become arbi-

1.1 ALGORITHMS 5

triarily large; certain huge choices of m and n will cause step El to be executed
over a million times.

(A procedure which has all of the characteristics of an algorithm except that

it possibly lacks finiteness may be called a “computational method.” Besides

his algorithm for the greatest common divisor of two integers, Euclid also gave

a geometrical construction that is essentially equivalent to Algorithm E, except

it is a procedure for obtaining the “greatest common measure” of the lengths of

two line segments; this is a computational method that does not terminate if

the given lengths are “incommensurate. ”)

2) Definiteness. Each step of an algorithm must be precisely defined; the

actions to be carried out must be rigorously and unambiguously specified for

each case. The algorithms of this book will hopefully meet this criterion, but

since they are specified in the English language, there is a possibility the reader

might not understand exactly what the author intended. To get around this

difficulty, formally defined programming languages or computer languages are

designed for specifying algorithms, in which every statement has a very definite

meaning. Many of the algorithms of this book will be given both in English and

in a computer language. An expression of a computational method in a computer

language is called a program.

In Algorithm E, the criterion of definiteness as applied to step El means

that the reader is supposed to understand exactly what it means to divide

m by n and what the remainder is. In actual fact, there is no universal agreement

about what this means if m and n are not positive integers; what is the remainder

of —8 divided by — t? What is the remainder of 59/13 divided by zero? There¬
fore the criterion of definiteness means we must make sure the values of m and n

are always positive integers whenever step El is to be executed. This is initially

true, by hypothesis, and after step El r is a nonnegative integer’which must be

nonzero if we get to step E3; so m and n are indeed positive integers as required.

3) Input. An algorithm has zero or more inputs, i.e., quantities which are

given to it initially before the algorithm begins. These inputs are taken from

specified sets of objects. In Algorithm E, for example, there are two inputs,

namely m and n, which are both taken from the set of positive integers.

4) Output. An algorithm has one or more outputs, i.e., quantities which have

a specified relation to the inputs. Algorithm E has one output, namely n in

step E2, which is the greatest common divisor of the two inputs.

(We can easily prove that this number is indeed the greatest common divisor,

as follows. After step El, we have

m = qn -f- r,

for some integer q. If r = 0, then m is a multiple of n, and clearly in such a

case n is the greatest common divisor of m and n. If r ^ 0, note that any number

which divides both m and n must divide m — qn — r, and any number which

6 BASIC CONCEPTS 1.1

divides both n and r must divide qn + r — m; so the set of divisors of m, n is

the same as the set of divisors of n, r and, in particular, the greatest common

divisor of m, n is the same as the greatest common divisor of n, r. Therefore

step E3 does not change the answer to the original problem.)

5) Effectiveness. An algorithm*-is also generally expected to be effective. This

means that all of the operations to be performed in the algorithm must be

sufficiently basic that they can in principle be done exactly and in a finite length

of time by a man using pencil and paper. Algorithm E uses only the operations

of dividing one positive integer by another, testing if an integer is zero, and

setting the value of one variable equal to the value of another. These operations

are effective, because integers can be represented on paper in a finite manner

and there is at least one method (the “division algorithm”) for dividing one by

another. But the same operations would not be effective if the values involved

were arbitrary real numbers specified by an infinite decimal expansion, nor if

the values were the lengths of physical line segments, which cannot be specified

exactly. Another example of a noneffective step is, “If 2 is the largest integer n

for which there is a solution to the equation xn + yn = zn in positive integers

x, y, and z, then go to step E4.” Such a statement would not be an effective

operation until someone succeeds in showing that there is an algorithm to de¬

termine whether 2 is or is not the largest integer with the stated property.

Let us try to compare the concept of an algorithm with that of a cookbook

recipe: A recipe presumably has the qualities of finiteness (although it is said

that a watched pot never boils), input (eggs, flour, etc.) and output (TV dinner,

etc.) but notoriously lacks definiteness. There are frequent cases in which the

definiteness is missing, e.g., “Add a dash of salt.” A “dash” is defined as “less

than | teaspoon”; salt is perhaps well enough defined; but where should the salt

be added (on top, side, etc.)? Instructions like “toss lightly until mixture is

crumbly, ” “warm cognac in small saucepan, ” etc., are quite adequate as explana¬

tions to a trained cook, perhaps, but an algorithm must be specified to such a

degree that even a computer can follow the directions. Still, a computer pro¬

grammer can learn much by studying a good recipe book. (In fact, the author

has barely resisted the temptation to name the present volume “The Program¬

mer’s Cookbook. ” Perhaps someday he will attempt a book called “Algorithms
for the Kitchen. ”)

We should remark that the “finiteness” restriction is really not strong enough

for practical use; a useful algorithm should require not only a finite number of

steps, but a very finite number, a reasonable number. For example, there is

an algorithm which determines whether or not the game of chess is a forced

victory for the White pieces (see exercise 2.2.3-28); here is an algorithm which

can solve a problem of intense interest to thousands of people, yet it is a safe

bet that we will never in our lifetimes know the answer to this problem, because

the algorithm requires fantastically large amounts of time for its execution, even

though it is “finite. ” See also Chapter 8 for a discussion of some finite numbers
which are so large as to actually be beyond comprehension.

1.1 ALGORITHMS 7

In practice we not only want algorithms, we want good algorithms in some

loosely-defined aesthetic sense. One criterion of goodness is the length of time

taken to perform the algorithm; this can be expressed in terms of the number of

times each step is executed. Other criteria are the adaptability of the algorithm

to computers, its simplicity and elegance, etc.

Occasionally, we will have several algorithms for the same problem, and

we must decide which is best. This leads us to the extremely interesting and

all-important field of algorithmic analysis: given an algorithm, the problem is

to determine its performance characteristics.

For example, we can consider Euclid’s algorithm from this point of view.

Suppose we ask the question, “Assuming that the value of n is known but m is

allowed to range over all positive integers, what is the average number of times,

Tn, that step El of Algorithm E will be performed?” In the first place, we have to

check that this question does have a meaningful answer (since we are trying to

take an average over infinitely many choices for m). But it is evident that

after the first execution of step El only the remainder of m after division by n is

relevant. So all we must do to find the average, Tn, is to try the algorithm

for m = 1, m — 2, . . . , m — n, count the total number of times step El has

been executed, and divide by n.

Now the important question is to determine the nature of Tn) is it ap¬

proximately equal to ^n, or \/n, etc.? As a matter of fact, the answer to this

question is an extremely difficult and fascinating mathematical problem, not

yet completely resolved, which is examined in more detail in Section 4.5.3. For

large values of n it is possible to prove that Tn is approximately (12 In 2/7r2) In n,

that is, proportional to the natural logarithm of n, with a constant of propor¬

tionality that might not have been guessed offhand! For further details about

Euclid’s algorithm, and other ways to calculate the greatest common divisor,

see Section 4.5.
“Analysis of algorithms” is the name the author likes to use to describe

investigations such as this. The general idea is to take a particular algorithm

and to determine its average behavior; occasionally we also study whether or

not an algorithm is “optimal ” in some sense. The theory of algorithms is another

subject entirely, dealing primarily with the existence or nonexistence of effective

algorithms to compute particular quantities; such theory is not investigated

very deeply in this set of books, although it is considered briefly in Chapter 11.

So far our discussion of algorithms has been rather imprecise, and a mathe¬

matically oriented reader is justified in thinking that the preceding commentary

makes a very shaky foundation on which to erect any theory about algorithms.

We therefore close this section with a brief indication of one method by which

the concept of algorithm can be firmly grounded in terms of mathematical set

theory. Let us formally define a computational method to be a quadruple

(Q, /), in which Q is a set containing subsets I and ft, and / is a function

from Q into itself. Furthermore / should leave ft pointwise fixed; that is, f(q)

should equal q for all elements q of ft. The four quantities Q, I, ft, / are intended

to represent respectively the states of the computation, the input, the output,

8 BASIC CONCEPTS 1.1

and the computational rule. Each input x in the set I defines a computational

sequence, x0, X\, x2, . . ., as follows:

x$ = x and Xk+i = f(xk) for k > 0. (1)

The computational sequencers said to terminate in k steps if k is the smallest

integer for which Xk is in ft, and in this case it is said to produce the output Xk

from x. (Note that if Xk is in ft, so is Xk+1, because Xk+i = Xk in such a case.)

Some computational sequences may never terminate; an algorithm is a computa¬

tional method which terminates in finitely many steps for all x in 7.

Algorithm E may, for example, be formalized in these terms as follows:

Let Q be the set of all singletons (n), all ordered pairs (m, n), and all ordered

quadruples (m, n, r, 1), (m, n, r, 2), and (m, n, p, 3), where m, n, and p are

positive integers and r is a nonnegative integer. Let 7 be the subset of all pairs

(m, n) and let ft be the subset of all singletons (w). Let / be defined as follows:

/(m, n) = (m, n, 0, 1); /(n) = (n);

f(m, n, r, 1) = (m, n, remainder of m divided by n, 2);

f{m, n, r, 2) = (n) if r = 0, (m, n, r, 3) otherwise;

f(m, n, p, 3) = (n, p, p, 1).

The correspondence between this notation and Algorithm E is evident.

The above formulation of the concept “algorithm” does not include the

restriction of “effectiveness” mentioned earlier; for example, Q might denote

infinite sequences which are not computable by pencil and paper methods, or /

might involve operations that mortal man cannot always perform. If we wish to

restrict the notion of algorithm so that only elementary operations are involved,

we can place restrictions on Q, 7, ft, and /, for example as follows: Let A be a

finite set of letters, and let A* be the set of all strings on A (i.e., the set of all

ordered sequences xxx2 . . . xn, where n > 0 and Xj is in A for 1 < j < ri).

The idea is to encode the states of the computation so that they are represented

by strings of A *. Now let A be a nonnegative integer and let Q be the set of all

> j) i where a is in A * and j is an integer, 0 < / < N; let I be the subset of Q

with j = 0 and let ft be the subset with j = N. If 6 and cr are strings in A *,

we say that 6 occurs in a if a has the form aOco for strings a and co. To complete

our definition, let f be a function of the following type, defined by the strings
Oj, <f>j and the integers oy, 6y for 0 < j < N:

== (<L o,j) if Oj does not occur in a;

f(a>j) = (aitpju, bj) if a is the shortest possible string (3)

for which a = aOju;
f(<x, N) = (a, N).

Such a computational method is clearly “effective,” and experience shows that

it is also powerful enough to do anything we can do by hand. There are many

1.1 ALGORITHMS 9

other essentially equivalent ways to formulate the concept of an effective

computational method (for example, using Turing machines). The above

formulation is virtually the same as that given by A. A. Markov in 1951, in his
book The Theory of Algorithms (tr. from the Russian by J. J. Schorr-Kon, U.S.

Dept, of Commerce, Office of Technical Services, number OTS 60-51085).

EXERCISES

1. [10] The text showed how to interchange the values of variables m and n, using
the replacement notation, by setting t <— m, m n, n <— t. Show how the values
(a, b, c, d) of four variables can be rearranged to (6, c, d, a) by a sequence of replace¬
ments. In other words, the new value of a is to be the original value of b, etc. Try to
use the minimum number of replacements.

2. [15] Prove that m is always greater than n at the beginning of step El, except
possibly the first time this step occurs.

3. [20] Change Algorithm E (for the sake of efficiency) so that at step E3 we do not
interchange values but immediately divide n by r and let to be the remainder. Add
appropriate new steps so as to avoid all trivial replacement operations. Write this new
algorithm in the style of Algorithm E, and call it Algorithm F.

4. [16] What is the greatest common divisor of 2166 and 6099?

► 5. [12] Show that the “Procedure for Reading This Set of Books” which appears in
the preface actually fails to be a genuine algorithm on three of our five counts! Also
mention some differences in format between it and Algorithm E.

6. [2'0] What is T5, according to the notation near the end of this section?

► 7. [M21] Suppose that m is known and n is allowed to range over all positive integers;
let Um be the average number of times that step El is executed in Algorithm E. Show
that Um is well defined. Is XJm in any way related to Tm?

8. [M25] Give an “effective” formal algorithm for computing the greatest common
divisor of positive integers to and n, by specifying Qj, (f>i, dj, bj as in Eqs. (3). Let the
input be represented by the string ambn, that is, m a’s followed by n b’s. Try to make
your solution as simple as possible. [Hint: Use Algorithm E, but instead of division
in step El, set r <— \m — n\, n<— min (to, n).]

► 9. [M80] Suppose that Ci = (Qi, Ii,Oi,/i) and C2 = (Qz, Iz,Qz,fz) are compu¬
tational methods. For example, C1 might stand for Algorithm E as in Eqs. (2), except
that to, n are restricted in magnitude, and C2 might stand for a computer program
implementation of Algorithm E. (Q2 might be the set of all states of the machine, i.e.,
all possible configurations of its memory and registers; f2 might be the definition of
single machine actions; and I2 might be the initial state including the program for
determining the greatest common divisor, as well as the values of to and n.)

Formulate a set-theoretic definition for the concept “C2 is a representation of Ci”:
This is to mean intuitively that any computation sequence of Ci is mimicked by C2,
except that C2 might take more steps in which to do the computation and it might
retain more information in its states. (We thereby obtain a rigorous interpretation of
the statement, “Program X is an implementation of Algorithm Y.”)

10 BASIC CONCEPTS 1.2

1.2. MATHEMATICAL PRELIMINARIES

In this section we shall investigate the mathematical notations which are used

throughout the rest of the chapters, and we shall also derive several basic

formulas which are used repeatedly in this set of books. The reader who is

not concerned with the mdre complex mathematical derivations should at least

familiarize himself with the meanings of the various formulas, so that he can

use the results of the derivations.

Mathematical notation is used for two main purposes in this set of books:

(1) to describe portions of an algorithm; and (2) to analyze the performance

characteristics of an algorithm. The notation used in descriptions of algorithms

is quite simple, as explained in the previous section. When analyzing the per¬

formance of algorithms, we shall use other more specialized notations.

Most of the algorithms in this set of books are accompanied by mathematical

calculations which determine the speed at which the algorithm may be expected

to run. These calculations draw on nearly every branch of mathematics, and

it would take a separate book to develop all of the mathematical concepts which

are used in one place or another. However, the majority of the calculations can

be carried out with a knowledge of college algebra, and the reader with a knowl¬

edge of elementary calculus will be able to understand nearly all of the mathe¬

matics which appears. In a few places we need to use deeper results of complex

variable theory, group theory, number theory, probability theory, etc., and then

either the topic is explained in an elementary manner, or a reference to other
sources of information is given.

The mathematical techniques involved in the analysis of algorithms usually
have a distinctive flavor; we will quite often find ourselves working with finite

summations of rational numbers, or with the solutions to recurrence relations.

Such topics are traditionally given only a light treatment in mathematics

courses, and so the following subsections are designed to illustrate “in depth”

the type of calculations and techniques used with such problems, as well as to
give a thorough drilling in the use of the notations to be defined.

Important note. Although the following subsections provide a rather extensive

training in the mathematical skills needed in connection with the study of

computer algorithms, most readers will not see at first any very strong con¬

nections between this material and computer programming (except in Section

1.2.1). The reader may choose to read the following subsections carefully with

implicit faith in the author’s assertion that the topics treated here are indeed

very relevant, or he may skim over this section lightly at first and then (after

seeing numerous applications of these techniques in future chapters) he may

wish to return to this section for more intensive study. The second alternative

is probably preferable, since the reader will find himself better motivated; and

if too much time is spent studying this material on first reading of the book, a

person might find he never gets on to the computer programming topics! How¬

ever, each reader should at least familiarize himself with the general contents

1.2.1 MATHEMATICAL INDUCTION 11

of these subsections, and should try his hand at a few of the exercises, even on

first reading. Section 1.2.10 should receive particular attention, since it is the

point of departure for most of the theoretical material developed later. Section

1.3 abruptly leaves the realm of “pure mathematics” and enters into “pure
computer programming. ”

1.2.1. Mathematical Induction

Let P(n) be some statement about the integer n; for example, Pin) might be

“n times (n + 3) is an even number,” or “if n > 10, then 2n > n3.” Suppose

we want to prove that P(n) is true for all positive integers n. An important way to
do this is:

a) Give a proof that P(l) is true;

b) Give a proof that “if all of P(l), P(2), . . . , P(n) are true, then P(n + 1) is

also true ”; this proof should be valid for any positive integer n.

As an example, consider the following series of equations, which many
people have discovered independently since ancient times:

1 = l2, 1 + 3 - 22, 1 + 3 + 5 - 32, 1 + 3 + 5 + 7

1 + 3 + 5 + 7 + 9 = 52.

We can formulate the general property as follows:

1 -f- 3 —f— • * ■ —(2n — 1) = n2. (2)

Let us, for the moment, call this equation P(n); we wish to prove that P(n) is

true for all positive n. Following the procedure outlined above, we have:

a) “P(l) is true, since 1 = l2.”

b) “If all of P(l),. . . , Pin) are true, then, in particular, P(w) is true, so Eq. (2)

holds; adding 2n + 1 to both sides we obtain

1 + 3 H-b (2n - 1) + (2w + 1) = n2 + 2n + 1 = (n + l)2

which proves that P{n + 1) is also true.”

We can regard this method as an algorithmic proof procedure. In fact, the

following algorithm produces a proof of P(n) for any positive integer n, assuming

that steps (a) and (b) above have been worked out:

Algorithm I (Construct a proof). Given a positive integer n, this algorithm will

output a proof that P(n) is true.

11. [Prove P(l).] Set k <— 1, and, according to (a), output a proof of P(l).

12. [k = n?] If k = n, terminate the algorithm; the required proof has been

output.

12 BASIC CONCEPTS 1.2.1

13. [Prove P(Jc + 1)-] According to (b), output a proof that “If all of P(l), . . . ,

P(/c) are true, then P(k + 1) is true. ” Also output “We have already proved
P(l), . . . , P(k); hence P(k + 1) is true.”

14. [Increase fc.] Increase k by 1 and go to step 12. |

Fig. 2. Algorithm I: Mathematical induction.

Since this algorithm clearly presents a proof of P(n), for any given n, we

know that the above proof technique (a), (b) is logically valid. This method of
proof is called a proof by mathematical induction.

The concept of mathematical induction” should be distinguished from

what is usually called “inductive reasoning” in science. A scientist takes specific

observations and by “induction” he creates a general theory or hypothesis which

accounts for these facts; for example, he might observe the five relations in (1),

above, and formulate (2). In this sense, “induction” is no more than somebody’s

best guess about the situation; in mathematics we would call this an empirical
result or a conjecture.

Another example will be helpful. Let pin) denote the numbers of “partitions

of n,” that is, the number of different ways to write n as a sum of positive
integers, disregarding order. Since

5 = l + l + l + l + l = 2 + l + l-fl = 2 + 2+ l

= 3 + l + l = 3 + 2 = 4 + l = 5,

we have p(5) = 7. In fact, it is easy to establish the first few values,

P(l) = P(2) = 2, p(3) = 3, p{ 4) = 5, p(5) = 7.

At this point we might tentatively formulate, by “induction,” the hypothesis

that the sequence pin) runs through the prime numbers. To test this hypothesis

we proceed to calculate p(6) and behold! p(6) = 11, confirming our conjecture.

[Unfortunately, p{7) turns out to be 15, spoiling everything, and we must

try again. This problem is known to be quite difficult, although S. Ramanujan

succeeded in guessing and proving many remarkable things about the numbers
pin)-, for further information, see G. H. Hardy, Ramanujan (London: Cam¬
bridge University Press, 1940), Chapters 6 and 8.]

0n the other hand, “mathematical induction” is quite different from plain

• “jk®11* ’. is not Just guesswork, it is a conclusive proof of a statement-
indeed, here it is a proof of infinitely many statements, one for each n. It has

1.2.1 MATHEMATICAL INDUCTION 13

been called “induction” only because one must first

decide somehow what he is going to prove, before he

can apply the technique of mathematical induction.

Henceforth in this book we shall use the word induc¬

tion only when we wish to imply proof by mathe¬
matical induction.

There is a geometrical way to prove Eq. (2).

Figure 3 shows, for n = 6, n2 cells broken into groups

of 1 + 3 + • • • + (2n — 1) cells. However, in the

final analysis, this picture can be regarded as a

“proof” only if we show that the construction can be Fig 3 gum Qf

carried out for all n, and this is essentially the same numbers is a square,
as a proof by induction.

Our proof of Eq. (2) above used only a special case of (b); we merely showed

that the truth of P{n) implies the truth of P(n + 1). This is an important simple

case which arises frequently, but our next example illustrates the power of the

method a little more. We define the Fibonacci sequence Fo, Fi, F2, ■ • . by the
rule that F0 = 0, Fx = 1, and every further term is the sum of the preceding

two. Thus the sequence begins 0, 1, 1, 2, 3, 5, 8, 13, ... ; this sequence is

investigated in detail in Section 1.2.8. We will now prove that if <f> is the number
(1 + x/5)/2, we have

Fn < </>n_1 (3)

for all positive integers n.

If n = 1, then Fx = 1 = <j>° = <pn~1, so step (a) has been done. We must

now do step (b). P(2) is also true, since F2 = 1 < 1.6 < 01 — </>2—1. Now,

if P(l), P(2), . . . , Pin) are true and n > 1, we have, in particular, that P(n — 1)

and P(n) are true, so Fn_i < $"-2 and Fn < Adding these inequalities,

we get
Fn+1 = Fn—i + Fn< 4>n~2 + 1 + <*>)• (4)

The important property of the number <f>, indeed the reason we chose this

number for this problem in the first place, is that

<t>2 = </> + 1- (5)

Putting this into (4) gives Fn+1 < 4>n, which is P(n + 1). So step (b) has been

done, and (3) has been proved by mathematical induction. Note that we

approached step (b) in two different ways here: we proved Pin + 1) directly

when n — 1, and we used an inductive method when n > 1. This was necessary,

since when n = 1 our reference to P(n — 1) = P(0) would not have been

legitimate.
We will now see how mathematical induction can be used to prove things

about algorithms. Consider the following generalization of Euclid’s algorithm.

ii

C
O

7

5

3

1

14 BASIC CONCEPTS 1.2.1

Algorithm E (Extended Euclid’s algorithm). Given two positive integers m and n,

we compute their greatest common divisor d and two integers a and b, such that

am + bn = d.

El. [Initialize.] Set a' <— b <— 1, a <— b' <— 0, c <— m, d <— n.

E2. [Divide.] Let q, r be the quotient and remainder, respectively, of c divided
by d. (We have c — qd + r, 0 < r < d.)

E3. [Remainder zero?] If r — 0, the algorithm terminates; we have in this case
am + bn = d as desired.

E4. [Recycle.] Set c <— d, d <— r, t <— a', a' <— a, a <— t — qa, t+—b', b' <— b,
b <— t — qb, and go back to E2. |

If we suppress the variables a, b, a', and b' from this algorithm and use m, n

for the auxiliary variables c, d, we have our old algorithm, 1.1E. The new

version does a little more, by determining the coefficients a, b. Suppose that
m = 1769 and n = 551; we have successively (after step E2):

a' a b' b c d r

1 0 0 1 1769 551 3 116

0 1 1 -3 551 116 4 87

1 -4 -3 13 116 87 1 29

-4 5 13 -16 87 29 3 0.

The answer is correct: 5 X 1769 — 16 X 551 = 8845 — 8816 = 29, the greatest
common divisor of 1769 and 551.

The problem is to prove that this algorithm works properly for all m and n.

We can try to set this up for the method of mathematical induction by letting

P(n) be the statement “Algorithm E works for n and all integers m.” However,

this doesn’t work out so easily, and we need to prove some extra facts. After

a little study, we find that something must be proved about a, b, a', and b', and
the appropriate fact is that

a'm + b'n = c, am + bn — d (6)

always holds whenever step E2 is executed. We may prove Eqs. (6) directly by

observing that it is certainly true the first time we get to E2, and step E4 does

not change the validity of (6). (See exercise 1.2.1-6.)

Now we are ready to show that Algorithm E is valid, by induction on n:

If m is a multiple of n, the algorithm obviously works properly, since we are done

immediately at E3 the first time. This case always occurs when n — 1. The

only case remaining is when n > 1 and m is not a multiple of n. In this case,

the algorithm proceeds to set c *— n, d <— r after the first execution, and since
r < n, we may assume by induction that the final value of d is the g.c.d. of n

1.2.1 MATHEMATICAL INDUCTION 15

Fig. 4. Flow chart for Algorithm E, labeled with assertions which prove the validity
of the algorithm.

and r. By the argument given in Section 1.1, the pairs m, n and n, r have the

same common divisors, and, in particular, they have the same greatest common

divisor. Hence d is the g.c.d. of m and n, and by Eq. (6), am + few = d.

The italicized phrase in the above proof illustrates the conventional language

which is so often used in an inductive proof: when doing part (b) of the con¬

struction, rather than saying “We will now assume P(l), P(2), . . . , P(w), and

with this assumption we will prove Pin + 1),” we often say simply “We will
now prove P(n); we may assume by induction that P(k) is true whenever

1 < k < n.”

If we examine the above argument very closely and change our viewpoint

slightly, we can see a general method applicable to proving the validity of any

algorithm. The idea is to take a flow chart for some algorithm and to label each

of the arrows with an assertion about the current state of affairs at the time the

computation traverses that arrow. See Fig. 4, where the assertions have been

labeled Al, A2, . . . , A6. (All of these assertions have the additional stipulation

that the variables are integers; this stipulation has been omitted to save space.)

Al gives the initial assumptions upon entry to the algorithm, and A4 states

what we hope to prove about the output values a, fe, and d.

The general method consists of proving, for each box in the flow chart, that

if any one of the assertions on the arrows leading into the box is true before the

operation in that box is performed, then all of the assertions on the arrows leading

16 BASIC CONCEPTS 1.2.1

away from the box are true after the operation. Thus, for example, we must prove

that either A2 or A6 before E2 implies A3 after E2. (In this case A2 is a stronger

statement than A6, that is, A2 implies A6, so we need only prove A6 before E2

implies AS after. Note that the condition d > 0 is necessary in A6 just to prove

that the operation E2 even makes sense.) It is also necessary to show that A3

and r = 0 implies Af\ that A3 and r ^ 0 implies A5\ etc. Each of the required

proofs is very straightforward.
Once the italicized statement above has been proved for each box, it follows that

all assertions are true during any execution of the algorithm. For we can now use

induction on the number of steps of the computation, in the sense of the number

of arrows traversed in the flow chart. While traversing the first arrow, i.e., the

arrow leading from “Start”, the assertion Al is true since we always assume our

input values meet the specifications; so the assertion on the first arrow traversed

is correct. If the assertion that labels the nth arrow is true, then by the italicized

statement the assertion that labels the (n -j- l)st arrow is also true.

Using this general method, the problem of proving that a given algorithm

is valid evidently consists mostly of inventing the right assertions to put in the

flow chart. Once this “inductive leap” has been made, it is pretty much routine

to carry out the proofs that each assertion leading into a box implies each

assertion leading out. In fact, it is pretty much routine to invent the assertions

themselves, once a few of the difficult ones have been discovered; thus it is very

simple in our example to write out essentially what A2, A3, A4, and A5 must

be, if only Al and A6 are given. In our example, the “creative” part of the

proof is assertion A6, and all the rest could, in principle, be supplied mechani¬

cally. Hence no attempt has been made to give detailed formal proofs of most

of the algorithms which follow in this book; it suffices to state the key inductive

assertions, and these either appear in the discussion following the algorithm or

they are given as parenthetical remarks in the text of the algorithm itself.

The above principle for proving algorithms has another aspect which is

perhaps even more important: it mirrors the way we “understand” an algorithm.

Recall that in Section 1.1 the reader was cautioned not to expect to read an

algoiithm like a novel; one or two trials of the algorithm on some sample data

are recommended. This is done expressly because an example performance of

the algorithm helps a person to formulate the various assertions in his own mind.

It is the contention of the author that we really understand why an algorithm

is valid only when we reach the point that our minds have implicitly filled in all

the assertions, as was done in Fig. 4. This point of view has important psycho¬

logical consequences for the proper communication of algorithms from one man

to another (or from one man to himself, when he looks over his own algorithms

several months later): it implies that the key assertions, those that cannot easily

be derived by an automaton, should always be stated explicitly when an algo¬

rithm is being explained to someone else. When Algorithm E is being put
forward, assertion A6 should be mentioned too.

1.2.1 MATHEMATICAL INDUCTION 17

An alert reader will have noticed a gaping hole in our last proof of Algorithm

E, however. We never showed that the algorithm terminates; all we have proved
is that if it terminates, it gives the right answer!

(Note, for example, that Algorithm E still makes sense if we allow its

variables m, n, c, and r to assume values of the form u -f- v>/2, where u and v

are integers. The variables q, a, b, a', b' are to remain integer-valued. If we

start the algorithm with m — 12 — 6\/2 and n = 20 — 10\/2, say, it will com¬

pute a “greatest common divisor” d = 4 — 2\/2, with a = +2, b = — 1. Even
under this extension of the assumptions, the proofs of assertions Al through A6

remain valid; therefore all assertions are true throughout any execution of the

algorithm. But if we start the procedure with m = 1 and n = y/2, the computa¬

tion never terminates (see exercise 12). Hence a proof of assertions Al through
A6 does not logically prove the algorithm is finite.)

Therefore proofs of termination are usually handled separately. It is possible

to extend the above method in many important cases so that a proof of termina¬
tions is included as a by-product, as shown in exercise 13.

We have now twice proved the validity of Algorithm E. To be strictly logical,

we should also try to prove that the first algorithm in this section, Algorithm I,

is valid; in fact, we have used Algorithm I to establish the correctness of any

proof by induction. If we attempt to prove that Algorithm I works properly,

however, we are confronted with a dilemma—we can’t really prove it without
using induction again! The argument would be circular.

In the last analysis, every property of the integers must be proved using

induction somewhere along the line, because if we get down to basic concepts,

the integers are essentially defined by induction. Therefore we may take as

axiomatic the idea that any positive integer n either equals 1 or can be reached

by starting with 1 and repetitively “adding” 1; this suffices to prove that

Algorithm I is valid. [For a rigorous study of fundamental concepts about the
integers, see the article “On Mathematical Induction,” by Leon Henkin, AMM

67 (1960), 323-338.]

The idea behind mathematical induction is thus intimately related to the

concept of number. The first European to apply mathematical induction to

rigorous proofs was the Italian scientist Francesco Maurolico, in 1575. Pierre

de Fermat made further improvements, in the early 17th century; he called it

the “method of infinite descent.” The notion also appears clearly in the later

writings of Blaise Pascal (1653). The phrase “mathematical induction” appar¬

ently was coined by A. de Morgan in the early nineteenth century. [See AMM

24 (1917), 199-207; 25 (1918), 197-201; Arch. Hist. Exact Sci. 9 (1972), 1-21]. For

further discussion of mathematical induction, see G. Polya, Induction and Anal¬

ogy in Mathematics (Princeton, N.J.: Princeton University Press, 1954), Chapter 7.
The formulation of algorithm-proving in terms of assertions and induction,

as given above, is essentially due to R. W. Floyd. He points out that a semantic

definition of each operation in a programming language is most properly given

18 BASIC CONCEPTS 1.2.1

as a logical rule which tells exactly what assertions can be proved after the

operation, from what assertions are true beforehand [see “Assigning Meanings

to Programs,” Proc. Symp. Appl. Math., Amer. Math. Soc., 19 (1967), 19-32].

Similar ideas have been voiced independently by Peter Naur, BIT 6 (1966),

310-316, who calls the assertions “general snapshots.” An important refinement,

the notion of “invariants,” has been introduced by C. A. R. Hoare; see, for

example, CACM 14 (1971), 39-45. The idea of inductive assertions actually

appeared in embryonic form in 1946, at the same time as the concept of flow

charts was introduced by H. H. Goldstine and J. von Neumann. These original

flow charts included “assertion boxes” which are in close analogy with the as¬

sertions in Fig. 4. [See John von Neumann, Collected Works 5 (New York:

Macmillan, 1963), 91-99.]

EXERCISES

1. [05] Explain how to modify the idea of proof by mathematical induction, in case

we want to prove some statement P(n) for all nonnegative integers, i.e., for n =

0, 1, 2, . . . instead of for n = 1, 2, 3, . . .

► 2. [15] There must be something wrong with the following proof; what is it?

“Theorem. Let a be any positive number. For all positive integers n we have a"-1 = 1.

Proof: If n — 1, o"”1 = a1-1 = a0 = 1. And by induction, assuming that the theorem

is true for 1, 2, . . . , n, we have

n—1 n—1 i i
(n+1)—1 n Q> X Cl 1X1

a = a = --- = —-— = 1;
an~2 1

so the theorem is true for n 1 as well.”

3. [?<§] The following proof by induction seems correct, but for some reason the

equation for n = 6 gives 2 + i + i2 + 2V + 3V = f on the left-hand side, and
§ — £ == § on the right-hand side. Can you find a mistake? “Theorem:

1 I 1 I 1 31
1X2'2X3' ' (n — 1) X n _ 2 n

Proof. We use induction on n. For n = 1, 3/2 — 1/n = 1/(1 X 2); and, assuming
the theorem is true for n,

—i—-[-1---1-_J-
1X2' (»-l)XnT«X (»+l)

= 3 1 ■ 1 = 3 _ 1 A _ 1 \ = 3_1_ ”

2 n n(n+1) 2 n \n n-f-1/ 2 n+1 ’

4. [20] Prove that, in addition to Eq. (3), Fn > 4>n~2.

5. [21] A prime number is an integer greater than one which has no exact divisors

other than 1 and itself. Using this definition and mathematical induction, prove that

every positive integer greater than one may be written as a product of prime numbers.

1.2.1 MATHEMATICAL INDUCTION 19

6. [20] Prove that if Eqs. (6) hold before step E4 is performed, they hold afterwards
also.

7. [23] Formulate and prove by induction a rule for the sums l2, 22 — l2
32 - 22 + l2, 42 - 32 + 22 - l2, 52 — 42 + 32 - 22 + l2, etc.

► 8. [25] (a) 1 rove the following theorem of Nicomachus (c. 100 a.d.) by induction:
13 = 23 = 3+ 5, 33 = 7+ 9+ 11, 43 = 13+ 15+ 17+ 19, etc. (b) Use this
result to prove the remarkable formula l3 + 23 H-h n3 = (1 + 2-)-f- n)2.

[Note: An attractive, geometric interpretation of this formula, suggested to the author
by R. W. Floyd, is shown in Fig. 5. The idea is related to Nicomachus’s theorem and
Fig. 3. See M. Gardner, Scientific American 229 (Oct. 1973), 114-118, for other proofs.]

Side = 5+5+5+5+5+5 = 5-(5+l)

Side = 5+4+3+2+l + l+2+3+4+5
= 2(1+2+- • -+5)

Area = 4-12+4-2-22+4-3-32+4-4-42+4-5-52

= 4(l3+23+-+53)

Fig. 5. Geometric version of
exercise 8, with n = 5.

9. [20] Prove by induction that if 0 < a < 1, then (1 — a)n > 1 — na.

10. [M22] Prove by induction that if n > 10, then 2n > n3.

11. [M30] Find and prove a simple formula for the sum

l3 33 53 (—l)”(2n + l)3

l4 + 4 34 + 4+ 54 + 4 ' (2n + l)4 + 4

12. [M25] Show how Algorithm E can be generalized as stated in the text so that it

will accept input values of the form u + vV2, where u and v are integers, and the

computations can still be done in an elementary way (i.e., without using the infinite

decimal expansion of \/2). Prove that the computation will not terminate, however,

if m = 1 and n = V2.

► 13. [M23] Extend Algorithm E by adding a new variable T and adding the operation

“T <— T + 1 ” at the beginning of each step. (Thus, T is like a clock, counting the num¬

ber of steps executed.) Assume that T is initially zero, so that assertion A1 in Fig. 4

becomes “m > 0, n > 0, T = 0.” The additional condition “T = 1” should similarly

be appended to A2. Show how to append additional conditions to the assertions in

such a way that any one of Al, A2, . . . , A6 implies T < 3no, where no is the original

value of n, and such that the inductive proof can still be carried out. (Hence the

computation must terminate in at most 3no steps.)

20 BASIC CONCEPTS 1.2.1

14. [50] (R. W. Floyd.) Prepare a computer program which accepts, as input, pro¬
grams in some programming language together with optional assertions, and which
attempts to fill in the remaining assertions necessary to make a proof that the computer
program is valid. (For example, strive to get a program that is able to prove the validity
of Algorithm K, given only assertions Al and A6. See the papers by R. W. Floyd
and J. C. King in the IFIP Congress proceedings, 1971, for further discussion.)

► 15. [HM28] (Generalized induction.) The text shows how to prove statements P(n)
which depend on a single integer n, but it does not describe how to prove statements
P(m, n) depending on two integers. In these circumstances a proof is often given by
some sort of “double induction,” which frequently seems confusing. Actually, there
is an important principle more general than simple induction which applies not only
to this case but also to situations in which statements are to be proved about uncount¬
able sets, for example, P(x) for all real x. This general principle is called well-ordering.

Let “-< ” be a relation on a set S, satisfying the following properties:

i) Given x, y, z in S, if x < y and y < z, then x < z.
ii) Given x, y in S, exactly one of the following three possibilities is true: x < y,

x = y, or y -< x.
iii) If A is any nonempty subset of S, there is an element x in A with x y for all

y in A.

This relation is said to be a well-ordering of S. For example, it is clear that the positive
integers are well-ordered by the ordinary “less than” relation, <.

a) Show that the set of all integers is not well-ordered by <.
b) Define a well-ordering relation on the set of all integers.
c) Is the set of all nonnegative real numbers well-ordered by < ?
d) (Lexicographic order.) Let S be well-ordered by <, and for n > 0 let Tn be the set

of all n-tuples (xi, X2, . . . , x„) of elements x, in S. Define (x\, X2, . . . , x„) -<
(yl, V2, , yn), if there is some k, 1 < k < n, such that x,- — y, for 1 < j < k,
but Xk < yk in S. Is < a well-ordering of Tn1

e) As in part (d), let T = U»>i Tn; define (xi, x2, . . . , xn) < (yh y2, ... , ym) if
Xj = y,- for 1 < j < k and x* < yk, for some k < m, n; or if x,- = y,• for 1 < j < n
and n < m. Is < a well-ordering of 71?

f) Show that •< is a well-ordering of S if and only if it satisfies (i) and (ii) above and
there is no infinite sequence xi, X2, X3, . . . with x3+i < x,- for all j > 1.

g) Let S be well-ordered by ■<, and let P(x) be a statement about the element x of S.
Show that if P(x) can be proved under the assumption that P(y) is true for all
y < x, then P(x) is true for all x in S.

[Notes: Part (g) is the generalization of simple induction that was promised; in
the case S = positive integers, it is just the simple case of mathematical induction
treated in the text. Note that we are asked to prove that P(l) is true if P(y) is true
for all positive integers y < 1; this is the same as saying we should prove P(1), since
P(y) certainly is (vacuously) true for all such y. Consequently, one finds that in many
situations P(l) need not be proved using a special argument.

Part (d), in connection with part (g), gives us in particular the rather powerful
method of n-tuple induction for proving statements P(mi, m2, . . . , mn) about n
positive integers mi, m2, . . . , m„.

Part (f) has further application to computer algorithms: if we can map the states
of a computation into a well-ordered set S in such a way that every step of the computa-

NUMBERS, POWERS, AND LOGARITHMS 21

tion takes a state x into a state y with/(y) < f(x), then the algorithm must terminate.
This principle generalizes the argument about the strictly decreasing values of n that
was used to prove that Algorithm 1.1E terminates.]

1.2.2. Numbers, Powers, and Logarithms

Let us now begin our study of numerical mathematics by taking a good look at

the numbers we are dealing with. The integers are the whole numbers

. . . , -3, -2, -1, 0, 1, 2, 3, . . .

(positive, negative, or zero). A rational number is the ratio (quotient) of two

integers, p/q, where q is positive. A real number is a quantity x which has a
“decimal expansion”:

x = n + 0.did2d3 . . . , (1)

where n is an integer, each eit- is a digit between 0 and 9, and no infinite sequence
of 9’s appears. The representation (1) means that

i i

"+10 +
d2
100 + + 4*- <

^ 10* ~
x <n + fs +

do

100 + ••• +
dk

10*

.1
'r 10*’ (2)

for all positive integers k. Two examples of real numbers that are not rational are'

7r = 3.14159265358979 . . . , the ratio of the circumference of a circle to

its diameter;

4> = 1.61803398874989 . . . , the “golden ratio” (1 + \/5)/2

(see Section 1.2.8).

A table of important constants, to forty decimal places of accuracy, appears in

Appendix B. We will not discuss the familiar properties of addition, subtraction,

multiplication, division, and comparison of real numbers.

Throughout this section, let the letter b stand for a positive real number.

If n is an integer, then bn is defined by the familiar rules:

b° = 1, bn = bn~lb if n > 0, bn = bn+1/b if n < 0. (3)

It is easy to prove by induction that the laws of exponents are valid:

bx+v = (pxy = bxV) (4)

whenever x and y are integers.

If u is a positive real number and if m is a positive integer, there is always

a unique positive real number v which is its “mth root,” that is, vm = u. We

write v = y/u.
We now define br for rational numbers r as follows:

bplq = v^. (5)

22 BASIC CONCEPTS 1.2.2

This definition, due to Oresme (c. 13G0), is a good one, since baplaq = bplq, and

since the laws of exponents are still correct even when x and y are arbitrary

rational numbers (see exercise 9).
Finally, wp define bx for all real values of x. Suppose first that b > 1; if

x is given by Eq. (1), we want

j)n+d1HO + ---+dkllOk < ye < ^n+dj 10H-Hi*/10*+1/10* (0)

This defines bx as a unique positive real number, since the difference between
the right and left extremes in Eq. (6) is frn+di/1CH W 10*^1/10* _ i)j by

exercise 13 below, this difference is less than bn+1(b — l)/10fc, and if we take

k large enough, we can therefore get any desired accuracy for bx.

For example, we find that

10o.30102999 = 1.9999999737 . . . f 10o.30103000 = 2.0000000198 . . . , (7)

and therefore if b = 10, x = 0.30102999 . . . , we know the value of 10* with

an accuracy of better than one part in 10 million (although we still don’t even

know whether the decimal expansion of 10x is 1.999 ... or 2.000 ...!).

When b < 1, we define bx = (1/6) ^; and when b = 1, lx = 1. With these

definitions, it can be proved that the laws of exponents (Eqs. 4) hold for any

real values of x and y. These ideas for defining bx were first formulated by John

Wallis (1655) and Isaac Newton (1669).

Now we come to an important question. Suppose that a positive real number

y is given; can we find a real number x such that y = bx? The answer is “yes”

(provided that b ^ 1), for we simply use Eq. (6) in reverse to determine n and

d\, d2, . . . when bx = y is given. The resulting number x is called the logarithm

of y to the base b, and we write this as x = logb y. By this definition we have

x = bl°SbX = logb (bx). (8)

As an example, Eqs. (7) show that

log10 2 = 0.30102999 . . . (9)

From the laws of exponents it follows that

log& (xy) = logb x + log6 y, if x > 0, y > 0 (10)

and

logb (cv) = y logb c, if c > 0. (11)

Equation (9) illustrates the so-called “common logarithms,” i.e., logarithms

to the base 10. One might expect that in computer work binary logarithms

(to the base 2) might be more useful, since binary arithmetic is often used in

computers. Actually, we will see that binary logarithms are very useful, but not

only for that reason; the reason is primarily that a computer algorithm often

makes two-way branches.

1.2.2 NUMBERS, POWERS, AND LOGARITHMS 23

Binary logarithms arise so frequently, it is wise to have a shorter notation
for them; therefore we shall write

lg x = log2 x.

The question now arises as to whether or not there is any relationship

between lg x and logi0 x; fortunately there is one, because according to Eqs. (8)
and (11),

log10 x = logic (2log2x) = (log2 x)(logio 2).

Hence lg x = log10 x/logi0 2, and in general we find that

logc X = log6 x/\ogb c. (12)

Equations (10), (11), and (12) are the fundamental rules for manipulating
logarithms.

It turns out that neither base 10 nor base 2 is really the most convenient

base to work with in most cases. There is a real number, denoted by e =

2.718281828459045 . . . , for which the logarithms have simpler properties. By

convention, we call logarithms to the base e “natural logarithms, ” and we write

In x = loge x. (13)

This rather arbitrary definition (in fact, we haven’t really defined e) probably

doesn’t strike the reader as being a very “natural” logarithm; yet we will find

that In x will seem more and more natural, the more we work with it. John

Napier actually discovered natural logarithms (with slight modifications, and

without connecting them with powers) before the year 1590, many years before

any other kind of logarithm was known. We can give two brief examples, without

proof, of why these logarithms might seem most “natural”: (a) In Fig. 6 the

area of the shaded portion is In x. (b) If a bank

pays compound interest at rate r, compounded

semiannually, the return on each dollar is

(1 + r/2)2 dollars; if it is compounded quarterly,

you get (1 + r/4)4 dollars; and if it is compounded

daily you probably get (1 + r/365)365 dollars.

Now if the interest were compounded continu¬

ously, you would get exactly eT dollars for every

dollar (ignoring roundoff error)! In this age of

computers, some bankers have now actually Fig. 6. Natural logarithm,

reached this limiting formula.
For the interesting history of the concepts of logarithm and exponential, see

the series of articles by F. Cajori, AMM 20 (1913), 5-14, 35-47, 75-84, 107-117,

148-151, 173-182, 205-210.
We conclude this section by considering how to compute logarithms. One

method is suggested immediately by Eq. (6): if we let bx = y and raise all parts

of that equation to the 10^-th power, we find that

bm < ^10* < bm+if (14)

24 BASIC CONCEPTS 1.2.2

for some integer m. All we have to do to get the logarithm of y is to raise y to
this huge power and find which powers (ra, m + 1) of b this result lies between,
and m/10k is the answer to k decimal places.

A slight modification of this apparently impractical method leads to a simple
and reasonable procedure. We will show how to calculate logj0 x and to express
the answer in the binary system, as

logio x — n -f- &i/2 -f- £>2/4 + £>3/8 + • • • .

First we shift the decimal point of x to the left or to the right so that we have
1 < z/lO" < 10; this determines n for us. To obtain b\, b2, b3, . . . we now
set Xq — z/lO” and, for k > 1,

bk = 0, xk = Xk-i, if Xk-i < 10;

bk =1, xk = £jfc_i/10, if x\-\ > 10.

The validity of this procedure follows from the fact that

1 < xk = ^27l02i("+6l/2+,''+6i/2i) < 10, (16)

for k = 0, 1, 2, . . . , as is easily proved by induction.
In practice, of course, we must work with only finite accuracy, so we cannot

set xk = xl_y exactly. Instead, we set xk = xjjLi rounded or truncated to a
certain number of decimal places. For example, here is the evaluation of
log 10 2 rounded to four significant figures:

Xq = 2.000,
xi ------ 4.000, b i = 0, Xq = 1.845, b& — 1,
x2 = 1.600, b2 = 1, x7 = 3.404, II 0

x3 = 2.560, b3 = 0, x8 = 1.159,

i-H II 0
0

rO

X4 = 6.554, 64 = 0, z9 = 1.343, bg — 0,
x5 - 4.295, &5 = 1, xiq = 1.804, &10 — 0,

etc. Computational error has caused errors to propagate; the true value of z10
is 1.7977. This will eventually cause b 19 to be computed incorrectly, and we get
the binary value 0.0100110100010000011 which corresponds to the decimal
equivalent 0.301031 rather than the true value given in Eq. (9).

With any method such as this it is necessary to examine the amount of
computational error due to the limitations imposed. Exercise 27 of this section
derives an upper bound for the error; working to four figures as above, we find
that the error in the value of the logarithm will be less than 0.00044. Our
answer above was more accurate than this primarily because xQ, sq, x2, and x3
were obtained exactly.

This method is simple and quite interesting, but it is probably not the best
way to calculate logarithms on a computer. Another method is given in
exercise 25.

1.2.2
NUMBERS, POWERS, AND LOGARITHMS 25

EXERCISES

1. [00] What is the smallest positive rational number?

2. [00] Is 1 -j- 0.239999999 ... a decimal expansion?

3. [OS] What is (—3)~3?

► 4. [05] What is (0.125)~2/3?

5. [05] We defined real numbers in terms of a decimal expansion. Discuss how we
could have defined them in terms of a binary expansion instead, and give a definition
to replace Eq. (2).

6. [10] Let x = m -f- 0.did2 . . . and y = n + 0.eie2 ... be real numbers. Give a rule
for determining whether x = y, x < y, or x > y, based on the decimal representation.

7. [M2S] Given that x and y are integers, prove the laws of exponents, starting from
the definition given by Eq. (3).

8. [25] Let mbea positive integer. Prove that every positive real number u has a
unique positive mth root, by giving a method to construct successively n, di, d2, etc.
of the decimal expansion of the root.

9. [M2S] Given that x and y are rational, prove the laws of exponents under the
assumption that the laws hold when x and y are integers.

10. [15] Prove that logio 2 is not a rational number.

► 11. [10] If b = 10 and x = logio 2, to how many decimal places of accuracy will
we need to know the value of x in order to determine the first three decimal places of
the decimal expansion of bx? (Note: You may use the result of exercise 10 in your
discussion.)

12. [02] Explain why Eq. (9) follows from Eqs. (7).

► 13. [M23] (a) Given that x is a positive real number and n is a positive integer, prove
that \/l -j- x — 1 < x/n. (b) Use this fact to justify the remarks following Eq. (6).

14. [15] Prove Eq. (11).

15. [10] Prove or disprove:

log6 x/y = logs x — log6 y, if x, y > 0.

16. [00] How can logio x be expressed in terms of In x and In 10?

► 17. [05] What is lg 32? log,7r? In e? logjl? logb (—1)?

18. [10] Prove or disprove: logs x = \ lg x.

► 19. [20] If n is a 14-digit integer, will the value of n fit in a computer word with a
capacity of 47 bits plus sign?

20. [10] Is there any simple relation between logio 2 and log2 10?

21. [15] Express logt (logj x) in terms of ln(ln x), ln(ln b), and In b.

► 22. [20] Prove that

lg x « In x -j- logio x,

with less than 1% error! (Thus a table of natural logarithms and of common logarithms
can be used to get approximate values of binary logarithms as well.)

26 BASIC CONCEPTS 1.2.2

\

23. [M25] Give a geometric proof that In xy = In x + In y, based on Fig. 6.

24. [15] Explain how the method used for calculating logarithms to the base 10 at the
end of this section can be modified to produce logarithms to base 2.

25. [20] Suppose that we have a binary computer and a number x, 1 < x < 2. Show
that the following algorithm, wjhich uses only shifting, addition, and subtraction opera¬
tions proportional to the number of places of accuracy desired, may be used to calculate
an approximation to y = log;, x:

LI. [Initialize.] Set y *— 0, z x shifted right 1, /c <— 1.

L2. [Test for end.] If x = 1, stop.

L3. [Compare.] If x — z < 1, go to L5.

L4. [Reduce values.] Set x <— x — z, z <— x shifted right k, y <— y +
logj (2*/(2* — 1)), and go to L2.

L5. [Shift.] Set z <— z shifted right 1, k <— k + 1, and go to L2. |

[Notes: This method is very similar to the method used for division in computer
hardware. We need an auxiliary table of log6 2, log6 (4/3), log;, (8/7), etc., to as many
values as the precision of the computer. The algorithm involves intentional compu¬
tational errors, as numbers are shifted to the right, so that eventually x will be reduced
to 1 and the algorithm will terminate. This exercise is to explain why the above
algorithm will terminate and why it computes an approximation to log;, x.]

26. [M27] Determine upper bounds on the accuracy of the algorithm in the previous
exercise, based on the precision used in the arithmetic operations.

► 27. [M25] Consider the method for calculating logio x discussed in the text. Let
xk denote the computed approximation to xk, determined as follows: x(l — y) <
10nZo < z(l + e); and in the determination of x* by Eqs. (15), the quantity yk is used
in place of (z*_i)2, where (4-i)2(l - y) < yk < (x^_x)2(l + e) and 1 < yk < 100.
Here y and c are small constants which reflect the upper and lower errors due to round¬
ing or truncation. If log x denotes the result of the calculations, show that after k
steps we have

logio x+2 logio (i y) — 1/2* < log' x < logio * + 2 logio (1 + e).

28. [M30] (R. Feynman.) Develop a method for computing bx when 0 < x < 1,
using only shifting, addition, and subtraction (similar to the algorithm in exercise 25),
and analyze its accuracy.

29. [HM20] Let x be a real number greater than 1. (a) For what real number b > 1
is b logfc x a minimum? (b) For what integer b > 1 is it a minimum? (c) For what
integer b > 1 is (6 —f- 1) logj x a minimum?

1.2.3. Sums and Products

Let at, a2,.. . , be any sequence of numbers. We are often interested in sums

such as «i + a2 H-b an, and this sum is more compactly written using the
following notation:

2 a>- (1)

1.2.3 SUMS AND PRODUCTS 27

If n is zero or negative, the value of this summation is defined to be zero. In
general if R(j) is any relation involving j, the symbol

2 ai (2)

RU)

means the sum of all ay where j is an integer satisfying the condition R(j). If

no such integers exist, notation (2) denotes zero. The letter j in (1) and (2) is

a “dummy index” or “index variable” which has been introduced just for the

purposes of this notation. Symbols used as index variables are usually the

letters i, j, k, m, n, r, s, t (occasionally with subscripts or accent marks). The

use of a L and index variables to indicate summation was introduced by
J. Lagrange in 1772.

The notation JZru) aj is used in this book as a condensed form of (2).

Strictly speaking, notation (1) is ambiguous, since it is not completely clear

whether the summation is taken with respect to j or to n. In this particular case

it would be rather silly to interpret (1) as a sum on values of n > j, but it is

quite possible to construct meaningful examples in which the index variable is

not clearly specified, for example, Hj<k k3- In such cases the context must

make clear which variable is a dummy variable and which variable has a sig¬

nificance which extends beyond its appearance in this notation; the example in

the preceding sentence would presumably be used only if either j or k (not both)

has exterior significance.

In most cases notation (2) will be used only if the sum is finite) i.e., only

a finite number of values j satisfy R(j), as in (1). When an infinite sum is used,

for example,

t: aj=°i+°2++• • •,

the techniques of calculus must be employed; the precise meaning of (2) is then

(3)

provided both limits exist. If one or both limits fail to exist, the infinite sum is

“divergent”; it does not exist.
If two or more conditions are placed under the £ sign, as in (3), we mean

all conditions must hold.
Four simple algebraic operations on sums are very important, and a famil¬

iarity with these transformations makes the solution of many problems possible.

We shall now discuss these four operations.
a) The distributive law, for products of sums:

fe a*Ys= 2 (z) aibj) ■
\R(i) / \S(j) / R(i) \S(.j) '

(4)

28 BASIC CONCEPTS 1.2.3

For example, consider the special case

(^2 a*V Y1 M — a2)(t>i + &2 + b3)
\i<i<2 /\i<y<3 /

(ai&j + ail>2 + ^163) + (02^1 + 02^2 d- a2bf)

= 2 (Y •
i<i<2 \i<y<3 /

It is customary to drop the parentheses on the right-hand side of (4); “multiple

summation” EflcoCEso') «iy) is written simply Eie<p Zso) a{j.
b) Change of variable:

Y, ai ~ Yi aj — Y/ aP(iy
R(.i) R(j) R(pU))

(5)

This equation represents two kinds of transformations. In the first case we are

simply changing the name of an index variable. The second case is a little more

interesting: here p(j) is a function of j which represents a permutation of the

range; i.e., for each integer i satisfying the relation R{i), there must be exactly

one integer j satisfying the relation p(j) = i, and conversely. This condition is

always satisfied in the important cases when p(j) = c + j or p(j) = c — j,

where c is an integer not depending on j, and these are the cases used most
frequently in applications. For example,

Y aj
1 <j<n

Y/ ai—l Y ai—l
2<i<n+l

(6)

The reader should study this example carefully.

The replacement of j by p(j) cannot be done for all infinite sums. The
operation is always valid if p(j) = c ± j, as above, but in other cases some care

must be used. [For example, see T. M. Apostol, Mathematical Analysis (Reading,

Mass.. Addison-Wesley, 1957), Chapter 12. A sufficient condition to guarantee

the validity of (5) for any permutation of the integers, p(j), is that J^RU) |ay|
exists.]

c) Interchanging order of summation:

Y Yaij ~ Y Yaij'
R(i) S(j) S(j) R(i)

Let us consider a very simple special case of this equation:

Yi Y/ a**= Yl (a{i ai2)>
R(i) l<y<2 R(i)

Y Yaij = Yaii + Yai2%
1<J<2 R(i) R(i)

(7)

1.2.3 SUMS AND PRODUCTS 29

By Eq. (7), these two are equal; this says no more than

23 = X) bi + 23 Ci’

where we let
R(.i) R(i) R(i)

a; i and C{ — Qi 2 •

(8)

The operation of interchanging the order of summation is extremely useful,

since it often happens that we know a simple form for Xru') an, but not for

Hsu) o,ij. We often need to interchange summation order in a more general

case, where the relation S(j) depends on i as well as j. In such a case, we can

denote the relation by “S(i,j).” The interchange of summation can always be
carried out, in theory at least, as follows:

23 23 ttij ~ 23 23 aii’ (9)
R(i) SdJ) S'(j) R’(i,j)

where S'(j) is the relation “there is an integer i such that both R(i) and S(i,j)

are true”; and R'(i,j) is the relation “both R(i) and S(i,j) are true.” For

example, if the summation is Zi <j<i<iij, then S' (j) is the relation
“there is an integer i such that 1 < i < n and 1 < j < i,” that is, 1 < j < n;

and R'(i, j) is the relation “1 < i < n and 1 < j < i,” that is, j < i < n.

Thus,

23 23 aij ~ 23 23 aij‘
l<i<n l<j<i 1 j<i<n

[Note: As in case (b), the operation of interchanging order of summation is

not always valid for infinite series. If the series is “absolutely convergent,” i.e., if

J^Rd) T.SU) Wij\ exists, it can be shown that Eqs. (7) and (9) are valid. Also

if either one of R(i) or S(j) specifies a finite sum in Eq. (7), and if each infinite

sum which appears is convergent, then the interchange is justified; in particular,

Eq. (8) is always true for convergent infinite sums.]

d) Manipulating the domain. If R(j) and S(j) are two relations, we have

2>+23aj = 23 a> + 23aj- (11)
RU) S(j) R(j) or SU) R(J) and S(j)

For example,

23 a> + 23 ai = (23 aij + a™> (12)
l<j<m m<j<n '1 <j<n /

assuming that m < n. In this case “R(j) and S(j) ” becomes simply “j = m” so

we reduced the second sum to simply “am.” In most applications of Eq. (11),
either R(j) and S(j) are simultaneously satisfied for only one or two values of j,

or else it is impossible to have both R(j) and S(j) true for the same j. In the

latter case, the second sum on the right-hand side of Eq. (11) simply disappears.

30 BASIC CONCEPTS 1.2.3

\

Now that we have given the four basic rules for manipulating sums, let us

give some further illustrations of how to apply these techniques.

Example 1.

E ai = E ai + E ai by rule (d)
\

0 <j<n 0<i<n 0<i<n
j even j odd

= E a2j + E fl2^'+i by rule (b)
0<2 j<n 0<2j+\<n

2j even 2j'-j-l odd

= E a2^' + E a2j+l-

0<j<n/2 0<j<n/2

The last step merely consists of simplifying the relations below the £’s.

Example 2. Let

= E E aiaj = E E by rule (®) fcf- E(i- (io)]
000<j<n j<i<n

= E E by rule (h)>
0<i<n i<j<n

interchanging the names i and j and recognizing that aycq = ataj. If we denote
the latter sum by S2, we have

by Eq. (8)

by rule (d)

[cf. Eq. (12)]

by Eq. (8)

by rule (a)

by rule (b).

Thus we have derived the important identity

E E a'*i = \
0<i<n 0<j<i

E
0< i<n

(13)

1.2.3 SUMS AND PRODUCTS 31

Example 3. The sum of a geometric progression. Assume that x 9^ 1, n > 0.

Then

7 axJ by definition (2)

0<i<n

a + 7 by rule (d)

a + x 7 1 by a very special

case of (a)

a + a; 7 by rule (b) [cf. Eq.

0<y<n—1

a + a: 7 ax^ — axn+1 by rule (d).

0 <j<n

Comparing the first relation with the fifth, we have

C1 x) Y
0 < j<n

ax3 = a — axn+1,

and so we obtain the basic formula

7 ax3 = a

0 </<n

(14)

Example 4. The sum of an arithmetic progression. Assume that n > 0. Then

ci —(— (ci —)— fo) —J— • • • —|— (ct. —nfe)

= 2> + &i)
Q<j<n

= Y (a + b(n — i))
0 <n—j<n

= ^ (a + few — fei)
0 </<n

= 2 (2a + fen) — 2 ^

= (n + l)(2o + few) — J] (a + fei),
0 <j<n

by definition (2)

by rule (b)

by simplification

by Eq. (8)

since the first sum was simply a sum of (n + 1) terms which did not depend on j.

Now by equating the first and fifth expressions and dividing by 2, we obtain

7 (a + bj) = a(n + 1) + ^few(n + 1). (15)

o<

32 BASIC CONCEPTS 1.2.3

\

Note that we have obtained the important equations, (13), (14), and (15),

purely by using simple manipulations of sums. Most textbooks would simply

state those formulas, and prove them by induction. That is, of course, a perfectly

valid procedure; but it does not give any insight into how on earth a person

would ever have dreamed up the formula in the first place, except by some lucky

guess. In the analysis of algorithms we are confronted with hundreds of sums

which do not conform to any apparent pattern; by manipulating these sums, as

above, we can often get the answer without the need for ingenious guesses.

There is a notation for products, analogous to our notation for sums:

n ai (i6)
RU)

stands for the product of all ay for which the integer j satisfies R(j). If no such

integer j exists, the product is defined to have the value of unity {not zero). The
question of infinite products is considered in exercise 21.

Operations (b), (c), and (d) are valid for the IX-notation as well as for the

^■notation, with suitable simple modifications. The exercises at the end of this
section give a number of examples of the use of the product notation.

We conclude this section by mentioning another notation for multiple

summation which is often convenient: a single X)-sign may be used with one or

more relations in several index variables, meaning that the sum is taken over all
combinations of variables which meet the conditions. For example,

12 12 aij = 12 aij ’ 12 12 °ij = 12 °ij-
0<i<n 0 <j<n 0 <i,j<n 0 <i<n 0 <j<i 0 <j<i<n

A further example which demonstrates the usefulness of this notation is

12 ah---iny
J’H-\-3 „=rt

•• • >jn> 0

where a is an n-tuply subscripted variable; for example, if n = 5 this notation
stands for

alllll + ^21110 T- «22100 + ^31100 + «32000 + a41000 + «50000-

(See the remarks on partitions of a number in Section 1.2.1.)

EXERCISES-First Set

1. [01] What is the meaning of notation (1), if n = 3.14?

2. [10] Without using the ^-notation, write out the equivalent of

1

5
2n+ 1 ’

1.2.3 SUMS AND PRODUCTS 33

and also the equivalent of

V ——.
v 2n2 + 1

0<n <5

► 3. [IS] Explain why the two results of the previous exercise are different, in spite of
rule (b).

4. [10] Without using the ^-notation, write out the equivalent of each side of
Eq. (10) as a sum of sums for the case n = 3.

► 5. [HM20] Prove that rule (a) is valid for an arbitrary infinite series, provided that
the a, are not all zero.

6. [HM20] Prove that rule (d) is valid for an arbitrary infinite series, provided that
any three of the four sums exist.

. 7’ Given that c is an integer, show that J^RU) ai = Zao-j) ac_,-, even
if both series are infinite.

8. [HM25] Find an example of infinite series in which Eq. (7) is false.

► 9. [05] Is the derivation of Eq. (14) valid even if n = —1?

10. [05] Is the derivation of Eq. (14) valid even if n = —2?

11. [03] What should the right-hand side of Eq. (14) be if z = 1?

12. [10] IVhat isl + i+ J^+^d-f (i)»?

13. [10] Lsing Eq. (15) and assuming that m < n, evaluate ^B<y<nj.

14. [15] Using the result of the previous exercise, evaluate J2m<i<nJ2r<k<s jk.

► 15. [M22] Compute the sum 1 X 2 + 2 X 22 + 3 X 23 H-1- n2" for small values

of n. Do you see the pattern developing in these numbers? If not, discover it by
manipulations similar to those leading up to Eq. (14).

16. [M22] Prove that

V' - nxV+2 — (n + i)^n+1 + x

^ 3 (x - 1)2
0 <3<n

if x X 1, without using mathematical induction.

► 17. [MOO] Let S be a set of integers. What is in s 1?

18. [M20] Show how to interchange the order of summation as in Eq. (9) given that

R{i) is the relation “n is a multiple of i” and S(i,j) is the relation “1 < j < i."

19. [20] What is (a3■ — a,_i)?

► 20. [25] Dr. I. J. Matrix has observed a remarkable sequence of formulas:

9X1 + 2= 11, 9 X 12+3 = 111, 9 X 123 + 4 = 1111, 9 X 1234+ 5 = 11111.

a) Write the good doctor’s great discovery in terms of the 2+notation.

b) Your answer to part (a) undoubtedly involves the number 10 as base of the

decimal system; generalize this formula so that you get a formula which will

perhaps work in any base b.
c) Prove the formula in part (b) by using formulas derived in the text or in

exercise 16 above.

21. [M25] Give a definition for infinite products which is compatible both with Eq. (3)

and with standard mathematical conventions in advanced calculus.

\

34 BASIC CONCEPTS 1.2.3

► 22. [20] State the appropriate analogs of Eqs. (5), (7), (8), and (11) for 'products
instead of sums.

23. [10] Explain why it is a good idea to define 2Zr(3) a, and JJa(?) ai as zero and one,
respectively, when no integers satisfy R(j).

24. [20] Suppose that R{j) is true for only finitely many;. By induction on the number

of integers satisfying R(j), pro^e that logf, XT^ci) ai = ^2ru) (logjciy), assuming that
all a, > 0.

► 25. [15] Consider the following derivation; is anything amiss?

Y ai E £) - E ErZ Er E1-
l<j<n \<i<n 1 <t<n, 1 <

26. [25] Show that Ho<i<n IIo<j<y aya, may be expressed in terms of IJo<y<n ay by
manipulating the n -notation as stated in exercise 22.

27. [M20] Generalize the result of exercise 1.2.1-9 by proving that

II (1 - aj) > 1 - al>

assuming that 0 < ay < 1.

28. [M22] Find a simple formula for-Jj2<j<n (1 — l/;2).

► 29. [M30] (a) Express ^o<*<j a^aya* in terms of the multiple-

summation notation explained at the end of the section, (b) Express the same sum in

terms of 2Zo<y<n ay, Eo<t<n a?, and X)o<y<n a3 [cf. Eq. (13)].

30. [M23] Prove “Lagrange’s identity” without using induction:

(E «aV = (E «?Y E A - E <«a - .A>*.
\l<i<n / \l</<n f\\<i<n / 1 <k<j<n

► 31. [M23] Show that J2i<l<k<n (aj — a*)(63- — bjc) can be expressed in terms of

2ji<j<n ajb], 2^1 <i<n o-i, and 2i<j<» bj. Don’t use induction.

32. [M20] Prove that

U Yh aij = Y afil • • • ®»n»*

1 <3<n l<i<m l<t1,...,y„<m

► 33. [MSO] One evening Dr. Matrix discovered some formulas that might even be
classed as more remarkable than those of exercise 20:

1 _1 , 1
(a — b)(a — c)-1" (6 — a)(b — c) (c — a)(c — 6) °’

_®_I_b_ c

(a — b)(a — c) (b — a) (6 — c)' (c — a) (c — b) = °’

«2 , b2 c2 .
(a — b)(a — c) (b — a)(b — c) + (c — a)(c — b) ~

|_bY c3
(a - b)(a - cy (b - a)(b - Cy (c - a)(c - b) ~ a+6+c-

1.2.3 SUMS AND PRODUCTS 35

Prove that these formulas are a special case of a general law; let x\, X2, . . . , xn be
distinct numbers, and show that

e (*5/ n
' ' l<k<n,

k=£j

o,
1,

2 Xj>
>.1 <j<n

if 0 < r < n — 1;

if r — n — 1;

if r = n.

34. [M25] Prove that

yi Hl<r<n, r^m (x-\- Jc — r)

1 <k<n Hl<r<n, r^k {k — r)

provided that 1 < m < n and x is arbitrary. For example, if n = 4 and m = 2, then

x(x -2)(x- 3) (x + l)(as - l)(x - 2) (x+2)x(x-l) (x+3)(x+l)x ,

(1)(2)(3) ^ (!)(—!)(—2) + (2)(1)(—1) + (3)(2)(1) ” L

35. [HM20] The notation supfi(3) a3 is used to denote the least upper bound of the
elements a3, in a manner exactly analogous to the and JJ-notations. (When R(j)
is satisfied for only finitely many j, the notation maxjR(3) a3 is often used to denote
the same quantity.) Show how rules (a), (b), (c), and (d) can be adapted for manipula¬
tion of this notation. In particular, discuss the following analog of rule (a):

(sup a,) + (sup hj) = sup (sup (a;+ bj)),
R(i) SO) R(i) SO)

and give a suitable definition for the notation when R(j) is satisfied for no j.

EXERCISES—Second Set

Determinants and matrices. The following interesting problems are for the

reader who has experienced at least an introduction to determinants and ele¬

mentary matrix theory. A determinant may be evaluated by astutely combining

the operations of: (a) factoring a quantity out of a row or column; (b) adding a

multiple of one row (or column) to another row (or column); (c) expanding by

“cofactors.” The simplest and most often used version of operation (c) is to

simply delete the entire first row and column, provided that the element in the

upper left corner is +1 and the remaining elements in either the entire first row

or the entire first column are zero; then evaluate the resulting smaller deter¬

minant. In general, the cofactor of an element in an n X n determinant is

(—l)i+J times the (n — 1) X (n — 1) determinant obtained by “deleting the row

and column in which appeared. The value of a determinant is equal to

Yi,an • cofactor(a;y) summed with either i ox j held constant and with the other

subscript varying from 1 to n.

If (bij) is the inverse of matrix (a,-/), then equals the cofactor of ay*

(note, not an), divided by the determinant of the whole matrix. The notation

bij stands for the value one if i = j, zero otherwise.

36 BASIC CONCEPTS 1.2.3

The following types of matrices are of special importance:

Vandermonde’s matrix, Combinatorial matrix,

aH = x) a,j = y -f bijx

(XX x2 . X) • **"n \ ' x + y y
v) xf x\ . • xn V x + y y

\A Xn2 . ■ <) \ v y x + y)

Cauchy’s matrix,

aij — 1/ (xi -)- yj)

fl/(xx + yx) 1/{x\ + y2) ...

l/(*2 + 2/i) l/(*2 + 1/2) •••

\ V(»» + 2/i) l/(®» + 2/2) • • •

1/(*1 + 2In)^

1/(*2 + 2/»)

l/(®» + 2/n) /

36. [M0S] Show that the determinant of the combinatorial matrix is xn~1(x -)- ny).

► 37. [M24] Show that the determinant of Vandermonde’s matrix is

II xi JJ (xj — xi).

► 38. Show that the determinant of Cauchy’s matrix is

II (xi ~ xi)(Vi — Vi) / n (x*+ 2/y).
/ l<»',y<n

39. [M23\ Show that the inverse of the combinatorial matrix is given by bi}- =
(V + 8ij(x + ny))/x(x + ny).

40. [M24] Show that the inverse of Vandermonde’s matrix is given by
1

ba = (—!),+1 2 (**1**2 • • • xK-j) / xi II (Xk ~ x‘)
1<*1 <---<kn_,<n / l<t<n

*1.k^ti

Do not be dismayed by the complicated sum in the numerator—it is just the co¬
efficient of x3'-1 in the polynomial (xi — x) ■ (xn — x)/(x» — x).

41. [M26] Show that the inverse of Cauchy’s matrix is given by

bij - (n ^+2/*) (**+v*)) /(*/■+vd n Xfc)Y n (y<-»*)V
'^<n / ' \l<*<n)\\<k<n)

. k=£i

42. [Ml 8] What is the sum of all n2 elements in the inverse of the combinatorial
matrix?

1.2.4 INTEGER FUNCTIONS AND ELEMENTARY NUMBER THEORY 37

43. [M24] What is the sum of all n2 elements in the inverse of Vandermonde’s matrix?
[Hint: Use exercise 33.]

► 44. [M26] What is the sum of all n2 elements in the inverse of Cauchy’s matrix?

► 45. [M25] A Hilbert matrix, sometimes called “an n X n segment of the (infinite)
Hilbert matrix” is a matrix for which an = — 1). Show that this is a special
case of Cauchy’s matrix, find its inverse, show that each element of the inverse is an
integer, and show that the sum of all elements of the inverse is n2. (Note: Hilbert
matrices have often been used to test various matrix manipulation algorithms, because
they are numerically unstable, and they have known inverses. However, it is a mis¬
take to compare the known inverse, given in this exercise, to the computed inverse
of a Hilbert matrix, since the matrix to be inverted must be expressed in rounded
numbers beforehand; the inverse of an approximate Hilbert matrix will be somewhat
different from the inverse of an exact one, due to the instability present. Since the
elements of the inverse are integers, and since the inverse matrix is just as unstable as
the original, the inverse can be specified exactly, and one could try to invert the inverse;
however, the integers which appear in the inverse are quite large.) The solution to
this problem requires an elementary knowledge of factorials and binomial coefficients,
which are discussed in Sections 1.2.5 and 1.2.6.

► 46. [M30\ Let A be an m X n matrix, and let B be an n X m matrix. Given that
1 < ji,]2, ■ ■ ■ , jm < n, let Ajvr..jm denote the mX m matrix consisting of columns
ji, . . . ,jm of A, and let denote the mXm matrix consisting of rowsji, • • ■ ,jm
of B. Prove that

det (AB) = ^ det (Ahh...jm) det (..

(Note the special cases: (i) m = n, (ii) m = 1, (iii) B = AT.)

1.2.4. Integer Functions and Elementary Number Theory

If x is any real number, we write

LxJ = the greatest integer less than or equal to x (the “floor” of x);

[x~\ = the least integer greater than or equal to x (the “ceiling” of x).

The notation [x] is often used elsewhere for one or the other of these functions,

usually the former; the notations above, which are due to K. E. Iverson, are

more useful, because both functions occur about equally often in practice. The

function [x] is sometimes called the entier function, from the French word for

“integer. ”

The following formulas and examples are easily verified:

|V2J=1, rV2l = 2;

L+iJ = o, r—FI = 0, L—FI = -1 (not zero!);

f x~\ — _x\ if and only if x is an integer,

[x~\ = _x\ +1 if and only if x is not an integer;

_—x\ = —faf]; x — 1 < L*J <aj<fxl<x+l.

38 BASIC CONCEPTS 1.2.4

Exercises at the end of this section list other important formulas involving the

floor and ceiling operations.
If x and y are any real numbers, we define the following binary operation:

x mod y = x — y[_x/y\, if y ^ 0; x mod 0 = x. (1)

From this definition we can see that when y 9^ 0,

therefore

0 < - -
y

x mod y

y
< i; (2)

a) if y > 0, then 0 < x mod y < y\

b) if y < 0, then 0 > x mod y > y;

c) the quantity x — (x mod y) is an integral multiple of y; and so we may think
of x mod y as the remainder when x is divided by y.

Thus, “mod ” is a familiar operation when x and y are integers:

5 mod 3 = 2,

18 mod 3 = 0, (3)

—2 mod 3=1.

We have x mod y = 0 if and only if a; is a multiple of y, that is, if and only if x
is divisible by y.

The “mod” operation is also useful when x and y take arbitrary real values;

for example, with trigonometric functions we can write

tan x = tan {x mod 7r).

The quantity x mod 1 is the “fractional part” of a:; we have, by Eq. (1),

x = L*J + (x mod 1). (4)

In number theory, the abbreviation “mod” is used in a different but related

sense; we will use the following form to express the number-theoretical concept
of congruence:

x = y (modulo z) (5)

means that x mod z = y mod z, that is, the difference x — y is an integral

multiple of 2; Expression (5) is read, “x is congruent to y modulo z. ”

Let us now state the basic elementary properties of congruences which will

be used in the number-theoretical arguments of this book. All variables in the

following formulas are assumed to be integers. Two integers are said to be

relatively prime if they have no common factor, i.e., if their greatest common

1.2.4 INTEGER FUNCTIONS AND ELEMENTARY NUMBER THEORY 39

divisor is 1. The concept of relatively prime integers is a familiar one, since

it is customary to say a fraction is in “lowest terms” when the numerator is
relatively prime to the denominator.

LAW A. If a = b and x = y, then a db x = b ± y and ax - by (modulo m).

LAW B. If ax = by and a = b, and if a is relatively prime to to, then x = y
(modulo to).

LAW C. a = b (modulo to) if and only if an = bn (modulo mn), when n ^ 0.

LAW D. If r is relatively prime to s, then a = b (modulo rs) if and only if
a = b (modulo r) and a = b (modulo s).

Law A states that we can do addition, subtraction, and multiplication (and

hence we can take powers xn, for n > 0) modulo to just as we do ordinary

addition, subtraction, multiplication, and taking powers. Law B considers the

operation of division, and shows that in certain cases (namely, that the divisor

is relatively prime to the modulus) we can also divide out common factors.

Laws C and D consider relations when the modulus is changed.

As an example of these relationships, we will prove an important theorem.

Theorem F (Fermat's theorem, 1640). If p is a prime number, then ap = a

(modulo p).

Proof. If a is a multiple of p, obviously ap = 0 = a (modulo p). So we need only

consider the case a mod p ^ 0. Since p is a prime number, this means that a is

relatively prime to p. Consider the numbers

0 mod p, a mod p, 2a mod p, . . . , (p — l)a mod p. (6)

These p numbers are all distinct, for if ax mod p = ay mod p, then by defini¬

tion (5) ax = ay (modulo p); hence by Law B, x = y (modulo p).

Since (6) gives p distinct numbers, all nonnegative and less than p, we see

that the first number is zero and the rest are the integers 1, 2, . . . , p — 1 in

some order. Therefore by Law A,

(a)(2a) • • • ((p — l)a) = 1 • 2 • • • (p — 1) (modulo p). (7)

Multiplying each side of this congruence by a, we obtain

ap{ 1 • 2 • • ■ (p — 1)) = a(l • 2 • • • (p — 1)) (modulo p), (8)

and this proves the theorem, since each of the factors 1, 2, . . . , (p — 1) is

relatively prime to p and can be canceled by Law B. |
Exercises 17 through 21 below develop the basic laws underlying the ele¬

mentary theory of numbers.

40 BASIC CONCEPTS 1.2.4

EXERCISES

1. [00] What arc Ll.lJ, L—1.1 J, ["—1.1], L0.99999J, and Llg 35J?

► 2. [01] What, is rUJl?

3. [XI10] Let n be an integer, and let i be a real number. Prove that

a) |_xj < n if and only if x < n; b) n < |_xj if and only if n < x;

c) f+1 < n if and only if x < n; d) n < fx”| if and only if n < x;

e) [_xj = n if and only if x — 1 < n < x, and if and only if n < x < » + 1;

f) [+1 = n if and only ifx<n<x+l, and if and only if n — 1 < x < n.

[These formulas are the most important tools for proving statements about LxJ and fx~|.]

► 4. [M10\ Using the previous exercise, prove that [_—xJ = —fx"|.

5. [16] Given that x is a positive real number, state a simple formula which expresses

“x rounded to the nearest integer.” The desired rounding rule is to produce [_xj when

x mod 1 < 2, and to produce fx~| when x mod 1 > \. Your answer should be a single

formula which covers both cases. Discuss the rounding which would be obtained bj’

your formula when x is negative.

► 6. [20] Which of the following equations are true for all positive real numbers x?

(a) ivl^h = iv*j; (b) rvwi = rVx]; (o rvwi = iv*i.
7. [M15] Show that (_xj + [_?/J < [_x + y] and that equality holds if and only if

x mod 1 + y mod 1 < 1. Does a similar formula hold for ceilings?

8. [00] What are 100 mod 3, 100 mod 7, —100 mod 7, —100 mod 0?

9. [05] What are 5 mod —3, 18 mod —3, —2 mod —3?

► 10. [10] What are 1.1 mod 1, 0.11 mod .1, 0.11 mod —.1?

11. [00] What does “x = y (modulo 0)” mean by our conventions?

12. [00] What integers are relatively prime to 1 ?

13. [MOO] By convention, we say the greatest common divisor of 0 and n is |n|.
AYhat integers are relatively prime to 0?

► 14. [12] If x mod 3 = 2 and x mod 5 = 3, what is x mod 15?

15. [10] Prove that z(x mod y) = (zx) mod (zy). (Note that Law C is an immediate
consequence of this distributive law.)

16. [M10] Assume that y > 0. Show that if (x — z)/y is an integer and if 0 < 2 < y,
then z = x mod y.

17. [Ml5} Prove Law A directly from the definition of congruence, and also prove

halt ot Law D: If a = b (modulo rs), then a = b (modulo r) and a = b (modulo s).
(Here r, s are arbitrary integers.)

18. [M15] Using Law B, prove the other half of Law D: If asfc (modulo r) and

a = b (modulo s), then a = b (modulo rs), provided that r and s are relatively prime.

^ 19. [M10] {Law oj inverses.) If n is relatively prime to m, there is an integer n' such

that nn' mod ??i = 1. Prove this, using the extension of Euclid’s algorithm (Al»o-
rithrn 1.2.1E).

20. [XI15] Use the law of inverses and Law A to prove Law B.

1.2.4 INTEGER FUNCTIONS AND ELEMENTARY NUMBER THEORY 41

21. [M22] Use Law B and exercise 1.2.1-5 to prove that every integer n > 1 has a
unique representation as a product of primes (except for order of factors); i.e., that
there is exactly one way to write n = P1P2 • • • Pk, where each pj is prime and
Pi < P2 < • • ■ < Pk-

► 22. [M10] Give an example to show that Law B is not always true if a is not relatively
prime to to.

23. [MlO] Give an example to show that Law D is not always true if r is not relatively
prime to s.

► 24. [M20\ To what extent can Laws A, B, C, and D be generalized to apply to
arbitrary real numbers instead of integers?

25. [M00\ Show that, according to Theorem F, ap~1 mod p = 1 if a is not a multiple
of p, and that ap 1 mod p = 0 if a is a multiple of p, whenever p is a prime number.

26. [Ml5] Let p be an odd prime number, let a be any integer, and let b = a(p-1)/2.
Show that b mod p is either 0 or 1 or p — 1. [Hint: Consider (b + 1)(6 — 1).]

27. [M15] Given that n is a positive integer, let (pin) be the number of values among
0,1, . . . , n — 1 that are relatively prime to n. Thus <p(1) = 1, <p(2) = 1, <p(3) = 2,
<p(4) = 2, etc. Show that <p(p) = p — 1 if p is a prime number; and evaluate <p(pe),
where e is a positive integer.

► 28. [M25] Show that the method used to prove Theorem F can be used to prove the
following extension, which is called Euler’s theorem: av(m) mod m = 1, for any positive
integer m, when a is relatively prime to to. (In particular, the number n! in exercise 19
may be taken to be mod to.)

29. [M20] A function fin) of positive integers n is called multiplicative if f(rs) =
f(r)f(s) whenever r and s are relatively prime. Show that the following functions are
multiplicative: (a) f(n) = nk; (b) f(ri) = 0 if n is divisible by k2 for some integer
k > 1, f{n) = 1 otherwise; (c) fin) = ck, where k is the number of distinct primes
which divide »; (d) the product of any two multiplicative functions.

30. [M30] Prove that the function <p{n) of exercise 27 is multiplicative. Using this
fact, evaluate <£>(1000000) and give a method for evaluating pin) in a simple way once
n has been factored into primes.

31. [M22] Prove that if fin) is multiplicative, so is gin) =]C<j\n/(d). The notation
d\n means “d divides n,” that is, d is a positive integer and n mod d = 0.

32. [Ml 5] In connection with the notation in the previous exercise, show that

X) X Kc>= X X cd)>
d\n c\d c\n d\(n/ c)

for any function fix, y).

33. [Ml 8] If n, to are integers, evaluate

n — to+ 1

2
(a)

n-\- to + n — to + 4 (b)
n+ to +

(The special case to = 0 is worth noting.)

► 34. [M21] What conditions on the real number b > 1 are necessary and sufficient to

guarantee that x\ — U°g6 L^JJ f°r all real x > 1?

42 BASIC CONCEPTS 1.2.4

\

► 35. [M20] Given that to, n are integers and n > 0, prove that [_(x + m)/n] =
|_(|_xj + m)/n\ for all real x. (When to = 0, we have an important special case.)
Does an analogous result hold for the ceiling function?

36. [M23] Prove that £i<fc<„ L&/2J = [n2/±]) also evaluate Xi<Kn [k/2\

► 37. [M30] Let m, n be integers, n > 0. Show that

£
0<&<n

mk-\- x

n

(m — l)(n — 1)

2
^-^+dLx/dJ,

where d is the greatest common divisor of to and n, and x is any real number.

38. [M22] Prove that, for all positive integers n and for any real x,

L*J + x+~
n

+ ■ • • + x +
n — 1

n
— |_nxj.

Do not use the result of exercise 37 in your proof.

39. [HM35] A function / for which

/(x)+/(x + ^+---+/(x + ^i) = Jinx),

whenever n is a positive integer, is called a replicative function. The previous exercise

establishes the fact that LxJ is replicative. Show that the following are replicative:

a) f(x) = x — f;

b) /(x) = 1, if x is an integer, 0 otherwise;
c) /(x) = 1, if x is a positive integer, 0 otherwise;
d) /(x) = 1, if there exists a rational number r and an integer m such that x =

r7r+ to, 0 otherwise;
e) three other functions like the one in (d) with r and/or to restricted to positive

values;
f) fix) — log |2sin7rx|, if the value/(x) = —<» is allowed;
g) the sum of any two replicative functions;
h) a constant multiple of a replicative function;
i) the function g(x) = f(x — L^J)? where/(x) is replicative.

40. [HM4-6] Study the class of replicative functions; determine all replicative func¬
tions of a special type (e.g., is the function in (a) of exercise 39 the only continuous
replicative function?). It may be interesting to study also the more general class of
functions for which

f(x) -j-\~f(x+ - n 1

Here an, bn are numbers which depend on n but not on x. Derivatives and (if bn = 0)
integrals of these functions are of the same type. If we require that bn = 0, we have,
for example, the Bernoulli polynomials, the trigonometric functions cot tx and
csc2trx, as well as Hurwitz’s generalized zeta function f (s, x) =]Cfc>o V(& + x)*
for fixed s. With 6„ ^ 0 we have still other well-known functions, e.g., the psi-function.
For further properties of these functions, see L. J. Mordell, “Integral Formulae of
Arithmetical Character,” J. London Math. Soc. 33 (1958), 371-375.

^ = anf(nx) + bn

1.2.4 INTEGER FUNCTIONS AND ELEMENTARY NUMBER THEORY 43

41. [M23] Let a\, <12, «3, • . . be the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ... ; find an
expression for an in terms of n (using the floor and/or ceiling operation).

42. [M24] (a) Prove that

T. ak = nan — k(ak+i — ah), if n > 0.

l<A:<n

(b) The preceding formula is useful for evaluating certain sums involving the floor
function. Prove that, if b is an integer > 2,

J2 Llogi.AU = (n+ l)Ll°gi> nl - (6llog6”J+1 - b)/{b - 1).
l<A:<n

43. [M23] Evaluate ^kk„ [\/k].

44. [M2J/\ Show that Xfc>o Hi<j<b L(n -\~ jbk)/bk+l \ = n, if b and n are integers,
n > 0, and b > 2. What is the value of this sum when n < 0?

► 45. [M28] The result of exercise 37 is somewhat surprising, since it implies that

nk-\- x

m
0<&<n 0<Jc<m

mk-\- x

n - E

This “reciprocity relationship” is one of many similar formulas (cf. Section 3.3.3).
Show that for any function /

E
o<y<«

- E
0 <r<m

(f(r — 1) — f(r)) + nf(m — 1).

In particular, prove that

e (Lmi/;J+1)+
0<i<«

E
0 <j<n

[Hint: Consider the change of variable, r = _mj/n\. Binomial coefficients (”) are
discussed in Section 1.2.6.]

46. [M29] (General reciprocity law.) Extend the formula of exercise 45 to obtain an
expression for 2Zo<y<an/(L"y'/nJ), where a is any positive real number.

47. [MSI] When p is an odd prime number, the Legendre symbol, (|), is defined
to be +1, 0, or —1, depending on whether mod p = 1, 0, or p — 1. (Cf.

exercise 26.)

a) Given that q is not a multiple of p, show that the numbers

(—l)\-2ki'p-i(2kq mod p), 0 < k < p/2,

are congruent in some order to the numbers 2, 4, . . . , p — 1 (modulo p). Hence

(|) = (—lY where a = J/o<k<Pi2 [Zkq/p].

b) Use the result of (a) to calculate (§).

c) Given that q is odd, show thatX)o<fc<j>/2 [2kq/p] = Xo<fc<p/2 [kq/p] (modulo 2).
[Hint: Consider _{p — 1 — 2k)q/p].]

44 BASIC CONCEPTS 1.2.4

d) Use the general reciprocity formula of exercise 46 to obtain the law of quadratic
reciprocity, (|)(f) = (—l)(p-1)(9-1)/4, given that p and q are distinct odd primes.

48. [M26] Prove or disprove the following identities given that m and n are integers:

(a)
1 m n + 2 — [_n/25J 8 n+ 24

, w 3 25 J

1.2.5. Permutations and Factorials

A permutation of n objects is an arrangement of n distinct objects in a row. There

are six permutations of three objects a, b, c:

a b c, a c b, b a c, b c a, cab, c b a. (1)

The properties of permutations are of great importance in the analysis of

algorithms, and we will deduce many interesting facts about them later in this

book. At this point we will simply count them, i.e., we will determine how many

permutations of n objects are possible: There are n ways to choose the leftmost

object, and once this choice has been made, there are (n — 1) ways to select a

different object to place next to it; this gives usw(n — 1) choices for the first

two positions. Similarly, we find there are (n — 2) choices for the third object

distinct from the first two, and a total of n(n — 1) (n — 2) possible ways to choose

the first three objects. In general, if pnk denotes the number of ways to choose

k objects out of n and to arrange them in a row, we see that

Pnk = n(n — 1) ■ • ■ in — k + 1). (2)

The total number of permutations is pnn — n(n — 1) • • • (1).

The process of constructing all permutations of n objects in an inductive

manner, assuming that all permutations of n — Tobjects have been constructed,

is very important in our applications. Let us rewrite (1) using the numbers

1, 2, 3 instead of the letters a, b, c; the permutations of order 3 are
<

1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1. (3)

Consider how to get from this array to the permutations of 4 objects. There are

two principal methods for going from n — 1 objects to n objects.

METHOD 1. For each permutation aia2 • • • an_i on (n — 1) elements, form

n others by inserting the number n in all possible places, obtaining

71 d\ d2 * &n-—1? @1 ^ * * * Q'n —1> • • • ;

ax a2 • • • n an_i, ai a2 • • • an_i n.

For example, from the permutation 2 3 1 in (3), we get 423 1,243 1,234 1,

2 3 14. It is clear that all permutations of n objects are obtained in this manner
and that no permutation is obtained more than once.

1.2.5 PERMUTATIONS AND FACTORIALS 45

METHOD 2. For each permutation ai a2 ... an-i of the elements

{1, 2, . . . , n — 1}, form n others as follows: First construct the array

0,1 a2 . . . On — i '2, 0\ 02 . . . On — i 2t • ■ • , ^2 " ' ' — 1 (fl 2')'

Then rename the elements of each permutation using the numbers 1,2, ,n,

;preserving order. For example, from the permutation 2 3 1 in (3) we get

23 1|, 2 3 1|, 2 3 1 f, 2 3 1 |

and, renaming, we get

3 4 2 1, 3 4 1 2, 2 4 1 3, 2 3 1 4.

Another way to describe the same process is to take the permutation

di a2 • • • an_i and a number k, 1 < k < n\ add one to each aj whose value

is >k, thus obtaining a permutation bx b2 • • • bn_i on the elements {1, . . . ,

k — 1, k + 1, . . . , n}; now bi b2 ■ ■ • 6„_i k is a permutation on {1, . . . , n}.

Again it is clear that we obtain each permutation on n elements exactly

once by this construction. A similar method (which puts k at the left instead

of the right, or which puts k in any other fixed position) could of course also

be used.
If pn is the number of permutations of n objects, both of these methods show

that pn = npn—\, and this offers us two further proofs that pn = n(n — 1) • • • (1),

as we already established in Eq. (2).
The important quantity pn is called n factorial and it is written

n\ — 1-2.n = JJ k. (4)

1 <k<n

Our convention on vacuous products (cf. .Section 1.2.3) gives us the value

0! = 1, (5)

and with this convention the basic identity

n\ = (n — 1)1 n (6)

is valid for all positive integers n.
Factorials come up sufficiently often in computer work that the reader is

advised to memorize the values of the first few factorials:

0! = 1, 11=1, 21 = 2, 3! = 6, 41= 24, 51= 120.

The factorials increase very rapidly; the number 1000! is an integer with over

2500 decimal digits.

It is helpful to keep the value

10! = 3,628,800

46 BASIC CONCEPTS 1.2.5

in mind; one should remember that 10! is about 3J million. In a sense, the

number 10! represents an approximate dividing line between things which are

practical to compute and things which are not. If an algorithm requires the

testing of rpore than 10! cases, chances are it may take too long to run on a

computer to be practical.^ On the other hand, if we are to test 10! cases and

each case requires, say, one millisecond of computer time, then the entire run

will take about an hour. These comments are very vague, of course, but they

can be useful to give an intuitive idea of what is computationally feasible.

It is only natural to wonder what relation n\ bears to other quantities

in mathematics; is there any way to tell how large 1000! is, without laboriously

carrying out the multiplications implied in Eq. (4) ? The answer was found by

James Stirling in his famous work Methodus Differentialis (1730), p. 137; we have

n! ~ y/2irn (7)

The ” sign which appears here denotes “approximately equal,” and “e” is the

base of natural logarithms introduced in Section 1.2.2. We will prove Stirling’s
approximation (7) in Section 1.2.11.2.

As an example of the use of this formula, we may compute

40320 = 8! « 4Vtt = 226Vire-8 « (67108864) (1.77245)(0.00033546)

« 39902.

In this case the error is about 1%; we will see later that the relative error is
approximately l/12n.

In addition to the approximate value given by Eq. (7), we can also rather

easily obtain the exact value of n! factored into primes. In fact, the prime p
is a divisor of n! with the multiplicity

n
+

n
+

n

LpJ [p2J

For example, if n — 1000 and p = 3, we have

^r-\ fl

2-J pk
k> 0

(8)

inon
+ 1000 + 1000

27 + 1000
81 + 1000

243
+ 1000

729

= 333 + 111 + 37 + 12 + 4 + 1 = 498,

so 1000! is divisible by 3498 but not by 3499. Although formula (8) is written

as an infinite sum, it is really finite for any particular values of n and p, because

all of the terms are eventually zero. It follows from exercise 1.2.4-35 that

_n/p J = _Y.n/vk\/p], amd this fact facilitates the calculation in Eq. (8),
since we just divide the value of the previous term by p and discard the
remainder.

1.2.5 PERMUTATIONS AND FACTORIALS 47

We can prove the correctness of Eq. (8) by observing that \n/pk } is the

number of integers among {1, 2, . . . , n} which are multiples of pk. Thus, if we

study the integers in the product (4), any integer which is divisible by pJ but

not by pj+1 is counted exactly j times: once in [n/p\, once in _n/p2], . . . ,

once in [n/p1 J. This accounts for all occurrences of p as a factor of n\.

Another natural question arises: Now that we have defined n\ for non¬

negative integers n, perhaps the factorial function is meaningful also for rational

values of n, and even for real values. What is (^)!, for example? Let us illustrate

this point by introducing the “termial” function

n? = 1 + 2 H-\- n — ^ k, (9)

1 <k<n

which is analogous to the factorial function, except we are adding instead of

multiplying. We already know the sum of this arithmetic progression (cf.

Eq. 1.2.3-15):

n? = Jn(n -j- 1). (10)

This suggests a good way to generalize the “termial” function to arbitrary n,

by using Eq. (10) instead of Eq. (9). We have (J)? = f.

Stirling himself made several attempts to generalize n\ to noninteger n.

He extended the approximation (Eq. 7) into an infinite sum, but unfortunately

the sum did not converge for any value of n; the approximation method gives

extremely good approximations, but it cannot be extended to give an exact

value. [For a discussion of this rather unusual situation, see K. Knopp, Theory

and Application of Infinite Series, 2nd ed. (Glasgow: Blackie, 1951), pp. 518-520,

527, 534.]
Stirling tried again, by noticing that

„.= ! + (l -i5)K + (l-i + i)n(n-l)

+ (l — Yj + n(n — l)(n — 2) 4-• (11)

(We will prove this formula in the next section.) The apparently infinite sum in

Eq. (11) is in reality finite for any nonnegative integer n; however, it does not

provide the desired generalization of n\, since the infinite sum does not exist

except when n is a nonnegative integer. (Cf. exercise 16.)

Still undaunted, he found a sequence ax, a2, . . . such that

In n\ — axn + a2n(n — 1) + • • ■ = a*+i JJ (n — j). (12)

k> 0 0 <y< A:

He was unable to prove that this sum defined n\ for all fractional values of n,

although he was able to find the value of (^)! = \fr/2.

48 BASIC CONCEPTS 1.2.5

Fig. 7. The function r(z) — (x — 1)!. Point X has the coordinates (1.4616321450,
0.8856031944).

At about the same time, Leonhard Euler considered the same problem, and

he was the first to find the appropriate generalization:

i v mnm\ , .
U' (n + l)(n + 2) • • • (n 4- m)

Euler communicated this idea in a letter to Christian Goldbach, on Oct. 13, 1729.

His formula defines n! for any value of n except negative integers (when the

denominator in Eq. (13) becomes zero), and in this case n! is taken to be infinite.

Nearly two centuries later, in 1900, C. Hermite proved that Stirling’s idea

(Eq. 12) actually did define n\ for nonintegers n and that in fact Euler’s and

Stirling’s generalizations were identical. Equation (13) is not extremely

mysterious; with a little coaching (see exercise 22), the reader may discover it
for himself.

Historically, many notations have been used for factorials. Euler actually

wrote [n], Gauss wrote 7r(n), and the symbols \n and n\ were used in England.

The notation n! which is universally used today (when n is an integer) was

introduced by a comparatively little known mathematician, Christian Kramp,
in an algebra text in 1808.

When n is not an integer, however, the notation n! is very seldom used, and

instead we customarily employ a notation due to A. M. Legendre:

n! = T(n 4- 1) = nr(n). (14)

1.2.5 PERMUTATIONS AND FACTORIALS 49

The function

definition
T(a:) is called the Gamma function, and by Eq. (13) we have the

T(x) = lim
m m\

x{x + l)(x + 2) • • • (x + m)
(15)

A graph of this function is shown in Fig. 7.

The interesting history of factorials from the time of Stirling to the present

day is traced in the article by P. J. Davis, “Leonhard Euler’s Integral: A

Historical Profile of the Gamma Function,” AMM 66 (1959), 849-869.

EXERCISES

1. [00] How many ways are there to shuffle a 52-card deck?

2. [10] In the notation of Eq. (2), show that pn(n—i) = Pnn, and explain why this
happens.

3. [10] What permutations on 1, 2, 3, 4, 5 would be constructed from the permutation
3 12 4 using methods 1 and 2, respectively?

► 4. [18] Given the fact that logio 1000! = 2567.60464 . . . , determine exactly how
many decimal digits there are in the number 1000!. What is the most significant digit?
What is the least significant digit?

5. [15] Approximate 8! using the following more exact version of Stirling’s approxi¬
mation :

► 6. [17] Using Eq. (8), write 20! as a product of prime factors.

7. [M10] Show that the “generalized termial” function in Eq. (10) satisfies the
identity x? = x + (x — 1)? for all real numbers x.

8. [HM15] Show that the limit in Eq. (13) does equal n\ when n is a nonnegative
integer.

9. [M10] Determine the values of T(^) and T(—J), given that (^)! = \Ztt/2.

► 10. [HM20] Does the identity T{x -f- 1) = xT(x) hold for all real numbers x? (Cf.

exercise 7.)

11. [Ml 5] Let the representation of n in the binary system be n = 2ci + 2e2 -f- • • • -f-
2er, where e\ > e2 > • • • > er > 0. Show that n! is divisible by 2n~r but not by 2n~r+1.

► 12. [M22] (A. Legendre, 1808.) Generalizing the result of the previous exercise, let p
be a prime number, and let the representation of n in the p-ary number system be
n = akPk + ajt-ip*-1 + • • • + a\p + ao. Express the number p. of Eq. (8) in a
simple formula involving n, p, and the a’s.

13. [M23] (“Wilson’s theorem,” actually due to Leibnitz, 1682.) If p is prime,
(p — 1)! mod p = p — 1. Prove this, by pairing off numbers among 1, 2, . . . , p — 1

whose product mod p is 1.

50 BASIC CONCEPTS 1.2.5

\

► 14. [M28] (L. Stickelberger, 1890.) In the notation of exercise 12, we can determine

n\ mod p in terms of the p-ary representation, for any integer n, thus generalizing

Wilson’s theorem. In fact, prove that n!/pM = (—l^ao! ai! • • • a*! (modulo p).

15. [HM15] T(he “permanent” of a square matrix is defined to be the same as the

determinant except that each term in the expansion is given a plus sign instead of a

minus sign. Thus, the permanent of

is aei + bfg -j- cdh + gee -f- hfa -j- idb. What is the permanent of

/1X1 1X2 ... 1 X

2X1 2X2 ... 2 X n

\n X 1 nX 2 ... nX n /

16. [HM15] Show that the infinite sum in Eq. (11) does not converge unless n is a

nonnegative integer.

17. [HM20] Prove that the infinite product

TT (« + «!)'•■ (n+ ak)

(n + Pi) •••(«.+ Pk)

has the value T(1 + Pi) • • • T(1 + Pk)/T(l + ai) • • • T(1 + «*), if c*i d-h ak =

Pi + • • • + Pk and if none of the /3’s is a negative integer.

18. [M20\ Assume that t/2 = f'f'f'f'f'T' ‘ ‘ • (This is “Wallis’s product,”
obtained by J. Wallis in 1656, and we will prove it in exercise 1.2.6-43.) Using the

previous exercise, prove that (J)! = 7r.

19. [HM22] Denote the quantity appearing after “lim^oc” in Eq. (15) by Tm(x).
Show that

20. [HM21] Using the fact that 0 < e~l — (1 — t/m)m < if 0 < t < m, and

the previous exercise, show that r(z) = Jq e~Hx~l dt, if x > 0.

21. [HM25] (Faa di Bruno’s formula.) Let D\u represent the Mh derivative of a

function u with respect to x. The “chain rule” states that D\w = DlwDlu. If we

apply this to second derivatives, we find D\w = Dlw(Dlu)2 + D\wD2xu. Show that
the general formula is

ki +2AJ2-+-** • -j-nA;n=n

ki,k2,...,kn>0

1.2.6
BINOMIAL COEFFICIENTS 51

► 22. [HM20] Try to put yourself in Euler’s place, looking for a way to generalize n\
to noninteger values of n. Since (»+$)!/»! times ((n + J) + J) !/(n + £)! equals
(n -f- 1) \/n\ — n —1, it seems natural that (n -f- i) \/n\ should be approximately \/n.
Similarly, (n -f- 3) \/n! should be approximately \/n. Invent a hypothesis about the
ratio of (n + x) \/n\ as n approaches infinity. Is your hypothesis correct when x is an
integer? Does it tell anything about the appropriate value of x\ when x is not an
integer?

1.2.6. Binomial Coefficients

The combinations of n objects taken k at a time are the possible choices of k dif¬

ferent elements from a collection of n objects. The combinations of the five
objects {a, b, c, d, e}, taken three at a time, are

abc, abd, abe, acd, ace, ade, bed, bee, bde, cde. (1)

It is a simple manner to count the total number of ^-combinations of n objects:

Equation (2) of the previous section told us that there are n{n — 1) • • .

(ft — k + 1) ways to choose the first k objects for a permutation; and every

/b-combination appears exactly k\ times in these arrangements, since each

combination appears in all its permutations. Therefore the number of combina¬
tions, which we denote by (*), is

For example,

/ft\ _ ft (ft — 1) • • • (ft — k + 1)

W “ *(*-!)•■• (1)

5-4-3

3-2-1 = 10,

(2)

which is the number of combinations we found in (1).

The quantity (*) is called a binomial coefficient; these numbers have an

extraordinary number of applications. They are probably the most important

quantities entering into the analysis of algorithms, and so the reader is urged to
become familiar with them.

Equation (2) may be used to define (£) even when n is not an integer. We

will now define the symbol ® for all real numbers r and all integers k:

(r\ _ r(r — 1) • • • (r — k + 1)

W~ k(k-!)■■■ (1)

= 0,

integer k > 0;

(3)

integer k < 0.

For particular cases we have

/ A _ r{r — 1)
w' 2 (4)

52 BASIC CONCEPTS 1.2.6

Table 1 gives values of the binomial coefficients for small integer values of r and k.

The values for 0 < r < 4 should be memorized.

. Table 1

TABLE OF BINOMIAL COEFFICIENTS (PASCAL’S TRIANGLE)

r (o) (0 G) (a) G) G) (a) G) G:
0 1 0 0 0 0 0 0 0 0

1 1 i 0 0 0 0 0 0 0

2 1 2 1 0 0 0 0 0 0

3 1 3 3 1 0 0 0 0 0

4 1 4 6 4 1 0 0 0 0

5 1 5 10 10 5 1 0 0 0

6 1 6 15 20 15 6 1 0 0

7 1 7 21 35 35 21 7 1 0

8 1 8 28 56 70 56 28 8 1

The binomial coefficients have a long and interesting history. Table 1 is

called “Pascal’s triangle” because it appeared in Blaise Pascal’s Traite du

triangle arithmetique in 1653. This treatise was significant because it was one

of the first works on probability theory, but Pascal did not invent the binomial

coefficients (which were well-known in Europe at that time). Table 1 also

appears in the treatise Szu-yuen Yu-chien (“The Precious Mirror of the Four

Elements”) by the Chinese mathematician Chu Shih-chieh in 1303, where they

are said to be an old invention. The earliest known appearance of binomial co¬

efficients is in a tenth century commentary, due

to Halayudha, on an ancient Hindu classic,

the Chandah-Sutra. In about 1150 the Hindu

mathematician Bhascara Acharya gave a very

clear exposition of binomial coefficients in his

book Lildvatl, Section 6, Chapter 4. For small

values of k, they were known much earlier; they

appeared in Greek and Roman writings with a

geometric interpretation (cf. Fig. 8). The nota¬

tion Q was introduced by Andreas von Ettings-
hausen in his book Die Combinatorische Analysis

(Vienna, 1826).

Fig. 8. Geometric interpretation of (n1j2), n = 4.

The reader has probably noticed several interesting patterns which appear

in Table 1. Binomial coefficients satisfy literally thousands of identities, and

for centuries their amazing properties have been continually explored. In fact,

1.2.6
BINOMIAL COEFFICIENTS 53

there are so many relations present that when someone finds a new identity,

there aren’t many people who get excited about it any more, except the dis¬

coverer! In order to manipulate the formulas which arise in the analysis of
algoiithms, a facility for handling binomial coefficients is a must, and so an

attempt has been made in this section to explain in a simple way how to maneuver

with these numbers. Mark Twain once tried to reduce all jokes to a dozen or so

primitive kinds (e.g., farmer’s daughter, mother-in-law, etc.); we will try to

condense the thousands of identities into a small set of basic operations with

which we can solve nearly every problem involving these numbers that
confronts us.

In most applications, both the numbers r and k which appear in (£) will be

integers. Some of the techniques we will describe are applicable only when

both r and k are integers; so we will be careful to list, at the right of each num¬

bered equation, any restrictions on the variables which appear. For example,

in Eq. (3) we have mentioned the requirement that k is an integer; there is no
restriction on r.

Now let us study the basic techniques for operating on binomial coefficients:

A. Representation by factorials. From Eq. (3) we have immediately

n\
= frj, ’ integer n > integer k > 0. (5)

This allows combinations of factorials to be represented as binomial coefficients
and conversely.

B. Symmetry condition. From Eqs. (3) and (5), we have

integer n > 0, integer k. (6)

This formula holds for all integers k. When k is negative or greater than n, the

binomial coefficient is zero (provided that n is a nonnegative integer).

C. Moving in and out of brackets. From the definition (3), we have

integer k ^ 0. (7)

This formula is very useful for combining a binomial coefficient with other parts

of an expression. By elementary transformation we have the rules

the first of which is valid for all integers k, and the second is valid when no

division by zero has been performed. We also have a similar relation:

integer k ^ r. (8)

54 BASIC CONCEPTS
1.2.6

Let us illustrate these transformations, by proving Eq. (8) using Eqs. (6)

and (7) alternately:

1
[Note: This derivation is valid only when r is a positive integer ^k, because

of the constraints involved in Eqs. (6) and (7); yet Eq. (8) claims to be valid

for arbitrary r 9^ k. This can be proved in a simple and important manner, we

have verified that

rC * 0 = (r~G)
for infinitely many values of r. Both sides of this equation are polynomials in r.

A nonzero polynomial of degree n can have at most n distinct zeros; so (by

subtraction) if two polynomials of degree <n agree at n + 1 or more different

points, the polynomials are identically equal. This principle may be used to extend

the validity of many identities from integers to all real numbers.]

D. Addition formula. The basic relation

(0 = C10+(l - 0 ’ integer *■ (9)
is clearly valid in Table 1 (every value is the sum of the two values above and

to the left) and we may easily verify it in general from Eq. (3). Alternatively,

we have by Eqs. (7) and (8),

r (r ~k 0+r (!k-0-<r-*>(0+‘(0-r(0-
Equation (9) is often useful in obtaining proofs by induction on r, when r is an

integer.

E. Summation formula. Applying Eq. (9) repeatedly, we obtain two important

summation formulas:

E
0 <k<n

r + n\ _ /V + w + l\

, n)- \ n)
y

integer n > 0. (10)

integer m > 0,

integer n > 0. (ID

1.2.6 BINOMIAL COEFFICIENTS 55

Equation (11) can easily be proved by induction on n, but it is interesting

to see how it can also be derived from Eq. (10) with two applications of Eq. (6):

assuming that n > m; and if n < m, Eq. (11) is obvious.

Equation (11) occurs very frequently in applications; in fact, we have

already derived special cases of it in previous sections. For example, when

m — 1, we have

C)+(0+-+C)=o+i+-+k=(^1)=^'
our old friend, the sum of an arithmetic progression.

Suppose that we want the sum l2 + 22 + • • • + n2. This can be solved by

observing that k2 = 2(%) + (i); hence

e *2= e (2(0+(0)=3Cl0+C10
0<k<n Q<k<n

If desired, this answer, obtained in terms of binomial coefficients, can be put

back into polynomial notation:

12 + 22 + ... + „2 = 2(»+lM«-D + (!L+i>

= §»(» + «(» + !)• (12)

The sum l3 + 23 + • • • + n3 can be obtained in a similar way; any poly¬

nomial a0 -f- axk + a2k2 + • • • + amkm can be expressed as 50(o) + &i(i) + • * * +
bm{m) for suitably chosen coefficients b0, . . . , bm. We will return to this subject

later.

F. The binomial theorem. Of course, the binomial theorem is one of our

principal tools:

(x + yY = (l) xkyT~k> integer r > 0. (13)

k

(At last we are able to justify the name “binomial coefficient” for our numbers.)

It is important to note that we have written in Eq. (13), rather than

“Zo<fc</ as might have been written. If no restriction is placed on k, we are

summing over all integers, —go <C k <C -j-oo j but the two notations are exactly

56 BASIC CONCEPTS 1.2.6

equivalent in this case, since when k < 0 or k > r, the terms in Eq. (13) are all

zero. The simpler form “22 k” is to be preferred, since all manipulations with

sums are simpler when the conditions of summation are simpler. We save a

good deal of tedious effort if we do not need to keep track of the lower and/or

upper limits of summation, so the limits should be left as infinity whenever

possible. Our notation has Another advantage also: If r is not a nonnegative

integer, Eq. (13) becomes an infinite sum, and the binomial theorem of calculus

states that Eq. (13) is valid for all r, if \x/y\ < 1.

It should be noted that formula (13) gives

0° = 1, (14)

and we will use this convention consistently.
The special case y = 1 in Eq. (13) is so important we state it specially:

yt (^j xk = (1 + x)r, integer r > 0, or |z| < 1. (15)

k

The discovery of the binomial theorem was announced by Isaac Newton in a

letter to Oldenburg on June 13, 1676. He apparently had no real proof of the

formula (and at that time the necessity for rigorous proof was not fully realized).

The first attempted proof was given by L. Euler in 1774, although that also was

lacking in rigor; finally, K. F. Gauss gave the first actual proof in 1812. In fact,

Gauss’s work represented the first time anything about infinite sums was proved

satisfactorily.

In the early nineteenth century, N. Abel found a surprising generalization

of the binomial formula (Eq. 13):

(x + vY — ^ x(x — kz)k~l(y + kz)r~k, integer r > 0, x ^ 0, (16)

k

which is an identity in three variables, x, y, and z (cf. exercises 50 through 52).

Abel published and proved this formula in Volume 1 of the German Journal

fur die reine und angewandte Mathematik (1826), pp. 159-160. It is interesting

to note that Abel contributed many other papers to the same Volume 1, including

his famous memoirs on the unsolvability of algebraic equations of degree 5 or

more, and on the binomial theorem. See AMM 69 (1962), 572 for a number of

references to Eq. (16).

G. Negating the upper index. The basic identity

([) = + \ ’ integer k, (17)

follows immediately from the definition (Eq. 3) when each term of the numerator

is negated. This is often a useful transformation on the upper index.

1.2.6 BINOMIAL COEFFICIENTS 57

We will give one example of the use of Eq. (17) here to prove the summation
formula

integer n > 0. (18)

This identity could be proved by induction using Eq. (9), but we can easily use
Eqs. (17) and (10):

0-("?")

An important application of Eq. (17) can be made when r is an integer:

(m) = l)n~m (’ inteSer n > 0, integer m. (19)

[Take n = —r, k = n — m in Eq. (17).] We have moved n from the upper

position to the lower.

H. Simplifying products. When products of binomial coefficients appear, there

are usually several different ways to reexpress the products by expanding into

factorials and out again using Eq. (5). For example,

(m)(l) = (k)(m - *) ' inteSer”>- <20>
It suffices to prove Eq. (20) when r is an integer >m [cf. the remarks after

Eq. (8)], and when 0 < k < m. Then

(r\(m\ _r\m_

m/\^/ m!(r — m)\k\(m — k)\

r\{r — k)\ _ /A/r — k\

k\{r — k)\(m — k)!(r — m)\ \k)\m — k)

Equation (20) is very useful when an index (namely m) appears in both the

upper and the lower position, and we wish to have it appear in one place rather

than two. Note that Eq. (7) is the special case of Eq. (20) when k — 1.

I. Sums of products. To complete our set of binomial-coefficient manipula¬

tions, we present the following very general identities, which are proved in the

exercises at the end of this section. These formulas show how to sum over a

product of two binomial coefficients, considering various places where the

58 BASIC CONCEPTS 1.2.6

running variable k might appear:

2 (0(» - k) = C n ') ’ integer n■ (21)
k >

2 ([)(„ 1*) = (f+ ') ’ ». in‘e8er r S 0- (22)
k

2 ([)(S ^ *)(—■1)* = (-l)r 1 ’ integer to, integer r > 0. (23)
A;

2 C;%:,)(-»*=(-D‘(;r;r;).
0<fc<r N '

integer t > 0, integer r > 0, integer m > 0. (24)

/r — fcVs + k\ _ / r + 8 + 1 \

2-j \ m)\ n) \m + TO+l/
0<fc<r

integer n > integer s > 0, integer m > 0, integer r > 0. (25)

2 C i “X* (” :rw) =C+rtn) ■ *** »■
Of these identities, Eq. (21) is by far the most important, and it should be

memorized. One way to remember it is to interpret the righthand side as the

number of ways to select n people from among r men and s women; each term

on the left is the number of ways to choose k of the men and n — k of the

women. Equation (21) is commonly called Vandermonde’s convolution, since

A. Vandermonde published it in Mem. Acacl Roy. Sci. Paris (1772), 489-498.

However, it had appeared already in Chu Shih-chieh’s 1303 treatise mentioned

earlier [see J. Needham, Science and Civilization'in China 3 (1959), 138-139],

If r = tk in Eq. (26), we avoid the zero denominator by cancelling with a

factor in the numerator; in this way Eq. (26) is a polynomial identity in the

variables r, s, t. Obviously Eq. (21) is a special case of Eq. (26) with t = 0.

These formulas are the principal tools we have for working with difficult sums.

We should point out a nonobvious use of Eqs. (23) and (25); it is often

helpful to replace the simple binomial coefficient on the righthand side by the

more complicated expression on the left, interchange the order of summation,

and simplify. We may regard the left-hand sides as expansions of

C+«) in terms of (s tk) ■

Formula (23) is used for negative a, formula (25) for positive a.

This completes our study of “binomial-coefficientology. ” The reader is

1.2.6 BINOMIAL COEFFICIENTS 59

advised to learn especially Eqs. (5), (6), (7), (9), (13), (17), (20), and (21)—
frame them in black!

With all these methods at our disposal, we should be able to solve “almost

any” problem that comes along, in at least three different ways. The following
examples illustrate the techniques.

Problem 1. When r is a positive integer, what is the value of

k

Solution. Formula (7) is useful for disposing of the outside k:

and now formula (22) applies, with n = —1. The answer is therefore

Z integer r > 0.

Problem 2. What is the value of

if n > 0?

(-D*
k + 1 ’

Solution. Xow the problem is tougher; the summation index k appears in six

places! First we apply Eq. (20), and we obtain

y- (n + k\(n\ (—l)fc
2-j \ k)\k) k + l ‘
k> 0

We can now breathe more easily, since several of the menacing characteristics

of the original formula have now disappeared. The next step should be obvious;

we apply Eq. (7) in a manner similar to the technique used in Problem 1:

/n + k\ /Vi + l\ (—l)fc

2-j \ k)\k+ ljn+ I ’
k> o

(27)

and another k has disappeared. There are now two equally promising lines of

attack. We can replace

60 BASIC CONCEPTS 1.2.6

and use Eq. (23):

^ (n + k\(n + l\ (—l)fc
2-s \ n J\k + 1/71+1

k> 1

1 ^ (n — 1 + k\(n + l\ / i+| 1 (n ~ A
FT 2+ n X k j(_1) + F+T+«)

k> 0

_ i (_i)n+1 (n ~ A q_-— (n ~ A = —-— (n ~ A
_ n + llAj \ -1 n J n+l\ n J

n +

n +

Now

(v)
equals zero except when ti = 0, in which case it equals one.

It is convenient to represent the answer to our problem by using the

“Kronecker delta” notation:

d{j
0, if i ^ j
1, if i = j

(28)

Using the 5-symbol, we have found that the answer is 5n0-

Another way to proceed from Eq. (27) is to use Eq. (17), obtaining

xp (w + 1)\ A1 + A 1
2-j \ k)\k+\)n+\

k

At this point Eq. (22) does not apply (since it requires that r > 0), but we can

use Eq. (6) so that Eq. (21) applies:

^ /-(» + l)\/» + l\ _1_ = /0\ 1
^ \ k J\n — k)n~\- 1 \n/n+l’

and once again we have derived the answer:

0)

Problem 3. What is the value of

^ (n + k\(2k\ (~l)fc
2^\ 2k J\k) k + 1
fc> o

integer n > 0. (29)

^ (n + k \/2k\ (-1)*
^ \m + 2kj\k / k + 1 ’
k> 0

for positive integers m, n?

1.2.6 BINOMIAL COEFFICIENTS 61

Solution. If m were zero, we would have the same formula to work with that

we had in Problem 2. However, now the presence of m means that we cannot

even begin to use the method of the previous solution, since the first step there

was to use Eq. (20), which no longer applies. In this situation it pays to intro¬
duce still further complication by replacing

/ n + k \

\m -(- 2kJ

by a sum of terms of the form

since our problem then becomes a sum of problems we know how to solve!
Accordingly, we use Eq. (25) with

r = n + k — 1, m = 2k, s = 0, n = m — 1,

and we have

'n -f k — 1 —

k> 0 —1

V' v fn-\-k — 1 — A/2k\(j \ (—l)fc
^ ^ \ 2k J\k J\m — 1/ k + 1

(30)

We wish to perform the summation on k first; interchanging the order of sum¬

mation demands that we sum on the values of k which are >0 and >j — n -f- 1.

The latter condition raises problems, because if j > n, we do not know the

desired sum. Let us save the situation, however, by observing that the terms of

(30) are zero when n < j < n k — 1. This condition implies that k > 1;

thus 0 < n k — 1 — j < k — 1 < 2k, and the first binomial coefficient in

(30) vanishes. We may therefore replace the condition on the second sum by

“0 < j < n, ” and the interchange of summation is done easily. Summing on k

by Eq. (29) now gives

E (m - l) 5<w-1-')0’
0 <j<n

and all terms vanish except j = n — 1; hence our final answer is

The solution to this problem was fairly complicated, but not really myste¬

rious; there was a good reason for each step. The derivation should be studied

closely because it illustrates some delicate maneuvering with the conditions in

our equations. There is actually a better way to attack this problem, however;

it is left for the reader to figure out a way to transform the given problem so

that Eq. (26) applies (see exercise 30).

62 BASIC CONCEPTS 1.2.6

Problem 4. Prove that

Ak(r, t)An-k(s, 0 = An(r + *, <), integer w ^

k

where A„(a;, is the nth degree polynomial in x which satisfies

, „ (x — nt\ x , . ,
^‘> = 1 »)^’

(31)

Solution. We may assume that r kt 7^ s for 0 < k < n, since (31) is a

polynomial in r, s, t. Our problem is to evaluate

^ (r — kt\(s — (n — k)t\

2-j\ k A n~k)
k

r _s_
r — kt s — (n — k)t

7

which, if anything, looks much worse than our previous horrible problems! Note

the strong similarity to Eq. (26), however, and also note the case t = 0.

We are tempted to change

0 r

k
>

except that the latter tends to lose the analogy with Eq. (26) and it fails when

k — 0. The best way to proceed is to use the technique of “partial fractions, ”

i.e., a complicated denominator can often be replaced by a sum of simpler

denominators. Indeed, we have

_i__j_=_I_aj_+_i_V
r — kt s — (n — k)t r + s — nt\r — kt s — (n — k)tj

Putting this into our sum we get

and Eq. (26) evaluates both of these if we change k to (n — k) in the second

formula; the desired result follows immediately. Identities (26) and (31) are

due to H. A. Rothe, Formulae de serierum reversione (Leipzig, 1793); special

cases of these formulas are still being “discovered” frequently. For the interesting

history of these identities and some generalizations, see H. W. Gould and J.

Kaucky, Journal of Combinatorial Theory 1(1966), 233-248.

Problem 5. Determine the values of a0, en, a2, . . . such that

n\ = a0 + oqn + a2n(n — 1) + a3n(n — l)(w — 2) -f • • • (32)

for all nonnegative integers n.

1.2.6 BINOMIAL COEFFICIENTS 63

Solution. This question came up in the previous section (cf. Eq. 1.2.5-11) and

we stated the answer without proof. Let us pretend we do not know the answer.

It is clear that the problem has a solution, since we can set n = 0 and determine
a0, then set n = 1 and determine a1} etc.

First we would like to write Eq. (32) in terms of binomial coefficients:

n! = 2 (fc) klak- (33)
k

The problem of solving implicit equations like this for ak is called the inversion

problem, and the technique to be used applies to similar problems as well.

The idea is based on the following special case of Eq. (23) (s = 0):

E Qfi) (-«* - (-D' („ -,) -
k

integer n, integer r > 0. (34)

The importance of this formula is that when n ^ r, the sum is zero; this enables

us to solve our problem since a lot of terms cancel out as they did in Problem 3:

s>! (:)<-»■=ee ©*■** (:)(-»*
n n k

- e e (:)(:) (-I)-
k n

= k\ak(—l)m8km = (—1)mrn\am.

k

Note how we were able to get an equation in which only one value am appears—

by adding together suitable multiples of Eq. (33) for n = 0, 1, 2, We

have now

(~ir+n v (-i)“
n) (m — n)\ n\

0 0

This completes the solution to Problem 5. Let us now take^a closer look

at the implications of Eq. (34): we have

E (-«'
n> 0

m-\-n W

m K

since the first terms vanish after summation. By properly choosing the co¬

efficients C;, we can represent any polynomial in as a sum of binomial co¬

efficients with upper index k. We therefore find that

(—l)fc(&o “b + • ’ * + brkr) — (1) r\br, integer r > 0, (35)

64 BASIC CONCEPTS 1.2.6

where b0 + • • • + brkr represents any polynomial whatever of degree r or less.

[This formula will be of no great surprise to students of numerical analysis, since

l)r+kf(x + k) is the “rth difference” of the function/(x).]

Using E[q. (35), we can immediately obtain many other relations which

appear complicated at first and which are often given very lengthy proofs, e.g.,

(36) integer r > 0.

k

It is customary in textbooks such as this to give a lot of impressive examples

of neat tricks, etc., but to never mention simple-looking problems where the

techniques fail. The above examples may have given the impression that all

things are possible with binomial coefficients; it should be mentioned, however,

that in spite of Eqs. (10), (11), and (18), there seems to be no simple formula

for the analogous sum

0<k<n

when n < m. (For n = m the answer is simple; what is it? See exercise 36.)

There are several generalizations of the concept of binomial coefficients,

which we will discuss briefly. First, we can consider arbitrary real values of the

lower index k in ©; see exercises 40 through 45. We also have the generalization

(37)

which, as q approaches the limiting value one, becomes the ordinary binomial

coefficient ©i = (&). [This can be seen by dividing each term in numerator

and denominator by (1 — 5).] The basic properties of such “g-nomial coef¬
ficients” are discussed in exercise 58.

However, for our purposes the most important generalization is the multi¬
nomial coefficient

(
The principal property of multinomial coefficients is the generalization of
Eq. (13):

(39)

+&2 + ■ • • =W

It is important to observe that any multinomial coefficient can be expressed in
terms of binomial coefficients:

ki + k2Ji-bkm\ _ fkx-\-k2\/ki-{-k2-\-k3\ ___ /k1-\-k2-1-b

. k\,k2,... ,km) \ ki J\ ki~\~k2) \ ki + • • • + km_ 1 /

1.2.6 BINOMIAL COEFFICIENTS 65

so we may apply the techniques we already know for manipulating binomial

coefficients. Note that (20) is a trinomial coefficient.

We conclude this section with a brief analysis of the transformation from a

polynomial expressed in powers of k to a polynomial expressed in binomial

coefficients. The coefficients involved in this transformation are called Stirling

numbers, and these numbers will arise several times in later sections of this book.

Stirling numbers come in two flavors: we denote Stirling numbers of the

first kind by [£], and those of the second kind by {£}. Table 2 displays “Stirling’s

triangles, ” which are in some ways analogous to Pascal’s triangle.

There is absolutely no agreement today on notation for Stirling’s numbers.

Some authors define half of the Stirling numbers to be the negatives of the values

given here. However, the notation used here, in which all Stirling numbers are

nonnegative, makes it much easier to remember the analogies with binomial
coefficients.

Stirling numbers of the first kind are used to convert from binomial co¬
efficients to powers:

n x{x — 1) • • • (x — n + 1)

n n n

n_
x —

jn — 1
x'-1 + • • • + (-1)"

= E
n—k

X (40)

For example, from Table 2,

(5) = xioO5 ~ 10a:4 + 35a;3 - 50a;2 + 24a;).

Stirling numbers of the second kind are used to convert from powers to

binomial coefficients:

x =
{:)C:)’‘!+-+{i}(0ii+{ote)o!=2{^)w- (4i)

For example, from Table 2,

*s=(5)s!+10 (4)4!+25 (3)31+15 (2)21+(i)i!

-120 (5)+240 (0+150 (3)+30 (2)+(0 ■

We shall now list the most important identities involving Stirling numbers.

(In these equations, the variables m and n always denote nonnegative integers.)

\

66 BASIC CONCEPTS
1.2.6

CM

a>

*
m
P
£
i—i
W

Q
£
o
o
H
co

Q
£
<1
H
co
Ph I—(
Ph

■s w
£ w

Eh
Ph
o

co
Ph
P
PP
§
:p
£

O
£ i—i
p
Ph
HH
H
m

•»*(a>
to 60
as b il 03

<u

ifi *

be 5
g §

-4-> ^
.S ^ 'p rH
pH a3

1 fd
fl is
a)

8 3 S c3
s >
> CO
O cj
o .2

. *-p
0Q 2

£

= S,
tt
c3

02 n
• O

Ph

P •-

hC
oo

-a s c3 w5i n
03 >Tk ^

0>
a.
a3

aS
Si

X!

t5 >s (M
te X X

| T3 2
S ® i

O S-h
2 « . h fl ^ 0> tS

< T5

x e3 S
•d T3 ^
® § £
« * I
5 s' 5-

*«S &Q «
“ 8 g

e
. -S3
o

6 I n « 1 e
S £ § >> o

x ■a
J "d s
e S ^
^ fi o
S-. ® O

co cf
0*^0 o .—. -p
rOgg *2
"Q — <3

1 £m
^ j§ w

I *Q
co • ^ 03 ^ c p co as
'd T3 Tl

H S S
X « P
tf H< .
5 N 5? *H-H GO

to o x
Ph <s $
* Eh qq

1.2.6 BINOMIAL COEFFICIENTS 67

Addition formulas:

n

m

In

= (n — 1)

fn — 1

+

= m
m

n — 1

m

, n — 1

n — 1

m — 1

\m — 1

Inversion formulas (compare with Eq. 34)

if n > 0.

Z (-1)*= (-!)> ™n, / ,

k

k

m
(-1)* = (-1)”S„

Special values: /q (°) = 1°
W LA CM:RH

n
= (B j

n — 1 In — 1)

n

(of °’ = (»—!) '■>

= 2n—1 - 1,
1:1 - '■

Expansion formulas:

Eti /k\ _

k\m)

n + 1

m + 1_

E {*}© - +1
k

m + 1

n + 1

L& + i.

vr+ 1!
(m + lj

k

(-i)1 =
n

m (—i)w;

)© <-»*={:} <-»*;

E/m — n\ /m + n\ f?

\m + k) \n + k) \

)m + k

k

m-\- k

k

n

n — m

n

n — m

E/ m — n\ / m + n\ i

\ra + k) \n + k)
k

e6+lit] (-i)i-<-»■(«);
k

?t]n = [
n + 1

m + 1 2‘(*+ir‘ = l’+1
k<n

m -f- 1

(42)

(43)

(44)

(45)

if n > 0. (46)

(47)

(48)

(49)

if n > m; (50)

(51)

(52)

68 BASIC CONCEPTS
1.2.6

Some other fundamental Stirling number identities appear in exercises 1.2.6-61,

1.2.7-6, and in Eqs. (23), (26), (27), and (28) of Section 1.2.9. For further
information on Stirling numbers, see Karoly (Charles) Jordan, Calculus of

Finite Differences (New York: Chelsea, 1947), Chapter 4.

EXERCISES

1. [00] How many combinations of n things taken n 1 at a time are possible?

2. [00] What is (8)?

3. [00] How many bridge hands are possible (i.e., 13 cards out of a 52-card deck)?

4. [10] Give the answer to Problem 3 as a product of prime numbers.

► 5. [05] Explain the fact that ll4 = 14641 in terms of Pascal’s triangle.

► 6. [10] Pascal’s triangle (Table 1) can be extended in all directions by use of the
addition formula, Eq. (9). Find the three rows which go on top of Table 1 (i.e., for

r = —1, —2, and —3).

7. [12] If n is a fixed positive integer, what value of k makes iff) a maximum?

8. [00] What property of Pascal’s triangle is reflected in the “symmetry condition,”

Eq. (6)?

9. [01] What is the value of (")? (Consider all integers n.)

► 10. [M25] If p is prime, show that:

a) (:)■ n

PJ
(modulo p).

b) (^j = 0 (modulo p), for 1 < k < p — 1.

c) y == (—l)fc (modulo p), for 0 < k < p — 1.

d) (r ^ *) = 0 (modulo p), for 2 < k < p — 1.

e) (E. Lucas, 1877.)

lss ([n/PS\(n m°d P^ /V\ /Ln/pj\/i
\kj \lk/pf\J\k mod pj

(modulo p).

f) If the p-ary number system representations of n, k are

n = arpr + • • • + aip + ao,

k = brpr + • • • + bip + 6o,
then

► 11. [M20] (E. Kummer, 1852.) Let p be prime. Show that if pn divides

but pn+1 does not, then n is equal to the number of carries which occur when a is added
to b in the p-ary number system. (Cf. exercise 1.2.5-12.)

1.2.6
BINOMIAL COEFFICIENTS 69

12. [M22] Are there any positive integers n for which all the nonzero entries in the
nth row of Pascal’s triangle are odd? If so, find all such n.

13. [Ml3} Prove the summation formula, Eq. (10).

14. [M21] Evaluate J2o<k<n &4.

15. [Ml5] Prove the binomial formula, Eq. (13).

16. [M15] Given that n, k are positive integers, show that

‘"H-i) =
► 17. [3/15] Prove the basic identity, Eq. (21), from Eq. (15), using the idea that

(l + z)r+s = (l + aOr(l + a;)*.

18. [Ml5] Prove Eq. (22) using Eqs. (21) and (6).

19. [Af/S] Prove Eq. (23) by induction.

20. [M2b] Prove Eq. (24) by using Eqs. (21) and (19), then show that another use
of Eq. (19) jdelds Eq. (25).

► 21. [M05] Both sides of Eq. (25) are polynomials in s; why isn’t that equation an
identity in s?

22. [3/SO] Prove Eq. (26) for the special case s = n — 1 — r -\- nt.

23. [MIS] Assuming that Eq. (26) holds for (r, s, t, n) and (r, s — t,t,n — 1), prove
it for (r, s + 1, t, n).

24. [Ml 5] Explain why the results of the previous two exercises combine to give a
proof of Eq. (26).

25. [HM30] Let the polynomial An(x, t) be defined as in Eq. (31). Let z = xt+x — xK
Prove that Ak(r, t)zk = xr, provided z is small enough. [Note: If t — 0, this result
is essentially the binomial theorem, and this equation is an important generalization
of the binomial theorem. The binomial theorem (Eq. 15) may be assumed in the
proof.] Hint: Start with the identity

E<-»
r

r — jt ho-

26. [HM25] Using the assumptions of the previous exercise, prove that

(r — tk\ k _ xT+1

4A k)Z ~ («+!)*-«’

27. [HM20] Solve Problem 4 in the text by using the result of exercise 25; and prove
Eq. (26) from the preceding two exercises.

28. [M25] Prove that

Efr + tk\ /s — tk\ _ 'sr' fr-\- s — k\ k

V * A» —k) ^0 vn ~ * '

if n is a nonnegative integer.

70 BASIC CONCEPTS
1.2.6

\

29. [M20] Show that Eq. (35) is just a very special case of the general identity proved

in exercise 1.2.3-33.

► 30. [M24] Show that there is a better way to solve Problem 3 than the way used in
the text, by manipulating the sum so that Eq. (26) applies.

► 31. [M20] Evaluate

E/m — r+sX/n+r — s\/ r+/c\

\ k)\n — k) \to + n)

in terms of r, s, m, and n, given that m and n are nonnegative integers. Begin by

replacing

32. [M20] Let the notation x11 stand for x(x + 1) • • • (x + n 1). Show that

2D = *"•

33. [M20\ Using the notation of the previous exercise, show that the binomial formula
is valid also when it involves modified “powers” instead of the ordinary powers; i.e.,

show that (x-\- y)n = 2DGt)xlyn~k.

34. [M23\ (Torelli’s sum.) In the light of the previous exercise show that Abel’s
generalization of the binomial formula is also true for modified “powers”:

(* + yf = £ (fy x(x -kz+ 1)k'\y + kz)n-\ (Cf. Eq. 16.)

35. [M23\ Prove the addition formulas, Eq. (42), for Stirling numbers directly from

the definitions, Eqs. (40) and (41).

36. [MW] What is the sum 2D ® of the numbers in each row of Pascal’s triangle?
What is the sum of these numbers with alternating signs, 2D* (*)(—1)*?

37. [MW] From the answers to the preceding exercise, deduce the value of the sum

of every other entry in a row, (o) + (.!) + ® + • • * •

38. [HM30] (C. Ramus, 1834.) Generalizing the result of the preceding exercise, show'
that we have the following formula, given that 0 < k < m:

@+U*)+U’+»)+--=? (2“«) cos
j(n — 2k) ir

m
0 <j<m

For example,

0+GK)+--iC 2n -j- 2 cos
(n — 2)7r

)

[Hint: Find the right combinations of these coefficients multiplied by mth roots of
unity.] This identity is particularly remarkable when m > n.

39. [MW] What is the sum 2D [*] of the numbers in each row of Stirling’s first triangle?
What is the sum of these numbers with alternating signs? (Cf. exercise 36.)

1.2.6
BINOMIAL COEFFICIENTS 71

40. [HM1 7] The Beta function B(x, y) is defined for positive real numbers x, y by
the formula B{x, y) = p-i(l — *)»-i dt.

a) Show that B(x, 1) = 5(1, x) = l/x.

b) Show that B(x +l,y) + B(x, y-f 1) = B(x, y).
c) Show that B(x, y) = ((x + y)/y)B(x, y+ 1).

41. [HM22] We showed a relation between the Gamma function and the Beta func¬
tion in exercise 1.2.5—19, by showing that rm(x) = mxB(x, m -f- 1), if m is a positive
integer.

a) Prove that

b) Show that

B(x, y)
Tm(y)mx

Ym{x + y)
B(x,y+ m+ 1).

B(x, y)
Y(x)T(y)

vr (x+y)'

42. [HM10] Express the binomial coefficient © in terms of the Beta function defined
above. (This gives us a w^ay to extend the definition to all real values of k.)

43. [HM20\ Show that B{^) = x. (From exercise 41 we may now conclude that
r(i) = vV)

44. [HM20] Using the generalized binomial coefficient suggested in exercise 42, show
that

45. [HM21] Using the generalized binomial coefficient suggested in exercise 42, find
lim^oo Q/rk.

► 46. [M21] Using Stirling’s approximation (Eq. 1.2.5-7), find an approximate value of

assuming that both x and y are large. In particular, find the approximate size of
(^n) when n is large.

47. [M21] Given that k is an integer, show that

(i)(nti)=(2nr)(2n+ri)/4‘
Give a simpler formula for the special case n — —1.

► 48. [M25] Show that

/n\ (—1)* _ n! 1

£^Q\k) k + x x{x + 1) • • • (x + n)

if the denominators are not zero. [Note that this formula gives us the reciprocal of a
binomial coefficient, as well as the partial fraction expansion of l/x(x-f-1) • • • (x + n).]

72 BASIC CONCEPTS
1.2.6

49. [MSO] Show that the identity (1 + x)r = U ~ x2)r(l x) r implies a relation

on binomial coefficients.

50. [M20] Prove Abel’s formula, Eq. (16), in the special case x + y = 0.

51 [MSI] ProVe Abel’s formula, Eq. (16), by writing y = (x + y) — x, expanding the

right-hand side in powers of (*+ y), and applying the result of the previous exercise.

52. [HM11] Prove that Abel’s binomial formula (16) is not always valid when r is

not a nonnegative integer, by evaluating the righthand side when r — x — 1,

y = 2 = +l-

53. [M25] (a) Prove the following identity by induction on m:

2 ' (8
<k) \n — k)

nr — (r + s)k

integer m, n.
0 <fc<ra

(b) Making use of the important relations

/ l/2\ (-1)» (2n\ (l/2\ = (-1)""1 (2»\ = (-1)"~1_ (2n - l\

\ n / 22n \n)\n) 22n(2n — 1) \n) 22« x(2n — 1) \ n)

show that the following formula can be obtained as a special case of the identity in

part (a): . . . v / \
^ (2k — l\/2n — 2k\ —1 _ n — m /2m\/2n — 2m\ 1 /2n\
2-j y k)\ n — k) 2k — 1 2n \m J\ n - m) 2\n)

(This result is considerably more general than Eq. (26) in the case r = — 1, s = 0,

i = -2.)

54. [MSI] Consider Pascal’s triangle (as shown in Table 1) as a matrix. What is the

inverse of that matrix?

55. [M21] Considering each of Stirling’s triangles (Table 2) as matrices, determine

their inverses.

► 56. [20] (The “binomial number system.”) For each integer n = 0, 1, 2, . . . , 20,
find three integers a, b, c for which n = (?) + (I) + (3) and 0 < a < b < c. Can you
see how this can be continued for higher values of n?

► 57. [M22] Show that the coefficient am in Stirling’s attempt at generalizing the fac¬

torial function (Eq. 1.2.5-12) is

m! V* -1/

58. [MSI] In the notation of Eq. (37), prove the “g-nomial theorem”:

(1 + x)(l + gx) • • - (l + gn xx) = XI X .

59. [M25] A sequence of numbers Anic> n > 0, k > 0, satisfies the relations An0 — 1,

Aok = bok, Ank — A(n—i)fc+ An(fc_i)+ (t). Find Ank-

► 60. [24] We have seen that Q is the number of combinations of n things, k at a time,

i.e., the number of ways to choose k different things out of a set of n. dhe combinations

with re-petitions are similar to ordinary combinations, except we may choose each object

1.2.7 HARMONIC NUMBERS 73

any number of times. Thus, the list (1) would be extended to include also aaa, aab,
aac, aad, aae, abb, etc., if we were considering combinations with repetition. How many
^-combinations of n objects are there, if repetition is allowed?

61. [M25] Evaluate the sum

V- n+ 1

vL*+i.

thereby obtaining a companion formula for Eq. (51).

► 62. [M23\ The text gives formulas for sums involving a product of two binomial
coefficients. Of the sums involving a product of three binomial coefficients, the following
one and the identity of exercise 31 seem to be most useful:

V C_10* (l+m\(m + n\/ n+ l\
" \l+kj\m+k)\n+kj

(l -f- to + n)!

Zimin!
integer l, m, n > 0.

(Note that the sum includes positive and negative values of k.) Prove this identity.

[Hint: There is a very short proof, which begins by applying the result of exercise 31.]

63. [46] Develop computer programs for simplifying sums that involve binomial
coefficients.

► 64. [J122] Show that {£} is the number of ways to partition a set of n elements into
m nonempty disjoint subsets. For example, the set (1, 2, 3, 4} can be partitioned into
two subsets in {|} = 7 ways: {1,2, 3} {4}; {1,2, 4} {3}; {1,3, 4} {2}; {2, 3, 4} {1} ;
{1, 2} {3, 4} ; {1, 3} {2, 4}; {1, 4} {2, 3}. Hint: Use the fact that

Note that the result of this exercise provides us with a mnemonic device for remember¬
ing the difference between the “[]” and “{}” notations for Stirling numbers, since
“{ } ” is commonly used also for sets. The other Stirling numbers []*] also have a com¬
binatorial interpretation: [£] is the number of permutations on n letters having k
“cycles”; see Section 1.3.3.

1.2.7. Harmonic Numbers

The following sum will be of great importance in our later work:

m = i + i + ± + ---+{= E r »>o- (1)
1 <k<n

This sum does not occur very frequently in classical mathematics, and there is

no standard notation for it; but in the analysis of algorithms it pops up nearly

every time we turn around, and we will consistently use the symbol Hn to

represent the above quantity. (Besides Hn, the notations hn and Sn are occasion¬

ally used in mathematical literature. The letter H stands for “harmonic, ” and

we call Hn a harmonic number because (1) is customarily called the harmonic

series.)

74 BASIC CONCEPTS 1.2.7

It may seem at first that Hn does not get too large when n has a large value,
since we are always adding smaller and smaller numbers. But actually it is not
hard to see that Hn will get as large as we please if we take n to be big enough,
because of the following rule:

' J7.->l+f- (2)

This rule may be proved by observing that, for m > 0,

H2m+i = + 2^+1 + 2™+~2 4 f 2^+1

> H2m + 2m+l 2m+l 2m+1

= H 2m -j- J.

So as m increases by 1, the left-hand side of Eq. (2) increases by at least
It is important to have more detailed information about the value of Hn

than is given in Eq. (2). The approximate size of Hn is a well-known quantity
(at least in mathematical circles) which may be expressed as follows:

ffn = lnn + 7 + ^-^ +
1

120n4
0 < e <

1
252n6

(3)

Here 7 = 0.57721 56649 ... is Euler’s constant. Exact values of Hn for small n,
and a 40-place value for 7, are given in the tables in Appendix B. We shall prove
Eq. (3) in Section 1.2.11.2.

Thus Hn is reasonably close to the natural logarithm of n. Exercise 7 shows
that Hn has a somewhat logarithmic behavior.

In a sense, Hn “just barely” goes to infinity as n gets large, because it can
be proved that the sum

1 + b + b+'“ + v (4)

stays bounded for all n, when r is any real-valued exponent greater than unity.
(See exercise 3.) We denote the sum in Eq. (4) by H^.

When r in Eq. (4) is two or more, the value of H^ is fairly close to its
maximum value , except for very small n. The quantity HLr) is very well
known in mathematics as Riemann’s “zeta function”:

Hir) = f(r). (5)

When r is an even integer, the value of f (r) is known to be equal to

= (6)

where Br is a Bernoulli number (see Section 1.2.11.2 and Appendix B). In

1.2.7 HARMONIC NUMBERS 75

particular,

rr(2) _ ^

Hx “T*
(4) 7T

90
77(6) 2T

00 945 ’
tf£8) =

7T

9450
(7)

For discussion and proof, see K. Knopp, Theory and Application of Infinite

Series, tr. by R. C. H. Young (Glasgow: Blackie, 1951), Section 32.4.

Now we will consider a few important properties involving summations.
First,

2 Hk = (n + 1)Hn — n. (8)

1 <k<n

This follows from simple transformation of sums:

2 £ j
1 <k<n l<j<k

£ £ j
l<j<n j<k<n

£
n + 1 — j

j

Formula (8) is a special case of the sum £i</fc<« which we will now

determine. The “trick” to be used here is called summation by parts, and it is

a useful technique for determining "ffakbk when the quantities J^a!c and

(6/t+i — bf) have simple forms (see exercise 10). We observe in this case that

and therefore

©'•
hence

(k\ = (k+l_(k \
\mj \m + 1/ \m + 1/ ’

Applying Eq. 1.2.6-11 yields the desired formula:

76 BASIC CONCEPTS 1.2.7

(The above derivation and final result are somewhat analogous to the determina¬

tion of J" xm In x clx in integral calculus.)
We conclude this section by considering a different kind of sum,

which we will temporarily denote by Sn for brevity. We find that

^n + l E ((l) + G - i)) *** - «■ + * S G -1)^ + s)

Hence Sn+1 = (x + 1)Sn + {(x + 1)”+1 — 1)/(n + 1), and we have

Sn ±1 Sn 1 1

(x + l)n+1 (x 4- 1)” n+1 (n + \){x + l)n+1

This equation, together with the fact that Si = x, shows us that

(x + 1)’
- Hn

k{x + l)fc
1 <k<n

(10)

The remaining sum is part of the infinite series for In (l/(l — l/(x + 1))) =

In (1 + 1/a;), and when x > 0, the series is convergent; the difference is

^ k(x + l)fc
k>n

<
1

(n + l)(x + l)n+1 E
fc>0

1

(x + 1)*

1

(n + l)(x + l)na;

This proves the following theorem:

Theorem A. If x > 0, then

2 (f) *kHk = (x + l)n /#„ - In (l

1 <k<n \

where 0 < e < 1 /x(n + 1). |

EXERCISES

1. [01] What are Ho, Hi, and 7/2?

2. [13] Show that the simple argument used in the text to prove that H2m > 1 + m/2
can be slightly modified to prove that H2m < 1 -f- m.

3. [M21] Generalize the argument used in the previous exercise to show that H^
remains bounded for all n, and find an upper bound, assuming that r > 1.

► 4. [10] Which of the following statements are true for all positive integers n?
(a) IIn < In n. (b) //„ > In n. (c) 77 „ > In n + 7.

1.2.7 HARMONIC NUMBERS 77

5. [15] Give the value of Hioooo to 15 decimal places, using the tables in Appendix B.

6. [Ml5} Prove that the harmonic numbers are directly related to Stirling’s numbers,
which were introduced in the previous section; in fact,

Hn =
n-|- 1

2
n\.

7. [M21] Let T(m, n) = Hm-\- Hn — Hmn. (a) Show that when m or n increases,
T(m,ri) never increases (assuming that m and n are positive), (b) Compute the
minimum and maximum values of T(m, n) for m, n > 0.

8. [MIS] Compare Eq. (8) with Xn<*<n In k; estimate the difference as a function
of n.

► 9. [Ml8] Theorem A applies only when x > 0; what is the value of the sum con¬
sidered when x = —1?

10. [M20] (Summation by parts.) We have used special cases of the general method
of summation by parts in exercise 1.2.4-42 and in the derivation of Eq. (9). Prove
the general formula

(ufc-j- x ak)bk a>nbn ■ uibi ■ u/c-j~i(b/c^-i b/c).

l<A;<n

► 11. [M21] Using summation by parts, evaluate

2 k(k - 1) Hk'
1 <A:<n

► 12. [M10] Evaluate //^1000) correct to at least 100 decimal places.

13. [M22] Prove the identity

k
x

¥
1 <A:<n

(x - l)fe
k

(Note in particular the special case x = 0, which gives us an identity related to exercise

1.2.6-48.)

14. [M22] Show that

2 Y = hiHl+H™),
1 <A:<n

and evaluate 2Zi</c<« Hk/(k-\- 1).

► 15. [M23] Express £i<*<n Hi in terms of n and //„.

16. [15] Express the sum 1 + J + --h l/(2n + 1) in terms of harmonic numbers.

17. [M24] (E. AA'aring, 1782.) Let p be an odd prime. Show that the numerator of

i/p_i is divisible by p.

18. [MSS] (J. Selfridge.) AVhat is the highest power of 2 which divides the numerator

of 1 -|- -jj "I- 1/(2n 1) ?

78 BASIC CONCEPTS 1.2.7

► 19. [M80] List all nonnegative integers n for which H„ is an integer. [Hint: If Hn —

odd/even, it cannot be an integer.]

20. [HM22] There is an analytic way to approach summation problems such as the
one leading(to Theorem A in this section: If f(x) = 2]*>o o-kXk, and this series con¬

verges for x = xo, then show that

- f
x—t Jo l — y
k> 0

21. [M24] Evaluate J2i<k<n Hk/(n-\~ 1 — k).

22. [M28] Evaluate HkHn+i-k-

► 23. [HM20\ By considering the function T'{x)/T(x), show how we can get a natural
generalization of Hn to noninteger values of n. You may use the fact that r'(l) = —7,
anticipating the next exercise.

24. [HM21] Show that

(Consider the partial products of this infinite product.)

1.2.8. Fibonacci Numbers

The sequence
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... , (1)

in which each number is the sum of the preceding two, plays an important role

in at least a dozen seemingly unrelated algorithms which we will study later.

The numbers of the sequence are denoted by Fn, and we formally define this as

E0 — 0, F\ = 1, Fn_1-2 = Fn+1 + Fn, n > 0. (2)

This famous sequence was originated in 1202 by Leonardo Pisano (Leonardo

of Pisa), who is sometimes called Leonardo Fibonacci (Filius Bonaccii, son of

Bonaccio). His Liber Abbaci (Book of the Abacus) contains the following

exercise: “How many pairs of rabbits can be produced from a single pair in a

year’s time?” To solve this problem, we are told to assume that each pair

produces a new pair of offspring every month, each new pair becomes fertile at

the age of one month, and furthermore, the rabbits never die. After one month

there will be 2 pairs of rabbits; after two months, there will be 3; the following

month the original pair and the pair born during the first month will both usher

in a new pair and there will be 5 in all; and so on.

Fibonacci was by far the greatest European mathematician before the

Renaissance. He studied the work of al-Khow&rizmi (after whom “algorithm”

is named, see Section 1.1) and he added numerous original contributions to

1.2.8 FIBONACCI NUMBERS 79

arithmetic and geometry. The writings of Fibonacci were reprinted in 1857

[B. Boncompagni, Scritti di Leonardo Pisano (Rome, 1857-1862), 2 vols.; Fn

appears in Vol. 1, pp. 283-285]. The rabbit problem was, of course, not posed

as a practical application to biology and the population explosion; it was an

exercise in addition. In fact, it still makes a rather good computer exercise about

addition (cf. exercise 3); Fibonacci wrote: “It is possible to do [the addition] in
this order for an infinite number of months.”

The same sequence also appears in the work of Kepler, 1611, in connection

with phyllotaxis, ” the study of the arrangement of leaves and flowers in plant

life. Kepler was presumably unaware of Fibonacci’s brief mention of the

sequence. Fibonacci numbers have often been observed in nature, probably for
reasons similar to the original assumptions of the rabbit problem.

A first indication of the intimate connections between Fn and algorithms

came to light in 1844, when G. Lame used Fibonacci’s sequence to study the

efficiency of Euclid’s algorithm. He proved that if the numbers m, n in Algo¬

rithm 1.1E are not greater than Fk, step E2 will be executed at most k + 1
times. This was the first practical application of Fibonacci’s sequence. During

the next 50 years the mathematician E. Lucas obtained very profound results

about the Fibonacci numbers, and in particular he used them to prove that the

39-digit number 2127 — 1 is prime. Lucas gave the name “Fibonacci numbers”
to the sequence Fn, and that name has been used ever since.

We already have examined the Fibonacci sequence briefly in Section 1.2.1

(Eq. (3) and exercise 4), where we found that </>n_2 < Fn < <£”_1, if n is a
positive integer and if

=(1 + V5). (3)

We will see shortly that this quantity, <£, is intimately connected with the
Fibonacci numbers.

The number <£ itself has a very interesting history. Euclid called it the

“extreme and mean ratio”; the ratio of A to B is the ratio of (A -f B) to A, if

the ratio of A to B is </>. Renaissance writers called it the “divine proportion”;

and in the last century it has commonly been called the “golden ratio. ” In the

art world, the ratio of 0 to 1 is said to be the most pleasing proportion aesthetic¬

ally, and this opinion is confirmed from the standpoint of computer programming

aesthetics as well. For the story of <t>, see the excellent article “The Golden

Section, Phyllotaxis, and Wythoff’s Game, ” by H. S. M. Coxeter, Scripta Math.

19 (1953), 135-143, and see also Chapter 8 of The 2nd Scientific American Book

of Mathematical Puzzles and Diversions, by Martin Gardner (New York: Simon

and Schuster, 1961).
The notations we are using in this section are a little undignified. In most of

the sophisticated mathematical literature, Fn is called un instead, and </> is called

r. Our notations are almost universally used in recreational mathematics (and

some crank literature!) and they are rapidly coming into wider use. The designa¬

tion <f> comes from the name of the Greek artist Phidias who is said to have

80 BASIC CONCEPTS 1.2.8

used the golden ratio frequently in his sculpture. The notation Fn is in accor¬

dance with that used in the Fibonacci Quarterly journal (published 1963-)

where the reader may find numerous facts about the Fibonacci sequence. A

good reference to the classical literature about Fibonacci’s sequence is Chapter 17

of L. E. Dickson’s History of the Theory of Numbers, Vol. 1 (New York: Chelsea,

1952). 11
The Fibonacci numbers satisfy many interesting identities, some of which

appear in the exercises at the end of this section. One of the most commonly

quoted relations, due to J. D. Cassini [Histoire Acad. Roy. Paris 1 (1680), 201], is

Fn+1Fn_x -Fl= (-l)n, (4)

which is easily proved by induction. A more esoteric method of proving the

same formula starts with a simple inductive proof of the matrix identity

(1 lV = (Fn + 1 Fn \
\1 0/ V Fn Fn_J

(5)

We then take the determinant of both sides of this equation.

Relation (4) shows that Fn and Fn+i are relatively prime, since any common

divisor would have to be a divisor of (—1)”.

From the definition (2) we find immediately that

Fn+3 = Fn+2 + Fn+1 — 2 F n+i + Fn; F n+4 — 3 F n+i + 2Fn;

and, in general, by induction that

Fn+m = FmFn.|_i + Fm_iFn (6)

for any positive integer m.

If we take m to be a multiple of n in Eq. (6), we find inductively that

Fnk is a multiple of F*.

Thus every third number is even, every fourth number is a multiple of 3, every

fifth is a multiple of 5, and so on.

In fact, much more than this is true. If we write gcd(m, n) to stand for the

greatest common divisor of m and n, we have the rather surprising theorem:

Theorem A (E. Lucas, 1876). A number divides both Fm and Fn if and only if

it is a divisor of Fa, where d — gcd (m, n); in particular,

gcd(Fm, F n) = Fged(m,n)- (7)

Proof: This result is proved by using Euclid’s algorithm. We observe that

because of Eq. (6) any common divisor of Fm and Fn is also a divisor of Fn+m;

and, conversely, any common divisor of Fn+m and Fn is a divisor of FmFn+i.

Since Fn+1 is relatively prime to Fn, a common divisor of Fn+m and Fn also

1.2.8 FIBONACCI NUMBERS 81

divides Fm. Thus we have proved that, for any number d,

cl divides Fm and Fn if and only if cl divides Fm+n and Fn. (8)

We will now show that any sequence, Fn, for which statement (8) holds and for
which F0 = 0, satisfies Theorem A.

First it is clear that statement (8) may be extended by induction on k to
the rule

d divides Fm and Fn if and only if cl divides Fm+kn and Fn,

where k is any nonnegative integer. This result may be stated more succinctly:

cl divides F(TO mod n) and Fn if and only if cl divides Fm and Fn. (9)

Now if r is the remainder after division of m by n, that is, if r — m mod n,

then the common divisors of Fm, Fn are the common divisors of Fn, Fr. It

follows that throughout the manipulations of Algorithm 1. IE the set of common

divisors of Fm, Fn remains unchanged as m and n change; finally, when r = 0,

the common divisors are simply the divisors of F0 = 0 and Fgcd(m,n). |

Most of the important results involving Fibonacci numbers can be deduced

from the representation of Fn in terms of <j>, which we now proceed to derive.

The method we shall use in the following derivation is extremely important, and

the mathematically oriented reader should study it carefully; we will study the
same method in detail in the next section.

We start by setting up the infinite series

G(z) = F0 + Fxz + F2z2 + F3z3 + FAz4 + •••

= z-h z2 + 2z3 + 3z4-I-. (10)

We have no a priori reason to expect that this infinite sum exists or that the

function G(z) is at all interesting—but let us be optimistic and see what we can

conclude about the function G(z) if it does exist. The advantage of such a

procedure is that G(z) is a single quantity which represents the entire Fibonacci

sequence at once; and if we find out that G(z) is a “known” function, its co¬

efficients can be determined. G(z) is called the generating function for the

sequence (Fn).

We can now proceed to investigate G{z) as follows:

zG{z) = F0z + Fxz2 + F2z3 + F3z4 -|-

z2G(z) = F0z2 + Fxz3 + F2z4 H-;

by subtraction,

(1 - z- z2)G(z) = F0 + (Fx - F0)z + (F2 -Ft- F0)z2

+ (F3 -F2- Fx)z3 + (F4 -F3- F2)z4 + ■■■

z.

82 BASIC CONCEPTS 1.2.8

\

All further terms are zero because of the definition of Fn \ and so we see that, if

G{z) exists,
G(z) = 2/(1 — 2 — 22). (11)

In fact, this function can be expanded in an infinite series in z (a Taylor series);

working backwards we findHhat the coefficients of the power series expansion of

Eq. (11) must be the Fibonacci numbers.
We can now manipulate (70) and find out more about the Fibonacci se¬

quence. The denominator 1 — z — 22 is a quadratic equation with the two roots

i(—1 db \/5); after a little calculation we find that G(z) can be expanded by

the method of partial fractions into the form

G(g) = -y=(—-(12)
■y/5 \1 — <t>z 1 — 4>zJ

where

0 = 1 — <f> = 4(1 — V5). (13)

The quantity 1/(1 — 4>z) is the sum of the infinite geometric series 1 + <£2 -f

0222 + • • • , so we have

(7(2) = —— (1 T- 4>z -f- 0222 -F ■ ■ * —1 — — 0222 • • •).
V5

We now look at the coefficient of zn, which must he equal to Fn, and we find that

F. = 4= - *’)• (14>
V5

This is an important “closed form” expression for the Fibonacci numbers, first

discovered by A. de Moivre early in the eighteenth century. (See de Moivre’s

Miscellanea Analytica (London: 1730), 26-42, where the solution to general

linear recurrences is obtained in essentially the way we have derived (14).)

We could have merely stated Eq. (14) and proved it by induction; the point

of the rather long derivation above was to show how it would be possible to

discover the equation in the first place, using the important method of generating

functions, which is a valuable technique for solving so many problems.

Many things can be proved from Eq. (14). First we observe that 0 is a

negative number (—0.61803 . . .) whose magnitude is less than unity, so <j>n gets

very small as n gets large. In fact, 0”/\/5 is always small enough so that we
have

Fn — 0”/v/5 rounded to the nearest integer. (15)

Other results can be obtained directly from G(z); for example,

— 2
G(Zy = !(._I

5\(1 -
+

02) 2 (1 — 02) 2 1—2
(16)

1.2.8 FIBONACCI NUMBERS 83

and the coefficient of zn in G(z)2 is We therefore deduce
that

£ FkFn-k = i((n + 1)(</>" + 4>n) - 2Fn+1)
0 <fc<n

— i((w + l)(^n + 2Fn_i) — 2Fn+i)

n — 1* (17)

(The second step in this derivation follows from the result of exercise 11.)

EXERCISES

1. [10] In Leonardo Fibonacci’s problem, how many pairs of rabbits are present after

Jc months? TV hat is the answer to his question, i.e., how many pairs are present after
a year?

► 2. [20] In view of Eq. (15), what is the approximate value of Fiooo? (Use logarithms
found in the table in Appendix B.)

3. [34] Write a program for some computer which calculates and prints Fi through

Flooo- (Cf. the previous exercise for the size of the numbers which must be handled.)

► 4. [14] Find all n for which Fn = n.

5. [20] Find all n for which Fn = n2.

6. [HM10] Prove Eq. (5).

► 7. [15] If n is not a prime number, Fn is not a prime number (with one exception).

Prove this and find the exception.

8. [15] In many cases it is convenient to define Fn for negative n, by assuming that

Fn+2 = Fn+1 + Fn for all integers n. Explore this possibility; what is F_i? What

is F—2? Can F_n be expressed in a simple way in terms of F»?

9. [M20] Using the conventions of the preceding exercise, determine whether Eqs.

(4), (6), (14), and (15) still hold when the subscripts are allowed to be any integers.

10. [15] Is <t>n/V5 greater than F„ or less than Fn?

11. [M20] Show that <f>n = Fn<t> + Fn—1, 4>n = Fn4> + Fn—1, for all integers n.

► 12. [M26] The “second order” Fibonacci sequence is defined by the rule

50 = 0, gl = 1) 3n+2 = iW+1 T" 3n + Fn-

Express Hrn in terms of Fn and Fn+\. [Hint: Use generating functions.]

► 13. [M22] Express the following sequences in terms of the Fibonacci numbers:

a) a0 = r, ai = s, an+2 = an+1 + a„, n > 0.
b) 60 = 0, 61 = 1, bn+2 — bn+1 -f T c, n > 0.

14. [M28] Let m be a fixed positive integer. Find an given that

Uq 0, ax 1, an-\-2 1 I I (m)•

84 BASIC CONCEPTS 1.2.8

\

15. [M22] Let f(ri), g(n) be arbitrary functions. Let

ao = 0, a\ = 1, an+2 = an+i + a»+ /(«);

bo = 0, &1 = 1, fen + 2 = fcn + l + !
4

Co = 0, Cl = 1, ch+2 = Cn+1 + Cn+ a/(n) + 2/fif(n).

Express c„ in terms of x, y, an, fe„, and Fn.

► 16. Fibonacci numbers appear implicitly in Pascal’s triangle if it is viewed from
the right angle. Show that the following sum of binomial coefficients is a Fibonacci

number:

E
0 <fc<n

17. [M24] Using the conventions of exercise 8, prove the following generalization of

Eq. (4): Fn+kFm-k — FnFm = (—1)nFm-n-hFk-

18. [20] Is Fn Fl+1 always a Fibonacci number?

19. [M27] What is cos 36°?

20. [M16] Express 2Zo<fc<n Fk in terms of Fibonacci numbers.

21. [M25] Wh&t is J2o<k<n FkXk?

► 22. [M20] Show that (l)Fm+k is a Fibonacci number.

23. [M2S] Generalizing the preceding exercise, show that ^kiDFiK-iFm+k is always
a Fibonacci number.

24. [HM20] Evaluate the nX n determinant

/1 —1 0 0 ... 0 0 0\
1 1—1 0 ... 0 0 0
0 1 1 —1 ... 0 0 0

0 0 0 0 ... 1 1 —1
Vo 0 0 0 ... 0 1 1/

25. [M21] Show that

k odd

► 26. [M20] Using the previous exercise, show that Fp = 5(p-P/2 (modulo p) if p is an
odd prime.

27. [M20] Using the previous exercise, show that if p is a prime different from 5, then
either Fp_i or Fp+1 (not both) is a multiple of p.

28. [M21] What is Fn+1 — <f>Fn?

► 29. [M23] (The “Fibonomial coefficients.”) Define

1.2.8
FIBONACCI NUMBERS 85

in a manner analogous to binomial coefficients, (a) Make a table of ((”)) for 0 < n < 6.
(b) Show that

► 30. [M38] (D. Jarden.) The sequence of mth powers of Fibonacci numbers satisfies a

recurrence relation in which each term depends on the preceding m + 1 terms. Show
that

For example, when m = 3, we get the identity F\ — 2F2n+l — 2F2n+2 + F2n+Z = 0.

31. [M20] Let \J/ = <f> — 1 = l/</>. Show that (F2n^) mod 1 = 1— \p2n and
(F2n+i\J/) mod 1 = \f/2n+1.

32. [M21i\ The remainder of one Fibonacci number divided by another is ± a Fibo¬
nacci number: Show that

Fmn+r = Fr, (—l)r+1F„_r, (—1)nFr, or (—l)r+1+nF„_r (modulo Fn),

depending on whether m mod 4 = 0, 1, 2, or 3, respectively.

33. [HM24] Given that z = -jt/2 + i In 4>, show that sin (nz)/sin z = i1~nFn.

► 34. [M24] (The Fibonacci number system.) Let the notation k » m mean that
k > m -f- 2. Show that every positive integer n has a unique representation n =
Fkx + Fk2 + • • • + FkT, where k\ k2 ^>> • • Oi> kT 0.

35. [M24] (A phi number system.) Consider real numbers written with the digits
0 and 1 using base <f>. (Thus 100.1 = <t>2 + <f>~1.) Show that there are infinitely many
ways to represent the number 1 (for example, 1 = .11 = .011111 ...); but if we require
that no two adjacent l’s occur and that no infinite sequence “01010101 . . .” appears
every number has a unique representation.

► 36. [M32] (Fibonacci strings.) Let Si = “a”, S2 = “b”, and S„+2 = S„+iS„, n > 0;
in other words, Sn+2 is formed by placing Sn at the right of Sn+J. We have S3 = “ba”,
S4 = “bab”, S5 = “babba”, etc. Clearly Sn has Fn letters. Explore the properties
of Sn. (Where do double letters occur? Can you predict the value of the &th letter
of S„? What is the density of the b’s? And so on.)

► 37. [M35] (R. E. Gaskell, M. J. Whinihan.) Two players compete in the following
game: There is a pile containing n chips; the first player removes any number of chips
except that he cannot take the whole pile. From then on, the players alternate moves,
each person removing one or more chips but not more than twice as many chips as the
preceding player has taken. The player who removes the last chip wjns. (For example,
suppose that n = 11; player A removes 3 chips; player B may remove up to 6 chips,
and he takes 1. There remain 7 chips; player A may take 1 or 2 chips, and he takes 2;
player B may remove up to 4, and he picks up 1. There remain 4 chips; player A
now takes 1; player B must take at least one chip and player A wins in the following
turn.)

What is the best move for the first player to make if there are initially 1000 chips?

86 BASIC CONCEPTS 1.2.8

38. [35] Write a computer program which plays the game described in the previous

exercise and which plays optimally.

39. [M2/i\ Find a closed form expression for an, given that ao = 0, ai = 1, an+2 =

a„_l_i -f- 6an. i

1.2.9. Generating Functions v

Whenever we want to obtain information about a sequence of numbers

(an) = a0, ai, a2, . ■ ■ , we can set up an infinite sum in terms of a “parameter” z,

G(z) = (Xq -f- d\Z -|- d222 -(-•••— 'y) dnZ . (1)

n> 0

We can then try to obtain information about the function G. This function G

is a single quantity which represents the whole sequence (dn); if the sequence

(dn) has been defined inductively (that is, if dn has been defined in terms of

a0, ay, . . . , an_i), this is an important advantage. Furthermore, we can recover

the values of a0, ai, . . . from the function G(z), assuming that the infinite sum

in Eq. (1) exists for some values of z, by using techniques of differential calculus.

G(z) is called the genemting function for the sequence a0, Oi, d2, ■ . . The

use of generating functions opens up a whole new range of techniques, and it
broadly increases our capacity for problem solving. As mentioned in the pre¬

vious section, A. de Moivre introduced generating functions in order to solve

the general linear recurrence problem. This was extended to slightly more

complicated recurrences by James Stirling, who showed how to apply differentia¬

tion and integration as well as arithmetic operations [Methoclus Differentidlis

(London, 1730), Proposition 15]. A few years later, L. Euler began to use

generating functions in several new ways (see, for example, his papers on parti¬

tions, Commentdrii dcdcl. sci. Pet. 13 (1741), 64-93; Novi comment, dcdd. sci.

Pet. 3 (1750), 125-169). Pierre S. Laplace developed the techniques further in

his classic work Theorie Andlytique des Probdbilites (Paris, 1S12).

The question of convergence of the infinite sum, Eq. (1), is of some impor¬

tance. Any textbook about the theory of infinite series will prove that:

a) If Eq. (1) exists (“converges”) for a particular value of z — z0, then it

converges for all values of z with \z\ < z0. _

b) The sequence converges for some z 9^ 0 if and only if the sequence <V|a„|>
is bounded. (If this condition is not satisfied, it may be possible to get a

convergent series for a related sequence, e.g., for the sequence (an/n\).)

On the other hand, it often does not pay to worry about convergence of the

series when we work with generating functions, since we are only exploring

possible approaches to the solution of some problem. When we discover the

solution by any means, however sloppy they might be, it may be possible to

justify the solution independently. For example, in the previous section we used

a generating function to deduce Eq. (14); yet once this equation has been found,

it is a simple matter to prove it by induction, and yve need not even mention

that we used generating functions to discover that relation. Furthermore it

1.2.9 GENERATING FUNCTIONS 87

can be shown that most (if not all) of the operations we do with generating

functions can be rigorously justified without regard to the convergence of the

series; see, for example, E. T. Bell, Trans. Amer. Math. Soc. 25 (1923), 135-154,
and Ivan Niven, AMM 76 (1969), 871-889.

Let us now study the principal techniques used with generating functions.

A. Addition. If Gx(z) is the generating function for a0, ax, . . . and G2{z) is

the generating function for b0, 6X, . . . , then a(?x(z) + fiG2(z) is the generating

function for cea0 + /360, «ai + /3&x, . . . :

a X) akzk + 0 X/ bkzk = X/ (aajc + ^k)zk- (2)
k>0 fc> 0 k>0

B. Shifting. If G{z) is the generating function for a0, ax, . . . then znG(z) is

the generating function for 0, ... , 0, a0, ax, . . . :

zn a*z* = ^2 ak-nZk■ (3)

k>0 fc>n

The last summation may be extended over all k > 0 if we regard ak — 0 for

any negative value of k.

Similarly, (G(z) — a0 — axz — ... — a„_xzw—^/z” is the generating func¬

tion for an, an+x, . . . :

z~n ^2 akz = ^2 ak+nZk. (4)

k>n k>0

We combined operations A and B to solve the Fibonacci problem in the

previous section; G(z) was the generating function for (Fn), zG{z) for (Fm_x),

z2G{z) for (Fn_2), and (1 — z — z2)G(z) for (Fn — Fn_x — Fn_2). The latter

sequence is zero when n > 2, so(l — z — z2)G(z) is a polynomial. Similarly,

given any “linearly recurrent” sequence where an = cxa„_x + • • • + cmo„_m,

the generating function is a polynomial divided by (1 — cxz — ••• — cmzm).

Let us consider the simplest example of all: If G{z) is the generating function

for the constant sequence 1, 1, 1, ..., then zG{z) generates 0, 1, 1, ... , so

(1 — z) G(z) = 1. This gives us the very important formula

= 1 + 2 + z2 + • • • . (5)
1 — z

C. Multiplication. If 6rX(z) is the generating function for a0, ax, . . . and G2(z)

is the generating function for b0, 6X, . . . , then

G\(z)G2(z) — (cio + a\z + a2z2 + • • -)(^o + &iz + b2z2 + • ■ ■)

= (do&o) “b (go^i T gx&o)2 T~ (°o^2 T aibx u2bo)z2 T • • • ;

thus «7x(z)G2(z) is the generating function for the sequence s0, sx, . . . , where

Sn = ^2 a,&n-k- (6)
0<k<n

\

88 BASIC CONCEPTS 1.2.9

Equation (3) is a very special case of this. Another important special case occurs

when each bn is equal to unity:

1

1
G(z) = do -j- (do + dl)z -f- (do + + a2)z2 + (7)

Here we have the generating function for the sums of the original sequence.

The rule for a product of three functions follows from Eq. (6); Gl(z')G2(z)G3(z)

generates s0> Si, ..., where

Sn == CtibjC/c. (8)

i,j,k> 0
i+j-\-k=n

The general rule for products of any number of functions (whenever this is

meaningful) is

n (e “A = e 2
j> 0 'fc> 0 ' n~> 0

aok0aikl (9)

When the recurrence relation for some sequence involves binomial co¬

efficients, we often want to get a generating function for a sequence c0, ci, . . .

defined by

Cn — ^ ^kbn—lc- (10)

In this case it is usually better to use generating functions for the sequences

(an/n\), (bn/n\), (cn/n\), since we have

(ao |
\0! 1!

, a2 2
z + 2\z

where cn is given by Eq. (10)

)(o! + I72 + 2K + '‘‘)

= (w + II2 + %z<2 H) (11)

D. Change of z. Clearly G(cz) is the generating function for the sequence

a0, cai, c2a2, ... In particular, the generating function for the sequence
1, c, c2, c3, . . . is 1/(1 — cz).

There is a familiar trick for extracting alternate terms of a series:

%(G{z) + G(—z)) = a0 + a2z2 + a4s4 + • (12)

\(G{z) — (?(—«)) = axz + a3zc a5z‘

Using complex roots of unity, we can extend this idea and extract every mth
term: Let cj = e2wl,m; we have

£ akzk = b £ w~]rG(u3z), 0 < r <
k mod m=r i < y < to

m. (13)

1.2.9 GENERATING FUNCTIONS 89

For example, if m = 3 and r = 1, we have co = cos 120° + i sin 120° (a com¬
plex cube root of unity); it follows that

axz + a4z4 + a7z7 -\-= £(G(2) + w^G^z) + co~2G(u2z)).

Proof is left to the reader (exercise 14).

E. Differentiation and integration. The techniques of calculus give US further
operations. If G{z) is given by Eq. (1), the derivative is

G'{z) — ax + 2a2z + 3a322 + • • • = ^ (/c + 1)a&+12fc. (14)

k>o

The generating function for the sequence (nan) is zG'(z). Hence we can combine

the nth term of a sequence with polynomials in n by manipulating the generating
function.

Reversing the process, integration gives another useful operation:

G(t) dt — a0z -f- 2aiz2 "i~ 3a2£3 + • • • SI k
kak-lZ ■

k> I
(15)

As special cases, we have the derivative and integral of (5):

(1 i 2 = 1 + 2* + 3z2 + • ■ ■ = £ (k + 1)zk. (16)

k> 0

InjTZl = * + K* + + • • • - 2]/■ (1?)
k> 1

We can combine the second formula with Eq. (7) to get the generating function
for the harmonic numbers:

Y^T-Z In j^-z = * + fz2 + -^z3 + • • • = 2 Hkzk. (18)

k> 0

F. Known generating functions. Whenever it is possible to determine the

power series expansion of a function, we have implicitly found the generating

function for a particular sequence. These special functions can be quite useful

in conjunction with the operations described above.

The most important power series expansions are given in the following list.

i) Binomial theorem

(1 + *)' = 1 + ra + z* + ■ ■ • = 2

k> 0
IK 2

(19)

90 BASIC CONCEPTS 1.2.9

When r is a negative integer, we get a special case already reflected in Eqs. (5)

and (16):

^W=e("V1)(-*)‘-e(b^)‘‘- (20) (1
^>o k> o

There is also a generalization, which was proved in exercise 1.2.6-25:

r i i i r(r — 21 — 1) 2 i V—' (r r /op

x ~ 1 + rz +-j= k Jr^Tt ’ (21)
fc>0

if x is the continuous function of z which solves the equation xt+l = xl -f- z,

where x — 1 when 2=0.

ii) Exponential series

^+- = Sh!‘
k> 0

ez — 1 + z + NT z2 +

In general, we have the following formula involving Stirling numbers:

iii) Logarithm series

In (1 + z) = z — \z2 + iz3 — • • • =

fc>i

In ^ ^ — z ^ a®3 Jr
k> 1

Using Stirling numbers (cf. Eq. 23), we have a more general equation:

In (rh))' = z" +
1

n + 1 L n

n + 1 n + l + ... = n\J2

iv) Miscellaneous

z(z + 1) . . . (z + n — 1) = ^

(1 — z)(l — 2z) . . . (1 — nz) — nz)

z — i _ a, i i . . . _ V' BkZ

e* - 1 “ 1 22 + 122 + Is k!
k> 0

(22)

(23)

k

(~l)k + 1 _k
k

(24)

S s**- (25)

zk/kl (26)

(27)

(28)

(29)

1.2.9 GENERATING FUNCTIONS 91

The coefficients Bk which appear in the last formula are the Bernoulli numbers;

they will be examined further in Section 1.2.11.2, and a table of Bernoulli

numbers appears in Appendix B.

Another identity, analogous to Eq. (21), is the following (see exercise

2.3.4.4-29):

xT — 1 + rz +
r(r + 21)

Z
k> 0

r(r -j- kt)

Id

k—1
(30)

if x is the continuous function of z which solves the equation x — ezx\ where

x = 1 when z = 0.

We conclude this section by returning to a problem that was only partially

solved in Section 1.2.3. We saw (Eq. 1.2.3-13 and exercise 1.2.3-29) that

*«-!((E *»)' + (E *))■•
\ 1 <fc<n l<k<n f

'y ' x iX/cXj

1< i<j<k<n

-s((E •*)* + *(E**)(E**)
\X1 <k<n ' 'l<k<n ' X1 <k<n '

+ 2(E A)-
\l <k<n / f

In general, suppose that we have n numbers X\, x2, . . . ,xn and we want

the sum

hm = /U xii • • • xim‘
i<ii <...<jm<n

If possible, this sum should be expressed in terms of Si, S2, . • . , Sm, where

Sj= x*> (3D

l<k<n

the sum of jth powers. Using this more compact notation, the above formulas

become h2 = ^3 = "D
We can attack this problem by setting up the generating function

G(z) = 1 -f h\Z T h2z2 T • • • = y ^ hkz>c• (32)
k> o

By our rules for multiplying series, we find that

G(z) — (1 T" X\Z -(- x\z‘2 —)— -••)--• (1 —|— xnZ T" xn% ~f“ ‘

=___— • (33)
(1 — Xiz) • • • (1 — Xnz)

So G{z) is the reciprocal of a polynomial. It often helps to take the logarithm

92 BASIC CONCEPTS 1.2.9

of a product, and we find that

la =ln (r=bs) +'''+ln (r^s)

= E
k k\

eiM +...
k

\k> 1)
kk\

xnz
+ ET=E

Sk/
k

i ^>1

Now ln G(z) has been expressed in terms of the S’s, so all we must do to obtain

the answer to our problem is to compute the power series expansion of G(z) again:

G(z)
_ .In O(z) _

= exp E
SkzkN — TT esk* lk

\k> 1

(
2_2

1 + *SlZ +
Sfz

2! + •)(

n
fc>i

1 + ^!+Jt +

E
m> 0

si1 sk22

22 • 2!

Sk”

)
ki,k2,...,km> 0

^ki +2k2-\-(-mkm=m

1 Hi! 2H2!
(34)

The parenthesized quantity is hm. This rather imposing sum is really not com¬

plicated when it is examined carefully. The number of terms for a particular
value of m is p(m), the number of partitions of m (cf. Section 1.2.1). For example,

one partition of 12 is
12 = 5 + 2 + 2 + 2+1;

this corresponds to a solution of the equation fc1 + 2fc2 + -- * + 12A;12 = 12,

where kj is the number of j’s in the partition. In our example kx = 1, k2 = 3,

k5 — 1, and the other k’s are zero; so we get the term

Si Si S5 _ 1 „ n3(J
l1!! 233! 511! 240^1^2*55

as part of the expression for hi2-
For a table of the coefficients appearing in Eq. (34), as well as a table of the

similar coefficients in Faa di Bruno’s formula (exercise 1.2.5-21), see Handbook

of Mathematical Functions, ed. by M. Abramowitz and I. A. Stegun, (U.S.

Gov’t Printing Office, 1964), Table 24.2.

An enjoyable introduction to the applications of generating functions has

been given by G. P61ya, “On picture writing,” AMM 63 (1956), 689-697.

EXERCISES

1. [M12] What is the generating function for the sequence 2, 5,13, 35,... = (2n + 3">?

► 2. [MIS] Prove Eq. (11).

