Building Internet

Fir Wls

= I

Building Internet Firewalls

Elizabeth D. Zwicky, Simon Cooper & D. Brent Chapman
Second Edition, June 2000

ISBN: 1-56592-871-7, 890 pages

Completely revised and much expanded, the new edition of the highly respected and
bestselling Building Internet Firewalls now covers Unix, Linux, and Windows NT.

This practical and detailed guide explains in step-by-step fashion how to design and
install firewalls and configure Internet services to work with a firewall.

It covers a wide range of services and protocols and offers a complete list of
resources, including the location of many publicly available firewalls construction tools.

Release Team[oR] 2001

CONTENTS

Preface 1
Scope of This Book
Audience
Platforms
Products
Examples
Conventions Used in This Book
Comments and Questions
Acknowledgments for the Second Edition
Acknowledgments for the First Edition

I Network Security 8

1 Why Internet Firewalls? 9
1.1 What Are You Trying to Protect?
1.2 What Are You Trying to Protect Against?
1.3 Who Do You Trust?
1.4 How Can You Protect Your Site?
1.5 What Is an Internet Firewall?
1.6 Religious Arguments

2 Internet Services 27
2.1 Secure Services and Safe Services
2.2 The World Wide Web
2.3 Electronic Mail and News
2.4 File Transfer, File Sharing, and Printing
2.5 Remote Access
2.6 Real-Time Conferencing Services
2.7 Naming and Directory Services
2.8 Authentication and Auditing Services
2.9 Administrative Services
2.10 Databases
2.11 Games
3 Security Strategies 42
3.1 Least Privilege
3.2 Defense in Depth
3.3 Choke Point
3.4 Weakest Link
3.5 Fail-Safe Stance
3.6 Universal Participation
3.7 Diversity of Defense
3.8 Simplicity
3.9 Security Through Obscurity
II Building Firewalls 50
4 Packets and Protocols 51
4.1 What Does a Packet Look Like?
4.2 1P
4.3 Protocols Above IP
4.4 Protocols Below IP
4.5 Application Layer Protocols
4.6 IP Version 6
4.7 Non-IP Protocols
4.8 Attacks Based on Low-Level Protocol Details
5 Firewall Technologies 68
5.1 Some Firewall Definitions
5.2 Packet Filtering
5.3 Proxy Services
5.4 Network Address Translation
5.5 Virtual Private Networks
6 Firewall Architectures 81
6.1 Single-Box Architectures
6.2 Screened Host Architectures
6.3 Screened Subnet Architectures
6.4 Architectures with Multiple Screened Subnets
6.5 Variations on Firewall Architectures
6.6 Terminal Servers and Modem Pools
6.7 Internal Firewalls
7 Firewall Design 103

7.1 Define Your Needs
7.2 Evaluate the Available Products
7.3 Put Everything Together

10

11

12

III

13

14

00 00 00 G0 00 0 0 O % 0 0P
rRrROONOUAWNRD

-
N = O

WOWLWIoWILO LY
Nt hwNR

cket Filtering

What Can You Do with Packet Filtering?
Configuring a Packet Filtering Router
What Does the Router Do with Packets?
Packet Filtering Tips and Tricks
Conventions for Packet Filtering Rules
Filtering by Address

Filtering by Service

Choosing a Packet Filtering Router

Packet Filtering Implementations for General-Purpose Computers

Where to Do Packet Filtering
What Rules Should You Use?
Putting It All Together

oxy Systems

Why Proxying?

How Proxying Works

Proxy Server Terminology

Proxying Without a Proxy Server

Using SOCKS for Proxying

Using the TIS Internet Firewall Toolkit for Proxying
Using Microsoft Proxy Server

What If You Can't Proxy?

Bastion Hosts

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12

General Principles

Special Kinds of Bastion Hosts

Choosing a Machine

Choosing a Physical Location

Locating Bastion Hosts on the Network
Selecting Services Provided by a Bastion Host
Disabling User Accounts on Bastion Hosts
Building a Bastion Host

Securing the Machine

Disabling Nonrequired Services
Operating the Bastion Host

Protecting the Machine and Backups

Unix and Linux Bastion Hosts

11.1
11.2
11.3
11.4
11.5
11.6

Which Version of Unix?

Securing Unix

Disabling Nonrequired Services
Installing and Modifying Services
Reconfiguring for Production
Running a Security Audit

Windows NT and Windows 2000 Bastion Hosts

12.1
12.2
12.3
12.4
12.5

Approaches to Building Windows NT Bastion Hosts
Which Version of Windows NT?

Securing Windows NT

Disabling Nonrequired Services

Installing and Modifying Services

Internet Services

Internet Services and Firewalls

13.1
13.2
13.3
13.4
13.5
13.6

Attacks Against Internet Services
Evaluating the Risks of a Service
Analyzing Other Protocols

What Makes a Good Firewalled Service?
Choosing Security-Critical Programs
Controlling Unsafe Configurations

Intermediary Protocols

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12

Remote Procedure Call (RPC)
Distributed Component Object Model (DCOM)
NetBIOS over TCP/IP (NetBT)

Common Internet File System (CIFS) and Server Message Block (SMB)

108

146

157

176

191

203

204

223

Common Object Request Broker Architecture (CORBA) and Internet Inter-Orb Protocol (IIOP)

ToolTalk

Transport Layer Security (TLS) and Secure Socket Layer (SSL)

The Generic Security Services API (GSSAPI)
IPsec

Remote Access Service (RAS)
Point-to-Point Tunneling Protocol (PPTP)
Layer 2 Transport Protocol (L2TP)

15

16

17.

18

19

20.

21

22

23

The World Wide Web

15.1 HTTP Server Security

15.2 HTTP Client Security

15.3 HTTP

15.4 Mobile Code and Web-Related Languages
15.5 Cache Communication Protocols

15.6 Push Technologies

15.7 RealAudio and RealVideo

15.8 Gopher and WAIS

Electronic Mail and News

16.1 Electronic Mail

16.2 Simple Mail Transfer Protocol (SMTP)
16.3 Other Mail Transfer Protocols

16.4 Microsoft Exchange

16.5 Lotus Notes and Domino

16.6 Post Office Protocol (POP)

16.7 Internet Message Access Protocol (IMAP)
16.8 Microsoft Messaging API (MAPI)

16.9 Network News Transfer Protocol (NNTP)

File Transfer, File Sharing, and Printing
17.1 File Transfer Protocol (FTP)

17.2 Trivial File Transfer Protocol (TFTP)

17.3 Network File System (NFS)

17.4 File Sharing for Microsoft Networks

17.5 Summary of Recommendations for File Sharing
17.6 Printing Protocols

17.7 Related Protocols

Remote Access to Hosts

18.1 Terminal Access (Telnet)
18.2 Remote Command Execution
18.3 Remote Graphical Interfaces

Real-Time Conferencing Services

19.1 Internet Relay Chat (IRC)

19.2 ICQ

19.3 talk

19.4 Multimedia Protocols

19.5 NetMeeting

19.6 Multicast and the Multicast Backbone (MBONE)

Naming and Directory Services

20.1 Domain Name System (DNS)

20.2 Network Information Service (NIS)

20.3 NetBIOS for TCP/IP Name Service and Windows Internet Name Service
20.4 The Windows Browser

20.5 Lightweight Directory Access Protocol (LDAP)

20.6 Active Directory

20.7 Information Lookup Services

Authentication and Auditing Services

21.1 What Is Authentication?

21.2 Passwords

21.3 Authentication Mechanisms

21.4 Modular Authentication for Unix

21.5 Kerberos

21.6 NTLM Domains

21.7 Remote Authentication Dial-in User Service (RADIUS)
21.8 TACACS and Friends

21.9 Auth and identd

Administrative Services

22.1 System Management Protocols

22.2 Routing Protocols

22.3 Protocols for Booting and Boot-Time Configuration
22.4 ICMP and Network Diagnostics

22.5 Network Time Protocol (NTP)

22.6 File Synchronization

22.7 Mostly Harmless Protocols

Databases and Games
23.1 Databases
23.2 Games

245

268

287

307

328

341

373

397

418

24

IV

25

26

27

Two Sample Firewalls
24.1 Screened Subnet Architecture
24.2 Merged Routers and Bastion Host Using General-Purpose Hardware

Keeping Your Site Secure

Security Policies

25.1 Your Security Policy

25.2 Putting Together a Security Policy

25.3 Getting Strategic and Policy Decisions Made
25.4 What If You Can't Get a Security Policy?

Maintaining Firewalls

26.1 Housekeeping

26.2 Monitoring Your System

26.3 Keeping up to Date

26.4 How Long Does It Take?

26.5 When Should You Start Over?

Responding to Security Incidents
27.1 Responding to an Incident

27.2 What to Do After an Incident

27.3 Pursuing and Capturing the Intruder
27.4 Planning Your Response

27.5 Being Prepared

Appendixes

Resources

A.l Web Pages

A2 FTP Sites

A.3 Mailing Lists

A.4 Newsgroups

A.5 Response Teams
A.6 Other Organizations
A.7 Conferences

A.8 Papers
A.9 Books
Tools

B.1 Authentication Tools
B Analysis Tools

B.3 Packet Filtering Tools
B.4 Proxy Systems Tools
B.5 Daemons

B.6 Utilities

Cryptography

C.1 What Are You Protecting and Why?

C.2 Key Components of Cryptographic Systems
C.3 Combined Cryptography

C.4 What Makes a Protocol Secure?

C.5 Information About Algorithms

Colophon

428

456

457

468

481

500

501

513

520

535

Introduction

In the five years since the first edition of this classic book was published, Internet use has exploded. The
commercial world has rushed headlong into doing business on the Web, often without integrating sound security
technologies and policies into their products and methods. The security risks - and the need to protect both
business and personal data - have never been greater. We've updated Building Internet Firewalls to address
these newer risks.

What kinds of security threats does the Internet pose? Some, like password attacks and the exploiting of known
security holes, have been around since the early days of networking. And others, like the distributed denial of
service attacks that crippled Yahoo, E-Bay, and other major e-commerce sites in early 2000, are in current
headlines.

Firewalls, critical components of today's computer networks, effectively protect a system from most Internet
security threats. They keep damage on one part of the network - such as eavesdropping, a worm program, or file
damage - from spreading to the rest of the network. Without firewalls, network security problems can rage out of
control, dragging more and more systems down.

Like the bestselling and highly respected first edition, Building Internet Firewalls, 2nd Edition, is a practical and
detailed step-by-step guide to designing and installing firewalls and configuring Internet services to work with a
firewall. Much expanded to include Linux and Windows coverage, the second edition describes:

e Firewall technologies: packet filtering, proxying, network address translation, virtual private
networks

e Architectures such as screening routers, dual-homed hosts, screened hosts, screened subnets,
perimeter networks, internal firewalls

e Issues involved in a variety of new Internet services and protocols through a firewall
e Email and News

e Web services and scripting languages (e.g., HTTP, Java, JavaScript, ActiveX, RealAudio,
RealVideo)

(] File transfer and sharing services such as NFS, Samba

® Remote access services such as Telnet, the BSD "r" commands, SSH, BackOrifice 2000
e Real-time conferencing services such as ICQ and talk

e Naming and directory services (e.g., DNS, NetBT, the Windows Browser)

e Authentication and auditing services (e.g., PAM, Kerberos, RADIUS);

e Administrative services (e.g., syslog, SNMP, SMS, RIP and other routing protocols, and ping and
other network diagnostics)

e Intermediary protocols (e.g., RPC, SMB, CORBA, IIOP)

e Database protocols (e.g., ODBC, JDBC, and protocols for Oracle, Sybase, and Microsoft SQL
Server)

The book's complete list of resources includes the location of many publicly available firewall construction tools.

Building Internet Firewalls

Preface

This book is a practical guide to building your own firewall. It provides step-by-step explanations of how to design
and install a firewall at your site and how to configure Internet services such as electronic mail, FTP, the World
Wide Web, and others to work with a firewall. Firewalls are complex, though, and we can't boil everything down
to simple rules. Too much depends on exactly what hardware, operating system, and networking you are using at
your site, and what you want your users to be able to do and not do. We've tried to give you enough rules,
examples, and resources here so you'll be able to do the rest on your own.

What is a firewall, and what does it do for you? A firewall is a way to restrict access between the Internet and
your internal network. You typically install a firewall at the point of maximum leverage, the point where your
network connects to the Internet. The existence of a firewall at your site can greatly reduce the odds that outside
attackers will penetrate your internal systems and networks. The firewall can also keep your own users from
compromising your systems by sending dangerous information - unencrypted passwords and sensitive data - to
the outside world.

The attacks on Internet-connected systems we are seeing today are more serious and more technically complex
than those in the past. To keep these attacks from compromising our systems, we need all the help we can get.
Firewalls are a highly effective way of protecting sites from these attacks. For that reason, we strongly
recommend you include a firewall in your site's overall Internet security plan. However, a firewall should be only
one component in that plan. It's also vital that you establish a security policy, that you implement strong host
security, and that you consider the use of authentication and encryption devices that work with the firewalls you
install. This book will touch on each of these topics while maintaining its focus on firewalls.

page 1

Building Internet Firewalls

Scope of This Book
This book is divided into five parts.

Part I
explores the problem of Internet security and focuses on firewalls as part of an effective strategy to address that
problem.

Chapter 1

introduces the major risks associated with using the Internet today; discusses what to protect, and what to
protect against; discusses various security models; and introduces firewalls in the context of what they can
and can't do for your site's security.

Chapter 2
outlines the services users want and need from the Internet, and summarizes the security problems posed
by those services.

Chapter 3
outlines the basic security principles an organization needs to understand before it adopts a security policy
and invests in specific security mechanisms.

Part II
describes how to build firewalls.

Chapter 4
describes the basic network concepts firewalls work with.

Chapter 5
explains the terms and technologies used in building firewalls.

Chapter 6
describes the major architectures used in constructing firewalls, and the situations they are best suited to.

Chapter 7
presents the process of designing a firewall.

Chapter 8
describes how packet filtering systems work, and discusses what you can and can't accomplish with them
in building a firewall.

Chapter 9
describes how proxy clients and servers work, and how to use these systems in building a firewall.

Chapter 10
presents a general overview of the process of designing and building the bastion hosts used in many
firewall configurations.

Chapter 11
presents the details of designing and building a Unix or Linux bastion host.

Chapter 12
presents the details of designing and building a Windows NT bastion host.

page 2

Building Internet Firewalls

Part III
describes how to configure services in the firewall environment.

Chapter 13
describes the general issues involved in selecting and configuring services in the firewall environment.

Chapter 14
discusses basic protocols that are used by multiple services.

Chapter 15
discusses the Web and related services.

Chapter 16
discusses services used for transferring electronic mail and Usenet news.

Chapter 17
discusses the services used for moving files from one place to another.

Chapter 18
discusses services that allow you to use one computer from another computer.

Chapter 19
discusses services that allow people to interact with each other online.

Chapter 20
discusses the services used to distribute information about hosts and users.

Chapter 21
discusses services used to identify users before they get access to resources, to keep track of what sort of
access they should have, and to keep records of who accessed what and when.

Chapter 22
discusses other services used to administer machines and networks.

Chapter 23
discusses the remaining two major classes of popular Internet services, databases and games.

Chapter 24
presents two sample configurations for basic firewalls.

Part IV
describes how to establish a security policy for your site, maintain your firewall, and handle the security problems
that may occur with even the most effective firewalls.

Chapter 25

discusses the importance of having a clear and well-understood security policy for your site, and what that
policy should and should not contain. It also discusses ways of getting management and users to accept
the policy.

Chapter 26
describes how to maintain security at your firewall over time and how to keep yourself aware of new
Internet security threats and technologies.

Chapter 27
describes what to do when a break-in occurs, or when you suspect that your security is being breached.

Part V
consists of the following summary appendixes:

Appendix A contains a list of places you can go for further information and help with Internet security:
World Wide Web pages, FTP sites, mailing lists, newsgroups, response teams, books, papers, and
conferences.

Appendix B
summarizes the best freely available firewall tools and how to get them.

Appendix C

contains background information on cryptography that is useful to anyone trying to decrypt the marketing
materials for security products.

page 3

Building Internet Firewalls

Audience

Who should read this book? Although the book is aimed primarily at those who need to build firewalls, large parts
of it are appropriate for everyone who is concerned about Internet security. This list tells you what sections are
particularly applicable to you:

System administrators
You should read the entire book.
Senior managers

You should read at least Part I of the book. The chapters in Part I will introduce you to the various types
of Internet threats, services, and security approaches and strategies. These chapters will also introduce
you to firewalls and describe what firewalls can and cannot do to enforce Internet security. You should
also read Chapter 5, which provides an overview of firewall technologies. In addition, Appendix A will tell
you where to go for more information and resources.

Information technology managers and users

You should read all of the chapters we've cited for the managers in the previous category. In addition,
you should read Part III, which explains the kinds of issues that may arise at your site over time - for
example, how to develop a security policy, keep up to date, and react if someone attacks your site.

Although this book provides general concepts of firewalls appropriate to any site, it focuses on "average" sites:
small to large commercial or educational sites. If you are setting up a personal firewall, you may wish to read just
Part I, Chapter 5, and the service chapters appropriate to the services you wish to run. If you are setting up a
firewall for an extremely large site, all of the chapters will be useful to you, but you may find that you need to
use additional techniques.

Platforms

To a large extent, this book is platform-independent. Because most of the information provided here consists of
general principles, most of it should be applicable to you, regardless of what equipment, software, and
networking you are using. The most platform-specific issue is what type of system to use as a bastion host.
People have successfully built bastion hosts (which we describe in Chapter 10) using all kinds of computers,
including Unix systems, Windows NT machines, Macintoshes, VMS VAXes, and others.

Having said this, we must acknowledge that this book is strongly oriented towards Unix (including Linux), with
Windows NT as a major secondary theme. There are several reasons for this orientation. First, these operating
systems are the dominant operating systems in the Internet world. Unix is still the predominant operating system
for Internet servers, although Windows NT is a strong presence. Another reason is, of course, that our own
experience is primarily in the Unix world; we have entered the world of Windows NT only recently, as it started to
intersect with the world of the Internet. Although we do speak Windows NT, we do so with a strong Unix accent.

Linux, while it is not strictly speaking Unix, is a close relative of the Unix we have spent our careers working with.
In many cases, it is truer to the Unix tradition than commercial operating systems entitled to use the Unix
trademark. While we do mention Linux by name in some places, you should bear in mind that all of our
statements about Unix are meant to include Linux except when we explicitly state otherwise.

Similarly, when we mention "Windows NT", unless we explicitly mention versions, we mean both Windows NT 4
and Windows 2000. Windows 2000 is a direct descendant of Windows NT 4 and behaves like it in most important
respects. We call out differences where appropriate (although you should bear in mind that Windows 2000 was
being released as this book went to press; both the operating system and the world's experience with it are
bound to have changed by the time you read this).

page 4

Building Internet Firewalls

Products

It's impossible to give a complete list of commercial and publicly available products in this book because new
products are constantly being introduced and capabilities are constantly being added to existing products.
Instead, we concentrate on discussing generic features and capabilities, and the consequences of having - or not
having - particular capabilities, so that you can make your own evaluation of the products currently available to
you. We do periodically mention individual products, some commercial and some publicly available, particularly
when there are striking features of well-known products. This is not intended to be an endorsement of the
products we mention, or a slight to products that we omit.

Examples

Writing a book of this nature requires a large number of examples with hostnames and addresses in them. In
order to avoid offending or inconveniencing people, we have attempted to use only names and addresses that are
not in use. In most cases, we have used names and addresses that are reserved and cannot be publicly
registered. In particular, this is why most of the example hosts in this book are in the ".example" domain
(reserved for this use in RFC 2606). In a few cases where we needed large numbers of hostnames and felt that
using the reserved example namespace would be confusing, we have used names that can be registered; we
have attempted to use names that are not currently registered and do not seem likely to be registered. We
apologize to anybody who inadvertently uses one of these names and is inconvenienced.

We also apologize to those readers who have memorized the entire reserved IP address space, and find it
upsetting that many of our illustrations show reserved IP addresses in use over the Internet. This is, of course,
impossible in practice, and we show it only to avoid attracting undesirable attention to addresses that can be
accessed over the Internet.

Conventions Used in This Book
The following conventions are used in this book:
Italic

Used for file and directory names and URLs, and for the first mention of new terms under discussion.

Constant width

Used for code examples.

Constant width italic
In some code examples, indicates an element (e.g., a filename) that you supply.

The following icon is used in this book:

Indicates a tip, suggestion, or general note.

page 5

Building Internet Firewalls
Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may find that features
have changed (or even that we have made mistakes!). Please let us know about any errors you find, as well as
your suggestions for future editions, by writing to:

O'Reilly & Associates

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

There is a web page for this book, where we list any errata, plans for future editions, and additional information.
You can access this page at:

http://www.oreilly.com/catalog/fire2/
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

Acknowledgments for the Second Edition

As unlikely as it may seem, we still had no idea how much time and effort the second edition would take when we
started working on it; what we expected to be a relatively simple effort has turned into a marathon. Even the
smallest revision requires many hands, and a fully new edition requires what seems like a cast of thousands.

Thanks to those who reviewed the second edition and made helpful comments: Steve Beaty, David LeBlanc, Phil
Cox, Eric Pearce, Chuck Phillips, Greg Rose, and Wietse Venema - and to Bruce Schneier and Diana Smetters who
read Appendix C on a four-hour turnaround! Thanks to the entire editorial and production team at O'Reilly,
especially project manager Madeleine Newell and production editor Nancy Crumpton.

Elizabeth says: My thanks to my friends, family, and colleagues for their patience and aid; my monomaniacal
interest in network protocols coupled with emotional instability and intermittent overwork have required more
than a reasonable and customary amount of tolerance. I am particularly indebted to Arnold Zwicky, Diana
Smetters, Jeanne Dusseault, and Brent Chapman. Special thanks are due to my second father, Jacques Transue,
who required me to take slow and calm breaks from writing. Thanks to Debby Russell and Sue Miller at O'Reilly
for their deft, patient, and calm job of editing; and to Simon, who expected a simple writing project, got his life
disrupted for more than a year and a half, and kept working anyway, even though we insisted on spelling
everything in American instead of proper English. And thanks to the many O'Reilly people who helped to produce
this book.

Simon says: I would like to thank my colleagues, my friends, and my family for their understanding and support
during this project. Particular thanks go to Beryl Cooper, Mel Pleasant, Landon Curt Noll, Greg Bossert, James R.
Martin II, Alesia Bischoff, and Cherry Mill for their encouragement and patience. A special mention goes to my ice
hockey teammates - thanks for such an active alternative to writing. Enormous thanks to Elizabeth for asking me
to coauthor and for coaching me through the process. Finally, thanks to Debby, Sue, and the staff of O'Reilly for
putting this book into the hands of our readers.

page 6

http://www.oreilly.com/catalog/fire2/
http://www.oreilly.com

Building Internet Firewalls

Acknowledgments for the First Edition

Note: We've preserved these acknowledgments for the first edition because we continue to be grateful to the
people who helped us with that edition. Note, however, that several parts of the first edition (e.g., the foreword
and the TCP/IP appendix) are no longer included in the book.

When we set out to write this book, we had no idea that it would consume so much time and energy. We would
never have succeeded without the help of many people.

Special thanks to Ed DeHart and Craig Hunt. Ed worked with Brent in the early stages of this book and wrote the
foreword to it; we appreciate all that he has done to help. TCP/IP is essential for understanding the basics of
firewall construction, and Craig Hunt, author of TCP/IP Network Administration (O'Reilly & Associates) has kindly
let us excerpt much of that book's Chapter 1 and Chapter 2 in this book's Appendix C so readers who do not
already have a TCP/IP background can get a jump start.

Thanks to all those who reviewed drafts of the book before publication and made helpful suggestions: Fred
Avolio, Steve Bellovin, Niels Bjergstrom, Rik Farrow, Simson Garfinkel, Eliot Lear, Evi Nemeth, Steve Simmons,
Steve Romig, Gene Spafford, Phil Trubey, and Mark Verber. Thanks as well to Eric Allman for answering many
Sendmail questions and Paul Traina for answering many Cisco questions.

Thanks to all the people at O'Reilly & Associates who turned this manuscript into a finished book: to Mary Anne
Weeks Mayo, the wonderful and patient project manager/copyeditor for the book; Len Muellner, Ellen Siever, and
Norm Walsh, who converted the book from Word to SGML and contributed their tool-tweaking prowess; Chris
Reilley, who created the many excellent diagrams; Edie Freedman, who designed the cover, and Nancy Priest,
who designed the interior layout; John Files and Juliette Muellner, who assisted with production; Seth Maislin,
who prepared the index; and Sheryl Avruch and Kismet McDonough-Chan, who did the final quality control on the
book.

Brent says: I would like to extend personal thanks to my friends and family, for keeping me going for a year and
a half while I worked on the book; to my staff at Great Circle Associates, for keeping my business going; to the
many hundreds of folks who've attended my Internet Security Firewalls Tutorial, for providing the impetus for
this whole endeavor (and for keeping my bills paid!); and to the many thousands of subscribers to the Firewalls
mailing list on the Internet, for providing a stimulating environment to develop many of the ideas found in this
book. I also owe a lot of thanks to Debby Russell, our editor at O'Reilly & Associates, for all her help and
guidance, and to our technical reviewers, for all their wonderful comments and suggestions. Most of all, though,
I'd like to thank my very good friend and coauthor, Elizabeth Zwicky, without whose collaboration and
encouragement this book probably never would have been finished, and certainly wouldn't have been as good.

Elizabeth says: My thanks go to my friends, my family, and my colleagues at Silicon Graphics, for an almost
infinite patience with my tendency to alternate between obsessing about the book and refusing to discuss
anything even tangentially related to it. I'd like to particularly thank Arnold Zwicky, Diana Smetters, Greg Rose,
Eliot Lear, and Jeanne Dusseault for their expert moral support (often during similar crises of their own). But the
most thanks for this effort have to go to Debby and Brent, for giving me a chance to be part of an unexpected
but extremely rewarding project.

page 7

Building Internet Firewalls

Part I: Network Security

This part of the book explores the problem of Internet security and focuses on
firewalls as part of an effective strategy to solve that problem.

It introduces firewalls, introduces the major services Internet users need, and
summarizes the security problems posed by those services.

It also outlines the major security principles you need to understand before
beginning to build firewalls.

page 8

Building Internet Firewalls

Chapter 1. Why Internet Firewalls?

It is scarcely possible to enter a bookstore, read a magazine or a newspaper, or listen to a news broadcast
without seeing or hearing something about the Internet in some guise. It's become so popular that no
advertisement is complete without a reference to a web page. While nontechnical publications are obsessed with
the Internet, the technical publications have moved on and are obsessed with security. It's a logical progression;
once the first excitement of having a superhighway in your neighborhood wears off, you're bound to notice that
not only does it let you travel, it lets a very large number of strangers show up where you are, and not all of
them are people you would have invited.

Both views are true: The Internet is a marvelous technological advance that provides access to information, and
the ability to publish information, in revolutionary ways. But it's also a major danger that provides the ability to
pollute and destroy information in revolutionary ways. This book is about one way to balance the advantages and
the risks - to take part in the Internet while still protecting yourself.

Later in this chapter, we describe different models of security that people have used to protect their data and
resources on the Internet. Our emphasis in this book is on the network security model and, in particular, the use
of Internet firewalls. A firewall is a form of protection that allows a network to connect to the Internet while
maintaining a degree of security. The section later in this chapter called "What is an Internet Firewall?" describes
the basics of firewalls and summarizes what they can - and cannot - do to help make your site secure. Before we
discuss what you can do with a firewall, though, we want to describe briefly why you need one. What are you
protecting on your systems? What types of attacks and attackers are common? What types of security can you
use to protect your site?

1.1 What Are You Trying to Protect?

A firewall is basically a protective device. If you are building a firewall, the first thing you need to worry about is
what you're trying to protect. When you connect to the Internet, you're putting three things at risk:

. Your data: the information you keep on the computers
° Your resources: the computers themselves

. Your reputation

1.1.1 Your Data
Your data has three separate characteristics that need to be protected:
Secrecy

You might not want other people to know it.
Integrity

You probably don't want other people to change it.
Availability

You almost certainly want to be able to use it yourself.

People tend to focus on the risks associated with secrecy, and it's true that those are usually large risks. Many
organizations have some of their most important secrets - the designs for their products, financial records, or
student records - on their computers. On the other hand, you may find that at your site it is relatively easy to
separate the machines containing this kind of highly secret data from the machines that connect to the Internet.
(Or you may not; you can't do Internet electronic commerce without having information about orders and money
pass through Internet-accessible machines.)

Suppose that you can separate your data in this way, and that none of the information that is Internet accessible
is secret. In that case, why should you worry about security? Because secrecy isn't the only thing you're trying to
protect. You still need to worry about integrity and availability. After all, if your data isn't secret, and if you don't
mind its being changed, and if you don't care whether or not anybody can get to it, why are you wasting disk
space on it?

page 9

Building Internet Firewalls

Even if your data isn't particularly secret, you'll suffer the consequences if it's destroyed or modified. Some of
these consequences have readily calculable costs: if you lose data, you'll have to pay to have it reconstructed; if
you were planning to sell that data in some form, you'll have lost sales regardless of whether the data is
something you sell directly, the designs from which you build things, or the code for a software product.
Intangible costs are also associated with any security incident. The most serious is the loss of confidence (user
confidence, customer confidence, investor confidence, staff confidence, student confidence, public confidence) in
your systems and data and, consequently, a loss of confidence in your organization.

Has Your Data Been Modified?

Computer security incidents are different from many other types of crimes because detection is
unusually difficult. Sometimes, it may take a long time to find out that someone has broken into your
site. Sometimes, you'll never know. Even if somebody breaks in but doesn't actually do anything to
your system or data, you'll probably lose time (hours or days) while you verify that the intruder didn't
do anything. In a lot of ways, a brute-force trash-everything attack is a lot easier to deal with than a
break-in by somebody who doesn't appear to damage your system. If the intruder trashes
everything, you bite the bullet, restore from backups, and get on with your life. But if the intruder
doesn't appear to have done anything, you spend a lot of time second-guessing yourself, wondering
what he or she might have done to your system or data. The intruder almost certainly has done
something - most intruders will start by making sure that they have a way to get back in, before they
do anything else.

Although this book is primarily about preventing security incidents, Chapter 27 supplies some general
guidelines for detecting, investigating, and recovering from security incidents.

1.1.2 Your Resources

Even if you have data you don't care about - if you enjoy reinstalling your operating system every week because
it exercises the disks, or something like that - if other people are going to use your computers, you probably
would like to benefit from this use in some way. Most people want to use their own computers, or they want to
charge other people for using them. Even people who give away computer time and disk space usually expect to
get good publicity and thanks for it; they aren't going to get it from intruders. You spend good time and money
on your computing resources, and it is your right to determine how they are used.

Intruders often argue that they are using only excess resources; as a consequence, their intrusions don't cost
their victims anything. There are two problems with this argument.

First, it's impossible for an intruder to determine successfully what resources are excess and use only those. It
may look as if your system has oceans of empty disk space and hours of unused computing time; in fact, though,
you might be just about to start computing animation sequences that are going to use every bit and every
microsecond. An intruder can't give back your resources when you want them. (Along the same lines, I don't
ordinarily use my car between midnight and 6 A.M., but that doesn't mean I'm willing to lend it to you without
being asked. What if I have an early morning flight the next day, or what if I'm called out to deal with an
emergency?)

Second, it's your right to use your resources the way you want to, even if you merely feel some sort of Zen joy at
the sight of empty disk space, or if you like the way the blinky lights look when nothing's happening on your
computer. Computing resources are not natural resources that belong by right to the world at large, nor are they
limited resources that are wasted or destroyed if they're not used.

1.1.3 Your Reputation

An intruder appears on the Internet with your identity. Anything he or she does appears to come from you. What
are the consequences?

Most of the time, the consequences are simply that other sites - or law enforcement agencies - start calling you
to ask why you're trying to break into their systems. (This isn't as rare an occurrence as it may seem. One site
got serious about security when its system administration staff added a line item to their time cards for
conversations with the FBI about break-in attempts originating from their site.)

page 10

Building Internet Firewalls

Sometimes, such impostors cost you a lot more than lost time. An intruder who actively dislikes you, or simply
takes pleasure in making life difficult for strangers, may change your web site, send electronic mail, or post news
messages that purport to come from you. Generally, people who choose to do this aim for maximum hatefulness,
rather than believability, but even if only a few people believe these messages, the cleanup can be long and
humiliating. Anything even remotely believable can do permanent damage to your reputation.

A few years ago, an impostor posing as a Texas A&M professor sent out hate email containing racist comments to
thousands of recipients. The impostor was never found, and the professor is still dealing with the repercussions of
the forged messages. In another case, a student at Dartmouth sent out email over the signature of a professor
late one night during exam period. Claiming a family emergency, the forged email canceled the next day's exam,
and only a few students showed up.

It's possible to forge electronic mail or news without gaining access to a site, but it's much easier to show that a
message is a forgery if it's generated from outside the forged site. The messages coming from an intruder who
has gained access to your site will look exactly like yours because they are yours. An intruder will also have
access to all kinds of details that an external forger won't. For example, an intruder has all of your mailing lists
available and knows exactly who you send mail to.

Currently, attacks that replace web sites are very popular; one list shows more than 160 successful attacks
where sites were replaced, in 18 countries, in a single month. Many of those attacks simply replaced the sites
with boasting by the attackers, but a significant portion of them were directed at the content of the sites. A site
that should have touted Al Gore's suitability for the U.S. presidency was replaced by a similar anti-Gore site, for
instance; political movements in Peru, Mexico, and China put up slogans; and there's no need to feel safe merely
because your site concerns frivolity, as pop stars, Pro Wrestling, and the Boston Lyric Opera all suffered as well.

Even if an intruder doesn't use your identity, a break-in at your site isn't good for your reputation. It shakes
people's confidence in your organization. In addition, most intruders will attempt to go from your machines to
others, which is going to make their next victims think of your site as a platform for computer criminals. Many
intruders will also use compromised sites as distribution sites for pirated software, pornography, and/or other
stolen information, which is not going to endear you to many folks either. Whether or not it's your fault, having
your name linked to other intrusions, software piracy, and pornography is hard to recover from.

1.2 What Are You Trying to Protect Against?

What's out there to worry about? What types of attacks are you likely to face on the Internet, and what types of
attackers are likely to be carrying them out? And what about simple accidents or stupidity? In the sections that
follow, we touch on these topics, but we don't go into any technical detail; later chapters describe different kinds
of attacks in some detail and explain how firewalls can help protect against them.

1.2.1 Types of Attacks

There are many types of attacks on systems, and many ways of categorizing these attacks. In this section, we
break attacks down into three basic categories: intrusion, denial of service, and information theft.

1.2.1.1 Intrusion

The most common attacks on your systems are intrusions; with intrusions, people are actually able to use your
computers. Most attackers want to use your computers as if they were legitimate users.

Attackers have dozens of ways to get access. They range from social engineering attacks (you figure out the
name of somebody high up in the company; you call a system administrator, claiming to be that person and
claiming to need your password changed right now, so that you can get important work done), to simple
guesswork (you try account names and password combinations until one works), to intricate ways to get in
without needing to know an account name and a password.

As we describe in this book, firewalls help prevent intrusions in a number of ways. Ideally, they block all ways to
get into a system without knowing an account name and password. Properly configured, they reduce the number
of accounts accessible from the outside that are therefore vulnerable to guesswork or social engineering. Most
people configure their firewalls to use one-time passwords that prevent guessing attacks. Even if you don't use
these passwords, which we describe in Chapter 21, a firewall will give you a controlled place to log attempts to
get into your system, and, in this way, they help you detect guessing attacks.

page 11

Building Internet Firewalls

1.2.1.2 Denial of service
A denial of service attack is one that's aimed entirely at preventing you from using your own computers.

In late 1994, writers Josh Quittner and Michelle Slatalla were the target of an "electronic mail bomb". Apparently
in retaliation for an article on the cracker community they'd published in Wired magazine, someone broke into
IBM, Sprint, and the writers' network provider, and modified programs so their email and telephone service was
disrupted. A flood of email messages so overwhelmed their network service that other messages couldn't get
through; eventually, their Internet connection was shut down entirely. Their phone service also fell victim to the
intruders, who reprogrammed the service so that callers were routed to an out-of-state number where they heard
an obscene recording.

Although some cases of electronic sabotage involve the actual destruction or shutting down of equipment or data,
more often they follow the pattern of flooding seen in the Quittner-Slatalla case or in the case of the 1988 Morris
Internet worm. An intruder so floods a system or network - with messages, processes, or network requests - that
no real work can be done. The system or network spends all its time responding to messages and requests, and
can't satisfy any of them.

While flooding is the simplest and most common way to carry out a denial of service attack, a cleverer attacker
can also disable services, reroute them, or replace them. For example, the phone attack in the Quittner-Slatalla
case denied phone service by rerouting their phone calls elsewhere; it's possible to mount the same kind of
attack against Internet services.

It's close to impossible to avoid all denial of service attacks. Sometimes it's a "heads, I win; tails, you lose"
situation for attackers. For example, many sites set accounts up to become unusable after a certain number of
failed login attempts. This prevents attackers from simply trying passwords until they find the right one. On the
other hand, it gives the attackers an easy way to mount a denial of service attack: they can lock any user's
account simply by trying to log in a few times.

Most often, the risk of denial of service attacks is unavoidable. If you accept things from the external universe -
electronic mail, telephone calls, or packages - it's possible to get flooded. The notorious college prank of ordering
a pizza or two from every pizzeria in town to be delivered to your least favorite person is a form of denial of
service; it's hard to do much else while arguing with 42 pizza deliverers. In the electronic world, denial of service
is as likely to happen by accident as on purpose (have you ever had a persistent fax machine try to fax
something to your voice line?). The most important thing is to set up services so that if one of them is flooded,
the rest of your site keeps functioning while you find and fix the problem.

Flooding attacks are considered unsporting by many attackers, because they aren't very difficult to carry out. For
most attackers, they're also pointless, because they don't provide the attacker with the information or the ability
to use your computers (the payoff for most other attacks). Intentional flooding attacks are usually the work of
people who are angry at your site in particular, and at most sites such people are quite rare.

With the right tools and cooperation, it's fairly easy to trace flood packets back to their source, but that might not
help you figure out who is behind the attacks. The attacks almost always come from machines that have
themselves been broken into; only a really stupid attacker generates an easily traced flood of packets from their
own machine. Sometimes flooding attacks are carried out by remote control. Attackers install remotely controlled
flooding software on systems that they break into over the course of many weeks or months. This software lies
dormant and undiscovered until some later time, when they trigger many of these remotely controlled
installations simultaneously to bombard their victims with massive floods of traffic from many different directions
at once. This was the method behind the highly publicized denial of service attacks on Yahoo!, CNN, and other
high-profile Internet sites early in the year 2000.

You are far more likely to encounter unintentional flooding problems, as we discuss in Section 1.2.3, later in this
chapter.

On the other hand, some denial of service attacks are easier for attackers, and these are relatively popular.
Attacks that involve sending small amounts of data that cause machines to reboot or hang are very popular with
the same sort of people who like to set off fire alarms in dormitories in the middle of the night, for much the
same reason; with a small investment, you can massively annoy a very large number of people who are unlikely
to be able to find you afterwards. The good news is that most of these attacks are avoidable; a well-designed
firewall will usually not be susceptible to them itself, and will usually prevent them from reaching internal
machines that are vulnerable to them.

page 12

Building Internet Firewalls

1.2.1.3 Information theft

Some types of attacks allow an attacker to get data without ever having to directly use your computers. Usually
these attacks exploit Internet services that are intended to give out information, inducing the services to give out
more information than was intended, or to give it out to the wrong people. Many Internet services are designed
for use on local area networks, and don't have the type or degree of security that would allow them to be used
safely across the Internet.

Information theft doesn't need to be active or particularly technical. People who want to find out personal
information could simply call you and ask (perhaps pretending to be somebody who had a right to know): this is
an active information theft. Or they could tap your telephone: this is a passive information theft. Similarly, people
who want to gather electronic information could actively query for it (perhaps pretending to be a machine or a
user with valid access) or could passively tap the network and wait for it to flow by.