1.2.9
GENERATING FUNCTIONS 93

3. [HM21] Differentiate the generating function (Eq. 18) for (Hn), and compare
this with the generating function for (Ei<k<n Hk). What relation can you deduce?

4. [M01] Explain why Eq. (19) is a special case of Eq. (21).

5. [M20] Prove Eq. (23) by induction on n.

► 6. [HM15] Find the generating function for

y —-_•

l—i k(n — k) ’
l<fc<n

differentiate it and express the coefficients in terms of harmonic numbers.

7. [M20] Verify all the steps leading to Eq. (34).

8. [M23] Find the generating function for p(ri), the number of partitions of n.

9. [Mil] In the notation of Eqs. (31) and (32), what is /i4 in terms of /Si, S2, S3,
and zS4?

► 10. [M25] An elementary symmetric function is defined by the formula

am = J2 xh • • • xim-

l<h<-<3m<n

(This is the same as hm of Eq. (32), except that equal subscripts are not allowed.) Find
the generating function for am and then express am in terms of the Sj in Eq. (31).
Write out the formulas for ai, a2, a3, and a4.

11. [HM30] Set up the generating function for the sequence (n!) and study properties
of this function.

► 12. [M20] Suppose that we have a doubly subscripted sequence amn for m, n =
0, 1, ... ; show how this double sequence can be represented by a single generating
function of two variables, and determine the generating function for the sequence
amn \m) •

13. [HM22] The “Laplace transform” of a function f{x) is the function L/(s) =
So e~“f(t) dt. Given that ao, aj, a2, . . . is an infinite sequence having a convergent
generating function, let f(x) be the step function <k<x ak. Express the Laplace
transform of f(x) in terms of the generating function G for this sequence.

14. [HM21] Prove Eq. (13).

15. [M28] By considering H(w) = £«>o Gn(z)wn, find a “closed form” for the
generating function

«•«- E (VV-
0<A;<n

16. [M22] Give a simple formula for the generating function Gnr(z) = ankrZk,
where ankr is the number of ways to choose k things out of n objects, subject to the
condition that each object may be chosen at most r times. (If r = 1, we have (*) ways,
and if r > k, we have the number of combinations with repetitions (cf. exercise
1.2.6-60).)

17. [M25] What are the coefficients of 1/(1 — z)w if this function is expanded into a
double power series in terms of both z and w?

94 BASIC CONCEPTS
1.2.9

18. [M25] Given positive integers n and r, find a simple formula for the value of the

following sums:

(a) ^ Aufe ... kr; (b) E kik2 .. . kr.

I<kl<lc2<-"<kr<n —n

\
(For example, when n = 3, r = 2, the sums are 1 • 2-\- 1-3 + 2 • 3 and 1 • 1 -j- 1 • 2
1-3+2-2+2-3+3-3, respectively.)

19. [HM32] (K. F. Gauss.) The sums of the following infinite series are well known:

ln2; 1 3+5 7 +

7T

4 5

1 _ I-f- i-L_|-- ——j- ^ In 2.
4^7 10 ^ 3\/3 3

These series may be written respectively as

2X)(n+i n-fl)’ 4 ^(n+i n+ l) 4S(n+| n+l) ’
n>0 n>0 n> 0

and

6Zl(n+i n+l) 6 2 (n+ § n+ l)
n>0 n>0

Prove that, in general, the series

Y (— -1-~) ^ \n+ p/q n+ 1/
»>o

has the value

r cot - 7r + In 2q — 2 cos 7r • In sin - 7r,
a ✓ f/ a

2 pk . A:

0<k<q/2
. 9

when p and g are integers with 0 < p < q. [Hint: By Abel’s limit theorem the sum is

lim
Z—>1 —

1

n-\-p/q
xp+nq.

Use Eq. (13) to express this power series in such a way that the limit can be evaluated
readily.]

1.2.10. Analysis of an Algorithm

Let us now apply some of the techniques of the preceding sections to the study

of a typical algorithm.

1.2.10 ANALYSIS OF AN ALGORITHM 95

Algorithm M (Find the maximum). Given n elements X[l], X[2], . . . , X[n], we

will find m and j such that m = X{j] = ma,Xi<k<n X[k], and for which j is

as large as possible.

Ml. [Initialize.] Set j <— n, k <— n — 1, m <— X[n\.

M2. [All tested?] If /c = 0, the algorithm terminates.

M3. [Compare.] If X[k] < m, go to M5.

M4. [Change m.] Set j <— 1c, m <— X[k]. (Now m is the current maximum.)

M5. [Decrease k.] Decrease k by one, return to M2. |

This rather obvious algorithm may seem so trivial we should not bother to

analyze it in detail; but it actually makes a good demonstration of the manner

in which more complicated algorithms may be studied. Analysis of algorithms is

quite important in computer programming, because there are usually several

algorithms available for a particular application and we would like to know

which is best.

-H
i

Y „ _ __L__
Ml. Initialize -Wm2. All tested?)-^(M3. Compare)-^- M4. Change m M5. Decrease k
- - 1 '-1-- — L —-—' A -A -

$
1 Yes m>X[k] n — l — A

Fig. 9. Algorithm M. Labels on the arrows indicate the number of times each path
is taken. Note that “Kirchhoff’s first law” must be satisfied, i.e., the amount of flow
into each node must equal the amount of flow going out.

Algorithm M requires a fixed amount of storage, so we will analyze only the

time required to perform it. To do this, we will count the number of times each

step is executed (cf. Fig. 9):

Number of times

1

n

n — 1

A

n — 1

Step number

Ml

M2

M3

M4

M5

Knowing the number of times each step is executed gives us the information

necessary to determine the running time on a particular computer.

In the above table we know everything except the quantity A, which is the

number of times we must change the value of the current maximum. To com¬

plete the analysis, we shall study this interesting quantity A.

96 BASIC CONCEPTS 1.2.10

The analysis usually consists of finding the minimum value of A (for opti¬

mistic people), the maximum value of A (for pessimistic people), the average

value of A (for probabilistic people), and the standard deviation of A (a quantita¬

tive indication of how close to the average we may expect the value to be).

The minimum value ^f A is zero; this happens if X[n\ = maxi<fc<n V[fc].

The maximum value is n — 1; this happens in case V[l] > X[2] > • • • > X[n\.

Thus the average value lies between 0 and n — 1. Is it ^n? Is it To

answer this question we need to define what we mean by the average; and to

properly define the average, we must make some assumptions about the ex¬

pected characteristics of the input data X[l], X[2], . . . , X[n]. We will assume

that the X[k] are distinct values, and that each of the n! permutations of these values

is equally likely. (This is a reasonable assumption to make in most situations,

but the analysis can be carried out under other assumptions, as shown in the

exercises at the end of this section.)
The performance of Algorithm M does not depend on what the precise

values of the X[k] are; only the relative order is involved. For example, suppose

that n = 3. We will say that each

probable:

of the following six possibilities is equally

Situation Value of A Situation Value of A

X[l] < X[2] < X[3] 0 X[2] < X[3] < X[l] 1

X[l] < X[3] < X[2\ 1 X[3] < X[l] < X[2] 1

X[2] < X[l] < X[Z] 0 X[3] < X[2] < X[l] 2

The average value of A when n = 3 comes to (0 + 1 + 04-1 + 1 + 2)/6 = 5/6.
It is clear that we may take X[l], X[2], . . . , X[n] to be the numbers

1, 2,...,n in some order; under our assumption we regard each of the nl

permutations as equally likely. The probability that A has the value k will be

pnk = (number of permutations of n objects for which A = k)/n\. (1)

For example, from our table above, p30 = 4, Psi = + p32 = i-
The average (“mean”) value is defined, as usual, to be

An = 2 kPnh. (2)

k

The variance Vn is defined to be the average value of (A — An)2', we have

therefore

Fn = ^) (k Af) Pnk — ^ ^ k pnk 2An ^ ' kpnk + An ^ ^ Pnk

k k , k k

= 2 k2pnk — 2AnAn + An = 2 k2pnk — An. (3)
k k

Finally, the standard deviation crn is defined to be \/Vn.

1.2.10 ANALYSIS OF AN ALGORITHM 97

1 he significance of <x„ can perhaps best be understood by noting that, for

all r > 1, the probability that A fails to lie within r<rn of its average value

is less than 1/r2. For example, \A — An\ > 2<rn with probability <{. {Proof:

Denoting the stated probability by p, the average value of {A — An)2 is more

than p • (r<xn)2 + (1 — p) • 0; that is, Vn > pr2Vn unless p = 0.) This is

usually called Chebyshev’s inequality, although it was actually discovered first

by J. Bienayme [Comptes Rendus Acad. Sci. Paris 37 (1853), 320-321],

We can determine the behavior of A by determining the probabilities pnk.

It is not hard to do this inductively: by Eq. (1) we want to count the number of
permutations on n elements that have A = k.

Consider the permutations xxx2 . . . xn on {1,2, ... ,n} (cf. Section 1.2.5).

If xi — n, the value of A is one higher than the value obtained on x2 . . . xn]

if xi ^ n, the value of A is exactly the same as its value on x2 . . . xn. Therefore
we find that

_ 1 .n—1
Vnk — - P(n-lXfc-l) H---P(n — l)fc>

This equation will determine pnk if we provide the initial conditions

(4)

Pik = 50fc; and pnk = 0 if k < 0. (5)

We can now get information about the quantities pnk by using generating
functions. Let

Gn{z) — PnO + PnlZ + • • • = ^ pnkZk. (6)
k

We know that A < n — 1, so pnk = 0 for large values of k; thus Gn{z) is actually

a polynomial, even though an infinite sum has been specified for convenience.

From Eq. (5) we have G\{z) = 1; and from Eq. (4) we have

ff„(z) = \ (?._,(«) + (7)
10 fi ft

(The reader should study the relation between Eqs. (4) and (7) carefully.) We
can now see that

O.W = G.-.M = GU.M = n n n — 1

1
= —){z + n — \){z + n — 2) . . . {z + 1)

_ 1 {z-fnA
z + n \ n) (8)

So Gn(z) is essentially a binomial coefficient!

This function appears in the previous section (Eq. 1.2.9-27), where we have

Gt
<(z) = b.T,

k—1

98 BASIC CONCEPTS 1.2.10

\

Fig. 10. Probability distribution for step M4, when n = 12. The average is
58301/27720- 2.11.

Therefore pnk can be expressed in terms of Stirling numbers:

Pnk =

Figure 10 shows the approximate sizes of pnk when n — 12.

Now all we must do is plug this value of pnk into Eqs. (2) and (3) and we

have the desired average value. But this is easier said than done. It is, in fact,

unusual to be able to determine the probabilities pnk explicitly; in most problems

we will know the generating function Gn(z), but we will not have any special

knowledge about the actual probabilities. The important fact is that ice can
determine the mean and variance easily from the generating function itself.

To see this, let us suppose that we have a generating function whose co¬
efficients represent probabilities:

n

k-fl
j n\ (9)

G{z) = Po + piz + p2z2 H-•

Here pk is the probability that some event has a value k. We wish to calculate
the quantities

mean (G) = ^ kpk, var (G) = k2pk — (mean(G))2. (10)

k k

Using differentiation, it is not hard to discover how to do this. Note that

G(1) = 1, (11)

since (7(1) = p0 + pi -)- p2 + • • • is the sum of all possible probabilities. Simi¬
larly, since G'{z) = 'ffkpiczk~1, we have

mean(G) = £ kpk = G\ 1). (12)

k

Finally, we apply differentiation again and we obtain (see exercise 2)

var(U) = G"(1) + G'(l) - U'(l)2. (13)

1.2.10
ANALYSIS OF AN ALGORITHM 99

Equations (12) and (13) give the desired expressions of the mean and variance
in terms of the generating function.

In our case, we wish to calculate G'n(1) = An. From Eq. (7) we have

®n(z) = ~ Gn_i(z) 4—-- G'n—i(2);

^(1) = — + G^-i(l).

From the initial condition G4(l) = 0, we find therefore

An = G>t(l) = Hn — 1. (14)

This is the desired average number of times step M4 is executed; it is approxi¬
mately In n when n is large. [Note: The rth moment is the coefficient of zn in
(1 — z)~ Zfc {£} In (1/(1 — z))k, and it has the approximate value (In w)r;
see C ACM 9 (1966), 342. The distribution of A was first studied by F. G. Foster
and A. Stuart, J. Roy. Stat. Soc. B-16 (1954), 1-22.]

N e can proceed similarly to calculate the variance Vn. Before doing this,
let us state an important simplification:

Theorem A. Let G, H be two generating f unctions with G{\) = H(1) = 1. If the
quantities mean(G), var(G') are defined by Eqs. (12), (13), ice have

mean ((?//) = mean(G) + mean(/f); var (GH) = var(G) + var(tf)- (15)

We will prove this theorem later. It tells us that the mean and variance
of a product of generating functions may be reduced to a sum. |

Letting Qn(z) = (z + n — 1)/n, we have Q'n{ 1) = l/n, Q”{ 1) = 0; hence

mean (Qn) = ^ » var (Qn) = ^ ^ •

Finally, since Gn{z) = Il2<A;<nQk{z), it follows that

mean (G'n) = mean(Q^) = ^ | = IIn ~ 1

2<&<n 2<k<n

var (G'n) = var (Q*) = ^ — p) = Hn ~
2<k<n 1 <fc<n

Summing up, we have found the desired statistics related to quantity A:

A = (min 0, ave Hn — 1, max n — 1, dev \ Hn — H^). (16)

The notation used in Eq. (16) will be used to describe the statistical charac¬
teristics of other probabilistic quantities throughout this book.

We have completed the analysis of Algorithm M; the new feature that has
appeared in this analysis is the introduction of probability theory. Not much
probability theory is required for most of the applications in this book: the

100 BASIC CONCEPTS 1.2.10

simple counting techniques and the definitions of mean, variance, and standard

deviation which have already been given will suffice.
Let us consider some simple probability problems, to get a little more

practice using these methods. In all probability the first problem that comes to

mind is a coin-tossing problem. Suppose we flip a coin n times and there is a

probability p that “heads”\urns up at each toss; what is the average number of

heads which will occur? What is the standard deviation?

We will consider our coin to be biased, i.e., we will not assume that p = 2-
This makes the problem more interesting, and, furthermore, every real coin is

biased (else we could not tell one side from the other!).
Proceeding as before, we let pnk be the probability that k heads will occur,

and let Gn(z) be the corresponding generating function. We have clearly

Pnk = P • P(,n—1)(A; — 1) + 2 ‘ P(n—\)k• (17)

Here, q = 1 — p is the probability that “tails” turns up at each toss. As before,

we argue from Eq. (17) that Gn{z) = (q + pz)Gn-\(z)\ and from the obvious

initial condition that G\(z) = q -f pz we have

Hence

Gn(z) = (q + pz)n.

mean (Gn) = nmean((?i) = pn;

var(Gn) = n var((?i) = (p — p2)n — pqn.

(18)

For the number of heads, we have therefore

(min 0, ave pn, max n, dev Vpqn). (19)

Figure 11 shows the values of pnk when p = f, n = 12. When the standard

deviation is proportional to yjn and the difference between maximum and

minimum is proportional to n, we may consider the situation “stable” about the

average.
Let us work one more simple problem. Suppose that in some process there

is equal probability of obtaining the values 1, 2, . . . , n. The generating function

for this situation is

G(z) = -z + -z2 +
n n

i 1 « + -2
n

1 zn+1 - z

n z — 1
(20)

We find after some rather laborious calculation that

nzn+1 - (n + 1)zn + 1
G\z) =

n{z — l)2

nu t n(n — l)z”+1 — 2 (n + l)(n — 1)zn + n(n + 1)zn 1 — 2 ,niN
G W = -«(*- 1)3 ..-<21>

Now to calculate the mean and variance, we need to know ^"(l) and Cr"(l);

but the form in which we have expressed these equations reduces to 0/0 when

1.2.10 ANALYSIS OF AN ALGORITHM 101

we substitute z — 1. This makes it necessary to find the limit as z approaches

unity, and that is a nontrivial task (cf. exercise 6). Here we have a case where

it is much easier to compute from the probabilities directly, rather than derive

mean and variance from the generating function. The statistics in this case are

(mini, ave —» max », dev^HOj. (22)

In this case the deviation of approximately 0.289n gives us a recognizably
unstable situation.

Fig. 11. Probability distribution for coin¬
tossing; 12 tosses with a chance of success
equal to ■§ at each toss.

We conclude this section by proving Theorem A and relating our notions

to classical probability theory. When G{z) = p0 + Piz + p2z2 H-represents

a probability distribution for some quantity X; that is, if pk is the probability

that X = k, and X takes on only nonnegative integral values, we have pk > 0

and (7(1) = 1. The quantity G(eu) = p0 -\-pieu + p2e2lt + • • • is conventionally

called the characteristic function of this distribution. The distribution given by

the product of two such generating functions is called the convolution of the two

distributions, and it represents the sum of two independent random variables
belonging to those distributions.

The mean and variance are just two of the so-called semi-invariants or

cumulants introduced by Thiele in 1903. The semi-invariants K\, k2, k3, . . . are
defined by the rule

We have

in particular,

and

Kit

1! ^ 2! ^ 3!
- In G(el).

Kn = ^ln G <=o

K1 =
e‘(?V)

G(e 0 <=o

(23)

e2tG"(et) etG,{et) e2tG'(e*)2

G(e*) + G(e *) (7(e‘)2
= (7"(1) + (?'(1) - (7'(1)2.

<=o

102 BASIC CONCEPTS
1.2.10

Since the semi-invariants are defined in terms of the logarithm of a generating

function, Theorem A is obvious, and, in fact, it can be generalized to apply to

all of the semi-invariants.
A normal, distribution is one for which all semi-invariants are zero except

the mean and variance. In a normal distribution, the difference between a

random value and its mean^is less than the standard deviation

—L- /+1 e-t2'2 dt = 68.268949213709%
\/2tt 1

of the time. The difference is less than twice the standard deviation

95.449973610364% of the time, and it is less than three times the standard

deviation 99.730020393674% of the time. Both of the distributions specified by

Eqs. (8) and (18) are approximately normal when n is large (see exercises 13

and 14).

EXERCISES

1. [10] Determine the value of pno from Eqs. (4) and (5) and, considering Algo¬

rithm M, interpret this result.

2. [HM16] Derive Eq. (13) from Eq. (10).

3. [Ml5] What are the minimum, maximum, average, and standard deviation of the

number of times step M4 is executed, if we are using Algorithm M to find the maximum

of 1000 randomly ordered, distinct items? (Give your answer as decimal approxima¬

tions to these quantities.)

4. [M10] Give an explicit, closed formula for the values of pnk in the coin-tossing

experiment, Eq. (17).

5. [Ml 8] What are the mean and the standard deviation of the distribution shown

in Fig. 11?

6. [HM23] Use L’Hospital’s rule to find G'{ 1) and G"(1) from Eqs. (21).

► 7. [M27] In our analysis of Algorithm M, we assumed that all the X[fc] were distinct.

Suppose, instead, that we make only the weaker assumption that X[l], X[2], . . . , X[n]

contain precisely m distinct values; the values are otherwise random, subject to this

constraint. What is the probability distribution of A in this case?

► 8. [M20] Suppose that each X[k] is taken at random from a set of M distinct elements,

so that each of the Mn possible choices for X[l], X[2], . . . , X[n] is considered equally

likely. What is the probability that all the X[k] will be distinct?

9. [M25] Generalize the result of the preceding exercise to find a formula for the

probability that exactly m distinct values occur among the X’s. Express your answer

in terms of Stirling numbers.

10. [M20] Combine the results of the preceding three exercises to obtain a formula for

the probability that A = k under the assumption that each X is selected at random

from a set of M objects.

1.2.10 ANALYSIS OF AN ALGORITHM 103

11. [HM20] Given that G(z) — po -f- p\z + p2z2 -1- • • • represents a probability dis¬

tribution, let Mn knpk. (Mn is called the “nth moment.”) Show that G{el) —

1 + M\t + il/2<2/2! + • • • ; then using Faa di Bruno’s formula (exercise 1.2.5-21),
show that

Kn —

^ l + 2 k 2 -f— • • = n

n\(ki + k2~\-h K — 1) !(-i)fci+-+fcn~1

fciKl!)*1 • ..kn\(n\)kn
Mi1 .Ml

(In particular, ki = Mi, K2 = —M\ + M2 (as we already know), k3 —
2M\ — 3MiM2+ Ms, k4 = —6M\ — 3df|+ \2M\M2 — UhM3 + i¥4.)

► 12. [M15] MTiat happens to the semi-invariants of a distribution if we change G(z)
to Gi(z) = znG{z)?

13. [HM38] A sequence of characteristic functions Gn(z) with means p.n and deviations
an is said to approach a normal distribution if

lim„_*„ e~ttinlanGn{etl'’n) = e(2/2

for all imaginary values of t, that is, whenever t = ui for a real number u. Using Gn(z)

as given by Eq. (8), show that Gn(z) approaches a normal distribution. (This is a

theorem of Goncharov, Izv. Akad. Nauk SSSR Ser. Math. 8 (1944).)

Note: “Approaching the normal distribution,” as defined here, can be shown to be
equivalent to the fact that

lim probability (—-— < x) = —— [e~<2/2 dt,
n-Mo \ <r„ / \/2t 00

where X„ is a random quantity whose probabilities are specified by G„(z). This is a

special case of P. Levy’s important “continuity theorem,” which is a basic result in

mathematical probability theory; a proof of the result would take us rather far afield,

although it is not extremely difficult [for example, see Limit Distributions for Sums of

Independent Random Variables by B. V. Gnedenko and A. N. Kolmogorov, tr. by

K. L. Chung (Reading, Mass.: Addison-Wesley, 1954)].

14. [HM30] (A. de Moivre.) Using the conventions of the previous exercise, show that

the binomial distribution Gn(zj given by Eq. (18) approaches the normal distribution.

► 15. [M21] Let z be a positive number. What is the average value of the quantity zA

taken over all permutations of order n, if A is the quantity appearing in the analysis of

Algorithm M?

16. [HM23\ When the probability that some quantity has the value k is e~‘i{pk/k\),

it is said to have the “Poisson distribution with mean y.”

a) What is the generating function for this set of probabilities?

b) What are the values of the semi-invariants?

c) Show that as n —> <» the Poisson distribution with mean np approaches the normal

distribution in the sense of exercise 13.

► 17. [M27] Let f(z) and g(z) be generating functions which represent probability dis¬

tributions.

a) Show that h(z) = g(f(z)) is also a generating function representing a probability

distribution.

104 BASIC CONCEPTS
1.2.10

b) Interpret the significance of h(z) in terms of f(z) and g(z). (What is the meaning

of the probabilities represented by the coefficients of h(z)?)

c) Give formulas for the mean and variance of h in terms of those for/, g.

18 [M28] Suppose that the distinct values taken on by A[l], X[2], . . . , Ain] in

Algorithm M include exactly ki ones, k2 twos, »’s, arranged in random order.

(Here 'i
k\ k2 kn = n.

Note that the text’s assumption is k\ = k2 = • • ■ = kn - 1.) Show that in this

generalized situation, the generating function, Eq. (8), becomes

/kn-lZ + /c»\/kn-2Z + kn-1 + /klZ + k2 + • • • + fcA '

\ kn-1 + kn) V kn-2 + *»-1 + Kj \ &1 + 4-fi kn)

using the convention 0/0 = 1.

*1.2.11. Asymptotic Representations

We often want to find the approximate value of a quantity, instead of an exact

value, in order to compare one number to another. For example, Stirling s

approximation to n! is a useful representation of this type, and we also have

made use of the fact that Hn ~ In n + 7.
The derivations of such “asymptotic” formulas generally involve higher

mathematics, although in the following subsections we use nothing more than

elementary calculus to get the results we need.

*1.2.11.1. The O-notation. A very convenient notation for dealing with ap¬

proximations was introduced by P. Bachmann in the book Analytische Zahlen-

theorie in 1892. This is the “big-oh” notation which allows us to replace the

” sign by “= for example,

Hn = In n + 7 + 0 Q • (1)

(Read, “H sub n equals the natural log of n plus Euler’s (“Oiler’s”) constant

plus big 0 of one over n. ”)
In general, the notation 0(/(n)) may be used whenever/(n) is a function

of the positive integer n; it stands for a quantity which is not explicitly known,

except that its magnitude isn’t too large. Every appearance of 0(/(n)) means

precisely this: there is a positive constant M such that the number xn represented

by 0(/(n)) satisfies the condition \xn\ < M\f(n)\, for all n > n0. We do not

say ivhat the constants M and n0 are, and indeed these constants are usually

different for each appearance of 0.
For example, Eq. (1) means that \Hn — In n — 7| < M/n; the constant

M is not specified further, but even if we don’t know its value, we do know that

the quantity OQ) will be arbitrarily small if n is large enough.

1.2.11.1
THE 0-NOTATION 105

Let’s look at some more examples. We know that

l2 + 22 4-+ n2 = %n(n + |)(n + 1) = %n3 + %n2 + \n,

so it follows that

l2 + 22 H-f-n2 = 0(n3), (2)

l2 -f- 22 + • • • + n2 = ^n3 + 0(n2). (3)

Equation (3) is a stronger statement than Eq. (2). To justify these equations

we shall piove that if P(n) = oto T~ Gqn + •••-{- amnm is any polynomial of
degree m or less, P(n) = 0(nm). This follows because

|E(n)| < |o0| + \ai\n-]-f \am\nm = (\a0\/nm + |a^/n^1 -f-f \am\)nm

< (kol + |«l| + • • • + \^m\)nm,

when n > 1. So we may take M = |a0| H--f \am\ and n0 = 1.

The O-notation is a big help in approximation work, since it briefly de¬

scribes a concept which occurs frequently and it suppresses detailed information

which is usually irrelevant. Furthermore, it can be manipulated algebraically
in familiar ways, provided that a little bit of caution is used.

Many of the rules of algebra can be used together with O-notations, but

certain important differences should be mentioned. The most important con¬

sideration is the idea of one-way equalities: We write §n2 + n = 0(n2), but we

never write 0(n2) = %n2 + n. (Or else, since |n2 = 0(n2), we might come up

with the absurd relation %n2 = \n2 + n.) We always use the convention that
the right-hand side of an equation does not give more information than the left-hand

side; the right-hand side is a “crudification” of the left.

This convention about the use of “= ” may be stated more precisely as

follows: “Formulas which involve the 0(/(n))-notation may be regarded as

sets of functions of n. The symbol 0(/(n)) stands for the set of all functions g

such that there exists a constant M with \g(n)| < M\f(n)\ for all large n. If

S and T are sets of functions, then S + T denotes the set {g + h | g e S and

h E T}; we define S -f c, S — T, S ■ T, log S, etc., in a similar way. If a(n)

and /3(n) are formulas which involve the 0(/(n))-notation, then the notation

a(n) = /3(n) means that the set of functions denoted by a(n) is contained in

the set denoted by (3(nConsequently we may perform most of the opera¬

tions we are accustomed to doing with the ” sign: If a(n) = 0(n) and

/3(w) = T(n), then a(n) = T(n). Also, if a(ri) = /3(w) and if 5(n) is a formula

resulting from the substitution of /3(n) for some occurrence of a(n) in a formula

7 (n), then 7 (n) = <5(n). These two statements imply, for example, that if

g(xi, x2, . . . , xm) is any real function whatever, and if ak(n) = (Sk(n) for

1 < k < m, then ^(«i(n), a2(n), . . . , am(n)) = ^(/3i(n), 02(n), . . . , /3m(n)).

106 BASIC CONCEPTS
1.2.11.1

Here are some of the simple operations we can do with the O-notation:

fin) = 0(/(n)), (4)

c • 0(/(n)) = 0(/(n)), if c is a constant, (5)

0(f(n)) + OQf(n)) = 0(/(n)), (6)

0(0(/(n))) = 0(/(n)), (7)

0(/W)0(</(n)) = 0(f(n)g(ri)), (8)

0(f(n)cj{n)) = fin)0{g{n)). (9)

The O-notation is also frequently used with functions of a real variable x.

A particular range of values of x is specified, for example, a < x < b, and we
write 0(f(x)) to stand for any quantity g(x), such that |g(x)| < M\f{x)\ when¬

ever a < x < b. (As before, M is an unspecified constant.) The notation

0(/(w)) discussed above is the special case where the variable x is restricted to

positive integer values; we usually call the variable n instead of x in this case.

Suppose that g{x) is a function given by an infinite series,

g&) = akxk> - r’
k> 0

where the sum of absolute values ^2k> o \akXk\ also exists. We can then always

write
g(x) = a0 + aix + ■ ■ • + amxm + 0(xm+1), \x\ < r. (10)

For, g{x) = a0 + axx + • • • + amxm + xm+1(am+1 + am+2x -1-); we must

only show that the parenthesized quantity is bounded when |x| < r, and it is

easy to show that |aOT+1| + |am+2|r + |am+3|r2 + * • • is an upper bound.

For example, consider the generating functions given in Section 1.2.9; wre

have the important relations

e* = 1 + x + ± x2 + • • • + ^ + 0 (xm+1),

1*1 < r, any fixed r; (ID

In (1 + *) = x — ^ x2 + ■ , (-d“+i
m

xm + 0(xm+1),

|x| < r, any fixed r < 1; (12)

(1 + *)“ = 1 +ax + (“) *2 + • • • + (° \7?
;)x”+o(x”+i),

1*1 < r, any fixed r < 1. (13)

The statement that r is “fixed” means that r must have a definite value when

the O-notation is used. We obviously have ex — 0(1) when |x| < r, since

\ex\ < er, but the constant M implied by the O-notation depends on r. In fact,

1.2,11.1 THE 0-NOTATION 107

it is easy to see that if x is allowed to range over all values — co < x < oo, then
ex ^ 0{xm) for any m.

Let us give one simple example of the concepts we have introduced so far.

Consider the quantity \/n; as n gets large, the operation of taking an nth root

tends to decrease the value, but it is not immediately obvious whether \/n

decreases or increases. It turns out that y/n decreases to unity. Let us consider

the slightly more complicated quantity n(\/n — 1). Now (\Zn — 1) gets
smaller as n gets bigger; what happens to n(\/n — 1)?

This problem is rather easily solved by applying the above formulas. We
have

n/n = elnn/ra = 1 + (In n/n) + 0((ln n/n)2). (14)

This equation proves our previous contention that \/n —> 1. Furthermore, it
tells us that

n(y/n — 1) = n(lnn/n + 0((lnn/n)2))

= In n -f- 0((ln n)2/n).

So we find that n(\kn — 1) is approximately equal to Inn; the difference is

0((lnn)2/n), which approaches zero as n approaches infinity (see exercise 8).

EXERCISES

1. [HM01] What is lim„_»M 0(n~113) ?

► 2. [M10] Mr. B. C. Dull obtained astonishing results by using the formula

0(f(n)) - 0(/(n)) = 0; what is his mistake, and what should the right-hand side of
his formula be?

3. [Ml5] Multiply (in n + 7 + 0(l/n)) by (n+ O(Vn)), and express your answer

in O-notation.

► 4. [M15] Give an asymptotic expansion of n(v/a — 1), if a > 0, to terms 0(l/n3).

5. [.1/00] (a) Given that r > 0 and P(x) = co + cix + • • • + cmxm, show that P(x) =

0(xm), when x > r. (b) Prove or disprove: P(x) = 0{xm), when x > 0.

► 6. [M20] What is wrong with the following argument? “Since n = 0(n), 2n =

O(n), . . . , we have

^ kn = 0{n) = 0(n“).”

l<k<n l<fc<n

7. [IIM15] Prove that if the values of x are allowed to be arbitrarily large, eT ^ 0(xm)

for any power m.

8. [IIM20] Prove that as n —> °° , (In n)m/n —> 0.

9. [HM20] Show that e0(-xm) = 1 + 0(xm), \x\ < r, for all fixed m > 0.

108 BASIC CONCEPTS
1.2.11.1

10. [HM22] Make a statement similar to that in the previous exercise about

In (1 + 0(xm)).

11. [Mil] Explain why Eq. (14) is true.
4

*1.2.11.2. Euler’s summation formula. Perhaps the most useful method for

obtaining good approximations is the one due to Leonhard Euler in 1732; his

method approximates a finite sum by an integral, and gives us a means to get

better and better approximations in many cases. [Commentarii Acaclemx

Petropolitanx 6 (1732), 68-97.]

Fig. 12. Comparing a sum with an
integral.

Figure 12 shows a comparison of Jif(x) dx and Hi<k<nf(k), n = 7.

Euler’s method gives a useful formula for the difference between these two

quantities, assuming that f{x) is a differentiable function.

For convenience we use the notation

{x} = x mod 1 = x — lx].

Our derivation starts with the following identity:

fc+i

(M — i)/'0) dx= (x — k — $)f(x)

(1)

k +1 fc + 1

f(x) dx

/"fc+i

= £(/(* + 1) +/(*)) — / /(*) dx. (2)
Jk

(This follows from integration by parts.) Adding both sides of this equation
for 1 < k < n, we find that

/n f.n

({*} - £)/'(*) dx = f(k) + i(f(n) —/(!)) — Ji f{x) dx;

l<k<n

that is,
rn /»n

E m = J1 dx ~ K/W - /(!)) + Ji £!({x})/'(x) dx, (3)
1 <fc<n

where Bi(x) is the polynomial x This is the desired connection between
the sum and the integral.

The approximation can be carried further if we continue to integrate by
parts. Before doing this, however, we shall discuss the Bernoulli numbers, which

1.2.11.2 eulek’s summation formula 109

are the coefficients in the following infinite series:

ex
Bq -f- B ix +

B2x2

2!
^ Bkxk
2^ k\
k>0

(4)

The coefficients of this series, which occur in a wide variety of problems, were

introduced by James Bernoulli in 1713. (Some books use a different notation for

Bernoulli numbers, but the above notation is used in most modern references.)
We have

Bo — 1, B1 — 1
21 B2 = b B3 — 0, B 4 = — (5)

Further values are given in Appendix B. Since

x x _ x ex -j~ 1 _ x e~x + 1
ex — 1 ' 2 — 2 e1- 1 — 2 e~x — 1

is an even function, we see that

B 3 — B5 — B7 — B g — • • • — 0. (6)

If we multiply both sides of the defining equation (4) by ex — 1, and equate

coefficients of equal powers of x, we obtain the formula

£ (f) Bk = Bn + 5nl. (7)

k

(Cf. Eq. 1.2.9-11.) We now define the “Bernoulli polynomial,”

BM) = (T) BkXm~k■ (8)
k

If m — 1, then B i(x) = B0x + Bi = x — corresponding to the polynomial

used above in Eq. (3). If m > 1, we have Bm(1) = Bm = Bm(0), by (7); in

other words, Bm({x}) has no discontinuities at integer points x.
The relevance of Bernoulli polynomials and Bernoulli numbers to our prob¬

lem will soon be clear. We find from Eq. (8) that

%(*) = E (l) (”* “ ” E (” k ') Bkxm~'~k

k k

= mBm-i(x), (9)

and therefore when m > 1, we can integrate by parts as follows:

i f" BMx))fm\x) dx = 5;r^Tyi (Bm+lmr\n) - Bm+mrw)
/n

B„+l({x})r+"(x) dx.

110 BASIC CONCEPTS 1.2.11.2

From this result we can continue to improve the approximation, Eq. (3), and

we obtain Euler’s general formula:

V f(k) = f f(x) dx - \(f(n) - f(l))(/'W — /'(l)) H-
J 1 >

1 <k<n

+ (~-^(r-1V) -/(m-1)(l)) + Rm /n

fix) dx + £ f (/<*-”(«) - /“-"(D) + ft., (10)
1 <k<m

because of (6), where

, yre+l rn

Rm = ■-JlT- J1 Bmi{x})fm\x) dx. (11)

The remainder Rm will be small when Bm({x})f(m)(x)/m\ is very small, and in

fact, it is known that |-Bm({:c})| < \Bm\ when m is even, and that

Bmj M)
m!

(12)

[See K. Knopp, Theory and Application of Infinite Series (Glasgow: Blackie,

1951), Chapter 14.] On the other hand, it usually turns out that the size of

/(ot)(x) gets large as m increases, so there is a “best” value of m at which Rm
has its least value.

It is known that

R2k = 6 (2?+2)! (f(2k+1)^ ~ /(2*+1)(l))> 0 < d < 1, (13)

provided that f(2k+1)(x) tends monotonically toward zero as x increases from

1 to n. (So in these circumstances the remainder has the same sign as, and is

less than, the first discarded term.) A simpler version of this result appears in
exercise 3.

Let us now apply Euler’s formula to some important examples. First, we

set f(x) = 1/x. The derivatives aref(m)(x) = (—1)mm\/xm+1, so we have, by
Eq. (10),

H^ = \nn+ £ T (“D1-1 Qi — 0 + (n)
l<k<m

Now we find

T ={Hn-' -ln«) = E % (_1)‘ +lim «— as)
1 <k<m n^°°

The fact that lim,*^ Rmn = —Bm({x}) dx/xm+1 exists proves that the

constant 7 does in fact exist; now putting Eqs. (14) and (15) together, we

1.2.11.2 euler’s summation formula 111

deduce a general approximation for the harmonic numbers:

Hn—1 — In n + 7 +

1 <k<m

= In n + 7 + 'Yj

\<k<m

knk

(-1)k~1Bl
knk

+

+ 0

Bm({x}) dx
xm+\

(-) \nmJ
(16)

Furthermore, by Eq. (13) we see that the error is less than the first term dis¬

carded. As a particular case we have (adding 1/w to both sides)

Hn — In n -)- 7 -p—
1

2 n 12 n2 1 120n4

1 + 1 -o<£<^ =
1

6n6 252n6

This is Eq. 1.2.7-3. The Bernoulli numbers Bk for large k get very large (approxi¬

mately 2(k\/ (2ir)k) when k is even), so Eq. (16) cannot be extended to a con¬

vergent infinite series for any fixed value of n.
The same technique may be applied to deduce Stirling’s approximation.

This time we set/(x) = In x, and applying Eq. (10), we obtain

ln(n—l)! = nlnn-n + 1 -£lnn + ~ X) + R

1 <k<m

mn•
(17)

Proceeding as above, we find that

lim (In n\ — n In n -f n — \ In n) = 1 + ^ ~T7T-ix—b lim Rn
n—>oo

1 <fc<ra
k(k - 1)

exists; let it be called cr (“Stirling’s constant”) temporarily. We get Stirling’s

result
\k

lnn!= (n + i)lnre-n + ff+ £ + 0 (^)

1 <k<m

(18)

In particular, let m — 5; we have

Inn! = (n + i) Inn - n + <r + ~ - 3^ + 0

Taking exponentials, we have

n\ = ea Vn exp
12n 360n3

+ 0

Using the fact that e* = V2w (see exercise 5), and expanding the exponential,

we get our final result:

_/ny
n! = \Z2ttn (-) 1+tL+ 1

139 571

12n "r 288n2 51840n3 2488320n4
+ 0 ©)-

(19)

112 BASIC CONCEPTS 1.2.11.2

EXERCISES

1. [M18] Prove Eq. (7).

2. [HM20]' Note that Eq. (9) follows from Eq. (8) for any sequence Bn, not only the

sequence defined by Eq. (4jL. Explain why the latter sequence is necessary for the

validity of Eq. (10).

3. [HM20] If/(2W(x) has a constant sign for 1 < x < n, show that

R2k\ <
B2k

(2*0!
(/(2fc_1)(n) -/(2fc_1)(l)))

so the remainder has smaller absolute value than the last term computed.

► 4. [HM20] When/Or) = xm, the high-order derivatives of/ are all zero, so Euler’s

summation formula gives an exact value for km in terms of Bernoulli numbers.

Express this value in terms of Bernoulli 'polynomials. Check your answer for m = 0,

1, 2. (Note that the desired sum runs from 0 to n instead of from 1 to w; Euler’s

summation formula may be applied with 0 replacing 1 throughout.)

5. [HM80] Given that

show that k = \Z2tt by using Wallis’s product (exercise 1.2.5-18). [Hint: Consider

Cn) for large values of n.]

► 6. [HM30\ Show that Stirling’s approximation holds for noninteger n as well, i.e.,
that

[Hint: Let f(x) = In (x -f- c) in Euler’s summation formula, and apply the definition
of r(*) given in Section 1.2.5.]

► 7. [HM82] What is the approximate value of l1 • 22 • 33.n"?

*1.2.11.3. Some asymptotic calculations. In this subsection we shall investigate

the following three intriguing sums, in order to deduce their approximate values:

P(n) 1 + 2—i + J n~ 2 + (n - k)\n - k)\
n n n — 1

0< k<n
n\

Q(n) = 1 + t HlPzI +
n

R(n) = 1 + —5— + --+
n+1 n-f 1 n-f 2^

n n
Zn!

(n — k) \nk ’
1 <k<n

n\ nk

^ (n + k)!
0 <k

(1)

(2)

(3)

These functions, which are similar in appearance yet intrinsically different, arise

m several algorithms that we shall encounter later. Both P(n) and Q(n) are

1.2.11.3 SOME ASYMPTOTIC CALCULATIONS 113

finite sums, while R(n) is an infinite sum. It seems that when to is large, all three

of these sums will be nearly equal, although it is not obvious what the approxi¬

mate value of any of these three functions will be. Our quest for approximate

values of these functions will lead us through a number of very instructive side

results. (The reader may wish to stop reading temporarily and try his hand at

studying these functions before going on to see how they are attacked here.)

First, we observe an important connection between Q(n) and R(n):

Q{ri) + R(n) l + n + -.- +
n

(n T)l) + (
nn nn+l

n\ (to + 1)!
+

to! e

nn

n

(4)

To get any further we must therefore consider the partial sums of the series

for en. By using Taylor’s formula with remainder,

/(*) =/(0)+/'«))*+••• + + / II /<”+■>(* - t) dt, (5)
m Jo to!

we are soon led to an important function which is known as the incomplete

gamma function:

7 (a, x) f e~tta~1 dt.
Jo

(6)

We shall assume that a > 0. By exercise 1.2.5-20, we have 7(a, go) = T(o); this

accounts for the name “incomplete gamma function.” It has two useful series

expansions in powers of x (see exercises 2 and 3):

7(a, x) — —
a

xa+^ xa+2

a + 1 + 2!(a + 2)
(—l)kxk+a

^ k\(k + a) ’
fc>0

r“ r«+i ra+2

exy(a, x) = — + a(a + jy + a(a + l)(a + 2) 4

rfc+“ _-T_

a(a + 1) . . . (a + k)
k>0

(7)

(8)

From the second formula we see the connection with R (to) :

R(n) =
to! en / 7(to, to) \

TOn \(to — 1)!/
(9)

This equation has purposely been written in a more complicated form than

necessary, since 7(to, to) is a fraction of 7(to, oo) = T(n) = (to — 1)!. Thus

R(to) lies somewhere between zero and to! en/nn] by Stirling’s formula, to! en/nn

is approximately \/2ixn.

114 BASIC CONCEPTS 1.2.11.3

The problem boils down to getting good estimates of 7 (n, n)/in — 1)!. We

shall now determine the approximate value of l(x + 1, x + y)/Y(x + 1), when y

is fixed and x is large. The methods to be used here are more important than

the results, sb the reader should study the following derivation carefully.

By definition, we have \

y(x + 1, x + y)

T(x + 1)

1

'•x+y

„—t,x

T(x+ 1) Jo

1

= 1 - r(x + l) Jx

= i - h

Now we consider each integral separately

f dt

~lf dt +
1

"X+y

T(x + 1) Jx

+ 12~

e ttx dt

(10)

Estimate of Ix: In the integral Ix, we convert to an integral from 0 to infinity
by substituting t = x(l + u):

h =

—XX e x

r(x+ i) Jo
xe

e xxx

(1 + u)x du

t, / | \ / xe v (1 + -) dv,
r(« +1) Jo \ uj ’

if v = u — In (1 + u); dv = (1 — —1 -)
\ 1 + w/

(ID

du.

This change of variable from u to v is justified, since v is a monotone function of u.

In the last integral we will replace 1 + 1/m by a power series in v. We have

v = \u2 — %u3 + ^u4

If w — \/2v, we have

\ub + • • • = (u2/2)(1 — § u + %u2 — fu3 + •••)•

w = t*(l - %u + W - §m3 H-)1/2

U T^oU4 + iVaVo^5 H~~ 0(uG).

(This expansion may be obtained by the binomial theorem; efficient methods for

doing this transformation, as well as the other power series manipulations done

below, are considered in Section 4.7.) We can now solve for u as a power series
in w:

u w + lw2 + ±w3- 1^w* + ~w5 + 0(w(i);
1_

36 270 4320

ill_ i I 1 1,1 2
1 d- — 1+- — - + — w — —-

u ■ w

1 —1/2
= -V 1

3 1 12 w l35w,2 + sl4W;3 + 0(w4)

V2 3 ^ 12 135 4 V + W2"3" + 0^- (12)

1.2.11.3 SOME ASYMPTOTIC CALCULATIONS 115

In all of these formulas, the O-notation refers to small values of the argu¬

ment, that is, |w| < r, |v| < r, |te| < r for sufficiently small positive r. Is this

good enough? The substitution of 1 -(- 1 /u in terms of v in Eq. (11) is supposed

to be valid for 0 < v < oo, not only for |t»J < r. Fortunately, it turns out that

the value of the integral from 0 to oo depends almost entirely on the values of
the integrand near zero. In fact, we have (see exercise 4)

l (X + 5) * = 0(e-") (13)

for any fixed r > 0, and for large x. We are interested in an approximation up

to terms 0{x~m), and since 0((l/er)x) is much smaller than 0(x~m) for any

positive r, m, we need integrate only from 0 to r, for any fixed positive r. We

therefore take r to be small enough so that all the power series manipulations
done above are justified (cf. Eqs. 1.2.11.1-10 and 12).

Now

/'OO

xe~xvva dv — — /
Jo

—Q a e q = ^ r(« +1), if a > -1; (14)

so by putting the series, Eq. (12), into the integral, Eq. (11), we have finally

h
< Xxx

T(x + 1) (a/I-1
/2 . 2 ,y/2v -H2 _A_ -1

^3^ 24 135

V27T —3/2

+ w^'z + 0^2))- (15)

Estimate of I2: In the integral I2, we substitute t = u + x and obtain

I2 =
—X X e x

r(.x +1) Jo
Now

(i+^y du. (16)

(1+t) =eXp(““ + xln(1 + i)) = eXp(-2U + lP + 0(a:)

= 1 _ h! + Af + nL + 0(x-3)
2x ^ 8x2 ^ 3x2 + ’

for 0 < u < y and large x. Therefore we find that

/ 2 -
e xxx

r(x +1)
x 2 -f- 0(x 3) —3\ (17)

Finally, we analyze the coefficient e Xxx/T{x +1) which appears in both

Eqs. (15) and (17). By Stirling’s approximation, which is valid for the gamma

116 BASIC CONCEPTS 1.2.11.3

function by exercise 1.2.11.2-6, we have

e~XXX e-l/12 x+0(x~3)

T(x + 1) \Z2ttx

= -±-x~112 i— x~3l2 +-x~512+ 0(x-712). (18)
\Z2tt 12V27T 288V27T

Now the grand summing up—combining Eqs. (10), (15), (17), and (18), we

have

Theorem A. For large values of x, and fixed y,

y(x + 1, x + y)_1 , /y — 2/3\ —1/2 , 1 / 23_y_y \ —3/2

T(x+1) 2 + V V2fr) V^rV270 12 6/

+ 0(x-5/2). | (19)

The method we have used shows how this approximation could be extended to

further powers of x as far as we please.

This theorem can be used to obtain the approximate values of R(ri) and

Q(n), by using Eqs. (4) and (9), but we shall defer that calculation until later. Let

us now turn to Pin), for which somewhat different methods seem to be required.

P(n) = E
0 <k<n

kn~kk\

ft!
^271- ,n + l/2 -k

ft! 2^ « e
0 <fc<n

Wk + 0^)- (20)

Thus to get the values of P(n), we must study sums of the form

^ kn+ll2e~k.

0<k<n

Let f(x) = xn+ll2e~x and apply Euler’s summation formula:

X) kn+ll2e~k= Jo xn+ll2e-xdx + ^un+ll2e-n + ^nn-ll2e-n- R. (21)
0 <fc<n

Analysis of the remainder (cf. exercise 5) shows that R — 0(ftn-1/2e~n); and
since the integral is an incomplete gamma function, we have

X kn+ll2e~k = 7(n + f, ft) + %nn+ll2e~n + Oinn~ll2e~n). (22)
0 <k<n

Our formula, Eq, (20), also requires an estimate of the sum

E k—ll2e-k= E
0<k<n 0<k<n—l

and this can also be obtained by Eq. (22).

1.2.11.3 SOME ASYMPTOTIC CALCULATIONS 117

We now have enough formulas at our disposal to determine the approximate

values of P(n), Q(n), and R(n), and it is only a matter of substituting and

multiplying, etc. In this process we shall have occasion to use the expansion

(n + a)n+/3 = nn+pea ^1 + a + 0(n~2)^ , (23)

which is proved in exercise 6. The method of (21) yields only the first three

terms in the asymptotic series for P(n); further terms can be obtained by using
the instructive technique described in exercise 14.

The result of all these calculations gives us the desired asymptotic formulas:

hr , 4 71 / tt . n, _2\

\2rr+135n “ U52\2^ +)j

Vir 4 1 / 7T . _2\

2n _ T35n + 288 \2n* + °^n ^

V2n + 135n + 288 + 0(n)•

(24)

(25)

(26)

The functions studied here have received only light treatment in the pub¬

lished literature. The first term Virn/2 in the expansion of P(n) was given by

H. B. Demuth [Ph.D. thesis (Stanford University, October, 1956), 67-68].

Using this result, a table of P(n) for n < 2000, and a good slide rule, the author

deduced an empirical estimate P(n) ^ \/irn/2 — 0.6667 + 0.575/\/Vu It

was natural to conjecture that 0.6667 was really an approximation to §, and

that 0.575 would perhaps turn out to be an approximation to T = 0.57721 . . .

(why not be optimistic?). Later, as this section was being written, the above

expansion of P(n) was developed, and the conjecture § was verified; for the

0.575 we have not 7 but ~ 0.574. This nicely confirms both the

theory and the empirical estimates.
Formulas equivalent to the asymptotic values of Q(n) and R(n) were first-

determined by the brilliant self-taught Indian mathematician S. Ramanujan,

who posed the problem of estimating n\en/2nn — Q(n) in J. Indian Math. Soc. 3

(1911), 128; 4(1912), 151-152. In his answer to the problem, he gave the asymp¬

totic series ^ -f T— 2Wssn~2 ~~ aiosn~3 + • • • , which goes considerably
beyond Eq. (25). His derivation was somewhat more elegant than the method

described above; to estimate 11, he substituted t = x + u\/2x, and expressed

the integrand as a sum of terms of the form c^Jo exp (—u2)uJn~kl2 du. The

integral I2 can be avoided completely, since a7(a, x) = xae~x + 7(a + 1, x)
when a > 0 (see (81). The derivation we have used, which is instructive in

spite of its unnecessary complications, is due to R. Furch [Zeitschrift fur Phiysik

112 (1939), 92-95], who was primarily interested in the value of y which makes

y(x -)- 1, x + y) = ^r(x + 1). For a bibliography of other investigations of

Q(n), see H. W. Gould, AMM 75 (1968), 1019-1021. The asymptotic properties

118 BASIC CONCEPTS
1.2.11.3

of the incomplete gamma function were later extended to complex arguments by

F. G. Tricomi [“Asymptotische Eigenschaften der unvollstandigen Gamma-

funktion,” Math. Zeitschrift 53 (1950), 136-148].
Further study of the functions P(n), Q(n), and R(n) would be interesting.

The derivations given aboveuise only simple techniques of elementary calculus;

note that we have used different methods for each function! Actually we could

have solved all three problems using the techniques of exercise 14, which are

further explained in Sections 5.1.4 and 5.2.2; that would have been more elegant

but less instructive.
For further information, interested readers should consult the beautiful

book Asymptotic Methods in Analysis by N. G. de Bruijn (Amsterdam: North

Holland Publ., 1961).

EXERCISES

1. [HM20] Prove Eq. (5) by induction on n.

2. [HM20] Obtain Eq. (7) from Eq. (6).

3. [M20\ Derive Eq. (8) from Eq. (7).

► 4. [HM10] Prove Eq. (13).

5. [HM24] Show that R in Eq. (21) is 0(nn~1/2e~n).

► 6. [HM20] Prove Eq. (23).

► 7. [HM30] In the evaluation of 12, we had to consider

Give an asymptotic representation of

du

to terms of 0(x 2), when y is fixed and x is large.

8. [HM30] Assume that 0 < r < Suppose fix) = 0(xr); show that

rWi 1 «Yj ffix) (-u, u , (-ir_v\
Jo ‘ V+x)iu-Jo exp(^ + ^~,"+) du + 0(x s)

if m - f(s + 2r)/(l — r)]. [This proves in particular a result due to Tricomi: if
f(x) = 0(\/x), then

■/(*)/V 2s

e~r dt+0(1).]

► 9. [HM36\ What is the behavior of 7(x + 1, px)/T(x + 1) for large x? (Here p is a
reai constant; and if p < 0, we assume x is an integer, so that tx is defined for negative
t.) Obtain at least two terms of the asymptotic expansion, before resorting to O-terms.

1.2.11.3
SOME ASYMPTOTIC CALCULATIONS 119

10. [IIM34] Under the assumptions of the preceding problem, with p ^ 1, obtain the

asymptotic expansion of Y(z + 1, px+ py/ip - 1)) — Y(z + 1, px), for fixed y, to
.terms of the same order as obtained in the pievious exercise.

> 1L {HM351 Let us generalize the functions Q(n), R(n) by introducing a parameter x:

Qx(n) = 1

Rxiri) = 1 -)- trr)*+te)te) 2 I
X +

Explore this situation and find asymptotic formulas when x ^ 1.

12. [H3I20] The 1 unction f0 e 1 dt which appeared in connection with the normal

distribution (see Section 1.2.10) can be expressed as a special case of the incomplete

gamma function. Find values of a, b, y such that 67(a, y) equals the above function.

13. [HM46] (S. Ramanujan.) Prove that R(n) — Q(n) = § + 8/(l35(n -f- din))),

where 21 < 19(n) < (This implies the much weaker result R(n + 1) — Q(n + 1) <
R(n) — Q(n).)

► 14. [HMS9] (N. G. de Bruijn.) The purpose of this exercise is to find the asymptotic

expansion of Xo<k<n kn+ae~k for fixed a, as n —> 00. (a) Replacing k by n — k,

show that the given sum equals nn+ae~n Y,o<k<n e-k2/2nf(k, n), where f(k, n) =

(1 — k/nY exp (—k3/3n2 — k4/4n3-). (b) Show that for all m > 0 and e > 0,
f(k, n) can be written in the form Xo<»<y<m Cy A2i+»n_<-J + 0(n(m+1)(_1/2+3e)), when

0 < k < n1,2+t. (c) Prove that as a consequence of (b), J2o<k<n e~k2/2nf(k, n) =

Xo<t<i<m Cij n 1 1 k2l+1e k/2n-\- 0(n~m/2+s), for all d > 0. [Hint: Over the

range n1/2+e < k < 00, the sums are 0(n~T) for all r.] (d) Show that the asymptotic

expansion of Y.k>0 ft(e~*2/2n for fixed t > 0 can be obtained by Euler’s summation
formula, (e) Finally therefore

this computation can in principle be extended to 0(n r) for any desired r.

15. [HM20] Show that the following integral is related to Q(ri):

Jo (1+i) e ’*■

16. [M24] Prove the identity

(—1)* (^j kn~lQ(k) = (—1)"(n — 1)1, when n > 0.

17. [HM29] (K. W. Miller.) Symmetry demands that we consider also a fourth

series, which is to Pin) as R(n) is to Q(n):

Sin) = 1 +
n+ 1

n n+ 1

n + 2 n + 2

What is the asymptotic behavior of this function?

in -(- k — 1)1

in — l)!(n+ k)k

120 BASIC CONCEPTS 1.3

1.3. MIX

In many places throughout this book we will have occasion to refer to a com¬

puter’s “machine language.” The machine we use is a mythical computer called

“MIX.” MIX is very much like nearly every computer now in existence, except

that it is, perhaps, nicer. Th’e language of MIX has been designed to be powerful

enough to allow brief programs to be written for most algorithms, yet simple

enough so that its operations are easily learned.

The reader is urged to study this section carefully, since MIX language

appears in so many parts of this book. There should be no hesitation about

learning a new machine language; indeed, the author has found it not uncommon

to be writing programs in a half dozen different machine languages during the

same week! Everyone with more than a casual interest in computers will

probably get to know several different machine languages in the course of his

lifetime. MIX has been specially designed to be so much like most existing

machine languages that its characteristics are easy to assimilate.

1.3.1. Description of MIX.

MIX is the world’s first polyunsaturated computer. Like most machines, it has

an identifying number—the 1009. This number was found by taking 16 actual

computers which are very similar to MIX and on which MIX can be easily simu¬
lated, then averaging their numbers with equal weight:

L (3G0 + 650 + 709 + 7070 + U3 + SS80 + 1107 + 1604 + G20 + B220

+ S2000 + 920 + 601 + H800 + PDP-4 + II)/16J = 1009. (1)

The same number may also be obtained in a simpler way by taking Roman
numerals.

MIX has a peculiar property in that it is both binary and decimal at the

same time. The 'programmer doesn’t actually know whether he is programming a
machine with base 2 or base 10 arithmetic. This has been done so that algorithms

written in MIX can be used on either type of machine with little change, and so

that MIX can be easily simulated on either type of machine. Those programmers

accustomed to a binary machine can think of MIX as binary; those accustomed

to decimal may regard MIX as decimal. Programmers from another planet might
choose to think of MIX as a ternary machine.

Words. The basic unit of information is a byte. Each byte contains an unspecified
amount of information, but it must be capable of holding at least 64 distinct

values. That is, we know that any number between 0 and 63, inclusive, can be

contained in one byte. Furthermore, each byte contains at most 100 distinct

values. On a binary computer a byte must therefore be composed of six bits-
on a decimal computer we have two digits per byte.

Programs expressed in the MIX language should be written so that no more

than sixty-four values are ever assumed for a byte. If we wish to treat the

1.3.1 DESCRIPTION OF MIX 121

± A1 A2 A3 A4 A5 ± XI X2 X3 X4 X5

Register II

± 114 115

Register 12

± 124 125

Register 13

± 134 135

Register 14

± 144 145

Register 15

± 154 155

Register 16

± 164 165

Register J

+ J4 J5

Overflow Comparison
toggle (L) (g) indicator

Mag netic tape units Disks and drums

C
a
rd

re

a
d
e
r

C
a
rd

p

u
n

c
h

L
in

e
p

ri
n

te
r

P
a
p
e
r

ta
p
e

UO U1 U7 U8 U14 U15 U16 U17 U18 U19

Fig. 13. The MIX computer.

number 80, we should always leave two adjacent bytes for expressing it, even

though one byte is sufficient on a decimal computer. An algorithm in MIX

should work properly regardless of how big a byte is. Although it is quite possible

to write programs which depend on the byte size, this is an illegal act which will

not be tolerated; the only legitimate programs are those which would give correct

results with all byte sizes. It is usually not hard to abide by this ground rule,

and we will thereby find that programming a decimal computer isn’t so dif¬

ferent from programming a binary one after all.
Two adjacent bytes can express the numbers 0 through 4095.

Three adjacent bytes can express the numbers 0 through 262143.

Four adjacent bytes can express the numbers 0 through 16777215.

Five adjacent bytes can express the numbers 0 through 1073741823.

122 BASIC CONCEPTS 1.3.1

A computer word is five bytes plus a sign. The sign position has only two

possible values, + and —.

Registers. There are nine registers in MIX (see Fig. 13):

The A-register (Accumulator) is five bytes plus sign.

The X-register (Extension) is also five bytes plus sign.

The I-registers (Index registers) II, 12, 13, 14, 15, and 16 each hold two

bytes plus sign.
The J-register (Jump address) holds two bytes, and its sign is always +.

We shall use a small letter “r” prefixed to the name, to identify a MIX register.

Thus, “rA” means “register A.”
The A-register has many uses, especially for arithmetic and operating on

data. The X-register is an extension on the “right-hand side” of rA, and it is

used in connection with rA to hold ten bytes of a product or dividend, or it can

be used to hold information shifted to the right out of rA. The index registers

rll, rI2, rI3, rI4, rI5, and rI6 are used primarily for counting and for referencing

variable memory addresses. The J-register always holds the address of the

instruction following the preceding “JUMP” instruction, and it is primarily used

in connection with subroutines.

Besides these registers, MIX contains

an overfiovo toggle (a single bit which is either “on” or “off”),

a comparison indicator (which has three values: less, equal, or greater),

memory (4000 words of storage, each word with five bytes plus sign),

and input-output devices (cards, tapes, etc.).

Partial fields of words. The five bytes and sign of a computer word are numbered
as follows:

0 1 2 3 4 5

± Byte Byte Byte Byte Byte

Most of the instructions allow the programmer to use only part of a word if he

chooses. In this case a “field specification” is given. The allowable fields are

those which are adjacent in a computer word, and they are represented by

(L: R), where L is the number of the left-hand part and R is the number of the
right-hand part of the field. Examples of field specifications are:

(0:0), the sign only.

(0:2), the sign and the first two bytes.

(0:5), the whole word. This is the most common field specification.
(1:5), the whole word except for the sign.
(4:4), the fourth byte only.

(4:5), the two least significant bytes.

1.3.1 DESCRIPTION OF MIX 123

The use of these field specifications varies slightly from instruction to instruc¬

tion, and it will be explained in detail for each instruction where it applies.

Although it is generally not important to the programmer, the field (L:R)

is denoted in the machine by the single number 8L + R, and this number will
fit in one byte.

Instruction format. Computer words used for instructions have the following
form:

0 1 2 3 4 5

± A
_

A
_

I F C

The rightmost byte, C, is the operation code telling what operation is to be

performed. For example, C = 8 is the operation LDA, “load the A register. ”

The F-byte holds a modification of the operation code. F is usually a field

specification (L:R) = 8L + R; for example, if C = 8 and F = 11, the operation

is Toad the A-register with the (1:3) field.” Sometimes F is used for other pur¬

poses; on input-output instructions, for example, F is the number of the affected
input or output unit.

The left-hand portion of the instruction, ±AA, is the “address.” (Note

that the sign is part of the address.) The I-field, which comes next to the address,

is the “index specification,” which may be used to modify the address of an

instruction. If I = 0, the address ±AA is used without change; otherwise I

should contain a number i between 1 and 6, and the contents of index register

Ii are added algebraically to ±AA; the result is used as the address of the

instruction. This indexing process takes place on every instruction. We will use

the letter M to indicate the address after any specified indexing has occurred.

(If the addition of the index register to the address ±AA yields a result which

does not fit in two bytes, the value of M is undefined.)

In most instructions, M will refer to a memory cell. The terms “memory

cell” and “memory location” are used almost interchangeably in this book. We

assume that there are 4000 memory cells, numbered from 0 to 3999; hence every

memory location can be addressed with two bytes. For every instruction in

which M is to refer to a memory cell we must have 0 < M < 3999, and in this

case we will write CONTENTS(M) to denote the value stored in memory location M.

On certain instructions, the “address” M has another significance, and it

may even be negative. Thus, one instruction adds M to an index register, and

this operation takes account of the sign of M.

Notation. To discuss instructions in a readable manner, we will use the notation

OP ADDRESS,1(F) (4)

to denote an instruction like (3). Here OP is a symbolic name which is given to

the operation code (the C-part) of the instruction; ADDRESS is the ±AA portion;

and I, F represent the I- and F-fields, respectively.

124 BASIC CONCEPTS
1.3.1

If I is zero, the “,l” is omitted. If F is the normal F-specification for this
particular operator, the “(F) ” need not be written. The normal F-specification
for almost all operators is (0:5), representing a whole word. If a different F is
standard, it will be mentioned explicitly when we discuss a particular operator.

For example, the instruction to load a number into the accumulator is
called LDA and it is operation code number 8. We have

Conventional representation

LDA 2000,2(0:3)

LDA 2000,2(1:3)

LDA 2000(1:3)

LDA 2000

LDA -2000,4

Actual numeric instruction

+
"1-1-

2000 2 3 8

+ 2000 2 11 8

+ 2000 0 11 8

+ 2000 0 5 8

- 2000
i i

4 5 8

(5)

To render these in words, the instruction “LDA 2000,2(0:3)” may be read
“Load A with the contents of location 2000 indexed by 2, the zero-three field. ”

To represent the numerical contents of a MIX word, we will always use a box
notation like that above. Note that in the word

+ ' 2000
_i_i_

2 3 8

the number +2000 is shown filling two adjacent bytes and sign; the actual
contents of byte (1:1) and of byte (2:2) will vary from one MIX computer to
another, since byte size is variable. As a further example of this notation for
MIX words, the diagram

10000 3000

represents a word with two fields, a three-byte-plus-sign field containing -10000
and a two-byte field containing 3000. When a word is split into more than one
field, it is said to be “packed. ”

Rules for each instruction. The remarks following (3) above have defined the
quantities M, F, and C for every word used as an instruction. We will now
define the actions corresponding to each instruction.

Loading operators

• LDA (load A). C = 8; F = field.

The specified field of CONTENTS(M) replaces the previous contents of register A.
On all operations where a partial field is used as an input, the sign is used

if it is a part of the field, otherwise the sign + is understood. The field is shifted
over to the right-hand part of the register as it is loaded.

1.3.1 DESCRIPTION OP MIX 125

Examples: If F is the normal field specification (0:5), the entire contents

of location M is loaded. If F is (1:5), the absolute value of CONTENTS(M) is

loaded with a plus sign. If M contains an instruction word and if F is (0:2),
the “±AA” field is loaded as

+ 0 0 0 A ' A
1

Suppose location 2000 contains the word

-

O

" co~ 3 5 4 (6)

then we get the following results from loading various partial fields:

Instruction Contents of rA afterwards

LDA 2000

LDA 2000(1:5)

LDA 2000(3:5)

LDA 2000(0:3)

LDA 2000(4:4)

LDA 2000(0:0)

LDA 2000(1:1)

(The last example has a partially unknown effect since byte size is variable.)

• LDX (load X). C = 15; F — field.
This is the same as LDA, except that rX is loaded instead of rA.

• LDi (load i). C = 8 + i\ F = field.
This is the same as LDA, except that rli is loaded instead of rA. An index register

contains only two bytes (not five) plus sign; bytes 1, 2, 3 are always assumed to

be zero. The LDi instruction is considered undefined if it would result in setting

bytes 1, 2, 3 to anything but zero.
In the description of all instructions, “i” stands for an integer, 1 < f < 6.

Thus, LDi stands for six different instructions: LD1, LD2, . . . , LD6.

• LDAN (load A negative). C = 16; F = field.

• LDXN (load X negative). C = 23; F = field.

• LDz’N (load i negative). C = 16 + i; F = field.
These eight instructions are the same as LDA, LDX, LDi, respectively, except that

the opposite sign is loaded.

Storing operators.

• STA (store A). C = 24; F = field.

- 80 3 5 4

+ 8 0 3 5 4

+ 0 0 3 5 4

- 0 0 8 0 3

+ 0 0 0 0 5

- 0 0 0 0 0

+ 0 0 0 0 ?

126 BASIC CONCEPTS
1.3.1

The contents of rA replaces the field of CONTENTS(M) specified by F. The other

parts of CONTENTS(M) are unchanged.
On a store operation the field F has the opposite significance from the load

operation. The number of bytes in the field is taken from the right-hand side

of the register and shifted \eft if necessary to be inserted in the proper field of

CONTENTS(M). The sign is not altered unless it is part of the field. The contents

of the register is not affected.

Examples: Suppose that location 2000 contains

and register A contains

Then:
Instruction

- 1 2 3 4 5

+ 6 7 8 9 0

Contents of location 2000 afterwards

STA 2000

STA 2000(1:5)

STA 2000(5:5)

STA 2000(2:2)

STA 2000(2:3)

STA 2000(0:1)

• STX (store X). C = 31; F = field.

Same as STA except rX is stored rather than rA.

+ 6 7 8 9 0

- 6 7 8 9 0

- 1 2 3 4 0

- 1 0 3 4 5

- 1 9 0 4 5

+ 0 2 3 4 5

• STf (store i). C = 24 + i; F = field.

Same as STA except rli is stored rather than rA. Bytes 1, 2, 3 of an index register
are zero; thus if rll contains

m n

this behaves as though it were

± 0 0 0 m n

• STJ (store J). C = 32; F = field.

Same as STf except rJ is stored, and its sign is always +.

On STJ the normal field specification for F is (0:2), not (0:5). This is natural,
since STJ is almost always done into the address field of an instruction.

• STZ (store zero). C = 33; F = field.

Same as STA except plus zero is stored. In other words, the specified field of
CONTENTS(M) is cleared to zero.

1.3.1 DESCRIPTION OF MIX 127

Arithmetic operators. On the add, subtract, multiply, and divide operations, a

field specification is allowed. A field specification of “(0:6)” can be used to

indicate a “floating-point” operation (see Section 4.2), but few of the programs

we will write for MIX will use this feature; floating-point instructions will be

used primarily in the programs written by the compilers discussed in Chapter 12.

The standard field specification is, as usual, (0:5). Other fields are treated

as in LDA. We will use the letter V to indicate the specified field of CONTENTS (M) ;

thus, V is the value which would have been loaded into register A if the operation
code were LDA.

• ADD. C = 1; F = field.

V is added to rA. If the magnitude of the result is too large for register A, the

overflow toggle is set on, and the remainder of the addition appearing in rA is

as though a “1 ” had been carried into another register to the left of A. (Other¬

wise the setting of the overflow toggle is unchanged.) If the result is zero, the

sign of rA is unchanged.

Example: The sequence of instructions below gives the sum

bytes of register A.
STA 2000

LDA 2000(5:5)

ADD 2000(4:4)

ADD 2000(3:3)

ADD 2000(2:2)

ADD 2000(1:1)

of the five

This is sometimes called “sideways addition. ”

• SUB (subtract). C = 2; F = field.

V is subtracted from rA. Overflow may occur as in ADD.

Note that because of the variable definition of byte size, overflow will occur

in some MIX computers when it would not occur in others. We have not said

that overflow will occur definitely if the value is greater than 1073741823;

overflow occurs when the magnitude of the result is greater than the contents

of five bytes, depending on the byte size. One can still write programs which

work properly and which give the same final answers, regardless of the byte size.

• MUL (multiply). C = 3; F = field.
The 10-byte product of V times (rA) replaces registers A and X. The signs of

rA and rX are both set to the algebraic sign of the result (i.e., + if the signs of

V and rA were the same, and — if they were different).

• DIV (divide). C = 4; F = field.
The value of rA and rX, treated as a 10-byte number, with the sign of rA, is

divided by the value V. If V = 0 or if the quotient is more than five bytes in

magnitude (this is equivalent to the condition that |rA| > |V|), registers A

and X are filled with undefined information and the overflow toggle is set on.

Otherwise the quotient is placed in rA and the remainder is placed in rX. The

sign of rA afterward is the algebraic sign of the quotient; the sign of rX afterward

is the previous sign of rA.

128 BASIC CONCEPTS 1.3.1

Examples of arithmetic instructions: In most cases, arithmetic is done only

with MIX words which are single five-byte numbers, not packed with several

fields. It is possible to operate arithmetically on packed MIX words, if some

caution is used. The following examples should be studied carefully. (The

“?” mark designates an unknown value.)

rA before

Cell 1000

rA after

rA before

Cell 1000

rA after

rA before

Cell 1000

rA after

rX after

rA before

Cell 1000

rA after

rX after

rA before

rX before

Cell 1000

rA after

rX after

rA before

rX before

Cell 1000

rA after

rX after

1.3.1 DESCRIPTION OF MIX 129

(These examples have been prepared with the philosophy that it is better to give

a complete, baffling description than an incomplete, straightforward one.)

Address transfer operators. In the following operations, the (possibly indexed)

“address” M is used as a signed number, not as the address of a cell in memory.

• ENTA (enter A). C = 48; F = 2.

The quantity M is loaded into rA. The action is equivalent to “LDA ” from a

memory word containing the signed value of M. If M = 0, the sign of the
instruction is loaded.

Examples: “ENTA o” sets rA to zeros. “ENTA 0,1” sets rA to the current

contents of index register 1, except that —0 is changed to +0.

• ENTX (enter X). C = 55; F = 2.

• ENTf (enter i). C = 48 + i\ F = 2.

Analogous to ENTA, loading the appropriate register.

• ENNA (enter negative A). C = 48; F = 3.

• ENNX (enter negative X). C = 55; F = 3.

• ENNf (enter negative i). C = 48 -j- i; F = 3.

Same as ENTA, ENTX, and ENTf, except that the opposite sign is loaded.

Example: “ENN3 0,3” replaces rI3 by its negative.

• INCA (increase A). C = 48; F = 0.
The quantity XI is added to rA; the action is equivalent to “ADD” from a memory

word containing the value of M. Overflow is possible and it is treated just as in

ADD.

Example: “INCA 1 ” increases the value of rA by one.

• INCX (increase X). C = 55; F = 0.
The quantity M is added to rX. If overflow occurs, the action is equivalent to

ADD, except that rX is used instead of rA. Register A is never affected by this

instruction.

• iNCf (increase i). C = 48 + i; F = 0.
Add M to rli. Overflow must not occur; if the magnitude of the result is more

than two bytes, the result of this instruction is undefined.

• DECA (decrease A). C = 48; F = 1.

• DECX (decrease X). C = 55; F = 1.

• DECf (decrease i). C = 48 + i; F = 1.
These eight instructions are the same as INCA, INCX, and INCf, respectively,

except that M is subtracted from the register rather than added.

Note that the operation code C is the same for ENTA, ENNA, INCA, and DECA;

the F-field is used to distinguish the various operations in this case.

Comparison operators. The comparison operators all compare the value con¬

tained in a register with a value contained in memory. The comparison indicator

130 BASIC CONCEPTS 1.3.1

is then set to LESS, EQUAL, or GREATER according to whether the value of the

register is less than, equal to, or greater than the value of the memory cell. A
minus zero is equal to a plus zero.

• CMPA (compare A). C = 56; F = field.

The specified field of A is compared with the same field of CONTENTS(M). If the

field F does not include the sign position, the fields are both thought of as positive;

otherwise the sign is taken into account in the comparison. (If F is (0:0) an

equal comparison always occurs, since minus zero equals plus zero.)

• CMPX (compare X). C = 63; F = field.
This is analogous to CMPA.

• CMPf (compare i). C = 56 + i; F = field.

Analogous to CMPA. Bytes 1, 2, and 3 of the index register are treated as zero

in the comparison. (Thus if F = (1:2), the result cannot be GREATER.)

Jump operators. Ordinarily, instructions are executed in sequential order; i.e.,

the instruction executed after the one in location P is the instruction found in

location P + 1. Several “jump” instructions allow this sequence to be inter¬

rupted. When such a jump takes place, the J-register is normally set to the

addiess of the next instruction (that is, the address of the instruction which

would have been next if we hadn’t jumped). A “store J” instruction then can

be used by the programmer, if desired, to set the address field of another com¬
mand which will later be used to return to the original place in the nrogram.
The J-register is changed whenever a jump actually occurs in a program (except
JSJ), and it is never changed except when a jump occurs.

• JMP (jump). C = 39; F = 0.

Unconditional jump: the next instruction is taken from location M.

• JSJ (jump, save J). C = 39; F = 1.

Same as JMP except that the contents of rJ are unchanged.

• JDV (jump on overflow). C = 39; F = 2.

If the overflow toggle is on, it is turned off and a JMP occurs; otherwise nothing
happens.

• JNOV (jump on no overflow). C = 39; F = 3.

If the overflow toggle is off, a JMP occurs; otherwise it is turned off.

• JL JE, JG, JGE, JNE, JLE (jump on less, equal, greater, greater-or-equal, un¬
equal, less-or-equal). C = 39; F = 4, 5, 6, 7, 8, 9, respectively.

Jump if the comparison indicator is set to the condition indicated. For example,
JNE will jump if the comparison indicator is LESS or GREATER. The comparison
indicator is not changed by these instructions.

• JAN’ JAZ’ JAP’.JANN’ JANZ> JANP (iumP A negative, zero, positive, nonnegative
“O’ ™y>sfve). C = 40; F = 0, 1, 2, 3, 4, 5, respectively.

e con ents of rA satisfy the stated condition, a JMP occurs, otherwise nothing

1.3.1 DESCRIPTION OF MIX 131

happens. “Positive” means greater than zero (not zero); “nonpositive” means

the opposite, i.e., zero or negative.

• JXN, JXZ, JXP, JXNN, JXNZ, JXNP (jump X negative, zero, positive, nonnegative,

nonzero, nonpositive). C = 47; F = 0, 1, 2, 3, 4, 5, respectively.

• JiN, Jz'Z, JfP, JfNN, JfNZ, JfNP (jump i negative, zero, positive, nonnegative,

nonzero, nonpositive). C = 40 + i; F = 0, 1, 2, 3, 4, 5, respectively.

These are analogous to the corresponding operations for rA.

Miscellaneous operators.

• MOVE. C = 7; F = number.

The number of words specified by F is moved, starting from location M to the

location specified by the contents of index register 1. The transfer occurs

one word at a time, and rll is increased by the value of F at the end of the

operation. If F = 0, nothing happens.

Care must be taken when the groups of locations involved overlap; for

example, suppose that F = 3 and M = 1000. Then if (rll) = 999, we transfer

(1000) to (999), (1001) to (1000), and (1002) to (1001). Nothing unusual

occurred here; but if (rll) were 1001 instead, we would move (1000) to (1001),

then (1001) to (1002), then (1002) to (1003), so we have moved the same word

(1000) into three places.

• SLA, SRA, SLAX, SRAX, SLC, SRC (shift left A, shift right A, shift left AX, shift

right AX, shift left AX circularly, shift right AX circularly). C = 6; F =

0. 1, 2, 3, 4, 5, respectively.

These are the “shift” commands. Signs of registers A, X are not affected in

any way. M specifies the number of bytes to be shifted left or right; M must be

nonnegative. SLA and SRA do not affect rX; the other shifts affect both registers

as though they were a single 10-byte register. With SLA, SRA, SLAX, and SRAX,

zeros are shifted into the register at one side, and bytes disappear at the other

side. The instructions SLC and SRC call for a “circulating” shift, in which the

bytes that leave one end enter in at the other end. Both rA and rX participate

in a circulating shift.

Examples:

Initial contents

SRAX 1

SLA 2

SRC 4

SRA 2

Register A

+ 1 2 3 4 5

+ 0 1 2 3 4

+ 2 3 4 0 0

+ 6 7 8 9 2

+ 0 0 6 7 8

+ 0 6 7 8 3

Register X

- 6 7 8 9 10

- 5 6 7 8 9

- 5 6 7 8 9

- 3 4 0 0 5

- 3 4 0 0 5

- 4 0 0 5 0 SLC 501

132 BASIC CONCEPTS
1.3.1

• NOP (no operation). C = 0.
No operation occurs, and this instruction is bypassed. F and M are ignored.

• HLT (halt). * C = 5; F = 2.
The machine stops. When the computer operator restarts it, the net effect is

equivalent to NOP.

Input-output operators. MIX has a fair amount of input-output equipment (all

of which is optional at extra cost). Each device is given a number as follows:

number Peripheral device

t Tape unit no. t (0 < t < 7)

d Disk or drum unit no. d (8 < d < 15)

16 Card reader

17 Card punch

18 Printer

19 Typewriter and paper tape

Block size

100 words

100 words

16 words

16 words

24 words

14 words

Not every MIX installation will have all of this equipment available; we will

occasionally make appropriate assumptions about the presence of certain

devices. Some devices may not be used both for input and for output. The

number of words mentioned in the above table is a fixed block size associated

with each unit.
Input or output with magnetic tape, disk, or drum units reads or wrrites full

words (five bytes plus sign). Input or output with units 16 through 19, however,
is always done in a character code where each byte represents one alphameric

character. Thus, five characters per MIX word are transmitted. The character

code is given at the top of Table 1, which appears at the close of this section

and on the end papers of this book. The code 00 corresponds to “LI”, which

denotes a blank space. Codes 01-29 are for the letters A through Z with a few

Greek letters thrown in; codes 30-39 represent the digits 0, 1, . . . , 9; and further

codes 40, 41,. . . represent punctuation marks and other special characters. It

is not possible to read in or write out all possible values a byte may have, since

certain combinations are undefined. Not all input-output devices are capable of

handling all the symbols in the character set; for example, the symbols <f> and II

which appear amid the letters will perhaps not be acceptable to the card reader.

When input of character code is being done, the signs of all words are set to
“+”; on output, signs are ignored.

The disk and drum units are large external memory devices each containing
b2 100-word blocks, where b is the byte size. On every IN, OUT, or IOC instruc¬

tion as defined below, the particular 100-word block referred to by the instruc¬

tion is specified by the current contents of the two least significant bytes of rX.

• IN (input). C = 36; F = unit.

This instruction initiates the transfer of information from the input unit specified

into consecutive locations starting with M. The number of locations transferred

is the block size for this unit (see the table above). The machine will wait at

1.3.1 DESCRIPTION OF MIX 133

this point if a preceding operation for the same unit is not yet complete. The

transfer of information which starts with this instruction will not be complete

until somewhat later, depending on the speed of the input device, so a program

must not refer to the information in memory until then. It is improper to

attempt to read any record from magnetic tape which follows the latest record
written on that tape.

• OUT (output). C = 37; F = unit.

This instruction starts the transfer of information from memory locations

starting at M to the output unit specified. (The machine waits until the unit is

ready, if it is not initially ready.) The transfer will not be complete until some¬

what later, depending on the speed of the output device, so a program must
not alter the information in memory until then.

• IOC (input-output control). C = 35; F = unit.

The machine waits, if necessary, until the specified unit is not busy. Then a

control operation is performed, depending on the particular device being used.

The following examples are used in various parts of this book:

Magnetic tape: If M = 0, the tape is rewound. If M < 0 the tape is skipped

backward —M records, or to the beginning of the tape, whichever comes first.

If M > 0, the tape is skipped forward; it is improper to skip forward over any

records following the one last written on that tape.

For example, the sequence “OUT 1000(3); IOC -1(3); IN 2000(3)” writes

out one hundred words onto tape 3, then reads it back in again. Unless the

tape reliability is questioned, the last two instructions of that sequence are only

a slow way to move words 1000-1099 to locations 2000-2099. The sequence
“OUT 1000(3); IOC +1(3)” is improper.

Disk or drum: M should be zero. The effect is to position the device according

to rX so that the next IN or OUT operation on this unit will take less time if it

uses the same rX setting.

Printer: M should be zero. “IOC 0(18)” skips the printer to the top of

the following page.

Paper tape reader: Rewind the tape. (M should be zero.)

• JRED (jump ready). C = 38; F = unit.

A jump occurs if the specified unit is ready, i.e., finished with the preceding

operation initiated by IN, OUT, or IOC.

• JBUS (jump busy). C = 34; F = unit.

Same as JRED except the jump occurs under the opposite circumstances, i.e.,

when the specified unit is not ready.

Example: In location 1000, the instruction “JBUS 1000(16)” will be

executed repeatedly until unit 16 is ready.

The simple operations above complete Mix’s repertoire of input-output

instructions. There is no “tape check” indicator, etc., to cover exceptional

conditions on the peripheral devices. Any such condition (e.g., paper jam,

unit turned off, out of tape, etc.) causes the unit to remain busy, a bell rings,

134 BASIC CONCEPTS 1.3.1

and the skilled computer operator fixes things manually using ordinary main¬
tenance procedures. Some more complicated peripheral units, which are more

expensive and more representative of contemporary equipment than the rather

old-fashioned tapes, drums, and disks described here, are discussed in Sections

5.4.6 and 5.4.9. *

Conversion Operators.

• NUM (convert to numeric). C = 5; F = 0.

This operation is used to change the character code into numeric code. M is

ignored. Registers A, X are assumed to contain a 10-byte number in character

code; the NUM instruction sets the magnitude of rA equal to the numerical value

of this number (treated as a decimal number). The value of rX and the sign of

rA are unchanged. Bytes 00, 10, 20, 30, 40, . . . convert to the digit zero; bytes

01, 11, 21, . . . convert to the digit one; etc. Overflow is possible, and in this

case the remainder modulo the word size is retained.

• CHAR (convert to characters). C = 5; F = 1.

This operation is used to change numeric code into character code suitable for

output to cards or printer. The value in rA is converted into a 10-byte decimal

number which is put into register A and X in character code. The signs of rA,
rX are unchanged. M is ignored.

Examples:

Initial contents

NUM 0

INCA 1

CHAR 0

Register A

- 00 00 31 32 39

- 1 2977 700

- 1
—

2977
—
699

- 30 30 31 32 39

Register X

+ 37 57 47 30 30

+ 37 57 47 30 30

+ 37 57 47 30 30

+ 37 37 36 39 39

Timing. To give quantitative information as to how ugood” MIX programs are,

each of MIX s operations is assigned an execution time typical for present-day
computers.

ADD, SUB, all LOAD operations, all STORE operations (including STZ), all shift

commands, and all comparison operations take two units of time. MOVE requires

one unit plus two for each word moved. MUL requires 10 and DIV requires 12

units. Execution time for floating-point operations is unspecified. All remaining

operations take one unit of time, plus the time the computer may be idle on the
IN, OUT, IOC, or HLT instructions.

. Note Particular that ENTA takes one unit of time, while LDA takes two

units The timing rules are easily remembered because of the fact that, except

or shifts, MUL, and DIV, the number of units equals the number of references

to memory (including the reference to the instruction itself).

The “unit” of time is a relative measure which we will denote simply by u.

may be regarded as, say, 10 microseconds (for a relatively inexpensive com¬
puter) or as 1 microsecond (for a relatively high-priced machine).

Example: The sequence LDA 1000; INCA 1; STA 1000 takes exactly 5u.

1.3.1 DESCRIPTION OF MIX 135

And now I see with eye serene

The very pulse of the machine.

— WILLIAM WORDSWORTH

(She Was a Phantom of Delight, Stanza 3)

Summary. We have now discussed all of the features of MIX, except for its

“GO button” which is discussed in exercise 26. Although MIX has nearly 150

different operations, they fit into a few simple patterns so they can be easily

remembered. Table 1 summarizes the operations for each C-setting. The

name of each operator is followed in parentheses by its standard F-field.

The following exercises give a quick review of the material in this section;

most of them are very simple, and the reader should try to do nearly all of them.

EXERCISES

1. [00] If MIX were a ternary (base 3) computer, how many “trits” would there be
per byte?

2. [02] If a value to be represented within MIX may get as large as 99999999, how
many adjacent bytes should be used to contain this quantity?

3. [02] Give the partial field specifications, (L: R), for the (a) address field, (b) index
field, (c) field field, and (d) operation code field of a MIX instruction.

4. [00] The last example in (5) is “LDA -2000,4”—how can this be legitimate in
view of the fact that memory addresses should not be negative?

5. [10] What is the symbolic notation [as in (4)] corresponding to the word (6)?

► 6. [10] Assume that location 3000 contains

+ 5 1 200
1

15

What is the result of the following instructions? (State if any of these are undefined
or only partially defined.) (a) LDAN 3000; (b) LD2N 3000(3:4); (c) LDX 3000(1:3);
(d) LD6 3000; (e) LDXN 3000(0:0).

7. [15] Give a precise definition of the results of the DIV instruction for all cases in
which overflow does not occur, using the algebraic operations X mod Y and LX_|.

8. [15] The last example of the DIV instruction which appears on page 128 has “rX

before” equal to

If this were

+ 1235 0 3 1

- 1234
_1-

0 3 1

instead, but other parts of that example were unchanged, what would registers A, X
contain after the DIV instruction?

136 BASIC CONCEPTS 1.3.1

Table 1

Character code:

i—i <N CO »C <0 l'*
o o o o o o o

OOOJO^NMt^iC
*“H »-H rH f-H *—I f-H

CONCOOiOH^^^
hhhh^CIINNW

UABCDEFGHI0JKLMNOPQR<i>nSTU

00 1 01 2 02 2 03 10

No operation rA <-xrA + V rA <— rA — V rAX rA X V

NOP(O) ADD(0:5) SUB(0:5) MUL(0:5)

FADD(6) FSUB(6) FMUL(6)

08 2 09 2 10 2 11 2

rA <— V rll <— V rI2 <— V rI3 <— V

LDA(0:5) LD1(0:5) LD2(0:5) LD3(0:5)

16 2 17 2 18 2 19 2

rA <-V rll «-V rI2 <-V rI3 <-V

LDAN(0:5) LD1N(0:5) LD2N(0:5) LD3N(0:5)

24 2 25 2 26 2 27 2

F(M) rA F(M) rll F(M) <- rI2 F(M) -e- rI3

STA(0:5) ST1(0:5) ST2(0:5) ST3(0:5)

32 2 33 2 34 1 35 1+ T

F(M) <- rJ F(M) <- 0 Unit F busy? Control, unit F

STJ(0:2) STZ(0:5) JBUS(0) I0C(0)

40 1 41 1 42 1 43 1

rA:0, jump rll:0, jump rI2:0, jump rI3:0, jump

JA[+] Jl[+] J2[+] J3[+]

48 1 49 1 50 1 51 1

rA *- [rA]? ± M rll <— [rll]? ± M rI2 [rI2] ? ± M rI3 v- [rI3] ? ± M

INCA(0)DECA(1) INC1(0)DEC1(1) INC2(0)DEC2(1) INC3(0)DEC3(1)
ENTA(2)ENNA(3) ENT1(2)ENN1(3) ENT2(2)ENN2(3) ENT3(2)ENN3(3)

56 2 57 2 58 2 59 2
rA(F): V —» Cl rll(F): V —► Cl rI2(F): V —» Cl rI3(F): V —> Cl

CMPA(0:5)
FCMP(6)

CMP1(0:5) CMP2(0:5) CMP3(0:5)

General form: C — operation code. (5:5) field of instruction
C t F = op variant, (4:4) field of instruction

Description

OP(F)

V = F(M) = contents of F field of location M
OP = symbolic name for operation

(F) = standard F setting

t = execution time; T = interlock time

1.3.1 DESCRIPTION OF MIX 137

lO CO t"* 00 Oi © <M CO
<M 03 <N 00 CO 00 00

^iCCDNOODOh
fOCOCOCOCOCO'f’t

VWXYZO 1 234567 89 . ,

N«'»U)!ONI10©OHNre«

()+-*/=$<>§; ;

iO lO

04 12 05 1 06 2 07 1 + 2F
tA <- rAX/V Special Shift M bytes Move F words
rX <— remainder NUM(0) SLA(0) SRA(l) from M to rll

DIV(0:5) CHAR(1) SLAX(2) SRAX(3) MOVE(1)
FDIV(6) HLT(2) SLC(4) SRC(5)

12 2 13 2 14 2 15 2

rI4 <— V rI5 <— V rI6 <— V rX <— V

LD4(0:5) LD5(0:5) LD6(0:5) LDX(0:5)

IO

o

21 2 22 2 23 2

rI4 <-V rI5 <-V rI6 <-V rX <-V

LD4N(0:5) LD5N(0:5) LD6N(0:5) LDXN(0:5)

28 2 29 2 30 2 31 2

F(M) <- rI4 F(M) <- rI5 F(M) rI6 F(M) 4- rX

ST4(0:5) ST5(0:5) ST6(0:5) STX(0:5)

36 1 + T 37 1 + T 38 1 39 1

Input, unit F Output, unit F Unit F ready? Jumps
JMP(0) JSJ(l)

IN(0) 0UT(0) JRED(O) J0V(2)JN0V(3)

also f*] below

44 1 45 1 46 1 47 1

rI4:0, jump rI5:0, jump rI6:0, jump rX:0, jump

J4[+] J5[+] J6[+] JX[+]

52 1 53 1 54 1 55 1

rl4 <- [rI4] ? ± M rI5 <- [rI5] ? ± M rI6 [rI6] ? ± M rX e- [rX]? ± M

INC4(0)DEC4(1) INC5(0)DEC5(1) INC6(0)DEC6(1) INCX(0)DECX(1)

ENT4(2)ENN4(3) ENT5(2)ENN5(3) ENT6(2)ENN6(3) ENTX(2)ENNX(3)

60 2 61 2 62 2 63 2

rI4(F): V —> Cl rI5(F): V —* Cl rI6(F): V —» Cl rX(F): V —* Cl

CMP4(0:5) CMP5(0:5) CMP6(0:5) CMPX(0:5)

rA = register A

[*]:

JL(4) <

[+1:

N(0)

rX = register X JE(5) = Z(l)

rAX = registers AX as one JG(6) > P(2)

rli = index reg. i, 1 < i < 6 JGE(7) > NN(3)

rJ = register J JNE(8) NZ(4)

Cl = comparison indicator JLE(9) NP(5)

\

138 BASIC CONCEPTS A'°-1

► 9. [15] List all the MIX operators which can possibly affect the setting of the overflow

toggle. (Do not include floating-point operators.)

10. [15] List all the MIX operators which can possibly affect the setting of the com¬

parison indicators.

► 11. [15] List all the MIX operators which can possibly affect the setting of ill.

12. [70] Find a single instruction which has the effect of multiplying the current

contents of rI3 by two and leaving the result in rI3.

► 13. [10] Suppose location 1000 contains the instruction “JOV 1001”. This instruction

turns off the overflow toggle if it is on (and the next instruction executed will be in

location 1001, in any case). If this instruction were changed to “JNOV 1001”, would

there be any difference? What if it were changed to “JOV 1000” or “JNOV 1000”?

14. [20] For each MIX operator, consider whether there is a way to set the ±AA-,

I-, and F-portions of the instruction so that the result of the instruction is precisely

equivalent to NOP, except that the execution time may be longer. Assume that nothing

is known about the contents of any registers or any memory locations. AVhenever it is

possible to produce a NOP, state how it can be done. Examples: INCA is a no-op if the

address and index parts are zero. JMP can never be a no-op, since it affects rJ.

15. [10] How many alphameric characters are there in a typewriter block? in a card-

reader or card-punch block? in a printer block?

16. [20] Write a program which sets memory cells 0000-0099 all to zero, and which

is (a) as short a program as possible; (b) as fast a program as possible. [Hint: Consider

using the MOVE command.]

17. [26] This is the same as the previous exercise, except that locations 0000 through

N, inclusive, are to be set to zero, where N is the current contents of rI2. The programs

should work for any value 0 < N < 2999; they should start in location 3000.

► 18. [22] After the following “number one” program has been executed, what changes

to registers, toggles, and memory have taken place? (For example, what is the final

setting of rll? of rX? of the overflow and comparison indicators?)

STZ 1

ENNX 1

STX 1(0:1)

SLAX 1

ENNA 1

INCX 1

ENT1 1

SRC 1

ADD 1

DEC1 -1

STZ 1

CMPA 1

MOVE -1,1(1)
NUM 1

CHAR 1

HLT 1 |

1.3.1 DESCRIPTION OF MIX 139

► 19. [1^] What is the execution time of the program in the preceding exercise, not
counting the HLT instruction?

20. [20] Write a program which sets all 4000 memory cells equal to a “HLT” instruc¬
tion, and then stops.

► 21. [24\ (a) Can the J-register ever be zero? (b) Write a program which, given a
number N in rI4, sets register J equal to N, assuming that 0 < N < 3000. Your pro¬
gram should start in location 3000. When your program has finished its execution,
the contents of all memory cells must be unchanged.

► 22. [28] Location 2000 contains an integer number, X. Write two programs which
compute X13 and halt with the result in register A. One program should use the
minimum number of MIX memory locations; the other should require the minimum
execution time possible. Assume that X13 fits into a single word.

23. [27] Location 0200 contains a word

+

write two programs which compute the “reflected” word

+

and halt with the result in register A. One program should do this without using the
“partial field” feature of MIX. Both programs should take the minimum possible
number of memory locations under the stated conditions (including those locations
used for the program and for temporary storage of intermediate results).

24. [21] Assuming that registers A and X contain

+ 0 a b c d and + e / 9 h i

respectively, write two programs which change the contents of these registers to

+ a b c d e and + 0 / 9 h i

respectively, using (a) minimum memory space and (b) minimum execution time.

► 25. [30] Suppose that the manufacturer of MIX wishes to come out with a more
powerful computer (“Mixmaster”?), and he wants to convince as many as possible of
those people now owning a MIX computer to invest in the more expensive machine.
He wants to design this new hardware to be an extension of MIX, in the sense that all
programs correctly written for MIX will work on the new machines without change.
Suggest desirable things which could be incorporated in this extension. (For example,
can you make better use of the I-field of an instruction?)

► 26. [32] This problem is to write a card-loading routine. Every computer has its own
peculiar problems for getting information initially into the machine and correctly
started up, etc. In Mix’s case, the contents of a card can only be read in character code,

140 BASIC CONCEPTS 1.3.1

and this includes the cards which contain the loading program itself. Not all possible

byte values can be read from a card, and each word read in from cards is positive.

MIX has one feature that has not been explained in the text:There is a “GQ-button,”

which is used to get the computer started from scratch when its memory contains

arbitrary information. When this button is pushed by the computer operator, the

following actions take place:
a) A single card is read into locations 0000-0015; this is essentially equivalent to

the instruction “IN 0(16) ”.
b) When the card has been completely read and the card reader is no longer busy,

a JMP to location 0000 occurs. The J-register is also set to zero.

c) The machine now begins to execute the program which it has read from the card.

(Note: Those MIX computers without card readers have their GO-button attached

to the paper tape reader, unit 19, but in this problem we will assume the presence of

a card reader, unit 16.)
The loading routine to be written must satisfy the following conditions:

a) The input deck begins with the loading routine, followed by information cards

containing the numbers to be loaded, then a “transfer card” which shuts down the

loading routine and jumps to the beginning of the program. The loading routine must

fit onto two cards. You are to design a suitable transfer card.

b) The information cards have the following format:

Columns 1-5, ignored by the loading routine.

Column 6, the number of consecutive words to be loaded on this card (1

through 7).

Columns 7-10, the location of word 1, which is always greater than 100 (so it

does not overlay the loading routine).

Columns 11-20, word 1.

Columns 21-30, word 2 (if column 6 > 2).

Columns 71-80, word 7 (if column 6 = 7).

The information for word 1, word 2, . . . , is punched numerically as a decimal number.

If the word is to be negative, a minus (“11-punch”) is overpunched over the least signi¬

ficant digit, e.g., in column 20. Assume that this causes the character code input to

be 10, 11, 12, ... , 19, rather than 30, 31, 32, ... , 39. For example, a card which has

ABCDE31000012345678900000000010000000100

punched in columns 1—40, should cause the following information to be loaded:

1000: +0123456789; 1001: +0000000001; 1002: —0000000100.

c) The loading routine should work for all byte sizes without any changes to the

cards bearing the loading routine. No card should contain any of the characters

corresponding to bytes 20, 21, 49, 50, . . . (i.e., the characters 4>, II, $, <,...) since

these characters cannot be read by all card readers. In particular, the instructions

ENT1 and INC1 cannot be used (C = 49) since they cannot be punched on the card.

1.3.2 THE MIX ASSEMBLY LANGUAGE 141

1.3.2. The MIX Assembly Language

A symbolic language is used to make MIX programs considerably easier to read

and to write, and to save the programmer from worrying about tedious clerical

details which often lead to unnecessary errors. This language, MIXAL (“MIX

Assembly Language), is an extension of the notation used for instructions in

the previous section; the main features of this extension are the optional use of

alphabetic names to stand for numbers, and a location field for associating names
with memory locations.

MIXAL can be readily comprehended if we consider first a simple example.

The following code is part of a larger program; it is a subroutine to find the

maximum of n elements Z[l], . . . , X[n\, according to Algorithm 1.2.10M.

Program M {Find the maximum). Register assignments: rA = m, rll = n,
rI2 = j, rI3 = k, X[i] = cell(X + i).

Assembled instructions

3000: + 3009 0 2 32

3001: + ' 0 1 2 51

3002: + 3005 0 0 39

3003: + 1000 3 5 56

3004: + 3007 0 7 39

3005: + 0 3 2 50

3006: + 1000 3 5 08

3007: + 1 0 1 51

3008: + 3003 0 2 43

3009: + 3009 0 0 39

Line no. LOC OP ADDRESS

01 X EQU 1000

OS 0RIG 3000

OS MAXIMUM STJ EXIT

04 INIT ENT3 0,1

05 JMP CHANGEM

06 LOOP CMPA X, 3

07 JGE *+3

08 CHANGEM ENT2 0,3

09 LDA X, 3

10 DEC3 1

11 J3P LOOP

IS EXIT JMP *

Times Remarks

1 Subroutine linkage

1 Ml. Initialize, k <— n.

1 j <— n, m <— X[n], k <— n

n — 1

n — 1

MS. Compare.

A + l M4- Change m. j <— k.

A+ 1 m <- X[k],

n MB. Decrease k.

n MS. All tested?

i Return to main program. |

This program is an example of several things simultaneously:

a) The columns headed “LOC OP ADDRESS” are of principal interest; they

contain a program in the MIXAL symbolic machine language, and we shall explain
the details of this program below.

b) The column headed “Assembled instructions” shows the actual numeric

machine language which corresponds to the MIXAL program. MIXAL has been

designed so that it is a relatively simple matter to translate any MIXAL program

into numeric machine language; this process may be carried out by another

computer program called an assembly program. Thus, a programmer may do

all of his “machine language” programming in MIXAL, never bothering to deter¬

mine the equivalent numeric machine language himself. Virtually all MIX

programs in this book are written in MIXAL. Chapter 9 includes a complete

description of an assembly program which converts MIXAL programs to machine

language in a form that is readily loaded into Mix’s memory.

c) The column headed “Line no.” is not an essential part of the MIXAL

program; it is merely incorporated with the MIXAL programs of this book so that

the text can refer to parts of the program.

142 BASIC CONCEPTS
1.3.2

d) The column headed “Remarks” gives explanatory information about the

program, and it is cross-referenced to the steps of Algorithm 1.2.10M. The

reader should refer to this algorithm. Note that a little “programmer’s license”

was used during the transcription of that algorithm into a MIX program, for

example, step M2 has been put last. Note also the “register assignments” stated

at the beginning of Program M; this shows what components of MIX correspond

to the variables in the algorithm.
e) The column headed “Times” will be given for many of the MIX programs

in this book; it represents the number of times the instruction on that line will

be executed during the course of the program. Thus, line 6 will be performed

n — 1 times, etc. From this information we can determine the length of time

required to perform the subroutine; it is (5 + 5n + 3A)u, where A is the quantity

which was carefully analyzed in Section 1.2.10.
Now we will discuss the MIXAL part of Program M. Line 1, “X EQU 1000 ”,

says that symbol X is to be equivalent to the number 1000. The effect of this

may be seen on line 6, where the numeric equivalent of the instruction

“CMPA X,3” appears as

+ 1000
1

3 5 56

i.e., “CMPA 1000,3”.

Line 2 says that the locations for succeeding lines should be chosen sequen¬

tially, originating with 3000. Therefore the symbol MAXIMUM which appears in

the L0C field of line 3 becomes equivalent to the number 3000, INIT is equivalent

to 3001, LOOP is equivalent to 3003, etc.
On lines 3 through 12 the OP field contains the symbolic names of MIX

instructions STJ, ENT3, etc. The “OP” in lines 1 and 2, on the other hand,

contains “EQU” and “ORIG” which are not MIX operators. They are called pseudo¬

operators because they appear only in the MIXAL symbolic program. Pseudo¬

operators are used to specify the form of a symbolic program; they are not

instructions of the program itself. Thus the line “X EQU 1000” only talks about

the program, it does not signify that any variable is to be set equal to 1000 when

Program M is run. Note that no instruction is assembled for lines 1 and 2.

Line 3 is a “store J” instruction which stores the contents of register J into

the (0:2) field of location “EXIT”, i.e., into the address part of the instruction
found on line 12.

As mentioned earlier, Program M is intended to be part of a larger program;
elsewhere the sequence

ENT1 100

JMP MAXIMUM

STA MAX

would, for example, jump to Program M with n set to 100. Program M would

then find the largest of the elements X[l], . . . , X[100] and would return to the

1.3.2 THE MIX ASSEMBLY LANGUAGE 143

instruction “STA MAX” with the maximum value in rA and with its position, j,

in rI2. (Cf. exercise 3.)

Line 5 jumps the control to line 8. Lines 4, 5, 6 need no further explanation.

Line 7 introduces a new notation: an asterisk (read “self”) refers to the location

of this line; “*+3” (“self plus three”) therefore refers to three locations past the

current line. Since line 7 is an instruction which corresponds to location 3004,

“*+3” appearing there refers, to location 3007.

The rest of the symbolic code is self-explanatory; note the appearance of an

asterisk again on line 12. (Cf. exercise 2.)

Our next example shows a few more features of the assembly language. The

object is to print a table of the first 500 prime numbers, with 10 columns of

50 numbers each. The table should appear as follows:

FIRST FIVE HUNDRED PRIMES

0002 0233 0547 0877 1229 1597 1993 2371 2749 3187

0003 0239 0557 0881 1231 1601 1997 2377 2753 3191

0005 0241 0563 0883 1237 1607 1999 2381 2767 3203

0229 0541 0863 1223 1583 1987 2357 2741 3181 3571

We shall use the following method.

Algorithm P (Print table of 500 'primes). This algorithm has two distinct parts:

steps P1-P8 prepare an internal table of 500 primes, and steps P9-P11 print
the answer in the form shown above. The latter part of the program uses two

“buffer” areas, i.e., sections of memory in which a line image is formed; while

one buffer is being printed, the other is being filled.

PI. [Start table.] Set PRIME[1]«— 2, N <— 3, J <— 1. (N will run through the odd

numbers which are candidates for primes; J keeps track of how many

primes have been found so far.)

P2. [N is prime.] Set J <— J + 1, PRIME[J] <— N.

P3. [500 found?] If J = 500, go to step P9.

P4. [Advance N.] Set N <— N -j- 2.

P5. [K <— 2.] Set K <— 2. (PRIME[K] will run through the possible prime divisors

of N.)

P6. [PRIME[K]\N?] Divide N by PRIME[K]; let Q be the quotient and R the re¬

mainder. If R = 0 (hence N is not prime), go to P4.

P7. [PRIME[k] large?] If Q < PRIME[K], go to P2. (In such a case, N must be

prime; the proof of this fact is interesting and a little unusual—see

exercise 6.)

P8. [Advance K.] Increase K by 1, and go to P6.

144 BASIC CONCEPTS
1.3.2

P9. [Print title.] Now we are ready to print the table. Advance the printer to

the next page. Set BUFFER[0] to the title line and print this line. Set

B <— 1, M <— 1.

P10. [Set up line.] Put PRIME[M], PRIME[50 + M], . . . , PRIME[450 + M] in proper

format into BUFFER[B].

PH. [Print line.] Print BUFFER[B]; set B <— 1 — B (thereby switching to the other

buffer); and increase M by 1. If M < 50, return to P10; otherwise the

algorithm terminates. |

Fig. 14. Algorithm P.

Program P {Print table of 500 'primes). This program has deliberately been

written in a slightly clumsy fashion in order to illustrate most of the features of

MIXAL in a single program, rll = J — 500; rI2 = N; rI3 = K; rI4 indicates B;

rI5 is M plus multiples of 50.

01 * EXAMPLE PROGRAM ... TABLE OF PRIMES

02 *

03 L EQU 500

04 PRINTER EQU 18
05 PRIME EQU -1
06 BUF0 EQU 2000
07 BUF1 EQU BUFO+25
08 0RIG 3000
09 START IOC 0(PRINTER)
10 LD1 =1-L=
11 LD2 =3=
12 2H INC1 1
13 ST2 PRIME+L,1

U J1Z 2F

Number of primes to find
Unit number of printer
Memory area for table of primes
Memory area for BUFFER[0]

Memory area for BUFFER[1]

Skip to new page.
Pi. Start table. J <— 1.

N <— 3.
P2. N is prime. J <— J -f- 1.

PRIME[J] «- N.

PS. 500 found?

1.3.2 THE MIX ASSEMBLY LANGUAGE

15 4H INC2 2 P4- Advance N.
16 ENT3 2 P5. K <- 2.
17 6H ENTA 0 P6. PRIME[K]\N?
18 ENTX 0,2
19 DIV PRIME,3
20 JXZ 4B R = 0?
21 CMPA PRIME,3 P7. PRIME[K] large?
22 INC3 1 P8. Advance K.
28 JG 6B Jump if Q > PRIME[K].

24 JMP 2B Otherwise N is prime.
25 2H OUT TITLE(PRINTER) P9. Print title.
26 ENT4 BUF1+10 Set B <— 1.
27 ENT 5 -50 Set M <- 0.
28 2H INC5 L+l Advance M.
29 4H LDA PRIME,5 P10. Set up line. (Right to left)
80 CHAR

81 STX 0,4(1:4)

82 DEC4 1

88 DEC5 50 (rI5 goes down by 50 until

84 J5P 4B nonpositive)
85 OUT 0,4(PRINTER) Pll. Printline.
36 LD4 24,4 Switch buffers.

87 J5N 2B If rI5 = 0, we are done.
88 HLT

89 * INITIAL CONTENTS OF TABLES AND BUFFERS

40 ORIG PRIME+1

U CON 2 First prime is 2.

42 ORIG BUFO-5

43 TITLE ALF FIRST Alphabetic information for

44 ALF FIVE title line

45 ALF HUND

46 ALF RED P

47 ALF RIMES

48 ORIG BUFO+24

49 CON BUF1+10 Each buffer refers to the other.

50 ORIG BUF1+24

51 CON BUF0+10

52 END START End of routine. |

The following points of interest are to be noted about this program:

1. Lines 01, 02, and 39 begin with an asterisk: this signifies a “comment”

line which is merely explanatory, having no actual effect on the assembled

program.

2. As in Program M, the “EQU” in line 03 sets the equivalent of a symbol; in

this case, the equivalent of L is set to 500. (In the program of lines 10-24,

146 BASIC CONCEPTS 1.3.2

L represents the number of primes to be computed.) Note that in line 05 the

symbol PRIME gets a negative equivalent; the equivalent of a symbol may be any

five-byte-plus-sign number. In line 07 the equivalent of BUF1 is calculated as

BUFO+25, namely 2025. MIXAL provides a limited amount of arithmetic on

numbers; for another example, see line 13 where the value of PRIME+L (in this

case, 499) is calculated by the assembly program.

3. Note that the symbol PRINTER has been used in the F-part on lines 25

and 35. The F-part, which is always enclosed in parentheses, may be numeric

or symbolic, just as the other portions of the ADDRESS field are. Note the partial

field specification symbols separated by a colon, as “1:4” in line 31.

4. MIXAL contains several ways to specify non-instruction words. Line 41

indicates an ordinary constant, “2”, using the operation code CON; the result of

line 41 is to assemble the word

Line 49 shows a slightly more complicated constant, “BUF1+10”, which assembles
as the word

+ 2035

A constant may be enclosed in equal signs and it then becomes a literal

constant (see lines 10 and 11). The assembler automatically creates internal

names and inserts “CON” lines for literal constants. For example, lines 10 and
11 of Program P would effectively be changed to

10 LDl coni

11 LD2 con2

and then at the end of the program, between lines 51 and 52, the lines

51a coni CON 1-L

51b con2 CON 3

are effectively inserted as part of the assembly procedure for literal constants.
Line 51a will assemble into the word

—-1-1—i—i

499 .
--1_i i i

The use of literal constants is a decided convenience, because it means that

the programmer does not have to invent a name for the constant, and that he

does not have to insert that constant at the end of the program; he can keep

his mind on the central problems and not worry about such routine matters

while writing his programs. Of course, in Program P we did not make an

1.3.2
THE MIX ASSEMBLY LANGUAGE 147

especially good use of literal constants, since lines 10 and 11 would more properly
be written “ENT1 1-L; ENT2 3”!

5. A good assembly language should mimic the way a programmer thinks

about machine programs, so he can express himself fluently. One example of this
philosophy is the use of literal constants, as we have just mentioned; another

example is the use of “*”, which was explained in Program M. A third example

is the idea of local symbols such as the symbol 2H, which appears in the location
field of lines 12, 25, and 28.

Local symbols are special symbols whose equivalents can be redefined as

many times as desired. A symbol like PRIME has but one significance throughout

a program, and if it were to appear in the location field of more than one line

an enoi would be indicated by the assembly program. Local symbols have a

different nature; we write, for example, 2H (“2 here”) in the location field, and

2F (2 forward”) or 2B (“2 backward”) in the address field of a MIXAL line:

2B means the closest previous location 2H

2F means the closest following location 2H

As examples, the “2F” in line 14 refers to line 25; the “2B” in line 24 refers back

to line 12; and the “2B” in line 37 refers to line 28. An address of 2F or 2B never
refers to the same line; e.g., the three lines

2H EQU 10

2H MOVE 2F(2B)

2H EQU 2B-3

are virtually equivalent to the single line

MOVE *-3(10).

The symbols 2F, 2B are never to be used in the location field, and 2H is never

to be used in the address field. There are ten local symbols, which can be

obtained by replacing “2” in the above examples by any digit from 0 to 9.

The idea of local symbols was introduced by M. E. Conway in 1958, in

connection with an assembly program for the UNI VAC 1. Local symbols spare

the programmer from the necessity to think of a symbolic name for an address,

when all he wants to do is refer to an instruction a few lines away. When making

reference to a nearby location in the program there often is no appropriate name

with much significance, so programmers have tended to use symbols like XI,

X2, X3, etc.; this leads to the danger of using the same symbol twice. That is

why the reader will soon find that the use of local symbols comes naturally to

him when he writes MIXAL programs, if he is not already familiar with this idea.

6. In lines 30 and 38 the address part is blank. This means the address is

to be zero. Similarly, we could have left the address blank in line 17, but the
program would have been less readable.

148 BASIC CONCEPTS
1.3.2

'PRINTER EQU 18
EQU 500

'* EXAMPLE PROGRAM ... TABLE OE PRIMES
II I | I III II I I II

I III III I I I I II I
o«o|oiiooo#ooooooooooo|oooooo*ioBooo|ooooooooaoeoooooooooo80BOOoooooooDio*#80

11111111111111111111111 inilini 1111111111111 iliiini mi i Him 111111 mi in
2222222222222222222Z2222|22222222222|22222222222222222

333>331|3333333323|l|2|33|3133333333133133333333333333

|4444|4444444444|4<44444444444444«|4444444444444444444
55|S5S55|S5555555S55S555SS|S5555555|SS5S55S55SS555SS5S

6688S866S(66|666S66S66668S66||66S66666SS6S6S66S6666866

7J7|77|777|77|77777777777777777|7777777777177777777777
liMiiiiiiiiiiiiiillliimimmiiiiiiiiiiiiiiiiiiiii

2222222222222222222222

3333)131113333333)333)

4444444444444444444444

55S555SS5555S5555S555&

8888888888881888(88818

7777777777777777777777

1111111118(11111111(11
99888819393|SS|8388993939S99198t||38838S338983939l3S3333393S3333S3S333SS13381
12 14 9 17 1 »1»!intJM151ll7»»M2l 22 29 24 29 2« 27 2^ll»1*2n9»»*I7*J94« 4142 4944 4549 47 4149 SO Si S2»94HS457SiSMO«l«OI4«*riMI7«7l72JJ*7S1«7J7«7lli

Fig. 15. The first four lines of Program P punched onto cards.

7. Lines 43-47 use the “ALF” operation, which creates a five-byte constant

in MIX alphameric character code. For example, line 45 causes the word

+ 00 08 24 15 04

to be assembled.
These lines are used as the first 25 characters of the title line. All locations

whose contents are not specified in the MIXAL program are ordinarily set to zero

(except the locations which are used by the loading routine, usually 3700-3999);

thus there is no need to set the other words of the title line to blanks.

8. Note that arithmetic may be used on GRIG lines, e.g., lines 40, 42, and 48.

9. The last line of a complete MIXAL program always has the operation code

END. The address on this line is the location at which the program is to begin

once it has been loaded into memory.

10. As a final note about Program P, the reader may observe how the coding

has been written so that index registers are counted towards zero, and tested

against zero, whenever possible. For example, the quantity J-500, not J, is kept

in rll. Lines 26-34 are particularly noteworthy, although perhaps a bit tricky.

It may be of interest to note a few of the statistics observed when Program P

was actually run. The division instruction in line 19 was executed 9538 times;
the time to perform lines 10-24 was 182144tt.

MIXAL programs can be punched onto cards, as shown in Fig. 15. The follow¬
ing format is used:

Columns 1-10 LOC (location) field,

Columns 12-15 OP field,

Columns 17-80 ADDRESS field and optional remarks,
Columns 11,16 blank.

1.3.2 THE MIX ASSEMBLY LANGUAGE 149

However, if column 1 contains an asterisk, the entire card is treated as a com¬
ment. The ADDRESS field ends with the first blank column following column 16;
any explanatory information may be punched to the right of this first blank
column with no effect on the assembled program. (Exception: When the OP

field is “ALF”, the remarks always start in column 22.)

The MIX assembly program (see Section 9.3) accepts card decks prepared in
this manner and converts them to machine language programs in loadable form.
Under favorable circumstances the reader will have access to a MIX assembly
program and MIX simulator, on which various exercises in this book can be worked
out.

INow we have seen what can be done in MIXAL. We conclude this section by
describing the rules more carefully, and in particular we shall observe what is not
allowed in MIXAL. The following comparatively few rules define the language.

1. A symbol is a string of one to ten letters and/or digits, containing at
least one letter. Examples: PRIME TEMP 20BY20. The special symbols riH,

dF, dB, where d is a single digit, will for the purposes of this definition be replaced
by other unique symbols according to the “local symbol” convention described
above.

2. A number is a string of one to ten digits. Example: 00052.

3. Each appearance of a symbol in a MIXAL program is said to be either a
“defined symbol” or a “future reference.” A defined symbol is a symbol which
has appeared in the LOC field of a preceding line of this MIXAL program. A future

reference is a symbol which has not yet been defined in this way.

4. An atomic expression is either

a) a number, or
b) a defined symbol (denoting the numerical equivalent of that symbol, see

rule 13), or
c) an asterisk (denoting the value of ©; see rules 10 and 11).

5. An expression is either

a) an atomic expression, or
b) a plus or minus sign followed by an atomic expression, or
c) an expression followed by a binary operation followed by an atomic

expression.

The six admissible binary operations are ; they are defined on
numeric MIX words as follows:

C = A+B LDA >

>

ADD BB; STA CC

C = A-B LDA AA; SUB BB; STA CC

C = A*B LDA AA; MUL BB; STX CC

C = A/B LDA AA; SRAX 5; DIV BB; STA CC

C = A//B LDA AA; ENTX 0; DIV BB; STA CC

C = A:B LDA AA; MUL =8= ; SLAX 5; ADD BB

Here AA, BB, CC denote locations containing the respective values of the symbols A, B, C.

150 BASIC CONCEPTS
1.3.2

Operations within an expression are carried out from left to right. Examples:

-1+5 equals 4
-1+5*20/6 equals 4*20/6 equals 80/6 equals 13 (going from left to right)

equals a MIX word whose value is approximately (b5/3) where b is the
byte size; i.e., a word representing the fraction f with decimal point

at the left
equals 11 (usually used in partial field specification)

equals © minus three
equals © times © !

6. An A-part (which is used to describe the address field of a MIX instruction)

is either

a) vacuous (denoting the value zero), or

b) an expression, or
c) a future reference (denoting the eventual equivalent of the symbol, see

rule 13).

7. An index part (which is used to describe the index field of a MIX instruc¬

tion) is either
a) vacuous (denoting the value zero), or
b) a comma followed by an expression (denoting the value of that expression).

8. An F-part (which is used to describe the F-field of a MIX instruction)

is either

a) vacuous (denoting the standard F-setting, based on the context), or

b) a left parenthesis followed by an expression followed by a right parenthesis

(denoting the value of the expression).

9. A W-value (which is used to describe a full-word MIX constant) is either

a) an expression followed by an F-part [in this case a vacuous F-part denotes

(0:5)], or
b) a W-value followed by a comma followed by a W-value of the form (a).

A W-value denotes the value of a numeric MIX word determined as follows:

Let the W-value have the form “Ei(Fx), E2(F2), . . . , En(Fn)” where n > 1, the

E’s are expressions, and the F’s are fields. The desired result is the final value

which would appear in memory location CON if the following hypothetical

program were executed: “STZ CON; LDA Cx; STA C0N(Fx); . . . ; LDA C„;

STA C0N(Fn)”. Here Cx, . . ., Cn denote locations containing the values of ex¬

pressions Ei, . . . , Ew. Each F,- must have the form 8L* + R; where 0 < L,- <
R; < 5. Examples:

1 is the word

1, -1000 (0:2) is the word

-1000(0:2),! is the word

+
-1- 1-1

1

- 1000
1 1

1

+
I

-1-
1 1

1 -1-1-

1//3

1:3
*-3

10. The assembly process makes use of a value denoted by © (called the

location counter) which is initially zero. The value of © should always be a

1.3.2 THE MIX ASSEMBLY LANGUAGE 151

nonnegative number which can fit in two bytes. When the location field of a

line is not blank, it must contain a symbol which has not been previously defined.

The equivalent of that symbol is then defined to be the current value of ©.

11. After processing the LOC field as described in rule 10, the assembly

process depends on the value of the OP field. There are six possibilities for OP:

a) OP is a symbolic MIX operator (see Table 1 at the end of the previous section).

The chart defines the standard C and F values for this operator. In this case

the ADDRESS should be an A-part (rule 6), followed by an index part (rule 7),

followed by an F-part (rule 8). We thereby obtain four values: C, F, A,

and I; the effect is to assemble the word determined by the sequence
“LDA C; STA WORD; LDA F; STA W0RD(4:4); LDA I; STA W0RD(3:3); LDA A;

STA WORD(0:2) ” into the location specified by ©, and to advance © by 1.

b) OP is “EQU”. The ADDRESS should be a W-value (see rule 9); if the LOC field

is nonblank, the equivalent of the symbol appearing there is set equal to

the value specified in ADDRESS. This rule takes precedence over rule 10.

The value of © is unchanged. (As a nontrivial example, consider the line

BYTESIZE EQU 1(4:4)

which allows the programmer to have a symbol whose value depends on the

byte size. This is an acceptable situation so long as the resulting program is
meaningful with each possible byte size.)

c) OP is “ORIG”. The ADDRESS should be a W-value (see rule 9); the location

counter, ©, is set to this value. (Note that because of rule 10, a symbol

appearing in the LOC field of an ORIG card gets as its equivalent the value

of © before it has changed. Example:

TABLE ORIG *+100

sets the equivalent of TABLE to the first of 100 locations.)

d) OP is “CON”. The ADDRESS should be a W-value; the effect is to assemble a

word, having this value, into the location specified by ©, and to advance

© by 1.
e) OP is “ALF”. The effect is to assemble the word of character codes formed by

columns 17-21 of the card, otherwise behaving like CON.

f) OP is “END”. The ADDRESS should be a W-value, which specifies in its (4:5)

field the location of the instruction at which the program begins. The END

card signals the end of a MIXAL program. The assembler effectively inserts

additional lines just before the END card, in arbitrary order, corresponding

to all undefined symbols and literal constants (see rules 12 and 13). Thus

a symbol in the LOC field of the END card will denote the first location follow¬

ing the inserted words.

12. Literal constants: A W-value of 9 characters or less in length may be

enclosed between “=” signs and used as a future reference. The effect is as

though a new symbol were created and inserted just before the END card (see

remark 4 following Program P).

152 BASIC CONCEPTS
1.3.2

13. Every symbol has one and only one equivalent value; this is a full-word

MIX number which is either determined by the symbol’s appearance in LOC

according to rule 10 or rule 11(b), or else a line, having the name of the symbol

in LOC with OP. = “CON” and ADDRESS = “0”, is effectively inserted before the

END card.

Note: The most significant consequence of the above rules is the restriction

on future references. A symbol which has not been defined in the LOC field of a

previous card may not be used except as the A-part of an instruction. In par¬

ticular, it may not be used (a) in connection with arithmetic operations; or (b) in

the ADDRESS field of EQU, ORIG, or CON. For example,

LDA 2F+1 and CON 3F

are both illegal. This restriction has been imposed in order to allow more

efficient assembly of programs, and the experience gained in writing this set of

books has shown that it is a mild limitation which rarely makes much difference.

Actually MIX has two assembly languages: MIXAL, the machine-oriented

language which is designed to facilate one-pass translation by a relatively short

assembly program, and PL/MIX, which more adequately reflects data and control

structures and which looks rather like the Remarks field of MIXAL programs.

PL/MIX will be described in Chapter 9.

EXERCISES—First set

1. [00] The text remarked that “X EQU 1000” does not indicate any instruction

which sets the value of a variable. Suppose that you are writing a MIX program in

which you wish to set the value contained in a certain memory cell (whose symbolic

name is X) equal to 1000. How could you write this in MIXAL?

► 2. [10] Line 12 of Program M says “JMP since * denotes the location of the

line, why doesn’t the program go into an infinite loop, endlessly repeating this
instruction?

► 3. [23] What is the effect of the following program, if it is used in conjunction with
Program AI?

START IN X+l

JBUS *(0)
ENT1 100

1H JMP MAXIMUM

LDX X,1
STA X,1
STX X, 2

DEC1 1

J1P IB

OUT X+l(l)

HLT

END START |

1.3.2 THE MIX ASSEMBLY LANGUAGE 153

► 4. [25] Assemble Program P by hand; i.e., what are the actual numerical contents of
memory, corresponding to that symbolic program?

5. [11] Y\ hy doesn t Program P need a JBUS instruction to determine when the
printer is ready?

6. [HM20] (a) Show that if n is not prime, n has a divisor d with 1 < d < Vn.
(b) Use this fact to show that the test in step P7 of Algorithm P proves that N is prime.

7. [10] What is the meaning of “4B” in line 34 of Program P? What effect, if any,
would be caused if the location of line 15 were changed to “2H” and the address of
line 20 were changed to “2B”?

► 8. [24] "V\ hat does the following program do? (Do not run it on a computer, figure
it out by hand!)

* MYSTERY PROGRAM

PRINTER EQU 18
BUF ORIG *+3000
1H ENT1 1

ENT2 0

LDX 4F
2H ENT3 0,1
3H STZ BUF, 2

INC2 1

DEC3 1

J3P 3B

STX BUF, 2

INC2 1

INC1 1

CMP1 =75=

JL 2B

ENN2 2400

□UT BUF+2400,2(PRINTER)

INC2 24

J2N *—Z
HLT

4H ALF AAAAA

END IB |

EXERCISES—Second set

These exercises are short programming problems, representing typical computer
applications and covering a wide range of techniques. It is recommended that each
reader choose a few of these programs, in order to get some experience using MIX as
well as a good review of basic programming skills. If desired, these exercises may be
worked concurrently as the rest of Chapter 1 is being read.

The following list indicates the types of programming methods which arise:

Use of switching tables (multiway decisions): exercises 9 and 23.
Use of index registers; two-dimensional arrays: exercises 10, 21, 22, and 23.
Unpacking characters: exercises 13 and 23.

154 BASIC CONCEPTS 1.3.2

Integer and scaled decimal arithmetic: exercises 14, 16 and 18.

Real-time control: exercise 20.

Graphical display: exercise 23.

Input buffering: exercise 13.

Output buffering: exercises 21 and 23.

Use of subroutines: exercises 14 and 20.

Whenever an exercise in this book says, “write a MIX program” or “write a MIX

subroutine, ” it suffices to write only the symbolic code for what is asked, which will

only be a fragment of a larger program; perhaps no input or output is done in this

fragment, etc. One need only write LOC, OP, and ADDRESS fields of MIXAL lines (possibly

also remarks, especially if someone else is to be grading the solutions!), but not the

numeric machine language, line no., or “times” columns unless requested to do so.

If the exercise says, “Write a complete MIX program,” it implies that an executable

program is to be written in MIXAL (including in particular the final END card); hopefully,

an assembler and MIX simulator on which complete programs can be tested will be

available to most readers.

► 9. [25\ Location INST contains a MIX word which purportedly is a MIX instruction.

Write a program which jumps to location GOOD if the word has a valid C-field, valid

±AA-field, valid I-field, and valid F-field, and which jumps to location BAD otherwise.

Remember that the test for a valid F-field depends on the C-field; for example, if

C = 7 (MOVE), any F-field is acceptable, but if C = 8 (LDA), the F-field must have

the form 8L -j— R where 0 < L < R < 5. The “±AA’’-field is to be considered valid

unless C specifies an instruction requiring a memory address, 1 = 0, and ±AA is not

a valid memory address.

Note: Inexperienced programmers tend to tackle a problem like this by writing a

long series of tests on C, e.g., LDA C; JAZ IF; DECA 5; JAN 2F; JAZ 3F; DECA 2;

JAN 4F; etc. This is not good practice! Whenever a multiway decision such as this

is to be made, it is best to prepare an auxiliary table containing information which

facilitates the desired decisions. If there were, for example, a table of 64 entries, we

could write “LD1 C; LD1 TABLE, 1; JMP 0,1”—thereby jumping very speedily to

the desired routine. Other information can also be kept in such a table. The tabular

approach in this case makes the program only a little bit longer (including the table)
and it greatly increases the speed.

► 10. [31] Assume that we have a 9 X 8 matrix

''an ai2 ai3 . . . ais''

«21 022 a23 • . . 028

\«91 a92 093 ... agsy

stored in memory so that a,/ is in location 1000 -j- 8i -j- j. In memory the matrix
therefore appears as follows:

/ (1009)
(1017)

(1010)
(1018)

(1011)
(1019)

.. (1016) \

. . (1024)

^(1073) (1074) (1075) . . (1080)t

1.3.2
THE MIX ASSEMBLY LANGUAGE 155

A matrix is said to have a saddle point ’ if some position is the smallest value in

its i ow and the largest value in its column. In symbols, atJ- is a saddle point if

o»y = min aik = max ak]-.
l<k<8 l<k<9

Write a MIX program which computes

a) the location of a saddle point, if there is at least one;
b) zero, if there is no saddle point;

and which then stops with this value in rll.

11. [M29] What is the 'probability that the matrix in the preceding exercise has a

saddle point, assuming that the 72 elements are distinct and assuming that all 72!

arrangements are equally probable? What is the probability if we assume instead

that the elements of the matrix are zeros and ones, and all 272 such matrices are equally
probable?

12. [Mlfl] The “answers to the exercises” give two solutions to exercise 10, and

suggest a third solution, and it is not clear which of the given solutions is better.

Analyze the algorithms, using each of the assumptions of exercise 11, and decide which
is the better method.

13. [28] A cryptanalyst wants a frequency count of the letters in a certain code. The

code has been punched on paper tape, the end is signaled by an asterisk. Write a

complete program which reads in the tape, counts the frequency of each character up

to the first asterisk, and then types out the results in the form

A 0010257

B 0000179

D 0794301

etc., one character per line. The number of blanks should not be counted, nor

should characters for which the count is zero (e.g., C in the above) be printed. For

efficiency, “buffer” the input, i.e., while reading a block into one area of memory you

can be counting characters from another area. You may assume that an extra block

(following that which contains the terminating asterisk) is present on the input tape.

► 14. [81] The following algorithm, due to the Neapolitan astronomer Aloysius Lilius

and the German Jesuit mathematician Christopher Clavius in the late 16th century,

is used by most Western churches to determine the date of Easter Sunday for any

year after 1582. [For previous years, see CACM 5 (1962), 209-210. The first systematic

algorithm for calculating the date of Easter was the canon paschalis due to Victorius

of Aquitania (457 a.d.). There are many indications that the sole important application

of arithmetic in Europe during the Middle Ages was the calculation of Easter date,

and so such algorithms are historically significant. For further commentary, see

Puzzles and Paradoxes by T. H. O’Beirne (London: Oxford University Press, 1965),

Chapter 10.]

Algorithm E. (Date of Easter.) Let Y be the year for which the date of Easter is

desired.

El. [Golden number.] Set G <— (Fmod 19) + 1. (G is the so-called “golden

number” of the year in the 19-year Metonic cycle.)

156 BASIC CONCEPTS 1.3.2

E2. [Century.] Set C <- L 7/100J + 1. (When Y is not a multiple of 100, C is

the century number; i.e., 1984 is in the twentieth century.)

E3. [Corrections.] Set X <— L3C/4J — 12, Z <— [_(8C 4* 5)/25j 5. (X is the

numbel of years, such as 1900, in which leap year was dropped in order to

keep in step with the $un. Z is a special correction designed to synchronize

Easter with the moon’s orbit.)

E4. [Find Sunday.] Set D <— L5F/4J — X — 10. [March ((—D) mod 7) actually

will be a Sunday.]

E5. [Epact.] Set E <- (11G + 20 + Z - X) mod 30. If E = 25 and the golden

number G ;s greater than 11, or if E = 24, then increase E by 1. (E is the

so-called “epact,” which specifies when a full moon occurs.)

E6. [Find full moon.] Set N <— 44 — E. If N < 21 then set N <— N -f- 30.

(Easter is supposedly the “first Sunday following the first full moon which

occurs on or after March 21.” Actually perturbations in the moon’s orbit

do not make this strictly true, but we are concerned here with the “calendar

moon” rather than the actual moon. The Nth of March is a calendar full

moon.)

E7. [Advance to Sunday.] Set N <— N + 7 — ((Z) N) mod 7).

E8. [Get month.] If A > 31, the date is (N — 31)APRIL; otherwise the date is

N MARCH. |

Write a subroutine to calculate and print Easter date given the year, assuming

the year is less than 100000. (The output should have the form “dd MONTH, yyyyy”
where dd is the day, yyyyy is the year.) Write a complete MIX program which uses

this subroutine to prepare a table of the dates of Easter from 1950 through 2000.

15. [M30] A fairly common error in the coding of the previous exercise is to fail to

realize that the quantity (11(7 + 20 + Z — X) in step E5 may be negative, and so the

positive remainder mod 30 is sometimes not computed. (See CACM 5 (1962), 556.)

For example, in the year 14250 we would find G = 1, X = 95, Z = 40; so if we had

E = —24 instead of E = -)-6 we would get the ridiculous answer “42 APRIL”. Write

a complete program which finds the earliest year for which this error would actually
cause the wrong date to be calculated for Easter.

16. [31] We showed in Section 1.2.7 that the sum 1 -[- -f- -g- -|- • • ■ becomes infinitely

large. But if it is calculated with finite accuracy by a computer, the sum actually

exists, in some sense, because the terms eventually get so small they contribute nothing

to the sum if added one by one. For example, suppose we calculate the sum by rounding

to one decimal place; then we have 1 -f- 0.5 + 0.3 + 0.3 + 0.2 + 0.2 + 0.1 0.1 +

0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1= 3.9.

More precisely, let rn(x) be the number x rounded to n decimal places; we define
rn(x) = _!0nx -f- -g-J/lO”. Then we wish to find

Sn = r„(1) + r„(i) + r„(l) + • • • ;

we know that Si = 3.9, and the problem is to write a complete MIX program which
calculates and prints Sn for n = 2, 3, 4, and 5.

Note. There is a much faster way to do this than the simple procedure of adding

rn(l/m), one number at a time, until r„(l/m) becomes zero. (For example, we have

1.3.2
THE MIX ASSEMBLY LANGUAGE 157

r5(l/m) - 0.00001 for all values of m from 66667 to 200000. It is a good idea to

save calculating 1/m all 133,334 times!) An algorithm along the following lines should
rather be used:

A. Start with mh = 1, S = 1.

B. Set me = mn + 1 and calculate rn(l/me) = r.
C. Find nth, the largest m for which r„(l/m) = r.

D. Add (mh — me-\- l)r to S and return to step B.

17. [3/SS] Using the notation of the preceding exercise, prove or disprove

lim^*, (S„+1 — Sn) = In 10.

18. [25] The ascending sequence of all reduced fractions between 0 and 1 which have

denominators < n is called the “Farey series of order n.” For example, the Farey
series of order 7 is

fi.AAAA2^A^3.i432._53 4 5 6 1
1> 7> 6> 5> 4> 7> 3> 5’ 7’ 2> 7> 5) 3; 7) 4; 5, (5, y, y.

If we denote this series by x0/y0) *1/1/1, x2/y2, . . . , it can be shown that

z<f — 0, y o = l; x\ = 1, y\ = n;

xk+2 = _{yk-\- n)/yk+x]xk+i — xk] (*)

y/c+2 = L(2/*+ n)/yk+ijyk+i — yk-

Write a MIX subroutine which computes the Farey series of order n, by storing the

values of Xk and yk in locations X -(- k, Y -|- k, respectively. (The total number of terms

in the series is approximately 3n2/7r2, so you may assume n is rather small.)

19. [3/SO] (a) Show that the numbers Xk, yk defined by (*) in the preceding exercise

satisfy the relation Xk+iyk — Xk.yk+1 = 1. (b) Show that the numbers Xk, yk given by
(*) are indeed the Farey series of order n, using the fact proved in (a).

► 20. [83] Assume the X-register and the overflow toggle of MIX have been wired up to

the traffic signals at the corner of Del Mar Boulevard and Berkeley Avenue, as follows:

rX(2:2)

rX(3:3)

rX(4:4)

rX(5:5)

Del Mar traffic light

Berkeley traffic light
0 off, 1 green, 2 amber, 3 red;

Del Mar pedestrian light

Berkeley pedestrian light
0 off, 1 “WALK”, 2 “DON'T WALK”.

Cars or pedestrians wishing to travel on Berkeley across the boulevard must trip a

switch which causes the overflow toggle of MIX to go on. If this condition never occurs,
the light for Del Mar should remain green.

Cycle times are as follows:

Del Mar traffic light is green > 30 sec, amber 8 sec;

Berkeley traffic light is green 20 sec, amber 5 sec.

When a traffic light is green or amber for one direction, the other direction has a red

light. When the traffic light is green, the corresponding “walk” light is on; except that

158 BASIC CONCEPTS
1.3.2

28 19 10 01 48 39 30

29 27 18 09 07 47 38

37 35 26
i

17 08 06 46

45 36 34 25 16 14
X

05

04 44 42 33 24 15 13

12 03 43 41 32 23 21

20 11 02 49 40 31 22

Fig. 16. A magic square.

® | ®N
/ START

©

Fig. 17. Josephus’ problem, n = 8, m = 4.

before the green light turns to amber, the “don’t walk” light flashes for 12 sec, as

follows:

DON’T WALK

off

DON'T WALK

2 sec |

i sec j
repeat 8 times;

4 sec (and remains on through amber and red cycles).

If the overflow is tripped while the Berkeley light is green, the car or pedestrian

will pass on that cycle, but if it is tripped during the amber or red portions, another

cycle will be necessary after the Del Mar traffic has passed.

Assume that one MIX time unit equals 10 Msec. Write a complete MIX program

which controls this traffic light by manipulating rX, according to the input given by

the overflow toggle. The stated times are to be followed exactly unless it is impossible

to do so. Note: The setting of rX changes precisely at the completion of a LDX or INCX

instruction. Further note: Don’t worry about the economic unfeasibility of the exercise.

21. [28] A magic square of order n is an arrangement of the numbers 1 through n2

in a square array so that the sum of each row and column is the same, as well as the

sum of the two main diagonals. Figure 16 shows a magic square of order 7. The rule

for generating it is easily seen: Start with 1 in the middle of the top row, then go up

and to the left diagonally (when running off the edge imagine an entire plane tiled

with squares) until reaching a filled square; then drop down one space from the most-

recently-filled square and continue. This method works whenever n is odd.

Using memory allocated in a fashion like that of exercise 10, write a complete

MIX program to generate the 23 X 23 magic square by the above method; then print

out this magic square. [The above algorithm was brought from Siam to France by

S. de La Loubere in 1687. For numerous other interesting magic square constructions,

many of which are good programming exercises, see W. W. Rouse Ball, Mathematical

Recreations and Essays, rev. by H. S. M. Coxeter (New York: Macmillan, 1962),
Chapter 7.]

22. [81] {The Josephus problem.) There are n men arranged in a circle. Beginning at

a particular position, we count around the circle and brutally execute every mth man

(the circle closing as men are decapitated). For example, the execution order when

n = 8, to = 4 is 54613872, as shown in Fig. 17: the first man is fifth to go, the second

1.3.2 THE MIX ASSEMBLY LANGUAGE 159

man is fourth, etc. Write a complete MIX program which prints out the order of execu¬

tion when n = 24, to = 11. Try to design a clever algorithm which works at high

speed when n and to are large (it may save your life). Reference: W. Ahrens, Mathe-

matische Unterhaltungen und Spiele 2 (Leipzig: Teubner, 1918), Chapter 15.

23. [37] This is an exercise designed to give some experience in the many applications

of computers for which the output is to be displayed graphically rather than in the

usual tabular form. In this case, the object is to “draw” a crossword puzzle diagram.

You are given as input a matrix of zeros and ones.

An entry of zero indicates a white square; a one in¬

dicates a black square. The output should be a

diagram of the puzzle, with the appropriate squares

numbered for words “across” and “down.”

For example, given the matrix

(\ 0 0 0 0 l\

0 0 1 0 0 0
0 0 0 0 1 0
0 1 (DO 0 0
0 0 0 1 0 0

\1 0 0 0 0 1/

1 2 3

4 ■ 5
6

7 8 ■ ■ 9
10

11 12 ■ 13
14

Fig. 18. Diagram corresponding
to the matrix in exercise 23.

the corresponding puzzle diagram would be as shown in Fig. 18. A square is numbered

if it is a white square and either (a) the square below it is white and there is no white

square immediately above, or (b) there is no white square immediately to its left and

the square to its right is white. If black squares are given at the edges, they should be

removed from the diagram. This is illustrated in Fig. 18, where the black squares at

the corners were dropped. A simple way to accomplish this is to artificially insert rows

and columns of —l’s at the top, bottom, and sides of the given input matrix, and then

to change every “-j-l” which is adjacent to a “ 1 into 1 until no -|-1 remains

next to any “—1”.
The following method should be used to print the final diagram: Each box of the

puzzle should correspond to 5 columns and 3 rows of the output page. These 15 posi¬

tions should be filled as follows:

UUUU+ nnUU+

Unnumbered white squares: UUUU+ Number nn white squares: LLIUU+

H-+-H-

Black squares: +++++

+++++

“—i” squares, depending on whether there are —l’s to the right or below:

UUUU+ UUUU+ uuuuu uuuuu uuuuu

UUUU+ UUUU+ uuuuu uuuuu uuuuu

+++++ UUUU+ +++++ UUUU+ uuuuu

The diagram shown in Fig. 18 would then be printed as shown in Fig. 19.

160 BASIC CONCEPTS 1.3.2

The width of a printer line—120 characters—■
is enough to allow up to 23 columns in the cross¬

word puzzle. The data supplied as input will be a

23 X 23 matrix of zeros and ones, each row punched

in columns 1-23 of an input card. In the above

example, the first card woulcl have been punched

“10000111111111111111111”. The diagram will

not necessarily be symmetrical, and it may have

long paths of black squares which are connected

to the outside in strange ways.

Fig. 19. Representation of Fig. 18 for printer output.

+++++++++ I I I I I I I I H t +
+01 + +02 +03 +

+ + + + +
+11 i i i i i h i n ^+^ Mint f++++++++
+04 + ++++++05 + +06 +

+ + I I l I I I + + +
IIIIIIH ++++++++11111111111111+

+07 + +08 + f+++++ +
+ + + + IH-+++ +
111111 h i i i i 11111 11111 n m +++++

+ ++++++09 + +10 + +
+ I I I H + + + + +

111 I 11 111111 + 1+1 +++++<-+++++++++
+11 +12 + lull M3 + +
+ + + l l I l l l + +
4 f++f++l I I I I I I I I I I I I I I I I I I H H I

+14 + + + +

+ + + + +
f t I ++ I ++t IIIHH+-H + I

1.3.3. Applications to Permutations

In this section we shall give several more examples of MIX programs, and at the

same time some important properties of permutations will be introduced. These

investigations will also bring out some interesting aspects of computer program¬

ming in general.

Permutations were discussed earlier in Section 1.2.5; we treated the permuta¬

tion cdfbea as an arrangement of the six objects a, b, c, d, e, f in a straight line.

Another viewpoint is possible: We may think of a permutation as a rearrangement

or renaming of the objects. With this interpretation it is customary to use a
two-line notation, for example,

(a b c d e A

\c d f b e a) ’ ^

to mean “a becomes c, b becomes d, c becomes /, d becomes b, e becomes e,

f becomes a.” Considered as a rearrangement, this means object c moves to

the place formerly occupied by object a; considered as a renaming, this means

object a is renamed c. The two-line notation is unaffected by changes in the
order of the columns; i.e., the permutation (1) could also be written

(c d f b a e\

f b a d c e)

and 718 other ways.

A cycle notation is often used in connection with this interpretation. Per¬
mutation (1) could be written

(a c f)(b d), (2)

again meaning a becomes c, c becomes/,/ becomes o, b becomes d, d becomes b. ”

A cycle (xi x2... xn) means “xi becomes x2, . . . , zn_i becomes xn, xn becomes

Xl’ Since e is fixed under the permutation, it does not appear in the cycle

notation; that is, singleton cycles like “(e)” are conventionally not written. If

1.3.3 APPLICATIONS TO PERMUTATIONS 161

a permutation fixes all elements, so that there are only singleton cycles present,

it is called the identity permutation, and it is customarily denoted by “(1) ” for
no really good reason.

The cycle notation is not unique; for example,

(b d)(a c /), (c / a)(b d), (d b)(f a c), (3)

etc., are all equivalent to (2). However, “(af c)(b d)” is not the same, since
it says a goes to /.

It is easy to see why the cycle notation is always possible. Starting with

any element x\, the permutation takes x\ into x2, say, and x2 into x3, etc., until

finally (since there are only finitely many elements) we get to some element

xn+i which has already appeared among x\,... ,xn. Now xn+1 must equal x1}

for if it were equal to, say, x3, we already know x2 goes into x3 and by assumption

xn t6 %2 goes to xn+i. So we have a cycle (aq x2 . . . xn), n > 1, as part of our

permutation. If this does not account for the entire permutation, we find another

element y\ and in the same way get another cycle (yi y2 . . . ym). None of the

y’s can equal any of the x’s, since Xi — yj implies that z;+i = yj+1, etc., and

we would ultimately find x^ — yi for some k, contradicting the choice of y\.

All cycles will eventually be found in this way.

The application of these concepts to programming comes up whenever some

set of n objects is to be rearranged. To rearrange these objects without auxiliary

storage, we must essentially follow the cycle structure. For example, to do the

rearrangement (1), i.e., to set

(a, b, c, d, e, f) ^- (c, d, f, b, e, a),

we would essentially follow the cycle structure (2) and successively set

t <— a, a <— c, c <— /, / <— t; t*—b, b <— d, d <— t.

It is frequently useful to realize that any such transformation takes place in

disjoint cycles like this.

Products of permutations. We can "multiply” two permutations together, with

the understanding that multiplication means the application of one permutation

after the other. For example, if permutation (1) is followed by the permutation

(abode

b d c a f

we have a becomes c which then becomes c; b becomes d which becomes o; etc.:

(a b cdef\/ab c d e A

c d f b e a) \b d c a f e)

/a b cdef\ /cdfb ea\

\c d f b e a) \c a e d f b)

/a b c d e f

\c a e d f b
(4)

162 BASIC CONCEPTS 1.3.3

It should be clear that multiplication of permutations is not commutative,

i.e., 7Ti X 7r2 is not necessarily equal to 7t2 X tt\ when 7Ti and 7r2 are permutations.

The reader may verify that the product in (4) gives a different result if the two

factors are interchanged (see exercise 3).
Some people multiply permutations from right to left rather than the some¬

what more natural left-to-right order shown in (4). In fact, mathematicians are

divided into two camps in this regard; should the result of applying transforma¬

tion Tu then T2, be denoted by T]T2 or by T2Ti? Here we use T\T2.

Equation (4) would be written as follows, using the cycle notation:

(a c f)(b d)(a b d)(e f) = (a c e f 6). (5)

Note that the multiplication sign “x” is conventionally dropped; this does not

conflict with the cycle notation since it is easy to see that the permutation

(a c f)(b d) is really the product of the permutations (o c f) and (b d).

Multiplication of permutations can be done directly in terms of the cycle

notation. For example, to compute the product of several permutations

(a c f g)(b c d)(a e d)(f a d e)(b g f a e), (6)

we find (proceeding from left to right) that “a goes to c, then c goes to d, then

d goes to a, then a goes to d, then d is unchanged”; so the net result is that

a goes to d under (6), and we write down “(a d” as the partial answer. Now

we consider the effect on d: “d goes to b goes to g, ” and we have the partial result

“(a d g”. Considering g, we find that “g goes to a, to e, to /, to a” and so the

first cycle is closed, “(a d g)”. Now pick a new element which hasn’t appeared
yet, say c; we find that c goes to e, and the reader may verify that ultimately
the answer “(a d g)(c e b)” is obtained for (6).

Let us now try to do this process by computer. The following algorithm

formalizes the method described in the preceding paragraph, in a way that is
amenable to machine calculation.

Algorithm A (.Multiply permutations in cycle form). This algorithm takes a

product of cycles, such as (6), and computes the resulting permutation in the

form of a product of disjoint cycles. For simplicity, the removal of singleton

cycles is not described here; that would be a fairly simple extension of the

algorithm. As this algorithm is performed, we successively “tag” the elements

of the input formula, i.e., mark somehow those symbols of the input formula
which have been processed.

Al. [First pass.] Tag all left parentheses, and replace all right parentheses by a

tagged copy of the element following their matching left parentheses. (See
the example in Table 1.)

A2. [Open.] Searching from left to right, find the first untagged element of the

input. (If all elements are tagged, the algorithm terminates.) Set START

equal to it; output a left parenthesis; output the element; and tag it.

1.3.3 APPLICATIONS TO PERMUTATIONS 163

Table 1

ALGORITHM A APPLIED TO (6).

An “x” indicates a tagged element.

After

5p no. START CURRENT (a c f 9 a (b c d b (a e d a (/ a d e / (b 9 f 0 e b

A1 X X X X X X X X X X

A2 a X A X X X X X X X X X

A3 a c X
*T

X X X X X X X X X

A4 a c X X X X X \ X X X X X X X

A4 a d X X X X X X X *1 X X X X X

A4 a a X X X X X X X X X X A X X X

A5 a d X X X X X X X X X X X X X X

A5 a 9 X X X X X X X X X X X X X X X X

A5 a a X

A6 a a X

A2 c a X X X] X X X X X X X X X X X X X X X X X X

A5 c e X

A5 c b X

A6 c c X

A6 f f X XXX

(a

)

(c

e

b

)

A3. [Set CURRENT.] Set CURRENT equal to the next element of the formula.

A4. [Scan formula.] Proceed to the right until either reaching the end of the

formula, or finding an element equal to CURRENT; in the latter case, tag it

and go back to step A3.

A5. [CURRENT = START?] If CURRENT ^ START, output CURRENT and go back to

step A4 starting again at the left of the formula (thereby continuing the

development of a cycle in the output).

A6. [Close.] (A complete cycle in the output has been found.) Output a right

parenthesis, and go back to step A2. |

Fig. 20. Algorithm A for multiplying permutations.

164 BASIC CONCEPTS
1.3.3

For example, consider formula (6); Table 1 shows successive stages in its

processing. The first line of that table shows the formula after right parentheses

have been replaced by the leading element of the corresponding cycle; succeeding

lines of the table show which elements have been tagged. An arrow shows the

current point of interest in the formula. The output is “(a d g){c e b)(f) ;

note that singleton cycles will appear in the output.

A MIX program. To implement this algorithm for MIX, the "tagging” can be

done by using the sign of a word. Suppose our input is punched onto cards in

the following format: An 80-column card is divided into 16 five-character fields.

Each field is either (a) “UUUU(”, representing the left parenthesis beginning a

cycle; (b) “jULLLT, representing the right parenthesis ending a cycle; (c) “UUUL1LJ”,

all blanks, which may be inserted anywhere to fill space; or (d) anything else,

representing an element to be permuted. The last card of the input is recognized

by having columns 76-80 equal to “UULLI=”. For example, (6) might be punched

on two cards as follows:

(A C F G) (B C D) (A E D)

(F A D E) (B G F A E) =

The output of our program will consist of a copy of the input followed by the

answer in essentially the same format.

Program A (Multiply permutations in cycle form). This program implements

Algorithm A, and it also includes provision for input, output, and the removing

of singleton cycles.

01 CARDS EQU 16 Unit number for card reader

02 PRINTER EQU 18 Unit number for printer

OS ANS □RIG *+1000 Place for answer

04 □UTBUF □RIG *+24 For copies of input
05 PERM □RIG *+1000 The input permutation
06 BEGIN IN PERM(CARDS) Read first card.
07 ENT2 0
08 LDA EQUALS
09 1H JBUS *(CARDS) Wait for cycle complete.
10 CMPA PERM+15,2
11 JE *+2 Is it the last card?
12 IN PERM+16,2(CARDS) No, read another.
18 ENT1 □UTBUF

14 JBUS *(PRINTER) Print input card.
15 MOVE PERM,2(16)
16 □UT □UTBUF(PRINTER)
17 INC2 16
18 JNE IB Repeat until input complete

APPLICATIONS TO PERMUTATIONS 165 1.3.3

19 *

20 DEC2 1 1
21 ST2 SIZE 1
22 ENT3 0 1
23 2H LDAN PERM,3 A

24 CMPA LPREN(1:5) A
25 JNE IF A
26 STA PERM,3 B
27 INC3 1 B
28 LDXN PERM,3 B
29 JXZ *—2 B
30 1H CMPA RPREN(1:5) C
31 JNE *+2 C
32 STX PERM,3 D
33 INC3 1 C

34 CMP3 SIZE c
35 JL 2B c
36 *

37 LDA LPREN 1
38 ENT1 ANS 1
39 OPEN ENT3 0 E

40 1H LDXN PERM,3 F

41 JXN GO F

42 INC3 1 G
43 CMP3 SIZE G

44 JL IB G
45 *

46 DONE CMP1 =ANS=

47 JNE *+2

48 MOVE LPREN(3)

49 MOVE =0=

50 MOVE -1,1(22)

51 ENT3 0

52 OUT ANS,3(PRINTER)

53 INC3 24

54 LDX ANS, 3

55 JXNZ *-3

56 HLT

57 LPREN ALF (
58 ALF 1

59 RPREN ALF)
60 EQUALS ALF =

61 *

62 GO MOVE LPREN H

63 MOVE PERM,3 H

64 STX START H

65 SUCC STX PERM,3 J

66 INC3 1 J

At this point, (rI2) words of
input are in PERM, PERM + 1, . . •

Al. First pass.

Get next element of input.
Is it “(”?

Tag it.
Put next nonblank element

in rX.

Replace “) ” by tagged rX.

Have all elements been processed?

Prepare for main program,
rll = place to store next answer
A2. Open.

Look for untagged element.

All are tagged. Now comes the output.

Is answer the identity permutation ?
If so, change to “(1)”.
Put 23 words of blanks after answer.

Print as many lines as necessary.

Constants used in program

Open a cycle in the output.

Tag an element.
Move one step to right.

1.3.3 166 BASIC CONCEPTS

67 LDXN PERM,3(1:5) J AS. Set CURRENT (namely rX).

6S JXN IF J Skip past blanks.

69 JMP *-3 0

70 4H CMPX PERM,3(1:5) K A 4- Scan formula.

71 JE SUCC K Element = CURRENT?

72 1H INC3 1 ' L Move to right.

73 CMP3 SIZE L End of formula?

74 JL 4B L

75 CMPX START(1:5) P A5. CURRENT = START?

76 JE CLOSE P

77 STX 0,1 Q No, output CURRENT.

78 INC1 1 Q
79 ENT3 0 Q Scan formula again.

80 JMP 4B Q Go back to A4.

81 CLOSE MOVE RPREN R A6. Close.

82 CMPA -3,1 R Note: rA =

S3 JNE OPEN R

84 INC1 -3 S Suppress singleton cycles.

85 JMP OPEN S

86 END BEGIN 1

This program of approximately 70 instructions is quite a bit longer than the

programs of the previous section, and indeed it is longer than most of the

programs we will meet in this book. Its length is not formidable, however, since

it divides into several small parts which are fairly independent. Lines 06-18

read in the input cards and print a copy of each card; lines 20-35 accomplish

step A1 of the algorithm, the preconditioning of the input; lines 37-44 and

62-85 do the main business of Algorithm A; and lines 46-55 output the answer.

The reader will find it instructive to study as many of the MIX programs given

in this book as he can—it is exceedingly important to acquire skill in reading

other people’s computer programs, yet such training has been sadly neglected

in too many computer courses and it has led to some horribly inefficient uses of

computing machinery.

Timing. The parts of Program A which are not concerned with input-output

have been given “timing” indications (cf. Program 1.3.2M); thus, line 27 is

supposedly executed B times. For convenience it has been assumed that no

blank words appear in the input except at the extreme right end; hence line 69

is never executed and the jump in line 29 never occurs.

By simple addition the total time to execute the program is

(7 + 5A + 6£ + 7C + 2D + E + 3F + 4G + 8H + 6/

+ 3 K + 4L + 3P + 5Q + GR + 2 S)u (7)

plus the time for input and output. In order to understand the meaning of

formula (7), we need to examine the fifteen unknowns A, B,C, D, E, F, G, H,

J, K, L, P, Q, R} S and we must relate them to pertinent characteristics about

1.3.3 APPLICATIONS TO PERMUTATIONS 167

the input. We will now illustrate the general principles of attack for problems
of this kind.

First we apply “Kirchhoff’s first law” of electrical circuit theory: the num¬

ber of times an instruction is executed must equal the number of times we

transfer to that instruction. This seemingly obvious rule often relates several

quantities in a nonobvious way. Analyzing the flow of Program A, we get the
following equations.

From lines We deduce

23, 35 A =

30, 25 C =

39, 83, 85 E =

40, 44 F =

62, 41 H =

65, 68, 71 J =

70, 74, 80 K =

81, 76 R =

1 + (C - 1)
B + (A - B)

1 + R
E+{G- 1)
F - G

H + (K - (L - /))

CL~P)+Q

P-Q

As usual, not all of the equations given by Kirchhoff’s law will be independent;

in the above case, the first and second equations are obviously equivalent.

Furthermore, the last two equations are equivalent, since the third, fourth, and

fifth imply that H = R; hence the sixth says that K = L — R. At any rate

we have already eliminated six of our fifteen unknowns:

A = C, E = R + 1, F = R + G,

H — R, K= L - R, Q = P - R.

Kirchhoff’s first law is an effective tool which is analyzed more closely in Section

2.3.4.1.

The next step is to try to match up the variables with important charac¬

teristics of the data. We find from lines 21, 22, 27, and 33 that

B + C = number of words of input = 16A — 1, (9)

where X is the number of input cards. From line 25,

B = number of “(” in input = number of cycles in input. (10)

Similarly, from line 31,

D = number of “)” in input = number of cycles in input. (11)

Now (10) and (11) give us a fact that could not be deduced by Kirchhoff’s law:

B = D. (12)

From line 62,

H = number of cycles in output (including singletons). (13)

168 BASIC CONCEPTS 1.3.3

Line 81 says R is equal to this same quantity; the fact that H = R was in this

case deducible from Kirchhoff’s law, since it already appears in (8).

Using the fact that each nonblank word is ultimately tagged, and lines 26,

32, and 65, we< find that , J = Y — 2B, (14)

where Y is the number of nonblank words appearing in the input permutations.

From the fact that every distinct element appearing in the input permutation is

written into the output just once, either at line 63 or line 77, we have (see Eqs. 8)

P = H + Q = number of distinct elements in input. (15)

A moment’s reflection makes this clear from line 75 as well. Finally, we see from

line 84 that

S = number of singleton cycles in output. (16)

Clearly the quantities B, C, H, J, P, and S that we have now interpreted

are essentially independent parameters which may be expected to enter into the
timing of Program A.

The results we have obtained so far leave us with only the unknowns G and L

to be analyzed. For these we must use a little more ingenuity. The scans of the

input which start at lines 39 and 79 always terminate either at line 45 (the last

time) or at line 75. During each one of these P + 1 loops, the instruction

“INC3 1” is performed B + C times; this takes place only at lines 42, 66, and 72,
so we get the nontrivial relation

G + J + L= (£ + C)(P+l) (17)

connecting our unknowns G and L. Fortunately, the timing formula is a function

of G + L (it involves ••• + 3F -j- 4(7 ••• + 3Z + 4L -j- ••• = ••• -J- 7(7 +••• -f-
7L + • • •) so we need not try to analyze the individual quantities G and L any
further.

Summing up all the above results, we find that the total time, excluding
input-output, comes to

(112NX + 304Z + N — 2M - Y + 10J7 + 2V — ll)w; (18)

in this formula, new names for the data characteristics have been used as
follows:

X = number of cards of input,

Y = number of nonblank fields in input (excluding final “=”),
M = number of cycles in input,

N = number of distinct element names in input,

U = number of cycles in output (including singletons),
V = number of singleton cycles in output.

1.3.3 APPLICATIONS TO PERMUTATIONS 169

In this way we have found that analysis of a program like Program A is in many
respects like solving an amusing puzzle.

We will show below that, if the output permutation is assumed to be random,

the quantities U and V will be JTv and 1, respectively, on the average.

Another approach. Algorithm A multiplies permutations together much as

people ordinarily do the same job. Quite often we find that problems to be

solved by computer are very similar to problems that have confronted humans

for many years; therefore time-honored methods of solution, which have evolved

for use by mortals such as we, are also appropriate procedures for computer
algorithms.

Just as often, however, we find that some methods which are quite unsuitable

for human use are really superior for computers. The central reason is that the

computer “thinks” differently; it has a different kind of memory for facts. An

instance of this difference may be seen in our permutation-multiplication

problem—using the algorithm below, a computer can do the multiplication in

one sweep over the formula, simultaneously remembering the current state of

the permutations being multiplied. While Algorithm A scans once through the

formula for each element of the output, the new algorithm does all in one scan;

this is a feat which could not be done reliably by man.
Let us now look into this computer-oriented method for multiplying permu¬

tations. It is convenient to go from right to left; consider the following table:

(a c / 9) (b c d) (a e d) (f a d e) (b 9 f a e)

a - ̂ d d a a a a a a a a a a a d d d d d d e e e e e e e e a a

b - -» c c c c c c c c 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 b b b b b

c —> e e e d d d d d d c

d- ■* 9 9 9 9 9 9 9))) d d))) b b b b b d d d d d d d d d

e - ■*& b b b b b b b b b b b b b a a a)))) b b))))) e

/->/ f f f e e e e e e e e e e e e e e a a a a a a a a / / f

g - -> a)))) f 9 9 9 9

The column below each character of the cycle form represents what permutation

is represented by the partial cycles to the right; for example, the fragmentary

formula "... d e){b g f a e)” represents the permutation

(a h c d e f g\

\e g c b ? a f) ’

which appears under the rightmost d of the table.

170 BASIC CONCEPTS 1.3.3

Inspection of this table shows how it was constructed, going from right to

left. The column below letter x differs from that on its right only in row x; the

new value in that row and column is the one which disappeared in the preceding

change. Mote precisely, we have the following algorithm:

Algorithm B (Multiply permutations in cycle form). This algorithm accomplishes

essentially the same result as Algorithm A. Assume that the elements permuted

are named X\, x2, , xn. We use an auxiliary table T'fl], T[2], . . . , T[n]; upon

termination of this algorithm, Xi goes to Xj under the input permutation if and

only if T[i] = j.

Bl. [Initialize.] Set T[k] <— k for 1 < k < n. Also, prepare to scan the input from

right to left.

B2. [Next element.] Examine the next element of the input (right to left). If the

input has been exhausted, the algorithm terminates. If the element is a “) ”,

set Z <— 0 and repeat step B2; if it is a “(”, go to B4; otherwise the element is
Xi for some i, go on to B3.

B3. [Change T[i\.\ Exchange Z <-> T[i\. If this makes T[i\ = 0, set j <— i. Return
to step B2.

B4. [Change T[j].] Set T[j] <— Z. (At this point, j is the row which shows a “)”

entry in the example on page 169, corresponding to the right parenthesis

which matches this left parenthesis.) Return to step B2. |

Fig. 21. Algorithm B for multiplyipg permutations.

Of course, after this algorithm has been performed, we still must output the

contents of table T in cycle form; this is easily done by a “tagging” method, as
we shall see below.

Let us now write a MIX program based on the new algorithm. We wish to use

the same ground rules as those in Program A, i.e., the form of the input and out¬

put should be essentially the same. A slight problem presents itself; namely,

how can we implement Algorithm B without knowing in advance what the

elements x\, x2, • ■ • , xn are? We don’t know n, and we don’t know whether the

element named b is to be x\, or x2, etc. A simple way to solve this problem is to

keep a table of the element names encountered so far, and to search for the
cuirent name each time (see lines 31—36 in the program below).

1.3.3, APPLICATIONS TO PERMUTATIONS 171

Program B (Same effect as Program A). rX = Z; rI4 = i; rll = j; rI3 =

2 X (size of names table) -f- 1- The table of names consists of two-word entries:

Word 1

Word 2

+ 0 0 0

+ 1
_

Van
_

ie o
_

f Xi
_l

(address of entry for Xj,

if Xi goes to Xj).

(in character code)

01 NAMES ORIG *+1000 Table of names
02 CARDS EQU 16

• . Same as lines 01-19 of Program A

20 * i At this point, (rI2) words of
21 DEC2 1 1 input are in PERM, PERM+1 . .
22 ENT3 1 1 and the NAMES table is empty
23 RIGHT ENTX 0 A Set Z <— 0.
n SCAN DEC2 1 B B2. Next element.
25 LDA PERM,2 B
26 JAZ CYCLE B Skip over blanks.
27 CMPA RPREN C
28 JE RIGHT C Is the next element “)”?
29 CMPA LPREN D
30 JE LEFT D Is it “(”?
31 ENT4 0,3 E Prepare for the search.
32 STA NAMES E Store at beginning of table.
S3 2H DEC4 2 F Search through names table.
34 CMPA NAMES+1,4 F
35 JNE 2B F Repeat until match found.
36 J4P FOUND G Has the name appeared before?
37 STA NAMES+1,3 H Put new entry into table.
38 ST3 NAMES,2 H Set T[i] <— i.
39 ENT4 0,3 H
40 INC3 2 H Increase size of table.

41 FOUND LDA NAMES,4 J B3. Change T[i],
42 STX NAMES,^ J Store Z.
43 SRC 5 J Set Z.

44 JANZ SCAN J
45 ENT1 0,4 K If Z was zero, set j <— i.
46 JMP SCAN K

47 LEFT STX NAMES,1 L B4- Change T[j\.
48 CYCLE J2P SCAN P Return to B2, unless finished.
49 *

50 OUTPUT ENT1 ANS 1 All input has been scanned.
51 DEC3 2 1 Names table contains the answer.
52 1H LDAN NAMES+1 ,3 Q Now we construct cycle notation.
53 JAP SKIP Q Has name been tagged?

172 BASIC CONCEPTS

54 CMP3 NAMES,3 R Is there a singleton cycle?

55 JE SKIP R

56 MOVE LPREN S Open a cycle.

57 2H MOVE NAMES+1,3 T

58 STA NAMES+1,3 T Tag the name.

59 LD3 NAMES?, 3 T Find successor of element.

60 LDAN NAMES+1,3 T

61 JAN 2B T Is it already tagged?

62 MOVE RPREN W Yes, cycle closes.

63 SKIP DEC3 2 z Move to next name.

U J3P IB z
65 *

66 DONE CMP1 =ANS=

■ ■ • Same as lines 46-60 of Program A

80 EQUALS ALF t
81 END BEGIN 1

Lines 50-64, which construct the cycle notation from the T table (i.e., the names

table), make a rather pretty little algorithm which merits some study. The

quantities A, B, . . ., R, S, T, W, Z which enter into the timing of this program

are, of course, different from the quantities of the same name in the analysis of

Program A. The reader will find it an interesting exercise to analyze these times

(see exercise 10).

Experience shows that the main portion of the execution time of Program B

will be spent in searching the NAMES table—this is quantity F in the timing.

Actually much better algorithms for searching and building such a NAMES table

are available; these are called symbol table algorithms, and they are of great

importance in computer applications. Chapter 6 contains a thorough discussion
of efficient symbol table algorithms.

Inverses. The inverse 7r_1 of a permutation 7r is the rearrangement which

undoes the effect of 7r; if i goes to j under 7r, then j goes to i under tt~1. Thus
the product 7T7t~1 equals the identity permutation.

Every permutation has an inverse; for example, the inverse of

/a b c d e A . (c cl f b e a\ _ / a b c cl e f\

\c d f b e a) \a b c d e f) \f d a b e c)

We will now consider some simple algorithms for computing the inverse of a
permutation.

For the rest of this section, let us assume we are dealing with permutations

of the numbers (1, 2,,n}. If A[l] A[2] • • • X[n\ is such a permutation,

there is a simple method to compute its inverse: set F[A[/c]] <- k for 1 < k < n.

Then F[l] F[2] • • • Y[n\ is the desired inverse. This method uses 2n memory
cells, n for X and n for F.

1.3.3 APPLICATIONS TO PERMUTATIONS 173

Just for fun, suppose that n is very large and suppose also that we wish to

compute the inverse of Ar[l] A"[2] • • • A[n] without using much additional

memory space; we want to compute the inverse “in place” so that after our

algorithm is finished A[l] X[2] • • • X[n\ is the inverse of the original permuta¬

tion. Merely setting X[X[/c]] <— k for 1 < k < n will certainly fail, but by

considering the cycle structure we can derive the following simple algorithm:

Algorithm I (Inverse in place). Replace X[1]X[2] ■ • • X[n\, a permutation on

{1, 2, . . . , n}, by its inverse. Reference: CACM 8 (1965), 670.

11. [Initialize.] Set m <— n.

12. [Next element.] Set i <— X[m]. If i < 0, set X\m] <-i and go to 16 (this

element has already been processed). If i = m, go to 16 (this element is

fixed by the permutation).

13. [Open.] Set k <— m.

14. [Invert one.] (In the original permutation, X[k] = i.) Set j X[i\,

X[i] 4-k.

15. [End cycle.] If j = m, then set X[m\ <— i; otherwise set k <— i, i <— j, and

return to 14.

16. [More?] Decrease m by 1; if m > 0, go to 12. Otherwise the algorithm

terminates. |

For an example of this algorithm, see Table 2. The method is based on inversion

of successive cycles of the permutation.

Table 2

COMPUTING THE INVERSE OF 6 2 1 5 4 3 BY ALGORITHM I.

(Read columns from left to right.) At point *, the cycle (163) has been inverted.

After step: 11 13 14 14 16* 13 14 16 16 16 16 16

X[l] 6 6 6 -3 —3 -3 —3 -3 -3 -3 -3 3

X[2] 2 2 2 2 2 2 2 2 2 2 2 2

X[3] 1 1 -6 -6 —6 -6 —6 -6 -6 6 6 6

X[4] 5 5 5 5 5 5 —5 -5 5 5 5 5

X[5] 4 4 4 4 4 4 4 4 4 4 4 4

X[6] 3 3 3 3 1 1 1 1 1 1 1 1

m 6 6 6 6 5 5 5 4 3 2 1 0

i 3 3 1 1 4 4 4 —5 —6 2 -3

j 1 6 6 6 5 5 5 5 5 5

k 6 6 3 3 5 5 5 5 5 5 5

Algorithm I resembles parts of Algorithm A, and it very strongly resembles

the cycle-finding algorithm in Program B (lines 50-64). Thus it is typical of a

number of algorithms involving rearrangements. A MIX program to implement

it is quite simple; see Program I on the next page.

174 BASIC CONCEPTS 1.3.3

Program I (Inverse in place), rll = m; rI2 = i; rI3 = (—/c);rI4=j;n = N, a sym¬
bol to be defined when this program is assembled as part of a larger program.

01 INVERT ENT1 N 1 11. Initialize, m
02 2H LD2 X.l N 12. Next element, i
03 J2NN *+3 1 N
04 STZ X,1(0:0) N — C Set X[m] positive.
05 JMP 6F N — C
06 CMP1 X.l C i = ml
07 JE 6F c
08 ENN3 0,1 c - s 13. Open, k <— m.
09 JMP 4F c - s
10 3H INC4 0,1 N - 2C+S
11 ENN3 0,2 N -2C+S k <— i.
12 ENT2 0,4 N - 2C+ S i *-j.
13 4H LD4 X,2 N - C 14- Invert one. 7 <—
H ST3 X,2 N - C X[i] <-k.
15 DEC4 0,1 N — C 15. End cycle.
16 J4NZ 3B N - C

e^. s II

17 ST2 X.l c - s Yes, set X[m] <— i.
18 6H DEC1 1 N 16. More?
19 J1P 2B N To 12 if to > 0. |

n.
X[m\.

X[i].

The timing for this program is easily worked out in the manner shown earlier:
it is (17iV — 8C — S + l)w, where N is the order of the permutation, C is the
total number of cycles, and S is the number of fixed elements (singleton cycles).
The quantities C, S in a random permutation are analyzed below.

There is almost always more than one algorithm to do any given task, so we
would expect there may be another way to invert a permutation. The following
ingenious algorithm is due to J. Boothroyd:

Algorithm J (Inverse in place). This algorithm has the same effect as Algorithm
I but uses a different method.

Jl. [Negate all.] Set X[fc] <-X[k], for 1 < k < n. Also set m*-n.

J2. [Initialize j.] Set j <—m.

J3. [Find negative entry.] Set i <- X[j). If i > 0, set j <- i and repeat this step.

J4. [Invert.] Set X[j] <— X[—i\, X[—i\ <- m.

J5. [Loop on m.\ Decrease m by 1; if m > 0, go back to J2. Otherwise the
algorithm terminates. |

See Table 3 for an example of this algorithm. Again the method is essentially
based on the cycle structure, but this time it is less obvious that the algorithm
really works! Verification is left to the reader (see exercise 13).

1.3.3 APPLICATIONS TO PERMUTATIONS 175

Table 3

COMPUTING THE INVERSE OF 6 2 1 5 4 3 BY ALGORITHM J.

After step: J2 J3 J5 J3 J5 J3 J5 J3 J5 J3 J5 J3 J5
X[l] —6 —6 —6 -6 -6 —6 -6 -6 3 3 3 3 3

*[2] —2 —2 —2 —2 —2 —2 —2 —2 —2 —2 2 2 2
X[Z] —1 — 1 6 6 6 6 6 6 6 6 6 6 6
X[4] —5 -5 —5 -5 5 5 5 5 5 5 5 5 5

m —4 —4 -4 -4 -5 -5 4 4 4 4 4 4 4

A[6] -3 —3 —1 —1 —1 -1 — 1 —1 -6 -6 -6 -6 1
m 6 6 5 5 4 4 3 3 2 2 1 1 0
i -3 -3 —4 —4 -5 —5 —1 —1 —2 —2 —6 -6

j 6 6 6 5 5 5 5 6 6 2 2 6 6

Program J (Analogous to Program I). rll 3 m; rI2

III
C

O

H
H

III

01 INVERT ENN1 N 1 Jl. Negate all.

02 ST1 X+N+l,1(0:0) N Set sign negative.

08 INC1 1 N

04 JIN *-2 N More?

05 ENT1 N 1 m <— n.

06 2H ENN3 0,1 N J2. Initialize j.

07 ENN2 0,3 A

08 LD3N X,2 A J8. Find negative entry.

09 J3N *—2 A i > 0?

10 LDA X, 3 N J4. Invert.

11 STA X, 2 N X[j] *- X[-i].

12 ST1 X, 3 N X[—i] <— m.
18 DEC1 1 N J5. Loop on m.

14 J1P 2B N To J2 if m > 0. |

This program is a little shorter than the preceding one. To decide how fast it

runs, we need to know the quantity A; this quantity is so interesting and

instructive, it has been left as an exercise (see exercise 14).
In spite of the elegance of Algorithm J, we must reluctantly report that the

results of an analysis of these two algorithms show that Algorithm I is definitely

superior. In fact, it turns out that the running time for Algorithm I is essentially

proportional to to, while that of Algorithm J is essentially proportional to

n In n. As n approaches infinity (and the algorithms were intended for large n),

the ratio of execution times goes to zero. It is perhaps a shame that the more

subtle algorithm loses out in this case; but the analysis of algorithms is expressly

intended to tell us the true facts, however greatly they might run contrary to

personal taste. Maybe some day someone will find a use for Algorithm J (or

some related modification); it is a bit too pretty to be forgotten altogether.

176 BASIC CONCEPTS 1.3.3

An unusual correspondence. We have already remarked that the cycle notation

for a permutation is not unique; the permutation on six elements (1 6 3)(4 5)

may be written (5 4) (3 1 6), etc. It will be useful to consider a canonical

form for the pyclic notation; the canonical form is unique. To get the canonical

form, proceed as follows:

a) Write all singleton cycles explicitly.

b) Within each cycle, put the smallest number first.

c) Order the cycles in decreasing order of the first number in the cycle.

For example, starting with (3 1 6)(5 4) we would get

(a): (3 1 6)(5 4)(2); (b): (1 6 3)(4 5)(2); (c): (4 5)(2)(1 6 3). (20)

The important property of this canonical form is that the parentheses may

be dropped and uniquely reconstructed again. Thus there is only one way to

insert parentheses in “4 5 2 1 6 3” to get a canonical cycle form; one must

insert a left parenthesis just before each left-to-right minimum (i.e., just before
each element which is preceded by no smaller elements).

This insertion and removal of parentheses gives us an unusual one-to-one

correspondence between the set of all permutations expressed in cycle form and

the set of all permutations expressed in linear form. [Example: the permutation

6 2 1 5 4 3 in cycle form is (4 5)(2)(1 6 3); remove parentheses to get

4 5 2 1 6 3 which in cycle form is (2 5 6 3)(1 4); remove parentheses to
get 2 5 6 3 1 4 which in cycle form is (3 6 4)(1 2 5); etc.]

This correspondence has numerous applications to the study of permutations
of different types. For example, let us ask “How many cycles does a permutation

on n elements have, on the average?” To answer this question we consider the

set of all n! permutations expressed in canonical form, and drop the parentheses;

we are left with the set of all n! permutations in some order. Our original

question is therefore equivalent to, “How many left-to-right minima does a

permutation on n elements have, on the average?” We have already answered

this question in Section 1.2.10 (actually, we discussed the average number of

right-to-left maxima, which is essentially the same by symmetry); this was the

quantity (A -f- 1) in the analysis of Algorithm 1.2.10M, for which we found the
statistics

min 1, ave Hn, max n, dev y/ (Hn — H™). (21)

Furthermore, we found that a permutation of n objects has k cycles (i.e., k left-to-
right minima) with probability [j\]/n\.

. can a^so ask about the average distance between left-to-right minima,
which becomes equivalent to the average length of a cycle. By (21), the total

number of cycles among all the n\ permutations is n\Hn (since it is n! times the

average number of cycles). If we pick a cycle at random, what is its average

1.3.3 APPLICATIONS TO PERMUTATIONS 177

Imagine all n! permutations of {1, 2, . . . , n} written down in cycle notation;

how many three-cycles are present? To answer this question, let us consider

how many times a particular three-cycle (x y z) appears: clearly, the cycle

(x y z) appears in exactly (n — 3)! of the permutations, since this is the number

of wrays the remaining n — 3 elements may be permuted. Now the number

of different possible three-cycles (x y z) is n(n — l)(n — 2)/3, since there

are n choices for x, (n — 1) for y, (n — 2) for z, and among these n(n — 1){n — 2)

choices each different three-cycle has appeared in three forms (x y z), (y z x),

{z x y). Therefore the total number of three-cycles among all n \ permutations

is n(n — l)(w — 2)/3 times (n — 3)!, namely n!/3. Similarly, the total number

of m-cycles is n\/m, 1 < m < n. (This provides another simple proof of the

fact that the total number of cycles is n\Hn; hence the average number of

cycles in a permutation is Hn, as we already know.) If we consider the n\Hn

cycles equally probable, the average length of a randomly chosen cycle is n/Hn;

if an element is chosen at random in a random permutation, the average length

of the cycle containing it is somewhat longer than this (see exercise 17).

To complete our analyses of Algorithms A, B, and I, we would like to know

the average number of singleton cycles in a random permutation. This is an

interesting problem. Suppose we write down the n\ permutations, listing first

those with no singleton cycles, then those with just one, etc.; for example, if
n — 4,

no fixed elements: 2143 2341 2413 3142 3412 3421 4123 4312 4321

one fixed element: 1342 1423 3241 4213 2431 4132 2314 3124

two fixed elements: 1243 1432 1324 4231 3214 2134

three fixed elements:

four fixed elements: 1234

(Singleton cycles, i.e. fixed elements, have been specially designated in this list.)

Permutations with no fixed elements are called derangements; the number of

derangements is the number of ways to put n letters into n envelopes, getting
them all wrong.

Let Pnk be the number of permutations of n objects having exactly k fixed

elements, so that for example,

P40 = 9, P41 = 8, P42 = 6, P43 = 0, P44 = 1.

Study of the list above shows us the principal relationship between these num¬

bers: we can get all permutations with k fixed elements by first choosing the k

that are to be fixed [this can be done in (£) ways] and then permuting the

remaining n — k elements in all P(n—fc)0 ways that leave no further elements

fixed. Hence , .

Pnk = U) P(n-*)0. (22)

We also have the rule that "the whole is the sum of its parts”:

w! = Pnn “I- Pn(n — 1) “I- Pn(n — 2) “t- Pn(.n—3) "P ' ' ' • (23)

178 BASIC CONCEPTS 1.3.3

Combining Eqs. (22) and (23) and rewriting the result slightly, we find that

n! = Poo + Y\n^10 7^n(n ~ 1)^20 + J]n(n — l)(n — 2)P30 + • • • , (24)
4

an equation that must be trpe for all positive integers n. This equation already

has confronted us before—it appears in Section 1.2.5 in connection with Stirling’s

attempt to generalize the factorial function—and a simple derivation of the

coefficients was given in Section 1.2.6 (Eq. 32 and following). We conclude that

m\
P, m 0 1-1+1-

1! ‘ 2!
+ (-1)" ml

(25)

Now let pnk be the probability that a permutation of n objects has exactly k

singleton cycles; since pnk = Pnk/n\, we have from Eqs. (22) and (25)

Vnk = k\ (: ~ XI + 2! (_1)n (n - k)l) ' ^

The generating function Gn{z) = pno + Pniz + Pn2z2 + • • • is therefore

G,.W = l+Tf(»-l)+---+4(*-l)*= 2 7f — l)y- (27)
0 <j<nJ-

From this formula it follows that G'n{z) = Gn_1(z), and from the methods of

Section 1.2.10 we obtain the following statistics on the number of singleton
cycles:

(min 0, ave 1, max n, dev 1), if n > 2. (28)

A somewhat more direct way to count the number of permutations having

no singleton cycles follows from the “principle of inclusion and exclusion,”

which is an important method for many enumeration problems. The general

principle of inclusion and exclusion may be formulated as follows: We are

given N elements, and M subsets, *Si, S2, . . . , Sm, of these elements; and our

goal is to count how many of the elements lie in none of these subsets. Let

||S|| denote the number of elements in a set S; then the desired number of
objects in none of the sets Sj is

N~ S IM+ £ \\Sj n £*|| — 2 l|5,- n Sy n /Sfc|H-
1<J<M 1 <j<k<M l<i<j<k<M

+ (—1)^11*?! n • ■ • n SM\\. (29)

(Thus we first subtract the number of elements in Slt . . . , SM from the total

number, N, but this underestimates the desired total; so we add back the

number of elements which are common to pairs of sets, Ss n Sk, for each pair

Sj and Sk, then subtract the elements common to triples of sets, etc.) There are

several ways to prove this formula, and the reader is invited to discover one of
these for himself.

1.3.3 APPLICATIONS TO PERMUTATIONS 179

To count the number of permutations on n elements having no singleton

cycles, we consider the N = n\ permutations and let Sj be the set of permuta¬
tions in which element j forms a singleton cycle. If 1 < j\ < j2 < • • • < jk < n,

the number of elements in Sjl D Sj2 n • • • n Sjk is the number of permutations
in which j\, . . . , jk are singleton cycles, and this is clearly (n — k)l Thus
formula (29) becomes

n! - Q(n - 1)! + Q(n - 2)! - Q(n - 3)! + • •- + (-1)”^0!

and this agrees with (25).

The principle of inclusion and exclusion is due to A. de Moivre [see his

Doctrine of Chances (London, 1718), 61-63; 3rd ed. (1756, reprinted by Chelsea,

1957), 110-112], but its significance was not generally appreciated until it was

popularized and further developed by W. A. Whitworth in his well-known book
Choice and Chance (Cambridge, 1867).

Combinatorial properties of permutations are explored further in Section 5.1.

EXERCISES

1. [10] Show that the transformation of the numbers (0, 1, 2, 3, 4, 5, 6), defined by
the rule that x goes to (2x) mod 7, is a permutation, and write it in cycle form.

2. [10] The text shows how we might set (a, b, c, d, e, f) <— (c, d, f, b, e, a) by using
a series of replacement operations and one auxiliary variable t. Show how to do this
by using a series of exchange operations (i.e., x y) and no auxiliary variables.

3. [10] Compute the product

and express the answer in two-line notation (cf. Eq. 4).

4. [10] Express (a b d)(e f)(a c f)(b d) in terms of disjoint cycles.

► 5. [M10] Equation (3) shows several equivalent ways to express the same permuta¬
tion in cycle form. How many different ways of writing that permutation are possible,
if all singleton cycles are suppressed?

6. [M23] What changes are made to the timing of Program A if we remove the
assumption that all blank words occur at the extreme right?

7. [10] If Program A is presented with the input (6), what are the quantities X, Y,
M, N, U, and V of (19)? What is the time required by Program A, exclusive of
input-output?

► 8. [23] Would it be feasible to modify Algorithm B to go from left to right instead
of from right to left through the input?

9. [10] Both Programs A and B accept the same input and give the answer in
essentially the same form. Is the output exactly the same under both programs?

► 10. [M28] Examine the timing characteristics of Program B, viz. the quantities A,1
B, . . . , Z shown there; express the total time in terms of X, Y, M, N, U, V [cf. (19)]
and of the quantity F. Compare the total time for Program B with the total time for
Program A on the input (6), using the fact that F = 74 in this case (cf. exercise 7).

180 BASIC CONCEPTS 1.3.3

\

11. [15] Find a simple rule for writing 7r_1 in cycle form, if the permutation ir is given

in cycle form.

12. [M27\ (Transposing a rectangular matrix.) Suppose an m X n matrix (an),
m 7* n, is stored in memory in a fashion like that of exercise 1.3.2-10, so that the value
of an appears in location L\ n(i — 1) + (j — 1), where L is the location of an-
The problem is to find a way to transpose this matrix, obtaining an n X m matrix (bn),
where bn = ap and bn is stored in location L + m(i — 1) + (j — 1). Thus the
matrix is to be transposed “on itself ” (a) Show that this transposition transformation
moves the value which appears in cell L-\- x to cell L + (mx) mod N, where
0 < x < N = mn — 1. (b) Discuss methods for doing this transposition by computer.

► 13. [M24] Prove that Algorithm J is valid.

► 14. [M34\ Find the average value of the quantity A in the timing of Algorithm J.

15. [Ml2] Is there a permutation which represents exactly the same transformation
both in the canonical cycle form without parentheses and in the linear form?

16. [M15] Start with the permutation 1324 in linear notation; convert it to canonical
cycle form and then remove the parentheses; repeat this process until arriving at the
original permutation. What permutations occur during this process?

17. [M24] (a) The text demonstrates that there are n\Hn cycles in all among the
permutations on n elements. If these cycles (including singleton cycles) are individually
written on n\Hn slips of paper, and if one of these slips of paper is chosen at random,
what is the average length of the cycle that is thereby picked? (b) If we write the n\
permutations on n! slips of paper, and if we choose a number k at random and also
choose one of these slips of paper, what is the probability that the cycle containing the
element k is an m-cycle? What is the average length of the cycle containing k?

► 18. [M27] What is pnkm, the probability that a permutation of n objects has exactly
k m-cycles? What is the corresponding generating function Gnm(z)? What is the
average number of m-cycles and what is the standard deviation? (The text considers
only the case m — 1.)

19. [HM21] Show that, in the notation of Eq. (25), the number Pn0 of derangements
is exactly equal to (n\/e) rounded to the nearest integer, for all n > 1.

20. [M20\ Given that all singleton cycles are written out explicitly, how many dif¬
ferent ways are there to write the cycle notation of a permutation which has ai one-
cycles, 0C2 two-cycles, . . . ? (Cf. exercise 5.)

21. [M22] "What is the probability P(n\a\, a2, . . .) that a permutation of n objects
has exactly ai one-cycles, «2 two-cycles, etc.?

► 22. [HM34] (The following approach, due to L. Shepp and S. P. Lloyd, gives a con¬
venient and powerful method for solving problems related to the cycle structure of
random permutations.) Instead of regarding the number, n, of objects as fixed,
and the permutation variable, let us instead suppose that we independently choose the
quantities a\, a2, as, . . . appearing in exercises 20 and 21 according to some prob¬
ability distribution. Let w be any real number between 0 and 1. (a) Suppose that we
choose the random variables ai, a2, as, . . . according to the rule that “the probability

am ~ k is f(w, m, k), for some function f(w, m, k). Determine the value of f(w, m, k)
so that the following two conditions hold:

i) T,k>of(v>, m, k) = 1, for 0 < w < 1 and m > 1.

1.3,3 APPLICATIONS TO PERMUTATIONS 181

ii) Ihe probability that or + 2a2 + 3«3 -j- ■ • • = n and that ai = k\, a2 = k2,

«3 = ks, . . . , is (1 — w)wnP(n; k 1, &2, &3, . . .) as in exercise 21.

b) A permutation whose cycle structure is a\, 012, a3, . . . clearly permutes exactly
ai + 2a2 + 3a3 + • • • objects. Show that if the a’s are randomly chosen according to
the probability distribution in part (a), the probability that ai -f- 2a2 + 3a 3 + — n

is (1 w)wn\ the probability that ai + 2a2 -f- 3a3 —(— - • - is infinite is zero.
c) Let fi(a 1, a2, . . .) be any function of the infinitely many numbers ai, a2,

Show that if the a’s are chosen according to the probability distribution in (a), the
average value of fi is (1 — w) Xj„>o wnfin; here fin denotes the average value of fi

taken over all permutations of n objects, where ai, a2, . . . represent the number of
cycles of the permutation. [For example, if fi(a 1, a2, . . .) = ai, the text showed that
fin = 1, the average number of singleton cycles, regardless of n.]

d) Use this method to find the average number of cycles of even length in a random
permutation of n objects.

e) Use this method to solve exercise 18. (Cf. exercise 1.2.10-15.)

23. [HM44] (Golomb, Shepp, Lloyd.) If ln denotes the average length of the longest

cycle in a permutation of n objects, show that ln ~ An-f ^A, where X ~ 0.62433 is a
constant. Show in fact that limn_^M (ln — An — ^-A) = 0.

24. [3141] Find the variance of the quantity A which enters into the timing of Algo¬
rithm J. (Cf. exercise 14.)

25. [3122] Prove Eq. (29).

► 26. [3124] Extend the principle of inclusion and exclusion to obtain a formula for the
number of elements which are in exactly r of the subsets Si, S2, . . . , SM. (The text
considers only the case r — 0.)

27. [3120] Use the principle of inclusion and exclusion to count the number of integers
n in the range 0 < n < am\m2 ■ • ■ mt, which are not divisible by any of mi, mo, . . . ,

mt. Here a, mi, m2, . . . , m, are positive integers, with gcd (mj, mfi) = 1 when,/ ^ k.

28. [3121] (I. Kaplansky.) If the “Josephus permutation” defined in exercise 1.3.2-22
is expressed in cycle form, we obtain (1 5 3 6 8 2 4) (7) when n = 8 and m = 4.
Show that this permutation in the general case is the product in, n — 1, . . . , 2, l)m_1

[n, n — 1, . . . , 2)m_1 •••(», n — l)m_1.

29. [3125] Prove that the cycle form of the Josephus permutation when m = 2 can
be obtained by first expressing the “doubling” permutation of {1, 2, ... , 2n], which
takes j into (2j) mod (2n-f- 1), in cycle form, then reversing left and right and erasing
all the numbers greater than n. For example, when n = 11 the doubling permutation
is (1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12) (5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14) and the Jose¬
phus permutation is (7, 11, 10, 5)(6, 3, 9, 8, 4, 2, 1).

30. [3124] Use exercise 29 to show that the fixed elements of the Josephus permuta¬
tion when m = 2 are precisely the numbers (2d~l — l)(2n-|- l)/(2d — 1) for all
positive integers d such that this is an integer.

31. [H31SS] Generalizing exercises 29 and 30, prove that the kth man to be executed,
for general m and n, is in position x which may be computed as follows: Set x <— km,

then repeatedly set x \^{m{x — n) — l)/(m — 1)J until x < n. Consequently the
average number of fixed elements, for 1 < n < N and fixed mas N <x>, approaches

(m — 1)k/(mk+1 — (m — l))fc. [Since this value lies between (m — l)/m and
1, the Josephus permutations have slightly fewer fixed elements than random ones do.]

182 BASIC CONCEPTS 1.4

1.4. SOME FUNDAMENTAL PROGRAMMING TECHNIQUES

1.4.1. Subroutines

When a certain task is to be performed at several different places in a program,

it is usually undesirable to repeat the coding in each place. To avoid this

situation, the coding (called a “subroutine”) can be put into one place only, and

a few extra instructions can be added to restart the outer program properly after

the subroutine is finished. Transfer of control between subroutines and main

programs is called “subroutine linkage. ”

Each machine has its own peculiar manner for achieving efficient subroutine

linkage, usually involving special instructions. In MIX, the J-register is used

for this purpose; our discussion will be based on MIX machine language, but

similar remarks will apply to subroutine linkage on other computers.

Subroutines are used to save space in a program; they do not save any time,

other than the time implicitly saved by having less space (e.g., less time to load

the program, or fewer passes necessary in the program, or better use of high¬

speed memory on machines with several grades of memory). The extra time
taken to enter and leave a subroutine is usually negligible.

Subroutines have several other advantages. They make it easier to visualize

the structure of a large and complex program; they form a logical segmentation

of the entire problem, and this usually makes debugging of the program easier.

Many subroutines have additional value because they can be used by people
other than the programmer of the subroutine.

Most computer installations have built up a large “library” of useful sub¬

routines, and such a library greatly facilitates the programming of standard

computer applications which arise. A programmer should not think of this as

the only purpose of subroutines, however; subroutines should not always be

regarded as “general purpose” programs to be used by the community. Even

the use of very special purpose subroutines, which are intended to appear in only
one program, is an important technique.

The simplest subroutines are those which haye only one entrance and one

exit, such as the MAXIMUM subroutine we have already considered (see Section

1.3.2, Program M). For reference, we will recopy that program here, changing
it so that a fixed number of cells, 100, is searched for the maximum:

MAX100 STJ EXIT Subroutine linkage
ENT3

JMP
100

2F
Ml. Initialize.

1H CMPA

JGE
X, 3

*+3
MS. Compare.

2H ENT2 0.3 Mli.. Change m.
LDA X.3 (New maximum found)
DEC3 1 M5. Decrease k.
J3P IB M2. All tested?

EXIT JMP * Return to main program. |

1.4.1 SUBROUTINES 183

In a larger program containing this coding as a subroutine, the single instruction

“JMP MAX100” would cause register A to be set to the current maximum value

of locations X + 1 through X + 100, and the position of the maximum would

appear in rI2. Subroutine linkage in this case is achieved by the instructions

“MAX100 STJ EXIT” and, later, “EXIT JMP *”. Because of the way the J-register

operates, the exit instruction will then jump to the location following the place

where the original reference to MAX100 was made.

It is not hard to obtain quantitative statements about the amount of code

saved and the amount of time lost when subroutines are used. Suppose that a

piece of coding requires k locations and that it appears in m places in the pro¬

gram. Rewriting this as a subroutine, we need an extra instruction STJ and an

exit line for the subroutine, plus a single JMP instruction in each of the m places

where the subroutine is called. This gives a total of m + k -f- 2 locations, rather

than mk, so the amount saved is

(m - l)(fc - 1) - 3. (2)

If k is 1 or m is 1 we cannot possibly save any space by using subroutines; this,

of course, is obvious. If k is 2, m must be greater than 4 in order to gain, etc.

The amount of time lost is the time taken for the extra JMP, STJ, and JMP

instructions, which are not present if the subroutine is not used; therefore if the

subroutine is used t times during a run of the program, 41 extra cycles of time

are required.
These estimates must be taken with a grain of salt, because they were given

for an idealized situation. Many subroutines cannot be called simply with a

single JMP instruction. Furthermore, if the coding is repeated in many parts of

a program, without using a subroutine approach, the coding for each part can

take advantage of special characteristics of the particular part of the program

in which it lies. With a subroutine, on the other hand, the coding must be

written for the most general case, not a specific case, and this will often add

several additional instructions.

When a subroutine is written to handle a general case, it is often written in

terms of parameters, values which govern the subroutine’s action, but which are

subject to change from one call of the subroutine to another.
The coding in the outside program which transfers control to the sub¬

routine and gets it properly started is known as the “calling sequence.” Par¬

ticular values of parameters, supplied when the subroutine is called, are known

as arguments. With our MAX100 subroutine, the calling sequence is simply

“JMP MAX100”, but when arguments must be supplied, a longer calling sequence

is generally necessary. For example, Program 1.3.2M is a generalization of

MAXI00 which finds the maximum of the first n elements of the table. The

parameter n appears in index register 1, and we may regard the calling sequence

184 BASIC CONCEPTS 1.4.1

as
LDl =n=

JMP MAXIMUM.

If the calling sequence takes c memory locations, formula (2) for the amount

of space saved changes to \

(m — l)(k — c) — const (3)

and the time lost for subroutine linkage is slightly increased.

A further correction to the above formulas can be necessary because certain

registers might need to be saved and restored. For example, in the MAX100

subroutine, the programmer must remember that by writing “JMP MAX100” he

is not only getting the maximum value in register A and its position in register

12; he is also setting register 13 to zero. A subroutine may destroy register

contents, and this must be kept in mind. In order to prevent MAX100 from

changing the setting of rI3, it would be necessary to include additional in¬

structions. The shortest and fastest way to do this with MIX is to insert the

instruction “ST3 3F(0:2)” just after MAX100 and then “3H ENT3 *” just before

EXIT. The net cost is an extra two lines of code, plus three machine cycles on
every call of the subroutine.

A subroutine may be regarded as an extension of the computer’s machine

language. With the MAX100 subroutine in memory, we now have a single instruc¬

tion (namely, “JMP MAX100”) which is a maximum-finder. It is important to

define the effect of each subroutine just as carefully as the machine language

operators themselves have been defined, and so the programmer should be sure

to write down the characteristics of each subroutine, even though he himself

will be the only one to make use of it. In the case of MAXIMUM as given in Section
1.3.2, the characteristics are as follows:

Calling sequence: JMP MAXIMUM.

Entry conditions: rll = n; assume n > 1.

Exit conditions: rA = max,<fc<„ CONTENTS (X + k) (4)

= CONTENTS (x+ (rI2));

rI3 = 0; rJ and Cl are also affected.

(We will customarily omit mention of the fact that register J and the comparison

indicator are affected by a subroutine; it has been mentioned here only for

completeness.) Note that rX and rll are unaffected by the action of the sub¬

routine, for otherwise these registers would have been mentioned in the exit

conditions. It is also necessary to mention which memory locations external

to the subroutine are affected; in this case we may conclude that nothing has
been stored, since (4) doesn’t say anything about changes to memory.

1.4,1 SUBROUTINES 185

Now let us consider multiple entrances to subroutines. Suppose that we have

a program which requires the general subroutine MAXIMUM, but which most fre¬

quently wants to use the special case MAX100, with n = 100. The two can be

combined as follows:

MAX100 ENT3 100 First entrance
MAXN STJ EXIT Second entrance

JMP 2F Continue as in (1). (5)

EXIT JMP * Return to main program. |

Subroutine (5) is essentially the same as (1), with the first two instructions

interchanged; we have used the fact that “ENT3” does not change the setting

of the J-register. If we were to add a third entrance, MAX50, to this subroutine,

we could insert the code

MAX50 ENT3 50

JSJ MAXN ^)

at the beginning. (Recall that “JSJ” means jump without changing register J.)

When the number of parameters is small, it is often desirable to transmit

them to a subroutine either by having them in convenient registers (as we have

used rI3 to hold the parameter n in MAXN and as we used rll to hold the parameter

n in MAXIMUM), or by storing them in fixed memory cells. Another way to supply

arguments which is often convenient is to simply list them after the JMP instruc¬

tion ; the subroutine may refer to its parameters because it knows the J-register

setting.
For example, if we wanted to make the calling sequence for MAXN be

JMP MAXN

CON n

then the subroutine could be written

MAXN STJ *+l

ENT1 * rll <— r,J.

LD3 0,1 rI3 <— n.

JMP 2F Continue as in (1)

J3P IB

JMP 1,1 Return. |

(8)

On machines like System/360, for which linkage is ordinarily done by putting the

exit location in an index register, the above procedure is particularly con¬
venient. It is also useful when a fairly large number of arguments is to be passed

to a subroutine, as well as in conjunction with programs written by compilers

186 BASIC CONCEPTS 1.4.1

(see Chapter 12). The technique of multiple entrances which we used above

often fails in this case, however; we could “fake it” by writing

MAX100 STJ IF

JMP MAXN
X CON 100

1H JMP *

but this is not as attractive as (5).

A technique similar to that of listing arguments after the jump is normally

used for subroutines with multiple exits. Multiple exit means that we want the

subroutine to return to one of several different locations, depending on con¬

ditions detected by the subroutine. In the strictest sense, the location to which

a subroutine exits is a parameter; so if there are several places to which it

should exit, depending on the circumstances, these should be supplied as argu¬

ments. Our final example of the “maximum ” subroutine will have two entrances
and two exits. The calling sequence is:

For general n For n = 100

ENT3 n

JMP MAXN JMP MAX100

Exit here if max < 0 or max > rX. Exit here if max < 0 or max > rX.
Exit here if 0 < max < rX. Exit here if 0 < max < rX.

(In other words, exit is made to the location two past the jump when the maxi¬

mum value is positive and less than the contents of register X.) The subroutine
for these conditions is easily written:

MAXI00 ENT3 100

MAXN STJ EXIT

JMP 2F

J3P IB

JANP EXIT

STX TEMP

CMPA TEMP

JGE EXIT

INC3 1

EXIT JMP *,3

Entrance for n = 100
Entrance for general n

Continue as in (1).

Is max positive?

Is it less than rX?
Set rI3 <— 1.

Return to proper place. |

(9)

In summary, subroutines are often desirable for saving space in a program
and reducing its complexity. As always, we don’t get something for nothing

and some expense in running time occurs. If the extra time for calling a sub-

routine is small compared to the total execution time for that subroutine, and

ar sIp 7 °ng °1S refT6d t0 qUitG °ften’ then writinS ^ as a subroutine is
far superior to rewriting the code over and over in the program. For typical

uses of subroutmes m a larger program, see the examples in Section 1.4.3 Umd

1.4,1 SUBROUTINES 187

throughout the assembler in Chapter 9.

Subroutines may call on other subroutines; in complicated programs it is

not unusual to have subroutine calls nested more than five deep. The restriction
that must be followed when using linkage as described here, however, is that

no subroutine may call on any other subroutine which is (directly or indirectly)

calling on it. For example,

[Main program] [Subroutine A] [Subroutine B] [Subroutine C]

A STJ EXITA B STJ EXITB C STJ EXITC

JMP A JMP B JMP C JMP A

EXITA JMP * EXITB JMP * EXITC JMP *

(10)

If the main program calls on A, which calls B, which calls C, and then C calls

on A, the address in EXITA referring to the main program is destroyed, and there

is no way to return to the main program. A similar remark applies to all tem¬

porary storage cells and registers used by each subroutine. It is possible to make

subroutine linkages which will handle the above “recursive” situation properly,

and these will be discussed in Chapter 8.

We conclude this section by discussing briefly how we might go about writing

a complex and lengthy program. How can we decide what kind of subroutines

we will need, and what calling sequences should be used? One successful way

to determine this is to use an iterative procedure:

Step 0 (Initial idea). First we decide vaguely upon the general plan of attack

in the program.
Step 1 (A rough sketch of the program). We start now by writing the “outer

levels” of the program, in any convenient language. A somewhat systematic

way to go about this has been described very nicely by E. W. Dijkstra, Structured

Programming (Academic Press, 1972), Chapter 1, and by N. Wirth, CACM 14

(1971), 221-227. We may begin by breaking the whole program into a small

number of pieces, which might be thought of temporarily as subroutines, al¬

though they are called only once. These pieces are successively refined into

smaller and smaller parts, which have correspondingly simpler jobs to do.

Whenever something occurs which seems likely to occur elsewhere or which

has already occurred elsewhere, we define a subroutine (a real one) to do that

job. We do not write the subroutine at this point; we continue writing the main

program, assuming the subroutine has performed its task. Finally, when the

main program has been sketched, we tackle the subroutines in turn, trying to

take the most complex subroutines first and then their sub-subroutines, etc,

In this manner we will come up with a list of subroutines. The actual function
of each subroutine has probably already changed several times, so that the

188 BASIC CONCEPTS 1.4.1

first parts of our sketch will by now be incorrect; but that is no problem, it is

merely a sketch. For each subroutine we now have a reasonably good idea as

to how it will be called and how general-purpose it should be. It usually pays

to extend the generality of each subroutine a little.

Step 2 (First working program). This step goes in the opposite direction

from step 1. We now write in computer language, say MIXAL or PL/MIX; we start

this time with the lowest level subroutines, and do the main program last. As

far as possible, we try never to write any instructions which call a subroutine

before the subroutine itself has been coded. (In step 1, we tried the opposite,

never considering a subroutine until all of its calls had been written.)

As more and more subroutines are written during this process, our confidence

gradually grows, since we are continually extending the power of the machine

we are programming. After an individual subroutine is coded, we should

immediately prepare a complete description of what it does, and what its calling

sequences are, as in (4). It is also important not to overlay temporary storage

cells; it may very well be disastrous if every subroutine refers to location TEMP,

although when preparing the sketch in step 1, it is convenient not to worry about

this problem. An obvious way to overcome overlay worries is to have each

subroutine use only its own temp storage, but if this is too wasteful of space,

another scheme which does fairly well is to name the cells TEMPI, TEMP2, etc.;

the numbering within a subroutine starts with TEMP;, where j is one higher than

the greatest number used by any of the sub-subroutines of this subroutine.

Step 3 (Reexamination). The result of step 2 should be very nearly a working

program, but it may be possible to improve on it. A good way is to reverse

direction again, studying for each subroutine all of the calls made on it. It may

well be that the subroutine should be enlarged to do some of the more common

things which are always done by the outside routine just before or after it uses

the subroutine. Perhaps several subroutines should be merged into one; or

perhaps a subroutine is called only once (if we are fortunate, perhaps one is
never called) and should not be a subroutine at all.

At this point, it is often a good idea to scrap everything and start over again

at step 1! This is not intended to be a facetious remark; the time spent in getting

this far has not been wasted, for we have learned a great deal about our problem.

We will probably know of several improvements that can be made to the

organization of the program; there is no reason to be afraid to go back to step 1—

it will be much easier to go through the above steps again after a program has

been done already. Moreover, we will quite probably save as much debugging

time later on as it will take to rewrite the program. Some of the best computer
programs ever written owe much of their success to the fact that at about this

stage all the work was unintentionally lost and the authors had to begin again.

On the other hand, there is probably never a point when a complex com¬

puter program cannot be improved somehow, so steps 1 and 2 should not be

repeated indefinitely; see the further discussion in Chapter 9. When signi¬

ficant improvements can clearly be made, it is well worth the additional time

required to start over, but eventually a point of diminishing returns is reached.

1.4.1 SUBROUTINES 189

Step 4 (Debugging). After a final polishing of the program, including per¬

haps the allocation of storage and other last-minute details, it is time to look at

it in still another direction from the three that were used in steps 1, 2, and 3—-

we study the program in the order in which the computer will perform it. This

may be done by hand or, of course, by machine. The author has found it quite

helpful at this point to make use of system routines which trace each instruction

the first two times it is executed; it is important to rethink the ideas underlying

the program and to check that everything is actually taking place as expected.

Debugging is an art that needs much further study, and the way to approach

it is highly dependent on the facilities that are available at each computer

installation. A good start towards effective debugging is often the preparation

of appropriate test data, as discussed in Chapter 9. The most effective de¬

bugging techniques seem to be those which are designed and built into the

program itself—many of today’s best programmers will devote nearly half of

their programs to facilitating the debugging process on the other half; the first

half, which usually consists of fairly straightforward routines that display

relevant information in a readable format, will eventually be thrown away,

but the net result is a surprising gain in productivity.

Another good debugging practice is to keep a record of every mistake that

is made. Even though this will probably be quite embarrassing, such information

is invaluable to anyone doing research on the debugging problem, and it will

also help you learn how to reduce the number of future errors.

EXERCISES

1. [10] State the characteristics of subroutine (5), just as (4) gives the characteristics
of Subroutine 1.3.2M.

2. [10] Suggest code to substitute for (6) without using the JSJ instruction.

3. [Ml 5] Complete the information in (4) by stating exactly what happens to
register J and the comparison indicators as a result of the subroutine; state also what
happens if register II is not positive.

► 4. [21] Write a subroutine that generalizes MAXN by finding the maximum value of
X[l], X[1 + r], X[1 + 2r],. . ., X[n], where r and n are parameters. Give a special entrance
for the case r = 1.

5. [21] Suppose that MIX did not have a J-register. Invent a means for subroutine
linkage which does not use register J, and give an example of your invention by writing
a MAX100 subroutine effectively equivalent to (1). State the characteristics of this
subroutine in a fashion similar to (4).

► 6. [26] Suppose MIX did not have a MOVE operator; write a subroutine entitled
MOVE such that the calling sequence

JMP MOVE

NOP A,1(F)

has an effect just the same as “MOVE A, I (F) ” if the latter were admissible. The only
differences should be the effect on register J and the fact that the time to execute the

subroutine will be somewhat longer.

190 BASIC CONCEPTS 1.4.2

1.4.2. Coroutines

Subroutines are special cases of more general program components, called

“coroutines.” In contrast to the unsymmetric relationship between a main

routine and a< subroutine, there is complete symmetry between coroutines, which
call on each other.

*

To understand the coroutine concept, let us consider another way of thinking

about subroutines. The viewpoint adopted in the previous section was that a

subroutine merely was an extension of the computer hardware, introduced to

save lines of coding. This may be true, but another point of view is possible:

We may consider the main program and the subroutine as a team of programs,
with each member of the team having a certain job to do. The main program,

in the course of doing its job, will activate the subprogram; the subprogram

performs its own function and then activates the main program. We might

stretch our imagination to believe that, from the subroutine’s point of view,

when it exits it is calling the main routine; the main routine continues to perform

its duty, then “exits” to the subroutine. The subroutine acts, then calls the
main routine again.

This somewhat far-fetched philosophy actually takes place with coroutines,
when it is impossible to distinguish which is a subroutine of the other. Suppose

we have coroutines A and B; when programming A, we may think of B as our

subroutine, but when programming B, we may think of A as our subroutine.

That is, in coroutine A, the instruction “JMP B” is used to activate coroutine B.

In coroutine B the instruction “JMP A” is used to activate coroutine A again.

Whenever a coroutine is activated, it resumes execution of its program at the
point where the action was last suspended.

The coroutines A and B might, for example, be two programs which play
chess. We can combine them so that they will play against each other.

With MIX, such linkage between coroutines A and B is done by including the
following four instructions in the program: '

A STJ BX B STJ AX

AX JMP A1 BX JMP B1 ^

This requires four machine cycles for transfer of control each way. Initially

AX and BX aie set to jump to the starting places of each coroutine, A1 and Bl.

Suppose we start up coroutine A first, at location Al. When it executes “JMP B”

from location A2, say, the instruction in location B stores rJ in AX, which then

says “JMP A2+1”. The instruction in BX gets us to location Bl, and after co¬

routine B begins its execution, it will eventually get to an instruction “JMP A”

in location B2, say. We store rJ in BX and jump to location A2+1, continuing the

execution of coroutine A until it again jumps to B, which stores J in AX and jumps
to B2+1, etc.

The essential difference between routine-subroutine and coroutine-coroutine
linkage, as can be seen by studying the example above, is that a subroutine is

always initiated at its beginning, i.e., at a fixed place, while the main routine or

a coroutine is always initiated at the place following where it last terminated.

1.4.2 COROUTINES 191

Coroutines arise most naturally in practice when they are connected with

algorithms for input and output. For example, suppose it is the duty of co¬

routine A to read cards and to perform some transformation on the input, reduc¬

ing it to a sequence of items. Another coroutine, which we will call B, does

further processing of these items, and prints the answers; B will periodically call

for the successive input items found by A. Thus, coroutine B jumps to A whenever

it wants the next input item, and coroutine A jumps to B whenever an input item

has been found. The reader may say, “Well, B is the main program and A is

merely a subroutine for doing the input.” This, however, becomes less true when

the process A is very complicated; indeed, we can imagine A as the main routine

and B as a subroutine for doing the output, and the above description remains

valid. The usefulness of the coroutine idea emerges midway between these two

extremes, when both A and B are complicated and each one calls the other in

numerous places. It is rather difficult to find short, simple examples of coroutines

which illustrate the importance of the idea; the most useful coroutine applica¬

tions are generally quite lengthy.
In order to study coroutines in action, let us consider a “contrived” example.

Suppose we want to write a program that translates one code into another. The

input code to be translated is a sequence of alphameric characters terminated

by a period, e.g.,
A2B5E3426FG0ZYW3210PQ89R. (2)

This has been punched onto cards; blank columns appearing on these cards

are to be ignored. The input is to be understood as follows, from left to right:

If the next character is a digit (i.e., 0, 1, . . . , 9), say n, it indicates (n + 1)

repetitions of the following character, whether the following character is a digit

or not. A nondigit simply denotes itself. The output of our program is to

consist of the sequence indicated in this manner and separated into groups of

three characters each (where the last group may have less than three characters).

For example, (2) should be translated by our program into

ABB BEE EEE E44 446 66F GZY W22 220 OPQ 999 999 999 R. (3)

Note that 3426F does not mean 3427 repetitions of the letter F; it means 4 fours

and 3 sixes followed by F. Our program is to punch the output onto cards, with

sixteen groups of three on each card.
To accomplish this translation, we will write two coroutines and a sub¬

routine. The subroutine, called NEXTCHAR, is designed to successively find

nonblank characters of input, and to put the next character into register A:

01 * SUBROUTINE FOR CHARACTER INPUT

02 READER EQU 16 Unit number of card reader

03 INPUT ORIG *+16 Place for input cards

04- NEXTCHAR STJ 9F Entrance to subroutine

os JXNZ 3F Initially rX = 0

06 1H J6N 2F Initially rI6 = 0

07 IN INPUT(READER) Read next card.

192 BASIC CONCEPTS

08 JBUS *(READER) Wait for completion.
09 ENN6 16 Let rI6 point to first word.
10 2H LDX INPUT+16,6 Get next word of input.
11 INC6 1 Advance pointer.
12 3H * ENTA 0

13 SLAX 1 Next character —> rA.
n 9H JANZ * Skip blanks.
15 JMP NEXTCHAR+1 1

This subroutine has the following characteristics:

Calling sequence: JMP NEXT CHAR.

Entry conditions: rI6 points to next word, or rI6 = 0 indicating that a

new card must be read; rX — characters yet to
be used.

Exit conditions: rA = next nonblank character of input; rX, rI6 set

for next entry to NEXTCHAR.

Our first coroutine, called IN, finds the characters of the input code with the
proper replication:

16 * FIRST COROUTINE
17 2H INCA 30 Nondigit found
18 JMP OUT Send it to OUT coroutine.
19 INI JMP NEXTCHAR Get character.
20 DECA 30
21 JAN 2B Is it a letter?
22 CMPA =10=
23 JGE 2B Is it a special character?
24 STA *+1(0:2) Digit n found
25 ENT 5 * rI5 <— n.
26 JMP NEXTCHAR Get next character.
27 JMP OUT Send it to OUT coroutine.
28 DEC5 1 Decrease n by 1.
29 J5NN *-2 Repeat if necessary.
30 JMP INI Begin new cycle. |

(Recall that in Mix’s character code, the digits 0-9 have codes 30-39.) This
coroutine has the following characteristics:

Calling sequence:

Exit conditions

(when jumping to OUT):

Entry conditions (upon
return):

JMP IN.

rA — next character of input with proper

replication; rI4 unchanged from its
value at entry.

rA, rX, rI5, rI6 should be unchanged from

their values at the last exit.

1.4.2 COROUTINES 193

The other coroutine, called OUT, puts the code into three-digit groups and

punches the cards:

31 * SECOND COROUTINE

32 ALF Constant used for blanking

33 OUTPUT ORIG *+16 Buffer area for answers

34 PUNCH EQU 17 Unit number for card punch

35 0UT1 ENT4 -16 Start new output card.

36 ENT1 OUTPUT

37 MOVE -1,1(16) Set output area to blanks.

38 1H JMP IN Get next translated character.

39 STA OUTPUT+16,4(1:1) Store in output.

40 CMPA PERIOD Is it “.”?

41 JE 9F

42 JMP IN If not, get another character.

43 STA OUTPUT+16,4(2:2) Store it.

44 CMPA PERIOD Is it “.”?

45 JE 9F

46 JMP IN If not, get another character.

47 STA OUTPUT+16,4(3:3) Store it.

48 CMPA PERIOD Is it “.”?

49 JE 9F

50 INC4 1 Move to next word in output.

51 J4N IB End of card?

52 9H OUT OUTPUT(PUNCH) If so, punch.

53 JBUS *(PUNCH) Wait for completion.

54 JNE 0UT1 Return for more, unless

55 HLT was sensed.

56 PERIOD ALF uuuli. 1

This coroutine has the following characteristics:

Calling sequence:

Exit conditions
(when jumping to IN):

Entry conditions (upon

return):

JMP OUT.

rA, rX, rI5, rI6 unchanged from their value

at entry; rll possibly affected; pre¬

vious character recorded in output.

rA = next character of input with proper

replication; rI4 unchanged from its

value at the last exit.

To complete the program, we need to write the coroutine linkage [cf. (1)]

and to provide the proper initialization. Initialization of coroutines tends to be

a little tricky, although not really difficult.

57 * INITIALIZATION AND LINKAGE

58 START ENT6 0

59 ENTX 0

60 JMP 0UT1

Initialize rI6 for NEXTCHAR.

Initialize rX for NEXTCHAR.

Start with OUT (cf. exercise 2).

194 BASIC CONCEPTS 1.4.2

61 OUT

62 OUTX

68 IN

6^ INX

65

STJ INX

JMP OUT1

STJ OUTX

JMP INI

Coroutine linkage

END START
\

I

This completes the program. The reader should study it carefully, noting in

particular how each coroutine can be written independently as though the other

coroutine were its subroutine.

The entry and exit conditions for the IN and OUT coroutines mesh perfectly

in the above program. In general, we would not be so fortunate, and the co¬

routine linkage would also include loading and storing appropriate registers.

For example, if OUT would destroy the contents of register A, the coroutine
linkage would become

□UT STJ INX

STA HOLDA

□UTX JMP 0UT1

IN STJ OUTX

LDA HOLDA

INX JMP INI

Store A when leaving IN.

(4)

Restore A when leaving OUT.

I

There is an important relation between coroutines and multiple-pass

algorithms. For example, the translation process we have just described could

have been done in two distinct passes: We could first have done just the IN

coroutine, applying it to the entire input and writing each character with the

proper amount of replication onto magnetic tape. After this was finished, we

could rewind the tape and then do just the OUT coroutine, taking the characters

from tape in groups of three. This would be called a “two-pass” process. (Intu¬

itively, a “pass” denotes a complete scan of the input. This definition is not

precise, and in many algorithms the number of passes taken is not at all clear;

but the intuitive concept of “pass” is useful in spite of its vagueness.)

Figure 22(a) illustrates a four-pass process. Quite often we will find that

the same process can be done in just one pass, as shown in part (b) of the figure,

if we substitute four coroutines A, B, C, D for the respective passes A, B, C, D.

Coroutine A will jump to B when pass A would have written an item of output

on tape 1; coroutine B will jump to A when pass B would have read an item of

input from tape 1, and B will jump to C when pass B would have written an item
of output on tape 2; etc.

Conversely, a process done by n coroutines can often be transformed into

an n-pass process. Due to this correspondence it is worth while comparing
multipass algorithms to one-pass algorithms:

a) Psychological difference. A multipass algorithm is generally easier to

create and to understand than a one-pass algorithm for the same problem.

1.4,2 COROUTINES 195

(a) (b)

Fig. 22. Passes: (a) a four-pass algorithm, and (b) a one-pass algorithm.

Breaking a process down into a sequence of small steps which happen one after

the other is easier to comprehend than considering an involved process in which

all of these things go on simultaneously.

Also, if a very large problem is being done and if many people are to co¬

operate in producing the computer program, a multipass algorithm provides a

natural way to divide up the job.

These advantages of a multipass algorithm are present in coroutines as well,

since each coroutine can be written essentially separate from the others, and the

linkage makes an apparently multipass algorithm into a single-pass process.

b) Time difference. The time required to pack, write, read, and unpack

intermediate data between passes (e.g., the information in Fig. 22 on tapes)

is avoided in a one-pass algorithm. For this reason, a one-pass algorithm will

be faster.
c) Space difference. The one-pass algorithm requires space to hold all the

programs in memory simultaneously, while a multipass algorithm requires space

for only one at a time. This may affect the speed, even to a greater extent than

indicated in statement (b). For example, many computers have a limited amount

of “fast memory” and a larger amount of slower memory; if each pass can fit

into the fast memory, the result will be considerably faster than if we use co¬

routines in a single pass (since the use of coroutines would presumably force

most of the program to appear in the slower memory).

Occasionally, there is a need to design algorithms for several computer con¬

figurations at once, some of which have larger memory capacity than others.

In this case it would be possible to write the program in terms of coroutines, and

to let the memory size govern the number of passes: load together as many

coroutines as feasible, and supply input or output subroutines for the missing

links.

196 BASIC CONCEPTS 1.4.2

Although this relationship between coroutines and passes is important, we

should keep in mind that not all coroutine applications can be split into multipass

algorithms. For example, if coroutine B gets input from A and also sends back

crucial information to A, it cannot be converted into pass A followed by pass B.

Conversely, it is clear that not all multipass algorithms can be converted

to coroutines. Some algorithms are inherently multipass; for example, the

second pass may require cumulative information from the first pass (like the

total number of occurrences of a certain word in the input). There is an old

joke worth noting in this regard:

Little old lady, riding a bus. “Little boy, can you tell me how I can get off at

Pasadena Street? ”

Little boy. “Just watch me, and get off two stops before I do. ”

(The joke is that the little boy gives a two-pass algorithm.)

So much for multipass algorithms. We will see further examples of co¬

routines in numerous places throughout this book, for example, as part of the

buffering schemes in Section 1.4.4. Coroutines also play an important role in

discrete system simulation; see Section 2.2.5. The important idea of replicated

coroutines is discussed in Chapter 8, and some interesting applications of this
idea may be found in Chapter 10.

EXERCISES

1. [10] Explain why short, simple examples of coroutines are hard for the author of
a textbook to find.

► 2. [20] The program in the text starts up the OUT coroutine first. What would

happen if IN were the first to be executed, i.e., if line 60 were changed from “JMP OUTl”
to “JMP INI”?

3. [20] True or false: The three “CMPA PERIOD” instructions within OUT may all

be omitted, and the program would still work. (Look carefully.)

4. [20] Show how coroutine linkage analogous to (1) can be given for several real-life
computers you are familiar with.

5. [15] Suppose that both coroutines IN and OUT would want the contents of register

A untouched between exit and entry; thus, assume that wherever the instruction

“JMP IN” occurs within OUT, the contents of register A are to be unchanged when

control returns to the next line, and make a similar assumption about “JMP OUT”
within IN. What coroutine linkage is needed? [Cf. (4).]

► 6. [22] Give coroutine linkage analogous to (1) for the case of three coroutines,

A, B, C, each of which can jump to either of the other two. (Whenever a coroutine is
activated, it begins where it last left off.)

► 7. [30] Write a program which reverses the translation done by the program in the

text, i.e., it would convert cards punched like (3) into cards punched like (2). The

output should be as short a string of characters as possible, so that the zero before the
Z in (2) would not really be produced from (3).

1.4.3 INTERPRETIVE ROUTINES 197

1.4.3. Interpretive Routines

In this section we will investigate a common type of computer program, the

interpretive routine (which will be called interpreter for short). An interpretive

routine is a computer program that performs the instructions of another pro¬

gram, where the other program is written in some machine-like language. By a

machine-like language, we mean some way of representing instructions having,

say, operation codes, addresses, etc. (This definition, like most definitions of

today’s computer terms, is not precise, nor should it be; it is impossible to draw

the line exactly and to say just which programs are interpreters and which

are not.)

Historically, the first interpreters were built around machine-like languages

designed especially for simple programming; it was to be a language easier to use

than machine language. The rise of programming languages has gradually made

this function of interpretive routines obsolete, but interpreters are by no means

dying out. On the contrary, their use has been growing, to the extent that

effective use of interpretive routines may be regarded as one of the essential

characteristics of modern programming. The new applications of interpreters

are made chiefly for the following reasons:

a) to represent a fairly complicated sequence of decisions and actions in a

compact, efficient manner, and

b) to communicate between passes of a multipass program.

In these cases, special purpose machine-like languages are developed for use

in a particular program, and often the machine is the only individual who ever

writes “programs” in this language. (Today’s expert programmers are also good

machine designers, as they not only create the interpretive routine, but also

define the virtual machine whose language is to be interpreted.)

The interpretive technique has the further advantage of being relatively

machine-independent—only the interpreter must be rewritten when changing

machines. Furthermore, helpful debugging aids can readily be built in to an

interpretive system.
Examples of interpreters of type (a) appear in several places later in this

book, e.g., the recursive interpreter in Chapter 8, the “Parsing Machine”

interpreter in Chapter 10, and the XMIX interpreter in Chapter 12.

A typical example is a program in which a great many special cases arise,

all similar, but having no really simple pattern. For example, consider writing a

compiler (cf. Chapter 12) in which we would like to generate efficient object

programs for adding two quantities together. There might be ten classes of

quantities (e.g., constants, simple variables, temp storages, subscripted variables,

a quantity in an accumulator or index register, fixed and floating point, etc.) and

the combination of all pairs yields 100 different cases. A long program would

be required to do the proper thing in each case; the interpretive solution to this

problem is to make up a language whose “instructions” fit in one byte. Then

keep a table of 100 “programs” in this language, where each program consists

198 BASIC CONCEPTS 1.4.3

of one to five instructions so it fits in a single word. The idea is merely to pick

out the appropriate table entry and to perform the program found there. This

technique is simple and efficient.

An example of an interpreter of type (b) appears in the article “Computer-

Drawn Flowcharts” by D. E. Knuth, CACM 6 (1963), 555-563. In a multipass

program, the earlier passes must transmit information to the later passes. This

information is often transmitted most efficiently in a somewhat machine-like

language, as a set of instructions for the later pass; the later pass is then nothing

but a special purpose interpretive routine, and the earlier pass is a special

purpose “compiler.” This philosophy of multipass operation may be charac¬

terized as telling the later pass what to do, whenever possible, rather than

simply presenting it with a lot of facts and asking it to figure out what to do.

Another example of an interpreter of type (b) occurs in connection with

compilers for special languages. If the language includes many features which

are not easily done on the machine except by subroutine, the resulting object

programs will be very long sequences of subroutine calls. This would happen,

for example, if the language were concerned primarily with multiple-precision

arithmetic. In such a case the object program would be considerably shorter

if it were expressed in an interpretive language. An illustration of this approach

may be found in Chapter 12, where the TROL language and its interpreter are

discussed. See also the book ALGOL 60 Implementation, by B. Randell and
L. J. Russell (New York: Academic Press, 1964), which describes a compiler to

translate from ALGOL 60 into an interpretive language, and which also describes

the interpreter for that language; and see “An ALGOL 60 Compiler,” by

Arthur Evans, Jr., Ann. Rev. Auto. Programming 4 (1964), 87-124, for examples

of interpretive routines used within a compiler. The rise of microprogrammed

machines has made this interpretive approach even more valuable.

There is another way to look at a program written in interpretive language—

it may be regarded as a series of subroutine calls, one after another. Such a

program may in fact be expanded into a long sequence of calls on subroutines,

and, conversely, such a sequence can usually be packed into a coded form which

is readily interpreted. The advantages of interpretive techniques are the com¬

pactness of representation, the machine independence, and the increased
diagnostic capability. An interpreter can often be written so that the amount

of time spent in interpretation of the code itself and branching to the appropriate
routine is negligible.

I.4.3.I. A MIX simulator. When the language presented to an interpretive

routine is the machine language of another computer, the interpreter is often
called a simulator.

In the author’s opinion, entirely too much programmers’ time has been

spent in writing such simulators and entirely too much computer time has been

wasted in using them. The motivation for simulators is simple: A computer

installation buys a new machine and still wants to run programs written for the

old machine (rather than rewriting the programs). However, this usually costs

1.4.3.1 A MIX SIMULATOR 199

more and gives poorer results than if a special task force of programmers were
given temporary employment to do the re-programming. For example, the
author once participated in such a re-programming project, and a serious error
was discovered in the original program which had been in use for several years;
the new program worked at five times the speed of the old, besides giving the
right answers for a change! (Not all simulators are bad; for example, it is
usually advantageous for a computer manufacturer to simulate a new machine
before it has been built, so that software for this machine may be developed as
soon as possible. But this is a very specialized application.) An extreme example
of the inefficient use of computer simulators is the true story of machine A
simulating machine B running a program which simulates machine C! This is
the way to make a large, expensive computer give poorer results than its
cheaper cousin.

In view of all this, why should such a simulator rear its ugly head in this
book? There are two reasons:
a) The simulator we will describe below is a good example of a typical inter¬

pretive routine; the basic techniques employed in interpreters are illustrated
here. It also illustrates the use of subroutines in a moderately long program.
b) We will describe a simulator of the MIX computer, written in (of all

things) the MIX language. This will facilitate the writing of MIX simulators for

most computers, which are similar; the coding of our program intentionally

avoids making heavy use of MIX-oriented features. A MIX simulator will be of

advantage as a teaching aid in conjunction with this book and possibly others.

Computer simulators as described in this section should be distinguished
from discrete system simulators, which are important programs studied in

Section 2.2.5.
Now let us turn to the task of writing a MIX simulator. The numbering of

Mix’s instructions LDA, LD1, . . ., LDX and other similar ones suggests that we
keep the simulated contents of these registers in consecutive locations, as follows:

AREG, I1REG, I2REG, I3REG, I4REG, I5REG, I6REG, XREG, JREG, ZERO.

Here ZERO is a “register” filled with zeros at all times. The position of JREG

and ZERO is suggested by the operation code numbers of the instructions STJ

and STZ.
In keeping with our philosophy of writing the simulator as though it were

not done with MIX, we will treat the signs as independent parts of a word. For
example, many computers cannot represent the number “mihus zero”, while
MIX definitely can; therefore we will always treat signs specially in this program.
The locations AREG, I1REG, . . . , ZERO will always contain the absolute values of
the corresponding register contents; another set of locations in our program,
called SIGNA, SIGNl, . . . , SIGNZ will contain +1 or —1, depending on whether
the sign of the corresponding register is plus or minus.

An interpretive routine generally has a central control section which is called
into action between interpreted instructions. In our case, the program transfers
to location CYCLE at the end of each simulated instruction.

200 BASIC CONCEPTS 1.4.3.1

The control routine does the things common to all instructions, unpacks the

instruction into its various parts, and puts the parts into convenient places for

later use. The program below sets

rI6 = location of the next instruction;

rI5 — M (address of present instruction, plus indexing);

rI4 = operation code of present instruction;

rI3 = F-field of present instruction;

INST = present instruction.

Program M.

01 * MIX SIMULATOR

02 ORIG 3500

03 BEGIN STZ TIME(0:2)

04 STZ 0VT0G

05 STZ C0MPI

06 ENT6 0

07 CYCLE LDA CLOCK
08 TIME INCA 0
09 STA CLOCK
10 LDA 0,6
11 STA INST
12 INC6 1
13 LDX INST(1:2)

14 SLAX 5
15 STA M
16 LD2 INST(3:3)
17 J2Z IF
18 DEC2 6
19 J2P INDEXERROR
20 LDA SIGN6.2
21 LDX I6REG,2
22 SLAX 5
23 ADD M

n CMPA ZERO(1:3)
26 JNE ADDRERR0R
26 STA M
27 1H LD3 INST(4:4)
28 LD5 M
29 LD4 INST(5:5)
SO DEC4 63
31 J4P 0PERR0R
32 LDA OPTABLE,4(4:4)
S3 STA TIME(0:2)
34 LD2 OPTABLE,4(0:2)
35 JN0V 0,2
36 JMP 0,2

(Simulated memory is in locations 0000 up.)

0VT0G is the simulated overflow toggle.
C0MPI, ±1 or 0, is comparison indicator.
Take first instruction from location zero.
Beginning of control routine
This address is set to execution time

of previous instruction, see line 33.
Instruction to simulate —» rA.

Advance location counter.
Get absolute value of address.
Attach sign to address.

Examine index field.
Is it zero?

Illegal index specified?
Get sign of index register.
Get magnitude of index register.
Attach sign.
Signed addition for indexing.
Is result too large?

Address has been found.
F-field —> rI3.
M —* rI5.
C-field —■> rI4.

Is op code >64?
Get execution time from table.

Get address of proper routine.
Jump to operator.

(Protect against overflows.) |

The reader’s attention is called particularly to lines 34-36: a “switching

table ’ of the 64 operators is part of the simulator, allowing it to jump rapidly

1.4.3.1 A MIX SIMULATOR 201

to the correct routine for the current instruction. This is an important time¬

saving technique (cf. exercise 1.3.2-9).

The 64-word switching table, called OPTABLE, gives also the execution time

for the various operators; the following lines indicate the contents of that table:

87 NOP CYCLE(1)

88 ADD ADD(2)

89 SUB SUB(2)

40 MUL MUL(10)

41 DIV DIV(12)

42 HLT SPEC(1)

AS SLA SHIFT(2)

AA MOVE MOVE(1)

45 LDA LOAD(2)

46 LD1 LOAD,1(2)

51 LD6 LOAD,1(2)

52 LDX LOAD(2)

58 LDAN LOADN(2)

54 LD1N LOADN,1(2)

60 LDXN LOADN(2)

61 STA STORE(2)

69 STJ STORE(2)

70 STZ STORE(2)

71 JBUS JBUS(1)

72 IOC I0C(1)

73 IN IN (1)

74 OUT OUT(1)

75 JRED JRED(1)

76 JMP JUMP(1)

77 JAP REGJUMP(1)

84 JXP REGJUMP(1)

85 INCA ADDROP(1)

86 INC1 ADDROP,1(1)

92 INCX ADDROP(1)

93 CMPA COMPARE(2)

100 OPTABLE CMPX COMPARE(2)

(The entries for operators LDf, LDfN, and INCf

Operation code table;
typical entry is
“OP address (time)”

LI1C 11C1U -.. _

that the size of the quantity within the corresponding index register must be

checked after simulating these operations.)

202 BASIC CONCEPTS 1.4.3.1

The next part of our simulator program merely lists the locations used to

contain the contents of the simulated registers:

101 AREG CON 0

102 I1REG CON 0

103 I2REG CON \>
104. I3REG CON 0

105 I4REG CON 0

106 I5REG CON 0

107 I6REG CON 0

108 XREG CON 0

109 JREG CON 0

110 ZERO CON 0

111 SIGNA CON 1

112 SIGN1 CON 1

113 SIGN2 CON 1

114 SIGN3 CON 1

115 SIGN4 CON 1

116 SIGN5 CON 1

117 SIGN6 CON 1

118 SIGNX CON 1

119 SIGNJ CON 1

120 SIGNZ CON 1

121 INST CON 0

122 COMPI CON 0

123 0VT0G CON 0

124 CLOCK CON 0

Magnitude of A-register

Magnitude of index registers

Magnitude of X-register

Magnitude of J-register

Constant zero, for “STZ”

Sign of A-register

Sign of index registers

Sign of X-register

Sign of J-register

Sign stored in “STZ”

Instruction being simulated

Comparison indicator

Overflow toggle

Simulated execution time |

Now we will consider the various subroutines used by the simulator. First
comes the MEMORY subroutine:

Calling sequence: JMP MEMORY.

Entry conditions: rI5 = valid memory address (otherwise subroutine
will jump to MEMERROR).

Exit conditions: rX = sign of word in memory location (rI5); rA =

magnitude of word in memory location (rI5).

125 * SUBROUTINES
126 MEMORY STJ 9F Memory fetch subroutine
127 J5N MEMERROR
128 CMP5 =BEGIN= Simulated memory is in
129 JGE MEMERROR locations 0000 to BEGIN.
130 LDX 0,5
131 ENTA 1
132 SRAX 5 Sign of word —► rX.
133 LDA 0,5(1:5) Magnitude of word —> rA.
134 9H JMP * Exit. |

1.43.1 A MIX SIMULATOR 203

The FCHECK subroutine processes a partial field specification, making sure it

has the form 8L+R with L < R < 5.

Calling sequence: JMP FCHECK.

Entry conditions: rI3 is valid field specification (otherwise subroutine

will jump to FERROR).

Exit conditions: rA = rll = L, rX = R.

185 FCHECK STJ 9F Field check subroutine
136 ENTA 0
187 ENTX 0,3 rAX <— field specification.
188 DIV =8= Separate into L and R.
139 CMPX =5= Is R > 5?
140 JG FERROR

w STX R

148 STA L

148 LD1 L rll «- L.

144 CMPA R

145 9H JLE * Exit unless L > R.

146 JMP FERROR 1

The last subroutine, GETV, finds the quantity V (i.e., the appropriate field of

location M) used in various MIX operators, as defined in Section 1.3.1.

Calling sequence:

Entry conditions:

Exit conditions:

Second entrance:

JMP GETV.

rI5 = valid memory address; rI3 = valid field.

rA = magnitude of V; rX = sign of V; rll = L;

rI2 = —R.

JMP GETAV, used only in comparison operators to

extract a field from a register.

147 GETAV STJ 9F Special entrance, see line 300.

148 JMP IF

149 GETV STJ 9F Subroutine to find V

150 JMP FCHECK Process field; L —> rll.

151 JMP MEMORY rA <— memory magnitude,
rX <— sign.

152 1H J1Z 2F Is sign part of the field?

153 ENTX 1 If not, set sign positive.

154 SLA -1.1 Extract off bytes to left

155 SRA -1.1 of the field.

156 2H LD2N R Shift right into

157 SRA 5,2 proper position.

158 9H JMP * Exit. |

Now we come to the routines for the individual operators. These routines

are given here for completeness, but the reader should study only a few of them

204 BASIC CONCEPTS 1.4.3.1

unless he is exceptionally ambitious; those for SUB and JUMP are recommended

as typical examples for study. Note how routines for similar operations are

neatly combined, and note how the JUMP routine uses another switching table

to govern the type of jump.

159 * INDIVIDUAL OPERATORS

160 ADD JMP GETV

161 ENT1 0

162 JMP INC

168 SUB JMP GETV

164. ENT1 0

165 JMP DEC

166 *

167 MUL JMP GETV
168 CMPX SIGNA
169 ENTX 1

170 JE *+2
171 ENNX 1
172 STX SIGNA
178 STX SIGNX

174 MUL AREG
175 JMP STOREAX
176 *

177 DIV LDA SIGNA
178 STA SIGNX
179 JMP GETV
180 CMPX SIGNA
181 ENTX 1
182 JE *+2
183 ENNX 1

184 STX SIGNA
185 STA TEMP
186 LDA AREG
187 LDX XREG
188 DIV TEMP
189 STOREAX STA AREG
190 STX XREG
191 OVCHECK JNOV CYCLE
192 ENTX 1
193 STX 0VT0G
194 JMP CYCLE
195 *

196 LOADN JMP GETV
197 ENT1 47,4
198 LOADN1 STX TEMP
199 LDXN TEMP
200 JMP L0AD1
201 LOAD JMP GETV

Get value of V in rA, rX.
Let rll indicate the A register.
Go to “increase” routine.
Get value of V in rA, rX.
Let rll indicate the A register.
Go to “decrease” routine.

Get value of V in rA, rX.
Are signs the same?

Set rX to result sign.

Put it in both simulated registers.

Multiply the operands.
Store the magnitudes.

Set sign of remainder.

Get value of V in rA, rX.
Are signs the same?

Set rX to result sign.

Put it in simulated rA.

Divide the operands.

Store the magnitudes.

Did overflow just occur?
If so, set simulated

overflow toggle on.
Return to control routine.

Get value of V in rA, rX.
rll <— C-16; indicates register.
Negate sign.

Change LOADN to LOAD.

Get value of V in rA, rX.

A MIX SIMULATOR 205 1.4.3.1

202 ENT1 55,4
203 L0AD1 STA AREG.l

204 STX SIGNA.l
205 JMP SIZECHECK
206 *

207 STORE JMP FCHECK
208 JMP MEMORY
209 J1P IF

210 ENT1 1

211 LDX SIGNA+39,4
212 1H LD2N R

213 SRAX 5,2
214 LDA AREG+39.4
215 SLAX 5,2

216 ENN2 0,1

217 SRAX 6,2

218 LDA 0,5

219 SRA 6,2

220 SRAX -1.1
221 STX 0,5

222 JMP CYCLE

223 *

224 JUMP DEC3 9

225 J3P FERROR

226 LDA COMPI

227 JMP JTABLE,3

228 JMP ST6 JREG

229 JMP JSJ

230 JMP JOV

231 JMP JNOV

232 JMP LS

233 JMP EQ

234 JMP GR

235 JMP GE

236 JMP NE

237 JTABLE JMP LE

238 JOV LDX 0VT0G

239 JMP *+3

240 JNOV LDX 0VT0G

241 DECX 1

242 STZ 0VT0G

243 JXNZ JMP

244 JMP CYCLE

245 LE JAZ JMP

246 LS JAN JMP

247 JMP CYCLE

248 NE JAN JMP

249 GR JAP JMP

rll <— C-8, indicates register.
Store magnitude.
Store sign.
Check if magnitude too large,

rll <- L.
Get contents of memory location.
Is the sign part of the field?
If so, change L to 1

and “store” sign of register.
rI2 <-R.
Save area to right of field.
Insert register in field.

rI2 ♦-L.

Restore area to left of field.

Attach the sign.
Store in memory.
Return to control routine.

Jump operators
Is F too large?
Comparison indicator —> rA.
Jump to appropriate routine.
Set simulated J-register.

Jump table
Check whether to jump on

overflow.

Get complement of overflow toggle.
Shut off overflow toggle.
Jump.
Don’t jump.
Jump if rA zero or negative.
Jump if rA negative.
No jump
Jump if rA negative or positive.
Jump if rA positive.

206

250
251
252
258
254.
255
256
257
258
259
260
261
262
263

264
265
266
267
268
269
270
271
272
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

294
295
296
297

BASIC CONCEPTS

JMP CYCLE

GE JAP JMP

EQ JAZ JMP

JMP CYCLE

JSJ JMP MEMORY

ENT6 \0,5
JMP CYCLE

*

REGJUMP LDA AREG+23,4

JAZ *+2

LDA SIGNA+23,4

DEC3 5

J3NP JTABLE,3

JMP FERROR
*

ADDROP DEC3 3

J3P FERROR

ENTX 0,5

JXNZ *+2
LDX INST

ENTA 1

SRAX 5

LDA M (1:5)

ENT1 15,4

JMP IF,3
JMP INC

JMP DEC
JMP L0AD1

1H JMP L0ADN1
DEC STX TEMP

LDXN TEMP
INC CMPX SIGNA.l

JE IF

SUB AREG,1
JANP 2F

STX SIGNA.l
JMP 2F

1H ADD AREG,1
2H STA AREG,1(1:5)
SIZECHECK LD1 OPTABLE,4(3

J1Z OVCHECK
CMPA ZERO(1:3)
JE CYCLE
JMP SIZEERROR

*

COMPARE JMP GETV
SRAX 5

STX V

1.4.3.1

No jump
Jump if rA positive or zero.
Jump if rA zero.
No jump
Check for valid memory address.
Simulate a jump.
Return to main control routine.

Register jumps
Is register zero?
If not, put sign into rA.

Change to a conditional JMP unless
F-specification too large.

Address transfer operators
Is F too large?

Find sign of M.

rX = sign of M.
rA = magnitude of M.
rll indicates the register.
Four-way jump.
Increase.
Decrease.
Enter.
Enter negative.
Reverse sign.
Change to “increase.”
Addition routine
Are signs the same?
No; subtract magnitudes.
Sign change in register?
Change register sign.

Add magnitudes.
Store magnitude of result.
Have we just loaded an

index register?
If so, make sure result

fits in two bytes.

Get value of V in rA, rX.
Attach sign.

1.4.3.1 A MIX SIMULATOR 207

298 LDA XREG,4 Get field of appropriate register.

299 LDX SIGNX,4

300 JMP GETAV

301 SR AX 5 Attach sign.

302 CMPX V Compare (note that —0 = +0).

SOS STZ COMPI Set comparison indicator to

304 JE CYCLE either zero, plus one,

305 ENTA 1 or minus one.

306 JG *+2

307 ENNA 1

SOS STA COMPI

309 JMP CYCLE Return to control routine.

310 *
311 END BEGIN 1

The above code adheres to a rather subtle rule that was stated in Section

1.3.1: the instruction “ENTA -0” loads minus zero into register A, as does

“ENTA -5,1” when index register 1 contains +5. In general, when M is zero,

ENTA loads the sign of the instruction and ENNA loads the opposite sign. The

need to specify this condition was overlooked when the author prepared his

first draft of Section 1.3.1; such questions usually come to light only when a

computer program is being written to follow the rules.

In spite of its length, the above program is incomplete in several respects:

a) It does not recognize floating-point operations.

b) The coding for operation codes 5, 6, and 7 has been left as an exercise.

c) The coding for input-output operators has been left as an exercise.

d) No provision has been made for loading simulated programs (see exercise 4).

e) The error routines

INDEXERROR, ADDRERROR, OPERROR, MEMERROR, FERROR, SIZEERROR

have not been included; these are for error conditions which are detected in

the simulated program.

f) No provision for diagnostic facilities (e.g., printouts of registers as the

program is being executed) has been included.

EXERCISES

1. [14] Study all the uses of the FCHECK subroutine in the simulator program. Can

you suggest a better way to organize the subroutines in this program? (Cf. step 3 in

the discussion at the end of Section 1.4.1.)

2. [20] Write the SHIFT routine, which is missing from the program in the text

(operation code 6).

► 3. [22] Write the MOVE routine, which is missing from the program in the text

(operation code 7).

4. [14] Change the program in the text so that it begins as though Mix’s G0-

button” had been pushed (cf. exercise 1.3.1-26).

208 BASIC CONCEPTS 1.4.3.1

► 5. [24] Determine the time required to simulate the LDA and ENTA operators, com¬

pared with the actual time for MIX to execute these operators directly.

6. [28] Write programs for the input-output operators JBUS, IOC, IN, OUT, and

JRED, which are missing from the program in the text, allowing only units 16 and 18.

Assume that a card read or a skip to new page takes 10000a and a print takes 7500w.

(Note: Experience shows that the JBUS instruction should be simulated by treating

“JBUS *” as a special case; otherwise the simulator seems to stop!)

► 7. [32] Modify the solutions of the previous exercise in such a way that execution

of IN or OUT does not cause I/O transmission immediately; the transmission should

take place after approximately half of the time required by the simulated devices has

elapsed. (This will prevent a frequent student error of improperly using the IN and
OUT operators.)

8. [20] True or false: Whenever line 10 of the simulator program is executed, wre
have 0 < rI6 < BEGIN.

*1.4.3.2. Trace routines. When a machine is being simulated on itself (as

MIX was simulated on MIX in the previous section) we have the special case of a

simulator called a trace or monitor routine. Such programs are occasionally used

to help in debugging, since they print out a step-by-step account of how the
simulated program behaves.

The program in the preceding section was written as though another com¬

puter were simulating MIX. A quite different approach is used for trace pro¬

grams; we generally let registers represent themselves and let the operators
perform themselves.

In a trace program we usually contrive to let the machine execute most of

the instructions; the exception is a jump or conditional jump instruction which

must not be executed without modification (for the trace program would lose

control). Each machine also has its own idiosyncrasies which make tracing
more of a challenge; in Mix’s case, this is the J-register.

The trace routine given below is initiated when the main program jumps to

location ENTER with register J set to the address for starting to trace, register X

set to the address where tracing should stop, The program is interesting and
merits careful study.

01 * TRACE ROUTINE
02 ENTER STX TEST(0:2)
03 STX LEAVEX(0:2)
04 STA AREG
05 STJ JREG
06 LDA JREG(0:2)
07 CYCLE STA PREG(0:2)
08 TEST DECA *

09 JAZ LEAVE
10 PREG LDA *

11 STA INST
12 SRA 2
13 STA INST1(0:3)

Set exit location.

Save contents of rA.

Save contents of rj.

Get start location for trace.

Store location of next instruction.

Is it the exit location?

Get next instruction.

Copy it.

Store address and index parts.

1.4.3.2

n LDA INST(5:5)

15 DECA 38

16 JANN IF

17 INCA 6

18 JANZ 2F

19 LDA INST(0:4)

20 STA *+2(0:4)

21 JREG LDA *
22 STA *

23 JMP INCP

n 2H DECA 2
25 JANZ 2F

26 JMP 3F

27 1H DECA 9

28 JAP 2F

29 3H LDA 8F(0:3)

30 STA INST(0:3)

31 2H LDA AREG

32 *

33 *

34 INST NOP *

35 STA AREG

36 INCP LDA PREG(0:2)

37 INCA 1

38 JMP CYCLE

39 8H JSJ JUMP

40 JUMP LDA 8B(4:5)

41 SUB INST(4:5)

42 JAZ *+4

43 LDA PREG(0:2)

44 INCA 1

45 STA JREG(0:2)

46 INST1 ENTA *

47 JMP CYCLE

48 LEAVE LDA AREG

49 LEAVEX JMP *

50 AREG CON 0

TRACE ROUTINES 209

Get operation code, C.

Is C > 38(JRED)?

IsC^ 32?
C = 32 (STJ).
Changed to STA.
External rJ contents —► rA.

C ^ 34?
C = 34 (JBUS).

Test for jump instructions.
C > 48?
Jump instruction detected;

its address is changed to “JUMP”.

Restore register A.
All registers except J now have proper
values with respect to the external program.
The instruction is executed.
Store register A again.
Move to next instruction.

Constant for lines 29, 40
A jump has occurred.
Was it JSJ?

If not, update simulated
J-register.

Move to this instruction.
Restore A-register.
Stop tracing.
External rA contents |

The following things should be noted about trace routines in general and

this one in particular:
1) We have presented only the most interesting part of a trace program,

the part that retains control while executing another program. For a trace to

be useful, there must also be a routine for writing out the contents of registers,

and this has not been included. Such a routine distracts from the more subtle

features of a trace program, although it certainly is important; the necessary

modifications are left as an exercise (see exercise 2).
2) Space is generally more important than time, i.e., the program should be

written to be as short as possible. This is done so the trace routine can coexist

210 BASIC CONCEPTS 1.4.3.2

with large programs, and the running time is consumed by output anyway.

3) Care was taken to avoid destroying the contents of most registers; in

fact, the program uses only Mix’s A-register. Neither the comparison indicator

nor the overflow toggle are affected by the trace routine. (The less we use, the
less we need to restore.)

4) When a jump to location JUMP occurs, it is not necessary to “STA AREG”,

since rA cannot have changed.

5) After leaving the trace routine, the J-register is not reset properly.
Exercise 1 shows how to remedy this.

6) The program being traced is subject to only three restrictions: (a) It must
not store anything into the locations used by the trace program, (b) It must

not use the output device on which tracing information is being recorded (for

example, JBUS would give an improper indication), (c) The program is executed
at a different rate of speed when tracing.

EXERCISES

1. [22] Modify the trace routine of the text so it restores register J when leaving.
(You may assume that register J is not zero.)

2. [26] Modify the trace routine of the text so that before executing each program
step it writes the following information on tape unit 0.

Word 1, (0:2) field: location.

Word 2: instruction.

Word 3: register A (before execution).

Words 4-9: registers 11-16 (before execution).

Word 10: register X (before execution).

Word 1, (4:5) field: register J (before execution).

Word 1, (3:3) field: 2 if comparison is greater, 1 if equal, 0 if less, plus 8 if over¬
flow is not on.

t

Words 11-100: nine more ten-word groups, in the same format.

3. [10] The previous exercise suggests having the trace program write its output onto
tape. Discuss why this would be preferable to printing directly.

4. [25] What would happen if the trace routine were tracing itself? Specifically

consider the behavior if the two instructions ENTX LEAVEX; JMP *+l were placed
llist. hAfrvrn TT’M'TITD a

'“‘“u 0,111 “e tracing itseil at still slower speed, ad infinitum until
capacity is exceeded.

memory

1.4.4
INPUT AND OUTPUT 211

► 7. [25] Discuss how to write an efficient jump trace routine, which emits much less

output than a normal trace. Instead of displaying the register contents, a jump trace

simply records the jumps that occur. It outputs a sequence of pairs (x\, y\), (X2, y2),

• • • , meaning that the program jumped from location x\ to yi, then (after performing

the instructions in locations 2/1, J/i + 1, ..., £2) it jumped from £2 to 2/2, etc. [From

this information it is possible for a subsequent routine to reconstruct the flow of the

program and to deduce how frequently each instruction was performed.]

1.4.4. Input and Output

Perhaps the most outstanding differences between one computer and the next

are the facilities available for doing input and output, and the computer instruc¬

tions which govern these peripheral devices. We cannot hope to discuss in a

single book all of the problems and techniques that arise in this area, so we will

confine ourselves to a study of typical input-output methods which apply to

most computers. The input-output operators of MIX represent a compromise

between the widely varying facilities available in actual machines; to give an

example of how to think about input-output, let us discuss in this section the
problem of getting the best MIX input-output.

Many computer users feel that input and output are not actually part of

“real programming, ” they are merely things that (unfortunately) must be done

in order to get information in and out of the machine. For this reason, the input

and output facilities of a computer are usually not learned until after all other

features have been examined, and it frequently happens that only a small

fraction of the programmers of a particular machine ever know much about the

details of input and output. This attitude is somewhat natural, because the

input-output facilities of machines have never been especially pretty. How¬

ever, the situation cannot be expected to improve until more people give serious

thought to the subject. We shall see in this section and elsewhere (e.g., Section

5.4.6) that some very interesting things arise in connection with input-output,

and some pleasant algorithms do exist.

A brief digression about terminology is perhaps appropriate here. Although

contemporary dictionaries seem to regard the words “input” and “output” only

as nouns (e.g., “What kind of input are we getting?”), it is now customary to

use them grammatically as adjectives (e.g., “Don’t drop the input tape.”) and

as transitive verbs (e.g., “Why did the program output this garbage?”). The

combined term “input-output” is most frequently referred to by the abbrevia¬

tion “I/O”. Inputting is often called reading, and outputting is, similarly, called

writing. The stuff that is input or output is generally known as “data”—this

word is, strictly speaking, a plural form of the word “datum,” but it is used

collectively as if it were singular (e.g., “The data has not been read.”). This

completes today’s English lesson.

Suppose now that we wish to read from magnetic tape. The IN operator of

MIX, as defined in Section 1.3.1, merely initiates the input process, and the

computer continues to execute further instructions while the input is taking

place. Thus the instruction “IN 1000(5)” will begin to read 100 words from

212 BASIC CONCEPTS 1.4.4

tape unit number 5 into memory cells 1000-1099, but the ensuing program must

not refer to these memory cells until later. The input will be complete only after

(a) another I/O operation (IN, OUT, or IOC) referring to unit 5 has been initiated,

or (b) the conditional jump instructions JBUS(5) or JRED(5) indicate that

unit 5 is no longer “busy. ” ’•
The simplest way to read a tape block into locations 1000-1099 and to

have the information present is therefore the sequence of two instructions

IN 1000(5) , .

JBUS *(5) ^

We have used this rudimentary method in the program of Section 1.4.2 (see

lines 07-08 and 52-53). The method is generally wasteful of computer time,

however, because a very large amount of potentially useful calculating time, say

1000m or even 10000m, is consumed by the repeated execution of the “JBUS”

instruction. The program’s running speed can be as much as doubled if this

additional time is utilized for calculation. (See exercises 4 and 5.)

One way to avoid wasting this computation time is to have two areas of

memory used for the input; we can read into one area, and while this is going

on, the program can compute from the data in the other area. For example,

suppose the program begins with the instruction:

IN 2000(5) Begin reading first block. (2)

Subsequently, whenever a tape block is desired we may now give the following

five commands:

ENTl 1000 Prepare for MOVE operator.

JBUS * (5) Wait until unit 5 is ready.
MOVE 2000(50) (2000-2049) - (1000-1049)
MOVE 2050(50) (2050-2099) - (1050-1099)
IN 2000(5) Begin reading next block.

These have the same overall effect as (l).

This program begins to read a tape block into locations 2000-2099 before

the preceding block has been examined. This is called “reading ahead” or

anticipated input—it is done on faith that the block will eventually be needed.

In fact, however, we might learn (by examining the contents of the block

moved to 1000-1099) that no more input is really required. For example,

consider the analogous situation in the coroutine program of Section 1.4.2, where

the input was coming from punched cards instead of tape: a “.” appearing

anywhere in the card meant that it was the final card of the deck. Such a

situation would make anticipated ipput impossible, unless we would assume

that either (a) a blank card or special trailer card of some other sort must follow

the input deck, or (b) an identifying mark (e.g.,“. ”) must appear in column 80

1.4.4 INPUT AND OUTPUT 213

of the final card of the deck. Some means for properly terminating the input at

the end of the program must always be provided whenever input is anticipated.

The technique of overlapping computation time and I/O time is known as

buffering. The rudimentary method (1) is called “unbuffered” input. The area

of memory 2000-2099 used to hold the anticipated input in (3), as well as the

area 1000-1099 to which the input was moved, is called a “buffer. ” Webster’s

New World Dictionary defines “buffer” as “any person or thing that serves to

lessen shock,” and the term is appropriate because buffering tends to keep I/O

devices running smoothly. (Computer engineers often use the word “buffer” in

another sense, to denote a part of the I/O device which stores information

during the transmission, but in this book “buffer” will signify an area of memory
used by a programmer to hold I/O data.)

The sequence (3) is not always superior to (1), although the exceptions are

rare. Let us compare the execution times; suppose T is the time required to

input 100 words, and suppose C is the computation time which intervenes between

input requests. Method (1) requires a time of essentially T + C per tape block,

while method (3) takes essentially max (C, T) T 202m. (The quantity 202m is

the time required by the two MOVE instructions.) One way to look at this running

time is to consider so-called “critical path time,” in this case, the amount of

time the I/O unit is idle between uses. Method (1) keeps the unit idle for C units

of time, while method (3) keeps it idle for 202 units (assuming C < T).

The relatively slow MOVE commands of (3) are undesirable, particularly

because they take up critical path time when the tape unit must be inactive.

An almost obvious improvement of the method allows us to avoid these MOVE

instructions: the outside program can be revised so that it refers alternately to

locations 1000-1099 and 2000-2099. While we are reading into one buffer area,

we can be computing with the information in the other. This is the important
technique known as buffer swapping. The location of the current buffer of

interest will be kept in an index register (or, if no index registers are available,

in a memory location). We have already seen an example of buffer swapping

applied to output in Algorithm 1.3.2P (see steps P9-P11) and the accompanying

program.

As an example of buffer swapping on input, suppose that we have a com¬

puter application in which each tape block consists of 100 separate one-word

items. The following program is a subroutine which gets the next word of input,

and which reads in a new block if the current one is exhausted.

01 WORDIN STJ IF Store exit location.

02 INC6 1 Advance to next word.

03 2H LDA 0,6 Is it the end of the

04 CMPA =SENTINEL= buffer?

05 1H JNE * If not, exit.

06 IN -100,6(U) Refill this buffer.

07 LD6 1,6 Get address of other

08 JMP 2B buffer and return.

214 BASIC CONCEPTS
1.4.4

In this program, index register 6 is used to address the last word of input; we

assume that the outside program does not affect this register. The symbol U

refers to a tape unit, and the symbol SENTINEL refers to a value which is known

(from characteristics of the program) to be absent from all tape blocks. The

subroutine is accompanied by the following layout of buffers:

09 INBUF1 ORIG *+100 First buffer

10 CON SENTINEL ‘Sentinel’ at end of buffer

11 CON *+l Address of other buffer

12 INBUF2 ORIG *+100 Second buffer

13 CON SENTINEL ‘Sentinel’ at end of buffer

U CON INBUF1 Address of other buffer |

Several things about this program should be noted:

1) The “sentinel” constant appears as the 101st word of each buffer, and

it makes a convenient test for the end of the buffer. In many applications,

however, this technique will not be reliable, since any word may appear on tape.

If we were doing card input, a similar technique (with the 17th word of the

buffer equal to a sentinel) can always be used; in this case, any negative word

can serve as a sentinel, since input from cards always gives nonnegative words.
2) Each buffer contains the address of the other buffer (see lines 07, 11,

and 14). This “linking together” facilitates the swapping process.
3) No “JBUS” instruction was necessary, since the next input was initiated

before any word of the previous block was accessed. If the quantities C and T

refer as before to computation time and tape time, the execution time per tape

block is now max (C, T); it is therefore possible to keep the tape going at

full speed if C < T. (Note: MIX is an idealized computer in this regard, however,

since no I/O errors must be treated by the program. On most computers some

instructions to test the successful completion of the previous operation would be

necessary just before the “IN” instruction here.)

4) To make this subroutine work properly, it will be necessary to get things

started out right when the program begins. Details are left to the reader (see

exercise 6).

5) The WORDIN subroutine makes the tape unit appear to have a block

length of 1 rather than 100 as far as the rest of the program is concerned. The

idea of having several program-oriented records filling a single actual tape

block is called “blocking of records. ”

The techniques which we have illustrated for input apply, with minor

changes, to output as well (see exercises 2 and 3).

Multiple buffers. Buffer swapping is just the special case N = 2 of a general

method involving N buffers. In some applications it is desirable to have more

than two buffers; for example, consider the following type of algorithm:

Step 1. Read five blocks in rapid succession.

1.4.4 INPUT AND OUTPUT 215

Step 2. Perform a fairly long calculation based on this data.

Step 3. Return to step 1.

Here five or six buffers would be desirable, so that the next batch of five blocks

could be read during step 2. This tendency for I/O activity to be “bunched”

makes multiple buffering an improvement over buffer swapping. Multiple

buffering is also desirable for those devices (such as certain UNIVAC card

readers) on which the IN instruction initiates the input process but several

additional INs (initiating the input process for further blocks) may be given

before the first block is available; then it is necessary to have multiple buffers

in order to have any chance of running the input device at a reasonable speed.
Suppose we have N buffers for some input or output process using a single

I/O device; we will think of them as if they were arranged in a circle as shown

in Fig. 23. So far as this I/O unit is concerned, the

program external to the buffering process will be

assumed to have the following form:

ASSIGN

RELEASE

ASSIGN

RELEASE * • i e u a
Fig. 23. A circle of buffers

: (N = 6).

i.e., alternate actions of “ASSIGN” and “RELEASE”, separated by other computa¬

tion which does not affect the buffer manipulations for this device.

ASSIGN means that the program acquires the address of the next buffer

area, i.e., this address is assigned as the value of some program

variable.

RELEASE means the program is done with the current buffer area.

Between ASSIGN and RELEASE the program is communicating with one of the

buffers, called the current buffer area; between RELEASE and ASSIGN, the pro¬

gram makes no reference to any buffer area.
Conceivably, ASSIGN could immediately follow RELEASE, and discussions of

buffering have often been based on this assumption. However, if RELEASE is

done as soon as possible, the buffering process has more freedom and will be

more effective; by separating the two essentially different functions of ASSIGN

and RELEASE we will find the buffering technique is simpler to understand,

and our discussion will be meaningful even if N = 1.

216 BASIC CONCEPTS 1.4.4

To be more explicit, let us consider the cases of input and output separately.

For input, suppose we are dealing with a card reader. The action ASSIGN means

the program needs the information from a new card; we would like to set an

index register to the memory address at which the next card image is located.

The action RELEASE occurs when the information in the current card image is

no longer needed—it has somewhere been digested by the program, perhaps

copied to another part of memory, etc. The current buffer area may therefore
be filled with further anticipated input.

For output, consider the case of a printer. The action ASSIGN occurs when

a free buffer area is needed, into which a line image is to be placed for printing.

We wish to set an index register equal to the memory address of such an area.

The action RELEASE occurs when this line image has been fully set up in the
buffer area, in a form ready to be printed.

Example: To print the contents of locations 0800-0823, we might write

JMP ASSIGNP (Sets rI5 to buffer location)

ENT1 0,5 (5)

MOVE 800(24) Move 24 words into buffer.
JMP RELEASEP

where ASSIGNP and RELEASEP represent subroutines to do the two buffering

functions for the printer.

In an optimal situation (from the standpoint of the computer), the ASSIGN

operation will require virtually no execution time. This would mean, on input,

that each card image has been anticipated, so that the data is available when

the program is ready for it; and on output, it would mean that there always

is a free place in memory to record the line image. No time will be spent waiting
for the I/O device.

To help describe the buffering algorithm, and to make it more colorful, we

will say buffer areas are either “green,” “yellow,” or “red” (shown as G, Y, and
R in Fig. 24).

Green means that the area is ready to be ASSIGNed; this means it has been

filled with anticipated information [in an input situation], or that it is a free
area [in an output situation],

Yelloiv means that the area has been ASSIGNed, not RELEASEd; this means

it is the current buffer, and the program is communicating with it.

Red means that the area has been RELEASEd; thus it is a free area (in an

input situation) or it has been filled with information (in an output situation).

Figure 23 shows two “pointers” associated with the circle of buffers. These
are, ^conceptually, index registers in the program. NEXTG and NEXTR point to

the next green and “next red” buffer, respectively. A third pointer, CURRENT

(shown in hig. 24), indicates the yellow buffer when one is present.

Although the algorithm applies equally well to output, we will first consider
the case of input from a card reader for definiteness. Suppose a program has

1.4.4 INPUT AND OUTPUT 217

Fig. 24. Buffer transitions, (a) after ASSIGN, (b) after I/O complete, and (c) after
RELEASE.

reached the state shown in Fig. 23. This means that four card images have been

anticipated by the buffering process, and they reside in the green buffers. At

this moment, two things are happening simultaneously: (a) The program is

computing, following a RELEASE operation; (b) a card is being read into the

buffer indicated by NEXTR. This state of affairs will continue until the input

cycle is completed (the unit will then go from “busy” to “ready”), or until the

program does an ASSIGN operation. Suppose the latter occurs: then the buffer

indicated by NEXTG changes to yellow (it is assigned as the current buffer),

NEXTG moves clockwise, and we arrive at the position shown in Fig. 24(a). If

now the input is completed, another anticipated block is present so the buffer

changes from red to green and NEXTR moves over as shown in Fig. 24(b). If

the RELEASE operation follows next, we obtain Fig. 24(c).

For an example concerning output, see Fig. 27 on page 223. That illustration

shows the “colors” of buffer areas as a function of time, in a program that opens

with four quick outputs, then produces four at a slow pace, and finally issues

two in rapid succession as the program ends. Three buffers appear in that

example.
The pointers NEXTR and NEXTG proceed merrily around the circle, each at

an independent rate of speed, moving clockwise. It is a race between the pro¬

gram (which turns buffers from green to red) and the I/O buffering process

(which turns them from red to green). Two situations of conflict can occur:

a) if NEXTG tries to pass NEXTR, the program has gotten ahead of the I/O

device and it must wait until the device is ready.
b) if NEXTR tries to pass NEXTG, the I/O device has gotten ahead of the program

and we must shut it down until the next RELEASE is given.

Both of these situations are depicted in Fig. 27. (See exercise 9.)
Fortunately, in spite of the rather lengthy explanation just given of the ideas

behind a circle of buffers, the actual algorithms for handling the situation are

218 BASIC CONCEPTS 1.4.4

very simple. In the following description,

N = total number of buffers;
7 (6)

n = current number of red buffers.
4

The variable n is used jn the algorithm below to avoid interference between
NEXTG and NEXTR.

Algorithm A (ASSIGN action). This algorithm includes the steps implied by
ASSIGN within a computational program, as described above.

Al. [Wait for n < A.] If n = N, stall the program until n < N. (If n = N, no

buffers are ready to be assigned; but Algorithm B below, which runs in par¬
allel to this one, will eventually succeed in producing a green buffer.)

A2. [CURRENT ^ NEXTG.] Set CURRENT NEXTG (thereby assigning the current
buffer).

A3. [Advance NEXTG.] Advance NEXTG to the next clockwise buffer. |

Algorithm R (RELEASE action). This algorithm includes the steps implied by
RELEASE within a computational program, as described above.

Rl. [Increase n.] Increase n by one. |

Algorithm B (Buffer control). This algorithm performs the actual initiation of

I/O operators in the machine; it is to be executed “simultaneously” with the
main program, in the sense described below.

Bl. [Compute.] Let the main program compute for a short period of time; step

B2 will be executed after a certain time delay, at a time when the I/O
device is ready for another operation.

B2. [n = 0?] If n = 0, go to Bl. (Thus, if no buffers are red, no I/O action
can be performed.)

B3. [Initiate I/O.] Initiate transmission between the buffer area designated by
NEXTR and the I/O device.

B4. [Compute] Let the main program run for a period of time; then go to step
Bo when the I/O operation is completed.

B5. [Advance NEXTR.] Advance NEXTR to the next clockwise buffer.

B6. [Decrease n.} Decrease n by one, and go to B2. |

“simnlfth a!g>n!i!mu T have tW0 mdePendent processes which are going on

These flrpe0Uf yf' ^ buffenng contro1 Program and the computation program.
CONTRDT ’ ’ coroutmes>whlch we will call CONTROL and COMPUTE. Coroutine

CONTROL lUm?S, ° C0MPUTE ln steps Bl and B4; coroutine COMPUTE jumps to

itsprogram. mterSPerSmg JUmp read^ instructions at sporadic intervals in

1.4.4
INPUT AND OUTPUT 219

Coding this algorithm for MIX is extremely simple. For convenience, assume

that the buffers are linked so that the word preceding each one is the address of
the next; i.e., if N = 3,

CONTENTS(BUFl-l) = BUF2,

CONTENTS(BUF2-1) = BUF3, and CONTENTS(BUF3-1) = BUF1.

Fig. 25. Algorithms for multiple buffering.

Program A (ASSIGN, a subroutine within the COMPUTE coroutine). rI4 = CURRENT;

rI6 = n; calling sequence is JMP ASSIGN; on exit, rX contains NEXTG.

ASSIGN STJ 9F Subroutine linkage
1H JRED CONTROL(U) Al. Wait for n < N.

CMP6 =N=
JE IB

LD4 NEXTG A2. CURRENT <— NEXTG.
LDX -1,4 AS. Advance NEXTG.
STX NEXTG

9H JMP * Exit. |

Program R (RELEASE, code used within the COMPUTE coroutine). rI6 = n. This

short code is to be inserted wherever RELEASE is desired.

INC6 1 Rl. Increase n.
JRED CONTROL(U) Possible jump to CONTROL coroutine |

Program B (The CONTROL coroutine). rI6 = n, rI5 = NEXTR.

CONTI JMP COMPUTE Bl. Compute.
1H J6Z *-l B2. n = 01

IN 0,5(U) B3. Initiate I/O.
JMP COMPUTE B4- Compute.
LD5 -1,5 B5. Advance NEXTR.
DEC6 1 B6. Decrease n.
JMP IB 1

220 BASIC CONCEPTS 1.4.4

Besides the above code, we also have the usual coroutine linkage

CONTROL STJ COMPUTEX COMPUTE STJ C0NTR0LX

C0NTR0LX JMP CONTI COMPUTEX JMP C0MP1

and the instruction “JRED CONTROL (U)” is to be placed within COMPUTE about

once in every fifty instructions.
Thus the programs for multiple buffering essentially amount to only seven

instructions for CONTROL, eight for ASSIGN, and two for RELEASE.

It is perhaps remarkable that exactly the same algorithm will work for both

input and output. What is the difference—how does the control routine know

whether to anticipate (for input) or to lag behind (for output) ? The answer lies

in the initial conditions: for input we start out with n = N (all buffers red) and

for output we start out with n = 0 (all buffers green). Once the process has been

started properly, it continues to behave as either input or output, respectively.

The other initial condition is that NEXTR = NEXTG, both pointing at one of the

buffers.

At the conclusion of the program, it is necessary to stop the I/O process (if

it is input) or to wait until it is completed (for output); details are left to the

reader (see exercises 12 and 13).

It is important to ask what is the best value of N to use. Certainly as N

gets larger, the speed of the program will not decrease, but it will not increase

indefinitely either and so we come to a point of diminishing returns. Let us refer

again to the quantities C and T, representing computation time between I/O

operators and the I/O time itself. More precisely, let C be the amount of time

between successive ASSIGNS, and let T be the amount of time needed to transmit

one block,. If C is always greater than T, then N = 2 is adequate, for it is not

hard to see that with two buffers we keep the computer busy at all times. If C

is always less than T, then again N — 2 is adequate, for we keep the I/O device

busy at all times. Larger values of N are therefore useful only when C varies

between small values and large values; one plus the average number of con¬

secutive small values may be right for N, if the large values of C are significantly

longer than T. (However, the advantage of buffering is virtually nullified if all

input occurs at the beginning of the program and if all output occurs at the end.)

If the time between ASSIGN and RELEASE is always quite small, the value of N

may be decreased by 1 throughout the above discussion, with little effect on
running time.

The above approach to buffering can be adapted in many ways, and we will

mention a few of these briefly. So far we have assumed only one I/O device was

being used; in practice, of course, several will be in use at the same time.

There are several ways to approach the subject of multiple units. In the

simplest case, we can have a separate circle of buffers for each device. There

will be values of n, N, NEXTR, NEXTG, and CURRENT, and a different CONTROL

coroutine for each unit. This will give efficient buffering action simultaneously
on each I/O device.

1.4.4 INPUT AND OUTPUT 221

It is also possible to “pool” buffer areas which are of the same size, i.e., to

have two or more devices sharing buffers from a common list. This would be

handled by using the linked memory techniques of Chapter 2: all red input

buffers and green output buffers would be linked together. It becomes necessary

to distinguish between input and output in this case, and to rewrite the algo¬

rithms without using n and N. The algorithm may get irrevocably stuck if all

buffers in the pool are filled with anticipated input, so a check should be made

that at all times there is at least one buffer (preferably one for each device)

which is not input-green; only if the COMPUTE routine is stalled at step A1 for

some input device should we allow input into the final buffer of the pool from
this device.

Some machines have additional constraints on the use of input-output units,

so that it is impossible to be transmitting data from certain pairs of devices at

the same time. (For example, several units might be attached to the computer

by means of a single “channel.”) This constraint also affects our buffering

routine; when we must choose which I/O unit to initiate first, how is the choice

to be made? This is called “forecasting.” The best forecasting rule for the

general case would seem to give preference to the unit whose buffer circle has

the largest value of n/N, assuming the number of buffers in the circles has

been wisely chosen.

Fig. 26. Input and output from the
same circle.

To conclude this discussion, we will mention a useful method for doing input

and output from the same buffer circle, under certain conditions. In Fig. 26

we have added another color of buffer (purple). In this situation, green buffers

represent anticipated input; the program ASSIGNS and a green buffer becomes

yellow, then upon RELEASE it turns red and represents a block to be output.

The input and output processes follow around the circle independently as before,

except now we turn red buffers to purple after the output is done, and convert

purple to green on input. It is necessary to ensure that none of the pointers

NEXTG, NEXTR, NEXTP passes another. At the instant shown in Fig. 26, the pro¬

gram is computing between ASSIGN and RELEASE, using the yellow buffer;

simultaneously, input is going into the buffer indicated by NEXTP; and output

is coming from the buffer indicated by NEXTR.

222 BASIC CONCEPTS 1.4.4

EXERCISES

1. [05] Would sequence (3) still be correct if the MOVE instructions were placed

before the JBUS instruction instead of after it? What if the MOVE instructions were

placed after the IN command?

2. [10] The instructions '•

OUT 1000(6)

JBUS *(6)

may be used to output a tape block in an unbuffered fashion, just as the instructions

(1) did this for input. Give a method analogous to (2) and (3) which buffers this

output, by using MOVE instructions and an auxiliary buffer in locations 2000-2099.

► 3. [218] Write a buffer-swapping output subroutine analogous to (4). The subroutine,

called W0RD0UT, should store the word in rA as the next word of output, and if a buffer

is full it should write 100 words onto tape unit V. Index register 5 should be used to

refer to the current buffer position. Before storing any words into a buffer, it should

be cleared to zeros. Show the layout of buffer areas and explain what instructions (if

any) are necessary at the beginning and end of the program to ensure that the first

and last blocks are properly written.

4. [M20] Show that if a program refers to a single I/O device, it is possible to double

the running speed by buffering the I/O, in favorable circumstances, but it is not pos¬

sible to improve the running speed over the amount of time taken by unbuffered I/O

by more than a factor of two.

► 5. [M21] Generalize the situation of the preceding exercise to the case when the

program refers to n I/O devices instead of just one.

6. [12] What instructions should be placed at the beginning of a program so that

the W0RDIN subroutine (4) gets off to the right start? (For example, index register 6

must be set to something.)

7. [22] Write a subroutine called WORDIN which is essentially like (4) except that it

does not make use of a “sentinel.”

8. [11] The text describes a hypothetical input situation which leads from Fig. 23

through parts (a), (b), and (c) of Fig. 24. Interpret the same situation given that

output to the printer is being done, instead of input from cards. (For example, what

things are happening at the time shown in Fig. 23?)

► 9. [21] A program which leads to the buffer contents shown in Fig. 27 may be

characterized by the following list of times:

A, 1000, R, 1000, A, 1000, R, 1000, A, 1000, R, 1000, A, 1000, R, 1000,

A, 7000, R, 5000, A, 7000, R, 5000, A, 7000, R, 5000, A, 7000, R, 5000,
A, 1000, R, 1000, A, 2000, R, 1000.

This list means “assign, compute for 1000m, release, compute for 1000m, assign, . . . ,

compute for 2000m, release, compute for 1000m.” The computation times given do not

include any intervals during which the computer might have to wait for the output

device to catch up (as at the fourth “assign” in Fig. 27). The output device operates
at a speed of 7500m per block.

1.4.4 INPUT AND OUTPUT 223

Output O
unit • f-

Com-
puter

A A A A
H+H-H-
RRR

0 OOO O 0
-1-h

A
H-1-h
R R

O

A A
I 1 I II
R R

O

Time

o
o
c uo
GO

Legend

Green
buffer

Yellow
buffer

Red
buffer

Red buffer
being output

Device active --A Assign

- - R Release

Device idle --0 Initiate output

Fig. 27. Output with three buffers (cf. exercise 9).

The following chart specifies the actions shown in Fig. 27 as time passes:

Time Action

0 ASSIGN(BUF1)

1000 RELEASE, OUT BUF1

2000 ASSIGN(BUF2)

3000 RELEASE

4000 ASSIGN(BUF3)

5000 RELEASE

6000 ASSIGN (wait)
8500 BUF1 assigned, OUT BUF2

9500 RELEASE

10500 ASSIGN (wait)

Time Action

16000 BUF2 assigned, OUT BUF3

23000 RELEASE

23500 OUT BUF1
28000 ASSIGN(BUF3)

31000 OUT BUF2

35000 RELEASE

38500 OUT BUF3
40000 ASSIGN(BUF1)

46000 Output stops.

47000 RELEASE, OUT BUF1

52000 ASSIGN(BUF2)

Time Action

54500 Output stops.

59000 RELEASE, OUT BUF2

64000 ASSIGN(BUF3)

65000 RELEASE

66000 ASSIGN(BUF1)

66500 OUT BUF3
68000 RELEASE

69000 Computation stops.

74000 OUT BUF1
81500 Output stops.

The total time required was therefore 81500tt; the computer was idle from 6000 8500,

10500-16000, and 69000-81500, or 20500it altogether; the output unit was idle from

0-1000, 46000-47000, and 54500-59000, or 6500w.
Make a “time-action” chart like the above for the same program, assuming there

are only two buffers.

10. [21] Repeat exercise 9, except with four buffers.

11. [21] Repeat exercise 9, except with just one buffer.

12. [24] Suppose that the multiple buffering algorithm in the text is being used for

card input, and suppose the input is to terminate as soon as a card with in column 80

has been read. Show how the CONTROL coroutine (i.e., Algorithm B and Program B)

should be changed so that input is shut off in this way.

224 BASIC CONCEPTS 1.4.4

13. [20] What instructions should be included at the end of the COMPUTE coroutine
in the text, if the buffering algorithms are being applied to output, to ensure that all
information has been output from the buffers?

► 14. [20] What if the computational program does not alternate between ASSIGN and
RELEASE, but instead giyes the sequence of actions . . . ASSIGN . . . ASSIGN . . .
RELEASE . . . RELEASE. What effect does this have on the algorithms described in the
text? Is it possibly useful?

► 15. [22] Write a program that copies 100 blocks from tape unit 0 to tape unit 1,
using just three buffers. The program should be as fast as possible.

16. [29] Formulate the “green-yellow-red-purple” algorithm suggested by Fig. 26, in
the manner of the algorithms for multiple buffering given in the text, using three co¬
routines (one to control the input device, one for the output device, and the computa¬
tion coroutine).

17. [40] Adapt the multiple-buffer algorithm to pooled buffers; build in methods
which keep the process from slowing down, due to too much anticipated input. Try
to make the algorithm as elegant as possible. Compare your method to nonpooling
methods, applied to real-life problems.

► 18. [30] A modification of MIX is planned which introduces “interrupt capability.”
This would be done as explained below; the exercise is to modify Algorithms and
Programs A, R, and B of the text so that they use these interrupt facilities instead of
the “JRED” instructions.

The new MIX features include an additional 3999 memory cells, locations —3999
through —0001. The machine has two internal “states,” normal state and control state.
In normal state, locations —3999 through —0001 are not admissible memory loca¬
tions and the MIX computer behaves as usual. When an “interrupt” occurs, due to
conditions explained later, locations —0009 through —0001 are set equal to the
contents of Mix’s registers: rA in —0009; rll through rI6 in —0008 through —0003;
rX in 0002; and rJ, the overflow toggle, the comparison indicator, and the location
of the next instruction all are stored in —0001 as

+

1-
next
inst.

□V.
Cl

1

rJ

1
control state is entered, and the machine jumps to a location depending on the type
of interrupt.

Location 0010 acts as a “clock”: every lOOOu of time, the number appearing in
this location is decreased by one, and if the result is zero an interrupt to location
—0011 occurs.

The new MIX instruction “INT” (C = 5, F = 7) works as follows: (a) In normal
state, an interrupt occurs to location —0012. (Thus a programmer may force an
interrupt, to communicate with a control routine; the address of INT has no effect,
although the control routine may use it for information to distinguish between types
of interrupt.) (b) In control state, all MIX registers are loaded from locations —0009
to —0001, the computer goes into normal state, and it resumes execution. The execu¬
tion time for INT is 2u in each case.

An IN, OUT, or IDC instruction given in control state will cause an interrupt to
occur as soon as the I/O operation is completed. The interrupt goes to location
— (0020 + unit number).

No interrupts occur while in control state; any interrupt conditions are “saved”

1.4.5- history AND BIBLIOGRAPHY 225

until after the next INT operation, and interrupt will occur after one instruction of the

normal state program has been performed.

► 19. [S7] Some computers do not have the ability to perform input-output simul¬

taneously with computation; the I/O operators cause the computer to wait until

transmission is complete. These computers have no equivalent of Mix’s JBUS or

JRED operators, since the units are always “ready”; and there is no interrupt capability

as given in the previous exercise. However, there is sometimes the ability to do I/O

operations on two different units at once, by giving an “IN-IN” or “IN-OUT” or

“OUT-OUT” instruction that causes two operations to occur (and the computer waits

until both are finished).

Multiple-buffering techniques can be used to advantage in this situation, in order

to double up I/O operations as frequently as possible. For example, if an output is to

be done, anticipated input could simultaneously be read into a buffer.

Develop algorithms for this situation, assuming that a program uses two input

tapes and one output tape. There should be three circles of buffers, with N1 buffers

in the first circle, N2 in the second, and N3 in the third. Give algorithms for assigning

and releasing on each unit, which are as similar to Algorithms A, R, and B of this

section as possible. Test your algorithms using computer simulation.

1.4.5. History and Bibliography

Most of the fundamental techniques described in Section 1.4 have been inde¬

pendently developed by a number of different people, and the exact history of the

ideas will probably never be known. An attempt has been made to record here

the most important contributions to the history, and to put them in perspective.

Subroutines were the first labor-saving devices invented for programmers.

In the 19th century, Charles Babbage envisioned a library of routines for his

Analytical Engine [cf. Charles Babbage and his Calculating Engines, ed. by Philip

and Emily Morrison (Dover, 1961), 56]; and we might say that his dream came

true in 1944 when Grace M. Hopper wrote a subroutine for computing sin x on

the Harvard Mark I calculator. However, these were essentially “open sub¬

routines,” meant to be inserted into a program where needed instead of being

linked up dynamically, because Babbage’s planned machine (controlled by

sequences of punched cards as on the Jacquard loom) and the Mark I (controlled

by paper tapes) were quite different from today’s stored-program computers.

Subroutine linkage appropriate to stored-program machines, with the re¬

turn address supplied as a parameter, was discussed by Herman H. Goldstine

and John von Neumann in their widely circulated monograph on programming,

written about 1946; see von Neumann’s Collected Works 5 (New York: Mac¬

millan, 1963), 215-235. The main routine of their programs was responsible

for storing the parameters into the body of the subroutine, instead of passing

the necessary information in registers. In England, A. M. Turing designed

computer hardware to facilitate subroutine linkage; cf. Proceedings of a Second

Symposium on Large-Scale Digital Calculating Machinery (Cambridge, Mass.:

Harvard University, 1949), 89-90. The use and construction of a very versatile

subroutine library is the principal topic of the first computer programming text,

The Preparation of Programs for an Electronic Digital Computer, by M. Y.

226 BASIC CONCEPTS 1.4.5

Wilkes, D. J. Wheeler, and S. Gill, 1st ed. (Reading, Mass.: Addison-Wesley,

1951).

The word “coroutine” was coined by M. E. Conway in 1958, after he had

developed tli6 concept, and he first applied it to the construction of an assembly

program. Coroutines were independently studied by J. Erdwinn and J. .Werner,

at about the same time; they wrote a paper entitled “Bilateral Linkage,”

which was not then considered sufficiently interesting to merit publication, and

unfortunately no copies of this paper seem to exist today. The first published

explanation of the coroutine concept appeared much later in Conway’s article

“Design of a Separable Transition-Diagram Compiler, ” CACM 6 (1963),396-408.

(Actually a primitive form of coroutine linkage had been noted briefly as a

“programming tip” in an early UXIVAC publication (The Programmer 1, 2

(February, 1954), 4).) A suitable notation for coroutines in ALGOL-like lan¬

guages was introduced in Dahl and Nygaard’s SIMULA I [CACM 9 (1966),

671-678], and several excellent examples of coroutines (including replicated

coroutines) appear in the book Structured Programming by 0. J. Dahl, E. W.
Dijkstra, and C. A. R. Hoare, Chapter 3.

The first interpretive routine may be said to be the “Universal Turing

Machine,” a Turing machine capable of simulating any other Turing machines

(see Chapter 11). These are not actual machines, they are theoretical tools used

in proving some problems “unsolvable. ” Interpretive routines in the conven¬
tional sense were mentioned by John Mauchly in his lectures at the Moore

School in 1946. The most notable early interpreters, chiefly intended to provide

a convenient means of doing floating-point arithmetic, were certain routines for

the Whirlwind I (by C. W. Adams and others) and for the Illiac (by D. J.

Wheeler and others). Turing took a part in this development also; interpretive

systems for the Pilot ACE computer were written under his direction. For

references to the state of interpreters in the early fifties, see the article “Inter¬

pretative Sub-routines,” by J. M. Bennett, D. G. Prinz, and M. L. Woods,

Proc. ACM Nat. Conf. (1952), 81-87; see also various papers in the Proceedings

of the Symposium on Automatic Programming 'for Digital Computers (1954),
published by the Office of Naval Research, Washington, D.C.

The most extensively used early interpretive system was probably John

Backus’s “IBM 701 Speedcoding system” [see JACM 1 (1954), 4-6]. This

system was slightly modified and skillfully written for the IBM 650 by V. M.

Wolontis and others of the Bell Telephone Laboratories; their routine, called

the “Bell Interpretive System,” was extremely popular. The IPL interpretive

systems, designed in 1956 by A. Newell, J. C. Shaw, and H. A. Simon for ap¬

plications to quite different problems (see Section 2.6), have also seen extensive

use as a programming tool. Modern uses of interpreters, as mentioned in the

inti eduction to Section 1.4.3, are often mentioned in passing in the computer

literature; see the references listed in that section for articles which discuss
interpretive routines in somewhat more detail.

. The first tracinS routine was developed by Stanley Gill in 1950; see his
interesting article in Proceedings of the Royal Society of London, series A, 206

1.4.5 HISTORY AND BIBLIOGRAPHY 227

(May, 1951), 538 554. The text by Wilkes, Wheeler, and Gill mentioned above
includes listings of several trace routines. Perhaps the most interesting of these

is subroutine C-10 by D. J. Wheeler, which includes a provision for suppressing

the trace upon entry to a library subroutine, executing the subroutine at full

speed, then continuing the trace. Published information about trace routines

is quite rare in the general computer literature, primarily because the methods

are inherently oriented to a particular machine. The only other early reference

known to the author is H. V. Meek, “An Experimental Monitoring Routine for

the IBM 705,” Proc. Western Joint Computer Conf. (1956), 68-70, which dis¬

cusses a trace routine for a machine on which the problem is particularly dif¬

ficult. Nowadays the emphasis on trace routines has shifted to selective symbolic

output and the measurement of program performance; see E. Satterthwaite,
Software—Practice and Experience 2 (1972), 197-217.

Buffering was originally done by computer hardware, in a manner analogous

to the code 1.4.4-3, where an internal “buffer area” inaccessible to the pro¬

grammer plays the role of locations 2000-2099, and where the sequence 1.4.4-3

was performed when an input command was given. During the late 1940’s,

special software buffering techniques especially useful for sorting were de¬

veloped by the early UNIVAC programmers (see Section 5.5). For a good

survey of the prevailing philosophy towards I/O in 1952, see the Proceedings

of the Eastern Joint Computer Conference held in that year.

The DYSEAC computer [Alan L. Leiner, JACM 1 (1954), 57-81] introduced

the idea of input-output, devices communicating directly with memory while a

program is miming, then interrupting the program upon completion. Such a

system implies that buffering algorithms were developed, but the details went

unpublished. The first published reference to buffering techniques in the

sense we have described gives a highly sophisticated approach; see O. Mock

and C. J. Swift, “Programmed Input-Output Buffering,” Proc. ACM Nat. Conf.

(1958) paper 19, and J ACM 6 (1959), 145-151. (The reader is cautioned that

these articles contain a good deal of local jargon which may take some time to

understand, but neighboring articles in JACM 6 will help.) An interrupt system

which enabled buffering of input and output was independently developed by

E. W. Dijkstra of the Netherlands in 1957 and 1958, in connection with B. J.

Loopstra’s and C. S. Scholten’s X-l computer [cf. Comp. J. 2 (1959), 39-43].

Dijkstra’s doctoral thesis, “Communication with an Automatic Computer”

(1958, now out of print) mentions buffering techniques, which in this case in¬

volved very long circles of buffers since the routines were primarily concerned

with paper tape and typewriter I/O; each buffer contained either a single char¬

acter or a single number. He later developed the ideas into the important general

notion of semaphores, which are basic to the control of all sorts of concurrent

processes, not just input-output [see Programming Languages, ed. by F. Genuys

(Academic Press, 1968), 43-112; BIT 8 (1968), 174-186; Acta Informatica 1

(1971), 115-138], The paper “Input-Output Buffering and FORTRAN,” by

David E. Ferguson, J ACM 7 (1960), 1-9, describes buffer circles and gives a

detailed description of simple buffering with many units at once.

CHAPTER TWO

4

\

INFORMATION STRUCTURES

I think that I shall never see

A poem lovely as a tree.

—JOYCE KILMER (1913)

Yea, from the table of my memory

I'll wipe away all trivial fond records.

— Hamlet (Act I, Sc. 5, Line 98)

2.1. INTRODUCTION

Computer programs usually operate on tables of information. In most cases

these tables are not simply amorphous masses of numerical values; they involve

important structural relationships between the data elements.
In its simplest form, a table might be a linear list of elements, when its

relevant structural properties might include the answers to such questions as:

which element is first in the list? which is last? which elements precede and

follow a given one? how many elements are there in the list? There is a lot to

be said about structure even in this apparently simple case (see Section 2.2).

In more complicated situations, the table might be a two-dimensional array

(i.e., a matrix or grid, having both a row and a column structure), or it might be

an n-dimensional array for higher values of n; it might be a tree structure,

representing hierarchical or branching relationships; or it might be a complex

multilinked structure with a great many interconnections, such as we may find
in a human brain.

In order to use a computer properly, it is important to acquire a good

understanding of the structural relationships present within data, and of the

techniques for representing and manipulating such structure within a computer.

The present chapter summarizes the most important facts about information

structures: the static and dynamic properties of different kinds of structure;

means for storage allocation and representation of structured data; and efficient

algorithms for creating, altering, accessing, and destroying structural informa¬

tion. In the course of this study, we will also work out several important

examples which illustrate the application of these methods to a wide variety of

problems. The examples include topological sorting, polynomial arithmetic,

228

2.1 INTRODUCTION 229

discrete system simulation, operations on sparse matrices, algebraic formula

manipulation, and applications to the writing of compilers and operating

systems. Our concern will be almost entirely with structure as represented

inside a computer; the conversion from external to internal representations is
the subject of Chapters 9 and 10.

Much of the material we will discuss is often called “List processing,” since

a number of programming systems (e.g., IPL-V, LISP, and SLIP) have been

designed to facilitate working with certain general kinds of structures called

Lists. (When the word “list” is capitalized in this chapter, it is being used in a

technical sense to denote a particular type of structure that is studied in detail

in Section 2.3.5.) Although List processing systems are useful in a large number

of situations, they impose constraints on the programmer that are often un¬
necessary; it is usually better to use the methods of this chapter directly in one’s

own programs, tailoring the data format and the processing algorithms to the

particular application. Too many people unfortunately still feel that List

processing techniques are quite complicated (so that it is necessary to use

someone else’s carefully written interpretive system or set of subroutines), and

that List processing must be done only in a certain fixed way. We will see that
there is nothing magic, mysterious, or difficult about the methods for dealing

with complex structures; these techniques are an important part of every pro¬

grammer’s repertoire, and he can use them easily whether he is writing a program

in assembly language or in a compiler language like FORTRAN or ALGOL.

We will illustrate methods of dealing with information structures in terms

of the MIX computer. A reader who does not care to look through detailed MIX

programs should at least study the ways in which structural information is
represented in Mix’s memory.

It is important to define at this point several terms and notations which we

will be using frequently from now on. The information in a table consists of a

set of nodes (called “records,” “entities,” or “beads” by some authors); we will

occasionally say “item” or “element” instead of “node.” Each node consists

of one or more consecutive words of the computer memory, divided into named

parts called fields. In the simplest case, a node is just one word of memory, and

it has just one field comprising that whole word. As a more interesting example,

suppose the elements of our table are intended to represent playing cards; we

might have two-word nodes broken into five fields, TAG, SUIT, RANK, NEXT, and

TITLE:

+ TAG SUIT RANK
-1-

NEXT
i

+
_

TITLE
__

1

i

(This format reflects the contents of two MIX words. Recall that a MIX word
consists of five bytes plus a sign; see Section 1.3.1. In this example we assume

that the signs are + in each word.) The address of a node, also called a link,

pointer, or reference to that node, is the memory location of its first word. The

230 INFORMATION STRUCTURES 2.1

address is often taken relative to some “base” location, but in this chapter for

simplicity we will take the address to be an absolute memory location.
The contents of any field within a node may represent numbers, alphabetic

characters, links, or anything else the programmer may desire. In connection

with the example above, let iis suppose we wish to represent a pile of cards that

might appear in a game of solitaire: TAG = 1 means the card is face down,

TAG = 0 means it is face up; SUIT = 1, 2, 3, or 4 for clubs, diamonds, hearts, or

spades, respectively; RANK = 1, 2, . . . , 13 for ace, deuce, . . . , king; NEXT is a

link to the card below this one in the pile; and TITLE is the five-character alpha¬

betic name of this card, for use in printouts. A typical pile might look like this:

Actual cards Computer representation

(2)

The memory locations in the computer representation are shown here as 100,

386, and 242; these could have been any other numbers as far as this example is

concerned, since each card links to the next. Note the special link “A” in the

node 100; we use the Greek letter lambda to denote the null link, i.e., the link to

no node. The null link A appears in node 100 since the 10 of clubs is the bottom

card of the pile. Within the machine, A is represented by some easily recognizable
value which cannot be the address of a node. We will generally assume that no

node appears in location 0, and, consequently, A will almost always be repre¬

sented as the link value 0 in MIX programs.

The introduction of links to other elements of data is an extremely important

idea in computer programming; this is the key to the representation of complex

structures. When displaying computer representations of nodes, it is usually

convenient to represent links by arrows, so that our above example would
appear thus:

^ 0 2
i -1-

1 i
'

c. o "7 10 TL
+ u _ u _

2 _ U ' D _i
+ U
_

u
_

3
_ U 1 s _1_

+ u i
_

0
_ U 1 c (3)

The actual locations 242, 386, and 100 (which are irrelevant anyway) no longer

2.1 INTRODUCTION 231

appear in the representation (3). A null link can be shown as “grounded” in

electrical circuit notation. We have added “TOP” in (3); this stands for a link

variable, often called a pointer variable, i.e., a variable within the computer

program whose value is a link. All references to nodes in a program are made

directly through link variables (or link constants), or indirectly through link

fields in other nodes.

Now we come to the most important part of the notation, the means of

referring to fields within nodes. This is done simply by giving the name of the

field followed by a link to the desired node in parentheses; for example in (1),

(2), (3) we have

TITLE (TOP) = “ LI U 2 U D”; SUIT(TOP) = 2; RANK(IOO) = 10;

RANK(NEXT(TOP)) - 3. (4)

The reader should study these examples carefully, since such field notations

will be used in many algorithms of this chapter and the following chapters. To

make the ideas clearer, we will now state a simple algorithm for placing a new

card face up on top of the pile, assuming that NEWCARD is a link variable whose

value is a link to the new card:

Al. Set NEXT (NEWCARD) <— TOP. (This sets the appropriate link in the new card

node.)

A2. Set TOP <— NEWCARD. (This keeps TOP pointing to the top of the pile.)

A3. Set TAG (TOP) 4— 0. (This marks the card as “face up.”) |

Another example is the following algorithm, which counts the number of cards

currently in the pile:

Bl. Set N <— 0, X <— TOP. (Here N is an integer variable, X is a link variable.)

B2. If X = A, stop; N is the number of cards in the pile.

B3. Set N <— N + 1, X <— NEXT (X), and go back to step B2. |

Note that we use symbolic names for two quite different things in these

algorithms: as names of variables (TOP, NEWCARD, N, X) and as names of fields

(TAG, NEXT). These quantities must not be confused. If F is a field name and

L ^ A is a link, then F(L) is a variable; but F itself is not a variable—it does

not possess a value unless it is qualified by a nonnull link.
Two further notations are used, to convert between addresses and the values

stored there:

a) CONTENTS always denotes a full-word field of a one-word node; hence

CONTENTS (1000) denotes the value stored in memory location 1000, i.e., it is a

variable having this value. If V is a link variable, CONTENTS(v) denotes the value

pointed to by V (not the value V itself).
b) If V is the name of some value held in a memory cell, L0C(V) denotes

the address of that cell. Consequently, if V is a variable whose value is stored

in a full word of memory, we have CONTENTS(L0C(V)) = V.

232 INFORMATION STRUCTURES 2.1

It is easy to transform this notation into MIXAL assembly language code,

although MIXAL’s notation is somewhat backwards. The values of link variables

are put into index registers, and the partial-field capability of MIX is used to refer

to the desired field. For example, Algorithm A above could be written thus:

NEXT EQU 4:5 \ Definition of the NEXT

TAG EQU 1:1 and TAG fields for the assembler

LD1 NEWCARD Al. rll<—NEWCARD.

LDA TOP rA<—TOP.

STA 0,1(NEXT) NEXT(rIl)<—rA.

ST1 TOP A2. T0P<—rll.

STZ 0,1(TAG) AS. TAG(rIl)<—0. |

The ease and efficiency with which these operations can be carried out in a

computer is the primary reason for the importance of the “linked memory”

concept.

Sometimes we have a single variable which denotes a whole node (i.e., a set

of fields instead of just one field). Thus we might write

CARD «— NODE(TOP), (6)

where NODE is a field specification just like CONTENTS, except that it refers to an

entire node, and where CARD is a variable which assumes values like those in (1).

If there are c words in a node, the notation (6) is an abbreviation for the c
assignments

CONTENTS (LOC(CARD) + j) <— CONTENTS (TOP -(- j), 0 < j < C. (7)

There is an important distinction between assembly language and the

notation used in algorithms. Since assembly language is at a very “low” level

(close to the machine), the symbols used in MIXAL programs stand for addresses

instead of values. Thus in (5), the symbol TOP actually denotes the address

where the pointer to the top card appears in memory, while in (6) and (7) it

denotes the value of TOP, namely the address of the top card node. This dif¬

ference between assembly language and compiler language is a frequent source

of confusion for beginning programmers, so the reader is urged to work exer¬

cise 7. The other exercises also provide useful drills on the notational conventions
introduced in this section.

2.1 INTRODUCTION 233

EXERCISES

1. [04] In (3), what is the value of

a) SUIT(NEXT(TOP)); b) NEXT(NEXT(NEXT(TOP)))?

2. [10] The text points out that in many cases CONTENTS(LOC(V)) = V. Under
what conditions do we have LOC (CONTENTS(V)) = V?

3. [11] Give an algorithm which essentially undoes the effect of Algorithm A, i.e.,
it removes the top card of the pile (if the pile is not empty) and sets NEWCARD to the
address of this card.

4. [15] Give an algorithm analogous to Algorithm A, except that it puts the new
card face down at the bottom of the pile. (The pile may be empty.)

► 5. [21] Give an algorithm which essentially undoes the effect of exercise 4, i.e.,
assuming that the pile is not empty and its bottom card is face down, it removes this
bottom card and makes NEWCARD link to it. (This algorithm is sometimes called
“cheating” in solitaire games.)

6. [06] In the playing card example, suppose that CARD is the name of a variable

whose value is an entire node. The operation CARD NODE (TOP) sets the fields of

CARD respectively equal to those of the top of the pile. After this operation, which of

the following notations stands for the suit of the top card? (a) SUIT (CARD); (b)

SUIT(LOC(CARD)); (c) SUIT(CONTENTS(CARD)); (d) SUIT(TOP)?

► 7. [04] In the text’s example MIX program, (5), the link variable TOP is stored in the

MIX computer word whose assembly language name is TOP. Assuming the field struc¬

ture (1), which of the following sequences of code brings the quantity NEXT (TOP) into

register A? Explain why the other sequence is incorrect.

a) LDA TOP (NEXT) b) LD1 TOP

LDA 0,1(NEXT)

► 8. [15] Write a MIX program corresponding to Algorithm B.

9. [23] Write a MIX program which prints out the alphabetic names of the current

contents of the card pile, starting at the top card, with one card per line, and with

parentheses around cards that are face down.

234 INFORMATION STRUCTURES 2.2

2.2. LINEAR LISTS

2.2.1. Stacks, Queues, and Deques

Usually there is much more structural information present in the data than we

actually want to represent^ directly in a computer. In each “playing card” node

of the preceding section, for example, we have a NEXT field to specify what card is

beneath it in the pile, but there is no direct way to find what card, if any,

is above a given card, or to find which pile a given card is in. Of course, there is

much information possessed by any real deck of playing cards which has been

totally suppressed from the computer representation: the details of the design

on the back of the cards, the relation of the cards to other objects in the room

where the game is being played, the molecules which compose the cards, etc. It

is conceivable that such structural information would be relevant in certain

computer applications, but obviously we never want to store all of the structure

present in every situation. Indeed, for most card-playing situations we would

not need all of the facts retained in our earlier example; thus the TAG field, which

tells whether a card is face up or face down, will often be unnecessary.

It is therefore clear that we must decide in each case how much structure to

represent in our tables, and how accessible to make each piece of information.

To make this decision, we need to know what operations are to be performed on

the data. For each problem considered in this chapter, we therefore consider not

only the data structure but also the class of operations to be done on the data; the

design of computer representations depends on the desired function of the data

as well as on its intrinsic properties. Such an emphasis on “function” as well as

“form” is basic to design problems in general.
In order to illustrate this point further, let us consider a simple example

which arises in computer hardware design. A computer memory is often classified

as a “random access memory,” i.e., Mix’s main memory; or as a “read only

memory,” i.e., one which is to contain essentially constant information; or a

“secondary bulk memory,” like Mix’s disk units, which cannot be accessed at

high speed although large quantities of information can be stored; or an “asso¬

ciative memory,” more properly called a “content-addressed memory,” i.e., one

for which information is addressed by values stored with it rather than by its

location; and so on. Note that the intended function of each kind of memory is

so important that it enters into the name of the particular memory type; all of

these devices are “memory” units, but the purposes to which they are put

profoundly influence their design and their cost.

A linear list is a set of n > 0 nodes X[l], X[2], . . . , X[n] whose structural

properties essentially involve only the linear (one-dimensional) relative positions

of the nodes: the facts that, if n > 0, X[l] is the first node; when 1 < Jc < n,

the fcth node x[k] is preceded by X[/c — 1] and followed by X[k + 1]; and X[n]
is the last node.

The operations we might want to perform on linear lists include, for example,
the following.

2.2.1 STACKS, QUEUES, AND DEQUES 235

i) Gain access to the kth node of the list to examine and/or to change

the contents of its fields.

ii) Insert a new node just before the kth node.

iii) Delete the kth node.

iv) Combine two or more linear lists into a single list.

v) Split a linear list into two or more lists.

vi) Make a copy of a linear list.

vii) Determine the number of nodes in a list.

viii) Sort the nodes of the list into ascending order based on certain fields
of the nodes.

ix) Search the list for the occurrence of a node with a particular value in

some field.

In operations (i), (ii), and (iii) the special cases k = 1 and k — n are of principal

importance since the first and last items of a linear list may be easier to get at

than a general element is. We will not discuss operations (viii) and (ix) in this

chapter, since these topics are the subjects of Chapters 5 and 6, respectively.

A computer application rarely calls for all nine of the above operations in

their full generality, so we find there are many ways to represent linear lists

depending on the class of operations which are to be done most frequently. It

is difficult to design a single representation method for linear lists in which

all of these operations are efficient; for example, the ability to gain access to

the kth node of a long list for random k is comparatively hard to do if at the

same time we are inserting and deleting items in the middle of the list. There¬

fore we distinguish between types of linear lists depending on the principal

operations to be performed, just as we have noted that computer memories

are distinguished by their intended applications.

Linear lists in which insertions, deletions, and accesses to values occur almost

always at the first or the last node are very frequently encountered, and we give

them special names:

A stack is a linear list for which all insertions and deletions (and usually all

accesses) are made at one end of the list.

A queue is a linear list for which all insertions are made at one end of the list;

all deletions (and usually all accesses) are made at the other end.

A deque (“double-ended queue”) is a linear list for which all insertions and

deletions (and usually all accesses) are made at the ends' of the list.

A deque is therefore more general than a stack or a queue; it has some properties

in common with a deck of cards, and it is pronounced the same way. We also

distinguish output-restricted or input-restricted deques, in which deletions or in¬

sertions, respectively, are allowed to take place at only one end.

In some disciplines the word “queue” has been used in a much broader sense

to describe any kind of list that is subject to insertions and deletions; the special

cases identified above are then called various “queuing disciplines.” Only the

236 INFORMATION STRUCTURES 2.2.1

Output from stack Input to stack

\

Fig. 1. A stack represented as a railway
switching network.

restricted use of the term “queue” is intended in this book, however, by analogy
with orderly queues of people waiting in line for service.

Sometimes it helps to understand the mechanism of a stack in terms of an

analogy from the switching of railroad cars, as suggested by E. W. Dijkstra

(see Fig. 1). A corresponding picture for deques is shown in Fig. 2.

With a stack we always remove the “youngest” item currently in the list,

i.e., the one which has been inserted more recently than any other. With a queue

just the opposite is true: the “oldest” item is always removed; the nodes leave
the list in the same order as they entered it.

Fig. 2. A deque represented as a railway switching network.

Many people who realized the importance of stacks and queues indepen¬

dently have given other names to these structures: stacks have been called

push-down lists, reversion storages, cellars, nesting stores, piles, last-in-first-out

(“Lit 0”) lists, and even yo-yo lists! Queues are sometimes called circular stores

or first-in-first-out (“FIFO”) lists. The terms LIFO and FIFO have been used

for many years by accountants, as names of methods for pricing inventories. Still

another term, “shelf, ” has been applied to output-restricted deques, and input-

restricted deques have been called “scrolls” or “rolls.” This multiplicity of other

names is interesting in itself since it is evidence for the importance of the con¬

cepts. I he words stack and queue are gradually be.coming standard terminology;

and of all the other words listed above, only “push-down list” is still reasonably
common, particularly in connection with automata theory.

Stacks arise quite frequently in practice. One simple example is the situation

where we go through a set of data and keep a list of exceptional conditions or

2.2.1 STACKS, QUEUES, AND DEQUES 237

things to do later; when the original set is processed, we come back to this list

to do the subsequent processing, removing its entries until it becomes empty.

(For example, see the “saddle point” problem, exercise 1.3.2-10.) Either a stack

or a queue serves this purpose, and a stack is generally more convenient. We

all have “stacks” in our minds when we are solving problems: One problem leads

to another and this leads to another; we stack up the problems and subproblems

and remove them as they are solved. Similarly, the process of entering and

leaving subroutines during the execution of a computer program has a stack-like

behavior. Stacks are particularly useful for the processing of languages with a

nested structure, like programming languages, arithmetic expressions, and the

literary German “Schachtelsatze. ” In general, stacks most frequently occur in

connection with explicitly or implicitly recursive algorithms, and we will discuss

this connection thoroughly in Chapter 8.

(a) Stack

Delete Insert

Front Second Third

(b) Queue

Rear

Leftmost
Second

from left
Second

from right

Insert or
delete

(c) Deque

Rightmost

Insert or
delete

Fig. 3. Three important classes of linear lists.

Special terminology is generally used in algorithms referring to these struc¬

tures: We put an item onto the top of a stack, or take off the top item (see

Fig. 3a). The bottom of the stack is the least accessible item, and it will not be

removed until all other items have been deleted. (People often say they push

down an item onto a stack, and pop up the stack when the top item is deleted.

This terminology comes from an analogy with the stack of plates often found in

cafeterias, or with stacks of cards in some punched-card devices. The brevity of

the words “push” and “pop” has its advantages, but these terms falsely imply a

motion of the whole list within computer memory. Nothing is physically

pushed down; items are added onto the top, as in haystacks or stacks of boxes.)

With queues, we speak of the front and the rear of the queue; things enter at the

rear and are removed when they ultimately reach the front position (see Fig. 3b).

When referring to deques, we speak of the left and right ends (Fig. 3c). The

concepts of top, bottom, front, and rear are sometimes applied to deques being

238 INFORMATION STRUCTURES 2.2.1

used as stacks or queues, with no standard conventions as to whether top, front,

and rear are to appear at the left or the right.

Thus we find it easy to use a rich variety of descriptive words from English

in our algorithms: “up-down” terminology for stacks, “left-right” terminology

for deques, and “waiting in line” terminology for queues.

A little bit of additional notation has proved to be convenient for dealing

with stacks and queues: we write

A <= x (1)

(when A is a stack) to mean that the value x is inserted on top of stack A, or

(when A is a queue) to mean that x is inserted at the rear of the queue. Similarly,
the notation

x <= A (2)

is used to mean that the variable x is set equal to the value at the top of stack A

or at the front of queue A, and this value is deleted from A. Notation (2) is

meaningless when A is empty, i.e., when A contains no values.

When A is a nonempty stack, we may write

top (A) (3)

to denote its top element.

EXERCISES

1. [06] An input-restricted deque is a linear list in which items may be inserted at
one end but removed from either end; clearly an input-restricted deque can operate
either as a stack or as a queue, if we consistently remove all items from one of the two
ends. Can an output-restricted deque also be operated either as a stack or a queue?

► 2. |75] Imagine four railroad cars positioned on the input side of the track in Fig. 1,
numbered 1, 2, 3, and 4, respectively. Suppose we perform the following sequence of
operations (which is compatible with the direction of the arrows in the diagram and
does not require cars to “jump over” other cars): (a) move car 1 into the stack; (b) move
car 2 into the stack; (c) move car 2 into the output; (d) move car 3 into the stack;
(e) move car 4 into the stack; (f) move car 4 into the output; (g) move car 3 into the
output; (h) move car 1 into the output.

As a result of these operations the original order of the cars, 1234, has been changed
into 2431. It is the purpose of this exercise and the following exercises to examine what
permutations are obtainable in such a manner from stacks, queues, or deques.

If there are six railroad cars numbered 123456, can they be permuted into the
order 325641? Can they be permuted into the order 154623? (In case it is possible
show how to do it.)

3. [25] the operations (a) through (h) in the previous exercise can be much more
concisely described by the code SSXSSXXN, where S stands for “move a car from
the input into the stack, ’ and X stands for “move a car from the stack into the output.”
Some sequences of S’s and X’s specify meaningless operations, since there may be no

Z'Z\J STACKS, QUEUES, AND DEQUES 239

cars available on the specified track; for example, the sequence SXXSSXXS cannot
be carried out.

Let us call a sequence of S’s and X’s admissible if it contains n S’s and n X’s, and

if it specifies no operations that cannot be performed. Formulate a rule by which it is

easy to distinguish between admissible and inadmissible sequences; show furthermore

that no two different admissible sequences give the same output permutation.

4. [MS^] Find a simple formula for an, the number of permutations on n elements
that can be obtained with a stack like that in exercise 2.

► 5. [M28] Show that it is possible to obtain the permutation pi p2 ■ ■ • pn from

1 2 ... n using a stack if and only if there are no indices i < j < k such that

Pi < Pk < Pi.

6. [00] Consider the problem of exercise 2, with a queue substituted for a stack.

^ hat permutations of 1 2 ... n can be obtained with the use of a queue?

► 7. [25] Consider the problem of exercise 2, with a deque substituted for a stack,

(a) Find a permutation of 1 2 3 4 which can be obtained with an input-restricted deque,

but which cannot be obtained with an output-restricted deque, (b) Find a permuta¬

tion of 1 2 3 4 which can be obtained with an output-restricted deque but not with an

input-restricted deque. [As a consequence of (a) and (b), there is a definite difference

between input-restricted and output-restricted deques.] (c) Find a permutation of

1 2 3 4 which cannot be obtained with either an input-restricted or an output-restricted
deque.

8. [22] Are there any permutations of 1 2 ... n which cannot be obtained with the

use of a deque that is neither input- nor output-restricted?

9. [M20] Let bn be the number of permutations on n elements obtainable by the use

of an input-restricted deque. (Note that 64 = 22, as shown in exercise 7.) Show that

bn is also the number of permutations on n elements obtainable with an oidpid-restricted

deque.

10. [M25] (See exercise 3.) Let S, Q, and X denote respectively the operations of

inserting an element at the left, inserting an element at the right, and emitting an

element from the left, of an output-restricted deque. For example, the sequence

QQXSXSXX will transform the input sequence 1 2 3 4 into 1 3 4 2. The sequence

SXQSXSXX gives the same transformation.

Find a way to define the concept of an admissible sequence of the symbols S, Q,

and X in such a way that (a) each admissible sequence performs a meaningful sequence

of operations that defines a permutation of n elements; and that (b) each permutation

of n elements that is attainable with an output-restricted deque corresponds to precisely

one admissible sequence.

► 11. [M40] As a consequence of exercises 9 and 10, the number bn is the number of

admissible sequences of length 2n. Find a “closed form” for the generating function

i> 0 bnzn.

12. [HMS^] Compute the asymptotic values of the quantities an and bn in exercises

4 and 11.

13. [M4.8] How many permutations of n elements are obtainable with the use of a

general deque? Is there an efficient algorithm which decides whether or not a given

permutation is obtainable? [S. Even and R. E. Tarjan have devised an algorithm

which decides in 0(n) steps whether or not a given permutation is obtainable.]

240 INFORMATION STRUCTURES 2.2.2

2.2.2. Sequential Allocation

The simplest and most natural way to keep a linear list inside a computer is to

put the list items in sequential locations, one node after the other. We thus will

have *

LOC^Xti + 1]) = LOC (X[j]) + c,

where c is the number of words per node. (Usually c = 1. When c > 1, it is

sometimes more convenient to split a single list into c “parallel” lists, so that

the kth word of node Xly 1 is- stored a fixed distance from the location of the

first word of Xly]. We will continually assume, however, that adjacent groups

of c words form a single node.) In general,

L0C(X[y]) = L0 + cj, (1)

where L0 is a constant called the base address, the location of an artificially

assumed node XlOl.

This technique for representing a linear list is so obvious and well-known

that there seems to be no need to dwell on it at any length. But we will be

seeing many other “more sophisticated” methods of representation later on in

this chapter, and it is a good idea to examine the simple case first to see just how

far we can go with it. It is important to understand the limitations as well as
the power of the use of sequential allocation.

Sequential allocation is quite convenient for dealing with a stack. We simply

have a variable T called the stack pointer. When the stack is empty, we let

T = 0.. To place a new element Y on top of the stack, we set

T <- T + 1; XlTl <— Y. (2)

And when the stack is not empty, we can set Y equal to the top node and delete
that node by reversing the actions of (2):

Y Xt TI; T <— T — 1. (3)

(Inside a computer it is usually most efficient to maintain the value cT instead

of T, because of (1). Such modifications are easily made, so we will continue our
discussion as though c = 1.)

The representation of a queue or a more general deque is a little trickier. An

obvious solution is to keep two pointers, say F and R (for the front and rear of

the queue), with F = R = 0 when the queue is empty. Then inserting an ele¬
ment at the rear of the queue would be

R «- R + 1; XlR] <— Y. (4)

Removing the front node (F points just below the front) would be

F <— F + 1; Y < Xl F]; if F = R, then set F <— R <— 0. (5)

But note what can happen: If R always stays ahead of F (so there is always at

2.2,2 SEQUENTIAL ALLOCATION 241

least one node in the queue) the table entries used are X[l], X[2], . . . , X[1000], . . . ,

ad infinitum, and this is terribly wasteful of storage space. The simple method

(4), (5) is therefore to be used only in the situation when F is known to catch up

to R quite regularly (for example, if all deletions come in spurts, which empty

the queue).

To circumvent the problem of the queue overrunning memory, we can set

aside M nodes X[l], . . . , X[M] arranged implicitly in a circle with X[l] following

X[M], Then the above processes (4), (5) become

if R = M then R <— 1, otherwise R <— R + 1; X[R] Y. (6)

if F = M then F <— 1, otherwise F <— F T- 1; Y <■— X[F]. (7)

This circular queuing action is much like that which we have already seen in the
discussion of input-output buffering (Section 1.4.4).

The above discussion has been very unrealistic in that we have tacitly

assumed nothing could go wrong. When we deleted a node from a stack or

queue, we assumed that there was at least one node present. When we inserted

a node onto a stack or queue, we assumed there was room for it in memory. But

clearly the method (6), (7) allows at most M nodes in the entire queue, and

methods (2), (3), (4), (5) allow T and R to reach only a certain maximum amount

within any given computer program. The following specifications show how the

above actions must be rewritten for the common case where we do not assume

that these restrictions are automatically satisfied:

X <= Y (insert into stack): T <— T + 1; if T > M, then OVERFLOW;

X[T] <— Y. (2a)

Y <= X (delete from stack): if T = 0, then UNDERFLOW; Y <— X[T];

T <— T — 1. (3a)

X <= Y (insert into queue):

if R = M, then R «— 1, otherwise R R + 1;

• if R = F, then OVERFLOW; (6a)

X[R] v- Y.

Y X (delete from queue):

'if F = R, then UNDERFLOW;

- if F = M, then F <— 1, otherwise F <— F + 1; (7a)

Y <— X[F].

Here we assume that Xl 11, . . . , XlMl is the total amount of space allowed for the

list; OVERFLOW and UNDERFLOW mean an excess or deficiency of items. Note that

the initial setting F = R = 0 for the queue pointers is no longer valid when we

use (6a) and (7a); we should start with F = R = 1, say.
The reader is urged to work exercise 1, which discusses a nontrivial aspect

of this simple queuing mechanism.

The next question is, “What do we do when UNDERFLOW or OVERFLOW occurs?”

In the case of UNDERFLOW, we have tried to remove a nonexistent item; this is

usually a meaningful condition—not an error situation—which can be used to

govern the flow of a program, e.g., we might want to delete items repeatedly

242 INFORMATION STRUCTURES 2.2.2

until UNDERFLOW occurs. An OVERFLOW situation, however, is usually an error;

it means the table is full already, yet there is still more information that ought

to be put in. The usual policy in case of OVERFLOW is to report reluctantly that

the program cannot go on because its storage capacity has been exceeded, and

the program terminates.

Of course we would hate to give up in an OVERFLOW situation when only one

list has gotten too large, while other lists of the same program may very well

have plenty of room remaining. In the above discussion we were primarily

thinking of a program with only one list. However, we frequently encounter

programs which involve several stacks, each of which has a dynamically varying

size. In such a situation we would hate to impose a maximum size on each stack,

for usually the size is somewhat unpredictable; and even if a maximum size has

been determined for each stack, we will rarely find all stacks simultaneously
filling their maximum capacity.

When there are just two variable size lists, they can coexist together very
nicely if we let the lists grow toward each other:

Program and
fixed-size tables List 1

Beginning Bottom Top
of memory

Available Program and
space List 2 fixed-size tables

Top Bottom End of
memory

Here list 1 expands to the right, and list 2 (stored in reverse order) expands to

the left. OVERFLOW will not occur unless the total size of both lists exhausts all

memory space. The lists may independently expand and contract so that the

effective maximum size of each one could be significantly more than half of the

available space. The above layout of memory space is used very frequently.

The reader may easily convince himself, however, that there is no way to

store three or more variable-size sequential lists in memory so that (a) OVERFLOW

will occur only when the total size of all lists exceeds the total space, and (b) each

list has a fixed location for its bottom element. WEen there are, say, ten or

more variable size lists and this is not unusual—the storage allocation problem

becomes very significant. If we wish to satisfy condition (a), we must give up

condition (b); that is, we must allow the “bottom” elements of the lists to change

their positions. This means the location L0 of Eq. 1 is not constant any longer;

no reference to the table may be made to an absolute memory address, all refer¬

ences must be relative to the base address L0. In the case of MIX, the coding to
bring a one-word node into register A is changed from

LDl I
LDl I

LDA L0,1
to, e.g.,

LDA

STA

BASE(0:2)

*+1(0:2)

LDA *,1

2.2.2 SEQUENTIAL ALLOCATION 243

where BASE contains 1-1-

Lo
_1_1_

0 0 0

This relative addressing is evidently slower to do than when the base was fixed,

although we find it would be only slightly slower if MIX had an “indirect address¬
ing” feature (see exercise 3).

An important special case occurs when each of the variable size lists is a

stack. Then, since only the top element of each stack is relevant at any time,

we can proceed almost as efficiently as before. Suppose that we have n stacks;

the insertion and deletion algorithms above become the following, if BASED']

and T0P[z] are link variables for the fth stack, and if each node is one word long:

Insertion: TOP[f] <— TOP[f] + 1; if TOP[t] > BASE[f + 1], then

OVERFLOW; otherwise set C0NTENTS(T0P[f]) <— Y. (9)

Deletion: if T0P[f] = BASE[t], then UNDERFLOW; otherwise

set Y CONTENTS(TOP[i]), TOP[f] <— TOP[f] — 1. (10)

Here BASE[f + 1] is the base location of the (i + l)st stack. The condition

T0P[f] = BASE[f] means that stack i is empty.
In the above situation, OVERFLOW is no longer such a crisis as it was before;

we can “repack memory,” making room for the table that overflowed by taking

some away from tables that aren’t yet filled. A number of possible ways to do

this suggest themselves, and since these repacking algorithms are very important

in connection with sequential allocation of linear lists, we will now consider this

problem in detail. We will start by giving the simplest of these methods, and

will then consider some of the alternatives.

Assume that there are n stacks, and that the values BASE[f] and T0P[z] are to

be manipulated as in (9), (10). These stacks are all to share the common memory

area consisting of all locations L with L0 < L < Lx. (Here L0 and L* are con¬

stants which specify the total number of words available for use.) We might

start out with all stacks empty, and BASE[f] = T0P[z] = L0, for all i. We also

set BASEjn -f- 1] = Lw so that (9) will work properly for i = n. Now whenever

a particular stack, except stack n, gets more items in it than it ever had before,

OVERFLOW will occur.
When stack i overflows, there are three possibilities:

a) We find the smallest k for which i < k < n and TOP[A: 1 < BASE! k +11,

if any such k exist. Now move things up one notch:

Set CONTENTS(L -f 1) <— CONTENTS(L), for TOP[k] > L > BASE[t +1].

(Note that this should be done for decreasing, not increasing, values of L to

avoid losing information. It is possible that TOPlfcl = BASED -j- 1], in which

case nothing needs to be moved.)

Set BASE[j] <- BASEjj] + 1, T0P[j] <- T0P[j] +1, for i < j < k.

244 INFORMATION STRUCTURES 2.2.2

b) No k can be found as in (a), but we find the largest k for which 1 < k < i

and TOPlk] < BASE!k +11. Now move things down one notch:

Set CONTENTS (L — 1) <- CONTENTS (L), for BASE [A: + 1] < L < TOP[i].

(Note that this should be d®ne for increasing values of L.)

Set BASE[j] <- BASE[j] - 1, T0P[j] <- TOP[;'] - 1, for k < j < i.

c) We have TOP[/cl = BASE!k +11 for all k ^ i. Then obviously we can¬

not find room for the new stack entry, and we must give up.

Fig. 4. Example of memory configuration after several insertions and deletions.

Figure 4 illustrates the configuration of memory for the case n — 4, L0 = 0,

Loo = 20, after the successive actions

I? it I4 I*2 Di it Ii it l| I4 D2 Dx.

(Here I j and D; refer to insertion and deletion in stack j, and an asterisk refers

to an occurrence of OVERFLOW, assuming that no space is initially allocated to

stacks 1, 2, and 3.)

It is clear that many of the first stack overflows which occur with this method

could be eliminated if we chose our initial conditions wisely, instead of allocating

all space initially to the nth stack as suggested above. For example, if we expect

each stack to be of the same size, we can start out with

BASEljl = TOPlj] ■ L0. (ID

Operating experience with a particular program may suggest better starting

values; however, no matter how well the initial allocation is set up, it can save

at most a fixed number of overflows, and the effect is noticeable only in the early
stages of a program run.

Another possible improvement in the above method would be to make room

for more than one new entry each time memory is repacked. The shifting of

tables in memory is a time-consuming operation, and we can gain speed by

shifting up 2 or 3 at once instead of shifting by 1 several times.

2.2,2 SEQUENTIAL ALLOCATION 245

This idea has been exploited by J. Garwick, who suggests a complete re¬

packing of memory when overflow occurs, based on the change in size of each

stack since the last repacking. This algorithm uses an additional array, called

OLDTOPh'l, 1 < i < n, which retains the value that TOPU'l had just after the

previous time memory was allocated. Initially, the tables are set as before, with

OLDTOPb'l = TOPU'l. The new algorithm proceeds as follows:

Algorithm G (Reallocate sequential tables). Assume that OVERFLOW has occurred

in stack i, according to (9). After Algorithm G has been performed, either we

will find the memory capacity exceeded or the memory will have been rearranged

so that the action NQDE(TOPU'l) <— Y may be done. (Note that TOPU'l has

already been increased in (9) before Algorithm G takes place.)

Gl. [Initialize.] Set SUM <— LM — L0, INC 0. Then do step G2 for 1 < j < n.

(The effect will be to make SUM equal to the total amount of memory space

left, and INC equal to the total amount of increases in table sizes since the

last allocation.) After this has been done, go on to step G3.

G2. [Gather statistics.] Set SUM <— SUM — (TOPtjl — BASEtj'l). If TOPtj] >
OLDTOPljl, set Dlj 1 <— TOPtj'l — OLDTOPtj] and INC <— INC + Dlj]; other¬

wise set Dtyi <— 0.

G3. [Is memory full?] If SUM < 0, we cannot proceed.

G4. [Compute allocation factors.] Set a <— 0.1 X SUM/n, /3 <— 0.9 X SUM/INC.

(Here a and /3 are fractions, not integers, which are to be computed to

reasonable accuracy. The following step awards the available space to

individual lists as follows: Approximately 10 percent of the memory presently

available will be shared equally among the n lists, and the other 90 percent

will be divided proportionately to the amount of increase in table size

since the previous allocation.)

G5. [Compute new base addresses.] Set NEWBASEfl] <— BASE[1] and cr <— 0; then

for j = 2, 3, . . . , n set r <- a + a -f D[j — 1]0, NEWBASE[j] <- NEWBASEtf — 1]

+ TOPfj — 1] — BASE[j — 1] + LtJ — \jt], and a <— t.

G6. [Repack.] Set T0P[z] <— T0P[f] — 1. (This reflects the true size of the fth

list, so that no attempt will be made to move information from beyond the

list boundary.) Perform Algorithm R below, and then reset T0P[f] <—

T0P[f] -f- 1. Finally set 0LDT0P[j] <— TDP[j] for 1 < j < n. |

Perhaps the mcst interesting part of this whole algorithm is the general

repacking process, which we shall now describe. Repacking is not trivial, since

some portions of memory shift up and others shift down; it is obviously im¬

portant not to overwrite any of the good information in memory while it is

being moved.

1

24G INFORMATION STRUCTURES 2.2.2

Algorithm R (Relocate sequential tables). For 1 < j < n the information specified

by BASEtj] and TOPtjl in accord with the conventions stated above is moved to

new positions specified by NEWBASEtj], and the values of BASEtj] and TOPtjl

are suitably adjusted. This algorithm is based on the easily verified fact that

the data to be moved downward cannot overlap with any data that is to be

moved upward, nor with any data that is supposed to stay put.

Rl. [Initialize.] Set j <— 1.

R2. [Find start of shift.] (Now all lists from 1 to j which were to be moved down

have been shifted into the desired position.) Increase j in steps of 1 until

finding either

a) NEWBASEtj] < BASEtj]: go to R3; or

b) j > n: go to R4.

R3. [Shift down.] Set <5 <- BASEtj] — NEWBASEtj]. Set CONTENTS(L — 5) <-

CONTENTS(L), for L = BASEfj] + 1, BASE[j] + 2, . . . , T0P[j]. (Note that it

is possible for BASE[j] to equal TOP[j], in which case no action is required.)

Set BASE[j] <— NEWBASEfj], TOP[j] 4- T0P[j] — 5. Go to R2.

R4. [Find start of shift.] (Now all lists from j to n which were to be moved

up have been shifted into the desired position.) Decrease j in steps of 1

until finding either

a) NEWBASEfj] > BASE[j']: go to R5; or

b) j — 1: the algorithm terminates.

R5. [Shift up.] Set 8 4- NEWBASEfj] — BASEfj]. Set CONTENTS(L + 5) «-

CONTENTS(L), for L = T0P[j], T0P[j] — 1, ... , BASE[j] + 1. (Note that, as

in step R3, no action may be needed here.) Set BASE[j] 4— NEWBASE[j],

T0P[j] 4- T0P[j] + 8. Go to R4. |

Note that stack 1 never needs to be moved, so for efficiency the programmer

should put the largest stack first if he knows which one will be largest.

In Algorithms G and R we have purposely made it possible to have

□LDTQPljl = Dfj — 11 s NEWBASEtj]

for 1 < j < n + 1, that is, these three tables can share common memory loca¬

tions since their values are never needed at conflicting times. It will be necessary

to perform step G2 for decreasing values of j when using this overlap.

We have described these repacking algorithms for stacks, but it is clear that

they can be adapted to any relatively addressed tables in which the current

information is contained between BASEtj] and TOPtjl. Other pointers (for

example, FRONT!j], REARtjl) could also be attached to the lists, making them

serve as a queue or deque. See exercise 8 which considers the case of a queue in
detail.

2.2.2 SEQUENTIAL ALLOCATION 247

The mathematical analysis of dynamic storage-allocation algorithms like

those above is extremely difficult. Some interesting results appear in the exer¬

cises below, although they only begin to scratch the surface as far as the general

behavior is concerned.

As an example of the theory which can be derived, suppose we consider the

case when the tables grow only by insertion; deletions and subsequent insertions

that cancel their effect are ignored. Let us assume further that each table is

expected to fill at the same rate. This situation can be modeled by imagining a

sequence of m insertion operations oq, cq, . . . , am, where each a; is an integer

between 1 and n (representing an insertion on top of stack a,). For example, the

sequence 1, 1, 2, 2, 1 means two insertions to stack 1, followed by two to stack

2, followed by another onto stack 1. We can regard each of the nm possible

specifications oq, a2, . . . , am as equally likely, and then we can ask for the

average number of times it is necessary to move a word from one location to

another during the repacking operations as the entire table is built. For the first

algorithm, starting with all available space given to the nth stack, this question

is analyzed in exercise 9. We find that the average number of move operations

required is

Thus, as we might expect, the number of moves is essentially proportional to

the square of the number of items in the tables. The same is true if the in¬

dividual stacks aren’t equally likely (see exercise 10).

The moral of the story seems to be that a very large number of moves will

be made if a reasonably large number of items is put into the tables. This is the

price we must pay for the ability to pack a large number of sequential tables

together tightly. No theory has been developed to analyze the characteristics

of Algorithm G, and it is unlikely that any simple model will be able to describe

the characteristics of real-life tables in such an environment anyway.

Experience shows that when memory is only half loaded (i.e., when the

available space equals half the total space), we need very little rearranging of

the tables with Algorithm G; the important thing is perhaps that the algorithm

behaves well in the half-full case and that it at least delivers the right answers

in the almost-full case.

But let us think about the almost-full case more carefully. When the tables

nearly fill memory, Algorithm R takes rather long to perform its job, and to

make matters worse OVERFLOW is much more frequent just before memory space

is used up. There are very few programs that will come close to filling memory

without soon thereafter completely overflowing it; and those that do overflow

memory will probably waste enormous amounts of time in Algorithms G and R

just before memory is overrun. Unfortunately, undebugged programs will

frequently overflow memory capacity. To avoid wasting all this time, a possible

248 INFORMATION STRUCTURES 2.2.2

suggestion would be to stop Algorithm G in step G3 if SUM is less than >Smin>

where the latter is chosen by the programmer to prevent excessive repacking.

When there are many variable-size sequential tables, we should not expect to

make use of 100 percent of the memory space before storage is exceeded.

\

EXERCISES

► 1. [15] In the queue operations given by (6a), (7a), how many items can be in the

queue at one time without OVERFLOW occurring?

► 2. [22] Generalize the method of (6a), (7a) to apply to any deque with less than

M elements. In other words, give specifications for the other two operations, “delete

from rear” and “insert at front.”

3. [21] Suppose that MIX is extended as follows: The I-field of each instruction is to

have the form 811 + I2, where 0 < Ii < 8, 0 < I2 < 8. In assembly language one

writes “OP ADDRESS, 11:12” or (as presently) “OP ADDRESS, I2” if Ii = 0. The mean¬

ing is to perform first the “address modification” Ii on ADDRESS, then to perform the

“address modification” I2 on the resulting address, and finally to perform the OP with

the new address. The address modifications are defined as follows:

0: M = A

1: M = A + (rll)

2: M = A + (rI2)

6: M = A + (rI6)

7: M = resulting address defined from the “ADDRESS, Ii: I2” fields found in

location A. The case Ii = I2 = 7 in location A is not allowed. (The

reason for the latter restriction is discussed in exercise 5.)

Here A denotes the address before the operation, and M denotes the resulting address

after the address modification. In all cases the result is undefined if the value of M

does not fit in two bytes plus sign. The execution time is increased by one unit for

each “indirect-addressing” (modification 7) operation performed.

Asa nontrivial example, suppose that location 1000 contains “NOP 1000,1:7”;

location 1001 contains “NOP 1000,2”; and index registers 1 and 2 respectively

contain 1 and 2. Then the command “LDA 1000,7:2” is equivalent to “LDA 1004”,
because

1000,7:2 = (1000,1:7),2 = (1001,7),2 = (1000,2),2 = 1002,2 = 1004.

a) Using this indirect addressing feature (if necessary), show how to simplify the

coding on the right-hand side of (8) so that two instructions are saved per reference to
the table. How much faster is your code than (8) ?

b) Suppose there are several tables whose base addresses are stored in locations

BASE, BASE -f- 1, BASE 2, . . . ; how can the indirect addressing feature be used to

2.2.2 SEQUENTIAL ALLOCATION 249

bring the Ith element of the Jth table into register A in one instruction, assuming that
I is in rll and J is in rI2?

c) What is the effect of the instruction “ENT4 X,7”, assuming that the (3:3)-field
in location X is zero?

4. [25] Assume that MIX has been extended as in exercise 3. Show how to give a
single instruction (plus auxiliary constants) for each of the following actions:

i) To loop indefinitely because indirect addressing never terminates.
ii) To bring into register A the value LINK(LINK(a;)), where the value of link

variable x is stored in the (0:2) field of the location whose symbolic address
is X, the value of LINK(x) is stored in the (0:2) field of location x, etc., assum¬
ing that the (3:3) fields in these locations are zero.

iii) To bring into register A the value LINK(LINK(LINK(a:))), under assumptions
like those in (ii).

iv) To bring into register A the contents of location (rll) -j- (rI2) + •••-)- (rI6).
v) To quadruple the current value of rI6.

* 5. [35] The extension of MIX suggested in exercise 3 has an unfortunate restriction
that “7:7” is not allowed in an indirectly addressed location.

a) Give an example which indicates that, without this restriction, it would prob¬
ably be necessary for the MIX hardware to be capable of maintaining a long internal
stack of three-bit items. (This would be prohibitively expensive hardware, even for
a mythical computer like MIX.)

b) Show how such a stack is not needed under the present restriction; in other
words, design an algorithm with which the hardware of a computer could perform the
desired address modifications without much additional register capacity.

c) Give a milder restriction than that of exercise 3 on the use of 7:7 which alle¬
viates the difficulties of exercise 4(iii), yet which can be cheaply implemented in
computer hardware.

6. [10] Starting with the memory configuration shown in Fig. 4, determine which
of the following sequences of operations causes overflow or underflow, (a) Ii; (b) I2;
(c) I3; (d) I4I4I4I4I4; (e) D2D2I2I2I2.

7. [12] Step G4 of Algorithm G indicates a division by the quantity INC. Can INC

ever be zero at that point in the algorithm?

► 8. [25] Explain how to modify (9), (10) and the repacking algorithms for the case
that one or more of the lists is a queue being handled circularly as in (6a), (7a).

► 9. [M27] Using the mathematical model described near the end of the section, prove
that Eq. (12) is the expected number of moves. (Note that the sequence 1, 1, 4, 2, 3,
1, 2, 4, 2, 1 specifies 0-f0+0-)-l+l + 3+ 2+ 0-l-3-)-6= 16 moves.)

10. [M28] Modify the mathematical model of exercise 9 so that some tables are
expected to be larger than others: let pk be the probability that a,- = k, for 1 < j < m,
1 < k < n. Thus pi + P2 +•■• + ?»» = 1; the previous exercise considered the
special case pk = 1 /n for all k. Determine the expected number of moves, as in
Eq. (12), for this more general case. It is possible to rearrange the relative order of
the n lists so that lists which are expected to be longer are put to the right (or to the
left) of lists expected to be shorter; what is the best relative order for the n lists to
minimize the expected number of moves, based on pi, P2, . . . , pn?

250 INFORMATION STRUCTURES 2.2.2

11. [M30\ Generalize the argument of exercise 9 so that the first t insertions in any

stack cause no movement, while subsequent insertions are unaffected. Thus if t = 2,

the sequence in exercise 9 specifies 0-|-0-|-0-t-0+0+3+0+0-|-3+6 = 12

moves. What is the average total number of moves under this assumption? [This is

an approximation to the behavior of the algorithm when each stack starts with t

available spaces.] \

12. [M28] The advantage of having two tables coexist in memory by growing towards

each other, rather than by having them kept in separate independently bounded areas,

may be quantitatively estimated (to a certain extent) as follows. Use the model of

exercise 9 with n = 2; for each of the 2m equally probable sequences oi, a^, . . . , am,

let there be ki l’s and k2 2’s. (Here k 1 and &2 are the respective sizes of the two tables

after the memory is full. We are able to run the algorithm with m = k 1 + &2 locations

when the tables are adjacent, instead of 2 max (ki, £2) locations to get the same effect

with separate tables.)

What is the average value of max (ki, k2)?

13. [MJt-7] The value max (ki, ^2) investigated in exercise 12 will be even greater if

larger fluctuations in the tables are introduced by allowing random deletions as well

as random insertions. Suppose we alter the model so that with probability p the

sequence value a3- is interpreted as a deletion instead of an insertion; the process con¬

tinues until ki + &2 (the total number of table locations in use) equals m. A deletion

from an empty list causes no effect.

For example if m = 4, it can be shown that when the above process stops, we get

the probability distribution:

the value of (ki, fo),

occurs with probability:

(4,0) or (0,4),

1

16 — 12p -|- 4p2 ’

(3,1) or (1,3), (2,2),

1 6 — 6p + 2 p2

4 16 — 12p -(- 4p2

Thus as p increases, the difference between ki and &2 tends to increase. It is not

difficult to show that in the limit as p approaches unity, the distribution of k\ becomes

essentially uniform, and the limiting value of max (k\, £2) is exactly fm, when m

is even. This behavior is quite different from that in the previous exercise (when

V ~ 0); however, it may not be extremely significant, since when p approaches unity,

the amount of time taken to terminate the process rapidly approaches infinity. The

problem posed in this exercise is to examine the dependence of max (hi, ^2) on p

and m, and to determine asymptotic formulas for fixed p (like p = J) as m approaches
infinity.

14. [HM4.8] Generalize the result of exercise 12 to arbitrary n > 2, by showing that,

when n is fixed and m approaches infinity, the quantity

m\

n*
^1H-\-kn=m

max (ki, , kn)

ki \ • ■ • k„\

has the asymptotic form (m/n) + c„Vm + 0(1). Determine the constants C2, C3,

C4, and C5.

2.2.3 LINKED ALLOCATION 251

Id. [40] Using a Monte Carlo method, simulate the behavior of Algorithm G under

varying distributions of insertions and deletions. What do your experiments imply

about the efficiency of Algorithm G? Compare its performance with the algorithm
given earlier that shifts up and down one node at a time.

16. \20\ The text illustrates how two stacks can be located so they grow towards each

other, thereby making efficient use of a common memory area. Can two queues, or

a stack and a queue, make use of a common memory area with the same degree of
efficiency?

2.2.3. Linked Allocation

Instead of keeping a linear list in sequential memory locations, we can make use

of a much more flexible scheme in which each node contains a link to the next

node of the list.

Sequential allocation: Linked allocation:

Address Contents Address Contents

L0 + c: Item 1 A: Item 1 B

Lo "T 2c: Item 2 B: Item 2 C

L0 + 3c: Item 3 C: Item 3 D

Lo + 4c: Item 4 D: Item 4 E

L0 + 5c: Item 5 E: Item 5 A

Here A, B, C, D, and E are arbitrary locations in the memory, and A is the null

link (see Section 2.1). The program which uses this table in the case of sequential

allocation- would have an additional variable or constant whose value indicates

that the table is five items in length, or else this information would be specified

by a “sentinel” code within item 5 or in the following location. A program for

linked allocation would have a link variable or constant that points to A, and

from A all the other items of the list can be found.

Recall from Section 2.1 that links are often shown simply by arrows, since

the actual memory locations occupied are usually irrelevant. The linked table

above might therefore be shown as follows:

FIRST

(1)

Here FIRST is a link variable pointing to the first node of the list.

There are several obvious comparisons we can make between these two basic

forms of storage:

1) Linked allocation takes up additional memory space for the links. This

can be the dominating factor in some situations. However, we frequently find

252 INFORMATION STRUCTURES 2.2.3

that the information in a node does not take up a whole word anyway, so there

is already space for a link field present. Also, it is possible in many applications

to combine several items into one node so that there is only one link for several

items of information (see exercise 2.5-2). But even more importantly, there

is often an implicit gain in storage by the linked memory approach, since tables

can overlap, sharing common parts; and in many cases, sequential allocation

will not be as efficient as linked allocation unless a rather large number of

additional memory locations are left vacant anyway. For example, the discus¬

sion at the end of the previous section shows how the systems described there

are necessarily inefficient when memory is densely loaded.

2) It is easy to delete an item from within a linked list. For example, to

delete item 3 we need only change the link associated with item 2. But with

sequential allocation such a deletion generally implies moving a large part of the

list up into different locations.

3) It is easy to insert an item into the midst of a list when the linked scheme

is being used. For example, to insert an item into (1) we need change only

two links:

FIRST

(2)

By comparison, this operation would be extremely time-consuming in a long

sequential table.

4) References to random parts of the list are much faster in the sequential

case. To gain access to the kih item in the list, when k is a variable, takes a fixed

time in the sequential case, but it takes k iterations to march down to the right

place in the linked case. Thus the usefulness of linked memory is predicated on

the fact that in the large majority of applications we want to walk through lists

sequentially, not randomly; if items in the middle or at the bottom of the list

are needed, we try to keep an additional link variable or list of link variables

pointing to the proper places.

5) The linked scheme makes it easier to join two lists together or to break

one apart.

6) The linked scheme lends itself immediately to more intricate structures

than simple linear lists. We can have a variable number of variable size lists;

any node of the list may be a starting point for another list; the nodes may

simultaneously be linked together in several orders corresponding to different

lists; and so on.

7) Simple operations, like proceeding sequentially through a list, are

slightly faster for sequential lists on many computers. For MIX, the comparison

is between “INC1 c” and “LD1 0,1 (LINK)”, which is only one cycle different,

but many machines do not enjoy the property of being able to load an index

register from an indexed location.

2.2.3 LINKED ALLOCATION 253

Thus we see that the linking technique, which frees us from any constraints

imposed by the consecutive nature of computer memory, gives us a good deal

more efficiency in some operations, while we lost some capabilities in other cases.

It is usually clear which allocation technique will be most appropriate in a given

situation, and often both methods are used in different lists of the same program.

In the next few examples we will assume for convenience that a node has one

word and that it is broken into the two fields INFO and LINK:

INFO LINK (3)

The use of linked allocation generally implies the existence of some mecha¬

nism for finding empty space available for a new node, when we wish to insert

some newly created information onto a list. This is usually done by having a

special list called the list of available space. We will call it the AVAIL list (or, the

AVAIL stack, since it is usually treated in a last-in-first-out manner). The set

of all nodes not currently in use is linked together in a list just like any other

list; the link variable AVAIL refers to the top element of this list. Thus, if we

want to set link variable X to'the address of a new node, and to reserve that node

for future use, we can proceed as follows:

X <— AVAIL, AVAIL 4- LINK (AVAIL). (4)

This effectively removes the top of the AVAIL stack and makes X point to the

node just removed. Operation (4) occurs so often that we have a special notation

for it: “X AVAIL” will mean X is set to point to a new node.

When a node is deleted and no longer needed, process (4) can be reversed:

LINK(X) 4—AVAIL, AVAIL 4—X. (5)

This operation puts the node addressed by X back onto the list of raw material;

we denote (5) by “AVAIL <= X”.

Several important things have been omitted from the above discussion of

the AVAIL stack. We did not say how to set it up at the beginning of a program;

clearly this can be done by (a) linking together all nodes which are to be used

for linked memory, (b) setting AVAIL to the address of the first of these nodes,

and (c) making the last node link to A. The set of all nodes which can be allocated

is called the storage pool.

A more important omission in our discussion was the test for overflow: we

neglected to check in (4) if all available memory space has been taken. The

operation X <= AVAIL should really be defined as follows:

if AVAIL = A, then OVERFLOW; otherwise X 4— AVAIL, AVAIL 4— LINK (AVAIL). (6)

The possibility of overflow must always be considered. Here OVERFLOW generally

254 INFORMATION STRUCTURES 2.2.3

means that we terminate the program with regrets; or else we can go into a

“garbage collection” routine which attempts to find more available space.

Garbage collection is discussed in Section 2.3.5.

There is another important technique for handling the AVAIL stack: We often

do not know in advance ho^ much memory space is to be used for the storage

pool. There may be a sequential table of variable size which is to coexist in

memory with the linked tables; in such a case we do not want the linked memory

area to take any more space than is absolutely necessary. So suppose that we

wish to place the linked memory area in ascending locations beginning with L0,

and that this area is never to extend past the value of variable SEQMIN (which

represents the current lower bound of other tables). Then we can proceed as

follows, using a new variable POOLMAX:

a) Initially set AVAIL 4— A and POOLMAX <— L0.

b) The operation X <= AVAIL becomes the following:

“If AVAIL A, then X <— AVAIL, AVAIL 4- LINK (AVAIL).

Otherwise set POOLMAX 4— POOLMAX c, where c is the node size; (7)

now if POOLMAX > SEQMIN, then OVERFLOW; otherwise set X 4— POOLMAX — c. ”

c) When other parts of the program attempt to decrease the value of

SEQMIN, they should sound the OVERFLOW alarm if SEQMIN < POOLMAX.

d) The operation AVAIL <= X is unchanged from (5).

This idea actually represents little more than the previous method with a special

recovery procedure substituted for the OVERFLOW situation in (6). The net effect

is to keep the storage pool as small as possible. Many people like to use this idea

even when all lists occupy the storage pool area (so that SEQMIN is constant),

since it avoids the rather time-consuming operation of initially linking all

available cells together and it sometimes facilitates debugging.

We now see that it is quite easy to maintain a

“pool” of available nodes, in such a way that freq nodes

can be efficiently found and later returned. These

methods give us a source of raw material to use in linked

tables. Our discussion was predicated on the implicit

assumption that all nodes have a fixed size, c; the cases

which arise when different sizes of nodes are present are

very important, but we will defer that discussion until

Section 2.5. Now we will consider a few of the most

common list operations in the special case where stacks

and queues are involved.

A stack is the simplest kind of linked list. Figure 5

shows a typical stack, with a pointer T to the top of the

stack. When the stack is empty, this pointer will have ~

the value A. Fig. a linked stack.

2.2.3 LINKED ALLOCATION 255

It is clear how to insert (“push down”) the information Y onto the top of

the stack, using an auxiliary pointer variable P:

AVAIL, INFO (P) 4— Y, LINK(P) 4— T, T 4— P. (8)

Conversely, to set Y equal to the information at the top of the stack and to

“pop up” the stack:

If T = A, then UNDERFLOW;

otherwise set P <— T, T <— LINK(P), Y <— INFO(P), AVAIL P. (9)

These operations should be compared with the analogous mechanisms for

sequentially allocated stacks, (2a) and (3a) in Section 2.2.2. The reader should

study (8) and (9) carefully, since they are extremely important operations.

Before looking at the case of queues, let us see how these operations can be

expressed conveniently in programs for MIX. A program for insertion, with

P = rll, can be written as follows:

INFO EQU 0:3 (Definition of INFO field)

LINK EQU 4:5 (Definition of LINK field)

LD1 AVAIL P 4- AVAIL.

J1Z OVERFLOW Is AVAIL = A?
P <= AVAIL

LDA 0,1(LINK)

STA AVAIL AVAIL 4- LINK (P).

LDA Y

STA 0,1(INFO) INFO(P)4— Y.

LDA T

STA 0,1(LINK) LINK(P)4— T.

ST1 T T 4— P. |

This takes 17 cycles, compared to 12 cycles for the comparable operation with a

sequential table (although OVERFLOW in the sequential case would in many cases

take considerably longer). In this program, as in others to follow in this chapter,

OVERFLOW denotes either an ending routine or a subroutine which finds more

space and returns to location (r.J) — 2.

A program for deletion is equally simple:

LD1 T

J1Z UNDERFLOW

LDA 0,1(LINK)

STA T

LDA 0,1(INFO)

STA Y

LDA AVAIL

STA 0,1(LINK)

ST1 AVAIL

P <— T.

Is T = A?

T <- LINK(P).

Y 4- INFO(P).

LINK(P) <— AVAIL. AVAIL <= P

AVAIL 4- P. |

(11)

256 INFORMATION STRUCTURES 2.2.3

It is interesting to observe that each of these operations involves a cyclic

permutation of three links. For example, in the insertion operation let P be the
value of AVAIL before the insertion; if P ^ A, we find that after the operation

the value of AVAIL has become the previous value of LINK (P),

the value of LINK(P) has become the previous value of T; and

the value of T has become the previous value of AVAIL.

So the insertion process (except for setting INFO(P) «— Y) is the cyclic

permutation
AVAIL

LINK(P)

Similarly in the case of deletion, where P has the value of T before the operation

and we assume that P A, we have Y INFO (P) and

T LINK(P)

In these diagrams the fact that the permutation is cyclic is not really a relevant

issue, since any permutation on three elements that moves every element is

cyclic. The important point is rather that precisely three links are permuted in

these operations.

The above insertion and deletion algorithms have been described for stacks,

but they apply much more generally to insertion and deletion in any linear list.

Insertion, for example, is performed just before the node pointed to by link

variable T. The insertion of item 2^ above [see (2)] would be done by using

operation (8) with T = LINK (LINK (FIRST)).

Linked allocation applies in a particularly convenient way to queues. In

this case it is easy to see that the links should run from the front of the queue

towards the rear, so that when a node is removed from the front, the new front

node is directly specified. We will make use of pointers F and R, to the front
and rear:

F

(12)

Except for R, this diagram is abstractly identical to Fig. 5 on page 254.

Whenever the layout of a list is designed, it is important to specify all
conditions carefully, particularly for the case when the list is empty. A failure

to do things properly for the case of empty lists is one of the most common

programming errors met in connection with linked allocation; the other common

error is forgetting to set all of the links when the structure is being manipulated.

In order to avoid the first type of error, always examine the “boundary condi¬

tions” carefully. To avoid making the second type of error, it is helpful to draw

2.2.3 LINKED ALLOCATION 257

“before and after” diagrams and to compare them, in order to see which links

must change.

Let us illustrate the remarks of the preceding paragraph by applying them

to the case of queues. First consider the insertion operation: if (12) is the situa¬

tion before insertion, the picture after insertion at the rear of the queue should be

(The notation used here implies that a new node is obtained from the AVAIL list.)

Comparing (12) and (13) shows us how to proceed when inserting the information
Y at the rear of the queue:

P <= AVAIL, INFO (P) <— Y, LINK(P)<-A, LINK(R) <— P, R <—P. (14)

Let us now consider the “boundary” situation when the queue is empty:

in this case the situation before insertion is yet to be determined, and the

situation “after” is

F

AVAIL T
(15)

It is desirable to have operations (14) apply in this case also, even if insertion

into an empty queue means that we must change both F and R, not only R. We

find that (14) will work properly if R = LOC(F) when the queue is empty,

assuming that F = LINK(LOC(F)); the value of variable F must be stored in the

LINK field of its location if this idea is to work. In order to make the testing for

an empty queue as efficient as possible, we will let F = A in this case. Our

policy is therefore that

an empty queue is represented by F = A and R = LOC(F).

If the operations (14) are applied under these circumstances, we obtain (15).
The deletion operation for queues is derived in a similar fashion. If (12) is

the situation before deletion, the situation afterward is

AVAIL

For the boundary conditions we must make sure the deletion operation works

when the queue is empty either before or after the operation. These considera¬

tions lead us to the following way to do a deletion in general:

If F = A, then UNDERFLOW;

otherwise set P <— F, F LINK(P), Y INFO(P), AVAIL <= P,

and if F = A, then set R <— LOC(F).

(17)

258 INFORMATION STRUCTURES 2.2.3

Note that R must be changed when the queue becomes empty; this is precisely

the type of “boundary condition” we should always be watching for.

The above suggestions are not the only way to represent queues in a linearly-

linked fashioti; we will give other methods later in this chapter. Indeed, none

of the operations above are^meant to be prescribed as the only way to do some¬

thing; they are intended as examples of the basic means of operating with linked

lists. The reader who has had only a little previous experience with such tech¬

niques will find it helpful to reread the present section up to this point before

going on.
So far in this chapter we have discussed methods of performing certain

operations on tables, but our discussions have always been “abstract” in the

sense that we never exhibited actual programs in which the particular techniques

were useful. A person is not motivated to study abstractions of a problem until

he has seen enough special instances of the problem to arouse his interest. The

operations discussed so far (manipulation of variable size lists of information by

insertion and deletion, and the use of tables as stacks or queues) are of such wide

application, it is hoped that the reader will have encountered them often enough

in his own programs that he is already willing to grant their importance. But

now we will leave the realm of the abstract as we begin to study a series of

significant practical examples of the techniques of this chapter.

Our first example is a problem called topological sorting, which is an important

process needed in connection with network problems, with so-called PERT

charts, and even with linguistics; in fact, it is of potential use whenever we have

a problem involving a partial ordering. A “partial ordering” of a set S is a

relation between the objects of S, which we may denote by the symbol “< ”,

satisfying the following properties for any objects x, y, and z (not necessarily
distinct) in S:

i) If x < y and y < z, then x < z. (Transitivity.)

ii) If x < y and y < x, then x = y. (Antisymmetry.)

iii) x < x. (Reflexivity.)

The notation x < y may be read “x precedes or equals y. ” If x < y and x ^ y,

we write x < y and say “x precedes y.” It is easy to see from (i), (ii), and (iii)
that we always have

i') If x < y and y < z, then x < z. (Transitivity.)

ii') If x < y, then y -K x. (Asymmetry.)

iii') x -K x. (Irreflexivity.)

The relation denoted by y x means “y does not precede x.” If we start with

a relation < satisfying properties (i'), (ii'), and (iii'), we can reverse the above

process and define x < y if x < y or x = y; then properties (i), (ii), and (iii)

are true. Therefore we may regard either properties (i), (ii), (iii) or properties

2.2.3 LINKED ALLOCATION 259

(i)j (iiiO as the definition of partial order. [Note that property (ii') is
actually a consequence of (i') and (iii').]

Partial orderings occur quite frequently in everyday life as well as in mathe¬

matics. As examples from mathematics we can mention the relation x < y

between real numbers x and y, the relation x c y between sets of objects; the

relation x\y (x divides y) between positive integers. In the case of PERT net¬

works, S is a set of jobs that must be done, and the relation “x < y” means “x
must be done before y. ”

Fig. 6. A partial ordering.

We will naturally assume that S is a finite set, since we want to work with it

inside a computer. A partial ordering on a finite set can always be illustrated

by drawing a diagram such as Fig. 6, in which the objects are represented by

small boxes and the relation is represented by arrows between these boxes;

x < y means there is a path from the box labeled x to box y which follows the

direction of the arrows. Property (ii) of partial ordering means there are no

closed loops (no paths that close on themselves) in the diagram. If an arrow were

drawn from 4 to 1 in Fig. 6, we would no longer have a partial ordering.

The problem of topological sorting is to “embed the partial order in a linear

order,” i.e., to arrange the objects into a linear sequence oq, a2, ... ,an such

that whenever aj < a*, we have j < k. Graphically, this means that the boxes

are to be rearranged into a line so that all arrows go towards the right (see

Fig. 7). It is not immediately obvious that such a rearrangement is possible in

every case, although such a rearrangement certainly could not be done if any

loops were present. Therefore the algorithm we will give is interesting not only

because it does a useful operation, but also because it proves that this operation

is possible for every partial ordering.

Fig. 7. The ordering relation of Fig. 6 after topological sorting.

260 INFORMATION STRUCTURES 2.2.3

As an example of topological sorting, imagine a large glossary containing

definitions of technical terms. We can write w2 < wi if the definition of word Wi

depends directly or indirectly on that of word w2. This relation is a partial

ordering provided that there are no “circular” definitions. The problem of

topological sorting in this c^se is to find a way to arrange the words in the glossary

so that no term is used before it has been defined. Analogous problems arise in

writing programs to process the declarations in certain assembly and compiler

languages; they also arise in writing a user’s manual describing a computer

language or in writing textbooks about information structures.
There is a very simple way to do topological sorting: We start by taking an

object which is not preceded by any other object in the ordering. This object

may be placed first in the output. Now we remove this object from the set S;

the resulting set is again partially ordered, and the process can be repeated until

the whole set has been sorted. For example, in Fig. 6 we could start by removing

1 or 9; after 1 has been removed, 3 can be taken, and so on. The only way in

which this algorithm could fail would be if there were a nonempty partially

ordered set in which every element was preceded by another; for in such a case

the algorithm would find nothing to do. But if every element is preceded by

another, we could construct an arbitrarily long sequence 61, b2, b3, . . . in which

bj+i < bj; since S is finite, we must have bj = bk for some j < k, but this implies

that bk < bj+1, contradicting (ii).
In order to implement this process efficiently by computer, we need to be

ready to perform the actions described above, i.e., to locate objects which are

not preceded by any others, and to remove them from the set. Our implementa¬

tion is also influenced by the desired input and output characteristics. The most

general program would accept alphabetic names for the objects and would allow

for huge numbers of objects to be sorted—more than could possibly fit in the

computer memory at once. These complications would obscure the main points

we are trying to make here, however; the handling of alphabetic data can be

done efficiently by using the methods of Chapter 6, and the handling of large

networks is left as an interesting project for the reader.

Therefore we will assume that the objects to be sorted are numbered from

1 to n in any order. The input to the program will be on tape unit 1: each tape

record contains 50 pairs of numbers, where the pair (j, k) means object j pre¬

cedes object k. The first pair, however, is (0, n), where n is the number of

objects. The pair (0, 0) terminates the input. We shall assume that n plus the

number of relation pairs will fit comfortably in memory; and we shall assume that

it is not necessary to check the input for validity. The output is to be the num¬

bers of the objects in sorted order, followed by the number 0, on tape unit 2.
As an example of the input, we might have the pairs

9 < 2, 3 -< 7, 7 < 5, 5 < 8,

8 < Q, 4 < 6, 1 < 3,

7 < 4, 9 < 5, 2 < 8.
(18)

2.2.3
LINKED ALLOCATION 261

It is not necessary to give any more pairs than are needed to characterize the

desired partial ordering. Thus, additional relations like 9 < 8 (which can be

deduced from 9 < 5 and 5 -< 8) may be omitted from or added to the input

without harm. In general, it is only necessary to give the pairs corresponding to
arrows on a diagram such as Fig. 6.

The algorithm which follows uses a sequential table X[l], x[2], . . . , x[n],
and each node X[A-] has the form

+ 0 COUNT!* 1
1

TOP!*]
1

Here COUNT!/cl is the number of direct predecessors of object k (i.e., the number

of pairs j < k which have appeared in the input), and TOP! Ad is a link to the

beginning of the list of direct successors of object k. The latter list contains
entries in the format

+ 0 sue
-1-

NEXT
i

where SUC is a direct successor of k and NEXT is the next item of the list. As an

example of these conventions, Fig. 8 shows the schematic contents of memory
corresponding to the input (18).

k

COUNTffc]

TOP[A:]

SUC

NEXT

SUC

NEXT

Fig. 8. Computer representation of Fig. 6 corresponding to the relations (18).