Most people who steal information try to get access to your computers; they're looking for usernames and
passwords. Fortunately for them, and unfortunately for everybody else, that's the easiest kind of information to
get when tapping a network. Username and password information occurs quite predictably at the beginning of
many network interactions, and such information can often be reused in the same form.

How would you proceed if you want to find out how somebody answers her telephone? Installing a tap would be
an easy and reliable way to get that information, and a tap at a central point in the telephone system would yield
the telephone greetings of hundreds or thousands of people in a short period of time.

On the other hand, what if you want to know how somebody spells his or her last name, or what the names and
ages of his or her children are? In this case, a telephone tap is a slow and unreliable way to get that information.
A telephone tap at a central point in the system will probably yield that information about some people, and it will
certainly yield some secret information you could use in interesting ways, but the information is going to be
buried among the conversations of hundreds of people setting up lunch dates and chatting about the weather.

Similarly, network taps, which are usually called sniffers, are very effective at finding password information but
are rarely used by attackers to gather other kinds of information. Getting more specific information about a site
requires either extreme dedication and patience, or the knowledge that the information you want will reliably
pass through a given place at a given time. For example, if you know that somebody calls the bank to transfer
money between his or her checking and savings accounts at 2 P.M. every other Friday, it's worth tapping that
phone call to find out the person's access codes and account numbers. However, it's probably not worth tapping
somebody else's phone, on the off chance that they too will do such a transfer, because most people don't
transfer money over the phone at all.

Network sniffing is much easier than tapping a telephone line. Historically, the connectors used to hook a
computer to an Ethernet network were known as network taps (that's why the term tapping isn't used for spying
on a network), and the connectors behave like taps too. In most networks, computers can see traffic that is
intended for other hosts. Traffic that crosses the Internet may cross any number of local area networks, any one
of which can be a point of compromise. Network service providers and public-access systems are very popular
targets for intrusions; sniffers placed there can be extremely successful because so much traffic passes through
these networks.

There are several types of protection against information theft. A properly configured firewall will protect you
against people who are trying to get more information than you intended to give. Once you've decided to give
information out across the Internet, however, it's very difficult to protect against that information's reaching an
unintended audience, either through misauthentication (somebody claiming to be authorized, when he or she
isn't) or through sniffing (somebody simply reading information as it crosses a correctly authorized channel). For
that matter, once you have given the information to somebody, you have no way to prevent that person from
distributing it to other people. Although these risks are outside of the protection a firewall can give (because they
occur once information has intentionally been allowed to go outside your network), we do discuss them and the
methods used to reduce them, as appropriate in this book.

page 13

Building Internet Firewalls

1.2.2 Types of Attackers

This section very briefly describes the types of attackers who are out there on the Internet. There are many ways
to categorize these attackers; we can't really do justice to the many variants of attackers we've seen over the
years, and any quick summary of this kind necessarily presents a rather stereotyped view. Nevertheless, this
summary may be useful in distinguishing the main categories of attackers.

All attackers share certain characteristics. They don't want to be caught, so they try to conceal themselves, their
identity and real geographic location. If they gain access to your system, they will certainly attempt to preserve
that access, if possible, by building in extra ways to get access (and they hope you won't notice these access
routes even if you find the attackers themselves). Most of them have some contact with other people who have
the same kinds of interests ("the underground" is not hard to find), and most will share the information they get
from attacking your system. A secondary group of attackers may not be as benign.

1.2.2.1 Joyriders

Joyriders are bored people looking for amusement. They break in because they think you might have interesting
data, or because it would be amusing to use your computers, or because they have nothing better to do. They
might be out to learn about the kind of computer you have or about the data you have. They're curious but not
actively malicious; however, they often damage the system through ignorance or in trying to cover their tracks.
Joyriders are particularly attracted to well-known sites and uncommon computers.

1.2.2.2 Vandals

Vandals are out to do damage, either because they get their kicks from destroying things, or because they don't
like you. When one gets to you, you'll know it.

Vandals are a big problem if you're somebody that the Internet underground might think of as The Enemy (for
example, the phone company or the government) or if you tend to annoy people who have computers and time
(for example, you're a university with failing students, or a computer company with annoyed customers, or you
have an aggressively commercial presence on the Internet). You can also become a target simply by being large
and visible; if you put a big wall up in certain neighborhoods, people will put graffiti on it no matter how they feel
about you.

Fortunately, vandals are fairly rare. People don't like them, even people in the underground who have nothing
against breaking into computers in general. Vandals also tend to inspire people to go to great lengths to find
them and stop them. Unlike more mundane intruders, vandals have short but splashy careers. Most of them also
go for straightforward destruction, which is unpleasant but is relatively easily detected and repaired. In most
circumstances, deleting your data, or even ruining your computer equipment, is not the worst thing somebody
could do to you, but it is what vandals do. (Actually, introducing subtle but significant changes in programs or
financial data would be much harder to detect and fix.)

Unfortunately, it's close to impossible to stop a determined vandal; somebody with a true vendetta against your
site is going to get you, sooner or later. Certain attacks are attractive to vandals but not to other types of
attackers. For example, denial of service attacks are not attractive to joyriders; while joyriders are around in your
system, they are just as interested as you are in having your computers up, running, and available to the
Internet.

1.2.2.3 Scorekeepers

Many intruders are engaging in an updated version of an ancient tradition. They're gaining bragging rights, based
on the number and types of systems they've broken into.

Like joyriders and vandals, scorekeepers may prefer sites of particular interest. Breaking into something well
known, well defended, or otherwise especially cool is usually worth more points to them. However, they'll also
attack anything they can get at; they're going for quantity as well as quality. They don't have to want anything
you've got or care in the least about the characteristics of your site. They may or may not do damage on the way
through. They'll certainly gather information and keep it for later use (perhaps using it to barter with other
attackers). They'll probably try to leave themselves ways to get back in later. And, if at all possible, they'll use
your machines as a platform to attack others.

These people are the ones you discover long after they've broken in to your system. You may find out slowly,
because something's odd about your machine. Or you'll find out when another site or a law enforcement agency
calls up because your system is being used to attack other places. Or you'll find out when somebody sends you a
copy of your own private data, which they've found on a cracked system on the other side of the world.

page 14

Building Internet Firewalls

Many scorekeepers are what are known as script kiddies - attackers who are not themselves technically expert
but are using programs or scripts written by other people and following instructions about how to use them.
Although they do tend to be young, they're called "kiddies" mostly out of contempt aimed at them by more
experienced intruders. Even though these attackers are not innovators, they still pose a real threat to sites that
don't keep rigorously up to date. Information spreads very rapidly in the underground, and the script kiddies are
extremely numerous. Once a script exists, somebody is almost guaranteed to attack your site with it.

These days, some scorekeepers aren't even counting machines they've broken into but are keeping score on
crashed machines. On the one hand, having a machine crash is generally less destructive than having it broken
into; on the other hand, if a particular attack gets into the hands of the script kiddies, and thousands of people
use it to crash your machine, it's not funny any more.

1.2.2.4 Spies (industrial and otherwise)

Most people who break into computers do so for the same reason people climb mountains - because they're
there. While these people are not above theft, they usually steal things that are directly convertible into money or
further access (e.g., credit card, telephone, or network access information). If they find secrets they think they
can sell, they may try to do so, but that's not their main business.

As far as anybody knows, serious computer-based espionage is much rarer, outside of traditional espionage
circles. (That is, if you're a professional spy, other professional spies are probably watching you and your
computers.) Espionage is much more difficult to detect than run-of-the-mill break-ins, however. Information theft
need not leave any traces at all, and even intrusions are relatively rarely detected immediately. Somebody who
breaks in, copies data, and leaves without disturbing anything is quite likely to get away with it at most sites.

In practical terms, most organizations can't prevent spies from succeeding. The precautions that governments
take to protect sensitive information on computers are complex, expensive, and cumbersome; therefore, they are
used on only the most critical resources. These precautions include electromagnetic shielding, careful access
controls, and absolutely no connections to unsecured networks.

What can you do to protect against attackers of this kind? You can ensure that your Internet connection isn't the
easiest way for a spy to gather information. You don't want some kid to break into your computers and find
something that immediately appears to be worth trying to sell to spies; you don't want your competitors to be
trivially able to get to your data; and you do want to make it expensive and risky to spy on you. Some people say
it's unreasonable to protect data from network access when somebody could get it easily by coming to your site
physically. We don't agree; physical access is generally more expensive and more risky for an attacker than
network access.

1.2.3 Stupidity and Accidents

Most disasters are not caused through ill will; they're accidents or stupid mistakes. One study estimates that 55
percent of all security incidents actually result from naive or untrained users doing things they shouldn't.?

Denial of service incidents, for example, frequently aren't attacks at all. Apple's corporate electronic mail was
rendered nonfunctional for several days (and their network provider was severely inconvenienced) by an accident
involving a single mail message sent from a buggy mail server to a large mailing list. The mail resulted in a
cascade of hundreds of thousands of error messages. The only hostile person involved was the system
administrator, who wasn't hostile until he had to clean up the resulting mess.

Similarly, it's not uncommon for companies to destroy their own data or release it to the world by accident.
Firewalls aren't designed to deal with this kind of problem. In fact, there is no known way to fully protect yourself
from either accidents or stupidity. However, whether people are attacking you on purpose, or are simply making
mistakes, the results are quite similar. (Hence the saying, "Never ascribe to malice that which can adequately be
explained by stupidity".) When you protect yourself against evildoers, you also help protect yourself against the
more common, but equally devastating, unintentional or well-intentioned error.

! Richard Power, Current and Future Danger: A CSI Primer on Computer Crime and Information Warfare (San Francisco: Computer Security
Institute, 1995).

page 15

Building Internet Firewalls

1.2.4 Theoretical Attacks

It's relatively easy to determine the risk involved in attacks that are currently under way, but what do you do
about attacks that are theoretically possible but have not yet been used? It's very tempting to dismiss them
altogether - after all, what matters to you is not what might happen to you, but what actually does happen to
you. You don't really care if it's possible to do something, as long as nobody ever does it. So why should you
worry if somebody produces a proof that an attack is possible, but it's so difficult that nobody is actually doing it?

° Because the limits on what's difficult change rapidly in computing.

° Because problems rarely come in isolation, and one attack that's too difficult may help people find an
easier one.

. Because eventually people run out of easier attacks and turn to more difficult ones.

. And most importantly, because attacks move almost instantly from "never attempted" to "widely
used".

The moment at which an attack is no longer merely theoretical, but is actually in use against your site, is that
time that is technically called "too late". You certainly don't want to wait until then. You'll have a calmer and
more peaceful life if you don't wait until the moment when an attack hits the newspaper headlines, either, and
that's where a lot of theoretical attacks suddenly end up.

One computer vendor decided that a certain class of attacks, called stack attacks, were too difficult to exploit,
and it was not worth trying to prevent them. These attacks are technically challenging on any hardware, and
more difficult on their machines. It seemed unlikely that attackers would bother to go to the considerable effort
necessary, and preventing the attacks required rewriting fundamental parts of the operating system. Thus, the
vendor elected to avoid doing tedious and dangerous rewriting work to prevent what was then considered a
purely theoretical risk. Six months later, somebody found and exploited one of the vulnerabilities; once the hard
work had been done for one, the rest were easy, so that started a landslide of exploits and bad publicity.

1.3 Who Do You Trust?

Much of security is about trust; who do you trust to do what? The world doesn't work unless you trust some
people to do some things, and security people sometimes seem to take an overly suspicious attitude, trusting
nobody. Why shouldn't you trust your users, or rich, famous software vendors?

We all know that in day-to-day life there are various kinds of trust. There are people you would lend a thousand
dollars but not tell a secret to; people you would ask to babysit but not lend a book to; people you love dearly
but don't let touch the good china because they break things. The same is true in a computer context. Trusting
your employees not to steal data and sell it is not the same thing as trusting them not to give it out by accident.
Trusting your software vendor not to sell you software designed to destroy your computer is not at all the same
thing as trusting the same vendor not to let other people destroy your computer.

You don't need to believe that the world is full of horrible, malicious people who are trying to attack you. You do
need to believe that the world has some horrible, malicious people who are trying to attack you, and is full of
really nice people who don't always pay attention to what they're doing.

When you give somebody private information, you're trusting them two ways. First, you're trusting them not to
do anything bad with it; second, you're trusting them not to let anybody else steal it. Most of the time, most
people worry about the first problem. In the computer context, you need to explicitly remember to think about
the second problem. If you give somebody a credit card number on paper, you have a good idea what procedures
are used to protect it, and you can influence them. If carbon sheets are used to make copies, you can destroy
them. If you give somebody a credit card electronically, you are trusting not only their honesty but also their skill
at computer security. It's perfectly reasonable to worry about the latter even if the former is impeccable.

If the people who use your computers and who write your software are all trustworthy computer security experts,
great; but if they're not, decide whether you trust their expertise separately from deciding whether you trust
their honesty.

page 16

Building Internet Firewalls

1.4 How Can You Protect Your Site?

What approaches can you take to protect against the kinds of attacks we've outlined in this chapter? People
choose a variety of security models, or approaches, ranging from no security at all, through what's called
"security through obscurity" and host security, to network security.

1.4.1 No Security

The simplest possible approach is to put no effort at all into security, and run with whatever minimal security
your vendor provides you by default. If you're reading this book, you've probably already rejected this model.

1.4.2 Security Through Obscurity

Another possible security model is the one commonly referred to as security through obscurity. With this model,
a system is presumed to be secure simply because (supposedly) nobody knows about it - its existence, contents,
security measures, or anything else. This approach seldom works for long; there are just too many ways to find
an attractive target. One of the authors had a system that had been connected to the Internet for only about an
hour before someone attempted to break in. Luckily, the operating system that was in the process of being
installed detected, denied, and logged the access attempts.

Many people assume that even though attackers can find them, the attackers won't bother to. They figure that a
small company or a home machine just isn't going to be of interest to intruders. In fact, many intruders aren't
aiming at particular targets; they just want to break into as many machines as possible. To them, small
companies and home machines simply look like easy targets. They probably won't stay long, but they will
attempt to break in, and they may do considerable damage. They may also use compromised machines as
platforms to attack other sites.

To function on any network, the Internet included, a site has to do at least a minimal amount of registration, and
much of this registration information is available to anyone, just for the asking. Every time a site uses services on
the network, someone - at the very least, whoever is providing the service - will know they're there. Intruders
watch for new connections, in the hope that these sites won't yet have security measures in place. Some sites
have reported automated probes apparently based on new site registrations.

You'd probably be amazed at how many different ways someone can determine security-sensitive information
about your site. For example, knowing what hardware and software you have and what version of the operating
system you're running gives intruders important clues about what security holes they might try. They can often
get this information from your host registration, or by trying to connect to your computer. Many computers
disclose their type of operating system in the greeting you get before you log in, so an intruder doesn't need
access to get it.

In addition, you send out all sorts of information when you deal with other sites on the Internet. Whenever you
visit a web site, you tell that site what kind of browser you are running, and often what kind of machine you are
using. Some email programs include this information in every piece of mail you send out.

Even if you manage to suppress all of these visible sources of information, intruders have scripts and programs
that let them use much subtler clues. Although the Internet operates according to standards, there are always
loopholes, or questionable situations. Different computers do different things when presented with exceptional
situations, and intruders can figure out a lot by creating these situations and seeing what happens. Sometimes
it's possible to figure out what kind of machine you're dealing with just by watching the sizes and timings it uses
to send out data packets!

If all of that fails, intruders have a lot of time on their hands, and can often avoid having to figure out obscure
facts by simply trying all the possibilities. In the long run, relying on obscurity is not a smart security choice.

1.4.3 Host Security

Probably the most common model for computer security is host security. With this model, you enforce the
security of each host machine separately, and you make every effort to avoid or alleviate all the known security
problems that might affect that particular host. What's wrong with host security? It's not that it doesn't work on
individual machines; it's that it doesn't scale to large numbers of machines.

The major impediment to effective host security in modern computing environments is the complexity and
diversity of those environments. Most modern environments include machines from multiple vendors, each with
its own operating system, and each with its own set of security problems. Even if the site has machines from only
one vendor, different releases of the same operating system often have significantly different security problems.

page 17

Building Internet Firewalls

Even if all these machines are from a single vendor and run a single release of the operating system, different
configurations (different services enabled, and so on) can bring different subsystems into play (and into conflict)
and lead to different sets of security problems. And, even if the machines are all absolutely identical, the sheer
number of them at some sites can make securing them all difficult. It takes a significant amount of up-front and
ongoing work to effectively implement and maintain host security. Even with all that work done correctly, host
security still often fails due to bugs in vendor software, or due to a lack of suitably secure software for some
required functions.

Host security also relies on the good intentions and the skill of everyone who has privileged access to any
machine. As the number of machines increases, the number of privileged users generally increases as well.
Securing a machine is much more difficult than attaching it to a network, so insecure machines may appear on
your network as unexpected surprises. The mere fact that it is not supposed to be possible to buy or connect
machines without consulting you is immaterial; people develop truly innovative purchasing and network-
connection schemes if they feel the need.

A host security model may be highly appropriate for small sites, or sites with extreme security requirements.
Indeed, all sites should include some level of host security in their overall security plans. Even if you adopt a
network security model, as we describe in the next section, certain systems in your configuration will benefit from
the strongest host security. For example, even if you have built a firewall around your internal network and
systems, certain systems exposed to the outside world will need host security. (We discuss this in detail in
Chapter 10.) The problem is, the host security model alone just isn't cost-effective for any but small or simple
sites; making it work requires too many restrictions and too many people.

1.4.4 Network Security

As environments grow larger and more diverse, and as securing them on a host-by-host basis grows more
difficult, more sites are turning to a network security model. With a network security model, you concentrate on
controlling network access to your various hosts and the services they offer, rather than on securing them one by
one. Network security approaches include building firewalls to protect your internal systems and networks, using
strong authentication approaches (such as one-time passwords), and using encryption to protect particularly
sensitive data as it transits the network.

A site can get tremendous leverage from its security efforts by using a network security model. For example, a
single network firewall of the type we discuss in this book can protect hundreds, thousands, or even tens of
thousands of machines against attack from networks beyond the firewall, regardless of the level of host security
of the individual machines.

This kind of leverage depends on the ability to control the access points to the network. At sites that are very
large or very distributed, it may be impossible for one group of people to even identify all of those access points,
much less control them. At that point, the network security model is no longer sufficient, and it's necessary to
use layered security, combining a variety of different security approaches.

Although this book concentrates on network security, please note that we aren't
suggesting you ignore host security. As mentioned previously, you should apply the
strongest possible host security measures to your most important machines,
especially to those machines that are directly connected to the Internet. (This is
discussed in more detail in Chapter 10.) You'll also want to consider using host
security on your internal machines in general, to address security problems other
than attacks from the Internet.

page 18

Building Internet Firewalls

1.4.5 No Security Model Can Do It All

No security model can solve all your problems. No security model - short of "maximum security prison" - can
prevent a hostile person with legitimate access from purposefully damaging your site or taking confidential
information out of it. To get around powerful host and network security measures, a legitimate user can simply
use physical methods. These may range from pouring soda into your computers to carrying sensitive memos
home. You can protect yourself from accidents and ignorance internally, and from malicious external acts, but
you cannot protect yourself from your legitimate users without severely damaging their ability to use their
computers. Spies succeed in breaching government security with depressing regularity despite regulations and
precautions well beyond the resources and tolerance of civilians.

No security model can take care of management problems; computer security will not keep your people from
wasting time, annoying each other, or embarrassing you. Sites often get sucked into trying to make security
protect against these things. When people are wasting time surfing the Web, annoying each other by playing
tricks with window systems, and embarrassing the company with horrible email, computer security looks like a
promising technological solution that avoids difficult issues. However tempting this may be, a security model
won't work here. It is expensive and difficult to even try to solve these problems with computer security, and you
are once again in the impossible situation of trying to protect yourself from legitimate users.

No security model provides perfect protection. You can expect to make break-ins rare, brief, and inexpensive, but
you can't expect to avoid them altogether. Even the most secure and dedicated sites expect to have a security
incident every few years.?

Why bother, then? Security may not prevent every single incident, but it can keep an incident from seriously
damaging or even shutting down your business. At one high-profile company with multiple computer facilities, a
manager complained that his computer facility was supposed to be the most secure, but it got broken into along
with several others. The difference was that the break-in was the first one that year for his facility; the intruder
was present for only eight minutes; and the computer facility was off the Internet for only 12 hours (from 6 P.M.
to 6 A.M.), after which it resumed business as usual with no visible interruption in service to the company's
customers. For one of the other facilities, it was the fourth time; the intruder was present for months before
being detected; recovery required taking the facility down for four days; and they had to inform customers that
they had shipped them tapes containing possibly contaminated software. Proper security made the difference
between an annoying occurrence and a devastating one.

1.5 What Is an Internet Firewall?

As we've mentioned, firewalls are a very effective type of network security. This section briefly describes what
Internet firewalls can do for your overall site security. Section 5.1 and Chapter 7 define the firewall terms used in
this book and describe the various types of firewalls in use today, and the other chapters in Part II and those in
Part III describe the details of building those firewalls.

In building construction, a firewall is designed to keep a fire from spreading from one part of the building to
another. In theory, an Internet firewall serves a similar purpose: it prevents the dangers of the Internet from
spreading to your internal network. In practice, an Internet firewall is more like a moat of a medieval castle than
a firewall in a modern building. It serves multiple purposes:

e It restricts people to entering at a carefully controlled point.

e It prevents attackers from getting close to your other defenses.

e It restricts people to leaving at a carefully controlled point.

An Internet firewall is most often installed at the point where your protected internal network connects to the
Internet, as shown in Figure 1.1.

2 You can impress a security expert by saying you've been broken into only once in the last five years; if you say you've never been broken into,
they stop being impressed and decide that either you can't detect break-ins, or you haven't been around long enough for anyone to try
seriously!

page 19

Building Internet Firewalls

Figure 1.1. A firewall usually separates an internal network from the Internet

i M d F 4

All traffic coming from the Internet or going out from your internal network passes through the firewall. Because
the traffic passes through it, the firewall has the opportunity to make sure that this traffic is acceptable.

What does "acceptable" mean to the firewall? It means that whatever is being done - email, file transfers, remote
logins, or any kinds of specific interactions between specific systems - conforms to the security policy of the site.

Security policies are different for every site; some are highly restrictive and others fairly open, as we'll discuss in

Chapter 25.

Logically, a firewall is a separator, a restricter, an analyzer. The physical implementation of the firewall varies
from site to site. Most often, a firewall is a set of hardware components - a router, a host computer, or some
combination of routers, computers, and networks with appropriate software. There are various ways to configure
this equipment; the configuration will depend upon a site's particular security policy, budget, and overall
operations.

A firewall is very rarely a single physical object, although some commercial products attempt to put everything
into the same box. Usually, a firewall has multiple parts, and some of these parts may do other tasks besides
function as part of the firewall. Your Internet connection is almost always part of your firewall. Even if you have a
firewall in a box, it isn't going to be neatly separable from the rest of your site; it's not something you can just
drop in.

We've compared a firewall to the moat of a medieval castle, and like a moat, a firewall is not invulnerable. It
doesn't protect against people who are already inside; it works best if coupled with internal defenses; and, even
if you stock it with alligators, people sometimes manage to swim across. A firewall is also not without its
drawbacks; building one requires significant expense and effort, and the restrictions it places on insiders can be a
major annoyance.

Given the limitations and drawbacks of firewalls, why would anybody bother to install one? Because a firewall is
the most effective way to connect a network to the Internet and still protect that network. The Internet presents
marvelous opportunities. Millions of people are out there exchanging information. The benefits are obvious: the
chances for publicity, customer service, and information gathering. The popularity of the information
superhighway is increasing everybody's desire to get out there. The risks should also be obvious: any time you
get millions of people together, you get crime; it's true in a city, and it's true on the Internet. Any superhighway
is fun only while you're in a car. If you have to live or work by the highway, it's loud, smelly, and dangerous.

How can you benefit from the good parts of the Internet without being overwhelmed by the bad? Just as you'd
like to drive on a highway without suffering the nasty effects of putting a freeway off-ramp into your living room,
you need to carefully control the contact that your network has to the Internet. A firewall is a tool for doing that,
and in most situations, it's the single most effective tool for doing that.

There are other uses of firewalls. For example, they can be used to divide parts of a site from each other when
these parts have distinct security needs (and we'll discuss these uses in passing, as appropriate). The focus of
this book, however, is on firewalls as they're used between a site and the Internet.

Firewalls offer significant benefits, but they can't solve every security problem. The following sections briefly
summarize what firewalls can and cannot do to protect your systems and your data.

page 20

Building Internet Firewalls

1.5.1 What Can a Firewall Do?

Firewalls can do a lot for your site's security. In fact, some advantages of using firewalls extend even beyond
security, as described in the sections that follow.

1.5.1.1 A firewall is a focus for security decisions

Think of a firewall as a choke point. All traffic in and out must pass through this single, narrow choke point. A
firewall gives you an enormous amount of leverage for network security because it lets you concentrate your
security measures on this choke point: the point where your network connects to the Internet.

Focusing your security in this way is far more efficient than spreading security decisions and technologies around,
trying to cover all the bases in a piecemeal fashion. Although firewalls can cost tens of thousands of dollars to
implement, most sites find that concentrating the most effective security hardware and software at the firewall is
less expensive and more effective than other security measures - and certainly less expensive than having
inadequate security.

1.5.1.2 A firewall can enforce a security policy

Many of the services that people want from the Internet are inherently insecure. The firewall is the traffic cop for
these services. It enforces the site's security policy, allowing only "approved" services to pass through and those
only within the rules set up for them.

For example, one site's management may decide that certain services are simply too risky to be used across the
firewall, no matter what system tries to run them or what user wants them. The firewall will keep potentially
dangerous services strictly inside the firewall. (There, they can still be used for insiders to attack each other, but
that's outside of the firewall's control.) Another site might decide that only one internal system can communicate
with the outside world. Still another site might decide to allow access from all systems of a certain type, or
belonging to a certain group. The variations in site security policies are endless.

A firewall may be called upon to help enforce more complicated policies. For example, perhaps only certain
systems within the firewall are allowed to transfer files to and from the Internet; by using other mechanisms to
control which users have access to those systems, you can control which users have these capabilities.
Depending on the technologies you choose to implement your firewall, a firewall may have a greater or lesser
ability to enforce such policies.

1.5.1.3 A firewall can log Internet activity efficiently

Because all traffic passes through the firewall, the firewall provides a good place to collect information about
system and network use - and misuse. As a single point of access, the firewall can record what occurs between
the protected network and the external network.

1.5.1.4 A firewall limits your exposure

Although this point is most relevant to the use of internal firewalls, which we describe in Chapter 6, it's worth
mentioning here. Sometimes, a firewall will be used to keep one section of your site's network separate from
another section. By doing this, you keep problems that impact one section from spreading through the entire
network. In some cases, you'll do this because one section of your network may be more trusted than another; in
other cases, because one section is more sensitive than another. Whatever the reason, the existence of the
firewall limits the damage that a network security problem can do to the overall network.

1.5.2 What Can't a Firewall Do?

Firewalls offer excellent protection against network threats, but they aren't a complete security solution. Certain
threats are outside the control of the firewall. You need to figure out other ways to protect against these threats
by incorporating physical security, host security, and user education into your overall security plan. Some of the
weaknesses of firewalls are discussed in the sections that follow.

page 21

Building Internet Firewalls

1.5.2.1 A firewall can't protect you against malicious insiders

A firewall might keep a system user from being able to send proprietary information out of an organization over a
network connection; so would simply not having a network connection. But that same user could copy the data
onto disk, tape, or paper and carry it out of the building in his or her briefcase.

If the attacker is already inside the firewall - if the fox is inside the henhouse - a firewall can do virtually nothing
for you. Inside users can steal data, damage hardware and software, and subtly modify programs without ever
coming near the firewall. Insider threats require internal security measures, such as host security and user
education. Such topics are beyond the scope of this book.

1.5.2.2 A firewall can't protect you against connections that don't go through it

A firewall can effectively control the traffic that passes through it; however, there is nothing a firewall can do
about traffic that doesn't pass through it. For example, what if the site allows dial-in access to internal systems
behind the firewall? The firewall has absolutely no way of preventing an intruder from getting in through such a
modem.

Sometimes, technically expert users or system administrators set up their own "back doors" into the network
(such as a dial-up modem connection), either temporarily or permanently, because they chafe at the restrictions
that the firewall places upon them and their systems. The firewall can do nothing about this. It's really a people-
management problem, not a technical problem.

1.5.2.3 A firewall can't protect against completely new threats

A firewall is designed to protect against known threats. A well-designed one may also protect against some new
threats. (For example, by denying any but a few trusted services, a firewall will prevent people from setting up
new and insecure services.) However, no firewall can automatically defend against every new threat that arises.
People continuously discover new ways to attack, using previously trustworthy services, or using attacks that
simply hadn't occurred to anyone before. You can't set up a firewall once and expect it to protect you forever.
(See Chapter 26 for advice on keeping your firewall up to date.)

1.5.2.4 A firewall can't fully protect against viruses

Firewalls can't keep computer viruses out of a network. It's true that all firewalls scan incoming traffic to some
degree, and some firewalls even offer virus protection. However, firewalls don't offer very good virus protection.

Detecting a virus in a random packet of data passing through a firewall is very difficult; it requires:

® Recognizing that the packet is part of a program
e Determining what the program should look like

e Determining that a change in the program is because of a virus

Even the first of these is a challenge. Most firewalls are protecting machines of multiple types with different
executable formats. A program may be a compiled executable or a script (e.g., a Unix shell script or a Microsoft
batch file), and many machines support multiple, compiled executable types. Furthermore, most programs are
packaged for transport and are often compressed as well. Packages being transferred via email or Usenet news
will also have been encoded into ASCII in different ways.

For all of these reasons, users may end up bringing viruses behind the firewall, no matter how secure that
firewall is. Even if you could do a perfect job of blocking viruses at the firewall, however, you still haven't
addressed the virus problem. You've done nothing about the other sources of viruses: software downloaded from
dial-up bulletin-board systems, software brought in on floppies from home or other sites, and even software that
comes pre-infected from manufacturers are just as common as virus-infected software on the Internet. Whatever
you do to address those threats will also address the problem of software transferred through the firewall.

The most practical way to address the virus problem is through host-based virus protection software, and user
education concerning the dangers of viruses and precautions to take against them. Virus filtering on the firewall
may be a useful adjunct to this sort of precaution, but it will never completely solve the problem.

page 22

Building Internet Firewalls

1.5.2.5 A firewall can't set itself up correctly

Every firewall needs some amount of configuration. Every site is slightly different, and it's just not possible for a
firewall to magically work correctly when you take it out of the box. Correct configuration is absolutely essential.
A misconfigured firewall may be providing only the illusion of security. There's nothing wrong with illusions, as
long as they're confusing the other side. A burglar alarm system that consists entirely of some impressive
warning stickers and a flashing red light can actually be effective, as long as you don't believe that there's
anything else going on. But you know better than to use it on network security, where the warning stickers and
the flashing red light are going to be invisible.

Unfortunately, many people have firewalls that are in the end no more effective than that, because they've been
configured with fundamental problems. A firewall is not a magical protective device that will fix your network
security problems no matter what you do with it, and treating it as if it is such a device will merely increase your
risk.

1.5.3 What's Wrong with Firewalls?

There are two main arguments against using firewalls:

. Firewalls interfere with the way the Internet is supposed to work, introducing all sorts of problems,
annoying users, and slowing down the introduction of new Internet services.

e The problems firewalls don't deal with (internal threats and external connections that don't go through
the firewall) are more important than the problems they do deal with.

1.5.3.1 Firewalls interfere with the Internet

It's true that the Internet is based on a model of end-to-end communication, where individual hosts talk to each
other. Firewalls interrupt that end-to-end communication in a variety of ways. Most of the problems that are
introduced are the same sorts of problems that are introduced by any security measure. Things are slowed down;
things that you want to get through can't; it's hard to introduce changes. Having badge readers on doors
introduces the same sorts of problems (you have to swipe the badge and wait for the door to open; when your
friends come to meet you they can't get in; new employees have to get badges). The difference is that on the
Internet there's a political and emotional attachment to the idea that information is supposed to flow freely and
change is supposed to happen rapidly. People are much less willing to accept the sorts of restrictions that they're
accustomed to in other environments.

Furthermore, it's truly very annoying to have side effects. There are a number of ways of doing things that
provide real advantages and are limited in their spread by firewalls, despite the fact that they aren't security
problems. For instance, broadcasting audio and video over the Internet is much easier if you can use multiple
simultaneous connections, and if you can get quite precise information about the capabilities of the destination
host and the links between you and it. However, firewalls have difficulty managing the connections, they
intentionally conceal some information about the destination host, and they unintentionally destroy other
information. If you're trying to develop new ways of interacting over the Internet, firewalls are incredibly
frustrating; everywhere you turn, there's something cool that TCP/IP is supposed to be able to do that just
doesn't work in the real world. It's no wonder that application developers hate firewalls.

Unfortunately, they don't have any better suggestions for how to keep the bad guys out. Think how many
marvelous things you could have if you didn't have to lock your front door to keep strangers out; you wouldn't
have to sit at home waiting for the repairman or for a package to be delivered, just as a start. The need for
security is unavoidable in our world, and it limits what we can do, in annoying ways. The development of the
Internet has not changed human nature.

1.5.3.2 Firewalls don't deal with the real problem

You also hear people say that firewalls are the wave of the past because they don't deal with the real problems.
It's true that firewall or no firewall, intruders get in, secret data goes out, and bad things happen. At sites with
really good firewalls, these things occur by avoiding the firewalls. At sites that don't have really good firewalls,
these things may go on through the firewalls. Either way, you can argue that this shows that firewalls don't solve
the problem.

It's perfectly true, firewalls won't solve your security problem. Once again, the people who point this out don't
really have anything better to offer. Protecting individual hosts works for some sites and will help the firewall
almost anywhere; detecting and dealing with attacks via network monitoring, once again, will work for some
problems and will help a firewall almost anywhere. That's basically the entire list of available alternatives. If you
look closely at most of the things promoted as being "better than firewalls", you'll discover that they're lightly
disguised firewalls marketed by people with restrictive definitions of what a firewall is.

page 23

Building Internet Firewalls

1.6 Religious Arguments

The world is full of "religious arguments", philosophical debates on which people hold strong and divisive beliefs.
Firewalls are no exception to this rule.

1.6.1 Buying Versus Building

Initially, if a site wanted a firewall, they had little choice but to design and build it themselves (perhaps with their
own staff, or perhaps by hiring a consultant or contractor). Over the years, however, more and more commercial
firewall offerings have reached the market. These products continue to grow in nhumber and functionality at an
astounding rate, and many sites may find that one of these products suits their needs. Most sites find that
commercial products are at least a valuable component of their firewall solution.

In deciding whether or not a particular commercial firewall product will meet your needs, you have to understand
what your needs are. Even if you decide to buy a firewall, you still need to understand a fair bit about how
they're built and how they work in order to make an informed purchasing decision. Many sites spend as much or
more effort evaluating commercial firewall products as they would building their own firewall.

We're not saying that nobody should buy a firewall, or that everybody should build their own. Our point is merely
that it's not necessarily any easier to buy than it is to build; it all depends on your particular situation and what
resources you have at your disposal. Sites with money to spend but little staff time or expertise available often
find buying an attractive solution, while sites with expertise and time but little money often find building more
attractive.

Just what expertise do you need to design and build your own firewall? Like everything else, it depends; it
depends on what services you want to provide, what platforms you're using, what your security concerns are,
and so on. To install most of the tools described in this book, you need basic Internet skills to obtain the tools,
and basic system administration skills to configure, compile, and install them. If you don't know what those skills
are, you probably don't have them; you can obtain them, but that's beyond the scope of this book.

Some people feel uncomfortable using software that's freely available on the Internet, particularly for security-
critical applications. We feel that the advantages outweigh the disadvantages. You may not have the
"guarantees" offered by vendors, but you have the ability to inspect the source code and to share information
with the large community that helps to maintain the software. In practice, vendors come and go, but the
community endures. The packages we discuss in this book are widely used; many of the largest sites on the
Internet base their firewalls on them. These packages reflect years of real-life experience with the Internet and
its risks.

Other people feel uncomfortable using commercial software for security-critical applications, feeling that you can't
trust software unless you can read the code. While there are real advantages to having code available, auditing
code is difficult, and few people can do an adequate job on a package of any significant size. Commercial
software has its own advantages; when you buy software you have a legal contract with somebody, which may
give you some recourse if things go wrong.

Frequently, people argue that open source software is more risky than commercial software because attackers
have access to the source code. In practice, the attackers have access to all the source code they need, including
commercial source code. If it's not given to them, they steal or reverse-engineer it; they have the motivation and
time, and they don't have ethical constraints. There's no distinction between programs on this point.

While it's perfectly possible to build a firewall consisting solely of freely available software or solely of commercial
software, there's no reason to feel that it's all or nothing; freely available tools provide a valuable complement to
purchased solutions. Buying a firewall shouldn't make you reluctant to supplement with freely available tools, and
building one shouldn't make you reluctant to supplement with purchased tools. Don't rule out a product just
because it's commercial, or just because it's freely available. Truly excellent products with great support appear
in both categories, as do poorly thought out products with no support.

page 24

Building Internet Firewalls

Software, Freedom, and Money

A number of terms are used for various kinds of software that you may (or may not) be able to use
without paying money to anybody:

Free software

This term is unfortunately ambiguous; sometimes it means software that you don't have to
pay for ("free software" like "free beer"), and sometimes it refers to software that has been
liberated from certain kinds of constraints, by very carefully tying it up with others ("free
software" like "free speech"). In practice, you cannot be sure that it means anything at all,
although it strongly implies that you will be able to use the software without paying for it
(but not necessarily resell it in any form).

Freely available software

This term clearly means software that you don't have to pay for, although it is sometimes
used for software that only some classes of users have to pay for (for instance, software that
is free to individuals but costs money for corporations).

Public domain software

Although this term is often carelessly used, it has a specific legal meaning and refers to
software that is free of copyright restrictions and may be used in any way whatsoever
without the permission of the author. Software is public domain only if it is clearly marked as
such; software that contains a copyright notice or use restrictions is not public domain. You
may copy public domain software without paying for it, but because there are no use
restrictions, nothing keeps people from charging you money for it anyway.

Open source software

Open source software is software that you can get the source code for without a fee. In most
cases, you may also use it, at least for some purposes, without paying, although licensing
restrictions will usually prevent you from selling it to anybody else.

1.6.2 Unix Versus Windows NT

Building a firewall requires at least one Internet-aware server (and often more than one). Until relatively
recently, the only popular platform that provided the necessary services was Unix. These days, Windows NT also
has the necessary characteristics; it provides a security-aware and network-aware multi-user operating system
and is widely used.

Many people argue violently about which is better, Unix or Windows NT, in every domain. These arguments are
particularly vociferous when it comes to firewalls, where Unix people tend to say that Windows NT machines are
simply unsuited to building firewalls, and Windows NT people say that this is pure prejudice.

The truth, as always, is somewhere between the two camps. The Unix people who complain about Windows NT
are usually working from a basis of both prejudice and ignorance, and have an annoying tendency to
misconfigure machines and then complain that they don't work. A properly configured Windows NT machine is a
reasonable machine for building a firewall.

On the other hand, Windows NT machines are genuinely more difficult to configure properly for firewalls, for two
reasons. The most widely cited Windows NT problem has to do with the way Windows NT implements the TCP/IP
networking standards. Unix is one of the earliest systems to do TCP/IP, and many Unix implementations of
TCP/IP share a more than 20-year common heritage. In that time, they've seen almost every way you can
torture a networking protocol, and they've been made quite reliable. Microsoft reimplemented TCP/IP from
scratch for Windows NT, and the resulting code has problems that have faded into distant memories for Unix (or
never existed; different programmers make different mistakes). An unstable TCP/IP implementation is a real
problem in a firewall, which may be exposed to a lot of hostile or incompetent programs doing eccentric things
with TCP/IP.

page 25

Building Internet Firewalls

On the other hand, it's not as big a problem as many people give it credit for. Many ways of designing a firewall
put a packet filtering router, built on a specialized, robust, and quickly upgradeable TCP/IP implementation, in
front of any general-purpose computer in any case. In these designs, the router can offer some protection to
Windows NT machines. Windows NT's TCP/IP implementation is also catching up rapidly, because problems with
it tend to be extremely visible (once somebody's crashed a few hundred thousand hosts, people tend to take
notice). It is painful to have to upgrade the operating system on your firewall, and the low-level TCP/IP is one of
the most risky and painful parts to have to upgrade, so changes that come out after your machines are installed
are not very comforting, but it is probable that most of the worst problems have been found already.

The second difficulty in securing Windows NT is more fundamental. Windows NT is designed to be opaque; things
are supposed to just work without administrators knowing how they work. This simplifies the process of setting
up a machine, as long as you want to set it up to do something expected. It vastly complicates the process of
evaluating the machine's security, setting it up to do something unexpected (like run in a highly secure
environment), or modifying the way it behaves.

Your average Windows NT machine looks less complex than your average Unix machine but actually supports
many more protocols. Unix machines tend to provide a fairly straightforward set of TCP/IP services, while
Windows NT machines provide servers and/or clients for most of those, plus support for multiple generations of
Microsoft protocols, and optional support for NetWare and AppleTalk. Go to your local bookstore and look at the
shelves of books for Windows NT compared to the shelves of books for Unix. Some of the difference is in
popularity; some of the difference has to do with the economics of certification; but a lot of the difference is that
Windows NT is just more complicated than Unix, and in security, complexity is bad.

Unix administrators who complain about Windows NT's complexities aren't merely ignorant (although the shock of
learning a new operating system does have something to do with it), nor are they simply trying the wrong
approach. Windows NT really is extremely complicated and difficult to understand, and in a security context, you
do need to understand it. Trusting vendors to provide a secure solution is not going to be satisfactory for a site of
any significant size.

That doesn't mean Windows NT is entirely unsuited to building firewalls. It may be complicated, but Unix isn't
exactly trivial. A firewall is not a good place to learn a new operating system. Even commercial firewalls require
some basic competency with the operating system they run on, in order to secure the base operating system and
manage the software. If you're already experienced in Windows NT, you're better off using it and learning the
previously hidden parts than trying to learn Unix from scratch. If you're experienced in Unix, you are still going to
make stupid beginner mistakes trying to run Windows NT, even in a prepackaged commercial firewall.

If you find yourself stuck putting machines of the type you don't understand into your firewall, don't panic. You
can survive the experience and come out of it with your security intact, and you might as well do it with as much
grace as possible. Expect it to be difficult and confusing, and keep an open mind. You'll need basic training on the
operating system as well as this book, which assumes that you are able to do normal administrative tasks
already.

1.6.3 That's Not a Firewall!

The world is full of people eager to assure you that something is not a firewall; it's "just a packet filter" or maybe
it's "better than a mere firewall". If it's supposed to keep the bad guys out of your network, it's a firewall. If it
succeeds in keeping the bad guys out, while still letting you happily use your network, it's a good firewall; if it
doesn't, it's a bad firewall. That's all there is to it.

page 26

Building Internet Firewalls

Chapter 2. Internet Services

In Chapter 1, we discussed, in general terms, what you're trying to protect when you connect to the Internet:
your data, your resources, and your reputation. In designing an Internet firewall, your concerns are more
specific: what you need to protect are those services you're going to use or provide over the Internet.

There are a number of standard Internet services that users want and that most sites try to support. There are
important reasons to use these services; indeed, without them, there is little reason to be connected to the
Internet at all. But there are also potential security problems with each of them.

What services do you want to support at your site? Which ones can you support securely? Every site is different.
Every site has its own security policy and its own working environment. For example, do all your users need
electronic mail? Do they all need to transfer files to sites outside your organization? How about downloading files
from sites outside the organization's own network? What information do you need to make available to the public
on the Web? What sort of control do you want over web browsing from within your site? Who should be able to
log in remotely from another location over the Internet?

This chapter briefly summarizes the major Internet services your users may be interested in using. It provides
only a high-level summary (details are given in later chapters). None of these services are really secure; each
one has its own security weaknesses, and each has been exploited in various ways by attackers. Before you
decide to support a service at your site, you will have to assess how important it is to your users and whether
you will be able to protect them from its dangers. There are various ways of doing this: running the services only
on certain protected machines; using especially secure variants of the standard services; or, in some cases,
blocking the services completely to or from some or all outside systems.

This chapter doesn't list every Internet service - it can't. Such a list would be incomplete as soon as it was
finished and would include services of interest only to a few sites in the world. Instead, we attempt to list the
major services, and we hope this book will give you the background you need to make decisions about new
services as you encounter them.

Managers and system administrators together need to decide which services to support at your site and to what
extent. This is a continuous process; you will change your decisions as new services become available and as
your needs change. These decisions are the single most important factor in determining how secure your site will
be, much more important than the precise type of technology you use in implementing them. No firewall can
protect you from things you have explicitly chosen to allow through it.

Getting Started with Internet Services

Are you just getting connected? Or, have you been connected for a while but are getting concerned
about Internet security? Where should you start? Many system administrators try to be too
ambitious. If you attempt to develop and deploy the be-all and end-all of firewall systems right from
day one, you probably aren't going to succeed. The field is just too complex, and the technology is
changing so fast that it will change out from under you before you get such an endeavor "finished".

Start small. At many sites, it boils down to five basic services. If you can provide these services
securely, most of your users will be satisfied, at least for a while.

e World Wide Web access (HTTP).

e FElectronic mail (SMTP).

e File transfer (FTP).

e Remote terminal access (Telnet or preferably SSH).

e Hostname/address lookup (DNS): Users generally don't use this service directly, but it
underlies the other four services by translating Internet hostnames to IP addresses and vice
versa.

All five of these services can be safely provided in a number of different ways, including packet
filtering and proxies - firewall approaches discussed in Part II of this book. Providing these services
lets your users access most Internet resources, and it buys you time to figure out how to provide the
rest of the services they'll be asking for soon.

page 27

Building Internet Firewalls

2.1 Secure Services and Safe Services

You will occasionally hear people talk about "secure services". They are referring to services that give two kinds
of guarantees:

1. The service cannot be used for anything but its intended purpose, and/or

2. Other people can't read or falsify transactions with the service.

That doesn't actually mean that you can use the service to do anything whatsoever and still be safe. For instance,
you can use Secure HTTP to download a file, and be sure that you are downloading exactly the file that the site
intended you to download, and that nobody else has read it on the way past. But you have no guarantee that the
file doesn't contain a virus or an evil program. Maybe the site is run by somebody nasty.

It is also possible to use "insecure" services in secure ways - it just has to be done with more caution. For
instance, electronic mail over Simple Mail Transfer Protocol (SMTP) is a classic example of an "insecure" service.
However, if you carefully configure your mail servers and encrypt message bodies, you can achieve the goals
mentioned previously. (This still won't save you if somebody mails you an evil program and you run it!)

Similarly, chain saws are extremely unsafe objects, but people still use them regularly with appropriate
precautions and very little risk. Plastic bags are really quite safe objects, but you can still hurt yourself with one
in a variety of ways, ranging from putting it over your head and suffocating, to slipping on one on the stairs and
breaking your leg. When you evaluate the security of a service, you should be sure that you're thinking of its
security implications to your environment in your intended configurations - whether or not it's "secure" or "safe"
in the abstract is not of any great interest. For further information about evaluating services and their security,
see Chapter 13.

2.2 The World Wide Web

These days, the World Wide Web has become so popular that many people think it is the Internet. If you aren't
on the Web, you aren't anybody. Unfortunately, although the Web is based primarily on a single protocol (HTTP),
web sites often use a wide variety of protocols, downloadable code, and plug-ins, which have a wide variety of
security implications. It has become impossible to reliably configure a browser so that you can always read
everything on every web site; it has always been insecure to do so.

Many people confuse the functions and origins of the Web, Netscape, Microsoft Internet Explorer, HTTP, and
HTML, and the terminology used to refer to these distinct entities has become muddy. Some of the muddiness
was introduced intentionally; web browsers attempt to provide a seamless interface to a wide variety of
information through a wide variety of mechanisms, and blurring the distinctions makes it easier to use, if more
difficult to comprehend. Here is a quick summary of what the individual entities are about:

The Web

The collection of HTTP servers (see the description of HTTP that follows) on the Internet. The Web is
responsible, in large part, for the recent explosion in Internet activity. It is based on concepts developed
at the European Particle Physics Laboratory (CERN) in Geneva, Switzerland, by Tim Berners-Lee and
others. Much of the ground-breaking work on web clients was done at the National Center for
Supercomputing Applications (NCSA) at the University of Illinois in Urbana-Champaign. Many
organizations and individuals are developing web client and server software these days, and many more
are using these technologies for a huge range of purposes. The Internet Engineering Task Force (IETF) is
currently responsible for maintaining the HTTP standard, and the World Wide Web Consortium (W3C) is
developing successors to HTML (see Appendix A, for more information about these organizations).
Nobody "controls" the Web, however, much as nobody "controls" the Internet.

HTTP

The primary application protocol that underlies the Web: it provides users access to the files that make
up the Web. These files might be in many different formats (text, graphics, audio, video, etc.), but the
format used to provide the links between files on the Web is the HyperText Markup Language (HTML).

page 28

Building Internet Firewalls

HTML

A standardized page description language for creating web pages. It provides basic document-formatting
capabilities (including the ability to include graphics) and allows you to specify hypertext links to other
servers and files.

Netscape Navigator and Microsoft Internet Explorer

Commonly known as "Netscape" and "Explorer", these commercial products are web browsers (they let
you read documents via HTTP and other protocols). There are hundreds of other web browsers, including
Lynx, Opera, Slurp, Go!Zilla, and perlWWW, but most estimates show that the vast majority of web
users are using Netscape or Explorer. HTTP is only one protocol used by web browsers; web browsers
typically also can use at least the FTP, NNTP, SMTP, and POP protocols. Some of them also can use other
protocols like WAIS, Gopher, and IMAP. Thus, when users say "we want Explorer" or "we want
Netscape", what they really mean, from a protocol level, is that they want access to the HTTP servers
that make up the Web, and probably to associated servers running other protocols that the web
browsers can use (for instance, FTP, SMTP, and/or NNTP).

2.2.1 Web Client Security Issues

Web browsers are fantastically popular and for good reason. They provide a rich graphical interface to an
immense number of Internet resources. Information and services that were unavailable or expert-only before are
now easily accessible. In Silicon Valley, you can use the Web to have dinner delivered without leaving your
computer except to answer the door. It's hard to get a feel for the Web without experiencing it; it covers the full
range of everything you can do with a computer, from the mundane to the sublime with a major side trip into the
ridiculous.

Unfortunately, web browsers and servers are hard to secure. The usefulness of the Web is in large part based on
its flexibility, but that flexibility makes control difficult. Just as it's easier to transfer and execute the right
program from a web browser than from FTP, it's easier to transfer and execute a malicious one. Web browsers
depend on external programs, generically called viewers (even if they play sounds instead of showing pictures),
to deal with data types that the browsers themselves don't understand. (The browsers generally understand basic
data types such as HTML, plain text, and JPEG and GIF graphics.) Netscape and Explorer now support a
mechanism (designed to replace external viewers) that allows third parties to produce plug-ins that can be
downloaded to become an integrated and seamless extension to the web browser. You should be very careful
about which viewers and plug-ins you configure or download; you don't want something that can do dangerous
things because it's going to be running on your computers, as if it were one of your users, taking commands from
an external source. You also want to warn users not to download plug-ins, add viewers, or change viewer
configurations, based on advice from strangers.

In addition, most browsers also understand one or more extension systems (Java™, JavaScript, or ActiveX, for
instance). These systems make the browsers more powerful and more flexible, but they also introduce new
problems. Whereas HTML is primarily a text-formatting language, with a few extensions for hypertext linking, the
extension systems provide many more capabilities; they can do anything you can do with a traditional
programming language. Their designers recognize that this creates security problems. Traditionally, when you get
a new program you know that you are receiving a program, and you know where it came from and whether you
trust it. If you buy a program at a computer store, you know that the company that produced it had to go to the
trouble of printing up the packaging and convincing the computer store to buy it and put it up for sale. This is
probably too much trouble for an attacker to go to, and it leaves a trail that's hard to cover up. If you decide to
download a program, you don't have as much evidence about it, but you have some. If a program arrives on your
machine invisibly when you decide to look at something else, you have almost no information about where it
came from and what sort of trust you should give it.

The designers of JavaScript, VBScript, Java, and ActiveX took different approaches to this problem. JavaScript
and VBScript are simply supposed to be unable to do anything dangerous; the languages do not have commands
for writing files, for instance, or general-purpose extension mechanisms. Java uses what's called a "sandbox"
approach. Java does contain commands that could be dangerous, and general-purpose extension mechanisms,
but the Java interpreter is supposed to prevent an untrusted program from doing anything unfortunate, or at
least ask you before it does anything dangerous. For instance, a Java program running inside the sandbox cannot
write or read files without notification. Unfortunately, there have been implementation problems with Java, and
various ways have been found to do operations that are supposed to be impossible.

In any case, a program that can't do anything dangerous has difficulty doing anything interesting. Children get
tired of playing in a sandbox relatively young, and so do programmers.

page 29

Building Internet Firewalls

ActiveX, instead of trying to limit a program's abilities, tries to make sure that you know where the program
comes from and can simply avoid running programs you don't trust. This is done via digital signatures; before an
ActiveX program runs, a browser will display signature information that identifies the provider of the program,
and you can decide whether or not you trust that provider. Unfortunately, it is difficult to make good decisions
about whether or not to trust a program with nothing more than the name of the program's source. Is "Jeff's
Software Hut" trustworthy? Can you be sure that the program you got from them doesn't send them all the data
on your hard disk?

As time goes by, people are providing newer, more flexible models of security that allow you to indicate different
levels of trust for different sources. New versions of Java are introducing digital signatures and allowing you to
decide that programs with specific signatures can do specific unsafe operations. Similarly, new versions of
ActiveX are allowing you to limit which ActiveX operations are available to programs. There is a long way to go
before the two models come together, and there will be real problems even then. Even if you don't have to
decide to trust Jeff's Software Hut completely or not at all, you still have to make a decision about what level of
trust to give them, and you still won't have much data to make it with. What if Jeff's Software Hut is a vendor
you've worked with for years, and suddenly something comes around from Jeff's Software House? Is that the
same people, upgrading their image, or is that somebody using their reputation?

Because programs in extension systems are generally embedded inside HTML documents, it is difficult for
firewalls to filter them out without introducing other problems. For further discussion of extension systems, see
Chapter 15.

Because an HTML document can easily link to documents on other servers, it's easy for people to become
confused about exactly who is responsible for a given document. "Frames" (where the external web page takes
up only part of the display) are particularly bad in this respect. New users may not notice when they go from
internal documents at your site to external ones. This has two unfortunate consequences. First, they may trust
external documents inappropriately (because they think they're internal documents). Second, they may blame
the internal web maintainers for the sins of the world. People who understand the Web tend to find this hard to
believe, but it's a common misconception: it's the dark side of having a very smooth transition between sites.
Take care to educate users, and attempt to make clear what data is internal and what data is external.

2.2.2 Web Server Security Issues

When you run a web server, you are allowing anybody who can reach your machine to send commands to it. If
the web server is configured to provide only HTML files, the commands it will obey are quite limited. However,
they may still be more than you'd expect; for instance, many people assume that people can't see files unless
there are explicit links to them, which is generally false. You should assume that if the web server program is
capable of reading a file, it is capable of providing that file to a remote user. Files that should not be public should
at least be protected by file permissions, and should, if possible, be placed outside of the web server's accessible
area (preferably by moving them off the machine altogether).

Most web servers, however, provide services beyond merely handing out HTML files. For instance, many of them
come with administrative servers, allowing you to reconfigure the server itself from a web browser. If you can
configure the server from a web browser, so can anybody else who can reach it; be sure to do the initial
configuration in a trusted environment. If you are building or installing a web server, be sure to read the
installation instructions. It is worthwhile checking the security resources mentioned in Appendix A, for problems.

Web servers can also call external programs in a variety of ways. You can get external programs from vendors,
either as programs that will run separately or as plug-ins that will run as part of the web server, and you can
write your own programs in a variety of different languages and using a variety of different tools. These programs
are relatively easy to write but very difficult to secure, because they can receive arbitrary commands from
external people. You should treat all programs run from the web server, no matter who wrote them or what
they're called, with the same caution you would treat a new server of any kind. The web server does not provide
any significant protection to these programs. A large number of third-party server extensions originally ship with
security flaws, generally caused by the assumption that input to them is always going to come from well-behaved
forms. This is not a safe assumption; there is no guarantee that people are going to use your forms and your web
pages to access your web server. They can send any data they like to it.

A number of software (and hardware) products are now appearing with embedded web servers that provide a
convenient graphical configuration interface. These products should be carefully configured if they are running on
systems that can be accessed by outsiders. In general, their default configurations are insecure.

page 30

Building Internet Firewalls

2.3 Electronic Mail and News

Electronic mail and news provide ways for people to exchange information with each other without requiring an
immediate, interactive response.

2.3.1 Electronic Mail

Electronic mail is one of the most popular network services. It's relatively low risk, but that doesn't mean it's risk-
free. Forging electronic mail is trivial (just as is forging regular postal mail), and forgeries facilitate two different
types of attacks:

. Attacks against your reputation

° Social manipulation attacks (e.g., attacks in which users are sent mail purporting to come from an
administrator and advising them to change to a specific password)

Accepting electronic mail ties up computer time and disk space, opening you up to denial of service attacks,
although with proper configuration, only the electronic mail service will be denied. Particularly with modern
multimedia mail systems, people can send electronic mail containing programs that run with insufficient
supervision and may turn out to be Trojan horses (programs that appear to do something interesting or useful
but are actually concealing hostile operations).

Although people worry most about deliberate attacks, in practice, the most common problems with electronic
mail are inadvertent floods (including chain letters) and people who put entirely inappropriate confidence in the
confidentiality of electronic mail and send proprietary data via electronic mail across the Internet. However, as
long as users are educated, and the mail service is isolated from other services so that inadvertent or purposeful
denial of service attacks shut down as little as possible, electronic mail is reasonably safe.

Simple Mail Transfer Protocol (SMTP) is the Internet standard protocol for sending and receiving electronic mail;
mail going between servers on the Internet almost always uses SMTP, and outgoing mail from clients to servers
often does. SMTP itself is not usually a security problem, but SMTP servers can be. A program that delivers mail
to users often needs to be able to run as any user that might receive mail. This gives it broad power and makes it
a tempting target for attackers.

Mail servers, like other programs, have a trade-off between features and security. You probably do not want to
use the same server for your internal mail exchange and for exchanging mail with the Internet. Instead, you'll
want to use a full-featured server internally and a highly secure server to speak to the Internet. The internal
server will run the well-known software you're used to using, while the external server will run specialized
software. Because SMTP is designed to pass mail through multiple servers, this is easy to configure.

The most common SMTP server on Unix is Sendmail. Sendmail has been exploited in a number of break-ins,
including the Internet worm, which makes people nervous about using it. Many of the available replacements,
however, are not clearly preferable to Sendmail; the evidence suggests they are less exploited because they are
less popular, not because they are less vulnerable. There are exceptions in programs designed explicitly for
security, like Postfix.

The most common SMTP server on Windows NT is Microsoft Exchange, which has also been exploited in a number
of ways. Microsoft Exchange has had fewer problems with actual break-ins than Sendmail, but has a troubling
reputation for stability problems with SMTP, resulting in denial of service attacks. Like Sendmail, Microsoft
Exchange is a useful mail server with some specialized features not available elsewhere, but it is no more suitable
than Sendmail as a secure interface to the Internet. For one thing, it supports multiple protocols, making it even
larger and more complex; for another, it is a noticeably newer implementation of SMTP.

While SMTP is used to exchange electronic mail between servers, users who are reading electronic mail that has
already been delivered to a mail server do not use SMTP. In some cases, they may be reading the electronic mail
directly on the server, but these days most users transfer the mail from the server across a network using some
protocol. Across the Internet, the most common protocols for this purpose are the Post Office Protocol (POP) and
the Internet Message Access Protocol (IMAP). Microsoft Exchange and Lotus Notes have their own proprietary
protocols as well, which provide more features.

POP and IMAP have similar security implications; they both normally transfer user authentication data and email
without encrypting it, allowing attackers to read the mail and often to get reusable user credentials. It is
relatively easy to configure them to conceal the user authentication information, and relatively difficult to protect
the email contents. IMAP has more features than POP and correspondingly more security problems. On the other
hand, encryption is more widely and interoperably available with IMAP than with POP. The proprietary protocols
used by Microsoft Exchange and Lotus Notes have even more functionality and are difficult, if not impossible, to
protect adequately across the Internet. (Note that both Microsoft Exchange and Lotus Notes can use
nonproprietary protocols as well; see Chapter 16, for more information.)

page 31

Building Internet Firewalls

2.3.2 Usenet News

While electronic mail allows people to communicate, it's most efficient as a way for one person to send a
message to another person, or to a small list of people interested in a particular topic. Newsgroups are the
Internet counterpart to bulletin boards and are designed for many-to-many communication. Mailing lists also
support many-to-many communication but much less openly and efficiently, because there's no easy way to find
out about all mailing lists, and every recipient has his own copy of every message. The largest discussion mailing
lists (i.e., lists where discussions take place among subscribers, rather than lists used to simply distribute
information or announcements to subscribers) have tens of thousands of subscribers; the most popular
newsgroups have at least hundreds of thousands. Usenet news is rather like television; there's a lot going on,
most of it has little socially redeeming value, and some of it is fantastically amusing or informative.

The risks of news are much like those of electronic mail: your users might foolishly trust information received;
they might release confidential information; and you might get flooded. News resembles a flood when it's
functioning normally - most sites receive all the news they can stand every day, and the amount is continuously
increasing - so you must make absolutely sure to configure news so that floods don't affect other services.
Because news is rarely an essential service, denial of service attacks on a single site are usually just ignored. The
security risks of news are therefore quite low. You might want to avoid news because you don't have the
bandwidth or the disk space to spare, or because you are worried about the content, but it's not a significant
security problem.

These days, a number of web sites allow people to access newsgroups from a web browser using HTTP. This is
not very efficient if a large number of people are reading news, and it's a poor interface at best for creating news,
but if your site has a small number of people who need to read news, the most efficient solution may be to use
one of these sites.

Network News Transfer Protocol (NNTP) is used to transfer news across the Internet. In setting up a news server
at your site, you'll need to determine the most secure way for news to flow into your internal systems so NNTP
can't be used to penetrate your system. Some sites put the news server on the bastion host (described in
Chapter 10); others on an internal system, as we'll describe in Chapter 16. NNTP doesn't do much, and your
external transfers of news will all be with specific other machines (it's not like mail, which you want to receive
from everybody), so it's not particularly difficult to secure.

The biggest security issue you'll face with news is what to do with private newsgroups. Many sites create private
local newsgroups to facilitate discussions among their users; these private newsgroups often contain sensitive,
confidential, or proprietary information. Someone who can access your NNTP server can potentially access these
private newsgroups, resulting in disclosure of this information. If you're going to create private newsgroups, be
sure to configure NNTP carefully to control access to these groups. (Configuring NNTP to work in a firewall
environment is discussed fully in Chapter 16.)

2.4 File Transfer, File Sharing, and Printing

Electronic mail transfers data from place to place, but it's designed for small files in human-readable form.
Electronic mail transfer protocols are allowed to make changes in a message that are acceptable to humans (for
instance, inserting ">" before the word "From" at the beginning of a line, so the mailer doesn't get it confused
with a header line) but are unacceptable to programs.?

Although electronic mail systems these days include elaborate workarounds for such problems, so that a large
binary file may be split into small pieces and encoded on the sending side and decoded and reassembled on the
receiving side, the workarounds are cumbersome and error prone. Also, people may want to actively look for
files, instead of waiting for someone to send them. Therefore, even when electronic mail is available, it's useful to
have a method designed for transferring files on request.

Furthermore, you may not want to transfer files between machines; you may want to have a single copy of a file
but use it on multiple machines. This is file sharing. File sharing protocols can be used as file transfer protocols
(first you share the file, then you make a local copy of it), but they also allow you to use a file more or less as if it
were a local file. File sharing is usually more convenient than file transfer for users, but because it provides more
functionality, it is less efficient, less robust, and less secure.

Printing is often based on file sharing or file transfer protocols; this makes a certain amount of sense, since you
have to transfer the data to the printer somehow.

2.4.1 File Transfer

3 Inserting ">" before "From" is so common that some published books still contain the occasional ">From" in the text, where the ">" was
inserted as authors exchanged drafts via electronic mail.

page 32

Building Internet Firewalls

File Transfer Protocol (FTP) is the Internet standard protocol for file transfers. Most web browsers will support FTP
as well as HTTP and will automatically use FTP to access locations with names that begin "ftp:", so many people
use FTP without ever being aware of it. In theory, allowing your users to bring in files is not an increase of risk
over allowing electronic mail; in fact, some sites offer services allowing you to access FTP via electronic mail. FTP
is also nearly interchangeable in risk with HTTP, yet another way of bringing in files. In practice, however, people
do use FTP differently from the way they use HTTP and electronic mail, and may bring in more files and/or larger
files.

What makes these files undesirable? The primary worry at most sites is that users will bring in Trojan horse
software. Although this can happen, actually the larger concern is that users will bring in computer games,
pirated software, and pornographic pictures. Although these are not a direct security problem, they present a
number of other problems (including wasting time and disk space and introducing legal problems of various
sorts), and they are often used as carriers for viruses. If you make sure to do the following, then you can
consider inbound FTP to be a reasonably safe service that eases access to important Internet resources:

° Educate your users to appropriately mistrust any software they bring in via FTP.

e Communicate to users your site's guidelines about sexual harassment policies and organizational
resource usage.

How about the other side of the coin: allowing other people to use FTP to transfer files from your computers? This
is somewhat riskier. Anonymous FTP is an extremely popular mechanism for giving remote users access to files
without having to give them full access to your machine. If you run an FTP server, you can let users retrieve files
you've placed in a separate, public area of your system without letting them log in and potentially get access to
everything on your system. Your site's anonymous FTP area can be your organization's public archive of papers,
standards, software, graphics images, and information of other kinds that people need from you or that you want
to share with them. FTP makes a nice complement to HTTP, providing easier access to larger files for a wider
audience.

To get access to the files you've made available, users log into your system using FTP with a special login name
(usually "anonymous" or "ftp"). Most sites request that users enter their own electronic mail address, in response
to the password prompt, as a courtesy so that the site can track who is using the anonymous FTP server, but this
requirement is rarely enforced (mostly because there is no easy way to verify the validity of an electronic mail
address).

In setting up an anonymous FTP server, you'll need to ensure that people who use it can't get access to other
areas or files on the system, and that they can't use FTP to get shell-level access to the system itself. Writable
directories in the anonymous FTP area are a special concern, as we'll see in Chapter 17.

You'll also need to ensure that your users don't use the server inappropriately. It can be very tempting for people
to put up files that they want specific people to read. Many times people don't realize that anybody on the
Internet can read them, or they do realize this but believe in security through obscurity. Unfortunately for these
innocents, a number of tools attempt to index anonymous FTP servers, and they succeed in removing most of the
obscurity.

You may have heard of other file transfer protocols. Trivial File Transport Protocol (TFTP) is a simplified FTP
protocol that diskless machines use to transfer information. It's extremely simple so that it can be built into
hardware, and therefore supports no authentication. There's no reason to provide TFTP access outside of your
network; ordinary users don't transfer files with TFTP.

Within a Unix site, you may want to use rcp to transfer files between systems. rcp (described in Chapter 18, with
the rest of the so-called "Berkeley "r' commands") is a file transfer program that behaves like an extended
version of the Unix cp command. It is inappropriate for use across the Internet because it uses a trusted host
authentication model. Rather than requiring user authentication on the remote machine, it looks at the IP address
of the host the request is coming from. Unfortunately, you can't know that packets are really coming from that
host. There is an rcp replacement called scp that provides considerably more security, including user
authentication and encryption of the data that passes across the network; it is also discussed in Chapter 18,
along with the ssh command on which it is based.

page 33

Building Internet Firewalls

2.4.2 File Sharing

Several protocols are available for file sharing, which allow computers to use files that are physically located on
disks attached to other computers. This is highly desirable, because it lets people use remote files without the
overhead of transferring them back and forth and trying to keep multiple versions synchronized. However, file
sharing is much more complicated to implement than file transfer. File sharing protocols need to provide
transparency (the file appears to be local, you do not see the file sharing occurring) and rich access (you can do
all the things to the remote file that you could do to a local file). These features are what make file sharing
desirable for users, but the need to be transparent puts limits on the sort of security that can be implemented,
and the need to provide rich access makes the protocols complex to implement. More complexity inevitably leads
to more vulnerability.

The most commonly used file sharing protocols are the Network File System (NFS) under Unix, the Common
Internet File System (CIFS) under Microsoft Windows, and AppleShare on the Macintosh. CIFS is part of a family
of related protocols and has a complex heritage, involving Server Message Block (SMB), NetBIOS/NetBEUI, and
LanManager. You will see all of these names, and some others, used to refer to file sharing protocols on Microsoft
operating systems. Although there are differences between these protocols, sometimes with radical security
implications, they are interrelated and, for the most part, interoperable, and at the highest level, their security
implications are similar. In fact, at the highest level, all of the file sharing protocols have similar implications for
firewalls; they are all insecure and difficult to use across the Internet.

NFS was designed for use in local area networks and assumes fast response, high reliability, time
synchronization, and a high degree of trust between machines. There are some serious security problems with
NFS. If you haven't properly configured NFS (which can be tricky), an attacker may be able to simply NFS-mount
your filesystems. The way NFS works, client machines are allowed to read and change files stored on the server
without having to log in to the server or enter a password. Because NFS doesn't log transactions, you might not
even know that someone else has full access to your files.

NFS does provide a way for you to control which machines can access your files. A file called /etc/exports lets you
specify which filesystems can be mounted and which machines can mount them. If you leave a filesystem out of
/etc/exports, no machine can mount it. If you put it in /etc/exports, but don't specify what machines can mount
it, you're allowing any machine to mount it.

A number of subtler attacks on NFS are also possible. For example, NFS has very weak client authentication, and
an attacker may be able to convince the NFS server that a request is coming from a client that's permitted in the
exports file. There are also situations where an attacker can hijack an existing NFS mount.

These problems are mostly due to the fact that NFS uses host authentication, which is easily spoofed. Because
NFS doesn't actually work well across the Internet in any case (it assumes a much faster connection between
hosts), there isn't much point in allowing it between your site and the Internet. It creates a security problem
without adding functionality.

CIFS and AppleShare both rely on user authentication instead of host authentication, which is a slight
improvement in security. However, AppleShare is not capable of supporting flexible methods of user
authentication with normal clients. You are limited to using reusable passwords, which means that attackers can
simply capture passwords. CIFS can provide good authentication and good protection in recent versions.
However, backward compatibility features in CIFS increase its vulnerability, as it attempts to support older clients
that have much weaker security. Furthermore, CIFS actually provides an entire family of services, some of them
even more vulnerable than file sharing. (For instance, it provides a general-purpose remote procedure call
mechanism that can be used to allow arbitrary programs to communicate with each other.) Although it is possible
for a firewall to understand CIFS and allow only some operations through (in order to allow CIFS file sharing but
not other CIFS-based protocols), this is quite complex, and few firewalls are capable of it. It's also not clear how
useful it would be, since file sharing and other services are intertwined; the commands for reading data from files
and for reading data from other programs are the same.

There are file sharing protocols designed for use on networks like the Internet; for instance, the Andrew File
System (AFS) uses Kerberos for authentication, and optionally encryption, and is designed to work across wide
area networks, including the Internet. NFS, CIFS, and AppleShare are all shipped as part of popular operating
systems, while AFS is a third-party product. Because of this, and because AFS and Kerberos require significant
technical expertise to set up and maintain, AFS is not widely used outside of a small number of large sites. If you
have a need to do secure, wide area network filesystems, it may be worth investigating AFS, but it is not covered
here.

page 34

Building Internet Firewalls

2.4.3 Printing Systems

Almost every operating system these days provides remote printing - via Ip or Ipr on Unix machines, SMB
printing on Windows machines, or AppleTalk print services on Macintoshes.* Remote printing allows a computer
to print to a printer that is physically connected to a different computer or directly to the network. Obviously, this
is highly desirable in a local area network; you shouldn't need as many printers as you have machines. However,
all of the remote printing options are insecure and inefficient as ways to transfer data across the Internet. There
is no reason to allow them. If you have a need to print at a site across the Internet or to allow another site to use
your printers, it's possible to set up special mail aliases that print the mail on receipt. This is the method many
companies use even across in-house wide area networks because it's considerably more reliable.

2.5 Remote Access

There are many situations in which you would like to run a program on a computer other than the one that you're
in front of. For instance, you may be in front of a slow computer because you're travelling with a laptop, or your
other computer is a supercomputer, or you're using "thin clients" - purposefully stupid computers - in order to
lower maintenance costs and get economies of scale. Originally, remote access meant some form of remote
terminal access, which allows you to use character-based applications. These days, character-only access is
rarely sufficient. Instead, you may need some form of remote graphics.

The general questions about remote access are the same for all methods:

e Are there appropriate controls on who can access the machine remotely? How are remote users
authenticated?

e Can anybody take over a connection that's in progress?

° Can eavesdroppers pick up important information (particularly, authentication information)?
2.5.1 Remote Terminal Access and Command Execution

Originally, programs that provided remote terminal access allowed you to use a remote system as if your
computer were a directly attached terminal - an old-fashioned terminal, capable of displaying and generating
text. These days, there are computers that support remote terminal access without supporting genuine physical
terminals, and there are many computers that can't do much with a text-only interface no matter how it's
attached to them.

Telnet is the standard for remote terminal access on the Internet. Telnet allows you to provide remote text
access for your users from any Internet-connected site without making special arrangements.

Telnet was once considered a fairly secure service because it requires users to authenticate themselves.
Unfortunately, Telnet sends all of its information unencrypted, which makes it extremely vulnerable to sniffing
and hijacking attacks. For this reason, Telnet is now considered one of the most dangerous services when used to
access your site from remote systems. (Accessing remote systems from your site is their security problem, not
yours.) Telnet is safe only if the remote machine and all networks between it and the local machine are safe. This
means that Telnet is not safe across the Internet, where you can't reliably identify the intervening networks,
much less trust them.

There are various kinds of authentication schemes for doing remote logins, which will automatically work with
Telnet (in particular, see the discussion of one-time passwords in Chapter 21). Unfortunately, even if you protect
your password, you may still find that your session can be tapped or hijacked; preventing it requires using an
encrypted protocol.

There are two popular ways of doing this. First, you can simply replace Telnet with an encrypted remote terminal
access program; the widely accepted Internet standard is the secure shell (SSH), which provides a variety of
encrypted remote access services, but a number of other solutions are available. Second, you can create an
encrypted network connection (a virtual private network, or VPN) and run normal Telnet across that. See Chapter
5, for a discussion of VPN techniques.

4 Or recombine the protocols and operating systems in any combination you wish, as all three platforms will support all the protocols if you
install enough extra software.

page 35

Building Internet Firewalls

Other programs besides Telnet and SSH can be used for remote terminal access and remote execution of
programs - most notably rlogin, rsh, and on. These programs are used in a trusted environment to allow users
remote access without having to reauthenticate themselves. The host they're connecting to trusts the host
they're coming from to have correctly authenticated the user. The trusted host model is simply inappropriate for
use across the Internet because you generally cannot trust hosts outside your network. In fact, you can't even be
sure the packets are coming from the host they say they are.

rlogin and rsh may be appropriate for use within a network protected by a firewall, depending on your internal
security policies. on, however, places all of its security checks in the client program, and anyone can use a
modified client that bypasses these checks, so on is completely insecure for use even within a local area network
protected by a firewall (it lets any user run any command as any other user). You disable on by disabling the
rexd server, as we'll describe in Chapter 18. Fortunately, on is relatively rare these days; Windows NT, which
provides rlogin and rsh clients, does not provide an on client.

2.5.2 Remote Graphic Interfaces for Microsoft Operating Systems

Although Windows NT provides clients for most of the remote execution services described previously, and
servers for many of them are available as part of the resource kits or third-party products, remote terminal
services in general aren't very interesting on Windows NT. While there are character-oriented programs that will
allow you to do many administrative tasks, most of the programs people want to use are graphical.

Microsoft provides remote graphical interfaces as part of Windows 2000 servers, in a package called Terminal
Services. This is also available for Windows NT 4 as a special Terminal Server edition of the operating system.
Terminal Services and Terminal Server both use a Microsoft-developed protocol called Remote Desktop Protocol
(RDP) to communicate between clients and servers.

A variety of other proprietary protocols are used for remote graphical interfaces to Windows, of which the most
capable and widespread is Independent Computing Architecture (ICA) developed by Citrix. ICA has been licensed
by a number of vendors, and a wide variety of clients and servers that use it are available, including multi-user
Windows NT servers and Java-based clients that can run on any machine with a Java-enabled web browser. ICA
plug-ins are available for Terminal Services and Terminal Server.

TCP/IP-based remote access is also available from almost every other remote access program in the Windows
market, including LapLink, RemotelyPossible, and PCANYWHERE, to name only a few. There is also the
controversial program BO2K, which is a freely available open source program that provides remote access. It is
controversial because it is widely distributed as a tool for intruders, designed to provide remote access to
outsiders; on the other hand, it is a full-featured and effective tool to provide legitimate remote access as well.

These programs differ widely in their security implications, although most of them are unfortunately insecure. For
a full discussion of the issues and approaches, see Chapter 18.

2.5.3 Network Window Systems

Most Unix machines currently provide window systems based on the X11 window system. X11 servers are also
available as third-party applications for almost every other operating system, including all versions of Microsoft
Windows and many versions of MacOS. X11 clients are rarer but are available for Windows NT. Network access is
an important feature of X11. As more and more programs have graphical user interfaces, remote terminal access
becomes less and less useful; you need graphics, not just text. X11 gives you remote graphics.

X11 servers are tempting targets for intruders. An intruder with access to an X11 server may be able to do any of
the following types of damage:

Get screen dumps

These are copies of whatever is shown on the users' screens.
Read keystrokes

These may include users' passwords.
Inject keystrokes

They'll look just as if they were typed by the user. Imagine how dangerous this could be in a window in
which a user is running a root shell.

page 36

Building Internet Firewalls

Originally, X11 primarily used authentication based on the address that connections came from, which is
extremely weak and not suitable for use across the Internet. These days, most X11 servers implement more
secure authentication mechanisms. However, just like Telnet, X11 is still vulnerable to hijacking and sniffing,
even when the authentication is relatively secure, and solving the overall security problem requires that you
encrypt the entire connection via SSH or a VPN solution.

2.6 Real-Time Conferencing Services

A number of different real-time conferencing services are available on the Internet, including talk, IRC, web chat
rooms, and the various services provided over the Multicast Backbone (MBONE). All of these services provide a
way for people to interact with other people, as opposed to interacting with databases or information archives.
Electronic mail and Usenet news are designed to facilitate asynchronous communications; they work even if the
participants aren't currently logged in. The next time they log in, the email messages or news postings will be
waiting for them. Real-time conferencing services, on the other hand, are designed for interactive use by online
participants.

Internet Relay Chat (IRC) is sort of like Citizens Band (CB) radio on the Internet; it has its own little culture
involving lots of people talking at each other. Users access IRC via dedicated IRC clients, or by using Telnet to
access a site that provides public IRC client service. IRC servers provide hundreds (sometimes thousands) of
named "channels" for users to join. These channels come and go (anyone can create a new channel, and a
channel survives as long as there's anyone on it), although some popular channels are more or less permanent.
Unlike talk, which is limited to a pair of users, any number of people can participate on an IRC channel
simultaneously. Some IRC clients allow a user to participate in multiple channels simultaneously (sort of like
taking part in two different conversations at once at a party).