Using this memory layout, it is not difficult to work out the hlgorithm. It

is a matter of outputting the nodes whose COUNT field is zero, then decreasing

the COUNT fields of all successors of those nodes by one. The trick is to avoid

doing any “searching” for nodes whose COUNT field is zero, and this can be done

by maintaining a queue containing those nodes whose COUNT field has been

reduced to zero but which have not yet been output. The links for this queue

262 INFORMATION STRUCTURES 2.2.3

are kept in the COUNT field, which by now has served its previous purpose; for

clarity in the algorithm below, we use the notation QLINKl/cl to stand for

COUNT!/cl when that field is no longer being used to keep a count.

Algorithm T (Topological sort). This algorithm inputs pairs of relations “j < k”,

1 < j, k < n, indicating that object j precedes object k in a certain partial

ordering. The output is the set of objects embedded in linear order. The internal

tables used are QLINKtOl, COUNT! 11 = QLINK!ll, C0UNTt2l = QLINKC21, . . . ,

COUNTtnl = QLINKtnl; TOP! 11, T0P[21, . . . , TOPtnl; a storage pool with one

node for each input relation and with SUC and NEXT fields as shown above;

P, a link variable used to refer to the nodes in the storage pool; F and R, integer¬

valued variables used to refer to the front and rear of a queue whose links are in

the QLINK table; and N, a variable which counts how many objects have yet to

be output.

Tl. [Initialize.] Input the value of n. Set COUNTt/cl <— 0 and TOP!/cI A for

1 < k < n. Set N <— n.

T2. [Next relation.] Get the next relation “j < k” from the input; if the input

has been exhausted, however, go to T4.

T3. [Record the relation.] Increase COUNT!k] by one. Set

P <= AVAIL, SUC(P) k, NEXT(P) TOP!j], TOP!j] P.

(This is operation (8).) Go to T2.

T4. [Scan for zeros.] (At this point we have completed the input phase; the

input (18) would now have been transformed into the computer representa¬

tion shown in Fig. 8. Now we initialize the queue of output, which is linked

together in the QLINK field.) Set R <— 0 and QLINKtOl 0. For 1 < k < n

examine COUNT!k], and if it is zero, set QLINK!R] k and R <— k. After

this has been done for all k, set F QLINKtOl (which will contain the first

value k encountered for which COUNT!/cl was zero).

T5. [Output front of queue.] Output the value of F. If F = 0, go to T8; other¬

wise, set N <— N — 1, and set P T0P[F]. (Since the QLINK and COUNT tables

overlap, we have QLINK[R] = 0; therefore the condition F = 0 occurs when

the queue is empty.)

T6. [Erase relations.] If P = A, go to T7. Otherwise decrease COUNT! SUC (P) 1

by one, and if it has thereby gone down to zero, set QLINK!R] <— SUC(P) and

R SUC(P). Set P <— NEXT(P) and repeat this step. (We are removing all

relations of the form “F < k” for some k from the system, and putting new

nodes into the queue when all their predecessors have been output.)

T7. [Remove from queue.] Set F <— QLINK! Fl and go back to T5.

T8. [End of process.] The algorithm terminates. If N = 0, we have output all

of the object numbers in the desired “topological order,” followed by a zero.

Otherwise the N object numbers not yet output contain a loop, in violation

of the hypothesis of partial order. (See exercise 23 for an algorithm which
prints out the contents of one such loop.) |

2.2.3 LINKED ALLOCATION 263

Fig. 9. Topological sorting.

The reader will find it helpful to try this algorithm by hand on the input

(18). Algorithm T shows a nice interplay between sequential memory and linked

memory techniques. Sequential memory is used for the main table xlll, . . . ,

Xlnl, which contains the COUNT!k] and TOP[/cl entries, because we want to make

references to “random” parts of this table in step T3. (If the input were alpha¬

betic, however, another type of table would be used for speedier search, as in

Chapter 6.) Linked memory is used for the tables of “immediate successors,”

since these table entries come in random order in the input. The queue of nodes

waiting to be output is kept in the midst of the sequential table by linking the

nodes together in output order. This linking is done by table index instead of by

address; i.e., when the front of the queue is xt/cl, we have F — k instead of

F = LOC(X[/cl). The queue operations used in steps T4, T6, and T7 are not

identical to those in (14) and (17), since we are taking advantage of special

properties of the queue in this system; no nodes need to be created or returned to

available space during this part of the algorithm.

The coding of Algorithm T in MIX assembly language has a few more points

of interest. Since no deletion from tables is made in the algorithm (because no

storage must be freed for later use), the P <= AVAIL operation can be done in

an extremely simple way, as shown in lines 19 and 32 below; we need not keep

any linked pool of memory, we can choose new nodes consecutively. The pro¬

gram includes complete input and output with magnetic tape, according to the

conventions mentioned above, except that for simplicity no buffering is shown.

The reader should not find it very difficult to follow the details of the coding in

this program, since it corresponds directly with Algorithm T. The efficient use

of index registers, which is an important aspect of linked memory processing,

is illustrated here.

264 INFORMATION STRUCTURES
2.2.3

Program T (Topological sort). In this program, the following equivalences

should be noted: rI6 = N, rl5 = buffer pointer, rI4 = k, rI3 = j and R, rI2 -

AVAIL and P, rll s F, TOP [j] = X+j(4:5), COUNT [k] = QLINK[fc] ^ X+fc(2:3).

4

01 * BUFFER AREA AND I^IELD DEFINITIONS

02 COUNT EQU 2:3 Definition of symbolic

08 QLINK EQU 2:3 names of fields

04 TOP EQU 4:5

05 sue EQU 2:3

06 NEXT EQU 4:5

07 TAPEIN EQU 1 Input is on tape unit 1

08 TAPEOUT EQU 2 Output is on tape unit 2

09 BUFFER ORIG *+100 Tape buffer area

10 CON -1 Sentinel at end of buffer

11 * INPUT PHASE

12 TOPSORT IN BUFFER(TAPEIN) 1 Tl. Initialize. Read in first

13 JBUS *(TAPEIN) tape block, wait for completion.

14 1H LD6 BUFFER+1 1 N <— n.

15 ENT4 0,6 1

16 STZ X,4 n + 1 Set C0UNT[/c] <- 0, T0P[fc] *- A,

17 DEC4 1 n + 1 for 0 < k < n.

18 J4NN *-2 n + 1 (Anticipate QLINK[0] <— 0 in step T3.)

19 ENT2 X,6 1 Available storage starts after X[n].

20 ENT 5 BUFFER+2 1 Prepare to read first pair (j, k).

21 2H LD3 0,5 m -j- b T2. Next relation.

22 J3P 3F m + b Is j > 0?

23 J3Z 4F b Is input exhausted?

24 IN BUFFER(TAPEIN) b - 1 Sentinel sensed, read another

25 JBUS ♦(TAPEIN) tape block, wait for completion.

26 ENT5 BUFFER b - 1 Reset buffer pointer.

27 JMP 2B b — 1

28 3H LD4 1,5 m T3. Record the relation.

29 LDA X,4(COUNT) m COUNT [k]

SO INCA 1 VI 1

31 STA X,4(COUNT) m -► COUNTS],

82 INC2 1 VI AVAIL <- AVAIL + 1.

S3 LDA X,3(TOP) VI T0P[j]

34 STA 0,2(NEXT) m NEXT(P).

35 ST4 0,2(SUC) VI k -> SUC(P).

86 ST2 X,3(TOP) m P -> T0P[j].

37 INC5 2 VI Increase buffer pointer.

38 JMP 2B m

39 4H IOC 0(TAPEIN) i Rewind input tape.

40 ENT4 0,6 i T4- Scan for zeros.

41 ENT 5 -100 i Reset buffer pointer for output.

42 ENT3 0 i R <- 0.

43 4H LDA X,4(COUNT) n Examine COUNTfA:].

44 JAP *+3 n Is it nonzero?
45 ST4 X,3(QLINK) a QLINK[R] <- k.

46 ENT3 0,4 a R <- k.

47 DEC4 1 n

48 J4P 4B n n > k > 1.

2.2.3

49

50

* SORTING PHASE

LD1 X(QLINK) 1

LINKED ALLOCATION 265

F <— QLINK[0].
51 5H JBUS *(TAPEOUT) T5. Output front of queue.
52 ST1 BUFFER+100,5 n + 1 Store F in buffer area.
58 J1Z 8F n + 1 Is F zero?
54 INC5 1 n Advance buffer pointer.
55 J5N *+3 n Test if buffer is full.
56 OUT BUFFER(TAPEOUT) c — 1 If so, output a tape block.
57 ENT 5 -100 c — 1 Reset buffer pointer.
58 DEC6 1 n N <— N — 1.
59 LD2 X,1(TOP) n P <- T0P[F].
60 J2Z 7F n T6. Erase relations.
61 6H LD4 0,2(SUC) m rI4 <- SUC(P).
62 LDA X,4(COUNT) m C0UNT[rI4]
63 DECA 1 m — 1
64 STA X,4(COUNT) m -> C0UNT[rI4].
65 JAP *+3 m Has zero been reached?
66 ST4 X,3(QLINK) n — a If so, set QLINK[R] <- rI4.
67 ENT3 0,4 n — a R rI4.
68 LD2 0,2(NEXT) m P <— NEXT(P).

69 J2P 6B m If P 9^ A, repeat.
70 7H LD1 X,1(QLINK) n T7. Remove from queue.

71 JMP 5B n F <- QLINK[F], goto T5.
72 8H OUT BUFFER(TAPEOUT) i T8. End of process.

73 IOC 0(TAPEOUT) i Output last block and rewind.

74 HLT 0,6 i Stop, displaying N on console.
75 X END T0PS0RT Beginning of table area 1

The analysis of Algorithm T is quite simple with the aid of Kirchhoff’s law;

the execution time has the approximate form cqm T C2n, where m is the number

of input relations, n is the number of objects, and C\ and C2 are constants. It

is hard to imagine a faster algorithm for this problem! The exact quantities in

the analysis are given with Program T above, where a = number of objects with

no predecessor, b = number of tape records in input = f (m + 2)/50~|, and

c = number of tape records in output = f (n + 1)/100"|. Exclusive of input/

output operations, the total running time in this case is only (32m + 24n +

7b + 2c + 16)w.
A topological sorting technique similar to Algorithm T (but without the

important feature of the queue links) was first published by A. B. Kahn, CACM

5 (1962), 558-562. The fact that topological sorting of a partial ordering is

always possible was first proved in print by E. Szpilrajn, Fundamenta Mathe¬

matical 16 (1930), 386-389; he mentioned that the result was already known to

several of his colleagues.

EXERCISES

► 1. [10] Operation (9) for popping up a stack mentions the possibility of UNDERFLOW;

why doesn’t operation (8), pushing down a stack, mention the possibility of OVERFLOW?

266 INFORMATION STRUCTURES 2.2.3

2. [22] Write a “general purpose” MIX subroutine to do the insertion operation, (10).

This subroutine should have the following specifications (cf. Section 1.4.1):

Calling sequence: JMP INSERT Jump to subroutine.
NOP T Location of pointer variable

Entry conditions: rA = information to be put into the INFO field of a new node.
Exit conditions: The f&ack whose pointer is the link variable T has the new node

on top; rll = T; rI2, rI3 are altered.

3. [22] Write a “general purpose” MIX subroutine to do the deletion operation, (11).

This subroutine should have the following specifications:

Calling sequence: JMP DELETE Jump to subroutine.

NOP T Location of pointer variable

JMP UNDERFLOW First exit, if UNDERFLOW sensed

Entry conditions: None
Exit conditions: If the stack whose pointer is the link variable T is empty, the

first exit is taken; otherwise the top node of that stack is
deleted, and exit is made to the third location following
“JMP DELETE”. In the latter case, rll = T and rA is the
contents of the INFO field of the deleted node. In either
case, rI2 and rI3 are used by this subroutine.

4. [22] The program in (10) is based on the operation P <= AVAIL, as given in (6).
Show how to write an OVERFLOW subroutine so that, without any change in the coding
(10), the operation P <= AVAIL makes use of SEQMIN, as given by (7). For general-
purpose use, your subroutine should not change the contents of any registers, except
possibly the comparison indicator; and it should exit to location (rJ 2), instead of

the usual (rJ).

► 5. [24] Operations (14) and (17) give the effect of a queue; show how to define the
further operation “insert at front” so as to obtain all the actions of an output-restricted
deque. How could the operation “delete from rear” be defined (so that we would have
a general deque) ?

6. [21] In operation (14) we set LINK(P) <— A, while the very next insertion at the

rear of the queue will change the value of this same link field. Show how the setting

of LINK(P) in (14) could be eliminated if we make a change to the testing of “F = A”

in (17).

► 7. [28] Design an algorithm to “invert” a linked linear list such as (1), i.e., to change

its links so that the items appear in the opposite order. [Thus, if the list (1) were

inverted, we would have FIRST linking to the node containing item 5; that node would

link to the one containing item 4; etc.] Assume that the nodes have the form (3).

8. [24] Write a MIX program for the problem of exercise 7, attempting to design
your program to operate as fast as possible.

9. [20] Which of the following relations is a partial ordering on the specified set S?
[Note: If the relation “x < y” is defined below, the intent is to define the relation
“x ^ y = (x ■< y or x = y),” and then to determine whether ^ is a partial ordering.]
(a) S = all rational numbers, x < y means x > y. (b) S = all people, x < y means
x is an ancestor of y. (c) S = all integers, £„ ■<, y means a: is a multiple of y (that is,
x mod y = 0). (d) S = all the mathematical results proved in this book, x < y means

2.2.3 LINKED ALLOCATION 267

the proof of y depends upon the truth of x. (e) S — all positive integers, x ^ y means
x + y is even, (f) S = a set of subroutines, x < y means “x calls y, ” that is, y may be
in operation while x is in operation, with recursion not allowed.

10. [M21] Given that “C” is a relation which satisfies properties (i) and (ii) of a
partial ordering, prove that the relation “ <, ”, defined by the rule “x y if and only
if x = y or x C y,” satisfies all three properties of a partial ordering.

► 11. [24] The result of topological sorting is not always completely determined, since
there may be several ways to arrange the nodes and to satisfy the conditions of topo¬
logical order. Find all possible ways to arrange the nodes of Fig. 6 into topological
order.

12. [M20\ There are 2" subsets of a set of n elements, and these subsets are partially
ordered by the set-inclusion relation. Give two interesting ways to arrange these
subsets in topological order.

13. [M48] How many ways are there to arrange the 2n subsets described in exercise 12
into topological order? (Give the answer as a function of n.)

14. [M24] A linear ordering of a set 5 is a partial ordering which satisfies the addi¬
tional condition

(iv) For any two objects x, y in S, either x ^ y or y ^ x.

Prove directly from the definitions given that a topological sort can result in only one
possible output if and only if the relation ^ is a linear ordering. (You may assume
that the set S is finite.)

15. [M25] Show that for any partial ordering on a finite set S there is a unique set
of irredundant pairs of relations [such as (18) corresponding to Fig. 6] which charac¬
terizes this ordering. Is the same fact true also when S is an infinite set?

16. [M22] Given any partial ordering on a set S = {xi, . . . , x„), we can construct
its “incidence matrix” (a*,-), where a;,- = 1 if x» x,-, and a*,- = 0 otherwise. Show
that there is a way to permute the rows and columns of this matrix so that all entries
below the diagonal are zero.

► 17. [21] What output does Algorithm T produce if it is presented with the input (18) ?

18. [20] WFat, if anything, is the significance of the values of QLINK[0], QLINK[1],

. . . , QLINK[n] when Algorithm T terminates?

19. [18] In Algorithm T we examine the front position of the queue in step T5, but
do not remove that element from the queue until step T7. What would happen if we
set F<— QLINK[F] at the conclusion of step T5, instead of in T7?

► 20. [24] Algorithm T uses F, R, and the QLINK table to obtain the effect of a queue
which contains those nodes whose COUNT field has become zero but whose successor
relations have not yet been removed. Could a stack be used for this purpose instead
of a queue? If so, compare the resulting algorithm with Algorithm T.

21. [21] Would Algorithm T still perform a valid topological sort if one of the relations
“j -< k” were repeated several times in the input? What if the input contained a
relation of the form “j < j”?

22. [23] Program T assumes that its input tape contains valid information, but a
program that is intended for general use should always make careful tests on its input
so that clerical errors can be detected, and the program cannot “destroy itself.” For

268 INFORMATION STRUCTURES 2.2.3

example, if one of the input relations for k were negative, Program T may erroneously

change one of its own instructions when storing into X[k], Suggest ways to modify

Program T so that it is suitable for general use.

► 23. [27] When the topological sort algorithm cannot proceed because it has detected

a loop in the'input (see step T8), it is usually of no use just to stop and say, “There

was a loop.” It is helpful t<* print out one of the loops, thereby showing part of the

input which was in error. Extend Algorithm T so that it will do this additional printing

of a loop when necessary. [Hint: The text gives a proof for the existence of a loop when

N > 0 in step T8; that proof suggests an algorithm.]

24. [24\ Incorporate the extensions of Algorithm T made in exercise 23 into Program T.

25. [47] Design as efficient an algorithm as possible for doing a topological sort of very

large sets S, which have considerably more nodes than the computer memory can

contain. Assume that the input, output, and temporary working space are done with

magnetic tape. [Possible hint: A conventional sort of the input allows us to assume that

all relations for a given node appear together. But then what can be done? (In par¬

ticular, we must consider the worst case in which the given ordering is already a linear

ordering that has been wildly permuted; if possible we want to avoid doing 0{n)

iterations through the entire data tape.)]

26. [29] (Subroutine allocation.) Suppose that we have a tape containing the main

“subroutine library” for a computer installation in relocatable form. The loading

routine wants to determine the amount of relocation for each subroutine used so it can

make one pass through the tape to load the necessary routines. The problem is that

some subroutines require others to be present in memory. Infrequently used sub¬

routines (which appear toward the end of the tape) may call on frequently used sub¬

routines (which appear toward the beginning of the tape), and we want to know all

of the subroutines which are required, before passing through the tape.

One way to tackle this problem is to have a “tape directory” which fits in memory.

The loading routine has access to two tables:

a) The tape directory. This table is composed of variable-length nodes having

the form

1

B
I

SPACE LINK

B
1

SUB1
1

SUB2
1

-r~

B SUBn

or

1
B

—«-1
SPACE

1
LINK

B
1

SUB1 SUB2
1

B
1

SUB (n—1) SUBn

where SPACE is the number of words of memory required by the subroutine; LINK is

a link to the directory entry for the subroutine which appears on the tape following

this subroutine; SUB1, SUB2, . . . , SUBn (n > 0) are links to the directory entries for

any other subroutines required by this one; B = 0 on all words except the last, B = —1

on the last word of a node. The address of the directory entry for the first subroutine

on the library tape is specified by the link variable FIRST.

b) The list of subroutines directly referred to by the program to be loaded. This

is stored in consecutive locations X[l], X[2], . . . , X[N], where N > 0 is a variable known

2.2.3 LINKED ALLOCATION 269

to the loading routine. Each entry in this list is a link to the directory entry for the
subroutine desired.

The loading routine also knows MLOC, the amount of relocation to be used for the

first subroutine loaded.

As a small example, consider the following configuration:

Tape directory List of subroutines needed

B SPACE LINK X[l] = 1003
1000 0 20 1005 X[2] = 1010
1001 —1 1002 0

1002 — 1 30 1010 N = 2

1003 0 200 1007 FIRST = 1002

1004 — 1 1000 1006 MLOC = 2400

1005 — 1 100 1003

1006 —1 60 1000

1007 0 200 0

1008 0 1005 1002

1009 —1 1006 0

1010 —1 20 1006

The tape directory in this case shows that the subroutines on tape are 1002, 1010,

1006, 1000, 1005, 1003, and 1007 in that order. Subroutine 1007 takes 200 locations

and implies the use of subroutines 1005, 1002, and 1006; etc. The program to be

loaded requires subroutines 1003 and 1010, which are to be placed into locations

> 2400. These subroutines in turn imply that 1000, 1006, and 1002 must also be

loaded.
The subroutine allocator is to change the X-table so that each entry X[l], X[2], . . .

has the form

+ 0 BASE
1

SUB

(except the last entry which is explained below), where SUB is a subroutine to be

loaded, and BASE is the amount of relocation. These entries are to be in the order in

which the subroutines appear on tape. In the above example one possible answer

would be
BASE SUB

X[l] 2400 1002

X[2] 2430 1010

X[3] 2450 1006

X[4] 2510 1000

X[5] 2530 1003

X[6] 2730 0

Note that the last entry contains the first unused memory address.

(Clearly, this is not the only way to treat a library of subroutines. The proper way

to design a library is heavily dependent upon the computer used and the applications

to be handled. Large modern computers require an entirely different approach to

subroutine libraries. But this is a nice exercise anyway, because it involves interesting

\

2.2.3 270 INFORMATION STRUCTURES

manipulations on both sequential and linked data.)
The problem in this exercise is to design an algorithm for this subroutine allocation

task. The subroutine allocator may transform the tape directory in any way as it

prepares its answer, since the tape directory can be read in anew by the subroutine

allocator on its next assignment, and the tape directory is not needed by other parts

of the loading routine. ^

27. [25] Write a MIX program for the subroutine allocation algorithm of exercise 26.

28. [40] The following construction shows how to “solve” a fairly general type of

two-person game, including chess, nim, and many simpler games: Consider a finite set

of nodes, each of which represents a possible “position” in the game. For each position

there are zero or more “moves” which transform that position into some other position.

We say that position a; is a predecessor of position y (and y is a successor of x) if there

is a move from x to y. Certain positions which have no successors are classified as

“won” or “lost” positions. The player to move in position x is the opponent of the

player to move in the successors of position x.
Given such a configuration of positions, we can compute the complete set of “won”

positions (those in which it is possible for the player to force a victory) and the com¬

plete set of “lost” positions (those in which the player must lose against an expert

opponent) by repeatedly doing the following operation until it yields no change: mark

a position “lost” if all its successors are marked “won”; mark a position “won” if at

least one of its successors is marked “lost.”

After this operation has been repeated as many times as possible, there may be

some positions that have not been marked at all; a player in such a position cannot

force a victory, nor can he be compelled to lose.

This procedure for obtaining the complete set of “won” and “lost” positions can

be adapted to an efficient algorithm for computers that closely resembles Algorithm T.

We may keep with each position a count of the number of its successors that have not

been marked “won,” and a list of all its predecessors.

The problem in this exercise is to work out the details of the algorithm that has

just been so vaguely described, and to apply it to some interesting games that do not

involve too many possible positions [like the “military game”: Sci. Am. (October,

1963), 124, or E. Lucas, Recreations Mathematiques, 3 (Paris, 1893) 105-116],

► 29. [21] (a) Give an algorithm to “erase” an entire list like (1), i.e., to put all of its

nodes on the AVAIL stack, given only the value of FIRST. The algorithm should operate

as fast as possible, (b) Repeat part (a) for a list like (12), given the values of F and R.

2.2.4. Circular Lists

A slight change in the manner of linking furnishes us with an important alter¬

native to the methods of the preceding section.

A circularly-linked list (briefly: a circular list) has the property that its last

node links back to the first instead of to A. It is then possible to access all of

the list starting at any given point; we also achieve an extra degree of symmetry,

and if we choose we need not think of the list as having a “last” or “first” node.

The following situation is typical:

PTR
(1)

2.2.4 CIRCULAR LISTS 271

Assume that the nodes have two fields, INFO and LINK, as in the preceding

section. There is a link variable PTR which points to the rightmost node of the

list, and LINK (PTR) is the address of the leftmost node. The following primitive

operations are most important:

a) Insert Y at left: P <p= AVAIL, INFO(P) <— Y, LINK(P) <— LINK (PTR),

LINK(PTR) <— P.

b) Insert Y at right: Insert Y at left, then PTR <— P.

c) Set Y to left node and delete: P <- LINK (PTR), Y <- INFO(P), LINK (PTR)

LINK(P), AVAIL <= P.

Operation (b) is a little surprising at first glance; the operation PTR <— LINK (PTR)

effectively moves the leftmost node to the right in the diagram (1), and this is

quite easy to understand if the list is regarded as a circle instead of a straight

line with connected ends.

The alert reader will observe that we have made a serious mistake in the

above operations (a), (b), (c). What is it? Answer. We have forgotten to

consider the possibility of an empty list. If for example operation (c) is applied

five times to the list (1), we will have PTR pointing to a node in the AVAIL list,

and this can lead to serious difficulties; for example, imagine applying operation

(c) six times to (1)! If we take the position that PTR will equal A in the case of

an empty list, we could remedy the above operations by inserting the additional

instructions “if PTR = A, then PTR <— LINK(P) <- P; otherwise ...” after

“INFO (P) <— Y” in (a) and (b); preceding (c) by the test “if PTR = A, then

UNDERFLOW”; and following (c) by “if PTR — P, then PTR <— A.”

Note that the operations (a), (b), and (c) give us the actions of an output-

restricted deque, in the sense of Section 2.2.1. Therefore we find in particular

that a circular list can be used as either a stack or a queue. Operations (a) and

(c) combined give us a stack; operations (b) and (c) give us a queue. These

operations are only slightly less direct than their counterparts in the previous

section, where we saw that operations (a), (b), and (c) can be performed on

linear lists using two pointers F and R.

Other important operations become efficient with circular lists. For example,

it is very convenient to “erase” a list, i.e., to put an entire circular list onto the

AVAIL stack at once:

If PTR ^ A, then AVAIL <-> LINK (PTR). (2)

[Recall that the V»” operation denotes interchange, i.e., P <— AVAIL, AVAIL <—

LINK (PTR), LINK (PTR) <— P.] Operation (2) is clearly valid if PTR points anywhere

in the circular list. Afterward we should of course set PTR <— A.

Using a similar technique, if PTRj and PTR2 point to disjoint circular lists

Li and L2, respectively, we can insert the entire list L2 at the right of Li:

If PTR2 5^ A, then

(if PTRj ^ A, then LINK(PTRi) <-> LINK(PTR2);

set PTRi <— PTR2, PTR2 <- A).

(3)

272 INFORMATION STRUCTURES 2.2.4

Splitting one circular list into two, in various ways, is another simple operation

that can be done. These operations correspond to the concatenation and

deconcatenation of strings.
Thus we see that a circular list can be used not only to represent inherently

circular structures, but also to represent linear structures; a circular list with

one pointer to the rear nfcde is essentially equivalent to a straight linear list

with two pointers to the front and rear. The natural question to ask, in con¬

nection with this observation, is, “How do we find the end of the list, in view of

the circular symmetry?” There is no A link to signal the end. The answer is

that if we are performing some operations while moving through the list from

one node to the next, we should stop when we get back to our starting place

(assuming, of course, that our starting place is still present in the list).

An alternative solution to the problem just posed is to put a special, recog¬

nizable node into each circular list, as a convenient stopping place. This special

node is called the list head, and in applications we often find it is quite convenient

to insist that every circular list have exactly one node which is its list head. One

advantage is that the circular list will then never be empty. The diagram (1)

now becomes

List head

(4)

Instead of a pointer to the right end of the list, references to lists like (4) are

usually made via the list head, which is often in a fixed memory location.

In this case, we sacrifice operation (b) stated above.

Diagram (4) may be compared with 2.2.3-(l) at the beginning of the previous

section, in which the link associated with “item 5” now points to LOC(FIRST)

instead of to A, and FIRST is now thought of as a link within a node,

NODE(LOC(FIRST)). The principal difference between (4) and 2.2.3-(l) is that

with (4) it is possible (though not necessarily efficient) to get to any point of
the list from any other point.

As an example of the use of circular lists, we will discuss arithmetic on

polynomials in the variables x, y, and z, with integer coefficients. There are

many problems in which a scientist wants to manipulate polynomials instead of

just numbers; we are thinking of operations like the multiplication of

(z4 + 2x3y -f 3x2y2 + 4xy3 + 5y4) by (x2 — 2xy + y2)

to get

(z6 — 6 xy5 + 5 y6).

Linked allocation is a natural tool for this purpose, since polynomials can grow

to unpredictable sizes and we may want to represent many polynomials in
memory at the same time.

2.2.4 CIRCULAR LISTS 273

We will consider here the two operations of addition and multiplication.

Let us suppose that a polynomial is represented as a list in which each node

stands for one nonzero term, and has the two-word form

—
C
—
OEF

-1-

+ A B C LINK
1

Here COEF is the coefficient of the term in xAyBzc. We will assume that the co¬

efficients and exponents will always lie in the range allowed by this format, and

that it is not necessary to check this condition during our calculations. The

notation ABC will be used to stand for the + A B C fields of the node (5), treated

as a single unit. The sign of ABC, i.e., the sign of the second word in (5), will

always be plus, except that there is a special node at the end of every polynomial

which has ABC = — 1 and COEF = 0. This special node is a great convenience,

analogous to our discussion of a list head above, because it provides a convenient

“sentinel” and it avoids the problem of an empty list (corresponding to the

polynomial “0”). The nodes of the list always appear in decreasing order of the

ABC field, if we follow the direction of the links, except that the special node

(which has ABC = — 1) links to the largest value of ABC. For example, the

polynomial x6 — 6xyb + 5ye would be represented thus:

PTR

Algorithm A (Addition of polynomials). This algorithm adds polynomial(P) to

polynomial(Q), assuming that P and Q are pointer variables pointing to poly¬

nomials having the form above. The list P will be unchanged, the list Q will

retain the sum. Pointer variables P and Q return to their starting points at the

conclusion of this algorithm; auxiliary pointer variables Q1 and Q2 are also used.

Al. [Initialize.] Set P <— LINK(P), Q1<— Q, Q <— LINK(Q). (Now both P and Q point
to the leading term of the polynomial. Throughout most of this algorithm
the variable Q1 will be “one step behind” Q, in the sense that Q = LINK(Q1).)

A2. [ABC(P):ABC(Q).] If ABC(P) < ABC(Q), set Q1 *— Q and Q <— LINK(Q) and
repeat this step. If ABC(P) = ABC(Q), go to step A3. If ABC(P) > ABC(Q),

go to step A5.

A3. [Add coefficients.] (We have found terms with equal exponents.) If
ABC(P) < 0, the algorithm terminates. Otherwise set COEF(Q)

COEF(Q) + COEF(P). Now if COEF(Q) = 0, go to A4; otherwise, set Q1 <— Q,

P <— LINK(P), Q <— LINK(Q), and go to A2. (Curiously the latter operations
are identical to step Al.)

274 INFORMATION STRUCTURES 2.2.4

A4. [Delete zero term.] Set Q2 4— Q, LINK(Ql) 4— Q <— LINK(Q), and AVAIL <= Q2.

(A zero term created in step A3 has been removed from polynomial (Q).)
Set P 4— LINK(P) and go to A2.

A5. [Insert new term.] (Polynomial (P) contains a term that is not present in

polynomial(Q), so we insert it in polynomial(Q).) Set Q2 <= AVAIL,

C0EF(Q2) 4- COEF(P), ABC(Q2) <— ABC(P), LINK(Q2) 4— Q, LINK(Ql) 4— Q2,

Q1 4— Q2, P 4— LINK (P), and return to step A2. |

One of the most noteworthy features of Algorithm A is the manner in which
the pointer variable Q1 follows the pointer Q around the list. This is very typical
of list processing algorithms, and we will see a dozen more algorithms with the
same characteristic. Can the reader see why this idea was used in Algorithm A?

A reader who has little prior experience with linked lists will find it very
instructive to study Algorithm A carefully; as a test case, try adding x 4- y + z
to x2 — 2y — z.

Fig. 10. Addition of polynomials.

Given Algorithm A, the multiplication operation is surprisingly easy:

Algorithm M (Multiplication of -polynomials). This algorithm, analogous to
Algorithm A, replaces polynomial(Q) by polynomial(Q) + polynomial(M) X
polynomial (P).

Ml. [Next multiplier.] Set M 4— LINK(M)-. If ABC (M) < 0, the algorithm
terminates.

M2. [Multiply cycle.] Perform Algorithm A, except wherever the notation
“ABC(P) ” appears in that algorithm, replace it by “if ABC(P) < 0 then — 1,
otherwise, ABC(P) + ABC(M) wherever “COEF(P)” appears in that algo¬
rithm replace it by “COEF(P) X COEF(M)”. Then go back to step Ml. |

The programming of Algorithm A in MIX language shows again the ease with
which linked lists are manipulated in a computer. In the following code we
assume that OVERFLOW is a subroutine which either terminates the program (due
to lack of memory space) or finds further available space and exits to (rJ) — 2.

2.2.4 CIRCULAR LISTS 275

Program A (.Addition of 'polynomials). This is a subroutine written so that it can

be used in conjunction with a multiplication subroutine (see exercise 15).

Calling sequence: JMP ADD

Entry conditions: rll = p, rI2 = Q.

Exit conditions: polynomial(Q) has been replaced by polynomial(Q)

+ polynomial(P); rll and rI2 are unchanged; all

other registers have undefined contents.

In the coding below, P = rll, Q = rI2, Q1 = rI3, and Q2 = rI6, in the notation of
Algorithm A.

01 LINK EQU 4:5 Definition of LINK field
02 ABC EQU 0:3 Definition of ABC field
OS ADD STJ 3F 1 Entrance to subroutine

04 6H ENT3 0,2 1 + to" A1. Initialize. Set Q1
05 OH LD1 1,1(LINK) 1 + P P <— LINK(P).
06 SW1 LDA 1,1 1 + p rA(0:3) «- ABC(P).
07 1H LD2 1,3(LINK) X Q <- LINK(Ql).

08 2H CMPA 1,2(ABC) X A2. ABC(P): ABC(Q).
09 JE 3F X If equal, go to A3.

10 JG 5F p'+q' If greater, go to A5.

11 ENT3 0,2 q' If less, set Q1 <— Q.

12 JMP IB q' Repeat.

IS 3H JAN * m + 1 AS. Add coefficients.

14 SW2 LDA 0,1 m COEF(P)

15 ADD 0,2 m + COEF(Q)

16 STA 0,2 m -» COEF(Q).

17 JANZ 6B m Is result zero?

18 ENT6 0,2 m! A4- Delete zero term. Q

19 LD2 1,2(LINK) m' C <- LINK(Q).

20 LDX AVAIL m'

21 STX 1,6(LINK) m! AVAIL 4= Q2.

22 ST6 AVAIL m!

23 ST2 1,3(LINK) m' LINK(Ql) Q.

24 JMP OB m' Go to advance P.

25 5H LD6 AVAIL v' A5. Insert new term.

26 J6Z OVERFLOW v' fQ2<= AVAIL.
27 LDX 1,6(LINK) v'
28 STX AVAIL v'
29 STA 1.6 v' ABC(Q2) <— ABC(P).

30 SW3 LDA 0,1 v' rA <- COEF(P).

81 STA 0,6 v' C0EF(Q2) <- rA.

32 ST2 1,6(LINK) v' LINK(Q2) «- Q.

33 ST6 1,3(LINK) p' LINK(Ql) <- Q2.

34 ENT3 0,6 p' Q1<- Q2.

85 JMP OB p' Go to advance P. |

276 INFORMATION STRUCTURES 2.2.4

Note that Algorithm A traverses each of the two lists just once; it is not

necessary to loop around several times. Using Kirchhoff’s law, we find that an

analysis of the execution presents no difficulties; the execution time depends on

the quantities

m! — number of matching terms which cancel with each other;

m" = number of matching terms which do not cancel;

p' = number of unmatched terms in polynomial (P);

q' — number of unmatched terms in polynomial (Q).

The analysis given with Program A uses the abbreviations

m = m! -f m", p = m + p',

q = m + q', x = 1 + m + p’ + q';

the running time for MIX is (29m' + 18m" 29p' + 8q' + 13)m. The total

number of nodes in the storage pool needed during the execution of the algorithm

is at least 2 p -\- q, and at most 2 + p + q + p'.

EXERCISES

1. [21] The text suggests at the beginning of this section that an empty circular list
could be represented by PTR = A. It might be more consistent with the philosophy
of circular lists to have PTR = LOC(PTR) indicate an empty list. Does this convention
facilitate operations (a), (b), or (c) described at the beginning of this section?

2. [20] Draw “before and after” diagrams illustrating the effect of the concatenation
operation (3), assuming that PTRi and PTR2 are ^ A.

► 3. [20] What does operation (3) do if PTRi and PTR2 are both pointing to nodes in
the same circular list?

4. [21] Give insertion and deletion operations corresponding to the representation
(4), which give the effect of a stack.

► 5. [21] Design an algorithm which takes a circular list such as (1) and reverses the
direction of all the arrows.

6. [15] Give diagrams of the list representation for the polynomials (a) “xz — 3”;
(b) “0”.

7. [10] Why is it useful to assume that the ABC fields of a polynomial list appear in
decreasing order?

8. [10] Why is it useful to have Q1 trailing one step behind Q in Algorithm A?

► 9. [23] Would Algorithm A work properly if P = Q (i.e., both pointer variables point
at the same polynomial)? Would Algorithm M work properly if P = M, if P = Q, or
if M = Q?

► 10. [20] The algorithms in this section assume that we are using three variables
x, y, and z in the polynomials, and their exponents individually never exceed b (where
b is the byte size in Mix’s case). Suppose that we want instead to do addition and
multiplication of polynomials in only one variable, x, and to let its exponent take on
values up to b3. What changes should be made to Algorithms A and M?

2.2.4 CIRCULAR LISTS 277

11. [24] (The purpose of this exercise and many of those following is to create a
“package” of subroutines useful for polynomial arithmetic, in conjunction with Pro¬
gram A.) Since Algorithms A and M change the value of polynomial (Q), it is sometimes
desirable to have a subroutine that makes a copy of a given polynomial. Write a MIX

subroutine with the following specifications:

Calling sequence: JMP COPY

Entry conditions: rll = P

Exit conditions: rI2 points to a newly created polynomial equal to poly¬
nomial^); rll is unchanged; other registers are
undefined.

12. [21] Compare the running time of the program in exercise 11 with that of Algo¬
rithm A when polynomial(Q) = “0”.

13. [20] Write a MIX subroutine with the following specifications:

Calling sequence: JMP ERASE

Entry conditions: rll = P

Exit conditions: polynomial(P) has been added to the AVAIL list; all register
contents are undefined.

[Note: This subroutine can be used in conjunction with the subroutine of exercise 11

in the sequence “LD1 Q; JMP ERASE; LD1 P; JMP COPY; ST2 Q” to achieve the effect
“polynomial(Q) <— polynomial(P)”.]

14. [22] Write a MIX subroutine with the following specifications:

Calling sequence:
Entry conditions:
Exit conditions:

JMP ZERO

None
rI2 points to a newly created polynomial equal to “0”; other

register contents are undefined.

15. [24] Write a MIX subroutine to perform Algorithm M, having the following

specifications:

Calling sequence: JMP MULT
Entry conditions: rll = P, rI2 = Q, rI4 = M.
Exit conditions: polynomial(Q) <— polynomial(Q) -j- polynomial(M) X

polynomial(P); rll, rI2, rI4 are unchanged; other
registers undefined.

(Note: Use Program A as a subroutine, changing the settings of SW1, SW2, and SW3.)

16. [M22] Estimate the running time of the subroutine in exercise 15 in terms of some

relevant parameters.

► 17. [22] What advantage is there in representing polynomials with a circular list as
in this section, instead of with a straight linear linked list terminated by A as in the

previous section?

18. [25] Devise a way to represent circular lists inside a computer in such a way that
the list can be traversed efficiently in both directions, yet only one link field is used per
node. [Hint: If we are given two pointers, to two successive nodes 2j_i and Xi, it should

be possible to locate both Xj+i and x»_2-]

278 INFORMATION STRUCTURES 2.2.5

2.2.5. Doubly Linked Lists

For even greater flexibility in the manipulation of linear lists, we can include two

links in each node, pointing to the items on either side of that node:

Here LEFT and RIGHT are pointer variables to the left and right of the list. Each

node of the list includes two links, called, for example, LLINK and RLINK. The

operations of a general deque are readily performed with the above representa¬

tion; see exercise 1. However, manipulations of doubly linked lists almost

always become much easier if a list head node is part of each list, as described in

the preceding section. When a list head is present, we have the following typical

diagram of a doubly linked list:

List head

(2)

The RLINK and LLINK fields of the list head take the place of LEFT and RIGHT in

(1). There is complete symmetry between left and right; the list head could

equally well have been shown at the right of (2). If the list is empty, both link

fields of the list head point to the head itself.

The list representation (2) clearly satisfies the condition

RLINK(LLINK(X)) = LLINK(RLINK(X)) = X (3)

if X is the location of any node in the list (including the head). This fact is the

principal reason representation (2) is preferable to (1).

A doubly linked list usually takes more memory space than a singly linked

one does (although sometimes there is already room for another link in a node

that doesn’t fill a complete computer word). The additional operations that can

now be performed efficiently are often more than ample compensation for this

extra space requirement. Besides the obvious advantage of being able to go

back and forth at will when examining a doubly linked list, one of the principal

new abilities is the fact that we can delete NODE(X) from the list it is in, given

only the value of X. This deletion operation is easy to derive from a “before and
after” diagram (Fig. 11) and it is very simple:

RLINK(LLINK(X)) 4- RLINK(X), LLINK(RLINK(X)) <- LLINK(X),

AVAIL «= X. (4)

In a list which has only one-way links, we cannot delete NODE(X) without

knowing which node precedes it in the chain, since the preceding node needs to

2.2.5 DOUBLY LINKED LISTS 279

have its link altered when NODE(X) is deleted. In all the algorithms considered
in Sections 2.2.3 and 2.2.4 this additional knowledge was present whenever a
node was to be deleted; see, in particular, Algorithm 2.2.4A, where we had
pointer Q1 following pointer Q for just this purpose. But we will meet several
algorithms which require removing random nodes from the middle of a list,
and doubly linked lists are frequently used just for this reason. (We should
point out that in a circular list it is possible to delete NODE(X), given X, if we
go around the entire circle to find the predecessor of X. But this operation is
clearly inefficient when the list is long, so it is rarely an acceptable substitute
for doubly linking the list. See also exercise 2.2.4-8.)

x

Fig. 11. Deletion from a doubly linked list.

Similarly, a doubly linked list permits the easy insertion of a node adjacent
to NDDE(X) at either the left or the right. The steps

P <= AVAIL, LLINK(P) <— X, RLINK(P) <— RLINK(X),
(5)

LLINK(RLINK(X)) P, RLINK(X) <— P

do such an insertion to the right of NODE(X); and by interchanging left and right
we get the corresponding algorithm for insertion to the left. Operation (5)
changes the settings of five links, so it is a little slower than an insertion operation
in a one-way list where only three links need to be changed.

As an example of the use of doubly linked lists, we will now consider the
writing of a discrete simulation program. “Discrete simulation” means the
simulation of a system in which all changes in the state of the system may be
assumed to happen at certain discrete instants of time. The “system” being
simulated usually is a set of individual activities which are largely independent
although they interact with each other; examples are customers at a store, ships
in a harbor, people in a corporation. In a discrete simulation, we proceed by
doing whatever is to be done at a certain instant of simulated time, then advance
the simulated clock to the next time when some action is scheduled to occur.

By contrast, a “continuous simulation” would be simulation of activities
which are under continuous changes, such as traffic moving on a highway,
spaceships traveling to other planets, etc. Continuous simulation can often be
satisfactorily approximated by discrete simulation with very small time intervals

280 INFORMATION STRUCTURES
2.2.5

between steps; however, in such a case we usually have “synchronous” discrete

simulation, in which many parts of the system are slightly altered at each discrete

time interval, and such an application generally calls for a somewhat different

type of prograip organization than the kind considered here.
The program developed below simulates the elevator system in the Mathe¬

matics building of the California Institute of Technology. The results of such

a simulation will perhaps be of use only to people who make reasonably frequent

visits to Caltech; and even for those who do, it may be simpler just to try using

the elevator several times instead of writing a computer program. But, as is

usual with simulation studies, the methods we will use to achieve the simulation

are of much more interest than the answers given by the program. The methods

to be discussed below illustrate typical implementation techniques used with

discrete simulation programs.
The Mathematics building has five floors: sub-basement, basement, first,

second, and third. There is a single elevator, which has automatic controls and

can stop at each floor. For convenience we will renumber the floors 0, 1, 2, 3,

and 4.
On each floor there are two call buttons, one for UP and one for DOWN.

(Actually floor 0 has only UP and floor 4 has only DOWN, but we may ignore that

anomaly since the excess buttons will never be used.) Corresponding to these

buttons, there are ten variables CALLUP[j] and CALLDOWNfjl, 0 < j < 4. There

are also variables CALLCARlj l, 0 < j < 4, representing buttons within the elevator

car which direct it to a destination floor. When a man presses a button he sets

the appropriate variable to 1; the elevator clears the variable to 0 after the

request has been fulfilled.
The above describes the elevator from a man’s point of view; the situation

is more interesting as viewed by the elevator. The elevator is in one of three

states: GOINGUP, G0INGD0WN, or NEUTRAL. (The current state is indicated to

passengers by lighted arrows inside the elevator.) If it is in NEUTRAL state and

not on floor 2, the machine will close its doors and (if no command is given by

the time its doors are shut) it will change to GOINGUP or G0INGD0WN, heading for

floor 2. (This is the “home floor, ” since most passengers get in there.) On floor 2

in NEUTRAL state, the doors will eventually close and the machine will wait

silently for another command. The first command received for another floor sets

the machine GOINGUP or G0INGD0WN as appropriate; it stays in this state until

there are no commands waiting in the same direction, and then it switches

direction or switches to NEUTRAL just before opening the doors, depending on

what other commands are in the CALL variables. The elevator takes a certain

amount of time to open and close its doors, to accelerate and decelerate, and to

get from one floor to another. All these quantities are indicated in the algorithm

below, which is much more precise than this informal description can be. The

algorithm we will now study may not reflect the elevator’s true principles of

operation, but it is believed to be the simplest set of rules which explain all the

phenomena observed during several hours of experimentation by the author

during the writing of this section.

2.2.5 DOUBLY LINKED LISTS 281

The elevator system is simulated by using two coroutines, one for the

passengers and one for the elevator; these routines specify all the actions to be

performed, as well as various time delays which are to be used in the simulation.

In the following description, the variable TIME represents the current value of

the simulated time clock. All units of time are given in tenths of seconds. There
are also several other variables:

FLOOR, the current position of the elevator;

Dl, a variable which is zero except during the time people are getting in or

out of the elevator;

D2, a variable which becomes zero if the elevator has sat on one floor without

moving for 30 sec or more;

D3, a variable which is zero except during the time the doors are open but

nobody is getting in or out of the elevator;

STATE, the current state of the elevator (GOINGUP, G0INGD0WN, or NEUTRAL).

Initially, FLOOR = 2, Dl = D2 = D3 = 0, and STATE = NEUTRAL.

Coroutine M (Men). When each man enters the system, he begins to perform

the actions specified below, starting at step Ml.

Ml. [Enter, prepare for successor.] The following quantities are determined in

some manner that will not be specified here:

IN, the floor on which the new man has entered the system;

OUT, the floor to which he wants to go (OUT 5^ IN) ;

INTERTIME, the amount of time before the next man will enter the system;

GIVEUPTIME, the amount of time this man will wait for the elevator before

he gives up and decides to walk.

After these quantities have been computed, the simulation program sets

things up so that another man enters the system at TIME + INTERTIME.

M2. [Signal and wait.] (The purpose of this step is to call for the elevator; some

special cases arise if the elevator is already on the right floor.) If FLOOR =

IN and if the elevator’s next action is step E6 below (i.e., if the elevator

doors are now closing), send the elevator immediately to its step E3 and

cancel its activity E6. (This means the doors will open again before the

elevator moves.) If FLOOR = IN and if D3 ?^ 0, set D3 0, set Dl 9^ 0, and

start up the elevator’s activity E4 again. (This means the elevator doors

are open on this floor, but everyone else has already gotten on or off;

elevator step E4 is a sequencing step that grants people permission to

enter the elevator according to normal laws of courtesy, and so restarting

E4 gives this man a chance to get in before the doors close.) In all other

cases, the man sets CALLUP 1 IN 1 <— 1 or CALLDOWNtlNl <— 1, according as

OUT > IN or OUT < IN; and if D2 = 0 or the elevator is in its “dormant”

position El, the DECISION subroutine specified below is performed. (The

DECISION subroutine is used to take the elevator out of NEUTRAL state at

certain critical times.)

282 INFORMATION STRUCTURES 2.2.5

M3. [Enter queue.] Insert this man at the rear of QUEUE! IN 1, which is a linear

list representing the people waiting on this floor. Now this man ceases

activity; he will perform action M4 after GIVEUPTIME units of time, unless

step E4,of the elevator routine below sends him to M5 earlier.

M4. [Give up.] If FLOOR IN or D1 = 0, delete this man from QUEUE! IN] and

from the simulated system. (He has decided the elevator is too slow, or

that a bit of exercise will be good for him.) If FLOOR = IN and D1 ^ 0, he

stays and waits (since he knows he will soon be able to get in).

M5. [Get in.] Delete this man from QUEUE!IN], and insert him in ELEVATOR,

which is a stack-like list representing the people now in the elevator. Set

CALLCARfOUTl <— 1.

Now if STATE = NEUTRAL, set STATE <— GOINGUP or G0INGD0WN as

appropriate, and set the elevator’s activity E5 to be executed after 25

units of time. (This is a special feature of the elevator, that the doors close

faster when a man gets in the car and the elevator is in NEUTRAL state.

The 25 units of time gives step E4 the opportunity to make sure that D1

is properly set up by the time step E5, the door-closing action, occurs.)

Now the man waits until he is sent to step M6, by step E4 below, when

the elevator has reached his floor.

M6. [Get out.] Delete this man from ELEVATOR and from the simulated system. |

Coroutine E (Elevator). This coroutine represents the actions of the elevator,

and also in step E4 the control of when people get in and out.

El. [Wait for call.] (At this point the elevator is sitting at floor 2 with the doors

closed waiting for something to happen.) If someone presses a button, the

DECISION subroutine will take us to step E3 or E6. Meanwhile, wait.

E2. [Change of state?] If STATE = GOINGUP and CALLUP!j] = CALLDOWNtjl =

CALLCARtyi = 0 for all j > FLOOR, then set STATE <— NEUTRAL or STATE <—

G0INGD0WN, according as CALLCARtjl = 0 for all j < FLOOR or not, and set all

CALL variables for the current floor to zero. If STATE = GOINGDOWN, do

similar actions with directions reversed.

E3. [Open door.] Set D1 and D2 to any nonzero values. Set elevator activity E9

to start up independently after 300 units of time. (This activity may be

canceled in step E6 below before it occurs.) Also set elevator activity E5

to start up independently after 76 units of time. Then wait 20 units of time

(to simulate opening of the doors) and go to E4.

E4. [Let people out, in.] If anyone in the ELEVATOR list has OUT = FLOOR, send

the man of this type who has most recently entered immediately to step

M6 of his program, wait 25 units, and repeat step E4. If no such men exist,

but QUEUE [FLOOR] is not empty, send the front man of that queue imme¬

diately to step M5 instead of M4 in his program, wait 25 units, and repeat

step E4. But if QUEUE [FLOOR] is empty, set D1 0, D3 5^ 0, and wait for

2.2.5 DOUBLY LINKED LISTS 283

some other activity to initiate further action. (Step E5 will send us to E6,
or step M2 will restart E4.)

E5. [Close door.] If D1 ^ 0, wait 40 units and repeat this step (the doors flutter

a little but spring open again since someone is still getting out or in). Other¬

wise set D3 <— 0 and set the elevator to start at step E6 after 20 units of

time. (This simulates closing the doors after people have finished getting

in or out; but if a new man enters on this floor while the doors are closing,
they will open again as stated in step M2.)

E6. [Prepare to move.] Set CALLCARtFLOOR] to zero; also set CALLUPtFLOOR] to

zero if STATE ^ G0INGD0WN, and also set CALLDOWNtFLOOR] to zero if STATE 5^

GOINGUP. (AJote: If STATE — GOINGUP, the elevator does not clear out

CALLDOWN, since it assumes people who are going down will not have entered;

but see exercise 6.) Now perform the DECISION subroutine.

If STATE = NEUTRAL even after the DECISION subroutine has acted, go

to El. Otherwise, if D2 5^ 0, cancel the elevator activity E9. Finally, if

STATE = GOINGUP, wait 15 units of time (for the elevator to build up

speed) and go to E7; if STATE = G0INGD0WN, wait 15 units and go to E8.

E7. [Go up a floor.] Set FLOOR FLOOR + 1 and wait 51 units of time. If now

CALLCARt FLOOR] = 1 or CALLUPtFLOOR] = 1, or if ((FLOOR = 2 or

CALLDOWN [FLOOR] = 1) and CALLUPt,/] = CALLDOWNtj/1 = CALLCARt jl = 0

for allj > FLOOR), wait 14 units (for deceleration) and go to E2. Otherwise,

repeat this step.

E8. [Go down a floor.] This step is like E7 with directions reversed, and also

the times 51 and 14 are changed to 61 and 23, respectively. (It takes the

elevator longer to go down than up.)

E9. [Set inaction indicator.] Set D2 0 and perform the DECISION subroutine.

(This independent action is initiated in step E3 but it is almost always

canceled in step E6. See exercise 4.) |

Subroutine D (DECISION subroutine). This subroutine is performed at certain

critical times, as specified in the coroutines above, when a decision about the

elevator’s next direction is to be made.

Dl. [Decision necessary?] If STATE NEUTRAL, exit from this subroutine.

D2. [Should door open?] If the elevator is positioned at El and if CALLUPt2l,

CALLCARt2l, or CALLDOWNt21 is not zero, cause the elevator to start its

activity E3 after 20 units of time, and exit from this subroutine. (If the

DECISION subroutine is currently being invoked by the independent activity

E9, it is possible for the elevator coroutine to be positioned at El.)

D3. [Any calls?] Find the smallest j FLOOR for which CALLUPtj], CALLCARtjl,

or CALLDOWNtj'l is nonzero, and go on to step D4. But if no such j exists,

then set j <— 2 if the DECISION subroutine is currently being invoked by step

E6; otherwise exit from this subroutine.

D4. [Set STATE.] If FLOOR > j, set STATE <— G0INGD0WN; if FLOOR < j, set

STATE <— GOINGUP.

T
ab

le

1
S

O
M

E

A
C

T
IO

N
S

O
F

T
H

E

E
L

E
V

A
T

O
R

S
Y

S
T

E
M

284 INFORMATION STRUCTURES 2.2.5

£ £ £
03 <D 03

c/i c/3 qp
>>>>>>
CO CO CO

CO CO CO

Tf M lO . . . 3
O O O «G
fl fl fl co

g a a o
03 as aS q

SSSq

CO

03 (J
bC 03

£
. G

O
G 73

o cs

2 * t o
03 T3

to bC
G

03

Gw* °
2 w o
G* qi -5
o > o
O 0* O

-> ■-*

fc-
5 g “ 3

° 73 W

C 0) W a °
G

8.
G
a> - a '

t? 2-

bC bC ai

0 00 ^

O O G3
G G OT

w l/I — 73

W .2 73 CO “oj W .!
03fc>Cufeo3bCfe; be 2 o o 2 hr _ 2' °"o ° S

os -a c w T3 00 “°l
d 2
3 §
to -o 1

2 5

3? t •• *
W 73 W
W gj W .

o “ o
O o

T3 — TJ

(3 O ^

W 73 w 5r

03 2
bC £

r- © T3

> a s
o o §

£ -S -§
.1 g

o o
-a -o

ooooooooooooo

gPSgQ

rt *j +j +j *j r* r*
waJaJdfl!_w
G>>>>GG>
0303030)03030103

ssssssss

00000000°
G

03 >
_____ _ ____ _ 03 _____ _

H H H S S W^S^WWWH^WWWWQHW

aS „
> > >
03 03 03 03 03 03

> > >
03 03 03

03 03
> >
03 03

to ill w “3 w w “3 LH >0 W N M H w “/ >•• i.l “J i' ^^^w^w^^w^wwww^Swwwwww
0000000000X00000X000X0

XXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXooooXXoooooo

.—i—txHx-i — ■—i—<.-x*—t»—i — — ©OOOOO—' — — —<

CO iO N IN w lO N ^ c»3 »C Is* M CO ^ vai w* ww -* “w — W^W^WWWH^WWWWWWW
0000X0000X000000

XXXXXXXXXXXXXXXX

000X0000X0000X00

NNNNNNMCOMMMNNNNN

io oo n ^ io

QQQOQQOflQQQQQSSSSDStitip ZZZZDSDZZ^On^ZZZ

^OOOOOOM^O^'tOiC ONNONUOOOiCiCCOCO NMCOM't^^iCiOCDcD
N ’t ’t O)
to 00 © <M
N M ^ rf
-<f -X rf Tf

_ Tf O) O 03 ifl
GO CO <M _

TfTjiOifliflCOCONNN
^ ^

8 S
_ _ _ _ GO 00
Tf rf rf

i w o
! g G3
I K*") ^ -U
I ~a o aS
i ° "© w
1 ~ b£) °
: si G

a
o

o > 5
o ^ *
qhS

73 W 03
•" >

G G OS
.2 .2 ~

d « JJ
G G -©

'43 ’43 T3
73 73 c2
® « oS T3 XJ
^ « a

N N 3
(x (m 03
O O >

« '«
s *
O o3

w
bC °
G

•G i-
r* lx

GO-'
03 W ^
a ° u.
O 03 o

° ° cn

a,

03

73 g
03 ° > 12 ’« 2 2 £ 'C •:
i_ tu
aJ XI

G< G. a3

3 2 w
bC bC °
G G >
> '>

aS O O aS

CO £ £

> >
o o

£ £

a> .£

° > ° 8
o MO e a

t, ° tl ° *
d x ® w

_*J G 03 -U gj
w •- T3 W bC

73 « 5'3 g *9 *c
a 0) 03 > t
O § bCX3 § O as

m "O n co 'p c

d" G

8. J
d" G _T

O g CC

o to

5 cn

- s g
5° -S r

° CG

2 2 .2 -e
M. Q 03 Q

° § “ 8
73 X3 iO "O

=a -o g
.. be >

jj s -3 'E
« ° o

° a
I W ^ T3 G

OOOOOOOOOOOOOOOOOOOOOOOOOO

05 2 > g > > > g >
03 03 03 0) 03

SSgSw3wSSwS3H33SS3SS

os as
> >
03 03

- — C C „
aS aS aS aS
> > G G > > G
03 03 aS aS 03 03

w

00 2
03 O) xn 03 G* O

“ “! § O 3 I rv-s x< *T1 C _ CQ T3

„ _ lx lx
o o o o o o o

> > c > > c
03 03 as 03 03 aS

ww^wwS

> > s
03 03 aj

SwS

G G

G G
aS aj aS oS
> > G > >
03 03 aj 03 03

^SSSSS

Shh^w^^^hww^wh^wwhw^^ww^ww^wwSww^^^ww^ww
0000000000X0000000000X00000X0000000X0000

oXoooooooXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

0X00000000000000000XX00000X00000XXX00000

oooooooo NNCO^^Tj<^TtiT}<cOCOMWCOCONNNNNNNN

Z^OQQQQQQZZ^P^^PP^ZZQQQQQQQQQQQQQQQQQQQQ

fOiCOOcOcOr-NOOCO-'-iN'cJ'M'fOOOQ^OSNWMMO^NOOOOGOOM^OXCOCO
OMMOlfO-'J'iOCOX'OOOl’fcOOi’tOON^iOOCQUNOi'CONcOcOUOC-HTjiNrfOtO NOOOH-3--HxNNNMMM'l,iOii:iOiOiOiO®cOcOcOf'EOOOOQOQOXO)0)aiOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO—I—'—'

2.2.5 DOUBLY LINKED LISTS 285

D5. [Elevator dormant?] If the elevator coroutine is positioned at step El, and

if j ^ 2, set the elevator to perform step E6 after 20 units of time. Exit
from the subroutine. |

The elevator system described above is quite complicated by comparison

with other algorithms we have seen in this book, but the choice of a real-life

system is more typical of a simulation problem than any cooked-up “textbook
example” would ever be.

To help understand the system, consider Table 1 which gives part of the

history of one simulation. It is perhaps best to start by examining the simple

case starting at time 4257: the elevator is idly sitting at floor 2 with its doors

shut, when a man arrives (time 4384). Two seconds later, the doors open, and

after two more seconds he gets in; by pushing button “3” he starts the elevator

moving up; ultimately he gets off at floor 3 and the elevator returns to floor 2.

The first entries in Table 1 show a much more dramatic scenario: A man calls

the elevator to floor 0, but he is rather impatient and gives up after 15.2 sec.

The elevator stops at floor 0 but finds nobody there; then it heads to floor 4

since there are several calls wanting to go downward; etc.

The programming of this system for a computer (in our case, MIX) merits

careful study. At any given time during, the simulation, we may have many

simulated men in the system (in various queues and ready to “give up” at

various times), and there is also the possibility of essentially simultaneous

execution of steps E4, E5, and E9 if many people are trying to get out as the

elevator is trying to close its doors. The passing of simulated time and the

handling of “simultaneity” may be programmed by having each entity repre¬

sented by a node that includes a NEXTTIME field (denoting the time when the

next action for this entity is to take place) and a NEXTINST field (denoting the

memory address where this entity is to start executing instructions, analogous

to ordinary coroutine linkage). Each entity waiting for time to pass is placed

in a doubly linked list called the WAIT list; this “agenda” is sorted on the NEXTTIME

fields of its nodes, so that the actions may be processed in the correct sequence of

simulated times. The program also uses doubly linked lists for the ELEVATOR

and for the QUEUE lists.

The node representing each activity (whether a man or an elevator action)

has the form

+ IN LLINK1 RLINK1
I

+ NE XTTIME

+ NEXT I 'JST 0 0 39

+ OUT LLIN
_

K2 RLINK2
_i__

(6)

Here LLINK1 and RLINK1 are the links for the WAIT list; LLINK2 and RLINK2 are

used as links in the QUEUE lists or the ELEVATOR. The latter two fields and the

286 INFORMATION STRUCTURES
2.2.5

Fig. 12. Some lists used in the elevator simulation program. (List heads appear at
the left.)

IN and OUT field are relevant when node (6) represents a man, but they are not

relevant for nodes that represent elevator actions. The third word of the node

is actually a MIX “JMP” instruction.

Figure 12 shows typical contents of the WAIT list, ELEVATOR list, and one of

the QUEUE lists; each node in the QUEUE list is simultaneously in the WAIT list

with NEXTINST = M4, but this has not been indicated in the figure, since the

complexity of the linking would obscure the basic idea.
Now let us consider the program itself. The program is quite long, although

(as with all long programs) it divides into small parts each of which is quite

simple in itself. First comes a number of lines of code that just serve to define

the initial contents of the tables. There are several points of interest here: We

have list heads for the WAIT list (lines 10-11), the QUEUE lists (lines 26-31), and

the ELEVATOR list (lines 32-33). Each of these is a node of the form (6), but with

unimportant words deleted; the WAIT list head contains only the first two words

of a node, and the QUEUE and ELEVATOR list heads require only the last word of

a node. We also have four nodes which are always present in the system (lines

12-23): MAN1, a node which is always positioned at step Ml ready to enter a

new man into the system; ELEV1, a node which governs the main actions of the

elevator at steps El, E2, E3, E4, E6, E7, and E8; and ELEV2 and ELEV3, nodes

which are used for the elevator actions E5 and E9, which take place indepen¬

dently of other elevator actions with respect to simulated time. Each of these

four nodes contains only three words, since they never appear in the QUEUE or

2.2.5 DOUBLY LINKED LISTS 287

ELEVATOR lists. The nodes representing each actual man in the system will

appear in a storage pool following the main program.

01 * THE ELEVATOR SIMULATION

02 IN EQU 1:1 Definition of fields

03 LLINK1 EQU 2:3 within nodes

04 RLINK1 EQU 4:5

05 NEXTINST EQU 0:2

06 OUT EQU 1:1

07 LLINK2 EQU 2:3

08 RLINK2 EQU 4:5

09 * FIXED-SIZE TABLES AND LIST HEADS

10 WAIT CON *+2(LLINK1),*+2(RLINK1) List head for WAIT list

11 CON 0 NEXTTIME = 0 always

12 MAN1 CON *-2(LLINK1),*-2(RLINK1) This node represents action

13 CON 0 Ml and it is initially the

U JMP Ml sole entry in the WAIT list.

15 ELEV1 CON 0 This node represents the

16 CON 0 elevator actions, except

17 JMP El for E5 and E9.

18 ELEV2 CON 0 This node represents the

19 CON 0 independent elevator

20 JMP E5 action at E5.

21 ELEV3 CON 0 This node represents the

22 CON 0 independent elevator

23 JMP E9 action at E9.

24 AVAIL CON 0 Link to available nodes

25 TIME CON 0 Current simulated time

26 QUEUE EQU *-3

27 CON *-3(LLINK2),*-3(RLINK2) List head for QUEUE[0]

28 CON *-3(LLINK2),*-3(RLINK2) List head for QUEUE[1]

29 CON *-3(LLINK2).*-3(RLINK2) All queues initially

SO CON *-3(LLINK2),*-3(RLINK2) are empty

31 CON *-3(LLINK2),*-3(RLINK2) List head for QUEUE[4]

32 ELEVATOR EQU *-3

S3 CON *-3(LLINK2),*-3(RLINK2) List head for ELEVATOR

34 CON 0

35 CON 0 “Padding” for CALL table

36 CON 0 (see lines 183-186)

37 CON 0

38 CALL CON 0 CALLUP[0], CALLCAR[0], CALLDOWN[0]

39 CON 0 CALLUP[1], CALLCAR[1], CALLD0WN[1]

40 CON 0 CALLUP[2], CALLCAR[2], CALLD0WN[2]

41 CON 0 CALLUP[3], CALLCAR[3], CALLD0WN[3]

43 CON 0 CALLUP[4], CALLCAR[4], CALLD0WN[4]

43 CON 0

44 CON 0 “Padding” for CALL table

45 CON 0 (see lines 178-181)

46 CON 0

47 D1 CON 0 Indicates door open, activity

48 D2 CON 0 Indicates prolonged standstill

49 D3 CON 0 Indicates door open, inactivity |

288 INFORMATION STRUCTURES 2.2.5

The next part of the program coding contains basic subroutines and the main

control routines for the simulation process. Subroutines INSERT and DELETE

perform typical manipulations on doubly linked lists; they put the current node

into or take,it out of a QUEUE or ELEVATOR list. (In the program, the “current

node” C is always represented by index register 6.) There are also subroutines

for the WAIT list: Subroutine SORTIN adds the current node to the WAIT list,

sorting it into the right place based on its NEXTTIME field. Subroutine IMMED

inserts the current node at the front of the WAIT list. Subroutine HOLD puts the

current node into the WAIT list, with NEXTTIME equal to the current time plus

the amount in register A. Subroutine DELETEW deletes the current node from

the WAIT list.
The routine CYCLE is the heart of the simulation control: it decides which

activity is to act next (namely, the first element of the WAIT list, which we know

is nonempty), and jumps to it. There are two special entrances to CYCLE:

CYCLE1 first sets NEXTINST in the current node, and HOLDC is the same with an

additional call on the HOLD subroutine. Thus, the effect of the instruction

“JMP HOLDC” with amount t in register A is to suspend activity for t units of

simulated time and then to return to the following location.

50 * SUBROUTINES AND CONTROL ROUTINE

51 INSERT STJ 9F

52 LD2 3,1(LLINK2)

53 ST2 3,6(LLINK2)

54 ST6 3,1(LLINK2)

55 ST6 3,2(RLINK2)

56 ST1 3,6(RLINK2)

57 9H JMP *

58 DELETE STJ 9F

59 LD1 3,6(LLINK2)

60 LD2 3,6(RLINK2)

61 ST1 3,2(LLINK2)

62 ST2 3,1(RLINK2)

63 9H JMP *

64 IMMED STJ 9F

65 LDA TIME

66 STA 1,6

67 ENT1 WAIT

68 JMP 2F

69 HOLD ADD TIME

70 SORTIN STJ 9F

71 STA 1,6

72 ENT1 WAIT

73 LD1 0,1(LLINK1)

n CMPA 1,1
75 JL *-2

76 2H LD2 0,1(RLINK1)

77 ST2 0,6(RLINK1)
78 ST1 0,6(LLINK1)
79 ST6 0,1(RLINK1)
80 ST6 0,2(LLINK1)
81 9H JMP *

Insert NODE(C) to left of NODE(rll):

rI2 <- LLINK2(rIl).

LLINK2(C) <- rI2.
LLINK2(rIl) <- C.

RLINK2(rI2) <- C.

RLINK2(C) <- rll.

Exit from subroutine.

Delete NODE(C) from its list:

P <— LLINK2(C).

Q <- RLINK2(C).

LLINK2(Q) <- P.

RLINK2(P) *- Q.

Exit from subroutine.

Insert NODE(C) first in WAIT list:

Set NEXTTIME(C) <- TIME.

P <- LOC(WAIT).

Insert NODE(C) to right of NODE(P).

rA <- TIME + rA.

Sort NODE(C) into WAIT list:

Set NEXTTIME(C) <- rA.

P <- LOC(WAIT).

P <- LLINKl(P).

Compare NEXTTIME fields, right to left.

Repeat until NEXTTIME(C) > NEXTTIME(P).
Q <- RLINKl(P).

RLINKl(C) <- Q.

LLINKl(C) «- P.

RLINKl(P) <- C.

LLINKl(Q) <- C.

Exit from subroutine.

2.2.5

82 ' DELETEW STJ 9F
83 LD1 0,6(LLINK1)

84 LD2 0,6(RLINKI)
85 ST1 0,2(LLINK1)
86 ST2 0,1(RLINKI)
87 9H JMP *

88 CYCLE1 STJ 2,6(NEXTINST)
89 JMP CYCLE
90 HOLDC STJ 2,6(NEXTINST)
91 JMP HOLD
92 CYCLE LD6 WAIT(RLINKI)
93 LDA 1,6

94 STA TIME
95 JMP DELETEW
96 JMP 2,6

DOUBLY LINKED LISTS 289

Delete NODE(C) from WAIT list:

(This is same as lines 58-63

except LLINK1, RLINK1 are used

instead of LLINK2, RLINK2.)

Set NEXTINST(C) <- rJ.

Set NEXTINST(C) <- rJ.

Insert NODE(C) in WAIT, delay (rA).

Set current node C <— RLINKI (LOC (WAIT)).
NEXTTIME(C)

becomes new value of simulated TIME.

Remove NODE(C) from WAIT list.

Jump to NEXTINST(C). |

Now comes the program for Coroutine M. At the beginning of step Ml, the

current node C is MAN1 (see lines 12-14 above), and lines 099-100 of the program

cause MAN1 to be reinserted into the WAIT list so that the next man will be gener¬

ated after INTERTIME units of simulated time. The following lines 101-114 talce

care of setting up a node for the newly generated man; his IN and OUT floors are

recorded in this node position. The AVAIL stack is singly linked in the RLINKI

field of each node. Note that lines 101-108 perform the action “C 4= AVAIL”

using the P00LMAX technique, 2.2.3-(7); no test for OVERFLOW is necessary here,

since the total size of the storage pool (the number of men in the system at any

one time) rarely exceeds 10 nodes (40 words). The return of a node to the AVAIL

stack appears in lines 156-158.

Throughout the program, index register 4 equals the variable FLOOR, and

index register 5 is positive, negative, or zero, depending on whether STATE —

GOINGUP, GOINGDOWN, or NEUTRAL, respectively. The variables CALLUPlj'l,

CALLCARtjl, and CALLD0WN[j 1 occupy the respective fields (1:1), (3:3), and

(5:5) of location CALL -f- j.

097 * COROUTINE M. XI1. Enter, prepare for successor.

098 Ml JMP VALUES Compute IN, OUT, INTERTIME, GIVEUPTIME.

099 LDA INTERTIME INTERTIME is computed by VALUES subroutine.

100 JMP HOLD Put N0DE(C) in WAIT, delay INTERTIME.

101 LD6 AVAIL C <- AVAIL.

102 J6P IF If AVAIL ^ A, jump.

103 LD6 P00LMAX

104 INC6 4 C <- P00LMAX + 4.

105 ST6 P00LMAX P00LMAX <- C.

106 JMP *+3

107 1H LDA 0,6(RLINKI)

10S STA AVAIL AVAIL <- RLINKI (AVAIL).

109 LD1 INFL00R rll <— INFL00R (computed by VALUES above).

110 ST1 0,6 (IN) IN(C) <- rll.

111 LD2 0UTFL00R rI2 <- 0UTFL00R (computed by VALUES).

112 ST2 3,6(OUT) 0UT(C) <- rI2.

113 ENTA 39 Put constant 39 (JMP operation code)

114 STA 2,6 into third word of node format (6).

\

290 INFORMATION STRUCTURES 2.2.5

115 M2 ENTA 0,4

116 DECA 0,1

117 ST6 TEMP

118 JANZ 2F

119 ENT6 ELEV1

ISO
«

LDA 2,6(NEXTINST)

121 DECA t E6

122 JANZ 3F

123 ENTA E3

124 STA 2,6(NEXTINST)

125. JMP DELETEW

126 JMP 4F

127 3H LDA D3

128 JAZ 2F

129 ST6 D1

130 STZ D3

131 4H JMP IMMED

132 JMP M3

133 2H DEC2 0,1

134 ENTA 1

135 J2P *+3

136 STA CALL,1(5:5)

137 /■ JMP *+2
138 STA CALL,1(1:1)

139 LDA D2
140 JAZ DECISION

141 LDA ELEVl+2(NEXTINST)
142 DECA El
143 JAZ DECISION

144 M3 LD6 TEMP
145 LD1 0,6 (IN)
146 ENT1 QUEUE,1

147 JMP INSERT
148 M4A LDA GIVEUPTIME
149 JMP HOLDC
150 M4 LDA 0,6(IN)
151 DECA 0,4
152 JANZ *+3
153 LDA D1
154 JANZ M4A
155 M6 JMP DELETE
156 LDA AVAIL
157 STA 0,6(RLINK1)
158 ST6 AVAIL
159 JMP CYCLE
160 M5 JMP DELETE
161 ENT1 ELEVATOR
162 JMP INSERT
163 ENTA 1
164 LD2 3,6(OUT)
165 STA CALL,2(3:3)
166 J5NZ CYCLE
167 DEC2 0,4
168 ENT5 0,2
169 ENT6 ELEV2
170 JMP DELETEW
171 ENTA 25
172 JMP E5A

M2. Signal and wait. Set rA <— FLOOR.

FLOOR — IN

Save value of C.
Jump if FLOOR 5* IN.

Set C <- LOC(ELEVl).
Is elevator positioned at E6?

If so, reposition it at E3.

Remove it from WAIT list
and reinsert it at front of WAIT.

Jump if D3 - 0.

Otherwise set D1 ^ 0.

Set D3 <- 0.
Insert ELEV1 at front of WAIT list.

(rll, rI2 have changed.)

rI2 <- OUT— IN.

Jump if going up.
Set CALLDOWN[IN] <- 1.

Set CALLUP[IN] <- 1.

If D2 = 0, call the DECISION subroutine.

If the elevator is at El, call

the DECISION subroutine.
MS. Enter queue.

rll <- LOC(QUEUE[IN]).

Insert NODE(C) at right end of QUEUE[IN].

Wait GIVEUPTIME units.
M/+. Give up.

IN(C) — FLOOR

FLOOR = IN(C).

See exercise 7.

M6. Get out. NODE(C) is deleted
from QUEUE or ELEVATOR.

AVAIL <= C.

Continue simulation.

M5. Get in. NODE(C) is deleted
from QUEUE.

Insert it at right of ELEVATOR.

Set CALLCAR[OUT(C)] <- 1.
Jump if STATE 5^ NEUTRAL.

Set STATE to proper direction.

Set C L0C(ELEV2).

Remove E5 action from WAIT list.

Restart E5 action 25 units from now. |

2.2.5 DOUBLY LINKED LISTS 291

The program for coroutine E is a rather straightforward rendition of the

semiformal description given earlier. Perhaps the most interesting portion is the

preparation for the elevator’s independent actions in step E3, and the searching
of the ELEVATOR and QUEUE lists in step E4.

173 * COROUTINE E.

17 4 E1A JMP CYCLE1 Set NEXTINST <— El, go to CYCLE.
175 El EQU * El. Wait for call, (no action)
176 E2A JMP HOLDC
177 E2 J5N IF E2. Change of state?
178 LDA CALL+1,4 State is GOINGUP.
179 ADD CALL+2,4
180 ADD CALL+3,4
181 ADD CALL+4,4
182 JAP E3 Are there calls for higher floors?
183 LDA CALL-1,4(3:3) If not, have passengers in the
184 ADD CALL-2,4(3:3) elevator called for lower floors?
185 ADD CALL-3,4(3:3)
186 ADD CALL-4,4(3:3)
187 JMP 2F

188 1H LDA CALL-1,4 State is GOINGDOWN.
189 ADD CALL-2,4 Actions are like lines 178-186.

196 ADD CALL+4,4(3:3)

197 2H ENN5 0,5 Reverse direction of STATE.

198 STZ CALL,4 Set CALL variables to zero.

199 JANZ E3 Jump if calls for opposite direction,

200 ENT 5 0 otherwise, set STATE <— NEUTRAL.

201 E3 ENT6 ELEV3 E3. Open door.

202 LDA 0,6 If activity E9 is already scheduled,

203 JANZ DELETEW remove it from the WAIT list.

204 ENTA 300

205 JMP HOLD Schedule activity E9 after 300 units.

206 ENT6 ELEV2

207 ENTA 76

208 JMP HOLD Schedule activity E5 after 76 units.

209 ST6 D2 Set D2 ^ 0.

210 ST6 D1 Set D1 ^ 0.

211 ENTA 20

212 E4A ENT6 ELEV1

213 JMP HOLDC

214 E4 ENTA 0,4 E4- Let people out, in.

215 SLA 4 Set OUT field of rA to FLOOR.

216 ENT6 ELEVATOR C <- LOC(ELEVATOR).

217 1H LD6 3,6(LLINK2) C LLINK2(C).

218 CMP6 =ELEVAT0R= Search ELEVATOR list, right to left.

219 JE IF If C = LOC(ELEVATOR), search is complete

220 CMPA 3,6(OUT) Compare OUT(C) with FLOOR.

221 JNE IB If not equal, continue search,

222 ENTA M6 otherwise, prepare to send man to M6

223 JMP 2F

224 1H LD6 QUEUE+3,4(RLINK2) Set C <- RLINK2(L0C(QUEUE[FL00R])).

225 CMP6 3,6(RLINK2) Is C = RLINK2(C) ?

226 JE IF If so, the queue is empty.

227 JMP DELETEW If not, cancel action M4 for this man.

228 ENTA M5 Prepare to send man to M5.

292

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

244
245
246
247
248
249
250
251
252
253

254
255
256
257
258
259
260
261
262
263

264
265
266
267
268
269
270
271
272
273

274
275
276

293

294
295
296

INFORMATION STRUCTURES 2.2.5

2H STA 2,6(NEXTINST) Set NEXTINST(C).

JMP IMMED Put him at front of WAIT list.

ENTA 25

JMP E4A Wait 25 units and repeat E4.

1H STZ D1 Set D1 <- 0.

ST6 D3 Set D3 ^ 0.

JMP CYOLE Return to simulate other events.

E5A JMP HOLDC

E5 LDA D1 E5. Close door.

JAZ *+3 Is D1 = 0?

ENTA 40 If not, people are still getting in or out.

JMP E5A Wait 40 units, repeat E5.

STZ D3 If D1 = 0, set D3 <— 0.

ENTA 20

ENT6 ELEV1

E6A JMP HOLDC Wait 20 units, then go to E6.

E6 J5N *+2 E6. Prepare to move.

STZ CALL,4(1:3) If STATE ^ GOINGDOWN, CALLUP and CALLCAR

J5P *+2 on this floor are reset.

STZ CALL,4(3:5) If 5^ GOINGUP, reset CALLCAR and CALLDOWN.

J5Z DECISION Perform DECISION subroutine.

E6B J5Z E1A If STATE = NEUTRAL, go to El and wait.

LDA D2

JAZ *+4

ENT6 ELEV3 Otherwise, if D2 ^ 0,

JMP DELETEW cancel activity E9

STZ ELEV3 (see line 202).

ENTA 15

ENT6 ELEV1 Wait 15 units of time.

J5N E8A If STATE = GOINGDOWN, go to E8.

E7A JMP HOLDC

E7 INC4 1 E7. Go up a floor.
ENTA 51

JMP HOLDC Wait 51 units.

LDA CALL,4(1:3) Is CALLCAR[FL00R] or CALLUP[FL00R] 0?

JAP IF

ENT1 -2,4 If not,

J1Z 2F is FLOOR = 2?

LDA CALL,4(5:5) If not, is CALLD0WN[FL0OR] ^ 0?

JAZ E7 If not, repeat step E7.

2H LDA CALL+1,4

ADD CALL+2,4

ADD CALL+3,4

ADD CALL+4,4

JANZ E7 Are there calls for higher floors?

1H ENTA 14 It is time to stop the elevator.

JMP E2A Wait 14 units and go to E2.

E8A JMP HOLDC

(See exercise 8.)

E9 STZ 0,6 E9. Set inaction indicator.
STZ D2 D2 <- 0.

JMP DECISION Perform DECISION subroutine.

JMP CYCLE Return to simulation of other events. |

2.2.5 DOUBLY LINKED LISTS 293

We will not consider here the DECISION subroutine (see exercise 9), nor the

VALUES subroutine which is used to specify the demands on the elevator. At the

very end of the program comes the code

BEGIN ENT4 2

ENT5 0

JMP CYCLE

POOLMAX END BEGIN

Start with FLOOR = 2
and STATE = NEUTRAL.

Begin simulation.
Storage pool follows literals, temp storage |

The above program does a fine job of simulating the elevator system, as it

goes through its paces. But it would be useless to run this program, since there

is no output! Actually, the author added a PRINT subroutine which was called

at most of the critical steps in the program above, and this was used to prepare

Table 1; the details have been omitted, since they are very straightforward but

only clutter up the code.

Several programming languages have been devised which make it quite easy

to specify the actions in a discrete simulation, and to use a compiler to translate

these specifications into machine language. Assembly language was used in this

section, of course, since we are concerned here with the techniques of manipulat¬

ing linked lists, and the details of how discrete simulations are actually performed

by a computer (although it has a one-track mind). We will consider the question

of higher-level notations for describing these systems in Chapter 8. The tech¬

nique of using a WAIT list or “agenda” to control the sequencing of coroutines,

as we have done in this section, is called quasi-parallel processing.

It is quite difficult to give a precise analysis of the running time of such a

long program, because of the complex interactions involved; it is easy to time

various smaller parts of the program (like the INSERT subroutine) and this gives

an indication of its efficiency. It is often useful to employ a special trace routine

which executes the program, and which records how often each instruction was

performed; this shows the “bottlenecks” in the program, places which should

be given special attention. The author made such an experiment with the above

program; the program ran for 10000 units of simulated time, and 26 men en¬

tered the simulated system. The instructions in the SORTIN loop, lines 73-75,

were executed by far the most often, 1432 times, while the SORTIN subroutine

itself was called 437 times. The CYCLE routine was performed 407 times, and

this suggests that the DELETEW subroutine should not have been called at line 95;

the four lines of that subroutine should have been written out in full (to save

4u each time CYCLE is used). The special trace routine also showed that the

DECISION subroutine was called only 32 times and the loop in E4 (lines 216-218)

was executed only 142 times.
It is hoped that some reader will learn as much about simulation from

the above example as the author learned about elevators while the example was

being prepared.

294 INFORMATION STRUCTURES 2.2.5

EXERCISES

1. [21] Give specifications for the insertion and deletion of information at the left end
of a doubly linked list represented as in (1). (With the dual operations at the right end,
which are obtained by symmetry, we therefore have all the actions of a general deque.)

2. [22] Explain why a list \hat is singly linked cannot allow efficient operation as a
general deque; the deletion of items can be done efficiently at only one end of a singly

linked list.

3. [22] The elevator system described in the text uses three call variables, CALLUP,

CALLCAR, and CALLDOWN, for each floor, representing what buttons have been pushed

by the men in the system. It is conceivable that internally the elevator needs only one

or two relay circuits (i.e., binary variables) for the call buttons on each floor, instead

of three. Show how a man could push buttons in a certain sequence with this elevator

system to prove that there are three separate relays for each floor (except the top and

bottom floors).

4. [2If] Activity E9 in the elevator coroutine is usually canceled by step E6, and even
when it hasn’t been canceled, it doesn’t do very much. Explain under what circum¬
stances the elevator would behave differently (i.e., it would operate at a different
speed, or visit floors in a different order) if activity E9 were deleted from the system.

5. [20] In Table 1, man no. 10 arrived on floor 0 at time 1048. Suppose he had arrived
on floor 2 instead of floor 0; show that under these conditions the elevator would have
gone up after receiving its passengers on floor 1, instead of down, in spite of the fact
that man no. 8 wants to go down to floor 0.

6. [23] Note that in Table 1, time 1183-1233, men nos. 7, 8, and 9 all get in the
elevator on floor 1; then the elevator goes down to floor 0 and only man no. 8 gets out.
Now the elevator stops on floor 1, presumably to pick up men nos. 7 and 9 who are
already aboard, and nobody is actually on floor 1 waiting to get in. (This situation occurs
not infrequently at Caltech; if you get on the elevator going the wrong way, you must
wait for an extra stop as you go by your original floor again.) In many elevator systems,
men nos. 7 and 9 would not have gotten in the elevator at time 1183, since lights outside
the elevator would show it was going down, not up; these men would have waited until
the elevator came back up and stopped for them. On the system described, there are
no such lights and it is impossible to tell which way the elevator is going to go until
you are in it; hence Table 1 reflects the actual situation.

What changes should be made to coroutines M and E if we were to simulate the
same elevator system, but with indicator lights, so that people do not get on the elevator
when its state is contrary to their desired direction?

7. [25] Although “bugs” in programs are often embarrassing to a programmer, if we

are to learn from our mistakes we should record them and tell other people about them

instead of forgetting them. The following error (among others) was made by the author

when he first wrote the program in this section: line 154 said “JANZ CYCLE” instead

of “JANZ M4A”. The reasoning was that if indeed the elevator had arrived at this

man’s floor and he would soon be able to get on, there was no need for him to perform

his “give up” activity M4 any more, so we could simply go to CYCLE and continue

simulating other activities. What was the error?

8. [22] Write the code for step E8, lines 277-292, which have been omitted from
the program in the text.

2.2.6 ARRAYS AND ORTHOGONAL LISTS 295

9. [23] Write the code for the DECISION subroutine which has been omitted from
the program in the text.

10. [40] It is perhaps significant to note that although the author had used the

elevator system for years and thought he knew it well, it wasn’t until he attempted to

write this section that he realized there were quite a few facts about the elevator’s

system of choosing directions that he did not know. He went back to experiment with

the elevator six separate times, each time believing he had finally achieved a complete

understanding of its modus operandi. (Now he is reluctant to ride it for fear some new

facet of its operation will appear, contradicting the algorithms given.) We often fail to

realize how little we know about a thing until we attempt to simulate it on a computer.

Try to specify the actions of some elevator you are familiar with. Check the

algorithm by experiments with the elevator itself (looking at its circuitry is not fair!);

then design a discrete simulator for the system and run it on a computer.

► 11. [25] (An “update-memory.”) The following problem often arises in synchronous
simulations: The system has n variables V[l], . . . , V[n], and at every simulated step

new’ values for some of these are calculated from the old values. These calculations are

assumed done “simultaneously” in the sense that the variables do not change to their

new values until after all assignments have been made. Thus, the two statements

V[l] «- V[2] and V[2] <- V[l]

appearing at the same simulated time would interchange the values of V[l] and V[2],

and this is quite different from what would happen in a sequential calculation.

The desired action can of course be simulated by keeping an additional table

NEWV[1], . . . , NEWV[n]. Before each simulated step, we could set NEWVffc] <— V[k] for

1 < k < n, then record all changes of V[&] in NEWV[&], and finally, after the step we

could set V[k] <— NEWV[/c], 1 < k < n. But this “brute force” approach is often not

completely satisfactory, for the following reasons: (1) Often n is very large, but the

number of variables changed per step is rather small. (2) The variables are often not

arranged in a nice table V[l], . . . , V[n], but are scattered throughout memory in a

rather chaotic fashion. (3) This method does not detect the situation (usually an

error in the model) when one variable is given two values in the same simulated step.

Assuming that the number of variables changed per step is rather small, design an

efficient algorithm that simulates the desired actions, using two auxiliary tables

NEWV[&] and LINKfTc], 1 < k < n. If possible, your algorithm should give an error stop

if the same variable is being given two different values on the same step.

► 12. [22] Why is it a good idea to use doubly linked lists instead of singly linked or

sequential lists in the simulation program of this section?

2.2.6. Arrays and Orthogonal Lists

One of the simplest generalizations of a linear list is a two-dimensional or higher-

dimensional array of information. For example, consider the case of an m X n

matrix

A[l, 1] A[l, 2]
A[2, 1] A[2, 2]

k[m, 1] A[m, 2]

A[l, n]
A[2, n]

k[m, n]

296 INFORMATION STRUCTURES 2.2.6

In this two-dimensional array, each node k[j, k] belongs to two linear lists:

the “row j” list A[j, 1], A[j, 2], , A[j, to], and the “column k” list A[l, k], A[2, k],

. . ., A[m, k]. These orthogonal row and column lists essentially account for

the two-dimensional structure of a matrix. Similar remarks apply to higher-

dimensional arrays of information.

Sequential Allocation. When an array is stored in sequential memory locations,

storage is usually allocated so that

LOC(A[J,Kl) = o0 + aiJ + a2K, (2)

where a0, «i, and a2 are constants. Let us consider a more general case: Suppose

we have a four-dimensional array with one-word elements Qll,J,K,Ll for

0 < I < 2, 0 < J < 4, 0 < k < 10, 0 < L < 2. We would like to allocate

storage so that

LOC (Q11, J ,K,Ll) = Uq ~b “b ^2*1 ~b U3K -j- O4L. (3)

This means that a change in I, J, K, or L leads to a readily calculated change in

the location of QlI,J,K,Ll. The most natural (and most commonly used) way

to allocate storage is to let the array appear in memory in the “lexicographic

order” of its indices, sometimes called “row major order”:

QlO, 0, 0, 01, QlO, 0, 0, 11, Qt0, 0, 0, 21, QlO, 0, 1, 01, QlO, 0, 1, 11, . . . ,

Q10, 0, 10, 21, QlO, 1, 0, 01, . . . , Qt0, 4, 10, 21, Qll, 0, 0, 01, . . . ,

Q12, 4, 10, 21.

It is easy to see that this order satisfies the requirements of (3), and we have

LDC(Qtl, J, K, Ll) = LOC(QlO, 0, 0, 01) + 1651 + 33J + 3K + L. (4)

In general, given a /c-dimensional array with c-word elements Alii

for 0 < Ii < di, 0 < I2 < d2, ■ ■ . , 0 < I*, < <4, we can store it in memory

as

LOC (Alii, I2, . . . , Ifcl) = LOC (AlO, 0, . . . , 01)

+ c(d2 + 1) • • • (dk + l)li + • • •

+ c(dk + l)lfc_i + cl*

where

= L0C(At0, 0, . . . ,01) + £ arIr,
1 <r<k

ar — c JJ (ds ~b 1)- (5)
r<s<k

To see why this formula works, observe that ar is the amount of memory needed

to store the subarray Allj, . . . , Ir, Jr+i, . . . , J&] if Ij, . . . , Ir are constant and

Jr+i, • • •, Jk vary through all values 0 < Jr+i < dr+1, . . ., 0 < Jk < dk;

hence by the nature of lexicographic order the address of All], . . . , Ik] should

change by precisely this amount when Ir changes by 1.

2.2.6 ARRAYS AND ORTHOGONAL LISTS 297

Note the similarity between formula (5) and the value of the number

Ii I2 Ik in a mixed-radix number system. For example, if we had the array

TIMElW, D, H, M, Si with 0 < W < 4, 0 < D < 7, 0 < H < 24, 0 < M < 60, and

0 < S < 60, the location of TIMElw, D, H, M, Si would be the location of

TIMElO, 0, 0, 0, 01 plus the quantity “W weeks + D days + H hours + M minutes +

S seconds” converted to seconds. Of course, it takes a pretty large computer

and a pretty fancy application to make use of an array which has 2419200
elements.

The above method for storing arrays is generally suitable when the array

has a complete rectangular structure, i.e., when all elements At lx, I2, . . . , Ifcl

are present for indices in the independent ranges h < I\ < ux,l2 < I2 < u2,

. . ., 4 < 1^ < Uk. There are many situations in which this is not the case; most

common among these is the triangular matrix, where we want to store only the
entries Aty, k 1 for, say, 0 < k < j < n:

AtO, 01

AH, 01 At 1, 11
: • (6)

Ain, 01 Ain, 11 ... Ain, nl

We may know that all other entries are zero, or that At j, k 1 = At k,j], so only

half of the values need to be stored. If we want to store the lower triangular

matrix (6) in f(n + l)(n + 2) consecutive memory positions, we are forced to

give up the possibility of linear allocation as in Eq. (2), but we can now ask

instead for an allocation arrangement of the form

L0C(A[J,K]) = a0+/i(J) +/2(K) (7)

where/i and/2 are functions of one variable. (The constant o0 may be absorbed

into either/x or f2 if desired.) When the addressing has the form (7), a random

element A[j, k] can be quickly accessed if we keep two (rather short) auxiliary

tables of the values of fi and f2, so that these functions need to be calculated

only once.

It turns out that lexicographic order of indices for the array (6) satisfies

condition (7), and, assuming one-word entries, we have in fact the rather simple

formula

LOC(A[J,K]) = L0C (A[0, 0]) + J(J + — + K. (8)

There is a far better way to store triangular matrices if we are fortunate

enough to have two of them with the same size. If At j, k 1 and Bt j, k 1 are both

to be stored for 0 < k < j < n, we can fit them both into a single matrix

C[j, k] for 0 < j < n, 0 < k < n -j- 1, using the convention

Alj, k] = Ctj,k], B[j,k] = Clk, j -j- 11. (9)

298 INFORMATION STRUCTURES 2.2.6

Thus

CIO, 01 CIO, 11 CIO, 21 . . ClO, n + 11'

cll, 01 Cll, 11 Cll, 21 . . . Cll, n + 11

Cln, 01 k 1 Cln, 11 Cln, 21 . . Cln,n + 11

A10, 01 B10, 01 B11, 01 . . Bln, 01'

All, 01 All, 11 B11, 11 . . Bln, 11

Ain, 03 Ain, 11 Ain, 21 . Bln, nl

The two triangular matrices are packed together tightly within the space of

(n + l)(n + 2) locations, and we have linear addressing as in (2).

The generalization of triangular matrices to higher dimensions is called a

tetrahedral array. This interesting topic is the subject of exercises 6 through 8.

As an example of typical programming techniques for use with sequentially

stored arrays, see exercise 1.3.2-10 and the two answers given for that exercise.

The fundamental techniques for efficient traversal of rows and columns, as well

as the uses of sequential stacks, are of particular interest within those programs.

Linked Allocation. Linked memory allocation also applies to higher-dimensional

arrays of information in a natural way. In general, our nodes can contain k

link fields, one for each list the node is in. The use of linked memory is generally

for cases in which the arrays are not strictly rectangular in character.

w
_1 2 2 ►J Q
<

CM g
5 m cd 2 id

S i—1 to xr cd CD u N O Q cc
Cd CM CM CM CM CM CC cc 3 Cd <

< < < < < CQ CQ o CQ X. Q

■ 1. 11 i

person[6]

PERS0N[5)

PERS0N[4)

PERS0N[3]

PERS0N[2]

PERS0N[I]

T

i

Y

r
i ►

L ► (
Y
►

l

.

r

L J \
'

LL J [r
LJ

Female, age 21, brown eyes, dark hair

Male, age 24, brown eyes, dark hair

female, age 22, green eyes, blonde hair

Male, age 28, hazel eyes, blond hair

Female, age 22, blue eyes, red hair

Female, age 21, blue eyes, blonde hair

Fig. 13. Each node in four different lists.

As an example, suppose that we have a list in which every node is to represent

a person, and that there are four link fields, SEX, AGE, EYES, and HAIR. In the

EYES field we link together all nodes with the same eye color, etc. (See Fig. 13.)

It is easy to visualize algorithms for inserting new people into the list. (Deletion

would be much slower, without double linking.) We can also conceive of algo-

2.2.6 ARRAYS AND ORTHOGONAL LISTS 299

rithms of varying degrees of efficiency for doing things like “Find all blue-eyed
blonde women of ages 21 through 23”; see exercises 9 and 10. Problems in which
each node of a list is to reside in several kinds of other lists at once arise rather
frequently; indeed, the elevator system simulation described in the preceding
section has nodes which are in both the QUEUE and WAIT lists at once.

As a detailed example of the use of linked allocation for orthogonal lists, we
will consider the case of sparse matrices (i.e., matrices of large order in which
most of the elements are zero). The goal is to operate on these matrices as
though the entire matrix were present, but to save great amounts of memory
space because the zero entries need not be represented. One way to do this,
intended for random references to elements of the matrix, would be to use the
storage-and-retrieval methods of Chapter 6, to find Atj, k] from the key “j, k”;
however, there is another way to deal with sparse matrices that is often pref¬
erable because it reflects the matrix structure more appropriately, and this is
the method we will discuss here.

The representation we will discuss consists of circularly linked lists for each
row and column. Each node of the matrix contains three words and five fields:

1 1 1

ROW
i i i

UP
l II

COL
l i i

1
LEFT

i
i i i

VAl
_i_i_i_

1
L
i

(10)

Here ROW and COL are the row and column indices of the node; VAL is the value
stored at that part of the matrix; LEFT and UP are links to the next nonzero entry
to the left in the row, or upward in the column, respectively. There are special
list head nodes, BASEROwlfl and BASECOLljl, for every row and column. These
nodes are identified by

C0L(L0C(BASER0Wlfl)) < 0 and ROW(LOC(BASECOLljl)) < 0.

As usual in a circular list, the LEFT link in BASEROWlfl is the location of the
rightmost value in that row, and UP in BASECOLljl is the lowest value in that
column. For example, the matrix

50 0 0
10 0 20
0 0 0

-30 0 -60

(ID

would be represented as shown in Fig. 14.
Using sequential allocation of storage, a 200 X 200 matrix would take

40000 words, and this is more memory than many computers have; but a
suitably sparse 200 X 200 matrix can be represented as above even in Mix’s

4000-word memory. (See exercise 11.) The amount of time taken to access a

300 INFORMATION STRUCTURES 2.2.6

Fig. 14. Representation of the matrix (11); the nodes are illustrated in the format

LEFT UP

ROW COL VAL

List heads appear at the left and the top.

random element A [j, k1 is also quite reasonable, if there are but few elements in

each row or column; and since most matrix algorithms proceed by walking

sequentially through a matrix, instead of accessing elements at random, this

linked representation entails little loss of running speed.

As a typical example of a nontrivial algorithm dealing with sparse matrices

in this notation, we will consider the pivot step operation, which is an important

part of algorithms for solving linear equations,' for inverting matrices, and for

solving linear programming problems by the simplex method. A pivot step is
the following matrix transformation:

Before pivot step

Any
Pivot other

column column

(l i \
Pivot row • • • a • • • b

Any other row • • • c • • • d • • • ’

V

After pivot step

Pivot
Any
other

column column

1/a • • b/a

—c/a • j be • • d-
a

\

/

(12)

2.2.6 ARRAYS AND ORTHOGONAL LISTS 301

It is assumed that the “pivot element” a is nonzero. For example, a pivot step

applied to matrix (11), with the element 10 in row 2 column 1 as pivot, leads to

f—5 0 -100 0\

0 1 0 2 0 (13) 0 0 0 0 • {L6)

V 3 0 0 5;

Our goal is to design an algorithm which performs this pivot operation on

sparse matrices that are represented as in Fig. 14. It is clear that the trans¬

formation (12) affects only those rows of a matrix for which there is a nonzero

element in the pivot column, and it affects only those columns for which there

is a nonzero entry in the pivot row. Hence when a large sparse matrix is being

considered, we are not only achieving a reduction in space by the linked repre¬

sentation for nonzero elements, but are also perhaps achieving an increase in the
speed of pivoting.

The pivoting algorithm is in many ways a straightforward application of

linking techniques we have already discussed; in particular, it bears strong

resemblances to Algorithm 2.2.4A for addition of polynomials. There are two

things, however, which make the problem a little tricky: if in (12) we have

M0 and c ^ 0 but d — 0, the sparse matrix representation has no entry for d

and we must insert a new entry; and if b ^ 0, c 0, d ^ 0, but d — be/a — 0,

we must delete the entry that was formerly there. These insertion and deletion

operations in a two-dimensional array are more interesting than the one-dimen¬

sional case; to do them we must know what links are affected. Our algorithm

processes the matrix rows successively from bottom to top. The efficient ability

to insert and delete involves the introduction of a set of pointer variables

PTR[j], one for each column considered; these variables traverse the columns

upwards, giving us the ability to update the proper links in both dimensions.

Algorithm S (Pivot step in a sparse matrix). Given a matrix represented as in

Fig. 14, we perform the pivot operation (12). Assume that PIVOT is a link

variable pointing to the pivot element. The algorithm makes use of an auxiliary

table of link variables PTRljl, one for each column of the matrix.

51. [Initialize.] Set 10 <— ROW (PIVOT), JO <— COL (PIVOT), ALPHA <—

1.0/VAL(PIVOT), VAL(PIVOT) <- 1.0, P0 4- L0C (BASER0W[10]), Q0 <-

L0C(BASEC0L[J0]). (Note: The variable ALPHA and the VAL field of each

node are assumed to be floating-point or rational quantities, while every¬

thing else in this algorithm has integer values.)

52. [Process pivot row.] Set P0 <— LEFT (P0), J <— C0L(P0). If J <0, go on to

step S3 (the pivot row has been traversed). Otherwise set PTRlJl <—

L0C (BASECOLf J]) and VAL(PO) 4- ALPHA X VAL(PO), and repeat step S2.

53. [Find new row.] Set Q0 <— UP(Q0). (The remainder of the algorithm deals

successively with each row, from bottom to top, for which there is an entry

302 INFORMATION STRUCTURES 2.2.6

in the pivot column.) Set I <— ROW(QO). If I < 0, the algorithm terminates.

If i = io, repeat step S3 (we have already done the pivot row). Otherwise

set P <— LOC (BASEROW [I]), PI <— LEFT (P). (The pointers P and PI will now

proceed across row I from right to left, as PO goes in synchronization across

row 10;‘Algorithm 2.2.4A is analogous. At this point,

PO = LOC(BASEROW[10]).)

54. [Find new column.] Set PO <— LEFT(PO), J^-COL(PO). If J < 0, set
VAL(QO) <-ALPHA X VAL(QO) and return to S3. If J = JO, repeat step S4.

(Thus we process the pivot column entry in row I after all other column

entries have been processed; the reason is that VAL(QO) is needed in step S7.)

55. [Find I, J element.] If COL (PI) > J, set P <- PI, PI <- LEFT (P), and repeat

step S5. If COL (PI) = J, go to step S7. Otherwise go to step S6 (we need

to insert a new element in column J of row I).

56. [Insert I, J element.] If R0W(UP(PTR[J])) > I, then set PTRlJl

UP (PTR[J]), and repeat step S6. (Otherwise, we will have R0W(UP(PTR[J])) <

I; the new element is to be inserted just above NODE (PTRlJl) in the vertical

dimension, and just left of N0DE(P) in the horizontal dimension.) Otherwise

set X «= AVAIL, VAL (X) <■— 0, ROW (X) <— I, COL(X)<— J, LEFT(X)<— PI,

UP(X) <- UP (PTRlJl), LEFT (P) <— X, UP(PTRlJl) <— X, PI <— X.

57. [Pivot.] Set VAL (PI) <- VAL (PI) — VAL(QO) XVAL(PO). If now VAL (PI) = 0,

go to S8. (Note: When floating-point arithmetic is being used, this test

“VAL(PI) =0” should be replaced by “|VAL(P1)| < EPSILON” or better yet

by the condition “most of the significant figures of VAL (PI) were lost in

the subtraction.”) Otherwise, set PTRlJl <— PI, P <— PI, PI <— LEFT(P), and

go back to S4.

58. [Delete I, J element.] If UP (PTRlJl) PI (or, what is essentially the same
thing, if ROW (UP (PTRlJl)) > I), set PTRlJl <— UP (PTRlJl) and repeat step

SS; otherwise, set UP (PTRlJl) <- UP (PI), LEFT (P) <- LEFT (PI), AVAIL <= PI,

Pi <— LEFT(P). Go back to S4. |

The programming of this algorithm is left as a very instructive exercise for

the reader (see exercise 15). It is worth pointing out here that it is necessary to

allocate only one word of memory to each of the nodes BASEROWlzl, BASECOLljl,

since most of their fields are irrelevant. (See the shaded areas in Fig. 14, and

see the program of Section 2.2.5.) Furthermore, the value —PTRljl can be

stored as RDW(LUC(BASEC0Llj])) for additional storage space economy. The

running time of Algorithm S is very roughly proportional to the number of

matrix elements affected by the pivot operation.

EXERCISES

1. [17] Give a formula for L0C(A[J,K]) if A is the matrix of (1), and if each node
of the array is two words long, assuming that the nodes are stored consecutively in
lexicographic order of the indices.

2.2.6 ARRAYS AND ORTHOGONAL LISTS 303

► 2. [21] Formula (5) has been derived from the assumption 0 < Ir < dT for 1 < r < k;

give a general formula that applies to the case lT <5 Ir < ur, where lr and ur are any

lower and upper bounds on the dimensionality.

3. [21] The text considers lower triangular matrices A[j, &] for 0 < k < j < n. How

can the discussion of such matrices readily be modified for the case that subscripts

start at 1 instead of 0, i.e., the case that l < k < j < nl

4. [22] Show that if we store the upper triangular array A[j, k] for 0 < j < k < n in

lexicographic order of the indices, the allocation satisfies the condition of Eq. (7).

Find a formula for L0C(A[J,K]) in this case.

5. [20] Show that it is possible to bring the value of A[J,K] into register A in one

MIX instruction, using the “indirect addressing” feature of exercise 2.2.2-3, even when

A is a triangular matrix as in (8). (Assume that the values of J and K are in index

registers.)

► 6. [M24] Consider the “tetrahedral arrays” A[f, j, &], B[i, j, &], where 0 < k < j <

i < n in A, and 0 < i < j < k < n in B. Suppose that both of these arrays are stored

in consecutive memory locations in lexicographic order of the indices; show that

LOC(All,J,K]) = ao + /i(I)+/2(J)+/3(K) for certain functions /i, /2, fs- Can
LOC (B[I, J, K]) be expressed in a similar manner?

7. [M2S] Find a general formula to allocate storage for the ^-dimensional tetrahedral

array A[4, 4, • ■ • , 4], where 0 < 4 < • • • < 12 < 4 < n.

8. [33] (P. Wegner.) Suppose that A[I,J,K], B[I,J,K], C[I,J,K], D[I,J,K],

E[I,J,K], and F[I,J,K] are six tetrahedral arrays that are to be stored in memory

for 0 < K < J < I < n. Is there a neat way to accomplish this, analogous to (9)

in the two-dimensional case?

9. [22] Suppose a table, like that indicated in Fig. 13, but much larger, has been set

up so that all links go in the same direction as shown there (i.e., LINK(X) < X for all

nodes and links). Design an algorithm which finds the addresses of all blue-eyed blonde

girls of ages 21 through 23, by going through the various link fields in such a way that

upon completion of the algorithm at most one pass has been made through each of

the lists FEMALE, A21, A22, A23, BLOND, and BLUE.

10. [26] Can you think of a better way to organize a personnel table so that searches

as described in the previous exercise would be more efficient? (The answer to this

exercise is not merely “yes” or “no.”)

11. [11] Suppose that we have a 200 X 200 matrix in which there are at most four

nonzero entries per row. How much storage is required to represent this matrix as in

Fig. 14, if we use three words per node except for list heads, which will use one word?

► 12. [20] What are VAL(QO), VAL(PO), and VAL(Pl) at the beginning of step S7, in

terms of the notation a, b, c, dt used in (12)?

► 13. [22] Why were circular lists used in Fig. 14 instead of straight linear lists? Could

Algorithm S be rewritten so that it does not make use of the circular linkage?

14. [22] Algorithm S actually saves pivoting time in a sparse matrix, since it avoids

consideration of those columns in which the pivot row has a zero entry. Show that

this savings in running time can be achieved in a large sparse matrix that is stored

sequentially, with the help of an auxiliary table LINK[j], 1 < j < n.

304 INFORMATION STRUCTURES 2.2.6

► 15. [29] Write a MIXAL program for Algorithm S. Assume that the VAL field is a

floating-point number, and that Mix’s floating-point arithmetic operators FADD, FSUB,

FMUL, and FDIV can be used for operations on this field. Assume for simplicity that

FADD and FSUB return the answer zero when the operands added or subtracted cancel

most of the significance, so that the test “VAL(PI) = 0” may safely be used in step S7.

The floating-point operationsvuse only rA, not rX.

16. [25] Design an algorithm to copy a sparse matrix. (In other words, the algorithm

is to yield two distinct representations of a matrix in memory, having the form of

Fig. 14, given just one such representation initially.)

17. [26] Design an algorithm to multiply two sparse matrices; given matrices A and B,

form a new matrix C, where C[i,j] = A[i, k]B[k,j]. The two input matrices and the

output matrix should be represented as in Fig. 14.

18. [22] The following algorithm replaces a matrix by the inverse of that matrix,

assuming that the entries are A[i,j], for 1 < i, j < n, and using “Gauss-Jordan

reduction”:

a) For k = 1, 2, . . . , n do the following: Search row k in all columns not yet used

as a pivot column, to find the entry with the greatest absolute value; set C[£;] equal to

the column in which this entry was found, and do a pivot step with this entry as pivot.

(If all such entries are zero, the matrix is singular and has no inverse.)

b) Permute rows and columns so that what was row k becomes row C[ifc], and

what was column C[&] becomes column k.

The problem in this exercise is to use the above algorithm to find the inverse of the
matrix

'1 2 3)

0 1 2

0 1,

by hand calculation.

19. [81] Modify the “Gauss-Jordan reduction” algorithm described in exercise 18 so
that it obtains the inverse of a sparse matrix that is represented in the form of Fig. 14.
Pay special attention to making the row- and column-permutation operations of step
(b) efficient.

t

20. [20] A tridiagonal matrix has entries a,-,- which are zero except when |i —j| < 1,
for 1 < i, j < n. Show that there is an allocation function of the form

LDC(A(I,J)) = O0 + O1I + O2J, |I —J|<1,

which represents all of the relevant elements of a tridiagonal matrix in (3n — 2)
consecutive locations.

2.3 TREES 305

2.3. TREES

We now turn to a study of trees, the most important nonlinear structures arising

in computer algorithms. Generally speaking, tree structure means a “branching”

relationship between nodes, much like that found in the trees of nature.

Let us define a tree formally as a finite set T of one or more nodes such that

a) There is one specially designated node called the root of the tree, root (T); and

b) The remaining nodes (excluding the root) are partitioned into m > 0 disjoint

sets Ti, , Tm, and each of these sets in turn is a tree. The trees Tif . . . ,
Tm are called the subtrees of the root.

The definition just given is recursive, i.e., we have defined a tree in terms

of trees. Of course, there is no problem of circularity involved here, since trees

with one node must consist of only the root, and trees with n > 1 nodes are

defined in terms of trees with less than n nodes; hence the concept of a tree with

two nodes, three nodes, or ultimately any number of nodes, is determined by the

definition given. There are nonrecursive ways to define trees (for example, see

exercises 10, 12, and 14, and Section 2.3.4), but a recursive definition seems most

appropriate since recursion is an innate characteristic of tree structures. The

recursive character of trees is present also in nature, since buds on young trees

eventually grow into subtrees with buds of their own, etc. Exercise 3 shows how

to give rigorous proofs of important facts about trees based on a recursive defini¬

tion such as the one above, by using induction on the number of nodes in a tree.

It follows from our definition that every node of a tree is the root of some

subtree contained in the whole tree. The number of subtrees of a node is called

the degree of that node. A node of degree zero is called a terminal node or some¬

times a “leaf. ” A nonterminal node is often called a branch node. The level of a

node with respect to T is defined by saying that the root has level 0, and other

nodes have a level that is one higher than they have with respect to the subtree

Tj, of the root, which contains them.

These concepts are illustrated in Fig. 15, which shows a tree with seven

nodes. The root is A, and it has the two subtrees {B} and {C, D, E, F, G}.

The tree {C, D, E, F, G} has node C as its root. Node C is on level 1 with

respect to the whole tree, and it has three subtrees {D}, {E}, and {F, (?);

therefore C has degree 3. The terminal nodes in Fig. 15 are B, D, E, and G;

F is the only node with degree 1; G is the only node with level 3.

306 INFORMATION STRUCTURES 2.3

\

If the relative order of the subtrees T\, . . . , Tm in (b) of the definition is

important, we say the tree is an ordered tree; when m > 2 in an ordered tree,

it makes sense to call T2 the “second subtree” of the root, etc. Ordered trees

are also called “plane trees” by some authors, since the manner of embedding

the tree in a fclane is relevant. If we do not care to regard two trees as different

when they differ only in the respective ordering of subtrees of nodes, the tree

is said to be oriented, since only the relative orientation of the nodes, not their

order, is being considered. The very nature of computer representation defines

an implicit ordering for any tree, so in most cases ordered trees are of greatest

interest to us. We will therefore tacitly assume that all trees we discuss are

ordered, unless it is explicitly stated otherwise. Accordingly, the trees of Figs. 15

and 16 will generally be considered to be different, although they would be the

same as oriented trees.
A forest is a set (usually an ordered set) of zero or more disjoint trees.

Another way to phrase part (b) of the definition of tree would be to say that

the nodes of a tree excluding the root form a forest. (Some authors use the term

“w-tuply rooted tree” to denote a forest of n trees.)
There is very little distinction between abstract forests and trees; if we

delete the root of a tree, we have a forest, and, conversely, if we add just one

node to any forest we get a tree. Therefore the words tree and forest are often

used almost interchangeably during informal discussions about tree structures.

There are many ways to draw diagrams of trees. Besides the diagram of

Fig. 15, three of the principal alternatives are shown in Fig. 17, depending on

where the root is placed. It is not a frivolous joke to worry about how a tree

structure is drawn in diagrams, since there are many occasions in which we would

like to say one node is “above” or “higher than” another node, or to refer to the

“rightmost” element, etc. Certain algorithms for dealing with tree structures

have become known as “top down” methods, as opposed to “bottom up.” This

terminology leads to confusion unless we adhere to a uniform convention for

drawing trees.
It may seem that the form of Fig. 15 would be preferable simply because

that is how trees grow in nature; in the absence of any compelling reason to

2.3 TREES 307

adopt any of the other three forms, we might as well adopt nature’s time-

honored tradition. With this in mind, the author consistently followed a root-at-

the-bottom convention as the present set of books was being prepared, but after

two years of trial it was found to be a mistake: observations of the computer

literature and numerous informal discussions with computer scientists about a

wide variety of algorithms showed that trees were drawn with the root at the top

in over 80 percent of the cases examined. There is an overwhelming tendency

to make hand-drawn charts grow downwards instead of upward (and this is

easy to understand in view of the way we write); even the word “subtree” (as

opposed to “supertree”) tends to connote a downward relationship. From these

considerations we conclude that Fig. 15 is upside down. Henceforth we will

almost always draw trees as in Fig. 17(b), with the root at the top and leaves

at the bottom. Corresponding to this orientation, we should perhaps call the

root node the apex of the tree, and speak of nodes at shallow and deep levels.

It is necessary to have good descriptive terminology for talking about trees.

Instead of the somewhat ambiguous references to “above” and “below,” genea¬

logical words taken from the terminology of family trees have been found very

appropriate for this purpose. Figure 19 shows two common types of family trees.

The two types are obviously quite different: a “pedigree” shows the ancestors

of a given individual, while a “lineal chart” shows the descendants.
If “cross-breeding” occurs, a family tree is not really a tree, because dif¬

ferent branches of a tree (as we have defined it) can never be joined together.

To compensate for this discrepancy, note that Queen Victoria and Prince Albert

appear twice in the sixth generation in Fig. 19(a), and that King Christian IX

actually appears in both the fifth and sixth generations. The family tree is a

true tree if each of its nodes represents, not a person, but “a person in his role

as parent of so-and-so. ”
Standard terminology for tree structures is taken from the second form of

family tree, the lineal chart: Each root is said to be the father of the roots of its

subtrees, and the latter are said to be brothers, and they are sons of their father.

The root of the entire tree has no father. For

example, in Fig. 18, C has three sons, D, E, and F;

E is the father of (7; B and C are brothers. Exten¬

sion of this terminology (e.g., B is an uncle of F;

A is the great-grandfather of G,H and F are first

cousins) is clearly possible. Some authors use the

feminine designations “mother, daughter, sister”

instead of “father, son, brother”; but for some

reason the masculine words seem more profes¬

sional. Other authors, wishing to promote equality

Fig. 18. Conventional tree diagram.

Anne -

Edxvyn—

Anne —

William -

Henrietta -

Oswald -—

Charlotte -

Thomas —

Augusta —

:Caroline -

Adolphus —

Claudine -—

Alexander —

Louise —--

Christian IX

Victoria--

Albert

Victoria

Albert

Elisabeth

Charles

Sophie

Maurice

Wilhelmina

Louis II —

Louise

Joseph

Charlotte -

Nicholas I

Louise

William

Louise

William

-Charles ■

: Trances -

: Claude -

;Mary-

: Erancis-

: Alexandra -

- Edward VII'

: Alice

: Cecilia ..

^ Claude'

- Mary -

: George V/

Victoria

Louis

, Elizabeths

; George VI'

Alices

Alexander -

- Alexandra

- Konstantin

: Louise

: Christian IX

Andrew'

- Corner;

-Magog

- Madai

I Japheth —- Javan:

Tubal

Meshech

' Tiras

- Ashkenaz

- Riphath

' Togarmah

- Elishah

- Tarshish

- Kittim

• Dodanim

Fig. 19. Family trees: (a)
pedigree; (b) lineal chart.
(References: Burke’s Peerage
(1959); Almanack de Gotha
(1871); Genealogisches Hand-
buch des Adels: Furstliche
Hauser, 1; Genesis 10: 1-25.)

Noah

Cush:

'Ham

Shem;

Seba

Havilah

Sabtah

Raamah-

Sabtechah

X imrod

Ludim

Anamim

Lehabim

Naphtuhim

Pathrusim

Casluhim

Caphtorim

Sidon

Heth

Jebusite

Amorite

Girgasite

Hivite

Arkite

Sinite

Arvadite

Zemarite

Hamathite

-Elam

- Asshur

- Arphaxad-Salah —

- Lud Uz

•^-^--Hul

' Aram --Gether

Mash

Mizraim

Phut

Canaan

(b)

Sheba

Dedan

Eber:

P
h

2.3 TREES 309

of the sexes, use the neutral words “parent, offspring, sibling” instead. In

any case we use the words ancestor and descendant to denote a relationship

that may span several levels of the tree: The descendants of C in Fig. 18 are

D, E, F, and G; the ancestors of G are A, C, and E.

Figure 19(a) is an example of a binary tree, which is an important type of

tree structure. The reader has undoubtedly seen other examples of binary trees

in connection with tennis tournaments, etc. In a binary tree each node has at

most two subtrees, and when there is only one subtree present, we distinguish

between the left and right subtree. More formally, let us define a binary tree as a

finite set of nodes which either is empty, or consists of a root and two disjoint binary

trees called the left and right subtrees of the root.

This recursive definition of binary tree should be studied carefully. Note

that a binary tree is not a special case of a tree; it is another concept entirely

(although we will see many relations between the two concepts). For example,

the binary trees

(1)

are distinct (the root has an empty right subtree in one case and a nonempty right

subtree in the other), although as trees they would be identical. Therefore we
will always be careful to use the word “binary” to distinguish between binary

trees and ordinary trees. Some authors define binary tree in a slightly different

manner (see exercise 20).

Tree structure can be represented graphically in several other ways bearing

no resemblance to actual trees. Figure 20 shows three diagrams which reflect

the structure of Fig. 18: Figure 20(a) essentially represents Fig. 18 as an

oriented tree; this diagram is a special case of the general idea of nested sets,

i.e., a collection of sets in which any pair of sets is either disjoint or one contains

the other. (See exercise 10.) Part (b) of the figure shows nested sets in a line,

At. • »' ar* ■

(A(B(H)(J))(C(D)(E(G))(F)))

(b) (a) (c)

Fig. 20. Further ways to show tree structure: (a) Nested sets; (b) Nested parentheses;
(c) Indentation.

310 INFORMATION STRUCTURES 2.3

much as part (a) shows them in a plane; in part (b) the ordering of the tree

is also indicated. Part (b) may also be regarded as an outline of an algebraic

formula involving “nested parentheses. ” Part (c) shows still another common

way to represent tree structure, using indentation. The number of different

representation methods in itself is ample evidence for the importance of tree

structures in everyday life as well as in computer programming. Any hierarchical

classification scheme leads to a tree structure.
The similarity between an indented list like Fig. 20(c) and outlines or tables

of contents in books is noteworthy. This book itself has a tree structure: the

tree structure of Chapter 2 is shown in Fig. 21. Here we notice a significant

idea: the method used to number sections in this book is another way to specify

tree structure. Such a method is often called “Dewey decimal notation” for trees,

by analogy with the similar classification scheme of this name used in libraries.

The Dewey decimal notation for the tree of Fig. 18 is

1 A; 1.1 B] 1.1.1 H; 1.1.2 J; 1.2 C; 1.2.1 D; 1.2.2 E;

1.2.2.1 G; 1.2.3 F.

Dewey decimal notation applies to any forest: the root of the kih tree in the

forest is given number k; and if a is the number of any node of degree m, its sons

are numbered a. 1, a.2, . . . , a.m. The Dewey decimal notation satisfies many

simple mathematical properties, and it is a useful tool in the analysis of trees.

One example of this is the natural sequential ordering it gives to the nodes of an

arbitrary tree, analogous to the ordering of sections within this book.

There is an intimate relation between Dewey decimal notation and the

notation for indexed variables which we have already been using extensively.

If F is a forest of trees, we may let F[l] denote the first tree, F[l][2] = F[1, 2]

the second subtree of the root of this first tree, F[l, 2, 1] the first subtree of the

latter, etc.; node a.b.c.d in Dewey decimal notation is root(F[a, b, c, d]). This

notation is an extension of the index notation in that the admissible range of

each index depends on the values in the preceding index positions.

We see that, in particular, any rectangular array can be thought of as a

special case of a tree structure. For example, here are two representations of a

3X4 matrix:

All, 1] A[l, 2] All, 3] All, 4]\ <N CO

A[2, 1] A12, 2] A[2, 3] A[2, 4]
/ . V T

A[3, 1] A13, 2} Aft, 3] AIZ, 4]/ /l\\ A\\ „/A_
h (N CO ^ H N M ^ i-i <N CO

H r-H i-H rH cT cT cT cT CO~ CO co) CO
'Tj ^ ^ ^ ^ ^ ^ ^ ^ ^

It is important to observe, however, that this tree structure does not faithfully

2.3 TREES 311

Fig. 21. The structure of Chapter 2.

312 INFORMATION STRUCTURES 2.3

reflect all of the matrix structure; the row rela¬

tionships appear explicitly in the tree but the

column relationships do not.
Algebraic formulas provide us with another

example of tree structure. Figure 22 shows a

tree corresponding to the arithmetic expression

a — b(c/d + e/f). (2)

The connection between formulas and trees is

very important in applications, as we shall see

later (especially in Chapters 10 and 12).

Fig. 22. Tree representing formula (2).

In addition to trees, forests, and binary trees, there is a fourth type of struc¬

ture, commonly called a “list structure, ” which is closely related to both of the

former two. The word “list” is being used here in a very technical sense, and to

distinguish this use of the word we will always capitalize it, “List.” A List is

defined (recursively) as a finite sequence of zero or more atoms or Lists. Here

“atom” is an undefined concept referring to elements from any universe of objects

that might be desired, so long as it is possible to distinguish an atom from a List.

By means of an obvious notational convention involving commas and paren¬

theses, we can distinguish between atoms and Lists and we can conveniently

display the ordering within a List. As an example, consider

L= (a, (b,o,6), (), c, (((2)))) (3)

which is a List with five elements: first the atom a, then the List (b, a, b), then

the empty List “()”, then the atom c, and finally the List (((2))). The latter

List consists of the List ((2)), which consists of the List (2), which consists of

the atom 2.

The following tree structure corresponds to L:

*

2

The asterisks in this diagram indicate the definition and appearance of a List,

2.3 TREES 313

as opposed to the appearance of an atom. Index notation applies to Lists as it
does to trees, e.g., L[2] = (b, a, b), L[2, 2] = a.

No data is carried in the nodes for the Lists in (4) other than the fact that

they are Lists. It is possible to label the elements of Lists with information,
as we have done for trees and other structures; e.g.,

A = (a: (b, c), d:())

would correspond to a tree we can draw as follows:

The big difference between Lists and trees is that Lists may overlap (i.e.,

sub-Lists need not be disjoint) and they may even be recursive (may contain
themselves). The List

M = (M) (5)

corresponds to no tree structure, nor does the List

N = (a:M, b:M, c, N). (6)

(In these examples, capital letters refer to Lists, lower case letters to labels and

atoms.) We might diagram (5) and (6) as follows, using an asterisk to denote

each place where a List is defined:

[M]

Actually, Lists are not so complicated as the above examples might indicate;

they are, in essence, a rather simple generalization of linear lists such as we have

considered in Section 2.2, with the additional proviso that the elements of the

linear lists may be link variables which point to other linear lists (and possibly

to themselves).

Summary: Four kinds of closely related information structures (trees,

forests, binary trees, Lists) arise from many sources, and they are therefore

important in computer algorithms. We have seen various methods of diagraming

these structures, and we have considered some terminology and notations which

are useful in talking about them. The following sections develop these ideas in

greater detail.

314 INFORMATION STRUCTURES 2.3

EXERCISES

1. [15] How many different trees are there with three nodes, A, B, and C?

2. [20] How many different oriented trees are there with three nodes, A, B, and C?

► 3. [M20] Prove rigorouslyTfrom the definitions that for every node X in a tree there
is a unique “path up to the root,” i.e., a unique sequence of k > 1 nodes X\, X%, . . . , Xk
such that X\ is the root of the tree, Xk = X, and Xj is the father of X}-+1 for l < j < k.
(This proof will be typical of the proofs of nearly all the elementary facts about tree
structures.) [Hint: Use induction on the number of nodes in the tree.]

4. [01] True or false: In a conventional tree diagram (root at the top), if node X has
a higher level number than node Y, then node X appears lower in the diagram than

node Y.

5. [02] If node A has three brothers and B is the father of A, what is the degree of 5?

► 6. [21] Define the statement “X is an mth cousin of Y, n times removed” as a mean¬
ingful relation between nodes X and Y of a tree, by analogy with family trees, if
to > 0 and n > 0. (See a dictionary for the meaning of these terms in regard to family
trees.)

7. [28] Extend the definition given in the previous exercise to all to > —1 and to all
integers n > —(to + 1) in such a way that for any two nodes X and Y of a tree there
are unique to and n such that X is an TOth cousin of F, n times removed.

► 8. [03] What binary tree is not a tree?

9. [00] In the two binary trees of (1), which node is the root (B or A)?

10. [M20] A collection of nonempty sets is said to be nested if, given any pair X, Y
of the sets, either I c F or I d 7 or Z and Y are disjoint. (In other words, X fl Y
is either X, Y, or 0.) Figure 20(a) indicates that any tree corresponds to a collection of
nested sets; conversely, does every such collection correspond to a tree?

► 11. [HM32] Extend the definition of tree to infinite trees by considering collections of
nested sets as in exercise 10. Can the concepts of level, degree, father, and son be
defined for each node of an infinite tree? Give examples of nested sets of real numbers
which correspond to a tree in which

a) every node has uncountable degree and there are infinitely many levels;
b) there are nodes with uncountable level;
c) every node has degree at least 2 and there are uncountably many levels.

12. [M23] Under what conditions does a partially ordered set (cf. Section 2.2.3)
correspond to an unordered tree or forest?

13. [10] Suppose that node X is numbered oq . az . • • • . ak in the Dewey decimal
system; what are the numbers of the nodes in the path from X to the root (see
exercise 3) ?

14. [M22] Let S be any nonempty set of elements having the form “1 . a\ . • • • . ak”,
where k > 0 and on, . . . , ak are positive integers. Show that S specifies a tree when
it is finite and satisfies the following condition: “If a . to is in the set, then so is

2.3.1 TRAVERSING BINARY TREES 315

a . (m — 1) if m > 1, or a if m = 1.” (This condition is clearly satisfied in the Dewey
decimal notation for a tree, so as a consequence of this exercise it is another way to
characterize tree structure.)

► 15. [20] Invent a notation for binary trees corresponding to the Dewey decimal
notation for trees.

16. [20] Draw trees analogous to Fig. 22 corresponding to the arithmetic expressions

a) “2(a — b/c)”]
b) “a+6+5c”.

17. [01] If T is the tree of Fig. 18, what node is root(77[2, 2])?

18. [08] In List (3), what is L[5, 1, 1]? What is L[3, 1]?

19. [15] Draw a List diagram analogous to (7) for the List L = (a, (L)). What is
L[2] in this list? What is L[2, 1, 1]?

► 20. [M21] Define a “6-tree” as a tree in which each node has exactly zero or two sons.
(Formally, a “6-tree” consists of a single node, called its root, plus 0 or 2 disjoint
6-trees.) Show that every 6-tree has an odd number of nodes; and give a one-to-one
correspondence between binary trees with n nodes and (ordered) 6-trees with 2n + 1
nodes.

21. [M22] If a tree has n\ nodes of degree 1, n2 nodes of degree 2, . . . , nm nodes of
degree m, then how many terminal nodes does it have?

22. [45] Develop a computer system to display tree structures graphically on a cathode
ray tube, with facilities for on-line manipulation of the structures.

2.3.1. Traversing Binary Trees

It is important to acquire a good understanding of the properties of binary trees

before making further investigations of trees, since general trees are usually

represented in terms of some equivalent binary tree inside a computer.

We have defined a binary tree as a finite set of nodes that either is empty, or

consists of a root together with two binary trees. This definition suggests a

natural way to represent binary trees within a computer: We may have two

links, LLINK and RLINK, within each node, and a link variable T which is a

“pointer to the tree.” If the tree is empty, T = A; otherwise T is the address

of the root node of the tree, and LLINK(T), RLINK(T) are pointers to the left and

right subtrees of the root, respectively. These rules recursively define the

memory representation of any binary tree; for example,

£4)

® ©
jT (l)

Cd) Ce) Cf)

G) (H)U

316 INFORMATION STRUCTURES 2.3.1

is represented by

(2)

This simple and natural memory representation accounts for the special

importance of binary tree structures. Besides the fact that general trees are

conveniently representable as binary trees, many trees that arise in applications

are themselves inherently binary, so binary trees are of interest in their own

right.
There are many algorithms for manipulation of tree structures, and one idea

that occurs repeatedly in these algorithms is the notion of traversing or “walking

through” a tree. This is a method of examining the nodes of the tree systemati¬

cally so that each node is visited exactly once. A complete traversal of the tree

gives us a linear arrangement of the nodes, and many algorithms are facilitated

if we can talk about the “next” node following or preceding a given node in

such a sequence.

Three principal ways may be used to traverse a binary tree: we can visit

the nodes in preorder, inorder, or postorder. These three methods are defined

recursively. When the binary tree is empty, it is “traversed” by doing nothing,

and otherwise the traversal proceeds in three steps:

Preorder traversal

Visit the root

Traverse the left subtree

Traverse the right subtree

Inorder traversal
i

Traverse the left subtree

Visit the root

Traverse the right subtree

Postorder traversal

Traverse the left subtree

Traverse the right subtree

Visit the root

If we apply these definitions to the binary tree (2), we find that the nodes in
preorder are

ABDCEGFHJ. (3)

2.3.1 TRAVERSING BINARY TREES 317

(First comes the root A, then comes the left subtree

in preorder, and finally comes the right subtree in preorder.) For inorder we

visit the root between visits to the nodes of each subtree, essentially as though

the nodes were “projected” down onto a single horizontal line, and this gives

the sequence

DBAEGCHFJ. (4)

The postorder for the nodes of this binary tree is, similarly,

DBGEHJFC A.

We will see that these three ways of arranging the nodes of a binary tree

into a sequence are extremely important, as they are intimately connected with
most of the computer methods dealing with trees. The names preorder, inorder,

and postorder come, of course, from the relative position of the root with respect

to its subtrees. In many applications of binary trees, there is more symmetry

between the meanings of left subtrees and right subtrees, and in such cases the

term symmetric order is used as a synonym for inorder. Clearly, inorder, which

puts the root in the middle, is essentially symmetric between left and right: if the

tree is reflected about a vertical axis, the symmetric order is simply reversed.

A recursively stated definition, such as the one just given for the three basic

orders, must be reworked in order to make it directly applicable to computer

implementation. General methods for doing this are discussed in Chapter 8;

we usually make use of an auxiliary stack, as in the following algorithm:

Algorithm T (Traverse binary tree in inorder). Let T be a pointer to a binary

tree having a representation as in (2); this algorithm visits all the nodes of the

binary tree in inorder, making use of an auxiliary stack A.

Tl. [Initialize.] Set stack A empty, and set the link variable P <— T.

T2. [P = A?] If P = A, go to step T4.

T3. [Stack <£= P.] (Now P points to a nonempty binary tree which is to be

traversed.) Set A <= P, i.e., push the value of P onto stack A. (See Section

2.2.1.) Then set P <— LLINK(P) and return to step T2.

T4. [P <= Stack.] If stack A is empty, the algorithm terminates; otherwise set

P <= A.

T5. [Visit P.] “Visit” NODE (P). Then set P RLINK (P) and return to step T2. |

318 INFORMATION STRUCTURES 2.3.1

P<—LLINK(P)

Empty

Fig. 23. Flow chart for Algorithm T.

In the final step of this algorithm, the word “visit” means we do whatever

activity is intended as the tree is being traversed. Algorithm T runs like a

coroutine with respect to this other activity: the main program activates this

coroutine whenever it wants P to move from one node to its inorder successor.

Of course, since this coroutine calls the main routine in only one place, it is not
much different from a subroutine (see Section 1.4.2). Algorithm T assumes

that the external activity deletes neither NODE(P) nor any of its ancestors from

the tree.
If the reader will now attempt to play through Algorithm T using the tree

(2) as a test case, he will easily see the reasons behind the procedure: When we

get to step T3, we want to traverse the binary tree whose root is indicated by

pointer P. The idea is to save P on a stack and then to traverse the left subtree;

when this has been done, we will get to step T4 and will find the old value of P

on the stack again. After visiting the root, NODE(P), in step T5, the remaining

job is to traverse the right subtree.

Since Algorithm T is typical of so many other algorithms we will see later,

it is instructive to look at a formal proof of the remarks made in the preceding

paragraph. Let us now attempt to prove that Algorithm T traverses a binary

tree of n nodes in inorder, by using induction on n. Our goal is readily estab¬

lished if we can prove a slightly more general result:

“Starting at step T2 with P a pointer to a binary tree of n nodes and with the

stack A containing A[l] . . . A[m\ for some m > 0, the procedure of steps

T2-T5 will traverse the binary tree in question, in inorder, and will then

arrive at step T4 with stack A returned to its original value A[l] . . . k[m\.”

This statement is obviously true when n — 0, because of step T2. If n > 0,

let P0 be the value of P upon entry to step T2. Since P0 ^ A, we will perform

step T3, which means that stack A is changed to A[l] . . . A[m] P0 and P is set to

LLINK (P0). Now the left subtree has less than n nodes, so by induction we will

2.3.1 TRAVERSING BINARY TREES 319

traverse the left subtree in inorder and will ultimately arrive at step T4 with

A[l] . . . k[m\ P0 on the stack. Step T4 returns the stack to A[l] . . . k[m] and

sets P <— P0. Step T5 now visits NODE (P0) and sets P <— RLINK(P0). Now the

right subtree has less than n nodes, so by induction we will traverse the right

subtree in inorder and arrive at step T4 as required. The tree has been traversed

in inorder, by the definition of that order. This completes the proof.

An almost identical algorithm may be formulated which traverses binary

trees in preorder (see exercise 12). It is slightly more difficult to achieve the

traversal in postorder (see exercise 13), and for this reason postorder is not as
important for binary trees as the others are.

It is convenient to define a new notation for the successors and predecessors

of nodes in these various orders. If P points to a node of a binary tree, let

P* = address of successor of NODE(P) in preorder;

P$ = address of successor of NODE(P) in inorder;

P# = address of successor of NODE(P) in postorder;
\Oj

*P = address of predecessor of NODE(P) in preorder;

$P = address of predecessor of NODE(P) in inorder;

#P = address of predecessor of NODE(P) in postorder.

If there is no such successor or predecessor of NODE(P), the value LOC(T) is

generally used, where T is a pointer to the tree in question. We have *(P*) =

(*P) * = P, $ (P$) = ($P) $ = P, etc. As an example of this notation, let INFO (P)

be the letter shown in NODE(P) in the tree (2); then if P points to the root, we

have INFO (P) = A, INFO(P*) = B, INFO(P$) = E, INFO($P) = B, INFO(#P) =

C, and P# = *P = LOC(T).

At this point the reader will perhaps experience a feeling of insecurity about

the intuitive meanings of P*, P$, etc. As we proceed further, the ideas will

gradually become clearer; exercise 16 at the end of this section may also be of

help.

There is an important alternative to the memory representation of binary

trees given in (2), which is somewhat analogous to the difference between circular

lists and straight one-way lists. Note that there are more null links than other

pointers in the tree (2), and indeed this is true of any binary tree represented by

that method (see exercise 14). This seems to be wasteful of memory space, and

there are various ways to make use of memory more efficiently; for example,

we could store two “tag” indicators with each node, which tell in just two bits

of memory whether or not the LLINK or RLINK, or both, are null, and the memory

space for terminal links can be used for other purposes.

An ingenious use of this extra memory space has been suggested by A. J.

Perlis and C. Thornton, who devised the so-called threaded tree representation.

In this method, terminal links are replaced by “threads” to other parts of the

320 INFORMATION STRUCTURES 2.3.1

tree, as an aid to traversing the tree. The threaded tree equivalent to (2) is

\

(6)

Here dotted lines represent the “threads, ” which always go to a higher node of the

tree. Every node now has two links: some nodes, like C, have two ordinary links

to left and right subtrees; other nodes, like H, have two thread links, and some

nodes have one link of each type. The special threads emanating from D and J

will be explained later; they appear in the “leftmost” and “rightmost” nodes.

In the memory representation of a threaded binary tree it is necessary to

distinguish between the dotted and solid links; this is done as suggested above

by two additional one-bit fields in each node, LTAG and RTAG. The threaded

representation may be precisely defined as follows:

Unthreaded representation

LLINK(P) = A

LLINK(P) = Q ^ A

RLINK(P) = A

RLINK(P) = Q

Threaded representation

LTAG(P) = “— ”, LLINK(P) = $P

LTAG(P) = “+”, LLINK(P) = Q

RTAG(P) = RLINK(P) = P$

RTAG(P) = “+”, RLINK(P) = Q

According to this definition, each new thread link points directly to the

predecessor or successor of the node in question, in inorder (symmetric order).

Figure 24 illustrates the general orientation of thread links in any binary tree.

In some algorithms it can be guaranteed that the root of any subtree always

will appear in a lower memory location than the other nodes of the subtree.

Thus LTAG(P) will be if and only if LLINK(P) < P, so that LTAG (and

similarly RTAG) is redundant.

The great advantage of threaded trees is that the traversal algorithms be¬

come simpler. For example, the following algorithm calculates P$, given P:

Algorithm S (,Symmetric (inorder) successor in a threaded binary tree). If P

points to a node of a threaded binary tree, this algorithm sets Q <— p$.

51. [RLINK(P) a thread?] Set Q <—RLINK(P). If RTAG(P) = terminate the
algorithm.

52. [Search to left.] If LTAG(Q) = “+”, set Q <— LLINK(Q) and repeat this step.

Otherwise the algorithm terminates. |

2.3.1 TRAVERSING BINARY TREES 321

General k

General k

Fig. 24. General orientation of left and right thread links in a binary tree, ‘/w” lines
indicate links or threads to other parts of the tree.

Note that no stack is needed here to accomplish what was done using a stack

in Algorithm T. In fact, the ordinary representation (2) makes it impossible to

find P$ efficiently, given only the address of a random point P in the tree; since

no links point upward in the unthreaded representation, there is no clue to what

nodes are above a given node, unless we retain a history of how we reached that

point (and that is essentially the stack in Algorithm T).

We claim that Algorithm S is “efficient,” although this property is not

immediately obvious, since step S2 can be executed any number of times. In

view of the loop in step S2, would it perhaps be faster to use a stack after all,

as Algorithm T does? To investigate this question, we will consider the average

number of times step S2 must be performed if P is a “random” point in the tree;

or what is the same, we will determine the total number of times step S2 is

performed if Algorithm S is used repeatedly to traverse an entire tree.

At the same time as this analysis is being carried out, it will be instructive

to study MIX programs for both Algorithms S and T. The following programs

322 INFORMATION STRUCTURES 2.3.1

assume that the nodes have the two-word form

LTAG
-1-

LLINK
i

-1-1
INF01

i|-

RTAG
-1

RLINK INF02
_i_i-

T

In an unthreaded tree, LTAG and RTAG will always be “+” and terminal links will

be represented by zero. The abbreviations LLINKT and RLINKT will be used to

stand for the combined LTAG-LLINK and RTAG-RLINK fields, respectively.

As usual, we should be careful to set up all of our algorithms so that they

work properly with empty trees; and if T is the pointer to the tree, we would
like to have LOC(T)* and LOC(T)$ be the first nodes in preorder or symmetric

order, respectively. For threaded trees, it turns out that things will work nicely

if NODE(LOC(T)) is made into a “list head” for the tree, with

LLINKT (HEAD) = T, RLINK(HEAD) = HEAD, RTAG (HEAD) = “+”. (7)

(HEAD denotes LOC(T), the address of the list head.) An empty threaded tree

will satisfy the conditions

LL INK (HEAD) = HEAD, LTAG (HEAD) = ”. (8)

The tree grows by having nodes inserted to the left of the list head. (These

initial conditions are primarily dictated by the algorithm to compute P*, which

appears in exercise 17.) In accordance with these conventions, the computer

representation for the binary tree (1), as a threaded tree, is

With these preliminaries out of the way, we are now ready to consider MIX

programs for Algorithms S and T. The following two programs traverse a

binary tree in symmetric order (i.e., inorder), jumping to location VISIT period¬

ically with index register 5 pointing to the node that is currently of interest.

2.3.1 TRAVERSING BINARY TREES 323

Program T. In this implementation of Algorithm T, the stack is kept in locations

A + 1, A + 2, . . . , A + MAX; and OVERFLOW occurs if the stack grows too large.

rI6 is the stack pointer and rI5 = P. The program has been rearranged slightly

from Algorithm T (step T2 appears thrice), so that the test for an empty stack

need not be made when going directly from T3 to T2 to T4.

01 LLINK EQU 1:2

02 RLINK EQU 1:2

03 T1 LD5 HEAD(LLINK) 1 Tl. Initialize. Set P ■*— T.

04 T2B J5Z DONE 1 Stop if P = A.

05 ENT6 0 1
06 T3 DEC6 MAX n T3. Stack <= P.

07 J6NN OVERFLOW n Has stack reached capacity?

08 INC6 MAX+1 n If not, increase stack pointer.

09 ST5 A,6 n Store P in stack.

10 LD5 0,5(LLINK) n P LLINK(P).

11 T2A J5NZ T3 n To T3 if P ^ A.

12 T4 LD5 A,6 n T4. P <= Stack.
13 DEC6 1 n Decrease stack pointer.

14 T5 JMP VISIT n T5. Visit P.

15 LD5 1,5(RLINK) n P RLINK(P).

16 T2 J5NZ T3 n

<1 II
a,

©4
E-h

17 J6NZ T4 a Test if stack is empty.

18 DONE ... 1

Program S. Algorithm S has been augmented with initialization and termination

conditions to make this program comparable to Program T.

01 LLINKT EQU 0:2

02 RLINKT EQU 0:2

03 SO ENT6 HEAD 1 SO. Initialize. Set Q <— HEAD.

04 JMP S2 1

05 S3 JMP VISIT n S3. Visit P.

06 SI LD5N 1,5(RLINKT) n SI. RLINK(P) a thread?

07 J5NN IF n Jump if RTAG(P) = ”.

08 ENN6 0,5 n — a Otherwise set Q <— RLINK(P).

09 S2 ENT5 0,6 71+1 Set P <- Q.

10 LD6 0,5(LLINKT) 71+1 Q <- LLINKT (P).

11 J6P *-2 n + 1 If LTAG(P) = “+”, repeat.

12 1H ENT6 -HEAD,5 71+1

13 J6NZ S3 71+1 Visit unless P = HEAD. |

An analysis of the running time appears with the above code. These quan-

tities are easy to determine, using Kirchhoff’s law and the facts that

i) In Program T, the number of insertions onto the stack must equal the

number of deletions;

\

2.3.1 324 INFORMATION STRUCTURES

ii) In Program S, the LLINK and RLINK of each node is examined precisely

once;
iii) The number of “visits” is the number of nodes in the tree.

The analysis tells us Program T takes 15n + a + 4 units of time, and Program S
takes lln — a -f- 8 units* where n is the number of nodes in the tree, and a is the
number of terminal right links (nodes with no right subtree). The quantity a

can be as low as 1, assuming that n ^ 0, and it can be as high as n; and if left
and right are symmetrical, the average value of a is (n -j- l)/2 as a consequence
of facts proved in exercise 14.

The principal conclusions we may reach on the basis of this analysis are that

i) Step S2 of Algorithm S is performed only once on the average per
execution of that algorithm, if P is a random node of the tree.

ii) Traversal is slightly faster for threaded trees, because it requires no
stack manipulation.

iii) Algorithm T needs more memory space than Algorithm S because of
the auxiliary stack required. In Program T we kept the stack in con¬
secutive memory locations, and, consequently, it was necessary to put
an arbitrary bound on its size. It would be very embarrassing if this
bound were exceeded, so it must be set reasonably large (see exercise 10);
thus the memory requirement of Program T is significantly more than
Program S. Not infrequently a complex computer application will be
independently traversing several trees at once, and a separate stack will
be needed for each tree under Program T. This suggests that Program T
might use linked allocation for its stack (see exercise 20); its execution
time then becomes 30n + a -f- 4 units, roughly twice as slow .as before,
although this may not be terribly important when the execution time
for the other coroutine is added in. Still another alternative is to keep
the stack links within the tree itself in a very tricky way, as discussed
in exercise 21.

iv) Algorithm S is, of course, more general than Algorithm T, since it allows
us to go from P to P$ when we are not necessarily traversing the entire
binary tree.

So a threaded binary tree is decidedly superior to an unthreaded one, with
respect to traversal. These advantages are offset in some applications by the
slightly increased time needed to insert and delete nodes in a threaded tree. It
is also sometimes possible to save memory space by “sharing” common subtrees
with an unthreaded representation, while threaded trees require adherence to a
strict tree structure with no overlapping of subtrees.

Thread links can also be used to compute P*, $P, and #P with efficiency
comparable to that of Algorithm S. The functions *P and P# are slightly harder
to compute, just as they are for unthreaded tree representations. The reader
is urged to work exercise 17.

2.3.1 TRAVERSING BINARY TREES 325

Most of the usefulness of threaded trees would disappear if it were hard to

set up the thread links in the first place. The fact which makes the idea really

work is that threaded trees grow almost as easily as ordinary ones do. We have
the following algorithm:

Algorithm I (Insertion into a threaded binary tree). This algorithm attaches a

single node, NQDE(Q), as the right subtree of NODE(P), if the right subtree is

empty (i.e., if RTAG(P) = ”), and it inserts NODE(Q) between NODE(P) and

NODE(RLINK(P)) otherwise. The binary tree in which the insertion takes place

is assumed to be threaded as in (9); for a modification, see exercise 23.

11. [Adjust tags and links.] Set RLINK(Q) <— RLINK(P), RTAG(Q) <— RTAG(P),

RLINK(P) <— Q, RTAG(P) <— LLINK(Q) <— P, LTAG(Q)

12. [Was RLINK(P) a thread?] IfRTAG(Q) = “+”, set LLINK(Q$) <— Q. (Here Q$

is determined by Algorithm S, which will work properly even though

LLINK(Q$) now points to NODE(P) instead of NODE(Q). This step is necessary

only when inserting into the midst of a threaded tree instead of merely

inserting a “new leaf.”) |

By reversing the roles of left and right (in particular, by replacing Q$ by $Q

in step 12), we obtain an algorithm which inserts to the left in a similar way.

Our discussion of threaded binary trees so far has made use of thread links

both to the left and to the right. There is an important middle ground between

the completely unthreaded and completely threaded methods of representation:

A right-threaded binary tree combines the two approaches by making use of

threaded RLINKs, but representing empty left subtrees by LLINK = A. (Similarly,

a left-threaded binary tree threads only the null LLINKs.) Algorithm S does not

make essential use of threaded LLINKs; if we change the test “LTAG = +” in

step S2 to “LLINK ^ A”, we obtain an algorithm for traversing right-threaded

binary trees in symmetric order. Program S works without change in the right-

threaded case. A great many applications of binary tree structures require only

a left-to-right traversal of trees using the functions P$ and/or P*, and for these

applications there is no need to thread the LLINKs. We have described threading

in both the left and right directions in order to indicate the symmetry and

possibilities of the situation, but in practice one-sided threading is much more

common.
Let us now consider an important concept about binary trees, and its con¬

nection to traversal. Two binary trees T and T' are said to be similar if they

have the same structure; formally, this means that (a) they are both empty, or

(b) they are both nonempty and their left and right subtrees are respectively

similar. Similarity means, informally, that the diagrams of T and T have the

same “shape. ” Another way to phrase similarity is to say there is a one-to-one

correspondence between the nodes of T and T' which preserves the structure:

if nodes Ui and u2 in T correspond respectively to u[and u2 in T', then Ui is

326 INFORMATION STRUCTURES 2.3.1

in the left subtree of u2 if and only if u[is in the left subtree of u2, and the same

is true for right subtrees.
The binary trees T and T' are said to be equivalent if they are similar and,

moreover, if corresponding nodes contain the same information. Formally, let

info(w) denote the information contained in a node u\ the trees are equivalent

if and only if (a) they are both empty, or (b) they are both nonempty and
info (root (Tj) = info (root (T')) and their left and right subtrees are respectively

equivalent.
As examples of these definitions, consider the four binary trees

in which the first two are not similar; the second, third, and fourth are similar

and, in fact, the second and fourth are equivalent.

Some computer applications involving tree structures require an algorithm

to decide whether two binary trees are similar or equivalent. The following

theorem is useful in this regard:

Theorem A. Let the nodes of binary trees T and T' be respectively

U\, u2, . . . , un and u[, u2, . . . , u’n,

in preorder. For any node u let

l(u) = 1 if u has a nonempty left subtree, l(u) = 0 otherwise;

r(u) — 1 if u has a nonempty right subtree, r(u) = 0 otherwise.

(10)
Then T and T' are similar if and only if n = n' and

l{uj) = l(u'j), r(uj) = r(ufj) for 1 < j < n. (11)

T and T' are equivalent if and only if in addition

info(Ry) = info(w)) for 1 < j < n. (12)

Note that l and r are essentially the contents of the LTAG and RTAG in a

threaded tree, with 1 and 0 substituted for “+” and ”. This theorem

characterizes any binary tree structure in terms of two sequences of 0’s and l’s.

Proof. It is clear that the condition for equivalence of binary trees will follow

immediately if we prove the condition for similarity; furthermore n = n' and

2.3.1 TRAVERSING BINARY TREES 327

(11) are certainly necessary, since corresponding nodes of similar trees must have

the same position in preorder. Therefore it suffices to prove that the conditions

(11) and n — n' will guarantee the similarity of T and T'. The proof is by

induction on n, using the following auxiliary result:

Lemma P. Let the nodes of a nonempty binary tree be U\, u2, ... ,un in preorder,

and let f{u) — l(u) r{u) — 1. Then

f(ui) + /(w2) H-+/(w„) = —1, and

f{uj) -(-•••+ f(uk) > 0 for 1 < k < n.
(13)

Proof. The result is clear for n = 1. If n > 1, the binary tree consists of its

root Ui and further nodes. If/(tti) = 0, then either the left subtree or the right

subtree is empty, so the condition is obviously true by induction. If /(^i) = 1,

let the left subtree have nx nodes; by induction we have

f(ui) H-]rf(uk) >0 for 1 < k < nh

f(.u l) + • • • +/('Rni+l) = 0,
(14)

and the condition (13) is again evident. |

(For other theorems analogous to Lemma P, see the discussion of “Polish

notation” in Chapter 11.)

To complete the proof of Theorem A, note that it is clearly true when

n — 0. If n > 0, the definition of preorder implies that ux and u[are the re¬

spective roots of their trees, and there are integers nx, n[(the sizes of the left

subtrees) such that

u2, . . . , Unl+1 and u2, . . . , u'n'l+x are the left subtrees of T and T';

u„l+2, ■ ■ ■ , Un and u'n’l+2, . . . , un are the right subtrees of T and T'.

The proof by induction will be complete if we can show ni = n[. There are

three cases:

if l(ui) = 0, then ni = 0 = n'p,

if l(ui) = 1, r(ui) = 0, then nt = n — 1 = n[)
if l{u{) = r(ui) = 1, then by Lemma P we can find the least k > 0 such that

f(ux) H-- +/(Rfc) = 0; and nx = k — 1 = n[(cf. Eqs. 14). |

As a consequence of Theorem A, we can test two threaded binary trees for

equivalence or similarity by simply traversing them in preorder and checking

the INFO and TAG fields.

Some interesting extensions of Theorem A have been obtained by A. J.

Blikle, Bull, de V Acad. Polonaise des Sciences, Serie des sciences math., astr.,

phys., 14 (1966), 203-208; he considered an infinite class of possible traversal

orders, only six of which (including preorder) were called “addressless” because

of their simple properties.

We conclude this section by giving a typical, yet basic, algorithm for binary

trees, one that makes a copy of a binary tree into different memory locations.

328 INFORMATION STRUCTURES 2.3.1

Algorithm C (Copy a binary tree). Let HEAD be the address of the list head of a

binary tree T (i.e., T is the left subtree of HEAD; LLINK(HEAD) is a pointer to

the tree). Let NODE(U) be a node with an empty left subtree. This algorithm

makes a copy of T and the copy becomes the left subtree of NODE (U). In partic¬

ular, if NODe'(U) is the list head of an empty binary tree, this algorithm changes

the empty tree into a cop£ of T.

Cl. [Initialize.] Set P HEAD, Q <— U. Go to C4.

C2. [Anything to right?] If NODE(P) has a nonempty right subtree, set R <=

AVAIL, and attach NODE(R) to the right of NODE(Q). (At the beginning of

step C2, the right subtree of NODE(Q) is empty.)

C3. [Copy INFO.] Set INFO(Q) <— INFO (P). (Here INFO denotes all parts of the

node that are to be copied.)

C4. [Anything to left?] If NODE(P) has a nonempty left subtree, set R <= AVAIL,

and attach NODE(R) to the left of NODE(Q). (At the beginning of step C4,

the left subtree of NODE (Q) is empty.)

C5. [Advance.] Set P P*, Q <— Q*.

C6. [Test if complete.] If P = HEAD (or equivalently if Q = RLINK(U), assuming

NODE (U) has a nonempty right subtree), the algorithm terminates; otherwise

go to step C2. |

This simple algorithm shows a typical application of tree traversal; the

description here applies to threaded, unthreaded, or partially threaded trees.

Step C5 requires the calculation of preorder successors P* and Q*; for unthreaded

trees, this generally is done with an auxiliary stack. A proof of the validity of

Algorithm C appears in exercise 29; a MIX program corresponding to this algo¬

rithm in the case of a right-threaded binary tree appears in exercise 2.3.2-13.

For threaded trees, the “attaching” in steps C2 and C4 is done using Algorithm I.

The exercises which follow include quite a few topics of interest relating to

the material of this section.

EXERCISES

1. [01] In the binary tree (2), let INFO(P) denote the letter stored in NODE(P).
What is INFO(LLINK(RLINK(RLINK(T))))?

2. [11] List the nodes of the binary tree ® p) in (a) preorder; (b) symmetric
order; (c) postorder.

© © ® * ©

3. [20] Is the following statement true or false? “The terminal nodes of a binary tree

occur in the same relative position in preorder, inorder, and postorder.”

2.3.1 TRAVERSING BINARY TREES 329

► 4. [20] The text defines three basic orders for traversing a binary tree; another

alternative would be to proceed in three steps as follows:

a) Visit the root,

b) traverse the right subtree,

c) traverse the left subtree,

using the same rule recursively on all nonempty subtrees. Does this new order bear

any simple relation to the three orders already discussed?

5. [22] Nodes of a binary tree may be identified by a sequence of zeros and ones, in

a notation analogous to “Dewey decimal notation” for trees, as follows: The root (if

present) is represented by the sequence “1”. Roots (if present) of the left and right

subtrees of the node represented by a are respectively represented by aO and al. For

example, the node H in (1) would have the representation “1110”. (Cf. exercise 2.3-15.)

Show that preorder, inorder, and postorder may be conveniently described in
terms of this notation.

6. [M22] Suppose that a binary tree has n nodes which are u\ U2 . . . un in preorder

and uPl uP2 . . . uPn in inorder. Show that the permutation p\ P2 • • • Pn can be ob¬

tained by passing 1 2 ... n through a stack, in the sense of exercise 2.2.1-2. Conversely,

show that any permutation p\ p2 . . . pn obtainable with a stack corresponds to some
binary tree in this way.

7. [22] Show that if we are given the preorder and the inorder of the nodes of a

binary tree, the binary tree structure may be constructed. Does the same result hold

true if we are given the preorder and postorder (instead of inorder)? Or if we are

given the inorder and postorder?

8. [20] Find all binary trees whose nodes appear in exactly the same sequence in

both (a) preorder and inorder; (b) preorder and postorder; (c) inorder and postorder.

9. [M20] When a binary tree having n nodes is traversed using Algorithm T, state

how many times each of the steps Tl, T2, T3, T4, and T5 is performed (as a function

of n).

► 10. [20] What is the largest number of entries that can be in the stack at once, during

the execution of Algorithm T, if the binary tree has n nodes? (The answer to this

question is very important for storage allocation, if the stack is being stored con¬

secutively.)

11. [M43] Analyze the average value of the largest stack size occurring during the

execution of Algorithm T as a function of n, given that all binary trees with n nodes

are considered equally probable.

12. [22] Design an algorithm analogous to Algorithm T which traverses a binary tree

in preorder, and prove that your algorithm is correct.

► 13. [24] Design an algorithm analogous to Algorithm T which traverses a binary tree

in postorder.

14. [22] Show that if a binary tree with n nodes is represented as in (2), the total

number of A links in the representation can be expressed as a simple function of n;

this quantity does not depend on the shape of the tree.

15. [19] Note that in a threaded-tree representation like (9), each node except the list

head has exactly one link pointing to it from above, namely the link from its “father.”

330 INFORMATION STRUCTURES 2.3.1

In addition, some of the nodes have further links pointing to them from below; for

example, the node containing “C” has two pointers coming up from below, node “E”
has one. Is there any simple connection between the number of links pointing to a node

and some other basic property of that node? (It is, of course, necessary to know how

many links ipoint to a given node when alterations to the tree structure are being

considered.)

► 16. [22] The diagrams in Fig. 24 help to give an intuitive characterization of the

position of NDDE(QS) in a binary tree, in terms of the structure near NODE(Q): If

NODE(Q) has a nonempty right subtree, consider Q = $P, QS = P in the upper diagrams;

N0DE(Q$) is the “leftmost” node of that right subtree. If NODE(Q) has an empty right

subtree, consider Q = P in the lower diagrams; N0DE(Q$) is located by proceeding

upward in the tree until after the first upward step to the right.

Give a similar “intuitive” rule for finding the position of N0DE(Q*) in a binary

tree in terms of the structure near NODE(Q).

► 17. [22] Give an algorithm analogous to Algorithm S for determining P* in a threaded

binary tree. Assume that the tree has a list head as in (7), (8), (9).

18. [24] Many algorithms dealing with trees like to visit each node twice instead of

once, using a combination of preorder and inorder which we might call double order.
Traversal of a binary tree in double order is defined as follows: If the binary tree is

empty, do nothing; otherwise

a) visit the root, for the first time;

b) traverse the left subtree, in double order;

c) visit the root, for the second time;

d) traverse the right subtree, in double order.

For example, traversal of (1) in double order gives the sequence

A1B1D1D2B2A2C1E1E2G1G2C2F1H1H2F2J1J2

where A1 means “A” is being visited for the first time, etc.

If P points to a node of the tree and if d = 1 or 2, define (P, d)A = (Q, e) if either

the next step in double order after visiting NODE(P) the dth time is to visit NODE(Q)

the eth time, or if (P, d) was the last step in double order and (Q, e) = (HEAD, 2), where

HEAD is the address of the list head. We also define (HEAD, 1)A as the first step in
double order.

Design an algorithm analogous to Algorithm T which traverses a binary tree in

double order, and also design an algorithm analogous to Algorithm S which computes

(P, d)A. Discuss the relation between these algorithms and exercises 12 and 17.

19. [24] Design an algorithm analogous to Algorithm S for the calculation of P# in
a threaded binary tree.

20. [23] Modify Program T so that it keeps the stack in a linked list, not in consecutive
memory locations.

21. [32] Design an algorithm which traverses an unthreaded binary tree in inorder

without using any auxiliary stack. It is permissible to alter the L.LINK and RLINK fields

of the tree nodes during this algorithm in any manner whatever, subject only to the

condition that the binary tree has its conventional representation [as in (2), for

2.3.1 TRAVERSING BINARY TREES 331

example] both before and after your algorithm has traversed the tree. You may also

use an RTAG field (one bit only) in each node for temporary storage.

22. [25] Write a MIX program for the algorithm given in exercise 21 and compare its

execution time to Programs S and T.

23. [22] Design algorithms analogous to Algorithm I for insertion to the right and

insertion to the left in a right-threaded, binary tree. Assume that the nodes have the

fields LLINK, RLINK, and RTAG.

24. [M20] Is Theorem A still valid if the nodes of T and T' are given in symmetric

order instead of preorder?

25. [M24] Let 3 be a set of binary trees and let N(3) be the set (info(w) | u is a node

of T for some T in 3}. Suppose that a linear ordering relation “ <, ” (cf. exercise

2.2.3-14) has been defined on N(3). Given any trees T, T' in 3, let us now define

T <, T' if and only if

1) T is empty; or

2) T and T' are not empty, and info (root (T)) < info(root(T,/)); or

3) T and T' are not empty, info(root(71)) = info(root(7’/))) leftsubtree(T) <,
leftsubtree(T’/)> and leftsubtree(T) is not equivalent to leftsubtreeCT1'); or

4) T and T' are not- empty, info (root (71)) = info (root(T')), leftsubtree(T) is

equivalent to leftsubtree(T,/)> and rightsubtree(T) ^ rightsubtree(T')-

Prove that (a) T T' and T' ■<, T" implies T <, T"; (b) T is equivalent to T' if

and only if T T' and T' T; (c) for any T, T' in 3 we have either T T' or

T' ^ T. [Thus, if equivalent trees in 3 are regarded as equal, the relation ■<, induces

a linear ordering on 3. This ordering has many applications (for example, in the

simplification of algebraic expressions). When iV(3) has only one element, i.e., if the

“info” of each node is the same, we have the special case that equivalence is the same

as similarity.]

26. [M24] Consider the ordering T T' defined in the preceding exercise. Prove a

theorem analogous to Theorem A, giving a necessary and sufficient condition that

T ■<, T', and making use of double order as defined in exercise 18.

► 27. [28] Design an algorithm which tests two given trees T and T' to see whether

T < T', T > T', or T equivalent to T', in terms of the relation defined in exercise 25,

assuming that both binary trees are right-threaded. Assume that each node has the

fields LLINK, RLINK, RTAG, INFO; use no auxiliary stack.

28. [00] After Algorithm C has been used to make a copy of a tree, is the new binary

tree equivalent to the original, or similar to it?

29. [M25] Prove as rigorously as possible that Algorithm C is valid.

► 30. [22] Design an algorithm that threads an unthreaded tree [e.g., transforms (2)

into (9)]. Note: Always use the notation P*, P$, etc. when possible instead of repeating

the steps for traversal algorithms like Algorithm T.

31. [23] Design an algorithm which “erases” a right-threaded binary tree, i.e., returns

all of its nodes except the list head to the AVAIL list and makes the list head signify an

empty binary tree. Assume that each node has the fields LLINK, RLINK, RTAG; use no

auxiliary stack.

332 INFORMATION STRUCTURES 2.3.1

32. [21] Suppose that each node of a binary tree has four link fields: LLINK and RLINK,
which point to left and right subtrees or A, as in an unthreaded tree; and SUC and

PRED, which point to the successor and predecessor of the node in symmetric order.

(Thus, SUC(P) = P$ and PRED(P) = $P. Such a tree contains more information than

a threaded tr6e.) Design an algorithm like Algorithm I for insertion into such a tree.

► 33. [30] There is more than\me way to thread a tree! Consider the following repre¬

sentation, using three fields LTAG, LLINK, RLINK in each node:

LTAG(P): defined the same as in a threaded binary tree;
LLINK(P): always equal to P*;
RLINK(P): defined the same as in an unthreaded binary tree.

Discuss insertion algorithms for such a representation, and write out the copying

algorithm, Algorithm C, in detail for this representation.

34. [22] Let P point to a node in some binary tree, and let HEAD be the address of the

list head of an empty binary tree. Give an algorithm which removes NODE (P) and all

of its subtrees from whatever tree it was in, and which attaches the subtree having

NODE(P) as its root to HEAD. Assume that all the binary trees in question are right-
threaded, with fields LLINK, RTAG, RLINK in each node.

35. [4.0] Define a ternary tree (and, more generally, a Gary tree for any t > 2) in a
manner analogous to our definition of a binary tree, and explore the topics discussed in
this section (including topics found in the exercises above) which can be generalized to
Gary trees in a meaningful way.

36. [M23] Exercise 1.2.1-15 shows that lexicographic order extends a well-ordering

of a set S to a well-ordering of the n-tuples of elements of S. Exercise 25 above shows

that a linear ordering of the information in tree nodes can be extended to a linear order¬

ing of trees, using a similar definition. If the relation < well-orders IV(3), is the

extended relation of exercise 25 a well-ordering of 3?

► 37. [24] (D. Ferguson.) If two computer words are necessary to contain two link

fields and an INFO field, representation (2) requires 2n words of memory for a tree with

n nodes. Design a representation scheme for binary trees which uses less space, assum¬

ing that one link and an INFO field will fit in a single computer word.

2.3.2. Binary Tree Representation of Trees

We turn now from binary trees to just plain trees. Let us recall the basic dif¬

ferences between trees and binary trees as we have defined them:

1) A tree is never empty, i.e., it always has at least one node; and each node

of a tree can have 0, 1, 2, 3, . . . sons.

2) A binary tree can be empty, and each of its nodes can have 0, 1, or 2

sons; we distinguish between a “left” son and a “right” son.

Recall also that a “forest” is an ordered set of zero or more trees. The subtrees

immediately below any node of a tree form a forest.

2.3.2 BINARY TREE REPRESENTATION OF TREES 333

There is a natural way to represent any forest as a binary tree. Consider the

following forest of two trees:

(1)

The corresponding binary tree is obtained by linking together the sons of each

family and removing vertical links except from a father to his first son:

Then, tilt the diagram 45° and we have a binary tree:

(2)

(3)

Conversely, it is easy to see that any binary tree corresponds to a unique forest

of trees by reversing the process.

The above transformation is extremely important; it is called the natural

correspondence between forests and binary trees. (In particular, it gives a cor¬

respondence between trees and those binary trees which have a root but no right

subtree. We might also change things a little and let the list head of a binary

tree correspond to the root of a tree, thus obtaining a one-to-one correspondence

between trees with n + 1 nodes and binary trees with n nodes.)

334 INFORMATION STRUCTURES 2.3.2

Let F = {Ti, T2, . . . , Tn) be a forest of trees. The binary tree B(F)

corresponding to F can be defined rigorously as follows:

a) If n = 0, B(F) is empty.

b) If n > ,0, the root of B(F) is root(Tj); the left subtree of B(F) is

B(Tn, Tl2, . . . , Tlm). where Tn, T12, . . . , TXm are the subtrees of

root (Tx); and the right subtree of B(F) is B(T2, ■ ■ ■ , Tn).

These rules specify the transformation from (1) to (3) precisely.

It will occasionally be convenient to draw our binary tree diagrams as in (2),

without the 45° rotation. The threaded binary tree corresponding to (1) is

v.

SKr

\ % Hf b—HG

’’\K

(4)

(compare with Fig. 24, giving the latter a 45° change in orientation). Note

that right thread links go from the rightmost son of a family to the father. Left

thread links do not have such a natural interpretation, due to the lack of

symmetry between left and right.

The ideas about traversal expressed in the previous section can be recast

in terms of forests (and, therefore, trees). There is no simple analog of the

“inorder” sequence, since there is no obvious place to insert a root among its

descendants; but preorder and postorder carry over in an obvious manner.

Given any nonempty forest, the two basic ways to traverse it may be defined

as follows:

Preorder Postorder

a) Visit the root of

the first tree;

b) traverse the sub¬

trees of the first

tree (in preorder);

c) traverse the

remaining trees

(in preorder).

a) Traverse the sub¬

trees of the first

tree (in postorder);

b) visit the root of

the first tree;

c) traverse the

remaining trees

(in postorder).

In order to understand the significance of these two methods of traversal,

consider the following notation for expressing tree structure by nested

parentheses:

(A(B,C{K)), D(E(Ii), F(J), (?)). (5)

2.3.2 BINARY TREE REPRESENTATION OF TREES 335

This notation corresponds to the forest (1): we represent a tree by the informa¬

tion written in its root, followed by a representation of its subtrees; the repre¬

sentation of a nonempty forest is a parenthesized list of the representations of
its trees, separated by commas.

If (1) is traversed in preorder, we visit the nodes in the sequence

ABC KDEHFJ G; this is simply (5) with the parentheses and commas

removed. Preorder is a natural way to list the nodes of a tree: we list the root

first, then the descendants. If a tree structure is represented by indentation as

in Fig. 20(c), the rows appear in preorder. The section numbers of this book

itself (see Fig. 21) appear in preorder; thus, for example, Section 2.3 is followed

by Section 2.3.1, then come Sections 2.3.2, 2.3.3, 2.3.4, 2.3.4.1, . . . , 2.3.4.6,
2.3.5, 2.4, etc.

It is interesting to note that preorder is a time-honored concept which

might meaningfully be called dynastic order. At the death of a king, duke, or

earl, etc., the title passes to his first son, then to descendants of the first son,

and finally if these all die out it passes to other sons of the family in the same

way. (English custom also includes daughters in a family on the same basis as

sons, except they come after all the sons.) In theory, we could take a lineal chart

of all the aristocracy and write out the nodes in preorder; then if we consider

only the people presently living, we would obtain the order of succession to the

throne (except as modified by Acts of Abdication).

Postorder for the nodes in (1) is B A (7 A H E J F G D; this is anal¬

ogous to preorder, except that it corresponds to the similar parenthesis notation

((S, (K)C)A, ((ff)E, (J)F, G)D), (6)

in which a node appears just after its descendants instead of just before.

The definitions of preorder and postorder mesh very nicely with the natural

correspondence between trees and binary trees, since the subtrees of the first

tree correspond to the left binary subtree, and the remaining trees correspond

to the right binary subtree. By comparing these definitions with the cor¬

responding definitions on page 316, we find that traversing a forest in preorder

is exactly the same as traversing the corresponding binary tree in preorder.

Traversing a forest in postorder is exactly the same as traversing the correspond¬

ing binary tree in inorder. The algorithms developed in Section 2.3.1 may

therefore be used without change. (Note that postorder for trees corresponds

to inorder, not postorder, for binary trees. This is fortunate since we have seen

that it is comparatively hard to traverse binary trees in postorder.)

As an example of the application of these methods to a practical problem,

let us consider the manipulation of algebraic formulas. Such formulas are most

properly regarded as representations of tree structures, not as one- or two-

dimensional configurations of symbols, nor even as binary trees.

336 INFORMATION STRUCTURES 2.3.2

For example, the formula y = 3 ln(® + 1) — a/x2 has the tree representation

Here the left-hand diagram gives the conventional tree representation, like

Fig. 22, in which the binary operators +, —, X, /, and | (the latter denotes

exponentiation) have two subtrees corresponding to their operands; the unary

operators “In” and “neg” (the latter does not appear in this tree; it denotes

negation as in “y = —x”) have one subtree, and variables and constants are

terminal nodes. In the right-hand diagram, we have shown the equivalent

right-threaded binary tree, including an additional node y which is a list head

for the tree. The list head has the form described in 2.3.1-(7).
It is important to note that, even though the left-hand tree in (7) bears a

superficial resemblance to a binary tree, we are treating it here as a tree, and

representing it by a quite different binary tree, shown at the right in (7). Al¬

though we could develop routines for algebraic manipulations based directly on

binary tree structures—these are the so-called .“three-address code” representa¬
tions of algebraic formulas—several simplifications occur in practice if we use

the general tree representation of algebraic formulas, as in (7), because post¬

order traversal is easier in a tree.

The nodes of (7) are

— X31n+xl/at®2 in preorder; (8)

3 ®l + lnXax2|/ — in postorder. (9)

Algebraic expressions like (8) and (9) are very important, and they are known

as “Polish notations” because form (8) was introduced by the Polish logician,

Lukasiewicz. Expression (8) is the prefix notation for formula (7), and (9) is the

corresponding postfix notation. We will return to the interesting topic of Polish

notation in later chapters; for now let us be content with the knowledge that

Polish notation is directly related to the basic orders of tree traversal.

2.3.2 BINARY TREE REPRESENTATION OF TREES 337

Let us assume that tree structures for the algebraic formulas with which we
will be dealing have nodes of the following form:

RTAG
1-

RLINK
I

TYPE
1

LLINK

_

i
IN

i
FQ
_

-1-

i

(10)

Here RLINK and LLINK have the usual significance, and RTAG is negative for

thread links. The TYPE field is used to distinguish different kinds of nodes:

TYPE = 0 means the node represents a constant, and INFO is the value of the

constant. TYPE = 1 means the node represents a variable, and INFO is the

five-letter alphabetic name of this variable. TYPE > 2 means the node represents

an operator; INFO is the alphabetic name of the operator and the value TYPE =

2, 3, 4, . . . is used to distinguish the different operators +, —, X, /, etc. We

will not concern ourselves here with how the tree structure has been set up

inside the computer memory in the first place, since this topic is analyzed in

great detail in Chapter 10; let us merely assume that the tree already appears

in our computer memory, and questions of input and output will be deferred
until later.

We shall now discuss the “classical” example of algebraic manipulation,

finding the derivative of a formula with respect to the variable x. Programs for

algebraic differentiation were among the first symbol-manipulation routines

ever written for computers; they were used as early as 1952. The process of
differentiation illustrates many of the techniques of algebraic manipulation, and

it is of significant practical value in scientific applications.

Readers who are not familiar with mathematical calculus may consider this

problem as an abstract exercise in formula manipulation, defined by the following

rules:

D(x) = 1 (11)

D(a) =0, if a is a constant or a variable x (12)

D(ln u) — D(u)/u, if u is any formula (13)

D(- u) = - D(u) (14)

D(u T v) = D(u) -f D(y) (15)

D(u - v) = D(u) - D(v) (16)

D(u X v) = D(u) X v + u X D{v) (17)

D(u / v) = D(u)/v -(mX D{v))/{v T 2) (18)

D(u T v) = D(u) X (t> X (m T (v - 1))) + ((In u) X D(v)) X (m | v) (19)

These rules allow us to evaluate the derivative D(y) for any formula y composed

of the above operators.
(Our main interest in this algorithm is, as usual, in the details of how the

process is carried out inside a computer. There are many higher-level languages

and special routines available at most computer installations which have built-in

338 INFORMATION STRUCTURES 2.3.2

facilities that greatly simplify algebraic manipulations like these; but the purpose

of the present example is to gain more experience in fundamental tree operations.)

The idea behind the following algorithm is to traverse the tree in postorder,

forming the derivative of each node as we go, until eventually the entire deriva¬

tive has been calculated. Using postorder means that we arrive at an operator

node (like “+”) after its operands have been differentiated. Rules (11) through

(19) imply that every subformula of the original formula will have to be dif¬

ferentiated, sooner or later, so we might as well do the differentiations in post¬

order. By using a right-threaded tree, we avoid the need for a stack during the

operation of the algorithm. On the other hand, a threaded tree representation

has the disadvantage that it is necessary to make copies of subtrees (for example,

in the rule for D(u f v) we may need to copy u and v each three times), when in

many circumstances we could use a List representation instead of a tree and

avoid this copying; see Section 2.3.5.

Algorithm D (Differentiation). If Y is the address of a list head which points to

a formula represented as described above, and if DY is the address of the list head

for an empty tree, this algorithm makes NODE(DY) point to a tree representing

the analytic derivative of Y with respect to the variable “X”.

Dl. [Initialize.] Set P <— Y$ (i.e., the first node of the tree, in postorder, which

is the first node of the corresponding binary tree in inorder).

D2. [Differentiate.] Set PI <— LLINK(P); and if PI A, also set Q1 RLINK(Pl).

Then perform the routine DIFF[TYPE(P)], described below. (The routines

DIFFlOl, DIFFlll, etc., will form the derivative of the tree with root P,

and will set pointer variable Q to the address of the root of the derivative.

The variables PI and Q1 are set up first, in order to simplify the specification
of the DIFF routines.)

D3. [Adjust link.] If TYPE(P) denotes a binary operator, set RLINK(Pl) P2.

(See the next step for an explanation.)

D4. [Advance to P$.] Set P2 <— P, P «— P$. Now if RTAG(P2) = “+”, i.e., if

N0DE(P2) has a brother on his right, set RLINK(P2) <— Q. (This is the tricky

part of the algorithm: we temporarily destroy the structure of tree Y, so

that a link to the derivative of P2 is saved for future use. The missing link

is reinserted in step D3. See exercise 21 for further discussion of this trick.)

D5. [Done?] If P Y, return to step D2. Otherwise set LLINK(DY) <— Q and
RLINK(Q) <— DY, RTAG(Q) 4- ”, |

The procedure described in Algorithm D is just the background routine for

the differentiation operations which are performed by the processing routines

DIFFlOl, DIFFlll, . . . , called in step D2. In many ways, Algorithm D is like

the control routine for an interpretive system or machine simulator, as discussed

in Section 1.4.3, but it traverses a tree instead of a simple sequence of
instructions.

Let us now consider the routines which do the actual differentiation. In

the following discussion, the statement “P points to a tree” means that NODE(P)

2.3.2 BINARY TREE REPRESENTATION OF TREES 339

is the root of a tree stored in the conventional manner, and both RLINK(P)

and RTAG(P) are meaningless so far as this tree is concerned. We will make use

of a tree construction function which makes new trees by joining smaller ones

together: Let x denote some kind of node, either a constant, variable, or operator,
and let U and V denote pointers to trees; then we have

TREE(x, U, V) makes a new tree with x in its root node and with U and V the

subtrees of the root: W <£= AVAIL, INFO(W) <— x, LLINK(W) <— U,

RLINK(U) <— V, RTAG(U) <— RLINK(V) <— W, RTAG(V) <— ”.

TREE(x, U) similarly makes a new tree with only one subtree: W <^= AVAIL,

INFO (W) <— x, LLINK(W) <- U, RLINK(U) W, RTAG(U) ^ ”.

TREE(x) makes a new tree with x as a terminal root node: W <*= AVAIL,

INFO(W) <— X, LLINK(W) <— A.

In all cases, the value of TREE is W, that is, a pointer to the tree just constructed.

The reader should study the above definitions carefully, since they illustrate

the binary tree representation of trees. Another function, COPY(U), makes a

copy of the tree pointed to by U and has as its value a pointer to the tree thereby
created.

The basic functions TREE and COPY make it easy to build up a tree for the

derivative of a formula, step by step. Before we look at the DIFF routines,

however, let us consider what happens if we blindly apply rules (11) through

(19) to a rather simple formula like

y = 3 In (x + 1) — a/x2;

we get

D(y) = 0 • In (x + 1) + 3((1 + 0)/(x + 1))

- (0/x2 - (a(l(2x2-1) + ((In x) • 0)x2))/(x2)2), (20)

which is completely unsatisfactory. To avoid so many redundant operations

in the answer, we must make our routines more complicated, so that they

recognize the special cases of adding or multiplying by zero, multiplying by one,

or raising to the first power. These simplifications reduce (20) to

D(y) = 3(l/(x + 1)) - ((-(a(2x)))/(*2)2), (21)

which is more acceptable but obviously not satisfactory. The concept of a really

satisfactory answer is not well-defined, because different mathematicians will

prefer formulas to be expressed in different ways; however, it is clear that (21)

is not as simple as it could be. In order to make substantial progress over

formula (21), it is necessary to develop algebraic simplification routines (see

exercise 17), which would reduce (21) to, for example,

D(y) = 3(x + I)-1 + 2ax—3. (22)

We will content ourselves here with routines which can produce (21), not (22).

340 INFORMATION STRUCTURES 2.3.2

Nullary operators (constants and variables). For these operations, NODE(P) is a

terminal node, and the values of PI, P2, Ql, and Q before the operation are

irrelevant.

DIFFlOl: < (NODE (P) is a constant.) Set Q <— TREE(0).

DIFFlll: (NODE(P) is & variable.) If INFO(P) = “x”, set Q <— TREE(l);

otherwise set Q <— TREE (0).

Unary operators (logarithm and negation). For these operations, NODE(P) has

one son, U, pointed to by PI, and Q points to D(U). The values of P2 and Ql

before the operation are irrelevant.

DIFF121: (NODE (P) is “In”.) If INFO (Q) ^ 0, set Q <- TREE COPY (PI)).

DIFF131: (NODE(P) is “neg”.) If INFO(Q) 7* 0, set Q <— TREE(“neg”, Q).