There are a number of security problems with IRC; most of the problems aren't with the protocol itself, but with
the clients, and with who uses IRC and how. Many of the clients allow servers far more access to local resources
(files, processes, programs, etc.) than is wise; a malicious server can wreak havoc with a weak client. Further,
many of the most frequent users of IRC are pranksters and crackers who use IRC to pass technical information
among themselves and to try to trick other IRC users. Their idea of a fine time is to tell some neophyte IRC user
"Hey, give this command to your IRC client so that I can show you this neat new toy I wrote". Then, when the
unsuspecting user follows the prankster's directions, the commands trash the system. Anyone using IRC needs a
good client program and a healthy dose of wariness and suspicion.

Purely web-based chat rooms have fewer vulnerabilities, but HTTP doesn't lend itself well to chatting, so these
tend to be clunky and uncomfortable to use. People therefore have developed a number of hybrid solutions using
plug-ins to HTTP clients (for instance, Mirabilis's ICQ and AOL's Messenger). These provide much nicer interfaces
but also introduce new vulnerabilities. Like IRC, they have many "bad neighborhoods" where people hang out
looking for neophytes they can trick or attack. In addition, the protocols and the plug-ins themselves are often
vulnerable.

More complicated systems allow richer conversations. As high-speed network connections become common, full-
fledged video conferencing systems have become popular, even across the Internet. The most famous of those
systems is Microsoft's NetMeeting. NetMeeting and most other video conferencing systems in wide use are based
on a set of International Telecommunications Union standards and protocols for video conferencing. These
protocols are extremely difficult to secure. They have almost every feature that makes a protocol difficult to
protect, including using multiple data streams, initiating data transfer from both ends of the conversation
(instead of having a clearly defined client and server), using connectionless protocols, and dynamically assigning
port numbers instead of using well-known port numbers. While they can be very useful, providing them securely
requires an extremely specialized firewall. Because video conferencing involves large amounts of data, the
firewall also needs good performance.

The MBONE is the source of a new set of services on the Internet, focusing on expanding real-time conference
services beyond text-based services like talk and IRC to include audio, video, and electronic whiteboard. The
MBONE is used to send real-time video of many technical conferences and programs over the Internet (e.g.,
Internet Engineering Task Force meetings, keynote sessions from USENIX conferences, space shuttle flight
operations, and so on). At this point, the commonly used MBONE services appear to be reasonably secure.
Although there are theoretical problems, the only reported attacks have been floods, which are easy to deal with.
Theoretical problems have a way of eventually becoming actual problems, but these are extremely theoretical
(nobody has verified that they are actually exploitable at all) and not very threatening (if they were exploitable,
they still wouldn't be catastrophic). Unintentional denial of service can be a real concern with the MBONE,
however, because audio and video can use so much bandwidth. The methods used to distribute MBONE across
the Internet also present some interesting risks, which are discussed in Chapter 19.

page 37

Building Internet Firewalls

2.7 Naming and Directory Services

A naming service translates between the names that people use and the numerical addresses that machines use.
Different protocols use different naming services; the primary protocol used on the Internet is the Domain Name
System (DNS), which converts between hostnames and IP addresses.

In the early days of the Internet, it was possible for every site to maintain a host table that listed the name and
number for every machine on the Internet that it might ever care about. With millions of hosts attached, it isn't
practical for any single site to maintain a list of them, much less for every site to do so. Instead, DNS allows each
site to maintain information about its own hosts and to find the information for other sites. DNS isn't a user-level
service, per se, but it underlies SMTP, FTP, Telnet, and virtually every other service users need, because users
want to be able to type "telnet fictional.example" rather than "telnet 10.100.242.32". Furthermore, many
anonymous FTP servers will not allow connections from clients unless they can use DNS to look up the client
host's name, so that it can be logged.

The net result is that you must both use and provide name service in order to participate in the Internet. The
main risk in providing DNS service is that you may give away more information than you intend. For example,
DNS lets you include information about what hardware and software you're running, information that you don't
want an attacker to have. In fact, you may not even want an attacker to know the names of all your internal
machines. Chapter 20, discusses how to configure name service in order to make full information available to
your internal hosts, but only partial information to external inquirers.

Using DNS internally and then relying on hostnames for authentication makes you vulnerable to an intruder who
can install a deceitful DNS server. This can be handled by a combination of methods, including:

. Using IP addresses (rather than hostnames) for authentication on services that need to be more
secure.

e Authenticating users instead of hosts on the most secure services, because IP addresses can also be
spoofed.

Windows 2000 networks use DNS in conjunction with the Active Directory service to locate resources. Clients
access the Active Directory service via the Lightweight Directory Access Protocol (LDAP), which is a widely used
standard for access to directory information.

Older Microsoft Windows networks use Windows Internet Name Service (WINS) to map NetBIOS hostnames to IP
addresses. The name is unintentionally misleading; WINS is not an Internet name service (one intended to
function on the worldwide Internet) but an internet name service (one intended to function on an internet, a
collection of local area networks). The service that WINS extends, NetBIOS name service, functions only on a
single local area network. Popular terminology has changed since the service was named, and now it might more
appropriately be called Windows Intranet Name Service.

As WINS has evolved, the interrelationship between it and DNS has become ever more complex and confusing.
WINS servers can consult DNS servers, and Microsoft DNS servers can consult WINS servers. The important
things to remember about WINS are:

WINS is designed as a purely internal protocol for a single organization.

e There are scaling issues using WINS on large and complex networks, even for a single organization.

Microsoft is phasing out use of WINS in favor of DNS.

WINS is less secure than DNS.

WINS has all the security issues that DNS has, and then some. First, WINS contains more information than DNS
does. While DNS contains information, like hostnames, that you might not want an attacker to have, WINS
contains information, like valid usernames and lists of running services, that you definitely don't want an attacker
to have. Second, WINS is designed around dynamic registration; not only does it accept queries from hosts, it
accepts new data from the network. This makes it much more vulnerable than DNS to hostile clients. Making
WINS visible to the Internet is highly dangerous and not at all useful.

Some sites use Sun's Network Information Service (NIS), formerly known as Yellow Pages (YP) to distribute
hostname information internally. It is not necessary to do this. You can use DNS clients instead on any platform
that supports NIS, but NIS may be more convenient for configuring your internal machines. It is certainly neither
necessary nor advisable to provide NIS service to external machines. NIS is designed to administer a single site,
not to exchange information between sites, and it is highly insecure. For example, it would not be possible to
provide your host information to external sites via NIS without also providing your password file, if both are
available internally.

page 38

Building Internet Firewalls

2.8 Authentication and Auditing Services

Another important (although often invisible) service is authentication. Authentication services take care of
assigning a specific identity to an incoming connection. When you type a username and a password, something is
using these to authenticate you - to attempt to determine that you are the user that you say you are.
Authentication may occur locally to a machine or may use a service across the network. Network services have
the advantage of providing a centralized point of administration for multiple machines, and therefore a consistent
level of trustworthiness.

A number of different services provide authentication services, sometimes combined with other functions. Under
Unix, the most common authentication services are NIS (which also provides various other administrative
databases) and Kerberos (which is specialized for nothing but authentication). Windows NT normally uses NTLM
(which is integrated with CIFS logon service), while Windows 2000 uses Kerberos by default, falling back to NTLM
only for access to older servers. For various reasons, these protocols can be difficult to use across the Internet or
for authenticating people who wish to connect over telephone lines, so two protocols have been developed for
just this situation, RADIUS and TACACS. Chapter 21, provides additional information.

2.9 Administrative Services

A variety of services are used to manage and maintain networks; these are services that most users don't use
directly - indeed, that many of them have never even heard of - but they are very important tools for network
managers. They are described in detail in Chapter 22.

2.9.1 System Management

Simple Network Management Protocol (SNMP) is a protocol designed to make it easy to centrally manage
network devices. Originally, SNMP focused on devices that were purely network-oriented (routers, bridges,
concentrators, and hubs, for instance). These days, SNMP agents may be found on almost anything that connects
to a network, whether or not it's part of the network infrastructure. Many hosts have SNMP agents; large
software packages, like databases, often have specialized SNMP agents; and even telephone switches and power
systems have network interfaces with SNMP agents.

SNMP management stations can request information from agents via SNMP. SNMP management stations can also
control certain functions of the device. Devices can also report urgent information (for example, that a line has
gone down, or that a significant number of errors are occurring on a given line) to management stations via
SNMP. Devices vary greatly in the sorts of information they give out via SNMP, and in the parameters that can be
changed via SNMP. The network devices that originally spoke SNMP used it for mildly sensitive data, like the
number of bytes that had gone through a specific port, or the routing table of a given device. Some of them
allowed management stations to do potentially catastrophic things (turning off a network interface, for instance),
but most of them didn't (if only because many of them simply failed to implement the "set" command, which is
required for a management station to actually change anything).

Modern SNMP agents often contain extremely sensitive data; the default SNMP agent for Windows NT includes
the complete list of valid usernames on the machine and a list of currently running services, for instance. Many
SNMP agents allow for machine reboots and other critical changes. Unfortunately, they are hardly secured at all.
SNMP security currently relies on a cleartext password, known as a community string, with a well-known and
widely used default. Some SNMP agents implement additional levels of security (for instance, controls over the IP
addresses they will accept queries from), but these are still insufficient for extremely sensitive data. Allowing
SNMP from the Internet is extremely dangerous.

With the introduction of SNMP v3, which provides better authentication and can encrypt data, it is becoming
possible to run SNMP more securely. However, SNMP v3 is not yet widespread.

2.9.2 Routing

Routing protocols like RIP and OSPF are used to distribute information about where packets should be directed.
Transactions on the Internet involve hosts distributed across the world, which are added, moved, and deleted, all
without a single central authority to control them. The Domain Name System provides part of the information
necessary to make this work (the mapping between human-readable names and machine-usable numbers), and
another critical part is provided by routing services, which distribute information about which numbers are where
and how to get to them.

If you interfere with a host's routing, you interfere with its ability to talk to the rest of the world. You can cut it
off altogether or merely steal traffic that was intended to go someplace else. Unfortunately, most routing
protocols now in use were designed when the Internet was a less dangerous place, and they don't provide any
significant degree of protection.

page 39

Building Internet Firewalls

The good news is that routing information rarely needs to go to any significant number of hosts; in general, you
will have at most a few routers that talk to the Internet, and those will be the only hosts that need to talk routing
protocols to the Internet. In general, you will not need to pass routing protocols through firewalls, unless you are
using internal firewalls inside a site.

2.9.3 Network Diagnostics

The two most common network management tools are ping and traceroute (also known as tracert). Both are
named after the Unix programs that were the first implementations, but both are now available in some form on
almost all Internet-capable platforms. They do not have their own protocols but make use of the same underlying
protocol, the Internet Control Message Protocol (ICMP). Unlike most of the programs we've discussed, they are
not clients of distinguishable servers. ICMP is implemented at a low level as a required part of the TCP/IP
protocols all Internet hosts use.

ping simply tests reachability; it tells you whether or not you can get a packet to and from a given host, and
often additional information like how long it took the packet to make the round trip. traceroute tells you not only
whether you can reach a given host (and whether it can answer), but also the route your packets take to get to
that host; this is very useful in analyzing and debugging network trouble somewhere between you and some
destination.

Because there aren't servers for ping and traceroute, you can't simply decide not to turn the servers on.
However, you can use packet filtering to prevent them from reaching your machines. There are few risks for
outbound ping or traceroute, and those risks can be avoided by using them without hostname resolution.
Inbound ping and traceroute, however, pose significant risks. ping, in particular, is a frequent basis for denial of
service attacks. ping and traceroute can both be used to determine which hosts at your site exist, as a
preliminary step to attacking them. For this reason, many sites either prevent or limit the relevant packets
inbound.

2.9.4 Time Service

Network Time Protocol (NTP), an Internet service that sets the clocks on your system with great precision, has
clients on most operating systems (including Unix, Windows NT, and MacOS). Synchronizing time among different
machines is important in many ways. From a security point of view, examining the precise times noted on the log
files of different machines may help in analyzing patterns of break-ins. Having synchronized clocks is also a
requirement for preventing attackers from recording an interaction and then repeating it (a playback attack); if
timestamps are encoded in the interaction, they will be incorrect the second time the transaction is replayed.
Kerberos authentication, for example, which we discuss in Chapter 21, depends on time synchronization. From a
practical point of view, synchronized clocks are also required to successfully use NFS.

You do not have to use NTP across the Internet; it will synchronize clocks to each other within your site, if that's
all you want. The reason that people use NTP from the Internet is that a number of hosts with extremely accurate
clocks - radio clocks that receive the time signal from master atomic clocks or from the atomic clocks in the
Global Positioning System (GPS) satellites - provide NTP service to make certain that your clocks are not only
synchronous with each other but also correct. Without an external time service, you might find that all your
computers have exactly the same wrong time. Accepting an external service makes you vulnerable to spoofing,
but because NTP won't move the clocks very far very fast, a spoofed external clock is unlikely to make you
vulnerable to a playback attack, although it could succeed in annoying you by running all your clocks slow or fast.
Radio or GPS clocks suitable for use as NTP time sources are not terribly expensive, however, and if you are
using NTP to synchronize clocks for an authentication protocol like Kerberos, you should buy your own and
provide all time service internally, instead of using an external reference.

2.10 Databases

For a long time, databases were relatively self-contained; most accesses to a database system were from the
same machine that was running the software. These days, databases are very rarely self-contained. Instead, they
are the data storage for larger, distributed systems; sales information systems, e-commerce systems, even large
electronic mail systems all use databases and communicate with them over networks.

This makes secure remote communication with databases more important than ever. Unfortunately, database
communication protocols tend to be proprietary and different for each database manufacturer. Furthermore,
they've only recently been designed with any concern for security. It is unwise to pass database transactions
unprotected across the Internet. Chapter 23, discusses database protocols and ways to configure databases to
function with your firewall.

page 40

Building Internet Firewalls

2.11 Games

Games produce some special security challenges. Like multimedia protocols, they have characteristics that make
them inherently difficult to secure; they're trying to make flexible, high-performance connections. Games also
change frequently, are designed by people more interested in attractiveness than security, and are a favorite
target of attackers. In general, you should avoid supporting game play through a firewall. There is no network
security risk in running multiplayer games internal to a network.

page 41

Building Internet Firewalls

Chapter 3. Security Strategies

Before we discuss the details of firewalls, it's important to understand some of the basic strategies employed in
building firewalls and in enforcing security at your site. These are not staggering revelations; they are
straightforward approaches. They're presented here so that you can keep them in mind as you put together a
firewall solution for your site.

3.1 Least Privilege

Perhaps the most fundamental principle of security (any kind of security, not just computer and network security)
is that of least privilege. Basically, the principle of least privilege means that any object (user, administrator,
program, system, whatever) should have only the privileges the object needs to perform its assigned tasks - and
no more. Least privilege is an important principle for limiting your exposure to attacks and for limiting the
damage caused by particular attacks.

Some car manufacturers set up their locks so that one key works the doors and the ignition, and a different key
works the glove compartment and the trunk; that way, you can enforce least privilege by giving a parking lot
attendant the ability to park the car without the ability to get at things stored in the trunk. Many people use
splittable key chains, for the same reason. You can enforce least privilege by giving someone the key to your car
but not the key to your house as well.

In the Internet context, the examples are endless. Every user probably doesn't need to access every Internet
service. Every user probably doesn't need to modify (or even read) every file on your system. Every user
probably doesn't need to know the machine's administrative password. Every system administrator probably
doesn't need to know the administrative passwords for all systems. Every system probably doesn't need to access
every other system's files.

Unlike car manufacturers, most operating system vendors do not configure their operating systems with least
privilege by default. It is common for them to be in a "most privileged" mode when connected to a network out of
the box or during an operating system installation. Applying the principle of least privilege suggests that you
should explore ways to reduce the privileges required for various operations. For example:

. Don't give a user administrative rights for a system if all she needs to do is reset the print system.
Instead, provide a way to reset the print system without administrative rights (under Unix, it involves
a special program of some sort; under NT, it involves giving that user the privileges required, usually
by making the account a member of the Print Operators group).

° Don't make a program run as a user with general privileges if all it needs to do is write to one
protected file. Instead, make the file group-writable to some group and make the program run as a
member of that group rather than as a highly privileged user.

° Don't have your internal systems trust one of your firewall machines just so it can do backups.
Instead, make the firewall machine trust the internal system, or, better yet, put a local tape drive on
the firewall machine so that it can do its own backups.

Many of the common security problems on the Internet can be viewed as failures to follow the principle of least
privilege. For example, any number of security problems have been and continue to be discovered in Sendmail,
which is a big, complex program; any such program is going to have bugs in it. The problem is that Sendmail
runs (at least some of the time) setuid to root; many of the attacks against Sendmail take advantage of this.
Because it runs as root, Sendmail is a high-value target that gets a lot of attention from attackers; the fact that
it's a complex program just makes their jobs easier. This implies both that privileged programs should be as
simple as possible and that, if a complex program requires privileges, you should look for ways to separate and
isolate the pieces that need privileges from the complex parts.®

Many of the solutions you'll employ in protecting your site are tactics for enforcing the strategy of least privilege.
For example, a packet filtering system is designed to allow in only packets for the services you want. Running
insecure programs in an environment where only the privileges the programs absolutely need are available to
them (e.g., a machine that's been stripped down in one way or another) is another example; this is the essence
of a bastion host.

5 It's important to realize that Sendmail is far from the only example we could cite; you can find similar problems in almost any large, complex,
privileged piece of sofiware.

page 42

Building Internet Firewalls

There are two problems with trying to enforce least privilege. First, it can be complex to implement when it isn't
already a design feature of the programs and protocols you're using. Trying to add it on may be very difficult to
get right. Some of the cars that try to implement least privilege with separate keys for the trunk and the ignition
have remote trunk release buttons that are accessible without the keys, or fold-down rear seats that allow you to
access the trunk without opening it the traditional way at all. You need to be very careful to be sure that you've
actually succeeded in implementing least privilege.

Second, you may end up implementing something less than least privilege. Some cars have the gas cap release
in the glove compartment. That's intended to keep parking lot attendants from siphoning off your gas, but if you
lend a friend your car, you probably want him or her to be able to fill it up with gas. If you give your friend only
the ignition key, you're giving your friend less than the minimum privilege you want him or her to have (because
your friend won't be able to fill up the gas tank), but adding the key to the trunk and the glove compartment may
give your friend more privilege than you want.

You may find similar effects with computer implementations of least privilege. Trying to enforce least privilege on
people, rather than programs, can be particularly dangerous. You can predict fairly well what permissions a mail
server is going to need to do its job; human beings are less predictable and more likely to become annoyed and
dangerous if they can't do what they want. Be very careful to avoid turning your users into your enemies.

3.2 Defense in Depth

Another principle of security (again, any kind of security) is defense in depth. Don't depend on just one security
mechanism, however strong it may seem to be; instead, install multiple mechanisms that back each other up.
You don't want the failure of any single security mechanism to totally compromise your security. You can see
applications of this principle in other aspects of your life. For example, your front door probably has both a
doorknob lock and a dead bolt; your car probably has both a door lock and an ignition lock; and so on.

Although our focus in this book is on firewalls, we don't pretend that firewalls are a complete solution to the
whole range of Internet security problems. Any security - even the most seemingly impenetrable firewall - can be
breached by attackers who are willing to take enough risk and bring enough power to bear. The trick is to make
the attempt too risky or too expensive for the attackers you expect to face. You can do this by adopting multiple
mechanisms that provide backup and redundancy for each other: network security (a firewall), host security
(particularly for your bastion host), and human security (user education, careful system administration, etc.). All
of these mechanisms are important and can be highly effective, but don't place absolute faith in any one of them.

Your firewall itself will probably have multiple layers. For example, one architecture has multiple packet filters;
it's set up that way because the two filters need to do different things, but it's quite common to set up the second
one to reject packets that the first one is supposed to have rejected already. If the first filter is working properly,
those packets will never reach the second; however, if there's some problem with the first, then with any luck,
you'll still be protected by the second. Here's another example: if you don't want people sending mail to a
machine, don't just filter out the packets; also remove the mail programs from the machine. In situations in
which the cost is low, you should always employ redundant defenses.

These redundant defenses aren't solely, or even primarily, to protect from attackers; they mostly provide
protection against failures of one level of defense. In the car example, there's a door lock and an ignition lock,
and maybe an alarm system as well, but your average professional car thief can break all of them. The best you
can hope for is that the redundancy will slow a thief down some. However, if you're having a bad day and you
leave the door unlocked, the ignition lock will still keep casual thieves from driving the car away. Similarly,
redundant packet filters probably won't keep a determined attacker out (if you know how to get through the first
layer, you'll probably make it through the second). However, when a human or machine error turns off the first
layer, you'll still have protection.

3.3 Choke Point

A choke point forces attackers to use a narrow channel, which you can monitor and control. There are probably
many examples of choke points in your life: the toll booth on a bridge, the check-out line at the supermarket, the
ticket booth at a movie theatre.

In network security, the firewall between your site and the Internet (assuming that it's the only connection
between your site and the Internet) is such a choke point; anyone who's going to attack your site from the
Internet is going to have to come through that channel, which should be defended against such attacks. You
should be watching carefully for such attacks and be prepared to respond if you see them.

page 43

Building Internet Firewalls

A choke point is useless if there's an effective way for an attacker to go around it. Why bother attacking the
fortified front door if the kitchen door around back is wide open? Similarly, from a network security point of view,
why bother attacking the firewall if dozens or hundreds of unsecured dial-up lines could be attacked more easily
and probably more successfully?

A second Internet connection - even an indirect one, like a connection to another company that has its own
Internet connection elsewhere - is an even more threatening breach. Internet-based attackers might not have a
modem available, or might not have gotten around to acquiring phone service they don't need to pay for, but
they can certainly find even roundabout Internet connections to your site.

A choke point may seem to be putting all your eggs in one basket, and therefore a bad idea, but the key is that
it's a basket you can guard carefully. The alternative is to split your attention among many different possible
avenues of attack. If you split your attention in this way, chances are that you won't be able to do an adequate
job of defending any of the avenues of attack, or that someone will slip through one while you're busy defending
another (where the intruder may even have staged a diversion specifically to draw your attention away from the
real attack).

3.4 Weakest Link

A fundamental tenet of security is that a chain is only as strong as its weakest link and a wall is only as strong as
its weakest point. Smart attackers are going to seek out that weak point and concentrate their attentions there.
You need to be aware of the weak points of your defense so that you can take steps to eliminate them, and so
that you can carefully monitor those you can't eliminate. You should try to pay attention equally to all aspects of
your security, so that there is no large difference in how insecure one thing is as compared to another.

There is always going to be a weakest link, however; the trick is to make that link strong enough and to keep the
strength proportional to the risk. For instance, it's usually reasonable to worry more about people attacking you
over the network than about people actually coming to your site to attack you physically; therefore, you can
usually allow your physical security to be your weakest link. It's not reasonable to neglect physical security
altogether, however, because there's still some threat there. It's also not reasonable, for example, to protect
Telnet connections very carefully but not protect FTP connections, because of the similarities of the risks posed by
those services.

Host security models suffer from a particularly nasty interaction between choke points and weak links; there's no
choke point, which means that there are a very large number of links, and many of them may be very weak
indeed.

3.5 Fail-Safe Stance

Another fundamental principle of security is that, to the extent possible, systems should fail safe ; that is, if
they're going to fail, they should fail in such a way that they deny access to an attacker, rather than letting the
attacker in. The failure may also result in denying access to legitimate users as well, until repairs are made, but
this is usually an acceptable trade-off.

Safe failures are another principle with wide application in familiar places. Electrical devices are designed to go off
- to stop - when they fail in almost any way. Elevators are designed to grip their cables if they're not being
powered. Electric door locks generally unlock when the power fails, to avoid trapping people in buildings.

Most of the applications we discuss automatically fail safely. For example, if a packet filtering router goes down, it
doesn't let any packets in. If a proxying program goes down, it provides no service. On the other hand, some
host-based packet filtering systems are designed such that packets are allowed to arrive at a machine that runs a
packet filtering application and separately runs applications providing services. The way some of these systems
work, if the packet filtering application crashes (or is never started at boot time), the packets will be delivered to
the applications providing services. This is not a fail-safe design and should be avoided.

The biggest application of this principle in network security is in choosing your site's stance with respect to
security. Your stance is, essentially, your site's overall attitude towards security. Do you lean towards being
restrictive or permissive? Are you more inclined to err in the direction of safety (some might call it paranoia) or
freedom?

page 44

Building Internet Firewalls

There are two fundamental stances that you can take with respect to security decisions and policies:
The default deny stance

Specify only what you allow and prohibit everything else.
The default permit stance

Specify only what you prohibit and allow everything else.

It may seem obvious to you which of these is the "right" approach to take; from a security point of view, it's the
default deny stance. Probably, it will also seem obvious to your users and management; from their point of view,
it's the default permit stance. It's important to make your stance clear to users and management, as well as to
explain the reasons behind that stance. Otherwise, you're likely to spend a lot of unproductive time in conflict
with them, wondering "How could they be so foolish as to even suggest that?" time and again, simply because
they don't understand the security point of view.

3.5.1 Default Deny Stance: That Which Is Not Expressly Permitted Is Prohibited

The default deny stance makes sense from a security point of view because it is a fail-safe stance. It recognizes
that what you don't know can hurt you. It's the obvious choice for most security people, but it's usually not at all
obvious to users.

With the default deny stance, you prohibit everything by default; then, to determine what you are going to allow,
you:

. Examine the services your users want.
° Consider the security implications of these services and how you can safely provide them.
° Allow only the services that you understand, can provide safely, and see a legitimate need for.

Services are enabled on a case-by-case basis. You start by analyzing the security of a specific service, and
balance its security implications against the needs of your users. Based on that analysis and the availability of
various remedies to improve the security of the service, you settle on an appropriate compromise.

For one service, you might determine that you should provide the service to all users and can do so safely with
commonly available packet filtering or proxy systems. For another service, you might determine that the service
cannot be adequately secured by any currently available means, but that only a small number of your users or
systems require it. In the latter case, perhaps its use can be restricted to that small set of users (who can be
made aware of the risks through special training) or systems (which you may be able to protect in other ways -
for example, through host security). The whole key is to find a compromise that is appropriate to your particular
situation.

3.5.2 Default Permit Stance: That Which Is Not Expressly Prohibited Is Permitted

Most users and managers prefer the default permit stance. They tend to assume that everything will be, by
default, permitted, and that certain specific, troublesome actions and services will then be prohibited as
necessary. For example:

° NFS is not permitted across the firewall.

. World Wide Web access is restricted to users who have received awareness training about its security
problems.

° Users are not allowed to set up unauthorized servers.

They want you to tell them what's dangerous; to itemize those few (they think) things that they can't do; and to
let them do everything else. This is definitely not a fail-safe stance.

First, it assumes that you know ahead of time precisely what the specific dangers are, how to explain them so
users will understand them, and how to guard against them. Trying to guess what dangers might be in a system
or out there on the Internet is essentially an impossible task. There are simply too many possible problems, and
too much information (new security holes, new exploitations of old holes, etc.) to be able to keep up to date. If
you don't know that something is a problem, it won't be on your "prohibited" list. In that case, it will go right on
being a problem until you notice it, and you'll probably notice it because somebody takes advantage of it.

page 45

Building Internet Firewalls

Second, the default permit stance tends to degenerate into an escalating "arms race" between the firewall
maintainer and the users. The maintainer prepares defenses against user action or inaction (just keeps saying,
"Don't do that!"); the users come up with fascinating new and insecure ways of doing things; and the process
repeats, again and again. The maintainer is forever playing catch up. Inevitably, there are going to be periods of
vulnerability between the time that a system is set up, the time that a security problem is discovered, and the
time that the maintainer is able to respond to the problem. No matter how vigilant and cooperative everyone may
be, some things are going to fall through the cracks forever: because the maintainer has never heard about
them, never realized the full security consequences, or just plain hasn't had time to work on the problem.

About the only people who benefit from the default permit stance are potential attackers, because the firewall
maintainer can't possibly close all the holes, is forever stuck in "fire fighting" mode, and is likely to be far too
busy to notice an attacker's activities.

For example, consider the problem of sharing files with collaborators at another site. Your users' first idea will
probably be to use the same tool that they use to share files internally - for instance, NFS or Windows file
sharing. The problem is, both of these are completely unsafe to allow across a firewall (for reasons discussed in
Chapter 2, and Chapter 17). Suppose that your stance is a permissive one, and you haven't specifically told your
users that it's not safe to share files across your firewall (or even if you have told them, they don't remember or
don't care). In this case, you're probably going to find yourself sharing files across your firewall because it
seemed like a good idea to somebody who didn't understand (or care about) the security issues. If your stance is
default deny, on the other hand, your users' attempts to set up file sharing will fail. You'll need to explain why to
them, suggest alternatives that are more secure (such as FTP), and look for ways to make those more secure
alternatives easier to use without sacrificing security.

3.6 Universal Participation

In order to be fully effective, most security systems require the universal participation (or at least the absence of
active opposition) of a site's personnel. If someone can simply opt out of your security mechanisms, then an
attacker may be able to attack you by first attacking that exempt person's system and then attacking your site
from the inside. For example, the best firewall in the world won't protect you if someone who sees it as an
unreasonable burden sets up a back door connection between your site and the Internet in order to circumvent
the firewall. This can be as easy as buying a modem, obtaining free PPP or SLIP software off the Internet, and
paying a few dollars a month to a local low-end Internet service provider; this is well within the price range and
technical abilities of many users and managers.

Much more mundane forms of rebellion will still ruin your security. You need everybody to report strange
happenings that might be security-related; you can't see everything. You need people to choose good passwords;
to change them regularly; and not to give them out to their friends, relatives, and pets.

How do you get everyone to participate? Participation might be voluntary (you convince everybody that it's a
good idea) or involuntary (someone with appropriate authority and power tells them to cooperate or else), or
some combination of the two. Obviously, voluntary participation is strongly preferable to involuntary
participation; you want folks helping you, not looking for ways to get around you. This means that you may have
to work as an evangelist within your organization, selling folks on the benefits of security and convincing them
that the benefits outweigh the costs.

People who are not voluntary participants will go to amazing lengths to circumvent security measures. On one
voicemail system that required passwords to be changed every month, numerous people discovered that it
recorded only six old passwords, and took to changing their passwords seven times in a row (in seven separate
phone calls!) in order to be able to use the same password. This sort of behavior leads to an arms race (the
programmers limit the number of times you can change your password), and soon numerous people are sucked
into a purely internal battle. You have better things to do with your time, as do your users; it's worth spending a
lot of energy to convince people to cooperate voluntarily, because you'll often spend just as much to force them,
with worse side effects.

page 46

Building Internet Firewalls

3.7 Diversity of Defense

Diversity of defense is closely related to depth of defense but takes matters a bit further; it's the idea that you
need not only multiple layers of defense, but different kinds of defense. Having a door lock and an ignition lock
on a car is depth of defense; adding an alarm system creates not only depth but also diversity, by adding a
completely different kind of defense. Now, you are not only trying to keep people from being able to use the
vehicle, you're also trying to attract attention to people who're attacking it.

Properly implemented, diversity of defense makes a significant difference to the security of a system. However,
many attempts to create diversity of defense are not particularly effective. A popular theory is to use different
types of systems - for instance, in an architecture that has two packet filtering systems, you can increase
diversity of defense by using systems from different vendors. After all, if all of your systems are the same,
somebody who knows how to break into one of them probably knows how to break into all of them.

Using security systems from different vendors may reduce the chances of a common bug or configuration error
that compromises them all. There is a trade-off in terms of complexity and cost, however. Procuring and
installing multiple different systems is going to be more difficult, take longer, and be more expensive than
procuring and installing a single system (or even several identical systems). You're going to have to buy the
multiple systems (at reduced discounts from each vendor because you're buying less from them) and multiple
support contracts to cover them. It's also going to take additional time and effort for your staff to learn how to
deal with these different systems.

If you're not careful, you can create diversity of weakness instead of diversity of defense. If you have two
different packet filters, one of them in front of the other, then using different products will help protect you from
weaknesses in either one. If you have two different packet filters, each separately allowing traffic to come in,
then using different products will merely make you vulnerable to two different sets of problems instead of one.

Worse yet, all these problems caused by differences may not have bought you true diversity. Beware of
illusionary diversity. Two systems with different company's names on the front may have more in common than
you think:

. Systems of the same type (for instance, packet filters) share the inherent weaknesses of the
technology.

° Systems configured by the same people are probably configured with the same weaknesses.

. Many different systems share the same code lineage - code for things like TCP/IP protocol stacks is
rarely written from scratch.

° It's not unusual for companies to simply resell other people's technology under their nameplates.
We'll look at each of these issues in the following sections.
3.7.1 Inherent Weaknesses

If an attack gets through your packet filters because it relies on subverting a theoretically safe protocol, it will go
through any number of packet filters, regardless of who they're made by. In this case, true diversity of defense is
backing up a packet filter with a proxy system, which has some hope of recognizing protocol problems.

3.7.2 Common Configuration

Diverse systems configured by the same person (or group of people) may share common problems if the
problems stem from conceptual rather than technological roots. If the problem is a misunderstanding about how
a particular protocol works, for example, your diverse systems may all be configured incorrectly in the same way
according to that misunderstanding.

3.7.3 Common Heritage

Simply using different vendors' Unix systems probably won't buy you diversity, because most Unix systems are
derived from either the BSD or System V source code. Further, most common Unix networking applications (such
as Sendmail, telnet/telnetd, ftp/ftpd, and so on) are derived from the BSD sources, regardless of the platform.
Any number of bugs and security problems in the original releases were propagated into most of the various
vendor-specific versions of these operating systems; many vendor-specific versions of Unix still have bugs and
security problems that were first discovered years ago in other versions from other vendors, and have not yet
been fixed. Linux, which has an independently developed kernel, uses many applications derived from the same
Unix heritage.

page 47

Building Internet Firewalls

Similarly, Windows NT-based systems inherit any Windows NT weaknesses. Some versions of Windows NT-based
firewalls replace Windows NT's IP stack, which removes one major source of common holes but may introduce
others.

"Black-box" systems are based on something - usually a version of Unix or a Microsoft operating system - and
they inherit weaknesses the same way any other system does.

3.7.4 Skin-Deep Differences

A number of vendors remarket other people's products. This is particularly true in the firewall market, where a
number of companies that basically write applications software are trying to provide entire solutions. They do this
by buying the underlying computer and operating system from somebody else and doing a more or less subtle
job of relabeling it. There usually isn't any desire to mislead people; it's simply a marketing plus to have
something that looks unified. In addition, relabeled machines may be acceptable when the originals wouldn't be -
a manager who won't have Unix, or a company that won't buy a machine from a direct competitor, may find a
"black box" with an innocuous name on the front acceptable. However, this candy-coating may unexpectedly
reduce your diversity of defense to diversity of decor if you're not careful.

3.7.5 Conclusion

Although many sites acknowledge that using multiple types of systems could potentially increase their security,
they often conclude that diversity of defense is more trouble than it's worth, and that the potential gains and
security improvements aren't worth the costs. We don't dispute this; each site needs to make its own evaluation
and decision concerning this issue.

3.8 Simplicity

Simplicity is a security strategy for two reasons. First, keeping things simple makes them easier to understand; if
you don't understand something, you can't really know whether or not it's secure. Second, complexity provides
nooks and crannies for all sorts of things to hide in; it's easier to secure a studio apartment than a mansion.

Complex programs have more bugs, any of which may be security problems. Even if bugs aren't in and of
themselves security problems, once people start to expect a given system to behave erratically, they'll accept
almost anything from it, which kills any hope of their recognizing and reporting security problems when these
problems do arise.

You therefore want things as simple and elegant as possible; simple to understand, simple to use, simple to
administer. But just as Einstein famously suggested, you don't want it any simpler than possible. Effective
security is inherently complex. You want a system you can explain, but you still want it to work. Don't sacrifice
security in order to get simplicity.

3.9 Security Through Obscurity

Security through obscurity is the principle of protecting things by hiding them. In day-to-day life, people use it all
the time. Lock yourself out a lot? Hide a key somewhere. Going to leave a valuable object in your car? Put it out
of sight. Want to finish off those cookies yourself? Hide them behind the canned peas. In all of these cases,
there's no serious protection; anybody who can find the key, bothers to break your car window, or looks behind
the canned peas immediately gets the goodies. But as long as you don't do anything else stupid (hide the key
where everyone else does, leave the car unlocked, let somebody see you reaching behind the canned peas), you
get a perfectly acceptable level of protection.

In computer terms, all of the following are examples of security through obscurity:
° Putting a machine on the Internet and figuring nobody will try to break into it because you haven't
told anybody it's there.
. Developing a new encryption algorithm and not letting anybody look at it.

. Running a server on a different port number from the one it normally uses (providing FTP service, but
setting it to port 45 instead of port 20, for instance).

° Setting up your firewall so that outsiders don't see the same information about your hostnames that
insiders do.

page 48

Building Internet Firewalls

In general, when people discuss security through obscurity, they do so with contempt. "It's just security through
obscurity", they say, or "Why won't you tell me how it works? Everybody knows security through obscurity is
bad". In fact, obscurity is a perfectly valid security tactic; it's just not a very strong one. You may notice that in
all our noncomputer examples, it was used either in conjunction with much stronger security measures (a locked
house, a locked car) or for unimportant risks (it's not really that important if somebody else eats your cookies).

Security through obscurity is bad when:

. It's the only security there is.
® There isn't any real obscurity involved.
° It prevents people from accurately determining what level of security a product provides.

° It gives people irrational confidence.

For instance, making a machine Internet accessible, not securing it, and hoping nobody notices because you
aren't advertising it isn't security through obscurity. It's complete insecurity through almost no obscurity. You're
protecting something important with absolutely nothing but obscurity, and the obscurity isn't very good. Not
advertising something is not the same as hiding it. This is like protecting yourself from being locked out by
locking the front door but leaving the back door open, figuring that nobody will bother to go around and check it.

An encryption algorithm that hasn't been evaluated by experts because it's secret isn't security through
obscurity, either; it's arrogance on the part of the algorithm's inventor. Once again, there's not a whole lot of
obscurity in most cases. If you get the algorithm as software, it's easy enough to figure out exactly how it works.
(Building it into supposedly tamper-proof hardware helps, but it won't keep attackers out forever.) People will
attack encryption algorithms; they will figure out how they work; and if the algorithms are insecure, they will
break them. It's better to have experts do it before you actually start using the algorithm.

Running a server on a different port actually does provide some level of obscurity, but it's tiny. An attacker has
lots of ways of figuring out what port the server is on, including checking all the ports to see what answers,
asking somebody at your site how to configure a machine to talk to you, and watching the traffic that's coming to
your site. Meanwhile, you pay a high price in other annoyances, as normal clients can't talk to you without
reconfiguration and other people's firewall rules won't allow connections to you.

All of these frequent misuses of security through obscurity shouldn't prevent you from making appropriate use of
the concept. You don't need to tell people what kind of firewall you're using and exactly how you configure it. The
less information that attackers have, the better. Ignorance won't keep them out, but it may slow them down. The
slower they are, the better off you are. Anything that makes it take longer to get into your site increases the
chances that the attacker will go away and look for some place easier to break into, that you'll notice the attack
and take steps to get rid of them, and that you'll have changed your defenses before the attacker succeeds in
compromising them.

You don't want attackers to know:
° Exactly what kind of equipment you're using in your firewall (so that they can target vulnerabilities
specific to that equipment).
. What protocols you allow under what conditions (so that they can target those protocols).

. Valid internal hostnames and usernames (so that they can target those hosts or users, or use the
information to convince other people to give them access).

e What kind of intrusion detection you're doing (so that they can attack where you're not going to
notice).

You can't keep all of this information hidden, but the less of it that gets out, the more work an attacker needs to
do. Eventually, an attacker can figure out where your weaknesses are, but there's no need to make it easy.

page 49

Building Internet Firewalls

Part II: Building Firewalls

This part of the book describes how to build firewalls.

It discusses basic network concepts; explains firewall technologies, architectures,
and design principles; and describes how packet filtering and proxying systems
work.

It also presents a general overview of the process of designing and building bastion
hosts for firewall configurations, and discusses the specifics of building them in
Unix, Linux, Windows NT, and Windows 2000 environments.

page 50

Building Internet Firewalls

Chapter 4. Packets and Protocols

In order to understand firewall technology, you need to understand something about the underlying objects that
firewalls deal with: packets and protocols. We provide a brief introduction to high-level IP® networking concepts
(a necessity for understanding firewalls) here, but if you're not already familiar with the topic, you will probably
want to consult a more general reference on TCP/IP (for instance, TCP/IP Network Administration, by Craig Hunt,
published by O'Reilly and Associates).