Binary operators (addition, subtraction, etc.). For these operations, NODE(P) has

two sons, U and V, pointed to respectively by PI and P2; Ql and Q point

respectively to D(U), D(V).

DIFF141: (“+” operation.) If INF0(Q1) = 0, set AVAIL «= Ql. Otherwise

if INFO (Q) = 0, set AVAIL <^= Q and Q <— Ql; otherwise set Q <— TREE (, Ql, Q).

DIFF151: (“— ” operation.) If INFO(Q) = 0, set AVAIL <= Q and Q <- Ql.

Otherwise if INFO (Ql) = 0, set AVAIL <= Ql and set Q <- TREE(“neg”, Q); other- .

wise set Q <— TREE(“—”,Q1,Q).

DIFF161: (“X” operation.) If INFO (Ql) ?£ 0, set Ql <— MULT (Ql, COPY (P2)).

Then if INFO (Q) 0, set Q <— MULT(COPY(Pi),Q). Then go to DIFFUl.

Here MULT(U,V) is a new function which constructs a tree for U X V but

also makes a test to see if U or V is equal to “1”:

if INFO (U) = 1 and TYPE(U) = 0, set AVAIL <^= U and MULT(U,V) <— V;

if INFO (V) = 1 and TYPE(V) = 0, set AVAIL <= V and MULT (U,V) <—U;

otherwise set MULT(U,V) <— TREE(“X”,V»V).

DIFF171: (“/” operation.) If INFO (Ql) 5^ 0, set

Ql <- TREE(V”,Q1,C0PY(P2)) .

Then if INF0(Q) 7^ 0, set

Q <— TREE(7”»MULT(COPY(PI),Q),TREE(“ | ,COPY(P2),TREE(2))).

Then go to DIFFlSl.

DIFFl8l: -(“I” operation.) See exercise 12.

We conclude this section by showing how all of the above operations are

readily transformed into a computer program, starting “from scratch” with only

MIX machine language as a basis.

2.3.2 BINARY TREE REPRESENTATION OF TREES 341

Program D (Differentiation). The following MIXAL program performs Algorithm

D, with rI2 = P, rI3 = P2, rI4 = PI, rI5 = q; rI6 = Ql. The order of computa¬

tions has been rearranged a little, for convenience.

01 * DIFFERENTIATION IN A RIGHT-THREADED TREE
02 LLINK EQU 4:5
03 RLINK EQU 1:2
04 RLINKT EQU 0:2
05 TYPE EQU 3:3
06 * MAIN CONTROL ROUTINE
07 D1 STJ 9F
OS LD4 Y(LLINK)
09 1H ENT2 0,4

10 2H LD4 0,2(LLINK)
11 J4NZ IB

12 D2 LD1 0,2(TYPE)
13 JMP *+1,1

14 JMP CONSTANT
15 JMP VARIABLE

16 JMP LN

17 JMP NEG

18 JMP ADD

19 JMP SUB

20 JMP MUL

21 JMP DIV

22 JMP PWR

23 D3 ST3 0,4(RLINK)

24 D4 ENT3 0,2
25 LD2 0,2(RLINKT)

26 J2N IF

27 ST5 0,3(RLINK)

28 JMP 2B

29 1H ENN2 0,2
30 D5 ENT1 -Y, 2

31 LD4 0,2(LLINK)

32 LD6 0,4(RLINK)

33 J1NZ D2

34 ST5 DY(LLINK)

35 ENNA DY

36 STA 0,5(RLINKT)

37 9H JMP *

Definition of fields, see (10)

1)1. Initialize.
Treat whole procedure as a subroutine.

PI <— LLINK(Y), prepare to find Y$.

P 4- PI.

PI <- LLINK(P).

If PI A, repeat.

D2. Differentiate.
Jump to DIFF[TYPE(P)].

Switch table entry for DIFF[0].

DIFF[lj.

DIFF[8].

D3. Adjust link. RLINK(Pl) <- P2.

DJj. AdvanceloPS. P2 <- P.

P <— RLINKT(P).

Jump if RTAG(P) =

otherwise set RLINK(P2) <— Q.

Note that N0DE(P$) will be terminal.

D5. Done?
PI <— LLINK(P), prepare for step D2.

Ql «- RLINK(Pl).

Jump to D2 if P 7^ Y;

otherwise set LLINK(DY) <— Q.

RLINK(Q) <— DY.RTAG(Q) <- ”.

Exit from differentiation subroutine. |

The next part of the program contains the basic subroutines TREE and COPY.

The former has three entrances, TREEO, TREE1, and TREE2, according to the

number of subtrees of the tree being constructed. Regardless of which entrance

to the subroutine is used, rA will contain the address of a special constant

indicating what type of node forms the root of the tree being constructed; these

special constants appear in lines 105-124.

342

38
39
1+0

41
42
43

44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63

104
105
106
107
108
109
110
111

112

113

114
115
116
117
118
119
120
121
122
123
124

INFORMATION STRUCTURES 2.3.2

* BASIC SUBROUTINES FOR TREE CONSTRUCTION

TREEO STJ 9F TREE(rA) function:

JMP 2F

TREE1 ST1 3F(0:2) TREE(rA, rll) function:
< JSJ IF

TREE2 STX 3F^0:2) TREE(rA, rX, rll) function:

3H ST1 *(RLINKT) RLINK(rX) «- rll, RTAG(rX) <- “+”.

1H STJ 9F

LDXN AVAIL

JXZ OVERFLOW

STX 0,1(RLINKT) RL INK (rll) <- AVAIL, RTAG(rll) <-

LDX 3B(0:2)

STA *+1(0:2)

STX *(LLINK) Set LLINK of next root node.

2H LD1 AVAIL rll <= AVAIL.

J1Z OVERFLOW

LDX 0,1(LLINK)

STX AVAIL

STA *+1(0:2) Move root node to available space.

MOVE * (2)
DEC1 2 Reset rll to point to root node.

9H JMP * Exit from TREE, result in rll

COPYP1 ENT1 0,4 COPY(PI), special entrance to COPY

JSJ COPY

C0PYP2 ENT1 0,3 C0PY(P2), special entrance to COPY
COPY STJ 9F COPY(rll) function:

• (see exercise 13)
9H JMP * Exit from COPY, rll points to new tree.
CONO CON 0 Node representing constant “0”

CON 0

CONI CON 0 Node representing “1”
CON 1

C0N2 CON 0 Node representing “2”
CON 2

LOG CON 2(TYPE) Node representing “In”
ALF LN

NEGOP CON 3(TYPE) Node representing “neg”
ALF NEG

PLUS CON 4 (TYPE) Node representing
ALF +

MINUS CON 5(TYPE) Node representing “—”
ALF -

TIMES CON 6(TYPE) Node representing “X”
ALF *

SLASH CON 7(TYPE) Node representing “/”
ALF /

UPARROW CON 8(TYPE) Node representing “j”
ALF ** 1

2.3.2 BINARY TREE REPRESENTATION OF TREES 343

The remaining portion of the program corresponds to the differentiation routines

DIFFlo], DlFFtl], . . . ; these routines are written to return control to step D3

after processing a binary operator, otherwise control is to return to step D4.

125 * DIFFERENTIATION ROUTINES

126 VARIABLE LDX 1,2
127 ENTA CONI

128 CMPX 2F

129 JE *+2
130 CONSTANT ENTA C0N0

131 JMP TREEO

132 1H ENT5 0,1

133 JMP D4

134 2H ALF X

135 LN LDA 1,5

136 JAZ D4

137 JMP C0PYP1

138 ENTX 0,5

139 ENTA SLASH

no JMP TREE2

141 JMP IB

142 NEG LDA 1,5

143 JAZ D4

144 ENTA NEG0P

145 ENT1 0,5

146 JMP TREE1

147 JMP IB

148 ADD LDA 1,6
149 JANZ IF

150 3H LDA AVAIL

151 STA 0,6(LLINK)

152 ST6 AVAIL

153 JMP D3

154 1H LDA 1,5

155 JANZ IF

156 2H LDA AVAIL

157 STA 0,5(LLINK)

158 ST5 AVAIL

159 ENT5 0,6
160 JMP D3

161 1H ENTA PLUS

162 4H ENTX 0,6
163 ENT1 0,5

164 JMP TREE2

165 ENT 5 0,1

166 JMP D3

Is INFO(P) = “X”?

If so, call TREE(l).

Call TREE(O).

Q location of new tree.

Return to control routine.

Return to control routine if INFO(Q) = 0;

otherwise set rll C0PY(P1).

rll <- TREE(7”, Q, rll).

Q <— rll, return to control.

Return if INFO(Q) = 0.

TREE(“neg”, Q)

—> Q, return to control.

Jump unless INF0(Q1) = 0.

AVAIL 4= Ql.

Return to control, binary operator.

Jump unless INFO(Q) = 0.

AVAIL <= Q.

Q Ql.
Return to control.

Prepare to call TREE(“T”, Ql, Q).

Q 4- TREE(“± ”, Ql, Q).

Return to control.

344

167
168
169
170
171
172
173
174.
175
176
177
178
179
180
181
182
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204
205
206
207
208
209
210
211

212
213

214

INFORMATION STRUCTURES 2.3.2

\

SUB LDA 1,5

JAZ 2B

LDA 1,6

JANZ IF
4 ENTA NEGOP

ENT1 0^5

JMP TREE1

ENT5 0,1

JMP 3B

1H ENTA MINUS

JMP 4B

MUL LDA 1,6

JAZ IF

JMP C0PYP2

ENTA 0,6

JMP MULT

ENT6 0,1
1H LDA 1,5

JAZ ADD

JMP C0PYP1

ENTA 0,1
ENT1 0,5

JMP MULT

ENT 5 0,1
JMP ADD

MULT STJ 9F

STA IF(0:2)

ST2 8F(0:2)

1H ENT2 *

LDA 1,2

DECA 1

JANZ IF

LDA 0,2(TYPE)

JAZ 2F

1H LDA 1,1
DECA 1

JANZ IF

LDA 0,1(TYPE)

JANZ IF

ST1 *+2(0:2)

ENT1 0,2

ENT2 *

2H LDA AVAIL

STA 0,2(LLINK)

ST2 AVAIL

JMP 8F
1H ENTA TIMES

ENTX 0,2

Jump if INFQ(Q) = 0.

Jump unless INFO(Ql) = 0.

Q <- TREE(“neg”, Q).

AVAIL 4= Q1 and return.

Prepare to call TREE(“—”, Ql, Q)

Jump if INFO(Ql) = 0;

otherwise set rll <— C0PY(P2).

MULT(Q1, C0PY(P2))

-* Ql.

Jump if INFO(Q) = 0;

otherwise set rll COPY(Pl).

MULT(C0PY(P1), Q)

Q.

MULT(rA, rll) subroutine:

Let rA = U, rll = V.

Save rI2.

rI2 ^ U.

Test if INFO (U) = 1

and if TYPE(U) = 0.

If not, test if INFD(V) = 1

and if TYPE(V) = 0.

If so, interchange U <-> V.

AVAIL 4= U.

Result is V.

2.3.2 BINARY TREE REPRESENTATION OF TREES 345

215
216 8H

217 9H

JMP TREE2

ENT2 *

JMP *

Result is TREE(“X”, U, V).

Restore rI2 setting.

Exit MULT with result in rll. |

The other two routines DIV and PWR are similar and they have been left as

exercises (see exercises 15 and 16).

EXERCISES

► 1. [20] The text gives a formal definition of B(F), the binary tree corresponding to a

forest F. Give a formal definition which reverses the process, i.e., define F(B), the
forest corresponding to a binary tree B.

► 2. [20] We defined Dewey decimal notation for forests in Section 2.3, and for binary

trees in exercise 2.3.1-5. Thus the node “J” in (1) is represented by “2.2.1”, and in

the equivalent binary tree (3) it is represented by “11010”. If possible, give a rule

that directly expresses the natural correspondence between trees and binary trees as
a correspondence between the Dewey decimal notations.

3. [22] What is the relation between Dewey decimal notation for the nodes of a

forest and the preorder and postorder of these nodes?

4. [19] Is the following statement true or false? “The terminal nodes of a tree occur
in the same relative position in preorder and postorder.”

5. [23] Another correspondence between trees and binary trees could be defined

by letting RLINK(P) point to the rightmost son of NODE(P), and LLINK(P) to the

nearest brother on the left. Let F be a forest which corresponds in this way to a binary

tree B. What order, on the nodes of B, corresponds to (a) preorder (b) postorder on F?

6. [25] Let T be a nonempty binary tree in which each node has 0 or 2 sons. If we

regard T as an ordinary tree, it corresponds (via the natural correspondence) to

another binary tree T'. Is there any simple relation between preorder, inorder, and

postorder of the nodes of T (as defined for binary trees) and the same three orders for

the nodes of T"l

7. [M20] A forest may be regarded as a partial ordering, if we say that each node

precedes its descendants in the tree. Are the nodes topologically sorted (as defined in

Section 2.2.3) when they are listed in (a) preorder? (b) postorder? (c) reverse preorder?

(d) reverse postorder?

8. [M20] Exercise 2.3.1-25 shows how an ordering between the information stored

in the individual nodes of a binary tree may be extended to a linear ordering of all

binary trees. The same construction leads to an ordering of all trees, under the natural

correspondence. Reformulate the definition of that exercise, in terms of trees.

9. [M21] Show that the total number of nonterminal nodes in a forest has a simple

relation to the total number of right links equal to A in the corresponding binary tree.

10. [M23] Let F be a forest of trees whose nodes in preorder are ui, U2, . . . , un, and

let F' be a forest whose nodes in preorder are u[, u^, . . . , u'n,. Let S(u) denote the

degree (the number of sons) of node u. In terms of these ideas, formulate and prove a

theorem analogous to Theorem 2.3.1 A.

346 INFORMATION STRUCTURES 2.3.2

\

11. [20] Draw trees analogous to those shown in (7), corresponding to the formula
_r2

V = e .

12. [M21] Give specifications for the routine DIFF[8] (the “f” operation), which was

omitted from the algorithm in the text.

► 13. [26] Write a MIX program for the COPY subroutine (which fits in the program of

the text between lines 63-104). [Hint: Adapt Algorithm 2.3.1C to the case of right-

threaded binary trees, with suitable initial conditions.]

► 14. [M21] How long does it take the program of exercise 13 to copy a tree with n

nodes?

15. [28] Write a MIX program for the DIV routine, corresponding to DIFF[7] as specified

in the text. (This routine should be added to the program in the text after line 217.)

16. [24] Write a MIX program for the PWR routine, corresponding to DIFF[8] as specified

in exercise 12. (This routine should be added to the program in the text after the solu¬

tion to exercise 15.)

17. [M40] Write a program to do algebraic simplification capable of reducing, for

example, (20) or (21) to (22). [Hints: Include a new field with each node, representing

its coefficient (for summands) or its exponent (for factors in a product). Apply alge¬

braic identities, like replacing In (u f v) by v In u, and remove the operations —, /,

and neg when possible by using equivalent addition or multiplication operations. Make

+ and X into n-ary instead of binary operators; collect like terms by sorting their

operands in tree order (exercise 8); some sums and products will now reduce to zero or

unity, presenting perhaps further simplifications. Other adjustments, like replacing a

sum of logarithms by the logarithm of a product, also suggest themselves.] For

references, see the survey article by J. Sammet, CACM 9 (1966), 555-569.

18. [M40] Consider algebraic formulas which are composed of the operators of

symbolic logic (AND, OR, and NOT, say). Try several different algorithms for

deciding whether or not such a formula is a tautology, i.e., is true for all combinations

of truth values of its variables. [For example,

((X AND Y) OR NOT X) OR NOT(Y AND Z)

I

is a tautology.] For each algorithm considered, analyze its computational efficiency.

See the article by M. Davis and H. Putnam, JACM 7 (1960), 201-215, for a discussion

of a reasonable algorithm, and for references to the earlier literature. Another idea is

to use the Boolean operations of a binary computer on 2n-bit quantities, where n is

the number of variables.

19. [M35] A free lattice is a mathematical system, which (for the purposes of this

exercise) can be simply defined as the set of all formulas composed of variables and

two abstract binary operators “U” and “fl”. A relation “X 3 Y” is defined between

certain formulas X and Y in the free lattice by the following rules:

a) X IJ Y 3 W D Z if and only if

XUF2TorIUF3ZorlDlfn^or Y^W CZ

b) I D Y 3 Z if and only if IDZ and Y DZ

c) IDFUZ if and only if Zd7 and X 3 Z

2.3.3 OTHER REPRESENTATIONS OF TREES 347

d) x 3 Y fi Z if and only if iDFori^Z, when £ is a variable

e) X U Y 2 z if and only if I D z or F D z, when z is a variable

f) x 2 y if and only if x = y, when x and y are variables.

For example, we find a fl (b U c) 2 (a D b) U (a fl c) a fl (b U c).

Design an algorithm which tests whether or not IdF, given two formulas

X and Y in the free lattice.

► 20. [M22] Prove that if u and v are nodes of a tree, u is an ancestor of v if and only if

u precedes v in preorder and u follows v in postorder.

21. [25] Algorithm D controls the differentiation activity for binary operators, unary

operators, and “nullary” operators, i.e., for trees whose nodes have degree 2, 1, or 0;

but it does not indicate explicitly how the control would be handled for ternary opera¬

tors and nodes of higher degree. (For example, exercise 17 suggests making addition

and multiplication into operators with any number of operands.) Is it possible to

extend Algorithm D in a simple way so that it will handle operators of degree more

than 2?

► 22. [M26] If T and T' are trees, let us say T can be embedded in T', written T Q T',
if there is a one-to-one function / from the nodes of T into the nodes of T' such that /

preserves both preorder and postorder. (In other words, u precedes v in preorder for T
if and only if f(u) precedes f(v) in preorder for T', and the same holds for postorder.

See Fig. 25.)

Fig. 25. One tree embedded in another (see exercise 22).

If T has more than one node, let l(T) be the leftmost subtree of root (T) and

let r(T) be the rest of T, that is, T with l(T) deleted. Prove that T can be embedded

in T' if either T has just one node, or both T and T' have more than one node and either

TQl(T'), or TCr(F), or l(T) Ql(T') and r(T) Cr(f). Does the converse hold?

2.3.3. Other Representations of Trees

There are many ways to represent tree structures inside a computer besides the

LLINK-RLINK (left son-right sibling) method given in the previous section. As

usual, the proper choice of representation depends heavily on what kind of

operations we want to perform on the trees. In this section we will consider a

few of the possible tree representation methods that have proved to be useful.

First we can use sequential memory techniques. As in the case of linear lists,

this mode of allocation is most suitable when we want a compact representation

348 INFORMATION STRUCTURES 2.3.3

of a tree structure that is not going to be subject to radical dynamic changes in

size or shape during program execution. There are many situations in which we

need essentially constant tables of tree structures for reference within a program,

and the desired form of these trees in memory depends on the way in which

these tables are to be examined.

The most common sequential representation of trees (and forests) corre¬

sponds essentially to the omission of LLINK fields, by using consecutive address¬

ing instead. For example, let us look again at the forest

(■A{B,C{K)), D(E(H), F(J), G)) (1)

considered in the previous section, which has the tree diagrams

The preorder sequential representation has the nodes appearing in preorder,

with the fields INFO, RLINK, and LTAG in each node:

RLINK

INFO

LTAG

A B, C K, D E H, F J, G

J J J J J
(3)

Here nonnull RLINKs have been indicated by arrows, and LTAG = “—” (for

terminal nodes) is indicated by “J ”. LLINK is unnecessary, since it would

either be null or it would point to the next item in sequence. It is instructive

to compare (1) with (3).

This representation has several interesting properties. In the first place, all

subtrees of a node appear immediately after that node, so that all subtrees

within the original forest appear in consecutive blocks. [Compare this with

the “nested parentheses” in (1) and in Fig. 20(b).] In the second place, note

that the RLINK arrows never cross each other in (3); this will be true in general,

for in a binary tree all nodes between X and RLINK(X) in preorder lie in the left

subtree of X, and so no outward arrows will emerge from that part of the tree.

In the third place, we may observe that the LTAG field, which indicates whether a

node is terminal or not, is redundant, since “J ” occurs only at the end of the

forest and just preceding every downward pointing arrow.

Indeed, these remarks show that the RLINK field itself is almost redundant;

all we really need to represent the structure is RTAG and LTAG. Thus it is possible

2.3.3 OTHER REPRESENTATIONS OF TREES 349

to deduce (3) from much less data:

RTAG 111 1 11
INFO A B C K' Dl E H F J G' (4)
LTAG J J J J J

Scanning (4) from left to right, the positions with RTAG “1” correspond to
nonnull RLINKs which must be filled in. Each time we pass an item with LTAG =

“J”, we should complete the most recent instance of an incomplete RLINK.

(The locations of incomplete RLINKs can therefore be kept on a stack.) We
have essentially proved Theorem 2.3.1 A again.

The fact that RLINK or LTAG is redundant in (3) is of little or no help to us
unless we are scanning the entire forest sequentially, since extra computation
is required to deduce the missing information. Therefore the full data in (3) is
often required. However, there is evidently some wasted space, since over half
of the RLINK fields are equal to A for this particular forest. There are two
common wTays to make use of the wasted space:

1) Fill in RLINK of each node to the address following the subtree below
that node. The field is now often called “SCOPE” instead of RLINK, since it
indicates the right boundary of the “influence” (descendants) of each node.
Instead of (3), we would have

SCOPE

FI! r-^ 1 i—41 rdr
INFO A BCKDEHFJG'i

The arrows still do not cross each other. Furthermore, LTAG(X) = ” is
characterized by the condition SCOPE (X) = X + c, given that c is the number of
words per node. One example of the use of this SCOPE idea appears in exercise
2.4-12.

2) Decrease the size of each node by removing the RLINK field, and add
special “link” nodes just before nodes that formerly had a nonnull RLINK:

INFO

LTAG

I \ l I 11 ^
A * B^C K^D (6)

Here “*” indicates the special link nodes, whose INFO somehow characterizes
them as links pointing as shown by the arrows. If the INFO and RLINK fields of
(3) occupy roughly the same amount of space, the net effect of the change to
(6) is to consume less memory, since the number of “*” nodes is always less
than the number of non-"*” nodes. Representation (6) is somewhat analogous
to a sequence of instructions in a one-address computer like MIX, with the “*”
nodes corresponding to conditional jump instructions.

350 INFORMATION STRUCTURES 2.3.3

Another sequential representation analogous to (3) may be devised by

omitting RLINKs instead of LLINKs. In this case we list the nodes of’the forest

in a new order which may be called “family-order” since the members of each

family appear together. Family-order for any forest may be recursively defined

as follows:

a) Visit the root of the first tree;
b) traverse the remaining trees (in family-order);

c) traverse the subtrees of the root of the first tree (in family-order).

(Compare this with the definitions of preorder and postorder in the previous

section. Family-order is identical with the reverse of postorder in the cor¬

responding binary tree.)
The family-order sequential representation of the trees (2) is

LLINK

INFO

RTAG

nl i
A E F GyJ^ B

(7)

Note that the RTAG entries serve to delimit the families. Family-order begins

by listing the roots of all trees in the forest, then continues by listing families,

successively choosing the family of the most recently appearing node whose

family has not yet been listed. It follows that the LLINK arrows will never cross;

and the other properties of preorder representation carry over in a similar way.

Instead of using family-order, we could also simply list the nodes from

left to right, one level at a time. This is called “level-order” [see G. Salton,

CACM 5 (1962), 103-114], and the level-order sequential representation of (2) is

LLINK

INFO

RTAG

l-F=\ .
A D, B C, E F

J J
I 1

H\ ^
(8)

This is like (7), but the families are chosen in first-in-first-out fashion rather

than last-in-first-out. Either (7) or (8) may be regarded as a natural analog,

for trees, of the sequential representation of linear lists.

The reader will easily see how to design algorithms that traverse and analyze

trees represented sequentially as above, since the LLINK and RLINK information

is essentially available just as though we had a fully linked tree structure.

Another sequential method, called postorder with degrees, is somewhat

different from the above techniques. We list the nodes in postorder and give
the degree of each node instead of links:

DEGREE 0 0 1 2 0 1 0 1 0 3 (9)

INFO BKCAHEJFGD

I or a proof that this is sufficient to characterize the tree structure, see exercise

2.3.2-10. This order is useful for the evaluation of certain functions defined on
the nodes of a tree, as in the following algorithm.

2.3.3 OTHER REPRESENTATIONS OF TREES 351

Algorithm F (Evaluate a locally defined f unction in a tree). Suppose / is a function

of the nodes of a tree, such that the value of / at a node x depends only on x and

the values off on the sons of x. The following algorithm, using an auxiliary stack,
evaluates / at each node of a nonempty forest.

FI. [Initialize.] Set the stack empty, and let P point to the first node of the
forest in postorder.

F2. [Evaluate/.] Set d <— DEGREE(P). (The first time this step is reached, d

will be zero. In general, when we get to this point, it will always be true that

the top d items of the stack are f(xd), . . . , f(x1)—from the top of the stack

downward—where xx, ... ,xd are the sons of NODE(P) from left to right.)

Evaluate /(NODE(P)), using the values of f{xd), . . . , f(xx) found on the
stack.

F3. [Update the stack.] Remove the top d items of the stack, and then put the
value/(NODE(P)) on top of the stack.

F4. [Advance.] If P is the last node in postorder, terminate the algorithm.

(Then the stack contains /(root (Tm)), . . . , /(root (Tf)), from top to

bottom, where Tlt . . . , Tm are the trees of the given forest.) Otherwise

set P to its successor in postorder (this would be simply P <— P -f 1 in the

representation (9)), and return to step F2. |

The validity of Algorithm F follows by induction on the size of the trees

processed (see exercise 17). This algorithm bears a striking similarity to the

differentiation algorithm (2.3.2D) of the previous section, which evaluates a

function of a closely related type. (See exercise 3.) The same idea is used in

many interpretive routines in connection with the evaluation of arithmetic

expressions in postfix notation; we will return to this topic in Chapter 8. See also

exercise 18, which gives another important procedure similar to Algorithm F.

Thus we have seen various sequential representations of trees and forests.

There are also a number of linked forms of representation, which we shall now

consider.
The first idea is related to the transformation that takes (5) into (6): we

remove the INFO fields from all nonterminal nodes and put this information as

a new terminal node below the previous node. For example, the trees (2) would

become

352 INFORMATION STRUCTURES 2.3.3

\

This new form shows that we may assume (without loss of generality) that all

INFO in a tree structure appears in its terminal nodes. Therefore in the natural

binary tree representation of Section 2.3.2, the LLINK and INFO fields are mutually

exclusive and they can share the same field in each node. A node might have

the fields

—'— -1-1- i
LTAG LLINK or INFO

_i_i_
RLINK

i

where the sign LTAG tells whether the second field is a link or not. (Compare

this representation with, for example, the two-word format of (10) in Section

2.3.2.) By cutting INFO down from 6 bytes to 3, we can fit each node into one

word. However, note that there are now 15 nodes instead of 10; the forest (10)

takes 15 words of memory while (2) takes 20, yet the latter has 60 bytes of INFO

compared to 30 in the other. There is no real gain in memory space in (10)

unless the excess INFO space was going to waste; the LLINKs replaced in (10)

are removed at the expense of about the same number of new RLINKs in the

added nodes. Precise details of the difference between the two representations

are discussed in exercise 4.
In the standard binary tree representation of a tree, the LLINK field might

be more accurately called the “LSON” field, since it points from a father node

to his leftmost son. The leftmost son is usually the “youngest” of the sons in

the tree, since it is easier to insert a node at the left of a family than at the right;

so the abbreviation “LSON” may also be thought of as the “last son” or “least

son. ”
Many applications of tree structures require rather frequent references

upward in the tree as well as downward. A threaded tree gives us the ability to

go upward, but not with great speed; occasionally, it is preferable to have a

third link, FATHER, in each node. This leads to a triply linked tree, where each

node has LSON, RLINK, and FATHER links. Figure 26 shows a triply linked tree

representation of (2). For an example of the use of triply linked trees, see

Section 2.4.

INFO FATHER

LSON RLINK Fig. 26. A triply linked tree.

2.3.3 OTHER REPRESENTATIONS OF TREES 353

It is clear that the FATHER link all by itself is enough to specify any oriented

tree (or forest) completely. For we can draw the diagram of the tree if we know

all the upward links. Every node except the root has just one father, but there

may be several sons; so it is simpler to give upward links than downward ones.

Why then haven’t we considered upward links much earlier in our discussion?

The answer, of course, is that upward links by themselves are hardly adequate

in most situations, since it is very difficult to tell quickly if a node is terminal

or not, or to locate any of its sons, etc. There is, however, a very important

application in which only upward links are sufficient: We now turn to a brief

study of an elegant algorithm for dealing with equivalence relations, which is

due to M. J. Fischer and B. A. Galler.

An equivalence relation “=” is a relation between the elements of a set of

objects S satisfying the following three properties for any objects x, y, and z

(not necessarily distinct) in S:

i) If x = y and y = z, then x = z. (Transitivity.)

ii) If x = y, then y = x. (Symmetry.)

iii) x = x. (Reflexivity.)

(Compare this with the definition of a “partial ordering” relation in Section

2.2.3; equivalence relations are quite different from partial orderings, in spite of

the fact that two of the three defining properties are the same.) Examples of

equivalence relations are the relation “= ”, the relation of congruence (modulo m)

for integers, the relation of similarity between trees, as defined in Section

2.3.1, etc.
The equivalence problem is to read in pairs of equivalences and to determine

later whether two particular elements can be proved equivalent or not on the

basis of the given pairs. For example, suppose that S is the set (1, 2, 3, 4, 5,

6, 7, 8, 9} and suppose that we are given the pairs

1 = 5, 6 = 8, 7 = 2, 9 = 8, 3 = 7, 4 = 2, 9 = 3. (11)

It follows that, for example, 2 = 6, since 2 = 7 = 3 = 9 = 8 = 6. But we

cannot show that 1 = 6. In fact, the pairs (11) divide S into two classes

{1,5} and {2,3,4,6,7,8,9}, (12)

such that two elements are equivalent if and only if they belong to the same

class. It is not difficult to prove that any equivalence relation partitions its set S

into disjoint classes (called the “equivalence classes”), such that two elements

are equivalent if and only if they belong to the same class.
Therefore to solve the equivalence problem it is a matter of keeping track

of equivalence classes like (12). We may start with each element alone in its

class, thus:

{1} {2} {3} {4} {5} {6} {7} {8} {9} (13)

354 INFORMATION STRUCTURES 2.3.3

Now if we are given the relation 1 = 5, we put {1, 5} together in a class. After

processing the first three relations 1 = 5, 6 = 8, and 7 = 2, we will have changed

(13) to
{1,5} {2,7} {3} {4} {6,8} {9}. (14)

Now the pair 9 = 8 puts^G, 8, 9} together, etc.
The problem is to find a good way to represent situations like (12), (13),

and (14) within a computer so that we can efficiently perform the operations of

merging classes together and of testing whether two given elements are in the

same class. The algorithm below uses tree structures for this purpose: The

elements of S become nodes of a forest; and two nodes are equivalent, as a

consequence of the pairs of equivalences read so far, if and only if they belong to

the same tree. This test is easy to make, since two elements are in the same tree

if and only if they are below the same root element. Furthermore, it is easy to

merge two trees together into one, by simply attaching one as a new subtree

of the other’s root.

Algorithm E (Process equivalence relations). Let S be the set of numbers

{1, 2, ... ,n}, and let FATHER! 11, FATHER!21, . . . , FATHER!nl be integer vari¬

ables. This algorithm inputs a set of relations such as (11) and adjusts the

FATHER table to represent a set of trees, so that two elements are equivalent as a

consequence of the given relations if and only if they belong to the same tree.

{Note: In a more general situation, the elements of S would be symbolic names

instead of simply the numbers from 1 to n; then a search routine, as in Chapter 6,

would locate nodes corresponding to the elements of S, and FATHER would be a

field in each node. The modifications for this more general case are straight¬

forward.)

El. [Initialize.] Set FATHER[/c] <— 0 for 1 < k < n. (This means that all trees

initially consist of a root alone, as in (13).)

E2. [Input new pair.] Get the next pair of equivalent elements “j = k” from

the input. If the input is exhausted, the algorithm terminates.

E3. [Find roots.] If FATHER]}] > 0, set } FATHER]}] and repeat this step. If

FATHER[/c] > 0, set k <— FATHER}?] and repeat this step. (After this opera¬
tion, } and k have moved up to the roots of two trees which are to be made

equivalent. The input relation j = k was redundant if and only if we now
have } = k.)

E4. [Merge trees.] If} ^ k, set FATHER!}] <— k. Go back to step E2. |

The reader should try this algorithm on the input (11). After processing
1 = 5, 6 = 8, 7 = 2, and 9 = 8, we will have

FATHER!/cl: 500008208

k : 12345 6 789
(15)

2.3.3 OTHER REPRESENTATIONS OF TREES 355

which represents the trees

After this point, the remaining relations of (11) are somewhat more interesting;
see exercise 9.

This equivalence problem occurs in many applications. A more general

version of the problem which arises when a compiler processes “equivalence

declarations” in languages like FORTRAN is discussed in exercise 11.

There are still more ways to represent trees in computer memory. Recall

that we discussed three principal methods for representing linear lists in Section

2.2: the “straight” representation with terminal link A, the “circularly” linked

lists, and the “doubly” linked lists. The representation of unthreaded binary

trees described in Section 2.3.1 corresponds to a “straight” representation in both

LLINKs and RLINKs. It is possible to get eight other binary tree representations

by independently using any of these three methods in the LLINK and RLINK

directions. For example, Fig. 27 shows what we get if circular linking is used in

both directions. If circular links are used throughout as in the figure, we have

what is called a ring structure; ring structures have proved to be quite flexible in

a number of applications. The proper choice of representation depends, as

always, on the type of insertions, deletions, and traversals that are needed in

the algorithms that manipulate these structures. A reader who has looked over

the examples given so far in this chapter should have no difficulty understanding

when to use and how to deal with any of these memory representations.

We close this section with an example of modified doubly linked ring struc¬

tures applied to a problem we have considered before: arithmetic on polynomials.

Algorithm 2.2.4A performs the addition of one polynomial to another, given that

the two polynomials are expressed as circular lists, and various other algorithms

in that section give other operations on polynomials; however, the polynomials

are restricted to at most three variables. When multi-variable polynomials are

356 INFORMATION STRUCTURES 2.3.3

H
4
+

H
CM

+

?5j

+

a O
0 >?
o

Ph

0 cj
-*n>
02 £
o o

o
0
>>
o

pH

2 [a>
Si

R
IG

H
T

|
D

O
W

N

|

|
E

X
P

I
C

V

I

;
u
p

|

|
L

E
F

T

I

«
CO

I
CO

4“

H
+

CM
H
+
co

JD
"a

a a3
X

W

o
o

Ph

(rk>

<■

I

CO H

<

/V
*

Hi>

/ryv

/rj\

j \

>

*-

i-

Hi*

i

r, r #-

CM -

•-

o CO

S'

/ ^

Sf

F
ig

.
28

.
R

ep
re

se
n
ta

ti
o
n
 o

f
p

o
ly

n
o

m
ia

ls
 u

si
n
g
 f

o
u
r-

d
ir

ec
ti

o
n
al

 l
in

k
s.

S
h
ad

ed
 a

re
as

 o
f

n
o
d
es

 i
n
d
ic

at
e

in
fo

rm
at

io
n
 i

rr
el

ev
an

t
in
 t

h
e

co
n
te

x
t

co
n

si
d
er

ed
.

2.3.3
OTHER REPRESENTATIONS OF TREES 357

involved, it is often more appropriate to use a tree structure instead of a linear
list.

A polynomial either is a constant or has the form

1]
0 < j'<n

where * is a variable, n > 0, 0 = e0 < d < • • • < c„, and g0> . . . , gn are

polynomials involving only variables alphabetically less than x; gu . . . , gn are

not zero. This definition of polynomials lends itself to tree representation as
indicated in Fig. 28. Nodes have six fields, which in the case of MIX might fit
in three words:

+ 0

1-
LEFT

-1-
RIGHT

+ EXP
1-

UP
1

-1-
DOWN

_ _

1

CV
1

-1-

_1

(17)

Here LEFT, RIGHT, UP, and DOWN are links, EXP is an integer representing an

exponent, and CV is either a constant (coefficient) or the alphabetic name of a

variable. The root node has UP = A, EXP = 0, LEFT = RIGHT = * (self).

The following algorithm illustrates traversal, insertion, and deletion in such
a four-way-linked tree, so it bears careful study.

Algorithm A (Addition of polynomials). This algorithm adds polynomial(P)

to polynomial(Q), assuming that P and Q are pointer variables which link to

the roots of distinct polynomial trees having the form shown in Fig. 28. At the

conclusion of the algorithm, polynomial (P) will be unchanged, and polynomial
(Q) will contain the sum.

Al. [Test type of polynomial.] If DOWN(P) = A (i.e., if P points to a constant),

then set Q <— DOWN(Q) zero or more times until DOWN(Q) = A and go to A3.

If DOWN(P) 3^ A, then if DOWN(Q) = A or if CV(Q) < CV(P), go to A2.

Otherwise if CV(Q) = CV(P), set P <- DOWN(P), Q <- DOWN(Q) and repeat

this step; if CV(Q) > CV(P), set Q <— DOWN(Q) and repeat this step. (Step

Al either finds two matching terms of the polynomials or else determines

that an insertion of a new variable must be made into this part of poly¬
nomial (Q).)

A2. [Downward insertion.] Set R <= AVAIL, S 4— DOWN(Q). If S ^ A, set

UP(S) <— R, S <— RIGHT(S), and if EXP(S) 5^ 0, repeat this operation until

ultimately EXP(S) = 0. Set UP(R) <— Q, DOWN(R) <— DOWN(Q), LEFT(R) R,

RIGHT(R) «- R, CV(R) <— CV(Q), and EXP(R) 4- 0. Finally, set CV(Q) <-

CV(P) and D0WN(Q) <— R, and return to Al. (We have inserted a “dummy”

zero polynomial just below NODE (Q), to obtain a match with a corresponding

polynomial found within P’s tree. The link manipulations done in this step

358 INFORMATION STRUCTURES
2.3.3

are straightforward and may be derived easily using “before-and-after”

diagrams, as explained in Section 2.2.3.)

A3. [Match found.] (At this point, P and Q point to corresponding terms of the

given polynomials, so addition is ready to proceed.) Set CV(Q) * CV(Q) +
CV(P). If this sum is zero and if EXP (Q) ^ 0, go to step AS. If EXP (Q) = 0,

go to A7.

A4. [Advance to left.] (After successfully adding a term, we look for the next

term to add.) Set P <- LEFT (P). If EXP (P) = 0, go to A6. Otherwise set
q <— LEFT (Q) one or more times until EXP (Q) < EXP(P). If then EXP (Q) =

EXP(P), return to step Al.

A5. [Insert to right.] Set R <= AVAIL. Set UP(R) < UP(Q), DOWN(R) < A,

LEFT(R) <— Q, RIGHT(R) <— RIGHT(Q), LEFT(RIGHT(R)) < R, RIGHT(Q) * R,

EXP(R) <— EXP(P), CV(R) <— 0, and Q <— R. Return to step Al. (It was

found necessary to insert a new term in the current row, just to the right

of NODE(Q), in order to match a corresponding exponent in polynomials).

As in step A2, a “before-and-after” diagram makes the above operations

clear.)

A6. [Return upward.] (A row of polynomial (P) has now been completely

traversed.) Set P <— UP (P).

A7. [Move Q up to right level.] If UP(P) = A, go to All; otherwise set Q <-

UP(Q) zero or more times until CV(UP(Q)) = CV(UP(P)). Return to

step A4.

A8. [Delete zero term.] Set R <— Q, Q RIGHT(R), S <— LEFT(R), RIGHT(S) <—

Q, LEFT(Q) <— S, and AVAIL <= R. (Cancellation occurred, so a row element

of polynomial(Q) is deleted.) If now EXP(LEFT(P)) = 0 and Q = S, go

to A9; otherwise return to A4.

A9. [Delete constant polynomial.] (Cancellation has caused a polynomial to

reduce to a constant, so a row of polynomial(Q) is deleted.) Set R <— Q,

Q <— UP(Q), DQWN(Q) <— DOWN(R), CV(Q) <— CV(R), and AVAIL <= R. Set

S <- DOWN(Q); if S ^ A, setUP(S) <-Q, S *— RIGHT (S), andifEXP(S) 0,

repeat this operation until ultimately EXP(S) = 0.

A10. [Zero detected?] If D0WN(Q) = A, CV(Q) = 0, and EXP(Q) ^ 0, set P <—

UP(P) and go to A8; otherwise go to A6.

All. [Terminate.] Set Q<-UP(Q) zero or more times until UP(Q) = A (thus

bringing Q to the root of the tree). |

This algorithm will actually run much faster than Algorithm 2.2.4A if

polynomial(P) has few terms and polynomial(Q) has many, since it is not

necessary to pass over all of polynomial(Q) during the addition process. The

reader will find it instructive to simulate Algorithm A by hand, adding the

polynomial xy — x2 — xyz — z3 + 3xz3 to the polynomial shown in Fig. 28.

(This case does not demonstrate the efficiency of the algorithm, but it makes

the algorithm go through all of its paces by showing the difficult situations which

must be handled.) For further commentary on Algorithm A, see exercises

12 and 13.

2.3.3 OTHER REPRESENTATIONS OF TREES 359

No claim is being made here that the representation shown in Fig. 28 is the

“best” for polynomials in several variables; in Chapter 8 we will consider

another format for polynomial representation, together with arithmetic algo¬

rithms using an auxiliary stack, which have significant advantages of conceptual

simplicity when compared to Algorithm A. Our main interest in Algorithm A

is the way it typifies manipulations on trees with many links.

EXERCISES

► 1. [20] If we had only LTAG, INFO, and RTAG fields (not LLINK) in a level-order

sequential representation like (8), would it be possible to reconstruct the LLINKs?

(in other words, are the LLINKs redundant in (8), as the RLINKs are in (3)?)

2. [22] (Burks, Warren, and Wright, Math. Comp. 8 (1954), 46-50.) The trees (2)
stored in preorder with degrees would be

DEGREE 2 0 1 0 3 1 0 1 0 0

INFO ABCKDEHFJG

[cf. (9) where postorder was used]. Design an algorithm analogous to Algorithm F to
evaluate a locally defined function of the nodes by going from right to left in this
representation.

► 3. [24] Modify Algorithm 2.3.2D so that it follows the ideas of Algorithm F, placing
the derivatives it computes as intermediate results on a stack, instead of recording
their locations in an anomalous fashion as is done in step D3. (Cf. exercise 2.3.2-21.)
The stack may be maintained by using the RLINK field in the root of each derivative.

4. [15] The trees (2) contain 10 nodes, five of which are terminal. Representation

of these trees in the normal binary-tree fashion involves 10 LLINK fields and 10 RLINK

fields (one for each node). Representation of these trees in the form (10), where LLINK

and INFO share the same space in a node, requires 5 LLINKs and 15 RLINKs. There

are 10 INFO fields in each case.

Given a forest with n nodes, m of which are terminal, compare the total num¬

ber of LLINKs and RLINKs that must be stored using these two methods of tree

representation.

5. [16] A triply linked tree, as shown in Fig. 26, contains FATHER, LS0N, and RLINK

fields in each node, with liberal use of A-links when there is no appropriate node to
mention in the FATHER, LSON, or RLINK field. Would it be a good idea to extend this
representation to a threaded tree, by putting “thread” links in place of the null LSON

and RLINK entries, as we did in Section 2.3.1?

► 6. [24] Suppose that the nodes of an oriented forest have three link fields, FATHER,

LSON, and RLINK, but only the FATHER link has been set up to indicate the tree struc¬

ture. The LSON field of each node is A and the RLINK fields are set as a linear list which

simply links the nodes together in some order. The link variable FIRST points to the

first node, and the last node has RLINK = A.

Design an algorithm which goes through these nodes and fills in the LSON and
RLINK fields compatible with the FATHER links, so that a triply linked tree representa¬
tion like that in Fig. 26 is obtained. Also, reset FIRST so that it now points to the
root of the first tree in this representation.

360 INFORMATION STRUCTURES 2.3.3

7. [15] What classes would appear in (12) if the relation 9 = 3 had not been given

in (11)?

8. [20] Algorithm E sets up a tree structure which represents the given pairs of

equivalences, but the text does not mention explicitly how the result of Algorithm E

can be used. 'Design an algorithm which answers the question, “Is j = kV’, assuming

that 1 < j < n, 1 < k < n> and that Algorithm E has set up the FATHER table for

some set of equivalences.

9. [21] Give a table analogous to (15) and a diagram analogous to (16) which shows

the trees present after Algorithm E has processed all of the pairs of equivalences in

(11) from left to right.

10. [25] In the worst case, Algorithm E may take order n2 steps to process n equiva¬

lences. Show how to modify the algorithm so that the worst case is not this bad.

► 11. [24] (“Equivalence declarations”) Several compiler languages provide a facility

for overlapping the memory locations assigned to sequentially stored tables. The
programmer gives the compiler pairs of relations of the form “X[j] = Y[&] ” which

means variable X[j + s] is to be assigned to the same location as variable Y[& -|- s]

for all s. Each variable is further given a range of allowable subscripts: “ARRAY X[H:u]”
means that space is to be set aside in memory for the table entries X[£], X[/+ 1], . . . ,

X[u]. For each equivalence class of variables, the compiler reserves as small a block

of consecutive memory locations as possible, to contain all the table entries for the

allowable subscript values of these variables.

For example, suppose we have ARRAY X[0:10], ARRAY Y[3:10], ARRAY A[l:l],

and ARRAY Z[—2:0], plus the equivalences X[7] = Y[3], Z[0] = A[0], and Y[l] = A[8].

We must set aside 20 consecutive locations

X0 Xi X2 X3 X4 X5 X6 X7 X8 X9 Xio

Z_2 Z_1 Zo Ai Y3 Y4 Y5 Y6 Y7 Ys Yg Yio

for these variables. Note that the location following A[l] is not an “allowable” sub¬
script value for any of the arrays, but it is reserved anyway.

The object of this exercise is to modify Algorithm E so that it applies to the more
general situation just described. Assume that we'are writing a compiler for such a
language, and the tables inside our compiler program itself have one node for each
array, containing the fields NAME, FATHER, DELTA, LBD, and UBD. Assume that the
compiler program has previously processed all the ARRAY declarations, so that if
“ARRAY X[Gw]” has appeared and if P points to the node for X, then

NAME (P) = “X”, FATHER (P) = A, DELTA (P) = 0,

LBD(P) = l, UBD(P) = u.

The problem is to design an algorithm which processes the equivalence declarations,
so that after this algorithm has been performed

FATHER(P) = A means that locations X[LBD(P)], ..., X[UBD(P)] are to be
reserved in memory for this equivalence class;

FATHER(P) = Q ^ A means that location X[k] equals location Y[k + DELTA(P)],
where NAME(Q) = “Y”.

2.3.3 OTHER REPRESENTATIONS OF TREES 361

For example, before the equivalences listed above we might have the nodes

p NAME(P) FATHER(P) DELTA(P) LBD(P) UBD(P)

a X A 0 0 10
0 Y A 0 3 10
7 A A 0 1 1
5 Z A 0 —2 0

After the equivalences are processed, the nodes might appear thus:

a X A * -5 14

0 Y a 4 * *

7 A 8 0 * *

8 Z a -3 * *

(“*” denotes irrelevant information).

Design an algorithm which makes this transformation. Assume that inputs to

your algorithm have the form (P, j, Q,k), denoting “X[j] s Y[/c]”. where NAME(P) =

“X” and NAME(Q) = “Y”. Be sure to check whether the equivalences are contradictory;

e.g., X[l] = Y[2] contradicts X[2] = Y[l],

12. [21] At the beginning of Algorithm A, the variables P and Q point to the roots of

two trees. Let Po and Qo denote the values of P and Q before execution of Algorithm A.

(a) After the algorithm terminates, is Qo always the address of the root of the sum of

the two given polynomials? (b) After the algorithm terminates, have P and Q returned

to their original values Po, Qo?

► 13. [M29] Give an informal proof that at the beginning of step A8 of Algorithm A we

always have EXP (P) = EXP (Q) and CV(UP (P)) =CV(UP(Q)). (This fact is important

to the proper understanding of that algorithm.)

14. [40] Give a formal proof (or disproof) of the validity of Algorithm A.

15. [40] Design an algorithm to compute the product of two polynomials represented

as in Fig. 28.

► 16. [28] Design an algorithm which, given tables INF01[/], RLINK[/] for 1 < j < n,
corresponding to preorder sequential representation, forms tables INF02[/], DEGREEfj]

for 1 < j < n, corresponding to postorder with degrees. For example, according to

(3) and (9), your algorithm should transform

j

INFOlb']

RLINK[/]

into

INF02[/]

DEGREE^’]

1 2

A B
5 3

B K
0 0

3 4

C K
0 0

C A
1 2

5 6

D E
0 8

H E
0 1

7 8

H F
0 10

J F
0 1

9 10

J G
0 0

G D
0 3

17. [M24] Prove the validity of Algorithm F.

► 18. [25] Algorithm F evaluates a “bottom-up” locally-defined function, namely, one

which should be evaluated at the sons of a node before it is evaluated at the node. A

“top-down” locally-defined function / is one in which the value of / at a node x depends

only on x and the value of / at the father of x. Using an auxiliary stack, design an

362 INFORMATION STRUCTURES 2.3.3

algorithm analogous to Algorithm F which evaluates a top-down function / at each
node of a tree. (Like Algorithm F, your algorithm should work efficiently on trees
which have been stored in postorder with degrees, as in (9).)

19. [M4.8] Perform an analysis of the efficiency of Algorithm E when it is given
random pairs of equivalences in random order. In particular, what is the average level
of the nodes in the trees, aftdr Algorithm E has been in operation?

2.3.4. Basic Mathematical Properties of Trees

Tree structures have been the object of extensive mathematical investigations

for many years, long before the advent of computers, and many interesting facts

have been discovered about them. In this section we will survey the mathe¬

matical theory of trees, which not only gives us more insight into the nature of

tree structures but also has important applications to computer algorithms.

Nonmathematical readers are advised to skip to subsection 2.3.4.5, which

discusses several topics that arise frequently in the applications we shall study

later.
The material which follows comes mostly from a larger area of mathematics

known as the theory of graphs. Unfortunately, there is as yet no standard

terminology in this field, and so the author has followed the usual practice of

contemporary books on graph theory, namely to use words that are similar but

not identical to the terms used in any other books on graph theory. An attempt

has been made in the following subsections (and, indeed, throughout this book)

to choose short, descriptive words for the important concepts, selected from

those which are in reasonably common use and which do not sharply conflict

with other common terminology. The nomenclature used here is also biased

towards computer applications; thus, an electrical engineer may prefer to call a

“tree” what we call a “free tree,” but we want the shorter term “tree” to stand

for the concept which is generally used in the computer literature and which is

so much more important in computer applications. If we were to follow the

terminology of some authors on graph theory, we would have to say “finite

labeled rooted ordered tree” instead of just “tree,” and “topological bifurcating

arborescence” instead of “binary tree”!

2.3.4.I. Free trees. A graph is generally defined to be a set of points (called

vertices) together with a set of lines (called edges) joining certain pairs of distinct

vertices. There is at most one edge joining any pair of vertices. Two vertices

are called adjacent if there is an edge joining them. If F and V' are vertices and

if. n > 0, we say that (F0, Vi, , Vn) is a path of length n from F to F' if

V = F0, Vk is adjacent to Ffc+1 for 0 < k < n, and Vn = V'. The path is

simple if F0, Vlt . . . , Fn_x are distinct and if Fx, . . . , F„_x, Vn are distinct.

A graph is connected if there is a path between any two vertices of the graph. A

cycle is a simple path of length three or more from a vertex to itself.

These definitions are illustrated in Fig. 29, which shows a connected graph

with five vertices and six edges. Vertex C is adjacent to A but not to B; there

are two paths of length two from B to C, namely (B, A, C) and (B, D, C). There
are several cycles, including (B, D, E, B).

2.3.4.1
FREE TREES 363

A free tree or “unrooted tree” (Fig. 30) is defined to be a connected graph

with no cycles. This definition applies to infinite graphs as well as to finite ones,
although for computer applications we naturally are most concerned with finite

trees. There are many equivalent ways to define a free tree; some of these
appear in the following well-known theorem:

Theorem A. If G is a graph, the following statements are equivalent:

a) G is a free tree;

b) G is connected, but if any edge is deleted, the resulting graph is no longer
connected.

c) If V and V' are distinct vertices of G, there is exactly one simple path from
V to V'.

Furthermore, if G is finite, containing exactly n > 0 vertices, the following
properties are also equivalent to (a), (5), and (c):

d) G contains no cycles and has n — 1 edges.

e) G is connected and has n — 1 edges.

Proof, (a) implies (b), for if the edge VV is deleted but G is still connected,

there must be a simple path {V, Vx, . . ., V') of length two or more—see exer¬

cise 2—and then (F, Vi, . . . ,V',V) would be a cycle in G.
(b) implies (c), for there is at least one simple path from F to V'. And if

there were two such paths (V, Vlt . . . , V') and (F, V[, . . . , V'), we could find

the smallest k for which Vk 5^ F£; deleting the edge Vk-iVk would not disconnect

the graph, since there would still be a path (Vk-1, V'k, . . . ,V', . . ., Vk) from

Vk~i to Vk which does not use the deleted edge.

(c) implies (a), for if G contains a cycle (F, Fi, . . . , F), there are two

simple paths from F to V1.

To show that (d) and (e) are also equivalent to (a), (b), and (c), let us first

prove an auxiliary result: If G is any finite graph which has no cycles and at

least one edge, then there is at least one vertex which is adjacent to exactly one

other vertex. For we take an arbitrary vertex Fi and an adjacent vertex V2;

for k > 2 either F* is adjacent to Vk—1 and no other, or it is adjacent to a

vertex which we may call Vk+1 ^ Vk—i. Since there are no cycles, V\, V2, ■ . ■ ,

Vk+\ must be distinct vertices, so this process must ultimately terminate.

364 INFORMATION STRUCTURES 2.3.4.1

Now assume G is a tree with n > 1 vertices, and let Vn be a vertex which

is adjacent to only one other vertex, namely Fn-i- If we delete Vn and the
edge Vn—\Vn, the remaining graph G' is a tree, since Vn appears in no simple

path of G except as the first or the last element. This argument proves (by

induction on n) that G has n — 1 edges, i.e., (a) implies (d).
Assume that G satisfies (d) and let Vn, Fn—u G' be as in the preceding

paragraph. Then the graph G is connected, since Vn is connected to Fn—i

which (by induction on n) is connected to all other vertices of G'. Thus (d)

implies (e).
Finally assume that G satisfies (e). If G contains a cycle, we can delete any

edge appearing in that cycle and G would still be connected. We can therefore

continue deleting edges in this way until we obtain a connected graph G' with

n — 1 — k edges and no cycles. But since (a) implies (d), we must have k = 0,

that is, G = G'. |

The idea of a free tree can be applied directly to the analysis of computer

algorithms. In Section 1.3.3, we discussed the application of Kirchhoff’s first

law to the problem of counting the number of times each step of an algorithm is

performed; we found that Kirchhoff’s law does not completely determine the
number of times each step is executed, but it reduces the number of unknowns

that must be specially interpreted. The theory of trees tells us how many

independent unknowns will remain, and it gives us a systematic way to find them.

It is easier to understand the method which follows if an example is studied,

so we will work an example as the theory is being developed. Figure 31 shows

an abstracted flow chart for Program 1.3.3A, which was subjected to a “Kirch¬

hoff’s law” analysis in Section 1.3.3. Each box in Fig. 31 represents part of the

computation, and the letter or number inside the box denotes the number of

times that computation will be performed during one run of the program, using

the notation of Section 1.3.3. An arrow between boxes represents a possible

jump in the program. The arrows have been labeled elt e2, . . . , e27- Our goal

is to find all relations between the quantities A, B, C, D, E, F, G, H, J, K, L,

P, Q, R, and S that are implied by Kirchhoff’s law, and at the same time we hope

to gain some insight into the general problem. (Note: Some simplifications have

already been made in Fig. 31, e.g., the box between C and E has been labeled

2.3.4.1 FREE TREES 365

“1 ”, and this in fact is a consequence of Kirchhoff’s law.)

Let Ej denote the number of times branch e3- is taken during the execution
of the program being studied; Kirchhoff’s law is

“sum of £’s into box = value in box = sum of E’s leaving box”; (1)

e.g., in the case of the box marked K we have

£19 T- £2o — K = £18 T- £21- (2)

In the discussion which follows, we will regard £1, £2, . . . , £27 as the unknowns,
instead of A, B, S.

The flow chart in Fig. 31 may be further abstracted so that it becomes a

graph G as in Fig. 32. The boxes have shrunk to vertices, and the arrows

ei, e2, . . . now represent edges of the graph. (A graph, strictly speaking, has no

implied direction in its edges, and when we refer to graph-theoretical properties

of G, the direction of the arrows should be ignored. The application to Kirch¬

hoff’s law, however, makes use of the arrows, as we will see later.) For con¬

venience an extra edge e0 has been drawn from the “stop” vertex to the “start”

vertex, so that Kirchhoff’s law applies uniformly to all parts of the graph.

Figure 32 also includes some other minor changes from Fig. 31: an extra vertex

and edge have been added to divide e13 into two parts e'13 and e'13, so that the

basic definition of a graph (no two edges join the same two vertices) is valid;

ei9 has also been split up in this way. A similar modification would have been

made if we had any vertex with an arrow leading back to itself.

Some of the edges in Fig. 32 have been drawn much heavier than the others.

These edges form a free subtree of the graph, connecting all the vertices. It is

always possible to find a free subtree of the graphs arising from flow charts,

because the graphs must be connected and, by part (b) of Theorem A, if G

is connected and not a free tree, we can delete some edge and still have the

Fig. 32. Graph corresponding to Fig. 31, including a free subtree.

366 INFORMATION STRUCTURES 2.3.4.1

resulting graph connected; this process can be iterated until we reach a subtree.
Another algorithm for finding a free subtree appears in exercise 9. We can in

fact always discard the edge e0 (which went from the “stop” to the “start”

vertex) first, so that we may assume e0 does not appear in the subtree chosen.

Let G' be a free subtree of the graph G found in this way, and consider any

edge VV of G that is not\n G'. We may now note an important consequence

of Theorem A: G' plus this new edge VV contains a cycle; and in fact there is

exactly one cycle, having the form (F, V, . . ., V), since there is a unique simple

path from V' to V in G'. For example, if G' is the free subtree shown in Fig. 32,

and if we add the edge e2, we obtain a cycle which goes along e2 and then (in the

direction opposite to the arrows) along e4 and e3. This cycle may be written

algebraically as “e2 — e4 — e3”, using plus signs and minus signs to indicate

whether the cycle goes in the direction of the arrows or not.
If we carry out this process for each edge not in the free subtree, we obtain

the so-called fundamental cycles, which in the case of Fig. 32 are

C0: Co + el + e3 + ^4 + 06 + 07 + 09 + e10 + ell + 01

C2: e2 — 64 — e3,

CK: e5 — e7 ~ e6>

C8: es + + e4 -f- eg + 07,

C"3 e13 + e12 + 013’

C17 017 + ^22 + 624 + 027 + 011 + 015 + 016,

c'U el'9 + e18 + ejg,

C20 020 T e18 T e22 + 023,

c2i 021 016 e15 ~ - e\\ — e27 — e24 — 022 e18>

C25 e25 + 026 ~~ e27■

Obviously an edge ey which is not in the free subtree will appear in only one of

the fundamental cycles, namely Cj.

We are now approaching the climax of this construction. Each fundamental

cycle represents a solution to Kirchhoff's equations; for example, the solution

corresponding to C2 is to let E2 = +1, E3 — — 1, E4 = —1, and all other

E’s = 0. It is clear that flow around a cycle in a graph always satisfies the

condition (1) of Kirchhoff’s law. Moreover, Kirchhoff’s equations are “homo¬

geneous,” so the sum or difference of solutions to (1) yields another solution.

Therefore we may conclude that the values of E0, E2, E5, . . ., E2b are inde¬
pendent in the following sense:

If x0, x2, . . . , z25 are any real numbers (one Xj for each ey

not in the free subtree G'), there is a solution to Kirchhoff’s equations (4)
(1) such that Eq = x0, E2 = x2, . . . , E25 = x25.

Such a solution is found by going x0 times around cycle Co, x2 times around

cycle C2, etc. Furthermore, we find that the values of the remaining variables

Ei, E3, E4, ... are completely dependent on the values E0, E2, . . . , E2b\

The solution mentioned in statement (4) is unique. (5)

For if there are two solutions to Kirchhoff’s equations such that E0 = x0, . . . ,

E25 = 225, we can subtract one from the other and we thereby obtain a solution

2.3.4.1 FREE TREES 367

in which E0 — E2 — E5 = • • • = E25 = 0. But now all Ej must be zero,

for it is easy to see that a nonzero solution to Kirchhoff’s equations is impossible

when the graph is a free tree (see exercise 4). Therefore the two assumed solu¬

tions must be identical. We have now proved that all solutions of Kirchhoff’s

equations may be obtained as sums of multiples of the fundamental cycles.

When these remarks are applied to the graph in Fig. 32, we obtain the

following general solution of Kirchhoff’s equations in terms of the independent

variables E0, E2, . . . , E25:

E i = E o, E14 = Eq,

£3 = Eo E2 T E8, El 5 = E17 — £21: *
E 4 = Eq — E2 + E$, E IQ = £17 — £21: 1

Eq = Eq £5 + Eg, E18 = £79 T £20 — E2\.
e7 = Eq E5 -f- E8, E'lQ = T?t t

^19)

E 9 = Eq, E 22 = £ 17 + £20 — £21

E\o = Eq, E 23 = £ 20,

E n = Eq + E\7 — E21, E 24 = £ 17 — £21,

E \2 = Eq + if'/s, £26 = £25,

E[3 = XT’"
^13> £ 27 = £17 — £21 — £25

(6)

To obtain these equations, we merely list, for each edge e3- in the subtree, all Ek

for which ey appears in cycle Ck, with the appropriate sign. [Thus, the matrix

of coefficients in (6) is just the transpose of the matrix of coefficients in (3).]

Strictly speaking, C0 should not be called a fundamental cycle, since it

involves the special edge e0. We may call C0 minus the edge e0 a fundamental

path from “start” to “stop.” Our boundary condition, that the “start” and “stop”

boxes in the flow chart are performed exactly once, is equivalent to the relation

E o — 1. (7)

The preceding discussion shows how to obtain all solutions to Kirchhoff’s

law; the same method may be applied (as Kirchhoff himself applied it) to

electrical circuits instead of program flow charts. It is natural to ask at this

point whether Kirchhoff’s law is the strongest possible set of equations that can

be given for the case of program flow charts, or whether more can be said: Any

execution of a computer program that goes from “start” to “stop” gives us a

set of values E E2, . . ., E27 for the number of times each edge is traversed,

and these values obey Kirchhoff’s law; but are there solutions to Kirchhoff’s

equations which do not correspond to any computer program execution? (In

this question, we do not assume that we know anything about the given com¬

puter program, except its flow chart.) If there are solutions which meet Kirch¬

hoff’s conditions but do not correspond to actual program execution, we can

give stronger conditions than Kirchhoff’s law. For the case of electrical circuits

Kirchhoff himself gave a second law: the sum of the voltage drops around a

fundamental cycle must be zero. This second law does not apply to our problem.

There is indeed an obvious further condition that the E’s must satisfy, if

they are to correspond to some actual path in the flow chart from “start” to

“stop”; they must be integers, and in fact they must be nonnegative integers.

This is not a trivial condition, since we cannot simply assign any arbitrary non-

368 INFORMATION STRUCTURES 2.3.4.1

negative integer values to the independent variables E2, E5, ... , E25; for
example, if we take E2 = 2 and Eg = 0, we find from (6), (7) that E3 = 1.

(Thus, no execution of the flow chart in Fig. 31 will take branch e2 twice without

taking branch e8 at least once.) The condition that all the E’s be nonnegative

integers is not enough either; for example, consider the solution in which

E'{g = 1, E2 = E5 = • • *= Ei7 = E20 = E2l = E25 = 0; there is no way

to get to ex8 except via ei5. The following condition is a necessary and sufficient

condition which answers the problem raised in the previous paragraph: Let

E2, E5, . . . , E25 be any given values, and determine Ei, E3, . . . , E27 according

to (6), (7). Assume that all the E’s are nonnegative integers, and assume that

the graph whose edges are those ej for which Ej > 0, and whose vertices are

those which touch such ej, is connected. Then there is a path from “start” to

“stop ” in which edge ej is traversed exactly Ej times. This fact is proved in the

next section (see exercise 2.3.4.2-24).
Let us now summarize the preceding discussion:

Theorem K. If a flow chart {such as Fig. 81) contains n boxes {including “start”

and “stop”) and m arrows, it is possible to find m — n + 1 fundamental cycles and

a fundamental path from “start” to “stop”, such that any path from “start” to “stop”

is equivalent {in terms of the number of times each edge is traversed) to one traversal

of the fundamental path plus a uniquely determined number of traversals of each of

these fundamental cycles. (The fundamental path and fundamental cycles may

include some edges which are to be traversed in a direction opposite that shown

by the arrow on the edge; we conventionally say that such edges are being

traversed —1 times.)

Conversely, for any traversal of the fundamental path and the fundamental

cycles in which the total number of times each edge is traversed is nonnegative, and

in which the vertices and edges corresponding to a positive number of traversals form

a connected graph, there is at least one equivalent path from “start” to “stop.” |

The fundamental cycles are found by picking a free subtree as in Fig. 32;

if we choose a different subtree we get, in general, a different set of fundamental

cycles. The fact that there are m — n -f 1 fundamental cycles follows from

Theorem A. The modifications we made to get from Fig. 31 to Fig. 32, after

adding e0> do not change the value of m — n -f- 1, although they may increase

both m and n; the construction could have been generalized so as to avoid these

trivial modifications entirely (see exercise 8).

Theorem K is encouraging because it says that Kirchhoff’s law (which

consists of n equations in the m unknowns Ex, E2, . . . , Em) has just one

“redundancy,” i.e., these n equations allow us to eliminate n — 1 unknowns.

Note however that throughout this discussion the unknown variables have been

the number of times the edges have been traversed, not the number of times each

box of the flow chart has been entered. Exercise 7 shows how to construct

another graph whose edges correspond to the boxes of a flow chart, so that the

above theory can be used to deduce the true number of redundancies between
the variables of interest.

2.3.4.1 FREE TREES 369

EXERCISES

1. [14] List all cycles from B to B which are present in the graph of Fig. 29.

2. [M20] Prove that if V and V' are vertices of a graph and if there is a path from
V to V', then there is a simple path from V to V'.

3. [15] What path from “start” to “stop” is equivalent (in the sense of Theorem K)
to one traversal of the fundamental path plus one traversal of cycle C2 in Fig. 32?

► 4. [M20] Let G' be a finite free tree in which arrows have been drawn on its edges
ei, , en_i; let E1, . . . , £?„_ 1 be numbers satisfying Kirchhoff’s law (1) in G'.
Show that Ei = • • • = En-1 = 0.

5. [20] Using Eqs. (6), express the quantities A, B, . . . , S which appear inside the
boxes of Fig. 31 in terms of the independent variables E2, E5, . . . , E25.

6. [22] Carry out the construction in the text for the flow chart

using the free subtree consisting of edges ei, e2, 63, e4, eg. What are the fundamental
cycles? Express E1, E2, E3, Ei, Eg in terms of E5, Eg, E7, and Eg.

► 7. [M25] When applying Kirchhoff’s first law to program flow charts, we usually
are interested only in the vertex flows (the number of times each box of the flow chart
is performed), not the edge flows analyzed in the text. For example, in the graph of
exercise 6, the vertex flows are A = E2 + Ei, B — E5, C = E3 + E7 -j- Eg,

D = Eg -\~ Eg.
If we group some vertices together, treating them as one “supervertex,” we can

combine edge flows that correspond to the same vertex flow. For example, edges eg
and ei can be combined in the above flow chart if we also put B with D:

(Here eo has also been added from Stop to Start, as in the text.) Continuing this
procedure, we can combine e3 -f~ e-j, then (e3 -(- ej) -j* eg, then eg -f- eg, until we obtain
the reduced flow chart having edges s = ei, a = eg + ei, b = eg, c = e3 + e-i + eg,
d = egeg, t = eg, precisely one for each vertex in the original flow chart:

370 INFORMATION STRUCTURES 2.3.4.1

By construction, Kirchhoff’s law holds in this reduced flow chart. The new edge
flows are the vertex flows of the original; hence the analysis in the text, applied to the
reduced flow chart, shows how the original vertex flows depend on each other.

Prove that this reduction process can be reversed, in the sense that any set of
flows {a, b, . satisfying Kirchhoff’s law in the reduced flow chart can be “split up”
into a set of edge flows (eo, $1, . . •} in the original flow chart. These flows ey satisfy
Kirchhoff’s law and combine to yield the given flows {a, b, . . .}; some of them might,
however, be negative. (Although the reduction procedure has been illustrated here
for only one particular flow chart, your proof should be valid in general.)

8. [M22] Edges ei3 and ei9 were split into two parts in Fig. 32, since a graph is not
supposed to have two edges joining the same two vertices. However, if we look at
the final result of the construction, this splitting into two parts seems quite artificial
since E[3 = E[3, E[g = E[9 are two of the relations found in (6), and E13, Ejg are
two of the independent variables. Explain how the construction could be generalized
so that an artificial splitting of edges may be avoided.

► 9. [M27] Suppose a graph has n vertices V1, . . . , Vn and m edges e\, . . . , em.
Each edge e* is represented by a pair of integers (a*, bk) giving the numbers of the
vertices which it makes adjacent. Design an algorithm which takes the input pairs
(01, bi), . . . , (am, bm) and prints out a subset of these which forms a free tree; the
algorithm reports failure if this is impossible. Strive for an efficient algorithm.

10. [16] An electrical engineer, designing the circuitry for a computer, finds that he
has n terminals T\, T2, . . . , Tn which he wants to have at essentially the same voltage
at all times. To achieve this, he can solder wires between any pairs of terminals; the
idea is to make enough wire connections so that there is a path through the wires from
any terminal to any other. Show that the minimum number of wires needed to connect
all the terminals is n — 1, and n — 1 wires achieve the desired connection if and only
if they form a free tree (with terminals and wires standing for vertices and edges).

11. [M27] (R. C. Prim, Bell System Tech. J. 36 (1957), 1389-1401.) Consider the wire
connection problem of exercise 10 with the additional proviso that a cost c(i, j) is given
for each i < j, denoting the expense of wiring terminal Ti to terminal Ty. Show that
the following algorithm gives a connection tree of minimum cost: “If n = 1, do nothing.
Otherwise, renumber terminals and costs so that c(n—1, n) = mini<i<„ c(i, n);
connect terminal Tn_\ to Tn\ then change c(j, n — 1) to min (c(j, n — 1), c(j, ri))
for 1 < j < n — 1, and repeat the algorithm for n — 1 terminals Ti, . . . , 1 using
these new costs. (The algorithm is to be repeated with the understanding that when¬
ever a connection is subsequently requested between the terminals now called Tj and
Tn_i, the connection is actually made between terminals now called Tj and Tn if it

Fig. 33. Free tree
of minimum cost.
(See exercise 11.)

2.3.4.2 ORIENTED TREES 371

is cheaper; thus Tn—\ and Tn are being regarded as though they were one terminal in
the remainder of the algorithm.)” This algorithm may also be stated as follows:
“Choose a particular terminal to start with; then repeatedly make the cheapest possible
connection from an unchosen terminal to a chosen one, until all have been chosen.”

For example, consider Fig. 33(a), which shows nine terminals on a grid; let the
cost of connecting two terminals be the wire length, i.e., the distance between them.
(The reader may wish to try to find a minimal cost tree by hand, using intuition instead
of the above algorithm.) The algorithm would first connect Ts to Tg, then Tg to
Ts, T5 to Tq, T2 to T6, T\ to T2, Tz to T\, to Tz, and finally T4 to either T2

or Tg. A minimum cost tree (wire length 7 -j- 2\/2 -f- 2\/5) is shown in Fig. 33(b).

► 12. [29] The algorithm of exercise 11 is not stated in a fashion suitable for direct
computer implementation. Reformulate that algorithm, specifying in more detail the
operations that are to be done, in such a way that a computer program can carry out
the process with reasonable efficiency.

13. [M20] Let G be a graph (possibly infinite) which contains no cycles, but a cycle
is formed if any edge not already present in G is added to G. Prove that G is a free tree.

14. [M2fi\ Consider a graph wdth n vertices and m edges, in the notation of exercise 9.
Show that it is possible to wTrite any permutation of the integers (1, 2, . . . , n) as a
product of transpositions (ak1bk1)(ak2bk2) ■ ■ • (dkpkt) if and only if the graph is con¬
nected. (Hence there are sets of n — 1 transpositions which generate all permutations
on n elements, but no set of n — 2 will do so.)

*2.3.4.2. Oriented trees. In the previous section, we saw that an abstracted

flow chart may be regarded as a graph, if we ignore the direction of the arrows

on its edges; the graph-theoretic ideas of “cycle” and “free subtree,” etc., were

shown to be relevant in the study of flow charts. There is a good deal more that

can be said when the direction of each edge is given more significance, and in

this case we have what is called a “directed graph” or “digraph.”

Let us define a directed graph formally as a set of vertices and a set of arcs,

each arc leading from a vertex V to a vertex V'. If e is an arc from V to V' we

say V is the initial vertex of e, and V' is the final vertex, and we write V =

init(e), V' — fin(e). The case that init(e) = fin(e) is not excluded (although

it was excluded from the definition of edge in an ordinary graph), and several

different arcs may have the same initial and final vertices. The out-degree of a

vertex V is the number of arcs leading out from it, i.e., the number of arcs e such

that init(e) = V; similarly, the in-degree of V is the number of arcs with

fin(e) = V.
The concepts of paths, cycles, etc. are defined for directed graphs in a

manner similar to the corresponding definitions for ordinary graphs, but there

are some important new technicalities that must be considered. If e\, e2, . . . , en

are arcs (with n > 1), we say (ei, e2, , en) is an oriented path of length n

from F to V' if V = initfci), V' = fin(e„), and fin(efc) = init(efc+i) for
1 < k < n. An oriented path (ei, e2, . . ., en) is called simple if init(ej), . . .,

init(e„) are distinct and fin(ci), . . . , fin(en) are distinct. An oriented cycle is a

simple oriented path from a vertex to itself. (Note that an oriented cycle can

have length 1 or 2, but this was excluded from our definition of “cycle” in the

previous section. Can the reader see why this makes sense?)

372 INFORMATION STRUCTURES 2.3.4.2

As examples of these straightforward definitions, we may refer to Fig. 31 in

the previous section. The box labeled “J” is a vertex with in-degree 2 (because

of the arcs ei6, e2i) and out-degree 1. The sequence (en, eXg, eig, 622) is an
oriented path of length 4 from J to P; this path is not simple since, for example,

init(ei9) = L — init(e22)- The diagram contains no oriented cycles of length

1, but (ei8, C19) is an oriented cycle of length 2.
A directed graph is said to be strongly connected if there is an oriented path

from V to V' for any two vertices V 9^ V'. It is said to be rooted if there is at

least one “root,” i.e., at least one vertex R such that there is an oriented path

from V to R for all V ^ R. [“Strongly connected” always implies “rooted,”

but the converse does not hold. A flow chart such as Fig. 31 in the previous

section is an example of a rooted digraph, with R the “stop” vertex; with the

additional arc from “stop” to “start” (Fig. 32) it becomes strongly connected.]

Every directed graph G corresponds in an obvious manner to an ordinary

graph G0, where G0 has an edge from V to V' if and only if V 9^ Vr and G has an

arc from V to V' or from V' to V. We can speak of (unoriented) paths and cycles

in G with the understanding that these are paths and cycles of G0; we can say

that G is connected (this is a much weaker property than “strongly connected, ”

even weaker than “rooted”) if the corresponding graph Go is connected, etc.

An oriented tree (see Fig. 34), sometimes called a

“rooted tree” by other authors, is a directed graph

with a specified vertex R such that:

a) Each vertex V 9^ R is the initial vertex of exactly

one arc, denoted by e[F];

b) R is the initial vertex of no arc;

c) R is a root in the sense defined above (i.e., for

each vertex V 9^ R there is an oriented path

from F to R).

It follows immediately that for each vertex V 9^ R

there is a unique oriented path from V to R-r and

hence there are no oriented cycles.

Our previous definition of “oriented tree” (at the beginning of Section 2.3)

is easily seen to be compatible with the new definition just given, when there are

finitely many vertices; the vertices correspond to nodes, and the arc e[V] is
the link from V to FATHER (V).

The (undirected) graph corresponding to an oriented tree is connected,

because of property (c). Furthermore, if (V0, Vx, ... , Vn) is a cycle with

n > 3, and if the edge between V0 and Vx is e[V 1], then the edge between Vx

and V2 must be e[V2], and similarly the edge between Vk-i and Vk must be

e[Vk] for 1 < k < n, contradicting the absence of oriented cycles. If the edge

between V0 and V1 is e[V0], the same argument applies to the cycle

(Fx, Vo, y„_!,..., vxy.
Therefore there are no cycles; an oriented tree is a free tree when the direction
of the arcs is neglected.

R

2.3.4.2 ORIENTED TREES 373

Conversely, it is important to note that we can reverse the process just

described. If we start with any nonempty free tree, such as that in Fig. 30, we

can choose any vertex as the root R, and assign directions to the edges. The

intuitive idea is to “pick up” the graph at vertex R and shake it; then assign

upward-pointing arrows. More formally, the rule is this:

Change the edge VV' to an arc from V to V' if and only if the simple

path from V to R leads through V', that is, if it has the form (V0, Vu . . . ,
Fn), where n > 0, V0 = V, = V', Vn = R.

To verify that such a construction is valid, we need to prove that each edge VV'

is assigned the direction V <— V' or the direction V —> V'] and this is easy to

prove, for if (V, Vi, . . ., R) and (V\ V[, . . ., R) are simple paths, there is a

cycle unless V = V[or V\ = V'. It is a consequence of this construction that

the directions of the arcs in an oriented tree are completely determined by

knowing which vertex is the root, so they need not be shown in diagrams when
the root is explicitly indicated.

Fig. 35. Three tree structures.

We now see the relation between three types of trees: the (ordered) tree

which is of principal importance in computer programs, as defined at the begin¬

ning of Section 2.3; the oriented tree (i.e., unordered tree); and the free tree.

Both of the latter two types of trees arise in the study of computer algorithms,

but not as often as the first type. The essential distinction between these types of

tree structure is merely the amount of information that is taken to be relevant. For

example, Fig. 35 shows three distinct trees if they are considered as ordered

trees (with root at the top). As oriented trees, the first and second are identical,

since the left-to-right order of subtrees is immaterial; as free trees, all three

graphs in Fig. 35 are identical, since the root is immaterial.

An Eulerian circuit in a directed graph is an oriented path (e1? e2> • • • , O
such that every arc in the directed graph occurs exactly once, and fin (em) =

init (<?i). This is a “complete traversal” of the arcs of the directed graph. (Euler¬

ian circuits get their name from Leonhard Euler’s famous discussion in 1736 of

the impossibility of traversing each of the seven bridges in the city of Konigsberg

exactly once during a Sunday stroll. He treated the analogous problem for

374 INFORMATION STRUCTURES 2.3.4.2

undirected graphs. Eulerian circuits should be distinguished from “Hamil¬
tonian circuits,” which are oriented cycles that encounter each vertex exactly

once; see Chapter 7.)
A directed graph is said to be balanced (see Fig. 36) if every vertex V has the

same in-degree as its out-degree, i.e., if there are just as many edges with V as
their initial vertex as therk are with V as their final vertex. This condition is
closely related to Kirchhoff’s law (see exercise 24). It is obviously possible to
find an Eulerian circuit in a directed graph only if the graph is connected and
balanced, provided that there are no isolated vertices, i.e., vertices with in-degree
and out-degree both equal to zero.

Fig. 36. A balanced directed graph.

So far in this section there have been quite a few definitions (e.g., directed
graph, arc, initial vertex, final vertex, out-degree, in-degree, oriented path,
simple oriented path, oriented cycle, oriented tree, Eulerian circuit, isolated
vertex, and the properties of being strongly connected, rooted, and balanced),
but there has been a scarcity of important results connecting these concepts.
Now we are ready for meatier material. The first basic result is a theorem due to
I. J. Good [J. London Math. Soc. 21 (1947), 167-169], who showed that
Eulerian circuits are always possible unless they are obviously impossible:

Theorem G. A finite, directed graph with no isolated vertices possesses an Eulerian
circuit if and only if it is connected and balanced.

Proof. Assume G is balanced and let

P = (fill ••• y &m)

be an oriented path of longest possible length that uses no arc twice. Then if
V = fin(eTO), and if k is the out-degree of V, all k arcs e with init(e) = V must
already appear in P, otherwise we could add e and get a longer path. But if
init(ey) = V and j > 1, then fin(ey_i) = V; hence, since G is balanced, we
must have

init(ei) = V = fin(em),

otherwise the in-degree of V would be at least k -f- 1.
Now by cyclic permutation of P it follows that any arc e not in the path

has neither initial nor final vertex in common with any arc in the path; so if P
is not an Eulerian circuit, G is not connected. |

2.3.4.2 ORIENTED TREES 375

There is an important connection between Eulerian circuits and oriented
trees:

Lemma E. Let (e\, ... , em) be an Eulerian circuit of a directed graph G having

no isolated vertices. Let R = fin|(em) = init(ei). For each vertex V 7^ R let
c\V] be the “last exit” from V in the circuit, i.e.,

e[V] = ej if init(ey) = V and init(efc) ^ V for j < k < m. (1)

Then the vertices of G with the arcs e[V] form an oriented tree with root R.

Proof. Properties (a) and (b) of the definition of oriented tree are evidently

satisfied. By exercise 7 we need only show there are no oriented cycles among

the e[V]; but this is immediate, since if fin(e[F]) = V' = init(e[F']), where
e[V] = ej and e[V'] = ey, then j < f. |

This lemma can perhaps be better understood if we turn things around and

consider the “first entrances” to each vertex; the first entrances form an un¬

ordered tree with all arcs pointing away from R. Lemma E has a surprising and

important converse, proved by T. van Aardenne-Ehrenfest and N. G. de Bruijn
[Simon Stevin 28 (1951), 203-217]:

Theorem D. Let G be a finite, balanced, directed graph, and let G' be an oriented

tree consisting of the vertices of G plus some of the arcs of G. Let R be the root of G'

and let e[V] be the arc of G' with initial vertex V. Let e\ be any arc of G with

init(ei) = R. Then P = (e1; e2, . . . , em) is an Eulerian circuit if it is an oriented
path for which

i) no arc is used more than once; i.e., ey e* when j k.

ii) e[V] is not used in P unless it is the only choice consistent with rule (i); i.e.,

if ej — e[V] and if e is an arc with init(e) = V, then e = e^ for some

k < j.
iii) P terminates only when it cannot be continued by rule (i); i.e., if init(e) —

fin(e„0, then e = e^for some k.

Proof. By (iii) and the argument in the proof of Theorem G, we must have

fin(eTO) = init(ex) — R. Now if e is an arc not appearing in P, let F = fin(e).

Since G is balanced, it follows that V is the initial vertex of some arc not in P;

and if V ^ R, e[V] must not be in P by condition (ii). Now use the same argu¬

ment with e = e[V], and we ultimately find R is the initial vertex of some arc

not in the path, contradicting (iii). |

The essence of Theorem D is that it shows us a simple way to construct an

Eulerian circuit in a balanced directed graph, given any oriented subtree of the

graph. (See the example in exercise 14.) In fact, Theorem D allows us to count

the exact number of Eulerian circuits in a directed graph; this result and many

other important consequences of the ideas developed in this section appear in

the exercises which follow.

376 INFORMATION STRUCTURES 2.3.4.2

EXERCISES

1. [M20] Prove that if V and V' are vertices of a directed graph and if there is an

oriented path from V to 7', then there is a simple oriented path from V to V'.

2. [15] Which of the ten “fundamental cycles” listed in (3) of Section 2.3.4.1 are

oriented cycles in the directed graph (Fig. 32) of that section?

3. [16] Draw the diagram for a directed graph that is connected but not rooted.

► 4. [M20] The concept of topological sorting can be defined for any finite directed

graph G as a linear arrangement of the vertices such that init(e) precedes fin(e) in

the ordering for all edges e of G. (Cf. Section 2.2.3, Figs. 6 and 7.) Not all finite

directed graphs can be topologically sorted; which ones can be? (Use the terminology

of this section to give the answer.)

5. [M21] Let G be a directed graph which contains an oriented path (ei, . . ., en)

with: fin (e„) = init(ei). Give a proof that G is not an oriented tree, using the termi¬

nology defined in this section.

6. [M21] True or false: A directed graph which is rooted and contains no cycles and

no oriented cycles is an oriented tree.

► 7. [M22] True or false: A directed graph satisfying properties (a) and (b) of the

definition of oriented tree, and having no oriented cycles, is an oriented tree.

8. [HM4.O] Study the properties of automorphism groups of oriented trees, i.e., the
groups consisting of those permutations 7r of the vertices and arcs such that init(e7r) =
init(e)7r, fin(e-7r) = fin(e)7T.

9. [IS] By assigning directions to the edges, draw the oriented tree corresponding to

the free tree in Fig. 30 on page 363, with G as the root.

10. [22] An oriented tree with vertices Vi, . . . , Vn can be represented inside a com¬

puter by using a table F[l], . . . , F[n] as follows: If V, is the root, F[j] = 0; otherwise

F[j] = k, if the arc e[V j] goes from V, to Vk. (Thus F[l], . . . , F[n] is the same as

the “father” table used in Algorithm 2.3.3E.)

The text shows how a free tree can be converted into an oriented tree by choosing

any desired vertex to be the root. Consequently, it is possible to start with an oriented

tree that has root R, then to convert this into a free tree by neglecting the orientation

of the arcs, and finally to assign new orientations, obtaining an oriented tree with any

specified vertex as the root. Design an algorithm which performs this transformation:

Starting with a table F[l], . . . , F[n], representing an oriented tree, and given an integer

j, 1 < j < n, design the algorithm to transform the F table so that it represents the

same free tree but with V,• as the root.

► 11. [28] Using the assumptions of exercise 2.3.4.1-9, but with (ak, 6*) representing an

edge whose arrow points from Vak to Vbk, design an algorithm which not only prints

out a free subtree as in that algorithm, but also prints out the fundamental cycles.

[Hint: The algorithm given in the solution to exercise 2.3.4.1-9 can be combined with

the algorithm in the preceding exercise.]

12. [M10] In the correspondence between oriented trees as defined here and oriented

trees as defined at the beginning of Section 2.3, is the degree of a tree node equal to the

in-degree or the out-degree of the corresponding vertex?

2.3.4.2 ORIENTED TREES 377

► 13. [M24] Prove that if R is a root of a (possibly infinite) directed graph G, then G

contains an oriented subtree with the same vertices as G and with root R. (As a

consequence, it is always possible to choose the free subtree in flow charts like Fig. 32

of Section 2.3.4.1 so that it is actually an oriented subtree; this would be the case in

that diagram if we had selected e^, e'/g, e2o, and e17 instead of e[3, e[g, e23, and e15.)

14. [21] Let G be the directed graph shown in Fig. 36, and let G' be the oriented

subtree with vertices V0, Vi, V2 and arcs e0i, e2i. Find all paths P that meet the
conditions of Theorem D, starting with arc ei2.

15. [M20\ Prove that a directed graph which is connected and balanced is strongly
connected.

► 16. [M24\ In a popular solitaire game called “clock,” the 52 cards of an ordinary deck

of playing cards are dealt face down into 13 piles of four each; 12 piles are arranged in

a circle like the 12 hours of a clock and the thirteenth pile goes in the center. The

solitaire game now proceeds by turning up the top card of the center pile, and then if

its face value is k, we place it next to the &th pile. (1, 2, ... , 13 are equivalent to

A, 2, ... , 10, J, Q, K.) Play continues by turning up the top card of the ftth pile

and putting it next to its pile, etc., until we reach a point where it is impossible to

continue since there are no more cards to turn up on the designated pile. (The player

has no choice in the game, since the above rules completely specify his actions.) The

game is won if all cards are face up when play terminates. [Reference: A. Moyse, Jr.,

150 ways to play solitaire (Chicago: Whitman, 1950).]

Show that the game will be won if and only if the following directed graph is an

oriented tree: The vertices are V i, V 2, • • ■ , V13; the arcs are ei, e2, . . . , ei2, where

e,■ goes from V, to Vk if k is the bottom card in pile j after the deal.

(In particular, if the bottom card of pile,) is a “j”, for j 5^ 13, it is easy to see that

the game is certainly lost, since this card could never be turned up. The result proved

in this exercise gives a much faster way to play the game!)

17. [M82] What is the probability of winning the solitaire game of clock (described

in exercise 16), assuming the deck is randomly shuffled? What is the probability that

exactly k cards are still face down when the game is over?

18. [MSO] (Okada and Onodera, Bull. Yamagata Univ. 2 (1952), 89-117.) Let G be a

graph with n-(- 1 vertices Vo, Vi, . . ., Vn and m edges ei, , em. Make G into a

directed graph by assigning an arbitrary orientation to each edge; then construct the

m X (n -f- 1) matrix A with

Clij

+i,
-1,

0,

if init(e<) = Vj;

if fin(ei) = Vj;

otherwise.

Let Ao be the m X n matrix A with column 0 deleted.

a) If m = n, show that the determinant of Ao is equal to 0 if G is not a free tree, and

equal to ± 1 if G is a free tree.

b) Show that for general m the determinant of AqAo is the number of free subtrees

of G (i.e., the number of ways to choose n of the m edges so that the resulting

graph is a free tree). [Hint: Use (a) and the result of exercise 1.2.3-46.]

378 INFORMATION STRUCTURES 2.3.4.2

19. [MSI] (C. W. Borchardt, Journal f. d. reine und angewandte Math. 57 (1860),

111-121.) Let G be a directed graph with vertices Fo, Fi, . . . , F„. Let A be the

(n+ 1) X (« + 1) matrix with

—k, if i j and there are k arcs from Vi to Fy;

t, if i ^ j and there are t arcs from V, to other vertices.

(It follows that a{o + Oil H-Vain = 0 for 0 < i < n.) Let A0 be the same

matrix with row 0 and column 0 deleted. For example, if G is the directed graph of

Fig. 36, we have

a) Show that in the special case aoo = 0 and ayy = 1 for 1 < j < n, and if G con¬

tains no arcs from a vertex to itself, then G is an oriented tree with root Fo if

and only if det Ao = 1; and if G is not an oriented tree, then det Aq = 0.

b) Show that in the general case, det Ao is the number of oriented subtrees of G with

root Fo (i.e., the number of ways to select n of the arcs of G so that the resulting

directed graph is an oriented tree, with Fo as the root). [Hint: Use induction on

the number of arcs.]

20. [MSI] If G is a graph on n + 1 vertices Fo, • • • , F„, let B be the nX n matrix

defined as follows for 1 < i,j < n: It, if i — j and there are t edges touching Fy;

—1, if i j* j and F,- is adjacent to Fy;

0, otherwise.

For example, if G is the graph of Fig. 29 on page 363, with (Fo, Fi, F2, F3, F4) =

(A, B, C, D, E), we find that

/ 3 0 —1 —A

0 2 —1 0
-1 —1 3 —1

\-l 0 —1 t 2/

Show that the number of free subtrees of G is det B. [Hint: Use exercise 18 or 19.]

21. [HM88] Fig. 36 is an example of a directed graph that is not only balanced, it is

regular, which means every vertex has the same in-degree and out-degree as every other

vertex. Let G be a regular directed graph with n + 1 vertices Fo, Fi, . . . , F„, in

which every vertex has in-degree and out-degree equal to m. (Hence there are (n -f- 1)m

arcs in all.) Let G* be the graph with (n-(- 1)m vertices corresponding to the arcs of

G; let a vertex of G* corresponding to an arc from Fy to F* in G be denoted by Fy*.
An arc goes from Fy* to Fyv in G* if and only if k = /. For example, if G is the

directed graph of Fig. 36, G* is as shown in Fig. 37. An Eulerian circuit in G is a

Hamiltonian circuit in G* and conversely.

Prove that the number of oriented subtrees of G* is tipties the number

of oriented subtrees of G. [Hint: Use exercise 19.]

2.3.4.2 ORIENTED TREES 379

Fig. 37. Arc-digraph corresponding to Fig. 36. (See exercise 21.)

► 22. [M26\ Let G be a balanced, directed graph with vertices Vi, V2, . . . , Vn and no

isolated vertices. Let a}- be the out-degree of Fy. Show that the number of Eulerian

circuits of G is

(or + o"2 + • • • + ff«) T JJ (<Tj — 1)!,
1 < y < re

where T is the number of oriented subtrees of G with root V\. [Note: The factor

(0-1 + • • • + o’n), which is the number of arcs of G, may be omitted if the Eulerian

circuit (ei, . . . , em) is regarded as equal to (e*, . . . , em, e\, . . . , ek-1).]

► 23. [MSS] (N. G. de Bruijn.) For each sequence of nonnegative integers xi, . . ., a;*

less than m, let/(xi, . . ., x*) be a nonnegative integer less than m. Define an infinite

sequence as follows: Xi — X2 = ■ • • = Xk = 0; Xn+k+i = f(Xn+k, • ■ ■ , Xn+i) when

n > 0. For how many of the mmk possible functions / is this sequence periodic with a

period of the maximum length mk? [Hint: Construct a directed graph with vertices

(xi, . . . , Xk-1) for all 0 < xy < m, and with arcs from (xi, X2, . . . , x*,_i) to

(X2, . . ., xk-1, Xk)', apply exercises 21 and 22.]

► 24. [MW] Let G be a connected, directed graph with arcs eo, e\, . . ., em. Let

Eq, Ei, .. ., Em be a set of positive integers which satisfy Kirchhoff’s law for G, i.e.,

for each vertex V,

L E E>-
init(ey)=V fin(ey)=V

380 INFORMATION STRUCTURES 2.3.4.2

Assume further that 2?o = 1. Prove that there is an oriented path in G from fin(eo)

to init(eo) such that edge e0 does not appear in the path, and for 1 < j < m edge

ei appears exactly Ej times. [Hint: Apply Theorem G to a suitable directed graph.]

► 25. [26] Design a computer representation for directed graphs which generalizes the

right-threaded binary tree representation of a tree. Use two link fields ALINK, BLINK

and two one-bit fields ATAG,iBTAG; and design the representation so that: (a) there is

one node for each arc of the directed graph (not for each vertex); (b) if the directed

graph is an oriented tree with root R, and if we add an arc from R to a new vertex H,

then the representation of this directed graph is essentially the same as a right-threaded

representation of this oriented tree (with some order imposed on the sons in each

family), such that ALINK, BLINK, BTAG are respectively the same as LLINK, RLINK,

RTAG in Section 2.3.2; and (c) the representation is symmetric in the sense that inter¬

changing ALINK, ATAG with BLINK, BTAG is equivalent to changing the direction on all

the arcs of the directed graph.

► 26. [HM39] (Analysis of a random algorithm.) Let G be a directed graph on the

vertices VV 2, ■ ■ ■ , Vn. Assume that G represents the flow chart for an algorithm,

where Vi is the “start” vertex and Vn is the “stop” vertex. (Therefore Vn is a root

of G.) Suppose each arc e of G has been assigned a probability p(e), where the prob¬

abilities satisfy the conditions

0 < p(e) < 1; ^ p(e) = 1, 1 < j < n.
init (e)=Vj

Consider a “random path,” which starts at Vi and which subsequently chooses branch

e of G with probability p(e), until Vn is reached; the choice of branch taken at each

step is to be independent of all previous choices.

For example, consider the graph of exercise 2.3.4.1-6, and assign the respective

probabilities 1, 1, f, 5, 5, 5 to arcs ei, e2, . . . , eg. Then the path “Start-A-B-

C'-A-D-.B-C'-Stop” is chosen with probability 1-^-1-2'i'i'l'? = tIts-
Such random paths are called Markov chains, after the Russian mathematician

Andrei A. Markov who first made extensive studies of stochastic processes of this

kind. The situation serves as a model for certain algorithms, although our requirement

that each choice of path must be independent of the others is a very strong assumption.

The problem we wish to solve here is to analyze the computation time for algorithms
of this kind.

The analysis is facilitated by considering the n X n matrix A = (an), where

an = X)p(e) summed over all arcs e which go from V, to Vj. If there is no such arc,

an = 0. The matrix A for the example considered above is

^0 1 0 0 0 0\

0 0 § 0 £ 0

0 0 0 1 0 0 .

0 I 0 0 H
0 0 f 0 0 i

\o 0 0 0 0 0/

It follows easily that (Ak)a is the probability that a path starting at Fj will be at Vj
after k steps.

the “infinity lemma” 381

Prove the following facts, for an arbitrary directed graph G of the above type:

(a) The matrix (7 A) is nonsingular. [Hint: Show there is no nonzero vector x with

xAn = x.] (b) The average number of times vertex Vj appears in the path is

V ~ A)$ = cofactoryi(7 — A)/det (I — A), for 1 < j < n.

[Thus in the example considered we find that the vertices A, B, C, D are traversed

respectively J, ■§ times, on the average.] (c) The probability that Vj occurs
in the path is

oy = cofactor;i(7 — A)/cofactor,y(7 — A)]

furthermore, an = 1, so the path terminates in a finite number of steps with prob¬

ability one. (d) The probability that a random path starting at Vj will never return
to Vj is

bj = det (7 — A)/cofactor,-y(7 — A).

(e) The probability that Vj occurs exactly k times in the path is

a,(l — bj)k~1bj, for k > 1, 1 < j < n.

*2.3.4.3. The “infinity lemma.” Until now we have concentrated mainly on

finite trees, i.e., trees with only finitely many vertices (nodes), but the defini¬

tions we have given for free trees and oriented trees apply to infinite graphs as

well. Infinite ordered trees may be defined in several ways, for example, by

extending the concepts of “Dewey decimal notation” to infinite collections of

numbers, as in exercise 2.3-14. Even in the study of computer algorithms there

is occasionally a need to know the properties of infinite trees (for example, in

order to prove by contradiction that a certain tree is not infinite). One of the

most fundamental properties of infinite trees, first stated in its full generality
by D. Konig, is the following:

Theorem K. (The “infinity lemma.”) In any infinite oriented tree for which

every vertex has finite degree, there is an “infinite path from the root, ” i.e., an infinite

sequence of vertices V0, Vj, V2, ... in which V0 is the root and fin(e[F_,+i]) =

Vj for all j > 0.

Proof. We define the path by starting with U0, the root of the oriented tree.

Assume that j > 0 and that Vj has been chosen having infinitely many descen¬

dants. The degree of Vj is finite by hypothesis, so Vj has finitely many sons

Ui,... } Un. At least one of these sons must possess infinitely many descendants,

so we take Vj+i to be such a son of Vj.

Now V0, Vi, V2, ... is an infinite path from the root. |

Students of calculus may recognize that the argument used here is essentially

like that used to prove the classical Bolzano-Weierstrass theorem, “A bounded,

infinite set of real numbers has an accumulation point.” One way of stating

382 INFORMATION STRUCTURES 2.3.4.3

Theorem K, as Konig observed, is this: “If the human race never dies out,

there is a man now living having a line of descendants that will never die out.”
Most people think that Theorem K is completely obvious when they first

encounter it, but after more thought and a consideration of further examples

they realize that there is something “profound” about the infinity lemma.

Although the degree of eadh node of the tree is finite, we have not assumed that

it is bounded (less than some number N for all vertices), so there may be nodes

with higher and higher degrees. If we stop to consider things carefully, it is at

least conceivable that everyone’s descendants will ultimately die out although

there will be some families that go on a million generations, others a billion, etc.,

etc. In fact, H. W. Watson once published a “proof” that under certain laws of

biological probability carried out indefinitely, there will be infinitely many people

born in the future but each family line will die out with probability one. His

paper [./. Anthropological Inst. Gt. Britain and Ireland 4 (1874), 138-144]

actually contains important and far-reaching theorems in spite of the minor slip

which caused him to make this erroneous statement, and it is significant that he

did not find his conclusions to be logically inconsistent.
The contrapositive of Theorem K is directly applicable to computer algo¬

rithms : “If we have an algorithm that periodically divides itself up into finitely

many subalgorithms, and if each chain of subalgorithms ultimately terminates,

then the algorithm itself terminates. ”
Phrased yet another way, suppose we have a set S, finite or infinite, such

that each element of S is a sequence (oq, x2, . . . , xn) of positive integers of

finite length n > 0. If we impose the conditions that

i) If (xi, . . . , xn) is in S, so is (aq, . . . , Xk) for 0 < k < n.

ii) If (aq, . . . , xn) is in S, only finitely many xn+i exist for which (aq, . . . ,

xn, xn_|_i) is also in S.

iii) There is no infinite sequence (aq, x2, . . .) all of whose initial subsequences

(xi, x2, . . . , xn) lie in S.

Then S is essentially an oriented tree, specified essentially in a Dewey decimal

notation, and Theorem K tells us S is finite.

One of the most convincing examples of the potency of Theorem K has

recently been given by Hao Wang, in connection with his “domino problem.”

A domino type is a square divided into four parts, each part having a specified

number in it, e.g.,

(1)

The problem of tiling the plane is to take a finite set of domino types, with an

infinite supply of dominoes of each type, and to show how to place one in each

square of an infinite plane (without rotating or reflecting the domino types)

such that two dominoes are adjacent only if they have equal numbers where

2.3.4.3 383 THE “INFINITY LEMMA”

they touch. For example, we can tile the plane using the six domino types

over and over. The reader may easily verify that there is no way to tile the

plane with the three domino types

Wang’s observation [see Set. Am. 213 (November, 1965), 98-106] is that

if it is possible to tile the upper right quadrant of the plane, it is possible to tile the

whole plane. This is certainly unexpected, since a method for tiling the upper

right quadrant involves a “boundary” along the x- and y-axes, and it would

seem to give no hint as to how to tile the upper left quadrant of the plane (since

domino types may not be rotated or reflected). We cannot get rid of the bound¬

ary merely by shifting the upper-quadrant solution down and to the left, since

it does not make sense to shift the solution by more than a finite amount. But

Wang’s proof runs as follows: The existence of an upper-right-quadrant solution

implies that there is a way to tile a 2n X 2n square, for all n. The set of all

solutions to the problem of tiling squares with an even number of cells on each

side forms an oriented tree, if the sons of each 2n X 2n solution x are the pos¬

sible (2n -j- 2) X (2n -f- 2) solutions that can be obtained by bordering x. The

root of this oriented tree is the 0X0 solution; its sons are the 2X2 solutions,

etc. Each node has only finitely many sons, since the problem of tiling the plane

assumes that only finitely many domino types are given; hence by the infinity

lemma there is an infinite path from the root. This means there is a way to tile

the whole plane (although we may be at a loss to find it)!

EXERCISES

1. [M10] The text refers to a set S containing finite sequences of positive integers,

and states that this set is “essentially an oriented tree.” What is the root of this

oriented tree, and what are the arcs?

384 INFORMATION STRUCTURES 2.3.4.3

2. [20] Show that if rotation of domino types is allowed, it is always possible to tile

the plane.

► 3. [M23\ If it is possible to tile the upper right quadrant of the plane when given an

infinite set of domino types, is it always possible to tile the whole plane?

4. [M25] (H. Wang.) The six domino types (2) lead to a “toroidal” solution to the

tiling problem, i.e., a solution in which some rectangular pattern [namely (3)] is

replicated throughout the entire plane.
Assume without proof that whenever it is possible to tile the plane with a finite

set of domino types, there is a toroidal solution using those domino types. Use this

assumption together with the infinity lemma to design an algorithm which, given the

specifications of any finite set of domino types, determines in a finite number of steps

whether or not there exists a way to tile the plane with these types.

5. [M40\ Show that using the following 92 domino types it is possible to tile the

plane, but that there is no “toroidal” solution in the sense defined in exercise 4.

To simplify the specification of the 92 types, let us first introduce some notation.

Define the following “basic codes”:

« = (1, 2, 1, 2)

a = (Q, D, P, R)

N = (7, , X,)

R ~ (> > R, R)

7 = (7, 7, ,)

0 = (3, 4, 2, 1)

b = (, ,L,P)

J = (D, U, , X)

L = (> i L, L)
T = (, ,T,T)

U = (U,U, ,)

v = (2, 1, 3, 4)

c = (17, Q, T,S)

K = (, Y, R, L)

P = (, ,P,P)
X = (, , X, X)

D = (D, D, ,)

8 = (4, 3, 4, 3)

d = (, ,S,T)

B = (, , ,)

S = (, ,S,S)

Q = (Q, Q, ,)

The domino types are now

a {a, b, c, d}

I3{Y{B, U, Q}{P, T}, {B, U, D, Q}{P, S, T}, K{B, U, Q}}

7{{{X, B}{L, P, S, T}, R}{B, Q}, J{L, P, S, T}}

8{X{L, P, S, T} {.B, Q}, Y{B, U, Q] {P, T}, N{a, b, c, d},

J{L, P, S, T}, K{B, U, Q}, {R, L, P, S, T} {B, U, D, Q}}

[4 types]

[21 types]

[22 types]

[45 types]

These abbreviations mean that the basic codes are to be put together component

by component and sorted into alphabetic order in each component, thus:

187{B, U, Q} {P, T} stands for six types /37BP, /37UP, 07QP, (3YBT, (3YUT, (3YQT.

The type fiYQT is

(3, 4, 2, 1)(7, 7, ,)(Q, Q, ,)(, , T, T) = (3QY, 4QY, 2T, IT)

after multiplying corresponding components and sorting into order. This is intended

to correspond to the domino type shown below, where we use strings of symbols instead

of numbers in the four quarters of the type. Two domino types can be placed next to

each other only if they have the same string of symbols at the place they touch.

2.3.4.4 ENUMERATION OF TREES 385

A domino type of “class {3” means one which has a /3 in its specification as given

above. To get started on the solution to this exercise, note that any domino of class /3

must have one of class a to its left and to its right, and that there must be one of class 8

above and below. An “aa” domino must have “/3KB” or “(3KU” or “/3KQ” to its right,

and then must come an “ah” domino, etc.

(The above construction is a simplified version of a similar one given by Robert

Berger, who went on to prove that the general problem in exercise 4, without the invalid

assumption, cannot be solved. See Memoirs Amer. Math. Soc. 66 (1966).)

► 6. [M23] (Otto Schreier.) In a famous paper [Nieuw Archief voor Wiskunde (2) 15

(1927), 212-216], B. L. van der Waerden proved that:

“If k and m are positive integers, and if we have k sets Si, . . . , Sk of positive

integers with every positive integer included in at least one of these sets, then

at least one of the sets Sj contains an arithmetic progression of length m.”

(The latter statement means there exist integers a and 8 > 0 such that a -j- 8, a + 25,

. . . , a -j- m8 are all in Sj.) If possible, use this result and the infinity lemma to prove

the stronger statement:

“If k and m are positive integers, there is a number N such that if we have k sets

Si, . . . , Sk of integers with every integer between 1 and N included in at least

one of these sets, then at least one of the sets Sj contains an arithmetic progression

of length m.”

► 7. [M30] If possible, use van der Waerden’s theorem of exercise 6 and the infinity

lemma to prove the stronger statement:

“If A; is a positive integer, and if we have k sets Si, . . . , Sk of integers with every

positive integer included in at least one of these sets, then at least one of the sets

Sj contains an infinitely long arithmetic progression.”

► 8. [M39] (J. B. Kruskal, Trans. Am. Math. Soc. 95 (1960), 210-225.) If T and T'

are (finite, ordered) trees, let the notation T c T' signify that T can be embedded in

T', as in exercise 2.3.2-22. Prove that if Ti, T2, T3, ... is any infinite sequence of

trees, there exist integers j < k such that T,• cz Tk. (In other words, it is impossible to

construct an infinite sequence of trees in which no tree “contains” any of the earlier

trees of the sequence. This fact may be used to prove that certain algorithms must

terminate.)

*2.3.4.4. Enumeration of trees. Some of the most instructive applications of

the mathematical theory of trees to the analysis of algorithms are connected

with formulas for counting how many different trees there are of various kinds.

For example, if we want to know how many different oriented trees can be con¬

structed having four indistinguishable vertices, we find that there are just 4

possibilities:

A A

386 INFORMATION STRUCTURES 2.3.4.4

For our first enumeration problem, let us determine the number an of

structurally different oriented trees with n vertices. Obviously ai = 1. If

n > 1, the tree has a root and various subtrees; suppose there are jx subtrees

with 1 vertex, j2 with 2 vertices, etc. Then we may choose jk of the ak possible

fc-vertex trees in

ak +jk— 1

jk

ways, since repetitions are allowed (cf. exercise 1.2.6-60), and so we see that

a„= D A-1 - A forB>1. (2)
h+2j2+-"=n-l V / V Jn 1 /

If we consider the generating function A (z) = anzn, with a0 = 0, we find

that the identity

(1

together with (2) implies

1 _ V" (a + j — l\ rj

- Zr)a ^ V j /

A(z) = z/(1 - z)°i(l - z2)a*(1 - z3)a3 • • • . (3)

This is not an especially nice form for A (z), since it involves an infinite product

and the coefficients ax, a2, . . . appear on the right-hand side; a somewhat more

aesthetic way to represent A(z) is given in exercise 1, and this leads to a reason¬

ably efficient formula for calculating the values an (see exercise 2) and, in fact,

it also can be used to deduce the asymptotic behavior of an for large n (see

exercise 4). We find that

A(z) — z + z2 + 2 z3 + 4 24 + 92s + 20 z6 + 4827 + 1152s

+ 28629 + 719210 + 1842211 H-. (4)

Now that we have essentially found the number of oriented trees, it is quite

interesting to determine the number of structurally different free trees with n

vertices. There are just two distinct free trees with four vertices, namely

and (5)

because the first two and last two oriented trees of (1) become identical when

the orientation is dropped.

We have seen that it is possible to select any vertex X of a free tree and to

assign directions to the edges in a unique way so that it becomes an oriented

tree with X as root. Once this has been done, for a given vertex X, suppose

there are k subtrees of the root X, with sx, s2, . . . , Sk vertices in these respective

2.3.4.4 ENUMERATION OF TREES 387

subtrees. Clearly, k is the number of arcs touching X; and sx + s2 + • • • + sk =

n — 1, one less than the total number of vertices in the free tree. In these

circumstances, we say that the weight of X is max (sx, s2, . . . , sk). Thus in
the tree

B E F

c D G

J K H

the vertex D has weight 3 (each of the subtrees leading from D has three of the

nine remaining vertices), and vertex E has weight max (7, 2) = 7. A vertex

with minimum weight is called a centroid of the free tree.

Let X and sx, s2, . . . , sk be as above, and let Fx, Y2, , Yk- be the roots

of the subtrees emanating from X. Clearly, the weight of Fx is at least n — sx =

1 + s2 + • • • + since when Fx is the assumed root there are n — sx points in

its subtree through X. If there is a centroid F in the Fx subtree, we have

weight (X) = max (sx, s2, ... , sk) > weight (F) > 1 + s2 4-b sk,

and this implies sx > s2 + • • • + sk. A similar result may be derived if we

replace Fx by Fy in this discussion. So at most one of the subtrees at a vertex can

contain a centroid.

This is a strong condition, for it implies that there are at most tvjo centroids

in a free tree, and if two centroids exist, they are adjacent. (See exercise 9.)

Conversely, if sx > s2 + • • • + sk, there is a centroid in the Fx subtree,

since

weight (Fx) < max (sx — 1, 1 + s2 + • • • + sk) < sx = weight (X),

and the weight of all nodes in the Y2, . . . , Yk subtrees is at least sx + 1. We

have proved that the vertex X is the only centroid of a free tree if and only if

Sj < Si + • • • + Sk — sj, for 1 < j < k. (7)

Therefore the number of free trees with n vertices, having only one centroid,

is the number of oriented trees with n vertices minus the number of such

oriented trees violating condition (7); the latter consist essentially of an

oriented tree with sy vertices and another oriented tree with n — sy < sy

vertices. The number with one centroid therefore comes to

<Li — aWn—i — a2an—2 — • • • aXn/2jRfn/2i- (8)

A free tree with two centroids has an even number of vertices, and the weight

of each centroid is n/2 (see exercise 10). So if n — 2m, the number of bicen-

388 INFORMATION STRUCTURES 2.3.4.4

troidal free trees is the number of choices of 2 things out of am with repetition,

namely

Thus, to get the total number of free trees, we add ian/2(an/2 + 1) to (8) when n

is even. The form of Eq. (8) suggests a simple generating function, and, indeed,

we find without difficulty that the generating function for the number of structurally

different free trees is

F(z) = A(z)~ M(z)2 + ±A(z2)

= z + z2 + z3 + 2z4 + 32s + 6z6 + II27 + 2328

+4729 + IO6210 + 235211 H-. (9)

This simple relation between F(z) and A (2) is due primarily to C. Jordan, who

considered the problem in 1869.
Now let us turn to the question of enumerating ordered trees, which are our

principal concern with respect to computer programming algorithms. There are

five structurally different ordered trees with four vertices:

(10)

The first two of these are identical as oriented trees, so only one of them ap¬

pears in (1) above.

Before we examine the number of different ordered tree structures, let us

first consider the case of binary trees, since this is closer to actual computer

representation and it is easier to study. Let bn be the number of different binary

trees with n nodes. From the definition of binary tree it is apparent that b0 — 1,

and for n > 0 the number of possibilities is the number of ways to put a binary

tree with k nodes to the left of the root and another with n — 1 — k nodes to

the right. So

bn — bobfi—1 + &i&n_2 + • • • + 5n_i?>o> n > 1. (ID

From this relation it is clear that the generating function

B(z) = bo + b%z + b2z2 + • • •

satisfies the equation

zB{z)2 = B{z) - 1.

2.3.4.4 ENUMERATION OF TREES 389

Solving this quadratic equation and using the fact that 5(0) = 1, we obtain

m = £ (1 ~ VT^4^)

- s 0 - 2 (») (-4z)“)

= E (mlr)(-1>"22m+V”
TO>0 X ' '

= 1 + 2 +• 2z2 + 5z3 + 1424 + 422s + 132z6 + 429z7

+ 14302s + 486229 + 16796210 4-. (12)

The desired answer is therefore

b n
^_j^n22n-|-l l

n + 1 (13)

By Stirling’s approximation, this is asymptotically 4"/n\/xw + 0(4"n“5/2).

Some important generalizations of Eq. (13) appear in exercises 11 and 32.

Returning to our question about ordered trees with n nodes, we can see that

this is essentially the same question as the number of binary trees, since we have

a standard correspondence between binary trees and forests, and a tree minus

its root is a forest. Hence the number of (ordered) trees with n vertices is bn_1,
the number of binary trees with n — 1 vertices.

The enumerations performed above assume that the vertices are indis¬

tinguishable points. If we label the vertices 1, 2, 3, 4 in (1) and insist that 1

is to be the root, we now get 16 different oriented trees:

The question of enumeration for labeled trees is clearly quite different from the

one solved above. In this case it can be rephrased as follows: “Consider drawing

lines pointing from each of the vertices 2, 3, and 4 to another vertex; there are

three choices of lines emanating from each vertex, so there are 33 = 27 pos¬

sibilities in all. How many of these 27 ways will yield oriented trees with 1 as

the root?” The answer, as we have seen, is 16. A similar reformulation of the

390 INFORMATION STRUCTURES 2.3.4.4

same problem, this time for the case of n vertices, is the following: “Let fix) be

an integer-valued function such that/(l) = 1 and 1 < fix) < n for all integeis

1 < x < n. We call / a ‘tree function’ if fn(x), that is, /(/(• • • (/(*)) • • 0)

iterated n times, equals 1, for all x. How many tree functions are there? This

problem comes up, for example, in connection with random number generation.

We will find, rather surprisingly, that on the average exactly one out of every

n such functions / is a tree function.
The solution to this enumeration problem can readily be derived using the

general formulas for counting subtrees of graphs that have been developed in

previous sections (see exercise 12). But there is a much more informative way

to solve the problem, because it gives us a new and compact manner to represent

oriented tree structure.
Let us suppose we are given an oriented tree with vertices (1, 2, ... , n}

and with n — 1 arcs, where the arcs go from j to f(j) for all j except the root.

There is at least one terminal vertex (leaf); let Vi be the smallest number of a

terminal vertex. If n > 1, write down/(Fi) and delete both V\ and the arc

from Vi to /(Ti) from the tree; and then let V2 be the smallest number whose

vertex is terminal in the resulting tree. If n > 2, write down/(F2) and delete

both V2 and the arc from V2 to f(V2) from the tree; and proceed in this way

until all vertices have been deleted except the root. The resulting sequence of

n — 1 numbers,

o, (15)

with 1 < f(Vj) < n, is called the canonical representation of the original oriented

tree.
For example, the oriented tree

with 10 vertices has the canonical representation 3, 3, 10, 10, 9, 8, 8, 9, 10.

The important point here is that we can reverse this process and go from

any sequence of n — 1 numbers (15) back to an oriented tree which produced it.

For if we have any sequence Xi, x2) . . . , xn_i of numbers between 1 and n,

let Vi be the smallest number which does not appear in the sequence aq, . . . ,

xn-i) then let V2 be the smallest number i which does not appear in the

sequence x2, , xn_i; and so on. After obtaining a permutation Vlt V2, . . . ,

Vn of the integers 1, 2, . . . , n in this way, draw arcs from vertex Vj to vertex Xj,

for 1 < j < n. This gives a construction of a directed graph with no oriented

cycles, and by exercise 2.3.4.2-7 it is an oriented tree. Clearly, the sequence

Xi, x2, . . . , xn_i is the same as the sequence (15) for this oriented tree.

2.3.4.4 ENUMERATION OF TREES 391

Since the process is reversible, we have obtained a one-to-one correspondence

between (n — l)-tuples of numbers {1, 2, ... , n) and oriented trees on these

vertices. Hence there are rin~1 distinct oriented trees with n labeled vertices. If

we specify that one vertex is to be the root, there is clearly no difference between

one vertex and another, so there are nn~2 distinct oriented trees on {1,2,..., n}

having a given root. This accounts for the 16 = 44-2 trees in (14). From this

information it is easy to determine the number of free trees with labeled vertices

(see exercise 22). The number of ordered trees with labeled vertices is also easy

to determine, once we know the answer to that problem when no labels are

involved (see exercise 23). So the problems of enumerating the three funda¬

mental classes of trees, with both labeled and unlabeled vertices, have now

been essentially resolved in this section.

It is interesting to see what would happen if we were to apply our usual

method of generating functions to the problem of enumerating labeled oriented

trees. For this purpose we would probably find it easiest to consider the quantity

r(n, q), the number of labeled directed graphs with n vertices, with no oriented

cycles, and with one arc emanating from each of q designated vertices. The

number of labeled oriented trees with a specified root is therefore r{n, n — 1).

In this notation we find by simple counting arguments that, for fixed m,

r{n, q) = ^2 u) r(t> k)r(n ~ 3 ~ k)> if 0 < m < n — q, (17)
k,t ' '

t—k=m

rin, q) = ^ r{n — 1, q — k), if q = n — 1. (18)

The first of these relations is obtained if we partition the undesignated vertices

into two groups A and B, with m vertices in A and n — q — m vertices in B;

then the q designated vertices are partitioned into k vertices, which begin paths

leading into A, and q — k vertices, which begin paths leading into B. Relation

(18) is obtained by considering oriented trees in which the root has degree k.

The form of these relations indicates that we can work profitably with the

generating function

Gm(z) -- r(m, 0) + r(m + 1, 1)z +
r{m + 2, 2)z2

2! + = E
r(k + m, k)zk

k\

In these terms Eq. (17) says that Gn_q(z) = Gm{z)Gn_q_m{z), and therefore by

induction on m, we find that Gm(z) = (?i(2)m. Now from Eq. (18), we obtain

Gy{z)
r(n, n — 1)zn 1

V in - 1)!
n> 1 v '

E E
k>0 n> 1

r(n — 1, n — 1 — k)zn 1

k\(n — 1 — k)!

E fi ftw = E
k>0 k>0

(zGl(z))k _ ztrj(z)

k\

392 INFORMATION STRUCTURES 2.3.4.4

In other words, putting Gi(z) = w, the solution to our problem comes from

the coefficients of the solution to the transcendental equation

w = er (19)

This equation can be^solved with the use of Lagrange’s inversion formula,

i.e., z — f//(f) implies that

r = (o).
n> 1

where gn(t) = /(f)”, when / is analytic in the neighborhood of the origin, and

/(0) 7^ 0 (see exercise 33). In this case, we may set f = zw, /(f) = ef, and we

deduce the solution

w = Z
ra> 0

(n + 1) n — 1

n\
(20)

in agreement with the answer obtained above.
G. N. Raney has shown that we can extend this method in an important

way to obtain an explicit power series for the solution to the considerably more

general equation

w = yieziw + yzeZ2W -\-h y8eZsW,

solving for w in terms of a power series in y1} . . . , ys and Z\, . . . , zs. For this

generalization, let us consider s-dimensional vectors of integers

n = (m, n2, , ns),

and let us write for convenience

— rii + n2 + • • • + ns.

Suppose that we have s “colors” C\, C2, . . . , CS) and consider directed

graphs in which each vertex is assigned a color, e.g.,

Let r(n, q) be the number of ways to draw arcs and to assign colors to the
vertices (1, 2, . . . , n}, such that

i) for 1 < i < s there are exactly nt- vertices of color (/• (hence n = £n);

ii) there are q arcs, one leading from each of the vertices (1, 2, , q};

iii) for 1 < i < s there are exactly g* arcs leading to vertices of color Ci
(hence q = £q);

iv) there are no oriented cycles (hence q < n).

Let us call this an (n, q)-construction.

2.3.4.4 ENUMERATION OF TREES 393

For example, if Cx = red, C2 = yellow, and C3 = blue, then (21) shows a

((3, 2, 2), (1, 2, 2))-construction. When there is only one color, we have the

oriented tree problem which we have already solved.

Let n and q be fixed s-place vectors of nonnegative integers, and let n =]Tn,

q — Xjq- For each (n, q)-construction and each number k, 1 < k < n, we will
define a canonical representation consisting of four things:

a) a number t, with q < t < n;

b) a sequence of n colors, with n* of color C*;

c) a sequence of q colors, with g* of color Ci\

d) for 1 < i < s, a sequence of qi elements of the set (1, 2, ... , nj}.

The canonical representation is defined as follows: First list the vertices

(1, 2, ... , q} in the order Vx, V2, . . . , Vq of the canonical representation of

oriented trees (as given above), and then write below vertex Vj the number

f(V/) of the vertex on the arc leading from Vj. Let t = f(Vq); and let the

sequence (c) of colors be the respective colors of the vertices /(Fi), . . . , f{Vq).

Let the sequence (b) of colors be the respective colors of the vertices k, k + 1,...,

n, 1, . . . , k — 1. Finally, let the fth sequence in (d) be xix, zi2, . . . , Xiq., where

Xjj — m if the jth Ci-colored element of the sequence f(Vx), . . . , f(Vq) is the

mth Cr colored element of the sequence k, k 1, . . . , n, l,...,/c — 1.
For example, consider construction (21) and let k = 3. We start by listing

Vi, . . . , V5 and/(Fi), . . . , f(V5) below them as follows:

1 2 4 5 3

7 6 3 3 6

Hence t = 6, and sequence (c) represents the respective colors of 7, 6, 3, 3, 6,

namely red, yellow, blue, blue, yellow. Sequence (b) represents the respective

colors of 3, 4, 5, 6, 7, 1, 2, namely blue, yellow, red, yellow, red, blue, red.

Finally, to get the sequences in (d), proceed as follows:

elements this color elements this color encode column 8

color in 3,4, 5, 6, 7,1, 2 in 7, 6, 3, 3, 6 by column 2

red 5, 7,2 7 2

yellow 4,6 6,6 2,2

blue 3,1 3,3 1,1

Hence the (d) sequences are 2 ; 2, 2; and 1, 1.

From the canonical representation, we can recover both the original

(n, q)-construction and the number k as follows: From (a) and (c) we know

the color of vertex t. The last element of the (d) sequence for this color tells us,

in conjunction with (b), the position of t in the sequence k,. . . , n, 1,. . . , k — 1;

hence we know k and the colors of all vertices. Then the subsequences in (d)

together with (b) and (c) determine f(Vx), f(V2), . . . , f(Vq), and finally the

directed graph is reconstructed by locating Vx, . . . , Vq as we did for oriented

trees.

394 INFORMATION STRUCTURES 2.3.4.4

The reversibility of this canonical representation allows us to count the

number of possible (n, q)-constructions, since there are n q choices for (a),

and the multinomial coefficient

choices for (b), and

choices for (c), and n9f n|2 ‘ ' ■ n'hs choices for (d). Dividing by the n choices for

k, we have the general result

Kn, q) =
n n\

n n 1! n. Qii qsl
nl'nl2 ni (22)

Furthermore, we can derive analogs of Eqs. (17) and (18):

r(n, q) = 2 (2k) r^t’ k')r(‘n — <1 — k)> if 0 < m < L(
k,t

2(t—k) =m

— q),

(23)

with the convention that r(0, 0) = 1 and r(n, q) — 0 if any rij or is negative

or if q > n;

r(n, q) = ^ ^ (^1*) r(n — e*> ‘I — ^e»)> ^ 2n = 1 + 2q, (24)
l<i<s k 'K '

where e; is the vector with 1 in position i and zeros elsewhere. Relation (23) is

based on breaking the vertices {q + 1, . . . , n} into two parts having m and

n — q — m elements, respectively; the second relation is derived by removing

the unique root and considering the remaining structure. We now obtain the

following result:

Theorem R (George N. Raney, Canadian J. Math. 16 (1964), 755-762). Let

w =
n,q

2(n— q)=l

r(n> q) ..»i
(Sq)! Jl

Vs Zl
yQ8
■'S > (25)

where r(n, q) is defined by (22), and where n, q are s-dimensional integer vectors.

Then w satisfies the identity

w = yieziw + y2eZ2W H-b yseZtW. (26)

Proof. By (23) and induction on m, we find that

w
m E

n,q
2(n—q) =m

Kw q)

(2q)!
ynil . . iin*vq 1

f/s 21 Z
Q,
s • (27)

2.3.4.4 ENUMERATION OF TREES 395

Now by (24),

w - r(n e*> *1 7,«i. . . ,»,ji .
k\(2q-k)l Vl Js 1 E E E

<i<s k n,q
2(n-q)

= V V —v-2* V r(n> q) i.. ,
Z^ Z-* Jc\^lZl (Sq)! ^1 2i

A; n,q

2(n—q)=fc

= E i
l<i<s A:

Z
Qs
s

A survey of enumeration formulas for trees, based on skillful manipulations

of generating functions, has been given by I. J. Good [Proc. Cambridge Philos.

Soc. 61 (1965), 499-517; 64 (1968), 489]. This important paper contains exten¬

sive generalizations of many of the formulas derived in this section.

EXERCISES

1. [M20] (G. Polya.) Show that

A(z) = 2 • exp (A(z) + iA(z2) + ^4(z3) + •••)•

[Hint: Take logarithms of (3).]

2. [HM24] (R. Otter.) Show that the numbers an satisfy the following condition:

where

nan+1 = ai'?ni d- 2a2Sn2 + • • • ~k nansnn,

Snk E
1< j<n/k

Q*n-1-1—jk-

(These formulas are useful for the calculation of the an, since snk = S(„_*)* + an+i-k.)

3. [MJfi] Write a computer program which determines the number of (unlabeled)
free trees and of oriented trees with n vertices, for n < 100. (Use the result of exer¬
cise 2.) Explore arithmetical properties of these numbers; can anything be said about
their prime factors, or their residues modulo p?

► 4. [HM39] (G. Polya, 1937.) Using complex variable theory, determine the asymp¬
totic value of the number of oriented trees as follows: (a) Show that there is a real
number a between 0 and 1 for which A(z) has radius of convergence a and A{z) con¬
verges absolutely for all complex z such that \z\ < a, having maximum value A(a) =
a < oo. [Hint: When a power series has nonnegative coefficients, it either is entire
or it has a positive real singularity; and show that A{z)/z is bounded as z —»a—, by
using the identity in exercise 1.] (b) Let

F(z, w) = exp (zw + %A(z2) + tjA(z3) -]-•••)— to.

396 INFORMATION STRUCTURES 2.3.4.4

Show that in a neighborhood of (z, w) = (a, a/a), F(z, w) is analytic in each variable
separately, (c) Show that at the point (z, w) = (a, a/a), dF/dw = 0; hence a = 1.
(d) At the point (z, w) = (a, 1/a) show that

,dF —2 | N""' k-2 .// k.
' — = 0 = a +2^a A '>

dz x k>2

and
d2F

dw2

(e) When |z| = a and z a, show that dF/dw 0; hence A(z) has only one singu¬
larity on \z\ = a. (f) Prove there is a region larger than \z\ < a in which

-A(z) = ~- ^20(1 - z/a) + (1 - z/a)R(z),
z a

where R(z) is an analytic function of Vz — a. (g) Prove that consequently

an = n\ V0/2-rrn + 0(n 5/2a ").
an ln

(Note: 1/a = 2.95576, anda\//3/27r = 0.43992.)

► 5. [M25] (A. Cayley.) Let cn be the number of (unlabeled) oriented trees having n
leaves (i.e., vertices with in-degree zero) and having at least two subtrees at every
other vertex. Thus C3 = 2, by virtue of the two trees

Find a formula analogous to (3) for the generating function

c(z) = SCnzU•
n

6. [M25] Let an “oriented binary tree” be an oriented tree in which each vertex has
in-degree two or less. Find a reasonably simple relation which defines the generating
function G(z) for the number of distinct oriented binary trees with n vertices, and
find the first few values.

7. [HM/0] Obtain asymptotic values for the numbers of exercise 6. (See exercise 4.)

8. [20] According to Eq. (9), there are six free trees with six vertices. Draw them,
and indicate their centroids.

9. [M20] From the fact that at most one subtree of a vertex in a free tree can contain
a centroid, prove there are at most two centroids in a free tree; furthermore if there
are two, then they must be adjacent.

► 10. [M22] Prove that a free tree with n vertices and two centroids consists of two free
trees with n/2 vertices, joined by an edge. Conversely, if two free trees with m vertices
are joined by an edge, we obtain a free tree with 2m vertices and two centroids.

► 11. [M28\ The text derives the number of different binary trees with n nodes (Eq.
13). Generalize this to find the number of different Gary trees with n nodes. (Cf.
Exercise 2.3.1-35; a Gary tree is either empty or consists of a root and t disjoint Gary
trees.) [Hint: Use Eq. (21) of Section 1.2.9.]

2.3.4.4 ENUMERATION OF TREES 397

12. [M20\ Find the number of labeled oriented trees with n vertices by using deter¬
minants and the result of exercise 2.3.4.2-19. (See also exercise 1.2.3-36.)

13. [15] What oriented tree on the vertices 1, 2, . . . , 10 has the canonical representa¬
tion 3, 1, 4, 1, 5, 9, 2, 6, 5?

14. [10] True or false: The last entry, f(Vn—i), in the canonical representation of an
oriented tree, is always the root of that tree.

15. [21] Discuss the relationships that exist (if any) between the topological sort
algorithm of Section 2.2.3 and the canonical representation of an oriented tree.

16. [25] Design an algorithm (as efficient as possible) which converts from the canon¬
ical representation of an oriented tree to a conventional computer representation using
“FATHER” links.

► 17. [M26] Let f(x) be an integer-valued function, where 1 < f(x) < to for all integers
1 < x < to. Define x = y if fr(x) = fs(y) for some r, s > 0, where f°(x) = x and
/r+1(z) = f(fr(x)). By using methods of enumeration like those in this section, show
that the number of functions such that x = y for all x and y is mm~1Q(m), where Q(m)
is the function defined in Section 1.2.11.3.

18. [24] Show that the following method is another way to define a one-to-one corre¬
spondence between (n — l)-tuples of numbers from 1 to n and oriented trees with n
labeled vertices: Let the leaves of the tree be Fi, . . . , Vk in ascending order. Let
(Fi, Vk+1, Vk+2, ■ ■ ■, Fg) be the path from V\ to the root, and write down the ver¬
tices Fg, . . ., Vk+2, Ffc+i. Then let (F2, Fg+i, Vq+2, . . ., Fr) be the shortest oriented
path from F2 such that Vr has already been written down, and write down Vr, ,

Vq+2, Fg_|_i. Then let (F3, Vr+i, . . . , Fs) be the shortest oriented path from F3

such that Vs has already been written, and write Fs, . . . , Fr+i; and so on. For
example, the tree (16) would be encoded as 10, 3, 3, 10, 10, 9, 9, 8, 8. Show that this
process is reversible, and, in particular, draw the oriented tree with vertices 1, 2,..., 10
and representation 3, 1, 4, 1, 5, 9, 2, 6, 5.

19. [M24] How many different labeled, oriented trees are there having n vertices,
k of which are leaves (i.e., have in-degree zero)?

20. [M24] (J- Riordan.) How many different labeled, oriented trees are there having

n vertices, ko of which have in-degree 0, k 1 have in-degree 1, &2 have in-degree 2, . . . ?

(Note that necessarily &o + k\ + &2+ • • • = n, and Au + 2&2+ 3&3+ • ■ • = n — 1.)

► 21. [M21] Enumerate the number of labeled oriented trees in which each vertex has
in-degree zero or two. (Cf. exercise 20 and exercise 2.3-20.)

22. [M20] How many labeled free trees are possible with n vertices? (In other words,

if we are given n vertices, there are 2® possible graphs having these vertices, de¬
pending on which of the Q) possible edges are incorporated into the graph; how many
of these graphs are free trees?)

23. [M21] How many ordered trees are possible with n labeled vertices? (Give a
simple formula involving factorials.)

24. [Ml 6] All labeled oriented trees with vertices 1, 2, 3, 4 and with root 1 are shown
in (14). How many would there be if we listed all labeled ordered trees with these

vertices and this root?

25. [M20] What is the value of the quantity r(n, q) which appears in Eqs. (17) and
(18)? (Give an explicit formula; the text only mentions that r(n, n — 1) = nn~2.)

398 INFORMATION STRUCTURES 2.3.4.4

26. [20] In terms of the notation at the end of this section, draw the ((3, 2, 4),
(2, 3, 2))-construction [analogous to (21)], and find the number k, which corresponds
to the canonical representation having t = 8, sequences of colors “red, yellow, blue,
red, yellow, blue, red, blue, blue” and “red, yellow, blue, red, yellow, blue, yellow”,
and sequenced 3, 2; 1, 2, 1; 2, 4.

► 27. [M28] Let U\, U2, . . . ,* Up> . . . , Ug; Vi, V2, . . . , Vr be vertices of a directed
graph, where 1 < p < q. Let / be any function from the set {p + 1, . . . , q} into the
set (1, 2, . . . , r}, and let the directed graph contain exactly q — p arcs, from Uk to
Vf(h) for p < k < q. Show that the number of ways to add r additional arcs, one from
each of the 7’s to one of the C/’s, such that the resulting directed graph contains no
oriented cycles, is qr~1p. Prove this by generalizing the canonical representation
method, i.e., setting up a one-to-one correspondence between all such ways of adding
r further arcs and the set of all sequences of integers ai, a2, . . . , ar, where 1 < ak < q
for 1 < k < r, and 1 < ar < p.

28. [M22] Use the result of exercise 27 to enumerate the number of labeled free trees
on vertices Ui, . . . , Um, 7i, . . . , 7„, such that all edges go from Uj to Vk for some
j and k.

29. [HM26] Prove that if 2?*(r, t) = r(r+ kt)k~l/k\, and if zxl = lna;, then

X = ^2 Ek(r, t)zk
k

for sufficiently small \z\ and \x — l|. [Use the fact that Gm(z) = G\{z)m in the dis¬
cussion following Eq. (18).] In this formula, r stands for an arbitrary real number.
[Note: As a consequence of this formula we have the identity

y] Ek(r, t)En-k(s, t) = En(r + s, t);
k

this implies Abel’s binomial theorem (Eq. 16 of Section 1.2.6). Compare also Eq. (31)
of that section.]

30. [M23] Let n, x, y, zi, . . . , zn be positive integers. Consider a set of z + 2/ +

21 + • • • + zn + n vertices r,-, sjk, t, (1 < i < x-\- y, 1 < j < n, 1 < k < zj), in
which arcs have been drawn from Sjk to tj for all j, k. According to exercise 27, there
are (x + y)(x -[- y + z\ -j- • • • -f- zn)n~l ways to draw one arc from each of t\, . . . , tn
to other vertices such that the resulting directed graph contains no oriented cycles.
Use this to prove Hurwitz’s generalization of the binomial theorem:

^x(x+ eizi—[-b e„z„)ei+'"+tn-12/G/+ (1 — ei)zH-f (1 — e„)z„)'l_1_ei e"

= (x+y)(x+y + zi-\-[-2n)”_1,

where the sum is over all 2n choices of ex, . . . , en equal to 0 or 1.

31. [M24] Solve exercise 5 for ordered trees; i.e., derive the generating function for
the number of unlabeled ordered trees with n terminal nodes and no nodes of degree 1.

32. [MS7] (A. Erd61yi and I. M. H. Etherington, Edinburgh Math. Notes 32 (1940),
7-12.) How many (ordered, unlabeled) trees are there with no nodes of degree 0,
m of degree 1, . . . , nm of degree m, and none of higher degree with m? (An explicit

2.3.4.5 PATH LENGTH 399

solution to this problem can be given in terms of factorials, thereby considerably
generalizing the result of exercise 11.)

► 33. [M2S] The text gives an explicit power series solution of the equation w =
yieziw + • • • + yre‘rwt based on enumeration formulas for certain oriented forests.
Similarly, show that the enumeration formula of exercise 32 leads to an explicit power
series solution to the equation

W = Z lWel + Z2We2 + • • • + ZrWer,

expressing wiasa power series in z\, . . . , zr. (Here ei, . . . , er are fixed nonnegative
integers, at least one of which is zero.)

2.3.4.5. Path length. The concept of the “path length” of a tree is of great

importance in the analysis of algorithms, since this quantity is often directly

related to the execution time. Our primary concern is with binary trees, since

this is so close to the computer representations.

In the following discussion let us extend each binary tree diagram by adding
special nodes wherever a null subtree was present in the original tree, so that

The latter is called an extended binary tree. After the square-shaped nodes
have been added in this way, the structure is sometimes more convenient to
deal with, and we shall therefore meet extended binary trees frequently in later
chapters. It is clear that every circular node has two sons and every square
node has none. (Compare with exercise 2.3-20.) If there are n circular nodes
and s square nodes, we have n + s — 1 edges (since the diagram is a free tree),
and, counting another way, by the number of sons, we see there are 2n edges.
Hence it is clear that

s = n + 1; (2)

i.e., the number of “external” nodes just added is one more than the number of
“internal” nodes we had originally. (For another proof, see exercise 2.3.1-14.)
Formula (2) is correct even when n = 0.

Assume that a binary tree has been extended in this way. The external path
length of the tree, E, is defined to be the sum—taken over all external (square)
nodes—of the lengths of the paths from the root to each node. The internal
path length, I, is the same quantity summed over the internal (circular) nodes.

400 INFORMATION STRUCTURES 2.3.4.5

\

In (1) the external path length is£'=3 + 3 + 2 + 3 + 4 + 4 + 3 + 3 = 25,

and the internal path length is I = 2+l + 0 + 2 + 3 + l + 2= 11. These

two quantities are always related by the formula

< E = I + 2n, (3)

where n is the number of internal nodes.

To prove formula (3), consider deleting an internal node V at a distance k

from the root, where both sons of V are external. The quantity E goes down

2(/c + 1), since the sons of V are removed, then it goes up k, since V becomes

external, so the net change in E is —k — 2. The net change in 7 is —k, so (3)

may be proved by induction.
It is not hard to see that the internal path length (and hence the external

path length also) is highest when we have a degenerate tree with linear structure;

in that case the internal path length is

(n — 1) + (n — 2) 4-b 1 + 0 = |(w2 — n).

It can be shown that the “average” path length over all binary trees is essentially

proportional to nsfn (see exercise 5).

Consider now the problem of discovering a binary tree with n nodes having

minimum path length: such a tree will be important, since it will minimize the
computation time for various algorithms. Clearly, only one node (the root)

can be at zero distance from the root; at most two nodes can be at distance 1

from the root, at most four can be 2 away, etc. So we see that the internal path

length is always at least as big as the sum of the first n terms of the series

0) 1) I? 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, . . .

This is the sum Xi<Kn Dg k], which we know from exercise 1.2.4-42 is

(n + l)q - 2«+1 + 2, q = Llg (n + 1)J. (4)

The optimum value (4) is essentially of the form n lg n; this optimum is

clearly achieved in a tree which looks like this (illustrated for n = 12):

(5)

2.3.4.5 PATH LENGTH 401

A tree such as (5) is called the complete binary tree with n internal nodes. In

the general case we may number the nodes 1, 2, ... ,n; this numbering has

the useful property that the father of node k is node ik/2], the sons of node k

are nodes 2k and 2k -(- 1. The external nodes are numbered n + 1 through
2n + 1, inclusive.

It follows that a complete binary tree may be simply represented in sequen¬

tial memory locations, with the structure implicit in the locations of the nodes.

The complete binary tree appears explicitly or implicitly in many important

computer algorithms, so the reader should give it special attention.

These concepts have important generalizations to ternary, quaternary, etc.

trees. We define a t-ary tree as a set of nodes which is either empty or consists

of a root and t ordered, disjoint t-ary trees. (Cf. the definition of binary tree

in Section 2.3.) The complete ternary tree with 12 internal nodes is

It is easy to see how this generalizes to the complete i-ary tree with the internal

nodes 1, 2, ... ,n: the father of node k is node

L(7c -M — 2)/t] = f(k — l)/t],

and the sons of node k are

tik - 1) + 2, t{k — 1) + 3, . . . , tk+ 1.

This tree has the minimum internal path length among all i!-ary trees with n

internal nodes; its internal path length is (see exercise 8)

(n + t q — ^ ^ > ? = Dog* ((< — l)n + l)j- (7)

These results have another important generalization if we shift our point of

view slightly. Suppose that we are given m real numbers wi, w2, . . . , wm; the

problem is to find an extended binary tree with m external nodes, and to asso¬

ciate the numbers W\, ..., wm with these nodes, in such a way that the sum

YjWjlj is minimized, where lj is the length of path from the root and the sum is

taken over all external nodes. For example, if the given numbers are 2, 3, 4, 11,

402 INFORMATION STRUCTURES 2.3.4.5

we can form extended binary trees such as these three:

(8)

Here the “weighted” path lengths J^Wjlj are 34, 53, and 40, respectively. (Note

that a perfectly balanced tree does not give the minimum weighted path length

when the weights are 2, 3, 4, and 11, although we have seen that it does give the

minimum in the special case ttq = w2 = • • • = wm = 1.)
There are several interpretations of weighted path length in connection with

different computer algorithms; for example, we can apply it to the merging of

sorted sequences of respective lengths wq, w2, . . ., wm (see Chapter 5). One of

the most straightforward applications of this idea is to consider a binary tree

as a general search procedure, where we start at the root and then make some

test; the outcome of the test sends us to one of the two branches, where we

may make further tests, etc. For example, if we want to decide which of four

different alternatives is true, and if these possibilities will be true with the
respective probabilities and a tree which minimizes the weighted

path length constitutes an optimal search procedure in this case. [These are the

weights shown in (8).]

An elegant algorithm for finding a tree with minimum weighted path length

has been given by D. Huffman: First find the two w’s of lowest value, say uq

and w2. Then solve the problem for m — 1 weights wq + w2, w3, . . . , wm,
and replace the node

in this solution by

(9)

(10)

As an example of Huffman’s method, let us find the optimal tree for the

weights 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41. First we combine 2 + 3,

and look for the solution to 5, 5, 7, . . . , 41; then we combine 5 + 5, etc. The

computation is summarized as follows:

3 5 7 11 13
5 5 7 11 13

IQ 7 11 13

17 11 13

17 24

24

24

PATH LENGTH 403

17 19 23 29 31 37 41
17 19 23 29 31 37 41
17 19 23 29 31 37 41
17 19 23 29 31 37 41
17 19 23 29 31 37 41
34 19 23 29 31 37 41
34 42 29 31 37 41
34 42 53 31 37 41

42 53 65 37 41
42 53 65 78

95 65 78
95 143

238

Therefore the following tree corresponds to Huffman’s construction:

(ID

(The numbers inside the circular nodes show the correspondence between this

tree and our computation; see also exercise 9.)

It is not hard to show that this method does in fact minimize the weighted

path length, by induction on m. Suppose that m > 2 and W\ < w2 < w3 < • • •

< wm, and suppose that we are given a tree which minimizes the weighted path

length. (Such a tree certainly exists, since only finitely many binary trees with

m terminal nodes are possible.) Let V be an internal node of maximum distance

from the root. If Wi and w2 are not the weights already attached to the sons

of V, we can interchange them with the values which are already there and not

increase the weighted path length. Thus there is a tree which minimizes the

weighted path length and which contains the subtree (10). Now it is easy to

prove that the weighted path length of such a tree is minimized if and only if

the tree with (10) replaced by (9) has minimum path length for the weights

Wi + w2, w3, . . . , wm. (See exercise 9.)

404 INFORMATION STRUCTURES 2.3.4.5

In general, there are many trees which minimize £wflj. If the w’s are kept

in order throughout the construction, and if when wi,w2 are removed the

quantity wx + w2 is placed higher in the ordering than any of the other weights

of the same value (i.e., between Wk and Wk+1, where Wk < + w2 < Wk+i),
then the tree constructed Huffman’s method has the smallest value of max lj

and of YLlj among all trees which minimize [See the article by Eugene S.

Schwartz, Information and Control 7 (1964), 37-44.]
Huffman’s method can be generalized to t-ary trees as well as binary trees.

(See exercise 10.) Another important generalization of Huffman’s method is

discussed in Section 6.2.2. Further discussion of path length appears in Sec¬

tions 5.3.1, 5.4.9, and 6.3.

EXERCISES

1. [12] Are there any other binary trees with 12 internal nodes and minimum path

length, besides the complete binary tree (5)?

2. [17] Draw an extended binary tree with terminal nodes containing the w-eights

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, having minimum weighted path length.

3. [M2Jf] An extended binary tree with m external nodes determines a set of path

lengths Zi, l2, . . ., lm which describe the length of path from the root to the respective

external nodes. Conversely, if we are given a set of numbers h, l2, . . . , lm, is it always

possible to construct an extended binary tree in which these numbers are the path

lengths in some order? Show that this is possible if and only if 2~lj = 1.

4. [M25] (E. S. Schwartz and B. Kallick.) Assume that w\ < w2 < • • - < wm.

Show that there is an extended binary tree which minimizes and for which the

terminal nodes in left to right order contain the respective values wi, w2, . . . , wm.

[For example, tree (11) does not meet this condition since the weights appear in the

order 19, 23, 11, 13, 29, 2, 3, 5, 7, 17, 31, 37, 41. We seek a tree for which the weights

appear in ascending order, and this does not always happen with Huffman’s

construction.]

5. [HM26] Let
B(w, z) = ^2 bnpwpzn,

n,p> 0

where bnp is the number of binary trees with n nodes and internal path length p.
[Thus,

B(w, z) = 1 + z + 2wz2 -f- (w2 4w3)z3 -f- (4w* -f- 2w5 + 8ty6)z4

B(1, z) is the function B{z) of Eq. (12) in Section 2.3.4.4.] (a) Find a functional rela¬

tion which characterizes B(w,z). (b) Use the result of (a) to determine the average

internal path length of a binary tree with n nodes, assuming that each of the

1 / 2n\

n+1\n)

trees is equally probable, (c) Find the asymptotic value of this quantity.

6. [16] If a t-ary tree is extended with “square” nodes as in (1), what is the relation

between the number of square and circular nodes corresponding to Eq. (2)?

2.3.4.6 HISTORY AND BIBLIOGRAPHY 405

7. [M21] 'What is the relation between external and internal path length in a t-ary

tree? (Cf. exercise 6; a generalization of Eq. (3) is desired.)

8. [MBS] Prove Eq. (7).

9. [M21] The numbers which appear in the circular nodes of (11) are equal to the

sums of the weights in the external nodes of the corresponding subtree. Show that

the sum of all values in the circular nodes is equal to the weighted path length.

► 10. [M26] (D. Huffman.) Show how to construct a ^-ary tree with minimum weighted
path length, given weights w\, W2, . . . , wm. Construct an optimal ternary tree for
weights 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

11. [16] Is there any connection between the complete binary tree (5) and the “Dewey

decimal notation” for binary trees described in exercise 2.3.1-5?

► 12. Suppose that a node has been chosen at random in a binary tree, with each node

equally likely. Show that the average size of the subtree rooted at that node is related
to the path length of the tree.

*2.3.4.6. History and bibliography. Trees have of course been in existence since

the third day of creation, and through the ages tree structures (especially

family trees) have been in common use. The concept of tree as a formally

defined mathematical entity seems to have appeared first in the work of G.

Kirchhoff [Annalen der Physik und Chemie 72 (1847), 497-508], who used free

trees to find a set of fundamental cycles in an electrical network in connection
with the law that bears his name, essentially as we did in Section 2.3.4.1. The

concept also appeared at about the same time in the book Geometrie der Lage

(pp. 20-21) by K. G. Chr. von Staudt. The name “tree” and many results dealing
mostly with enumeration of trees began to appear ten years later in a series

of papers by Arthur Cayley]see Collected Mathematical Papers of A. Cayley

3 (1857), 242-246; 4 (1859) 114-115; 9 (1874), 202-204; 9 (1875), 427-460;

10 (1877), 598-600; 11 (1881), 365-367; 13 (1889), 26-28]. Cayley was unaware

of the previous work of Kirchhoff and von Stauc]t; his investigations began

with studies of the structure of algebraic formulas, and they were later inspired

chiefly by applications to the problem of isomers in chemistry. Tree structures

were also independently studied by C. W. Borchardt [Journal f. cl. reine und

angewandte Math. 57 (1860), 111-121]; J. B. Listing [Gottinger Abhandlungen,

Math. Classe, 10 (1862), 137-139]; and C. Jordan [Journal f. d. reine und ange¬

wandte Math. 70 (1869), 185-190].

The infinity lemma was formulated first by Denes Konig [Fundamenta

Mathematicae 8 (1926), 114-134], and he gave it a prominent place in his classic

book Theorie der endlichen und unendlichen Graphen (Leipzig, 1936), Chapter 6.

A similar result called the “fan theorem” occurred slightly earlier in the work of

L. E. J. Brouwer [Verhandelingen Akad. Amsterdam 12 (1919), 7], but this

involved much stronger hypotheses; for a discussion of Brouwer’s work see

A. Heyting, Intuitionism (1956), Section 3.4.

Formula (3) of Section 2.3.4.4 for enumerating unlabeled oriented trees was

given by Cayley in his first paper on trees. In his second paper he enumerated

406 INFORMATION STRUCTURES 2.3.4.6

unlabeled ordered trees; an equivalent problem had already been proposed and

solved by J. von Segner and L. Euler 100 years earlier (Novi Commentarii Acade¬

mic Scientiarum Petropolitanse 7 (1760), 13-15, 203-209), and it was the subject

of seven papers by G. Lame, E. Catalan, O. Rodrigues, and J. Binet in Journal

de Mathematiques 3, 4 (1838, 1839). (Cf. also exercise 2.2.1-4.) The correspond¬

ing numbers are now comhnonly called “Catalan numbers.”

The formula nn~2 for the number of labeled free trees was discovered by

C. W. Borchardt in 1860, as a byproduct of his evaluation of a certain deter¬

minant. Cayley gave an independent derivation of the formula in 1889 [see

the above references]; his discussion, which was extremely vague, hinted at a

connection between labeled oriented trees and (n — l)-types of numbers. An

explicit correspondence demonstrating such a connection was first published

by Heinz Priifer [Arch. Math. u. Phys. 27 (1918), 142-144], quite independently

of Cayley’s prior work. A large literature on this subject has developed, and

it has been surveyed beautifully in J. W. Moon’s book, Counting Labelled Trees

(Montreal: Canadian Math. Congress, 1970).
A very important paper on the enumeration of trees and many other kinds

of combinatorial structures was published by G. Polya in Acta Math. 68 (1937),

145-253. For discussion of enumeration problems for graphs and an excellent

bibliography see the survey by Frank Harary, in Graph Theory and Theoretical

Physics (London: Academic Press, 1967), 1-41.
The principle of minimizing weighted path length by repeatedly combining

the smallest weights was discovered by D. Huffman [Proc. IRE 40 (1952),

1098-1101], in connection with the design of codes for minimizing message

lengths. The same idea was independently published by Seth Zimmerman

[AMM 66 (1959), 690-693].
Several noteworthy recent papers dealing with the theory of tree structures

have been cited in Sections 2.3.4.1 through 2.3.4.5 in connection with partic lar

topics.
For further discussion of the mathematical properties of trees, see the

following references and their bibliographies:

Claude Berge, The Theory of Graphs, tr. by Alison Doig (London: Methuen,

1962), Chapters 16 and 17.

Frank Harary, Graph Theory (Reading, Mass.: Addison-Wesley, 1969),

Chapter 4.

0ystein Ore, Theory of Graphs (Amer. Math. Society, 1962), Chapter 4.

John Riordan, Introduction to Combinatorial Analysis (New York: Wiley,

1958), Chapter 6.

2.3.5. Lists and Garbage Collection

Near the beginning of Section 2.3 we defined a List as “a finite sequence of zero

or more atoms or Lists. ”

2.3.5 LISTS AND GARBAGE COLLECTION 407

Any forest is a List; for example,

a e

bed
/ \

f
/\

(i) 9

h
may be regarded as the List

(a: (b, c, d), e: (/, g: (h)))

and the corresponding List diagram would be

(2)

(3)

h

The reader should review at this point the introduction to Lists given earlier,

in particular (3), (4), (5), (6), (7) in the beginning of Section 2.3. Recall that

the notation “a:” which appears in (2) above means that the List (6, c, d) is

“labeled” with the attribute “a" besides its structural information that it is a

List of three atoms b, c, and d. This is compatible with our general convention

that each node of a tree may contain information besides its structural con¬

nections. However, as was discussed for trees in Section 2.3.3, it is quite possible

and sometimes desirable to insist that all Lists be unlabeled, so that all the
information appears in the atoms.

Although any forest may be regarded as a List, the converse is not true.

The following List is perhaps more.typical than (2) and (3) since it shows how

the restrictions of tree structure may be violated:

h[L] j[N]

[Cf. diagram (7) on page 313. The form of these diagrams need not be taken

too seriously.]

408 INFORMATION STRUCTURES 2.3.5

As we might expect, there are many ways to represent List structures within

a computer memory. These are usually variations on the same basic theme

according to which binary trees are used to represent general forests of trees:

one field RLINK, say, is used to point to the next element of a List, and another

field DLINK may be used to point to the first element of a sub-List. By a natural

extension of the memoryVepresentation described in Section 2.3.2, we would

represent the List (5) as follows:

(6)

Unfortunately, this simple idea is not quite adequate for the most common

List processing applications. For example, suppose that we have the List

L = (A, a, (A, A)), which contains three references to another List A =

(ib, c, d). One of the typical List processing operations is to remove the leftmost

element of A, so that A becomes (c, d); but this requires three changes to the

representation of L, if we are to use the technique shown in (6), since each

pointer to A points to the element b that is being deleted. A moment’s reflection

will convince the reader that it is extremely undesirable to change the pointers

in every reference to A just because the first element of A is being deleted.

(Note: In this example we could try to be tricky, assuming that there are no

pointers to the element c, by copying the entire element c into the location

formerly occupied by b and then deleting the old element c. But this trick fails

to work when A loses its last element and becomes empty.)

For this reason the representation scheme (6) is generally replaced by

another scheme which is similar, but uses a List head to begin each List, as was

introduced in Section 2.2.4. Each List contains an additional node called its

List head, so that the configuration (6) would, for example, be represented as
shown in diagram (7) at the top of the next page.

The introduction of these header nodes is not really a waste of memory space

in practice, since many uses for the apparently unused fields (which are shaded

areas in diagram (7)) generally present themselves. For example, there is room

for a reference count, or a pointer to the right end of the List, or an alphabetic

name, or a “scratch” field which aids traversal algorithms, etc.

2.3.5 LISTS AND GARBAGE COLLECTION 409

(7)

Note that in our original diagram (6), the node containing b is an atom while

the node containing / specifies an empty List. These two things are structurally

identical, and so the reader would be quite justified in asking why we bother to

talk about “atoms” at all; with no loss of generality we could have defined Lists

as merely “a finite sequence of zero or more Lists,” with our usual convention

that each node of a List may contain data besides its structural information.

This point of view is certainly defensible and it makes the concept of an “atom”

seem very artificial. There is, however, a good reason for singling out atoms as

we have done, when efficient use of computer memory is taken into consideration,

since atoms are not subject to the same sort of general-purpose manipulation

that is desired for Lists. The memory representation (6) shows there is probably

more room for information in an atomic node, b, than in a List node, f; and when

List head nodes are also present as in (7), there is a dramatic difference between

the storage requirements for the nodes b and /. Thus the concept of atoms is

introduced primarily to aid in the effective use of computer memory. Typical

Lists contain many more atoms than our example would indicate; the example

(4)-(7) is intended to show the complexities that are possible, not the simplicities
that are usual.

A List is in essence nothing more than a linear list whose elements may

contain pointers to other Lists. The common operations we wish to perform on

Lists are the usual ones desired for linear lists (creation, destruction, insertion,

deletion, splitting, concatenation), plus further operations which are primarily

of interest for tree structures (copying, traversal, input and output of nested

information). For these purposes any of the three basic techniques for repre¬

senting linked linear lists in memory—namely straight, circular, or double

linkage—can be used, with varying degrees of efficiency depending on the

algorithms being employed. For these three types of representation, diagram

(7) might appear in memory as listed in (8) at the top of the next page.

410 INFORMATION STRUCTURES 2.3.5

Memory Straight linkage Circular linkage Double linkage

location INFO DLINK RLINK INFO DLINK RLINK INFO DLINK LLINK RLINK

010 _ head 020 — head 020 — head 050 020

020 a 060 030 a 060 030 a 060 010 030

030 b *. atom 040 b atom 040 b atom 020 040

040 c 090 050 c 090 050 c 090 030 050

050 e 010 A ' e 010 010 e 010 040 010

060 — head 070 — head 070 — head 080 070

070 / 110 080 / 110 080 / 110 060 080 /o\

080 9 120 A 9 120 060 9 120 070 060

090 head 100 — head 100 — head 100 100

100 d 060 A d 060 090 d 060 090 090

110 — head A — head 110 — head 110 110

120 — head 130 — head 130 — head 140 130

130 h 010 140 h 010 140 h 010 120 140

140 3 060 A j 060 120 j 060 130 120

Here ‘ LLINK” is used for a pointer to the left in a doubly linked representation.

Note that the INFO and DLINK fields are identical in all three forms.

There is no need to repeat here the algorithms for List manipulation in any

of these three forms, since the ideas are identical to those we have already seen

many times in this chapter. The following important points about Lists, which

distinguish them from the simpler special cases treated earlier, should be noted,

however:

1) It is implicit in the above memory representation that atomic nodes are

distinguishable from nonatomic nodes; furthermore, when circular or doubly

linked lists are being used, it is desirable to distinguish header nodes from the

other types, as an aid in traversing the Lists. Therefore each node generally

contains a TYPE field which tells what kind of information the node represents.

This TYPE field is often used also to distinguish between various types of atoms

(e.g., between alphabetic, integer, or floating-point data, for use when printing
or displaying answers).

2) The following are two examples of possible ways to design the format of

nodes for general List manipulation with the MIX computer.

a) Possible one-word format, assuming that all INFO appears in atoms:

S T
-1-

REF
i

-1-
RLINK
i

(9)

S (sign): “mark bit” used in “garbage collection” (see below).

T (type): T = 0 for List head; T = 1 for sub-List element; T > 1 for atoms.

REF: When T = 0, REF is a “reference count” (see below); when T = 1,

REF points to the List head of the sub-List in question; when

T > 1, REF points to a node containing a mark bit and five bytes
of atomic information.

RLINK: Pointer for straight or circular linkage as in (8).

2.3.5 LISTS AND GARBAGE COLLECTION 411

b) Possible two-word format:

S T LLINK RLINK

INFO
(10)

S.T:

LLINK,RLINK:

INFO:

As in (9).

Usual pointers for double linkage as in (8).

Full word of information associated with this node; for a

header node this may include a reference count, a running

pointer to the interior of the List to facilitate linear traversal,

an alphabetic name, etc. When T = 1 this information in¬
cludes DLINK.

3) It is clear that Lists are very general structures; indeed, it seems fair to

state that any structure whatsoever can be represented as a List when appro¬

priate conventions are made. Because of this universality of Lists, a large

number of programming systems have been designed to facilitate List manipula¬

tion, and there are usually several such systems available at any computer

installation. These systems are based on some general-purpose format for nodes

such as (9) or (10) above, designed for flexibility in List operations. Actually,

it is clear that this general-purpose format is usually not the best format suited

to a -particular application, and the processing time using the general-purpose

routines is noticeably slower than a person would achieve by hand-tailoring the

system to his particular problem. For example, it is easy to see that nearly all

of the applications we have worked out so far in this chapter would be en¬

cumbered by a general-List representation as in (9) or (10) instead of the node

format that was given in each case. A List manipulation routine must often

examine the T-field when it processes nodes, and this was not needed in any of

our programs so far. This loss of efficiency is repaid in many instances by

the comparative ease of programming and the reduction of debugging time that

are obtained with the general-purpose system.

4) There is one extremely significant difference between algorithms for List

processing and the algorithms given previously in this chapter. Since a single

List may be contained in many other Lists, it is by no means clear exactly when

a List should be returned to the pool of available storage. Our algorithms so

far have always said “AVAIL <= X”, whenever NODE(X) was no longer needed.

But since general Lists can grow and die in such an unpredictable manner while

a program runs, it is often quite difficult to tell just when a particular node is

superfluous. Therefore the problem of maintaining the list of available space

is considerably more difficult with Lists than in the simple cases considered

previously. We will devote the rest of this section to a discussion of this problem.

Let us imagine that we are designing a general-purpose List processing

system that will be used by hundreds of other programmers. Two principal

412 INFORMATION STRUCTURES 2.3.5

methods have been suggested for maintaining the available space list: the use

of reference counters, and garbage collection. The reference-counter technique

makes use of a new field in each node, which contains a count of how many arrows

point to this node. Such a count is rather easy to maintain as a program runs,

and whenever it drops to zero, the node in question becomes available. The

garbage-collection technique, on the other hand, requires a new one-bit field in

each node called the “mark bit.” The idea in this case is to write nearly all the

algorithms so that they do not return any nodes to free storage, and to let the

program run merrily along until all of the available storage is gone; then a

“recycling” algorithm makes use of the mark bits to return to available storage

all nodes that are not currently accessible, and the program continues.

Neither of these two methods is completely satisfactory. The principal

drawback of the reference-counter method is the fact that it does not always

free all the nodes that are available. It works fine for overlapped Lists; but

recursive Lists, like our examples L and N in (4), will never be returned to

storage by the reference counter technique. Their counts will be nonzero (since

they refer to themselves) even when no other List accessible to the running

program points to them. Furthermore, the reference-counter method uses a

good chunk of space in each node (although sometimes this space is available

anyway due to the computer word size).
The difficulty with the garbage-collection technique, besides the annoying

loss of a bit in each node, is that it runs very slowly when nearly all the memory

space is in use; and in such cases the number of free storage cells found by the

reclamation process is not worth the effort. Those programs which exceed the

capacity of storage (and many undebugged programs do!) often waste a good

deal of time calling the garbage collector several, almost fruitless, times just

before storage is finally exhausted. A partial solution to this problem is to let

the programmer specify a number k, such that he does not wish to continue

processing after a garbage collection run has found k or fewer free nodes. A

further problem is the occasional difficulty of determining exactly what Lists are

not garbage at a given stage; if the programmer has been using any nonstandard
techniques or keeping any pointer values in unusual places, chances are good

that the garbage collector will go awry. Some of the greatest mysteries in the

history of computer program debugging have been caused by the fact that

garbage collection suddenly took place at an unexpected time during the running

of programs that had worked many times before. Garbage collection also

requires that programmers keep valid information in all pointer fields at all

times, although it is often convenient to leave meaningless information in fields

which are never referred to by the program (for example, the link in the rear

node of a queue, see exercise 2.2.3-6). We might also note that garbage collection

is unsuitable for “real-time” applications, because even if the garbage collector

goes into action infrequently, it requires large amounts of computer time on

these occasions. (However, see exercise 12.)

2.3.5 USTS AND GARBAGE COLLECTION 413

Although garbage collection requires one mark bit for each node, it is

possible to keep a separate table of all the mark bits packed together in another

memory area, with a suitable correspondence between the location of a node

and its mark bit. On some computers this idea can lead to a method of handling

garbage collection which is more attractive than giving up a bit in each node,

but on many other computers it makes the garbage collection process much
slower.

J. Weizenbaum has suggested an interesting modification of the reference-

counter technique. Using doubly linked List structures, he puts a reference

counter only in the header of each List. Thus, when pointer variables traverse

a List, they are not included in the reference counts for the individual nodes;

but since the programmer knows the rules by which reference counts are main¬

tained for entire Lists, he knows (in theory) how to avoid referring to any List

that has a reference count of zero. The programmer also has the ability to

explicitly override reference counts and to return certain Lists to available

storage. These ideas require the programmer to exercise caution; they prove to

be somewhat dangerous in the hands of inexperienced programmers and have

tended to make program debugging more difficult due to the consequences of

referring to nodes that have been erased. The nicest part of Weizenbaum’s

approach is his treatment of Lists whose reference count has just gone to zero:

such a List is appended at the end of the current available space list—this is

easy to do with doubly linked lists—and it is considered for available space only

after all previously available cells are used up; then as the individual nodes of

this List do become available, the reference counters of Lists they refer to are

decreased by one. This delayed action of erasing the Lists is quite efficient with

respect to running time; but it tends to make incorrect programs run correctly
for awhile! For further details see CACM 6 (1963), 524-544.

Algorithms for garbage collection are quite interesting for several reasons.

In the first place, such an algorithm is useful in other situations when we want

to “mark all nodes directly or indirectly referred to by a given node.” (For

example, we might want to find all subroutines called directly or indirectly by

a certain subroutine; cf. exercise 2.2.3-26. See also the ancestor algorithm in

Chapter 7.)

Garbage collection generally proceeds in two phases. We assume that the

mark bits of all nodes are initially zero (or we set them all to zero). Now the

first phase marks all the nongarbage nodes, starting from those which are

immediately accessible to the main program. The second phase makes a sequen¬

tial pass over the entire memory pool area, putting all unmarked nodes onto the

list of free space. The marking phase is the most interesting, and so we will

concentrate our attention on it. There are variations on the second phase which

make it nontrivial; see exercise 9.

The most interesting feature of garbage collection is the fact that while this

algorithm is running, there is only a very limited amount of storage available which

414 INFORMATION STRUCTURES 2.3.5

we can use to control our marking algorithm. This intriguing problem will become

clear in the following discussion; it is a difficulty which is not appreciated by

most people when they first hear about the idea of garbage collection, and for

many years there was no good solution to it.
The following marking algorithm is perhaps the most obvious:

Algorithm A (Marking). Let the entire memory used for List storage be

NODE(1), NODE(2), ..., NODE(M), and suppose that these words either are

“atoms” or contain two link fields ALINK and BLINK. Assume that all nodes are

initially unmarked. The purpose of this algorithm is to mark all of the nodes

which can be reached by a chain of ALINK and/or BLINK pointers in nonatomic

nodes, starting from a set of “immediately accessible” nodes.

Al. [Initialize.] Mark all nodes that are “immediately accessible,” i.e., the nodes

pointed to by certain fixed locations in the main program which are used

as a source for all memory accesses. Set K 1.

A2. [Does NODE(K) imply another?] Set Kl <— K + 1. If NODE(K) is an atom or

unmarked, go to step A3. Otherwise, if NODE (ALINK (K)) is unmarked, mark

it, and if it is not an atom, set K1 <— min (Kl, ALINK(K)). Similarly, if

NODE (BLINK (K)) is unmarked, mark it, and if it is not an atom, set

Kl <— min (Kl, BLINK(K)).

A3. [Done?] Set K <— Kl. If K < M, return to step A2; otherwise the algorithm

terminates. |

Throughout this algorithm and the ones which follow in this section, we will

assume for convenience that the nonexistent node “NODE(A)” is “marked.” (For

example, ALINK(K) or BLINK(K) may equal A in step A2.)

A variant of Algorithm A sets Kl M -f- 1 in step Al, removes the operation

“Kl <■— K —1 ” from step A2, and instead changes step A3 to

“A3'. [Done?] Set K <— K + 1. If K < M, return to step A2. Otherwise if Kl < M,

set K <— Kl and Kl <— M + 1 and return to step A2. Otherwise the algo¬
rithm terminates.”

It is very difficult to give a precise analysis of Algorithm A, or to determine

whether it is better or worse than the variant just described, since no meaningful

way to describe the probability distribution of the input presents itself. We can

say it takes up time proportional to nM in the worst case, where n is the number

of cells it marks, and, in general, we can be sure it is very slow when n is large.

Algorithm A would be too slow to make garbage collection a usable technique.

Another fairly evident marking algorithm is to follow all paths and to
record branch points on a stack as we go:

Algorithm B (Marking). This algorithm achieves the same effect as Algorithm A,

using STACK[1], STACK[2], ... as auxiliary storage to keep track of all paths
that have not yet been pursued to completion.

2.3.5 LISTS AND GARBAGE COLLECTION 415

Bl. [Initialize.] Let T be the number of immediately accessible nodes; mark

them and place pointers to them in STACK [1], . . . , STACK [T],

B2. [Stack empty?] If T = 0, the algorithm terminates.

B3. [Remove top entry.] Set K STACK[T], T <— T — 1.

B4. [Examine links.] If NODE (K) is an atom, return to B2. Otherwise, if

NODE (ALINK(K)) is unmarked, mark it and set T <—T + 1, STACK[T] <—

ALINK (K); if NODE (BLINK (K)) is unmarked, mark it and set T <—T + 1,

STACK[T] <— BLINK(K). Return to B2. |

Algorithm B clearly has an execution time essentially proportional to the

number of cells it marks, and this is as good as we could possibly expect; but it

is not really usable for garbage collection because there is no place to keep the

stack! It does not seem unreasonable to assume that the stack in Algorithm B

might grow up to, say, five percent of the size of memory; but when garbage

collection is called, and all available space has been used up, there is only a

fixed (rather small) number of cells to use for such a stack. Most of the early

garbage collection procedures were essentially based on this algorithm, and if

the special stack space was used up, the entire program was terminated.

A somewhat better alternative is possible, using a fixed stack size, by
combining Algorithms A and B:

Algorithm C (Marking). This algorithm achieves the same effect as Algorithms

A and B, using an auxiliary table of H cells, STACK [0], STACK [1], . . . ,

STACK[H — 1],

In this algorithm, the action “insert X on the stack” means the following:

“Set T <— (T + 1) mod H, and STACK[T] X. If T = B, set B «- (B + 1) mod H

and K1 min (Kl, STACK[B]).” (Note that T points to the current top of the

stack, and B points one place below the current bottom; STACK essentially op¬

erates as an input-restricted deque.)

Cl. [Initialize.] Set T <— H — 1, B <— H — 1, Kl <— M + 1. Mark all the im¬

mediately accessible nodes, and successively insert their locations onto the

stack (as just described above).

C2. [Stack empty?] If T = B, go to C5.

C3. [Remove top entry.] Set K <— STACK[T], T (T — 1) mod H.

C4. [Examine links.] If NODE (K) is an atom, return to C2. Otherwise, if

NODE (ALINK (K)) is unmarked, mark it and insert ALINK (K) on the stack.

Similarly, if NODE (BLINK (K)) is unmarked, mark it and insert BLINK (K) on

the stack. Return to C2.

C5. [Sweep.] If Kl > M, the algorithm terminates. (The variable Kl represents

the smallest location where there is a possibility of a new lead to a node

that should be marked.) Otherwise, if N0DE(K1) is an atom or unmarked,

increase Kl by 1 and repeat this step. If N0DE(K1) is marked, set K <— Kl,

increase Kl by 1, and go to C4. |

416 INFORMATION STRUCTURES 2.3.5

This algorithm and Algorithm B can be improved if X is never put on the

stack when NODE(X) is an atom; such modifications are straightforward and they

have been left out to avoid making the algorithms unnecessarily complicated.

Algorithm C is essentially Algorithm A when H = 1 and Algorithm B when

H = M; clearly, it is gradually more efficient as H becomes larger. Unfortunately,

Algorithm C defies a precise analysis for the same reason as Algorithm A, and

we have no good idea how large H should be to make this method fast enough.

It is plausible but uncomfortable to say a value of H = 50 is sufficient to make

Algorithm C usable for garbage collection in most applications.
Algorithms B and C use a stack kept in sequential memory locations; we

have seen earlier in this chapter that linked memory techniques are well suited

to maintaining stacks which are not consecutive in memory. This suggests the

idea that we might keep the stack of Algorithm B somehow scattered through

the same memory area in which we are collecting garbage. This could be done easily

if we were to give the garbage collection routine a little more room in which to

breathe. Suppose, for example, we assume that all Lists are represented as in

(9), except that the REF fields of list head nodes are used for garbage collection

purposes instead of as reference counts. We can then redesign Algorithm B so

that the stack is maintained in the REF fields of the header nodes:

Algorithm D {Marking). This algorithm achieves the same effect as Algorithms

A, B, and C, but it assumes that the nodes have S, T, REF, and RLINK fields as

described above, instead of ALINKs and BLINKs. The S field is used as the mark

bit, so that S(P) = means that NODE(P) is marked.

Dl. [Initialize.] Set TOP <— A. Then for each pointer P to the head of an im¬

mediately accessible List (cf. step A1 of Algorithm A), if S(P) = set
S(P) 4- ”, REF(P) <— TOP, TOP <— P.

D2. [Stack empty?] If TOP = A, the algorithm terminates.

D3. [Remove top entry.] Set P <— TOP, TOP <— REF(P).

D4. [Move through List.] Set P <— RLINK(P); then if P = A, or T(P) = 0, go

to D2. Otherwise set S(P) <— If T(P) > 1, set S(REF(P)) <— ”

(thereby marking the atomic information). Otherwise (T(P) = 1), set

Q <- REF(P); if Q ^ A and S(Q) = “+”, set S(Q) <— ”, REF(Q) «- TOP,

TOP <— Q. Repeat step D4. |

Algorithm D may be compared to Algorithm B, which is quite similar, and

its running time is essentially proportional to the number of nodes marked.

However, Algorithm D is not recommended without qualification, because its

seemingly rather mild restrictions are often too stringent for a general List¬

processing system. This algorithm essentially requires that all List structures

be well-formed [as in (7)] whenever garbage collection is called into action.

But algorithms for List manipulations momentarily leave the List structures

malformed, and it is important that a garbage collector such as Algorithm D

will not be used during these momentary periods. Moreover, there are several

List-manipulation algorithms which intentionally play havoc with the link

2.3.5 LISTS AND GARBAGE COLLECTION 417

fields in Lists during their operation, although they are designed so that well-

formed Lists are restored again after the algorithm has been completed. Care

must also be taken in step D1 when the program contains pointers to the
middle of a List.

These considerations bring us to Algorithm E, which is an elegant marking

method discovered independently by Peter Deutsch and by Herbert Schorr and

W. M. Waite in 1965. The assumptions used in this algorithm are just a little
different from those of Algorithms A through D.

Algorithm E {Marking). Assume that a collection of nodes is given having the
following fields:

MARK (a one-bit field,),

ATOM (another one-bit field),

ALINK (a pointer field),

BLINK (a pointer field).

When ATOM = 0, the ALINK and BLINK fields may contain A or a pointer to another

node of the same format; when ATOM = 1, the contents of the ALINK and BLINK

fields are irrelevant to this algorithm.

Given a pointer P0, this algorithm sets the MARK field to 1 in NODE(PO) and

in every other node which can be reached from NODE(PO) by a chain of ALINK

and BLINK pointers in nodes with ATOM = MARK = 0. The algorithm uses three

pointer variables, T, Q, and P, and modifies the links and control bits during its

execution in such a way that all ATOM, ALINK, and BLINK fields are restored to their

original settings after completion, although they may be changed temporarily.

El. [Initialize.] Set T <—A, P <—P0. (Throughout the remainder of this algorithm,

the variable T has a dual significance: When T A, it points to the top of

what is essentially a stack as in Algorithm D; and the node that T points

to once contained a link equal to P in place of the “artificial” stack link

which currently occupies NODE(T).)

E2. [Mark.] Set MARK(P) <-1.

E3. [Atom?] If ATOM(P) = 1, go to E6.

E4. [Down ALINK.] Set Q <— ALINK(P). If Q ^ A and MARK(Q) = 0, set

ATOM(P) <— 1, ALINK(P) <— T, T <— P, P <— Q, and go to E2. (Here the ATOM

field and ALINK fields are temporarily being altered, so that the list structure

in certain marked nodes has been rather drastically changed. But these

changes will be restored in step E6.)

E5. [Down BLINK.] Set Q <— BLINK(P). If Q ^ A and MARK(Q) = 0, set

BLINK(P) <— T, T <— P, P <— Q, and go to E2.

E6. [Up.] (This step undoes the link switching made in step E4 or E5; the

setting of ATOM(T) tells whether ALINK(T) or BLINK(T) is to be restored.)

If T = A, the algorithm terminates. Otherwise set Q <— T. If ATOM (Q) = 1,

set ATOM(Q) <— 0, T <— ALINK(Q), ALINK(Q) «- P, P «- Q, and return to E5.

If AT0M(Q) = 0, set T <— BLINK(Q), BLINK(Q) <- P, P <-Q, and return to E6. |

418 INFORMATION STRUCTURES 2.3.5

After After
ALINK BLINK

Fig. 38. Flowchart for Algorithm E.

An example of this algorithm in action appears in Fig. 39, which shows the

successive steps encountered for a simple List structure. The reader will find

it worth while to study Algorithm E very carefully; note how the linking structure

is artificially changed in steps E4 and E5, in order to keep track of the stack

analogous to the stack in Algorithm D. When we return to a previous state,

the ATOM field is used to tell which of ALINK, BLINK contains the artificial address.

The “nesting” shown at the bottom of Fig. 39 illustrates how each nonatomic

node is visited three times during Algorithm E (thus, the same configuration

(T, P) occurs at the beginning of steps E2, E5, and E6).

A proof that Algorithm E is valid can be formulated by induction on the

number of nodes that are to be marked. One proves at the same time that

P = PO at the conclusion of the algorithm; for details, see exercise 3. Algorithm E

will run faster if step E3 is deleted and instead special tests for “ATOM (Q) — 1”

and appropriate actions are made in steps E4 and E5, as well as a test

“ATOM(PO) = 1” in step El. We have stated the algorithm in its present form

for simplicity; the modifications just stated appear in the answer to exercise 4.

The idea used in Algorithm E can be applied to problems other than garbage

collection; in fact, its use for tree traversal has already been mentioned in

exercise 2.3.1-21. The reader may also find it useful to compare Algorithm E

with the simpler problem solved in exercise 2.2.3-7.

Of all the marking algorithms we have discussed, only Algorithm D is

directly applicable to Lists represented as in (9). The other algorithms all test

whether or not a given node P is an atom, and the conventions of (9) are in¬

compatible with such tests because they allow atomic information to fill an

entire word except for the mark bit. However, each of the other algorithms can

be modified so that they will work when atomic data is distinguished from

pointer data in the word that links to it instead of by looking at the word itself.

In Algorithms A or C we can simply avoid marking atomic words until all

nonatomic words have been properly marked; then one further pass over all

the data suffices to mark all the atomic words. Algorithm B is even easier to

modify, since we need merely keep atomic words off the stack. The adaptation

of Algorithm E is almost as simple, although if both ALINK and BLINK are allowed

to point to atomic data it will be necessary to introduce another 1-bit field in

nonatomic nodes. This is generally not hard to do. (For example, when there

are two words per node, the least significant bit of each link field may be used to
store temporary information.)

2.3.5 LISTS AND GARBAGE COLLECTION 419

ALINK[MARK] b[0]
BLINK[ATOM] c[0]

, ALINKfMARK] - [0]
0 BLINK [ATOM] -[1]

ALINK [MARK] 6[0]
BLINK [ATOM] d[0]

,ALINK[MARK] e[0]

flBLINK[ATOM] d[0]
ALINK[MARK] a[0]

BLINKfATOM] c[0]

A[l]

[1]

b
[0] A c

* ! [ii : : :
a d

. . . . c[l] . e

. . . . [1] . . [0] . . .

.[1]

T — aAaacdddccaA

P — a a c c d d d c a

Next step El E2 E2 E6 E5 E2 E5 E2 E2 E5 E6 E5 E6 E6 E6

Nesting
J I

Fig. 39. A structure marked by Algorithm E. (The table shows only changes which
have occurred since the previous step.)

Although Algorithm E requires a time proportional to the number of nodes

it marks, this constant of proportionality is not as small as in Algorithm B; the

fastest garbage collection method known combines Algorithms B and E, as

discussed in exercise 5.

Let us now try to make some quantitative estimates of the efficiency of

garbage collection, as opposed to the philosophy of “AVAIL <£= X” which was

used in most of the previous examples in this chapter. In each of the previous

cases we could have omitted all specific mention of returning nodes to free

space and we could have substituted a garbage collector instead. (In a special-

purpose application, as opposed to a set of general-purpose List manipulation

subroutines, the programming and debugging of a garbage collector is more

difficult than the methods we have used, and, of course, garbage collection

requires an extra bit reserved in each node; but we are interested here in the

relative speed of the programs once they have been written and debugged.)