To transfer information across a network, the information has to be broken up into small pieces, each of which is
sent separately. Breaking the information into pieces allows many systems to share the network, each sending
pieces in turn. In IP networking, those small pieces of data are called packets. All data transfer across IP
networks happens in the form of packets.

4.1 What Does a Packet Look Like?

To understand packet filtering, you first have to understand packets and how they are layered to build up the
TCP/IP protocol stack, which is:

e Application layer (e.g., FTP, Telnet, HTTP)

e Transport layer (TCP or UDP)

Internet layer (IP)

o Network access layer (e.g., Ethernet, FDDI, ATM)

Packets are constructed in such a way that layers for each protocol used for a particular connection are wrapped
around the packets, like the layers of skin on an onion.

At each layer (except perhaps at the application layer), a packet has two parts: the header and the body. The
header contains protocol information relevant to that layer, while the body contains the data for that layer, which
often consists of a whole packet from the next layer in the stack. Each layer treats the information it gets from
the layer above it as data, and applies its own header to this data. At each layer, the packet contains all of the
information passed from the higher layer; nothing is lost. This process of preserving the data while attaching a
new header is known as encapsulation.

At the application layer, the packet consists simply of the data to be transferred (for example, part of a file being
transferred during an FTP session). As it moves to the transport layer, the Transmission Control Protocol (TCP) or
the User Datagram Protocol (UDP) preserves the data from the previous layer and attaches a header to it. At the
next layer, the Internet layer, IP considers the entire packet (consisting now of the TCP or UDP header and the
data) to be data and now attaches its own IP header. Finally, at the network access layer, Ethernet or another
network protocol considers the entire IP packet passed to it to be data and attaches its own header. Figure 4.1
shows how this works.

At the other side of the connection, this process is reversed. As the data is passed up from one layer to the next
higher layer, each header (each skin of the onion) is stripped off by its respective layer. For example, the
Internet layer removes the IP header before passing the encapsulated data up to the transport layer (TCP or
UDP).

In trying to understand packet filtering, the most important information from our point of view is in the headers
of the various layers. The following sections look at several examples of different types of packets and show the
contents of each of the headers that packet filtering routers will be examining. We assume a certain knowledge of
TCP/IP fundamentals and concentrate on discussing the particular issues related to packet filtering.

In the following discussion, we start with a simple example demonstrating TCP/IP over Ethernet. From there, we
go on to discuss IP's packet filtering characteristics, then protocols above IP (such as TCP, UDP, and ICMP),
protocols below IP (such as Ethernet), and finally non-IP protocols (such as NetBEUI, AppleTalk, and IPX).

6 Unless otherwise noted, we are discussing IP version 4, which is the version currently in common use.

page 51

Building Internet Firewalls

Figure 4.1. Data encapsulation

Application Layer
(SMTF Telnet, FTR &te)

Transport Layer
(TCR U0 1CMP et)

Imernet Layer
e

Network Access Layer
{Ethernet, FOOY, ATM, efc.}

4.1.1 TCP/IP/Ethernet Example

Let's consider an example of a TCP/IP packet (for example, one that is part of a Telnet connection) on an
Ethernet.” We're interested in four layers here: the Ethernet layer, the IP layer, the TCP layer, and the data layer.
In this section, we'll consider them from bottom to top and look at the contents of the headers that the packet
filtering routers will be examining.

4.1.1.1 Ethernet layer

At the Ethernet layer, the packet consists of two parts: the Ethernet header and the Ethernet body. In general,
you won't be able to do packet filtering based on information in the Ethernet header. In some situations, you may
be interested in Ethernet address information. The Ethernet address is also known as the MAC (Media Access
Control) address. Basically, the header tells you:

What kind of packet this is

We'll assume in this example that it is an IP packet, as opposed to an AppleTalk packet, a Novell packet,
a DECNET packet, or some other kind of packet.

The Ethernet address of the machine that put the packet onto this particular Ethernet network segment

The original source machine, if it's attached to this segment; otherwise, the last router in the path from
the source machine to here.

The Ethernet address of the packet's destination on this particular Ethernet network segment

Perhaps the destination machine, if it's attached to this segment; otherwise, the next router in the path
from here to the destination machine. Occasionally it's a broadcast address indicating that all machines
should read the packet, or a multicast address indicating that a group of subscribing machines should
read the packet.

Because we are considering IP packets in this example, we know that the Ethernet body contains an IP packet.

7 Ethernet is the most popular networking protocol currently at the link layer, 10-base T and 100-base T networks are almost always Ethernet
networks.

page 52

Building Internet Firewalls

4.1.1.2 IP layer

At the IP layer, the IP packet is made up of two parts: the IP header and the IP body, as shown in Figure 4.2.
From a packet filtering point of view, the IP header contains four interesting pieces of information:

The 1P source address

Four bytes long and typically written as something like 172.16.244.34.
The 1P destination address

Just like the IP source address.
The IP protocol type

Identifies the IP body as a TCP packet, as opposed to a UDP packet, an ICMP (Internet Control Message
Protocol) packet, or some other type of packet.

The IP options field

Almost always empty; where options like the IP source route and the IP security options would be
specified if they were used for a given packet (see the discussion in Section 4.2.2, later in this chapter).

Figure 4.2. IP header and body

|- its -
A
0 4q 3 2 5] 0 4 E 1
; Uersi:hnl IHL |T].r|:le of Service Total Length
5 |dentification Flans | Fragmentation Offset
g s Time to Live Protocol Header Checksum 5
= Source Address t
c Destination Address
B Options Fadding

Data begins here ...

Most networks have a limit on the maximum length of a packet, which is much shorter than the limit imposed by
IP. In order to deal with this conflict, IP may divide a packet that is too large to cross a given network into a
series of smaller packets called fragments. Fragmenting a packet doesn't change its structure at the IP layer (the
IP headers are duplicated into each fragment), but it may mean that the body contains only a part of a packet at
the next layer. (See the discussion in Section 4.2.3, later in this chapter.)

The IP body in this example contains an unfragmented TCP packet, although it could just as well contain the first
fragment of a fragmented TCP packet.

4.1.1.3 TCP layer

At the TCP layer, the packet again contains two parts: the TCP header and the TCP body. From a packet filtering
point of view, the TCP header contains three interesting pieces of information:

The TCP source port

A two-byte number that specifies what client or server process the packet is coming from on the source
machine.

The TCP destination port

A two-byte number that specifies what client or server process the packet is going to on the destination
machine.

page 53

Building Internet Firewalls

The TCP flags field

This field contains various flags that are used to indicate special kinds of packets, particularly during the
process of setting up and tearing down TCP connections. These flags are discussed further in the
sections that follow.

The TCP body contains the actual "data" being transmitted - for example, for Telnet the keystrokes or screen
displays that are part of a Telnet session, or for FTP the data being transferred or commands being issued as part
of an FTP session.

4.2 1P

IP serves as a common middle ground for the Internet. It can have many different layers below it, such as
Ethernet, token ring, FDDI, PPP, or carrier pigeon.® IP can have many other protocols layered on top of it, with
TCP, UDP, and ICMP being by far the most common, at least outside of research environments. In this section,
we discuss the special characteristics of IP relevant to packet filtering.

4.2.1 IP Multicast and Broadcast

Most IP packets are what are called unicast; they are sent to an individual destination host. IP packets may also
be multicast (sent to a group of hosts) or broadcast (intended for every host that can receive them). Multicast
packets are like memos, which are sent to a group of people ("Employees in the purchasing department" or
"People working on the Ishkabibble project" or "Potential softball players"); their destination is a group of hosts
that ought to be interested in the information. Broadcast packets are like announcements made on overhead
speakers; they are used when everybody needs the information ("The building is on fire, evacuate now") or when
the message's sender can't determine which particular destination should get the message, but believes that the
destination will be able to figure it out ("The green Honda with license plate 4DZM362 has its lights on").

The purpose of multicasting is to create efficiency. Unlike a memo, a multicast packet is a single object. If 7, or
17, or 70 hosts want the same information, a multicast packet allows you to get it to them by sending just one
packet, instead of one packet each. A broadcast packet would give you the same savings in network resources,
but it would waste computing time on the uninterested machines that would have to process the packet in order
to decide it was irrelevant and reject it.

Note that multicast and broadcast addresses are meant as destination addresses, not as source addresses. A
machine may use a broadcast address as a source address only if it does not have a legitimate source address
and is trying to get one (see Chapter 22, for more information about DHCP, which may use this mechanism).
Otherwise, multicast and broadcast source addresses are generally signs of an attacker who is using a destination
machine as an amplifier. If a packet has a broadcast source address and a unicast destination address, any reply
to it will have a unicast source address and a broadcast destination; thus, an attacker who uses a broadcast
source can cause another machine to do the broadcasting.

This is a good deal for the attacker because it's rare that packets with a broadcast destination are allowed to
cross a firewall (or, in fact, any router). The attacker probably wouldn't be able to get at a large number of hosts
without using this kind of dirty trick. You don't want broadcast information from other networks; it's not relevant
to your life, and it may be dangerous (either because it's incorrect for your network, or because it allows
attackers to gather information about your network). Routers are sometimes configured to pass some or all
broadcasts between networks that are part of the same organization, because some protocols rely on broadcasts
to distribute information. This is tricky to get right and tends to result in overloaded networks and hosts, but it is
more acceptable than passing broadcasts to or from the Internet.

Your firewall should therefore refuse to pass packets with broadcast destinations and packets with multicast or
broadcast source addresses.

4.2.2 IP Options

As we saw in the previous discussion of the IP layer, IP headers include an options field, which is usually empty.
In its design, the IP options field was intended as a place for special information or handling instructions that
didn't have a specific field of their own in the header. However, TCP/IP's designers did such a good job of
providing fields for everything necessary that the options field is almost always empty. In practice, IP options are
very seldom used except for break-in attempts and (very rarely) for network debugging.

8 See RFC 1149, dated 1 April 1990, which defines the Avian Transport Protocol; RFCs dated 1 April are usually worth reading.

page 54

Building Internet Firewalls

The most common IP option a firewall would be confronted with is the IP source route option. Source routing lets
the source of a packet specify the route the packet is supposed to take to its destination, rather than letting each
router along the way use its routing tables to decide where to send the packet next. Source routing is supposed
to override the instructions in the routing tables. In theory, the source routing option is useful for working around
routers with broken or incorrect routing tables; if you know the route that the packet should take, but the routing
tables are broken, you can override the bad information in the routing tables by specifying appropriate IP source
route options on all your packets. In practice though, source routing is commonly used only by attackers who are
attempting to circumvent security measures by causing packets to follow unexpected paths.

This is in fact a circular problem; several researchers have proposed interesting uses of source routing, which are
impossible to use widely because source routing is commonly disabled - because it's useful for nothing but
attacks. This situation interferes considerably with widespread use of most solutions for mobile IP (allowing
machines to move from place to place while keeping a fixed IP address).

Some packet filtering systems take the approach of dropping any packet that has any IP option set, without even
trying to figure out what the option is or what it means; this doesn't usually cause significant problems.

4.2.3 IP Fragmentation

Another IP-level consideration for packet filtering is fragmentation. One of the features of IP is its ability to divide
a large packet that otherwise couldn't traverse some network link (because of limitations on packet size along
that link) into smaller packets, called fragments, which can traverse that link. The fragments are then
reassembled into the full packet by the destination machine (not by the machine at the other end of the limited
link; once a packet is fragmented, it normally stays fragmented until it reaches its destination).

Normally, any router can decide to fragment a packet. A flag in the IP header can be used to prevent routers
from fragmenting packets. Originally, this wasn't much used, because a router that needs to fragment a packet
but is forbidden to do so will have to reject the packet, and communication will fail, which is generally less
desirable than having the packet fragmented. However, there is now a system called path maximum transmission
unit (MTU) discovery that uses the flag that prevents fragmentation.

Path MTU discovery is a way for systems to determine what is the largest packet that can be sent to another
machine without getting fragmented. Large unfragmented packets are more efficient than small packets, but if
packets have to be broken up later in the process, this will significantly decrease transfer speed. Therefore,
maximum efficiency depends on knowing how big to make the packets, but that depends on all the network links
between the machines. Neither machine has any way to know what the answer is (and, in fact, it may vary from
moment to moment). In order to discover the limit, systems can send out packets with "don't fragment" set and
look for the error response that says that the packet has been dropped because it was too big but could not be
fragmented. If there's an error, the machine reduces the packet size; if there's no error, it increases it. This adds
some extra expense at the beginning of a connection, but for a connection that transmits a significant amount of
data across a network that includes a limited link, the overall transmission time will probably be improved despite
the intentionally lost packets. However, path MTU discovery will fail catastrophically if the error messages (which
are ICMP messages, discussed later in this chapter) are not correctly returned (for instance, if your firewall drops
them).

IP fragmentation is illustrated in Figure 4.3.

Figure 4.3. Data fragmentation

P | TCP
Header ; Header

P | oTCe
Header g Header

IP
Header

IP
Header

page 55

Building Internet Firewalls

From a packet filtering point of view, the problem with fragmentation is that only the first fragment will contain
the header information from higher-level protocols, like TCP, that the packet filtering system needs in order to
decide whether or not to allow the full packet. Originally, the common packet filtering approach to dealing with
fragmentation was to allow any non-first fragments through and to do packet filtering only on the first fragment
of a packet. This was considered safe because if the packet filtering decides to drop the first fragment, the
destination system will not be able to reassemble the rest of the fragments into the original packet, regardless of
how many of the rest of the fragments it receives. If it can't reconstruct the original packet, the partially
reassembled packet will not be accepted.

However, there are still problems with fragmented packets. If you pass all non-first fragments, the destination
host will hold the fragments in memory for a while, waiting to see if it gets the missing piece; this makes it
possible for attackers to use fragmented packets in a denial of service attack. When the destination host gives up
on reassembling the packet, it will send an ICMP "packet reassembly time expired" message back to the source
host, which will tell an attacker that the host exists and why the connection didn't succeed.

In addition, attackers can use specially fragmented packets to conceal data. Each fragment contains information
about where the data it contains starts and ends. Normally, each one starts after the last one ended. However,
an attacker can construct packets where fragments actually overlap, and contain the same data addresses. This
does not happen in normal operation; it can happen only when bugs or attackers are involved, and attackers are
by far the most likely cause.

Operating systems differ in their response to overlapping fragments. Because overlapping fragments are
abnormal, many operating systems respond very badly to them and may reassemble them into invalid packets,
with the expected sorts of unfortunate results up to and including operating system crashes. When they are
reassembled, there are differences in whether the first or second fragment's data is kept; these differences can
be increased by sending the fragments out of order. Some machines prefer the first version received, others the
most recent version received, others the numerically first, and still others the numerically last. This makes it
nearly impossible for packet filtering or intrusion detection systems to figure out what data the receiving system
will actually see if and when the fragments are reassembled.

Three kinds of attacks are made possible by overlapping fragments:

° Simple denial of service attacks against hosts with poor responses to overlapping fragments.

° Information-hiding attacks. If an attacker knows that virus detectors, intrusion detection systems, or
other systems that pay attention to the content of packets are in use and can determine what
assembly method the systems use for overlapping fragments, the attacker can construct overlapping
fragments that will obscure content from the watching systems.

. Attacks that get information to otherwise blocked ports. An attacker can construct a packet with
acceptable headers in the first fragment but then overlap the next fragment so that it also has
headers in it. Since packet filters don't expect TCP headers in non-first fragments, they won't filter on
them, and the headers don't need to be acceptable. Figure 4.4 shows overlapped fragments.

There are other, special problems with passing outbound fragments. Outbound fragments could conceivably
contain data you don't want to release to the world. For example, an outbound NFS packet would almost certainly
be fragmented, and if the file were confidential, that information would be released. If this happens by accident,
it's unlikely to be a problem; people do not generally hang around looking at the data in random packets going by
just in case there's something interesting in them. You could wait a very long time for somebody to accidentally
send a fragment out with interesting data in it.

If somebody inside intentionally uses fragmentation to transmit data, you have hostile users within the firewall,
and no firewall can deal successfully with insiders. (They probably aren't very clever hostile users, though,
because there are easier ways to get data out.)

However, there is one other situation in which outbound fragments could carry data: if you have decided to deal
with some vulnerability by blocking outbound responses to something (instead of attempting to block the original
request on the incoming side, which would be a better idea), and the reply is fragmented. In this situation, non-
first fragments of the reply will get out, and the attacker has reason to expect them and look for them. You can
deal with this by being careful to filter out requests and by not relying on filtering out the replies.

Because of these many and varied problems with fragmentation, you should look for a packet filter that does
fragment reassembly; rather than either permitting or denying fragments, the packet filter should reassemble the
packet locally (and, if necessary, refragment it before sending it on). This will increase the load on the firewall
somewhat, but it protects against all fragmentation-based risks and attacks, except those the firewall itself is
vulnerable to (for instance, denial of service attacks based on sending non-first fragments until the firewall runs
out of memory).

page 56

Building Internet Firewalls

Figure 4.4. Overlapping fragments

Normal
Tl
Header Header
I
Header

Overlapping data
P TCP
Header : Header
IP
Header

Overiapping headers

i i
Header : Header

IP Fake TCP
Header: Header

If you cannot do fragment reassembly, your safest option is to reject all non-first fragments. This may destroy
connections that otherwise would have succeeded, but it is the lesser of two evils. Denying fragments will cause
some connections to fail mysteriously, which is extremely unpleasant to debug. On the other hand, allowing them
will open you to a variety of attacks that are widely exploited on the Internet. Fortunately, fragmented packets
are becoming rarer as the use of path MTU discovery increases.

4.3 Protocols Above IP

IP serves as the base for a number of different protocols; by far the most common are TCP, UDP, and ICMP. In
addition, we briefly discuss IP over IP (i.e., an IP packet encapsulated within another IP packet), which is used
primarily for tunneling protocols over ordinary IP networks. This technique has been used in the past to tunnel
multicast IP packets over nonmulticast IP networks, and more recently for a variety of virtual private networking
systems, IPv6, and some systems for supporting mobile IP. These are the only IP-based protocols that you're
likely to see being routed between networks outside a research environment.®

4.3.1 TCP

TCP is the protocol most commonly used for services on the Internet. For example, Telnet, FTP, SMTP, NNTP, and
HTTP are all TCP-based services. TCP provides a reliable, bidirectional connection between two endpoints.
Opening a TCP connection is like making a phone call: you dial the number, and after a short setup period, a
reliable connection is established between you and whomever you're calling.

TCP is reliable in that it makes three guarantees to the application layer:

e The destination will receive the application data in the order it was sent.
e The destination will receive all the application data.

e The destination will not receive duplicates of any of the application data.

9 You may also see the routing protocols OSPF or IGMP, which are discussed in Chapter 22. However, they are rarely distributed between
networks and do not form the basis for other protocols.

page 57

Building Internet Firewalls

TCP will kill a connection rather than violate one of these guarantees. For example, if TCP packets from the
middle of a session are lost in transit to the destination, the TCP layer will arrange for those packets to be
retransmitted before handing the data up to the application layer. It won't hand up the data following the missing
data until it has the missing data. If some of the data cannot be recovered, despite repeated attempts, the TCP
layer will kill the connection and report this to the application layer, rather than hand up the data to the
application layer with a gap in it.

These guarantees incur certain costs in both setup time (the two sides of a connection have to exchange startup
information before they can actually begin moving data) and ongoing performance (the two sides of a connection
have to keep track of the status of the connection, to determine what data needs to be resent to the other side to
fill in gaps in the conversation).

TCP is bidirectional in that once a connection is established, a server can reply to a client over the same
connection. You don't have to establish one connection from a client to a server for queries or commands and
another from the server back to the client for answers.

If you're trying to block a TCP connection, it is sufficient to simply block the first packet of the connection.
Without that first packet (and, more importantly, the connection startup information it contains), any further
packets in that connection won't be reassembled into a data stream by the receiver, and the connection will
never be made. That first packet is recognizable because the ACK bit in its TCP header is not set; all other
packets in the connection, regardless of which direction they're going in, will have the ACK bit set. (As we will
discuss later, another bit, called the SYN bit, also plays a part in connection negotiation; it must be on in the first
packet, but it can't be used to identify the first packet because it is also on in the second packet.)

Recognizing these "start-of-connection" TCP packets lets you enforce a policy that allows internal clients to
connect to external servers but prevents external clients from connecting to internal servers. You do this by
allowing start-of-connection TCP packets (those without the ACK bit set) only outbound and not inbound. Start-
of-connection packets would be allowed out from internal clients to external servers but would not be allowed in
from external clients to internal servers. Attackers cannot subvert this approach simply by turning on the ACK bit
in their start-of-connection packets, because the absence of the ACK bit is what identifies these packets as start-
of-connection packets.

Packet filtering implementations vary in how they treat and let you handle the ACK bit. Some packet filtering
implementations give direct access to the ACK bit - for example, by letting you include "ack" as a keyword in a
packet filtering rule. Some other implementations give indirect access to the ACK bit. For example, the Cisco
"established" keyword works by examining this bit (established is "true" if the ACK bit is set, and "false" if the
ACK bit is not set). Finally, some implementations don't let you examine the ACK bit at all.

4.3.1.1 TCP options

The ACK bit is only one of the options that can be set; the whole list, in the order they appear in the header, is:

. URG (urgent)

® ACK (acknowledgment)

° PSH (push)

. RST (reset)

. SYN (synchronize)

. FIN (finish)
URG and PSH are supposed to be used to identify particularly critical data; PSH tells the receiver to stop buffering
and let some program have the data, while URG more generally marks data that the sender thinks is particularly
important (sometimes incorrectly called "out of band" data). In practice, neither of these is reliably implemented,

and for most purposes, firewalls do not need to take special action based on them. It can be useful for firewalls to
drop packets with URG or PSH set when dealing with protocols that are known not to use these features.

ACK and SYN together make up the famed TCP three-way handshake (so-called because it takes three packets to
set up a connection). Figure 4.5 shows what ACK and SYN are set to on packets that are part of a TCP
connection.

SYN is turned on for the first two packets of a connection (one in each direction), in order to set up sequence
numbers. The first packet of a connection must have ACK off (since it isn't in response to anything) but SYN on
(to give the next packet a number to acknowledge). Sequence numbers are discussed further in the section that
follows.

page 58

Building Internet Firewalls

Figure 4.5. ACK bits on TCP packets

oo I
i =|

== |

I

ACK=1, SYH=0

»
|
seew

RST and FIN are ways of closing a connection. RST is an ungraceful close, sent to indicate that something has
gone wrong (for instance, there's no process listening on the port, or there seems to be something nasty about
the packet that came in). FIN is part of a graceful shutdown, where both ends send FIN to each other to say
goodbye.

Of this entire laundry list, ACK and RST are the only two of interest to a firewall in normal operation (ACK
because it is a reliable way to identify the first packet of connections, and RST because it's a useful way to shut
people up without returning a helpful error message). However, there are a number of attacks that involve
setting options that don't normally get set. Many TCP/IP implementations respond badly to eccentric
combinations of options (for instance, they crash the machine). Others respond but don't log the fact, allowing
attackers to scan networks without being noticed. These attacks are discussed further in the section that follows.

4.3.1.2 TCP sequence numbers

TCP provides a guarantee to applications that they will always receive data in the correct order, but nothing
provides a guarantee to TCP that packets will always arrive in the correct order. In order to get the packets back
into the correct order, TCP uses a number on each packet, called a sequence number. At the beginning of a
connection, each end picks a number to start off with, and this number is what's communicated when SYN is set.
There are two packets with SYN set (one in each direction), because the two ends maintain separate sequence
numbers, chosen independently. After the SYN, for each packet, the number is simply incremented by the
number of data bytes in the packet. If the first sequence number is 200, and the first data packet has 80 bytes of
data on it, it will have a sequence number of 280.1° The ACK is accompanied by the number of the next expected
piece of data (the sequence number plus one, or 281 in this case).

In order for an attacker to take over a TCP connection, the attacker needs to get the sequence numbers correct.
Since sequence numbers are just incremented during a connection, this is easy for an attacker who can see the
traffic. On the other hand, it's much more difficult if you can't see the initial negotiation; the initial sequence
number is supposed to be randomly chosen. However, on many operating systems, initial sequence numbers are
not actually random. In some TCP/IP implementations, initial sequence numbers are predictable; if you know
what initial sequence number one connection uses, you can figure out what initial sequence number the next one
will use, because the numbers are simply incremented, either based on number of connections (the number gets
bigger by some fixed amount on each connection) or based on time (the number gets bigger by some fixed
amount each microsecond).

10 The details of how the sequence number is calculated are actually slightly more complex than this, but the end result is as described.

page 59

Building Internet Firewalls

This may seem like it's not worth worrying about. After all, in order to hijack a connection by predicting sequence
numbers, an attacker needs:

1. The ability to forge TCP/IP packets.
2. The initial sequence number for one connection.

3. The knowledge that somebody else has started up a desirable connection (but not the ability to
actually see that connection - if the attacker can see the connection, there's no need to predict the
sequence number).

4. Precise information about when the desirable connection started up.

Either the ability to redirect traffic so that you receive responses, or the ability to continue the
conversation and achieve something without ever getting any of the responses.

In fact, for years this was considered a purely hypothetical attack, something that paranoid minds came up with
but that presented no danger in reality. However, it was eventually implemented, and programs are now
available that simplify the process. It's still not a technique that's used routinely by casual attackers, but it's
available to determined attackers, even if they aren't technically extremely advanced. You should be sure that
security-critical hosts have truly random initial sequence numbers by installing an appropriate version of the
operating system.

4.3.2 UDP

The body of an IP packet might contain a UDP packet instead of a TCP packet. UDP is a low-overhead alternative
to TCP.

UDP is low overhead in that it doesn't make any of the reliability guarantees (delivery, ordering, and
nonduplication) that TCP does, and, therefore, it doesn't need the mechanism to make those guarantees. Every
UDP packet is independent; UDP packets aren't part of a "virtual circuit" as TCP packets are. Sending UDP
packets is like dropping postcards in the mail: if you drop 100 postcards in the mail, even if they're all addressed
to the same place, you can't be absolutely sure that they're all going to get there, and those that do get there
probably won't be in exactly the same order they were in when you sent them. (As it turns out, UDP packets are
far less likely to arrive than postcards - but they are far more likely to arrive in the same order.)

Unlike postcards, UDP packets can actually arrive intact more than once. Multiple copies are possible because the
packet might be duplicated by the underlying network. For example, on an Ethernet, a packet would be
duplicated if a router thought that it might have been the victim of an Ethernet collision. If the router was wrong,
and the original packet had not been the victim of a collision, both the original and the duplicate would eventually
arrive at the destination. (An application may also decide to send the same data twice, perhaps because it didn't
get an expected response to the first one, or maybe just because it's confused.)

All of these things can happen to TCP packets, too, but they will be corrected before the data is passed to the
application. With UDP, the application is responsible for dealing with the data exactly as it arrives in packets, not
corrected by the underlying protocol.

UDP packets are very similar to TCP packets in structure. A UDP header contains UDP source and destination port
numbers, just like the TCP source and destination port numbers. However, a UDP header does not contain any of
the flags or sequence numbers that TCP uses. In particular, it doesn't contain anything resembling an ACK bit.
The ACK bit is part of TCP's mechanism for guaranteeing reliable delivery of data. Because UDP makes no such
guarantees, it has no need for an ACK bit. There is no way for a packet filtering router to determine, simply by
examining the header of an incoming UDP packet, whether that packet is a first packet from an external client to
an internal server, or a response from an external server back to an internal client.

4.3.3 ICMP

ICMP is used for IP status and control messages. ICMP packets are carried in the body of IP packets, just as TCP
and UDP packets are. Examples of ICMP messages include:

Echo request
What a host sends when you run ping.
Echo response

What a host responds to an "echo request" with.

page 60

Building Internet Firewalls

Time exceeded

What a router returns when it determines that a packet appears to be looping. A more intuitive name
might be maximum hopcount exceeded because it's based on the number of routers a packet has
passed through, not a period of time.

Destination unreachable

What a router returns when the destination of a packet can't be reached for some reason (e.g., because
a network link is down).

Redirect

What a router sends a host in response to a packet the host should have sent to a different router. The
router handles the original packet anyway (forwarding it to the router it should have gone to in the first
place), and the redirect tells the host about the more efficient path for next time.

Unlike TCP or UDP, ICMP has no source or destination ports, and no other protocols layered on top of it. Instead,
there is a set of defined ICMP message types; the particular type used dictates the interpretation of the rest of
the ICMP packet. Some types also have individual codes that convey extra information (for instance, the
"Destination unreachable" type has codes for different conditions that caused the destination to be unreachable,
one of which is the "Fragmentation needed and Don't Fragment set" code used for path MTU discovery).

Many packet filtering systems let you filter ICMP packets based on the ICMP message type field, much as they
allow you to filter TCP or UDP packets based on the TCP or UDP source and destination port fields. Relatively few
of them allow you to filter on codes within a type. This is a problem because you will probably want to allow
"Fragmentation needed and Don't Fragment set" (for path MTU discovery) but not any of the other codes under
"Destination unreachable", all of which can be used to scan networks to see what hosts are attackable.

Most ICMP packets have little or no meaningful information in the body of the packet, and therefore should be
quite small. However, various people have discovered denial of service attacks using oversized ICMP packets
(particularly echo packets, otherwise known as "ping" packets after the Unix command normally used to send
them). It is a good idea to put a size limit on any ICMP packet types you allow through your filters.

There have also been attacks that use ICMP as a covert channel, a way of smuggling information. As we
mentioned previously, most ICMP packet bodies contain little or no meaningful information. However, they may
contain padding, the content of which is undefined. For instance, if you use ICMP echo for timing or testing
reasons, you will want to be able to vary the length of the packets and possibly the patterns of the data in them
(some transmission mechanisms are quite sensitive to bit patterns, and speeds may vary depending on how
compressible the data is, for instance). You are therefore allowed to put arbitrary data into the body of ICMP echo
packets, and that data is normally ignored; it's not filtered, logged, or examined by anybody. For someone who
wants to smuggle data through a firewall that allows ICMP echo, these bodies are a very tempting place to put it.
They may even be able to smuggle data into a site that allows only outbound echo requests by sending echo
responses even when they haven't seen a request. This will be useful only if the machine that the responses are
being sent to is configured to receive them; it won't help anyone break into a site, but it's a way for people to
maintain connections to compromised sites.

4.3.4 IP over IP and GRE

In some circumstances, IP packets are encapsulated within other IP packets for transmission, yielding so-called
IP over IP. IP over IP is used for various purposes, including:

° Encapsulating encrypted network traffic; for instance, using the IPsec standard or PPTP, which are
described in Chapter 14.

. Carrying multicast IP packets (that is, packets with multicast destination addresses) between
networks that do support multicasting over intermediate networks that don't

° Mobile IP (allowing a machine to move between networks while keeping a fixed IP address)

e Carrying IPv6 traffic over IPv4 networks
Multiple different protocols are used for IP over IP, including protocols named Generic Routing Encapsulation
(GRE), IP in IP, IP within IP, and swIPe. Currently, GRE appears to be the most popular. The general principle is

the same in all cases; a machine somewhere picks up a packet, encapsulates it into a new IP packet, and sends it
on to a machine that will unwrap it and process it appropriately.

page 61

Building Internet Firewalls

In some cases (for instance, for multicast and IPv6 traffic), the encapsulation and de-encapsulation is done by
special routers. The sending and receiving machines send out their multicast or IPv6 traffic without knowing
anything about the network in between, and when they get to a point where the network will not handle the
special type, a router does the encapsulation. In this case, the encapsulated packet will be addressed to another
router, which will unwrap it. The encapsulation may also be done by the sending machine or the de-encapsulation
by the receiving machine.

IP over IP is also a common technique used for creating virtual private networks, which are discussed further in
Chapter 5. It is the basis for a number of higher-level protocols, including IPsec and PPTP, which are discussed
further in Chapter 14.

IP over IP presents a problem for firewalls because the firewall sees the IP header information of the external
packet, not the original information. In some cases, it is possible but difficult for the firewall to read the original
headers; in other cases, the original packet information is encrypted, preventing it from being read by snoopers,
but also by the firewall. This means that the firewall cannot make decisions about the internal packet, and there
is a risk that it will pass traffic that should be denied. IP over IP should be permitted only when the destination of
the external packet is a trusted host that will drop the de-encapsulated packet if it is not expected and permitted.

4.4 Protocols Below IP

It's theoretically possible to filter on information from below the IP level - for example, the Ethernet hardware
address. However, doing so is very rarely useful because in most cases, all packets from the outside are coming
from the same hardware address (the address of the router that handles your Internet connection). Furthermore,
many routers have multiple connections with different lower-level protocols. As a result, doing filtering at lower
levels would require configuring different interfaces with different kinds of rules for the different lower-level
protocols. You couldn't write one rule to apply to all interfaces on a router that had two Ethernet connections and
two FDDI connections because the headers of Ethernet and FDDI packets, while similar, are not identical. In
practice, IP is the lowest level protocol at which people choose to do packet filtering.

However, if you are dealing with a network with a small, fixed number of machines on it, filtering based on
hardware addresses is a useful technique for detecting and disabling machines that have been added
inappropriately. (It is also a useful technique for making yourself look like an idiot when you exchange network
boards, and an important machine suddenly and mysteriously stops working - better document it very carefully.)
Even on relatively large networks, setting alarms based on hardware addresses will notify you when machines are
changed or added. This may not be obvious based on IP address alone, since people who add new machines will
often reuse an existing IP address.

Filtering based on hardware addresses is not a reliable security mechanism against hostile insiders. It is trivial to
reset the apparent hardware address on most machines, so an attacker can simply choose to use the hardware
address of a legitimate machine.

4.5 Application Layer Protocols

In most cases, there is a further protocol on top of any or all of the above protocols, specific to the application.
These protocols differ widely in their specificity, and there are hundreds, if not thousands, of them (almost as
many as there are network-based applications). Much of the rest of this book is about network applications and
their protocols.

4.6 IP Version 6

The current version of IP (as we write) is officially known as IP Version 4; throughout this book, whenever we
talk about IP with no further qualification, that's what we're talking about. There is, however, a new version of IP
in the works right now, known as IP Version 6 (IPv6 for short). Why do we need a new version of IP, and how will
IPv6 affect you?

The impetus to create IPv6 was one simple problem: the Internet is running out of IP addresses. The Internet has
become so popular that there just won't be enough IP network numbers (particularly Class B network numbers,
which have proven to be what most sites need) to go around; by some estimates, if nothing had been done, the
Internet would have run out of addresses in 1995 or 1996. Fortunately, the problem was recognized, and
something was done.

page 62

Building Internet Firewalls

Two things, actually - first, the implementation of a set of temporary measures and guidelines to make best
possible use of the remaining unassigned addresses, and second, the design and implementation of a new
version of IP that would permanently deal with the address exhaustion issue.

If you're going to create a new version of IP in order to deal with address-space exhaustion, you might as well
take advantage of the opportunity to deal with a whole raft of other problems or limitations in IP as well, such as
encryption, authentication, source routing, and dynamic configuration. (For many people, these limitations are
the primary reasons for IPv6, and the addressing problem is merely a handy reason for other people to accept it.)
This produces a number of implications for firewalls. According to Steve Bellovin of AT&T Bell Laboratories, a
well-known firewalls expert and a participant in the IPv6 design process:!!

IPv6 is based on the concept of nested headers. That's how encryption and authentication are done; the "next
protocol" field after the IPv6 header specifies an encryption or an authentication header. In turn, their next
protocol fields would generally indicate either IPv6 or one of the usual transport protocols, such as TCP or UDP.

Nested IP over IP can be done even without encryption or authentication; that can be used as a form of source
routing. A more efficient way is to use the source routing header - which is more useful than the corresponding
IPv4 option, and is likely to be used much more, especially for mobile IP.

Some of the implications for firewalls are already apparent. A packet filter must follow down the full chain of
headers, understanding and processing each one in turn. (And yes, this can make looking at port numbers more
expensive.) A suitably cautious stance dictates that a packet with an unknown header be bounced, whether
inbound or outbound. Also, the ease and prevalence of source routing means that cryptographic authentication is
absolutely necessary. On the other hand, it is intended that such authentication be a standard, mandatory
feature. Encrypted packets are opaque, and hence can't be examined; this is true today, of course, but there
aren't very many encryptors in use now. That will change. Also note that encryption can be done host-to-host,
host-to-gateway, or gateway-to-gateway, complicating the analysis still more.

Address-based filtering will also be affected, to some extent, by the new autoconfiguration mechanisms. It's vital
that any host whose address is mentioned in a filter receive the same address each time. While this is the intent
of the standard mechanisms, one needs to be careful about proprietary schemes, dial-up servers, etc. Also, high-
order address bits can change, to accommodate the combination of provider-based addressing and easy
switching among carriers.

Finally, IPv6 incorporates "flows." Flows are essentially virtual circuits at the IP level; they're intended to be used
for things like video, intermediate-hop ATM circuit selection, etc. But they can also be used for firewalls, given
appropriate authentication: the UDP reply problem might go away if the query had a flow id that was referenced
by the response. This, by the way, is a vague idea of mine; there are no standards for how this should be done.
The regular flow setup protocol won't work; it's too expensive. But a firewall traversal header might do the job.

As you can see, IPv6 could have a major impact on firewalls, especially with respect to packet filtering. However,
IPv6 is not being deployed rapidly. The address exhaustion problem doesn't seem to be as bad as people had
feared (under many estimates, the address space ought to have been gone before this edition made it to press).
On the other hand, the problem of converting networks from IPv4 to IPv6 has turned out to be worse. The end
result is that while IPv6 is still a viable technology that is gaining ground, it's not going to take over from IPv4 in
the immediate future; you're going to need an IPv4 firewall for quite some time.

4.7 Non-IP Protocols

Other protocols at the same level as IP (e.g., AppleTalk and IPX) provide similar kinds of information as IP,
although the headers and operations for these protocols, and therefore their packet filtering characteristics, vary
radically. Most packet filtering implementations support IP filtering only and simply drop non-IP packets. Some
packages provide limited packet filtering support for non-IP protocols, but this support is usually far less flexible
and capable than the router's IP filtering capability.

At this time, packet filtering as a tool isn't as popular and well developed for non-IP protocols, presumably
because these protocols are rarely used to communicate outside a single organization over the Internet. (The
Internet is, by definition, a network of IP networks.) If you are putting a firewall between parts of your network,
you may find that you need to pass non-IP protocols.

11 Steve Bellovin, posting to the Firewalls mailing list, 31 December 1994.

page 63

Building Internet Firewalls

In this situation, you should be careful to evaluate what level of security you are actually getting from the
filtering. Many packages that claim to support packet filtering on non-IP protocols simply mean that they can
recognize non-IP packets as legal packets and allow them through, with minimal logging. For reasonable support
of non-IP protocols, you should look for a package developed by people with expertise in the protocol, and you
should make sure that it provides features appropriate to the protocol you're trying to filter. Products that were
designed as IP routers but claim to support five or six other protocols are probably just trying to meet purchasing
requirements, not to actually meet operational requirements well.

Across the Internet, non-IP protocols are handled by encapsulating them within IP protocols. In most cases, you
will be limited to permitting or denying encapsulated protocols in their entirety; you can accept all AppleTalk-in-
UDP connections, or reject them all. A few packages that support non-IP protocols can recognize these
connections when encapsulated and filter on fields in them.

4.8 Attacks Based on Low-Level Protocol Details

As we've discussed protocols, we've also mentioned some of the attacks against them. You will often see attacks
discussed using the names given to them by the people who wrote the original exploit programs, which are eye-
catching but not informative. These names multiply daily, and there's no way for us to document them all here,
but we can tell you about a few of the most popular. In fact, although there are dozens and dozens of different
attacks, they are pretty much all variations on the same few themes, and knowing the name of the day isn't very
important.

4.8.1 Port Scanning

Port scanning is the process of looking for open ports on a machine, in order to figure out what might be
attackable. Straightforward port scanning is quite easy to detect, so attackers use a number of methods to
disguise port scans. For instance, many machines don't log connections until they're fully made, so an attacker
can send an initial packet, with a SYN but no ACK, get back the response (another SYN if the port is open, a RST
if it is not), and then stop there. (This is often called a SYN scan or a half open scan.) Although this won't get
logged, it may have other unfortunate effects, particularly if the scanner fails to send a RST when it stops (for
instance, it may end up being a denial of service attack against the host or some intermediate device that's trying
to keep track of open connections, like a firewall).

Attackers may also send other packets, counting a port as closed if they get a RST and open if they get no
response, or any other error. Almost any combination of flags other than SYN by itself can be used for this
purpose, although the most common options are FIN by itself, all options on, and all options off. The last two
possibilities, sometimes called Christmas tree (some network devices show the options with lights, and it makes
them all light up like a Christmas tree) and null, tend to have unfortunate side effects on weak TCP/IP stacks.
Many devices will either crash or disable TCP/IP.

4.8.2 Implementation Weaknesses

Many of the attacks that work at this level are denial of service attacks that exploit weaknesses in TCP/IP
implementations to crash machines. For instance, teardrop and its relatives send overlapping fragments; there
are also attacks that send invalid combinations of options, set invalid length fields, or mark data as urgent when
no application would (winnuke).

4.8.3 IP Spoofing

In IP spoofing, an attacker sends packets with an incorrect source address. When this happens, replies will be
sent to the apparent source address, not to the attacker. This might seem to be a problem, but actually, there
are three cases where the attacker doesn't care:

e The attacker can intercept the reply.

e The attacker doesn't need to see the reply.

e The attacker doesn't want the reply; the point of the attack is to make the reply go somewhere else.

page 64

Building Internet Firewalls

4.8.3.1 The attacker can intercept the reply

If an attacker is somewhere on the network between the destination and the forged source, the attacker may be
able to see the reply and carry on a conversation indefinitely. This is the basis of hijacking attacks, which are
discussed in more detail later. Figure 4.6 shows an attacker using a forgery this way.

Figure 4.6. Attacker intercepting replies to forged packets

Frionm. Fake source

A T Victim
A

v Attacker

| /N 8

From: Vietim
Victim 1o: Fake sotirce

Fake Source

4.8.3.2 The attacker doesn't need to see the reply

An attacker doesn't always care what the reply is. If the attack is a denial of service, the attacked machine
probably isn't going to be able to reply anyway. Even if it isn't, the attacker may be able to make a desired
change without needing to see the response. Figure 4.7 shows this kind of attack.

Figure 4.7. Attacker using forged packets for denial of service

Friom: Fake source

A T Victirm
v Attacker
P !'-IIIIIIII.I.IIII- !'-.I.l.l :\'lll-h \
Victim Fake Source

page 65

Building Internet Firewalls

4.8.3.3 The attacker doesn't want the reply

Several attacks rely upon the fact that the reply (or better yet, lots of replies) will go somewhere else. The smurf
attack uses forged source addresses to attack the host that's the apparent source; an attacker sends a forged
packet to some host he or she doesn't like very much (call it "apparentvictim") with a source address of a host
that he or she doesn't like at all (call it "realvictim"). "apparentvictim" then replies to "realvictim", tying up
network resources at both victim sites but not at the attacker's actual location. The administrators at
"apparentvictim" and "realvictim" then start arguing about who is attacking whom and why. This attack has a
number of variants using different protocols and methods for multiplying the replies. The most common protocols
are ICMP echo and the UDP-based echo service, both of which are discussed in Chapter 22. The most common
method of multiplying the replies is to use a broadcast address as the source address. Figure 4.8 shows this kind
of attack.

Figure 4.8. Attacker using forged packets to attack a third party

From: Fake source

1 To: Vietim
b Atacker

Victim || From: Victim s S
T0: Fake souce

The land attack sends a packet with a source identical to the destination, which causes many machines to lock
up. Figure 4.9 shows this kind of attack.

I Fake Sowrce

Figure 4.9. Attacker using looped forged packets

Frovm: Victirn
-1 T Victim
' "’) Attacker
gy | [:l i | From: Victim |
|P & | To: Vietim H
Victim -

page 66

Building Internet Firewalls

4.8.4 Packet Interception

Reading packets as they go by, frequently called packet sniffing, is a frequent way of gathering information. If
you're passing around important information unencrypted, it may be all that an attacker needs to do.

In order to read a packet, the attacker needs to get the packet somehow. The easiest way to do that is to control
some machine that the traffic is supposed to go through anyway (a router or a firewall, for instance). These
machines are usually highly protected, however, and don't usually provide tools that an attacker might want to
use.

Usually, it's more practical for an attacker to use some less-protected machine, but that means that the attacker
needs to be able to read packets that are not addressed to the machine itself. On some networks, that's very
easy. An Ethernet network that uses a bus topology, or that uses 10-base T cabling with unintelligent hubs, will
send every packet on the network to every machine. Token-ring networks, including FDDI rings, will send most or
all packets to all machines. Machines are supposed to ignore the packets that aren't addressed to them, but
anybody with full control over a machine can override this and read all the packets, no matter what destination
they were sent to.

Using a network switch to connect machines is supposed to avoid this problem. A network switch, by definition, is
a network device that has multiple ports and sends traffic only to those ports that are supposed to get it.
Unfortunately, switches are not an absolute guarantee. Most switches have an administrative function that will
allow a port to receive all traffic. Sometimes there's a single physical port with this property, but sometimes the
switch can turn this function on for any port, so that an attacker who can subvert the switch software can get all
traffic. Furthermore, switches have to keep track of which addresses belong to which ports, and they only have a
finite amount of space to store this information. If that space is exhausted (for instance, because an attacker is
sending fake packets from many different addresses), the switch will fail. Some of them will stop sending packets
anywhere; others will simply send all packets to all ports; and others provide a configuration parameter to allow
you to choose a failure mode.

Some switches offer increased separation of traffic with a facility called a Virtual Local Area Network (VLAN). On a
normal switch, all the ports are part of the same network. A switch that supports VLANs will be able to treat
different ports as parts of different networks. Traffic is only supposed to go between ports on different VLANSs if a
router is involved, just as if the ports were on completely separate switches. Normal tricks to confuse switches
will compromise only one VLAN. VLANs are a convenient tool in many situations, and they provide a small
measure of increased security over a plain switched network. However, you are still running all of the traffic
through a single device, which could be compromised. There are known attacks that will move traffic from one
VLAN to another in most implementations, and almost any administrative error will compromise the separation.
You should not rely on VLANSs to provide strong, secure separation between networks.

page 67

Building Internet Firewalls

Chapter 5. Firewall Technologies

In Part I, we introduced Internet firewalls and summarized what they can and cannot do to improve network
security. In this chapter, we present major firewalls concepts. What are the terms you will hear in discussions of
Internet firewalls? What are the components that can be put together to build these common firewall
architectures? How do you evaluate a firewall design? In the remaining chapters of this book, we'll describe these
components and architectures in detail.

5.1 Some Firewall Definitions

You may be familiar with some of the following firewall terms, and some may be new to you. Some may seem
familiar, but they may be used in a way that is slightly different from what you're accustomed to (though we try
to use terms that are as standard as possible). Unfortunately, there is no completely consistent terminology for
firewall architectures and components. Different people use terms in different - or, worse still, conflicting - ways.
Also, these same terms sometimes have other meanings in other networking fields; the following definitions are
for a firewalls context.

Here are some very basic definitions; we describe these terms in greater detail elsewhere:
Firewall

A component or set of components that restricts access between a protected network and the Internet,
or between other sets of networks.

Host
A computer system attached to a network.
Bastion host

A computer system that must be highly secured because it is vulnerable to attack, usually because it is
exposed to the Internet and is a main point of contact for users of internal networks. It gets its name
from the highly fortified projections on the outer walls of medieval castles.'?

Dual-homed host
A general-purpose computer system that has at least two network interfaces (or homes).
Network address translation (NAT)

A procedure by which a router changes data in packets to modify the network addresses. This allows a
router to conceal the addresses of network hosts on one side of it. This technique can enable a large
number of hosts to connect to the Internet using a small number of allocated addresses or can allow a
network that's configured with illegal or unroutable addresses to connect to the Internet using valid
addresses. It is not actually a security technique, although it can provide a small amount of additional
security. However, it generally runs on the same routers that make up part of the firewall.

Packet
The fundamental unit of communication on the Internet.
Proxy

A program that deals with external servers on behalf of internal clients. Proxy clients talk to proxy
servers, which relay approved client requests on to real servers, and relay answers back to clients.

12 Marcus Ranum, who is generally held responsible for the popularity of this term in the firewalls professional community, says, "Bastions...
overlook critical areas of defense, usually having stronger walls, room for extra troops, and the occasional useful tub of boiling hot oil for
discouraging attackers".

page 68

Building Internet Firewalls

Packet filtering

The action a device takes to selectively control the flow of data to and from a network. Packet filters
allow or block packets, usually while routing them from one network to another (most often from the
Internet to an internal network, and vice versa). To accomplish packet filtering, you set up a set of rules
that specify what types of packets (e.g., those to or from a particular IP address or port) are to be
allowed and what types are to be blocked. Packet filtering may occur in a router, in a bridge, or on an
individual host. It is sometimes known as screening.'®

Perimeter network

A network added between a protected network and an external network, in order to provide an
additional layer of security. A perimeter network is sometimes called a DMZ, which stands for De-
Militarized Zone (named after the zone separating North and South Korea).

Virtual private network (VPN)

A network where packets that are internal to a private network pass across a public network, without
this being obvious to hosts on the private network. In general, VPNs use encryption to protect the
packets as they pass across the public network. VPN solutions are popular because it is often cheaper to
connect two networks via public networks (for instance, getting them both Internet connections) than
via private networks (like traditional leased-line connections between the sites).

The next few sections briefly describe the major technologies associated with firewalls: packet filtering, proxy
services, network address translation, and virtual private networks.

There are legitimate questions about how to distinguish between packet filtering and proxying, particularly when
dealing with complex packet filtering systems and simple proxies. Many people believe that systems that pay
attention to individual protocols and/or modify packets should not be considered packet filters, and may even
refer to these systems as transparent proxies. In fact, these systems don't behave much like older, simpler
packet filtering systems, and it's a good idea not to apply generalizations about packet filtering to them blindly.
On the other hand, they don't behave much like proxying systems, either.

Similarly, a number of proxying systems provide generic proxies, which essentially function like packet filters,
accepting all traffic to a given port without analyzing it. It's advisable to pay close attention to the individual
technology a product uses, without making assumptions based on whether it claims to be a packet filter or a
proxy. However, many systems still are clearly packet filters or clearly proxies, so it is worth understanding what
these technologies are and how they work.

5.2 Packet Filtering

Packet filtering systems route packets between internal and external hosts, but they do it selectively. They allow
or block certain types of packets in a way that reflects a site's own security policy, as shown in Figure 5.1. The
type of router used in a packet filtering firewall is known as a screening router.

As we discuss in Chapter 8, every packet has a set of headers containing certain information. The main
information is:

o IP source address

o IP destination address

. Protocol (whether the packet is a TCP, UDP, or ICMP packet)

. TCP or UDP source port

e TCP or UDP destination port

(] ICMP message type

(] Packet size

13 Some networking literature (in particular, the BSD Unix release from Berkeley) uses the term "packet filtering" to refer to something else
entirely (selecting certain packets off a network for analysis, as is done by the etherfind or tcpdump programs).

page 69

Building Internet Firewalls

Figure 5.1. Using a screening router to do packet filtering

Rouwles or blocks packels, as ; =
determined by sife's securily policy. _ Bpintiie
EE====—==j | Screening Router
iy A

A

i d F A .

The router can also look past the packet headers at data further on in the packet; this allows it, for instance, to
filter packets based on more detailed information (like the name of the web page that somebody is requesting)
and to verify that packets appear to be formatted as expected for their destination port. The router can also
make sure that the packet is valid (it actually is the size that it claims to be and is a legal size, for instance),
which helps catch a number of denial of service attacks based on malformed packets.

In addition, the router knows things about the packet that aren't reflected in the packet itself, such as:

e The interface the packet arrives on

e The interface the packet will go out on

Finally, a router that keeps track of packets it has seen knows some useful historical facts, such as:

. Whether this packet appears to be a response to another packet (that is, its source was the
destination of a recent packet and its destination is the source of that other packet)

° How many other packets have recently been seen to or from the same host
e Whether this packet is identical to a recently seen packet

° If this packet is part of a larger packet that has been broken into parts (fragmented)

To understand how packet filtering works, let's look at the difference between an ordinary router and a screening
router.

An ordinary router simply looks at the destination address of each packet and picks the best way it knows to send
that packet towards that destination. The decision about how to handle the packet is based solely on its
destination. There are two possibilities: the router knows how to send the packet towards its destination, and it
does so; or the router does not know how to send the packet towards its destination, and it forgets about the
packet and returns an ICMP "destination unreachable" message, to the packet's source.

A screening router, on the other hand, looks at packets more closely. In addition to determining whether or not it
can route a packet towards its destination, a screening router also determines whether or not it should. "Should"
or "should not" are determined by the site's security policy, which the screening router has been configured to
enforce.

Packet filtering may also be performed by devices that pay attention only to "should" and "should not" and have
no ability to route. Devices that do this are packet filtering bridges. They are rarer than packet filtering routers,
mostly because they are dedicated security devices that don't provide all the other functions that routers do.
Most sites would rather add features to routers that they need anyway, instead of adding a dedicated device.
However, being a dedicated device provides advantages for packet filtering bridges; in particular, they are harder
to detect and attack than packet filtering routers. They provide the same general features that we discuss for
packet filtering routers.

page 70

Building Internet Firewalls

Once it has looked at all the information, a straightforward packet filtering router can do any of the following
things:

° Send the packet on to the destination it was bound for.

o Drop the packet - just forget it, without notifying the sender.

° Reject the packet - refuse to forward it, and return an error to the sender.

. Log information about the packet.

. Set off an alarm to notify somebody about the packet immediately.

More sophisticated routers might also be able to do one or more of these things:

. Modify the packet (for instance, to do network address translation).

. Send the packet on to a destination other than the one that it was bound for (for instance, to force
transactions through a proxy server or perform load balancing).

. Modify the filtering rules (for instance, to accept replies to a UDP packet or to deny all traffic from a
site that has sent hostile packets).

The fact that servers for particular Internet services reside at certain port humbers lets the router block or allow
certain types of connections simply by specifying the appropriate port number (e.g., TCP port 23 for Telnet
connections) in the set of rules specified for packet filtering. (Chapter 8, describes in detail how you construct
these rules.)

Here are some examples of ways in which you might program a screening router to selectively route packets to
or from your site:

. Block all incoming connections from systems outside the internal network, except for incoming SMTP
connections (so that you can receive electronic mail).

° Block all connections to or from certain systems you distrust.

. Allow electronic mail and FTP services, but block dangerous services like TFTP, the X Window System,
RPC, and the "r" services (rlogin, rsh, rcp, etc.). (See Chapter 13, for more information.)

Packet filtering devices that keep track of packets that they see are frequently called stateful packet filters
(because they keep information about the state of transactions). They may also be called dynamic packet filters
because they change their handling of packets dynamically depending on the traffic they see. Devices that look at
the content of packets, rather than at just their headers, are frequently called intelligent packet filters. In
practice, almost all stateful packet filters also are capable of looking at the contents of packets, and many are
also capable of modifying the contents of packets, so you may see all these capabilities lumped together under
the heading "stateful packet filtering". However, something can legitimately be called a "stateful packet filter"
without having the ability to do advanced content filtering or modification.

A packet filtering system is also a logical place to provide virtual private network or network address translation
services. Since the packet filter is already looking at all of the packets, it can easily identify packets that are
intended for a destination that is part of the virtual private network, encrypt those packets, and encapsulate
them in another packet bound for the appropriate destination.

5.2.1 Advantages of Packet Filtering
Packet filtering has a humber of advantages.
5.2.1.1 One screening router can help protect an entire network

One of the key advantages of packet filtering is that a single, strategically placed packet filtering router can help
protect an entire network. If only one router connects your site to the Internet, you gain tremendous leverage on
network security, regardless of the size of your site, by doing packet filtering on that router.

page 71

Building Internet Firewalls

5.2.1.2 Simple packet filtering is extremely efficient

Because simple packet filtering requires paying attention only to a few packet headers, it can be done with very
low overhead. Proxying is a fairly time-consuming operation, and adding proxying means directing connections
through another program, usually on a machine that otherwise wouldn't be necessary to the routing process.
Packet filtering takes place on a machine that was already in the critical path, and introduces a much smaller
delay.

However, there is no free lunch; the more work your packet filters do, the slower they will be. If your packet
filters behave like proxies, doing complicated data-driven operations that require keeping track of multiple
packets, they will tend to perform like proxies as well.

5.2.1.3 Packet filtering is widely available

Packet filtering capabilities are available in many hardware and software routing products, both commercial and
freely available over the Internet. Most sites already have packet filtering capabilities available in the routers they
use.

Most commercial router products include packet filtering capabilities. Packet filtering capabilities are also available
for a number of general-purpose computers. These are discussed further in Chapter 8.

5.2.2 Disadvantages of Packet Filtering

Although packet filtering provides many advantages, there are some disadvantages to using packet filtering as
well.

5.2.2.1 Current filtering tools are not perfect

Despite the widespread availability of packet filtering in various hardware and software packages, packet filtering
is still not a perfect tool. The packet filtering capabilities of many of these products share, to a greater or lesser
degree, common limitations:

e The packet filtering rules tend to be hard to configure. Although there is a range of difficulty, it mostly
runs from slightly mind-twisting to brain-numbingly impossible.

. Once configured, the packet filtering rules tend to be hard to test.

e The packet filtering capabilities of many of the products are incomplete, making implementation of
certain types of highly desirable filters difficult or impossible.

o Like anything else, packet filtering packages may have bugs in them; these bugs are more likely than
proxying bugs to result in security problems. Usually, a proxy that fails simply stops passing data,
while a failed packet filtering implementation may allow packets it should have denied.

5.2.2.2 Packet filtering reduces router performance

Doing packet filtering places a significant extra load on a router. As we discussed previously, more complex filters
place more load on the router, but in some cases, simply turning on packet filtering on a given interface can also
cost you a lot of performance on some routers, because the filtering is incompatible with certain caching
strategies commonly used for performance enhancement. Cisco's "fastpath" functionality is an example of this;
normally, fastpath can perform basic routing functions completely on the interface card, without involving the
main CPU, but using some forms of filtering requires involving the main CPU for each packet, which is much
slower. What enables/disables fastpath depends on the hardware and software version.

5.2.2.3 Some policies can't readily be enforced by normal packet filtering routers

The information that a packet filtering router has available to it doesn't allow you to specify some rules you might
like to have. For example, packets say what host they come from but generally not what user. Therefore, you
can't enforce restrictions on particular users. Similarly, packets say what port they're going to but not what
application; when you enforce restrictions on higher-level protocols, you do it by port number, hoping that
nothing else is running on the port assigned to that protocol. Malicious insiders can easily subvert this kind of
control.

page 72

Building Internet Firewalls

This problem is eased by using more intelligent packet filters; however, in each case, you have to give up some
of the advantages of normal packet filtering. For instance, a packet filter can insist that users authenticate
themselves before sending packets, and then it can filter packets by username. However, this removes the
transparency advantage of normal packet filtering. A packet filter can also do protocol validity checking, but this
is less than perfect and also increases filtering overhead.

5.3 Proxy Services

In general, a proxy is something or someone who does something on somebody else's behalf. For instance, you
may give somebody the ability to vote for you by proxy in an election.

Proxy services are specialized application or server programs that take users' requests for Internet services (such
as FTP and Telnet) and forward them to the actual services. The proxies provide replacement connections and act
as gateways to the services. For this reason, proxies are sometimes known as application-level gateways. In this
book, when we are talking about proxy services, we are specifically talking about proxies run for security
purposes, which are run on a firewall host: either a dual-homed host with an interface on the internal network
and one on the external network, or some other bastion host that has access to the Internet and is accessible
from the internal machines.

You will also run into proxies that are primarily designed for network efficiency instead of for security; these are
caching proxies, which keep copies of the information for each request that they proxy. The advantage of a
caching proxy is that if multiple internal hosts request the same data, the data can be provided directly by the
proxy. Caching proxies can significantly reduce the load on network connections. There are proxy servers that
provide both security and caching; in general, they are better at one purpose than the other.

Proxy services sit, more or less transparently, between a user on the inside (on the internal network) and a
service on the outside (on the Internet). Instead of talking to each other directly, each talks to a proxy. Proxies
handle all the communication between users and Internet services behind the scenes.

Transparency is the major benefit of proxy services. It's essentially smoke and mirrors. To the user, a proxy
server presents the illusion that the user is dealing directly with the real server. To the real server, the proxy
server presents the illusion that the real server is dealing directly with a user on the proxy host (as opposed to
the user's real host).

Proxy services are effective only when they're used in conjunction with a
mechanism that restricts direct communications between the internal and external
hosts. Dual-homed hosts and packet filtering are two such mechanisms. If internal
hosts are able to communicate directly with external hosts, there's no need for
users to use proxy services, and so (in general) they won't. Such a bypass probably
isn't in accordance with your security policy.

How do proxy services work? Let's look at the simplest case, where we add proxy services to a dual-homed host.
(We'll describe these hosts in some detail in Section 6.1.2 in Chapter 6.)

As Figure 5.2 shows, a proxy service requires two components: a proxy server and a proxy client. In this
illustration, the proxy server runs on the dual-homed host (as we discuss in Chapter 9, there are other ways to
set up a proxy server). A proxy client is a special version of a normal client program (e.g., a Telnet or FTP client)
that talks to the proxy server rather than to the "real" server out on the Internet; in some configurations, normal
client programs can be used as proxy clients. The proxy server evaluates requests from the proxy client and
decides which to approve and which to deny. If a request is approved, the proxy server contacts the real server
on behalf of the client (thus the term proxy) and proceeds to relay requests from the proxy client to the real
server, and responses from the real server to the proxy client.

In some proxy systems, instead of installing custom client proxy software, you'll use standard software but set up
custom user procedures for using it. (We'll describe how this works in Chapter 9.)

page 73

Building Internet Firewalls

Figure 5.2. Using proxy services with a dual-homed host

i —
External Host

-

4 Dul-
Proxy o ﬂ homad
Server SRS Host

ebkato J ____________________

I

- i

1111111
Intarnal Host

There are also systems that provide a hybrid between packet filtering and proxying where a network device
intercepts the connection and acts as a proxy or redirects the connection to a proxy; this allows proxying without
making changes to the clients or the user procedures.

The proxy server doesn't always just forward users' requests on to the real Internet services. The proxy server
can control what users do because it can make decisions about the requests it processes. Depending on your
site's security policy, requests might be allowed or refused. For example, the FTP proxy might refuse to let users
export files, or it might allow users to import files only from certain sites. More sophisticated proxy services might
allow different capabilities to different hosts, rather than enforcing the same restrictions on all hosts.

Some proxy servers do in fact just forward requests on, no matter what they are. These may be called generic
proxies or port forwarders. Programs that do this are providing basically the same protections that you would get
if you had a packet filter in place that was allowing traffic on that port. You do not get any significant increase in
security by replacing packet filters with proxies that do exactly the same thing (you gain some protection against
malformed packets, but you lose by adding an attackable proxying program).

Some excellent software is available for proxying. SOCKS is a proxy construction toolkit, designed to make it
easy to convert existing client/server applications into proxy versions of those same applications. The Trusted
Information Systems Internet Firewall Toolkit (TIS FWTK) includes proxy servers for a number of common
Internet protocols, including Telnet, FTP, HTTP, rlogin, X11, and others; these proxy servers are designed to be
used in conjunction with custom user procedures. See the discussion of these packages in Chapter 9.

Many standard client and server programs, both commercial and freely available, now come equipped with their
own proxying capabilities or with support for generic proxy systems like SOCKS. These capabilities can be
enabled at runtime or compile time.

Most proxy systems are used to control and optimize outbound connections; they are controlled by the site where
the clients are. It is also possible to use proxy systems to control and optimize inbound connections to servers
(for instance, to balance connections among multiple servers or to apply extra security). This is sometimes called
reverse proxying.

5.3.1 Advantages of Proxying
There are a number of advantages to using proxy services.
5.3.1.1 Proxy services can be good at logging

Because proxy servers can understand the application protocol, they can allow logging to be performed in a
particularly effective way. For example, instead of logging all of the data transferred, an FTP proxy server can log
only the commands issued and the server responses received; this results in a much smaller and more useful log.

page 74

Building Internet Firewalls

5.3.1.2 Proxy services can provide caching

Since all requests are passing through the proxy service anyway, the proxy can provide caching, keeping local
copies of the requested data. If the number of repeat requests is significant, caching can significantly increase
performance and reduce the load on network links.

5.3.1.3 Proxy services can do intelligent filtering

Since a proxy service is looking at specific connections, it is frequently able to do filtering more intelligently than
a packet filter. For instance, proxy services are much more capable of filtering HTTP by content type (for
instance, to remove Java or JavaScript) and better at virus detection than packet filtering systems.

5.3.1.4 Proxy systems can perform user-level authentication

Because a proxy system is actively involved in the connection, it is easy for it to do user authentication and to
take actions that depend on the user involved. Although this is possible with packet filtering systems, it is much
more difficult.

5.3.1.5 Proxy systems automatically provide protection for weak or faulty IP implementations

As a proxy system sits between a client and the Internet, it generates completely new IP packets for the client. It
can therefore protect clients from deliberately malformed IP packets. (You just need a proxy system that isn't
vulnerable to the bad packets!)

5.3.2 Disadvantages of Proxying
There are also some disadvantages to using proxy services.
5.3.2.1 Proxy services lag behind nonproxied services

Although proxy software is widely available for the older and simpler services like FTP and Telnet, proven
software for newer or less widely used services is harder to find. There's usually a distinct lag between the
introduction of a service and the availability of proxying servers for it; the length of the lag depends primarily on
how well the service is designed for proxying. This makes it difficult for a site to offer new services immediately
as they become available. Until suitable proxy software is available, a system that needs new services may have
to be placed outside the firewall, opening up potential security holes. (Some services can be run through generic
proxies, which will give at least minimal protection.)

5.3.2.2 Proxy services may require different servers for each service

You may need a different proxy server for each protocol, because the proxy server may need to understand the
protocol in order to determine what to allow and disallow, and in order to masquerade as a client to the real
server and as the real server to the proxy client. Collecting, installing, and configuring all these various servers
can be a lot of work. Again, you may be able to use a generic proxy, but generic proxies provide only the same
sorts of protection and functionality that you could get from packet filters.

Products and packages differ greatly in the ease with which they can be configured, but making things easier in
one place can make it harder in others. For example, servers that are particularly easy to configure can be limited
in flexibility; they're easy to configure because they make certain assumptions about how they're going to be
used, which may or may not be correct or appropriate for your site.

5.3.2.3 Proxy services usually require modifications to clients, applications, or procedures

Except for services designed for proxying, you will need to use modified clients, applications, and/or procedures.
These modifications can have drawbacks; people can't always use the readily available tools with their normal
instructions.

Because of these modifications, proxied applications don't always work as well as nonproxied applications. They
tend to bend protocol specifications, and some clients and servers are less flexible than others.

page 75

Building Internet Firewalls

5.4 Network Address Translation

Network address translation (NAT) allows a network to use one set of network addresses internally and a
different set when dealing with external networks. Network address translation does not, by itself, provide any
security, but it helps to conceal the internal network layout and to force connections to go through a choke point
(because connections to untranslated addresses will not work, and the choke point does the translation).

Like packet filtering, network address translation works by having a router do extra work. In this case, not only
does the router send packets on, but it also modifies them. When an internal machine sends a packet to the
outside, the network address translation system modifies the source address of the packet to make the packet
look as if it is coming from a valid address. When an external machine sends a packet to the inside, the network
address translation system modifies the destination address to turn the externally visible address into the correct
internal address. The network address translation system can also modify the source and destination port
numbers (this is sometimes called Port and Address Translation or PAT). Figure 5.3 shows a network address
translation system modifying only addresses, while Figure 5.4 shows port and address translation.

Figure 5.3. Network address translation

Client 1
I:ﬂ 10.42.6.9
m e i Server

; © 192123.25
 Address
. Translation :

Client 2 . System
' 192.123.2.19

|t| q 104271

Figure 5.4. Port and address translation

q 10,42,6.9: 1024
m r2oii s i Server

192.123.2.5: 2028

Address
Translation

Client 2 System

: q 10.42.7.1: 1024

192 1252 5 2027

page 76

Building Internet Firewalls

Network address translation systems can use different schemes for translating between internal and external
addresses:

. Allocate one external host address for each internal address and always apply the same translation.
This provides no savings in address space, and it slows down connections; it is normally a temporary
measure used by sites that have been using illegal address spaces but are in the process of moving to
using valid addresses.

° Dynamically allocate an external host address each time an internal host initiates a connection,
without modifying port numbers. This limits the number of internal hosts that can simultaneously
access the Internet to the number of available external addresses.

. Create a fixed mapping from internal addresses to externally visible addresses, but use port mapping
so that multiple internal machines use the same external addresses.

° Dynamically allocate an external host address and port pair each time an internal host initiates a
connection. This makes the most efficient possible use of the external host addresses.

5.4.1 Advantages of Network Address Translation

The main purpose of network address translation is to economize on address space, but it can also have some
security advantages.

5.4.1.1 Network address translation helps to enforce the firewall's control over outbound connections

Since individual hosts have addresses that won't work on the external network, they require the assistance of the
network address translation system to connect. If a host finds a way to connect to the Internet without going
through the address translation, the connection won't work.

5.4.1.2 Network address translation can help restrict incoming traffic

Depending on how you configure a network address translation system, it can provide stronger restrictions on
incoming traffic than packet filtering. A network address translation system that's doing dynamic translation will
allow only packets that are part of a current interaction initiated from the inside. This is similar to the protection
that a dynamic packet filter offers, but the changing IP addresses put stronger time constraints on attackers. Not
only can they attack only certain ports, but if they wait too long, the address translation will have gone away,
and the entire address will have disappeared or been given to another host.

Many people assume that all network address translation systems provide this sort of protection, but this is not
true. If you configure a network address translation system to do static translations, it may provide no
restrictions at all on incoming traffic. Even doing dynamic translations, the simplest implementations allocate an
entire externally visible address to the internal host and translate all traffic sent to that address. This does limit
the time that an attacker has, but otherwise provides no protection at all.

5.4.1.3 Network address translation helps to conceal the internal network's configuration

The less an attacker knows about you, the better off you are. A network address translation system makes it
much more difficult for an attacker to determine how many computers you have, what kind of machines they are,
and how they're arranged on the network. Note, however, that many protocols leak useful information (for
instance, they may include the client's IP address or hostname in places where the network address translation
system doesn't need to change it). When we discuss the network address translation properties of protocols, we
attempt to mention leaks of this sort.

5.4.2 Disadvantages of Network Address Translation

While network address translation is a very useful way of conserving network address space, it presents some
problems.

5.4.2.1 Dynamic allocation requires state information that is not always available

It is very easy for a network address translation system to tell whether or not a host has stopped using a TCP
connection, but there's no way to know at the packet header level whether a UDP packet is part of an ongoing
conversation or is an isolated event. This means that a network address translation system has to guess how
long it should keep a particular translation. If it guesses incorrectly, responses may be lost or delivered to
unexpected hosts.

page 77

Building Internet Firewalls

5.4.2.2 Embedded IP addresses are a problem for network address translation

Network address translation systems normally translate the addresses in the headers of packets (see Chapter 4,
for more information about packet layout). Some protocols also hide addresses in other places, and in order to
find those addresses, the network address translator has to understand the protocol enough to find and modify
the address, while preserving the validity of the packet. Most network address translation systems are capable of
doing this for at least some protocols (for instance, FTP) but not for all protocols.

5.4.2.3 Network address translation interferes with some encryption and authentication systems

Systems for encrypting data often attempt to ensure the integrity of the data, so that the systems that are
communicating know that packets have not been tampered with in transit. Network address translation is a form
of tampering with the data in transit. If the protocol that's being translated does not protect the data that the
network address translation system modifies, it will work. Otherwise, the integrity checking will be violated, and
connections will fail. In most cases, protocols that do not have embedded IP addresses are compatible (the
packet headers are not part of the protocol's protected data). The major exception to this rule is IPsec, which
protects the entire packet, including headers. Network address translation is almost guaranteed to fail for
protocols that combine embedded IP addresses with data integrity protection.

5.4.2.4 Dynamic allocation of addresses interferes with logging

If you are logging information after the network address translation happens, the logs will show the translated
addresses, and you will have to correlate the logs with information from the network address translation system
to figure out what internal system is actually involved. For instance, if you have a screened subnet architecture
(discussed in Chapter 6), and you are doing network address translation on the interior router, the translated
addresses will be in logs from the exterior router or from a caching web proxy server on the screened subnet.
Although log correlation is theoretically possible, it may be difficult, and clock synchronization will be critical.

5.4.2.5 Dynamic allocation of ports may interfere with packet filtering

Packet filtering systems pay attention to source and destination port numbers in order to try to figure out what
protocol a packet should be using. Changing the source port may change the packet's acceptability. In most
cases, this is not a problem because address translation systems are translating for clients, which are usually
allowed to use any port above 1023. However, if ports above 1023 are translated to ports below 1023, traffic
may be dropped.

5.5 Virtual Private Networks

A virtual private network (VPN) is a way of employing encryption and integrity protection so that you can use a
public network (for instance, the Internet) as if it were a private network (a piece of cabling that you control).
Making a private, high-speed, long-distance connection between two sites is much more expensive than
connecting the same two sites to a public high-speed network, but it's also much more secure. A virtual private
network is an attempt to combine the advantages of a public network (it's cheap and widely available) with some
of the advantages of a private network (it's secure).

Fundamentally, all virtual private networks that run over the Internet employ the same principle: traffic is
encrypted, integrity protected, and encapsulated into new packets, which are sent across the Internet to
something that undoes the encapsulation, checks the integrity, and decrypts the traffic.

Virtual private networks are not exactly a firewall technology, but we discuss them here for several reasons:

° If you're using virtual private networking, you need to be careful about how it interacts with the
firewall. In many cases, the firewall can't control traffic that comes in over the virtual network, which
makes it a way to avoid the firewall controls and open new insecurities.

. A firewall is a convenient place to add virtual private networking features.

° We will frequently mention virtual private networking as a way to provide remote services that cannot
be provided securely using other firewall techniques.

page 78

Building Internet Firewalls

5.5.1 Where Do You Encrypt?

Virtual private networks depend on encryption. That encryption can be done as a transport method, where a host
decides to encrypt traffic when it is generated, or as a tunnel, where traffic is encrypted and decrypted
somewhere in between the source and the destination. The question of where you do the encryption and
decryption relative to your packet filtering is an important one. If you do the encryption and decryption inside the
packet filtering perimeter (i.e., on your internal net), then the filters just have to allow the encrypted packets in
and out. This is especially easy if you're doing tunneling, because all the tunneled packets will be addressed to
the same remote address and port number at the other end of the tunnel (the decryption unit). On the other
hand, doing the encryption and decryption inside your filtering perimeter means that packets arriving encrypted
are not subject to the scrutiny of the packet filters. This leaves you vulnerable to attack from the other site if that
site has been compromised.

If you do the encryption and decryption outside the packet filtering perimeter (i.e., on your perimeter net or in
your exterior router), then the packets coming in from the other site can be subjected to the full scrutiny of your
packet filtering system. On the other hand, they can also be subjected to the full scrutiny of anyone who can read
traffic on your perimeter net, including intruders.

5.5.2 Key Distribution and Certificates

As with any encryption and integrity protection system, key distribution can be a very sticky problem. A number
of choices are available, including sharing keys or using a public key system; see Appendix C, for descriptions of
these systems and the advantages and disadvantages of each.

5.5.3 Advantages of Virtual Private Networks

Most of the advantages of virtual private networks are economic; it's cheaper to use shared public networks than
it is to set up dedicated connections, whether those are leased lines between sites or modem pools that allow
individual machines to connect to a central site. On the other hand, virtual private networks also provide some
security advantages.

5.5.3.1 Virtual private networks provide overall encryption

A virtual private network conceals all the traffic that goes over it. Not only does it guarantee that all the
information is encrypted, but it also keeps people from knowing which internal machines are being used and with
what protocols. You can protect information from snooping by using individual encrypted protocols, but attackers
will still have some idea what machines are talking and what kind of information they're exchanging (for instance,
if you use an encrypted mail protocol, they will know that things are being mailed). A virtual private network
conceals more information.

5.5.3.2 Virtual private networks allow you to remotely use protocols that are difficult to secure any
other way

Some protocols are extremely difficult to provide securely through a firewall. For instance, a number of protocols
used on Microsoft systems are based on SMB, which provides a wide variety of services with different security
implications over the same ports and connections. Packet filtering and proxying both have trouble adding security
to SMB. Virtual private networking provides a way to give remote access for these protocols without letting
people attack them from the Internet at large.

5.5.4 Disadvantages of Virtual Private Networks

Although virtual private networks are an important security tool, they also present problems in a firewall
environment.

5.5.4.1 Virtual private networks involve dangerous network connections

A virtual private network runs over an actual network, which is presumably not a private network. The hosts on
the virtual private network must be connected to that actual network, and if you're not careful, they will be
vulnerable to attack from that network. For instance, if you use a virtual private network to provide connectivity
to your internal network for mobile users who connect to the Internet, their machines may be attacked from the
Internet.

Ideally, a virtual private network system will disable all other uses of the network interface. It's important to
choose a system that will allow you to force this on the remote system. It's not good enough to have a system
where the remote system is able to turn off other uses because the user on the remote system may turn
networking back on. It's very tempting as a way to get rapid access to Internet resources.

page 79

Building Internet Firewalls

5.5.4.2 Virtual private networks extend the network you must protect

When you attach something via a virtual private network, you are making it part of your internal network. If a
machine on the virtual private network is broken into, the attacker will then be able to use the virtual private
network to attack the rest of your site, from something that's treated as if it were inside of your local network.
Virtual private networking is commonly used to give access to machines that are much more vulnerable than
those that are physically on the network - for instance, laptops that are carried around in public, home machines
that curious children have physical access to, and machines owned by other sites with interests and policies that
are not identical to yours.

Even if the virtual private network disables other uses of the network interface it is running over, the machine
may have other network interfaces. This can make it into a gateway between your network and others, inside
your network's security perimeter.

Because of this, you want to be careful how you attach the virtual private network to your real private network,
and how you secure the remote end. It may not be appropriate to make the virtual private network a seamless
part of your internal network. Consider putting in a subsidiary firewall or at least special intrusion detection to
watch for problems.

page 80

Building Internet Firewalls

Chapter 6. Firewall Architectures

This chapter describes a variety of ways to put firewall components together, and discusses their advantages and
disadvantages. We'll tell you what some appropriate uses are for each architecture.

6.1 Single-Box Architectures

The simplest firewall architectures have a single object that acts as the firewall. In general, the security
advantage of single-box architectures is that they provide a single place that you can concentrate on and be sure
that you have correctly configured, while the disadvantage is that your security is entirely dependent on a single
place. There is no defense in depth, but on the other hand, you know exactly what your weakest link is and how
weak it is, which is much harder with multiple layers.

In practice, the advantages of single-box architectures are not in their security but in other practical concerns.
Compared to a multiple-layer system that's integrated with your network, a single-box architecture is cheaper,
easier to understand and explain to management, and easier to get from an external vendor. This makes it the
solution of choice for small sites. It also makes it a tempting solution for people who are looking for magic
security solutions that can be put in once and forgotten about. While there are very good single-box firewalls,
there are no magic firewalls, and single-box solutions require the same difficult decisions, careful configuration,
and ongoing maintenance that all other firewalls do.

6.1.1 Screening Router

It is possible to use a packet filtering system by itself as a firewall, as shown in Figure 6.1, using just a screening
router to protect an entire network. This is a low-cost system, since you almost always need a router to connect
to the Internet anyway, and you can simply configure packet filtering in that router. On the other hand, it's not
very flexible; you can permit or deny protocols by port number, but it's hard to allow some operations while
denying others in the same protocol, or to be sure that what's coming in on a given port is actually the protocol
you wanted to allow. In addition, it gives you no depth of defense. If the router is compromised, you have no
further security.