The best garbage collection routines known have an execution time essen¬

tially of the form CiN -j- c2M, where Ci and c2 are constants, N is the number of

nodes marked, and M is the total number of nodes in the memory. Thus M — N

is the number of free nodes found, and the amount of time required to return

420 INFORMATION STRUCTURES 2.3.5

these nodes to free storage is (ciN + c2M)/(M — N) per node. Let N — pM; this

figure becomes (cxp + c2)/(l — p). So if p = f, i.e., if the memory is three-

fourths full, it takes 3ci + 4c2 units of time per free node returned to storage;

when p = 5, the corresponding figure is only ^ci + §c2. If we do not use the

garbage collection technique, the amount of time per node returned is essentially

a constant, c3, and it is doubtful that c3/ci will be very large. Hence we can see

to what extent garbage collection is inefficient when the memory becomes full,

and how it is correspondingly efficient when the demand on memory is light.

It is possible to combine garbage collection with some of the other methods

of returning cells to free storage; these ideas are not mutually exclusive, and

some systems employ both the reference counter and the garbage collection

schemes, besides allowing the programmer to erase nodes explicitly. The idea

is to employ garbage collection only as a “last resort” whenever all other methods

of returning cells have failed. [See the discussion by J. Weizenbaum, CACM

12 (1969), 370-372.]
A sequential representation of Lists, which saves many of the link fields

at the expense of more complicated storage management, is possible; see W. J.

Hansen, CACM 12 (1969), 499-506, and C. J. Cheney, CACM 13 (1970),

677-678.

EXERCISES

► 1. [M21] In Section 2.3.4 we saw that trees are special cases of the “classical”

mathematical concept of a directed graph. Can Lists be described in graph-theoretic

terminology?

2. [20] In Section 2.3.1 we saw that tree traversal can be facilitated using a

“threaded” representation inside the computer. Can List structures be threaded in an

analogous way?

3. [M26] Prove the validity of Algorithm E. [Hint: See the proof of Algorithm

2.3.IT.]

4. [28] Write a MIX program for Algorithm E, assuming that nodes are represented

as one MIX word, with MARK the (0:0) field [+ = 0, — = 1], ATOM the (1:1) field, ALINK

the (2:3) field, BLINK the (4:5) field, and A = 0. Also, determine the execution time

of your program in terms of relevant parameters. (Note that in the MIX computer the

problem of determining whether a memory location contains —0 or +0 is not quite

trivial, and this can be a factor in your program.)

5. [25] (Schorr and Waite.) Give a marking algorithm which combines Algorithms B

and E as follows: The assumptions of Algorithm E with regard to the fields within

nodes, etc., are assumed; however, an auxiliary stack STACK[1], STACK[2], . . . , STACK[N]

is used as in Algorithm B, and the mechanism of Algorithm E is employed only when

the stack is full.

6. [00] The quantitative discussion at the end of this section says garbage collection

takes up approximately ciN + c2M units of time; where does this “c2M” term come
from?

7. [24] (R. W. Floyd.) Design a marking algorithm that is similar to Algorithm E

in that it uses no auxiliary stack, except (a) it has a more difficult task to do, in that

each node contains only MARK, ALINK, and BLINK fields (so there is no ATOM field to

2.3.5 LISTS AND GARBAGE COLLECTION 421

provide additional control), but (b) it has a simpler task to do, in that it marks only a

binary tree instead of a general List. Here ALINK and BLINK are the usual LLINK and

RLINK in a binary tree.

► 8. [27] (L. P. Deutsch.) Design a marking algorithm similar to Algorithms D and E

in that it uses no auxiliary memory for a stack, but modify the method so that it works

with nodes of variable size and with a variable number of pointers having the following

format: The first word of a node has two fields MARK and SIZE; the MARK field is to

be treated as in Algorithm E, and the SIZE field contains a number n > 0. This means

there are n consecutive words after the first word, each containing two fields MARK

(which is zero and should remain so) and LINK (which is A or points to the first word

of another node). For example, a node with three pointers would comprise four

consecutive words:

First word

Second word

Third word

Fourth word

MARK = 0 (will be set to 1) SIZE = 3

MARK = 0 LINK = first pointer

MARK = 0 LINK = second pointer

MARK = 0 LINK = third pointer.

Your algorithm should mark all nodes reachable from a given node PO.

► 9. [28] (D. Edwards.) Design an algorithm for the second phase of garbage collection

which “compacts storage” in the following sense: Let N0DE(1), ..., NODE(M) be

one-word nodes with fields MARK, ATOM, ALINK, and BLINK, as described in Algorithm E.

Assume MARK = 1 in all nodes that are not garbage. The desired algorithm should

relocate the marked nodes, if necessary, so that they all appear in consecutive loca¬

tions N0DE(1), . . . , NODE(K), and at the same time the ALINK and BLINK fields of

nonatomic nodes should be altered if necessary so that the List structure is preserved.

► 10. [28] Design an algorithm which copies a List structure, assuming that an internal

representation like that in (7) is being used. (Thus, if your procedure is asked to copy

the List whose head is the node at the upper left corner of (7), a new set of Lists having

14 nodes, and with structure and information identical to that shown in (7), will be

created.)
Assume that the List structure is stored in memory using S, T, REF, and RLINK

fields as in (9), and that NODE(PO) is the head of the List to be copied. Assume further

that the REF field in each List head node is A; to avoid the need for additional memory

space, your copying procedure should make use of the REF fields (and reset them

to A again afterwards).

11. [M80] Any List structure can be “fully expanded” into a tree structure by repeat¬

ing all overlapping elements until none are left; when the List is recursive, this gives

an infinite tree. For example, the List (5) would expand into an infinite tree whose

first four levels are

422 INFORMATION STRUCTURES 2.3.5

Design an algorithm to test the equivalence of two List structures, in the sense that

they have the same diagram when fully expanded. [For example, Lists A and B are

equivalent in this sense, if

A = (a:C, b, a:(b:D))

B = (a:(b:D),b,a:E)

C = (b:(a:C))

D = (a:(b:D))

E = (6:(a:C)).]

12. [30] (M. Minsky.) Show that it is possible to use a garbage collection method

reliably in a “real time” application, e.g., when a computer is controlling some physical

device, even when stringent upper bounds are placed on the maximum execution time

required for each List operation performed. [Hint: Garbage collection can be arranged

to work in parallel with the List operations, if appropriate care is taken.]

2.4 MULTILINKED STRUCTURES 423

2.4. MULTILINKED STRUCTURES

Now that we have examined linear lists and tree structures in detail, the prin¬

ciples of representing structural information within a computer should be

evident. In this section we will examine another application of these techniques,

this time for the typical case in which the structural information is slightly more

complicated: in higher-level applications, several types of structure are usually
present simultaneously.

A “multilinked structure” involves nodes with several link fields in each

node, not just one or two as in most of our previous examples. We have already

seen some examples of multiple linkage, e.g., the simulated elevator system in

Section 2.2.5 and the multivariate polynomials in Section 2.3.3.

We shall see that the presence of many different kinds of links per node does

not necessarily make the accompanying algorithms any more difficult to write

or to understand than the algorithms already studied. We will also discuss the

important question, “How much structural information ought to be explicitly
recorded in memory?”

The problem we will consider arises in connection with writing a compiler

program for the translation of COBOL and related languages. A programmer

who uses COBOL may give alphabetic names to the quantities in his program

on several levels; for example, he may have two files of data for sales and pur¬

chases which have the following structure:

1 SALES

2 DATE

3 MONTH

3 DAY

3 YEAR

2 TRANSACTION

3 ITEM

3 QUANTITY

3 PRICE

3 TAX

3 BUYER

4 NAME

4 ADDRESS

1 PURCHASES

2 DATE

3 DAY

3 MONTH

3 YEAR

2 TRANSACTION

3 ITEM

3 QUANTITY

3 PRICE

3 TAX

3 SHIPPER

4 NAME

4 ADDRESS

(1)

This configuration indicates that each item in SALES consists of two parts, the

DATE and the TRANSACTION; the DATE is further divided into three parts, and

likewise TRANSACTION has five subdivisions. Similar remarks apply to PURCHASES.

The relative order of these names indicates the order in which the quantities

appear in external representations of the file (e.g., punched cards or magnetic

tape); note that in this example “DAY” and “MONTH” appear in opposite order in

the two files. A COBOL programmer gives further information, not shown in

this illustration, that tells how much space each item of information occupies

and in what format it appears; these considerations are not relevant to us in

this section, so they will not be mentioned further.

424 INFORMATION STRUCTURES 2.4

A COBOL programmer first describes the layout of his files and the other
variables in his program, then he gives the algorithms that manipulate these
quantities. To refer to an individual variable in the example above, it would
not be sufficient merely to give the name DAY, since there is no way of telling if
this variable called DAY is in the SALES file or in the PURCHASES file. Therefore
a COBOL programmer is'given the ability to write “DAY OF SALES” to refer
to the DAY part of a SALES item. He could also write, more completely,

“DAY OF DATE OF SALES”,

but in general there is no need to give more qualification than necessary to avoid
ambiguity. Thus,

“NAME OF SHIPPER OF TRANSACTION OF PURCHASES”

may be abbreviated to

“NAME OF SHIPPER”,

since only one part of the data has been called SHIPPER.

These rules of COBOL may be stated more precisely as follows:

a) Each name is immediately preceded by an associated positive integer called
its “level number. ” A name either refers to an elementary item or else it is
the name of a group of one or more items whose names follow. In the latter
case, each item of the group must have the same level number, which must
be greater than the level number of the group name. (For example, DATE

and TRANSACTION above have level number 2, which is greater than the
level number 1 of SALES.)

b) To refer to an elementary item or group of items named A0, the general
form is

A0 OF Ai OF . . . OF An,

where n > 0 and where, for 0 < j < n, A 3- is the name of some item con¬
tained directly or indirectly within a group named AJ+1. There must be
exactly one item A0 satisfying this condition.

c) If the same name A0 appears in several places, there must be a way to refer
to each use of the name by using qualification.

As an example of rule (c), the data configuration

1 AA

2 BB

3 CC (2)

3 DD

2 CC

would not be allowed, since there is no unambiguous way to refer to the second
appearance of CC. (See exercise 4.)

2.4 MULTILINKED STRUCTURES 425

There is another feature of COBOL which affects compiler writing and the

application we are considering, namely an option in the language which makes it

possible to refer to many items at once. A COBOL programmer may write

MOVE CORRESPONDING a TO 0

which moves all items with corresponding names from data area a to data

area 0. For example, the COBOL statement

MOVE CORRESPONDING DATE OF SALES TO DATE OF PURCHASES

would mean that the values of MONTH, DAY, and YEAR from the SALES file are to

be moved to the variables DAY, MONTH, YEAR in the PURCHASES file. (The relative

order of DAY and MONTH is thereby interchanged.)

The problem we will investigate in this section is to design three algorithms

suitable for use in a COBOL compiler, which are to do the following things:

Operation 1. To process a description of names and level numbers such as

(1), putting the relevant information into tables within the compiler for use in

operations 2 and 3.

Operation 2. To determine if a given qualified reference, as in rule (b), is

valid, and when it is valid to locate the corresponding data item.

Operation 3. To find all corresponding pairs of items indicated by a

“CORRESPONDING” statement.

We will assume that a “symbol table subroutine” exists within our compiler,

which will convert an alphabetic name into a pointer to a memory location that

contains a table entry for that name. (Methods for constructing symbol table

algorithms are discussed in detail in Chapter 6.) In addition to the Symbol

Table, there is a larger table which contains one entry for each item of data in

the COBOL source program that is being compiled; we will call this the Data

Table.
Clearly, we cannot design an algorithm for operation 1 until we know what

kind of information is to be stored in the Data Table, and the form of the Data

Table depends on what information we need to perform operations 2 and 3;

thus we look first at operations 2 and 3.
In order to determine the meaning of the COBOL reference

A0 OF OF ... OF An, n > 0, (3)

we should first look up the name A0 in the Symbol Table. There ought to be

a series of links from the Symbol Table entry to all Data Table entries for this

name. Then for each Data Table entry we will want a link to the entry for the

group item which contains it. Now if there is a further link field from the Data

Table items back to the Symbol Table, it is not hard to see how a reference like

(3) can be processed. Furthermore, we will want some sort of links from the

Data Table entries for group items to the items in the group, in order to locate

the pairs indicated by “MOVE CORRESPONDING”.

426 INFORMATION STRUCTURES 2.4

We have thereby found a possible need for five link fields in each Data Table

entry:

PREV (a link to the previous entry with the same name, if any);

FATHER (a link to the smallest group, if any, containing this item);

NAME (a link to the Symbol Table entry for this item);

SON (a link to the first subitem of a group);

BROTHER (a link to the next subitem in the group containing this item).

It is clear that COBOL data structures like those for SALES and PURCHASES

above are essentially trees; and the FATHER, SON, and BROTHER links which appear

here are familiar from our previous study. (The conventional binary tree repre¬

sentation of a tree consists of the SON and BROTHER links; adding the FATHER

link gives what we have called a “triply linked tree. ” The five links above consist

of these tree links together with PREV and NAME which superimpose further

information on the tree structure.)

Perhaps not all five of these links will turn out to be necessary, or sufficient,

but we will first try to design our algorithms under the tentative assumption that

Data Table entries will involve these five link fields (plus further information

irrelevant to our problems). As an example of the multiple linking used, consider

the two COBOL data structures

1 A 1 H

3 B 5

7 C

7 D 5

3 E 5

3 F

4 G

They would be represented as shown in (5) (with links indicated symbolically).

Note that the LINK field of the Symbol Table entries points to the most recently

encountered Data Table entry for the symbolic name in question.

The first algorithm we require is one which builds the Data Table in such

a form. Note the flexibility in choice of level numbers which is allowed by the

COBOL rules; the left structure in (4) is completely equivalent to

1 A

2 B

3 C

3 D

2 E

2 F

3 G

because level numbers do not have to be sequential.

F

8

B

C

9

9

9

(4)

2.4 MULTILINIvED STRUCTURES 427

Symbol Table Data Table

LINK

A: Al

B: B5

C: C5

D: D9

E: E9

F: F5

G: G9

H: HI

(Shading indicates
additional infor¬
mation which is
not relevant here)

PREV FATHER NAME SON BROTHER

Al: A A A B3 HI

B3: A Al B C7 E3

C7: A B3 C A D7

D7: A B3 D A A

E3: A Al E A F3

F3: A Al F G4 A

G4: A F3 G A A

HI: A A H F5 A

F5: F3 HI F G8 B5

G8: G4 F5 G A A

B5: B3 HI B A C5

C5: C7 HI C E9 A

E9: E3 Co E A D9

D9: D7 C5 D A G9

G9: G8 C5 G A A

(5)

There are sequences of level numbers which may not be used, however;

for example, if the level number of D in (4) were changed to “6 ” (in either place)

we would have a meaningless data configuration which violates the rule that all

items of a group must have the same number, and that this number must be

higher than that of the group name. The following algorithm therefore makes

sure that such restrictions are met.

Algorithm A (Build Data Table). This algorithm is given a sequence of pairs

(L, P), where L is a positive integer “level number” and P points to a Symbol

Table entry, corresponding to COBOL data structures such as (4) above. The

algorithm builds a Data Table as in the example (5) above. When P points to a

Symbol Table entry that has not appeared before, LINK(P) will equal A. This

algorithm uses an auxiliary stack which is treated as usual (using either sequen¬

tial memory locations, as in Section 2.2.2, or linked allocation, as in Section

2.2.3.).

Al. [Initialize.] Set the stack contents to the single entry (0, A). (The stack

entries throughout this algorithm are pairs (L, P), where L is an integer and

P a pointer; as this algorithm proceeds, the stack contains the level number

428 INFORMATION STRUCTURES 2.4

and pointers to the last data entries on all levels higher in the tree than the

current level. For example, just before encountering the pair “3 F” in the

above example, the stack would contain

(0, A) (1, Al) (3, E3)

from bottom to top.)

A2. [Next item.] Let (L, P) be the next data item from the input. If the input

is exhausted, however, the algorithm terminates. Set Q «= AVAIL (i.e., let

Q be the location of a new node in which we can put the next Data Table

entry).

A3. [Set name links.] Set

PREV(Q) <— LINK(P), LINK(P) *— Q, NAME(Q)*-P.

(This properly sets two of the five links in NDDE(Q). We now want to set

FATHER, SON, and BROTHER appropriately.)

A4. [Compare levels.] Let the top entry of the stack be (LI, Pi). If LI < L,

set SON (PI) Q (or, if PI = A, set FIRST Q, where FIRST is a variable

which is to point to the first Data Table entry) and go to A6.

A5. [Remove top level.] If Ll > L, remove the top stack entry, let (LI, Pi)

be the new entry which has just come to the top of the stack, and repeat

step A5. If Ll < L, signal an error (mixed numbers have occurred on the

same level). Otherwise, i.e. when Ll = L, set BROTHER (PI) <— Q, remove

the top stack entry, and let (Ll, Pi) be the pair which has just come to the

top of the stack.

A6. [Set family links.] Set

FATHER(Q) <— PI, SON(Q) <— A, BROTHER(Q) <— A.

A7. [Add to stack.] Place (L, Q) on top of the stack, and return to step A2. |

The introduction of an auxiliary stack, as explained in step Al, makes this

algorithm so transparent, it needs no further explanation.

The next problem is to locate the Data Table entry corresponding to a

reference

A0 OF Ax OF . .. OF An, n > 0. (6)

A “good” compiler will also check to ensure that such a reference is unambiguous.

In this case, a suitable algorithm suggests itself immediately: all we need to do

is to run through the list of Data Table entries for the name A0 and make sure

that exactly one of these entries matches the stated qualification Alf . . . , An.

2.4 MULTILINKED STRUCTURES 429

Algorithm B {Check a qualified reference). Corresponding to reference (6), a

Symbol Table subroutine will find pointers P0, Pu...,Pn to the Symbol Table
entries for A0, Alf . . . , An, respectively.

The purpose of this algorithm is to examine Pq, Pi, ... , Pn and either to

determine that reference (6) is in error, or to set variable Q to the address of the
Data Table entry for the item referred to by (6).

Bl. [Initialize.] Set Q A, P <— LINK(P0)-

B2. [Done?] If P = A, the algorithm terminates; at this point Q will equal A

if (6) does not correspond to any Data Table entry. Otherwise set S <— P

and k < 0. (S is a pointer variable which will run from P up the tree through

FATHER links; k is an integer variable which goes from 0 to n. In practice,

the pointers P0, . . . , Pn would often be kept in a linked list, and instead

of k, we would substitute a pointer variable which traverses this list;
see exercise 5.)

B3. [Match complete?] If k < n go on to B4. Otherwise we have found a

matching Data Table entry; if Q ^ A, this is the second entry found, so an

error condition is signaled. Set Q P, P <— PREV(P), and go to B2.

B4. [Increase k.] Set k <— k + 1.

B5. [Move up tree.] Set S <— FATHER(S). If S = A, we have failed to find a
match; set P PREV(P) and go to B2.

B6. [Ak match?] If NAME(S) = Pk, go to B3, otherwise go to B5. |

Fig. 40. Algorithm for checking a COBOL reference.

Note that the SON and BROTHER links are not needed by this algorithm.

The third and final algorithm that we need concerns “MOVE CORRESPONDING”,

and before we design such an algorithm, we must have a precise definition of

what is required. The COBOL statement

MOVE CORRESPONDING a TO 0 (7)

where a and /3 are references such as (6) to data items, is an abbreviation for the

set of all statements

MOVE a' TO /S'

430 INFORMATION STRUCTURES 2.4

where there exists an integer n > 0 and n names A0, Ai, , An_x such that

a = A0 OF Ax OF . . . OF 4„_i OF a ^

P' = 40OF^l°F'- 0F An-1 0F P

and either a' or ft' is an el&nentary item (not a group item). Furthermore we

require that (8) show complete qualifications, i.e., that A,-+1 is the father of Aj

for 0 < j < n — 1; a and P' must be exactly n levels farther down in the tree

than a and p are.
In our example (4),

“MOVE CORRESPONDING A TO H”

is an abbreviation for the statements

MOVE B OF A TO B OF H

MOVE G OF F OF A TO G OF F OF H

The algorithm to recognize all corresponding pairs a', ft' is quite interesting

although not difficult; we move through the tree, whose root is a, in preorder,

simultaneously looking in the p tree for matching names, and skipping over

subtrees in which no corresponding elements can possibly occur. The names

Ao, . . . , An_x of (8) are discovered in the opposite order An_i, . . . , A0.

Algorithm C (Find CORRESPONDING pairs). Given P0 and Q0, which point to

Data Table entries for a and p, respectively, this algorithm successively finds

all pairs (P, Q) of pointers to items (a', p') satisfying the constraints mentioned

above.

Cl. [Initialize.] Set P <— P0, Q <— Q0. (In the remainder of this algorithm, the

pointer variables P and Q will walk through trees having the respective

roots a and p.)

C2. [Elementary?] If SON(P) = A or SON(Q) =* A, output (P,Q) as one of the

desired pairs and go to C5. Otherwise set P <— SON(P), Q <— SON(Q). (In

this step, P and Q point to items a' and j8', satisfying (8), and we wish to

MOVE a' TO /S' if and only if either a' or /3' (or both) is an elementary item.)

C3. [Match name.] (Now P and Q point to data items which have respective

qualifications of the forms

and

Aq OF Ai OF . . . OF An x OF oi

B0 OF Ax OF . . . OF An_i OF p.

The object is to see if we can make B0 = A0 by examining all the names

of the group Ax OF ... OF An_x OF p.) If NAME(P) = NAME(Q), go to C2 (a

2.4 MULTILINKED STRUCTURES 431

match has been found). Otherwise, if BROTHER(Q) A, set Q <— BROTHER(Q)

and repeat step C3. (If BROTHER (Q) = A, no matching name is present in
the group, and we continue on to step C4.)

C4. [Move on.] If BROTHER(P) ^ a, set

P *— BROTHER(P) and Q <— SON(FATHER(Q)),

and go back to C3. If BROTHER (P) = A, set

P <— FATHER(P) and Q <— FATHER(Q).

C5. [Done?] If P = PO, the algorithm terminates; otherwise go to C4. |

A flow chart for this algorithm is shown in Fig. 41. A proof that this algorithm

is valid can readily be constructed by induction on the size of the trees involved
(see exercise 9).

At this point it is worth while to study the ways in which the five link fields

PREV, FATHER, NAME, SON, and BROTHER are used by Algorithms B and C. The

striking feature is that these five links constitute a “complete set” in the sense

that Algorithms B and C do virtually the minimum amount of work as they

move through the Data Table; whenever it is necessary to refer to another

Data Table entry, its address is immediately available at our fingertips; we do

not need to search for it. It would be difficult to imagine how Algorithms B and

C could possibly be made any faster if any additional link information were

present in the table. (See exercise 11, however.)

Each link field may be viewed as a clue to the program, planted there in

order to make the algorithms run faster (although, of course, algorithms which

build the tables, like Algorithm A, run correspondingly slower, since they have

more links to fill in). It is clear that the Data Table constructed above contains

much redundant information. Let us consider what would happen if we were

to delete certain of the link fields.
The PREV link, while not used in Algorithm C, is extremely important for

Algorithm B, and it seems to be an essential part of any COBOL compiler unless

lengthy searches are to be carried out. A field which links together all items of

the same name therefore seems essential for efficiency. We could perhaps modify

the strategy slightly and adopt circular linking instead of terminating each list

432 INFORMATION STRUCTURES 2.4

with A, but there is no reason to do this unless other link fields are changed or

eliminated.
The FATHER link is used in both Algorithms B and C, although its use in

Algorithm C could be avoided if we used an auxiliary stack in that algorithm,

or if we augmented BROTHER so that “thread” links are included (cf. Section

2.3.2). So we see that the FATHER link has been used in an essential way only in

Algorithm B. If the BROTHER link were threaded, so that the items which now

have BROTHER = A would have BROTHER = FATHER instead, it would be possible

to locate the father of any data item by following the BROTHER links; the added

“thread” links could be distinguished either by having a new TAG field in each

node that says whether the BROTHER link is a thread, or by the condition

“BROTHER(P) < P” if the Data Table entries are kept consecutively in memory

in order of appearance. This would mean a short search would be necessary in

step B5, and the algorithm would be correspondingly slower.

The NAME link is used by the algorithms only in steps B6 and C3. In both

cases we could make the tests “NAME(S) = Pk”, “NAME(P) = NAME(Q)” in other

ways if the NAME link were not present (cf. exercise 10), but this would signif¬

icantly slow down the inner loops of both Algorithms B and C. Here again

we see a trade-off between the space for a link and the speed of the algorithms.

(The speed of Algorithm C is not especially significant in COBOL compilers,

when typical uses of MOVE CORRESPONDING are considered; but Algorithm B

should be fast.) Experience indicates that other important uses are found for

the NAME link within a COBOL compiler, especially in printing diagnostic

information.
Since Algorithm A builds the Data Table step by step, and never has occasion

to return it to the pool of available storage, we usually find that Data Table

entries take consecutive memory locations in the order of appearance of the data

items in the COBOL source program. Thus in our example (5), locations

Al, B3, . . . would follow each other. This sequential nature of the Data Table

leads to certain simplifications; for example, the SON link of each node is either

A or it points to the node immediately following, so SON can be reduced to a

1-bit field. Alternatively, SON could be removed in favor of a test if

FATHER(P + c) = P, where c is the node size in the Data Table.

Thus the five link fields are not all essential, although they are helpful from

the standpoint of speed in Algorithms B and C. This situation is fairly typical

of most multilinked structures.

It is interesting to note that at least half a dozen people writing COBOL

compilers have independently arrived at this same way to maintain a Data

Table using five links (or four of the five, usually with the SON link missing).

The first publication of such a technique was by H. W. Lawson, Jr. (ACM

National Conference Digest, Syracuse, N.Y., 1962). But in 1965 an ingenious

technique for achieving the effects of Algorithms B and C, using only two link

fields and sequential storage of the Data Table, without a very great decrease in

speed, was introduced by David Dahm; see exercises 12 through 14.

2.4 MULTILINKED STRUCTURES 433

EXERCISES

1. [00] Considering COBOL data configurations as tree structures, are the data
items listed by a COBOL programmer in preorder, postorder, or neither of these
orders?

2. [10] Comment about the running time of Algorithm A.

3. [22] The PL/I language accepts data structures much like those in COBOL,
except any sequence of level numbers is possible. For example, the sequence

1 A 1 A

3 B 2 B

5 C is equivalent to 3 C

4 D 3D

2 E 2 E

In general, rule (a) is modified to read, “The items of a group must have a sequence of

nonincreasing level numbers, all of which are greater than the level number of the

group name.” What modifications to Algorithm A would change it from the COBOL

convention to this PL/I convention?

► 4. [26] Algorithm A does not detect the error if a COBOL programmer violates rule

(c) stated in the text. How should Algorithm A be modified so that only data structures

satisfying rule (c) will be accepted?

5. [20] In practice, Algorithm B may be given a linked list of Symbol Table refer¬

ences as input, instead of what we called “Po, Pi, ... , Pn.” Let T be a pointer variable

such that

INFO(T)=P0, INFO (RLINK(T)) = Pi, ...,

INFO (RLINK"(T)) = P„, RLINKn+1 (T) = A.

Show how to modify Algorithm B so that it uses such a linked list as input.

6. [28] The PL/I language accepts data structures much like those in COBOL, but

does not make the restriction of rule (c); instead, we have the rule that a qualified

reference (3) is unambiguous if it shows “complete” qualification, i.e., if A,-+i is the

father of A, for 0 < j < n, and if An has no father. Rule (c) is now weakened to the

simple condition that no two items of a group may have the same name. The second

“CC” in (2) would be referred to as “CC OF AA” without ambiguity; the three data

items
1 A

2 A

3 A

would be referred to as “A”, “A OF A”, “A OF A OF A” with respect to the PL/I

convention just stated. (Note: Actually the word “OF” is replaced by a period in PL/I,

and the order is reversed; “CC OF AA” would really be written “AA.CC” in PL/I, but

this is not important for the purposes of the present exercise.) Show how to modify

Algorithm B so that it follows the PL/I convention, i.e., so that it does not regard a

complete qualification as ambiguous.

434 INFORMATION STRUCTURES 2.4

7. [15] What does the COBOL statement “MOVE CORRESPONDING SALES TO

PURCHASES” mean, given the data structures in (1)?

8. [10] Under what circumstances is

exactly the same as

“MOVE CORRESPONDING a TO /?”

\

“MOVE a TO /3”,

according to the definition in the text?

9. [M28] Prove that Algorithm C is correct.

10. [23] (a) How could the test “NAME(S) — Pk” in step B6 be performed if there

were no NAME link in the Data Table nodes? (b) How could the test “NAME(P) =

NAME (Q) ” in step C3 be performed if there were no NAME link in the Data Table entries?

(Assume that all other links are present as in the text.)

► 11. [23] What additional links or changes in the strategy of the algorithms of the

text could make Algorithm B or Algorithm C faster?

12. [25] (D. M. Dahm.) Consider representing the Data Table in sequential locations
with just two links for each item:

PREV (as in the text) ;

SCOPE (links to the last elementary item in this group).

We have SCOPE(P) = P if and only if NODE(P) represents an elementary item. For

example, the Data Table of (5) would be replaced by

PREV SCOPE PREV SCOPE

A1 A G4 HI A G9
B3 A D7 F5 F3 G8
C7 A C7 G8 G4 G8
D7 A D7 B5 B3 B5
E3 A E3 C5 C7 G9
F3 A G4 E9 E3 E9
G4 A G4 D9 D7 D9

G9 G8 G9

ith (5) of Section 2.3.3.) Note that NODE(P) is part of the

j ^ ^ \ an ai^uiiu.

function of Algorithm B when the Data Table has this format.

► 13. [24] Give an algorithm to substitute for Algorithm A when the Data Table is to
have the format shown in exercise 12.

► 14. [28] Give an algorithm to substitute for Algorithm C when the Data Table has
the format shown in exercise 12.

15. [25] (David S. Wise.) Reformulate Algorithm A so that no extra storage is used

for the stack. [Hint: The BROTHER fields of all nodes pointed to by the stack are A in
the present formulation.]

2.5 DYNAMIC STORAGE ALLOCATION 435

2.5. DYNAMIC STORAGE ALLOCATION

We have seen how the use of links implies that tables need not be sequentially

located in memory; a number of tables may independently grow and shrink in a

common “pooled” memory area. However, our discussions have always tacitly

assumed that all nodes are the same size, i.e., that they take the same number
of memory cells.

For a great many applications, a suitable compromise can be found so that

a uniform node size is used for all tables (for example, see exercise 2). Instead

of simply taking the maximum size that is needed and wasting space in smaller

nodes, it is customary to pick a rather small node size and to employ what may

be called the classical linked-memory 'philosophy: “If there isn’t room for the

information here, let’s put it somewhere else and plant a link to it. ”

For a great many other applications, however, a single node size is not

reasonable; we often wish to have nodes of varying sizes sharing a common

memory area. Putting this another way, we want algorithms for reserving and

freeing variable-size blocks of memory from a larger storage area, where these

blocks are to consist of consecutive memory locations. Such techniques are
generally called “dynamic storage allocation” algorithms.

Sometimes, often in simulation programs, we want dynamic storage alloca¬

tion for nodes of rather small sizes (say one to ten words); and at other times,

often in “executive” control programs, we are dealing primarily with rather large

blocks of information. These two points of view lead to slightly different

approaches to dynamic storage allocation, although the methods have much in

common. For uniformity in terminology between these two approaches, we will

generally use the terms block and area rather than “node” in this section, to
denote a set of contiguous memory locations.

A. Reservation. Figure 42 shows a typical “memory map” or “checkerboard,”

a chart showing the current state of some memory pool. In this case the memory

is shown partitioned into 53 blocks of storage that are “reserved,” i.e. in use,

mixed together with 21 “free” or “available” blocks that are not in use. After

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

00000

20000

40000

60000

80000

100000

120000

Reserved area: (■*■**1
Free area:|- |

Fig. 42. A memory map.

436 INFORMATION STRUCTURES
2.5

dynamic storage allocation has been in operation for a while, the computer

memory will perhaps look something like this; our first problem is

a) How is this partitioning of available space to be represented inside the

computer1?
b) Given such a representation of the available spaces, what is a good algorithm

for finding a block of n consecutive free spaces and reserving them?

The answer to question (a) is, of course, to keep a list of the available space

somewhere; this is almost always done best by using the available space itself

to contain such a list. (An exception is the case when we are allocating storage

for a disk file or other memory in which nonuniform access time makes it better

to maintain a separate directory of available space.)
Thus, we can link together the available segments: the first word of each free

storage area may contain the size of that block and the address of the next free

area. The free blocks can be linked together in increasing or decreasing order of

size, or in order of memory address, or in essentially random order.

For example, consider Fig. 42, which illustrates a large memory of 131,072

words, addressed from 0 to 131071. If we were to link together the available

blocks in order of memory location, we would have one variable AVAIL pointing

to the first free block (in this case AVAIL would equal 0), and the other blocks

would be represented as follows:

location SIZE LINK

0 101 632

632 42 1488
; • • [17 similar entries]

73654 1909 77519

77519 53553 A [special marker for last link]

Thus locations 0 through 100 form the first available block; after the reserved

areas 101-290 and 291-631 shown in Fig. 42, we have more free space in location

632-673; etc.
As for question (b), if we want n consecutive words, clearly we must locate

some block of m > n available words and reduce its size tom — n. (Furthermore,

when m = n, we must also delete this block from the list.) There may be several

blocks with n or more cells, and so the question becomes which area should

be chosen?

Two principal answers to this question suggest themselves: We can use the

“best-fit” method or the “first-fit” method. In the former case, we decide to

choose an area with m cells, where m is the smallest value present which is n

or more. This might require searching the entire list of available space before

a decision can be made. The “first-fit” method, on the other hand, simply

chooses the first area encountered that has >n words.

2.5 DYNAMIC STORAGE ALLOCATION 437

Historically, the best-fit method was widely used for several years; this

naturally appears to be a good policy since it saves the larger available areas

for a later time when they might be needed. But several objections to the best-

fit technique can be raised: It is rather slow, since it involves a fairly long search;

if “best fit” is not substantially better than “first fit” for other reasons, this

extra searching time is not worth while. More importantly, the best-fit method

tends to increase the number of very small blocks, and proliferation of small

blocks is usually undesirable. There are certain situations in which the first-fit

technique is demonstrably better than the best-fit method; for example, suppose

we are given just two available areas of memory, of sizes 1300 and 1200, and

suppose there are subsequent requests for blocks of sizes 1000, 1100, and 250:

memory available areas, available areas
request “first fit” “best fit”

— 1300, 1200 1300, 1200
1000 300, 1200 1300, 200
1100 300, 100 200, 200
250 50, 100 stuck

For these reasons the first-fit method can be recommended.

Algorithm A (First-fit method). Let AVAIL point to the first available block of

storage, and suppose that each available block with address P has two fields:

SIZE(P), the number of words in the block; and LINK(P), a pointer to the next

available block. The last pointer is A. This algorithm searches for and reserves

a block of N words, or reports failure.

Al. [Initialize.] Set Q LOC(AVAIL). (Throughout the algorithm we use two

pointers, Q and P, which are generally related by the condition P = LINK(Q).

We assume that
LINK(LOC(AVAIL)) = AVAIL.)

A2. [End of list?] Set P <— LINK(Q). If P = A, the algorithm terminates unsuc¬

cessfully; there is no room for a block of N consecutive words.

A3. [Is SIZE enough?] If SIZE(P) > N, go to A4; otherwise set Q <— P and return

to step A2.

A4. [Reserve N.] Set K <- SIZE(P) — N. If K = 0, set LINK(Q) «- LINK(P)

(thereby removing an empty area from the list); otherwise set SIZE(P) <— K.

The algorithm terminates successfully, having reserved an area of length

N beginning with location P + K. |

This algorithm is certainly straightforward enough. However, a significant

improvement in its running speed can be made with only a rather slight change

in strategy. This improvement is quite important, and the reader will find it a

pleasure to discover it for himself (see exercise 6).

438 INFORMATION STRUCTURES 2.5

Algorithm A may be used whether storage allocation is desired for small N

or large N. Let us temporarily assume, however, that we are primarily interested

in large values of N. Then note what happens when SIZE(P) is equal to N + 1

in that algorithm: we get to step A4 and reduce SIZE(P) to 1. In other words,

an available block of size 1 has just been created; this block is so small it is

virtually useless, and it julst clogs up the system. We would have been better

off if we had reserved the whole block of N + 1 words, instead of saving the

extra word; it is often better to expend a few words of memory to avoid handling

some unimportant details. Similar remarks apply to blocks of N + K words

when K is very small.
If we allow the possibility of reserving slightly more than N words, it will

be necessary to remember how many words have been reserved, so that later

when this block becomes available again the entire set of N + K words is freed.

This added amount of bookkeeping means that we are tying up space in every

block in order to make the system more efficient only in certain circumstances

when a “tight fit” is found; so the strategy doesn’t seem especially attractive.

However, a special control word as the first word of each variable-size block often

turns out to be desirable for other reasons, and so it is usually not unreasonable

to expect the SIZE field to be present in the first word of every block whether it

is available or not.
In accordance with these conventions, we would modify step A4 above to

read as follows:

“A4'. [Reserve >N.] Set K <— SIZE(P) — N. If K < c (where c is a small positive

constant chosen to reflect an amount of storage we are willing to sacrifice

in the interests of saving time), set

LINK(Q) <— LINK(P) and L <— P.

Otherwise set

SIZE(P) <— K, L <— P -f- K, and SIZE(L) <— N.

The algorithm terminates successfully, having reserved an area of length N

or more beginning with location L. ”

A value for the constant c of about 8 or 10 is suggested, although very little

theory or empirical evidence exists to compare this with other choices. When

the best-fit method is being used, the test of K < c is even more important than

it is to the first-fit method, because tighter fits (smaller values of K) are much

more likely to occur, and the number of available blocks should be kept as small
as possible for that algorithm.

B. Liberation. Now let us consider the inverse problem: How should we return

blocks to the available space list when they are no longer needed?

It is perhaps tempting to dismiss this problem by using “garbage collection”

(see Section 2.3.5); we could follow a policy of simply doing nothing until space

2.5
DYNAMIC STORAGE ALLOCATION 439

runs out, then searching for all the areas currently in use and fashioning a new
AVAIL list.

The idea of garbage collection is not to be recommended, however, for all

applications. In the first place, we need a fairly “disciplined” use of pointers if

we are to be able to guarantee that all areas currently in use will be easy to

locate, and this amount of discipline is often lacking in the applications con¬

sidered here. Secondly, as we have seen before, garbage collection tends to be
slow when the memory is nearly full.

There is another more important reason why garbage collection is not

satisfactory, due to a phenomenon which did not confront us in our previous

discussion of the technique: Suppose that there are two adjacent areas of

memory, both of which are available, but because of the garbage-collection
philosophy one of them (shown shaded) is not in the AVAIL list.

(2)

In this diagram, the heavily shaded areas at the extreme left and right are

unavailable. We may now reserve a section of the area known to be available:

If garbage collection occurs at this point, we have two separate free areas,

(4)

Boundaries between available and reserved areas have a tendency to perpetuate

themselves, and as time goes on the situation gets progressively worse. But if

we had used a philosophy of returning blocks to the AVAIL list as soon as they

become free, and collapsing adjacent available areas, together, we would have
collapsed (2) into

which is much better than (4). This phenomenon causes the garbage-collection

technique to leave memory more broken up than it should be.

In order to remove this difficulty, it is possible to use garbage collection

together with the process of compacting memory, i.e., moving all the reserved

blocks into consecutive locations, so that all available blocks come together

whenever garbage collection is done. The allocation algorithm now becomes

completely trivial by contrast with Algorithm A, since there is only one available

block at all times. Even though this technique takes time to recopy all the

440 INFORMATION STRUCTURES 2.5

locations that are in use, and to change the value of the link fields therein, it

can be applied with reasonable efficiency when there is a disciplined use of

pointers, and when there is a spare link field in each block for use by the garbage

collection algorithms. (See exercise 33.)
Since many applications do not meet these requirements for the feasibility

of garbage collection, we shall now study methods for returning blocks of memory

to the available space list. The only difficulty in these methods is the collapsing

problem: two adjacent free areas should be merged into one. In fact, when an

area bounded by two available blocks becomes free, all three areas should be

merged together into one. In this way a good balance is obtained in memory even

though storage areas are continually reserved and freed over a long period of time.

(For a proof of this fact, see the “fifty-percent rule” below.)
The problem is to determine whether the areas at either side of the returned

block are currently available; and if they are, we want to update the AVAIL list

properly. The latter operation is a little more difficult than it sounds.

The first solution to these problems is to maintain the AVAIL list in order

of increasing memory locations.

Algorithm B (.Liberation with sorted list). Under the assumptions of Algorithm A,

with the additional assumption that the AVAIL list is sorted by memory location

(i.e., if P points to an available block and LINK(P) 5^ A, then LINK(P) > P),

this algorithm adds the block of N consecutive cells beginning at location PO

to the AVAIL list. We naturally assume that none of these N cells is already

available.

Bl. [Initialize.] Set Q <— LOC(AVAIL). (See the remarks in step Al above.)

B2. [Advance P.] Set P LINK(Q). If P = A, or if P > PO, go to B3; otherwise

set Q <— P and repeat step B2.

B3. [Check upper bound.] If PO + N = P (and P ^ A), set N N + SIZE(P) and

set LINK(PO) <— LINK(P). Otherwise set LINK(PO) <— P.

B4. [Check lower bound.] If Q + SIZE(Q) = PO [we assume that

SIZE(LOC(AVAIL)) = 0,

so that this test always fails when Q = LOC (AVAIL)], set SIZE(Q) <—

SIZE(Q) + N and LINK(Q) 4- LINK(PO). Otherwise set LINK(Q) <- po,

SIZE(PO) <— N. |

Steps B3 and B4 do the desired collapsing, based on the fact that Q < PO < P

are the beginning locations of three consecutive available areas.

If the AVAIL list is not maintained in order of locations, the reader can see

that a “brute force ” approach to the collapsing problem would require a complete

search through the entire AVAIL list; Algorithm B reduces this to a search

through about half of the AVAIL list (in step B2) on the average. Exercise 11

shows how Algorithm B can be modified so that, on the average, only about

2.5 DYNAMIC STORAGE ALLOCATION 441

one-third of the AVAIL list must be searched. But obviously, when the AVAIL

list is long, all of these methods are much slower than we want them to be.

Isn’t there some way to reserve and free storage areas so that we don’t need to
do extensive searching through the AVAIL list?

We will now consider a method which eliminates all searching when storage

is returned and which can be modified, as in exercise 6, to avoid almost all of the

searching when storage is reserved. This technique makes use of a TAG field at

both ends of each block, and a SIZE field in the first word of each block; this

“overhead” is negligible when reasonably large blocks are being used, although

it is perhaps too much of a penalty to pay in situations when the blocks have

a very small average size. Another method described in exercise 19 requires only

one bit in the first word of each block, at the expense of a little more running

time and a slightly more complicated program.

At any rate, let us now assume that we don’t mind adding a little bit of

control information, in order to save a good deal of time over Algorithm B when

the AVAIL list is long. The method we will describe assumes that each block
has the following form:

Reserved block Free block

First word

Second word

SIZE-2 words

Last word

TAG
-1-
SIZE

1
LINK

LINK

TAG SIZE
1

1 1

_1_l_

TAG = ’

(7)

TAG =

TAG = “+’:

TAG =

TAG
1-1-1-

SIZE

TAG
_i_i_i_i_

The idea in the following algorithm is to maintain a doubly linked AVAIL

list, so that entries may conveniently be deleted from random parts of the list.

The TAG field at either end of a block can be used to control the collapsing

process, since we can tell easily whether or not both adjacent blocks are available.

Double linking is achieved in a familiar way, by letting the LINK in the first

word point to the next free block in the list, and letting the LINK in the second

word point back to the previous block; thus, if P is the address of an available

block, we always have

LINK (LINK (P) + 1) = P = LINK (LINK (P + 1)). (8)

To ensure proper “boundary conditions,” the list head is set up as follows:

LOC(AVAIL):

LOC(AVAIL) + 1:

-1-
o 0

i

1

0 0
1

to first block in available space list

to last block in available space list
(9)

442 INFORMATION STRUCTURES 2.5

A “first-fit” reservation algorithm for this technique may be designed very

much like Algorithm A, so we shall not consider it here (cf. exercise 12). The

principal new feature of this method is the way a block can be freed in essentially

a fixed amount of time:
i

Algorithm C (Liberation w^th boundary tags). Assume that blocks of locations

have the forms shown in (7), and assume that the AVAIL list is doubly linked, as

described above. This algorithm puts the block of locations starting with

address FO into the AVAIL list. If the pool of available storage runs from loca¬

tions m0 through mi, inclusive, the algorithm assumes for convenience that

TAG(m0 — 1) = TAG(mx + 1) = “+".

Cl. [Check lower bound.] If TAG(PO — 1) — go to C3.

C2. [Delete lower area.] Set P <— PO — SIZE(P0 — 1), and then set

PI <— LINK(P), P2 <— LINK(P —(— 1), LINK (PI + 1) <—P2,

LINK(P2) <— PI, SIZE(P) <— SIZE(P) -f SIZE(PO), PO <— P.

C3. [Check upper bound.] Set P 4— PO -f- SIZE (PO). If TAG (P) = “+ ”, go to C5.

C4. [Delete upper area.] Set

PI <— LINK(P), P2 <— LINK(P —|— 1), LINK(PI + 1) 4— P2,

LINK(P2) <— PI, SIZE(PO) <—SIZE(PO) -)-SIZE(P), P <— P + SIZE(P).

C5. [Add to AVAIL list.] Set

SIZE (P — 1) <- SIZE (PO), LINK(PO) <— AVAIL,

LINK(P0 + 1)4- LOC (AVAIL), LINK (AVAIL +1) 4— PO,

AVAIL 4- PO, TAG (PO) <— TAG(P -1)4- |

The steps of Algorithm C are straightforward consequences of the storage

layout (7); a slightly longer algorithm which is a little faster appears in exercise

15. In step C5, AVAIL is an abbreviation for LINK(L0C(AVAIL)), as shown in (9).

C. The “buddy system.” We will now study another approach to dynamic

storage allocation, suitable for use with binary computers. This method takes

one bit of “overhead” in each block, and it requires all blocks to be of length 1,

2, 4, 8, or 16, etc. If a block is not 2k words long for some integer k, the next

higher power of 2 is chosen and extra unused space is allocated accordingly.

The idea of this method is to keep separate lists of available blocks of each

size 2k, 0 < k < m. The entire pool of memory space under allocation consists

of 2'"' words, which we will assume for convenience have the addresses 0 through

2m — 1. Originally, the entire block of 2m words is available. Later, when a

block of 2k words is desired, and if nothing of this size is available, a larger avail¬

able block is split into two equal parts; ultimately, a block of the right size 2k

will appear. When one block splits into two (each of which is half as large as

2.5
DYNAMIC STORAGE ALLOCATION 443

the original), these two blocks are called buddies. Later when both buddies are

available again, they coalesce back into a single block; thus the process can be

maintained indefinitely, unless we run out of space at some point.

The key fact underlying the practical usefulness of this method is that if

we know the address of a block (i.e., the memory location of its first word), and

if we also know the size of that block, we know the address of its buddy.’ For

example, the buddy of the block of size 1G beginning in binary location

101110010110000 is a block starting in binary location 101110010100000. To

see why this must be true, we first observe that as the algorithm proceeds, the

address of a block of size 2k is a multiple of 2k. In other words, the address in

binary notation has at least k zeros at the right. This observation is easily

justified by induction: if it is true for all blocks of size 2^+1, it is certainly true
when such a block is halved.

Therefore a block of size, say, 32 has an address of the form xx . . . x00000

(where the x’s represent either 0 or 1); if it is split, the newly formed buddy

blocks have the addresses xxrOOOOO and xx . . . xlOOOO. In general, let

buddyfc(:r) = address of the buddy of the block of size 2k whose address is x;
we find that

buddy k(x)
(x -j- 2k, if xmod 2i+1 = 0;

\x — 2k, if x mod 2k+1 = 2k. (10)

This function is readily computed with the “exclusive or” instruction (sometimes

called “selective complement” or “add without carry”) usually found on binary
computers; cf. exercise 28.

The buddy system makes use of a one-bit TAG field in each block:

TAG(P) = 0, if the block with address P is reserved;

TAG(P) = 1, if the block with address P is available. ^

Besides this TAG field, which is present in all blocks, available blocks also have

two link fields, LINKF and LINKB, which are the usual forward and backward

links of a doubly linked list; and they also have a KVAL field to specify k when

their size is 2k. The algorithms below make use of the table locations AVAIL[0],

AVAIL[1], . . . , AVAIL [m], which serve respectively as the heads of the lists of

available storage of sizes 1, 2, 4, , 2m. These lists are doubly linked, so as

usual the list heads contain two pointers (see Section 2.2.5):

AVAILFtk] = LINKF(LOC(AVAIL[fc])) = link to rear of AVAIL[k] list;

AVAILBl/cl = LINKB (LQC (AVAIL[fc])) = link to front of AVAIL[k] list. ^ '

Initially, before any storage has been allocated, we have

AVAILF[m] = AVAILB [m] = 0,

LINKF(0) = LINKB(0) = L0C(AVAIL[m]), (13)

TAG (0) = 1, KVAL(O) = m

444 INFORMATION STRUCTURES 2.5

(indicating a single available block of length 2m, beginning in location 0), and

also
AVAILF1 fc] = AVAILB[fc] = LOC(AVAIL[fc]), for 0 < fc < m (14)

(indicating einpty lists for available blocks of lengths 2k for all fc < m).

From this description <*f the buddy system, the reader may find it enjoyable

to design the necessary algorithms for reserving and freeing storage areas by

himself, and to compare his solutions with the algorithms given below. Note

the comparative ease with which blocks can be halved in the reservation

algorithm.

Algorithm R (Buddy system reservation). This algorithm finds and reserves a

block of 2k locations, or reports failure, using the organization of the buddy

system as explained above.

Rl. [Find block.] Let j be the smallest integer in the range k < j < m for which

AVAILF[j] LOC (AVAIL[j]), that is, for which the list of available blocks

of size 2; is not empty. If no such j exists, the algorithm terminates unsuc¬

cessfully, since there are no known available blocks of sufficient size to

meet the request.

R2. [Remove from list.] Set

L <— AVAILF [j], AVAILF [j] <— LINKF (L),

LINKB(LINKF(L)) <- LOC(AVAIL[j]), and TAG(L) <— 0.

R3. [Split required?] If j = k, the algorithm terminates (we have found and
reserved an available block starting at address L).

R4. [Split.] Decrease j by 1. Then set

P <- L + 2j, TAG(P) <— 1, KVAL(P) <- j, LINKF(P) <— LOC(AVAIL[j]),

LINKB(P) <— LOC (AVAIL [j]), AVAILF [j] <— AVAILB [j] 4- p.

(This splits a large block and enters the unused half in the AVAIL [j] list
which was empty.) Go back to step R3. |

Algorithm S (Buddy system liberation). This algorithm returns a block of 2k
locations, starting in address L, to free storage, using the organization of the
buddy system as explained above.

51. [Is buddy available?] Set P <— buddyfc(L). (See Eq. (10).) If k = m or if
TAG(P) = 0, or if TAG(P) = 1 and KVAL(P) j* k, go to S3.

52. [Combine with buddy.] Set

LINKF(LINKB(P)) <- LINKF(P), LINKB(LINKF(P)) 4- LINKB(P).

(This removes block P from the AVAIL [fc] list.) Then set fc <— fc + 1, and
if P < L set L <— P. Return to Si.

2.5 DYNAMIC STORAGE ALLOCATION 445

S3. [Put. on list.] Set

TAG(L) <— 1, LINKF(L) <— AVAILF[fc], LINKB(AVAILF[fc]) <— L,

KVAL(L) <— k, LINKB (L) <- LQC (AVAIL[fe]), AVAILF[/c] <- L.

(This puts block L on the AVAIL[k] list.) |

D. Comparison of the methods. The mathematical analysis of these dynamic

storage-allocation algorithms has proved to be quite difficult, but there is one

interesting phenomenon which is fairly easy to analyze, namely the “fifty-
percent rule”:

If Algorithms A and B are used continually in such a way that the system tends

to an equilibrium condition, where there are N reserved blocks in the system, on

the average, each with a random lifetime, and where the quantity K in Algorithm

A takes on nonzero values (or, more generally, values >c as in step A4') with

probability p, then the average number of available blocks tends to approximately

ipN.

This rule tells us approximately how long the AVAIL list will be. When the

quantity p is near 1—this will happen if c is very small and if the block sizes are

infrequently equal to each other—we have about half as many available blocks

as unavailable ones; hence the name “fifty-percent rule.”

It is not hard to derive this rule. Consider the following memory map:

A B C C B A B B B C B B

This shows the reserved blocks divided into three categories:

A: when freed, the number of available blocks will decrease by one;

B: when freed, the number of available blocks will not change;

C: when freed, the number of available blocks will increase by one.

Now let N be the number of reserved blocks, and let M be the number of avail¬

able ones; let A, B, and C be the number of blocks of the types identified above.

We have

M = i(2A + B + e) K J

where e = 0, 1, or 2 depending on conditions at the lower and upper boundaries.

To derive the fifty-percent rule, we set

probability that M increases by one = probability that M decreases by one

(or, more precisely, the average change in M during one deletion plus one

insertion is set to zero during equilibrium). This leads to

C/N = A/N+(1 - p);

we are assuming that each of the reserved blocks in the system is equally likely

446 INFORMATION STRUCTURES 2.5

to be the next one deleted. Now by (15), with e assumed to be zero (since M

and N are assumed to be reasonably large), we get

N - 2M + A = A + (1 — p)N. (16)
4

The fifty-percent rule follows. This derivation shows in fact that when M is

momentarily less than %pN, there is higher probability that M will increase

than that it will decrease, and conversely.
Besides this interesting rule, our knowledge of the performance of these

algorithms is based almost entirely on Monte Carlo experiments. The reader

will find it instructive to conduct his own simulation experiments when he is
choosing between storage allocation algorithms for a particular machine and a

particular application or class of applications. The author carried out several

such experiments just before writing this section (and, indeed, the fifty-percent

rule was noticed during these experiments before a proof for it was found); let

us briefly examine the methods and results of these experiments here.

The basic simulation program ran as follows, with TIME initially zero and

with the memory area initially all available:

PI. Advance TIME by 1.

P2. Free all blocks in the system which are scheduled to be freed at the current

value of TIME.

P3. Calculate two quantities S (a random size) and T (a random “lifetime”),

based on some probability distributions, using the methods of Chapter 3.

P4. Reserve a new block of length S, which is due to be freed at (TIME + T).

Return to PI. |
<

Whenever TIME was a multiple of 200, detailed statistics about the performances
of the reservation and liberation algorithms were printed. The same sequence

of values of S and T was used for each pair of algorithms tested. After TIME

advanced past 2000, the system usually had reached a more or less steady state

which gave every indication of being maintained indefinitely thereafter. How¬

ever, depending on the total amount of storage available and on the distributions

of S and T in step P3, the allocation algorithms would occasionally fail to find

enough space and the simulation experiment was then terminated.

Let C be the total number of memory locations available, and let S, T

denote the average values of S and T in step P3. It is easy to see that the ex¬

pected number of unavailable words of memory at any given time is S • T,

once TIME is sufficiently large. When S • T was greater than about § C in the

experiments, memory overflow usually occurred, often before C words of

memory were actually needed. The memory was able to become over 90 percent

filled when the block size was small compared to C, but when the block sizes

were allowed to exceed ^C (as well as taking on much smaller values) the

memory tended to become “full” when less than locations were in fact

2.5 DYNAMIC STORAGE ALLOCATION 447

needed. Empirical evidence suggests strongly that block sizes larger than yq C

should not be used with dynamic storage allocation if effective operation is expected.

The reason for this behavior can be understood in terms of the fifty-percent

rule: If the system reaches an equilibrium audition in which the size / of an aver¬

age free block is less than the size r of an average block in use, we can expect to

get an unfillable request unless a large free block is available for emergencies

hence f > r in a saturated system that doesn’t overflow, and we have C =

fM + rN > rM + rN ~ (±p + l)rN. The total memory in use is therefore

rN < C/(\p + 1); when p « 1 we are unable to use more than about § of the
memory cells.

The experiments were conducted with three size distributions for S:

(Si) An integer chosen uniformly between 100 and 2000;

(S3) Sizes (1, 2, 4, 8, 16, 32) chosen with respective probabilities (J, 5,
JL _1_ _LA •
16)32)32/)

(S3) Sizes (10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200,

250, 500, 1000, 2000, 3000, 4000) were selected with equal probability.

The time distribution T was usually a random integer chosen uniformly between
1 and t, for fixed t = 10, 100, or 1000.

Experiments were also made by choosing T uniformly between 1 and

min (LfC/J, 12500) in step P3, where U is the number of time units remaining

until the next scheduled freeing of some currently reserved block in the system.

This time distribution was meant to simulate an “almost-last-in-first-out” be¬

havior : for if T were always chosen < U, the storage allocation system would

degenerate into simply a stack operation requiring no complex algorithms.

(See exercise 1.) In this case, T is chosen greater than U about 20 percent of the
time, so we have almost, but not quite, a stack operation. When this distribution

was used, algorithms such as A, B, and C behaved much better than usual;

there were rarely, if ever, more than two items in the entire AVAIL list, while

there were about 14 reserved blocks. On the other hand, the buddy system

algorithms, R and S, were slower when this distribution was used, because it was

necessary to split and to coalesce blocks more frequently in a stack-like opera¬

tion. The theoretical properties of this time distribution appear to be very

difficult to deduce (see exercise 32).

Figure 42, which appeared near the beginning of this section, was the con¬

figuration of memory at TIME = 5000, with size distribution (Si) and with the

time distribution chosen randomly between 1 and 100, using the “first-fit”

method just as in Algorithms A and B above. For this experiment, the prob¬

ability p which enters into the “fifty-percent rule” was essentially 1, so we

would expect about half as many available blocks as reserved blocks. Actually

Fig. 42 shows 21 available and 53 reserved. This does not disprove the fifty-

percent rule: for example, at TIME = 4600 there were 25 available and 49 reserved.

The configuration in Fig. 42 merely shows how the fifty-percent rule is subject

to statistical variations. The number of available blocks generally ranged

between 20 and 30, while the number of reserved blocks was generally between

45 and 55.

448 INFORMATION STRUCTURES 2.5

00000

20000

40000

60000

80000

100000

120000

5000 6000 7000 8000 9000 10000

Fig. 43. Memory map obtained with the “best fit” method. (Compare this with
Fig. 42, which shows the “first fit” method, and Fig. 44, which shows the “buddy
system,” for the same sequence of storage requests.)

Figure 43 shows the configuration of memory obtained with the same data

as Fig. J+2 but with the “best-fit” method used instead of the “first-fit” method.

The constant c in step A4' was chosen as 16, to eliminate small blocks, and as

a result the probability p dropped to about 0.7 and there were fewer available

areas.

When the time distribution was changed from 1 to 1000 instead of 1 to 100,

situations precisely analogous to those shown in Figs. 42 and 43 were obtained,

with all appropriate quantities approximately multiplied by 10. For example,

there were 515 reserved blocks; and 240 free blocks in the equivalent of Fig. 42,

176 free blocks in the equivalent of Fig. 43.

In all experiments comparing the best-fit and first-fit methods, the latter

always appeared to be superior. When memory size was exhausted, the first-fit

method actually stayed in action longer than the best-fit method before memory

overflow occurred, in most instances.

The buddy system was also applied to the same data that led to Figs. 42

and 43, and Fig. 44 was the result. Here, all sizes in the range 257 to 512 were

treated as 512, those between 513 and 1024 were raised to 1024, etc. On the

average this means about four thirds as much memory was requested (see

exercise 21); the buddy system, of course, works better on size distributions like

that of (S2) above, instead of (Si). Note that there are available blocks of
sizes 29, 210, 211, 212, 213, and 214 in Fig. 44.

Simulation of the buddy system showed that it performs much better than

first expected. It is clear that the buddy system will sometimes allow two

adjacent areas to be available without merging them into one (if they are not

“buddies”); but this situation is not present in Fig. 44 and, in fact, it is rare in

practice. In cases where memory overflow occurred, memory was 95 percent

reserved, and this reflects a surprisingly good allocation balance. Furthermore, it

was very seldom necessary to split blocks in Algorithm R, or to merge them in

Algorithm S; the tree remained much like Fig. 44 with available blocks on the

most commonly used levels. Some mathematical results which give insight into

this behavior, at the lowest level of the tree, have been obtained by P. W.

Purdom, Jr., and S. M. Stigler, JACM 17 (1970), 683-697.

2.5 DYNAMIC STORAGE ALLOCATION 449

the division of certain large blocks into “buddies” of half the size. Squares indicate
available blocks.)

Another surprise was the excellent behavior of Algorithm A after the
modification described in exercise 6; only 2.8 inspections of available block sizes
were necessary on the average [using size distribution (Si) and times chosen
uniformly between 1 and 1000], and more than half of the time only the minimum
value, one iteration, was necessary. This was true in spite of the fact that about
250 available blocks were present. The same experiment with Algorithm A
unmodified showed about 125 iterations were necessary on the average (so about
half of the AVAIL list was being examined each time), and 20 percent of the time
200 or more iterations were found to be necessary.

This behavior of Algorithm A unmodified can, in fact, be predicted as a
consequence of the fifty-percent rule. At equilibrium, the portion of memory
containing the last \ of the reserved blocks will also contain the last \ of the
free blocks; that portion will be involved \ of the time when a block is freed,
and so it must be involved in \ of the allocations in order to maintain equi¬
librium. The same argument holds when is replaced by any other fraction.
(These observations are due to J. M. Robson.)

The exercises below include MIX programs for the two principal algorithms
which are recommended as a consequence of the above remarks—Algorithm A
modified as in exercise 12 together with Algorithm C, as compared with the
buddy system—and here are the approximate results:

Time for reservation Time for liberation

Boundary tag system:

Buddy system:

33 + 7 A

19 + 25 R

18, 29, 31, or 34

27 + 26*8

450 INFORMATION STRUCTURES 2.5

Here A > 1 is the number of iterations necessary in searching for an available

block which is large enough; R > 0 is the number of times a block is split in two

(the initial difference of j — k in Algorithm R); and S > 0 is the number of

times buddy blocks are reunited during Algorithm S. The simulation experi¬

ments indicate that under the stated assumptions with size distribution (Si)
and time chosen between 1- and 1000, we may take A — 2.8, R = S = 0.04 on

the average. (The average values A = 1.3, R = S = 0.9 were observed when

the “almost-last-in-first-out” time distribution was substituted as explained

above.) This shows that both methods are quite fast, with the buddy system

slightly faster in Mix’s case. Remember that the buddy system requires about

40 percent more space when block sizes are not constrained to be powers of 2.
A corresponding time estimate for the garbage collection and compacting

algorithm of exercise 33 is about 104 units of time to locate a free node, assuming

that garbage collection occurs when the memory is approximately half full, and

assuming that the nodes have an average length of 5 words with 2 links per node.

The pros and cons of garbage collection are discussed in Section 2.3.5. When

the memory is not heavily loaded and when the appropriate restrictions are met,

garbage collection and compacting is very efficient; for example, on the MIX

computer, the garbage collection method is faster than the other two, if the

memory space never gets more than about one-third full, and if the nodes are

relatively small.

The same simulation techniques were applied also to some other storage

allocation algorithms. The other algorithms were so poor by comparison with

the algorithms of this section that they will be given only brief mention here:

a) Separate AVAIL lists were kept for each size. A single free block was

occasionally split into two smaller blocks when necessary, but no attempt was

made to put such blocks together again. The memory map became fragmented

into finer and finer parts until it was in terrible shape; a simple scheme like this

is almost equivalent to doing separate allocation in disjoint areas, one area for
each block size.

b) An attempt was made to do “two-level” allocation: The memory was

divided into 32 large sectors. A brute-force allocation method was used to

reserve large blocks of 1, 2, or 3 (rarely more) adjacent sectors; each large block

such as this was subdivided to meet storage requests until no more room was

left within the current large block, and then another large block was reserved

for use in subsequent allocations. Each large block was returned to free storage

only when all space within it became available. This method almost always ran
out of storage space very quickly.

Although this particular method of “two level” allocation was a failure for

the data considered in the author’s simulation experiments, there are other

circumstances (which occur not infrequently in practice) when a multiple-level

allocation strategy can be beneficial. (For example, consider rather large pro¬

grams that operate in several stages, where it is known that certain types of

nodes are needed only within a certain subroutine.) It might also be desirable to

use quite different allocation strategies for different classes of nodes in the same

2.5 DYNAMIC STORAGE ALLOCATION 451

program. The idea of allocating storage by “zones,” with possibly different

strategies employed in each zone and with the ability to free an entire zone at

once, is discussed by Douglas T. Ross in CACM 10 (1967), 481-492.

For further empirical results about dynamic storage allocation, see the

articles by B. Randell, CACM 12 (1969), 365-369, 372; P. W. Purdom, S. M.

Stigler, and T. O. Cheam, BIT 11 (1971), 187-195; B. H. Margolin, R. P.

Parmelee, and M. Schatzoff, IBM Systems J. 10 (1971), 283-304.

E. Overflow. What do we do when no more room is available? Suppose there

is a request for, say, n consecutive words, when all available blocks are too

small. The first time this happens, there are usually more than n available

locations present, but they are not consecutive; “compacting memory” (i.e.,
moving some of the locations which are in use, so that all the available locations

are brought together) would mean we could continue processing. But compacting

is slow; and the vast majority of cases in which the “first-fit” method runs out

of room actually would soon thereafter run completely out of space anyway, no

matter how much compacting and re-compacting is done. Therefore it is

generally not worth while to write a compacting program, except under special

circumstances in connection with garbage collection, as in exercise 33. If over¬

flow is expected to occur, some method for removing items from memory and

storing them on an external memory device can be used, with provision for

bringing the information back again when it is needed. This implies that all

programs referring to the dynamic memory area must be severely restricted

with regard to the allowable references they make to other blocks, and special

computer hardware (e.g., interrupt on absence of data, or automatic “paging”)

is generally required for efficient operation under these conditions.

Some decision procedure is necessary to decide which blocks are the most

likely candidates for removal. One idea is to maintain a doubly linked list of

the reserved blocks, in which a block is moved up to the front of the list each

time it is accessed; then the blocks are effectively sorted in order of their last

access, and the block at the rear of the list is the one to remove first. A similar

effect can be achieved more simply by putting the reserved blocks into a circular

list and including a “recently used” bit in each block; the latter is set to 1

whenever the block is accessed. When it is time to remove a block, a pointer

moves along the circular list, resetting all “recently used ” bits to 0 until finding

a block that has not been used since the last time the pointer reached this part

of the circle.

J. M. Robson has shown [JACM 18 (1971), 416-423] that dynamic storage

allocation strategies which never relocate reserved blocks cannot possibly be

guaranteed to use memory efficiently; there will always be pathological circum¬

stances in which the method breaks down. For example, even when blocks are

restricted to be of sizes 1 and 2, overflow might occur with the memory only

about 2/3 full, no matter what allocation algorithm is used! Robson’s interesting

results are surveyed in exercises 36-40.

452 INFORMATION STRUCTURES 2.5

EXERCISES

1. [20] What simplifications can be made to the reservation and liberation algorithms
of this section', if storage requests always appear in a “last-in-first-out” manner, i.e., if
no reserved block is freed until after all blocks that were reserved subsequently have
already been freed?

2. [HM23] (E. Wolman.) Suppose that we want to choose a fixed node size for
variable length items, and suppose also that when each node has length k and when
an item has length l, it takes [1/(k — b)~] nodes to store this item. (Here b is a constant,
signifying that b words of each node contain control information, such as a link to the
next node.) If the average length l of a record is L, what choice of k minimizes the
average amount of storage space required? (Assume that the average value of
(l/(k — b)) mod 1 is equal to for any fixed k, as l varies.)

3. [^0] By computer simulation, compare the best-fit, first-fit, and “worst-fit”
methods of storage allocation; in the latter method, the largest available block is
always chosen. Is there any significant difference in the memory usage?

4. [22] Write a MIX program for Algorithm A, paying special attention to making
the inner loop fast. Assume that the SIZE field is (4:5), the LINK field is (0:2), and
A < 0.

► 5. [18] Suppose it is known that N is always 100 or more in Algorithm A. Would it
be a good idea to set c = 100 in the modified step A4'?

► 6. [28] After Algorithm A has been used repeatedly, there will be a strong tendency
for blocks of small SIZE to remain at the front of the AVAIL list, so that it will often
be necessary to search quite far into the list before finding a block of length N or more.
For example, note how the size of the blocks essentially increases in Fig. 42, for both
reserved and free blocks, from the beginning of memory to the end. (The AVAIL list
used while Fig. 42 was being prepared was kept sorted by order of location, as required
by Algorithm B.) Can you suggest a way to modify Algorithm A so that (a) short
blocks won’t tend to accumulate in a particular area, and (b) the AVAIL list may still
be kept in order of increasing memory locations, for purposes of algorithms like
Algorithm B?

7. [10] The example (1) shows that sometimes “first fit” can definitely be superior to
“best fit.” Give a similar example which shows a case where “best fit” is superior to
“first fit.”

8. [21] Show how to modify Algorithm A in a simple way to obtain an algorithm for
the “best-fit” method, instead of “first fit.”

► 9. [26] In what ways could a reservation algorithm be designed using the “best-fit”
method, that avoids searching the whole AVAIL list? (Try to think of ways that cut
down the necessary search as much as possible.)

10. [22] Show how to modify Algorithm B so that the block of N consecutive cells
beginning at location P0 is made available, without assuming that each of these N cells
is currently unavailable; assume, in fact, that the area being freed may actually overlap
several blocks that are already free.

11. [M25] Show that the improvement to Algorithm A suggested in the answer to
exercise 6 also can be used to lead to a slight improvement in Algorithm B, which cuts

2.5 DYNAMIC STORAGE ALLOCATION 453

the average length of search from half the length of the AVAIL list to one-third this

length. (Assume that the block being freed will be inserted into a random place within
the sorted AVAIL list.)

► 12. [20] Modify Algorithm A so that it follows the conventions of (7), uses the modi¬

fied step A4' described in the text, and also incorporates the improvement of exercise 6.

13. [21] Write a MIX program for the algorithm of exercise 12.

14. [21] W hat difference would it make to Algorithm C and the algorithm of exercise

12, (a) if the SIZE field were not present in the last word of a free block? or (b) if the

SIZE field were not present in the first word of a reserved block?

► 15. [24] Show how to speed up Algorithm C at the expense of a slightly longer pro¬

gram, by not changing any more links than absolutely necessary in each of four cases

depending on whether TAG(P0 — 1), TAG(P0 + SIZE(PO)) are plus or minus.

16. [24] Write a MIX program for Algorithm C, incorporating the ideas of exercise 15.

17. [10] What should be the contents of LOC(AVAIL) and LOC(AVAIL) + 1 in (9)

when there are no available blocks present?

► 18. [20] Figs. 42 and 43 were obtained using the same data, and essentially the same

algorithms (Algorithms A and B), except that Fig. 43 was prepared by modifying

Algorithm A to choose “best fit” instead of “first fit.” Why did this cause Fig. 42 to

have a large available area in the higher locations of memory, while in Fig. 43 there is

a large available area in the lower locations?

► 19. [24] Suppose that blocks of memory have the form of (7), except without the TAG

or SIZE fields required in the last word of the block. Suppose further that the following

simple algorithm is being used to make a reserved block free again: “Q <— AVAIL,

LINK(PO) <— Q, LINK(P0+1) <- LQC (AVAIL), LINK(Q+1) <— PO, AVAIL <— PO,

TAG(PO) <— “—”.” (This algorithm does nothing about collapsing adjacent areas

together.)

Show that it is possible to design a reservation algorithm similar to Algorithm A,

which does the necessary collapsing of adjacent free blocks while searching the AVAIL

list, and at the same time it avoids any unnecessary fragmentation of memory as in

(2), (3), and (4).

20. [00] Why is it desirable to have the AVAIL[ft] lists in the buddy system doubly

linked, instead of simply having straight linear lists?

21. [HM25] Examine the ratio an/bn, where an is the sum of the first n terms of

1 + 2+ 4+ 4+ 8+ 8+ 8+ 8+16+16+ •••, and bn is the sum of the first n
terms of 1 + 2+ 3+ 4+ 5+ 6+ 7 + 8+ 9+ 10 + • • • , as w goes to infinity.

► 22. [21] The text repeatedly states that the buddy system allows only blocks of size

2k to be used, and exercise 21 shows this can lead to a substantial increase in the storage

required. But if an 11-word block is needed in connection with the buddy system, why

couldn’t we find a 16-word block and divide it into an 11-word piece together with two

free blocks of sizes 4 and 1 ?

23. [05] What is the binary address of the buddy of the block of size 4 whose binary

address is 011011110000? What would it be if the block were of size 16 instead of 4?

24. [20] According to the algorithm in the text, the largest block (of size 2m) has no

buddy, since it represents all of storage. Would it be correct to define buddym(0) = 0

(i.e., to make this block its own buddy), and then to avoid testing k = m in step SI?

454 INFORMATION STRUCTURES 2.5

► 25. [22] Criticize the following idea: “Dynamic storage allocation using the buddy

system will never reserve a block of size 2m in practical situations (since this would

fill the whole memory), and, in general, there is a maximum size 2n for which no blocks

of greater size are ever to be reserved. Therefore it is a waste of time to start with such

large blocks'available, and to combine buddies in Algorithm S when the combined

block has a size larger than^n.”

► 26. [21] Explain how the buddy system could be used for dynamic storage allocation

in memory locations 0 through M — 1 even though M does not have the form 2m as

required in the text.

27. [24] Write a MIX program for Algorithm R, and determine its running time.

28. [25] Assume that MIX is a binary computer, with a new operation code XOR

defined as follows (using the notation of Section 1.3.1): “C = 5, F = 5; for each bit

position in location M which equals 1, the corresponding bit position in register A is

complemented (changed from 0 to 1 or 1 to 0).”
Write a MIX program for Algorithm S, and determine its running time.

29. [20] Could the buddy system be modified to avoid the tag bit in each reserved

block?

30. [M48] Analyze the properties of the buddy system, in particular the average

speed of Algorithms R and S, given reasonable distributions for the sequence of storage

requests.

31. [M40] Can a storage allocation system analogous to the buddy system be designed

using the Fibonacci sequence instead of powers of two? (Thus, we might start with

Fm available words, and split an available block of Fk words into two buddies of

respective lengths Fk-1 and Fk-2.)

32. [HM47] Determine lim^*, a„, if it exists, where an is the mean value of tn in a

sequence defined as follows: Let

gk = Lf min (10000, f(tk-\ — 1), f(tk—2 — 2), . . . , f(ti — (k — l)))j,

where/(z) = x if x > 0,f(x) = °° if x < 0. The quantity tk takes on any of the values

1, 2, . . . , gk with probability 1 /gk. (Note: Some limited empirical tests indicate that

an might be approximately 14, but this is probably not very accurate.)

► 33. [28] (Garbage collection and compacting.) Assume that memory locations 1

through AVAIL — 1 are being used as a storage pool for nodes of varying sizes, having

the following form: The first word of NODE(P) contains the fields

SIZE(P) = number of words in NODE(P);

T(P) = number of link fields in NODE(P); T(P) < SIZE(P);

LINK(P) = special link field for use only during garbage collection.

The node immediately following NODE (P) in memory is NODE (P + SIZE (P)). Assume

that the only fields in NODE (P) which are used as links to other nodes are LINK (P + 1),

LINK(P +2), . . . , LINK(P -\~ T(P)), and each of these link fields is either A or the

address of the first word of another node. Finally, assume that there is one further

link variable in the program, called USE, and it points to one of the nodes.

Design an algorithm which (a) determines all nodes accessible directly or indirectly

from the variable USE, (b) moves these nodes into memory locations 1 through K — 1,

for some K, changing all links so that structural relationships are preserved, and
(c) sets AVAIL <- K.

For example, consider the following contents of memory, where INFO(L) denotes

2.5 DYNAMIC STORAGE ALLOCATION 455

the contents of location L, excluding LINK(L):

1 SIZE = 2, T = 1 6 SIZE = 2, T = 0
2 LINK = 6, INFO = A 7 CONTENTS = D
3 SIZE = 3, T = 1 8 SIZE = 3, T = 2
4 LINK = 8, INFO = B 9 LINK = 8, INFO =
5 CONTENTS = C 10 LINK = 3, INFO =

Your algorithm should transform this into

1 SIZE = 3, T = 1 4 SIZE = 3, T = 2
2 LINK = 4, INFO = B 5 LINK = 4, INFO =
3 CONTENTS = C 6 LINK = 1, INFO =

E

F

E

F

AVAIL = 11,

USE = 3.

AVAIL = 7,

USE = 1.

34. [29] Write a MIX program for the algorithm of exercise 33, and determine its

running time.

35. [22] Contrast the dynamic storage allocation methods of this section with the

techniques for variable-size sequential lists discussed at the end of Section 2.2.2.

► 36. [20] A certain lunch counter in Hollywood, California, contains 23 seats in a row.

Diners enter the shop in groups of one or two, and an attractive hostess shows them

where to sit. Prove that she will always be able to seat people immediately without

splitting up any pairs, if no customer who comes alone is assigned to any of the seats

numbered 2, 5, 8, ... , 20, provided that there are never more than 16 customers

present at a time. (Pairs leave together.)

► 37. [26] Continuing exercise 36, prove that the hostess can’t always do such a good

job when there are only 22 seats at the counter: No matter what strategy she uses, it

will be possible to reach a situation where two friends enter and only 14 people are

seated, but no two adjacent seats are vacant.

38. [M21] (J. M. Robson.) The lunch-counter problem in exercises 36 and 37 can

be generalized to show the worst-case performance of any dynamic storage allocation

algorithm which never relocates reserved blocks. Let N(n, m) be the smallest amount

of memory such that any series of requests for allocation and liberation can be handled

without overflow, provided that all block sizes are < m and the total amount of space

requested never exceeds n. Exercises 36 and 37 prove that N(16, 2) = 23; determine

the exact value of N(n, 2) for all n.

39. [HM28] (J. M. Robson.) Using the notation of exercise 38, show that

N(ni + n2, m) < f N(n2, m) + N(2m — 2, m); hence for fixed m,
lining*, N(n, m) = N(m) exists.

40. [HM50] Continuing exercise 39, determine N{3), N{4), and limm_>«, N(m)/lg m if

it exists.

41. [M27] The purpose of this exercise is to consider the worst-case memory usage

of the buddy system. A particularly bad case occurs, for example, if we start with an

empty memory and proceed as follows: First reserve n = 2r+1 blocks of length 1,

which go into locations 0 through n — 1; then for A; = 1, 2, . . ., r, liberate all blocks

whose starting location is divisible by 2k, and reserve 2~k~1n blocks of length 2k,
which go into locations ^-(1 -(- k)n through ^(2-j- k)n— 1. This procedure uses

1 + 2r times as much memory as is ever occupied.
Prove that the worst case cannot be substantially worse than this: When all

requests are for block sizes 1, 2, ... , 2r, and if the total space requested at any time

never exceeds n, where n is a multiple of 2r, the buddy system will never overflow a

memory area of size (r-j- 1)n.

456 INFORMATION STRUCTURES 2.6

2.6. HISTORY AND BIBLIOGRAPHY

Linear lists and rectangular arrays of information kept in consecutive memory

locations were widely used from the earliest days of stored-program computers,

and the earliest treatises dn programming gave the basic algorithms for travers¬

ing these structures. [For example, see J. von Neumann, Collected Works 5,

113-116 (written 1946); M. V. Wilkes, D. J. Wheeler, S. Gill, The Preparation

of Programs for an Electronic Digital Computer (Reading, Mass.: Addison-

Wesley, 1951), subroutine V-l.] Before the days of index registers, operations
on sequential linear lists were done by performing arithmetic on the machine

language instructions themselves, and this type of operation was one of the

early motivations for having a computer whose programs share memory space

with the data they manipulate.
Techniques which permit variable-length linear lists to share sequential

locations, in such a way that they shift back and forth when necessary, as

described in Section 2.2.2, were apparently a much later invention. J. Dunlap

of Digitek Corporation developed these techniques in 1963 in connection with

the design of a series of compiler programs; about the same time the idea inde¬

pendently appeared in the design of a COBOL compiler at IBM Corporation,

and a collection of related subroutines called CITRUS was subsequently used

at various installations. The techniques remained unpublished until after they

had been independently developed by Jan Garwick of Norway; see BIT 4

(1964), 137-140.

The idea of having linear lists in nonsequential locations seems to have

originated in connection with the design of computers with drum memories.

After executing the instruction in location n, such a computer is usually not

ready to get its next instruction from location n + 1 because the drum has

already rotated past this point. Depending on the instruction being performed,

the most favorable position for the next instruction might be n + 7 or n -f- 18,

etc., and the machine can operate up to six or seven times faster if its instruc¬

tions are optimally located rather than consecutive. [For a discussion of the

interesting problems concerning best placement of these instructions, see the

author’s article in J ACM 8 (1961), 119-150.] Therefore the machine design

provides an extra address field in each machine language instruction, to serve

as a link to the next instruction. Such a machine is called a “one-plus-one-

address computer, ” as distinguished from MIX which is a “one-address computer. ”

The design of one-plus-one-address computers is apparently the first appearance

of the linked-list idea within computer programs, although the dynamic insertion

and deletion operations which we have used so frequently in this chapter were

still unknown. One-plus-one addressing was discussed by J. Mauchly in 1946

[Theory and techniques for the design of electronic computers 4 (U. of Pennsylvania,

1946), Lecture 37]. Another early appearance of links in programs was in

H. P. Luhn’s 1953 memorandum suggesting the use of “chaining” for external
searching; cf. Section 6.4.

2.6 HISTORY AND BIBLIOGRAPHY 457

• Linked memory techniques were really born when A. Newell, J. C. Shaw,

and H. A. Simon began their investigations of heuristic problem-solving by

machine. As an aid to writing programs which searched for proofs in mathe¬

matical logic, they designed the first “list-processing” language IPL-II in the

spring of 1956. (IPL stands for Information Processing Language.) This was a

system which made use of links and included important concepts like the list of

available space, but the concept of stacks was not yet well developed; IPL-III

was designed a year later, and it included “push down” and “pop up” for stacks

as important basic operations. [For references to IPL-II see IRE Transactions

on Information Theory IT-2 (Sept. 1956), 61-70; Proc. Western Joint Comp.

Conf. (Feb. 1957), 218-240. Material on IPL-III first appeared in course notes

given at the University of Michigan in the summer of 1957.]

The work of Newell, Shaw, and Simon inspired many other people to use

linked memory (which was often at the time referred to as NSS memory),

mostly for problems dealing with simulation of human thought processes.

Gradually, the techniques became recognized as basic computer-programming

tools; the first article describing the usefulness of linked memory for “down-to-

earth” problems was published by J. W. Carr, III, in CACM 2 (Feb. 1959),

4-6. Carr pointed out in this article that linked lists can readily be manipulated

in ordinary programming languages, without requiring sophisticated sub¬

routines or interpretive systems. See also G. A. Blaauw, IBM J. Res. and Dev.
3 (1959), 288-301.

At first, one-word nodes were used for linked tables, but about 1959 the

usefulness of several consecutive words per node and “multilinked” lists was

gradually being discovered by several different groups of people. The first

article dealing specifically with this idea was published by D. T. Ross, CACM

4 (1961), 147-150; at that time he used the term “plex” for what has been called

a “node” in this chapter, but he subsequently has used the word “plex” in a

different sense to denote a class of nodes combined with associated algorithms

for their traversal.

Notations for referring to fields within nodes are generally of two kinds:

the name of the field either precedes or follows the pointer designation. Thus,

while we have written “INFO (P) ” in this chapter, some other authors write, for

example, “P. INFO ”. At the time this chapter was prepared, the two notations

seemed to be equally prominent. The notation adopted here has the great

advantage that it translates immediately into FORTRAN, COBOL, or similar

languages, if we define INFO and LINK arrays and use P as the index. Further¬

more it seems natural to use mathematical functional notation to describe

attributes of a node. Note that “INFO(P)” is pronounced “info of P” in con¬

ventional mathematical verbalization, just as f(x) is rendered “/ of x.” The

alternative notation P. INFO has less of a natural flavor, since it tends to put the

emphasis on P, although it can be read “P’s info”; the reason INFO(P) seems

preferable is apparently the fact that P is variable, but INFO has a fixed sig¬

nificance when the notation is employed. By analogy, we could consider a

vector A = (A[l], A[2], . . . , A[100]) to be a node having 100 fields named

458 INFORMATION STRUCTURES 2.6

1,2, , 100. Now the second field would be referred to as “2(P)” in our

notation, where P points to the vector A; but if we are referring to the jth

element of the vector, we find it more natural to write A[j], putting the variable

quantity “j” second. Similarly it seems most appropriate to put the variable

quantity “P ” second in the notation INFO (P).

Perhaps the first people to recognize that the concepts “stack” (last-in-

first-out) and “queue” (first-in-first-out) are important objects of study were

cost accountants interested in reducing income tax assessments; for a discussion

of the “LIFO” and “FIFO” methods of pricing inventories, see any intermediate

accounting textbook, e.g., C. F. and W. J. Schlatter, Cost Accounting (New

York: Wiley, 1957), Chapter 7. In 1947 A. M. Turing developed a stack, called

Reversion Storage, for use in subroutine linkage (see Section 1.4.5). No doubt

simple uses of stacks kept in sequential memory locations were common in

computer programming from the earliest days, since a stack is such a simple
and intuitive concept. The programming of stacks in linked form appeared

first in IPL, as stated above; the name “stack” stems from IPL terminology

(although “pushdown list” was the more official IPL wording), and it was also

independently introduced in Europe by E. W. Dijkstra. “Deque” is a term

coined by E. J. Schweppe.

The origin of circular and doubly linked lists is obscure; presumably these

ideas occurred naturally to many people. A strong factor in the popularization

of these techniques was the existence of general List-processing systems based

on them [principally the Knotted List Structures, CACM 5 (1962), 161-165,

and Symmetric List Processor, CACM 6 (1963), 524-544, of J. Weizenbaum],

Various methods for addressing and traversing multidimensional arrays of

information were developed independently by clever programmers since the

earliest days of computers, and thus another part of the unpublished computer

folklore was born. This subject was first surveyed in print by H. Hellerman,

CACM 5 (1962), 205-207. See also J. C. Gower, Comp. J. 4 (1962), 280-286.

Tree structures represented explicitly in computer memory were originally

used for applications to algebraic formula manipulation. The A-l compiler

language, developed by G. M. Hopper in 1951, used arithmetic expressions

written in a three-address code; the latter is equivalent to the INFO, LLINK, and

RLINK of a binary tree representation. In 1952, H. G. Ivahrimanian developed

algorithms for differentiating algebraic formulas represented in the A-l compiler

language; see Symposium on Automatic Programming (Washington, D.C.:
Office of Naval Research, May 1954), 6-14.

Since then, tree structures in various guises have been studied independently

by many people in connection with numerous computer applications, but the

basic techniques for tree manipulation (not general List manipulation) have

seldom appeared in print except in detailed description of particular algorithms.

The first general survey was made in connection with a more general study of all

data structures by K. E. Iverson and L. R. Johnson [IBM Corp. research reports

RC-390, RC-603, 1961; see Iverson, A Programming Language (New York:

Wiley, 1962), Chapter 3]. See also G. Salton, CACM 5 (1962), 103-114.

2.6 HISTORY AND BIBLIOGRAPHY 459

The concept of threaded trees is due to A. J. Perlis and C. Thornton, CACM

3 (1960), 195-204. Their paper also introduced the important idea of traversing

trees in various orders, and gave numerous examples of algebraic manipulation

algorithms. Unfortunately, this important paper was hastily prepared and it

contains many misprints. The threaded lists of Perlis and Thornton actually

were only “right-threaded trees” in our terminology; binary trees which are

threaded in both directions were independently discovered by A. W. Holt,

A Mathematical and Applied Investigation of Tree Structures (Thesis, U. of

Pennsylvania, 1963). Postorder and preorder for the nodes of trees were called

“normal along order” and “dual along order” by Z. Pawlak, Colloquium on the

Foundation of Mathematics, etc. (Tihany, 1962, published by Akademiai Kiado,

Budapest, 1965), 227-238. Preorder was called “subtree order” by Iverson and

Johnson in the references cited above. Graphical ways to represent the con¬

nection between tree structures and corresponding linear notations were de¬

scribed by A. G. Oettinger, Proc. Harvard Symp. on Digital Computers and their

Applications (April, 1961), 203-224. The representation of trees in preorder by

degrees, with associated algorithms relating this representation to Dewey

decimal notation and other properties of trees, was presented by S. Gorn, Proc.

Symp. Math. Theory of Automata (Brooklyn: Poly. Inst., 1962), 223-240.
The history of tree structures as mathematical entities, together with a

bibliography of the subject, is reviewed in Section 2.3.4.6.

At the time this section was written, the most widespread knowledge about

information structures was due to programmers’ exposure to List processing

systems, which have a very important part in this history. The first widely used

system was IPL-V (a descendant of IPL-III, developed late in 1959); IPL-V

is an interpretive system in which a programmer learns a machine-like language

for List operations. At about the same time, FLPL (a set of FORTRAN sub¬

routines for List manipulation, also inspired by IPL but using subroutine calls

instead of interpretive language) was developed by H. Gelernter and others. A

third system, LISP, was designed by J. McCarthy, also in 1959. LISP is quite

different from its predecessors: programs for it are expressed in mathematical

functional notation combined with “conditional expressions” (see Chapter 8),

then converted into a List representation. Many List processing systems have

come into existence since then, of which the most prominent historically is

J. Weizenbaum’s SLIP; this is a set of subroutines for use in FORTRAN

programs, operating on doubly linked Lists.

An article by Bobrow and Raphael, CACM 7 (1964), 231-240, may be read

as a brief introduction to IPL-V, LISP, and SLIP, and it gives a comparison

of these systems. An excellent introduction to LISP has been given by P. M.

Woodward and D. P. Jenkins, Comp. J. 4 (1961), 47-53. See also the authors’

discussions of their own systems, which are each articles of considerable historical

importance: “An introduction to IPL-V” by A. Newell and F. M. Tonge,

CACM 3 (1960), 205-211; “A FORTRAN-compiled List Processing Language”

by H. Gelernter, J. R. Hansen, and C. L. Gerberich, J ACM 7 (1960), 87-101;

“Recursive functions of symbolic expressions and their computation by machine,

460 INFORMATION STRUCTURES 2.6

I” by John McCarthy, CACM 3 (1960), 184-195; “Symmetric List Processor”

by J. Weizenbaum, CACM 6 (1963), 524-544. The latter article includes a

complete description of all of the algorithms used in SLIP. In recent years a

number of books about these systems have also been written.

Several string manipulation systems have also appeared; these are primarily

concerned with operationsion variable-length strings of alphabetic information

(looking for occurrences of certain substrings, etc.). Historically, the most

important of these have been COMIT (V. H. Yngve, CACM 6 (1963), 83-84)

and SNOBOL (D. J. Farber, R. E. Griswold, and I. P. Polonsky, J ACM 11
(1964), 21-30). Although string manipulation systems have seen wide use, and

although they are primarily composed of algorithms such as we have seen in this

chapter, they play a comparatively small role in the history of the techniques

of information structure representation; users of these systems have largely

been unconcerned about the details of the actual internal processes carried on

by the computer. For a survey of string manipulation techniques, see

S. E. Madnick, CACM 10 (1967), 420-424.

The IPL-V and FLPL systems for List-processing did not use either a

garbage collection or a reference count technique for the problem of shared

Lists; instead, each List was “owned” by one List and “borrowed” by all other

Lists which referred to it, and a List was erased when its “owner” allowed it to be.
Hence, the programmer was enjoined to make sure no List was still borrowing

any Lists that were being erased. The reference counter technique for Lists was

introduced by G. E. Collins, CACM 3 (1960), 655-657; see also the important

sequel to this paper, CACM 9 (1966), 578-588. Garbage collection was first

described in McCarthy’s article cited above; see also CACM 7 (1964), 38, and

an article by Cohen and Trilling, BIT 7 (1967), 22-30.

During the 1960’s, an increasing realization of the importance of link

manipulations led naturally to their inclusion in algebraic programming lan¬

guages, allowing programmers to choose suitable forms of data representation

without resorting to assembly language or paying the overhead of completely

general List structures. Some of the fundamental steps in this development

were the work of C. A. R. Hoare [Symbol Manipulation Languages and Tech¬

niques, ed. by D. G. Bobrow (Amsterdam: North-Holland, 196S), 262-2S4],

H. W. Lawson [CACM 10 (1967), 358-367], O.-J. Dahl and K. Nygaard [CACM

9 (1966), 671-678], A. van Wijngaarden et al. [Numerische Math. 14 (1969),
79-218],

Dynamic storage allocation algorithms were in use several years before

published information about them appeared. A very readable discussion has

been given by W. T. Comfort, CACM 7 (1964), 357-362 (an article written in

1961). The “boundary-tag” method, introduced in Section 2.5, was designed by
the author in 1962 for use in a control program for the B5000 computer. The

“buddy system” was first used by H. Markowitz-in connection with the SIM-

SCRIPT programming system in 1963, and it was independently discovered

2.6 HISTORY AND BIBLIOGRAPHY 461

arid published by K. Knowlton, CACM 8 (1965), 623-625; see also CACM 9

(1966), 616-625. For further discussion of dynamic storage allocation, see the

articles by Iliffe and Jodeit, Comp. J. 5 (1962), 200-209; Bailey, Barnett, and

Burleson, CACM 7 (1964), 339-346; Berztiss, CACM 8 (1965), 512-513; and
D. T. Ross, CACM 10 (1967), 481-492.

A general discussion of information structures and their relation to pro¬

gramming has been given by Mary d’Imperio, “Data Structures and their

Representation in Storage,” Annual Review in Automatic Programming 5

(Oxford: Pergamon Press, 1969). This paper is also a valuable guide to the

history of the topic, since it includes a detailed analysis of the structures used

in connection with twelve List processing and string manipulation systems. See

also the proceedings of two symposia, CACM 3 (1960), 183-234 and CACM 9

(1966), 567-643, for further historical details. (Several of the individual papers
from these proceedings have already been cited above.)

An excellent annotated bibliography, which is primarily oriented towards

applications to symbol manipulation and algebraic formula manipulation but

which has numerous connections with the material of this chapter, has been

compiled by Jean E. Sammet, Comput. Rev. 7 (July-August 1966), B1-B31.

In this chapter we have looked at particular types of information structures

in great detail, and (lest we fail to see the forest for the trees) it is perhaps wise

to take stock of what we have learned and to briefly summarize the general

subject of information structures from a broader perspective: Starting with the

basic idea of a node as an element of data, we have seen many examples which

illustrate the fact that it is convenient to represent structural relationships

either implicitly (based on the relative order in which nodes are stored in

computer memory) or explicitly (by means of links in the nodes, which point

to other nodes). The amount of structural information that ought to be repre¬

sented within the tables of a computer program depends on the operations that

are to be performed on the nodes.

For pedagogic reasons, we have largely concentrated on the connections

between information structures and their machine representations, instead of

discussing these issues separately. However, to gain a deeper understanding it

is helpful to consider the subject from a more abstract point of view, “distilling

off” several layers of ideas which can be studied by themselves. Several note¬

worthy approaches of this kind have been developed, and the following thought-

provoking papers are especially recommended: G. Mealy, “Another look at

data, ” Proc. AFIPS Fall Jt. Comp. Conf. 31 (1967), 525-534; J. Earley, “Toward

an understanding of data structures,” CACM 14 (1971), 617-627; C. A. R.

Hoare, “Notes on data structuring,” in Structured Programming by O.-J. Dahl,

E. W. Dijkstra, and C. A. R. Hoare (Academic Press, 1972), 83-174; Robert W.

Engles, “A tutorial on data-base organization,” Ann. Rev. in Automatic Pro¬

gramming 7 (1972), 3-63._ _

The discussion in this chapter does not cover the entire subject of informa-

462 INFORMATION STRUCTURES 2.6

tion structures in full generality; at least three important aspects of the subject

have not been treated here:
a) It is often necessary or desirable to search through a table to find a node

or set of nodes possessing a certain value, and such an operation often has a

profound effect on the structure of the table. This situation is explored in

detail in Chapter 6. ^
b) We have primarily been concerned with the internal representation of

structure within a computer, and this is obviously only part of the story, since

structure must also be represented in the external input and output data. In

simple cases, external structure can essentially be treated by the same techniques

we have been considering; but the processes of converting between strings of

characters and more complex structures are also very important. These processes

are analyzed in Chapters 9 and 10.
c) We have primarily discussed representations of structures within a

high-speed random-access memory. When slower memory devices (e.g., disks,

drums, tapes) are being used, we find that all of the structural problems are

intensified; it is much more crucial to have efficient algorithms and efficient

schemes for data representation. It is often necessary to attempt to place

“neighboring” nodes, which link to each other, into nearby areas of the memory,

etc.; usually the problems are highly dependent on the characteristics of in¬

dividual machines, so it is difficult to discuss them in general. Hopefully, the

simpler examples treated in this chapter will prepare the reader for solving the
more difficult problems which arise in connection with less ideal memory devices.

Chapters 5 and 6 discuss these problems in detail.

What are the main implications of the subjects treated in this chapter?

Perhaps the most important conclusion we can reach is that the ideas we have

encountered are not limited to computer programming alone; they apply more

generally to everyday life. A collection of nodes containing fields, some of which

point to other nodes, appears to be a very good abstract model for structural

relationships of all kinds; it shows how we can build up complicated structures

from simple ones, and we have seen that corresponding algorithms for manipu¬

lating the structure can be designed in a natural manner.

Therefore it seems appropriate to develop much more theory about linked

sets of nodes than we know at this time. Perhaps the most obvious way to

start such a theory is to define a new kind of abstract machine or “automaton”

which deals with linked structures. For example, such an automaton might be

defined informally as follows: There are numbers k, l, r, and s, such that the

automaton processes nodes containing k link fields and r information fields; it

has l link registers and s information registers, which enable it to control the

processes it is performing. The information fields and registers may contain any

symbols from some given set of information symbols; each of the link fields and

link registers either contains A or points to a node. The machine can (i) create

new nodes (putting a link to the node into a register), (ii) compare information

2.6
HISTORY AND BIBLIOGRAPHY 463

symbols or link values for equality, and (iii) transfer information symbols or

link values between registers and nodes. Only nodes pointed to by link registers

are immediately accessible. Suitable restrictions on the machine’s behavior will
make it equivalent to several older species of automata.

Some of the most interesting problems to solve for such devices would be

to determine how fast they can solve certain problems, or how many nodes they

need to solve certain problems (e.g., to translate certain formal languages).

At the time this chapter was written, several interesting results of this kind

have been obtained (notably by J. Hartmanis and R. E. Stearns), but only for

special classes of “Turing machines” having multiple tapes and read/write

heads, etc.; since the Turing machine model is comparatively unrealistic, these

results tend to have little to do with practical problems. It is true that, as the

number n of nodes created by a linking automaton approaches infinity, we must

admit that we don t know how to build such a device physically, since we expect

the machine operations will take the same amount of time regardless of the

size of n; if linking is represented by using addresses as in a computer memory, it

is necessary to put a bound on the number of nodes, since the link fields have a

fixed size. A multitape Turing machine is therefore a more realistic model when

n approaches infinity. Yet it seems reasonable to believe that a linking autom¬

aton as described above leads to a more appropriate theory of the complexity

of algorithms than Turing machines do, even when asymptotic formulas for large

n are considered, because the theory is more likely to be relevant for practical

values of n. Furthermore when n gets bigger than 1030 or so, not even a one-tape
Turing machine is realistic (it could never be built).

You will, I am sure, agree with me that if page

534 finds us only in the second chapter, the length of

the first one must have been really intolerable.

—SHERLOCK HOLMES, in The Valley of Fear (1888)

V

'

'*

*

ANSWERS TO EXERCISES

/ am not bound to please thee with my answers.

—Shylock, in The Merchant of Venice (Act IV, Sc. 1. Line 65)

NOTES ON THE EXERCISES

1. An average problem for a mathematically inclined reader.

4. See W. J. LeVeque, Topics in Number Theory 2 (Reading, Mass.: Addison-Wesley,

1956), Chapter 3. {Note: One of the men who read a preliminary draft of the manu¬

script for this book reported that he had discovered a truly remarkable proof, which
the margin of his copy was too small to contain.)

SECTION 1.1

1. t <— a, a <— b, b <— c, c <— d, d <— t.

2. After the first time, the values of the variables m, n are the previous values of
n, r, respectively; and n > r.

3. Algorithm F {Euclid’s algorithm). Given two positive integers m and n, find their
greatest common divisor.

FI. [Remainder m/n.] Divide m by n and let r be the remainder.

F2. [Is it zero?] If r = 0, the algorithm terminates with answer n.

F3. [Remainder n/r.] Divide n by r and let m be the remainder.

F4. [Is it zero?] If m = 0, the algorithm terminates with answer r.

F5. [Remainder r/m.] Divide r by m and let n be the remainder.

F6. [Is it zero?] If n = 0, the algorithm terminates with answer m; otherwise go

back to step FI. |

4. By Algorithm E, n = 6099, 2166, 1767, 399, 171, 57. Answer = 57.

5. Not finite nor definite nor effective, perhaps no output; in format, no letter is

given before step numbers, no summary phrase appears, and there is no “|”.

6. We try Algorithm E with n = 5 and count the number of times step El is executed.

For m = 1, 2, 3, 4, 5, respectively, we get 2, 3, 4, 3, 1 times; the average is 2.6 = T5.

7. In all but a finite number of cases, n> m. In this case, the first iteration of Algo¬

rithm E merely exchanges these numbers; so Um = Tm-\- 1.

465

466 ANSWERS TO EXERCISES 1.1

8. Let A = {a, b,c}, N = 5. The algorithm will terminate with the string agcd(m'n).

j Oi <t>j bj a3

0 ab (empty) 1 2 Remove one a and one b, or go to 2.

1 (empty) c 0 0 Add c at extreme left, go back to 0.

2 a b x 2 3 Change all a’s to b’s.

3 c a 3 4 Change all c’s to a’s.

4 b b 0 5 If b’s remain, repeat.

9. For example we can say C2 represents C1 if there is a function g from h into 12,

a function h from Q2 into Q1 taking ^2 into fii, and a function j from Qo into the positive

integers, satisfying the following conditions:

a) If x is in 1\, C1 produces the output y from x if and only if there exists a y' in

O2 for which C2 produces the output y' from g(x) and h(y') = y.

b) If q is in Q2 then/1 (h(q)) = h(q)), where/2(4) means the function/2 is to be

iterated j(q) times.

For example, let C1 be as in (2) and let C2 have I2 = {(to, n)}, ^2 = {(to, n, d)},

Q2 = I2 U O2 U {(to, n, a, b, 1)} U {(to, n, a, b, r, 2)} U {(to, n, a, b, r, 3)} U

{(to, n, a, b, r, 4)}. Let /2(m, n) = (to, n, m, n, 1); /2(m, n, d) = (to, n, d);

f2(to, n, a, b, 1) = (to, n, a, b, a mod 6, 2);/2(m, n, a, b, r, 2) = (to, n, b) if r = 0, other¬

wise (to, n, a, b, r, 3); /2(m, n, a, b, r, 3) = (to, n, b, b, r, 4); /2(to, n, a, b, r, 4) =

(to, n, a, r, 1).
Now let h(m,n) = (to, n) = <7(?n, n); /i(to, n, d) = (d); h(m, n, a, b, 1) =

(a, 6, 0, 1) if a = m, b = n, otherwise (a, b, b, 1); h(m, n, a, b, r, 2) = (a, 6, r, 2);

h(m, n, a, b, r, 3) = (a, 6, r, 3); h{m, n, a, b, r, 4) = n, a, b, r, 4));

j(m, n, a, b, r, 3) = j(m, n, a, b, r, 4) = 2, otherwise j(q) = 1. Then C2 represents C1.

Notes: It is tempting to try to define things in a more simple way, e.g. to let

g map Q1 into Q2 and to insist that when zo, xi, ... is a computational sequence in

C1 then g(x0), g(x 1), ... is a subsequence of the computational sequence in C2 that

begins with g(x0). But this is inadequate, e.g. in the above example C1 forgets the

original values of to and n but C2 does not.

If C2 represents C1 by means of functions g, h, j, and if C3 represents C2 by means

of functions g', h', j', then C3 represents C1 by means of functions g", /i", where

6f"(.T) = /(sKx)), h"{x) = h(h\x)),

and

//(?) = Eo<S<Jw(e))/fe),

if <?o = <Z, 9/t+i = /3 (9i)(?*)• Hence the above relation is transitive. We can say C2

directly represents C1 if the function j is bounded; this relation is also transitive. The

relation “C2 represents C1” generates an equivalence relation in which two computa¬

tional methods apparently are equivalent if and only if they compute isomorphic

functions of their inputs; the relation “C2 directly represents C1” generates a more

interesting equivalence relation which perhaps matches the intuitive idea of being
“essentially the same algorithm.”

1.2.1
ANSWERS TO EXERCISES 467

SECTION 1.2.1

1. (a) Prove P(0). (b) Prove that P(0), . . . , P(n) implies P(n-\~ 1), for all n > 0.

2. 4 he theorem has not been proved for n = 2; in the second part of the proof, take

n = 1; we assume there that a-1 = 1. If this condition is true (i.e. if a = 1) the
theorem is indeed valid.

3. 1 he collect answer is 1 \/n. I he mistake occurs in the proof for n — 1, when

the formula on the left either may be assumed to be meaningless, or it may be assumed
to be zero (since there are n — 1 terms).

5. If n is prime, it is trivially a product of primes. Otherwise by definition, n has

factors, so n — km for 1 < k, m < n. Since both k and m are less than n, by induc¬

tion they can be written as products of primes; hence n is the product of the primes
appearing in the representations of k and m.

6. In the notation of Fig. 4, we prove .45 implies A6. This is clear since A5 implies

(a' qa)m ~b (b' — qb)n = (a'm -1- b'n) — q(am -j- bn) = c — qd = r.

7. Solution is 1 + 2 + --b n; or, n(n + l)/2.

8. (a) 44 e will show (n2 n -\- 1) 4~ (n2 — n + 3) + • • • 4* (n2 -)- n — 1) equals

n3. The sum is (l + 3 4* ■ • • + (n2 4- n — 1)) — (l + 3-|-b (n2 — n — 1)) =

((n~ 4" n)/2)" ((n2 n)/2)2 = n3. 44Te have used Eq. (2); however, an inductive
proof was requested, so another approach should be taken! For n = 1, the result is
obvious. Let n > 1; (n-b l)2 — (n+ 1) = n2 — n+ 2n, so the first terms for «4 1
are 2n larger; thus the sum for n + 1 is the sum for n plus 2n 4- • • • 4- 2n [n times] +
(n + l)2 4- (n+ 1) — 1; this equals n3 -b 2n2 -f ft2 + 3n -f 1 = (n + l)3. (b) 4Ve
have shown the first term for (n + l)3 is two greater than the last term for n3. There¬
fore by Eq. (2), 134 23-|-b w3 = sum of consecutive odd numbers starting with
unity = (number of terms)2 = (1 + 2+ • • • ~b n)2.

10. Obvious for n = 10. If n > 10, we have 2n+1 = 2 ■ 2n > (1 + To)z2n and by

induction this is greater than (1 + l/n)3n3 = (n-b l)3.

11. (-l)»(n-b l)/(4(n+l)2+l).

12. The only nontrivial part of the extension is the calculation of the integer q in E2.
This can be done by repeated subtraction, reducing to the problem of determining

whether u -b t\/2 is positive, negative, or zero, and the latter problem is readily
solved.

It is easy to show that whenever u + vy/2 = u' + v'y/2, we must have u = u'

and v — v', since V2 is irrational. Now it is clear that 1 and y/2 have no common

divisor, if we define divisor in the sense that u + vV2 divides a(u + v\/2) if and only
if a is an integer.

(Note: However, if we extend the concept of divisor so that u + v\/2 is said to
divide a(u + v\/2) if and only if a has the form u' + v'V2 for integers v! and v', there

is a way to extend Algorithm E so that it always will terminate: If in step E2 we have

c = u -b v\j2 and d — u' -b v'^/2, compute c/d — c(u' — v\/2)/(w'2 — 2v'2) =

x -b yV2 where x and y are rational. Now let q = u" -f- t/\/2, where u" and v" are

the nearest integers to x and y, and let r = c — qd. If r = u"' 4" v"'y/2, it follows

that |u"'2 — 2F"2| < |u'2 — 2v'2\, hence the computation will terminate. For further

information, see “quadratic Euclidean domains” in number theory textbooks.)

468 ANSWERS TO EXERCISES 1.2.1

13. Add “n = no” to A1 and A2; “T < 3(no — d) + k” to the others, where k =

2, 3, 3, 1, respectively for AS, A4, A5, A6. Also add “d > 0” to A4-

15. (a) Let A = S in (iii); every nonempty well-ordered set has a “least” element.

(b) Let x,< y if |x| < \y\ or if |x| = \y\ and x < 0 < y.
(c) No, the subset of all positive reals fails to satisfy (iii). (Note: Using the “axiom

of choice,” a rather complicated argument can be given to show that every set can be

well-ordered somehow; but nobody has yet been able to define an explicit relation

which well-orders the real numbers.)
(d) To prove (iii) for Tn, use induction on n: Let A be a nonempty subset of T„

and consider Ai, the set of first components of A. Since Ai is a nonempty subset of S,

and S is well-ordered, A\ contains a smallest element x. Now consider Ax, the subset

of A in which the first component equals x; Ax may be considered a subset of Tn-1

if its first component is suppressed, so by induction Ax contains a smallest element

(x, X2, , x„) which in fact is the smallest element of A.

(e) No, although properties (i) and (ii) are valid. If S contains at least two dis¬
tinct elements a and b, the set (6), (a, b), (a, a, b), (a, a, a, b), (a, a, a, a,b), . . . has no
least element. On the other hand T can be well-ordered if we define (xi, . . . , x„) <
(yi, . . . , ym) whenever n < m, or n — m and (xi, . . . , x„) < (yi, . . ., ym) in Tn.

(f) Let S be well-ordered by <. If such an infinite sequence exists, the set A

consisting of the members of the sequence fails to satisfy property (iii), for no element

of the sequence can be smallest. Conversely if < is a relation satisfying (i) and (ii)

but not (iii), let A be a non-empty subset of S which has no smallest element. Since

A is not empty, we can find xi in A; since x\ is not the smallest element of A, there

is X2 in A for which X2 < xi; since X2 is not the smallest element either, we can find

X3 -< X2; etc.
(g) Let A be the set of all x for which P(x) is false. If A is not empty, it contains

a smallest element, xo. Hence P(y) is true for all y < xo. But this implies P(xo) is

true, so xo is not in A (a contradiction). Therefore A must be empty, i.e. P(x) is

always true.

SECTION 1.2.2

1. There is none; if r is a positive rational, r/2 is smaller.

2. Not if infinitely many nines appear; in that case the decimal expansion of the
number is 1 + .24000000 . . . , according to Eq. (2).

3. -1/27.

4. 4.

6. The decimal expansion of a number is unique, so x = y if and only if m = n, and
di = et- for i = 1, 2, If x 9^ y, one may compare m vs. n, d\ vs. e\, d2 vs. e2, etc.,
and when the first inequality occurs the larger one belongs to the larger of x, y.

7. One may use induction on x, first proving the laws for x positive, and then for
x negative. Details are omitted here.

8. By trying n = 0, 1, 2, ... we find the value of n for which nm < u < (n+ l)m.
Assuming inductively that n, d\, , dk~\ have been determined, dk is the digit

1.2.2 ANSWERS TO EXERCISES 469

such that-

m

9. ((&*'«)»/•)«• = (((ftp/®)“/.).)« = ((6p/9)«)b = ((6P/9)9)u = hence (&*'«)“/» =

bpu,qv. 1 his proves the second law. We prove the first law using the second: bp/gbu^v =
(5l/g»)pt)(^l/g*)9u _ (jfrl/qv^pv+qu _ fyp/q+u/v

10. If logio 2 = p/q, with p and q positive, then 27 = 10p, which is absurd since the

righthand side is divisible by 5 but the lefthand side isn’t.

11. Infinitely many! No matter how many digits of x are given, we will not know

whether 10^ = 1.99999 ... or 2.00000 There is nothing mysterious or para¬

doxical in this; a similar situation occurs in addition, if we are adding .444444 ... to
.555555 . . .

12. They are the only values of d\, . . . , ds which satisfy Eq. (6).

13. (a) First prove by induction that if y > 0, 1 + ny < (1 + y)n. Then set y = x/n,
and take nth roots, (b) x = b — 1, n = 10*.

14. Set x = logs c in the second equation of (4) and take logarithms of both sides of
this equation.

15. Prove it, by transposing “log6 y” to the other side of the equation and using (10).

16. In z/ln 10.

17. 5; 1; 1; 0; undefined.

18. No, logs x = lg z/lg 8 = g- lg x.

19. Yes, since lg n < (log10 n)/.301 < 14/.301 < 47.

20. They are reciprocals.

21. (In In a; — In In 6)/ln b.

22. From the tables appearing in Appendix 13, lg x = 1.442695 In x; logio x —

.4342945 In x. The error is (1.442695 — 1.4342945)/1.442695 = 0.582%.

23. Take the figure of area In y, and divide its height by x while multiplying its length

by x. This deformation preserves its area and makes it congruent to the piece left

when In x is removed from In xy: for the height at point x + xt in the diagram for

In xy is l/(a: + xt) = (l/(l + t))/x.

24. Substitute 2 everywhere 10 appears.

27. Prove by induction on k that

x2\l - 7?)2*+1-1 < 102*(n+*1/2+...+6*/2*)

and take logarithms.

28. El. Set y <- 1, k <- 0.

E2. If x — 0, stop.

E3. If x < logs (1 -f- 2-*), go to E5.

E4. Set x <— x — logt (1 + 2~k), y <— y + 2~ky, go to E2.

E5. Increase A; by 1, go to E2. |

470 ANSWERS TO EXERCISES 1.2.2

The computational error arises when we set x <— x logs (1 4~ 2 k) + Vj an4

y «_ y(i _|_ 2—*)(1 + (j) at the jth execution of step E4, for certain small errors rjj

and tj. When the algorithm terminates, we have y = 6' IT(1 + ej)b“V. Further analysis

depends on b and the computer word size. Notice that in both this case and in exeicise

26, it is possible to refine the error estimates somewhat if the base is e, since for most

values of k the table entrj^lnfl ± 2~k) can be given with high accuracy: it equals

_j_2—ik A 2~2k zb 3 2~3* . . .

Note: Similar algorithms can be given for trigonometric functions; see J. E.

Meggitt, IBM J. Res. and Dev. 6 (1962), 210-226; 7 (1963), 237-245. See also T. C.

Chen, IBM J. Res. and Dev. 16 (1972), 380-388.

29. e; 3; 4.

SECTION 1.2.3

1. ai -f" a2 + a3.

2. T+i + i+y+i+iTii+^+'i + ^^'i-

3. The rule for p(j) is violated; in the first place, the value 3 is assumed for no n2,

and in the second place the value 4 is assumed for two n2.

4. (an) + (®2i + ®22) + (asl + a;32 4~ a.33)
= (an + a2i + 031) + (022 ~r 032) + (033).

5. It is only necessary to use the rule aX«(0 x» = (ax4 '■

(s aiYs = 2ai (s bi)= 2 (2 aibi) ■
\fl(i) / \S(j) / R{i) \SU) / R(P \SU) /

7. Use Eq. (3); the two limits are interchanged and the terms between ao and ac

must be transferred from one limit to the other.

8. Let a(i+i)i = +1, and a,-«+i) = —1, for all i > 0, and all other ap zero; let

R(i) = S(i) = “i > 0”. The lefthand side is —1, the righthand side is+1.

10. No, the two applications of rule (d) assume n > —1.

11. (n+ l)a.

12. |(1 — 1/7’1+1).

13. m(n — m+ 1) + £(n — rn)(n — m + 1); or, ^(n(n+ 1) — m(m — 1)).

14. (:m{n — m + 1) + %(n — m)(n — m-\- 1))(r(s — r + 1) + ^(s — r)(s — 1)).

15. 16. Key steps:

2^ jx3 = x]>] i*3-1 = x S (i + l)®*
01<j<n 0<j<n—l

— x X] ~~ nx',l+1 + x ^ xl •

0<j<n 0 <j<n — 1

17. The number of elements in S.

18. S'(j) = “1 < j < n”. R'(i,j) = “n is a multiple of i and i > j”.

19. an am—1.

1.2.3 ANSWERS TO EXERCISES 471

20. (6 l)22o<*<n (» — k)bk + n + 1 = ^o<i<n this formula follows from (14)
and the result of exercise 16.

21. Analogous to (3), plus the stipulation that there exists an integer jo such that

II ai * °-
R(J)

I y I > jo

22. For (5), (7) just change to][[• Also, we have

23. 0 + x — x and 1 • x — x. 1 his makes many operations and equations simpler,
e.g. rule (d) and its analogue in the previous exercise.

25. First step and last step o.k. Second step, uses i for two different purposes at once.
Third step, should probably be n-

26. Key steps, after transforming the problem (cf. Example 2):

-+,y n (n
J \0<i<n\0<j<n))

The answer is

28. («+l)/2n.

29. a) Eo<i<j<i< n di&jCLk*

b) Let Sr — X)o<i<n (h- Solution: + \S\S2 + ^*Sf. The general solution
to this problem, as the number of indices gets larger, may be found in Section 1.2.9,
Eq. (34).

31. n 2 A(2 •
1 <j<n \1 <j<n J\l<j<n)

33. This can be proved by induction on n, if we rewrite the formula as

£
X^Xj — Xn-l)

£
XjiXj — Xn)

Xn Xn—1 V J<y<n XXl<*<n, Xk) 1< j<n lit — k— n' (*7 Xk)

Each of these sums now has the form of the original sum, except on n — 1 elements,

and the values turn out nicely by induction when 0 < r < n — 1. When r = n,

consider the identity

«= £
IIl<fc<n (Xj — Xk)

l<j<n n 1-k—n’
£

1 < j < n

(xi + • • • + Xn)x
n—1

P(xj)
j j 1 < <:< n, kyij (Xj Xk)

where P(xj) is a polynomial of degree n — 2; from the solution for r = 0, 1, . . . , n — 1

we obtain the desired answer.

472 ANSWERS TO EXERCISES 1.2.3

Note: The formulas here are the basis for numerical methods concerning “divided

differences.” The following alternate method of proof, using complex variable theory,

is less elementary but more elegant: By the residue theorem, the value of the given

sum is

1 f _z dz_

27ri J\z\=R (z — xi) • • • (z — Xn)

where R > |xi|,. . . , \xn\. The Laurent expansion of the integrand converges uniformly

on |z| = R; it is

r-(1 Y..(1)
\1 — X\/z) \l — Xn/z)

= ZT “ + (xi + --1- X„)zr " 1 + (x? + XlX2 + • • •)zr " + • • • •

Integrating term by term, everything vanishes except the coefficient of z-1. This

method gives us the general formula for an arbitrary integer r > 0:

E
h |-7n=r—"+1

Xl1 . . . Xnn

34. If the reader has tried earnestly to solve this problem, without getting the answer,

perhaps its purpose has been achieved. The temptation to regard the numerators as

polynomials in x rather than as polynomials in Jc is almost overwhelming. It would

undoubtedly be easier to prove the considerably more general result

y'' Hl<r<«-1 (yk — Zr) _ ^

1 <k<n ni< r<n, r^=k (Vk Vr)

which is an identity in 2n — 1 variables!

35. If R(j) never holds, the value should be — °o. The stated analogue of rule (a) is

based on the identity a + max (6, c) = max (a + b, a + c). Similarly if all a;, bj are

nonnegative, we have
sup at sup bj — sup sup aibj.
«(*') SO) R(i) SO)

Rules (b), (c) do not change; for rule (d) we get the simpler form

sup (sup a,-, sup a,-) = sup a,-.
Vko) SO) / BO) or SO)

36. Subtract column one from columns 2, . . . , n. Add rows 2, . . . , n to row one.

The result is a triangular determinant.

37. Subtract column one from columns 2, . . . , n. Then subtract xi times row k — 1

from row A;, for A: = n, n — 1, . . . , 2 (in that order). We now factor xi out of the

first column and factor x* — xi out of columns k = 2, n, obtaining xi(x2 — xi) . . .

(x„ — xi) times a Vandermonde determinant of order n — 1, so the process continues

by induction.

Alternate proof, using “higher” mathematics: The determinant is a polynomial in

the variables xi, . . . , x„ of total degree 1 + 2 + • • • + n. It vanishes if xy = 0 or if

Xi = Xj (i < j), and the coefficient of x}x! ... x^ is +1. These facts characterize its

1.2.3 ANSWERS TO EXERCISES 473

value. In general, if two rows of a matrix become equal for xy = xy, their difference

is usually divisible by xy xy, and this observation often speeds the evaluation of
determinants. (R. W. Floyd.)

38. Subtract column one from columns 2, . . . , n, and factor out (xi + y\)~l . . .
(Xn + 2/i) 1 (2/1 — V2) ... (y 1 — yn) from rows and columns. Now subtract row one
from rows 2, .. . , nand factor out (xi — x2) . . . (xi — x„)(xi + y2)~1 . . . (xi + yn)~1;
we are left with the Cauchy determinant of order n — 1.

39. Let I = identity matrix, J = matrix of all ones. Since J2 = nJ, we find imme¬
diately (xZ + yj) ((x + ny)I - yj) = x(x + ny)I.

40. 2 bit Xj = Xy JJ (x* — Xy) / Xi JJ (x* — Xi) = 5yy.
1 <t<n l<*^n / l<fc<n

kj4i k^Lx

41. This follows immediately from the observations about the relation of an inverse

matrix to cofactors. It may also be interesting to give a direct proof here.

y 1 bt — y, ^k* t (Xj +yk — x) nk^i (xic + yi)

l<t<nXiJryt 1 \<t<n (X1 ~ Xi) IIm< (Vi ~ yk)

when x = 0. This is a polynomial of degree at most n — 1 in x. If we set x = xy + y„
1 < s < n, the terms are zero except when s = t, so the value of this polynomial is

H (—•xk ~ y>) / JJ (Xj — xk) = JJ (xy — xk — x) / JJ (xy — xk).
kj^i ' kjtj k^i / kp£j

Since these polynomials of degree at most n — 1 agree at n distinct points x, they
agree also for x = 0, hence

y > r 1 ~ = n Xk) / 11 (*y Xi) — Sij.
l<t<nXl~t'yt kAi / k*j

42. n/ (x -f- ny).

43. 1 — IIi<*<n (1 — 1 /xk). This is easily verified if any xy = 1, since the inverse

of any matrix having a row or column all of ones must have elements whose sum is 1.

If none of the xy equals one, sum the elements of row i as in exercise 44 and obtain

IIm i (xk — l)/xy n** i (xk — x»). We can now sum this on i using exercise 33, with
r = 0 (multiply numerator and denominator by (xy — 1)).

44. We find

ci = y bij = JJ (Xk + yi) / JJ (xy - Xi),

l<t<n l<A:<n / l<A:<n
kj&i

after applying exercise 33. And

y c = y (yi ^—1~ yn)xnj~l h—)

l<y<„ 1 <y<n III<*<n, i=jty (Xy Xk)

= (xi + X2 H-1- Xn) + (yi + ?/2 H-h yn).

45. Let xy = i, yj = j — 1. From exercise 44, the sum of the elements of the inverse
is (1 + 2 + •••-)- n) -j- ((n — 1) + (n — 2) + •••-)- 0) = n2. From exercise 38, the

474 ANSWERS TO EXERCISES 1.2.3

elements of the inverse are

(—l)i+i(i+n- l)!(j+n — 1)!_

hii ~ (i + j - 1)(t - l)!2(j - l)!2(n - i)\(n j)\

This quantity can be put into several forms involving binomial coefficients, for example

i + j — 1 V n /\i/\ n J\j/
(—i)i+jij (~i\tAHV-nN\

From the latter formula we see that bn is not only an integer, it is divisible by
it j} n, i -f j — 1, i + n — 1, and j + n — 1. Perhaps the prettiest formula for 6,; is

(i + j — 2\2 /—(t + j)V—(* + j)\
Vi — 1)\n — ij\n—jj (i + j — 1)

The solution to this problem would be extremely difficult if we had not realized
that a Hilbert matrix is a special case of a Cauchy matrix; the more general problem
is much easier to solve than its special case! It is frequently wise to generalize a
problem to its “inductive closure”, i.e. to the smallest generalization such that all
subproblems that arise in an attempted proof by mathematical induction belong to
the same class. In this case, we see that cofactors of a Cauchy matrix are Cauchy
matrices, but cofactors of Hilbert matrices are not Hilbert matrices. [For further
information, see J. Todd, J. Res. Nat. Bur. Stand. 65 41961), 19-22.]

46. For any integers ki, &2, • • • , km, let e(ki, . . . , km) ='sign (IIi<i<i<m (kj — ki)).
If (qi, . . . , qm) is equal to (ki, . . . , km) except for the fact that k{ and kj have been
interchanged, we have e(qi, . . . , qm) = — e(ki, . . . , km)■ Therefore we have the
equation det (Bkl...km) = e(&i, . . . , km) det {Bjl...jJ, if ji < < jm are the num¬
bers ki, . . . , km rearranged into nondecreasing order. Now by definition of the
determinant,

' ')

[where the j’s are related to the k’s as above]

J] det (Ah...jm) det (Bh.-..jm).
l</l <-..<Jm<n

Finally, if two j’s are equal, det (4ft...im) — 0.

1.2.4 ANSWERS TO EXERCISES 475

SECTION 1.2.4

1. 1, -2, -1, 0, 5.

2. Lad.

3. Lad is the greatest integer less than or equal to x, by definition; therefore, Lad is

an integer, LxJ < x, and Lad + 1 > x. The latter properties, plus the fact that when

m, n are integers n < m if and only if n < m — 1, lead to an easy proof of propositions

(a) and (b). Similar arguments prove (c) and (d). Finally, (e) and (f) are just com¬

binations of previous parts of this exercise.

4. x — 1 < Lad < x; so —x-\- 1_> —Lad > —x; hence the result.

5. La;-f |d. The value of (—x rounded) will be the same as — (x rounded), except

when x mod 1 = when the negative value is rounded towards zero and the positive

value is rounded away from zero.

6. (a) is true; LVad = n iff n2 < x < (n-j-1)2 iff n2 < Lad < (n+ l)2 iff LVLzJJ =

n. Similarly, (b) is true. But (c) fails, e.g. for a; = 1.1.

7. Apply exercise 3 and Eq. (4). The inequality should be > for ceilings, and then

equality holds if and only if either x or y is an integer or x mod 1 -)- y mod 1 > 1.

8. 1, 2, 5, —100.

9. —1, 0, -2.

10. 0.1, 0.01, —0.09.

11. x = y.

12. All.

13. +1, —1.

14. 8.

15. Multiply both sides of Eq. (1) by z; if y = 0, the result is also easily verified.

17. As an example, consider the multiplication portion of law A: we have a = 6+ qm,

x = y -j- rm for some integers q, r; so ax — by + (hr + yq + qrm)m.

18. We have a — b = Jcr for some integer k, and also kr = 0 (modulo s). Hence by

Law B, k = 0 (modulo s), so a — b = qsr for some integer q.

20. Multiply both sides of the congruence by a'.

21. There is at least one such representation, by the previously proved exercise. If

there are two representations, n = pi ... Pk = qi ■ ■ • qm, we have qi ... qm — 0

(modulo pi); so if none of the q’s equals pi we could cancel them all by Law B and

obtain 1 = 0 (modulo pi). The latter is impossible since pi is not equal to 1 (this is

the principal reason we do not allow 1 as a prime number). So some q, equals pi,

and n/pi = P2 . . . Pk = qi . . - qj-iQj+i ■ ■ ■ Qm- Either n is prime, when the result

is clearly true, or by induction the two factorizations of n/pi are the same.

22. If a = cd, m = nd, then an = 0 but n ^ 0 (modulo m) if d > 1, m ^ 0.

24. Law A is always valid for addition and subtraction; Law C is always valid.

26. If b is not a multiple of p, then b2 — 1 is, so one of the factors must be.

27. A number is relatively prime to pe if and only if it is not a multiple of p. So we

count those which are not multiples of p and get <p(pe) = pe — pe_1.

476 ANSWERS TO EXERCISES 1.2.4

28. If a, b are relatively prime to to, so is (ab mod to), since any prime dividing the

latter and to must divide a or b also. Now simply let x\, . . ., xv(m) be the numbers

relatively prime to to, and observe that axi mod to, ... , axV(m) mod to are the same

numbers in some order, etc.

29. We prove (b): if r, s are relatively prime and if k2 divides rs, then p2 divides rs

for some prime p, so p divi&es r (say) and cannot divide s; so p2 divides r. We see

that/(rs) = Oiff/(r) = Oor/(s) = 0.

30. Let r, s be relatively prime. The idea is to prove that the cp(rs) numbers rela¬

tively prime to rs are precisely the <p{r)tp{s) distinct numbers (sxi + ryj) mod (rs)

where x\, . . . , xvW and yi, . . . , yvw are the corresponding values for r and s.

We then find ^(106) = <p(26)<p(56) = (26 — 25)(56 - 55) = 400000; <p(p{'... p\?) =

(pf1 — pf1"1) . . . (pes — Prr_1); <p(n) = «IIp\».p prime (1 — 1/p). Another proof is

in exercise 1.3.3-27.

31. The divisors of rs may be uniquely written in the form cd where c divides r and

d divides s. Similarly, if f(n) > 0, we find the function max<j\„/(d) is multiplicative.

Cf. exercise 1.2.3-35.

33. Either n-\- m or n — to -f- 1 is even, so one of the quantities inside the brackets at

the left is an integer, so equality holds in exercise 7.

34. b must be an integer > 2. (Set x = b.) The sufficiency is proved as in exercise 6.

The same condition is necessary and sufficient for Tlogi x~\ = Tlogt Tas-!-!.

More generally we have the following pretty generalization due to R. McEliece:

Let/ be a continuous, strictly increasing function defined on an interval A, and assume

z in A implies that both LzJ and T*1 are in A. Then the relation L/(X)J = L/(LXJ)J

holds for all x in A iff the relation r/(x)~) = r/(faf|)l holds for all x in A iff we have

the following condition: “f(x) is an integer implies x is an integer.” The condition is

obviously necessary, for if f(x) is an integer and it equals L/(LXJ) J or T/(T^1) ~I then

x must equal |_zj or [x~\. Conversely if e.g. L/CL^J) J < L/(x)J then by continuity there

is some y with _x] < y < x for which f(y) is an integer, and y cannot be an integer.

35.
X -f- TO X + TO

n n

1

n

n — 1 \x\ A- m n — 1 ^ - < -<
n n n

[x]-\- m

n

<
X + TO

n

apply exercise 3. Use of exercise 4 gives a similar result for the ceiling function. Both

identities follow as a special case of McEliece’s theorem in exercise 34.

36. Assume first that n = 21.

E Lfc/2-l = Z L(n+l-*)/2J,
1 <n 1 < n

hence

E L*/2J=|(E (L^J+Kn+l-^jA
<k<n ^ \l<)t<n /

= \ E L(2<+1)/2J = t2 = n2/4.

1.2.4 ANSWERS TO EXERCISES 477

(Cf.'exercise 33.) And if n = 2t + 1, we have t2 -f |_n/2j = t2 -f t = n2/4 — 5. For
the second sum we get, similarly, f n(n+ 2)/4"|.

37. 2 mk-\- x m(n — 1)

n
x.

0< A;<n

Let {y} denote y mod 1; we must subtract

E
0< k</n

{mk +

n

S consists of d copies of the same sum, since if t = n/d,

jfflfc + xj _ |m(k + t) + ,

n

Let u = m/d) then

0 <k<t

mk-\- x

n

lx uk

= 1

and since t and u are relatively prime this sum may be rearranged as

\x mod d , t — 1

n

x mod d\ , \x mod d 1

1 n
+ ••• +

n t

Finally, since (x mod d)/n < 1/t, the brackets in this sum may be removed and we have

S = d — + '

Applying exercise 4, we get

E
0< k<.n

m,k-\r x

n

(m+ 1)(n — 1) d — 1
d[x/d~].

This formula would become symmetric in m and n if it were extended over the range

0 < k < n. (The symmetry can be explained by drawing the graph of the summand

as a function of k, then reflecting about the line y = x.)

38. The equation holds for x = 0, and both sides increase by 1 when x increases past

a number of the form k/n.

39. Proof of (f): Consider the more general identity IIo<*<n 2 sin 7r(z + k/n) =

2 sin 7rna:, which can be demonstrated as follows: Since 2 sin 6 = (eie — e~i9)/i =
(1 — e—2i9)ei»—ijr/2, identity js a consequence of the two formulas

H (1 — e~2K(x+ik/n)) = 1 - and J[gir(x—(1/2) -f-(fc/?i)) _ gr(nx —1/2)

00<k<n

The latter is true since the function x — j is replicative; and the former is true because

we may set z = 1 in the factorization of the polynomial zn — an = (z — a) (z — coa)...

(z — a>"-1a), w = e~2iriln.

\

478 ANSWERS TO EXERCISES 1.2.4

40. (Note by N. G. de Bruijn.) If/is replicative,/(nx+ 1) — f(nx) = f(x + 1) — f(x)

for all n > 0. Hence if / is continuous, /(a; + 1) — f(x) = c for all x, and g(x) =

f(x) — c_xJ is replicative and periodic. Now

rl r1
-1 I 2irinx

e o \
g(x) dx = n

o
e2Tiyg(y) dy,

expanding in Fourier series shows that g(x) = (x — \)a for 0 < x < 1. It follows

that f(x) = (x — -|)a. In general, this argument shows that any replicative locally

Riemann-integrable function has the form (x — b max ([_a:J, 0) + c min (l_2'J, 0)

almost everywhere. For further results see M. F. Yoder, Aequationes Math, (to appear).

41. We want an = k when

k{k - 1)
< n <

k(k+ 1)

Since n is an integer, this is equivalent to

k(k - 1) ,1
7 < n <
4

k(k + 1) 1

4

i.e. k — \ < a/2n < k-\- Hence an — L\^2n + \ J, the nearest integer to x/2n.

Other correct answers are f (—1 + V1 + 8n)/2l and L(1 + V8n — 7)/2J.

42. (a) Cf. exercise 1.2.7-10. (b) The given sum is n|_log& n] — S, where

*S = Yj k = Z — 1) = (feLlog6nJ+1 - b)/(b - 1) - Llog6 nj.
l<A:<n l<<<logj,n

^ + 1 is power of b

44. The sum is n -j- 1 when n is negative.

45. [mj/nJ = r if and only if

rn

vi
< j <

(r-(- l)n

m

and we find the given sum is therefore

Z f(r)(
0 <r<m ^

(r+ 1)«

771

The stated result follows by rearranging the latter sum, grouping the terms with a

particular value of \rn/rri\. The second formula is immediate by the substitution

46. 'Eo<j<anf(lmj/n]) = Io<K«m rrn/m](/(r — 1) —/(r)) + [an~\f{\'am~\ — 1).

47. (a) The numbers 2, 4, . . . , p — 1 are the even residues (modulo p); since 2kq —

p[_2kq/p\ + (2kq) mod p, the number (—i)l2*.VH((2kq) mod p) will be an even

1.2.5 ANSWERS TO EXERCISES 479

residue or an even residue minus p, and each even residue clearly occurs just once.

Hence (-l)Vp_1)/22 • 4 . . . (p — 1) = 2 • 4 . . . (p — 1). (b) Let q = 2. If p =

4n+ 1, a = n; if p = 4n + 3, <r = »+ 1. Hence (§) = 1, —1, —1, 1 according as

p mod 8 = 1, 3, 5, 7, respectively, (c) For k < p/4,

L(P 1 2fc)g/pJ = q — T (2k + 1)q/p~\ = q — 1 — |_(2A: + l)g/pj

=[_(2A: —V)q/p] (modulo 2).

Hence we may replace the last terms [_(p — l)g/p_|, L(P ~ 3)g/p_|, ... by _q/p],

L3?/pJ, etc. (d) J2o<k<P/2 [kq/p] + Z)o<r<«/2 \rp/q\ = [p/2~\([q/2~] — 1) =

(p+ !)(? — !)/4. Also X^o<r<g/2 I>p/gl = Xo<r<s/2 LrP/?J + (g — l)/2. The idea
of this proof goes back to G. Eisenstein, Journal f. d. reine und angewandte Math. 28

(1844), 246-248; Eisenstein also gives several other proofs of this and other reciprocity
laws in the same volume.

48. (a) This is clearly not always true when n < 0; when n > 0 it is easy to verify,

(b) L(» + 2 - Ln/25J)/3J = T(n - |to/25J)/31 = [{n + \-n/25D/3] =

ff24n/25l/3l = (cf. exercise 35) f8n/25l = L(8n + 24)/25J.

SECTION 1.2.5

1. 52!. For the curious, this number is 806 58175 17094 38785 71660 63685 64037

66975 28950 54408 83277 82400 00000 00000. (!)

2. Pnk = Pn(fc-i)(n — k + 1). After the first n — 1 objects have been placed, there

is only one left, only one choice for the last object. But this does not mean that the

last object is always the same in all permutations!

3. 53124, 35124, 31524, 31254, 31245; 42351, 41352, 41253, 31254, 31245.

4. There are 2568 digits. The leading digit is 4 (since logio 4 = 21ogio 2 ~ .602).

The least significant digit is zero, and in fact by Eq. (8) the low order 249 digits are

all zero! The exact value of 1000! was calculated by H. S. Uhler using a desk calculator

and much patience over a period of several years, and the value appears in Scripta

Mathematica 21 (1955), pp. 266-267. It begins with 402 38726 00770 . . .

5. (39902) (97/96) ~ 416+ 39902 = 40318.

6. 218 • 38 • 54 ■ 72 • 11 • 13 • 17 • 19.

8. It is m”m!/((n+ m) \/n\) = n\ times mn/(m+ 1) . . . (m+n). The latter quantity

approaches one since m/(m + k) —» 1.

9. Vrr and —2\fir. (Exercise 10 used.)

10. Yes, except when x = 0 or a negative integer. For we have

T {x + 1) = x lim
m'm!

x(x + 1) • • • (x+ m)

11, 12. p = (eq.+ -1 + --- + ai)+ (akpk~2 + • • • + 02) + • ■ • + a*

= ak(pk~l H-b P + 1) H-b ai

= (ak(pk — 1) 4-b a0(p° — 1))/(p — 1)

= (n — ak — • • • — ai — a0)/(p — 1).

480 ANSWERS TO EXERCISES 1.2.5

13. For each n, 1 < n < p, determine n' as in exercise 1.2.4-19. We have a unique

such n' by Law 1.2.4B; and (n')' = n. Therefore we can pair off the numbers in groups

of two, provided n' ^ n. If n' = n, we have n2 = 1 (modulo p); hence, as in exercise

1.2.4-26, n = l or n = p — 1. So (p — 1)! = 1 • 1 • . . • • (—1), since+1 and p — 1

are the only unpaired elements.

14. Of the numbers 1, 2, . . .%n which are not multiples of p, there are ln/pj complete

sets of p — 1 consecutive elements, each with a product congruent to (1) (modulo p)

by Wilson’s Theorem. There are also a0 left over, which are congruent to a0!

(modulo p), so the contribution from those factors which are not multiples of p is

(_l)Ln/pJao!. The contribution from the factors which are multiples of p is the same

as the contribution in _n/p]\\ this argument can therefore be repeated to get the

desired formula.

15. (n!)3. There are n! terms. Each term has one from each row and each column,

so each term has the value (n!)2.

16. The terms do not approach zero, since the coefficients approach 1/e.

17. Express the Gamma functions as limits by Eq. (15).

is. n
n> 1

n n

(n - 1/2) (n+ 1/2)

r(-|)r(|)
r(i)r(i)

= 2T(t)2.

19. (a) Change of variable t = mt. (b) Integration by parts. (c) Induction.

20. [For completeness, we prove the stated inequality. Start with the easily verified

inequality 1 + x < er; set x = ±t/n and raise to the nth power to get (1 ± t/ri)n <

e±(. Hence

e~l > (1 — t/n)n = e-((l — 0i)V > e~l(l — t/n)n(1 + t/n)n

= e_i(l — t2/n2)n > e~l(\ — t2/n)

by exercise 1.2.1-9.]

Now the given integral minus Tm(a;) is

e lf 1 dt -

As m —> °o, the first of these approaches zero, since for large t, tx 1 < e(/2; and the

second is less than

— 1 t ■ e
m Jo m Jo

t e dt 0.

21. If c(n,j, ki, k2, . . .) denotes the appropriate coefficient, we find

c(n+ 1 ,j, ki, . . .) = c(n,j — 1, k\ — 1, k2, . . .)

-f- (fci + l)c(n, j, k\ + 1, k2 — 1, /c3, . . .)

d- (k2 + l)c(n, j, k\, k2 -f- 1, ^3 — 1, &4,

by differentiation. The equations ki + k2 + • ■ • — j and ki + 2k2 + • • • = n are

preserved in this induction relationship. We can easily factor n\/k\ !(1 !)fcl k2\(2\)k2 . . .

out of each term appearing on the righthand side of the equation for c(n+ 1 ,j, ki, . . .),

and we are left with ki + 2k2 + 3/^3 + • • • = n + 1. (In the proof it is convenient

to assume there are infinitely many k’s, although clearly kn+1 = kn+2 = • ■ ■ = 0.)

For a table of these coefficients, see the reference at the end of Section 1.2.9.

1.2.5 ANSWERS TO EXERCISES 481

The solution just given makes use of standard techniques of summation, but it

does not give a satisfactory explanation of why the formula has this form, nor how it

could have been discovered in the first place. Let us examine this question using a

combinatorial argument. Write for convenience wj = Djuw, Uk = Dkxu. Then

Dx(wj) = Wj+iui and Dx(uu) = Uk+1. By these two rules and the rule for derivative
of a product we find

D\w = w\Ui

D2xW = (W2U1U1 + WlU2)

Dxw = ((W3U1U1U1 + W2U2U1 + W2U1U2) + (W2U1U2 + W1U3)), etc.

Analogously we may set up a corresponding tableau of set partitions thus:

= 0}
£2 = ({2}{1}+ {2, 1})

2D3 = (({3} {2} {1} + {3, 2} {1} + {2} {3, 1}) + ({3} {2, 1} + {3, 2, 1})), etc.

Formally, if aya2 ... a, is a partition of the set {1, 2, ,n — 1}, define

3Daia2 ... ay = {n}aia2 ... ay + (ai U (n})a2 . . . ay + ai(02 U {«}) . . . ay + • • •

+ aia2 . . . (ay U {n}).

This rule is an exact parallel of the rule

D xi^WjUf^ ... Wry) ■" Wj 1 | It 1 UT‘2 . . ■ Wry I WJ,’Wri-(-lWr2 » • • Rry

WjUriUr2 + I • * • ’Rry “j- * ‘ * l- WjUri lir‘2 . . . ^r, ■}■ 1,

if we let the term WjUTlur2 ■ ■ ■ ur. correspond to a partition a\a2 ... ay with rt elements

in at, 1 < t < j. So there is a natural mapping from 2Dn onto Dxw, and furthermore

it is easy to see that includes each partition of the set {1, 2, . . ., «} exactly once.

(Cf. exercise 1.2.6-64.)

From these observations we find that if we collect like terms in Dxw, we obtain

a sum of terms c(k 1, &2, • ■ Oiflyit*1^2 • • • , where j = ki + &2 + • • • and n =
k\ + 2k2 + • • • , and where c(k\, k2, . . .) is the number of partitions of (1,2,..., n}

into j parts such that there are kt parts having t elements.

It remains to count these partitions. Consider an array of kt boxes of capacity t:

k'3

The number of ways to put n different elements into these boxes is the multinomial

coefficient

n

2 2 2 3 3 ... 3 4)- n !/l !*12!&23!*3

to get c(ki, k2, k3, . . .) we should divide this by . . . since the boxes in each

group of kt are indistinguishable from each other and may be permuted in kt\ ways

without affecting the set partition. (This solution is by R. McEliece.)

482 ANSWERS TO EXERCISES 1.2.5

Faa di Bruno’s formula has been generalized in several ways. For what is perhaps

the most extensive generalization of the formula, and a list of references to other related

work, see the paper by I. J. Good, Annals of Mathematical Statistics 32 (1961), 540-541.

22. The hypothesis that lim*^*, (n + x) \/n\nx = 1 is valid for integers x; for example,

if x is positive, the quantity is (1 + l/n)(l + 2/n) • • • (1 + x/n), which certainly

approaches one. If we also^ssume that x\ = x(x — 1)!, the hypothesis leads us to

conclude immediately that

1 lim
n—>oo

(n + x)!

n\nx
x\ lim

n—>oo

(s + 1) • • • (s+ n)

n\nx
)

which is equivalent to the definition given in the text.

SECTION 1.2.6

1. n, since each combination leaves out one item.

2. 1.
3. (f|). The actual number is 635013559600.

4. 24527217 • 23 • 41 • 43 • 47.

5. (10 + l)4 = 10000 + 4(1000) + 6(100) + 4(10) + 1.

6. r = -3: 1 —3 6 -10 15 —21 28 -36

r = —2: 1 —2 3 -4 5 —6 7 -8

r = -1: 1 —1 1 — 1 1 —1 1 — 1

7. ln/2]; or, alternatively, [n/2~\. It is clear from (3) that for smaller values the

binomial coefficient is strictly increasing, and afterwards it decreases to zero.

8. The nonzero entries in each row read the same from left to right as from right to

left.

9. One if n is positive or zero; zero if n is negative.

10. (a), (b), (f) follow immediately from (e), and (c), (d) follow from (a), (b), and

Eq. (9). Thus it suffices to prove (e). Consider (") as a fraction, given by Eq. (3) with

factors in numerator and denominator. The first Jc mod p factors have no p’s in the

denominator, and in the numerator and denominator these terms are clearly congruent

to the corresponding terms of

which differ by multiples of p. (When dealing with non-multiples of p we may work

modulo p in both numerator and denominator, since if a = c and b = d and a/b, c/d

are integers, then a/b = c/d.) There remain k — k mod p factors, which fall into

[k/p] groups of p consecutive values each. Each group contains exactly one multiple

of p; the other (p — 1) factors in a group are congruent (modulo p) to (p — 1)! so

they cancel in numerator and denominator. It remains to investigate the [k/p]

multiples of p in numerator and denominator; we divide each of these by p and are
left with the binomial coefficient

(L(n — k mod p)/p]\

lk/pj) '

1.2.6 ANSWERS TO EXERCISES 483

If k mod p < n mod p, this equals

/ L«/pj\
VL*/pJ/

as desired, but if k mod p > n mod p, this equals

/ [n/p] — l\
V Wp\)-

However, the other factor

(n mod p\

k mod p)

is then zero, so the formula is true in general. [See also N. J. Fine, AMM 54 (1947),
589-592.)

11. If

a = arpr -\-h a0,

b = brpT + • • • + bo,

a + b = crpr H-h co,

the value (according to exercise 1.2.5-12 and Eq. (5)) is

(ao + • • • + aT + bo + • • • + br — co — • • • — cr)/(p — 1).

A carry decreases cy by p and increases cy+i by 1, giving a net change of +1 in this
formula.

12. By either of the two previous exercises, n must be one less than a power of 2.

More generally, (l) is never divisible by the prime p, 0 < k < n, if and only if
n = apm — 1, 1 < a < p, m > 0.

“•24 C10+36 0+14 (nt 0+(”t 0
n n4 n3 n _ n(n+l)(n+-|)(3n2 + 3n — 1)

~5 + 2 + 3_30~ 15

15. Induction and (9).

17. We may assume r, s are positive integers. Also

for all x, so the coefficients of xn must be identical.

21. The lefthand side is a polynomial of degree n, the righthand side is a polynomial

of degree m+ n + 1. We have agreement at n + 1 points. This is not enough to

prove them equal (although when m = 0 it proves that the two sides are multiples

of some polynomial; and indeed in the case m = 0 we find that the equation is an

identity in s, since it is Eq. (11)).

r w.

n — kj\k

484 ANSWERS TO EXERCISES 1.2.6

22. Assume n > 0. The ftth term is

(r — tk

4

j) u (n — 1 — r + tk — j)
0 </<n—k

=\
(-D*"1

n!
JJ (—r +tk + j) II (—'■r + tk + i)

0<i<* k<j<n

and the two products give a polynomial of degree (n — 1) in k, so the sum over k is

zero by Eq. (35).

24. The proof is by induction on n. If n < 0 the identity is obvious. If n > 0, we

prove it holds for (r, n — r + n<+ m, t, n), by induction on the integer m > 0,

using the previous two exercises and the validity for n — 1. This establishes the

identity (r, s, t, ri) for infinitely many s, and being a polynomial in s it holds for all s.

25. Using the ratio test and straightforward estimates for large values of k we can

prove convergence. (Alternatively using complex variable theory we know the function

is analytic in the neighborhood of x = 1.) We have

1 = 5 ^oc e)c
-E

K-D*

r — jt

= J2 (-D^i(U 0(1 + wy-jt~jwj.

Now let x = 1/(1 + w), z = —w/(l w)l+t. This proof is due to H. W. Gould

[AMM 63 (1956), 84-91]. See also the simple but less elementary derivation by

M. Skalsky, AMM 69 (1962), 404-405, and the more general formula in exercise

2.3.4.4-33.

26. We could start with the identity

E (-»’

and proceed as above. Another way is to differentiate our formula with respect to 2;
we get

y] kAk(r, t)zk
k

d(xr)

Z~dT

(x<+1 — xl)rx

((t + l)a:(+1 — tx‘)

hence we can obtain the value of

2 (! — l *) Ak^r>
27. For Eq. (26), multiply the series for xr+1/((t+ l)x — t) by the series for x5,

get a series for xr+s+l/((t + \)x — t) in which coefficients of 2 may be equated to
the coefficients arising from the series for a++’)+1/((< i)^ _

1.2.6 ANSWERS TO EXERCISES 485

28. Denoting the lefthand side by f(r, s, t, n), we find

^ f • /(r — < — s + <, f, n — !) = f(r, s, t, n)

by considering the identity

f rtk\f s — tlc\ r (r + tJc\/s — tJc\ tk J .

* \ k)\n — k)r-\-tk ^ \ k)\n — k) r + tk ~ ^r’ S’ ’ U '

29. (-D‘(j)/n! = (—l)*A!(n — &)! = (-l)n/ H

j=jtk

30. Apply (7) and (19) to get

y* /-m — 2* - lV2fc+ l\ (-I)""” = y / ~m - 2k+ 1 V2* - l\ (-1)"-”

n — m — k /\A;+1/ 2ft-f- 1 yi — w — ft+l/\ A:) 2k — l

Now if we add the term for k = 0 we can apply Eq. (26) with

r = —1, s = to — 2n — 1, t = —2, n = n — m -f 1.

So we get the result

/ TO \ / ...»—m-\-l . / Tfl~\~ 1 \ . .»—m / TO \ / ...»—m (n l\

\n —m+l/ ' ^ V- ' ~\n-mP) ~\n-m)'

This result is the same as our previous formula, when n is positive, but when n = 0 the

answer we have obtained is correct while (JJ,—1i) is not. Our derivation has a further

bonus, since the answer (Z—m) is valid for n > 0 and all integers to.

31. We have

Eip /to — r s\/n+ r — s\(r \/ft\

“ \ k)\ n — k)\m+n — j)\j)

/m-r+sVn+r-sY r \/to — r-f-s — A

j)\ n — k J\m+n—j)\ k—j)
j k

/ to — r + s\ / r \/ro+n — A

4^ \ j)\m+n — jj\ n—j J

Changing

(m + n — j\ to /to + n — A

V n—j) \ m)

and applying (20) again, we get

to — r + s

?(‘7+')(:)C.-■)-(:)©
32. Replace x by —x in (40).

48G ANSWERS TO EXERCISES 1.2.6

33, 34. We have

« fx+n — l\
x = n\ l I

V n /

The equation^ may therefore be transformed into

^x + y-\- n — 1^ = ^ ^x+ (1 — z)k^j(y — 1 x x + (1 — z)k\/y — 1 + nz+ (n — k)(1 — z)_

k)\ n — k /x+(l — z)k

which is a case of (26).

35. For example, we prove the first formula:

2 (-1)"-* ('
Ir '

(n — 1)
n — 1

k

-(n — l)(n — 1)

-I])1*

36. By the binomial formula (assuming n is a nonnegative integer) we get 2" and

5„o, respectively.

37. When n > 0, 2n_1. (The odd and even terms cancel, so each equals half the total

sum.)

38. Let w = e2"/m. Then

E a-= E E (?)
<" t 0<j<m ' ' 0< j<m

Now

^] W — ?^5(r mod m)0

0< j<m

(it is the sum of a geometric progression), so the righthand sum is m

The original sum on the left is
Z (;)•

t mod Tti—k ' '

E, -i/2 , j/2,n j(.n/2-k) j(n/2-k)
(co + CO) CO = 2^ l2cos“ j "

<.<'». 0<i<m ' ' 0< j<m

Since the quantity is knowm to be real, we may take the real part and obtain the

stated formula.

39. n!; 0 if n > 2, ±1 in the other two cases. (The row sums in the second triangle

are not so simple; wre will find (exercise 64) that this gives the number of ways to parti¬

tion a set of n elements into disjoint sets, i.e. the number of equivalence relations.)

40. Proof of (c): By parts,

B(x +1,2/) = -
fx(l - t)v

y Jo
f~\ 1 - t)v dt.

Now use (b).

41. mrB(x, m + 1) —» F(x) as m —> x> 1 regardless of whether m runs through integer

values or not (by monotonicity). Hence, (to + y)xB(x, m + y + 1) —> T(x), and

(m/(m + ?/))r —> 1.

1.2.6 ANSWERS TO EXERCISES 487

42. i/kB(k, r - 1).

43. /o dt/t1/2(1 <)1/2 = 2JJ du/(1 —w2)1/2 = 2 arcsin m|q =. r.

45. We have for large r,

1 I r 1 (1 — k/r)k 1

kT(k) \r — k e* (1 — k/r)r T(k+ 1)'

4e- 4(H)(i+i)'(i+i)’ C;) - irn.

48. This can be proved by induction, using the fact that

0 =
fn\ (—1)Kk , y/n\ (—l)*x _

% W k + x Z-j yicj % x

Alternatively, we have

B(x, n-f 1) = Jo f~\ 1 - t)ndt = 2 (^)(-Dfc fQ t*^-1 dt.

(In fact, the stated sum equals B(x, n-f 1) for noninteger n also, when the series
converges.)

- 21/(_1)”+‘ integer "•

50. The ftth summand is (*)(—l)n_;i(x — kz)n~1x. Apply Eq. (35).

51. The righthand side is

Z E (V)

= 2 + 2/)r°"_r = (*+y)n-

n—k—r

(z + y)r(—x-f fes)

x(x— ftz)* X(—x-\-kz)n k r

The same device may be used to prove Torelli’s sum (exercise 34) as well as

(x +y)~ = ^ x(x — kz — 1)— (y + kz)—,

where x~ = x(x — 1) • • • (x — n-f- 1).

Another neat proof of Abel’s formula comes from the fact that it is readily trans¬

formed into the more symmetric identity derived in exercise 2.3.4.4-29:

^2 x(x + kz)k~1y{y -f (n — k)z)n~k~l = (x-f y){x -f y + nz)"_1.

488 ANSWERS TO EXERCISES 1.2.6

Abel’s theorem has been even further generalized by A. Hurwitz [Acta Mathe-

matica 26 (1902), 199-203] as follows:

2 x(x + 61*1+ • • •+ enZn)tl+-+(n~\y ~ 61*1-= + y)»

where the suih is over all 2” choices of ei, . . . , en = 0 or 1 independently. This is an

identity in x, y, zi, . . . , zn, apd Abel’s formula is the special case zi = Z2 = • • • = zn.
Hurwitz’s formula follows from the result in exercise 2.3.4.4-30.

52. XU>o (ifc+ 1)~2 = 7t2/6 — 1. [M. L. J. Hautus observes that the sum is abso¬

lutely convergent for all complex x, y, z, r whenever z ^ 0, since the terms for large k

are always of order 1 /k2. This convergence is uniform in bounded regions, so we may

differentiate the series term by term. If /(x, y, r) is the value of the sum when z = 1,

we find (d/dy)f(x, y, r) = rf(x, y, r — 1) and (d/dx)/(x, y, r) = r/(x — 1, y+ 1, r — 1).

These formulas are consistent with f(x,y,r) = (x+y)r; but actually the latter

equality seems to hold rarely, if ever, unless the sum is finite. Furthermore the deriva¬

tive with respect to z is almost always nonzero.]

54. Insert minus signs in a checkerboard pattern as shown.

(1 —0 0 —o\
-1 1-0 0]
1-2 1 -0 I

-1 3 -3 1/

This is equivalent to multiplying a»y by (—l)i+J. The result is the desired inverse,

by Eq. (34).

55. Insert minus signs as in previous exercise in one triangle, get the inverse of the

other. (Eq. (43).)

56. 012 013 023 123 014 024 124 034 134 234 015 025 125 035 135 235 045 145 245

345 016. With c fixed, a and b run through the combinations of c things two at a time;

with c, b fixed, a runs through the combinations of b things one at a time. Similarly,

we could express all numbers n = (“) + (|) + (3) + (4) with 0<a<b<c<d;

the sequence begins 0123 0124 0134 0234 1234 0125 0135 0235

58. By induction, since = ("I1)^ (ili)agn-i = (B71)eg* + (*lj)8. It follows
that the ^-generalization of (21) is

These coefficients arise in many diverse applications; cf. Sections 5.1.2, 6.3, and the

author’s note in J. Combinatorial Theory (A) 10 (1971), 178-180. For further informa¬

tion, see W. N. Bailey’s classic little book, Generalized Hyper geometric Series (Cam¬

bridge Univ. Press, 1935), Chapter 8.

59. (»+l)(jf).

This formula can be remembered easily, since it is

n{n + 1) • • • (w + k — 1)

k(k - 1) • • • 1 ’

i.e. like Eq. (2) except the numbers in the numerator go up instead of down. A slick

way to prove this formula is to note that we want to count the number of integer

solutions (01, . . ., ak) to the relations 1 < aq < 02 < • • • < ak < n. This is the

1.2.7 ANSWERS TO EXERCISES 489

same asO <ai <02+ 1 <••• < a* -)- A; — 1 < n + k; and the number of solu¬

tions to 0 < bi < 62 < * • • < bk < n k is the number of choices of k distinct

things from the set {1, 2, . . . , n + * — 1}. (This trick is due to H. F. Scherk, Journal

fur Math. 3 (1828), 97; curiously it was also given by W. A. Forstemann in the same

journal, vol. 13 (1835), 237, who said “One would almost believe this must have been

known long ago, but I have found it nowhere, even though I have consulted many

works in this regard.”!) The formula may be derived easily with the use of generating

functions (cf. exercise 1.2.9-16).

61. If anm is the desired quantity, we have by (42), (43), anm = no(„_i)m-f (—l)n8nm.

Hence the answer is 0 for n < to, and (—1)mn\/m\ for n > to. The same formula is
also easily obtained by inversion of (52).

62. Use the identity of exercise 31, with (to, n, r, s, k) (to -f k, l — k, m -f- n, n + l, j):

by rearranging the factorial signs. The sum on k now vanishes unless j = l.

The case Z = to = n of this identity was published by A. C. Dixon [Messenger of

Math. 20 (1891), 79-80], who established the general case twelve years later [Proc.

London Math. Soc. 35 (1903), 285-289]. See papers by P. A. MacMahon, Quarterly

Journal of Pure and Applied Math. 33 (1902), 274-288, and John Dougall, Proc.

Edinburgh Math. Society 25 (1906), 114-132. The corresponding g-nomial identities are

E,_..fc /Z-f- WA fm~\~ n>\ (nJr (3&2—k)/2 _ (/ 4- to -j- n) !g

1 J \l+kjq\m+kjq\n+kjgq ~ Uam\qn\q

where n\q = ITi<A:<n (1 + ?+••■ + Qk~1)-

64. Let/(n, to) be the number of partitions of {1, 2, ... , n) into to parts. Clearly

/(1, to) = bim. If n > 1, the partitionings are of two varieties: (a) The element n

alone forms a set of the partition; there are/(n — 1, m — 1) ways to construct parti¬

tions like this, (b) The element n appears together with another element; there are

to ways to insert n into any wi-partition of {1, 2, ... ,n — 1}, hence there are

mf(n — 1, to) ways to construct partitions like this. We therefore conclude/(n, to) =

f(n — 1, to — 1) + mf(n — 1, to), and by induction/(n, to) = {£}.

SECTION 1.2.7

1. 0; 1; 3/2.

2. Replace each term l/(2m + k) by the upper bound l/2m.

3. Hi™ _i < Zo<*<m 2k/2kT; 2T-1/(2r~1 — 1) is an upper bound.

4. (b) and (c).

490 ANSWERS TO EXERCISES 1.2.7

5. 9.78760 60360 44382 . . .

6. Induction and Eq. 1.2.6-42.

7. T(m + 1, n) — T(m, n) = l/(m + 1) — \/{mn + 1) — • • • -l/(mn+ «) <

l/(m + 1) — 1 /(mn -f- n) — • • • — l/(mn + n) = l/(m + 1) — + 1) = 0.
The maximum value occurs a^t m = n = 1, and the minimum is approached when m

and n get very large. By Eq. (3) the greatest lower bound is 7, which is never actually

attained. A generalization of this result appears in AMM 70 (1963), 575-577.

8. By Stirling’s approximation, In n\ is approximately (n + In n — n + In \Z2tt)

also Xli<Kn Hk is approximately {n + 1) In n — n(l — 7) + (7 + J); the difference

is approximately 7n + \ In n + .158.

9. —1/n.

10. Break left side into two sums, change k to k + 1 in second sum.

11. 2 — Hn+i/n — l/(n+ 1).

12. 1.000 ... is correct to over three hundred decimal places!

14. See Section 1.2.3, Example 2. The second sum is 4 — Hn+1).

15. (1 /j)]L,3<k<n Hk can be summed by formulas in the text; the answer is

(n-\- 1)Hn — (2n + l)Hn-\- 2n.

16. H2n + 1 — \Hn.

17. Taking the denominator to be (p — 1)!, which is a multiple of the true denominator

but not a multiple of p, we must show only that the corresponding numerator,

(p — 1)!/1 + (p — l)!/2+ • • • -j- (p — l)!/(p — 1), is a multiple of p. Modulo p,

(p — 1)\/k = (p — 1)!A:', where k' can be determined by the relation kk' mod p = 1.

The set {1', 2', . . . , (p — 1)'} is just the set (1, 2, . . . , (p — 1)}; so the numerator

is congruent to (p — 1) !(1 + 2 + • • • + p — 1) = 0. In fact the numerator is known

to be a multiple of p2 when p > 3; see Hardy and Wright, The Theory of Numbers,

Section 7.8.

18. If n = 2km where m is odd, the sum equals 22km\/m2 where mi and m2 are both

odd. AMM 67 (1960), 924-925.

19. Only n = 0, n = 1. For n > 2, let k = [_l°g2 nj. There is precisely one term

whose denominator is 2k, so 2k~lHn — i is a sum of terms involving only odd primes

in the denominator. If Hn were an integer, 2k~1Hn — \ would have a denominator

equal to 2.

20. Expand the integrand term by term. See also AMM 69 (1962), 239, and an

article by H. W. Gould, Mathematics Magazine 34 (1961), 317-321.

21. H2n+1 - tffji.

22. (n+ 2){Hl+i - H{nl 1) - 2(n+ !)#»+ 2n.

23. r'(n+ 1)/T(n+ 1) = 1/n + T'{n)/T(n), since T(a:+ 1) = xT(a:). Hence Hn =

T + T'(n+ 1)/T(n+ 1). The function Hn — 7 is called the psi function or the digamma

function. Some values for rational n appear in Appendix B.

24. It is

x lim e
n—>00

(Hn—In n)x | j

1 <

—x/k
= lim

x(x + 1) • • • (x + n)

nxn\

1.2.8 ANSWERS TO EXERCISES 491

Note: The generalization of Hn considered in the previous exercise is therefore equal to

Hx] — (l/(k-\- l)r 1/(A: + 1 + x)r), when r = 1; the same idea can be used
for larger values of r.

SECTION 1.2.8

1. Fk+2; the answer is F14 = 377 pairs.

2. In ($1000/\/5) = 1000 In $ — j In 5 = 480.40711; logio E1000 is l/(ln 10) times

this, or 208.64; F1000 is therefore a 209-digit number whose leading digit is 4.

4. 0, 1, 5; afterwards F„ increases too fast.

5. 0, 1, 12.

6. Induction. (The equation holds for negative n also, cf. exercise 8.)

7. If d is a proper divisor of n, Fd divides Fn. Now Fd is greater than one and less

than F„ provided d is greater than 2. The only non-prime number which has no

proper factor greater than 2 is n = 4 (since if d = 2, n/d >2). F± = 3 is the only
exception.

8. F-1 = 1; F-2 = —1; F-n = (—1)"+1E„ by induction on n.

9. Not (15). The others are valid, by an inductive argument which proves something
true for n — 1 assuming it true for n and greater.

10. When n is even, it is greater, and when n is odd, it is less by Eq. (14).

11. Induction; cf. exercise 9. This is a special case of exercise 13(a).

12. If S(z) = ESF»2n, (1 - z - z2)8(z) = z + Fqz2 + Fiz3 -}-- z + z2G(z).

Hence g(z) = G(z) + zG(z)2; by Eq. (17) we derive fF„ = ((3n+ 3)/5)Fn — (n/b)Fn+\.

13. (a) an = rFn-1 + sFn. (b) Since (bn+2 + c) = (bn+1 + c) + (bn + c), we may

consider a new sequence. b'„ = bn + c. Apply part (a) to b'n, and we obtain the answer

cF n—1 + (C + 1)Fn — C.

14. a. - F,+1K-1 + (f„+2 + nr. -(:)-(:+))-("{")•

15. Cn = xan + ybn + (1 — x — y)Fn.

16. Fn+1. Induction, and ^ ^ ^ ^ ^

17. (Xn+k — yn+k^xm-k — y-m-k) — (x» — yn){X

Now set x = <t>, y = d>, and divide by (V5)2.

(n — 1) — (Jc —

k

ym)
- (xy)n(xm n k — ym n k)(xk — yk).

18. It is F2n+1-

19. Let u = cos 72°, v = cos 36°. We have u = 2v2 — 1; v = 1 — 2 sin2 18° =

1 — 2m2. Hence m+ v = 2(v2 — u2), i.e. 1 = 2(v — u), so 4t>2 — 2v — 1 = 0.

v = \d>.

20. F n+2 — 1.

21. Multiply by x2 + x — 1; the solution is (xn+lFn+i + xn+2Fn — x)/(x2 + x — 1).

If the denominator is zero, x is 1 /<f> or 1/0; then the solution is

((n+ l)xnFn+i+ (n+ 2)xn+1Fn - 1)7(2®+ 1).

492 ANSWERS TO EXERCISES 1.2.8

22. Fm+2n', see next exercise with t = 2.

23. — V (i)(<t>kFktFntlUm - tfFktFntZ\4>m)
\/5 k W

1. = 4= + ^-i)” - + Ft-0”) = *W*»-
Vs

24. F„+i (expand by cofactors in first row).

25. 2"V5 Fn = (1 + V5)n - (1 - V5)n.

26. By Fermat’s theorem, 2p~l = 1; now apply the previous exercise and exercise

1.2.6-10(b).

27. It is true if p = 2. Otherwise, modulo p, Fp_iFj,+i — F\ = —1; from the

previous exercise and Fermat’s theorem, Fp—iFp+i = 0. Only one of these can be

a multiple of p since Fp+1 = + Fp-\.

28. 4>n. Note: The solution to the relations an+i = Aan + Bn, oq = 0, is

dn —

29.

(An —

(Q)
i

i

i

i

i
i
i

B*)/(A

(©)
0
1

1

2
3

5

8

- B) if

(®)
0

0

1

2
6

15

40

A ^ B,

(®)
0

0

0

1

3

15

60

= nAn 1 if A = B.

(®)
0

0

0

0

1

5

40

(©)
0

0

0

0

0

1
8

(©)
0

0

0

0

0

0

1

(b) follows from (6).

30. By induction on m, the statement being obvious when m = 1:

c) Since (—1)kFm-k = Fk-\Fm — FkFm-\, we conclude from (a), (b) that

? - °«

since Fmj* 0.

d) Since Fn+k = Fk-iFn-\- FkFn+1 the result follows from (a) and (c). This result
may also be proved in slightly more general form by using the Vnomial theorem”

in exercise 1.2.6-58. See also J. Riordan, Duke Math J. 29 (1962), 5-12.

31. Exercises 8 and 11.

1.2.9 ANSWERS TO EXERCISES 493

32. Modulo Fn the Fibonacci sequence is 0, 1, ... , F„_i, 0, Fn-1, —Fn-2,

33. One can use the properties of Chebyshev polynomials, if they are known. Directly,

we find cos z = + e-*2) = —i/2. Then use the fact that sin (n + 1)z +

sin (n — 1)2 = 2 sin (nz) cos z.

34. Prove that the only possible value for F\n is the largest Fibonacci number less

than or equal to n; hence n — Fkl is less than Fk1~i, and by induction there is a unique

representation of n — Fkl. The outline of this proof is quite similar to the proof of the

unique factorization theorem. The Fibonacci number system is due to E. Zeckendorf

[see Simon Stevin 29 (1952), 190-195; Bull, de la Soc. Royale des Sciences de Liege 41

(1972), 179-182]; generalizations are discussed in exercise 5.4.2-10.

35. See G. M. Bergman, Mathematics Magazine 31 (1957), 98-110.

36. We may consider the infinite string SX) since Sn (n > 1) consists of the first Fn

letters of Sx. There are no double a’s, no triple b’s. Sn contains 2 a’s, Fn-1 b’s.

If we express m — 1 in the Fibonacci number system as in exercise 34, the mth letter

of Sx is a if and only if kT = 2. The kth letter of Sx is b if and only if [_(fc + l)</>-1 J—

= 1; the number of b’s in the first k letters is therefore [_(& + 1)$-1J-

37. [Fibonacci Quart. 1 (Dec. 1963), 9-12.] Consider the Fibonacci number system of

exercise 34; if n = Fkl + • • • + Fkr > 0 in that system, let p(ri) = Fkr. Let+0) = 00.

We find that: (A) If n > 0, p(n — ju(n)) > 2n(n). Proof: pin — p(n)) = Fkr— 1 >

Fkr+2 > 2Fkr since kr > 2. (B) If 0 < m < Fk, pirn) < 2(Fk — m). Proof: Let

n(m) = Fj\ m < Fk_l + 3 + • • • + Fj+(k—l-i)mod2 = —Pj-l+(.k-l-j)mod2 + Pk
< —\Fj -)- Fk. (C) If 0 < m < n(ri), n(n — /u(n) + m) < 2(y(n) — m). Proof:

This follows from (B). (D) If 0 < m < n(n), n(n — m) < 2m. Proof: Set

m = ji{n) — m in (C).

Now we will prove that if there are n chips, and if at most q may be taken in the

next turn, there is a winning move iff/x(n) < q. Proof: (a) If n(n) > q all moves

leave a position n', q' with n{nr) < q'. [This follows from (D), above.] (b) If n(ri) < q,

we can either win on this move (if q > n) or we can make a move which leaves a

position n', qf with y.(n') > q'. [This follows from (A) above, our move is to take

n(ri) chips.] It can be seen that the set of all winning moves, if n = Fkl + • • • + Fkr,

is to remove Fkj~\- • • • + Fkr, for somej with 1 < j < r, provided that j = 1 or Fkj_i >

2 {Fkj + • • • + Fk/}-
If n = 1000, the Fibonacci representation is 987 + 13; the only lucky move to

force a victory is to take 13 chips. The first player can always win unless n is a

Fibonacci number.
The solution to considerably more general games of this type has been obtained

by A. Schwenk [Fibonacci Quarterly 8 (1970), 225-234].

39. (3n — (—2)")/5.

SECTION 1.2.9

1. 1/(1 - 22) + 1/(1 - 32).

2. Follows from (6), since (?) = n\/kl(n — k)\.

3. Q'(z) = In (1/(1 — 2))/(1 — 2)2+ 1/(1 — 2)2. From this and the significance

of G(z)/(1 — z), we have £i<*<»_i Hk = nHn — n; this agrees with Eq. 1.2.7-8.

In general, (1 — 2)-m-1 In (l/(l — 2)) = E«>o (Hn+m — Hm)(n/im)zn, for integer

m > 0.

494 ANSWERS TO EXERCISES 1.2.9

4. Put t = 0.

5. The coefficient of zk is, by (11), (22),

<•-”.5.1.-.!©
Now apply Eqs. 1.2.6-42 and 1.2.6-48. (Or, differentiate and use 1.2.6-42.)

6. (ln(l/(l — z)))2; the derivative is twice the generating function for the harmonic

numbers; the sum is therefore 2Hn-i/n.

8. 1/(1 — z)(l — z2)(1 — z3) • • • . [This is historically one of the first applications

of generating functions. For an interesting account of L. Euler’s eighteenth-century

researches concerning this generating function, see G. Polya, Induction and Analogy in

Mathematics (Princeton: Princeton University Press, 1954), Chapter 6.]

9. + 5*S2<S2 + -jlpS2 3<Si'S'3 + 1*54-

10. G(z) = (1 + x\z) • • • (1 + xnz). Taking logarithms as in the derivation of

Eq. (34), we have the same formulas except (24) replaces (25), and the answer is

exactly the same except S2, S4, Sq, . . . are replaced by —S2, —S4, — Se, etc. We

have ai = £1, a2 = i>S2 — i»S2, «3 = g-S2 — ^1*82 + %S3, a 4 = ^S\ — i£2S2 +
iSi+iSiSa — i$4. (Cf. exercise 9.) The numbers am are called the elementary

symmetric functions of the Xj, and the formulas derived here are called Newton’s

identities.

11. We find z2G'(z) + zG{z) = G(z) — 1. The solution to this differential equation

is G{z) — (—l/z)e~1/z(Ei(—1/z) + C), where Ei(x) = e~l dt/t and C is a

constant. This function is very ill-behaved in_the neighborhood of z = 0, and G(z)

has no power series expansion. Indeed, since \J n\ ~ n/e is not bounded, the generating

function does not converge in this case; it is, however, an asymptotic expansion for

the above function, when z < 0. [Cf. K. Knopp,- Infinite Sequences and Series (Dover,

1956), Section 66.]

1/(1 — z — wz).

e~s(n+1))

Adding these together, we find L/(s) = G(e~*)/s.

14. Cf. exercise 1.2.6-38.

m,n> 0

13.

m,n> 0

n+1

12. £ a„w"z- = X (")«,*V - £ (1 + to) V =
n> 0

e~stf(t) dt = ?_«+•:- + a" (e-» _

15. G„{z) = Gn-liz) -f zGn—2(2), so we find H(w) = 1/(1 — it; — zw2). Hence,
ultimately, we find

Gn(z) =

16. Gnr(z)

1 -f- 1 -)- 4z

T (\ _ ,gr+1\n
= (1 + 2 + • • • + 2r)” = (—-— 1 • [Note the case r = 00.]

1.2.9 ANSWERS TO EXERCISES 495

k N t

w(w+ 1) •••(«>+ ft — 1) *
ft(ft — 1)• • • 1 3 -E zwn/k\.

k ' ' * * n.Jfe

(Alternatively, write it as ew i»(i/U-i» and expand first by powers of u>.)

18. (a) For fixed n and varying r, the generating function is

<?.(«) “ (1 + «)(1 + 2«)--.(1 + m) - z"H(i)(l+l)(l+2)--•(!+«)

-E n+ 1

k

n-j-1—k

by Eq. (27). Hence the answer is

n+ 1 1
n-\- 1 — r\

(b) Similarly, the generating function is

1 1 1 _ XT'' | ft) k-n

" ' 1 - nz V W * 1—2 1—22

by Eq. (28), so the answer is

19, "+1)

n-\- r

n

,P+nq

= £ In (1 - x9) - 2 co_ip In (1 - ux) = Si + S2 + Ss,
l<k<q

where oo = e2ri,g and where Si, S2, S3 are defined below. Now

lim Si = lim xp~9ln(^--—) = In q;
X—>1— X—>1— \1 X J

and

X—>1 —

From the identity

lim S2 = lim (xv 9 — 1) In (1 — x) = 0;
x—>1 — X—>1 —

lim S3 = — ^ co fcpln (1 — cok).
0 <k<q

In (1 — elS) = In ^2e

t0/2 —1'0/2
K0-x)/2 e — e

2i

\ 8
■J = In 2 -f- ^'(0 — 7r) + In sin - >

we may write the latter sum as $4 + S5 where

S4 = — ^2 w kP In sin - 7r = — ^2 (u kP u
0 <k<q 0<k<q/2

—kp | —(9—k)p\ , . ft
) In Sin - 7T

q

2irpk . ft
= —2 > cos-lnsm-ir;

n a
0<k<q/2

496 ANSWERS TO EXERCISES 1.2.9
\

and

s5 = -
0<k<g
E
4? 1c. ^ n '

(«-* - 1)

Finally,

z±_= vi(l±A) -ifr*+^T) = *«*£,.
2 (oj-p — 1) 2 \1 — wV 2 \wp/2 — co~P/2/ ?

SECTION 1.2.10

1. 1/n; this is the probability that X[n] is the largest.

2. G"(l) = ZHk - 1)pk, G'(1) =

3. minO, ave 6.49, max 999, dev 2.42. (Note that H%] is approximately 7t2/6;

see Eq. 1.2.7-7.)

4. (l)pkqn~k■

5. Mean is 36/5 = 7.2; standard deviation is 6V2/5 ~ 1.697.

7. The probability that A — k is pmk- For we may consider the values to be

1, 2, . . . , m. Given any partitioning of the n positions into m disjoint sets, there are

m\ ways to assign the numbers 1, ,m to these sets. Algorithm M treats these

values as if only the rightmost element of each set were present; so, pmk is the average

for any fixed partitioning. For example, if n = 5, m = 3, one partition is

{X[1],Z[4]}{Z[2],Z[5]}{X[3]};

the arrangements possible are 12312, 13213, 21321, 23123, 31231, 32132. In every

partition we get the same percentage of arrangements with A = k.

On the other hand, if more information is given the probability distribution

changes. If n = 3, m = 2, the above argument considers the six possibilities 122, 212,

221, 211, 121, 112; if we know there are two 2’s and one 1, then only the first three of

these possibilities is to be considered. This interpretation is not consistent with the

statement of the exercise, however.

8. M(M — 1) • • • (M — n + 1)/Mn = M\/(M — n)\Mn. The larger M is, the

closer this probability gets to one.

9. Let qnm be the probability that exactly m distinct values occur; then from the

recurrence

M — m+ 1

we deduce that

See also exercise 1.2.6-64.

10. This is QnmPmk summed over all m, i.e.,

1.2.10 ANSWERS TO EXERCISES 497

There does not appear to be a simple formula for the average, which is one less than

£
15: M 0-i)' m n»+ £

1 < k< ? 0
BkM~kirl.

11. The first identity is obvious by writing out the power series for ekt. For the second,

let u = 1 -)- M2t2/2\-{- • • • ; when t = 0 we have u = 1 and D\u — Mk.

Also, Di(]nu) = (—l)f_10* — 1)!/m».

12. Since this is a product, we add the semi-invariants of each term. If H(z) = zn,

H(el) = ent, so we find k\ = n and all others are zero. Therefore, mean(Gh) =

n-f- mean(G), and all other semi-invariants are unchanged. (This accounts for the

name “semi-invariant.”)

13. Gn(z) =
T(tt+Z)

T(z + l)n!

1

r(z+ i)

{n+zY _z
I ^ n-\- z

r(z+1)
^i + o

Let z = zn = exp (</cr„). Now zn —> 1, so the T(z+ 1) term may be ignored as

n —> <x>. The limit now is

exp (—(et/<r" — 1) Inn)

= exp

14. e-o>n/VP9"(g -j- pelNvo.n)n — ^qg-tp/^/pgn petq/-yjpqn^nt Expan(j the exponentials

in power series, get (l + t2/2n-\- 0(n_3/2))n = exp (nln(l + t2/2n-\- 0(n_3/2))) =

exp (<2/2+ 0(n-1/2)) —> exp (t2/2).

15. Gn(z) in Eq. (8). A generating function for probabilities may always be inter¬

preted as the average value of a quantity, in this way.

16. (a) X!*>o e-/*(/xz)V^! = eM(z_1). (b) In e>l<-et~1) = fj.(el — 1), so all semi-invariants

equal m- (c) exP (—tnp/Vnp) X exp (np(t/Vnp + t2/2npJr 0(n_3/2))) =

exp (t2/2+ 0(n_1/2)).

17. (a) The coefficients of /(z), g(z) are nonnegative and /(1) = g{ 1) = 1. Clearly

h(z) shares these same characteristics since h(l) = g(f(1)) and the coefficients of h

are polynomials in those of /, g with nonnegative coefficients, (b) Let f(z) = XPkZk

where pk is the probability that some event yields a “score” of k. Let g{z) = 22<lkZk

where qk is the probability that the event described by / happens exactly k times

(each occurrence of the event being independent of the others). Then h(z) = ^rkzk,

where rk is the probability that the sum of the scores of the events that occurred is

equal to k. (This is easy to see if we observe that/(z)fc = £stzwhere st is the prob¬

ability that a total score t is obtained in k independent occurrences of the event.)

Example: If f gives the probabilities that a man has k male offspring, and if g gives

the probabilities that there are k males in the nth generation, then h gives the prob¬

abilities that there are k males in the (n+ l)st generation, assuming independence,

(c) mean (A) = mean (g) mean (/); var(A) = var (g) mean2 (/) + mean (g) var(/).

498 ANSWERS TO EXERCISES

\

1.2.10

18. Consider the choice of A[l], . . . , X[n\ as a process in which we first place all the

n’s, then place all the (n — l)’s among these n’s, . . . , finally place the ones among the

rest. As we place the r’s among the numbers r + 1, . . . , n, the number of local maxima

from right to left increases by one if and only if we put an r at the extreme right.