Figure 6.1. Using a screening router to do packet filtering

ol i B S

Routes or blocks packels, as P
determined by sifa’s sacunty policy. e

' M | Screening Router

iaa

A

d 4 F i A

6.1.1.1 Appropriate uses

A screening router is an appropriate firewall for a situation where:

e The network being protected already has a high level of host security.
e The number of protocols being used is limited, and the protocols themselves are straightforward.

. You require maximum performance and redundancy.

Screening routers are most useful for internal firewalls and for networks that are dedicated to providing services
to the Internet. It's not uncommon for Internet service providers to use nothing but a screening router between
their service hosts and the Internet, for instance.

page 81

Building Internet Firewalls

6.1.2 Dual-Homed Host

A dual-homed host architecture is built around the dual-homed host computer, a computer that has at least two
network interfaces. Such a host could act as a router between the networks these interfaces are attached to; it is
capable of routing IP packets from one network to another. However, to use a dual-homed host as a firewall, you
disable this routing function. Thus, IP packets from one network (e.g., the Internet) are not directly routed to the
other network (e.g., the internal, protected network). Systems inside the firewall can communicate with the dual-
homed host, and systems outside the firewall (on the Internet) can communicate with the dual-homed host, but
these systems can't communicate directly with each other. IP traffic between them is completely blocked.

Some variations on the dual-homed host architecture use IP to the Internet and some other network protocol (for
instance, NetBEUI) on the internal network. This helps to enforce the separation between the two networks,
making it less likely that host misconfigurations will let traffic slip from one interface to another, and also
reducing the chance that if this does happen there will be vulnerable clients. However, it does not make a
significant difference to the overall security of the firewall.

The network architecture for a dual-homed host firewall is pretty simple: the dual-homed host sits between, and
is connected to, the Internet and the internal network. Figure 6.2 shows this architecture.

Figure 6.2. Dual-homed host architecture

...................................

.

r i i r

Dual-homed hosts can provide a very high level of control. If you aren't allowing packets to go between external
and internal networks at all, you can be sure that any packet on the internal network that has an external source
is evidence of some kind of security problem.

On the other hand, dual-homed hosts aren't high-performance devices. A dual-homed host has more work to do
for each connection than a packet filter does, and correspondingly needs more resources. A dual-homed host
won't support as much traffic as an equivalent packet filtering system.

Since a dual-homed host is a single point of failure, it's important to make certain that its host security is
absolutely impeccable. An attacker who can compromise the dual-homed host has full access to your site (no
matter what protocols you are running). An attacker who crashes the dual-homed host has cut you off from the
Internet. This makes dual-homed hosts inappropriate if being able to reach the Internet is critical to your
business.

You are particularly vulnerable to problems with the host's IP implementation, which can crash the machine or
pass traffic through it. These problems exist with packet filtering routers as well, but they are less frequent and
usually easier to fix. Architectures that involve multiple devices are usually more resilient because multiple
different IP implementations are involved.

A dual-homed host can provide services only by proxying them, or by having users log into the dual-homed host
directly. You want to avoid having users log into the dual-homed host directly. As we discuss in Chapter 10, user
accounts present significant security problems by themselves. They present special problems on dual-homed
hosts, where users may unexpectedly enable services you consider insecure. Furthermore, most users find it
inconvenient to use a dual-homed host by logging into it.

page 82

Building Internet Firewalls

Proxying is much less problematic but may not be available for all services you're interested in. Chapter 9,
discusses some workarounds for this situation, but they do not apply in every case. Using a dual-homed host as
your only network connection actually slightly eases some problems with proxying; if the host pretends to be a
router, it can intercept packets bound for the outside world and transparently proxy them without anybody else's
cooperation.

Proxying is much better at supporting outbound services (internal users using resources on the Internet) than
inbound services (users on the Internet using resources on the internal network). In a dual-homed host
configuration, you will normally have to provide services to the Internet by running them on the dual-homed
host. This is not usually advisable because providing services to the Internet is risky, and the dual-homed host is
a security-critical machine that you don't want to put risky services on. It might be acceptable to put a minimally
functional web server on the dual-homed host (for instance, one that was only capable of providing HTML files
and had no active content features, additional protocols, or forms processing), but it would clearly be extremely
dangerous to provide a normal web server there.

The screened subnet architecture we describe in a later section offers some extra options for providing new,
untrusted, or inbound services (e.g., you can add a worthless machine to the screened subnet that provides only
an untrusted service).

6.1.2.1 Appropriate uses

A dual-homed host is an appropriate firewall for a situation where:

. Traffic to the Internet is small.
. Traffic to the Internet is not business-critical.
. No services are being provided to Internet-based users.

e The network being protected does not contain extremely valuable data.
6.1.3 Multiple-Purpose Boxes

Many single-box firewalls actually provide some combination of proxying and packet filtering. This gives you
many of the advantages of both; you can allow some protocols at high speed while still having detailed control. It
also gives you many of the disadvantages of both; you are vulnerable to problems where protocols that you
thought were forced through the proxies are simply passed on by the packet filters. In addition, you have all the
normal risks of having only a single entity between you and the great outside world.

6.1.3.1 Appropriate uses

A single machine that does both proxying and packet filtering is appropriate for a situation where:

® The network to be protected is small.

. No services are being provided to the Internet.

6.2 Screened Host Architectures

Whereas a dual-homed host architecture provides services from a host that's attached to multiple networks (but
has routing turned off), a screened host architecture provides services from a host that's attached to only the
internal network, using a separate router. In this architecture, the primary security is provided by packet
filtering. (For example, packet filtering is what prevents people from going around proxy servers to make direct
connections.)

Figure 6.3 shows a simple version of a screened host architecture. The bastion host sits on the internal network.
The packet filtering on the screening router is set up in such a way that the bastion host is the only system on
the internal network that hosts on the Internet can open connections to (for example, to deliver incoming email).
Even then, only certain types of connections are allowed. Any external system trying to access internal systems
or services will have to connect to this host. The bastion host thus needs to maintain a high level of host security.

Packet filtering also permits the bastion host to open allowable connections (what is "allowable" will be
determined by your site's particular security policy) to the outside world. The Section 6.3.2 in the Section 6.3
discussion, later in this chapter, contains more information about the functions of bastion hosts, and Chapter 10,
describes in detail how to build one.

page 83

Building Internet Firewalls

Figure 6.3. Screened host architecture

P
Screening Router |)
g [

]
fa ;

] @& @ &

i

i Bastion Host

The packet filtering configuration in the screening router may do one of the following:

. Allow other internal hosts to open connections to hosts on the Internet for certain services (allowing
those services via packet filtering, as discussed in Chapter 8)

. Disallow all connections from internal hosts (forcing those hosts to use proxy services via the bastion
host, as discussed in Chapter 9)

You can mix and match these approaches for different services; some may be allowed directly via packet filtering,
while others may be allowed only indirectly via proxy. It all depends on the particular policy your site is trying to
enforce.

Because this architecture allows packets to move from the Internet to the internal networks, it may seem more
risky than a dual-homed host architecture, which is designed so that no external packet can reach the internal
network. In practice, however, the dual-homed host architecture is also prone to failures that let packets actually
cross from the external network to the internal network. (Because this type of failure is completely unexpected,
there are unlikely to be protections against attacks of this kind.) Furthermore, it's easier to defend a router than
it is to defend a host. For most purposes, the screened host architecture provides both better security and better
usability than the dual-homed host architecture.

Compared to other architectures, however, such as the screened subnet architecture, there are some
disadvantages to the screened host architecture. The major one is that if an attacker manages to break in to the
bastion host, nothing is left in the way of network security between the bastion host and the rest of the internal
hosts. The router also presents a single point of failure; if the router is compromised, the entire network is
available to an attacker. For this reason, the screened subnet architecture, discussed next, has become
increasingly popular.

Because the bastion host is a single point of failure, it is inappropriate to run high-risk services like web servers
on it. You need to provide the same level of protection to it that you would provide to a dual-homed host that
was the sole firewall for your site.

6.2.1 Appropriate Uses

A screened host architecture is appropriate when:

° Few connections are coming from the Internet (in particular, it is not an appropriate architecture if the
screened host is a public web server).

e The network being protected has a relatively high level of host security.

page 84

Building Internet Firewalls

6.3 Screened Subnet Architectures

The screened subnet architecture adds an extra layer of security to the screened host architecture by adding a
perimeter network that further isolates the internal network from the Internet.

Why do this? By their nature, bastion hosts are the most vulnerable machines on your network. Despite your best
efforts to protect them, they are the machines most likely to be attacked because they're the machines that can
be attacked. If, as in a screened host architecture, your internal network is wide open to attack from your bastion
host, then your bastion host is a very tempting target. No other defenses are between it and your other internal
machines (besides whatever host security they may have, which is usually very little). If someone successfully
breaks into the bastion host in a screened host architecture, that intruder has hit the jackpot. By isolating the
bastion host on a perimeter network, you can reduce the impact of a break-in on the bastion host. It is no longer
an instantaneous jackpot; it gives an intruder some access but not all.

With the simplest type of screened subnet architecture, there are two screening routers, each connected to the
perimeter net. One sits between the perimeter net and the internal network, and the other sits between the
perimeter net and the external network (usually the Internet). To break into the internal network with this type
of architecture, an attacker would have to get past both routers. Even if the attacker somehow broke in to the
bastion host, he'd still have to get past the interior router. There is no single vulnerable point that will
compromise the internal network.

Figure 6.4 shows a possible firewall configuration that uses the screened subnet architecture. The next few
sections describe the components in this type of architecture.

Figure 6.4. Screened subnet architecture (using two routers)

Bastion Host

w—
wm
<

__ N

gy | Exterion

Perimeter Nelwork

Interior
Router |

e

F P 4 4 F r

6.3.1 Perimeter Network

The perimeter network is another layer of security, an additional network between the external network and your
protected internal network. If an attacker successfully breaks into the outer reaches of your firewall, the
perimeter net offers an additional layer of protection between that attacker and your internal systems.

Here's an example of why a perimeter network can be helpful. In many network setups, it's possible for any
machine on a given network to see the traffic for every machine on that network. This is true for most Ethernet-
based networks (and Ethernet is by far the most common local area networking technology in use today); it is
also true for several other popular technologies, such as token ring and FDDI. Snoopers may succeed in picking
up passwords by watching for those used during Telnet, FTP, and rlogin sessions. Even if passwords aren't
compromised, snoopers can still peek at the contents of sensitive files people may be accessing, interesting email
they may be reading, and so on; the snooper can essentially "watch over the shoulder" of anyone using the
network. A large number of tools are available that attackers use to do this sort of snooping and to conceal that
it's being done.

page 85

Building Internet Firewalls

With a perimeter network, if someone breaks into a bastion host on the perimeter net, they'll be able to snoop
only on traffic on that net. All the traffic on the perimeter net should be either to or from the bastion host, or to
or from the Internet. Because no strictly internal traffic (that is, traffic between two internal hosts, which is
presumably sensitive or proprietary) passes over the perimeter net, internal traffic will be safe from prying eyes if
the bastion host is compromised.

Obviously, traffic to and from the bastion host, or the external world, will still be visible. Part of the work in
designing a firewall is ensuring that this traffic is not itself confidential enough that reading it will compromise
your site as a whole.

6.3.2 Bastion Host

With the screened subnet architecture, you attach a bastion host (or hosts) to the perimeter net; this host is the
main point of contact for incoming connections from the outside world; for example:

. For incoming email (SMTP) sessions to deliver electronic mail to the site
. For incoming FTP connections to the site's anonymous FTP server

. For incoming Domain Name System (DNS) queries about the site
and so on.

Outbound services (from internal clients to servers on the Internet) are handled in either of these ways:

. Set up packet filtering on both the exterior and interior routers to allow internal clients to access
external servers directly.

. Set up proxy servers to run on the bastion host (if your firewall uses proxy software) to allow internal
clients to access external servers indirectly. You would also set up packet filtering to allow the internal
clients to talk to the proxy servers on the bastion host and vice versa, but to prohibit direct
communications between internal clients and the outside world.

In either case, packet filtering allows the bastion host to connect to, and accept connections from, hosts on the
Internet; which hosts, and for what services, are dictated by the site's security policy.

Much of what the bastion host does is act as proxy server for various services, either by running specialized
proxy server software for particular protocols (such as HTTP or FTP), or by running standard servers for self-
proxying protocols (such as SMTP).

Chapter 10, describes how to secure a bastion host, and the chapters in Part III, describe how to configure
individual services to work with the firewall.

6.3.3 Interior Router

The interior router (sometimes called the choke router in firewalls literature) protects the internal network both
from the Internet and from the perimeter net.

The interior router does most of the packet filtering for your firewall. It allows selected services outbound from
the internal net to the Internet. These services are the services your site can safely support and safely provide
using packet filtering rather than proxies. (Your site needs to establish its own definition of what "safe" means.
You'll have to consider your own needs, capabilities, and constraints; there is no one answer for all sites.) The
services you allow might include outgoing HTTP, Telnet, FTP, and others, as appropriate for your own needs and
concerns. (For detailed information on how you can use packet filtering to control these services, see Chapter 8.)

The services the interior router allows between your bastion host (on the perimeter net itself) and your internal
net are not necessarily the same services the interior router allows between the Internet and your internal net.
The reason for limiting the services between the bastion host and the internal network is to reduce the number of
machines (and the number of services on those machines) that can be attacked from the bastion host, should it
be compromised.

You should limit the services allowed between the bastion host and the internal net to just those that are actually
needed, such as SMTP (so the bastion host can forward incoming email), DNS (so the bastion host can answer
questions from internal machines, or ask them, depending on your configuration), and so on.

page 86

Building Internet Firewalls

You should further limit services, to the extent possible, by allowing them only to or from particular internal
hosts; for example, SMTP might be limited only to connections between the bastion host and your internal mail
server or servers. Pay careful attention to the security of those remaining internal hosts and services that can be
contacted by the bastion host, because those hosts and services will be what an attacker goes after - indeed, will
be all the attacker can go after - if the attacker manages to break in to your bastion host.

6.3.4 Exterior Router

In theory, the exterior router (sometimes called the access router in firewalls literature) protects both the
perimeter net and the internal net from the Internet. In practice, exterior routers tend to allow almost anything
outbound from the perimeter net, and they generally do very little packet filtering. The packet filtering rules to
protect internal machines would need to be essentially the same on both the interior router and the exterior
router; if there's an error in the rules that allows access to an attacker, the error will probably be present on both
routers.

Frequently, the exterior router is provided by an external group (for example, your Internet provider), and your
access to it may be limited. An external group that's maintaining a router will probably be willing to put in a few
general packet filtering rules but won't want to maintain a complicated or frequently changing rule set. You also
may not trust them as much as you trust your own routers. If the router breaks and they install a new one, are
they going to remember to reinstall the filters? Are they even going to bother to mention that they replaced the
router so that you know to check?

The only packet filtering rules that are really special on the exterior router are those that protect the machines on
the perimeter net (that is, the bastion hosts and the internal router). Generally, however, not much protection is
necessary, because the hosts on the perimeter net are protected primarily through host security (although
redundancy never hurts).

The rest of the rules that you could put on the exterior router are duplicates of the rules on the interior router.
These are the rules that prevent insecure traffic from going between internal hosts and the Internet. To support
proxy services, where the interior router will let the internal hosts send some protocols as long as they are
talking to the bastion host, the exterior router could let those protocols through as long as they are coming from
the bastion host. These rules are desirable for an extra level of security, but they're theoretically blocking only
packets that can't exist because they've already been blocked by the interior router. If they do exist, either the
interior router has failed, or somebody has connected an unexpected host to the perimeter network.

So, what does the exterior router actually need to do? One of the security tasks that the exterior router can
usefully perform - a task that usually can't easily be done anywhere else - is the blocking of any incoming
packets from the Internet that have forged source addresses. Such packets claim to have come from within the
internal network but actually are coming in from the Internet.

The interior router could do this, but it can't tell if packets that claim to be from the perimeter net are forged.
While the perimeter net shouldn't have anything fully trusted on it, it's still going to be more trusted than the
external universe; being able to forge packets from it will give an attacker most of the benefits of compromising
the bastion host. The exterior router is at a clearer boundary. The interior router also can't protect the systems
on the perimeter net against forged packets. (We discuss forged packets in greater detail in Chapter 4.)

Another task that the exterior router can perform is to prevent IP packets containing inappropriate source
addresses from leaving your network. All traffic leaving your network should come from one of your source
addresses. If not, then either you have a serious configuration problem, or somebody is forging source
addresses.

Although filtering inappropriate source addresses outbound doesn't provide any network protection to you, it
prevents an intruder from using your systems to launch certain types of attacks on other sites. If the exterior
router is configured to alert you when forged source addresses are seen, this may be just the early warning
alarm you need in order to detect a serious network problem. The practice of being a good network citizen may
also be enough to keep the name of your site out of a possibly embarrassing news headline.

6.3.5 Appropriate Uses

A screened subnet architecture is appropriate for most uses.

page 87

Building Internet Firewalls

6.4 Architectures with Multiple Screened Subnets

Some networks will need more than one screened subnet. This happens when there are multiple things that need
to happen on a screened subnet that have different security implications.

6.4.1 Split-Screened Subnet

In a split-screened subnet, there is still a single interior router and an exterior router, but multiple networks are
between the two routers. In general, the screened networks are connected to each other by one or more dual-
homed hosts, not by yet another router.

Some sites use this architecture purely to provide defense in depth, protecting a proxy host with the routers. The
routers provide protection from forgery, and protection from failures where the dual-homed host starts to route
traffic. The dual-homed host provides finer controls on the connections than packet filtering. This is a belt-and-
suspenders firewall, providing excellent multilayered protection, although it requires careful configuration on the
dual-homed host to be sure you're taking full advantage of the possibilities. (There's no point in running simple,
straight-through proxies.) Figure 6.5 shows this configuration.

Figure 6.5. Split-screened subnet with dual-homed host

e | Exterior
i Router
i Duak-homed Host

sz
<ira

Perimeter Network 1 ﬂ

: Perimeter Network 2
mam = _

Interior
! Router

F 4 4 4 F P

Others use this architecture to provide administrative access to machines that also provide service to the
Internet. This allows administrators to use protocols that are too dangerous to allow to the Internet on a sensitive
machine (for instance, the NT-native protocols used for remote User Manager and Performance Monitor use)
without relying solely on the exterior router as protection. It also may be useful for performance reasons on
machines making intense use of the network; it prevents administrative traffic from using bandwidth that could
be used to serve user requests. Figure 6.6 shows this sort of architecture.

In fact, machines that can drive multiple high-speed network interfaces at full speed may benefit from having
three network interfaces; one to speak to the external users, one to speak to the internal administrators, and one
with no connections to other networks that is used for backups and/or communications among bastion hosts.
Figure 6.8 shows this sort of architecture.

page 88

Building Internet Firewalls

Figure 6.6. Split-screened subnet with no through traffic

TRl

Perimeter Network 1

E 4 A |
1 e = __ 1
Bastion Host 1 Bastion Host 2 Bastion Host 3 1

Perimeter Network 2

Interior :

...

a4 @ @8 @ @& =

6.4.1.1 Appropriate uses

Split-screened subnets are appropriate for networks that need high security, particularly if they are providing
services to the Internet.

6.4.2 Independent Screened Subnets

In some cases you will want to have multiple, independent screened subnets, with separate exterior routers.
Figure 6.7 shows this configuration.

You might put in multiple perimeter nets to provide redundancy. It doesn't make much sense to pay for two
connections to the Internet, and then run them both through the same router or routers. Putting in two exterior
routers, two perimeter nets, and two interior routers ensures that no single point of failure is between you and
the Internet.'*

You might also put in multiple perimeter nets for privacy, so that you can run moderately confidential data across
one, and an Internet connection across the other. In that case, you might even attach both perimeter nets to the
same interior router.

You might also want to use multiple perimeter nets to separate inbound services (services that you provide to the
Internet, like publicly accessible web servers) from outbound services (services that allow your users to get to
the Internet, like a caching web proxy). It is much easier to provide truly strong security to these functions if you
separate them, and if you use a split perimeter net for the inbound services.

Having multiple perimeter nets is less risky than having multiple interior routers sharing the same internal net,
but it's still a maintenance headache. You will probably have multiple interior routers, presenting multiple
possible points of compromise. Those routers must be watched very carefully to keep them enforcing appropriate
security policies; if they both connect to the Internet, they need to enforce the same policy. Figure 6.8 shows the
sort of firewall an Internet service provider might use, with many perimeter nets and multiple connections to the
Internet.

14 Providing, of course, that your two Internet providers are actually running on different pieces of cable, in different conduits. Never
underestimate the destructive power of a backhoe or a jackhammer.

page 89

Building Internet Firewalls

Figure 6.7. Architecture using multiple perimeter nets (multiple firewalls)

Internet
Basfion Host
! T
: ;-
:EmBrlﬂr - = ||i.[i|- :
Iﬁnuter == T
: Perimmeler Network :
r 1 - Interior :
' Firewall == Router 5

-

Supplier

Network
Bastion Host
i =
 Extorion ——— ||i’|i'i|-—
i Router = g

' Firewall

L

Perimeler Mebwork

. Interior
() Router

-

Internal Network

.
T —

.=
I —

Figure 6.8. An intricate firewall setup

Web
Sgrver

Firewall

ll’erimeier Nelwark

Mail 1 Mail 2

Perimeter Nelwork

] Interior
Foutar 1

-
{11111

6.4.2.1 Appropriate uses

= "
L1 {TT111T H =

-,
il - .-"u
Customer tralfic { iRtomel
-------"-"-------?‘i ---------- J
[-—"—-] Exteriar " Exterior |
—— Router 1 'HnuterEk—

. Firpwall

Perimater Metwork

Interior
i=====]
e m Router 2

"
({11111

- -
Tnim — T —
—— Employee traffic
f:!‘—n Bastion Host
g wm
[i
e
= _

Internal Hetwark

-
{11111

-
LTI

Independent screened subnets are appropriate in networks with a particularly strong need for redundancy, or
with high security requirements and several independent uses of the Internet.

page 90

Building Internet Firewalls

6.5 Variations on Firewall Architectures

We've shown the most common firewall architectures in Figure 6.2 through Figure 6.8. However, there is a lot of
variation in architectures. There is a good deal of flexibility in how you can configure and combine firewall
components to best suit your hardware, your budget, and your security policy. This section describes some
common variations and their benefits and drawbacks.

6.5.1 It's OK to Use Multiple Bastion Hosts

Although we tend to talk about a single bastion host in this book, it may make sense to use multiple bastion
hosts in your firewall configuration, as we show in Figure 6.9. Reasons you might want to do this include
performance, redundancy, and the need to separate data or servers.

Figure 6.9. Architecture using two bastion hosts

FIPWWW SMTPONS

Router (555

' Host - HOSt e
g Exteior - e T ';
: S pouter == ;
Perimeter Network
i Interior :

4 4 4 i 4 4

You might decide to have one bastion host handle the services that are important to your own users (such as
SMTP servers, proxy servers, and so on), while another host handles the services that you provide to the
Internet, but which your users don't care about (for example, your public web server). In this way, performance
for your own users won't be dragged down by the activities of outside users.

You may have performance reasons to create multiple bastion hosts even if you don't provide services to the
Internet. Some services, like Usenet news, are resource-intensive and easily separated from others. It's also
possible to provide multiple bastion hosts with the same services for performance reasons, but it can be difficult
to do load balancing. Most services need to be configured for particular servers, so creating multiple hosts for
individual services works best if you can predict usage in advance.

How about redundancy? If your firewall configuration includes multiple bastion hosts, you might configure them
for redundancy, so that if one fails, the services can be provided by another, but beware that only some services
support this approach. For example, you might configure and designate multiple bastion hosts as DNS servers for
your domain (via DNS NS [Name Server] records, which specify the name servers for a domain), or as SMTP
servers (via DNS MX [Mail Exchange] records, which specify what servers will accept mail for a given host or
domain), or both. Then, if one of the bastion hosts is unavailable or overloaded, the DNS and SMTP activity will
use the other as a fallback system.

You might also use multiple bastion hosts to keep the data sets of services from interfering with each other. In
addition to the performance issues discussed earlier, there may be security reasons for this separation. For
example, you might decide to provide one HTTP server for use by your customers over the Internet, and another
for use by the general public. By providing two servers, you can offer different data to customers, and possibly
better performance, by using a less loaded or more powerful machine.

You could also run your HTTP server and your anonymous FTP server on separate machines, to eliminate the
possibility that one server could be used to compromise the other. (For a discussion of how this might be done,
see the description of HTTP server vulnerabilities in Chapter 15.)

page 91

Building Internet Firewalls

6.5.2 It's OK to Merge the Interior Router and the Exterior Router

You can merge the interior and exterior routers into a single router, but only if you have a router sufficiently
capable and flexible. In general, you need a router that allows you to specify both inbound and outbound filters
on each interface. In Chapter 8, we discuss what this means, and we describe the packet filtering problems that
may arise with routers that have more than two interfaces and don't have this capability.

If you merge the interior and exterior routers, as we show in Figure 6.10, you'll still have a perimeter net (on one
interface of the router) and a connection to your internal net (on another interface of the router). Some traffic
would flow directly between the internal net and the Internet (the traffic that is permitted by the packet filtering
rules set up for the router), and other traffic would flow between the perimeter net and the Internet, or the
perimeter net and the internal net (the traffic that is handled by proxies).

Figure 6.10. Architecture using a merged interior and exterior router

Bastion Host @

Q —

=
__ . o
i Hum :

' LX)]
: Intesior! P

! Exterior |m====| : _° :::': Perimeter Nelwork
: Router il :
i Y |

4 4 d 4 i F

This architecture, like the screened host architecture, creates a single point of failure. Since now only one router
is between the inside and the outside, if that router is compromised, the entire site is compromised. In general,
routers are easier to protect than hosts, but they are not impenetrable.

6.5.3 It's OK to Merge the Bastion Host and the Exterior Router

There might be cases in which you use a single dual-homed machine as both your bastion host and your exterior
router. Here's an example: suppose you only have a dial-up SLIP or PPP connection to the Internet. In this case,
you might run PPP on your bastion host, and let it act as both bastion host and exterior router. This is functionally
equivalent to the three-machine configuration (bastion host, interior router, exterior router) described for the
screened subnet architecture shown earlier in this chapter.

Using a dual-homed host to route traffic won't give you the performance or the flexibility of a dedicated router,
but you don't need much of either for a single low-bandwidth connection. Depending on the operating system and
software you're using, you may or may not have the ability to do packet filtering. Several of the available
interface software packages have quite good packet filtering capabilities. However, because the exterior router
doesn't have to do much packet filtering anyway, using an interface package that doesn't have good packet
filtering capabilities is not that big a problem.

Unlike merging the interior and exterior routers, merging the bastion host with the exterior router, as shown in
Figure 6.11, does not open significant new vulnerabilities. It does expose the bastion host further. In this
architecture, the bastion host is more exposed to the Internet, protected only by whatever filtering (if any) its
own interface package does, and you will need to take extra care to protect it.

page 92

Building Internet Firewalls

Figure 6.11. Architecture using a merged bastion host and exterior router

ﬁ Bastion Host! 1
: Exterlor Router i
mmm—__ :

Perimeter Nelwork

Interior Router | Bees|

o

i 4 A E i i

6.5.4 It's Dangerous to Merge the Bastion Host and the Interior Router

While it is often acceptable to merge the bastion host and the exterior router, as we discussed in the previous
section, it's not a good idea to merge the bastion host and the interior router, as we show in Figure 6.12. Doing
so compromises your overall security.

The bastion host and the exterior router each perform distinct protective tasks; they complement each other but
don't back each other up. The interior router functions in part as a backup to the two of them.

If you merge the bastion host and the interior router, you've changed the firewall configuration in a fundamental
way. In the first case (with a separate bastion host and interior router), you have a screened subnet firewall
architecture. With this type of configuration, the perimeter net for the bastion host doesn't carry any strictly
internal traffic, so this traffic is protected from snooping even if the bastion host is successfully penetrated; to get
at the internal network, the attacker still must get past the interior router. In the second case (with a merged
bastion host and interior router), you have a screened host firewall architecture. With this type of configuration, if
the bastion host is broken into, there's nothing left in the way of security between the bastion host and the
internal network.

One of the main purposes of the perimeter network is to prevent the bastion host from being able to snoop on
internal traffic. Moving the bastion host to the interior router makes all of your internal traffic visible to it.

6.5.5 It's Dangerous to Use Multiple Interior Routers

Using multiple interior routers to connect your perimeter net to multiple parts of your internal net can cause a lot
of problems and is generally a bad idea.

The basic problem is that the routing software on an internal system could decide that the fastest way to another
internal system is via the perimeter net. If you're lucky, this approach simply won't work because it will be
blocked by the packet filtering on one of the routers. If you're unlucky, it will work, and you'll have sensitive,
strictly internal traffic flowing across your perimeter net, where it can be snooped on if somebody has managed
to break in to the bastion host.

It's also difficult to keep multiple interior routers correctly configured. The interior router is the one with the most
important and the most complex set of packet filters, and having two of them doubles your chances of getting
the rule sets wrong.

Nevertheless, you may still end up wanting to do this. Figure 6.13 shows the basic architecture using multiple
interior routers. On a large internal network, having a single interior router may be both a performance problem
and a reliability problem. If you're trying to provide redundancy, that single point of failure is a major annoyance.
In that case, the safest (and most redundant) thing to do is to set up each interior router to a separate perimeter
net and exterior router; this configuration is discussed earlier in this chapter.

page 93

Building Internet Firewalls

This configuration is more complex and more expensive, but it increases both redundancy and performance, as
well as making it highly unlikely that traffic will try to go between the interior routers (if the Internet is the
shortest route between two parts of your internal network, you have much worse problems than most sites) and
extraordinarily unlikely that it will succeed (four sets of packet filters are trying to keep it out).

Figure 6.12. Architecture using a merged bastion host and interior router

Internet Waming: We recommend against this configuration.

..

[===2] Exterior Router

Perimeter Nelwork

<a—

Bastion Host!
Interior Router
Firewall = __

et B B S L S R e S e g S S R e L B e gy BT S | LR e E e e e L S e S e st T

,._____________________

internal Metwork

T [= - = .
111111 [1een = I = I = 111111 (e =

4 @ @ @ @ =

Figure 6.13. Architecture using multiple interior routers

Internet . Wamning: We racommend against this configuration.

-

i

i T . Exberior = E
: === mouter i — ___ Bastion Host |
i Perimeter Nefwork |
:L Firewall |===1| Interior Routers [E===

internal Melwork

- = [=2 - [_. [s

If performance problems alone are motivating you to look at multiple interior routers, it's hard to justify the
expense of separate perimeter networks and exterior routers. In most cases, however, the interior router is not
the performance bottleneck. If it is, then one of the following cases is occurring:

. A lot of traffic going to the perimeter net is not then going to the external network.

. Your exterior router is much faster than your interior router.

page 94

Building Internet Firewalls

In the first case, you have probably misconfigured something; the perimeter net may take occasional traffic that
isn't destined for the external world in some configurations (for example, DNS queries about external hosts when
the information is cached), but that traffic should never be significant. In the second case, you should seriously
consider upgrading the interior router to match the exterior router, instead of adding a second one.

Another reason for having multiple interior routers is that you have multiple internal networks, which have
technical, organizational, or political reasons not to share a single router. The simplest way to accommodate
these networks would be to give them separate interfaces on a single router, as shown in Figure 6.14. This
complicates the router configuration considerably (how considerably depends a great deal on the router in
question, as discussed in Chapter 8) but doesn't produce the risks of a multiple interior router configuration. If
there are too many networks for a single router, or if sharing a router is unpalatable for other reasons, consider
making an internal backbone and connecting it to the perimeter network with a single router, as shown in Figure
6.15.

Figure 6.14. Multiple internal networks (separate interfaces in a single router)

+ Bastion Hosl

. s T o N

: e Extarior :
; e Router o — __

Perimeler Nelwork

Interior Router [==

F d F | i 3 3

Figure 6.15. Multiple internal networks (backbone architecture)

;' Bastion Host

"""""""" el B
e Router = __

Perimeler Nelwork

Interior Router | e

TP S P i e

g | Router
e ez | Router

4 4 d

F E P

T T —

page 95

Building Internet Firewalls

You may find that an effective way to accommodate different security policies among different internal networks
is to attach them to the perimeter through separate routers (e.g., one network wants to allow connections that
others consider insecure). In this case, the perimeter network should be the only interconnection between the
internal networks; there should be no confidential traffic passing between them; and each internal network
should treat the other as an untrusted, external network. This is likely to be extremely inconvenient for some
users on each network, but anything else will either compromise the security of the site as a whole or remove the
distinction that caused you to set up the two routers in the first place.

If you decide that you are willing to accept the risks of having multiple interior routers, you can minimize those
risks by having all the interior routers managed by the same group (so conflicting security policies aren't being
enforced). You should also keep a careful watch for internal traffic crossing the perimeter network and act
promptly to cure the sources of it.

6.5.6 It's OK to Use Multiple Exterior Routers

In some cases, it makes sense to connect multiple exterior routers to the same perimeter net, as we show in
Figure 6.16. Examples are:

. You have multiple connections to the Internet (for example, through different service providers, for
redundancy).

® You have a connection to the Internet plus other connections to other sites.
In these cases, you might instead have one exterior router with multiple exterior network interfaces.

Figure 6.16. Architecture using multiple exterior routers

i Bastion Host
Extarior |||i||||| — Exteriar .
Router = — Router oo
Perimeter Nelwork

Interior Router |=oes

4 4 4 4 4 4

Attaching multiple exterior routers that go to the same external network (e.g., two different Internet providers) is
not a significant security problem. They may have different filter sets, but that's not critical in exterior routers.
There is twice the chance that one will be compromisable, but a compromise of an exterior router usually is not
particularly threatening.

Things are more complex if the connections are to different places (for example, one is to the Internet and one is
to a site you're collaborating with and need more bandwidth to). To figure out whether such an architecture
makes sense in these cases, ask yourself this question: what traffic could someone see if they broke into a
bastion host on this perimeter net? For example, if an attacker broke in, could he snoop on sensitive traffic
between your site and a subsidiary or affiliate? If so, then you may want to think about installing multiple
perimeter nets instead of multiple exterior routers on a single perimeter net. (This case is shown in the next
section.)

Other significant problems are involved in setting up connections to external networks with which you have
special relationships, which are discussed later in this chapter, in Section 6.7.

page 96

Building Internet Firewalls

6.5.7 It's Dangerous to Use Both Screened Subnets and Screened Hosts

If you have a screened subnet, you should not allow connections from the Internet directly onto your internal
networks. This may seem intuitively obvious (what's the point in having a screened subnet if you're not going to
use it?), but you'd be surprised how many people end up making exceptions. These sorts of exceptions are
extremely dangerous. Once you have a screened subnet, you're going to be concentrating your protections there,
and it's almost impossible to properly protect both a screened subnet and a screened host on an internal
network.

There are two common situations in which people ask for exceptions. First, people providing services to Internet
users find that the interior router interferes with either administration of the services or communication between
components (for instance, a web server that needs to talk to an internal database server). Second, people with
tools for accessing new protocols (proxy servers for the latest multimedia 3D all-singing all-dancing tool, for
instance) don't want to go to the trouble of putting them in somebody else's carefully protected space and are
completely convinced that they're so safe you can just let traffic through to them.

Chapter 23, discusses the positioning of web servers and their associated components in detail, but the short
summary is that putting the web server itself on the internal network is extremely risky, even if you are sure that
only web traffic can get to it. If you are having problems allowing administrative protocols through, Chapter 11,
and Chapter 12, discuss methods for safely administering bastion hosts.

As for the theoretically safe brand-new protocols, there's a lot to consider before you hand over control of an
experimental bastion host. Make sure that:

° No other bastion hosts trust the experimental one.

e The experimental bastion host cannot snoop on important network traffic.

e The machine starts out in a secure configuration.

You will be able to detect break-ins on the experimental bastion host.

Then hand it over and let people play with it. It's better for them to experiment in a controlled way where you
can keep an eye on them than to succeed in working around the firewall altogether. If you have the resources,
you may want to put a separate screened subnet in place just for experimentation.

6.6 Terminal Servers and Modem Pools

Another issue that is only somewhat related to firewalls (but that the security folks putting up firewalls are often
asked to address) is where to locate the terminal servers and modem pools within a site's network. You definitely
need to pay as much attention to the security of your dial-up access ports as you do to the security of your
Internet connection. However, dial-up security (authentication systems, callback systems, etc.) is a whole topic
of its own, separate from firewalls. We'll therefore restrict our comments to those related to firewalls.

The big firewall question concerning terminal servers and modem pools is where to put them: do you put them
inside your security perimeter, or outside? (This is similar to the question of where to put encryption endpoints in
a virtual private network, discussed earlier.) Our advice is to put them on the inside and to protect them
carefully. You'll not only be doing yourself a favor, you'll also be a good neighbor. Putting open terminal servers
on the Internet is a risk to other people's sites as well as your own.

If the modem ports are going to be used primarily to access internal systems and data (that is, employees
working from home or on the road), then it makes sense to put them on the inside. If you put them on the
outside, you'd have to open holes in your perimeter to allow them access to the internal systems and data - holes
that an attacker might be able to take advantage of. Also, if you put them on the outside, then an attacker who
has compromised your perimeter (broken into your bastion host, for example) could potentially monitor the work
your users do, essentially looking over their shoulders as they access private, sensitive data. If you do put the
modems on the inside, you'll have to protect them very carefully, so they don't become an easier break-in target
than your firewall. It doesn't do any good to build a first-class firewall if someone can bypass it by dialing into an
unprotected modem connected to the internal network.

On the other hand, if the modem ports are going to be used primarily to access external systems (that is, by
employees or guests who mainly use your site as an access point for the Internet), then it makes more sense to
put them on the outside. There's no sense in giving someone access to your internal systems if he or she doesn't
need it. This external modem pool should be treated just as suspiciously as the bastion host and the other
components of your firewall.

page 97

Building Internet Firewalls

If you find that you need both types of access, then you might want to consider two modem pools: one on the
inside, carefully protected, to access internal systems, and another on the outside to access the Internet.

If your terminal servers and modem pools are being used to support dial-up network connections from homes or
other sites, you should make sure you enforce any implicit assumptions you have about that usage. For instance,
people setting up PPP accounts on terminal servers generally assume that the PPP account is going to be used by
a single remote machine running standalone. More and more machines, however, are part of local area networks,
even at home (Dad's PC is in the den, Mom's in the living room). That PPP connection could be used not just by
the machine you set it up for, but by anything that machine is connected to, and anything those machines are
connected to, and so forth. The machine that uses the PPP account might be connected to a local area network,
with any number of other machines on it; any of them might be connected (via other PPP connections, for
example) to another site or an Internet service provider. If you don't do anything to prevent it, traffic could flow
from the Internet, to the second PC, to the "legitimate" PC, and finally into your own net, completely bypassing
your firewall.

You can prevent this problem by simply enabling packet filtering on the PPP connection that limits what it can do
to what you expect it to do (i.e., that limits packets on the connection to only packets to or from the machine you
expect to be at the other end of the connection).

Some sites with significant dial-up networking activity take the approach of building a separate firewall just for
that activity. See the previous discussion of multiple perimeter networks.

We discuss remote access protocols further in Chapter 14, and we discuss the authentication protocols generally
used to protect modem pools and terminal servers in Chapter 21.

6.7 Internal Firewalls

The assumption in most of the discussions in this book is that you are building a firewall to protect your internal
network from the Internet. However, in some situations, you may also be protecting parts of your internal
network from other parts. There are a number of reasons why you might want to do this:

° You have test or lab networks with strange things going on there.

® You have networks that are less secure than the rest of your site - for example, demonstration or
teaching networks where outsiders are commonly present.

. You have networks that are more secure than the rest of your site - for example, secret development
projects or networks where financial data or grades are passed around.

Figure 6.17. Firewall architecture with an internal firewall

Internal Metwork

“”“l“ "”“l“ T "l"”"

Laboratory Network

4 A 4

page 98

Building Internet Firewalls

This is another situation where firewalls are a useful technology. In some cases, you will want to build internal
firewalls; that is, firewalls that sit between two parts of the same organization, or between two separate
organizations that share a network, rather than between a single organization and the Internet.

It often makes sense to keep one part of your organization separate from another. Not everyone in an
organization needs the same services or information, and security is frequently more important in some parts of
an organization (the accounting department, for example) than in others.