This happens (with probability kr/ (kr + kT+1 + '•• + &»)•

SECTION 1.2.11.1

1. Zero.

2. Each 0 symbol represents a different approximate quantity; since the lefthand

side may be f(ri) — (—f(n)) = 2/(n), the best we can say is 0(/(n)) — 0(/(n)) =

0(f(n)). To prove the latter, note that if |z„| < Mi|/(n)| and \yn\ < M2\f(n)\, then

|x„ — yn| < |x*| + \yn\ < (Mi + M2)\f(n)\. (Signed, J. H. Quick, student.)

3. n(ln n) + Tn + 0(Vn In n).

4. In a-j- (In a)2/2n+ (In a)3/6n2 + 0(n~z).

5. (a) Take M = |co|/rm + |ci|/rm_1 + • • • + \cm\. (Cf. the text following Eq. (3).)

(b) Disproof: Let P(x) = 1, m = 1; then |l| > Mx when x < 1 /M] the condition

therefore fails for all choices of M.

6. A variable number, n, of O-symbols has been replaced by a single O-symbol,

falsely implying that a single value of M will suffice for each term \kn\ < Mn. The

given sum is actually 0(n3), as we know. The last equality, O(n) = 0(n2),

is perfectly valid.

7. If x is positive, the power series tells us ex > xm+1/(m-{- 1)!, hence the ratio

of ex/xm is unbounded by any M.

8. Replace n by en and apply the previous exercise.

9. If |/(x)| < M\x\m,e«x)< eM^m = 1+ \x\m(M+ M2\x\m/2\+ ilf3|x|2m/3H-) <

l+\x\m(M+ M2rm/ 2! + Msr2m/3 H-).

10. “If/(x) = 0(xm), |x| < r, there exists a positive number r' such that In (l +/(x)) =

0(xm), |*| < r'.” Proof. Take r', r" such that |/(*)| < r" < 1 when |*| < r'. Then

I In (1+/(*)) | < |/(x)| + i|/(x)|2 + i|/(*)|3+--. < |*|milf (1 -j- \r" + \r"2 +•••)•

11. Apply Eq. (11) with m = 1, x = In n/n. This is justified since In n/n remains

bounded by some positive value r (it approaches zero for large n).

SECTION 1.2.11.2

1. x = (Bo + Rix -f- B2x2/2\ -f- • • •)ex — (Bo + Bix + B2x2/2\ + • • •); apply
Eq. 1.2.9-11.

2. The function Rm+i({*}) must be continuous, for the integration by parts.

1.2.11.3
ANSWERS TO EXERCISES 499

"IT
m+1 Bk ml

0< fc<n m i<?<mk'- (»»-*+!)!
n

m—k -f-1

m + 1

5. It follows that

Bm+i(n) — j - Rm+1
m-\~ 1

„ = V2limj>!>2.

n-»00 v/n(2n)!

k2 = Um 2 n (n - 1) • • • (l)2 = 2-2-4-4-

» (n — |)2(n — 3)2 . . . (i)2 4 1-3-3-5- = 2ir.

6. Assume c > 0 and consider <k<n In{k + c). We find

In (c(c + 1) • • • (c + n 1)) = (n + c) In (n + c) — c In c — n — \ In {n + c) -f- o ln 1

E
l<&<ra

Bk(-if

k(k - 1)

Also

In (n — 1)! = (n — §) ln n — n + cr + ^

1 <k<m

Bk{-l)k

k(k - 1)

((n+c)*-i

(-L')-l f
\n* V m Jn

Bm{{x}) dx

Now ln r„_i(c) — c ln (n 1) -f- In (n — 1)! — ln (c ■ • • (c-f- n — 1)); substituting
and letting n —* °o (we get

ln T(c) = —c + (c — J) ln c + a +
y' _Bk(—l)k

(- i)^-1

J_ f Bm({x}) dx

mj o (x+ c)m

This shows that T(c + 1) = celnr(c) has the same expansion we derived for cl.

7. A ■ nn2,2+n/2 + 1,12e~n2,4: where A is a constant. (It is “Glaisher’s constant”

1.2824271. ..) To obtain this result, apply Euler’s summation formula to ^2i<k<nk In k.

A more accurate formula is obtained if we multiply the above answer by

exp (—£4/2 • 3 • 4n2-B2t/(2t - 2)(21 - \){2t)n2t~2 + 0(\/n2t)).

This formula makes it possible to calculate Glaisher’s constant to six decimal places
if we let t — 3, n = 4.

SECTION 1.2.11.3

1. Integrate by parts.

2. Substitute the series for e~l in the integral.

3. Sec Eq. 1.2.9-11 and exercise 1.2.6-48.

4. 1 —f- 1/m is bounded as a function of v, since it goes to zero as v goes from r to

infinity. Replace it by M and the resulting integral is Me~rx.

500 ANSWERS TO EXERCISES 1.2.11.3

- /"(*) = - &L-J1+ i)

has constant sign for 0 < x < n — 1, so |f?| < 1)1 Ti>/n-i|/ (x)l ^x-

6. It is n"+pexp ((n + fi)(a/n — a2/2n2 + 0(ti~3)), etc.

7. The integrand as a poweiseries in x~x has the coefficient of x~n as 0(u2n). After

integration, terms in a;"3 are Cu7/x3 = 0(x~5/4), etc. To get 0(x~2) in the answer,

we can discard terms un/xm with 4m — n > 9 (cf. next exercise). Thus expanding

exp (—u2/2x) exp (R3/3a:2) . . . leads ultimately to the answer

8. The integrand can be expanded into terms of the form cmnum/xn.^ These terms

integrate into 0(z(m+1)r-n). [Note that if r > \ the series for e~“2/2j; integrates

into series that diverge for large x, hence we would use another approach.] Multi¬

plying two terms (umi/xni)(um2/xn2), if (mi -j- l)r — n\ < —s, we have

(mi + m2 + l)r — (ni + 712) = (mi + l)p — wi + (m2 + l)r — 712 — r
< — s + r — r = — s.

Therefore we may expand exp (—u2/2x) exp (u3/3x2) . . . and discard all terms with

(m + l)r — n < —s before multiplying together the factors; and all terms

exp ((—1)p~1up/pxp~1) with (p+ l)r — p-f- 1 < —s may be suppressed, i.e. those

with p > T(s+ 2r)/(l — r)”|.

9. We may assume p ^ 1, since p = 1 is given by Theorem A. We also assume

p 9^ 0 since that case is trivial.

Case 1. p < 1. Substitute t = px(1 — u) and then v = —In (1 — u) — pu.

We have dv = ((1 — p + pu)/(1 — u)) du, so the transformation is monotone for

0 < u < 1, and we obtain an integral of the form

f xe~XV dv ~\ ■
Jo \1 — P+ pu)

The parenthesized quantity is

1

1 -

The answer is therefore

ivrp (1 - i/(p - i)2* + o(l-2)).

Case 2. p > 1. This is 1 — fpX(). In the latter integral, substitute t =

px(1 + u), then v = pu — In (1 + u), and proceed as in Case 1. The answer turns

out to be the same formula as Case 1, plus one. Note that pe1_p < 1 so (pel~p)x
is very small.

(X (l-p)2+"‘)

1.3.1 ANSWERS TO EXERCISES 501

10. (^-Ve-V (l - e-« - e~-V;Jl17g2/2) + OOi)

11. First, xQx(n) + Ri/X(n) = n\(x/n)nen,x. (The case x = —1 is interesting here!)
We get

Qx(n) =

Rx{n) =

1 — x (1 — x)3n
0(n~2),

0(n 2), if x < 1;
1 — x (1 — x)3n

Qx(n) = - n\ (-Ye"*-+ --I
x \n/ x — 1 (x —

Rx{n) = nl en

l)3n

x — 1 (x — l)3n

0(n~2),

0(n 2), if x > 1.

These formulas are quite easily verified when \x\ <1, and the relation between Qx{ri)

and Ri/X(ri) extends this to \x\ > 1. The case x = —1 remains; this requires more

delicate maneuverings with limits. For further details about the asymptotic expansion,

and its connection with Stirling numbers of the second kind, see L. Carlitz, Proc. Amer.

Math. Soc. 16 (1965), 248-252.

12. 7(lix2)/\/2.

15. Expanding the integrand by the binomial theorem, we find the integral is 1 + Q(n).

16. Write Q(k) as a sum, and interchange order of summation using Eq. 1.2.6-49.

17. S(n) = vVn/2 + § — ^Vir/2n — + TITr2vV/2n3 + 0(n~2). [Note

that <S(n-)- 1) + P(n) = X^>o kn~kk\/n\, while Q(n) + R{n) = ^k>o n\/k\nn~k.]

SECTION 1.3.1

1. Four; each byte would then contain 34 = 81 different values.

2. Five, since five bytes is always adequate but four is not.

3. (0:2); (3:3); (4:4); (5:5).

4. Presumably index register 4 contains a value greater than or equal to 2000, so

that after indexing a valid memory address results.

5. “DIV -80,3(0:5)” or simply “DIV -80,3”

6. (a) Sets rA to - 5 1 200
1

15 (b) Sets rI2 to —200. (c) Sets rX to

+ 0 0 5 1 ? (d) Undefined, since we can’t load such a big value into an

index register, (e) Sets rX to - 0 0 0 0 0

7. Let the magnitude |rAX| before the operation be n, and let the magnitude of V

be d. After the operation the magnitude of rA is \ n/d], and the magnitude of rX is

n mod d. The sign of rX afterwards is the previous sign of rA; the sign of rA after¬

wards is + if the previous signs of rA and V were the same, and it is — otherwise.

502 ANSWERS TO EXERCISES 1.3.1

+ 0 617
i_

0 1 ; rX 4— - 0 0 0 1 1

9. ADD, SUB, DIV, NUM, JOV, JNOV, INCA, DECA, INCX, DECX.

10. CMPA, CMP1, CMP2, CMP3, CMP4, CMP5, CMP6, CMPX. (Also FCMP, floating point.)

11. MOVE, LD1, LD1N, INC1, DEC1, ENT1, ENN1.

12. INC3 0.3.

13. “JOV 1000” makes no difference except time. “JNOV 1001” makes a different
setting of rJ in most cases. “JNOV 1000” makes an extraordinary difference, since it

may lock the computer in an infinite loop.

14. NOP with anything; ADD, SUB with F = (0:0) or with address equal to * (the
location of the instruction) and F = (3:3); HLT (depending on how you interpret the
statement of the exercise); any shift with address and index zero; MOVE with F = 0;
JSJ*+1; any of the INC or DEC instructions with address and index zero; ENTi 0,i for
1 < i < 6; SLC or SRC with address a multiple of 10.

15. 70; 80; 120. (record size times 5)

16. (a) STZ 0; ENTI 1; MOVE 0(49): MOVE 0(50). If the byte size were known to
equal 100, only one MOVE instruction would have been necessary,
allowed to make assumptions about the byte size. (b) Use 100 STZ’s

17. (a) STZ 0,2 (b) STZ 0
DEC2 1 ENTI 1
J2NN 3000 JMP 3004

(3003) MOVE 0(63)
(3004) DEC2 63

J2NN 3003
INC2 63
ST2 3008(4:4)

(3008) MOVE 0

(Using assembly language, a slightly faster program
which uses “bytesize minus 1” instead of 63 could be
written; see the following section.)

18. (If you have correctly followed the instructions, an overflow will occur on the
ADD, with minus zero in register A afterward.) Answer: Overflow is set on, comparison

is set EQUAL, rA is set to - 30 30 30 30 30 , rX is set to - 31 30 30 30 30

rll is set to +3, and memory locations 0001, 0002 are set to zero.

19. 24m — (2+l + 2+ 2+ l+ l+ l-f‘2+2+l-t-2+2+3-|-l + l)tt.

20. (Solution by H. Fukuoka)

(3991) ENTI
MOVE

0
3995 (standard F for MOVE is 1)

(3993) MOVE
JMP

0(43)
3993

(3999 = 93 times 43)

(3995) HLT 0 >, ■

21. (a) Not unless i t can be set to zero by external means (see the “GO-button”
exercise 26), since a program can set rJ <— N only by'jumping from location N — 1.

1.3.1 ANSWERS TO EXERCISES 503

(b) LDA -1,4

LDX 3004

STX -1,4

JMP -1,4

(3004) JMP 3005

(3005) STA -1,4

22. Minimum time: If b is the byte size, the assumption that |X13| < b5 implies that

X2 < b, so X2 can be contained in one byte. The following ingenious solution due to
Y. N. Patt makes use of this fact.

(3000)

(3500)

(3501)

LDA 2000

MUL 2000(1:5)

STX 3500(1:1) ,

SRC 1

MUL 3500

STA 3501

ADD 2000

MUL 3501(1:5)

STX 3501

MUL 3501(1:5)

SLAX 1

HLT 0

NOP 0

NOP 0

rA rX

X2 0 0 0 0 0 0 0 0 0

X4 0 0 0 0 0 0 0 0

X4 0 0 0 0 0 0 0 0

X4 0 0 X 0 0 0 0 0

X8 0 X5 0 0 0

X8 0 X5 0 0 0

0 X13 0 0 0 0

X13 0 0 0 0 0

ipace = 14; time - 54it.

At least five multiplications are “necessary,” according to the theory developed in

Section 4.6.3, yet this program uses only four! And in fact there is an even better

solution on the following page.

Minimum space:

(3000) ENT4 12

LDA 2000

(3002) MUL 2000

SLAX 5

DEC4 1

J4P 3002

HLT 0

space — 7; time = 171w.

504 ANSWERS TO EXERCISES 1.3.1

True minimum time: As R. W. Floyd points out, the conditions imply |X| < 6, so the

minimum execution time is achieved by referring to a table:

(3000) LD1 2000

LDA 3500,1

HLT 0

(3494) (-6)13
(3495) (-5)13

(3506) (+6)13

space = 16, time = 4u.

23. The following solution by R. D. Dixon appears to satisfy all the conditions:

(3000) ENT1 4

(3001) LDA 200

SRA 0.1

SRAX 1

DEC1 1

JINN 3001

SLAX 5

HLT 0 I

24. (a) DIV 3500, where 3500

(b) SRC 4; SRA 1; SLC 5.

+ 1 0 0 0 0

25. Some ideas: (a) Obvious things like faster memory, more inpuCoutput devices.

(b) The I field could be used for J-register indexing, and/or multiple indexing (specify

two different index registers), and/or “indirect addressing” (exercises 2.2.2-3, 4, 5).

(c) Index registers and J register can be extended to a full five bytes; this means

locations with higher addresses can be referred to only by indexing, but this is not so

intolerable if multiple indexing is available as in (b). (d) An interrupt capability can

be added (when certain conditions occur, all registers are stored in special locations—

say locations —1, —2, . . .—and a jump is made to a control program which later

restarts the original program by using a new operation code, see exercise 1.4.4-18).

(e) A “real time clock” could be added, in a negative memory address, (f) “Logical

operations” could be added to binary versions of MIX (see exercise 2.5-28 and Chap¬

ter 7). (g) An “execute” command, meaning to perform the instruction at location M,

could be another variant of C = 5. (h) Another variant of C = 48, . . . , 55 could set
Cl register :M.

26. The following routine is the shortest found so far for which the transfer card does

not depend on the byte size. It is tempting to use a (2:5) field to get at cols. 7-10 of

the card, but this cannot be done since 2 • 8 -j- 5 = 21. Since this routine requires
only 28 instructions, it can be adapted for paper tape.

To make the program easier to follow, it is presented here in symbolic language,
anticipating the following section of the text.

lhe transfer card has the format TRANSOnnnn in columns 1-10, where nnnn is
the place to jump to start execution.

1.3.2
ANSWERS TO EXERCISES 505

BUFF
characters

EQU 28 Buffer area is 28-43 punched on card:
ORIG 0

00 TEMPI IN 16(16) Read in second card. 0 06
01 READ IN BUFF(16) Read next card. Y 06
02 LD1 0(0:0) [ENT1 0] I
08 ENTA 0 B=
04 JBUS *(16) Wait for read to finish D 04
05 LD2N BUFF+1(1:1) — (count + 30) Z IQ
06 STZ BUFF+1(1:1) Clear (1:1) so (2:5) Z 13
07 LDX BUFF+1 can be used. Z EN
08 TEMP NUM 0 E
09 STA TEMPI Starting location EU
10 ENTA 30,2 — count 0BB=
11 LOOP STA TEMP(1:1) H IU
12 LD3 TEMPI EJ
13 JAZ 0,3 Transfer card CA.
14 ENTA 1.3 Increase TEMPI. ACB=
15 STA TEMPI EU

16 LDA BUFF+3,1(5:5) 1A-H
17 DECA 25 V A=
18 STA 0,3 Store sign. CEU
19 LDA BUFF+2,1 0AEH
20 LDX BUFF+3,1 1AEN
21 NUM E
22 STA 0,3(1:5) Store magnitude. CLU
23 MOVE 0,1(2) [INC1 2!] ABG
24 LDA TEMP(1:1) H IH
25 DECA 1 Decrease count. A A=
26 JAP LOOP J B.
27 JMP READ Ready for new card A 9

SECTION 1.3.2

1. ENTX 1000; STX X.

2. The STJ instruction in line 03 resets this address. (It is conventional to denote

the address of such instructions by both because it is simple to write, and because

it provides a recognizable test of an error condition in a program, where a subroutine

has not been entered properly because of some oversight. Some people prefer

3. Read in 100 words from tape unit zero; exchange the maximum of these with the

last one; exchange the maximum of the remaining 99 with the last of those; etc.

Eventually the 100 words will become completely sorted into ascending sequence and

the result is then written onto tape unit one.

506 ANSWERS TO EXERCISES

4. Nonzero locations:

3000: + 0000
1

00 18 35

3001: + ; 2051 00 05 09

3002: + 2050
|

00 Q5 10

3003: + 0001
1

00 00 49

3004: + 0499 01 05 26

3005: +

|

3016 00 01 41

3006: +

|

0002 00 00 50

3007: +

|

0002 00 02 51

3008: +

|

0000
1

00 02 48

3009: + oo'oo
1

02 02 55

3010: - oo'oi 03 05 04

3011: + 3006
1

00 01 47

3012: - oo’oi
1

03 05 56

3013: + 0001 00 00 51

3014: +

1

3008 00 06 39

3015: + 3003 00 00 39

3016: +

|

1995 00 18 37

3017: +

|

2035
1

00 02 52

3018: - 0050
|

00 02 53

3019: + 0501 00 00 53

3020: -
1

0001
1

05 05 08

1.3.2

3021: + 0000 00 01 05

3022: +

1

oo'oo 04 12 31

3023: +

.j_

oo'oi
:

00 01 52

3024: + 0050 00 01 53

3025: +

1

3020 00 02 45

3026: +

|

oo'oo 04 18 37

3027: +

1

0024 04 05 12

3028: +

|

3019 00 00 45

3029: +

I

oo'oo 00 02 05

0000: + 2

1995: + 06 09 19 22 23

1996: + 00 06 09 25 05

1997: + 00 08 24 15 04

1998: + 19 05 04 00 17

1999: + 19 09 14 05 22

2024: + 20
_

35

2049: +
i i i i

2010
l | i i

2050: +
1 1 1 1

3
i i i l

2051: -
1 1 1 1

499
_i_i_i__i_

(the latter two may be interchanged, with

corresponding changes to 3001 and 3002)

5. Each OUT waits for the previous printer operation to finish (from the other buffer).

6. (a) If n is not prime, by definition n has a divisor d with 1 < d < n. If d > Vn,

n/d is a divisor with 1 < n/d < Vn. (b) If N is not prime, N has a prime divisor d

with 1 < d < Vn. The algorithm has verified that N has no prime divisors < p =

PRIME[K]; also N = pQ+R<pQ-t-p<P2+P< (p + l)2. Any prime divisor of
N is therefore > p + 1 > VN.

We must also prove that there will be a sufficiently large prime less than N when

N is prime, i.e., that the {k + l)st prime pk+\ is less than p2 + pk. This follows from

“Bertrand’s postulate”: if p is prime there is a larger prime less than 2p.

7. (a) It refers to the location of line 29. (b) The program would then fail; line 14

would refer to line 15 instead of line 25; line 24 would refer to line 15 instead of line 12.

8. Prints 100 lines. If the 12000 characters on these lines were arranged end to end,

they would reach quite far and would consist of five blanks followed by five A’s

1.3.2 ANSWERS TO EXERCISES 507

followed by ten blanks followed by five A’s followed by fifteen blanks . . . followed by

5k blanks followed by five A’s followed by 5(k + 1) blanks . . . until 12000 characters

have been printed. The second-last line ends with AAAAA and 35 blanks; the final line

is all blank. The total effect is one of OP art, as in OP-code.

9. In the table, the (4:4) field is the maximum F setting; (1:2) is the location of a
checking routine.

B EQU 1(4:4) BEGIN LDA INST
BMAX EQU B-l CMPA VALID(3:3)
TABLE NOP GOOD(BMAX) JG BAD I field > 6?

ADD FLOAT(5:5) LD1 INST(5:5)
SUB FLOAT(5:5) DEC1 64 C field > 64?
MUL FLOAT(5:5) JINN BAD
DIV FL0AT(5:5) CMPA TABLE+64,1(4:4) F field > F max?
HLT GOOD JG BAD
SRC GOOD LD1 TABLE+64,1(1:2) Jump to special
MOVE MEMORY(BMAX) JMP 0,1 routine.
LDA FIELD(5:5) FLOAT CMPA VALID(4:4) F = 6 allowed on
LD1 FIELD(5:5) JE GOOD arithmetic op

FIELD ENTA 0
STZ FIELD(5:5) LDX INST(4:4) This is a tricky
JBUS MEMORY(19) DIV =9= way to check
IOC GOOD(19) STX *+1(0:2) for a valid
IN MEMORY(19) INCA 0 partial field.
OUT MEMORY(19) CMPA =5=

JRED MEMORY(19) JG BAD

JLE MEMORY MEMORY LDX INST(3:3)

JANP MEMORY JXNZ GOOD If I = 0,

LDX INST(0:2) ensure the
JXNP MEMORY JXN BAD address is a
ENNA GOOD CMPX =3999= valid memory

JLE GOOD location.
ENNX GOOD JMP BAD

CMPA FLOAT(5:5) VALID CMPX 3999,6(6) 1
CMP1 FIELD(5:5)

CMPX FIELD(5:5)

10. The catch to this problem is that there may be several places in a row (column)

where the minimum (maximum) occurs, and each is a potential saddle point.

Solution 1: In this solution we make a list of all columns in which the row mini¬

mum occurs, then check for a column maximum for each column in the list.

rX = current max or min; rll traces through the matrix (goes from 72 down to zero

unless a saddle point is found); rI2 = column index of rll; rI3 = size of list of

minima. Notice that in all cases the terminating condition for a loop

index register is <0.

* SOLUTION 1

A10 EQU 1008

LIST EQU 1000

START ENT1 72 Begin at lower right column.

ROWMIN ENT2 8 Now rll is at 8th column of row.

2H LDX A10.1 Candidate for row minimum

ENT3 0 List empty

508 ANSWERS TO EXERCISES 1-3.2

4H INC3 1

ST2 LIST.3 Put column index in list.

1H DEC1 1 Go left one.

DEC2 1
t J2Z COLMAX Done with row?

3H CMPX . A10.1

JL IB Is rX still minimum?

JG 2B New minimum?

JMP 4B Another appearance of minimum.

COLMAX LD2 LIST.3 Get column from list.

INC2 64

1H CMPX A10.2

JL NO Is row min < col element?

DEC2 8

J2P IB Done with column?

YES INC1 AlO+8,2 Yes; rll <— address of saddle.

HLT

NO DEC3 1 Is list empty?

J3P COLMAX No; try again.

J1P ROWMIN Have all rows been tried?

HLT Yes; rll = 0, no saddle. |

Solution 2: The introduction of Mathematics gives a different algorithm.

Theorem. Let R(i) = miny a,y, C(j) = max* ayy. The element a,o;o is a saddle point

if and only if R(io) = max* R(i) — C(jo) = minjC{j).

Proof: If ai0j0 is a saddle point, then for any fixed i, R(jo) = C(jo) > ayy0 > R(i);

so R(io) = max,- R(i). Similarly C(jo) = miny (?(/). Conversely, assuming the given

condition, R(io) < «i0io ^ C(jo) = R(io) implies ay0y0 = so we have a saddle
point. |

(It may be of interest to note that we always have the inequality

max* miny ayy = miny o»0y < miny max,- a,y, for some to;

so there is no saddle point iff max R(i) < min C(j), i.e. all the R’s are less than all
the C’s.)

A program based on this theorem finds the smallest column maximum and then

searches for an equal row minimum. (Phase 1: rll is col index; rl2 runs through matrix.

Phase 2: rll is possible answer; rI2 runs through matrix; rI3 is row index; rI4 is column
index.)

* SOLUTION 2

A10 EQU 1008
CMAX EQU 1000
PHASE1 ENT1 8 Start at column 8.
3H ENT2 64.1 *

JMP 2F
1H CMPX A10.2 rX still minimum?

JGE *+2

1.3.2 ANSWERS TO EXERCISES 509

2H LDX A10.2 New maximum in column
DEC2 8

J2P IB

STX CMAX+8,2 Store column maximum.
J2Z IF First time?
CMPA A10.2 rA still min max?
JLE *+2

1H LDA A10.2

DEC1 1 Move left a column.

J1P 3B

PHASE2 ENT3 64 At this point rA = min C(j)
3H ENT2 8.3 Prepare to search a row.

ENT4 8
1H CMPA A10.2 Is a[i,j) > min CO')?

JG NO No saddle in this row
JL 2F

CMPA CMAX.4 a[i,j] = C(j)?
JNE 2F

ENT1 A10.2 Possible saddle point
2H DEC4 1 Move left in row.

DEC2 1

J4P IB

HLT Saddle point found
NO DEC3 8

ENT1 0 Try another row.
J3P 3B

HLT rll = 0; no saddle. |

We leave it to the reader to invent a still better solution in which “Phase 1 ” records

all possible rows which are candidates for the row search in “Phase 2”. It is not neces¬

sary to search all rows, just those io for which there exists jo with a;0J0 = C(jo) =

min_,- C(j). Usually this is only one row.

In some trial runs with elements selected at random from {0,1,2,3,4}, solution 1

required approximately 730u to run, while solution 2 took about 540m. Given a matrix

of all zeroes, solution 1 found a saddle point in 137m, solution 2 in 524m.

11. Assume an m X n matrix, (a) By the theorem in the answer to exercise 10, all

saddle points of a matrix have the same value, so (under our assumption of distinct

elements) there is at most one saddle point. By symmetry the desired probability is mn

times the probability that an is a saddle point. This latter is 1 /{mn)! times the number

of permutations with a\2 > an, , a\n > an, an > 021, . . . , an > ami; this is

1/(to -f- n — 1)1 times the number of permutations of m + n — 1 elements in which

the first is greater than the next (m — 1) and less than the remaining (n — 1), namely

(m — 1) !(n — 1)!. The answer is therefore

mn(m — l)!(w — l)!/(wi+ n — 1)! = (m+ n)

In our case this is 17/(1/), only one chance in 1430. (b) Under the second assumption,

an entirely different method must be used since there can be multiple saddle points;

in fact either a whole row or whole column must consist entirely of saddle points. The

510 ANSWERS TO EXERCISES 1.3.2

probability equals the probability that there is a saddle point with value zero plus

the probability that there is a saddle point with value one. The former is the prob¬

ability that there is at least one column of zeroes; the latter is the probability that

there is at least one row of ones. The answer is (l — (1 — 2~m)n) + (l — (1 — 2-")m) ;

in our case, 924744796234036231/18446744073709551616, about 1 in 19.9. An approxi¬

mate answer is n2~m-|- m2~%.

13. *CRYPTANALYST PROBLEM (CLASSIFIED)

UNIT EQU 19 Input unit number

SIZE EQU 14 Input block size

TABLE EQU 1000 Table of counts

ORIG TABLE (initially zero

CON -1 except entries for

ORIG TABLE+46 blank space and

CON -1 asterisk)

ORIG 2000

BUF1 ORIG *+SIZE First buffer area

CON -1 “Sentinel” at end of buffer

CON *+l Each buffer refers to other

BUF2 ORIG *+SIZE Second buffer

CON -1 “Sentinel”

CON BUF1 Reference to first buffer

BEGIN IN BUF1(UNIT) Input first block.
ENT6 BUF2

1H IN 0,6(UNIT) Input next block.

LD6 SIZE+1,6 During this input, prepare

ENT5 0,6 to process previous one.
2H LDX 0,5 Five chars —> rX.

JXN IB End of block?
1H SLAX 1

STA *+1(2:2) Next char —> rll. main
ENT1 0 loop,
LDA TABLE,1 should
JAN 2F Is character special? •run as
INCA 1 Update table entry. fast as
STA TABLE,1 possible

1H JXP IB Any non-blanks in rX?
INC5 1

JMP 2B

2H J1Z IB Skip over a blank.
ENT1 1 Asterisk detected.

2H LDA TABLE,1

JANP IF Skip zero answers.
CHAR Convert to decimal.
JBUS *(19) Wait for typewriter complete.
ST1 CHAR(1:1)

STA CHAR(4:5)

1.3.2 ANSWERS TO EXERCISES 511

STX FREQ

OUT ANS(19)
1H CMP1 =60=

INC1 1

JL 2B

HLT

ANS ALF

ALF

CHAR ALF C NN

FREQ ALF NNNNN

ORIG ANS+14

END BEGIN

Type one answer.

Up to 60 character

codes counted

Output buffer

Rest of buffer is blank

Literal constant =60= here. I
For this problem, buffering of output is not desirable since it could save at most 7u

of time per line output, and this is quite insignificant compared to the time required

to output the line itself. For information about letter frequencies, see Charles P.

Bourne and Donald F. Ford, “A study of the statistics of letters in English words,”

Information and Control 4 (1961), 48-67.

14. To make the problem more challenging, the following solution uses as much

trickery as possible, in order to reduce execution time. Can the reader squeeze out any

more microseconds?

*DATE OF EASTER

STJ EASTX

STX Y

ENTA 0 El.

DIV =19=

INCX 1

STX G(0:2)

LDA Y E2.

MUL =1//100+1= (see

INCA 1 below)

STA C(l:4)

MUL =3//4+1= E3.

STA XPLUS12(0:2)

LDA =8(1:1)=

MUL C rA = 8 C

INCA 680 680 = 5 + 27 • 25

MUL =l//25+l= rA = Z + 32

DECA 0

STA 1F(0:2) Z + 20 - X

LDA Y E4.

MUL =1//4+1=
ADD Y

SUB XPLUS12(0:2)

INCA 5

STA DPLUS3

ENTA 0 E5.

512

\

ANSWERS TO EXERCISES

MUL =11=

1H INCX 0

DIV =30=

JXNN *+2 see exercise 15

INCX 30

CI^PX =24=

JE IF

CMPX =25=

JNE 2F

LDA G(0:2)

DECA 11

JANP 2F

1H INCX 1

2H DECX 20 E6. (24 — N)

CMPX =3=

JLE *+2

DECX 30

STX N(0:2)

LDAN N(0:2) E7.
ADD DPLUS3

SRAX 5

DIV =7=

SLAX 5

N INCA 0 C
O

I—

4 1

JANN IF ES.
CHAR

LDA APRIL

JMP 2F
1H DECA 31

CHAR

LDA MARCH
2H JBUS *(18)

STA MONTH

STX DAY(1:2)
LDA Y 1

CHAR

STX YEAR

OUT ANS(18) Print
EASTX JMP *

MARCH ALF MARCH
APRIL ALF APRIL
ANS ALF

DAY ALF DD
MONTH ALF MMMMM

ALF »

YEAR ALF YYYYY
ORIG *+20

C CON 0 C times byte size

1.3.2

1.3.2 ANSWERS TO EXERCISES 513

BEGIN LDX =1950= “driver”
JMP EASTER routine,
LDX Y uses the
INCX 1 above
CMPX =2000= subroutine
JLE EASTER+1

HLT

END BEGIN 1

A rigorous justification for the change from division to multiplication in several places

can be based on the fact that the number in rA is not too large. (Cf. Chapter 12.)

The program works with all byte sizes.

16. Work with scaled numbers, Rn = 10"r„. Rn(l/m) = R iff \0n/(R + i) <
m < 10n/(R - ■); thus we find rrih = L2 • ion/(2ie - i)J.

*SUM OF HARMONIC SERIES

BUF 0RIG *+24

START ENT2 0
ENT1 3 [5 — n]

ENTA 20
OUTER MUL =10=

STX CONST [2 • 10”]
DIV =2=
ENTX 2
JMP IF

INNER STA R

ADD R

DECA 1

STA TEMP [2R - 1]
LDX CONST

ENTA 0
DIV TEMP

INCA 1

STA TEMP [mh + 1]

SUB M

MUL R

SLAX 5

ADD S

LDX TEMP

1H STA S Partial sum

STX M

LDA M

ADD M

STA TEMP

LDA CONST

ADD M Compute

SRAX 5 L(2 • 10” + m)/2m_|.

DIV TEMP

514 ANSWERS TO EXERCISES 1.3.2

JAP INNER R > 0?

LDA S Answer

CHAR

SLAX 0,1 Neat formatting
4 SLA 1

I{ICA 40 Decimal point

STA BUF, 2

STX BUF+1,2

INC2 3

DEC1 1

LDA CONST

JINN OUTER

OUT BUF(18)

HLT

END START 1
The output is

0006.16 0008, .449 0010.7509

in 65595r plus output time.

0013.05362

18. FAREY STJ 9F

STZ X

ENTX 1

STX Y

STX X+l

ST1 Y+l

ENT2 2

1H LDX Y-2,2

INCX 0,1

ENTA 0

DIV Y-1,2

STA TEMP

MUL Y-l,2

SLAX 5

SUB Y-2,2

STA Y,2

LDA TEMP

MUL X-1,2

SLAX 5

SUB X-2,2

STA X,2

CMPA Y,2

INC2 1

JL IB

9H JMP *

Assume rll contains n, where n > 1

xo <— 0.

yo <- 1.

xi *— 1.
V i <- n.
k <— 2.

l(yk-2 + n)/yk- lj

yk

xk

Test if Xk < yk.

k 4— k + 1.
If so, continue.

Exit from subroutine. |

19. (a) Induction, (b) Let k > 0 and let the righthand side of (*) be denoted by

X,Y. By part (a) we have gcd (X, 7) = 1 and X/Y > xk+i/yk+i. So if

X/Y ^ Xk+2/yk+2,

1.3.2 ANSWERS TO EXERCISES 515

we have, by definition, X/Y > xk+2/yk+2- But this implies that

1 _ Xyk+i — Yxk+i _ X Xk-i-i

Yyic+i Yyk+i Y yk+1

_ fx _ Xfc+A /Xk-1-2 _ Zfc+l\ ^ 1 1

\B yk+2/ \yk+2 yk+ij ~ Yyk+2 yk+iyk+2

_ Y + yk+1 n > 1

Yyk+iyk+2 Yyk+iyk+2 ~ Yyk+1

For more of the interesting properties of the Farey series, and its history, see G. H.

Hardy and E. M. Wright, The Theory of Numbers, Oxford, Chapter 3.

20. *TRAFFIC SIGNAL PROBLEM

BSIZE EQU 1(4:4) Bytesize

2BSIZE EQU 2(4:4) Twice bytesize

DELAY STJ IF If rA contains n,

DECA 6 this subroutine

DECA 2 waits max (n, 7)u

JAP *-l exactly, not including

JAN *+2 the jump

NOP to the subroutine

1H JMP *

FLASH STJ 2F 4 This subroutine

ENT2 8 5 flashes the

LDA =49991= 7 appropriate DON' T

1H JMP DELAY 8 WALK light

DECX 0.1 9 Turn light off.

LDA =49996= 2

JMP DELAY 3

INCX 0.1 4 “DON'T WALK”

DEC2 1 1

J2Z IF 2 Repeat eight times.

LDA =49993= 4

JMP IB 5

1H LDA =399992= Set amber 2u after exit.

JMP DELAY 5

2H JMP * 6

WAIT JNOV * Del Mar green until tripped

TRIP INCX BSIZE DON'T WALK on Del Mar

ENT1 2BSIZE

JMP FLASH

LDX BAMBER Amber on boulevard

LDA =799995=

JMP DELAY 3 Wait 8 seconds

LDX AGREEN 5 Green for avenue

LDA =799996=

JMP DELAY Wait 8 seconds.

INCX 1 DON' T WALK on Berk’ly

516 ANSWERS TO EXERCISES 1.3.2

ENT1 2

JMP FLASH Do flash cycle.

LDX AAMBER Amber on avenue

JOV *+l Cancel redundant trip.

LDA =499994=

JMP D^LAY Wait 5 seconds.

BEGIN LDX BGREEN Green on boulevard

LDA =1799994=

JMP DELAY Wait at least 18

JMP WAIT seconds.

AGREEN ALF CABA Green for avenue

AAMBER ALF CBBB Amber for avenue

BGREEN ALF ACAB Green for boulevard

BAMBER ALF BCBB Amber for boulevard

END BEGIN 1

22. *JOSEPHUS PROBLEM

EQU 24

EQU 11

ORIG *+N

ENT1 N-l 1 Set each cell to
STZ X+N-l 1 number of next man
ST1 X-1,1 N - 1 in the sequence.
DEC1 1 N - 1
J1P *-2 N - 1
ENTA 1 1 (now rll =0)
ENT2 M-2 N - 1 (assume M > 2)
LD1 X.l (M -2)(N — 1) Count around
DEC2 1 (M - 2) (N - 1) the circle.
J2P *-2 (M -2){N - 1)
LD2 X.l N - 1 rll = lucky man
LD3 X, 2 N - 1 rI2 = doomed man
CHAR N — 1 rI3 = next man
STX X,2(4:5) N - 1 Store execution number.
NUM N - 1
INCA 1 N - 1
ST3 X.l N - 1 Take man from circle.
ENT1 0,3 N - 1
CMPA =N= N - 1
JL IB N - 1
CHAR 1 One man left
STX X,1(4:5) 1 (he is clobbered too).
OUT X(18) 1 Print answer.
HLT 1
END OB 1

The last man is in position 15. The total time before output is (4(AT — 1)(M + 3)+

7)u. Several improvements are possible, e.g. D. Ingalls’s suggestion to have three-

word packets of code “DEC2 1; J2P NEXT; JMP OUT”, where OUT modifies the NEXT
field so as to delete a packet.

1.3.3
ANSWERS TO EXERCISES 517

SECTION 1.3.3

1. (1 2 4)(3 6 5).

2. a <-» c, c <-»■ /; b d. The generalization to arbitrary permutations is clear.

C abode

d b f c a

4. (a d c f e).

5. 12. (Cf. exercise 20.)

6. The total time is increased by 4u for every blank word with the preceding non¬

blank word a plus 5u for every blank word with the preceding nonblank word a

name. Initial blanks and blanks between cycles do not affect the execution time. The

position of blanks has no effect whatever on Program B.

7. X = 2, Y = 29, M = 5, N = 7, U = 3, V = 1. Total, by Eq. (18), 2165r.

8. Yes; we would then keep the inverse of the permutation, i.e. Xi goes to xj iff T[j] = i.

(The final cycle form would then be constructed from the T table from right to left.)

9. No. For example, given (6) as input, Program A will produce “ (ADG) (CEB) ”

as output, while Program B produces “(CEB) (DGA)”. The answers are equivalent but

not identical, due to the non-uniqueness of the cycle notation. The first element

chosen for a cycle is the (a) leftmost available name, or (b) last available distinct

name to be encountered from right to left, with Program A or B, respectively.

10. (1) Kirchhoff’s law yields A = 1 C — D; B = A-\-J-\-P — 1; C —

B (P L); E = D — L; G — E) Q = Z; W = S. (2) Interpretations: B =

number of words of input = 16X — 1; C — number of nonblank words = F;

D = C — M; E = D — M; F = number of comparisons in names table search;

H = N; K = M; Q = N; R = U; S = R — V; T = N — V since each other name

gets tagged. (3) Summing up, we have (4F+ 16F + 80X + 21N — 19Af + 9(7 —

16V)u, which is somewhat better than Program A since F is certainly less than 162VX.
The time in the stated case is 983w.

11. “Reflect” it; e.g., the inverse of (acf)(bd) is (db){fca).

12. (a) The value in cell L + mn — 1 is fixed by the transposition, so we may omit

it from consideration. Otherwise if x = n(i — 1) + (j — 1) < mn — 1, the value

in L+ x should go to cell L-\- (mx) mod N — L-\- (mn(i — 1) + m{j — 1)) mod N =

EAr m(j — 1) + (i — 1), since mn = 1 (modulo N) and 0 < m(j — 1) + (i — 1) < N.

(b) If one bit in each memory cell is available (e.g. the sign, or the least significant bit

of a floating-point value), we can “tag” elements as we move them, using an algorithm

like Algorithm I. Thus, (a) set x <— N — 1; (b) if CONTENTS(L + x) has been tagged,

go to (f), otherwise tag it and set y <— C0NTENTS(L + x); (c) set x <— (mx) mod N;

(d) exchange y <-» CONTENTS (L + x); (e) if y is untagged, tag it and return to (c);

(f) decrease x by 1 and if x > 0 return to (b). Reference: Martin F. Berman, J ACM 5

(1958), 383-384. If there is no room for a tag bit, tag bits can perhaps be kept in an

auxiliary table, or else a list of representatives of all non-singleton cycles can be used:

For each divisor d of N, we can transpose those elements which are multiples of d

separately, since m is prime to N. The length of the cycle containing x, when

gcd (x, N) = d, is the smallest integer r > 0 such that mr = 1 (modulo N/d). For each

d, we want to find <p(N/d)/r representatives, one from each of these cycles. Some

number-theoretic methods are available for this purpose, but they are not simple

518 ANSWERS TO EXERCISES 1.3.3

enough to be really satisfactory. An efficient but rather,complicated algorithm can be

obtained by combining number theory with a small table of tag bits. Reference: N.

Brenner, CACM 16 (1973), 692-694. Finally, there is a method analogous to Algorithm

J; it is slower, but needs no auxiliary memory. Reference: P. F. Windley, Comp. J. 2

(1959), 47-48; D. E. Knuth, Proc. IF IP Congress (1971), 1, 19-27.

13. Show by induction tha^t, at the beginning of step .12, X[i] = -\-j if and only if

j > m and j goes to i under 7r; X[i] = —j iff i goes to j under Trk+1, where k is the

smallest nonnegative integer such that Tk takes i into a number <m.

14. Writing the inverse of the given permutation in canonical cycle form and dropping

parentheses, the quantity A — A is the sum of the number of consecutive elements

greater than a given element and immediately to its right. For example, if the original

permutation is (165)(3784), the canonical form of the inverse is (3487)(2)(156); set

up the array

3 4 8 7 2 1 5 6

and the quantity A is the number of “dots,” 16. The number of dots below the ft-th

element is the number of right-to-left minima in the first k elements (i.e. there are

3 dots below 7 in the above, since there are 3 right-to-left minima in 3487). Hence

the average is Hi + H2 + • • • -f- Hn = (n + 1)Hn — n.

15. If the first character of the linear representation is 1, the last character of the

canonical representation is 1. If the first character of the linear representation is

m > 1, then “. . . 1 m . . appears in the canonical representation. So the only solu¬

tion is the permutation of a single object.

16. 1324,4231,3214,4213,2143,3412,2413,1243,3421,1324,

17. (a) The probability that the cycle is an m-cycle is n\/m divided by n\Hn, so

pm = 1/mHn. The average length is p 1 + 2p2 + 3p3 + • • • = 22i<m<n (m/mHn) =

n/Hn. (b) Since the total number of m-cycles is n\/m, the total number of appearances

of elements in m-cycles is n\. Each element appears as often as any other, by sym¬

metry, so k appears n\/n times in m-cycles. In this case, therefore, pm = l/n for all
k and m; the average is

(

Zi<m<nm/n = (ra + l)/2.

18. See exercise 22(e).

19. |P„0 — n\/e| = l/(n-j- 1)! — l/(n + 2)! + • • • , an alternating series of de¬

creasing magnitudes, which is less than 1 /(n-f- 1)! <

20. Each m-cycle can be independently written in m ways; there are ai + 0:2 + • • •

cycles in all, which can be permuted among one another; and so the answer is

(ai + «2 + • • 0 ll"1 • 2“2 • 3“3 • • • • .

21. l/(ai!laia2l2a2 • • •) if n = a\ + 2«2 + • • • ; zero otherwise.

Proof: Write out ai 1-cycles, 0:2 2-cycles, etc., in a row, with empty positions; for

example if ol\ = 1, 0:2 = 2, = <24 = • • • = 0, we would have “(-) (—) (—)”.

1.3.3 ANSWERS TO EXERCISES 519

Fill the empty positions in all n\ possible ways; we obtain each permutation of the
desired form exactly ai!l“ia2!2“2 . . . times.

22. (a) It ki + 2k2 d- • • • = n, the probability in (ii) is IJi> o /(to, j, kj) which is
assumed to equal (1 — w)wn/ki\\kik2].2k2 . . . ; hence

(H f(w, j, n f(w, j, kj + Sjr
\i> 0 / y>o

,) =
w f(w, to, km+ 1) = _

f(Wj TO, km) Wl(km 1)

Therefore by induction

1 /wm\k

Ad \ W
f{w, m,k) = ^ (—) f(w, to, 0).

-wm/m

Condition (i) now implies that

1 / m\ ^
f(w, m,k) = T7 (—) <

k\ \ to /

[Note: Hence am is chosen with a “Poisson” distribution, see exercise 1.2.10-16.]

(b) X (H f(w> = (1 — w)wn ^ P(n; hi, k2, . . .)
fcl~f-2A:2 + ...=n 0 / —J—2A:2~1—...=n

0 kltk2,...>0

= (1 —

Hence the probability that au + 2a2 + • • ■ < n is (1 — t»)(l + w + • • • + wn) =
1 — wn+1.

(c) The average of 4> is

X (X *2, • • •) IT (ai = /ci, a2 = k2, . . .)
0 \A:14_2A:2+...=?i

= (1 - w) Yj (X *(**> *2,.. .yjfciii*1^*3...
n> 0 -f-2A:2“1“• • •

(d) Let </>(ai, a2, • • ■) = a2 + <24 + «o + • • • . Since the a’s are independently

chosen, the average value of the linear combination <f> is the sum of the average values

of a2, a4, ag, . . . ; the average value of am is

X Ww> m’V = X 711 nT
i>0 k>l 1/1 •

(m\ A:
w \ —wm/m

m) e

Therefore the average value of </> is

Y+T+'" = (1-w,)(V + ^3+(i+i)^4+---).

The desired answer is

E ; = W./2j.
0<k<n
k even

(e) Let z be a real number; let a2, . . .) = z“»». The average value of 4> is

520 ANSWERS TO EXERCISES 1.3.3

X f(w> m> *)2* =
*>0

y

E
A;>0

i / m \ k

k\\mj

wm(z—l)/m
(s E

E j;
^ n> 0 \0

(1 — w) X w1lGnm(z).

Hence

Gnm(.Z) — E
0< j< n/m

1

mkk\ E
0< j<n/m—k

(—l/m)3 _

(min 0, ave l/m, max _n/m\, dev y/l/m).

23. The constant X is Jo ell(u) du, where li(a:) = dt/(\n t). See Transactions of

the American Math. Society 121 (1966), 340-357; many other results are proved in

this paper, in particular the average length of the shortest cycle is approximately

In n/ey. Further terms of the asymptotic representation of ln are not yet known.

William C. Mitchell has calculated a high-precision value of X = .62432 99885 43550

87099 29363 8310 . . . ; no relation between X and classical mathematical constants
is known.

24. See D. E. Knuth, Proc. IFIP Congress (1971), 1, 19-27.

25. One proof, by induction on N, is based on the tact that when the JVth element is
a member of s of the sets it contributes exactly

(o) — (i) + (I)-- (1 — l)s = 5so

to the sum. Another proof, by induction on .1/, is based on the fact that the number of
elements that are in SM but not in *Si U • • • U is

im- E l|sinSj1r||+ X Pyns*n<M-.
l<j<M 1 <i<k<M

26. Let iVo = N and let

Nk= X Wsh n • • • n sjk\\.

Then the desired formula is

This may be proved from the principle of inclusion and exclusion itself, or by using; the
formula

-CtOU)*--(:Xv)-(;)(t + = 8s

as in exercise 25.

1.4.1 ANSWERS TO EXERCISES 521

27. ■ Let Sj be the multiples of my in the stated range and let N = ami . . . m«. Then

||Sy n S*|| = N/mjmk, etc.,

so the answer is

N~N £ i+A' E 1
1 1 <}<k<t mjmk

= N /i _ j_y.. (i _ j_y
\ mi) \

This also solves exercise 1.2.4-30, if we let mi, . . ., mt be the primes dividing N.

29. \\ hen passing over a man, assign him a new number (starting with n-\- 1). Then

the &th man executed is number 2k, and man number j for j > n was previously
number (2j) mod (2n+ 1).

SECTION 1.4.1

1. Calling sequence: JMP MAXN; or, JMP MAXI00 if n = 100.

Entry conditions: For the MAXN entrance, rI3 = n\ assume n > 1.

Exit conditions: Same as in (4).

2. MAX50 STJ EXIT

ENT3 50

JMP 2F

3. Entry conditions: n = rll if rll > 0; otherwise n = 1.

Exit conditions: rA and rI2 as in (4); rll unchanged; rI3 = min (0, rll);

rJ = EXIT + 1; Cl unchanged if n = 1, otherwise Cl is

greater, equal, or less, according as the maximum is greater

than X[l], equal to X[l] and rI2 > 1, or equal to X[l] with
rI2 = 1.

(The analogous exercise for (9) would of course be somewhat more complicated.)

4. SMAX1 ENT1 1 r = 1

SMAX STJ EXIT generalr

JMP 2F continue as before

DEC3 0.1 decrease by r

J3P IB

EXIT JMP * exit.

Calling sequence: JMP SMAX; or, JMP SMAX1 if r = 1.

Entry conditions: rI3 = n, assumed positive; for the SMAX entrance, rll — r,

assumed positive.

Exit conditions: rA = maxo<i<»/, CDNTENTS(X+ n — kr) = C0NTENTS(X+ rI2);

rI3 = —((—n) modr).

5. Any other register can be used. For example,

Calling sequence: ENTA *+2

JMP MAX100

Entry conditions: None.

Exit conditions: Same as in (4).

522 ANSWERS TO EXERCISES 1.4.1

The code is the same as (1) except the first instruction would be

“MAX100 STA EXIT(0:2)”.

6. (Solution by Joel Goldberg and Roger M. Aarons.)

MOVE STJ 3F

STA 4F

ST2 5F(0:2)

LD2 3F(0:2)

LDA 0,2(0:3)

STA *+1(0:3)

ENTA *

LD2N 0,2(4:4)

J2Z IF

DECA 0.2

STA 2F(0:2)

DEC1 0.2

ST1 6F(0:2)

2H LDA *,2

6H STA *,2

INC2 1

J2N 2B

1H LDA 4F

5H ENT2 *

3H JMP *

4H CON 0

SECTION 1.4.2

1. If one coroutine calls the other only once, it is nothing but a subroutine; so we

need an application in which each coroutine calls the other in at least two distinct

places. Even then, it is often easy to set some sort of switch or use some property of

the data, so that upon entry to a fixed place within one coroutine it is possible to branch

to one of two desired places—so again, nothing more than a subroutine would be

required. Coroutines become correspondingly more' useful as the number of references

between them grows larger.

2. The first character found by IN would be lost.

3. Almost true, since “CMPA =10=” within IN is then the only comparison instruction

of the program, and since the code for “. ” is 40. But if the final period were preceded

by a replication digit, the test would go unnoticed. (Note: The most efficient program

would probably remove lines 40, 44, and 48, and would insert “CMPA PERIOD” between

lines 26 and 27. If the state of the comparison indicator is to be used across coroutines,

however, it must be recorded as part of the coroutine characteristics in the documenta¬
tion of the program.)

4. (a) On the IBM 650, using SOAP assembly language, we would have the calling

sequences “LDD A” and “LDD B”; and linkage “A STD BX AX” and “B STD AX BX”

(with the two linkage instructions preferably in core), (b) On the IBM 709, using

1.4.3.1 ANSWERS TO EXERCISES 523

common assembly languages, the calling sequences would be “TSX A,4” or “TSX B,4”;
the linkage instructions would be

A SXA BX, 4 B SXA AX,4
AX AXT 1-A1,4 BX AXT 1-B1,4

TRA 1,4 TRA 1,4

(c) On the CDC 1604, the calling sequences would be “return jump” (SLJ 4) to
A or B, and the linkage would be, e.g.,

B: SLJ Al; ALS 0

A: SLJ Bl; SLJ B.

(d) Most other machines are similar to one of these three. For example, System/360

would be analogous to the 709, or we could use BALR r, r in short coroutines.

5. “STA HOLDAIN; LDA HOLDAOUT” between OUT and OUTX, and “STA H0LDA0UT;
LDA HOLDAIN” between IN and INX.

6. Within A write “JMP AB” to activate B, “JMP AC” to activate C. Similarly loca¬

tions BA, BC, CA, and CB would be used within B and C. The linkage is:

AB STJ AX BC STJ BX CA STJ CX
BX JMP Bl CX JMP Cl AX JMP Al
CB STJ CX AC STJ AX BA STJ BX

JMP BX JMP CX JMP AX

(Note: With n coroutines, 2(n — 1)n cells would be required for the linkage. If n is

large, a “centralized” routine for linkage could of course be used; a method with

3n -j- 2 cells would not be hard to invent. But in practice the faster method above

requires just 2m cells, where m is the number of pairs (i, j) such that coroutine i jumps

to coroutine/. When there are many coroutines each independently jumping to others,

we usually have a situation in which, the sequence of control is under external influence,

as discussed in Section 2.2.5.)

SECTION 1.4.3.1

1. It is used only twice, both times immediately followed by a call on MEMORY, so

it would be slightly more efficient to make it a special entrance to the MEMORY sub¬

routine, and also to make it put —R in rI2.

2. SHIFT

2H

J5N ADDRERROR

DEC3 5

J3P FERROR

LDA AREG

LDX XREG

LD1 IF,3(4:5)

ST1 2F(4:5)

J5Z CYCLE

SLA 1

DEC5 1

J5P 2B

JMP STOREAX

524 ANSWERS TO EXERCISES 1.4.3.1

3. MOVE

SLA 1

SRA 1

SLAX 1

SRAX 1

SLC 1

SRC 1

J3Z CYCLE

JMP MEMORY

SRAX 5

LD1 I1REG

LDA SIGN1

JAP *+3

J1NZ MEMERR0R

STZ SIGN1(0:0)

CMP1 =BEGIN=

JGE MEMERROR

STX 0,1
LDA CLOCK

INCA 2

STA CLOCK

INC1 1

ST1 I1REG

INC5 1

DEC3 1

JMP MOVE |

4. Just insert “IN 0(16)” and “JBUS *(16)” between lines 03 and 04. (Of course

on another computer this would be considerably different since it would be necessary
to convert to MIX character code.)

5. Central control time is 34u, plus 15m if indexing is required; the GETV subroutine
takes 52m, plus 5m if L 5^ 0; extra time to do the actual loading is 11m for LDA or LDX,

13m for LDf, 21m for ENTA or ENTX, 23m for ENTf (add 2m to the latter two times if
M = 0). Summing up, we have a total time of 97m for LDA and 55m for ENTA, plus 15m
for indexing, and plus 5m or 2m in certain other circumstances. It would seem that
simulation in this case is causing roughly a 50:1 ratio in speeds. (Results of a test run
which involved 178m of simulated time required 8422u of actual time, a 47:1 ratio.)

7. Execution of IN or OUT sets a variable associated with the appropriate input device
to the time when transmission is desired. The “CYCLE” control routine interrogates
these variables on each cycle, to see if CLOCK has exceeded either (or both) of them;
if so, the transmission is carried out and the variable is set to “infinity”. (When more
than two I/O units must be handled in this way, there will be so many variables it
will be preferable to keep them in a sorted list using linked memory techniques; see
Section 2.2.5.) Be careful to complete the I/O when simulating HLT.

8. False; rI6 can equal BEGIN, if we “fall through” from the previous line. But
then a MEMERR0R will occur, trying to STZ into TIME! By line 254, we always do have
0 < 1I6 < BEGIN.

1.4.3.2 ANSWERS TO EXERCISES 525

SECTION 1.4.3.2

!• Change lines 48 and 49 to the following sequence:

LEAVE STX 3F 1H JMP *+l
ST1 2F(0:2) STA -1,1
LD1 JREG(0:2) 2H ENT1 *
LDA -1,1 LDX 3F
LDX IF LDA AREG
STX -1,1 LEAVEX JSJ *

JMP -1,1 3H CON 0

The operator “JSJ” here is, of course, particularly crucial.

2. * TRACE ROUTINE

ORIG *+99
BUF CON 0

ST1 I1REG(0:2)

PTR ENT1 -100

JBUS *(0)
STA BUF+1,1(0:2)

STA BUF+2,1

LDA AREG

STA BUF+3,1

LDA I1REG(0:2)

STA BUF+4,1

ST2 BUF+5,1

ST3 BUF+6,1

ST4 BUF+7,1

ST5 BUF+8,1

ST6 BUF+9,1

STX BUF+10,1

LDA JREG(0:2)

STA BUF+1,1(4:5)

ENTA 8

JNOV IF

ADD BIG

1H JL IF

INCA 1

JE IF

INCA 1

1H STA BUF+1,1(3:3)

INC1 10

JIN IF

OUT BUF-99(0)

ENT1 -100

526 ANSWERS TO EXERCISES 1.4.3.2

1H ST1 PTR(0:2)
.lines 14-31

I1REG ENT1 *
.lines 32-35

ST1 I1REG(0:2)

.lines 36-48

1 LD1 I1REG(0:2)

.lines 49-50

B4 EQU 1(1:1)

BIG CDN B4-8,B4-1(1:1) I

A further routine which writes out the final buffer and rewinds tape 0 should be

called after all tracing has been performed.

3. Tape is faster; and the editing of this information into characters while tracing

would consume far too much space. Furthermore the tape contents can be selectively

printcd.

4. A true trace, as desired in exercise 6, would not be obtained, since restriction (a)

mentioned in the text is violated. The first attempt to trace CYCLE would cause a

loop back to tracing ENTER+1.

6. Suggestion: keep a table of values of each memory location within the trace area

that has been changed by the outer program.

7. The routine should scan the program until finding the first jump (or conditional

jump) instruction; after modifying that instruction and the one following, it should

restore registers and allow the program to execute all its instructions up to that point,

in one burst. [This technique can fail if the program modifies its own jump instruc¬

tions. For practical purposes we can outlaw such a practice, except for STJ which wc

probably ought to handle separately anyway.]

SECTION 1.4.4

1. (a) No, the input operation may not yet be complete, (b) No, the input operation

may be going just a little faster, and this is much too risky.

2.

3.

ENT1 2000

JBUS *(6)

MOVE 1000(50)

MOVE 1050(50)

OUT 2000(6) |

W0RD0UT STJ IF

INC5 1

LDX 0,5

JXZ 2F

OUT -100,5(V)

LD5 0,5

ENT1 0,5

1.4.4 ANSWERS TO EXERCISES 527

MOVE -1,1(50)

MOVE -1,1(50)

ST5 CURRENT(0:2)
2H STA 0,5
1H JMP *

* BUFFER AREAS

CON 0

0UTBUF1 0RIG *+100

CON *+2

CON 0

0UTBUF2 0RIG *+100

CON 0UTBUF1 |

At the beginning of the program, give the instruction “ENT5 OUTBUFl-l”. At the
end of the program, put

CURRENT OUT *(V) Write out last block.

OUT 0UTBUF1(V)| (optional; writes an extra block in case of

IOC 0(V) J later input buffering, and rewinds the tape) |

4. If the calculation time exactly equals the I/O time (which is the most favorable

situation), both the computer and peripheral device running simultaneously will take

half as long as if they ran separately. Formally, let C be the calculation time for the

entire program, and let T be the total I/O time required; then the best possible

running time with buffering is max (C, T), while the running time without buffering

is C + T; and of course + T) < max (C, T) < C + T. However, there are some

devices which have a “shutdown penalty” which causes an extra amount of time to

be lost if too long an interval occurs between references to that unit; in such a case,

better than 2:1 ratios are possible.

5. Best ratio is (n + 1) :1.

j IN INBUF1(U)1
or

f IN INBUF2(U)1

(ENT6 INBUF2+99J (ENT6 INBUF1+99J

(possibly preceded by IOC 0(U) to rewind the tape just in case it is necessary).

7. One way is to use coroutines:

INBUF1 0RIG

CON

INBUF2 0RIG

CON

1H LDA

JMP

INC6

J6N

W0RDIN1 IN

ENN6

2H LDA

JMP

INC6

J6N

*+100

*+l
*+100

INBUF1

INBUF2+100.6

MAIN

1

IB

INBUF2(U)

100

INBUF1+100,6

MAIN

1

2B

\

1.4.4 528 ANSWERS TO EXERCISES

IN INBUFl(U)

ENN6 100

JMP IB

W0RDIN STJ MAINX

W0RDINX JMP W0RDIN1

MAIN STJ WORDINX

MAIlifx JMP *

Adding a few more instructions to take advantage of special cases will make this

routine actually faster than (4).

8. At the time shown in Fig. 23, the two red buffers have been filled with line images,

and the one indicated by NEXTR is being printed. At the same time, the program is

computing between RELEASE and ASSIGN. When the program ASSIGNS, the green

buffer indicated by NEXTG becomes yellow; NEXTG moves clockwise and the program

begins to fill the yellow buffer. When the output operation is complete, NEXTR moves

clockwise, the buffer that has just been printed turns green, and the remaining red

buffer begins to be printed. Finally, the program RELEASES the yellow buffer and it

too is ready for subsequent printing.

9, 10, 11:

time action (N = 1) action (N = 2) action (N = 4)

0 ASSIGN(BUF1) ASSIGN(BUF1) ASSIGN(BUF1)
1000 RELEASE, OUT BUF1 RELEASE, OUT BUF1 RELEASE, OUT BUF1
2000 ASSIGN(wait) ASSIGN(BUF2) ASSIGN(BUF2)
3000 RELEASE RELEASE
4000 ASSIGN(wait) ASSIGN(BUF3)
5000 RELEASE
6000 ASSIGN(BUF4)
7000 RELEASE
8000 ASSIGN(wait)
8500 BUF1 assigned, output stops BUF1 assigned, OUT BUF2 BUF1 assigned, OUT BUF2
9500 RELEASE, OUT BUF1 RELEASE

10500 ASSIGN(wait) ASSIGN(wait)
15500 RELEASE

and so on. Total time when N = 1 is 110000m; when N = 2 it is 89000m; when

N = 3 it is 81500m; and when N > 4 it is 76000m.

12. The following code should be inserted before “LD5 -1,5” in program B:

STA 2F

LDA 3F

CMPA 15,5(5:5)

LDA 2F |

Then the instruction “JMP IB” should be changed to

JNE IB

JMP COMPUTE

JMP *-l [or JMP C0MPUTEX]

1.4.4

2H

3H

0

ANSWERS TO EXERCISES 529

13.

CON

ALF I

JRED CONTROL(U)

J6NZ *-l |

14. If N = 1 the process would loop indefinitely; otherwise the construction will have

the effect that there are twTo yellow buffers. This can be useful if the computational

program wants to refer to two buffers at once, although it ties up buffer space. In

general, the excess of ASSIGNS over RELEASES should be nonnegative and not greater

than N.

u EQU 0

V EQU 1

BUF1 □RIG *+100

BUF2 □RIG *+100

BUF3 □RIG *+100

TAPECPY ENT1 99
IN BUF1(U)

1H IN BUF2(U)

OUT BUF1(V)

IN BUF3(U)

□UT BUF2(V)

IN BUF1(U)

OUT BUF3(V)

DEC1 3

J1P IB

□UT BUF1(V)

HLT

END TAPECPY |

This is a special case of the algorithm indicated in Fig. 26.

18. Partial solution: in the algorithms below, t is a variable which is set to 0 when the

I/O device is active, and t = 1 when it is idle.

Algorithm A (ASSIGN, a normal state subroutine).

This algorithm is unchanged from Algorithm 1.4.4A.

Algorithm R (RELEASE, a normal state subroutine).

Rl. Increase n by one.
R2. If t = 0, cause an interrupt (using the INT operator) which should go to

step B2. |

Algorithm B (Buffer control routine, which processes interrupts).

Bl. If n = 0, set t <— 0 and restart main program.

B2. Set t <— 1, and initiate I/O from the buffer area specified by NEXTR.

B3. Restart the main program; an “I/O Complete” condition will interrupt to

step B4.
B4. Advance NEXTR to the next clockwise buffer.

B5. Decrease n by one, and go to step Bl. |

530 ANSWERS TO EXERCISES 2.1

SECTION 2.1

1. (a) SUIT(NEXT(TOP)) = SUIT (NEXT(242)) = SUIT(386) = 4. (b) A.

2. Whenever V is a link variable (else CONTENTS(V) makes no sense) whose value

is not A. It istwise to avoid using LOC in contexts like this.

3. Set NEWCARD <- TOP, and^if TOP 7* A set TOP <- NEXT (TOP).

4. Cl. Set X 4—LOC (TOP). (For convenience we make the reasonable assumption

that TOP = NEXT (LOC (TOP)), i.e. that the value of TOP appears in the NEXT

field of the location where it is stored. This assumption is compatible with

program (5), and it saves us the bother of writing a special routine for the case

of an empty pile.)

C2. If NEXT(X) ^ A, set X <- NEXT(X) and repeat this step.

C3. Set NEXT(X) <— NEWCARD, NEXT(NEWCARD) <—A, TAG(NEWCARD) <- 1. |

5. Dl. Set X<— LOC(TOP), Y<— TOP. (See step Cl above. By hypothesis, Y ^ A.

Throughout the algorithm which follows, X trails one step behind Y in the

sense that Y = NEXT(X).)

D2. If NEXT(Y) 9^ A, set X <— Y, Y <— NEXT(Y), and repeat this step.

D3. (Now NEXT(Y) = A, so Y points to the bottom card; also X points to the

next-to-last card.) Set NEXT(X) <— A, NEWCARD Y. |

6. (b) and (d). Not (a)! CARD is a node, not a link to a node.

7. Sequence (a) gives NEXT (LOC (TOP)), which in this case is identical to the value

of TOP; sequence (b) is correct. There is no need for confusion; consider the analogous

example when X is a numeric variable: To bring X into register A, we write LDA X,

not ENTA X, since the latter brings LOC(X) into the register.

8. Let rA = N, rll - X.

ENTA 0 Bl. N <— 0.
LD1 TOP X <- TOP.
J1Z *+4 B2. Is X = A?
INCA 1 B3. N <— N+ 1.
LD1 0,1(NEXT) X <— NEXT (X).

rI2 = X.

J1NZ *-2 1

PRINTER EQU 18 Unit number for printer
TAG EQU 1:1

NEXT EQU 4:5 Definition of fields
NAME EQU 0:5

PBUF ALF PILE Message printed in case
ALF

ORIG

EMPTY

PBUF+24
pile is empty

BEGIN LD2 TOP Set X <- TOP.
J2Z 2F Is the pile empty?

1H LDA 0,2(TAG) rA <— TAG(X).
ENT1 PBUF Get ready for MOVE instruction.
JBUS *(PRINTER) Wait until printer is ready.
JAZ *+3 Is TAG = 0 (is card face up) ?

2.2.1 ANSWERS TO EXERCISES 531

MOVE PAREN(3) No: set parentheses.
JMP *+2

MOVE BLANKS(3) Yes: set blanks.
LDA 1,2(NAME) rA <- NAME (X).
STA PBUF+1

LD2 0,2(NEXT) Set X <- NEXT (X).
2H OUT PBUF(PRINTER) Print the line.

J2NZ IB If X 5^ A, repeat the print loop.
DONE HLT

PAREN ALF (
BLANKS ALF

ALF)
ALF 1

SECTION 2.2.1

1. Yes (consistently insert all items at one of the two ends).

2. To obtain 325641, do SSSXXSSXSXXX (in the notation of the following

exercise). The order 154623 cannot be achieved, since 2 can precede 3 only if it is

removed from the stack before 3 has been inserted.

3. An admissible sequence is one in which the number of X’s never exceeds the

number of S’s if we read from the left to the right.

Two different admissible sequences must give a different result, since if the two

sequences agree up to a point where one has S and the other has X, the latter sequence

outputs a symbol which cannot possibly be output before the symbol just inserted

by the S of the former sequence.

4. This problem is equivalent to many other interesting problems, such as the

enumeration of binary trees, the number of ways to insert parentheses into a formula,

and the number of ways to divide a polygon into triangles, and it appeared as early

as 1759 in notes by Euler and Segner (see Section 2.3.4.6). For further references, see

A. Erdelyi and I. M. H. Etherington, Edinburgh Mathematical Notes, 32 (1940), 1-12.

The following elegant solution is due to D. Andr6 (1878): There are obviously

(2„re) sequences of S’s and X’s that contain n of each. It remains to evaluate the number

of inadmissible sequences (which contain the right number of S’s and X’s but which

violate the other condition). In any inadmissible sequence, locate the first X for

which the X’s outnumber the S’s. Then in the partial sequence leading up to and

including this X, replace all X’s by S and all S’s by X. The result is a sequence with

(n + 1) S’s and (n — 1) X’s. Conversely for every sequence of the latter type we

can reverse the process and find the inadmissible sequence of the former type which

leads to it. For example, the sequence XXSXSSSXXSSS must have come from

SSXSXXXXXSSS. This correspondence shows that the number of inadmissible

sequences is (n2~i)- Hence an = (2nn) — Q-\)-

Using the same idea, we can solve the more general “ballot problem” of probability

theory, which essentially is the enumeration of all partial admissible sequences with

a given number of S’s and X’s. For the history of the ballot problem and some gener¬

alizations, see the comprehensive survey by D. E. Barton and C. L. Mallows, Annals

532 ANSWERS TO EXERCISES 2.2.1

of Math. Statistics 36 (1965), 236-260; see also exercise 2.3.4.4-32 and Section 5.1.4.

We present here a new method for solving the ballot problem with the use of

double generating functions, since this method lends itself to the solution of more

difficult problems such as exercise 11.
Let gnm b6 the number of sequences of S’s and X’s of length n, in which the

number of X’s never exceeds tlje number of S’s if we count from the left, and in which

there are m more S’s than X’s in all. Then an = *7(2n)0• Obviously gnm is zero unless

m -f- n is even. The recurrence relation satisfied by these numbers is easily found to be

<7(n+l)m = </n(m-l) + <7n(m +1), m > 0, n > 0j JOm = ?>Om-

We set up the double generating function G(x, z) = 9nmxmzn, and let g{z) —

Gif), z). The recurrence relation above transforms into

(x + G(x, z)=± g{z) + \ (G(x, z) - l), i.e. G(x, z) = z{^Z}_ ~ g •

This equation unfortunately tells us nothing if we set x = 0, but we can proceed by

factoring the denominator as 2(1 — ri(2)a;)(l — (z)x) where

ri(z) = jz (1 + Vl - 422), r2(z) = - Vl - 42*).

(Note that n + r2 = I/2; rif2 = 1.) We now proceed heuristically; the problem is

to find some value of g{z) such that G(x, z) as given by the formula above has an

infinite power series expansion in x and 2. Note that r2(z) has such an expansion,

and r2(0) = 0; and for fixed 2, the value x = r2(z) causes the denominator of G(x, z)

to vanish. This suggests that we might choose g(z) so that the numerator also vanishes

when x = r2(z), i.e. take 2*7(2) = r2{z). The equation for G(x, z) now simplifies to

G(x, 2) =
r2{z)

2(1 — r2(z)x)
2 (r2(z))n+1xnz \
n> 0

Since thi§ is a power series expansion which satisfies the original equation, we must

have found the right choice of g(z).

The coefficients of <7(2) are the solution to our problem. Actually we can go

further and derive a simple form for all the coefficients of G{x, z): By the binomial

theorem,

r2(z) = z2k+1
k>0

2k-\- l\ 1

, k) 2k + 1 '

Let w = 22 and r2(z) = zf(w). Then f(w) = A*,(l, —2)wk in the notation of

exercise 1.2.6-25; hence

f(wY = X) Mr, —2)w\
*>o

We now have

G(x, 2) = Min, -2)xnz2m+n,
n ,m

so the general solution is

2.2.1
ANSWERS TO EXERCISES 533

ff(2»)(2m)

0(2n+l)(2m+l)

/2n+ l\ 2m1

\n — m) 2n + 1

/2n -f- 2\ 2m -|- 2

\n — m) 2n + 2

/ 2» \ / 2n V

\n — m/ \n — to — 1/ ’

/2n -f- l\ / 2n -f- 1 \

\n — m) \n — m — 1/

5. If j < k and py < p*, we must have taken pj off the stack before pk was put on;

if Pj > pk, we must have left pk on the stack until after pj was put on. Combining

these two rules, the condition i < j < Jc and pj < pk < pi is impossible since it

means pj must go off before pk and after pi, yet pi appears after pk.

Conversely, the desired permutation can be obtained by using the algorithm

For j = 1,2, ,n input zero or more items (as many as necessary) until pj first

appears in the stack, then output pj.” This algorithm can fail only if we reach a j

for which pj is not at the top of the stack but it is covered by some element pk for

k > j. Since the contents of the stack is always monotone increasing, wre have pj < pk.

This element pk could have gotten there only if it is less than pi for some i < j.

6. Only the trivial one, 1 2 ... n, by the nature of a queue.

7. An input-restricted deque which first outputs n must simply put the values

1 2 ... n on the deque in order as its first n operations. An output-restricted deque

which first outputs n must put the values p\ P2 ■ ■ ■ pn on its deque as its first n opera¬

tions. Therefore we find the unique answers (a) 4132 (b) 4213 (c) 4231.

8. When n = 4, no; when n = 5, there are four (see exercise 13).

9. By operating in reverse, wTe can get the inverse of any input-restricted permutation

with an output-restricted deque, and conversely. This sets up a one-to-one corre¬

spondence between the two sets of permutations.

10. (i) There should be n X’s and n combined S’s and Q’s. (ii) The number of X’s

must never exceed the combined number of S’s and Q’s, if we read from the left,

(iii) Whenever the number of X’s equals the combined number of S’s and Q’s (reading

from the left), the next character must be a Q. (iv) The two operations XQ must never

be adjacent in this order.

Clearly rules (i) and (ii) are necessary. The extra rules (iii) and (iv) are added to

remove ambiguity, since S is the same as Q when the scroll is empty, and since XQ

can always be replaced by QX. Thus, any obtainable sequence corresponds to at least

one admissible sequence.

To show that two admissible sequences give different permutations, consider

sequences which are identical up to a point, and then one sequence has an S while the

other has an X or Q. Since by (iii) the deque is not empty, clearly different permuta¬

tions (relative to the order of the element moved on by S) are obtained by the two

sequences. The remaining case is where sequences A, B agree up to a point and

then sequence A has Q, sequence B has X. Sequence B may have further X’s at this

point, and by (iv) they must be followed by an S, so again the permutations are

different.

11. Proceeding as in exercise 4, we let gnm be the number of partial admissible sequences

of length n, leaving m elements on the deque, not ending in the symbol X; hnm is

\

2.2.1
534 ANSWERS TO EXERCISES

defined analogously, for those sequences that do end with X. We have g<_n+i)m =

20„(m-i) (+hn(m-1) if m> 1) 5 h(n+i)m = gn(,m+\) + &n(m+i)• Define G(x,z) and

H{x, z) analogously to the definition in exercise 4; we have

G(z, 2)' = xz + 2x2z2 + 4x3z3 + (8a;4 + 2x2)z4 + (16a;5 + 8x3)z5 4-;

H(x, z) = z2 + 2xz3 + (4x2 + 2)z4 + (8x3 + 6x)z5 H-.

If h(z) = 11(0, z), we find z~lG(x, z) = 2xG(x, z) + x(//(x, z) — h(z)) + x,

z~lH(x, z) = as—1C?(xJ z) + 2) - ft CO); consequently

. xz(x — z — x6(z))
G(x, z) - x _ 2 _ 2x2z^xz2-

As in exercise 4, we try choosing 6(z) so the numerator cancels with a factor of the

denominator. We find G(x, z) = xz/(1 — 2r2(z)) where

r2(z) = I (22 + 1 - \/(z2+ l)2 - 8z2).
4z

tJsing the convention 60 = 1; the desired generating function comes to

•|(3 — z — \/l — 6z -f- z2) = 1 + z + 2z2 + 6z3 + 22z4 + 90z5 + • • • .

By differentiation we find a recurrence relation that is handy for calculation:

nbn = 3(2n — 3)671—1 — (n — 3)6n—2, n > 2.

Another way to solve this problem, suggested by V. Pratt, is to use context-free

grammars for the set of strings (cf. Chapter 11). The infinite grammar with produc¬

tions S —> qn(Bx)n, B —► sqn(Bx)n+1B, for all n > 0, and B —> e, is unambiguous,

and it allows us to count the number of strings with n x’s, as in exercise 2.3.4.4-31.

12. If 0 < a < 1, the coefficient of wn in V1 — w V1 — aw = \/l — mV 1 — a +

(1 — w)3,2a/(\/1 — aw-1- Vl — a) is

(-1)"

which by Stirling’s approximation is asymptotically —(1 — a)/ir n_3/2. Now

1 — 6z+ z2 = (l — (3+ \/8)z)(l — (3 — V8)z). Letting w = (3 + a/8)z, we

find an ~ M/Virn3; bn ~ c(3 -j- V8)nn~3/2, where c = (3V2 — 4)/-7r ~ 0.139.

13. V. Pratt has found that a permutation is unobtainable iff it contains a subse¬

quence whose relative magnitudes are respectively

5, 2, 7, 4, . . . , 4k + 1, 4k - 2, 3, 4fc, 1 or 5, 2, 7, 4, . . . , 4fc + 3, 4*, 1, 4k + 2, 3

for some k > 1, or the same with the last two elements interchanged, or with the 1

and 2 interchanged, or both. Thus the forbidden patterns for k = 1 are 5 2 3 4 1,

5231 4, 5134 2, 5132 4; 527416 3, 5274 1 3 6, 517426 3, 517423 6.

[.Proc. ACM Symp. Theory of Computing 5 (1973), 268-277.]

2.2.2 ANSWERS TO EXERCISES 535

SECTION 2.2.2

1. M 1 (not M). If we allowed M items, as (6) and (7) do, it would be impossible to

distinguish an empty queue from a full one by examination of R and F, since only M

possibilities can be detected. It is better to give up one storage cell than to make the
program overly complicated!

2. Delete from rear: if R = F then UNDERFLOW; Y <— X[R]; if R = 1 then R <-M,

otherwise R <— R — 1. Insert at front: Set X[F] <— Y; if F = 1 then F <— M, otherwise

F*-F — 1; if F = R then OVERFLOW.

3. (a) LD1 I; LDA BASE,7:1. This takes 5 cycles instead of 4 or 8 as in (8).

(b) Solution 1: LDA BASE,2:7 where each base address is stored with Ij = 0,

12 = 1. Solution 2: If it is desired to store the base addresses with 12 = 12 = 0,

we could write LDA X,7:l where location X contains NOP BASE,2:7. The second

solution takes one more cycle, but allows the base table to be used with any index
registers.

(c) This is equivalent to “LD4 X(0:2)”, and takes the same execution time,

except that rI4 will be set to+0 when X (0:2) contains —0.

4. (i) NOP *,7. (ii) LDA X,7:7. (iii) This is impossible; the code LDA Y,7:7

where location Y contains NOP X,7:7 breaks the restriction on 7:7. (See exercise 5.)

(iv) LDA X,7:l with the auxiliary constants

X NOP *+1,7:2

NOP *+1,7:3

NOP *+1,7:4

NOP 0,5:6

Execution time is 6 units, (v) INC6 X,7:6 where X contains NOP 0,6:6.

5. (a) Consider the instruction ENTA 1000,7:7 with the memory configuration

location ADDRESS Ii I2

1000 1001 7 7

1001 1004 7 1

1002 1002 2 2

1003 1001 1 1

1004 1005 1 7

1005 1006 1 7

1006 1008 7 7

1007 1002 7 1

1008 1003 7 2

and with rll = 1, rI2 = 2. We find that 1000,7,7 = 1001,7,7,7 = 1004,7,1,7,7 =

1005.1.7.1.7.7 = 1006,7,1,7,7 = 1008,7,7,1,7,7 = 1003,7,2,7,1,7,7 = 1001,1,1,2,7,1,7,7

= 1002,1,2,7,1,7,7 = 1003,2,7,1,7,7 = 1005,7,1,7,7 = 1006,1,7,1,7,7 = 1007,7,1,7,7 =

1002.7.1.1.7.7 = 1002,2,2,1,1,7,7 = 1004,2,1,1,7,7 = 1006,1,1,7,7 =,1007,1,7,7 =

1008.7.7 = 1003,7,2,7 = 1001,1,1,2,7 = 1002,1,2,7 = 1003,2,7 = 1005,7 = 1006,1,7 =

1007.7 = 1002,7,1 = 1002,2,2,1 = 1004,2,1 = 1006,1 = 1007. (A perhaps faster way

to do this derivation by hand would be to evaluate successively the addresses specified

in locations 1002, 1003, 1007, 1008, 1005, 1006, 1004, 1001, 1000 in this order, but it

would seem that a computer would need to go about the evaluation essentially as

shown.) The author tried out several fancy schemes for changing the contents of

536 ANSWERS TO EXERCISES 2.2.2

memory while evaluating the address, yet designed so that everything would be

restored again by the time the final address has been obtained. Similar algorithms

appear in Section 2.3.5. However, these attempts were unfruitful and it appears there

is just not enough room to store the necessary information.

(b, c) Let H, C be auxiliary registers and let N be a counter. To get the effective

address M, for the instruction in location L, do the following:

Al. [Initialize.] Set H <— 0, C <— L, N <— 0. (C will be the “current” location, H is

used to add together the contents of various index registers, and N measures

the “depth” of indirect addressing.)

A2. [Examine address.] Set M <—ADDRESS(C). If Ii(C) — j, 1 < j < 6, set

M<-M + rIj. If I2(C) = j, 1 < ;< 6, setH <— H + rlj. If Ii(C) = I2(C) =

7, set N <— N + 1, H <- 0.
A3. [Indirect?] If either Ii (C) or 12(C) equals 7, set C <— M and go to A2. Other¬

wise set M M Ac H, H <— 0.
A4. [Reduce depth.] If N > 0, set C <— M, N N — 1, and go to A2. Otherwise

M is the desired answer. |

This algorithm will handle any situation correctly except those in which Ii = 7

and 1 < I2 < 6 and the evaluation of the address in ADDRESS involves a case with

Ii = I2 = 7. The effect is as if I2 were zero. To understand the operation of algo¬

rithm A, consider the notation of part (a); the state “L,7,1,2,3,5,7,7,7,7” is represented

in the above algorithm by C or M = L, N = 4 (the number of trailing 7’s), and H =

(rll) 4* (rI2) + (rI3) + (rI5) (the post-indexing). In a solution to part (b) of this

exercise, the counter N will always be either 0 or 1.

6. (c) causes OVERFLOW, (e) causes UNDERFLOW, and if the program resumes it causes

OVERFLOW on the final I2.

7. No, since T0P[f] must be greater than 0LDT0P[i].

8. With a stack, the useful information appears at one end with the vacant informa¬

tion at the other:

A B C

where A = BASE[j], B = T0P[j], C = BASE[j + 1]. With a queue or deque, the useful

information appears at the ends with the vacant information somewhere in the middle:

A B CD

or in the middle with the vacant information at the ends:

AC B D

where A = BASE[j], B = REAR[j], C = FR0NT[j], D = BASE[j+ 1]. The two cases

are distinguished by the conditions B < C, B > C, respectively. The algorithms are

therefore to be modified in an obvious way so as to widen or narrow the gaps of vacant

2.2.2
ANSWERS TO EXERCISES 537

information. (Thus in case of overflow, i.e. when B = C, we make empty space
between B and C by moving one part and not the other.)

9. Given any sequence specification aj, a,2, . . . , am there is one move operation

required foi every pair (j, k) such that j < k and ay > a*. The number of such pairs

is therefore the number of moves required. Now imagine all nm specifications written

out, and for each of the (2) pairs (j, k) with j < k count how many specifications

have ay > a*. Clearly this is (2), the number of choices for ay and ak, times nm~2, the

number of ways to fill in the remaining places. Hence the total number of moves

among all specifications is (2)(f)nm-2. Divide this by nm to get the average, Eq. (12).

10. As in exercise 9 we find the expected value is

(") = 5 +'" + p-)2 ~ (p>+' ■ • +p2>)

= j(”)(l-(!>?+" + pS).

For this model, it makes absolutely no difference what the relative order of the lists is!

(A moment’s reflection explains why; if we consider all possible permutations of a

given sequence ai, . . . , am we find the total number of moves summed over all these

permutations depends only on the number of pairs of distinct elements ay ak.)

11. Counting as before, we find the expected number is

nm (;) e e (;>-«'
X / 0<8<m r>t V/

—r m—s—2/
n (vn — s — 1).

Here s represents j — 1 in the terminology of the above answer, and r is the number

of entries in ai, 02, . . . , a* which equal ay. This formula can be slightly simplified,

e.g. by writing generating functions which correspond to it, until we arrive at

1 V' ft — 1 + k\/m — t — lc\f 1V+1

2"! „<*£,_A k A 2 Ji1 - n) • fOT ^ 0•

Is there a simpler way yet to give the answer? Apparently not, since the generating
function is

(>+(?>

12. If m = 2k, the average is 2~2k times

J(2k 1) + • • • +

The latter sum is

k+2[[-\ " J + • • • +

(^)t+G+i)(t+,,+■■ +(.()M

538 ANSWERS TO EXERCISES 2.2.2

A similar argument may be used when m = 2& + 1. The answer is

14. Let kj = n/m+ Vnxj. ^(This idea was suggested by N. G. de Bruijn.) Stirling’s

approximation implies that

when k\ + • • • + kn = m and when the z’s are uniformly bounded. The sum of the

latter quantity over all nonnegative k\, ... ,kn satisfying this condition is an approxi¬

mation to a Riemann integral; we may deduce that the asymptotic behavior of the

sum is an(m/n) + cnVm + 0(1), where

since it is possible to show that the corresponding sums come within e of an and c«

for any e.

We know that an = 1, since the corresponding sum can be evaluated explicitly.

The integral which appears in the expression for cn equals nl\, where

h
L *l+...+x„=0

Xl>X2,...,Xn

xi exp dx2 . .. dxn.

We may make the substitution

xi = - (j/2 H-1- Vn), X2 = Xl — 2/2, X3 = X\ — J/3, . . . , Xn = X\ — yn]
n

then we find /i = /2/w, where

12 -f
J V2'...,Vn>0

(2/2-1-1- yn) exp (-1) dy2 . . . dyn

Q = n(y2 + • • • + yl) — (2/2 + • • • + yn)2- Now by symmetry, I2 is (n — 1) times

2.2.3 ANSWERS TO EXERCISES 539

the same integral with (y2 + • • • + yn) replaced by y2; hence I2 = (n — 1)Z3, where

(ny2 — (2/2 H-1- yn)) exp (— ^) dy2 . . . dyn
J V2,---,Vn>0 \

= / exp (— %) dV3 • • • dyn;

here Qo is Q with y2 replaced by zero. [When n = 2, let /3 = 1.] Now let Zj =

Vnyj — (2/3 + • • • + yn)/(V2 + Vn), S < j < m. Then Qo = z\ + • • • + and

we deduce that 73 = 74/n(n_3)/2\/2, where

where a„ is the “solid angle” in (n — 2)-dimensional space which is spanned by the

vectors (n-f V2n, 0, . . ., 0) — (1, 1, ..., 1),... , (0, 0, .. ., n+ V2n) — (1, 1,..., 1),

divided by the total solid angle of the whole space. Hence

(n — 1)\/n
Cn — ~ OLn.

2\Ar

We have

«2 = 1, 0:3 = a4 = - arctan v/2 « .304,
7r

and

13 1
«5 = - -)- — arctan —— ~ .206.

8 4tt

[The value of c3 was found by Robert M. Kozelka, Annals of Math. Stat. 27 (1956),

507-512, but the solution to this problem for higher values of n apparently has never

appeared in the literature.]

16. Not unless the queues meet the restrictions which apply to the primitive method

(4), (5).

SECTION 2.2.3

1. OVERFLOW is implicit in the operation P <= AVAIL.

2. INSERT STJ IF Store location of “NOP T”.

STJ 9F Store exit location.

LD1 AVAIL rll <= AVAIL.

J1Z OVERFLOW

LD3 0,1(LINK)

ANSWERS TO EXERCISES

ST3 AVAIL

STA 0,1(INFO) INFO(rll) <- Y.

1H LD3 *(0:2) rI3 <- LOC(T).

LD2 0,3 rI2 v- T.

ST2 0,1(LINK) LINK(rll) <- T.

STl^ 0,3 T 4- rll.

9H JMP * 1

DELETE STJ IF Store location of “NOP T”.

STJ 9F Store exit location.

1H LD2 *(0:2) rI2 4- LOC(T).

LD3 0,2 rI3 4- T.

J3Z 9F Is T = A?

LD1 0,3(LINK) rll 4- LINK(T).

ST1 0,2 T 4- rll.

LDA 0,3(INFO) rA INFO (rll).

LD2 AVAIL AVAIL <= rI3.

ST2 0,3(LINK)

ST3 AVAIL

ENT3 2 Prepare for second exit.

9H JMP *,3 1

OVERFLOW STJ 9F Store setting of rJ.

ST1 8F(0:2) Save rll setting.

LD1 POOLMAX

ST1 AVAIL Set AVAIL to new location.
INC1 c.

ST1 POOLMAX Increment POOLMAX.

CMP1 SEQMIN

JG TOOBAD Has storage been exceeded?

STZ —c,1(LINK) Set LINK(AVAIL) 4- A.
9H ENT1 * Take rJ setting.

DEC1 2 Subtract 2.

ST1 *+2(0:2) Store exit location.
8H ENT1 * Restore rll.

JMP * Return. |

5. Inserting at the front is essentially like the basic insertion operation (8), with an

additional test for empty queue: P <= AVAIL, INFO(P) 4— Y, LINK(P) <— F; if F = A

then R <— P; F <— P.

To delete from the rear, we would have to find which node links to NODE (R),

and that is necessarily inefficient since we have to search all the way from F. This

could be done, for example, as follows:

a) If F = A then UNDERFLOW, otherwise set P 4— LOC(F).

b) If LINK(P) ^ R then set P <—LINK(P) and repeat this step until LINK(P) = R.

c) Set Y 4- INFO (R), AVAIL <= R, R <— P, LINK(P) <- A.

6. We could remove the operation LINK(P) <— A from (14), if we delete the com¬

mands “F <- LINK(P)” and “if F = A then set R <- LOC(F)” from (17); the latter

are to be replaced by “if F = R then F <- A and R<-LOC(F), otherwise set
F <- LINK(P)

2.2.3 ANSWERS TO EXERCISES 541

The effect of these changes is that the LINK field of the rear node in the queue will

contain spurious information which is never interrogated by the program. A trick

like this saves execution time and it is quite useful in practice, although it violates

one of the basic assumptions of garbage collection (see Section 2.3.5) so it cannot be
used in conjunction with such algorithms.

7. (Make sure your solution works for empty lists.)

11. Set P <- FIRST, Q <- A.

12. IfP A,setR <-Q,Q <-P, P ^ LINK (Q), LINK (Q) <— R, and repeat this step.
13. Set FIRST «- Q. |

In essence we are popping nodes off one stack and pushing, them onto another.

LD1 FIRST 1 P = rll <- FIRST.
ENT2 0 1 Q = rI2 <— A.
J1Z 2F 1 If list is empty, jump.
ENTA 0,2 n R = rA Q.

ENT2 0.1 n Q <- P.
LD1 0,2(LINK) n P <- LINK(Q).
STA 0,2(LINK) n LINK(Q) <- R.

J1NZ IB n Is P ^ A?

ST2 FIRST 1 FIRST «- Q. |

The time is (7n+ 6)u. Better speed (5n+ const)?/ is attainable; cf. exercise 1.1-3.

9. (a) Yes. (b) Yes if true parenthood is considered; no if legal parenthood is con¬

sidered (a man’s daughter might marry his father, as in the song “I’m My Own

Grampa”). (c) No (—1 < 1 and 1 < —1). (d) Let us hope so, or else there is a

circular argument, (e) 1 -< 3 and 3 •< 1. (f) The statement is ambiguous. If we

take the position that the subroutines called by y are dependent upon which subroutine

calls y, we would have to conclude that the transitive law does not hold. (For example,

a general input/output subroutine might call on different processing routines for each

I/O device present, but usually not all these processing subroutines are needed in a

single program. This is a problem that plagues many automatic programming systems.)

10. For (i) there are three cases: x = y\ x C y and y — z; x <Zy and y C z. For (ii)

there are two cases: x = y; x ^ y. Each of these is handled trivially, as is (iii).

11. “Multiply out” the following to get all 52 solutions: 13749(25 -j- 52)86 -j-

(1379 + 1397 + 1937 + 9137) (4258 + 4528 + 2458 + 5428 + 2548 + 5248 + 2584 +

5284)6 + (1392 + 1932 + 1923 + 9123 + 9132 + 9213)7(458 + 548 + 584)6.

12. For example: (a) List all sets with k elements (in any order) before all sets with

k -f- 1 elements, 0 < k < n. (b) Represent a subset by a sequence of 0’s and l’s

showing which elements are in the set. This gives a correspondence between all subsets

and (via the binary number system) the integers 0 through 2n — 1. The order of

correspondence is a topological sequence.

14. If oi 02 . . . an and bi 62 • • • bn are two possible topological sorts, let j be minimal

such that ay ^ 6y; then a* = bj and ay = bm for some k,m > j. Now bj ^ ay since

k > j, and ay ^ bj since m > j, hence (iv) fails. Conversely if there is only one

topological sort a\ 0,2 . . . a„, we must have ay ^ ay_|_i for 1 < j < n, since otherwise

ay and ay+i could be interchanged. This and transitivity imply (iv).

Note: The following alternative proofs work also for infinite sets, (a) Every

partial ordering can be embedded in a linear ordering. For if we have two elements

542 ANSWERS TO EXERCISES 2.2.3

with xo $ yo and yo £ xo we can generate another partial ordering by the rule

“x <, y or x ■<, xo and yo y”. The latter ordering “includes” the former and has

xo ^ Vo- Now apply Zorn’s lemma or transfinite induction in the usual way to com¬

plete the proof, (b) Obviously a linear ordering cannot be embedded in any different

linear ordering, (c) A partial ordering which has incomparable elements xo and yo

as in (a) can be extended to tjvo linear orderings in which xo ^ yo and yo ^ xo, respec¬

tively, so at least two linear orderings exist.
Note: The least number of linear orderings whose intersection is a given partial

ordering is called the dimension of the partial ordering. This appears to be an important

concept [cf. Ore, Theory of Graphs (Amer. Math. Soc., 1962), Chapter 10], but no

efficient algorithm for calculating the dimension of a partial ordering is known. It is

possible to test whether or not the dimension is 2, in 0(n3) steps [see Chapter 7].

15. If S is finite, we can list all relations a < b that are true in the given partial

ordering. By successively removing, one at a time, any relations that are implied by

others, we arrive at an irredundant set. The problem is to show there is just one such

set, no matter in what order we go about removing redundant relations. If there were

two irredundant sets a and /3, in which “a < b” appears in a but not in /3, there are

k + 1 relations a < ci < • • • < c* < b in /3 for some k > 1. But it is possible to

deduce a < c\ and c\ < b from a, without using the relation a < b (since b ci

and ci ^ a), hence the relation a < b is redundant in a.

The result is false for infinite sets S, when there is at most one irredundant set of

relations. For example if S denotes the integers plus the element and we define

n < n + 1 and n < °o for all n, there is no irredundant set of relations which

characterizes this partial ordering.

16. Let S be topologically sorted xPl xP2 . . . xPn and apply this permutation to both

rows and columns.

17. If k increases from 1 to n in step T4, the output is 1932745860. If k decreases

from n to 1 in step T4, as it does in Program T, the output is 9123745860.

18. They link together the items in sorted order: QLINK[0] is the first, QLINK[QLINK[0]]

is the second, and so on; QLINK[last] = 0.

19. This would fail in certain cases; when the queue contains only one element in

step T5, this would set F = 0 (thereby emptying the queue), but other entries could

be placed in the queue in step T6. This modification would therefore require an
additional test of F = 0 in step T6.

20. Indeed, a stack could be used, in the following way. (Step T7 disappears.)

Step T4. Set T <— 0. For 1 < k < n if C0UNT[/c] is zero do the following: Set

SLINK[/c] 4- T, T <- k. (SLINK[lc] = QLINK[&].)

Step T5. Output the value of T. If T = 0, go to T8; otherwise, set N <— N — 1,
P 4- T0P[T], T 4- SLINK[T].

Step T6. Same as before, except go to T5 instead of T7; and when C0UNT[SUC(P)]

goes down to zero, set SLINK[SUC (P)] <— T and T 4- SUC (P).

21. Repeated relations only make the algorithm a little slower and take up more

space in the storage pool. A relation “j < j” would be treated like a loop (e.g. an

arrow from a box to itself in the corresponding diagram).

2.2.3 ANSWERS TO EXERCISES 543

22. To make the program “fail-safe” we should (a) check that 0 < n < (some

appropriate maximum); (b) check each relation.) ■< k for the conditions 0 < j,k < n;

(c) make sure the number of relations doesn’t overflow the storage pool area.

23. At the end of step T5, add “TQP[F] <- A”. (Then at all times T0P[1], . . . , TOP[n]

point to all the relations not yet cancelled.) In step T8, if N > 0, print “LOOP

DETECTED IN INPUT: ”, and set QLINKjfc] <— 0 for 1 < k < n. Now add the following

steps :

T9. For 1 < k < n set P <— T0P[fc], T0P[fc] <— 0, and perform step T10. (This

will set QLINKjj] to one of the predecessors of object j, for each j not yet

output.) Then go to Til.

T10. If P t* A, and QLINK[SUC(P)] = 0, set QLINK[SUC(P)] <- k. If P ^ A set

P <— NEXT(P) and repeat this step.

Til. Find a k with QLINKjfc] 5^ 0.

T12. Set T0P[fc] <— 1 and k <— QLINK[&]. Now if T0P[/c] = 0, repeat this step.

T13. (We have found the start of a loop.) Print the value of k, set T0P[fc] <— 0,

k QLINK[&], and if T0P[/c] = 1 repeat this step.

T14. Print the value of k (the beginning and end of the loop) and stop. (Note:

The loop has been printed backwards; if it is desired to print the loop in

forward order, an algorithm like that in exercise 7 should be used between

steps T12 and T13.) |

24. Insert three lines in the program of the text:

08a PRINTER EQU 18

11+a ST6 NO

59a STZ X,1(TOP) T0P[F] <- A.

Replace lines 74-75 by the following:

n J6Z DONE

75 DUT LINE1(PRINTER) Print indication of loop,

76 LD6 NO

77 STZ X,6(QLINK) QLINK[fc] «- 0.

78 DEC6 1

79 J6P *—2 n~> k > 1.

80 LD6 NO

81 T9 LD2 X,6(T0P) P <- top[4].

82 STZ X,6(T0P) T0P[fc] <- 0.

83 J2Z T9A Is P = A?

84 T10 LD1 0,2(SUC) rll <- SUC(P).

85 LDA X,1(QLINK)

86 JANZ *+2 If QLINKfrll] = 0,

87 ST6 X,1(QLINK) set it to k.

88 LD2 0.2(NEXT) P f- NEXT(P).

89 J2P T10 Is P ^ A?

90 T9A DEC6 1

91 J6P T9 n > k > 1.

544 ANSWERS TO EXERCISES 2.2.3

92 Til INC6 1

93 LDA X,6(QLINK)

94 JAZ *-2 Find k with QLINK[&] 0.

95 T12 ST6 X,6(TOP) T0P[fc] <- k.

96 i LD6 X,6(QLINK) k <- QLINK[(c],

97 LD\ X,6(TOP)

98~ J1Z T12 Is T0P[Jfc] = 0?

99 T13 ENTA 0.6

100 CHAR Convert k to alpha.

101 JBUS *(PRINTER)

102 STX VALUE Print.

103 OUT LINE2(PRINTER)

104 J1Z DONE Stop when T0P[&] = 0.

105 STZ X,6(T0P) TOP[k] <- 0.

106 LD6 X,6(QLINK) k <- QLINK[*].

107 LD1 X,6(T0P)

108 JMP T13

109 LINE1 ALF LOOP Title line

110 ALF DETEC

111 ALF TED I

112 ALF N INP

113 ALF UT:

114 LINE2 ALF Succeeding lines

115 VALUE EQU LINE2+3

116 ORIG LINE2+24

117 DONE HLT End of computation.

118 X END T0PS0RT i

Note: When the relations 10 < 1, 6 < 10, 1 < 9 were added before the

(18), this program printed out “1,10,6,8,5,9,1” as the loop.

26. One solution is to proceed in two phases as follows:

Phase 1. (We use the X table as a (sequential) stack as we mark B = 1 or 2 for each

subroutine that needs to be used.)

AO. For 1 < J < N set B(X[J]) <- B(X[J]) + 2, if B(X[J]) < 0.

Al. If N = 0, go to phase 2; otherwise set P <— X[N] and decrease N by 1.

A2. If |B (P)| = 1, go to Al, otherwise set P <— P-f- 1.

A3. If B(SUB1(P)) < 0, set N<-N+l, B(SUB1 (P)) «-B (SUB1 (P)) + 2,

X[N] <-SUBl(P). If SUB2 (P) ^ 0 and B(SUB2(P)) < 0, do a similar set

of actions with SUB2(P). Go to A2. |

Phase 2. (We go through the table and allocate memory.)

Bl. Set P <- FIRST.

B2. If P = A, set N<—N+l, BASE(LQC(X[N])) <- MLQC, SUB (LOC (X[N])) <-
O, and terminate the algorithm.

B3. IfB(P) > 0, set N<-N+l, BASE (LOC (X[N])) <— MLOC, SUB (LOC (X[N])) <-
P, MLOC <- MLOC + SPACE (P).

B4. Set P <— LINK(P) and return to B2. |

2.2.3 ANSWERS TO EXERCISES 545

27. Comments on the following code are left to the reader.

B EQU 0:1

SPACE EQU 2:3

LINK EQU 4:5

SUB1 EQU 2:3

SUB2 EQU 4:5

BASE EQU 0:3

SUB EQU 4:5

AO LD2 N

J2Z B1

1H LD3 X, 2

LDA 0.3(B)

JAP *+3

INCA 2

STA 0.3(B)

DEC2 1

J2P IB

LD1 N

A1 J1Z B1

LD2 X.l

DEC1 1

A2 LDA 0.2(1:1)

DECA 1

JAZ A1

INC2 1

A3 LD3 0,2(SUB1)

LDA 0.3(B)

JAP 9F

INC1 1

INCA 2

STA 0.3(B)

ST3 X.l

9H LD3 0,2(SUB2)

J3Z A2

LDA 0.3(B)

JAP A2

INC1 1

INCA 2

STA 0.3(B)

ST3 X.l

JMP A2

B1 ENT2 FIRST

LDA MLOC

JMP IF

B3 LDX 0.2(B)

JXNP B4

INC1 1

546 ANSWERS TO EXERCISES 2.2.3

ST2 X,1(SUB)

ADD 0,2(SPACE)

1H STA X+l,1(BASE)

B4 LD2 0,2(LINK)

B2 J2NZ B3

STZ X+l,1(SUB)

28. We give here only a few comments related to the military game. Let A be the

player with three men whose pieces start on nodes A13; let B be the other player. In

this game, A must “trap” B, and if B can cause a position to be repeated for a second

time we can consider him the winner. To avoid keeping the entire past history of the

game as an integral part of the positions, however, we should modify the algorithm

in the following way: Start by marking the positions 157-4, 789-B, 359-6 with B to

move as “lost” and apply the suggested algorithm. Now the idea is for player A to

move only to B’s “lost” positions. But he must also take additional precautions

against repeating prior moves. A “good” computer game-playing program will use

a random number generator to select between several winning moves when more than

one is present, so an obvious technique would be to make the computer, playing A,

just choose randomly among those moves which take him to a “lost” position for B.

Board for “The Military Game.”

But there are interesting situations which make this plausible procedure fail! For

example, consider position 258-7 with A to move; this is a “won” position. From this

position player A might try moving to 158-7 (which is a “lost” position for B, according

to the algorithm). But then B plays to 158-B, and this forces A to play to 258-B,

after which B plays back to 258-7; he has won, since the former position has been

repeated! This example shows that the algorithm must be re-invoked after every

move has been made, starting with each position that has previously occurred marked
“lost” (if A is to move) or “won” (if B is to move).

The author has found that this game makes a very satisfactory computer demon¬
stration program.

29. (a) If FIRST = A, do nothing; otherwise set P <— FIRST, and then repeatedly

set P <— LINK(P) zero or more times until LINK(P) = A. Finally set LINK(P)

AVAIL and AVAIL <— FIRST (and probably also FIRST <— A), (b) If F = A, do nothing;

otherwise set LINK (R) <- AVAIL and AVAIL <— F (and probably also F <— A*
R<—LOC(F)).

2.2.4 ANSWERS TO EXERCISES 547

SECTION 2.2.4

1. No, it does not help, it seems to hinder (if anything). (The stated convention is not

especially consistent with the circular list philosophy, unless we put NODE(LOC(PTR))

into the list as its list head.)

3. If PTRi = PTR2, the only effect is PTR2 <— A. If PTRi PTR2, the exchange of

links breaks the list into two parts, as if a circle had been broken in two by cutting

at two points; the second part of the operation then makes PTRi point to a circular

list that consists of the nodes that would have been traversed if, in the original list,

we followed the links from PTRi to PTR2.

4. Let HEAD be the address of the list head. To push down Y onto the stack: set

P <= AVAIL, INFO (P) <— Y, LINK(P) <— LINK (HEAD), LINK (HEAD) P. To pop up

the stack onto Y: if LINK (HEAD) = HEAD then UNDERFLOW, otherwise set P <—

LINK(HEAD), LINK(HEAD) <- LINK(P), Y INFO(P), AVAIL <= P.

5. (Solution by B. Young.) Set Q <— A, P <— PTR, and then while P ^ A repeatedly

set R «- Q, Q «- P, P <- LINK(Q), LINK(Q) «- R. (Afterwards Q = PTR.)

6.

a)

b)

7. Matching terms in the polynomial are located in one pass over the list, instead

of requiring repeated random searches. Also, increasing order would be incompatible

with the “—1” sentinel.

8. We must know what node points to the current node of interest, if we are going

to delete that node or to insert another one ahead of it. There are alternatives, however:

we could delete NODE(Q) by setting Q2<—LINK(Q) and then setting NODE(Q) <—

N0DE(Q2), AVAIL <= Q2; we could insert a N0DE(Q2) in front of NODE(Q) by first

interchanging NODE(Q2) <-» NODE (Q), then setting LINK(Q) <—Q2, Q Q2. These

clever tricks allow the deletion and insertion without knowing which node links to

NODE (Q); they were used in early versions of IPL. But they have the disadvantage

that the sentinel node at the end of a polynomial will occasionally move, and other

link variables may be pointing to this node.

548 ANSWERS TO EXERCISES 2.2.4

9. Algorithm A with P = Q simply doubles polynomial (Q), as it should. Algorithm M

with P = M also gives the expected result. Algorithm M with P = Q sets poly¬

nomial (P) <— polynomial (P) times (1 + <i)(l + <2) • • ■ (1 + 4) if M = <1 4- £2 + * • •
+ tk (although this is not immediately obvious). When M = Q, Algorithm M sur¬

prisingly gives the expected result, polynomial(Q) <— polynomial(Q) + polynomial(Q)

X polynomial (P), except tha^ the computation blows up when the constant term of

polynomial(P) is —1.

10. No changes at all. The only possible difference would be in step M2, removing

error checks that A, B, or C might individually overflow (these error checks have not

been specified because we have assumed they are not necessary). In other words,

the algorithms in this section may be regarded as operations on f(xb2, xb, x) instead

of on f{x, y, z).

COPY STJ 9F (comments are left

ENT3 9F to the reader)

LDA 1.1
1H LD6 AVAIL

J6Z OVERFLOW

LDX 1,6(LINK)

STX AVAIL

STA 1,6

LDA 0,1

STA 0,6

ST6 1,3(LINK)

ENT3 0,6

LD1 1,1(LINK)

LDA 1,1
JANN IB

LD2 8F(LINK)

ST2 1,3(LINK)

9H JMP *

8H CON 0 1

12. Let the polynomial copied have p terms. Program A takes (29p + 13)m, and to

make it a fair comparison we should add the time to create a zero polynomial, e.g.

18m with exercise 14. The program of exercise 11 takes (21p + 31)m, about f as much.

ERASE STJ 9F

LDX AVAIL

LDA 1,1(LINK)
STA AVAIL

STX 1,1(LINK)

9H JMP *

ZERO STJ 9F

LD1 AVAIL

J1Z OVERFLOW

LDX 1,1(LINK)

STX AVAIL

ENT2 0,1

MOVE 1F(2)

2.2.4 ANSWERS TO EXERCISES 549

ST2 1,2(LINK)
9H JMP *
1H CON 0

CON —1(ABC) |

MULT STJ 9F Entrance to subroutine
LDA 5F Change settings of switches.
STA SW1
LDA 6F
STA SW2
STA SW3
JMP *+2

2H JMP ADD M2. Multiply cyde.
1H LD4 1.4(LINK) Ml. Next multiplier. M <— LINK(M)

LDA 1,4
JANN 2B To M2 if ABC (M) > 0.

8H LDA 7F Restore settings of switches.
STA SW1
LDA 8F
STA SW2
STA SW3

9H JMP * Return.
5H JMP *+l New setting of SW1

LDA 0,1 C0EF(P)
MUL 0,4 X C0EF(M) rX.
LDA 1,1(ABC) ABC(P)
JAN *+2
ADD 1,4(ABC) + ABC(M), if ABC(P) > 0
SLA 2 Move into 0:3 field of rA.
STX OF Save rX for use in SW2 and SW3.
JMP SW1+1

6H LDA OF New setting of SW2, SW3
7H LDA 1,1 Usual setting of SW1
8H LDA 0,1 Usual setting of SW2, SW3
OH CON 0 Temp storage |

16. Let r be the number of terms in polynomial (M). The subroutine requires
21 pr + 38r -(- 29 + 29j2m' + 18£m" + 29J^P' + &Hq', where the latter summations
refer to the corresponding quantities during the r activations of Program A. The
number of terms in polynomial (Q) goes up by p' — to' each activation of Program A.
If we make the not unreasonable assumption that to' = 0 and p' = ap where 0 < a < 1,
we get the respective sums equal to 0, (1 — a)pr, apr, and rq'0-\- ap(r(r — l)/2),
where q'0 is the value of q' in the first iteration. The grand total is 4apr2 + 40pr -f-
6apr + 8q'0r + 38r + 29. This analysis indicates that the multiplier ought to have
fewer terms than the multiplicand, since we have to skip over unmatching terms in
polynomial (Q) more often.

17. There actually is very little advantage; addition and multiplication routines with
either type of list would be virtually the same. The efficiency of the ERASE sub¬
routine (see exercise 13) is apparently the only important difference.

550 ANSWERS TO EXERCISES 2.2.4

18. Let the link field of node x* contain L0C(x;+i) © L0C(x,_i), where “© denotes,

e.g., subtraction or “exclusive or.” Two adjacent list heads are included in the circular
list, to help get things started properly. (The origin of this ingenious technique is

unknown.)

\
SECTION 2.2.5

1. Insert Y at the left: P <= AVAIL; INFO(P) <— Y; LLINK(P) *— A; RLINK(P)

LEFT; if LEFT ^ A then LLINK(LEFT) <- P else RIGHT <- P; LEFT <- P. Set Y to left

and delete: if LEFT = A then UNDERFLOW; P ^ LEFT; LEFT <- RLINK(P); if LEFT = A

then RIGHT «- A else LLINK(LEFT) <- A; AVAIL <= P.

2. Consider the case of several deletions (at the same end) in succession. After each

deletion we must know what to delete next. This implies the links in the list point

away from that end of the list. So deletion at both ends implies the links must go

both ways.

3. To show the independence of CALLUP from CALLDOWN, notice for example that in

Table 1 the elevator did not stop at floors 2 or 3 at time 0393-0444 although there

were people waiting; these people had pushed CALLDOWN, but if they had pushed

CALLUP the elevator would have stopped.
To show the independence of CALLCAR from the others, notice that in Table 1, wrhen

the doors start to open at time 1398, the elevator has already decided to be GOINGUP.

Its state would have been NEUTRAL at that point if CALLCARjl] = CALLCAR[2] =

CALLCAR[3] = CALLCAR[4] = 0, according to step E2, but in fact CALLCAR[2] and

CALLCAR[3] have been set to 1 by men nos. 7 and 9 in the elevator. (If wTe envision the

same situation with all floor numbers increased by 1, the fact that STATE = NEUTRAL

or STATE = GOINGUP when the doors open would affect whether the elevator wmuld

perhaps continue to go downward or would unconditionally go upward.)

4. If a dozen or more people were getting out at the same floor, STATE might be

NEUTRAL all during this time, and when E9 calls the DECISION subroutine this may

set a new state before anyone has gotten in on the current floor. It happens very

rarely indeed (and it certainly was the most puzzling phenomenon observed by the

author during his elevator experiments).

5. The state from the time the doors start to open at time 1063 until man 7 gets

in at time 1183 would have been NEUTRAL, since there would have been no calls to

floor 0. Then man 7 would set CALLCAR[2] •*— 1 and the state would correspondingly

change to GOINGUP.

6. Add the condition “if OUT < IN then STATE ^ GOINGUP; if OUT > IN then

STATE 5*= GOINGDOWN” to the condition “FLOOR — IN” in steps M2 and M4. In

step E4, accept men from QUEUE [FLOOR] only if they are headed in the elevator’s

direction, unless STATE = NEUTRAL (when we accept all comers); men from

QUEUE[FLOOR] who have not been accepted should also push CALLUP or CALLDOWN

again (since the state can change in step M5).

7. In line 227 this man is assumed to be in the WAIT list. Jumping to M4A makes

sure he stays there. It is assumed that GIVEUPTIME is not zero, and indeed that it

is probably 100 or more.

2.2.5 ANSWERS TO EXERCISES 551

8. Comments are left to the reader.

277 E8 DEC4 1

278 ENTA 61

279 JMP HOLDC

280 LDA CALL,4(3:5)

281 JAP IF

282 ENT1 -2,4

283 J1Z 2F

284 LDA CALL,4(1:1)

285 JAZ E8

286 2H LDA CALL-1,4

287 ADD CALL-2,4

288 ADD CALL-3,4

289 ADD CALL-4,4

290 JANZ E8

291 1H ENTA 23

292 JMP E2A

9. 01 DECISION STJ 9F Store exit location.

02 J5NZ 9F Dl. Decision necessary ?

03 LDX ELEV1+2(NEXTINST)

04 DECX El D2. Should door openl

05 JXNZ IF Jump if elevator not at El.

06 LDA CALL+2

07 ENT3 E3 Prepare to schedule E3,

08 JANZ 8F if there is a call on floor 2.

09 1H. ENT1 -4 D3. Any calls?

10 LDA CALL+4,1 Search for a nonzero call variable.

11 JANZ 2F

12 1H INC1 1 rll = j — 4

13 J1NP *-3

14 LDA 9F(0:2) All CALL^'], j 7* FLOOR, are zero

15 DECA E6B Is exit location = line 250?

16 JANZ 9F

17 ENT1 -2 Set j <— 2.

18 2H ENT5 4,1 D4. Set STATE.

19 DEC5 0,4 STATE <-j — FLOOR.

20 J5NZ *+2

21 JANZ IB j = FLOOR not allowed in general.

22 JXNZ 9F D5. Elevator dormant?

23 J5Z 9F Jump if not at El or if j = 2.

24 ENT3 E6 Otherwise schedule E6.

25 8H ENTA 20 Wait 20 units of time.

26 ST6 8F(0:2) Save rI6.

27 ENT6 ELEV1

28 ST3 2,6(NEXTINST) Set NEXTINST to E3 or E6.

29 JMP HOLD Schedule the activity.

30 8H ENT6 * Restore rI6.

31 9H JMP * Exit from subroutine.

552 ANSWERS TO EXERCISES 2.2.5

11. Initially let LINK[fc] = 0, 1 < k < n, and HEAD = —1. During a simulation step

that changes V[/c], give an error indication if LINK[fc] ^ 0; otherwise set LINK[/c] <—

HEAD, HEAD <— k and set NEWV[fc] to the new value of V[k]. After each simulation step,

set k <— HEAD, HEAD <-1, and do the following operation repeatedly zero or more

times until k,< 0: set V[k] «- NEWV[A], t <- LINK[k], LINK[A:] <- 0,k<-t.
Clearly this method is readily adapted to the case of scattered variables, if we

include a NEWV and LINK fielcl in each node associated with a variable field V.

12. The WAIT list has deletions from the left to the right, but insertions are sorted in

from the right to the left (since the search is likely to be shorter from that side). Also

we delete nodes from all three lists in several places when we do not know the pre¬

decessor or successor of the node being deleted. Only the ELEVATOR list could be

converted to a one-way list, without much loss of efficiency.

Note: It may be preferable to use a non-linear list as the WAIT list in a discrete

simulator, to reduce the time for “sorting in”. Section 5.2.3 discusses the general

problem of maintaining priority queues, or “smallest in, first out” lists, such as this.

Several ways are known in which only 0(log n) operations are needed to insert or

delete when there are n elements in the list, although there is of course no need for

such a fancy method when n is known to be small.

SECTION 2.2.6

1. (Note that the indices run from 1 to n, not from 0 to n as in Eq. (5).)

LOC(A[0, 0]) + 2nJ+ 2K = L0C(A[J, K]), where A[0, 0] is an assumed node that is

actually nonexistent. If we set J = K = 1, we get L0C(A[0, 0]) + 2n -f- 2 =

LOC(A[l, 1]), so the answer can be expressed in several ways. L0C(A[0, 0]) might

be negative.

2. LOC(A[Ii, . . . , Ifc]) = LOC(A[0, . . . , 0]) + £i<r<fc arIr

= LOC (A [Z1, . . . , Z(t]) 1 <r< k I <r< k ®rlr>

where ar = c (Us — ^ + !)•
Note: For a generalization to the structures occurring in the COBOL and PL/I

languages, and a simple algorithm to compute the relevant constants, see P. Deuel,

CACM 9 (1966), 344-347.

3. 1 < k < j < n if and only if 0 < k — 1 < j — l<n — l;so replace k, j, n

respectively by k — 1, j — 1, n — 1 in all formulas derived for lower bound zero.

4. LOC (A[J,K]) = LOC(A[0, 0]) + nJ — J(J — l)/2+ K.

5. Let A0 = LOC(A[0, 0]). There are at least two solutions, assuming J is in rll

and K is in rI2. (1) “LDA TA2,1:7”, where location TA2+) is “NOP j+l*j/2+A0,2”;

(2) “LDA Cl,7:2”, where location Cl contains “NOP TA,1:7” and location TA +j says

“NOP j+l*j/2+k0”. The latter takes one more cycle but doesn’t tie the table down

to index register 2.

6. (a) LOC (A[I, J, K]) = LOC (A[0, 0, 0])

(b) LOC(B[I, J, K]) = LOC(B[0,0,0])

hence the stated form is possible in this case also.

2.2.6
ANSWERS TO EXERCISES 553

7. LOC(A[Ii, .. ., I*]) =LOC(A[0,...,0]) +
1.2.6-56.

y (Ir+fc-A

1 <r<k \ 1 + & ~r)

See exercise

8. (Solution by P. Nash.) Let X [I, J, K] be defined for 0 < I<n,0<J<n+l,

0 < K < n-f 2. We can let A[l,J,K] = X[l,J,K]; B[l,J,K] = X[J,I+ 1, K];

= X[I,K,J + 1]; D[I,J,K] = X[J,K,I + 2]; E[l,J,K] = X[K,I + 1,

1]; F[I,J.K] = X[K,J + 1, 1+ 2], This scheme is the best possible, since it

packs the (n -f l)(n + 2)(n + 3) elements of the six tetrahedral arrays into con¬

secutive locations with no overlap. Proof: A and B exhaust all cells X[i,j,k] with

h — min (i, j, fc); C and D exhaust all cells withy = min (i, j, k) 9^ k\ E and F exhaust
all cells with i = min (i, j, k) 9^ j, k.

(The construction generalizes to m dimensions, if anybody ever wants to pack the

elements of ml generalized tetrahedral arrays into (n-j-1)(b+2) ■ • ■ (n+m) con¬

secutive locations. Associate a permutation ai<Z2 • • • am with each array, and store its

elements in X[Iai -f- 61, Ia2 + 62, . . ., Iam + 5m], where 6162 • ■ • bm is the inversion
table for 0102 • • • am as defined in Section 5.2.1.)

9. Gl. Set pointer variables PI, P2, P3, P4, P5, P6 to the first locations of the lists

FEMALE, A21, A22, A23, BLOND, BLUE, respectively. Assume in what follows

that the end of each list is given by link A, and A is smaller than any other link,.
If P6 = A, stop (the list, unfortunately, is empty).

G2. (Many possible orderings of the following actions could be done; we have

chosen to examine EYES first, then HAIR, then AGE, then SEX.) Set P5 <—

HAIR(P5) zero or more times until P5 < P6. If now P5 < P6, go to step G5.

G3. Set P4 <— AGE (P4) repeatedly if necessary until P4 < P6. Similarly do the

same to P3 and P2 until P3 < P6 and P2 < P6. If now P4, P3, P2 are all
smaller than P6, go to G5.

G4. Set PI <— SEX (PI) until PI < P6. If PI = P6, we have found one of the

desired girls, so output her address, P6. (Her age can be determined from
the settings of P2, P3, and P4.)

G5. Set P6<— EYES(P6). Now stop if P6 = A; otherwise return to G2. |

This algorithm is interesting but not the best way to organize a list for such a search.

10. After trying out many different seemingly efficient schemes and analyzing their

efficiency, the author feels there seems to be no better way than to divide all people

into n approximately equal groups, where n is as large as possible based on the amount

of space available, in such a way that a person’s characteristics determine the group

he is in; then search every person in the appropriate group for the desired character¬

istics. (For further discussion, see Section 6.5.)

11. At most 200 + 200 + 3 • 4 • 200 = 2800 words.

12. VAL(QO) = c, VAL(PO) = b/a, VAL(Pl) = d.

13. It is convenient to have at the end of each list a sentinel which “compares low”

in some field on which the list is ordered. A straight one-way list could have been used,

for example by retaining just the LEFT links in BASER0W[f] and the UP links in

554 ANSWERS TO EXERCISES 2.2.6

BASECOLlj], by modifying Algorithm S thus: S2, test if PO = A before setting J <—

COL(P), and if so set PO <- LOC (BASER0W[10]) and go to S3. S3, test if QO = A and if

so, terminate. S4, analogous to changes in S2. S5, test if PI = A and if so treat this

as if COL (PI) < 0. S6, test if UP(PTR[J]) = A and if so treat as if its ROW field were

negative.
These modifications mak^ the algorithm more complicated and save no storage

space except a ROW or COL field in the list heads (which in the case of MIX is no saving

at all).

14. One could first link together those columns which have a nonzero element in the

pivot row, so that all other columns could be skipped as we pivot on each row. Rows

in which the pivot column is zero are skipped over immediately.

15. Let rll = PIVOT, J; rI2= PO; rI3= QO; rI4= P; rI5= PI, X; LOC (BASER0W[i]) =

BROW+i; L0C(BASEC0L[j]) = BCOL+j; PTR[j] = BC0L+j(l :3).

01 ROW EQU 0:3

02 UP EQU 4:5

03 COL EQU 0:3

04- LEFT EQU 4:5

os PTR EQU 1:3

06 PIVOTSTEP STJ 9F

07 SI LD2 0,1(ROW)

08 ST2 10

09 LD3 1,1(COL)

10 ST3 JO

11 LDA =1.0=

12 FDIV 2,1

13 STA ALPHA

H LDA =1.0=

15 STA 2,1

16 ENT2 BROW,2

17 ENT3 BC0L.3

18 JMP S2

19 2H ENTA BCOL,1

20 STA BCOL,1(PTR)

21 LDA 2,2

22 FMUL ALPHA

23 STA 2,2

24 S2 LD2 1,2(LEFT)

25 LD1 1,2(COL)

26 JINN 2B

27 S3 LD3 0,3(UP)

28 LD4 0,3(ROW)

29 9H J4N - *

30 CMP4 10

31 JE S3

32 ST4 I(ROW)

33 ENT4 BROW,4

34 S4A LD5 1,4(LEFT)

35 S4 LD2 1,2(LEFT) ,

Subroutine entrance, rll = PIVOT

Si. Initialize.
10 <- ROW(PIVOT).

JO <- COL(PIVOT).

Floating point constant 1

ALPHA <- 1/VAL(PIVOT).

VAL(PIVOT) <- 1.

PO <- LOC(BASEROW([10]).

QO <- LOC(BASECOL([JO]).

PTR[J] <- LOC(BASECOL([J]).

VAL (PO) V- ALPHA X VAL (PO).

52. Process pivot row. PO <— LEFT (PO).

J <- COL(PO).

If J <0, process J.

53. Find new row. QO <— UP (QO).

rI4 <- ROW(QO).

If rI4 < 0, exit.

If rI4 = 10, repeat.

I <- rI4.

P <- L0C(BASER0W[I]).

PI<- LEFT(P).

S4- Find new column. PO LEFT (PO).

2.2.6

36 LD1 1,2(COL)
37 CMP1 JO
38 JE S4

39 ENTA 0,1
40 SLA 2

41 JINN S5
42 LDAN 2,3
43 FMUL ALPHA

44 STA 2,3
45 JMP S3
46 1H ENT4 0,5
47 LD5 1,4(LEFT)
48 S5 CMPA 1,5(COL)
49 JL IB

50 JE S7
51 S6 LD5 BCOL,1(PTR)
52 \ LDA I

53 2H ENT6 0,5

54 LD5 0,6(UP)

55 CMPA 1,5(COL)

56 JL 2B

57 LD5 AVAIL

58 J5Z OVERFLOW

59 LDA 0,5(UP)

60 STA AVAIL

61 LDA 0,6(UP)

62 STA 0,5(UP)

63 LDA 1,4(LEFT)

64 STA 1,5(LEFT)

65 ST1 1,5(COL)

66 LDA I(ROW)

67 STA 0,5(ROW)

68 STZ 2,5

69 ST5 1,4(LEFT)

70 ST5 0,6(UP)

71 S7 LDAN 2,3

72 FMUL 2,2

73 FADD 2,5

74 JAZ S8

75 STA 2,5

76 ST5 BCOL,1(PTR)

77 ENT4 0,5

78 JMP S4A

79 S8 LD6 BCOL,1(PTR)

80 JMP *+2

81 LD6 0,6(UP)

82 LDA 0,6(UP)

83 DECA 0,5

84 JANZ *-3

ANSWERS TO EXERCISES 555

J <- COL(PO).

Repeat if J = JO.

rA(0:3) <- J.

If J < 0,

set VAL (QO) <-ALPHA X VAL (QO).

P PI.

PI<— LEFT(P).

55. Find I, J element.
Loop until COL (PI) < J.

If =, go right to S7.

56. Insert I, J dement. rI5 <— PTR[J].
rA(0:3) <- I.

rI6 <— rI5.

rI5 <- UP(rI6).

Jump if C0L(rI5) <— I.

X <= AVAIL.

UP(PTR[J])

-> UP(X).

LEFT(P)

-> LEFT(X).

COL(X) <- J.

ROW(X) I.

VAL(X) 0.

LEFT (P) <- X.

UP(PTR[J]) <- X.

57. Pivot. — VAL(QO)

X VAL(PO)

+ VAL(PI)

If significance lost, to S8.

Otherwise store in VAL (PI).

PTR[J] <- PI.

P PI.

PI 4- LEFT (P), to S4.

58. Delete I, J element. rI6 <— PTR[J].

rI6 <- UP(rI6).

Is UP(rI6) = PI?

Loop until equal.

556 ANSWERS TO EXERCISES 2.2.6

85 LDA 0,5(UP)

86 STA 0,6(UP) UP(rI6) <- UP (PI).

87 LDA 1.5(LEFT)

88 STA 1,4(LEFT) LEFT(P) «- LEFT(PI).

89 LDA AVAIL AVAIL <= PI.

90 STA x 0,5(UP)

91 ST5 AVAIL

92 JMP M4A PI <- LEFT (P), to S4. |

Note: Using the conventions of Chapter 4, lines 71-74 would actually be coded

LDA 2,3; FMUL2.2; FCMP2.5; JE S8; STATEMP; LDA 2,5; FSUB TEMP;

with a suitable parameter EPSILON in location zero.

18. k = 1, pivot column 3, we obtain

k = 2, pivot column 1, we obtain

k = 3, pivot column 2, we obtain

after the final permutations, we have the answer

20. ao = L0C(A(1,1)) — 3, ai = 1 or 2, 02 = 3 — ai.

SECTION 2.3

1. There are three ways to choose the root. Once the root has been chosen, say A,
there are three ways to partition the remaining nodes into subtrees: {5},{C};

{C}, {B}; {B, C}. In the latter case there are two ways to make {B, C} into a tree,

depending on which is the root. Hence we get four trees when A is the root:

2.3 ANSWERS TO EXERCISES 557

and' 12 in all. This problem is solved for any number n of nodes in Section 2.3.4.4;

the number of ways is (2n — 2)!/(n — 1)! in general.

2. The first two trees in the answer to exercise 1 are the same, as oriented trees, so

we get only 9 different possibilities in this case. For the general solution, see Section

2.3.4.4, where the formula n”-1 is proved.

3. Part 1: To show there is at least one such sequence. Let the tree have n nodes.

The result is clear when n = 1, since X must be the root. If n > 1, the definition

implies there is a root Xi and subtrees Ti, T2, . . . , Tm; either X = Xi or X is a

member of a unique Tj. In the latter case, there is by induction a path X2, . . . , X
where X2 is the root of Tj, and since Xi is the father of X2 we have a path

X\, X2, . . . , X.
Part 2: To show there is at inost one such sequence. We will prove by induction

that if X is not the root of the tree, X has a unique father (so that Xk determines

Xk—i determines Xk-2, etc.). If the tree has one node, there is nothing to prove;

otherwise X is in a unique Tj. Either X is the root of Tj, in which case X has a unique

father by definition; or X is not the root of Tj, in which case X has a unique father

in Tj by induction, and no node outside of Tj can be X’s father.

4. True (unfortunately).

5. 4.

6. Let father°(X) denote X, fatherx(X) denote X’s father, father2(X) =

father(father(X)) = X’s grandfather, fatherfc(X) = father(fatherfc-1(X)) = X’s

“(great)i_2-grandfather.” The cousinship condition is that fatherm+1(X) =

fatherm+n+1(F) but fatherm(X) fatherm+n(F); or, if n > 0, possibly the same

condition with X, F interchanged.

7. We go to an unsymmetric relation between X and F; the condition of exercise 6

is used, with the convention that father^X) ^ fatherfc(F) if either j or k (or both) is

— 1. To show that this relation is always valid for some unique m and n, consider

the Dewey decimal notation for X and F, namely 1 . a\ . • • • . av . 61 . • • • . bq and

I. 01 . • • • . ap . ci . • • • . cr, where p > 0, g > 0, r > 0 and (if qr 0) b\ ^ c\.
The numbers of any pair of nodes can be written in this form, and clearly we must take

m = q — 1 and n + m = r — 1.

8. No binary tree is really a tree; the concepts are quite separate, even though the

diagram of a nonempty binary tree may look treelike.

9. A is the root, since we conventionally put the root at the top.

10. Any finite collection of nested sets corresponds to a forest as defined in the text,

as follows: Let A\, . . . , An be the sets of the collection that are contained in no other.

For fixed j, the sub-collection of all sets contained in Aj is nested, and therefore we

may assume this sub-collection corresponds to a tree (unordered) with Aj as the root.

II. In a nested collection C let X = F if there is some ZG6 such that XU Y C.Z.
This relation is obviously reflexive and symmetric, and it is in fact an equivalence

relation since W = X, X = Y implies there are Z\, Z2 in 6 with W £ Z\, X C Z\ D Z2,
Y Q Z2. Since Z\ n Z2 5^ 0, either Z\ Q Z2 or Z2 c Z\, hence W U F Q Z\ U Z2 E G.

Now if 6 is a nested collection, define an oriented forest corresponding to Q by the

rule “X is an ancestor of F, and F is a descendant of X, if and only if X D F.” Each

equivalence class of C corresponds to an oriented tree, which is an oriented forest with

558 ANSWERS TO EXERCISES 2.3

X = Y for all X, Y. (We thereby have generalized the definitions of forest and tree

which were given for finite collections.) In these terms, we may define the level of X
as the cardinal number of ancestors(X). Similarly, the degree of X is the cardinal

number of equivalence classes in the nested collection descendants(X). We say X
is the father of, Y, and Y is a son of X, if X is an ancestor of Y but there is no Z such

that X D Z D Y. To get ordered trees and forests, order the equivalence classes men¬

tioned above in some ad hoc manner, for example by embedding the relation c into

linear order.

Example (a): Let Sak = {x | x = .d^d^ ... in decimal notation, where a =
•61^263 ... in decimal notation, and dj = ej if j mod 2* 5^ 0). The collection Q =
{Sak | k > 0, 0 < a < 1} is nested, and gives a tree with infinitely many levels and

uncountable degree for each node.

Example (b), (c): It is convenient to define this set in the plane, instead of in

terms of real numbers, and this is sufficient since there is a one-to-one correspondence

between the plane and the real numbers. Let Samn = {(a, ft) \ to/2" < (3 <
(to + l)/2n}, and let Ta = {(7, /3) | 7 < a). The collection C = | 0 < a < 1,

n > 0, 0 < m < 2n) U {Ta | 0 < a < 1} is easily seen to be nested. The sons of

Samn are &a(2m)(n+i) and /Sa(2m+i)(n+i), and Ta has the son Sa00 plus the subtree

{*S7mn | 7 < a} U {Ty | 7 < a). So each node has degree 2, and each node has un-

countably many ancestors of the form Ta. This construction is due to R. Bigelow.
Note: If we take a suitable well-ordering of the real numbers, and if we define

Ta = {(7,/3) | 7 > a}, we can improve this construction slightly, obtaining a nested

collection where each node has degree 2, uncountable level, and 2 sons.

12. We impose an additional condition on the partial ordering (analogous to that of

“nested sets”) to ensure that it corresponds to a forest: If x y and x <, z then

either y <, z or z ^ y. To make a tree, also assert the existence of a node r such that

x ^ r for all x. A proof that this gives an unordered tree as defined in the text, when

the number of nodes is finite, runs like the proof for nested sets in exercise 10.

13. ai, ai.a2, ■ • • , ai.a2. • • • .a*.

14. Since S is nonempty, it contains an element “l.oi. • • • .a*,” where k is as small

as possible; if k > 0 we also take a* as small as possible in S, and we immediately

see that k must be 0, i.e. S contains the element “1”. Let this be the root. All other

elements have k > 0, and so the remaining elements of S can be partitioned into sets

Sj = {1 .j.a2. ■ ■ ■ .ak}, 1 < j < to, for some to > 0: If to 3^ 0, and Sm is nonempty,

by reasoning as above we find “1.j” is in Sj for each Sj, so that each Sj is nonempty.

Then it is easy to see that the sets Sj = {l.a2. • ■ ■ .ak\ 1 .j.a2. • • • .ak is in Sj} satisfy

the same condition as S did, so by induction each of the Sj forms a tree also.

15. Let the root be “1” and let the root of the left subtree of a be a.0; the root of

the right subtree of a may be named a.l. For example in Fig. 19(a), King Christian IX

appears in two positions, 1.0.0.0.0 and 1.1.0.0.1.0. For brevity we may drop the

decimal points, and write merely 10000 and 110010. Note: This notation is due to

Francis Galton; see Natural Inheritance (Macmillan, 1889), 249. For “pedigrees”,

it is more mnemonic to use F and M in place of 0 and 1; e.g., Christian IX is Charles’s

MFFMF, i.e. Charles’s mother’s father’s father’s mother’s father. The 0 and 1 con¬

vention is interesting for another reason as it gives us an important correspondence

between nodes in a binary tree and positive integers expressed in the binary system
(namely, memory addresses in a computer).

2.3.1 ANSWERS TO EXERCISES 559

17. root(T) = A; root(T[2]) = C; root(T[2, 2]) = E.

18. L[5, 1,1] = "(2)”. L[3, 1] is nonsense, since L[3] is an empty List.

*[L] L[2] = “(L)”; L[2,1,1] = “a”.

^ *

I
[L]

20. (Intuitively, the correspondence between 6-trees and binary trees is obtained by

removing all terminal nodes of the 6-tree; see the important construction in Section

2.3.4.5.) Let a 6-tree with one node correspond to the empty binary tree; and let a

6-tree with more than one node, consisting therefore of a root r and 6-trees T\ and T2,

correspond to the binary tree with root r, left subtree T[, and right subtree T2, where

T\ and T2 correspond respectively to T[and T2.

21. 1 + 0 • ni + 1 • n2 + • • • + (m — 1) • nm. Proof: The number of nodes in the

tree is no + ni -f-112 + • • • -j- nm, and this also equals 1 (number of sons in the

tree) = 1 0 ' no d- 1 ■ ni -)- 2 • n2 d- ■ ■ • -f- ni • nm.

SECTION 2.3.1

1. INFO (T) = A, INFO (RLINK(T)) = C, etc.; the answer is H.

2. Preorder: 1245367; symmetric order: 4251637; postorder: 4526731.

3. The statement is true (notice for example that nodes 4, 5, 6, 7 always appear in

this order in exercise 2). The result is immediately proved by induction on the size

of the binary tree.

4. It is the reverse of postorder. (This is easily proved by induction.)

5. For example in the tree of exercise 2, preorder is (using binary notation which is in

this case equivalent to the Dewey system) 1, 10, 100, 101, 11, 110, 111. This is recog¬

nizable as sorting from left to right, as in a dictionary.

In general, the nodes will be listed in preorder if they are sorted lexicographically

from left to right, with “blanks” treated as less than 0 or 1. The nodes will be listed

in postorder if they are sorted lexicographically with 0 < 1 < “blank”. For inorder,

use 0 < “blank” < 1.

6. The fact that pi P2 • • • Pn is obtainable with a stack is readily proved by induc¬

tion on n, or in fact we may observe that Algorithm T does precisely what is required

in its stack actions. (The corresponding sequence of S’s and X’s as in exercise 2.2.1-3 is

the same as the sequence of l’s and 2’s as subscripts in double order, see exercise 18.)

560 ANSWERS TO EXERCISES 2.3.1

Conversely, if pi p2 • ■ ■ Pn is obtainable with a stack and if pk — 1, then

pi . . . Pk—l is a permutation of {2, . . . , k} and Pk+i ■ • • Pn is a permutation of

{k + 1, . . . , n) each of which are obtainable by stack, and which are the permutations

corresponding to the left and right subtrees. The proof now proceeds by induction.

7. From the preorder, the root is known; then from the inorder, we know the left

subtree and the right subtree^ and in fact we know the preorder and inorder of the

nodes in the latter subtrees. Hence the tree is readily constructed (and indeed it is

quite amusing to construct a simple algorithm which links the tree together in the

normal fashion, starting with the nodes linked together in preorder in LLINK and in

inorder in RLINK). Similarly, postorder and inorder together characterize the struc¬

ture. But preorder and postorder do not; there are two binary trees having “AB”

as preorder and “BA” as postorder. If all nonterminal nodes of a binary tree have

both branches nonempty, its structure is characterized by preorder and postorder.

8. (a) Binary trees with all LLINKs null, (b) Binary trees with zero or one nodes,

(c) Binary trees with all RLINKs null.

9. T1 once, T2 (2n-j- 1) times, T3 n times, T4 (n-f- 1) times, T5 n times. This is

derived by induction or by Kirchhoff’s law, or by examining Program T.

10. A binary tree with all RLINKs null will cause all n node addresses to be put in the

stack before any are removed.

11. Let ank be the number of binary trees with n nodes for which the stack in Algo¬

rithm T never contains more than k items. If gk(z) = , we find gi(z) =

1/(1 — 2), g2(z) = 1/(1 — 2/(1 — 2)) = (1 — 2)/(l — 2z), . . . , gk(z) =

l/(l — zgk—i (2)) = qk-i(z)/qk(z) where 4-1(2) = 40(2) = 1, qk+i(z) = qk{z) —

zqk—i(z); hence gk(z) = (fi(z)k+1 — f2(z)k+1)/(fi(z)k+2 — f2(z)k+2) where fi(z) =

i(l ± x/l — 42). It can now be shown that ank is the coefficient of un in (1 — u)

(1 + u)2n(1 — uk+1)/(1 — uk+2); hence s„ = k(ank — an(*;-i)) is the coefficient

of un+1 in (1 — u)2(l+ u)2nJ2i> 1 W(1 ~ u*)t minus ann. The technique of exer¬
cise 5.2.2-52 now yields the asymptotic series

Sn/dnn = vVn — 1.5 + + 0(n~312).

[N. G. de Bruijn, D. E. Knuth, and S. 0. Rice, in Graph Theory and Computing, ed. by

R. C. Read (New York: Academic Press, 1972), 15-22.]

12. Visit NODE(P) between step T2 and T3, instead of between step T4 and T2. For

the proof, show that “Starting at step T2 with . . . original value A[l] . . . A[m].”

essentially as in the text.

13. Let steps Tl, T2 be unchanged. In step T3, put (P, 0) on top of the stack instead

of just P. In step T4, when the stack is not empty, set (P, d) <= A; and if d = 0 set

A 4= (P, 1), p *- RLINK (P), and return to T2. Finally, step T5 becomes “Visit NODE (P),
and go to T4.”

14. By induction, there are always exactly n + 1 A links (counting T when it is null).

There are n non-null links, counting T, so the remark in the text about the majority
of null links is justified.

15. There is a thread LLINK pointing to a node if and only if it has a nonempty right

subtree; there is a thread RLINK pointing to a node if and only if its left subtree is
nonempty. (See Fig. 24.)

2.3.1 ANSWERS TO EXERCISES 561

16. If LTAG(Q) = “+”, Q* = LLINK(Q), i.e. one step down to the left. Otherwise

Q* is obtained by going upwards in the tree (if necessary) repeatedly until the first

time it is possible to go down to the right without retracing steps; typical examples

are the trips from P to P* and from Q to Q* in the following tree:

17. If LTAG(P) = “+”, set Q <— LLINK(P) and terminate; otherwise set Q P and

now set Q <— RLINK(Q) zero or more times until finding RTAG(Q) = and finally

set Q <— RLINK(Q) one further time.

18. Modify Algorithm T by inserting a step T2a, “Visit NODE(P) the first time”; and

in step T5, we are visiting NODE(P) the second time.

Given a threaded tree the traversal is extremely simple:

(P, 1)A = (LLINK(P), 1) if LTAG(P) = “+”, otherwise (P, 2);

(P, 2)A = (RLINK(P), 1) if RTAG(P) = “+”, otherwise (RLINK(P), 2).

In each case, we move at most one step in the tree; so in practice, double order and

the values of d and e are embedded in a program and not explicitly mentioned.

Suppressing all the “first visits” gives us precisely Algorithms T and S; suppressing

all the “second visits” gives us the solutions to exercises 12 and 17.

19. El. Set Q <- P. If Q = HEAD, go to E5.

E2. If RTAG(Q) = “+”, set Q RLINK(Q) and repeat this step.

E3. Set Q 4— RLINK(Q). If now LLINK(Q) = P, go to E5; otherwise set Q <—

LLINK(Q).

E4. If RLINK(Q) ^ P, set Q RLINK(Q) and repeat this step; otherwise termi¬

nate the algorithm.

E5. If RTAG(Q) = “+”, set Q <— Q$ using Algorithm S and repeat this step. |

Note: There seems to be no more efficient algorithm than this (consider for example

P and P# in the tree shown), and it is inferior to an algorithm using a stack (like exer¬

cise 13) for traversing an entire tree in postorder.

562 ANSWERS TO EXERCISES 2.3.1

20. Replace lines 06-09 by:

ENT4 0,6

LD6 AVAIL

d6Z OVERFLOW

LDX 0,6(LINK)

STX AVAIL *

ST5 0,6(INFO)

ST4 0,6(LINK)

Replace lines 12-13 by:

LD4 0.6(LINK)

LD5 0,6(INFO)

LDX AVAIL

STX 0.6(LINK)

ST6 AVAIL

ENT6 0,4

If two more lines of code are added at line 06

T3 LD3 0,5(LLINK)

J3Z T5 To T5 if LLINK(P) = A.

with appropriate changes in lines 10 and 11, the running time goes down frcftn 30n +

a-f 4 to 27a + 6n — 22 units. (This same device would reduce the running time of

Program T to 12a + 6n — 7, which is a slight improvement, if we set a = (n+ l)/2.)

21. The following algorithm may in fact be used for traversal in any of the three

orders, even if there are “shared” subtrees:

VI. [Initialize.] Set P <— L0C(T), Q 4— T. If Q = A, terminate the algorithm.

V2. [Preorder visit.] If traversing in preorder, visit N0DE(Q).

V3. [Go to left.] Set R 4- LLINK(Q). If R ^ A, set LLINK(Q) «- P, P <- Q,

Q <— R, and go back to Y2. (It is assumed that RTAG(P) is initially “+”.)

V4. [Inorder visit.] If traversing in inorder, visit N0DE(Q).

Y5. [Go to right.] Set R4-RLINK(Q). If R ^ A, set RTAG(Q) 4-
RLINK(Q) 4— P, P 4— Q, Q 4— R, go to V2.

V6. [Postorder visit.] If traversing in postorder, visit N0DE(Q).

V7. [Go up.] If P = LOC(T), terminate the algorithm. Otherwise if RTAG(P) =

set R4-LLINK(P), LLINK(P) <- Q, Q «-P, P 4— R, and go to V4.

Otherwise set R4-RLINK(P), RTAG(P) 4-RLINK(P) 4— Q, Q 4-p,

P <— R, and go to V6. |

Algorithms related to this one are discussed further in Section 2.3.5. It is actually

possible to solve this problem without the additional RTAG bits, using an ingenious

idea due to J. M. Robson. He keeps an additional stack of pointers to those nodes

which have a nonnull left subtree and such that their right subtree is currently being

visited. There is room to maintain such a stack, using the link fields in nodes for

which LLINK = RLINK = A! [Information Processing Letters 2 (1973), 12-14.]

L. Siklossy has discovered an interesting way to traverse a tree without an aux¬

iliary stack and without altering the data in memory, by extending the method of

exercise 2.2.4-18 to trees. [Information Processing Letters 1 (1972), 149-152.] See also

the articles by G. Lindstrom and B. Dwyer, Information Processing Letters 2 (1973)
47-51, 143-145.

22. Let rl4 = R, rI5 = Q, rI6 = P, and use other conventions of Programs T and S.

VI ENT6 T 1 VI. Initialize. P 4— LOC(T).
LD5 T(LLINK) 1 Q<-T. '

2.3.1 ANSWERS TO EXERCISES 563

J5NZ V3 1
JMP DONE 0

1H ST6 0,5(LLINK) a — 1
2H ENT6 0,5 n — 1

ENT5 0,4 n — 1
V3 LD4 0,5(LLINK) n

J4NZ IB n
V4 JMP VISIT n
V5 LD4 1,5(RLINK) n

J4Z V7 n
ENNA 0,6 n — a
STA 1,5(RLINKT) n — a
JMP 2B n — a

V7 ENT4 -T, 6 n
J4Z DONE n
LD4 1,6(RLINKT) n — 1
J4N IF n — 1
LD4 0,6(LLINK) a — 1

ST5 0,6(LLINK) a — 1
ENT5 0,6 a — 1
ENT6 0,4 a — 1
JMP V4 a — 1

1H ST5 1,6(RLINKT) n — a

ENT5 0,6 n — a

ENN6 0,4 n — a

JMP V7 n — a

Special exit for empty tree

LLINK(Q) <- P.

P<-Q.

Q*-R.
VS. Go to left. R <— LLINK(Q).

Repeat if R A.

V4. Inorder visit.
V5. Go to right. R <— RLINK(Q).

To V7 if R = A.

RLINK(Q) <-P, RTAG(Q) <-

P <— Q, Q R, go to V3.
V7. Go up.
Terminate if P = LOC (T).

R <- RLINKT(P).

Jump if RTAG(P) =

R <- LLINK(P).

LLINK(P) <- Q.

Q <— P.
P <- R.

RLINK(P) <— Q, RTAG (P) <- “+ ”!

Q<—P.
P <■-R.

I

The running time is 23n — 10 (curiously independent of a), for n ^ 0. So the execu¬
tion time is competitive with exercise 20.

23. Insertion to the right: RLINKT(Q) <— RLINKT(P), RLINKT(P) <—|- Q, LLINK(Q) <—

A. Insertion to the left, assuming LLINK(P) = A: Set LLINK(P) <— Q, LLINK(Q) *— A,

RLINKT(Q) <-P. Insertion to the left, between P and LLINK(P) 9^ A: Set

R<—LLINK(P), LLINK(Q) <— R, and then if RTAG(R) ^ ” set R RLINK(R)

repeatedly until RTAG(R) = “—finally, set RLINK(R) Q, LLINK(P)<-Q,

RLINKT(Q) <-P. (A more efficient algorithm for the last case can be used if we

know a node F such that P = LLINK(F) or P = RLINK(F); assuming the latter, for

example, we could set INFO (P)<-> INFO (Q), RLINK(F) <— Q, LLINK(Q) 4— p,

RLINKT(P) <-Q; this takes a fixed amount of time, but since it switches nodes

around in memory it is generally not recommended.)

564 ANSWERS TO EXERCISES 2.3.1

25. We first prove (b), by induction on the number of nodes in T, and similarly (c).

Now (a) breaks into special cases; write T <, i T' if (1) holds, T ^2 T' if (2) holds,

etc. Then T ^iT' and T' £ T" implies T £ 1 T" ■ T 2 T' and T' £ T" implies

T ^2 T"; and the remaining two cases are treated by proving (a) by induction on

the number of nodes in T.

26. If the double order of T is (mi, di), (u2, d2), • • • , (w2n, d2n) where the u s are nodes

and the d’s are 1 or 2, form the “trace” of the tree (t>i, si), (v2, s2), . . . , (t'2«J s2»),

where vj = info(«y), and sy = l(uj) or r(uj) according as ds = 1 or 2. Now T <, T'

if and only if the trace of T (as defined here) lexicographically precedes or equals the

trace of T'. Formally, this means either n < n' and (t>y, Sj) = (v'j, s'}) for 1 < j < n,

or else there is a k for which (t>y, sy) = (v'j, s'j) for 1 ^ j < k and either Vk ■< vk or

vk = v't and sk < s'k.

27. Rl. [Initialize.] Set P <- HEAD, P' <- HEAD', i.e. the respective list heads of the

given right-threaded binary trees. Go to R3.

R2. [Check INFO.] If INFO(P) < INFO(P'), terminate (T < INFO(P) >

INFO(P'), terminate (T > T').

R3. [Go to left.] If LLINK(P) = A = LLINK(P'), go to R4; if LLINK(P) =

A ^ LLINK(P'), terminate (T < T'); if LLINK(P) ^ A = LLINK(P'), ter¬

minate (T > T'); otherwise set P^LLINK(P), P' «- LLINK(P') and go

to R2.

R4. [End of tree?] If P = HEAD (or, equivalently, if P' = HEAD'), terminate

(T equivalent to T').

R5. [Go to right.] If RTAG(P) = ” = RTAG(P'), set P <-RLINK(P), P' «-

RLINK(P'), and go to R4. If RTAG(P) = ” 5^ RTAG(P'), terminate

(T < T'). If RTAG(P) 5^ ” = RTAG(P'), terminate (T > T'). Other¬

wise, set P <- RLINK(P), P' <- RLINK(P'), and go to R2. |

To prove the validity of this algorithm (and therefore to understand how it works),

one may show by induction on the size of the tree T0 that the following statement is

valid: “Starting at step R2 with P and P' pointing to the roots of two nonempty right-

threaded binary trees To and T'0, the algorithm will terminate if To and T'0 are not

equivalent, indicating whether To < T'0 or To >■ T'0; the algorithm will reach step R4

if To and T'0 are equivalent, with P and P' then pointing respectively to the successor

nodes of To and T0 in symmetric order.”

28. Equivalent and similar.

29. Prove by induction on the size of T that the following statement is valid: “Starting

at step C2 with P pointing to the root of a nonempty binary tree T and with Q pointing

to a node that has empty left and right subtrees, the procedure will ultimately arrive

at step C6 after setting INFO(Q) <— INFO(P) and attaching copies of the left and

right subtrees of NODE(P) to NODE(Q), and with P and Q pointing respectively to the

preorder successor nodes of the trees T and NODE(Q).”

30. Assume that the pointer T in (2) is LLINK(HEAD) in (9).

LI. [Initialize.] Set Q <- HEAD, RLINK(Q) <- Q.

L2. [Advance.] Set P <— Q$. (See below.)

2.3.1 ANSWERS TO EXERCISES 565

L3. [Thread.] If RLINK(Q) = A, set RLINK(Q) P, RTAG(Q) <- else set

RTAG(Q) <- If LLINK(P) = A, set LLINK(P) Q, LTAG(P)

else set LTAG(P) <- “+”.

L4. [Done?] If P HEAD, set Q •*— P and return to L2. |

Step L2 of this algorithm implies the activation of an inorder traversal coroutine

like Algorithm T, with the additional proviso that Algorithm T “visits” HEAD after it

has fully traversed the tree. This notation is a convenient simplification in the descrip¬

tion of tree algorithms, since we need not repeat the stack mechanisms of Algorithm T

over and over again. Of course Algorithm S cannot be used during step L2, since the

tree hasn’t been threaded yet. But the algorithm of exercise 21 can be used in step L2,

and this provides us with a very pretty method that threads a tree without using any

auxiliary stack!

31. (a) Set P HEAD; (b) set Q <— P$ (e.g. using Algorithm S, modified for a right-

threaded tree); (c) if P ^ HEAD, AVAIL <= P; (d) if Q ^ HEAD, set P Q and return

to (b). [Other solutions which decrease the length of the inner loop are clearly possible,

although the order of the basic steps is somewhat critical. The above procedure works

since we never return a node to available storage until after Algorithm S has looked at

both its LLINK and its RLINK; as observed in the text, each of these links is used

precisely once during a complete tree traversal.]

32. RLINK(Q) <-RLINK(P), SUC(Q) <-SUC(P), SUC(P) ^RLINK(P) <— Q, PRED(Q) <-

P, PRED(SUC(Q)) <- Q.

33. Inserting NODE(Q) just to the left and below NODE(P) is quite simple: Set

LLINKT(Q) <— LLINKT(P), LLINKT(P) +Q, RLINK(Q) <— A. Insertion to the right

is considerably harder, since it essentially requires finding *Q, which is of comparable

difficulty to finding Q# (see exercise 19); the node-moving technique discussed in

exercise 23 could perhaps be used. So general insertions are more difficult with this

type of threading. But the insertions required by Algorithm C are not as difficult as

insertions are in general, and in fact the copying process is slightly faster for this kind

of threading:

Cl. Set P <— HEAD, Q <— U, go to C4. (The assumptions and philosophy of Algo¬

rithm C in the text are being used throughout.)

C2. If RLINK(P) ^ A, set R <= AVAIL, LLINK(R) <— LLINK(Q), LTAG(R)

RLINK(R) <—A, RLINK(Q) <— LLINK(Q) R.

C3. Set INFO(Q) ^ INFO(P).

C4. If LTAG(P) = “+”, set R<= AVAIL, LLINK(R) ^ LLINK(Q), LTAG(R)

RLINK(R) <—A, LLINK(Q) <-R, LTAG(Q) “+”.

C5. Set P <— LLINK(P), Q <— LLINK(Q).

C6. If P y* HEAD, go to C2. |

The algorithm now seems almost too simple to be correct!

Algorithm C for threaded or right-threaded binary trees is slightly longer due to

the extra time to calculate P*, Q* in step C5.

It would be possible to thread RLINKs in the usual way or to put #P in RLINK(P),

in conjunction with the above copying method, by appropriately setting RLINK(R)

and RLINKT(Q) in steps C2 and C4.

566 ANSWERS TO EXERCISES 2.3.1

34. Al. Set Q <— P, and then repeatedly set Q <- RLINK(Q) zero or more times until

RTAG(Q) =

A2. Set R <— RLINK(Q). If LLINK(R) = P, set LLINK(R) <— A; otherwise set

R <— LLINK(R), then repeatedly set R <— RLINK(R) zero or more times until

RLINK(R) = P, then finally set RLINKT(R) <— RLINKT(Q). (This step has

removed NODE(P) tad its subtrees from the original tree.)

A3. Set RLINK(Q) <— HEAD, LLINK(HEAD) <- P. I

(The key to inventing and/or understanding this algorithm is the construction of good

“before and after” diagrams.)

36. No; cf. the answer to exercise 1.2.1-15(e).

37. If

LLINK(P) = RLINK(P) = A

in the representation (2), let

LINK(P) = A;

otherwise let LINK(P) = Q where NODE(Q) corresponds to NODE(LLINK(P)) and

N0DE(Q+1) to NDDE(RLINK(P)). The condition LLINK(P) or RLINK(P) = A is

represented by a sentinel in NODE (Q) or NODE (Q+l) respectively. This representation

uses between n and 2n — 1 memory positions; under the stated assumptions, (2) would

require 18 words of memory, compared to 11 in the present scheme. Insertion and

deletion operations are approximately of equal efficiency in either representation. But

this representation is not quite as versatile in combination with other structures.

SECTION 2.3.2

1. If B is empty, F(B) is an empty forest. Otherwise, F(B) consist of a tree T plus

the forest /'’(rightsubtree(.B)), where root(71) = root(J3) and subtrees(T) =

,F(leftsubtree(.B)).

2. The number of zeroes in the binary notation is the number of decimal points in

the decimal notation, and the exact formula for t(ie correspondence is

ai . a2 . • ■ • . cik <-> l°i01°2-10 • • • 01a*-1,

where 1“ denotes a ones in a row.

3. Sort the Dewey decimal notations for the nodes lexicographically (from left to

right, as in a dictionary), placing a shorter sequence oi . • • • . a* in front of its ex¬

tensions ai . • • • . a,k . • • • . ar for preorder, and behind its extensions for postorder.

(Thus, if we were sorting words instead of sequences of numbers, we would place the

words cat, cataract in usual dictionary order, for preorder, but with the order of initial

subwords reversed “cataract, cat”, for postorder.) These rules are readily proved by
induction on the size of the tree.

4. True, by induction on the number of nodes.

5. (a) Inorder, (b) Postorder. It is rather interesting to formulate rigorous induc¬

tion proofs of the equivalence of these algorithms.

2.3.2 ANSWERS TO EXERCISES 567

6. We have preorder(T) = preorder(T'), and postorder(T) = inorder(T'), even if

T has nodes with only one son; the remaining two orders are not in any simple relation

(for example, the root of T comes at the end in one case and about in the middle in
the other).

7. (a) yes; (b) no; (c) no; (d) yes. Note that reverse preorder of a forest equals

postorder of the left-right reversed forest (in the sense of mirror reflection).

8. T ■<, T' means info (root(71)) < info(root(T')), or these info’s are equal and

either (a): the subtrees of root(T') are T\, . . . , Tn and the subtrees of root(T') are

T\, , Tn,, where there is a k such that Tj is equivalent to Tj for 1 < j < k but

Tk is ^ and not equivalent to T'k-, or (b): with the notation of (a), Tj is equivalent to
Tj for 1 < j < n, and n < n'.

9. The number of nonterminal nodes is one less than the number of right links that

are A, in a nonempty forest, because the null right links correspond to the rightmost

son of each nonterminal node, and also to the root of the rightmost tree in the forest.

(This fact gives another proof of exercise 2.3.1-14, since obviously the number of null

left links is equal to the number of terminal nodes.)

10. The forests are similar if and only if n = n', and s(uj) = s(u'j), 1 < j < n; they

are equivalent if and only if in addition info(wy) = info(wJ/), 1 < j < n. The proof

is similar to the previous proof, by generalizing Lemma 2.3.IP (take/(it) = s(u) — l).

11.

12. If INF0(Q1) ^ 0, do the following operations: set R <— COPY (PI); then if

TYPE(P2) = 0 and INFD(P2)^2, set R <— TREE (“ | , R, INFO (P2) — 1); if

TYPE (P2) 9^0, set R <— TREE (“ “f ”,R, TREE (“—”, COPY (P2), TREE (1))); then set

Q1 MULT(Q1,MULT(COPY(P2),R)).

If INFO(Q) 9^ 0, set Q <— TREE (“X”, MULT (TREE (“In”, C0PY(P1)) ,Q) .TREE

(“ T ”, COPY(PI),COPY(P2))). Finally go to DIFF[4],

13. The following program implements Algorithm 2.3.1C with rll = P, rI2 = Q,

rI3 = R, and wTith appropriate changes in the initialization and termination conditions:

6Jj Save contents of rI3, rI2.

65 Cl. Initialize.

66 Start by creating NODE(U) with

67 RLINK(U) = A.

568 ANSWERS TO EXERCISES 2.3.2

68 8H CON 0

69 4H LD1 0,1(LLINK)

70 1H LD3 AVAIL

71 J3Z OVERFLOW

72 4 LDA 0,3(LLINK)

73 STA AVAI£.

n ST3 0,2(LLINK)

75 ENNA 0,2
76 STA 0,3(RLINKT)

77 INCA 8B

78 ENT2 0,3

79 JAZ C3

80 C2 LDA 0,1
81 JAN C3

82 LD3 AVAIL

83 J3Z OVERFLOW

84 LDA 0,3(LLINK)

85 STA AVAIL

86 LDA 0,2
87 STA 0,3(RLINKT)

88 ST3 0,2(RLINKT)

89 C3 LDA 1,1
90 STA 1,2
91 LDA 0,1(TYPE)

92 STA 0,2(TYPE)

93 C4 STZ 0,2(LLINK)

94 LDA 0,1(LLINK)

95 JANZ 4B

96 C5 LD2 0,2(RLINKT)

97 LD1 0,1(RLINK)

98 J2P C2

99 ENN2 0,2
100 C6 J2NZ C5

101 LD1 8B(LLINK)

102 6H ENT3 *

103 7H ENT2 *

Zero constant for initialization

Set P <- LLINK(P) = P*

R <= AVAIL.

LLINK(Q) <- R.

RLINKT(R) *-Q.

rA <— LDC(init node) — Q.

Set Q <- R = Q*.

To C3, the first time.

C2. Anything to right?

Jump if RTAG(P) =

R <= AVAIL.

Set RLINKT(R) *- RLINKT(Q).

RLINKT(Q) <-+R-

CS. Copy INFO.

INFO field copied.

TYPE field copied.

C4. Anything to left?

Jump if LLINK(P) ^ A.

C5. Advance. Q <- RLINKT (Q).

P <- RLINK(P).

Jump if RTAG(Q) =

Q '-Q-
C6. Test if complete.
rll <— location of first node created.

Restore index registers.

I

14. Let a be the number of nonterminal (operator) nodes copied. The number of

executions of the various lines in the previous program is as follows: 64-67, 1; 69, a;
70-79, 'a -f- 1; 80-81, n — 1; 82-88, n — 1 — a; 89-95, n; 96-98, n+ 1; 99-100, a+ 2;

101-103, 1. The total time is (34n + 6a + 18)u; about of this is to get available

nodes, § to traverse, and ■§ to copy the INFO and LINK information.

15. Comments are left to the reader.

218 DIV LDA 1,6
219 JAZ IF

220 JMP C0PYP2

221 ENTA SLASH

222 ENTX 0,6

2.3.2 ANSWERS TO EXERCISES 569

223 JMP TREE2
224 ENT6 0.1
225 1H LDA 1.5
226 JAZ SUB

227 JMP C0PYP2
228 ST1 1F(0:2)
229 ENTA C0N2
230 JMP TREEO
231 ENTA UPARROW
232 1H ENTX *

233 JMP TREE2
234 ST1 IF(0:2)
235 JMP COPYP1
236 ENTA 0.1

237 ENT1 0.5
238 JMP MULT
239 ENTX 0,1

240 1H ENT1 *

241 ENTA SLASH
242 JMP TREE2

243 ENT5 0,1

244 JMP SUB

16. Comments are left to the reader.

245 PWR LDA 1,6
246 JAZ 4F

247 JMP C0PYP1

248 ST1 R (0:2)

249 LDA 0,3(TYPE)

250 JANZ 2F

251 LDA 1,3

252, DECA 2
253 JAZ 3F

254 INCA 1
255 STA CONO+1

256 ENTA CONO

257 JMP TREEO

258 STZ CONO+1

259 JMP 5F

260 2H JMP C0PYP2

261 ST1 IF(0:2)

262 ENTA CONI

263 JMP TREEO

264 1H ENTX *

265 ENTA MINUS

266 JMP TREE2

267 5H LDX R(0:2)

268 ENTA UPARROW

269 JMP TREE2

570 ANSWERS TO EXERCISES

270 ST1 R(0:2)

271 3H JMP C0PYP2

272 ENTA 0.1

273 R ENT1 *

274 JMP MULT

27k5 ENTA 0.6

276 JMP MULT

277 ENT6 0.1

278 4H LDA 1.5

279 JAZ ADD

280 JMP C0PYP1

281 ENTA LOG

282 JMP TREE1

283 ENTA 0,1

284 ENT1 0.5

285 JMP MULT

286 ST1 1F(0:2)

287 JMP C0PYP1

288 ST1 2F(0:2)

289 JMP C0PYP2

290 2H ENTX *

291 ENTA UPARR0W

292 JMP TREE2

293 1H ENTX *

294 ENTA TIMES

295 JMP TREE2

296 ENT5 0,1
297 JMP ADD

20. More generally, let u and v be any nodes of a forest. If u is an ancestor of v, it

is immediate by induction that u precedes v in preorder and follows v in postorder.

Conversely, suppose u precedes v in preorder and follows v in postorder; we must show

that u is an ancestor of v. This is clear if u is the root of the first tree. If u is another

node of the first tree, v must be also, since u follows v in postorder; so induction applies.

Similarly if u is not in the first tree, v must not be either, since u precedes v in preorder.

21. If NODE(P) is a binary operator, pointers to its two operands are PI = LLINK(P)

and P2 = RLINK(Pl) = $P. Algorithm D makes use of the fact that P2$ = P, so

that RLINK(Pl) may be changed to Ql, a pointer to the derivative of NODE (PI),

then later RLINK(Pl) is reset in step D3. For ternary operations, it is difficult to

generalize this trick; we would have, say, PI = LLINK(P), P2 = RLINK(Pl), P3 =

RLINK(P2) = $P. Now after computing the derivative Ql, we could set RLINK(PI) <—

Ql temporarily, and then after computing the next derivative Q2 we could set

RLINK (Q2) «-Ql and RLINK(P2) <- Q2 and reset RLINK(Pl) <-P2. But this is

certainly inelegant, and it becomes progressively more so as the degree of the operator

becomes higher. Therefore the device of temporarily changing RLINK (PI) in Algo¬

rithm D is definitely a trick, not a technique; a more aesthetic way to control a dif¬

ferentiation process, because it generalizes to operators of higher degree and does not

rely on isolated tricks, may be based on Algorithm 2.3.3F, and this is discussed in

detail in exercise 2.3.3-3.

2.3.3 ANSWERS TO EXERCISES 571

22. From the definition it follows immediately that the relation is transitive, i.e. if

T c T' and T' c T" then T c T". (In fact the relation is easily seen to be a partial

ordering.) Clearly if we let / be the function taking nodes into themselves, l(T) c T
and r(T) c T. Therefore if T c l(T') or T c r(T') we must have T c T'.

Suppose fi and fr are functions that respectively show l(T) C l(T') and r(T) c

r(T'). Let f(u) = fi(u) if u is in l(T), f(u) = root(71/) if u is root(T), otherwise

f(u) = fr(u). Now it follows easily that / shows that T C Tfor example, if we let

r'(T) denote' r{T) — root(T) we have preorder(T) = root(T) preorder(l(T)) pre¬

order (/(T)); preorder(T") = /(root(T)) preorderpreorder(r'(T')).
The converse does not hold, e.g. consider the subtrees with roots b and b' in Fig. 25.

SECTION 2.3.3

1. Yes, we can reconstruct them just as (3) is deduced from (4), but interchanging

LTAG and RTAG, LLINK and RLINK, and using a queue instead of a stack.

2. Make the following changes in Algorithm F: Step FI, change to “last node of the

forest in preorder.” Step F2, change “f(xd), . . . , f(xi)” to “f(xi), . . . ,/(«<*)” in two

places. Step F4, “If P is the first node in preorder, terminate the algorithm. (Then

the stack contains /(root(Ti)), . . . ,/(root(77m)), from top to bottom, where

T\, . . . , Tm are the trees of the given forest, from left to right.) Otherwise set

P to its predecessor in preorder (P <— P — 1 in the given representation), and return

to F2.”

3. In step Dl, also set S <— A. (S is a link variable that links to the top of the stack.)

Step D2 becomes, for example, “If NODE(P) denotes a unary operator, set Q <— S,

S RLINK(Q), PI <— LLINK(P); if it denotes a binary operator, set Q <— S, Q1 <—

RLINK(Q), S RLINK(Q1), PI <- LLINK(P), P2 <- RLINK(PI). Then perform

DIFFfTYPE(P)].” Step D3 becomes “Set RLINK(Q) <- S, S <- Q.” Step D4 becomes

“Set P <— PS.” The operation LLINK(DY) <— Q may be avoided in step D5 if we

assume S = LLINK (DY). This technique clearly generalized to ternary and higher-

order operators.

4. A representation like (10) takes n — m LLINKs and n+ (n — m) RLINKs. The

difference in total number of links is n — 2m between the two forms of representation.

Arrangement (10) is superior when the LLINK and INFO fields require about the same

amount of space in a node and when m is rather large, i.e. when the nonterminal nodes

have rather large degrees.

5. It would certainly be silly to include threaded RLINKs, since an RLINK thread

just points to FATHER anyway. Threaded LLINKs as in 2.3.2-(4) would be useful if

it is necessary to move leftward in the tree, for example if we wanted to traverse a

tree in reverse postorder or in family-order; but these operations are not significantly

harder without threaded LLINKs unless the nodes tend to have very high degrees.

6. LI. Set P <- FIRST, FIRST <- A.

L2. If P = A, terminate. Otherwise set Q <— RLINK(P).

L3. If FATHER(P) = A, set RLINK(P) <— FIRST, FIRST <— P; otherwise set

RLINK(P) <- LSON(FATHER(P)), LSON(FATHER(P)) <- P.

L4. Set P <— Q and return to L2. |

572 ANSWERS TO EXERCISES 2.3.3

7. {1,5} {2, 3, 4, 7} {6, 8, 9}.

8. Perform step E3 of Algorithm E, then test if j = k.

9. FATHER^]: 502208228

Jc : 1 23456789

10. One idea is to set FATHER of each root node to the negative of the number of

nodes in its tree (these values being easily kept up to date); then if |FATHER[j]| >

|FATHER^]| in step E4, the roles of j and k are interchanged. This technique (due to

M. D. Mcllroy) ensures that each operation takes order log n steps.
For still more speed, we can use the following suggestion due to Alan Tritter:

In step E4, set FATHER[x] <— k for all values x ^ k which were encountered in step E3.

This means an extra pass is made up the trees, but it collapses them so that future

searches are faster. (See Chapter 7 for further discussion of the equivalence problem.)

11. It suffices to define the transformation which is done for each input (P, j, Q, k):

Tl. If FATHER(P) ^ A, set j <- j + DELTA(P), P «- FATHER(P), and repeat

this step.

T2. If FATHER(Q) j* A, set k <- k + DELTA(Q), Q *— FATHER(Q), and repeat

this step.

T3. If P = Q, check that j = k (otherwise an error has been made in the input,

the equivalences are contradictory). If P ^ Q, set DELTA(Q) <— j — k,
FATHER(Q) <— P, LBD(P)<-min (LBD(P), LBD(Q) + DELTA(Q)), UBD(P) <-

max (UBD(P), UBD(Q) + DELTA(Q)) I

Note: It is possible to allow the “ARRAY X[l:u]” declarations to occur intermixed

with equivalences, or to allow assignment of certain addresses of variables before

others are equivalenced to them, etc., under suitable conditions which are not difficult

to understand. For further development of this algorithm, see C ACM 7 (1964), 301-

303, 506.

12. (a) Yes. (If this condition is not required, it would be possible to avoid the loops

on S which appear in steps A2 and A9.) (b) Yes.

13. The crucial fact is that the UP chain leading upward from P always mentions the

same variables and the same exponents for these variables as the UP chain leading-

upward from Q, except that the latter chain may include additional steps for variables

with exponent zero. (This condition holds throughout most of the algorithm, except

during the execution of steps A9 and A10.) Now we get to step A8 either from A3

or from A10, and in each case it was verified that EXP (Q) 0. Therefore EXP (P) 0

and in particular it follows that P ^ A, Q ^ A, UP(P) 5^ A, UP(Q) A, and the

result stated in the exercise follows. So the proof depends on showing that the UP

chain condition stated above is preserved by the actions of the algorithm.

16. The INF01, RLINK tables together with the suggestion for computing LTAG in

the text gives us the equivalent of a binary tree represented in the usual manner. The

2.3.4.1 ANSWERS TO EXERCISES 573

idea- is to traverse this tree in postorder, counting degrees as we go:

PI. Let R, D, and I be stacks which are initially empty; then set R<=n-f- 1,

D *= 0, j 0, k <— 0.

P2. If top(R) > j + 1, (i.e. if LTAG[/] = if that field were present), go to P5.

P3. If I is empty, terminate the algorithm; otherwise set i <= I, <— k-\-l,

INF02[/c] INFDl[t], DEGREE^] <= D.

P4. If RLINKjf] = 0, go to P3; otherwise delete the top of R (which will equal
RLINK[f]).

P5. Set top(D) <— top(D) + 1, j <— j -)- 1, I <= j, D <= 0, and if RLINK[/| ^ 0 set
R «= RLINKjj], Go to P2. |

17. We prove (by induction on the number of nodes in a single tree T) that if P is a

pointer to T, and if the stack is initially empty, steps F2 through F4 will end with the

single value /(root(!T)) on the stack. This is true for n = 1. If n > 1, there are

0 < d = DEGREE(root(T”)) subtrees Ti, , Td; by induction and the nature of a

stack, and since postorder consists of T\, . . . , Td followed by root(T), the algorithm

computes /(7T), . . . ,f(Td), and then /(root(71)), as desired. The validity of Algo¬

rithm F for forests follows.

18. Gl. Set the stack empty, and let P point to the root of the tree (the last node in

postorder). Evaluate/(NODE (P)).

G2. Push DEGREE (P) copies of/(NODE (P)) down onto the stack.

G3. If P is the first node in postorder, terminate the algorithm. Otherwise set

P to its predecessor in preorder (this would be simply P <— P — 1 in (9)).

G4. Evaluate /(NODE(P)) using the value at the top of the stack (which is

/(NODE(FATHER(P))). Pop this value off the stack, and return to G2. |

Note: An algorithm analogous to this one can be based on preorder instead of

postorder as in exercise 2. In fact, family-order or level-order could be used; in the

latter case we would use a queue instead of a stack.

SECTION 2.3.4.1

1. {B, A, C, D, B), (B, A, C, D, E, B), (B, D, C, A, B), (B, D, E, B), (B, E, D, B),

CB, E, D, C, A, B).

2. Let (Fo, Fi, . . . , Fn) be a path of smallest possible length from F to V'. If now

Vj = Vk for some j < k, (Fo, . . . , Fy, F*+i, . . . , F„) is a shorter path.

3. (The fundamental path traverses es and C4 once, but cycle C2 traverses them

1” times, giving a net total of zero.) Traverse the following edges: ei, €2, ee, ei,

e9, eio, 611, ei2, ei4.

4. If not, let G" be the subgraph of G' obtained by deleting each edge ey for which

Ej = 0. Then G" is a finite graph which has no cycles and at least one edge, so by

the proof of Theorem A there is at least one vertex, F, which is adjacent to exactly

one other vertex, F\ Let ey be the edge joining F to F'; then Kirchhoff’s equation (1)

at vertex F is Ej = 0, contradicting the definition of G".

5. A = 1 -\- Es, B = 1 -f- Es — E2, C = 1 + Es, D = 1 -j- Es — E5, E =

1 + En — E21, E = 1 E[3 -j- En — E21, G = 1 -j- E[3, H = Ei 7 E21,

J = Ei7, K = EW+E20, L = ^17+^9+ E20 - E21, P = En+E20 - E21,

q = E20, P = En — E21, S = E25. Note: In this case it is also possible to solve

574 ANSWERS TO EXERCISES 2.3.4.1

for E2, E5, . . . , E25 in terms of A, B, . . . , S; hence there are nine independent
solutions, explaining why we eliminated six variables in Eq. 1.3.3—(8).

6. Fundamental cycles: Co = eo + e\ + e<i + eg (fundamental path is ei + e4 + eg);
C5 = es + e.3 + e2; Co = eo — e2 + e4; C7 = e7 — e4 — e3; Cs = eg — eg — e4 —
e3. Therefore we find £4 = 1, £2 = £5 — Eg, £3 = £5 — £7 — Es, £4 =
1 + £e — £7 — £8, Eg = ^ — Es-

7. Each step in the reduction process combines two arrows et- and e3 which start at
the same box, and it suffices to prove that such steps can be reversed. Thus we are
given the value of e; -f- e3 after combination, and we must assign consistent values
to e» and e3 before the combination. There are three essentially different situations:

Case 1 Case 2 Case 3

Here A, B, C stand for vertices or super-vertices, and the a’s and jS’s stand for the
other given flows besides e8-+ e3; these flows may each be distributed among several
edges, although only one is shown. In Case 1 (et- and e3 lead to the same box), we may
choose ei arbitrarily, then e3 <— (et- -f- e3) — a. In Case 2 (e,- and e3 lead to different
boxes), we must set ei *— /3' — a', e3 <— (3" — a”. In Case 3 (ei is a loop but e3 is not),
we must set e3 <— /T — a', ei <— (a + e3) — e3. In each case we have reversed the
combination step as desired.

The result of this exercise essentially proves that the number of fundamental
cycles in the reduced flow chart is the minimum number of vertex flows that must be
measured to determine all the others. In the given example, the reduced flow chart
reveals that only three vertex flows (e.g., a, c, d) need to be measured, while the original
chait of exercise 6 has four independent edge flows. We save one measurement every
time Case 1 occurs during the reduction.

A similar reduction procedure could be based on combining the arrows flowing
into a given box, instead of those flowing out. It can be shown that this would yield
the same reduced flow chart, except that the supervertices would contain different
names.

The construction in this exercise is based on ideas due to Armen Nahapetian and
F. Stevenson. For further comments, see D. E. Knuth and F. Stevenson BIT 13
(1973), 313-332.

8. Each edge from a vertex to itself becomes a “fundamental cycle” all by itself. If
there are k + 1 edges e, e', , e(k) between vertices V and V', make k fundamental
cycles e' ± e, , ew ± e (choosing + or — according as the edges go in the opposite
01 the same direction), and then proceed as if only edge e were present.

Actually this situation would be much simpler conceptually if we had defined a
graph in such a way that multiple edges are allowed between vertices, and edges are
allowed from a vertex to itself; paths and cycles would be defined in terms of edges

2.3.4.1 ANSWERS TO EXERCISES 575

instead of vertices. This type of definition is, in fact, made in the following section
for directed graphs.

9. (The following solution is based on the idea that we may print out each edge that

does not make a cycle with the preceding edges.) Use Algorithm 2.3.3E, with each

pair (a,-, bi) representing a,- = bi in the notation of that algorithm. The only change

is to print (a,-, bi) if j ^ k in step E4.

To show this algorithm is valid, we must prove that (a) the algorithm prints out

no edges that form a cycle, and (b) if G contains at least one free subtree, the algorithm

prints out n — 1 edges. Define j = k if there exists a path from Vj to U* or if j = k.

This is clearly an equivalence relation, and moreover j = k if and only if this relation

can be deduced from the equivalences a\ = &i, . . . , am = bm. Now (a) is valid since

the algorithm prints out no edges that form a cycle with previously printed edges;

(b) is true because FATHER^] = 0 for precisely one k if all vertices are equivalent.

10. If the terminals have all been connected together, the corresponding graph must

be connected in the technical sense. A minimum number of wires clearly will involve

no cycles, so we must have a free tree. By Theorem A, a free tree contains n — 1 wires,

and a graph with n vertices and n — 1 edges is a free tree if and only if it is connected.

11. It is sufficient to prove that when n > 1 and c(n — 1, n) is the minimum of the

c(i, n), there exists at least one minimum cost tree in which Tn~\ is wired to Tn. (For,

any minimum cost tree with n > 1 terminals and with Tn-i wired to Tn must also

be a minimum cost tree with n — 1 terminals if we regard Tn—i and Tn as “common”,

using the stated convention in the algorithm.)

To prove the above statement, suppose we have a minimum cost tree in which

Tn—i is not wired to Tn. If we add the wire Tn—iTn we obtain a cycle, and any of the

other wires in that cycle may be removed; removing the other wire touching Tn gives

us another tree, whose total cost is not greater than the original, and Tn-iTn appears.

12. Keep two auxiliary tables, a(i) and b(i), for 1 < i < n, representing the fact that

the cheapest connection from 2\- to a chosen terminal is to Tb(i), and its cost is a(i);

initially a(i) = c(i, n) and b(i) = n. Then do the following operation n — 1 times:

Find i such that a(i) = mini</<„ a(j); connect Ti to Tb(i); for 1 < j < n if c(i,j) <

o(i) set a(i) <— c(i, j) and b(i) <— j; and set a{i) co.

(It is somewhat more efficient to avoid the use of <x>, keeping instead a one-way
linked list of those j which have not yet been chosen. With or without this straight¬

forward improvement, the algorithm takes 0(n2) operations.) See also E. W. Dijkstra,

Proc. Nederl. Akad. Wetensch. A-63 (1960), 196-199.

13. We must prove G is connected. If V s*4 V' and VV' is not an edge of G, add the

edge VV' to G; this introduces a cycle which must involve the new edge, so it may be

written (U, V, V2, . . . , U); hence there is a path in G from V' to V.

14. If there is no path from Vi to Vj, for some i ^ j, then no product of the trans¬

positions will move i to j. So if all permutations are generated, the graph must be

connected. Conversely if it is connected, remove edges if necessary until we have a

tree. Then renumber the vertices so that Vn is adjacent to only one other vertex,

namely Un_i. (See the proof of Theorem A.) Now the transpositions other than

(n — 1, n) form a tree with n — 1 vertices; so by induction if 7r is any permutation

on {1, 2, . . . , n} which leaves n fixed, t can be written as a product of those transposi¬

tions. If 7r moves n to j then ir(j, n — l)(n — 1, n) — p fixes n; hence

7T = p(n — 1, n)(j, n — 1)

can be written as a product of the given transpositions.

576 ANSWERS TO EXERCISES 2.3.4.2

SECTION 2.3.4.2

1. Let (ei, , en) be an oriented path of smallest possible length from V to V'.
If now init(ey) = init(e*) for j < k, (ei, ... , e/_i, e/c, ... , en) would be a shorter

path; a similar argument applies if fin(ey) = fin(e*) for j < k. Hence (e\, . . . , en)

is simple.

2. Those cycles in which all signs are the same: Co, Cs, C"z, Cn, C'k C20.

3. For example, use three vertices A, B, C, with arcs from B to A and to C.

4. If there are no oriented cycles, Algorithm 2.2.3T topologically sorts G. If there

is an oriented cycle, topological sorting is clearly impossible. (Depending on how this

exercise is interpreted, oriented cycles of length 1 could be excluded from the above

discussion.)

5. Let k be the smallest integer such that fin(e/fc) = init(ey) for some j < k. Then

(ey, . . . , e*) is an oriented cycle.

6. False (on a technicality), just because there may be several different arcs from
one vertex to another.

7. True for finite directed graphs: For if we start at any vertex V and follow- the only

possible oriented path, we never encounter any vertex twice, so we must eventually

reach the vertex R (the only vertex with no successor). For infinite directed graphs

the result is obviously false since we might have vertices R, Vi, 72, V3, . . . and arcs
from 7y to Fy+i for j > 1.

9. All arcs point upward.

G

10. Gl. Set k F[j), F[j] <- 0.

G2. If k = 0, stop; otherwise set m <- F[fc], F[/c] *-j, j «- k, k <- m, and repeat
step G2. |

11. This algorithm combines Algorithm 2.3.3E with the method of the preceding

exercise, so that all oriented trees have arcs which correspond to actual arcs in the

directed graph, $[_)] is an auxiliary table which tells whether an arc goes from j to

OSy] = +1) or from F[j] to j (S[j] = —1). Initially F[l] = • • • = F[n] = 0.
The following steps may be used to process each arc (a, b):

Cl. Set j <- a, k+- F[j], F[j] 0, s «- S[j].

C2. If k = 0, go to C3; otherwise set m F[k], t S[k], F[/c] <- j, 5[ic] <-s,

s ^ t} j <— k, k <— m, and repeat step C2.

C3. (Now a appears as the root of its tree.) Set j <- b, and then if F[j] ^ 0
repeatedly set j <- F[;'] until F[j] = 0.

2.3.4.2 ANSWERS TO EXERCISES 577

C4. If j = a, go to C5; otherwise set E[a] <— b, <S[a] <—(-1, print (a, b) as an arc

belonging to the free subtree, and terminate.

C5. Print “CYCLE” followed by “(a, b)”.

C6. If E[6] = 0, terminate. Otherwise if S[b] — +1, print “+(&, F[b])”, else

print “—(P[6], 6)”; set b *— F[f>] and repeat step C6. |

12. It equals the in-degree; the out-degree of each vertex can be only 0 or 1.

13. Define a sequence of oriented subtrees of G as follows: Go is the vertex R alone.

(7*4-1 is Gk, plus any vertex V of G that is not in G* but for which there is an arc

from V to V' where V' is in Gk, plus one such arc e[V] for each such vertex. It is

immediate by induction that Gk is an oriented tree for all k > 0, and that if there is

an oriented path of length k from V to R in G then V is in G*. Therefore Gx, the set

of all V and e[V\ in any of the G*, is the desired oriented subtree of G.

14. (ei2, e20, eoo, ^oi, eio, eoi, ei2, e22, e2i),

(ei2, e2o, eoi, eio, eoo, eoi, ei2, e22, 621),

(ei2, e22) e2o, eoo, eoi, eio, eoi, ei2, e2i),

(ei2, e22, e20, eoi, eio, eoo, eoi, ei2, e2i),

(ei2, e2o, eoo, eoi, ei2, e22, e2i, eio, eoi),

(ei2, e2o, eoi, ei2, e22, e2i, eio, eoo, eoi),

(ei2, e22, e2o, eoo, eoi, ei2, e2i, eio, eoi),

(ei2, e22, e2o, eoi, ei2, e2i, eio, eoo, eoi),

in “lexicographic order”; the eight possibilities come from the independent choices of

which of eoo or ecu, eio or ei2, e2i or e22, should precede the other.

15. If it is connected and balanced, it either has only one vertex or there is an Eulerian

circuit which touches all the vertices; twice around that circuit will touch any given

vertex V the first time and any other given vertex V' the second time.

16. Consider the directed graph G with vertices Vi, . . ., E13 and with an arc from

Vj to Vk for each k in pile j. Winning the game is equivalent to the existence of an

Eulerian circuit in this directed graph (for if the game is won the final card turned up

must come from the center; this graph is balanced). Now if the game is won, we have

an oriented subsubtree by Lemma E. Conversely if the stated configuration is an

oriented subtree, the game is won by Theorem D.

17. yj. This answer can be obtained, as the author first obtained it, by laborious

enumeration of oriented trees of special types and the application of generating func¬

tions, etc., based on the methods of Section 2.3.4.4; it also follows easily from the

following simple, direct proof: Define an order for turning up all cards of the deck, as

follows: Obey the rules of the game until getting stuck, then “cheat” by turning up

the first available card (find the first pile that is not empty, going clockwise from pile 1)

and continue as before, until eventually all cards have been turned up. The cards in

the order of turning up are in completely random order (since the value of a card need

not be specified until after it is turned up). So the problem is just to calculate the

probability that in a randomly shuffled deck the last card is a king. More generally

the probability that k cards are still face down when the game is over.is the prob¬

ability that the last king in a random shuffle is followed by k cards, namely

4!(SV*) Hi- Hence a man playing this game without cheating will turn up an average

of exactly 42.4 cards per game. Note: Similarly, it can be shown that the probability

that the player will have to “cheat” k times in the process described above is exactly

given by the Stirling number [*+i]/13!. (See Section 1.2.10, Eq. (9) and exercise 7;

the case of a more general deck is considered in exercise 18.)

578 ANSWERS TO EXERCISES 2.3.4.2

18. (a) If there is a cycle (Fo, Fi, . . . , Vk), where necessarily 3 < k < n, the sum

of the k rows of A corresponding to the k edges of this cycle, with appropriate signs,

is a row of zeroes; so if G is not a free tree the determinant of To is zero.
Now if G is a free tree we may regard it as an ordered tree with root Fo, and we

can rearrange the rows and columns of To so that columns are in preorder and so

that the kth row corresponds to the edge from the fcth vertex (column) to its father;

then the matrix is triangular with ±l’s on the diagonal, so the determinant is ±1.

(b) By the Binet-Cauchy formula (exercise 1.2.3-46) we have

det ToT0 = (det Tq...;,,)2

where Ttl...in represents a matrix consisting of rows ii, . . . , in of To (thus corre¬

sponding to a choice of n edges of G). The result now follows from (a).

19. (a) The conditions aoo = 0 and dp- = 1 are just conditions (a), (b) of the definition

of oriented tree. If G is not an oriented tree there is an oriented cycle (by exercise 7),

and this means the rows of To corresponding to the vertices in this oriented cycle

sum to a row of zeroes; hence det To = 0. If G is an oriented tree, assign an arbitrary

order to the sons of each family and regard G as an ordered tree. Now permute rows

and columns of To until they correspond to preorder of the vertices. Since the same

permutation has been applied to the rows as to the columns, the determinant is un¬

changed; and the resulting matrix is triangular with +1 in every diagonal position.

(b) We may assume aoj = 0 for all j, since no arc emanating from Fo can par¬

ticipate in an oriented subtree. We may also assume ap > 0 for all j > 1 since other¬

wise the whole jth row is zero and there obviously are no oriented subtrees. Now use

induction on the number of arcs: If ap > 1 let e be some arc leading from Fq let Bo

be a matrix like To but with arc e deleted, and let Co be the matrix like To but with

all arcs except e that lead from Vj deleted.

Example: To = (_? _f), j — 1, e = arc from Fi to Fo; then Bo = (_f~f),

Co = (-12). Then det To = det Bo + det Co, since the matrices agree in all rows

except row j and in that row To is the sum of Bo, Co- Moreover, the number of

oriented subtrees of G is the number of subtrees which do not use e (namely, det Bo,

by induction) plus the number which do use e (namely, det Co).

This important theorem of Borchardt had been twice stated without proof by

Sylvester [Journal f. d. reine und angewandte Math. 52 (1856), 279; Quart. J. Math. 1
(1857), 55-56],

20. Using exercise 18 we find B = T^T0. Or, using exercise 19, B is the matrix T0

for the directed graph G' with two arcs (one in each direction) in place of each edge

of C; and each free subtree of G corresponds uniquely to an oriented subtree of G' with

root Fo (the directions of the arcs are determined by the choice of root).

21. (This result may be derived from interesting but considerably more complicated

arguments used in the paper of van Aardenne-Ehrenfest and de Bruijn quoted in the

text. The following derivation is not only simpler, it also may be generalized to deter¬

mine the number of oriented subtrees of G* when G is an arbitrary directed graph; see

D. E. Knuth, Journal of Combinatorial Theory 3 (1967), 309-314.)

2.3.4.2 ANSWERS TO EXERCISES 579

•Construct the matrices A and A* as in exercise 19. For the example graphs G,
G* in Figs. 36 and 37,

/ 2 —2 o\
A = -1 3 -2

\-l —1 V f

[00] [10] [10] [01] [01] [21] [12] [12] [22]
[00]

/ 2
0 0 —1 — 1 0 0 0 0

[10] 3 0 —1 — 1 0 0 0 0
[10] I f -1 0 3 —1 -1 0 0 0 0

[01] 0 —1 0 3 0 0 -1 — 1 0

r—
1

O

II * 0 — 1 0 0 3 0 —1 — 1 0
[21] \ i 0 — 1 0 0 0 3 —1 — 1 0

[12] 0 — 1 0 0 —1 3 0 —1
[12]

\ 0
0 —1 0 0 —1 0 3 —1

[22] \o 0 —1 0 0 — 1 0 0 2/

Add the indeterminate X to the upper left corner element of A and A* (in the example

this gives 2 + X in place of 2). If t(G), t(G*) are the numbers of oriented subtrees of

G and G* we have t(G) = (1/X)(n+ 1) det A, t(G*) = (1/X)m(n+ 1) det A*. (The

number of oriented subtrees of a balanced graph is the same for any given root, e.g.

by exercise 22.)

If we group vertices Vjk for equal k the matrix A* can be partitioned as shown

above. Let Bkk' be the submatrix of A* consisting of the rows for Vjk and the columns

for Vj>k>, for all j and j' such that Vjk and Vj>kr are in G*. By adding the 2nd, . . . , mth

columns of each submatrix to the first column and then subtracting the first row of

each submatrix from the 2nd, . . . , mth rows, the matrix A* is transformed so that

Bkk'

* ... *

0 . . . 0

0 . . . 0

for k 9^ k', Bkk

'ci-kk 4" X5fc0 * • • • *
—X5to m 0 0

-\8ko 0 0... m.

Here indicates values which are more or less irrelevant. It follows that det A*

is times the determinant of

The asterisks left are all zero except for precisely one —1 in each column. Add the

last n rows to the top row, and expand the determinant by the first row, to get
mn(m-l)+m-l ^ — l)mn(m-l)+m-2 (Jg^ ^

580 ANSWERS TO EXERCISES 2.3.4.2

22. The total number is (or + • ■ • + &n) times the number of Eulerian circuits

starting with a given edge e\, where init(ei) = Vi. Each such circuit determines an

oriented subtree with root V\ by Lemma E, and for each of the T oriented subtrees

there are IIi<i<n Oi — 1)! paths satisfying the three conditions of Theorem D,

corresponding1 to the different order in which the arcs {e | init(e) = Vj, e ^ e[V

e 9^ ei} are entered into P. ^Cf. exercise 14.)

23. Construct the directed graph Gk with mk~l vertices as in the hint, and let

[x\, . . . , Xk\ denote the arc mentioned there. For each function that has maximum

period length, we can define a unique corresponding Eulerian circuit, by letting

f(x 1, . . . , xk) = Xk+1 if arc [xi, . . . , xk] is followed by [x2, . . . , xk+i]. (We regard

Eulerian circuits as being the same if one is just a cyclic permutation of the other.)

Now Gk = G*—i in the sense of exercise 21, so Gk has mmk l~mk 2 times as many

oriented subtrees as Gk—i; by induction Gk has oriented subtrees, and mmk 1~k

with a given root. Therefore by exercise 22 the number of functions with maximum

period, i.e. the number of Eulerian circuits of Gk starting with a given arc, is

m~k (m!)mi_1.

24. Define a new directed graph having Ej copies of ej, for 0 < j < m. This graph

is balanced and so we know there is an Eulerian circuit (eo, . . .) by Theorem G. The

desired oriented path comes by deleting the edge eo from this Eulerian circuit.

25. Assign an order to the sets of arcs having common initial vertices, and assign an

order to the sets of arcs having common final vertices. Now for each arc e, let the

fields in the node representing e be the following: If e' is the next arc (in the assumed

ordering) for which init(e') = init(e), let ALINK point to e' and let ATAG =

if e is the last arc (in the assumed ordering) with this initial vertex, however,

let ATAG = and let ALINK be a pointer to the first arc e' for which init(e) =

fin(e'); if no such e' exists, let ALINK = A. Define BLINK and BTAG by the same rules,

reversing the roles of init and fin.

Examples:

o
s-
c3

J

u O
< M
E-i J E-i
< 0Q EQ

ad — b-\~

6A-c +

cf—r —

d A - e +

e A — a —

/ A — c —

r a — A —

a
M

u
<

«
2
H

u
<

£ J H J E->
c3 < < ca CQ

a c + b —

b a — d +

c e + a —

d h + f +

e g + f —

f j + h —

g c — h +

h b — j +

j e — A —

Note: If in the oriented tree representation we add another arc from H to itself,

we get an interesting situation; either we get the standard conventions 2.3.1-(7) with

LLINK, LTAG, RLINK, RTAG interchanged in the list head, or (if the new arc is placed

last in the ordering) we get the standard conventions except RTAG = in the node
associated with the root of the tree.

2.3.4.3 ANSWERS TO EXERCISES 581

This exercise is based on an idea communicated to the author by W. C. Lynch.

It would be interesting to explore further properties of this representation, e.g., to

compare tree-traversal algorithms with the Eulerian circuit constructions of this section.

SECTION 2.3.4.3

1. The root is the empty sequence; arcs go from (xi, . . . , xn) to (x\, . . . , xn-i).

2. Take one domino type and rotate it 180° to get another domino type; these two

types give an obvious way to tile the plane (without further rotations) by replication

of a 2 X 2 pattern.

3. Consider the set of domino types

1

j
/
 +

for all positive integers j. Then the upper half plane may be tiled in uncountably many

ways; but whatever square is placed in the center of the plane puts a finite limit on

the distance it can be continued to the left.

4. Systematically enumerate all possible ways to tile an n X n block, for n =

1,2,..., looking for toroidal solutions within these blocks. If there is no way to tile

the plane, the infinity lemma tells us there is an integer n with nonXn solutions.

If there is a way to tile the plane, the assumption tells us there is an n with an n X n

solution containing a rectangle that yields a toroidal solution. Hence in either case

the algorithm will terminate. (But the stated assumption is false, as shown in the

next exercise, and in fact there is no algorithm which will determine in a finite number

of steps whether or not there exists a way to tile the plane with a given set of types.)

5. Start by noticing that we need classes “ 5 replicated in 2 X 2 groups in any

solution. Then, step 1: Consider just the a squares; we show that the pattern “ ® must

be replicated in 2 X 2 groups of a squares. Step n > 1: We determine a pattern that

must appear in a cross-shaped region of height and width 2n — 1. The middle of the

crosses has the pattern no, replicated throughout the plane.

For example, after step 3 we will know the contents of 7 X 7 blocks throughout

the plane, separated by unit length strips, every eight units. The 7X7 blocks which

are of class Na in the center have the form

aa WQ ab PQP aa fdBK ab

ypj SNa 7RB SQK 7 LJ SNb y PB

ac PDS ad 0QTY ac 0BS ad

7 PQ SPJ 7PXB SNa 7RQ SRB 7RB

aa 0UK ab PDP aa PBK ab

7TJ SNc y sb 5DS y st SNd 7TB

ac PQS ad PDT ac PBS ad

The middle column and the middle row is the “cross” just filled in during step 3; the

other four 3X3 squares were filled in after step 2; the squares just to the right and

below this 7X7 square are part of a 15 X 15 cross to be filled in at step 4.

582 ANSWERS TO EXERCISES 2.3.4.3

For a similar construction which leads to a set of only 35 domino types having-

nothing but nontoroidal solutions, see R. M. Robinson, Inventiones Math. 12 (1971),

177-209. Robinson also exhibits a set of six polygonal shapes which tile the plane

only nontoroidally, even when rotations and reflections are allowed.

6. Let k and m be fixed. Consider an oriented tree whose vertices each represent,

for some n, one of the partitions of {1, . . . , n} into k parts, containing no arithmetic

progression of length m. A node that partitions (1, . . . , n + 1} is a son of one for

(1, . . . , n) if the two partitions agree on (1If there were an infinite path

from the root we would have a way to divide all integers into k sets with no arithmetic

progression of length m. Hence, by the infinity lemma and van der Waerden’s theorem,

this tree is finite. (If k = 2, m = 3, the tree can be rapidly calculated by hand, and

the least value of N is 9. See Studies in Pure Mathematics, ed. by L. Mirsky (Academic

Press, 1971), 251-260, for van der Waerden’s interesting account of how the proof of

his theorem was discovered.)

7. There exist two sets So, Si which partition the integers such that neither contains

any infinite computable sequence (cf. exercise 3.5-32). So in particular there is no

infinite arithmetic progression. Theorem K does not apply because there is no way

to put partial solutions into a tree with finite degrees at each vertex.

8. Let a “counterexample sequence” be an infinite sequence of trees that violates

Kruskal’s theorem, if such sequences exist. Assume the theorem is false; then let Ti

be a tree with the smallest possible number of nodes such that Ti can be the first

tree in a counterexample sequence; if Ti, . . . , Tj have been chosen, let Tj+i be a tree

with the smallest possible number of nodes such that T\, ... , Tj, Tj+1 is the beginning

of a counterexample sequence. This process defines a counterexample sequence (Tn).

None of these T’s is just a root. Now, wre look at this sequence very carefully:

(a) Suppose there is a subsequence Tni, Tn.2, ... for which l(Tni), l(Tn2), . . .

is a counterexample sequence. This is impossible, otherwise Ti, . . ., Tni_i, l(Tni),

KTn2), ■ ■ • would be a counterexample sequence, contradicting the definition of Tni.

(b) Because of (a), there are only finitely manyj for which l(Tj) cannot be embed¬

ded in l(Tk) for any k > j. Therefore by taking m larger than any suchj we may find
a subsequence for which l(Tnj) c l(Tn2) c l{Tnz) c • • • .

(c) Now by the result of exercise 2.3.2-22, r(Tni) cannot be embedded in r(Tnk) for

any k > j, else Tn. c Tnk. Therefore Ti, ..., T„r_i, r(Tni), r(Tn2), ... is a counter¬

example sequence. But this contradicts the definition of Tni.

Note: Kruskal’s theorem does not seem to follow simply from the infinity lemma,

although they seem to be related in a vague way; there are in general infinitely many

trees T such that Ti £ T, T2 $ T, . . . , Tn £ T when Th T2, . . . , Tn are given.

For further developments see J. Combinatorial Theory (A) 13 (1972), 297-305.

SECTION 2.3.4.4

1. InX(2) -ln2+2>*ln(rA-5 -ln2+ £ _ ln;!+£^l

*>1 ^ ' k,t> 1 t t

2. By differentiation, and equating the coefficients of zn, we obtain the identity

nan-fi = y*] dadan-)_i —*.
k> 1 d\k

Now interchange the order of summation.

2.3.4.4 ANSWERS TO EXERCISES 583

4. -(a) .4(2) certainly converges at least for |z| < 5, since an is less than the number

of ordered trees 1. Since A(l) is infinite and all coefficients are positive, there is

a positive number a < 1 such that .4(2) converges for |2| < a, and there is a singu¬

larity at 2 = a. Let 1p(z) = (1 /z)A(z); since 1^(2) > e2^(z), we see \f/(z) = m implies

2 < In m/m, so ip(z) is bounded and limZ^>a-\j/(z) exists. Thus a < 1, and by Abel’s

limit theorem a = a ■ exp (a + %A(a2) %A(a3) + •••)•

(b) A(z2), A(z3), . . . are analytic for |«| < y/a, and jA(z2) + ^A(z3) + • • •

converges uniformly in a slightly smaller disk.

(c) If dF/dw = a — 1 0, the implicit function theorem implies that there is an

analytic function f(z) in a neighborhood of (a, a/a) such that F(z, f(z)) = 0. But this

implies f(z) = (1 /z)A(z), contradicting the fact that A (z) is singular at a.

(d) Obvious.

(e) dF/dw = A(2) — 1 and |*4(2)| < A(a) = 1 since the coefficients of .4(2)

are all positive. Hence as in (c), .4(2) is regular at all such points.

(f) Near (a, 1/a) we have the identity 0 = (3(z — a) + (a/2)(10 — l/a)2 +

higher order terms, where w = (I/2) A (2); so w is an analytic function of Vz — a

here by the implicit function theorem. Consequently there is a region \z\ < ai minus

a cut [a, ai] in which A{z) has the stated form. (The minus sign is chosen since a

plus sign would make the coefficients ultimately negative.)

(g) Any function of the stated form has coefficients asymptotically

V2p
an

(Note that

cf. exercise 2.2.1-12.) For further details, and asymptotic values of the number of free

trees, see R. Otter, Ann. Math. (2) 49 (1948), 583-599.

- V'' (ciJr j 1 — A (cn~\- jn — l\ 1

h+2tt...=n V / V jn y

Therefore

2C{z) + 1 — 2 = (1 — 2)-cl(l — 22) c2(l — Z3) c3 • • •

= exp (C(2) + iC(22) + •••).

We find C(z) = 2 + 22 + 22s + 524 + 12z5 + 3326 + 9027 -\-. There is no

obvious connection with A (2), although it is plausible that some relation might exist.

6. zG{z)2 = 2G(z) - 2 - zG(z2); G(z) = 1 + 2 + 22 + 22s + 324 + 625 + II26 -f
2327 + • • • • See AMM 56 (1949), 697-699 for references.

7. <7n ~ cann~3/2, where c = .791603, a — 2.48325.

9. If there are two centroids, by considering a path from one to the other we find

there can’t be intermediate points, so any two centroids are adjacent. It is impossible

for a tree to contain three mutually adjacent vertices, so there are at most two.

584 ANSWERS TO EXERCISES 2.3.4.4

10. If X, Y are adjacent, let s(X, Y) be the number of vertices in the F-subtree of X.

Then s(X, Y) + s(F, X) = n. The argument in the text shows that if F is a centroid,

height(X) = s(X, Y). Therefore if both X and F are centroids, height(X) =

height(F) = n/2.
In termg of this notation, the argument in the text goes on to show that if

s(X, Y) > s(F, X), there is a centroid in the F subtree of X. So if two free trees

with m vertices are joined b^ an edge between X and F, we obtain a free tree in which

s(X, F) = m = s(F, X), and there must be two centroids (namely X and F).

11. zT{zY = T(z) - 1; i.e., z + T(z)~l = T{z)1~t. By Eq. 1.2.9-21, T(z) =

^2n An(l, —t)zn, so the number of t-ary trees is

/l + tn\ 1 _ /tn_1_

\ n) 1 + tn \n/(t — l)n+1

12. Consider the directed graph which has one arc from Vi to Vj for all i ^ j. The

matrix Aq of exercise 2.3.4.2-19 is a combinatorial (n — 1) X (n — 1) matrix with

n — 1 on the diagonal and —1 off the diagonal. So its determinant is

(n+ (n — 1)(—1))n”~2 = nn~2,

the number of oriented trees with a given root. (Exercise 2.3.4.2-20 could also be used.)

13.

14. True, since the root will not become a leaf until all other branches have been

removed.

15. In the canonical representation, Vi, V2, . . . , F„_i,/(Fn_i) is a topological sort

of the oriented tree considered as a directed graph, but this order would not in general

be output by Algorithm 2.2.3T. Algorithm 2.2.3T can be changed so that it determines

the values of Vi, V2, • , Vn-i if the “insert into queue” operation of step T6 is

replaced by a procedure which adjusts links so that the entries of the list appear in

ascending order from front to rear, i.e. if the queue became a priority queue.

17. There must be exactly one cycle xi,x2, ... ,xk where f(x}) = x,-+i and f(xk) =

xi. We will enumerate all / having a cycle of length k such that the iterates of each x

ultimately come into this cycle. Define the canonical representationf(Vi),f(V2), . . . ,

f(Vm-k) as in the text; now/(Fm_fc) is in the cycle, so we continue to get a “canonical

representation” by writing down the rest of the cycle /(/(Fm_*)), /(/(/(7W_0)), etc.

2.3.4.4 ANSWERS TO EXERCISES 585

For example, the function with m = 13 whose graph is

leads to the representation 3, 1, 8, 8, 1, 12, 12, 2, 3, 4, 5, 1. We obtain a sequence

of m — 1 numbers in which the last k are distinct. Conversely, from any such sequence

we can reverse the construction (assuming that k is known), hence there are precisely

m(m — 1) • • • (m — k + 1)mm~k~1 such functions having a ft-cycle. (For related

results, see exercise 3.1-14.)

18. To reconstruct the tree from a sequence si, S2, . • • , sn—i, begin with si as the

root and successively attach arcs to the tree which point to si, S2, ; if vertex Sk

has appeared earlier, leave the initial vertex of the arc leading to Sk-i nameless, other¬

wise give this vertex the name s*. After all n — 1 arcs have been placed, give names

to all vertices which remain nameless by using the numbers that have not yet appeared,

assigning names in increasing order to nameless vertices in the order of their creation.

For example from 3, 1, 4, 1, 5, 9, 2, 6, 5 we would construct

There is no simple connection between this method and the one in the text. Several

more representations are possible; see the article by E. H. Neville, Proc. Cambridge

Phil. Soc. 49 (1953), 381-385.

19. The canonical representation will have precisely n — k different values, so we

enumerate the sequences of n — 1 numbers with this property. The answer is

n(n — l)(n — 2) • • • (&+ 1){"^}- (See Section 3.3.2D.)

20. Consider the canonical representation of such trees. We are asking how many

terms of (xi + • • • + zn)n_1 have ko exponents zero, ki exponents one, etc. This

is plainly the coefficient of such a term times the number of such terms, namely

(n _ l) !/(0!)fco(l!). . . («!)*» times n\/ko\ki \. . . kn\ ■

586 ANSWERS TO EXERCISES
2.3.4.4

21. There are none with 2m vertices; if there are n — 2m-\- 1 vertices, the answer is

obtained from exercise 20 with ko — m-\- 1, &2 = m> namely (2”^'1)(2m)!/2 .

22. Exactly nn~2; for if X is a particular vertex, the free trees are in one-to-one

correspondence with oriented trees having root X.

23. It is possible to put the labels on every unlabeled, ordered tree in n! ways, and

each of these labeled, ordered trees is distinct. So the total number is n!6„_1 =

(2n - 2)!/(n - 1)!.

24. There are as many with one given root as with another, so the answer in general

is 1/n times the answer in exercise 23; and in this particular case the answer is 30.

25. For 0 < q < n, r(n, q) = (n — g)n9_1. (Special case s = 1 in Eq. (22).)

27. Given a function g from {1,2,..., r} to {1, 2, ... , q} such that adding arcs

from Vk to Ug(k) introduces no oriented cycles, construct a sequence a\, ... ,ar as

follows: Call vertex Vk “free” if there is no oriented path from Vj to Vk for any/ ^ k.

Since there are no oriented cycles, there must be at least one free vertex. Let bi be

the smallest integer for which 76l is free; and assuming bi, . . . ,bt have been chosen,

let bt+1 be the smallest integer different from b\, . . . , bt for which E&(+1 is free in the

graph obtained by deleting the arcs from Vbk to XJg(bk) for 1 < k < t. This rule

defines a permutation bi, ... ,br of the integers {1, 2, . . . , r). Let a*, = g(bk) for

1 < k < r; this defines a sequence such that 1 < a* < q for 1 < k < r, and

1 < ar < p.
Conversely if such a sequence oi, . . . , ar is given, call a vertex Vk “free” if there

is no j for which ay > p and /(ay) = k. Since ar < p there are at most r — 1 non-

free vertices. Let bi be the smallest integer for which Ebj is free; and assuming

b\, . . . ,bt have been chosen let 6<+i be the smallest integer different from b\, . . . ,bt

for which Vbt+1 is free with respect to the sequence a*+1, . . . , ar. This rule defines

a permutation bi, . . . , br of the integers (1, 2, . . . , r). Let g(bk) = a,k for 1 < k < r;

this defines a function such that adding arcs from Vk to Ug(k) introduces no oriented

cycles.

28. Let / be any of the nm_1 functions from (2, . . . , m} to {1, 2, ... , n}, and con¬

sider the directed graph with vertices U\, ... , Um, V\, . . . , V„ and arcs from Uk

to V/(k) for 1 < k < m. Apply exercise 27 with p = 1, q = m, r = n, to show there

are mn_1 ways to add further arcs from the E’s to the U’s to obtain an oriented tree

with root U\. Since there is a one-to-one correspondence between the desired set of

2.3.4.4 ANSWERS TO EXERCISES 587

freetrees and the set of oriented trees with root U\, the answer is nm~1mn~1. [Note:

This construction can be extensively generalized; see D. Knuth, Canadian J. Math. 20
(1968), 1077-1086.]

29. If y = x\ then (tz)y = In y, and we see that it is sufficient to prove the identity

for t = 1. Now if zx = In x we know by exercise 25 that xm = Ek(m, 1)zk for non¬
negative integers m. Hence

r
X

zxr
e

(zxr)k ^ rkzk+3Ej(k, 1)

r *! r, j\Ej{k — j, \)rk i

-?£? C;1)^ E zE^r’ !)•

30. Each graph described defines a set Cx c (1, . . . , n}, where j is in Cx if and only

if there is a path from tj to r* for some i < a;. For a given C* each graph described is

composed of two independent parts: one of the x(xeizi + • • •-j- enZn)fl+-+(n~1

graphs on the vertices r{, sjk> tj for i < x and j G Cx, where ej = 1 iff j G Cx, plus one

of the y(y-\- (1 — ei)zi -f- • • • + (1 — e>i)Zn)(1_ei)'K"+(1-<n)~1 graphs on the
remaining vertices.

31. G{z) = z + G(z)2 + G(z)3 + G(z)* H-- z + G(z)2/(l - G(z)). Hence

G(z) = 5(1 + z — \/l — 6z+ z2). [Notes: Another problem equivalent to this one

was posed and solved by E. Schroder, Zeitschrift fur Mathematik 15 (1870), 361-376,

who determined the number of ways to insert nonoverlapping diagonals in a convex

(n+ l)-gon. These numbers for n > 1 are just half the values obtained in exercise

2.2.1-11, since Pratt’s grammar allows the root node of the associated parse tree to

have degree one. The asymptotic value is calculated in exercise 2.2.1-12.]

32. Zero if no ^ 1 + n2 + 2n3 -j- 3n4 -(-••• (cf. exercise 2.3-21), otherwise

(no + ni + • • • -j- nm — 1) !/no !ni! . . . nm!.

To prove this result we recall that an unlabeled tree with n = no + ni + • ■ • + nm

nodes is characterized by the sequence d\ d<z . . . dn of the degrees of the nodes in

postorder (Section 2.3.3). Furthermore such a sequence of degrees corresponds to a

tree if and only if (1 — dj) > 0 for 0 < k < n. (This important property

of Polish notations is readily proved by induction; cf. Algorithm 2.3.3F with/ a function

that creates a tree, like the TREE function of Section 2.3.2.) In particular, d\ must

be 0. The answer to our problem is therefore the number of sequences d2 . . . dn

with nj occurrences of j for j > 0, namely the multinomial coefficient

(n~l V
\no — 1, ni, . . ., nm) ’

minus the number of such sequences d^ . . . dn for which X2<j<k (1 — d,) < 0 for

some k > 2.

We may enumerate the latter sequences as follows: Let t be minimal such that

X2<j<t (1 — dj) < 0; then ^2<j<t (1 — dj) = — s where 1 < s < dt, and we may

form the subsequence d'2 . . . d'n = dt-i . . . d20dt+i . . . dn which has nj occurrences

588 ANSWERS TO EXERCISES 2.3.4.4

of j for j 5^ dt, rij — 1 occurrences of j for j = dt. Now Yl,2<j<k (1 — dj) is equal

to dt when k = n, equal to dt — s when k = t, and less than dt — s when k < t.

(To prove the latter statement, note that

2 d -4) = E d-- Z d -< E a -*s)
2<j<k 2<j<t 2<j<t—k 2<j<t

= dt - S - 1.)

It follows that, given s and any sequence d'2 . . . d'n, the construction can be reversed;

hence the number of sequences d2 . . . dn which have a given value of dt and s is the

multinomial coefficient

("Z1)■ \JlQj . . . , Tldt 1, . . . , Tim)

The number of sequences d2 . . . dn which correspond to trees is therefore obtained by

summing over the possible values of dt and s:

E
0<

(i — j)
(n — 1)!

nolml. . . nml
(1 — j)nj

and the latter sum is 1.

An even simpler proof of this result has been given by G. N. Raney (Transactions

of the American Math. Society 94 (1960), 441-451). If d\ d2 . . . dn is any sequence

with nj appearances of j, there is precisely one cyclic rearrangement <4 . . . dndi . . .dk—i

that corresponds to a tree, namely the rearrangement where k is maximal such that

Za<y<fc (1 — df) is minimal.
Either of the methods above can be generalized to show that the number of

(ordered, unlabelled) forests having / trees and nj nodes of degree j is (n — 1)!//

noffil! • • • ! nm\, provided that the condition no = / + n2 + 2n3 + • • • is satisfied.

33. Consider the number of trees with n\ nodes labelled 1, n2 nodes labelled 2, ,

and such that each node labelled j has degree ey. Let this number be c(ni, n2, . . .),

with the specified degrees ei, e2, . . . regarded as fixed. The generating function

G(zi, z2, . . .) = ^c(ni, n2, . . Oz^zS2 • • • satisfies the identity G = ziGei + • • • +

zrGer, since ZjGe> enumerates those trees whose root is labelled j. And by the result

of the previous exercise,

(ni + n2 H- •-1)!
c(tti, n2, . . .) = ■ ni!n2! .

.0,

•
if (1 — ei)m + (1 — e2)n2 -\-- 1;

otherwise.

More generally, since Gs enumerates the number of ordered forests having such

labels, we have for integer / > 0

(ni + n2 + • • • — 1)!/ n, n, w = 2, -j—j-zi1z22. . .
' ni!n2!

/=(1—ei)nj -+-(1—e2)n2~h...

These formulas are meaningful when r = °o, and they are essentially equivalent to

“Lagrange’s inversion formula.”

2.3.4.5 ANSWERS TO EXERCISES 589

SECTION 2.3.4.5

1. Yes, there are (f) in all, since the nodes numbered 8, 9, 10, 11, 12 may be attached

in any of eight positions below 4, 5, 6, and 7.

3. By induction on m, the condition is necessary. Conversely if Xa <o<m 2-0 = 1,

we want to construct an extended binary tree with these path lengths. If m = 1,

then h = 0 and the construction is trivial. Otherwise we may assume the Vs are

ordered so that l\ = I2 = • • • = lq > lQ+1 > lg+2 > • • • > lm > 0 for some q with

1 < q < m. Now 2h-1 = Z)i<y<m = \q + integer, hence q is even. By

induction on m there is a tree with path lengths li — 1, h, U, ■ ■ • , lm] take such a

tree and replace one of the external nodes at level h — 1 by

4. First, find a tree by Huffman’s method. If Wj < Wj+1, then lj > lj+i, or else

the tree would not be optimal. The construction in the answer to exercise 3 now gives

us another tree with these same path lengths and with the weights in the proper

sequence. For example, the tree (11) becomes

590 ANSWERS TO EXERCISES 2.3.4.5

5. (a) 'rip b/c rbh'

k-\-l=n — X
r-(-«+n—1 =p

Hence zB(w, wz)2 = B(w, z) — 1. (b) Take the partial derivative with respect to w:

• 2zB(w, wz) (Bw(w, wz) + zBz{w, wz)) = Bw(w, z).

Therefore if H(z) = BW{1,2) = J2nhnzn, we find H(z) = 2zB(z) (H(z) + zB'(z));

and the known formula for B(z) implies

so

H(z) =

hn — 4"

1/1—2

zWT^Tz

3 n -I- 1 / 2n\

n -j- 1 y n J

The average value is hn/bn. (c) Asymptotically, this comes to nx/irn — 3n-|- 0(\Zri).

For the solution to similar problems, see John Riordan, IB.1/ J. Res. and Devel.

4 (1960), 473-478; A. Renyi and G. Szekeres, J. Australian Math. Soc. 7 (1967),

497-507; John Riordan and N. J. A. Sloane, J. Australian Math. Soc. 10 (1969),

278-282; and exercise 2.3.1-11.

6. n -f- s — 1 = tn.

7. E = (t — 1)/-)- tn.

8. ((t — 1)&)J = nq — 2 (summation by parts)
1 <k<n 0<k<n

3/.(<-l)i:+l = d

The latter sum may be rewritten 2i~ 1)/(t — 1).

9. Induction on the size of the tree.

10. By adding extra zero weights, if necessary, we may assume that m mod (t — 1) =

1. To obtain a Gary tree with minimum weighted path length, combine the smallest

t values at each step and replace them by their sum. The proof is essentially the same

as the binary case. The desired ternary tree is

11. The “Dewey” notation is the binary representation of the node number.

12. It is the internal path length divided by n. [This holds for general trees.]

2.3.5 ANSWERS TO EXERCISES 591

SECTION 2.3.5

1. A List structure is a directed graph in which the arcs leaving each vertex are

ordered, and where some of the vertices which have out-degree 0 are designated

“atoms. ” Furthermore there is a vertex S such that there is an oriented path from S

to V for all vertices V ^ S. (With directions of arcs reversed, 5 would be a “root.”)

2. Not in the same way, since thread links in the usual representation lead back to

“FATHER” which is not unique for sub-Lists. The representation discussed in exercise

2.3.4.2-25 can perhaps be used (although this idea has not yet been exploited at the
time of writing).

3. If only PO is to be marked, the algorithm certainly operates correctly. If n > 1

nodes are to be marked, then note that ATOM (PO) = 0. Step E4 then sets ALINK (PO) <—

A and executes the algorithm with PO replaced by ALINK(PO) and T replaced by PO.

By induction (note that since MARK(PO) is now 1, all links to PO are equivalent to A

by steps E4 and E5), we see that ultimately we will mark all nodes on paths that

start with ALINK(PO) and do not pass through PO; and we will then get to step E6

with T = PO and P = ALINK(PO). Now since ATOM(T) = 1, step E6 restores

ALINK(PO) and ATOM(PO) and we reach step E5. Step E5 sets BLINK (PO) <— A, etc.,

and a similar argument shows that we will ultimately mark all nodes on paths that

start with BLINK (PO) and do not pass through PO or nodes reachable from ALINK(PO).

Then we will get to E6 with T = PO, P = BLINK (PO), and finally we get to E6 with

T = A, P = PO.

4. The program which follows incorporates the suggested improvements in the speed

of processing atoms which appear in the text after the statement of Algorithm E.

In steps E4 and E5 of the algorithm, we want to test if MARK(Q) = 0. If

NODE(Q) = +0, this is an unusual case which can be properly handled by setting it

to —0 and treating it as if it were originally —0, since it has ALINK and BLINK both A.

This simplification is not reflected in the timing calculations below,

rll = P, rI2 = T, rI3 = Q, rX = —1 (for setting MARKs).

01 MARK EQU 0:0

02 ATOM EQU 1:1

03 ALINK EQU 2:3

04 BLINK EQU 4:5

05 El LD1 P0 1 El. Initialize. P <— P0.

06 ENT2 0 1 T <-A.

07 ENTX -1 1 rX <-1.

08 E2 STX 0,1(MARK) 1 E2. Mark. MARK (P) «-

09 E3 LDA 0,1(ATOM) 1 E3. AtomT

10 JAZ E4 1 Jump if ATOM (P) 0.

11 E6 J2Z DONE n E6. Up.

12 ENT3 0,2 n — 1 Q <— T.

13 LDA 0,3(ATOM) n — 1

n JANZ IF n — 1 Jump if ATOM(T) = 1.

15 LD2 0,3(BLINK) 12 T <- BLINK(Q).

16 ST1 0,3(BLINK) t2 BLINK (Q) <- P.

17 ENT1 0,3 12 P^Q.

18 JMP E6 t2

592 ANSWERS TO EXERCISES 2.3.5

19 1H STZ 0,2(ATOM) tl ATOM (T) <- 0.

20 LD2 0,3(ALINK) tl T <- ALINK(Q).

21 ST1 0,3(ALINK) tl ALINK(Q) <- P.

22 ENT1 0,3 tl P «— Q.
28 E5 < LD3 0,1(BLINK) n E5. Down BLINK. Q «- BLINK (P).

n J3Z E6 * n Jump if Q = A.

25 LDA 0,3 n — 62

26 STX 0,3(MARK) n — 62 MARK (Q) <- ”.

27 JANP E6 n — 62 Jump if NODE (Q) was already marked.

28 LDA 0,3(ATOM) t2 "f- a2

29 JANZ E6 t2 “t- a2 Jump if AT0M(Q) ; = 1.

30 ST2 0,1(BLINK) t2 BLINK(P) «- T.

31 E4A ENT2 0,1 n — 1 T <- P.

32 ENT1 0,3 n — 1 P «- Q.
33 E4 LD3 0,1(ALINK) n E4. Down ALINK. Q <— ALINK (P).

34 J3Z E5 n Jump if Q = A.

35 LDA 0,3 n — 61

36 STX 0,3(MARK) n — 61 MARK (Q) <— ”.

37 JANP E5 n — 61 Jump if NODE (Q) was already marked.
88 LDA 0,3(ATOM) tl -\- al

89 JANZ E5 tl -(- al Jump if ATOM (Q) = = 1.

40 STX 0,1(ATOM) tl ATOM(P) <— 1.

41 ST2 0,1(ALINK) tl ALINK(P) T.

42 JMP E4A tl T <— P, P <— Q, to E4. |

By Kirchhoff’s law, (1 + t2 + 1 = n. The total time is (34n + 4il + 3a — 56 — '8)u,

where n is the number of non-atomic nodes marked, a is the number of atoms marked,

b is the number of A links encountered in marked non-atomic nodes, and <1 is the

number of times we went down an ALINK (0 < tl < n).

5. (The following is the ‘fastest known’ marking algorithm.)

51. Set MARK (P0) <— 1. If ATOM(PO) = 1, the algorithm terminates; otherwise
set S <— 0, R <— P0, T <- A.

52. Set P <— BLINK(R). If P = A or MARK(P) = 1, go to S3. Otherwise set

MARK(P) «— 1. Now if ATOM(P) = 1, go to S3; otherwise if S < N set

S <— S+ 1, STACK[S] <— P, and go to S3; otherwise go to S5.

53. Set P ALINK(R). If P = A or MARK(P) = 1, go to S4. Otherwise set

MARK(P) <— 1. Now if ATOM(P) = 1, go to S4; otherwise set R «— P and
return to S2.

54. If S = 0, terminate the algorithm; otherwise set R <— STACK[S], S <— S — 1,
and go to S2.

55. Set Q<—ALINK(P). If Q = A or MARK(Q) = 1, go to S6. Otherwise set

MARK (Q) <- 1. Now if ATOM(Q) = 1, go to S6; otherwise set ATOM(P) <— 1,

ALINK (P) <— T, T <— P, P <— Q, go to S5.

56. Set Q ^ BLINK(P). If Q = A or MARK(Q) =, 1, go to S7. Otherwise set

MARK(Q) <- 1. Now if ATOM(Q) = 1, go to S7; otherwise set BLINK(P) <- T,

T 4— p, p 4— Q, go to S5.

2.3.5 ANSWERS TO EXERCISES 593

S7. If T = A, go to S3. Otherwise set Q <- T. If ATOM(Q) = 1, set ATOM(Q) <-0,

T <- ALINK(Q), ALINK(Q) <— P, P <- Q, and return to S6. If ATOM(Q) = 0,

set T <— BLINK(Q), BLINK(Q) P, P <— Q, and return to S7. |

Reference: CACM 10 (1967), 501-506.

6. From the second phase of garbage collection (or perhaps also the initial phase if

all mark bits are set to zero at this time).

7. Delete steps E2 and E3, and delete “ATOM(P) <- 1” in E4. Set MARK(P) <- 1 in

step E5 and use “MARK(Q) = 0”, “MARK(Q) = 1” in step E6 in place of the present

“AT0M(Q) = 1”, “ATOM(Q) = 0” respectively. The idea is to set the MARK bit only

after the left subtree has been marked. This algorithm works even if the tree has over¬

lapping (shared) subtrees, but it does not work for all recursive List structures such

as those with NODE (ALINK(Q)) an ancestor of NODE (Q). (Note that ALINK of a marked

node is never changed.)

8. Solution 1: Analogous to Algorithm E, but simpler.

FI. Set T <— A, P <- P0.

F2. Set MARK(P) <- 1, and set P <- P-f SIZE(P).

F3. If MARK (P) = 1, go to F5.

F4. Set Q <- LINK(P). If Q ^ A and MARK(Q) = 0, set LINK(P) <— T, T <— P,

P <— Q, and go to F2. Otherwise set P <— P — 1 and return to F3.

F5. If T = A, stop. Otherwise set Q <- T, T ■*— LINK(Q), LINK(Q) <— P,

P «— Q — 1, and return to F3. |

A similar algorithm, which sometimes decreases the storage overhead and which

avoids all pointers into the middle of nodes, has been suggested by Lars-Erik Thorelli,

BIT 12 (1972), 555-568.

Solution 2: Analogous to Algorithm D. For this solution, we assume the SIZE

field is large enough to contain a link address. Such an assumption is probably not

justified by the statement of the problem, but it lets us use a slightly faster method

than the first solution when it is applicable.

Gl. Set T <-A, MARK(P0) <- 1, P <- P0 + SIZE(PO),

G2. If MARK (P) = 1, go to G5.

G3. Set Q «- LINK(P), P <- P - 1.

G4. If Q ^ A and MARK(Q) = 0, set MARK(Q) <- 1, S SIZE(Q), SIZE(Q) «- T,

T <— Q + S. Go back to G2.

G5. If T = A, stop. Otherwise set P T and find the first value of Q = P,

P — 1, P — 2, . . .for which MARK (Q) = l;setT <- SIZE(Q) and SIZE(Q) «-

P — Q. Go back to G2. |

9. HI. Set L<—0, K«-M+ 1, MARK (0) <- 1, MARK (M + 1) <-0.

H2. Increase L by one, and if MARK(L) = 1 repeat this step.

H3. Decrease K by one, and if MARK(K) = 0 repeat this step.

H4. If L > K, go to step H5; otherwise set NODE(L) <— NODE(K), ALINK(K) <— L,

MARK (K) <—0, and return to H2.

H5. For L = 1, 2, . . . , K do the following: Set MARK(L) <— 0.

If ATOM(L) = 0 and ALINK (L) > K, set ALINK (L) <— ALINK (ALINK (L)).

If ATOM(L) = 0 and BLINK(L) > K, setBLINK(L) <-ALINK(BLINK(L)). |

594 ANSWERS TO EXERCISES 2.3.5

10. Zl. [Initialize.] Set F <- P0, R<= AVAIL, NODE(R) NODE(F), REF(F) <— R.

(Here F and R are pointers for a queue set up in the REF fields of all header

nodes encountered.)

Z2. [Begin new List.] Set P F, Q <— REF(P).

Z3. [Advance to right.] Set P <— RLINK(P). If P = A, go to Z6.

Z4. [Copy one node.] Set Q1 <= AVAIL, RLINK(Q) <— Ql, Q <— Ql, NODE(Q) <—

NODE(P).

Z5. [Translate sub-List link.] If T(P) = 1, set PI <— REF(P), and if REF (PI) =

Aset REF(R) <— PI, R <= AVAIL, REF(P1)«-R, NODE (R) <-NODE (PI),

REF(Q) <— R. If T(P) = 1 and REF (PI) 5^ A, set REF(Q) ♦— REF (PI). Go

to Z3.

Z6. [Move to next List.] Set RLINK(Q) <—A. If REF(F) 5^ R, set F <—

REF(REF(F)) and return to Z2. Otherwise set REF(R) A, P <— P0.

Z7. [Final cleanup.] Set Q <— REF(P). If Q 9^ A, set REF(P) <—A and P <— Q

and repeat step Z7. |

Of course, this use of the REF fields makes it impossible to do garbage collection with

Algorithm D; moreover, Algorithm D is ruled out by the fact that the lists aren’t
well-formed during the copying.

A beautiful List copying algorithm which makes substantially weaker assumptions

about List representation has been devised by David A. Fisher [CACM 18 (1975),
to appear].

11. Here is a pencil-and-paper method which can be written out more formally to

answer the problem: First attach a unique name (e.g. a capital letter) to each List in

the given set; in the example we would have for example A — (a:C, b, a:F), F =

(b:D), B = (,a:F,b,a:E), C = (b:G), G = (a:C), D = (a:F), E = (ib:G). Now

make a list of pairs of List names that must be proved equal. Successively add pairs

to this list until either a contradiction is found because we have a pair which disagree

on the first level (then the originally given Lists are unequal), or until the list of pairs

does not imply any further pairs (then the originally given Lists are equal). In the

example, this list of pairs would originally contain only the given pair, AB; then it

gets the further pairs CF, EF (by matching .4 and B), DG (from CF) and then we
have a self-consistent set.

1

To prove the validity of this method, observe that (a) if it returns the answer

“unequal”, the given Lists are unequal; (b) if the given Lists are unequal, it returns the
answer “unequal”; (c) it always terminates.

12. When the AVAIL list contains N nodes, where A is a specified constant to be

chosen as discussed below, initiate another coroutine which shares computer time with

the main routine and does the following: (a) Marks all N nodes on the AVAIL list;

(b) marks all other nodes which are accessible to the program; (c) links all unmarked

nodes together to prepare a new AVAIL list for use when the current AVAIL list is

empty, and (d) resets the mark bits in all nodes. One must choose N and the ratio

of time sharing so there is a positive guarantee that operations (a), (b), (c), and (d)

are complete before N nodes are taken from the AVAIL list, yet the main routine is

running sufficiently fast. It is necessary to use some care in step (b) to make sure all

nodes accessible to the program are included, as the program continues to run;

details are omitted here. If the list formed in (c) has less than N nodes, it mav be

necessary to stop eventually because memory space might become exhausted.

2.4 ANSWERS TO EXERCISES 595

SECTION 2.4

1. Preorder.

2. It is essentially proportional to the number of Data Table entries created.

3. Change step A5 to: “A5'. [Remove top level.] Remove the top stack entry; and

if the new level number at the top of the stack is >L, let (LI, PI) be the new entry
at the top of the stack and repeat this step. Otherwise set BROTHER (PI) <— Q and

then let (LI, PI) be the new entry at the top of the stack.”

4. (Solution by David S. Wise.) Rule (c) is violated if and only if there is a data

item whose complete qualification Aq OF. . .OF An is also a COBOL reference to some

other data item. Since the father A\ OF. . .OF An must also satisfy rule (c), we may

assume that this other data item is a descendant of the same father. Therefore Algor¬

ithm A would be extended to check, as each new data item is added to the Data Table,

whether its father is an ancestor of any other item of the same name, or if the father

of any other item of the same name is in the stack. (Note that when the father is A

it is everybody’s ancestor and always on the stack.)

5. Make the SteP rePlace

following changes: Bl. P <— LINK(Po) P

B2. k <- 0

by

LINK(INFO(T))

K <- T

B3. k < n

B4. k <r— k -1- 1

B6. NAME (S) = Pk

RLINK(K) ^ A

K <- RLINK(K)

NAME(S) = INFO(K)

6. A simple modification of Algorithm B makes it search only for complete references

(if k = n and FATHER(S) ^ A in step B3, or if NAME(S) ^ Pk in step B6, set P <—

PREV(P) and go to B2). The idea is to run through this modified Algorithm B first;

then, if Q is still A, to perform the unmodified algorithm.

7. MOVE MONTH OF DATE OF SALES TO MONTH OF DATE OF PURCHASES.

MOVE DAY OF DATE OF SALES TO DAY OF DATE OF PURCHASES. MOVE YEAR OF

DATE OF SALES TO YEAR OF DATE OF PURCHASES. MOVE ITEM OF TRANSACTION

OF SALES TO ITEM OF TRANSACTION OF PURCHASES. MOVE QUANTITY OF

TRANSACTION OF SALES TO QUANTITY OF TRANSACTION OF PURCHASES. MOVE

PRICE OF TRANSACTION OF SALES TO PRICE OF TRANSACTION OF PURCHASES.

MOVE TAX OF TRANSACTION OF SALES TO TAX OF TRANSACTION OF PURCHASES.

8. If and only if a or @ is an elementary item. (It may be of interest to note that the

author failed to handle this case properly in his first draft of Algorithm C, and it

actually made the algorithm more complicated.)

9. “MOVE CORRESPONDING a TO /3”, if neither a nor (8 is elementary, is equivalent to

the set of statements “MOVE CORRESPONDING .1 OF a TO A OF /3” taken over all names

. 1 common to groups a and /3. (This is a more elegant way to state the definition than

the more traditional and more cumbersome definition of “MOVE CORRESPONDING”

given in the text.) We may verify that Algorithm C satisfies this definition, using an

inductive proof that steps C2 through C5 will ultimately terminate with P = PO

and Q = QO. Further details of the proof are filled in as we have done many times

before in a “tree induction” (cf. the proof of Algorithm 2.3.IT).

10. (a) Set SI <— LINK(P*). Then repeatedly set SI <— PREV(Sl) zero or more times

until either SI = A (NAME(S) 5^ Pk) or SI = S (NAME(S) = Pk). (b) Set PI <— P

and then set PI <— PREV(Pl) zero or more times until PREV(Pl) = A; do a similar

596 ANSWERS TO EXERCISES 2.4

operation with variables Ql, Q; and then test if PI = Ql. Alternatively if the Data

Table entries are ordered so that PREV(P) < P for all P, a faster test can be made in

an obvious way depending on whether P > Q or not and following the PREV links of

the larger to see if the smaller is encountered.

11. A miniscule improvement in the speed of step C4 would be achieved by adding

a new link field BR0THER1 (Pi) = SON (FATHER (P)). More significantly, we could

modify the SON and BROTHER links so that NAME (BROTHER (P)) > NAME (P); this

would speed up the search in step C3 considerably because it would require only one

pass over each family to find the matching members. This would therefore remove

the only “search” present in Algorithms B or C. Algorithms A and C are readily

modified for this interpretation, and the reader may find this an interesting exercise.

(However, if we consider the relative frequency of MOVE CORRESPONDING statements

and the usual size of family groups, the resulting speedup will not be terribly significant

in the translation of actual COBOL programs.)

12. Leave steps Bl, B2, B3 unchanged; change the other steps thus:

B4. Set k «- k + 1, R <— LINK(P*)-

B5. If R = A, there is no match; set P <— PREV(P) and go to B2. If R < S <

SCOPE(R), set S <— R and go to B3. Otherwise set R <— PREV(R) and repeat
step B5. |

This algorithm does not adapt to the PL/I convention of exercise 6.

13. Use the same algorithm, minus the operations that set NAME, FATHER, SON, and

BROTHER. Whenever removing the top stack entry in step A5, set SCOPE (PI) <—
Q — 1. When the input is exhausted in step A2, simply set L <— 0 and continue, then

terminate the algorithm if L = 0 in step A7.

14. The following algorithm, using an auxiliary stack (cf. Chapter 8), has steps

numbered to show a direct correspondence with the text’s algorithm.

Cl. Set P <— PO, Q QO, and set the stack contents empty.

C2. If SCOPE(P) = P or SCOPE(Q) = Q, output (P, Q) as one of the desired

pairs and go to C5. Otherwise put (P, Q) on the stack and set P <- P + 1,
Q Q+ 1.

C3. Determine if P and Q point to entries with the same name (cf. exercise 10(b)).

If so, go to C2. If not, let (PI, Ql) be the entry at the top of the stack;

if SCOPE (Q) < SCOPE (Ql), set Q «- SCOPE (Q) + 1 and repeat step C3.

C4. Let (PI, Ql) be the entry at the top of the stack. IfSCOPE(P) < SCOPE (PI),

set P <— SCOPE(P) + 1, Q <- Ql -f- 1, and go back to C3. If SCOPE(P) =

SCOPE (PI), set P <— PI, Q Ql and remove the top entry of the stack.

C5. If the stack is empty, the algorithm terminates. Otherwise go to C4. |

SECTION 2.5

1. In such fortuitous circumstances, a stack-like operation may be used as follows:

Let the memory pool area be locations 0 through M — 1, and let AVAIL point to the

lowest free location. To reserve N words, report failure if AVAIL + N > M, otherwise

set AVAIL <— AVAIL + N. To free these N words, just set AVAIL <— AVAIL — N.

Similarly, cyclic queue-like operation is appropriate for a first-in-first-out discipline.

2. The amount of storage space for an item of length l is k[l/{k — 6)1, which has

the average value kL/(k — b) + (1 — a)k, where a is assumed to be independent

of k. This expression is a minimum (for real values of k) when k = b + V^bL. So

2.5 ANSWERS TO EXERCISES 597

choose k to be the integer just above or just below this value, whichever gives the

lowest value of kL/(k — b) + %k. For example if b = 1 and L = 10, k ~ 1 + \/20 =

5 or 6; both are equally good. For much greater detail about this problem, see JACM

12 (1965), 53-70.

4. rll = Q, rI2 = P.

Al LDA N rA N.

ENT2 AVAIL P 4- LOC(AVAIL).

A2A ENT1 0,2 Q <— P.
A2 LD2 0,1(LINK) P 4- LINK(Q).

J2N OVERFLOW If P = A, no room.

A3 CM PA 0,2(SIZE)

JG A2A Jump if N > SIZE(P).

A4 SUB 0,2(SIZE) rA <— N — SIZE (P) =]

JANZ *+3 Jump if K 9^ 0.

LDX 0,2(LINK) LINK(P)

STX 0,1(LINK) LINK (Q).

STA 0,2(SIZE) SIZE(P) <- K.

LD1 0,2(SIZE) Optional ending,

INC1 0,2 sets rll <— P + K. |

5. Probably not. The unavailable storage area just before location P will subse¬

quently become available, and its length will be increased by the amount K; an increase

of 99 would not be negligible.

6. The idea is to try to search in different parts of the AVAIL list each time. We can

use a “roving pointer,” called ROVER for example, which is treated as follows: In step

Al, set Q <— ROVER. After step A4, set ROVER <— LINK(Q). In step A2, when P = A

the first time during a particular execution of Algorithm A, set Q <— L0C(AVAIL) and

repeat step A2. When P = A the second time, the algorithm terminates unsuccessfully.

In this way ROVER will tend to point to a random spot in the AVAIL list, and the sizes

will be more balanced. At the beginning of the program, set ROVER <— LOC(AVAIL);

it is also necessary to set ROVER to LOC (AVAIL) everywhere else in the program where

the block whose address equals the current setting of ROVER is taken out of the AVAIL

list.

7. 2000, 1000 with requests of sizes 800, 1300. [An example where worst-fit succeeds,

while best-fit fails, has been constructed by R. J. Weiland.]

8. In step Al, also set R <— A. In step A2, if P = A go to A6. In step A3, go to A5

not A4. Add new steps as follows:

A5. [Better fit?] If R = A or M > SIZE(P), set R <— Q and M <- SIZE(P). Then

set Q <— P and return to A2.

A6. [Any found?] If R = A, the algorithm terminates unsuccessfully. Otherwise

set Q <— R, P <— LINK(Q), and go to A4. |

9. Obviously if we are so lucky as to find SIZE(P) = N, we have a “best fit” and

it is not necessary to search farther. (When there are only very few different block

sizes, this occurs rather often.) If a “boundary tag” method like in Algorithm C is

being used, it is possible to maintain the AVAIL list in sorted order, so the length of

search could be cut down to \ the length of the list or less, on the average. But the

best solution is to make the AVAIL list into a balanced tree structure as described in

Section 6.2.3, if it is expected to be long.

598 ANSWERS TO EXERCISES 2.5

10. Make the following changes:

Step B2, for “P > P0” read “P > P0”.

Step B3, insert “If P0 + N > P (and P ^ A), set P <-LINK(P) and repeat

step B3.”

Step B4> for “Q + SIZE(Q) = PO”, read “Q + SIZE(Q) > PO”; and for

“SIZE(Q) 4- SIZE(Q) + N” rpd “SIZE(Q) 4- PO + N — Q”.

11. If PO is greater than ROVER, we can set Q 4— ROVER instead of Q 4—LOC (AVAIL)

in step Bl. If there are n entries in the AVAIL list, the average number of iterations of

step B2 is (2n+ 3)(n+ 2)/6(n+ 1) = 371 + f + 0(1). For example if n = 2 we

get 9 equally probable situations, where PI and P2 point to the two existing available

blocks:

PO < PI

R0VER=P1 1

R0VER=P2 1

R0VER=L0C(AVAIL) 1

PI < PO < P2 P2 < PO

2
2

This chart shows the number of iterations needed in each case. The average is

K(!) + (!) + (!) + (!) + (!)) = K(i) + (I)) = ¥■

12. Al. Set P 4- ROVER, F 4- 0.

A2. If P = LOC (AVAIL) and F = 0, set P 4— AVAIL, F 4— 1, and repeat step A2.

If P = LOC (AVAIL) and F ^ 0, the algorithm terminates unsuccessfully.

A3. If SIZE(P) > N, go to A4; otherwise set P 4— LINK(P) and return to A2.

A4. Set ROVER 4- LINK(P), K SIZE(P) — N. If K < c (where c is a

constant which must equal 2 or more), set LINK(LINK(P + 1)) 4— ROVER,

LINKfROVER + 1) 4— LINK(P + 1), L 4—P; otherwise set L 4- P-f K,

SIZE (P) 4— SIZE(L — 1) 4— K, TAG(L— 1) 4— “—”, SIZE(L) 4— N. Set

TAG(L) 4- TAG(L+ SIZE(L) — 1) ^ |

13. rll = P, rX = F, rI2 h= L.

LINK EQU 4:5
SIZE EQU 1:2

TSIZE EQU 0:2

TAG EQU 0:0
Al LDA N rA 4— N.

SLA 3 Shift into SIZE field.
ENTX 0 F 4- 0.
LD1 ROVER P 4- ROVER.
JMP A2

A3 CMPA 0.1(SIZE)

JLE A4 Jump if N < SIZE(P).
LD1 0,1(LINK) P 4- LINK(P).

A2 ENT2 -AVAIL,1 rI2 4- P —LOC (AVAIL)
J2NZ A3

JXNZ OVERFLOW Is F =* 0?
ENTX 1 Set F 4- 1.

LD1 AVAIL(LINK) P 4- AVAIL.
JMP A2

2.5 ANSWERS TO EXERCISES 599

A4

1H

2H

LD2 0,1(LINK)

ST2 ROVER

LDA 0,1(SIZE)

SUB N

CMPA =c=

JGE IF

LD3 1,1(LINK)

ST2 0,3(LINK)

ST3 1,2(LINK)

ENT2 0,1

LD3 0,1(SIZE)

JMP 2F

STA 0,1(SIZE)

LD2 0,1(SIZE)

INC2 0,1

LDAN 0,1(SIZE)

STA —1,2(TSIZE)

LD3 N

ST3 0,2(TSIZE)

INC3 0,2

STZ -1,3(TAG)

ROVER <- LINK(P).

r A = K <— SIZE(P) — N.

Jump if K > c.

rI3 <- LINK(P -f- 1).

LINK (rI3) <- ROVER.

LINK (ROVER + 1) «- rI3.

L <— P.

rI3 <- SIZE(P).

SIZE(P) <— K.

L <- P+ K.

rA <-K.

SIZE (L — 1) <— K, TAG (L — 1) <—

rI3 <— N.

TAG (L) 4- also set SIZE(L) «- rI3.

TAG(L+ SIZE (L) — 1) <- “+”• |

14. (a) This field is needed to locate the beginning of the block, in step C2. It could

be replaced (perhaps to advantage) by a link to the first word of the block, (b) This

field is needed because it is necessary to reserve more than N words at times (for

example if K = 1), and the amount reserved must be known when the block is sub¬

sequently freed.

15, 16. rll = PO, rI2 = PI, rI3 = F, rI4 = B, rI6 = -N.

D1 LD1 PO Dl.

LD2 0,1(SIZE)

ENN6 0,2 N SIZE (PO).

INC2 0,1 PI <- P0 + N.

LD5 0,2(TSIZE)

J5N D4 To D4 if TAG (PI) = ”.

D2 LD5 -1,1(TSIZE) D2.

J5N D7 To D7 if TAG(P0 — 1) =

D3 LD3 AVAIL(LINK) D3. Set F <- AVAIL.

ENT4 AVAIL B 4- LOC(AVAIL).

JMP D5 To D5.

D4 INC6 0,5 D4. N <— N+ SIZE (PI).

LD3 0,2(LINK) F <- LINK(PI).

LD4 1,2(LINK) B <- LINK(P1 + 1).

CMP2 ROVER (This part because of the ROVER

JNE *+3 feature of exercise 12:

ENTX AVAIL If PI = ROVER,

STX ROVER set ROVER <- LOC(AVAIL).)

DEC2 0,5 PI ^ PI 4- SIZE (PI).

600 ANSWERS TO EXERCISES 2.5

LD5 —1,1(TSIZE)

J5N D6

D5 ST3 0,1(LINK)

ST4 1,1(LINK)

ST1 1,3(LINK)

ST1 0,4(LINK)

JMP D8

D6 ST3 0,4(LINK)

ST4 1,3(LINK)

D7 INC6 0,5

INC1 0,5

D8 ST6 0,1(TSIZE)

ST6 -1,2(TSIZE)

To D6 if TAG(P0 — 1) =

D5. LINK(PO) <- F.

LINK (P0 + 1) <— B.

LINK (F + 1) 4- P0.

LINK(B) <- P0.

To D8.

D6. LINK(B) F.

LINK(F+ 1) B.

D7. N 4- N+ SIZE(P0 — 1).

PO 4- PO — SIZE(PO — 1).

D8. SIZE (PO) <- N, TAG (PO) 4-

SIZE (PI — 1) 4— N, TAG (PI— 1) 4- ”. |

17. Both LINK fields equal to LOC(AVAIL).

18. Algorithm A reserves the upper end of a large block. When storage is completely
available, the first fit method actually begins by reserving the high-order locations,
but once these become available again they are not re-reserved since a “fit” is usually
found already in the lower locations; thus the initial large block at the lower end of
memory quickly disappears with “first fit.” A large block rarely is the “best fit,”
however, so the best fit method leaves a large block at the beginning of memory.

19. Use the algorithm of exercise 12, except delete the references to SIZE (L— 1),

TAG(L — 1), and TAG(L + SIZE(L) — 1) from step A4; also insert the following
actions at the beginning of step A3: “Set PI 4— p-f SIZE(P). If TAG (PI) = “—”,

set LINK (LINK (PI) + 1) <— LINK (PI + 1), LINK (LINK (PI —1)) <— LINK (PI)'
SIZE(P) <— SIZE(P) + SIZE (PI), and repeat step A3. Otherwise:”

Clearly the situation of (2), (3), (4) can’t occur here; the only real effect on the
storage allocation is that the search here will tend to be longer than in exercise 12, and
sometimes K will be less than c although there is really another available block pre¬
ceding this one that we do not know about.

(An alternative is to take the collapsing out of the inner loop A3, and to do the
collapsing only in step A4 before the final allocation or in the inner loop when the
algorithm would otherwise have terminated unsuccessfully. This alternative requires
a simulation study to see if it is an improvement or not.)

20. When a buddy is found to be available, during the collapsing loop, we want to
remove that block from its AVAILS] list, but we do not know which links to update
unless (a) we do a possibly long search, or (b) the list is doubly linked.

2L If n = 2ka, where 1 < a < 2, a„ is 22k+1(a — §) + £, and bn is 22k~1a2 +
2k 1a. The ratio an/bn for large n is essentially 4(a — %)/a2, which takes its minimum
value | when a = 1 and 2, and its maximum value f when a = 1^. So an/bn approaches
no limit, it oscillates between these two extremes.

22. This idea requires a TAG field in several words of the 11-word block, not only in
the first word. It is a workable idea, provided these extra TAG bits can be spared, and
it would appear to be especially suitable for use in computer hardware.

2.5 ANSWERS TO EXERCISES 601

23. 011011110100; 011011100000.

24. This introduces a bug in the program; we may get to step SI when TAG(O) = 1,

since S2 may return to Si. To make it work, add “TAG(L) <— 0” after “L P” in

step S2. (It is easier to assume instead that TAG(2m) = 0.)

25. The idea is quite correct. (Note that criticism need not be negative.) The list

heads AVAIL[ft] may be eliminated for n < k < to; the algorithms of the text may

be used if “to” is changed to “n” in steps Rl, SI. The initial conditions (13), (14)

should be changed to indicate 2m~" blocks of size 2" instead of one block of size 2m.

26. Using the binary representation of M, we can easily modify the initial conditions

(13), (14) so that all memory locations are divided into blocks whose size is a power

of two. In Algorithm S, TAG(P) should be regarded as 0 whenever P > M.

27. rll = k, rI2 = j, rI3 = j — k, rI4 == L, LOC (AVAILED = AVAIL -f- j; assume

that there is an auxiliary table TW0[;] = 2», stored in location TWO + j, for 0 < j < to.

Assume further that TAG =+, — represents TAG = 0,1; TAG (LOC (AVAIL[;])) =

“—”, except, as a sentinel, TAG(L0C(AVAIL[to + 1])) = “+”.

00 KVAL EQU 5:5

01 TAG EQU 0:0

02 LINKF EQU 1:2

03 LINKB EQU 3:4

04 TLNKF EQU 0:2

05 Rl LD1 K 1 Rl. Find block.
06 ENT 2 0,1 1 j <— k.
07 ENT 3 0 1

08 LD4 AVAIL,2(LINKF) 1

09 1H ENT 5 AVAIL,2 1+ R
10 DEC5 0.4 1+ R
11 J5NZ R2 1+ R Jump if AVAILF[;] ^ L0C(AVAIL[;]).

12 INC2 1 R Increase j
IS INC3 1 R

14 LD4N AVAIL,2(TLNKF) R
15 J4NN IB R Is j < m?

16 JMP OVERFLOW

17 R2 LD5 0,4(LINKF) 1 R2. Remove from list.

18 ST 5 AVAIL,2(LINKF) 1 AVAILF[;'] <— LINKF(L).

19 ENTA AVAIL,2 1

20 STA 0,5(LINKB) 1 LINKB(L) <— L0C(AVAIL[j]).

21 STZ 0,4(TAG) 1 TAG(L) <-0.

22 R3 J3Z DONE 1 R3. Split required?

23 R4 DEC3 1 R R4- Split.

24 DEC2 1 R Decrease j.

25 LD5 TWO,2 R rI5 = P

26 INC5 0,4 R P *— L + 2t

27 ENNA AVAIL, 2 R

28 STA 0,5(TLNKF) R TAG(P) *-l,LINKF(P) <— LOC(AVAIL[j]

29 STA 0,5(LINKB) R LINKB(P) <— LOC(AVAIL[;]).

SO ST5 AVAIL,2(LINKF) R AVAILF[;] <- P.

31 ST5 AVAIL,2(LINKB) R AVAILB[;] <- P.

32 ST2 0,5(KVAL) R KVAL(P)

S3 J3P R4 R Go to R3.

34 DONE . . . 1

602 ANSWERS TO EXERCISES 2.5

28. rll = k, rI5 = P, rI4 = L; assume TAG(2m) = “+”.

01 SI LD4 L 1 Si. Is buddy available?

02 LD1 K 1

08 1H ENTA 0,4 1 + 5

04 XOR TWO, 1 1 + 5 rA <— buddy*(L).

05 STA TEMP t 1 + 5

06 LD5 TEMP 1 + 5 P <- rA.

07 LDA 0,5 1 + 5

08 JANN S3 1 + 5 Jump if TAG (P) = 0.

09 CMP1 0,5(KVAL) 5+5

10 JNE S3 5 + 5 Jump if KVAL(P) ^ k.
11 S2 LD2 0,5(LINKF) 5 S2. Combine with buddy.
12 LD3 0,5(LINKB) 5

13 ST3 0,2(LINKF) 5 LINKF(LINKB(P)) *- LINKF(P).

H ST2 0,3(LINKB) 5 LINKB(LINKF(P)) <— LINKB(P).

15 INC1 1 5 Increase k.
16 CMP4 TEMP 5

17 JL IB 5

18 ENT4 0,5 A If L > P, set L <— P.

19 JMP IB A
20 S3 LD2 AVAIL,l(LINKF) 1 S3. Put on list.
21 ENNA AVAIL,1 1

22 STA 0,4(0:4) 1 TAG(L) <-l,LINKB(L) <- L0C(AVAIL[&]

23 ST2 0,4(LINKF) 1 LINKF(L) <— AVAILFffc].

24 ST1 0,4(KVAL) 1 KVAL(L) k.
25 ST4 0,2(LINKB) 1 LINKB (AVAILF[/c]) <—L.
26 ST4 AVAIL,l(LINKF) 1 AVAILF[/c] <— L. |

29. Yes, but only at the expense of some searching, or (better) an additional table

of TAG bits packed somehow. (It is tempting to suggest that buddies not be joined

together during Algorithm S, but only in Algorithm R if there is no block large enough

to meet the request; but this probably leads to a badly fragmented memory.)

33. Gl. [Clear LINKs.] Set P <— 1, and repeat the operation LINK(P) <— A, P <—

P + SIZE(P) until P = AVAIL. (This merely sets the LINK field in the first

word of each node to A; we may assume in most cases that this step is un¬

necessary, since LINK(P) is set to A in step G9 below and it can be set to A
by the storage allocator.)

G2. [Initialize marking phase.] Set TOP <— USE, LINK (TOP) <— AVAIL,

LINK (AVAIL) <— A. (TOP points to the top of a stack as in Algorithm 2.3.5D.)

G3. [Pop up stack.] Set P <- TOP, TOP <- LINK (TOP). If TOP = A, go to G5.

G4. [Put new links on stack.] For 1 < k < T(P), do the following operations:

Set Q <-LINK(P-f- k), and if Q ^ A, LINK(Q) =A set LINK(Q) <— TOP,
TOP <— Q. Then go back to G3.

G5. [Initialize next phase.] (Now P = AVAIL, and the marking phase has been

completed so that the first word of each accessible node has a nonnull LINK.

Now we wish to combine adjacent inaccessible nodes, for speed in later

2.5 ANSWERS TO EXERCISES 603

steps, and to assign new addresses to the accessible ones.) Set Q <— 1,

LINK(AVAIL) <— Q, SIZE(AVAIL) <— 0, P <— 1. (Location AVAIL is being

used as a sentinel to signify the end of a loop in subsequent phases.)

G6. [Assign new addresses.] If LINK(P) = A, go to G7. Otherwise if SIZE(P) =

0, go to G8. Otherwise set LINK(P)*-Q, Q <— Q + SIZE(P), P <-

P + SIZE(P), and repeat this step.

G7. [Collapse available areas.] If LINK(P + SIZE(P)) = A, increase SIZE(P)

by SIZE(P + SIZE(P)) and repeat this step. Otherwise set P <— P -f-

SIZE (P) and return to G6.

G8. [Translate all links.] (Now the LINK field in the first word of each accessible

node contains the address to which the node will be moved.) Set USE <—

LINK(USE), and AVAIL <—Q. Then set P <—1, and repeat the following

operation until SIZE(P) =0: If LINK(P) ^ A, set LINK(Q) <-

LINK (LINK (Q)) for P < Q < P+T(P); then regardless of the value of

LINK(P), set P <— P + SIZE(P).

G9. [Move.] Set P <— 1, and repeat the following operation until SIZE(P) = 0:

Set Q *- LINK(P), and if Q ^ A set LINK(P) <— A and NODE(Q) <-N0DE(P);

then whether Q = A or not, set P <— P + SIZE(P). (The operation

N0DE(Q) <— N0DE(P) implies the movement of SIZE(P) words; we always

have Q < P, so it is safe to move the words in order from smallest location

to largest.) |

[This method is called the “LISP 2 garbage collector." Another, somewhat more

complicated compacting algorithm has been described by B. K. Haddon and W. M.

Waite, Comp. J. 10 (1967), 162-165.]

34. Let TOP = rll, Q = rI2, P = rI3, k = rI4, SIZE(P) = rI5. Assume further that

A = 0, and LINK 10) 5^ 0 to simplify step G4. Step G1 is omitted.

01 LINK EQU 4:5

02 INFO EQU 0:3

03 SIZE EQU 1:2

04 T EQU 3:3

05 G2 LD1 USE 1 G2. Initialize marking phase. TOP <— USE

06 LD2 AVAIL 1

07 ST2 0.1(LINK) 1 LINK (TOP) <-AVAIL.

08 STZ 0,2(LINK) 1 LINK(AVAIL) <— A.

09 G3 ENT3 0,1 a -j- 1 G3. Pop up stack. P <— TOP.

10 LD1 0,1(LINK) a -f- 1 TOP <- LINK(TOP).

11 J1Z G5 ci -f- 1 To G5 if TOP = A.

12 G4 LD4 0,3(T) a G4. Put new links on stack, k *— T(P).

13 1H J4Z G3 b+a k = 0?

n INC3 1 b P4-P+1.

15 DEC4 1 b k <— k — 1.

16 LD2 0,3(LINK) b Q <- LINK(P).

17 LDA 0,2(LINK) b

18 JANZ IB b Jump if LINK(Q) ^ A.

19 ST1 0,2(LINK) a — 1 Otherwise set LINK(Q) <- TOP,

20 ENT1 0,2 a — 1 TOP <- Q.

21 JMP IB a — 1

22 G5 ENT2 1 1 G5. Initialize next phase. Q <— 1.

23 ST2 0,3 1 LINK(AVAIL) <- 1, SIZE(AVAIL) <- 0.

2.5 604 ANSWERS TO EXERCISES

H ENT3 1 1
25 JMP G6 1
26 1H ST2 0,3(LINK) a

27 INC2 0,5 a

28 INC3 0,5 a

29 G6 Ida 0,3(LINK) a “f~ 1
30 G6A LD5 0,3(SIZSJ a “I- c 1
31 JAZ G7 a -\- c \

32 J5NZ IB CL -f~ 1
33 G8 LD1 USE 1
84 LDA 0,1(LINK) 1
35 STA USE 1
36 ST2 AVAIL 1
37 ENT3 1 1
38 JMP G8P 1
39 1H LD6 0,6(SIZE) d

40 INC5 0,6 d

41 G7 ENT6 0,3 c+d

42 INC6 0,5 c -f- d
43 LDA 0,6(LINK) c -f- d

44 JAZ IB c -f- d
45 ST5 0,3(SIZE) c
46 INC3 0,5 c
47 JMP G6A c
48 2H DEC4 1 b

49 INC2 1 b
50 LD6 0,2(LINK) b
51 LDA 0,6(LINK) b
52 STA 0,2(LINK) b
53 1H J4NZ 2B a -\- b
54 3H INC3 0,5 a + c
55 G8P LDA 0,3(LINK) 1 —I- ct —1~ c
56 LD5 0,3(SIZE) 1 -f- a -f- c
57 JAZ 3B \ a c
58 LD4 0,3 (T) 1 a
59 ENT2 0,3 1 a
60 J5NZ IB 1 -j- CL

61 G9 ENT3 1 1
62 ENT1 1 1
63 JMP G9P 1
64 1H STZ 0,3(LINK) a
65 ST5 *+1(4:4) a
66 MOVE 0,3(*) a
67 3H INC3 0,5 a + c
68 G9P LDA 0,3(LINK) 1 H- a ~f" c
69 LD5 0,3(SIZE) 1 -f- a -|- c
70 JAZ 3B 1 ~h a -f- c
71 J5NZ IB 1 -f- a

p <- l.

LINK(P) <- Q.

Q «-Q+ SIZE(P).

P +- P + SIZE(P).

G6. Assign new addresses.

Jump if LINK(P) = A.
Jump if SIZE (P) 5* 0.

G8. Translate all links.

USE <- LINK(USE).

AVAIL <- Q.

P <- 1.

rl5 <- rI5+ SIZE(P+ SIZE(P)).

G7. Collapse available areas.
rI6 <— P + SIZE (P).

Jump if LINK(rI6) = A.
SIZE(P) <- rI5.

P <- P+ SIZE(P).

k *— k — 1.
Q <— Q + 1-

LINK(Q) <— LINK(LINK(Q)).

Jump if k 9^ 0.

P <- P+ SIZE(P).

Is LINK(P) = A?
k <- T(P).

Q«-P.
Jump unless SIZE(P) = 0.
G9. Move. P <— 1.

Set rll for MOVE instructions.

LINK(P) <— A.

NODE (rll) <— NODE(P), rll <- rll + SIZE(P).

P <- P+ SIZE(P).

Jump if LINK(P) = A.
Jump unless SIZE(P) = 0. |

Note that in line 66 we are assuming that the size of each node is sufficiently small

that it can be moved with a single MOVE instruction; this seems a fair assumption for

most cases when this kind of garbage collection is applicable.

2.5 ANSWERS TO EXERCISES 605

• The total running time for this program is (44a + 176 +2w-\- 25c + 8d -j- 47)u

where a is the number of accessible nodes, 6 is the number of link fields therein, c is

the number of inaccessible nodes which are not preceded by an inaccessible node,

d is the number of inaccessible nodes which are preceded by an inaccessible node,

and w is the total number of words in the accessible nodes. If the memory contains

n nodes, with pn of these inaccessible, then we may estimate a = (1 — p)n, c =

(1 — p)pn, d = p2n. Example: five-word nodes (on the average), with two link

fields per node (on the average), and a memory of 1000 nodes. Then when p = f,

it takes 374u per available node recovered; when p = f, it takes 104u; and when

p = f, it takes only 33u.

36. A single customer will be able to sit in one of the sixteen seats 1, 3, 4, 6, ... , 23.

If a pair enters, there must be room for them, otherwise there are at least two people

in seats (1, 2, 3), at least two in (4, 5, 6), ... , at least two in (19, 20, 21), and at least

one in 22 or 23, so at least fifteen people are already seated.

37. First sixteen singles enter, and she seats them. There are 17 ‘gaps’ of empty seats

between the occupied seats, counting one gap at each end, with a gap of length zero

assumed between adjacent occupied seats. The total number of empty seats, i.e. the

sum of all seventeen gaps, is 6. Suppose x of the gaps are of odd length; then 6 — x

spaces are available to seat pairs. (Note that 6 — x is even and >0.) Now each of

customers, 1, 3, 5, 7, 9, 11, 13, 15, from left to right, who has an even gap on both sides

of him, finishes his lunch and walks out. Each odd gap prevents at most one of these

eight diners from leaving, hence at least 8 — x people leave. There still are only

6 — x spaces available to seat pairs. But now (8 — x)/2 pairs enter.

38. The arguments generalize readily; IV (n, 2) = L(3n — 1)/2J for n > 1. [When

the hostess uses a first-fit strategy instead of an optimal one, Robson has proved that

the necessary and sufficient number of seats is L(5n — 2)/3J.]

39. Divide memory into three independent regions of sizes N(ni,m), IV(712, to),

N(2m — 2, to). To process a request for space, put each block into the first region

for which the stated capacity is not exceeded, using the relevant optimum strategy

for that region. This cannot fail, for if we were unable to fill a request for x locations

we must have at least (ni — x -f- 1) -f- (n2 — x -j- 1) -j- (2to — x — 1) > n\ -|- U2 — x

locations already occupied.

Now if f(n) = N(n, to) + N(2m — 2, to), we have the subadditive law

/(m + 712) < f(ni) +/(ri2). Hence limf(n)/n exists. (Proof: /(a + be) < f(a) -f

6/(c); hence lim supn_».w/(7i)/n = maxo<a<c lim f(a-f 6c)/(a -f- 6c) < f(c)/c

for all c; hence lim supn-+«,f(n)/n < lim inin^„f(n)/n.) Therefore lim N(n,m)/n

exists.
[From exercise 38 we know that N(2) = f. The value of IV(to) is not known for

any to > 2; it is not difficult to show that the multiplicative factor for just two block

sizes, 1 and 6, is 2 — 1/6; hence N(3) > if. Robson’s methods imply that N(3) < Iff,

and 2 < IV (4) < 2f]

40. Robson has proved that N(2r) < 1 + r, by using the following strategy: Allocate

to each block of size k, where 2m < k < 2m+1, the first available block of k locations

starting at a multiple of 2m.
Let IV({6i, 62, , 6n}) denote the multiplicative factor when all block sizes are

constrained to lie in the set {61, 62, ..., 6n), so that N(n) = N({1, 2,...,«.}). Rob¬

son and S. Krogdahl have discovered that IV({6i, 62, ... , 6„}) = n — (61/62 + • • • +

{>0(5 ANSWERS TO EXERCISES 2.5

bn—i/b„) whenever hi is a multiple of 6,-_ 1 for 1 < i < n; indeed, Robson has estab¬

lished the exact formula N{2rm, {1, 2, 4, . . . , 2r)) = 2rw?(l + \r) — 2r -f- 1. Thus in

particular, N(ri) > 1 + ^Llg nj. He also has derived the upper bound N(n) <

1.22 In n+0(1), and he conjectures tentatively that N(n) = //„. This conjecture

would follow nf N([bi, b-2, . . . , bn}) were equal to n — (61/62 + • • • + 6„_i/6„) in
general, but this is unfortunately not the case since Robson has proved that N({3, 4})>

lA-(Cf. Inf. Proc. Letters 2 (1973), 96-97; JACM 21 (1974), 491-499.)

41. Consider maintaining the blocks of size 2k: the requests for sizes 1,2,4,..., 2*— 1

will periodically call for a new block of size 2k to be split, or a block of that size will be

returned. We can prove by induction on k that the total storage consumed by such

split blocks never exceeds kn; for after every request to split a block of size 2k+1, we

arc using at most kn locations in split 2i-blocks and at most n locations in unsplit ones.

This argument can be strengthened to show that aTn cells suffice, where ao = 1

and ak = l + ot-rd - 2~k); we have

k = 0 1 2 3 4 5

at = 1 la 2— w8
o55
"64

0 697
°1024

419559
^32768

Conversely for r < 5 it can be shown that a buddy system sometimes requires as many

as aTn cells, if the mechanism of steps R1 and R2 is modified to choose the worst

possible available 2J-block to split instead of the first such block.

Robson’s proof that N(2r) < 1 + r (see exercise 40) is easily modified to show

that such a “leftmost” strategy will never need more than (1 + \r)n cells to allocate

space for blocks of sizes 1, 2, 4, . . . , 2r, since blocks of size 2k will never be placed in

locations > (1 + ^k)n. Although this algorithm seems very much like the buddy

system, it turns out that no buddy system will be this good, even if we modify steps

R1 and R2 to choose the best possible available 2J-block to split. For example, con-

ider the following sequence of “snapshots” of the memory, for n

11111111 11111111 00000000 00000000

10101010 10101010 2-2-2-2- 00000000

11110000 11110000 2-110000 00000000

11111111 11110000 11110000 00000000
10101010 10102-2- 10102-2- 00000000
10001000 10002-00 10002-00 4 4

10000000 10000000 10000000 4-0000

Hcre 0 denotes an available location and k denotes the beginning of a fc-block. In a

similar way there is a sequence of operations, whenever n is a multiple of 16, which

forces blocks of size 8 to be ^ full, and another to be \ full. If n is a multiple

of 128, a subsequent request for yfg-n blocks of size 8 will require more than 2.5n

memory cells. (The buddy system allowed l’s to creep into -^n of the 8-blocks, since

there were no other available 2’s to be split at a crucial time; the “leftmost” algorithm
keeps all l’s confined.)

APPENDIX A

INDEX TO NOTATIONS

In the following formulas, letters which are not further qualified have the

following significance:

j, k integer-valued arithmetic expression

m, n nonnegative integer-valued arithmetic expression

x, y, z real-valued arithmetic expression

f real-valued function

p pointer-valued expression, i.e., either A or

within a computer

an address

S, T set or multiset

a string of symbols

Section

Formal symbolism Meaning reference

NODE(P) the node (group of variables which are indi¬

vidually distinguished by their field names)

whose address is P, P A 2.1

F(P) the variable in NODE(P) whose field name is F 2.1

CONTENTS(P) contents of computer “word” whose address

is P 2.1

LOC(V) address of variable V within a computer 2.1

An the ftth element of linear array A

Amn the element in row m, column n of rectan¬

gular array A

A[n] equivalent to An 1.1

A[m, ft] equivalent to Amn 1.1

V ^-E give variable V the value of expression E 1.1

U^V interchange the values of variables U and V 1.1

607

608 APPENDIX A

Formal symbolism Meaning

Section

reference

P <= AVAIL set the value of pointer variable P to the

address of a new node, or signal memory

oversow if there is no room for a new node 2.2.3

AVAIL <= P NODE(P) is returned to free storage; all its

fields lose their identity 2.2.3

top(S) node at the top of a nonempty stack S 2.2.1

I<=S pop up S to X: set X <— top (s); then delete

top(S) from nonempty stack S 2.2.1

S <= X push down X onto S: insert the value or

group of values denoted by X as a new entry

on the top of stack S 2.2.1

(B => Ei; E2) conditional expression: denotes Ej if B is

true, E2 if B is false 8.1

djk Kronecker delta: (j = k => 1; 0) 1.2.6

]£/(*) sum of all/(/c) such that k is an integer and

R(k) relation R (k) is true 1.2.3

n/w product of all f(k) such that k is an integer

R(.k) and relation R(k) is true 1.2.3

min /(fc) minimum value of all /(fc) such that k is an
K(fc) integer and relation R(k) is true 1.2.3

max /(fc) maximum value of all f(k) such that k is an
R(k) integer and relation R(k) is true 1.2.3

j\k j divides k: k mod j = 0 1.2.4

S\T set difference: {a \ a in S, a not in T}

gcd O', fc) greatest common divisor of j and k:

(j — k = 0 => 0; max d) 1.1

det (4) determinant of square matrix A 1.2.3

transpose of rectangular array A:

AT[j,k] = 1.2.3

left-right reversal of a

xv x to the y power, x positive 1.2.2

xk x to the /cth power:

(k> 0 => JJ x;

\ 0<j<k /

1.2.2

INDEX TO NOTATIONS 609

Formal symbolism Meaning

x*

n!

(!)
(") \ni, n2, . . . , nm)

[:]

{a | R(a)}

{a1) • • • 1 °n}

{x}

llfill
1*1

l«l

L*J

r*i

x mod y

x == y (modulo z)

x upper k:

^Jc > 0 => x{x + 1) • • • (x + k — 1)

= II (*+j); i/{x + k)-1^
0< j<k

x lower k: (—l)fc(—x)*

(k > 0 => x(x — 1) • • • (x — k + 1)

= II (* — j); i/(* — *0—')
0< j <k

n factorial: 1 • 2 n = riA-

binomial coefficient: (Jk < 0 => 0; x-/k\)

multinomial coefficient,

n = n\ + n2 + • • • + nm

Stirling number of first kind:

klk2 ' ' ‘ kn—m

0<k1<k2<- ■ ■ <kn-m<n

Stirling number of second kind:

k\k2 • • • fcn_m

0<fci<*2^ ■■■<kn-m<m

set of all a for which the relation R(a) is true

the set or multiset {a^ | 1 < k < n}

in contexts where a real value, not a set, is

required, denotes fractional part: x mod 1

cardinality: the number of elements in S

absolute value of x: (x < 0 => —x; x)

length of a

floor of x, greatest integer function: max k
k<x

ceiling of x, least integer function: min k
k> x

mod function: (y = 0 =» x; x — y_x/y\)

relation of congruence: x mod z = y mod z

Section

reference

1.2.6

1.2.6

1.2.5

1.2.6

1.2.6

1.2.6

1.2.6

1.2.11.2

1.2.4

1.2.4

1.2.4

1.2.4

610 APPENDIX A

Formal symbolism Meaning

Section

reference

log6 X logarithm, base b, of x (real positive 5 ^ 1):
x = bXoe» x 1.2.2

In x natuf al logarithm: loge x 1.2.2

lg x binary logarithm of x: log2 x 1.2.2

exp x exponential of x: ex 1.2.2

(Xn) the infinite sequence X0) Xi, X2, . . . (here n

is a letter which is part of the symbol) 1.2.9

fix) derivative of / at x 1.2.9

f"(x) second derivative of / at x 1.2.10

/<”>(*) nth derivative: (n = 0 =>/(x);

g'{x) where g(x) = /(n_1)(x)) 1.2.11.2

Tj(X)
n H-l/2* + --- + l/n*=

1 <fc<n

1.2.7

Hn harmonic number: 1.2.7

Fn Fibonacci number:

(n < 1 => n; Fn_x + Fn_2) 1.2.8

Bn Bernoulli number 1.2.11.2

B(x, y) Beta function 1.2.6

sign (x) sign of x\ (x = 0 => 0; {x > 0 => + 1; —1))

f(*) zeta function: HXx) when x > 1 1.2.7

r(®) gamma function: y(x, oo); (x — 1)! when x
is a positive integer 1.2.5

y(x, y) incomplete gamma function 1.2.11.3

y Euler’s constant 1.2.7

e base of natural logarithms: l//c!
fc>0

1.2.2

00 infinity: larger than any number

A null link (pointer to no address) 2.1

e empty string (string of length zero)

0 empty set (set with no elements)

golden ratio, |(1 + \/5) 1.2.8

^ in) Euler’s totient function: ^ 1

0 <k<n
gcd(fc,n) = l

1.2.4

Pin) number of partitions of n 1.2.1

x ~ y x is approximately equal to y

INDEX TO NOTATIONS 611

Section

Formal symbolism Meaning reference

0(/(n)) big-oh of /(n) as n —> 00 1.2.11.1

big-oh of /(x), for small x (or for x in some

specified range) 1.2.11.1

(min x4, ave x2, a random variable having minimum value x1;

max x3, dev x4) average (“expected”) value x2, maximum

value x3, standard deviation x4 1.2.10

mean (<7) mean value of probability distribution repre¬

sented by generating function g'.g'il) 1.2.10

var(^) variance of probability distribution repre¬

sented by generating function g:

g"(l)+g'(l)-g\l)2 1.2.10

p* address of preorder successor of NODE(P) in

a binary tree 2.3.1

P$ address of inorder successor of NODE(P) in a

binary tree 2.3.1

P# address of postorder successor of NODE(P) in

a binary tree 2.3.1

*p address of preorder predecessor of NODE (P) in

a binary tree 2.3.1

$P address of inorder predecessor of NODE(P)

in a binary tree 2.3.1

#P address of postorder predecessor of NODE(P)

in a binary tree 2.3.1

1 end of algorithm, program, or proof 1.1

U one blank space 1.3.1

rA register A (accumulator) of MIX 1.3.1

rX register X (extension) of MIX 1.3.1

rll,. . . , rI6 (index) registers 11, . . . , 16 of MIX 1.3.1

rj (jump) register J of MIX 1.3.1

(L:R) partial field of MIX word, 0 < L < R < 5 1.3.1

OP ADDRESS,1(F) notation for MIX instruction 1.3.1, 1.3.2

U unit of time in MIX 1.3.1

* “self” in MIXAL 1.3.2

OF, IF, 2F, . . . , 9F “forward” local symbol in MIXAL 1.3.2

OB, IB, 2B, . . . , 9B “backward” local symbol in MIXAL 1.3.2

OH, 1H, 2H, . . . , 9H “here” local symbol in MIXAL 1.3.2

\

■v

'

,

,

%»
.

•

APPENDIX B

TABLES OF
NUMERICAL QUANTITIES

Table 1

Quantities which are frequently used in standard subroutines and in analysis

of computer programs. (40 decimal places)

+2 — 1.41421 35623 73095 04880 16887 24209 69807 85697-
Vs = 1.73205 08075 68877 29352 74463 41505 87236 69428+
V 5 = 2.23606 79774 99789 69640 91736 68731 27623 54406+

Vio = 3.16227 76601 68379 33199 88935 44432 71853 37196-
V 2 - 1.25992 10498 94873 16476 72106 07278 22835 05703-
Vs = 1.44224 95703 07408 38232 16383 10780 10958 83919-
V2 = 1.18920 71150 02721 06671 74999 70560 47591 52930—
In 2 - 0.69314 71805 59945 30941 72321 21458 17656 80755+
In 3 - 1.09861 22886 68109 69139 52452 36922 52570 46475-

In 10 - 2.30258 50929 94045 68401 79914 54684 36420 76011+
1/ln 2 = 1.44269 50408 88963 40735 99246 81001 89213 74266+

1/ln 10 = 0.43429 44819 03251 82765 11289 18916 60508 22944—

7T = 3.14159 26535 89793 23846 26433 83279 50288 41972-

1° = tt/180 = 0.01745 32925 19943 29576 92369 07684 88612 71344+

I/7r = 0.31830 98861 83790 67153 77675 26745 02872 40689+

7T2 = 9.86960 44010 89358 61883 44909 99876 15113 53137—

Vtt = r(i/2) = 1.77245 38509 05516 02729 81674 83341 14518 27975+

r(i/3) = 2.67893 85347 07747 63365 56929 40974 67764 41287-

r(2/3) = 1.35411 79394 26400 41694 52880 28154 51378 55193+

e - 2.71828 18284 59045 23536 02874 71352 66249 77572+

1/e = 0.36787 94411 71442 32159 55237 70161 46086 74458+

e2 = 7.38905 60989 30650 22723 04274 60575 00781 31803+

7 = 0.57721 56649 01532 86060 65120 90082 40243 10422—

In 7r = 1.14472 98858 49400 17414 34273 51353 05871 16473-

<t> = 1.61803 39887 49894 84820 45868 34365 63811 77203+
= 1.78107 24179 90197 98523 65041 03107 17954 91696+

e*'4 = 2.19328 00507 38015 45655 97696 59278 73822 34616+

sin 1 = 0.84147 09848 07896 50665 25023 21630 29899 96226—

cos 1 = 0.54030 23058 68139 71740 09366 07442 97660 37323+

t(3) = 1.20205 69031 59594 28539 97381 61511 44999 07650—

In 0 = 0.48121 18250 59603 44749 77589 13424 36842 31352—

1/ln 0 = 2.07808 69212 35027 53760 13226 06117 79576 77422—

—In In 2 = 0.36651 29205 81664 32701 24391 58232 66946 94543—

613

614 APPENDIX B

Table 2

Quantities which are frequently used in standard subroutines and in analysis

of computer programs, in octal notation. The name of each quantity, appearing

at the left of the equal sign, is given in decimal notation.

0.1 = 0.06814
0.01 = 0.00507

0.001 = 0.00040

0.0001 = 0.00003
0.00001 = 0.00000

0.000001 = 0.00000
0.0000001 = 0.00000

0.00000001 = 0.00000
0.000000001 = 0.00000

0.0000000001 = 0.00000
V 2 = 1.32404

V3 = 1.56663
V 5 = 2.17067

V10 = 8.12805
^2 = 1.20505
</3 = 1.34283
^2 = 1.14067
In 2 = 0.54271
In 3 = 1.06287

In 10 = 2.23273
1/ln 2 = 1.34252

1/ln 10 = 0.88626
7r = 3.11037

1° = 71-/I8O = 0.01073
\/tv — 0.24276

7T2 = 11.67517
Vt = r(i/2) = 1.61337

r(i/3) = 2.58347
r(2/3) = 1.26523

e - 2.55760
1/e = 0.27426

e2 = 7.30714
7 = 0.44742

In 7r = 1.11206

</> = 1.47433
ef = 1.61772

eW4 = 2.14275
sin 1 = 0.65665
cos 1 = 0.42450
f(3) = 1.14735
In <f) = 0.86630

1/ln <f> — 2.04776
—In In 2 = 0.27351

68146 81463 14631 46814

53412 17270 24865 60507
61115 64570 65176 76355
21556 13530 70414 54512
24761 32610 70664 86041
02061 57864 05536 66151
00153 27745 15274 53644
00012 57143 56106 04303
00001 04560 27640 46655
00000 06676 83766 35367
74631 77167 46220 42627
65641 30231 25163 54453
36334 57722 47602 57471
40726 64555 22444 02242
05746 15345 05342 10756
50444 22175 73134 67363
74050 61556 12455 72152
02775 75071 73632 57117
24752 55006 05227 32440
06735 52524 25405 56512
16624 53405 77027 35750
75425 11562 41614 52325
55242 10264 30215 14230
72152 11224 72344 25603
30155 62344 20251 23760
14467 62135 71322 25561
61106 64736 65247 47035
35234 51013 61316 73106
57112 14154 74312 54572
52130 50535 51246 52773
58066 13167 46761 52726
45615 23355 33460 63507
14770 67666 06172 23215
40443 47503 36413 65374
57156 27751 23701 27634
13452 61152 65761 22477
31512 16162 52370 35530
24436 O4414 73402 03067
50037 32406 42711 07022
00023 60014 20470 15613
26256 61213 01145 13700
60111 17144 41512 11436
71233 67265 63650 17401

63146 31463 14631 4632
53412 17270 24365 6051
44264 16254 02030 4467
75170 33021 15002 3522
06077 17401 56063 3442
55323 07746 44470 2603
12741 72312 20354 0215
47374 77341 01512 6333
12262 71426 40124 2174
55653 37265 34642 0163
66115 46725 12575 1744
50265 60361 34073 4222
63003 00563 55620 3202
57101 41466 33775 2253
65334 25574 22415 0303
76133 05334 31147 6012
64430 60271 02755 7314
07316 80007 71366 5364
63065 25012 35574 5584
66542 56026 46050 5071
37766 40644 85175 0435
33525 27655 14756 0622
63050 56006 70163 2112
54276 63351 22056 1154
47257 50765 15156 7007
15466 30021 40654 3410
40510 15273 34470 1776
47644 54653 00106 6605
37655 60126 23281 0245
42542 00471 72363 6166
75486 02440 52371 0386
35040 32664 25356 5022
74376 01002 51313 2552
52661 52410 37511 4606
71401 40271 66710 1501
36553 53327 17554 2126
11342 53525 44807 0217
28644 H 612 07474 1451
14666 27320 70675 1232
42561 81715 10177 0662
41004 52264 30700 4065
16575 00355 43630 4065
56637 26834 31455 5701

TABLES OF NUMERICAL QUANTITIES 615

' Tables 1 and 2 contain several hitherto unpublished 40-digit values which

have been computed on a desk calculator by John W. Wrench, Jr.

For high-precision values of constants not found in this list, see J. Peters,

Ten Place Logarithms of the Numbers from 1 to 100000, Appendix to Volume 1

(New York: F. Ungar Publ. Co., 1957); and Handbook of Mathematical Functions,

ed. by M. Abramowitz and I. A. Stegun (Washington, D.C.: U. S. Govt.

Printing Office, 1964), Chapter 1.

Table 3

Values of harmonic numbers, Bernoulli numbers, and Fibonacci numbers

for small values of n.

n Hn Bn Fn n

0 0 1 0 0

1 1 -1/2 1 1

2 3/2 1/6 1 2

3 11/6 0 2 3

4 25/12 —1/30 3 4

5 137/60 0 5 5

6 49/20 1/42 8 6

7 363/140 0 13 7

8 761/280 -1/30 21 8

9 7129/2520 0 34 9

10 7381/2520 5/66 55 10

11 83711/27720 0 89 11

12 86021/27720 -691/2730 144 12

13 1145993/360360 0 233 13

14 1171733/360360 7/6 377 14

15 1195757/360360 0 610 15

16 2436559/720720 -3617/510 987 16

17 42142223/12252240 0 1597 17

18 14274301/4084080 43867/798 2584 18

19 275295799/77597520 0 4181 19

20 55835135/15519504 -174611/330 6765 20

21 18858053/5173168 0 10946 21

22 19093197/5173168 854513/138 17711 22

23 444316699/118982864 0 28657 23

24 1347822955/356948592 —236364091/2730 46368 24

25 34052522467/8923714800 0 75025 25

616 APPENDIX B

For any x, let Hx = Y) (-]—) • Then
nil ^ U + X>

H1/2 = 2 — 2 In 2,

#1/3 — 3 — %tv/V2> — fin 3,

#2/3 = f + f In 3,

#1/4 = 4 — f 7r — 3 In 2,

#3/4 = f + f7T — 3 In 2,

#1/5 = 5 — f 7r</> - 1(3 — <£) In 5 -(</>- f) In (2 + 0),

#2/5 = # — + <t> — i(2 + 0) In 5 + (</> — f) In (2 + <f>),

#3/5 = f + W</>\/2 + 4> — f(2 + 0) In 5 + (0 — f) In (2 + </>),

#4/5 = f + ^ ^ — f(3 — 0) In 5 — («/> — f) In (2 + <£),

#1/6 = 6 — f7r\/3 — 2 In 2 — f In 3,

#5/6 = ■§■ d- f 7t\/3 2 In 2 — f In 3,

and, in general, when 0 < p < q (cf. exercise 1.2.9-19),

#p/« — ^ ~ cot ^ 7r — In 2q + 2 ^ cos ^7rw^ In sin — 7r.
V q i<£^/2 ? 9

INDEX AND GLOSSARY

Some Men pretend to understand a Book

by scouting thro’ the Index:

as if a Traveller should go about to describe a Palace

when he had seen nothing but the Privy.

—JONATHAN SWIFT

(Mechanical Operation of the Spirit, 1704)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information; an answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

A-register of MIX, 122.
A-l compiler, 458.

Aardenne-Ehrenfest, Taniana van, 375,

578.
Aarons, Roger M., 522.

Abel, Niels Henrik, 56.

binomial formula generalized, 56, 70,
72, 398.

limit theorem, 94.
Abramowitz, Milton, 66, 92, 615.
ACE computer, Pilot, 226.

Adams, Charles William, 226.

ADD, 127, 128, 204.
Add to list: see Insertion.
Addition of polynomials, 273-276, 355-359,

361.
Address: A number used to identify a

position in memory,
field of MIXAL line, 123, 141, 147, 151,

152.
of node, 229-230.
portion of MIX instruction, 123.

Address transfer operators of MIX, 129,

206-207.
Adjacent vertices of a graph, 362.
Agenda, 285, 293, see Priority queue.
Ahrens, Wilhelm Ernst Martin Georg, 159.

al-Khowarizmi, Abu .JaTar Mohammed ibn

Musa, 1, 78.
Alanen, Jack David, xiii.
ALF (alphabetic data),4148, 149, 151.
Algebraic formulas, manipulation of,

335-347, 461.
differentiation, 337-346, 359, 458.
representation as trees, 312, 335-336,

458.
simplification of, 339, 346.

Algorithm, origin of word, 1-2.

Algorithms, 1-9.
analysis of, vii, 7, 94-104, 166-169, 175,

246-247, 249-250, 265, 276, 323-324,

380-381, 445-446.
communication of, 16.

effective, 6, 8, 9

equivalence between, 466.

form of in this book, 2-4.
hardware-oriented, 26, 249, 600.
how to read, 4, 16.
proof of, 14-20, 318-319, 420, 566.
properties of, 4-6, 9.
random paths in, 380-381.
set theoretical definition, 8-9.
theory of, 7, 9.

Allocation of tables, see Dynamic storage
allocation, Linked allocation,
Representation, Sequential allocation.

Along order, 459.
Alphameric character: A letter, digit, or

special character symbol,
codes for MIX, 132, 134, 136-137.

A MM: American Mathematical Monthly, the
official journal of the Mathematical
Association of America, Inc.

Analysis of algorithms, vii, 7, 94-104,
166-169, 175, 246-247, 249-250,
265, 276, 323-324, 380-381, 445-446.

Analytical Engine, 1, 225.
Ancestor, in a tree structure, 309.
Andre, Antoine Desire, 531.
Anticipated input, 212, see Buffering.
Antisymmetric relation, 258.
Apex of tree, 307.
Apostol, Tom Mike, 28.
Arborescence, 362, see Oriented trees.
Arc in a directed graph, 371.
Arc-digraph, 379.
Area of memory, 435.
Arguments of subroutines, 183, 185.
Arithmetic: Addition, subtraction,

multiplication, and division, vii.
fixed-point, 154-157.
floating-point, 127, 304.
operators of MIX, 127-128, 135, 204.

- polynomial, 272-277, 355-359, 361.
scaled decimal, 156-157.

Arithmetic expressions, see Algebraic

formulas.
Arithmetic progression, sum of, 11, 13, 31, 55.

617

618 INDEX AND GLOSSARY

Array: A table which usually has a
^-dimensional rectangular structure,
3, 228, 295-304.

one-dimensional, see Linear list,
represented as tree, 310, 312.
sequential allocation, 154, 29G-208,

302-304.
tetrahedral, 298, 303, see Binofnial

number system,
two-dimensional, see Matrix.

Arrows, used to represent links in diagrams,
230.

Assembly language: A language which is
intended to facilitate the construction
of programs in machine language
by making use of symbolic and
mnemonic conventions to denote
machine language instructions,

for MIX, 141-153, 232.
Assembly program, 142, 149.
ASSIGN a buffer, 215, 218, 224.
Assignment operation, 3.
Asterisk (“*”), in assembly language, 143,

145, 147, 149, 152.
Asymmetric relations, 258.
Asymptotic values: Functions which express

the limiting behavior approached by
numerical quantities,

derivation of, 104-119, 239, 395-396, 520.
Atom (in a List), 312-313, 406-409, 417.
Automata theory, 226, 462.
Automaton: An abstract machine which is

formally defined in some manner,
often intended to be a model of some
aspects of actual computers (plural:
Automata), 462-463.

AVAIL stack: Available space list, 253.
Available space list, 253-254, 263, 266,

275, 289, 290, 411-413, 419-420,
435-455.

history, 457.
variable-si/e blocks, 436-455.

Average value of a probability distribution,
96, 98-99, 101.

Babbage, Charles, 1, 225.
Bachmann, Paul Gustav Heinrich, 104.
Backus, John Warner, 226.

Bailey, Michael John, 461.
Bailey, Wilfrid Norman, 488.
Balanced directed graph, 374-377.
Ball, Walter William Rouse, 158.
Ballot problem, 531-533.
Barnett, Michael Peter, 461.
Barton, David Elliott, 66, 531.
Base address, 230, 240.
Bead, 229, see Node.
Before and after diagrams, 256-257.
Bell, Eric Temple, 87.

Bellman, Richard Ernest, xvii.

Bennett, John Makepeace, 226.
Berge, Claude, 406.
Berger, Robert, 385.
Bergman, George Mark, 493.
Berman, Martin Fredric, 517.
Bernoulli, James (= Jakob = Jacques), 109.

numbers, 74, 90-91, 108-112.
numbers, table, 615.
polynomials, 42, 109-112.

Bertrand, Joseph Louis Francois,

postulate, 506.
Berztiss, Alfs Teodors, 461.
Best-fit method of storage allocation,

436-437, 448, 452-453.
Beta function, 71.
Bhascara Acharya, 52.
Bienayme, Irenee Jules, 97.
“Big-oh” notation, 104-108.
Bigelow, Richard Henry, 558.
Binary computer: A computer which

manipulates numbers primarily in the
binary (radix 2) number system.

Binary logarithm, 22, 25.
Binary trees, 308-309, 314-334, 345, 362,

399-405, 458-459.
complete, 400-401.
copying of, 327-328, 332, 346.
correspondence to trees and forests,

333-334, 345.
definition of, 309.
“Dewey” notation for, 315, 329, 345, 405.
enumeration of, 388-389.
equivalent, 326, 331.
erasing of, 331.
extended, 399-405.
oriented, 396.
path length of, 399-405.
right-threaded, 325, 331, 332, 336-346, 459.

representation of, 315-316, 319-322, 325,
332, 401.

similar, 325-326, 331.
threaded, 319-325, 329-332, 334, 420, 459.
traversal of, 316-332.

Binet, Jacques Phillipe Marie, 406, 578.
Binomial coefficients, 51-73, 88.

combinatorial interpretation, 51, 72.
defined, 51.

generalized, 64, 69, %71, 72, 85.
generating functions, 88-90.
history, 52.

sums involving, 53-73, 75-77, 84,

88-90, 93.
table of, 52.

Binomial distribution, 103.
Binomial number system, 72.
Binomial theorem, 55-56, 89-90.

Abel’s generalization, 56, 70, 72, 398.
generalizations of, 56, 64, 72, 90, 398.
Hurwitz’s generalization, 398, 488.

Bit: “Binary digit,” either zero or unity.

INDEX AND GLOSSARY 619

BIT: Nordisk Tidskriftfor Informations-
behandling, a journal published by

Regnecentralen, Copenhagen, Denmark.
Blaauw, Gerrit Anne, 457.
Blikle, Andrzej Jacek, 327.
Block of memory, 435.

Blocking of records, 214, 222.

Bobrow, Daniel Gureasko, 459, 460.
Bolzano, Bernhard, theorem, 381.

Boncompagni, Prince Baldassarre, 79.
Boothroyd, John, 174.

Borchardt, Carl Wilhelm, 378, 405-406
Bottom of stack, 237.
Bottom-up process, 351, 361.

Boundary tag method of storage allocation,
441- 442, 449-450, 453, 460.

Bourne, Charles Percy, 511.

Branch instruction: A conditional “jump”
instruction.

Branch node of tree, 305.
Brenner, Norman, 518.

Brother, in a tree structure, 307.
BROTHER link in tree, 426-432, see RLINK.
Brouwer, Luitzen Egbertus Jan, 405.
Brute force, 117, 119, 501.
Buddy system for storage allocation,

442- 445, 448-450, 453-455, 460, 605.
Buffering of input-output, 154, 155, 212-225.

history, 227.

swapping, 143-144, 155, 213-215, 222.
Burke, John, Peerage, 308.
Burks, Arthur Walter, 359.
Burleson, Peter Barrus, 461.
Burroughs B220, xii, 120.

Burroughs B5000-B5500, xii, 460.
Byte. Basic unit of data, usually associated

with alphameric characters,
in MIX, 120-121, 135.

Byte size in MIX: The number of distinct
values that might be stored in a byte.

CACM: Communications of the ACM, a
publication of the Association for
Computing Machinery.

Cajori, Florian, 23.
Calendar, 156.

California Institute of Technology, xii, 280.

Call: To activate another routine in a
program.

Calling sequence, 183-186, 189, 192-193.
Canonical cycle notation for permutations,

176.

Canonical representation of oriented trees
390-391, 397-398.

Car: LISP terminology for the first
component of a List; analogous to

INFO and DLINK on p. 410, or to
ALINK on p. 417.

Card format for MIXAL programs, 148-149.
Cards, playing, 49, 68, 229-233, 377.

Carlitz, Leonard, 501.
Carlyle, Thomas, xii.
Carr, John Weber, III, 457.
Cassini, Jean Dominique, 80.
Catalan, Eugene Charles, 406.

numbers, 406, 531.

Cauchy, Augustin Louis, 36-37, 578.

inequality: (Lakbk)2 < (I al)CZ b2k), see
Lagrange’s identity.

Cayley, Arthur, 396, 405-406.
CDC G20, 120.
CDC 1604, 120, 523.

Cdr. LISP terminology for the remainder
of a List with its first component
deleted; analogous to RLINK on p. 410
or to BLINK on p. 417.

Ceiling function, 37, 40-44.

Cell: A word of the computer memory, 123
Cellar, 236.

Centroid of a free tree, 387-388, 396.
Chain: A word used by some authors to

denote a linked linear list.
Chain rule for differentiation, 50, see

Faa di Bruno’s formula.
Chaining: A word used by some authors

in place of “linking.”

Channel: A data-transmission device
connected to a computer, 221.

CHAR (convert to characters), 134.
Character code of MIX, 132, 134, 136-137.
Characteristic function of a probability

distribution, 101.
Chauvinism, v, 307.
Chebyshev, Pafnutil L’vovich,

inequality, 97.
polynomials, 493.

Checkerboard, 435.

Checkerboarding, see Fragmentation.
Chen, Tien Chi, 470.
Cheney, C. J., 420.
Chess, 6, 190, 270.

Chung, Kai Lai, 103.

Cl: The comparison indicator of MIX
136-137, 224.

Circle of buffers, 214-225.

Circuit, Eulerian, in a directed graph
373-375, 378-379.

Circuit, Hamiltonian, in a directed graph
334, 378.

Circular definition, 260, see Definition,
circular.

Circular linkage, 270-277, 300, 355, 409-410
416, 458.

Circular list, 270-277, 409-410, 458.
Circular store, 236.
Circulating shift, 131.
CITRUS, 456.

Clavius, Christopher, S. J., 155-156.
Clock, real time, 224.

Clock, simulated, 281, 285, 451.

620 INDEX AND GLOSSARY

Clock, solitaire game, 377.
Closed subroutine, see Subroutine.
CMPA (compare A), 130, 206-207.
CMPX (compare X), 130, 206-207.
CMP1 (compare 1), 130, 206-207.
COBOL: “Common Business-Oriented

Language,” 423-434, 456, 457, 552.
Coding: Synonym for “programpiing,” but

with even less prestige associated.
Cofactor of element in square matrix:

Determinant of the matrix obtained
by replacing this element by unity and
replacing all other elements having
the same row or column by zero, 35.

Cohen, Jacques, 460.
Coin tossing, 100-101.

Collins, George Edwin, 460.
Combinations of n objects taken k at a

time, 51, 68.
with repetitions permitted, 72-73, 93,

386, 388.
with restricted repetitions, 93.

Combinatorial matrix, 36, 584.
Comfort, Webb T., xiii, 460.
COMIT, 460.

Command: Synonym for “instruction.”
Comment in assembly language, 145, 149.
Comp. JThe Computer Journal, published

by The British Computer Society.
Compacting memory, 421, 439-440, 450,

451, 454-455.
Comparison indicator of MIX, 122, 129-130,

138, 202, 224.

Comparison operators of MIX, 130, 206-207.
Compiler: Program which translates

programming languages, viii.
algorithms especially for use in, 360-361,

423-424, 552.
Complete binary tree, 400-401.
Compound interest, 23.
Computational method, 5, 8.
Compute: To process data.
Computer: A data processor.
Computer language, see Assembly language,

Machine language, Programming
language.

CON (constant), 146, 151-152.
Concatenation of strings, 271-272.
Conditional expression, 459, 608.
Congruence, 38-39.
Connected directed graph, 372, 376, 377.

strongly, 372, 377.
Connected graph, 362.

Conservative law, 167, see Kirchhoff’s law.
Constants in assembly language, 146, 151-152.
Construction of trees, 339, 342, 426-427.
CONTENTS, 123, 231-233.
Continuous simulation, 279.
Convergence: An infinite sequence (Xn)

converges if it approaches a limit
as n approaches infinity; an infinite

sum or product is said to “converge”
or to “exist” if it has a value according
to the conventions of mathematical
calculus; see Eq. 1.2.3-3 and exercise
1.2.3-21.

of power series, 86, 87, 395.
Conversion operators of MIX, 134.
Convolution of probability distributions:

The distribution obtained by adding
two independent variables, 99, 101.

Conway, Melvin Edward, xiii, 147, 226.
Copy a data structure: To duplicate a

structured object by producing another
distinct object having the same data
values and structural relationships,

binary tree, 327-328, 332, 346.
linear list, 277.
List, 421.
tree, 327-328, 332, 346.
two-dimensional linked list, 304.

Coroutine, 190-196, 218-220, 281-293, 318.
history, 226.

linkage, 190, 196, 220, 288-289.
Correspondence between binary trees and

forests, 333-334, 345.
Cousins, 314.

Coxeter, Harold Scott Macdonald, 79, 158.
Critical path time, 213.
Crossword puzzle, 159-160.
Cumulants of probability distribution,

101-103.
Cycle: Path from vertex to itself,

detection of, 268, 369.
fundamental, 366-368, 376.
in directed graph, 371-372.
in graph, 362.

in permutation, 160-164, 173, 176-181.
in random permutation, 176-181.
notation for permutations, 160-164,

169-170, 176, 179-181.
oriented, in directed graph, 371.
singleton, 160-161, 164, 168, 177-181.

Dahl, Ole-Johan, xiii, 226, 460, 461.
Dahm, David Michael, 432, 434.
Data (originally plural of the word “datum,”

but now used as singular or plural):
Representation in a precise, formalized
language of some facts or concepts,
often numeric or alphabetic values, in
a manner which can be manipulated
by a computational method, 211.

packed, 124, 153.

Data structure: A table of data including
structural relationships, 228-463.

linear list structures, 234-295.
List structures, 406-422.
multilinked structures, 423-434.
orthogonal lists, 295-304, 423-434.
tree structures, 305-406.

Daughter, 307, see Son.

INDEX AND GLOSSARY 621

David, Florence Nightingale, 66.
Davis, Martin, 346.
de Bruijn, Nicolaas Govert, xiii, 118, 119,

375, 379, 478, 538, 560, 57S.
de La Loubere, Simon, 158.
de Moivre, Abraham, 82, 86, 103, 179.
De Morgan, Augustus, 17.
Debugging: Detecting and removing bugs

(errors), 189, 197, 294.
DECA (decrease A), 129, 206.
Decimal computer: A computer which

manipulates numbers primarily in the
decimal (radix ten) number system.

DECX (decrease X), 129, 206.
DEC1 (decrease 1), 129, 206.
Defined symbol, in assembly language, 149.
Definition, circular, see Circular definition.
Degree, of node in tree, 305, 314, 345,

350-351, 376.
of vertex in directed graph, 371.

Deletion of node: Removing it from a
data structure and possibly returning
it to available storage,

from available space list, see
Reservation.

from deque, 248, 266, 271, 294.
from doubly linked list, 278-279, 288,

294, 444-445.
from linear list, 235.
from linked list, 232, 252, 274, 278-279,

288, 294, 301-302, 357-358, 440, 442,
444-445.

from queue, 237-238, 240-241, 257-258,
262, 271.

from stack, 237-238, 240-241, 243,
255-256, 265-266, 271, 276, 278-279,
323, 415-416.

from tree, 357-358.
from two-dimensional list, 301-302.

Demuth, Howard B., 117.
Deque: Double-ended queue, 235-239, 458.

deletion from, 248, 266, 271, 294.
input-restricted, 235-239, 415.
insertion into, 248, 266, 271, 294.
linked allocation, 251, 270, 278.
output-restricted, 235-239, 271.
sequential allocation, 240.

Derivative of a formula, 89, 337.
Descendant, in a tree structure, 309.
Determinant of a square matrix, 35-37,

377-378, 474.
Deuel, Phillip DeVere, Jr., 552.
Deutsch, Laurence Peter, 417, 421.
Dewey, Melvil, notation for binary trees

(due to Galton), 315, 329, 345, 405.
for trees, 310-311, 314-315, 345, 381-382,

459.
Diagrams of structural information, 230-231.

before-and-after, 256-257.
List structures, 312-313, 407.
tree structures, 306-307, 309.

Dickson, Leonard Eugene, 80.
Difference of function, 64.

divided, 472.

Differentiation, algebraic, 89, 337-346, 359,
458.

chain rule for, 50, see Faa di Bruno’s
formula.

Digamma function, 94, 490, 491, 616.
Digit: One of the symbols used in radix

notation; usually a decimal digit, one
of the symbols 0, 1, . . . , or 9.

Digraph, 371, see Directed graph.
Dijkstra, Edsger Wybe, 187, 226, 227, 236,

458, 461, 575.
Dilworth, Robert Palmer, xiii.
Dimension of a partial ordering, 542.
d’Imperio, Mary E., 461.
Directed graph, 371-381, 420.

as flow chart, 365, 380-381.
balanced, 374, 377.
connected 372, 376, 377.
regular, 378.
representation of, 380.
rooted, 372.
strongly connected, 372, 377.

Discrete system simulation, 199, 279-295.
synchronous, 280, 295.

Disjoint sets: Sets with no common
elements.

Disk files, 132-133, 436, 461-462.
Distribution: A specification of probabilities

which govern the value of a random
variable.

binomial, 100, 103.
normal, 102-103.
Poisson, 103, 519.
uniform, 100-101.

Distributive law, 27, 35, 40.
DIV (divide), 127-128, 135, 204.
Divided differences, 472.
Division converted to multiplication, 513.
Divisor: x is a divisor of y if y mod x = 0;

it is a 'proper divisor if in addition
1 < x < y.

Dixon, Alfred Cardew, 489.
Dixon, Robert Dan, 504.
DLINK: Link downward, 408, 410.
Doig, Alison, 406.
Domino problem, 382-385.
Double order for traversing tree, 330, 331,

559.
Doubly linked list, 278-279, 285-288,

294-295, 409-411, 441-442, 443-445,
453, 458.

Dougall, John, 489.
Drum, 132-133, 456, 461-462.
Dull, Brutus Cyclops, 107.
Dummy variable, 27.
Dunlap, James Robert, xiii, 456.
Dwyer, Barry, 562.

Dynamic storage allocation, 242-251,

622 INDEX AND GLOSSARY

253-254, 411-413, 419-420, 435-455.

history, 456-457, 460-461.
running time estimates, 419-420, 445-450.

Dynastic order, 335, see Preorder.

Earley, Jackson Clark, 461.
Easter date, 155-156.
Edge in a graph, 362. ^
Edwards, Daniel James, 421.
Effective algorithm, 6, 8, 9.
Eisenstein, Ferdinand Gotthold, 479.
Elementary symmetric functions, 93, 94,

494.
Elevator (lift) system, 280-295.
Embedding of partial order into linear

order, 259, see Topological sorting.
Embedding of tree in another tree, 347,

385.
END, 148, 151, 293.
End of file, 212-213, 224 (exercise 12).
Endorder, see Postoider.
Engles, Robert William, 461.
English letter frequencies, 155.
ENNA (enter negative A), 129, 206.
ENNX (enter negative X), 129, 206.
ENN1 (enter negative 1), 129, 206.
ENTA (enter A), 129, 206.
Entity, 229, see Node.
Entrances to subroutines, 183-187.
ENTX (enter X), 129, 206.
ENT1 (enter 1), 129, 206.
Enumeration of tree structures, 377-378,

385-399, 404.
history, 405-406.

Epictetus, 1.

EQU (equivalent to), 142, 145-146, 151, 152.
Equivalence algorithm (Algorithm 2.3.3E),

354-355, 360-362, 376, 572, 575, 576.
Equivalence between two algorithms, 466.
Equivalence classes, 353.
Equivalence declaration, 355, 360-361.
Equivalence relation, 353, 486.
Equivalent of a MIXAL symbol, 152.
Equivalent trees, 326, 331, 345 (exercise 10).
Erase a data structure: To return all its

nodes to available storage,
binary tree, 331.
linear list, 270, 271, 277.
List, 412-413.

Erdelyi, Arthur, 398, 531.
Erdwinn, Joel Dyne, 226.
Errors, avoiding, 256-257.

computational, 24, 26, 302.
detection of, 189, 197, 294.

Etherington, Ivor Malcolm Haddon, 398, 531.
Ettingshausen, Andreas von, 52.
Euclides (= Euclid), 2, 4, 5.

algorithm for gcd, 2, 4-9, 13-17, 19, 40,
79, 80-81.

Euclidean domain, 467.

Euler, Leonhard, 48, 51, 56, 86, 108, 110,
373, 406, 494, 531.

constant, 74, 110.
summation formula, 108-112, 116, 119.
theorem of, 41.
totient function <t>(n), 41, 181 (exercise 27).

Eulerian circuit, 373-375, 377-379.
Evaluate tree function, 351, 362.
Evans, Arthur, Jr., 198.
Exchange operation, 3, 179.
Exclusive or, 443, 454, 550.
Execution time, methods for determining,

95-104, 166-169.
for MIX instructions, 134-137.

Exercises, notes on, xvii-xix, 282.
Exit: Place where control leaves a routine.
Exits from subroutines, multiple, 186, 266.
Expected value of a probability distribution:

The average or “mean” value, 98.
Exponential integral: Ei(x), 494.
Exponents, laws of, 21-22, 25.
Expressions, arithmetic, see Algebraic

formulas.
Extended binary tree, 399-405.
External path length, 399-405.

Faa di Bruno, Francesco, formula of, 50,
92, 103, 482.

Factorial, 45-51, 53, 111.
Factorial powers, 70, 487, 609.
Factorization into primes, 18, 41, 46, 49, 68.
FADD (floating add), 127, 304.
Fail-safe program, 267-268.
Family-order sequential representation of

trees, 350, 573.

Family tree, 307-309, 314.
Farber, David Jack, 460.
Farey, John, series, 157.

Father, in a tree structure, 307, 314, 333-334.
FATHER link in tree, 352-355, 359-360,

426-432.

FCMP (floating compare), 127, 502, 556.
FDIV (floating divide), 127, 304.
Ferguson, David Elton, xiii, 227, 332.
Fermat, Pierre de, 17.

theorem, 39.

Feynman, Richard Phillips, 26.
Fibonacci, Leonardo, 78-79.

number system, 85.

numbers: elements of the Fibonacci
sequence, 13, 18, 78-85, 454.

numbers, generating function, 81-82.
numbers, table of, 615.
Quarterly, 80.

sequence, 13, 18, 78-85, 454.
string sequence, 85.

Fibonomial coefficients, 84-85.

Field: A designated portion of a set of
data, usually consisting of contiguous

INDEX AND GLOSSARY 623

(adjacent) symbols; e.g., a field of a
punched card is usually a set of adjacent
column positions.

partial, of MIX word, 122-127, 135, 139,
203, 232-233.

within a node, 229.

within a node, notations for, 231-233,
457-458.

FIFO, 236, 458, see Queue.
Fifty-percent rule, 445-447, 449.
Final vertex of arc, 371.
Fine, Nathan Jacob, 483.
First-fit method of storage allocation,

436-438, 447-450, 452-453, 605.
First-in-first-out, 236, 350, 596, see Queue.
Fischer, Michael John, 353.
Fisher, David Allen, 594.
Fixed element of permutation, 177-181.
Fixed-point arithmetic, 154-157.
Flag, see Sentinel.
Floating-point arithmetic, 127, 304.
Floating-point operators of MIX, 127,

554-556.
Floor function, 37-38, 40-44.
Flow chart, 2, 18, 364-365.
Floyd, Robert W, xii, 17, 19, 20, 420, 473,

504.

FLPL, 459-460.
FMUL (floating multiply), 127, 304.
Forstemann, Wilhelm, 489.
Ford, Donald Floyd, 511.
Forecasting, 221.

Forest: Zero or more trees, 306, 407, see
Trees.

Formulas, algebraic, see Algebraic formulas,
logical, 346.

FORTRAN, 355, 457, 459.
Foster, Frederic Gordon, 99.

Fractional part, 38.
Fragmentation problem, 438-440, 450.
Franklin, Joel Nick, xiii.
Free lattice, 346-347.
Free storage, see Available space.
Free trees, 362-371, 373, 377-378, 386-388,

396, 397.
enumeration, 377-378, 388, 396, 397.
minimum cost, 370.

Front of queue, 237.
FSUB (floating subtract), 127, 304.

Fukuoka, Hirobumi, 502.
Fundamental cycles in graph, 366-368, 376.
Furch, Robert, 117.
Future reference (in MIXAL), 149, 151.

restrictions on, 152.

Galler, Bernard Aaron, 353.
Galton, Francis, 558.
Games, solution of, 85, 270.

Gamma function, 48-51, 71,78,112, 115-116.

incomplete, 113-119.

Garbage collection, 254, 412-422, 438-440,
450, 454-455, 460, 541.

Gardner, Martin, 19, 79.

Garwick, Jan Vaumund, 244, 456.
Gaskell, Robert Eugene, 85.

Gauss, Karl (= Carl) Friedrich, 48, 56, 94.
reduction algorithm for matrix inversion,

304.
gcd: Greatest common divisor.
Gelernter, Herbert Leo, 459.
Generating functions, 81-83, 86-93,

97-104, 178, 239, 386, 388-389,
391-399, 404, 532-533.

asymptotic values from, 239, 395-396.
for a discrete probability distribution,

97-104, 178.
Genuys, Fran§ois, 227.
Geometric progression, sum of, 31, 87.
Gerberich, Carl Luther, 459.
Gill, Stanley, 226-227, 456.
Glaisher, James Whitbread Lee, constant,

499.
Gnedenko, Boris Vladimirovich, 103.
GO-button of MIX, 140, 208.
Goldbach, Christian, 48.
Goldberg, Joel, 522.
Golden ratio, 13, 18, 21, 79, 81-85, 613, 614.
Goldstine, Herman Heine, 18, 225.
Golomb, Solomon Wolf, 181.
Goncharov, Vasili! Leonidovich, 103.
Good, Irving John, 374, 395, 482.
Gorn, Saul, 459.
Gould, Henry Wadsworth, xiii, 62, 117, 484,

490.
Gower, John Clifford, 458.
Graph, 362-372, 377-378, 406.

connected, 362.
directed, see Directed graph.

Graphical display, 159-160.
Greatest common divisor, 2, 4-6, 9, 14-15,

38-39, 42, 80-81.
Greatest integer function, see Floor function.
Grid, 228, 371.
Griswold, Ralph Edward, 460.

Haddon, Bruce Kenneth, 603.
Halayudha, 52.
Hamilton, Dennis Eugene, xiii.
Hamilton, Sir William Rowan, circuit, 374,

378.
Hansen, James Rone, 459.
Hansen, Wilfred James, 420.
Harary, Frank, 406.
Hardware-oriented algorithms, 26, 249, 600.

Hardy, Godfrey Harold, 12, 490, 515.
Harmonic numbers, 73-78, 89, 110-111, 156.

generating function, 89, 493.
table, 615-616.

Harmonic series, 74, 156-157.

Harrison, Michael Alexander, iv.

624 INDEX AND GLOSSARY

Hartmanis, Juris, 463.
Hautus, Matheus Lodewijk Johannes, 488.
Head of list, 272, 278, 286-287, 299-300,

322, 332, 336, 408-410, 443.
Hellerman, Herbert, 458.
Henkin, Leon Albert, 17.
Herbert, George, xvi.
Hermite, Charles, 48. 1
Heyting, Arend, 405.
Hilbert, David, matrix, 37.
HLT (halt), 132, 139.
Hoare, Charles Antony Richard, 457.
Holmes, Thomas Sherlock Scott, 463.
Holt Hopfenberg, Anatol Wolf, 459.
Honeywell H800, 120.
Hopper, Grace Murray, 255, 458.
Huffman, David Albert, 402-405.
Hurwitz, Adolf, 42.

generalized binomial formula, 398, 488.

IBM 650, i, 120, 226, 523.
IBM 701, 226.
IBM 705, 227.
IBM 709, 120, 523.
IBM 7070, 120.
Identity permutation, 161, 172.
Iff: If and only if.
Iliffe, John Kenneth, 461.
Illiac I, 226.
IN (input), 132-133, 211-212.
In-degree of vertex, 371.
INCA (increase A), 129, 206.
Incidence matrix, 267.
Inclusion and exclusion principle, 178-179,

181.
Incomplete gamma function, 113-119.
INCX (increase X), 129, 206.
INC1 (increase 1), 129, 206.
Indentation, 309.
Index: A number which indicates a

particular element of an array
(sometimes called a “subscript”), 3-4,
295-298, 310, 313, 315.

Index register, 122-123, 153, 263.
modification of MIX instructions, 123, 248.

Indirect addressing, 248-249, 303.
Induction, mathematical, 11-21, 32.

generalized, 20-21.
Infinite series: A sum over infinitely many

values.
Infinite trees, 314-315, 381-385.
Infinity lemma, .381-385.
Information: The meaning associated with

data, the facts or concepts represented
by data; often used also in a narrower
sense as a synonym for “data,” or in a
wider sense to include any concepts
which can be deduced from data.

Information structure, see Data structure.

Ingalls, Daniel Henry Holmes, 516.
Ingerman, Peter Zilahy, xiii.
Initial vertex of arc, 371.
Inorder for binary tree, 316-320, 328-330, 335.
Input, 5, 211-225.

anticipated, 212.
buffering, 212-225.
operators of MIX, 132-134, 211-212.

Input-restricted deque, 235-239, 415.
Insertion of node: Entering it into a data

structure.
into available space list, see

Liberation.
into deque, 248, 266, 271, 294.
into doubly linked list, 279, 288, 294,

442, 444-445.
into linear list, 235.
into linked list, 231-232, 252, 274, 279,

288, 294, 301-302, 357-358, 442,
444-445.

into queue, 237-238, 240-241, 257, 262,
271.

into tree, 325, 331, 357-358.
into two-dimensional list, 301-302.
onto stack, 237-238, 240-241, 243-244,

254-256, 265-266, 271, 276, 279, 323,
415-416.

Instruction, machine language: A code
which, when interpreted by the circuitry
of a computer, causes the computer to
perform some action,

in MIX, 123-137.
symbolic form, 123-124, 141-153.

INT (interrupt), 225.
Integer, 21.
Integration, 89.

related to summation, 108-112, 116.
Interchange of values, 3, 179.
Interchanging the order of summation,

28-30, 33, 41.
Interest, compound, 23.
Interlock time: Delay of one part of a

system while another part is busy-
completing some action.

Internal path length, 399-400, 405.
Interpreter (interpretive routine), 197-208,

226, 338.
Interrupt, 224-225.
Inverse (modulo m), 40.
Inverse of matrix, 35-37, 72, 304.
Inverse of permutation, 172-175, 180.
Inversion problem, 63.
Inversions of a permutation, 536 (Exercise 9),

553.
Invert a linked list, 266.
I/O: Input or output, 211.
IOC (input-output control), 133.
IPL, 226, 229, 457, 458, 459, 460, 547.
Irons, Edgar Towar, xiii.
Irreflexive relation, 258.

INDEX AND GLOSSARY 625

Isolated vertex, 374.
Iverson, Kenneth Eugene, 37, 458, 459.

11-register of MIX, 122, 138.

J-register of MIX, 122, 130, 139, 182-183,
185, 208-210.

J ACM: Journal of the ACM, a publication
of the Association for Computing
Machinery.

Jacquard, Joseph Marie, loom, 225.
JAN (jump A negative), 130, 206.
JANN (jump A nonnegative), 130, 206.
JANP (jump A nonpositive), 130, 206.

JANZ (jump A nonzero), 130, 206.
JAP (jump A positive), 130, 206.

Jarden, Dov, 85.
JAZ (jump A zero), 130, 206.
JBUS (jump busy), 133, 153, 208, 212, 222.
JE (jump on equal), 130, 205-206.
Jenkins, D. P., 459.
JG (jump on greater), 130, 205-206.
JGE (jump on greater-or-equal), 130,

205-206.
JL (jump on less), 130, 205-206.
JLE (jump on less-or-equal), 130, 205-206.
JMP (jump), 130, 183, 205.
JNE (jump on not equal), 130, 205-206.
JN0V (jump on no overflow), 130, 138, 205.

Jodeit, Jane G., 461.
Johnson, Lyle Robert, 458, 459.

Joke, 53, 196.
Jordan, Camille, 388, 405.
Jordan, Karoly (= Charles), 68.
Jordan, Wilhelm, reduction algorithm for

matrix inversion, 304.
Josephus, Flavius, problem, 158-159, 181.
J0V (jump on overflow), 130, 138, 205.
JRED (jump ready), 133, 218-219.
JSJ (jump, save J), 130, 185, 205.
Jump operators of MIX, 130.

Jump trace, 211.
JXN (jump X negative), 131, 206.
JXNN (jump X nonnegative), 131, 206.
JXNP (jump X nonpositive), 131, 206.
JXNZ (jump X nonzero), 131, 206.
JXP (jump X positive), 131, 206.
JXZ (jump X zero), 131, 206.
JIN (jump 1 negative), 131, 206.
JINN (jump 1 nonnegative), 131, 206.
J1NP (jump 1 nonpositive), 131, 206.
J1NZ (jump 1 nonzero), 131, 206.

J1P (jump 1 positive), 131, 206.
J1Z (jump 1 zero), 131, 206.

Kahn, Arthur B., 265.
Kahrimanian, Harry George, 458.

Kallik, Bruce, 404.
Kaucky, Josef, 62.
Kepler, Johann, 79.
Kilmer, Joyce, 228.

King, James Cornelius, 20
Kirchhoff, Gustav Robert, 367, 405.

law of conservation of flow, 95, 167-168,
265, 276, 323, 364-370, 374, 379-380.

Knopp, Konrad, 47, 75, 110.
Knotted List, 458.
Knowlton, Kenneth Charles, 461.
Knuth, Donald Ervin, ii, xiii, 198, 294, 295,

307, 446, 456, 460, 488, 518, 520, 560,
574, 578, 587.

Knuth, Ervin Henry, xii.

Knuth, Jill Carter, xii, xxii.
Kolmogorov, Andrei Nikolaevich, 103.

Konig, Denes, 381, 382, 405.
Kozelka, Robert Marvin, 539.
Kramp, Christian, 48.

Krogdahl, Stein, 605.
Kronecker, Leopold, delta notation, 60.

Kruskal, Joseph Bernard, 385.
Kummer, Ernst Eduard, 68.

La Loubere, Simon de, 158.
Labeled trees, enumeration of, 389-395,

397-398.
Lagrange, Joseph Louis, comte, 27.

identity, 34.
inversion formula, 392, 588.

Lame, Gabriel, 79, 406.
Language: A set of strings of symbols,

usually accompanied by conventions
for assigning a “meaning’’ to each

string in the set, viii.
Laplace, Pierre Simon, marquis de, 86.

transform, 86, 93.
Large programs, writing, 187-189.
Last-in-first-out, 236, 350, 452, see Stack.

almost, 447, 454.
Lattice, free, 346-347.
Lawson, Harold Wilbur, Jr., 432, 460.
LDA (load A), 124-125, 204-205.
LDAN (load A negative), 125, 135, 204-205.

LDX (load X), 125, 135, 204-205.
LDXN (load X negative), 125, 135, 204-205.

LD1 (load 1), 125, 135, 204-205.
LD1N (load 1 negative), 125, 135, 204-205.
Least-recently-used replacement, 451.
Left subtree in a binary tree, 309.
Legendre, Adrien Marie, 48, 49.

symbol, 43.
Leibnitz (= Leibniz), Gottfried Wilhelm,

Freiherr von, 2, 49.

Leiner, Alan L., 227.
Leonardo of Pisa, 78.
Letter frequencies in English, 155.

Level of node in tree, 305, 314.
Level-order sequential representation of

trees, 350, 359, 573.
LeVeque, William Judson, 465.

Levy, Paul, 103.
Lexicographic order, 20, 296-297, 303, 332.

626 INDEX AND GLOSSARY

L’Hospital, Guillaume Frangois Antoine de,
marquis de Sainte-Mesme, rule of, 102.

Liberation of reserved storage, 253, 275,
290, 411-413, 419-420, 438-442,
444-445, 449-450, 452-455.

LIFO, 236, 458,i«ee Stack.
Lilius, Aloysius, 155.

Lindstrom, Gary, 562. t
Lineal chart, 307-308.
Linear lists, 228, 234-304.
Linear ordering, 20, 259, 267.

embed partial ordering into, 259, see
Topological sorting,

of trees, 331, 332, 345.
Linear recurrence, 82, 87.
Link, 229-231.

diagram of, 230-231.
field, purpose of, 231, 431, 461.
manipulation, avoiding errors in, 256-257.
null, 230.

Link variable, 231-233.
Linkage: Manner of setting links.

circular, 270-277, 300, 355, 409-410, 458.
coroutine, 190, 196, 220, 288-289.
double, 278, 286, 355, 410.
orthogonal, 286, 298-300.
straight, 230, 251, 256, 410, 416.
subroutine, 182-183, 189.
two way, 278, 286, 355, 410.

Linked allocation of tables, 230-231,
251-253.

array, 286, 299-300.
contrasted to sequential allocation,

251-253, 433 (exercise 5).
linear list, 230-231, 251-258, 261-263, 265,

270-273, 276-277, 278-279, 330, 416,433.
tree structures, 315-316, 319-322, 325,

333-334, 351-359.
Linked-memory philosophy, 251-253, 435.
Linking automaton, 462-463.
LISP, 229, 459, 603.
List: Ordered sequence of zero or more

elements.
circular, 270-277, 409-410, 458.
doubly linked, 278-279, 285-288,

294-295, 409-411, 441-442, 443-445,
453, 458.

linear, 228, 234-304.

of available space, see Available space
list.

List (capital-List) structures, 312-313,
315, 406-422.

copying, 421.
diagrams of, 312-313, 315, 407.

distinguished from lists, 229, 409, 411.
equivalence between, 421-422.
notations for, 312-313, 315, 407.
representation of, 408-411, 417, 459-460.

List head, 272, 278, 286-287, 299-300, 322,
332, 336, 408-410, 443.

List processing systems, 229, 411, 459-460.
Listing, Johann Benedict, 405.
Literal constants in MIXAL, 146, 151.
LLINK: Link to the left,

in binary tree, 315, 319-325, 328-332.
in doubly linked list, 278-279, 285-289.
in List, 410-411.
in tree, 337, 347-349, 352, 355, 380.

Lloyd, Stuart Phinney, 180, 181.

Loading operators of MIX, 124-125, 135,
204-205.

Loading routine, 139-140, 225, 268.
L0C, 231-232.
Local symbols in MIXAL, 147, 149, 153.
Locally defined function in tree, 351, 362.
Location: The memory address of a

computer word or node; or the memory
cell itself.

Location counter in MIXAL, 150-151.
Location field of MIXAL line, 141-142, 148.
Logarithm, 22-26.

binary, 22, 25.
common, 22.
natural, 23, 25, 26.
power series, 89-90.

Logical formulas, 346.
Loop detection, 268.
Loopstra, Bram Jan, 227.
Lovelace, Ada Augusta, countess of, 1.
LS0N, 352, 359.

LTAG, 319-320, 332, 348-349, 352.
Lucas, Edouard, 68, 79, 80, 270.
Luhn, Hans Peter, 456.
Lukasiewicz, Jan, 336.
Lunch counter problem, 455.
Lynch, William Charles, xiii, 581.

Machine language: A language which
directly governs a computer’s actions,
as it is interpreted by a computer’s
circuitry, 120.

symbolic, 141, see Assembly language.
MacMahon, Maj. Percy Alexander, 489.
Macro instruction: Specification of a

pattern of instructions and/or pseudo¬
operators which may be frequently
repeated within a program.

Madnick, Stuart Elliot, 460.
Magic square, 158.
Magnetic tape, 132-134, 462.

Mallows, Colin Lingwood, 531.
Margolin, Barry Herbert, 451.

Mark I calculator, 225.

Marking algorithms: Algorithms which
“mark” all nodes that are accessible

from some given nodes, 268-269,
413-422.

Markov, Andrei Andreevich (the elder),
380.

INDEX AND GLOSSARY 627

process, 250 (exercise 13), 380-381.
Markov, Andrei Andreevich (the younger),

9.
Markowitz, Harry Max, 460.
Math. Comp.: Mathematics of Computation,

a journal published by the American
Mathematical Society.

Mathematical induction, 11-21, 32.
generalized, 20-21.

Matrix, 228, 295-296.
Cauchy, 36-37.
combinatorial, 36-37, 584.
determinant of, 35-37.
Hilbert, 37.
incidence, 267.
inverse of, 35-37, 304.
multiplication, 304.
representation of, 154, 295-304.
sparse, 299-304.
transpose of, 180.
tridiagonal, 304.
triangular, 297-298, 303.
Vandermonde, 36-37.

Matrix (Bush), Irving Joshua, 33, 34.
Mauchly, John William, 456.
Maurolico, Francesco, 17.
Maximum, algorithm to find, 95, 141, 182.

McCall’s, v.
McCarthy, John, 459, 460.
McCracken, Daniel Delbert, xiii.
McEliece, Robert James, 476, 481.

Mcllroy, Malcolm Douglas, 572.
McNeley, John Louis, xiii.

Mealy, George, 461.
Mean (average) of a probability

distribution, 96, 9,8-99, 101.

Meek, H. V., 227.
Meggitt, John E., 470.
Memory: Part of a computer system used

to store data, 122, 195, 234.

cell of, 123.
types of, 195, 234, 462.
update, 295.

Memory map, 435-436, 448-449.
Merging, 402.
Merner, Jack Newton Forsythe, xiii, 226.
Metcalfe, Howard Hurtig, xiii.
Military game, 270.

Miller, Kenneth William, 119.
Minimum path length, 400—405.
Minimum wire length, 370-371.
Minsky, Marvin Lee, 422.

Mirsky, Leon, 582.
Mitchell, William Charles, 520.
MIX computer, xi, 120-140.

assembly language for, 141-153.
extensions to, 139, 225-226, 248-249, 454.

instructions, form of, 123.
instructions, summary, 136-137.
simulator of, 198-208.

MIXAL: MIX Assembly Language, 141-153,
232.

Mixed-radix number system, 297.
Mock, Owen Russell, 227.
mod, 38.
modulo, 38.
Moments of probability distribution, 103.
Monitor routine, 208, see Trace routine.
Monte Carlo method: Experiments with

random data, 446.

Moon, John Wesley, 406.
Mordell, Louis Joel, 42.
Morrison, Emily, 225.
Morrison, Philip, 225.
Mother, 307, see Father.
Mouse algorithm, see Traversal.
MOVE, 131, 138, 189, 207.
MOVE CORRESPONDING in COBOL, 425,

429-431, 434.
Moyse, Alphonse, Jr., 377.
MUG: MIX User’s Group, 627.
MUL (multiply), 127-128, 204.
Multilinked structures, 228, 285-286,

356-359, 423-434, 457.
Multinomial coefficient, 64, 394.
Multinomial theorem, 64/.
Multipass algorithm, 194-196, 197-198.
Multiple: x is a multiple of y if y is a.

divisor of x, i.e., x = ky for some
integer k.

Multiple entrances to subroutines, 185-186.
Multiple exits from subroutines, 186.
Multiple precision arithmetic, 198.
Multiplication of permutations, 161-164,

169-170, 371.
Multiplication of polynomials, 274, 276-277.
Multiplicative function, 41.

Multiset: Analogous to a set, but elements
may appear more than once.

Multiway decisions, 153.

Nahapetian, Armen, 574.
Napier, John, 23.
Nash, Paul, 553.
National Science Foundation, xii.
Natural correspondence between binary

trees and forests, 333-334, 345.
Natural logarithm, 23.
Naur, Peter, xiii, 18.

Needham, Joseph, 58.
Negative: Less than zero (not zero).
Nested parentheses, 309.
Nested sets, 309, 314.
Nesting store, 236.
Network, 258, see Graph.
Neville, Eric Harold, 585.
Newell, Allen, 226, 457, 459.
Newton, Sir Isaac, 22, 56.

identities, 494.
Nicomachus of Gerasa, 19.

628 INDEX AND GLOSSARY

Nil link, see Null link.

Niven, Ivan, 87.
Noah, 308.
Node: Basic component of data structures,

229.
address of, 229.
diagram of, 230.
link to, 229.
notations for fields, 231-233, 457-458.
size of, 240, 254, 296, 435, 452.
variable-size, 435-455.

NODE, 232.
Node variable, 232-233.
Nonnegative: Zero or positive.
NOP (no operation), 132.
Normal distribution, 102, 103.
Notations, index to, 607-611.
Notes on the exercises, xvii-xix.
Null link, 230-231.

in tree, 315-316, 319-320, 329.
NUM (convert to numeric), 134.
Number, definitions, 21.
Number system: A language for representing

numbers,
binomial, 72.
decimal, 21.
Fibonacci, 85.
mixed-radix, 297.
phi, 85.

Number theory, elementary, 38-44.

Nygaard, Kristen, 226, 460.

O-notation, 104-108.
O’Beirne, Thomas Hay, 155.
Oettinger, Anthony Gervin, 459.
Office of Naval Research, xii, 226.
Okada, Satio, 377.
Oldenburg, Henry, 56.
One-plus-one address computer, 456.
One-way equalities, 105-107.
One-way linkage, see Straight linkage,

Circular linkage.
Onodera, Rikio, 377.
Open subroutine, see Macro instruction.
Operation code field, of MIX instruction,

123.
of MIXAL line, 142, 148, 151.

Optimal search procedure, 402.
Order of succession to throne, 335.
Ordered tree, 306, 373, 388-389, see Tree.
Ordering: A transitive relation between

objects of a set.
lexicographic, 20, 296-297, 303, 322.
linear, 20, 259, 267.
linear, of trees, 331, 332, 345.
partial, 258-262, 266-267, 314, 345.
well, 20-21, 332.

Ore, Oystein, 406, 542.
Oresme, Nicole, 22.
Oriented binary tree, 396.

Oriented cycle in directed graph, 371.
Oriented path in directed graph, 371, 376.

Oriented trees, 306, 353-355, 359, 372-379,
386, 389.

canonical representation, 390.
enumeration, 386, 389-397.
representation of, 353-355.
root changed in, 376.

□RIG (origin), 142, 148, 151.
Orthogonal lists, 295-304.
Otter, Richard Robert, 395, 583.
□UT (output), 132-133, 222.
Out-degree of vertex, 371.
Output, 5, 211, 215-225.

buffering, 215-225.
operators of MIX, 132-134.

Output-restricted deque, 235-239, 266, 271.
OVERFLOW, 241-248, 253-254, 265-266,

274, 451.
Overflow toggle of MIX, 122, 127, 129, 130,

138, 205, 210, 224.

Packed data: Data'which has been
compressed into a small space, e.g.,
by putting two or more elements of
data into the same wmrd of memory,
124, 153.

Paging, 451.

Parallelism, 293, 295, see Discrete system
simulation.

Parameters of subroutines, 183, 185.
Parker, William Wayne, xiii.
Parmelee, Richard Paine, 451.
Partial field designations in MIX, 122-123,

203.
Partial fractions, 62, 71, 82.
Partial ordering, 258-262, 266-267, 314,

345, 542.
Partitions of a set, 73, 481.

Partitions of an integer, 12, 32, 86, 92, 93.
Pascal, Blaise, 17, 52.

triangle, 52, 68-69, 72, 84, see
Binomial coefficients.

Pass, in a program, 194-196.
Path, in a graph or directed graph, 362,

372.
oriented, 371.
random, 380-381.
simple, 362, 369, 371, 376.

Patt, Yale Nance, 503.
Pawlak, Zdzislaw, 459.
PDP-4, 120.
Pedigree, 307-308.

Peripheral device: An I/O component of a
computer system, 132.

Perlis, Alan J., 319, 459.
Permanent of a square matrix, 50.
Permutations, 44-45, 49, 96-97, 160-164,

169-170, 172-181, 238-239, 329, 371.

INDEX AND GLOSSARY 629

inverse of, 172-175, 180.

multiplication of, 161-164, 169-170, 371.
notations for, 160-161.

PERT network, 258-259.
Peters, Johann (= Jean) Theodor, 615-
Peterson, William Wesley, xiii.
Phi, 79, see Golden ratio.

number system, 85.
Phidias, 79.
Philco S2000. 120.
Pile, 236.
Pilot ACE computer, 226.
Pisano, Leonardo, 78.
Pivot step, 300-302, 304.
PL/I, 433, 552.
PL/MIX, 152.
Plane tree, 306, see Ordered tree.
Playing cards, 49, 68, 229-233, 377.
Plex, 457.
Pointer, see Link.
Pointer variable: A variable whose values

are links.
Poisson, Simeon Denis, distribution, 103,

519.
Polish notation, see Prefix notation,

Postfix notation.
Polonsky, Ivan Paul, 460.
Polya, Gyorgy (= George), 17, 92, 395,

406, 494.
Polynomials, 55, 65, 105.

addition of, 273-276, 355-359, 361.
Bernoulli, 42, 109-112.
Chebyshev, 493.
differences of, 64.
multiplication of, 274, 276-277.
representation of, 273, 277, 356-359.

Pool of available nodes, see Available space

list.
Pooled buffers, 224.
Pop up a stack: Delete its top element,

237-238, 240-241, 243, 255-256,
265-266, 271, 276, 278-279, 323,

415-416.
Positive: Greater than zero (not zero).
Postfix notation, 336, 351, 362.
Posting a new item, see Insertion.
Postorder for binary tree, 316-317, 319, 324,

328-330, 335, 350.
Postorder for tree, 334-336, 338, 345,

350-351.
Postorder with degrees, representation of

trees, 350-351, 361-362.
Power of number, 21-22, 503.

factorial, 70, 487, 609.
Power series: Sum of the form 2k>o<ikZk,

see Generating function,

convergence of, 86.
manipulation of, 115.

Pratt, Vaughan Ronald, 534, 587.

Prefix notation, 336, 359, 587-588.

Preorder for binary tree, 316-317, 326-331.
Preorder for tree, 334-336, 348-349, 359, 459.
Preorder sequential representation of trees,

348-349.
with degrees, 359, 459.

Prim, Robert Clay, 370.
Prime numbers, 18, 39, 41, 43-44, 46-47,

68, 143-145, 153'.
algorithm to compute, 143-145, 153.
factorization into, 41, 46-47, 68.

Printer, 132-133.
Prinz, D. G., 226.
Priority queue, 552, 584.
Probability distribution: A specification of

probabilities which govern the value
of a random variable, 96-104, 178.

average (“mean”) value of, 96, 98-99,
101.

generating function for, 98-101, 103-104.
variance of, 96, 98-99, 101.

Procedure, see Subroutine.
Procedure for reading this set of books,

xiv-xvi.
Program: Representation in some precise,

formalized language of a computational
method, 5.

Programming language: A precise,
formalized language in which programs
are written.

Programs, hints for construction of, 187-189,

293.
Progression, arithmetic, sum of, 11, 13, 31,

55.
Progression, geometric, sum of, 31, 87.

Proof of algorithms, 14-20, 318-319, 420,
434.

Proper divisor, see Divisor.
Propositional calculus, 346.
Prufer, Heinz, 406.
Pseudo-operator: A construction in a

programming language which is used
to control the translation of that
language into machine language, 142.

Psi function, 94, 490, 491, 616.
Purdom, Paul Walton, Jr., xiii, 448, 451.
Push down list, 236, see Stack.
Push down onto a stack: Insert a new top

element, 237-238. 240-241, 243-244,
254-256, 265-266, 271, 276, 279, 323,

415-416.
Putnam, Hilary, 346.

^-binomial theorem, 72.
<7-nomial coefficients, 64, 72, 489, 492.
Quadratic Euclidean domain, 467.
Quadratic reciprocity law, 44.
Qualification of names, 423-434.
Quasi-parallel processing, 293, see

Discrete system simulation.
Queue, 235-239, 240-241, 248-249, 261-263,

630 INDEX AND GLOSSARY

271, 458, 596.
deletion from front, 240-241, 257-258,

262-263, 271.
insertion at rear, 240-241,257, 262-263,

271.
linked allocation, 257, 270-271, 278.
sequential allocation, 240-241, 248-249.

Quick, Jonathan Horatio, 498. *

Ramanujan Aiyangar, Srinivasa, 12, 117,
119.

Ramus, Christian, 70.
Randell, Brian, 198, 451.
Random path, 380-381.
Raney, George Neal, 392, 394, 588.
Raphael, Bertram, 459.
Rational number, 21, 157.
RCA 601, 120
Read, Ronald Cedric, 560.
Reading: Doing input, 211.
Real number, 21.
Real time, 422, 442.
Reallocate sequentially stored tables,

244-246.
Rear of queue, 237-238.
Recipe, 6.
Reciprocity formulas, 43-44.
Recomp II, 120.
Record: A set of data that is input or

output at one time, 132-133; see also
Node, 229.

Records, blocking of, 214, 222.
Rectangular arrays, 295-304.
Recurrence relation: A rule which defines

each element of a sequence in terms
of the preceding elements, 87.

Recursive definition, vii, 305, 309, 312,
315-317, 334.

Recursive List, 313.
Recursive use of subroutine, 187.
Ref, see Link.
Reference, 229, see Link.
Reference counter technique, 412-413, 460.
Reflexive relation, 258, 353.
Registers: Portions of a computer’s

internal circuitry in which data is
processed; the most accessible data
kept in a machine appears in its
registers.

of MIX, 122.

saving and restoring contents of, 184,
194, 224-225.

Regular directed graph, 378.

Relation: A property which holds for
certain sets (usually ordered pairs) of
elements; for example, “ <” is a
relation defined for ordered pairs (x, y)
of integers, and the property “x < y”
holds if and only if x is less than y.

antisymmetric, 258.

asymmetric, 258.
equivalence, 353.
irreflexive, 258.
reflexive, 258, 353.
symmetric, 353.
transitive, 105, 258, 353, see Ordering.

Relatively prime integers, 38-41.
RELEASE a buffer, 215, 218, 224.
Remove from structure, see Deletion.
Renyi, Alfred, 590.
Repacking, 243-246.
Replacement operation, 3.
Replicative function, 42.
Representation (inside a computer),

methods for choosing, 234-235, 423.
of algebraic formulas, 335-336, 458.
of arrays, 154, 296-300.
of binary trees, 315-316, 319-322, 325,

332, 401.
of deques, 248, 278.
of directed graphs, 380.
of forests, 333, 347-362.
of Lists, 408-411, 417, 459-460.
of oriented trees, 353, 376.
of polynomials, 273, 277, 356-359.
of queues, 240-241, 256, 270, 278, 286.
of stacks, 240-241, 251, 270, 272, 278.
of trees, 333-334, 347-362, 459.

Reservation of free storage, 253-254, 263,
266, 275, 289, 436-438, 444, 449-450,
452-454.

Reversion storage, 236.

Rice, Stephan Oswald, 560.
Riemann, Georg Friedrich Bernhard, 74, 478.
Right subtree in a binary tree, 309.
Right-threaded tree structure, 325, 331,

336, 380.
Ring structure, 355.
Riordan, John, 397, 406, 492, 590.
RLINK: Link to the right,

in binary tree, 315, 319-325, 328-332.
in doubly linked list, 278-279, 285-289,

315, 319-325.
in List, 408, 410-411.

in tree, 337, 347-349, 352, 355, 380,
see BROTHER link.

Robertson, James Chalmers, xiii.
Robinson, Raphael Mitchel, 582.
Robson, John Michael, 449, 451, 562, 605,

606.

Rodrigues, Benjamin Olinde, 406.
Roll, 236.

Root of number, 21, 25.

Root of tree, 305-309, 314, 372-373, 381,

383.
change of, 376.

Rooted directed graph, 372, 377.
Rooted tree, 372, see Oriented tree.
Ross, Douglas Taylor, xiii, 451, 457, 461.
Rothe, Heinrich August, 62.

INDEX AND GLOSSARY 631

Rounding, 40, 82, 156.
Row major order, 296.
RTAG, 319-320, 331, 337, 349, 350.
Running time, see Execution time.
Russell, Lawford John, 198.

Saddle point, 155.
Salton, Gerard Anton, 350, 458.
Sammet, Jean Elaine, 346, 461.
Satterthwaite, Edwin Hallowed, Jr., 227.
Scaled decimal arithmetic, 156-157.
Schatzoff, Martin, 489.
Scherk, Heinrich Ferdinand, 489.
Schlatter, Charles Fordemwalt, 458.
Schlatter, William Joseph, 458.
Scholten, Carel Steven, 227.
Schorr, Herbert, 417, 420.
Schorr-Kon, Jacques Jacob, 9.
Schorre, Dewey Val, xiii.
Schreier, Otto, 385.
Schroder, Ernst, 587.
Schiitzenberger, Marcel Paul, xiii.
Schwartz, Eugene Sidney, 404.
Schwarz, Hermann Amandus, inequality:

see Cauchy’s inequality.
Schwenk, Allen John, 493.
Schweppe, Earl Justin, xiii, 458.

SCOPE link, 349, 434.

Scroll, 236.
Segner, Johann Andreas von, 406, 531.

Selfridge, John Lewis, 77.
Semaphore, 227.
Semi-invariants of a probability distribution,

101-103.
Sentinel: A special value placed in a table,

e.g., to mark the boundaries of the
table, designed to be easily
recognizable by the accompanying

program.
Sequential (consecutive) allocation of tables,

240.
array, 154, 296-298, 302-304.
contrasted to linked allocation, 251-253,

433 (exercise 5).
linear list, 240-251, 261-263, 323,

414-416.
tree structures, 347-350, 359-362, 401,

434.
Series, infinite: An infinite sum.
Sets, partition of, 73, 481.

Shakespeare, William, 228.
Shaw, Christopher Joseph, xiii.
Shaw, John Clifford, 226, 457.

Shelf, 236.
Shell, Donald Lewis, xiii.
Shepp, Lawrence Alan, 180, 181.

Shift operators of MIX, 131, 207.
Shih-chieh, Chu, 52, 58.
Sibling, 307, 347, see Brother.

Siklossy, Laurent, 562.

Sister, 307, see Brother.
Similar trees, 325-327, 345 (exercise 10).
Simon, Herbert Alexander, 226, 457.

Simple oriented path, 371, 376.
Simple path, 362, 369.
Simplification, algebraic, 339, 346.

SIMSCRIPT, 460.

SIMULA, 226.
Simulated time, 281, 285, 451.
Simulation: Imitation of some system,

continuous, 279.
discrete, 199, 279-295.
of one computer on another, 198-208.
of one computer on itself, 208-211.

Singleton cycle of permutation, 160-161,
164, 168, 177-179.

Skalsky, Michael, 484.
SLA (shift left A), 131, 207.
SLAX (shift left AX), 131, 207.
SLC (shift left AX circularly), 131, 207.

SLIP, 229, 458, 459, 460.
Sloane, Neil James Alexander, 590.
Smallest-in-first-out, 552.

SNOBOL, 460.

Solitaire (patience) game, 377.
Son, in a tree structure, 307, 333-334, 347,

352, 426-432.

Sorting, vii, 346.
topological, 258-268, 345, 376, 397.

Sparse matrix, 299-304.
Speedcoding, 226.
SRA (shift right A), 131, 207.
SRAX (shift right AX), 131, 207.
SRC (shift right AX circularly), 131, 207.
STA (store A), 125-126, 205.
Stack, 235-239, 240-250, 254-256, 265-267,

271, 276, 317-319, 323-324, 329-330,
414-417, 427-428, 458.

deletion (“popping”), 237-238, 240-241,
243-244, 255-256, 265-266, 271, 276,
278-279, 323, 415-416.

insertion (“pushing”), 237-238, 240-241,
243-244, 254-256, 265-266, 271, 276,

279, 323, 415-416.
linked allocation, 254-256, 265-267, 271,

276, 278-279, 330, 416.
pointer to, 240, 243, 254.
sequential allocation, 240-250, 323,

414-415.
Standard deviation of probability

distribution: The square root of the
variance, an indication of how much a
random quantity may be expected to
deviate from its mean value, 96-97, 99,

102.
Stearns, Richard Edwin, 463.
Stegun, Irene Anne, 66, 92, 615.
Stevenson, Francis Robert, 574.
Stickelberger, Ludwig, 50.

Stigler, Stephen Mack, 448, 451.

632 INDEX AND GLOSSARY

Stirling, James, 46-48, 72, 86, 111, 178.
approximation, 46, 49, 71, 111-112, 113,

115-116, 538.
Stirling numbers, 65-68, 70, 73, 77, 90,

94 (exercise 18), 97, 102, 501, 578.

combinatorial interpretations, 73, 176.
generating functions, 90.

tables of, 66. *
STJ (store J), 126, 142, 183, 205.

Storage allocation: Choosing memory cells
in which to store data, see Available
space list, Dynamic storage allocation,
Linked allocation, Sequential
allocation.

Storage mapping function: The function
whose value is the location of an array
node, given the indices of that node,
240, 296-298, 303.

Store: British word for “memory.”
Storing operators of MIX, 125-126, 205.
Straight linkage, 230, 251, 256, 410, 416.
String: A finite sequence of zero or more

symbols, 8-9, 85, see Linear list,
concatenation, 272.
manipulation, 460, 461.

Strongly connected directed graph, 372, 377.
Structure, how to represent, 234-235,

423-432, 461, see Representation.

Stuart, Alan, 99.
STX (store X), 126, 205.
STZ (store zero), 126, 205.
ST1 (store 1), 126, 205.
SUB (subtract), 127, 128, 204.
Subroutine, 154, 156, 182-189, 190-192,

198, 202-203, 207, 225-226, 288-289.
allocation, 268-269.
closed, see Subroutine,
history, 225-226.
linkage, 182-183, 187.
open, see Macro instruction.

Subscript, 3, see Index.
Substitution operation, 3.
Subtree order, 459.
Subtrees, 305-307.

enumeration of, 377-378.
free (spanning), 365-368.

Summation, 26-37.

by parts, 43 (exercise 42), 75, 77.
Euler’s formula, 108-112, 116, 119.
interchange of order, 28-30, 33, 41.
of arithmetic progression, 11, 13, 31, 55.
of binomial coefficients, 54-64, 68-73.
of geometric progression, 31, 87.
relation to integration, 108-112, 116.

Swapping buffers, 143-144, 155, 213-215,
222.

Swift, Charles James, 227.

Swift, Jonathan, 617.

Switching table, 154, 200-201, 204-205.

Sylvester, James Joseph, 578.

Symbol manipulation: A general term for
data processing, usually applied to
nonnumeric processes such as
manipulation of strings or algebraic
formulas.

Symbol table algorithms, 172, 263, 425.
Symbolic machine language, see Assembly

language.
Symmetric function, elementary, 93, 94, 494.
Symmetric order for binary tree, 317, see

Inorder.
Symmetric relation, 353.
Synchronous discrete simulation, 280, 295.

Syntactical algorithms, vii.
System: A set of objects or processes

which are interconnected or which
interact ^ith each other.

System/360, 120, 523.
Szekeres, George, 590.

Szpilrajn, Edward, 265.

Table-driven program, see Interpreter,
Switching table.

Tables, arrangement of, inside a computer,
see Representation.

Tables of numerical quantities, 66, 613-616.
Tag field in tree node, 319, see LTAG, RTAG.
Tape, 132-133.
Taussky, Olga, xiii.
Tautology, 346.
Taylor, Brook, formula with remainder,

113.
Temp storage: Part of memory used to

hold a value for a comparatively short
time while other values occupy the
registers, 188.

Terminal node of tree, 305, 315.
Terminology, 237, 307, 362.
Ternary tree, 332, 396, 401, 404-405.
Tetrahedral array, 298, 303, see Binomial

number system.
Theory of automata, 462-463.
Theory of algorithms, 7. 9.

Thiele, Thorvald Nicolai, 101.
Thorelli, Lars-Erik, 593.
Thornton, Charles, 319, 459.
Thread an unthreaded tree, 330-331.
Thread links, 319-321, 334.
Threaded trees, 319-325, 329-332, 334,

420, 459.

compared to unthreaded, 324, 420.
insertion into, 325.
list head in, 322, 336.

Three-address code, 336, 458.
Tiling the plane, 382-385.
Time, simulated, 281, 285, 451.
Time taken by program, see Execution time.
Timer, see Clock.
Todd, John, xiii, 474.
Todd, Olga Taussky, xiii.

INDEX AND GLOSSARY 633

T-onge, Frederic McLanahan, 459.
Top of stack, 237-238.
Top-down process, 361-362.

Topological sorting, 258-268, 345, 376, 397.

Torelli, Gabriele, 70, 487.
Totient function 41, 181 (exercise 27).
Trace routine, 189, 208-211, 226-227, 293.
Traffic signal, 157-158.
Transfer instruction: A “jump” instruction.
Transitive relation, 105, 258, 353, see

Ordering.
Transpose of matrix, 180.
Traversal of tree structure, 316-324,

328-332, 334-335, 345.
Tree function, evaluation of, 351, 362.
Trees, 228, 305-422, 426-434.

binary, see Binary trees,
comparison of different types, 306, 373.
complete f-ary, 401.
construction of, 339, 342, 426-428.
copying of, 327-328, 332, 346.
definition of, 305-306, 309, 312,

314-315, 363, 371, 372.
deletion from, 357-358.
Dewey notation for, 310-311, 314-315,

345, 381-382.
diagrams of, 306-307, 309.
embedding of, 347, 385.
enumeration of, 377-378, 385-399, 404.
equivalent, 326, 331, 345 (exercise 10).
erasing of, 331.
free, see Free trees,
history, 405-406, 458-459.
index notation for, 310, 312, 313, 315.
infinite, 314-315, 381-385.
insertion into, 325, 331, 357-358.
labeled, enumeration of, 389-395, 397-398.
linear ordering for, 331, 332, 345.
linked allocation for, 315-316, 319-322,

325, 333-334, 351-359.
mathematical theory of, 362-406.
n-tuply rooted, 306, see Forest,
ordered, 306, 373, 388-389, see Trees,
oriented, see Oriented trees,
representation of, 333-334, 347-362, 459.
right-threaded, 325, 331, 336, 380.
sequential allocation for, 347-350,

359-362, 401, 434.
similar, 325-327, 345 (exercise 10).
t-ary, 332, 396, 401, 404-405.
ternary, 332, 401, 405.
threaded, see Threaded trees,
traversal of, 316-324, 328-332, 334-335,

345.
triply linked, 352, 359, 426-434.
unordered, see Oriented trees,
unrooted, 363, see Free trees.

Triangular matrix, 297-298, 303.
Tricomi, Francesco Giacomo Filippo, 118.
Tridiagonal matrix, 304.

Trigonometric functions, 42, 470.
Trilling, Laurent, 460.
Triply linked tree, 352, 359, 426-434.
Tritter, Alan Levi, 572.
Turing, Alan Mathison, 225, 458.

machine, 9, 226, 462-463.

Twain, Mark (= Clemens, Samuel
Langhorne), 53.

Two-way linkage, 278, 286, 410.

Uhler, Horace Scudder, 479.
UNDERFLOW, 241-242, 255, 265-266, 271.
Uniform distribution: A probability

distribution in which every value is
equally probable, 265-266, 271.

UNIVAC 1, 147.
UNI VAC 3, 120.
UNIVAC 1107, 120.
UNIVAC SS80, 120.
Unpacking, 153.
Update-memory, 295.

van Aardenne-Ehrenfest, Taniana, 375,

578.
van der Waerden, Bartel Leendert, 385, 582.
Vandermonde, Alexandre Theophile, 36-37,

58.
Varga, Richard Steven, iv.
Variable: A quantity in a program which

may possess different values as the
calculation proceeds, 3, 231.

link or pointer, 231.
Variable-size nodes, 435-455.
Variance of a probability distribution, 96,

98, 99, 101.
Vauvenargues, Luc de Clapiers, marquis de,

xvi.
Vector, see Linear lists.
Vertex in a graph, 362, 371.

isolated, 374.
Victorius of Aquitania, 155.
Virtual machine, 197.
Visit a node, 318.
von Ettingshausen, Andreas, 52.
von Neumann, John, 18, 225, 456.
von Staudt, Karl Georg Christian, 405.

W-value (in MIXAL), 150-151.
Wait list, see Agenda.
Waite, William McCastline, 417, 420, 603.
Wallis, John, 22.

product, 50, 112.
Wang, Hao, 382, 383, 384.
Waring, Edward, 77.
Warren, Don W., 359.
Watson, Rev. Henry William, 382.

Webster, Noah, dictionary, 213.
Wegner, Peter, 303.
Weierstrass, Karl Theodor Wilhelm,

theorem, 381.

634 INDEX AND GLOSSARY

Weight of vertex in free tree, 387.
Weighted path length, 401-405.
Weiland, Richard Joel, 597.
Weizenbaum, Joseph, 413, 420, 458, 459,460.
Well-ordering, 20-21, 332.
Wheeler, David John, 226, 227, 456.
Whinihan, Michael James, 85.
Whirlwind I, 226.
Whitworth, William Allen, 179.
Wilkes, Maurice Vincent, xiii, 225-227, 456.
Wilson, Sir John, theorem, 49, 50.
Windley, P. F., 518.
Windsor, House of, 308.
Wire length, minimum, 370-371.
Wirth, Niklaus Emil, 187.
Wise, David, 434, 595.
Wolman, Eric, 452.
Wolontis, Vidar Michael, 226.
Woodger, Michael, xiii. i,
Woods, M. L., 226. '

Woodward, Philip Mayne, 459.
Word: Addressable unit of computer

memory, 122.

Word size, for MIX: The number of
different values that might be stored
in five bytes.

Wordsworth, Willi .m, 135.
Worst-fit method of storage allocation,

452.
Wrench, John William, Jr., xiii, 615.
Wright, Edward Maitland, 490, 515.
Wright, Jesse Bowdle, 359.
Writing: Doing output, 211.
Writing large programs, 187-189.

X-register of MIX, 122.

XDS 920, 120.
X0R (exclusive or), 454.

Yngve, Victor Huse, 460.

Yoder, Michael Franz, 478.
Yo-yo list, 236.
Youden, William Wallace, xiii.
Young, Benna Kay, 547.
Young, Rosalind Cecily Hildegard, 75.

Zeckendorf, Edouard, 493.
Zeta function, 42, 74-75.
Zimmerman, Seth, 406.

Any inaccuracies in this index may be explained by the fact that it has been prepared with
the help of a computer. For additional definitions of computer terminology, see the IF IP-ICC
Vocabulary of Information Processing (Amsterdam: North Holland Publishing Co., 1966).

•

i

.

.

■

. .

Table 1

Character code:
O’-IIMr0'^«0<Dt^0003O’-<IMC0T}<iot0t^0005O-HC^00-^
0000000000^-i>-It-i—

UABCDEFGHI0JKLMNOPQR<f>IISTU

00 1 01 2 02 2 03 10

No operatioh rA <— rA + V rA <— rA — V rAX ♦— rA X V

NOP(O) ADD(0:5) SUB(0:5) MUL(0:5)
FADD(6) FSUB(6) FMUL(6)

08 2 09 2 10 2 11 2

rA <— V rll <- V rI2 <— V rI3 <— V

LDA(0:5) LD1(0:5) LD2(0:5) LD3(0:5)

16 2 17 2 18 2 19 2

rA <-V rll <-V rI2 <-V rI3 <-V

LDAN(0:5) LD1N(0:5) LD2N(0:5) LD3N(0:5)

24 2 25 2 26 2 27 2

F(M) <- rA F(M) <- rll F(M) <- rI2 F(M) <- rI3

STA(0:5) ST1(0:5) ST2(0:5) ST3(0:5)

32 2 33 2 34 1 35 1+T
F(M) rJ F(M) <- 0 Unit F busy? Control, unit F

STJ(0:2) STZ(0:5) JBUS(0) I0C(0)

40 1 41 1 42 1 43 1
rA:0, jump rll:0, jump rI2:0, jump rI3:0, jump

JA[+] Jim J2[+] J3[+]

48 1 49 1 50 1 51 1
rA <— [rA]? ± M rll <- [rll]? ± M rI2 <— [rI2] ? ± M rI3 [rI3] ? ± M

INCA(0)DECA(1) INC1(0)DEC1(1) INC2(0)DEC2(1) INC3(0)DEC3(1)
ENTA(2)ENNA(3) ENT1(2)ENN1(3) ENT2(2)ENN2(3) ENT3(2)ENN3(3)

56 2 57 2 58 2 59 2
rA(F): V —> Cl rll(F): V —* Cl rI2(F): V —► Cl rI3(F): V —» Cl

CMPA(0:5)
FCMP(6)

CMP1(0:5) CMP2(0:5) CMP3(0:5)

C = operation code, (5:5) field of instruction
F = op variant, (4:4) field of instruction

M = address of instruction after indexing

V = F(M) = contents of F field of location M
OP = symbolic name for operation

(F) = standard F setting

t = execution time; T = interlock time

General form:

iCCDl^-0005O’-H(NC0Tt<t0C0t^00aiOT-iC<lC0r^i0CDI^.00C5OT-<C^C0'^i0

VWXYZO 1 23456789 . , ()+-*/=$<>@; : «

04 12 05 1 06 2 07 1 + 2F

rA <- rAX/Y

rX «— remainder

DIV(0:5)

FDIV(6)

Special

NUM(O)
CHAR(l)

HLT(2)

Shift M bytes

SLA(0) SRA(l)

SLAX(2) SRAX(3)

SLC(4) SRC(5)

Move F words

from M to rll
MOVE(1)

12 2 13 2 14 2 15 2

rI4 <— V

LD4(0:5)

rI5 <—

LD5(0:

V rI6 <— Y rX <— V

820370 “e1;6 20 2 21

rI4 <-V rI5 <—

LD4N(0:5)

28

F(M) 4- rI4

ST4(0:5)

36 1 + T

Input, unit F

IN(0)

44

rI4:0, jump

J4[+]

52

rI4 *— [rI4] ? ± M

INC4(0)DEC4(1)

ENT4(2)ENN4(3)

60

rI4(F): V —> Cl

CMP4(0:5)

29

F(M) *■

ST5(0

37

45

53

61

rI5(F)

CMP5

V.l

LD5N (c Knuth

Art of computer programming

DATE DUE

Output, i

OUT (l

rI5:0,j

J5H

rI5 *— [rI5

INC5(0)D
ENT5(2]Ej

JUNl 4

m &

SEP 8 %

MM 1 1 IS 83
4PB20 '81

NOV 7 >83

JON 5 W

WR 27 ’85

.UN « *85
wn irss

21 ’38

JUH 1ft '80

OLIVER WENDELL HOLMES LIBRARY

PHILLIPS ACADEMY

ANDOVER, MASS.

ISBN 0-201-03809-9