Many of the same tools and techniques you use to build Internet firewalls are also useful for building these
internal firewalls. However, there are some special considerations that you will need to keep in mind if you are
building an internal firewall. Figure 6.17 shows this architecture.

6.7.1 Laboratory Networks

Laboratory and test networks are often the first networks that people consider separating from the rest of an
organization via a firewall (usually as the result of some horrible experience where something escapes the
laboratory and runs amok). Unless people are working on routers, this type of firewall can be quite simple.
Neither a perimeter net nor a bastion host is needed, because there is no worry about snooping (all users are
internal anyway), and you don't need to provide many services (the machines are not people's home machines).
In most cases, you'll want a packet filtering router that allows any connection inbound to the test network but
only known safe connections from it. (What's safe will depend on what the test network is playing with, rather
than on the normal security considerations.)

In a few cases (for example, if you are testing bandwidth on the network), you may want to protect the test
network from outside traffic that would invalidate tests, in which case you'll deny inbound connections and allow
outbound connections.

If you are testing routers, it's probably wisest to use an entirely disconnected network; if you don't do this, then
at least prevent the firewall router from listening to routing updates from the test network. You can do this in a
number of ways, depending on your network setup, what you're testing, and what routers you have available.
You might do any of the following:

° Use a different routing protocol from the one under test and entirely disable the protocol under test.

e Tell the router not to accept any routing updates from the interface under test and to filter out packets
in the routing protocol.

. Specify which hosts the router will accept updates from.

If you have a number of test networks, you may find it best to set up a perimeter net for them and give each one
a separate router onto the perimeter net, putting most of the packet filtering in the router between the perimeter
and the main network. That way, if one test network crashes its router, the rest still have their normal
connectivity.

If your testing involves external connections, the test network has to be treated as an external network itself; see
Section 6.7.4, later in this chapter.

6.7.2 Insecure Networks

Test networks are dangerous but not necessarily less secure than other networks. Many organizations also have
some networks that are intrinsically less secure than most. For example, a university may consider networks that
run through student dormitories to be particularly insecure; a company may consider demonstration networks,
porting labs, and customer training networks to be particularly insecure. Nevertheless, these insecure networks
need more interaction with the rest of the organization than does a purely external network.

Networks like dormitory networks and porting labs, where external people have prolonged access and the ability
to bring in their own tools, are really as insecure as completely external networks and should be treated that
way. Either position them as a second external connection (a new connection on your exterior router or a new
exterior router) or set up a separate perimeter network for them. The only advantage these networks offer over
purely external networks is that you can specify particular software to be run on them, which means you can
make use of encryption effectively.

page 99

Building Internet Firewalls

External people may also be able to gain access to your internal network if you use wireless networking devices.
These network devices provide more accessibility and less security than traditional fixed networking. In
particular, they often have a range that extends outside of your physical building, and they provide little or no
authentication. This can allow anyone who owns a compatible device to connect to your network by sitting in the
parking lot or in an adjacent building. Even if the range of the wireless device does not extend outside of your
facilities, they make it much harder to notice a visitor attempting to gain access to your network. Some wireless
networking devices provide stronger authentication and encryption facilities that prevent eavesdropping and
unauthorized access. In most cases, however, you should treat a wireless network as an untrusted network and
place a firewall between it and the rest of your network.

Demonstration and training labs, where external people have relatively brief, supervised access and cannot bring
in tools, can be more trusted (as long as you are sure that people really do have relatively brief, supervised
access and cannot bring in tools!). You still need to use a packet filtering router or a dual-homed host to prevent
confidential traffic from flowing across those networks. You will also want to limit those networks to connections
to servers you consider secure. However, you may be willing to provide NFS service from particular servers, for
example, which you wouldn't do to a purely untrusted network. One of your main concerns should be preventing
your trusted users from doing unsafe things while working on those networks (for example, logging into the
machines on their desks and forgetting to log out again, or reading confidential electronic mail). This should be
done with a combination of training and force (ensuring that the most insecure uses fail).

This is a place where a dual-homed host can be quite useful, even with no proxies on it; the number of people
who need to use the host is probably small, and having to log into it will ensure that they see warning messages.
The host will also be unable to provide some tempting but highly insecure services; for example, you won't be
able to run NFS except from the dual-homed host, and people won't be able to mount their home machine's
filesystems.

6.7.3 Extra-Secure Networks

Just as most organizations have points where they're particularly insecure, most of them have points where
they're particularly security-conscious, such as:

. Particularly exciting research projects

. New products under development

e The accounting, personnel, and finance machines
® The registrar's office at a university

° Unclassified but sensitive government work

° Joint work with other organizations

Many countries have legal requirements for the protection of personal data, which are likely to apply to anywhere
that employee, student, client, or patient records are kept. Some unclassified government work also requires
extra protections.

Networks for doing classified work - at any level of classification - not only need to be more secure, but also need
to meet all relevant government regulations. Generally speaking, they will have to be separated from unclassified
networks. In any case, they are outside of the scope of this book. If you need to set one up, consult your security
officer; traditional firewalls will not meet the requirements.®®

You can choose to meet your requirements for extra security either by encrypting traffic that passes over your
regular internal networks, or by setting up separate networks for the secure traffic. Separate networks are
technically easier as long as separate machines are on them. That is, if you have a secure research project that
owns particular computers, and if people log into them to work on that project, it's reasonably simple to set up a
straightforward single-machine firewall (a packet filtering router, most likely). That firewall will treat your normal
network as the insecure external universe. Because the lab machines probably don't need many services, a
bastion host is unnecessary, and a perimeter net is needed only for the most secret ventures.

15 If you don't have a security officer, you're not going to have a classified network, either.

page 100

Building Internet Firewalls

If you are dealing with people whose day-to-day work is secure, and who don't have separate machines for that
work, a separate network becomes harder to implement. If you put their machines onto a more secure network,
they can't work easily with everybody else at the site, and they need a number of services. In this case, you'll
need a full bastion host and therefore probably a perimeter net to put it on. It's tempting to connect their
machines to two networks, the secure net and the insecure net, so they can transmit confidential data over one
and participate with the rest of the site on the other, but this is a configuration nightmare. If they're attached to
both at once, each host is basically a dual-homed host firewall, with all the attendant maintenance problems. If
they can be attached to only one at a time, things are more secure. However, configuring the machines is
unpleasant for you, and moving back and forth is unpleasant for the user.

At a university, where there are sharp distinctions between different organizations, putting the registrar's office
and the financial people on secure networks, firewalled from the rest of the university, will probably work. At a
company or government office, where most people work in the same environment, look into using encryption in
your applications instead.

6.7.4 Joint Venture Firewalls

Sometimes, organizations come together for certain limited reasons, such as a joint project; they need to be able
to share machines, data, and other resources for the duration of the project. For example, look at the decision of
IBM and Apple to collaborate on the PowerPC; undertaking one joint project doesn't mean that IBM and Apple
have decided to merge their organizations or to open up all their operations to each other.

Although the two parties have decided to trust each other for the purposes of this project, they are still
competitors. They want to protect most of their systems and information from each other. It isn't just that they
may distrust each other; it's also that they can't be sure how good the other's security is. They don't want to risk
that an intruder into their partner's system might, through this joint venture, find a route into their system as
well. This security problem occurs even if the collaborators aren't competitors.

You may also want to connect to an external company because it is an outside vendor to you. A number of
services depend on information transfer, from shipping (you tell them what you want to ship; they tell you what
happened to your shipment), to architecture (you give them specifications; they give you designs), to chip
fabrication (you send them the chip design, they give you status on the fabrication process). These outside
vendors are not competitors in any sense, but they frequently also work for competitors of yours. They are
probably aware of confidentiality issues and try to protect the information they are supposed to have, to the best
of their ability. On the other hand, if there are routing slip-ups, and data you're not explicitly sending to them
crosses their networks, they are probably going to be completely unconscious of it, and the data will be at risk.

This may seem far-fetched, but it turns out to be a fairly routine occurrence. One company was mystified to
discover routes on its network for a competitor's internal network, and still more baffled to discover traffic using
these routes. It turned out that the shortest route between them and their competitor was through a common
outside vendor. The traffic was not confidential because it was all traffic that would have gone through the
Internet. On the other hand, the connection to the outside vendor was not treated as if it were an Internet
connection (the outside vendor itself was not Internet-connected, and nobody had considered the possibility of its
cross-connecting Internet-connected clients). Both companies had sudden, unexpected, and unprotected
vulnerabilities.

An internal firewall limits exposure in such a situation. It provides a mechanism for sharing some resources, while
protecting most of them. Before you set out to build an internal firewall, be sure you're clear on what you want to
share, protect, and accomplish. Ask these questions:

e What exactly do you want to accomplish by linking your network with some other organization's
network? The answer to this question will determine what services you need to provide (and, by
implication, what services should be blocked).

. Are you trying to create a full work environment for a joint project in which team members from both
organizations can work together and yet still have access to their own "home" systems (which need to
be protected from the other organization)? In such a case, you might actually need two firewalls: one
between the joint project net and each of the home organizations.

Exactly what you're trying to accomplish, and what your security concerns are, will determine what firewall
technologies are going to be useful to you.

page 101

Building Internet Firewalls

6.7.5 A Shared Perimeter Network Allows an "Arms-Length"Relationship

Shared perimeter networks are a good way to approach joint networks. Each party can install its own router
under its own control, onto a perimeter net between the two organizations. In some configurations, these two
routers might be the only machines on the perimeter net, with no bastion host. If this is the case, then the "net"
might simply be a high-speed serial line (e.g., a 56 Kbps or T1/E1 line) between the two routers, rather than an
Ethernet or another type of local area network.

This is highly desirable with an outside vendor. Most of them are not networking wizards, and they may attempt
to economize by connecting multiple clients to the same perimeter network. If the perimeter net is an Ethernet or
something similar, any client that can get to its router on that perimeter network can see the traffic for all the
clients on that perimeter network - which, with some providers, is almost guaranteed to be confidential
information belonging to a competitor. Using a point-to-point connection as the "perimeter net" between the
outside vendor and each client, rather than a shared multiclient perimeter net, will prevent them from doing this,
even accidentally.

6.7.6 An Internal Firewall May or May Not Need Bastion Hosts

You might not actually need to place a bastion host on the perimeter network between two organizations. The
decision about whether you need a bastion host depends on what services are required for your firewall and how
much each organization trusts the other. Bastion hosts on the perimeter net are rarely required for relationships
with outside vendors; usually you are sending data over one particular protocol and can adequately protect that
as a screened host.

If the organizations have a reasonable amount of trust in each other (and, by extension, in each other's security),
it may be reasonable to establish the packet filters so that clients on the other side can connect to internal
servers (such as SMTP and DNS servers) directly.

On the other hand, if the organizations distrust each other, they might each want to place their own bastion host,
under their own control and management, on the perimeter net. Traffic would flow from one party's internal
systems, to their bastion host, to the other party's bastion host, and finally to the other party's internal systems.

page 102

Building Internet Firewalls

Chapter 7. Firewall Design

In previous chapters, we've discussed the technologies and architectures that are usually used to build firewalls.
Now we can discuss how you put them together to get a solution that's right for your site. The "right solution" to
building a firewall is seldom a single technology; it's usually a carefully crafted combination of technologies to
solve different problems. This chapter starts the discussion of how to come up with the combination that's right
for you. Which problems you need to solve depend on what services you want to provide your users and what
level of risk you're willing to accept. Which techniques you use to solve those problems depend on how much
time, money, and expertise you have available.

When you design a firewall, you go through a process that you will then repeat over time as your needs change.
The basic outline is as follows:

1. Define your needs.
2. Evaluate the available products.

3. Figure out how to assemble the products into a working firewall.

7.1 Define Your Needs

The first step in putting together a firewall is to figure out exactly what you need. You should do this before you
start to look at firewall products, because otherwise you risk being influenced more by advertising than by your
own situation. This is inevitable, and it has nothing to do with being gullible. If you don't know clearly what you
need, the products that you look at will shape your decisions, no matter how suspicious you are.

You may need to re-evaluate your needs if you find that there are no products on the market that can meet
them, of course, but at least you'll have some idea of what you're aiming for.

7.1.1 What Will the Firewall Actually Do?

First, you need to determine what the firewall needs to do, in detail. Yes, you're trying to make your site secure,
but how secure does it need to be?

Your first starting point will be your security policy. If you don't have a security policy, see Chapter 25, for some
suggestions on how to go about setting one up. You can't just do without a policy because a firewall is an
enforcement device; if you didn't have a policy before, you do once you have a firewall in place, and it may not
be a policy that meets your needs.

7.1.1.1 What services do you need to offer?

You need to know what services are going to go between your site and the Internet. What will your users do on
the Internet? Are you going to offer any services to users on the Internet (for instance, will you have a web site)?
Are you going to let your users come into your site from the Internet (if not, how are you providing your users
with remote access)? Do you have special relationships with other companies that you're going to need to provide
services for?

7.1.1.2 How secure do you need to be?

Many decisions have to do with relative levels of security. Are you trying to protect the world from destruction by
protecting nuclear secrets, or do you want to keep from looking silly? Note that looking silly is not necessarily a
trivial problem; if you look silly on the front page of a major newspaper, it can be a real disaster for the
organization, at least. Many banks and financial institutions regard being "above the fold" (in the top half of the
front page of the newspaper) as a significantly worse problem than losing money. One large organization in a
small country found that any time they appeared on the front page of the newspaper looking silly, their nation's
currency dropped in value. You need to know what level of security you're aiming for.

7.1.1.3 How much usage will there be?
What kinds of network lines do you have? How many users will you have, and what will they do?
7.1.1.4 How much reliability do you need?

If you are cut off from the network, what will happen? Will it be an inconvenience or a disaster?

page 103

Building Internet Firewalls

7.1.2 What Are Your Constraints?
Once you've determined what you need the firewall to do, your next job is to determine what the limits are.
7.1.2.1 What budget do you have available?

How much money can you spend, and what can you spend it on? Does personnel time count in the budget? How
about consulting time? If you use a machine that you already own, what does that do to your budget? (Can you
use one somebody else has and make his or her budget pay to replace it?) The budget is often the most visible
constraint, but it tends to be the most flexible as well (as long as the organization you are building the firewall for
actually has money somewhere).

7.1.2.2 What personnel do you have available?

How many people do you have and what do they know? Personnel is much harder to change than budget - even
if you get agreement to hire people, you have to find them and integrate them. Therefore, your first effort should
be to fit the firewall to the available resources. If you have 47 Windows NT administrators and one Unix person,
start looking at Windows NT-based firewalls. If you have only one person to run the firewall, and that's in
addition to a full-time job he or she is already doing, get a commercial firewall and a consultant to install it.

7.1.2.3 What is your environment like?

Do you have political constraints? Are there forbidden operating systems or vendors, or preferred ones? It is
sometimes possible to work around these, but not always; for instance, if you work for a company that sells
firewalls, it is probably never going to be acceptable to run somebody else's firewall anywhere visible.

What country or countries are you going to need to install the firewall in? Firewalls often involve encryption
technology, and laws about encryption and its export and import vary from country to country. If you are going
to need to install multiple firewalls in different countries, you may need to use the lowest common denominator
or develop an exception policy and strategy to deal with the situation.

7.2 Evaluate the Available Products

When you know what you need to do, and what constraints you have, you can start looking at the products
available to you. At this stage, people often ask "What's the best firewall?", to which the standard answer is "How
long is a piece of string?" - a sarcastic way of suggesting that the answer is, as always, "It depends". Here are
some things to keep in mind as you go through the process of determining what's best for your situation.

7.2.1 Scalability

As your site gets larger, or your Internet usage gets larger, how are you going to grow the solution? Can you
increase the capacity without changing anything fundamental (for instance, by adding more memory, more CPUs,
a higher-speed interface, an additional interface)? Can you duplicate pieces of the configuration to get extra
capacity, or will that require reconfiguring lots of client machines, or break functionality?

For instance, if you are using proxying, it may be difficult to add a second proxy host because clients will need to
be reconfigured. If you are using stateful packet filtering, it may be impossible to add a second packet filter.
Stateful packet filtering relies on having the packet filter see all the packets that make up a connection; if some
packets go through one filter, but other packets don't, the two filters will have different state and make different
decisions. Either the packet filters need to exchange state, or you need to scale up by making a single packet
filter larger.

7.2.2 Reliability and Redundancy

In many situations, a firewall is a critical piece of the network; if it stops passing traffic, important parts of your
organization may be unable to function. You need to decide how important the firewall you're designing is going
to be, and if it requires high availability, you need to evaluate solutions on their ability to provide high reliability
and/or redundancy. Can you duplicate parts? Can you use high-availability hardware?

page 104

Building Internet Firewalls

7.2.3 Auditability

How are you going to tell whether the firewall is doing what you want? Is there a way to set up accurate logging?
Can you see details of the configuration, or is your only access through a graphical user interface that gives only
an overview? If you are putting multiple pieces in multiple places, can you see what's going on from a single
centralized place?

7.2.4 Price

The price of specialized components is the most visible part of a firewall's price, and often the most visible
criterion in the entire evaluation. However appallingly high it may seem, it's not the entire price. Like any other
computer system, a firewall has significant costs besides the initial purchase price:

Hardware price

If you are buying a software solution, what hardware do you need to run it on? If the initial price
includes hardware, will you require any additional hardware? Do you need a UPS system, a backup
system, additional power or air-conditioning, new networking hardware?

Software price

Are you going to need anything besides the firewall software itself? Do you need backup software or an
operating system license? What is the licensing scheme on the software? Is it a fixed price, a price per
outgoing connection, or a price per machine connected to your networks?

Support and upgrades

What support contracts do you need and how much do they cost? Will there be a separate fee for
upgrades? Remember that you may need separate contracts for software, hardware, and the operating
system - on each component.

Administration and installation

How much time is it going to take to install and run, and whose time is it? Can it be done in-house, or
will you have to pay consultants? Is installation time included in the purchase price? Will you need
training for the people who are going to administer it, and how much will the training cost?

7.2.5 Management and Configuration

In order for a firewall to be useful, you need to be able to configure it to meet your needs, change that
configuration as your needs change, and do day-to-day management of it. Who is going to do the configuration?
What sort of management and configuration tools are available? Do they interface well with your existing
environment?

7.2.6 Adaptability

Your needs will change over the lifetime of the firewall, and the firewall will need to change to meet them. What
will happen when you need to add new protocols? What will happen if new attacks come out based on malformed
packets? If the firewall can adapt, do you have the expertise to make the needed changes, or will you need
assistance from the vendor or a consultant?

7.2.7 Appropriateness

One size does not fit all; these days, even clothing manufacturers have revised the motto to "One size fits most".
It's not clear that even that statement holds true for firewalls. The sort of solution that's appropriate for a small
company that does minimal business over the Internet is not appropriate for a small company that does all of its
business over the Internet, and neither of those solutions will be appropriate for a medium or large company. A
university of any size will probably need a different solution from a company.

page 105

Building Internet Firewalls

You are not looking for the perfect firewall; you are looking for the firewall that best solves your particular
problem. (This is good, because there is no perfect firewall, so looking for it is apt to be unrewarding.) You should
not pay attention to absolute statements like "Packet filtering doesn't provide enough security" or "Proxying
doesn't provide enough performance". On a large network, the best solution will almost always involve a
combination of technologies. On a small network, the best solution may well involve something that's said to be
"insecure" or "low performance" or "unmaintainable" - maybe you don't need that much security, or performance,
or maintainability.

You can think of it two ways. Either there are no bad firewalls, only good firewalls used in silly ways, or there are
no good firewalls, only bad firewalls used in places where their weaknesses are acceptable. Either way, the trick
is to match the firewall to the need.

7.3 Put Everything Together

Once you have determined what the basic components of your firewall are, an unfortunate number of details still
have to be determined. You need to figure out how you're actually going to assemble the pieces, and how you're
going to provide the support services that will keep them functioning.

7.3.1 Where will logs go, and how?

Logging is extremely important for a firewall. The logs are your best hope of detecting attacks against your site
and your best source of information about what happened when an attack succeeds. You will need to keep logs
separate from the firewall, where an intruder can't destroy the logs as soon as he or she compromises the
firewall. If you have a firewall composed of multiple machines, or you have multiple firewalls, you'll also want to
bring all of the logs together to simplify the process of using them. Logging is discussed further in Chapter 10,
and Chapter 26.

7.3.1.1 How will you back up the system?

You will need to keep backups of all the parts of your firewalls. These will let you rebuild systems in an
emergency, and they will also give you evidence when you discover an attack, allowing you to compare before
and after states.

Unfortunately, when you do backups between two machines, they become vulnerable to each other. The machine
that you use for backing up your firewall is part of the firewall and needs to be treated appropriately. You may
find it more appropriate to do local backups, with a device that's attached to each computer that makes up part
of the firewall (be sure to use removable media and remove it; otherwise, a disaster or compromise will take the
backups along with the originals). If you have a large and complex firewall, you may want to add a dedicated
backup system to the firewall. This system should be part of the firewall system, treated like any other bastion
host. It should not have access to internal networks or data, and it should be secured like other bastion hosts.

7.3.1.2 What support services does the system require?

You should carefully examine all cases where the firewall is getting information from external machines, get rid of
as many dependencies as possible, and move other services into the firewall wherever possible.

For instance, is the firewall dependent on other machines for name service? If so, interfering with the name
service may cause problems with the firewall (even if the firewall only uses name service to write hostnames into
logs, problems with the name service can make it unusably slow). If you can, configure firewall machines so that
they never use name service for any purpose; if you can't, protect your name server as part of your firewall
(though you will still be vulnerable to forged name service packets).

Similarly, if you are using a time service to synchronize clocks on firewall machines, it should use authentication
and come from a protected source. Firewall machines should not require or accept routing updates unless they
can be authenticated and their sources protected.

7.3.1.3 How will you access the machines?

You will need to do some routine maintenance tasks on the machines (upgrade them, change configurations, add
or remove user accounts, reboot them). Are you going to physically go to the machines to do this, or will you use
some kind of remote access? If you're going to do it remotely, how are you going to do it securely? Chapter 11,
and Chapter 12, discuss remote administration options for Unix and Windows NT.

page 106

Building Internet Firewalls

7.3.1.4 Where will routine reports go, and how?

You will need some sort of reporting on the machine, so that you know it's still functioning normally. Exactly what
you need will depend on the administration infrastructure that you have in place, but you will need some way of
getting regular log summaries and reports from security auditing systems. You may also want to use a
monitoring system that will show you status on a regular basis.

7.3.1.5 Where will alarms go, and how?

When things go wrong, the firewall should send emergency notifications. The mechanism that is used should be
one that attackers can't easily interfere with. For instance, if the firewall machines need to send network traffic to
provide emergency notification, it's easy for an attacker to simply take down the network interface. (In some
configurations, this may also remove the attacker's access, but if the attack is a denial of service, that isn't
important.) Either machines should have ways of sending alarms that are not dependent on the network (for
instance, by using a modem), or alarms should be generated by independent monitoring machines that are not
on the same network and will produce alarms if they lose contact.

page 107

Building Internet Firewalls

Chapter 8. Packet Filtering

Packet filtering is a network security mechanism that works by controlling what data can flow to and from a
network. The basic device that interconnects IP networks is called a router. A router may be a dedicated piece of
hardware that has no other purpose, or it may be a piece of software that runs on a general-purpose computer
running Unix, Windows NT, or another operating system (MS-DOS, Windows 95/98, Macintosh, or other). Packets
traversing an internetwork (a network of networks) travel from router to router until they reach their destination.
The Internet itself is sort of the granddaddy of internetworks - the ultimate "network of networks".

A router has to make a routing decision about each packet it receives; it has to decide how to send that packet
on towards its ultimate destination. In general, a packet carries no information to help the router in this decision,
other than the IP address of the packet's ultimate destination. The packet tells the router where it wants to go
but not how to get there. Routers communicate with each other using routing protocols such as the Routing
Information Protocol (RIP) and Open Shortest Path First (OSPF) to build routing tables in memory to determine
how to get the packets to their destinations. When routing a packet, a router compares the packet's destination
address to entries in the routing table and sends the packet onward as directed by the routing table. Often, there
won't be a specific route for a particular destination, and the router will use a default route; generally, such a
route directs the packet towards smarter or better-connected routers. (The default routes at most sites point
towards the Internet.)

In determining how to forward a packet towards its destination, a normal router looks only at a normal packet's
destination address and asks only "How can I forward this packet?" A packet filtering router also considers the
question "Should 1 forward this packet?" The packet filtering router answers that question according to the
security policy programmed into the router via the packet filtering rules.

Some machines do packet filtering without doing routing; that is, they may accept or reject packets destined for
them before they do further processing.

Some unusual packets do contain routing information about how they are to reach
their destination, using the "source route" IP option. These packets, called source-
routed packets, are discussed in Section 4.2.2, in Chapter 4.

8.1 What Can You Do with Packet Filtering?

If you put enough work into it, you can do anything you want to with packet filtering; all of the information that
crosses the Internet has to go into a packet at some point, after all. But some things are very much easier to do
than others. For instance, operations that require detailed protocol knowledge or prolonged tracking of past
events are easier to do in proxy systems. Operations that are simple but need to be done fast and on individual
packets are easier to do in packet filtering systems.

The main advantage of packet filtering is leverage: it allows you to provide, in a single place, particular
protections for an entire network. Consider the Telnet service as an example. If you disallow Telnet by turning off
the Telnet server on all your hosts, you still have to worry about someone in your organization installing a new
machine (or reinstalling an old one) with the Telnet server turned on. On the other hand, if Telnet is not allowed
by your filtering router, such a new machine would be protected right from the start, regardless of whether or not
its Telnet server was actually running. This is an example of the kind of "fail safe" stance we discussed in Chapter
3.

Routers also present a useful choke point (also discussed in Chapter 3) for all of the traffic entering or leaving a
network. Even if you have multiple routers for redundancy, you probably have far fewer routers, under much
tighter control, than you have host machines.

Certain protections can be provided only by filtering routers, and then only if they are deployed in particular
locations in your network. For example, it's a good idea to reject all external packets that have internal source
addresses - that is, packets that claim to be coming from internal machines but that are actually coming in from
the outside - because such packets are usually part of address-spoofing attacks. In such attacks, an attacker is
pretending to be coming from an internal machine. You should also reject all internal packets that have external
source addresses; once again, they are usually part of address-spoofing attacks. Decision-making of this kind can
be done only in a filtering router at the perimeter of your network.

page 108

Building Internet Firewalls

Only a filtering router in that location (which is, by definition, the boundary between "inside" and "outside") is
able to recognize such a packet, by looking at the source address and whether the packet came from the inside
(the internal network connection) or the outside (the external network connection). Figure 8.1 illustrates this type
of source address forgery.

Figure 8.1. Source address forgery

ﬁ Bastion Host
1111111 o ﬁ -
Atlacker 17216429

E=m=a | Exterior Router = __
192.168.3.2
192.168.3.X

= - * ~ 19216831
Source: 102371 jotaims to be))
Destination; 10.2.3.2) Interior Router
10254
10.2.3.X
T 1T Tk — Tnn — T — 11T
10231 10232

Filtering routers are also good at detecting and filtering out illegal packets. Many denial of service attacks depend
on sending misformatted packets of one sort or another. Routers in general have very reliable TCP/IP
implementations (so they are not vulnerable to these attacks) and are well placed to prevent these attacks.
General-purpose computers being used as packet filters are more likely to be vulnerable to these attacks, but at
least it is easier to fix them than it is to fix all your internal machines.

8.1.1 Basic Packet Filtering

The most straightforward kind of packet filtering lets you control (allow or disallow) data transfer based on:

e The address the data is (supposedly) coming from
e The address the data is going to

e The session and application ports being used to transfer the data

Basic packet filtering systems don't do anything based on the data itself; they don't make content-based
decisions. Straightforward packet filtering will let you say:

Don't let anybody use the port used by Telnet (an application protocol) to log in from the outside.
or:

Let everybody send us data over the port used for electronic mail by SMTP (another application
protocol).

or even:

That machine can send us data over the port used for news by NNTP (yet another application protocol),
but no other machines can do so.

However, it won't let you say:

This user can Telnet in from outside, but no other users can do so.

page 109

Building Internet Firewalls

because "user" isn't something a basic packet filtering system can identify. And it won't let you say:
You can transfer these files but not those files.

because "file" also isn't something a basic packet filtering system can identify. It won't even let you say:
Only allow people to send us electronic mail over the port used by SMTP.

because a basic packet filtering system looks only at the port being used; it can't tell whether the data is good
data, conforming to the protocol that's supposed to use that port, or whether somebody is using the port for
some other purpose.

More advanced packet filtering systems will let you look further into the data of a packet. Instead of paying
attention only to headers for lower-level protocols, they also understand the data structures used by higher-level
protocols, so they can make more detailed decisions.

8.1.2 Stateful or Dynamic Packet Filtering

Slightly more advanced packet filtering systems offer state tracking and/or protocol checking (for well-known
protocols). State tracking allows you to make rules like the following:

Let incoming UDP packets through only if they are responses to outgoing UDP packets you have seen.
or:
Accept TCP packets with SYN set only as part of TCP connection initiation.

This is called stateful packet filtering because the packet filter has to keep track of the state of transactions. It is
also called dynamic packet filtering because the behavior of the system changes depending on the traffic it sees.
For instance, if it's using the preceding rule, you can't look at an incoming UDP packet and say that it will always
be accepted or rejected.

Different systems keep track of different levels of state information. Some people are willing to call something a
stateful packet filtering system if it enforces TCP state rules (which control the flags used during startup and
teardown of TCP sessions), even if the packet filtering system provides no further stateful features. While TCP
state enforcement is nice to have (it helps to prevent some forms of port scanning and denial of service), it does
not allow you to support additional protocols, and we do not consider it stateful packet filtering.

Figure 8.2 illustrates dynamic packet filtering at the UDP layer.

State tracking provides the ability to do things that you can't do otherwise, but it also adds complications. First,
the router has to keep track of the state; this increases the load on the router, opens it to a number of denial of
service attacks, and means that if the router reboots, packets may be denied when they should have been
accepted. If a packet may go through redundant routers, they all need to have the same state information. There
are protocols for exchanging this information, but it's still a tricky business. If you have redundant routers only
for emergency failover, and most traffic consistently uses the same router, it's not a problem. If you are using
redundant routers simultaneously, the state information needs to be transferred between them almost
continuously, or the response packet may come through before the state is updated.

Second, the router has to keep track of state without any guarantee that there's ever going to be a response
packet. Not all UDP packets have responses. At some point, the router's going to have to give up and get rid of
the rule that will allow the response. If the router gives up early, it will deny packets that should have been
accepted, causing delays and unneeded network traffic. If the router keeps the rule too long, the load on the
router will be unneccessarily high, and there's an increased chance that packets will be accepted when they
should have been denied. Some protocol specifications provide guidelines, but those are not necessarily useful.
For instance, DNS replies are supposed to arrive within 5 seconds, but reply times for name service queries
across the Internet can be as high as 15 seconds; implementing to the protocol specification will almost always
deny a response that you wanted to accept.

This sort of filtering is also vulnerable to address forging; it is validating that packets are responses based on
their source addresses, so an attacker who intercepts an outgoing packet can forge the appropriate source
address and return an acceptable "reply" (or, depending on the implementation, a whole bunch of packets all of
which will be accepted as replies). Nonetheless, this provides a reasonable degree of security for some UDP-
based protocols that would otherwise be extremely difficult to protect.

page 110

Building Internet Firewalls

Figure 8.2. Dynamic packet filtering at the UDP layer

ien]

2 =
LI . Filter i
: 172.16.3.4

192 168 51.50 E:?;Embers
infprmatian

o

Matches
autgoing, g0
allowed in

e
No match. g0 - 8P = source port
not allowed i A = source address
DP = gestination port
DA = destination addrass

8.1.3 Protocol Checking
Protocol checking allows you to make rules like:
Let in packets bound for the DNS port, but only if they are formatted like DNS packets.

Protocol checking therefore helps you avoid situations where somebody has set up an unsafe service on a port
that is allowed through because it normally belongs to a safe service. It can also help avoid some attacks that
involve sending misformatted packets to perfectly genuine servers. Protocol checking is normally fairly
rudimentary and still can be circumvented by a determined insider. It also gives you no guarantee that the data
is good, so it will catch only a fairly small number of attacks that involve sending hostile data to genuine servers.
However, it still provides a useful degree of sanity checking.

The most advanced packet filtering systems will allow you to specify all sorts of data-specific rules for well-known
protocols. For instance, you can say:

Disconnect any FTP connection where the remote username is "anonymous".
or:
Do not allow HTTP transfers to these sites.

In order to do this, these packet filters have to have a deep understanding of the application protocol. In general,
they can provide this level of control only for a few popular protocols, and there is a significant cost to provide it,
since they have to process larger amounts of data. Furthermore, it is often possible to circumvent this sort of
control. For instance, there are numerous ways of getting to a site via HTTP without having the site's name
appear in the outgoing HTTP request, including using an IP address instead of a hostname and using an
anonymizing site set up to provide this sort of service.

Stateful packet filters may also look at protocol-specific details to make state changes. Some protocols contain
information about what ports transactions will use. For instance, the file transfer protocol FTP often uses a
connection that is started from the server to the client, and the two ends negotiate the port number that will be
used for this connection. A stateful packet filter that understands the FTP protocol can watch this negotiation and
allow the new connection to be made, without allowing other connections of the same sort.

page 111

Building Internet Firewalls

8.2 Configuring a Packet Filtering Router

To configure a packet filtering router, you first need to decide what services you want to allow or deny, and then
you need to translate your decisions into rules about packets. In reality, you probably don't care about the details
of packets at all. What you want is to get your work done. For example, you want to receive mail from the
Internet, and whether that's managed by packets or by Murphy's ghost is irrelevant to you. The router, on the
other hand, cares only about packets, and only about very limited parts of them. In constructing the rules for
your routers, you have to translate the general statement "Receive mail from the Internet" into a description of
the particular kinds of packets you want the router to allow to pass.

The following sections outline the general concepts you need to keep in mind when translating decisions about
services into rules about packets. The specific details for each service are described in Part I of this book.

8.2.1 Protocols Are Usually Bidirectional

Protocols are usually bidirectional; they almost always involve one side's sending an inquiry or a command, and
the other side's sending a response of some kind. When you're planning your packet filtering rules, you need to
remember that packets go both ways. For example, it doesn't do any good to allow outbound Telnet packets that
carry your keystrokes to a remote host, if you don't also allow the incoming packets for that connection that
carry the screen display back to you.

Conversely, it also won't do you any good to block only half a connection. Many attacks can be carried out if
attackers can get packets into your network, even if the attackers can't get any responses back. This can be
possible for several reasons. For instance, attackers may only be interested in issuing a particular command
which does not require a response (like "shut down your network interface" for a denial of service attack, using
an SNMP set command). Or, the responses may be predictable enough to allow attackers to carry on their side of
the conversation without having to actually see the responses at all.

If the responses are predictable, an attacker doesn't need to see them. They won't be able to extract any
information directly if they don't see the responses, but they may be able to do something that gives them the
data indirectly. For example, even if they can't see your /etc/passwd file directly, they can probably issue a
command to mail a copy.

8.2.2 Be Careful of "Inbound" Versus "Outbound” Semantics

When you're planning your packet filtering strategy, you need to be careful in your discussions of "inbound"
versus "outbound". You need to carefully distinguish between inbound and outbound packets, and inbound and
outbound services. An outbound service (e.g., the Telnet service mentioned previously) involves both outbound
packets (your keystrokes) and inbound packets (the responses to be displayed on your screen). Although most
people habitually think in terms of services, you need to make sure you think in terms of packets when you're
dealing with packet filtering. When you talk to others about filtering, be sure to communicate clearly whether
you're talking about inbound versus outbound packets, or inbound versus outbound services.

8.2.3 Default Permit Versus Default Deny

In Chapter 3, we distinguished between the two stances you can choose in putting together your security policy:
the default deny stance (that which is not expressly permitted is prohibited) and the default permit stance (that
which is not explicitly prohibited is permitted). From a security point of view, it is far safer to take the attitude
that things should be denied by default. Your packet filtering rules should reflect this stance. As we discussed
earlier, start from a position of denying everything and then set rules that allow only protocols that you need,
that you understand the security implications of, and that you feel that you can provide safely enough (according
to your own particular definition of "safely enough") for your purposes.

The default deny stance is much safer and more effective than the default permit stance, which involves
permitting everything by default and trying to block those things that you know are problems. The reality is that
with such an approach, you'll never know about all the problems, and you'll never be able to do a complete job.

In practical terms, the default deny stance means that your filtering rules should be a small list of specific things
that you allow, perhaps with a few very specific things you deny scattered throughout to make the logic come out
right, followed by a default deny that covers everything else. We'll explain in detail how these rules work later on.

page 112

Building Internet Firewalls

Filtering by Interface

One key piece of information is useful when you are making a packet filtering decision, but it can't be
found in the headers of the packet; this is the interface on which the packet came into the router or is
going out of the router. This is important information because it allows the router to detect forged
packets.

If the sole router between your internal net and the external world receives a packet with an internal
source address from the internal interface, there is no problem; all packets coming from the inside
will have internal source addresses. If, however, the router receives a packet with an internal source
address from the external interface, it means either that someone is forging the packet (probably in
an attempt to circumvent security), or that something is seriously wrong with your network
configuration.

You can get these packets without forgery. For example, someone might have set up a second
connection between your net and the outside world, such as a dial-up PPP link from a user's desk,
probably with little or no thought to security. As a result, the traffic that should be staying internal to
your net is "leaking" out through this second connection, going across the Internet, and trying to
come back in through your "front door". There's little you can do to detect such illicit "back door"
connections except by detecting internal packets arriving from the outside; about the best you can do
is have a strong and well-publicized policy against them, and provide as many as possible of the
services your users desire through the front door (the firewall), so that they don't feel a compelling
need to create their own back door.

These packets should be logged and treated as urgent issues. If someone is forging them, that
person is attacking you with some seriousness. If the packets are leaked from a back door, you have
a security problem because of the extra Internet connection. You may also have a routing problem: a
host that claims to be internal and advertises routes for itself is in danger of getting all of your
internal network's traffic. This is bad if it's a PPP link, which is probably not going to handle the load.
It's much worse if it's not connected to your network at all because some or all of your network's
traffic is going to disappear.

8.3 What Does the Router Do with Packets?

Once a packet filtering router has finished examining a specific packet, what can it do with that packet? There are
two choices:

Pass the packet on

Normally, if the packet passes the criteria in the packet filtering configuration, the router will forward the
packet on towards its destination, just as a normal router (not a packet filtering router) would do.

Drop the packet

The other obvious action to take is to drop the packet if it fails the criteria in the packet filtering
configuration.

8.3.1 Logging Actions

Regardless of whether the packet is forwarded or dropped ("permitted" or "denied" in some packet filtering
implementations), you might want the router to log the action that has been taken. This is especially true if you
drop the packet because it runs afoul of your packet filtering rules. In this case, you'd like to know what's being
tried that isn't allowed.

You probably aren't going to log every packet that is allowed, but you might want to log some of these packets.
For example, you might want to log start-of-connection TCP packets, so that you can keep track of incoming and
outgoing TCP connections. Not all packet filters will log allowed packets.

page 113

Building Internet Firewalls

Different packet filtering implementations support different forms of logging. Some will log only specific
information about a packet, and others will forward or log an entire dropped packet. Generally, your packet filter
will need to be configured to log to a host somewhere via the syslog service. You don't want the only copy of the
logs to be on the packet filter if it is compromised. Most packet filtering also occurs on dedicated routers, which
rarely have large amounts of disk space to dedicate to logging. See the discussion of setting up logging in
Chapter 10, and Chapter 26.

8.3.2 Returning Error Codes

When a packet is dropped, the router can send back an ICMP error code indicating what happened (in this case,
many packages will refer to the packet as having been "rejected" instead of merely dropped). Sending back an

ICMP error code has the effect of warning the sending machine not to retry sending the packet, thereby saving

some network traffic and some time for the user on the remote side. (If you send back an ICMP error code, the
user's connection attempt will fail immediately; otherwise, it will time out, which may take several minutes.)

There are two sets of relevant ICMP codes to choose from:

e The generic "destination unreachable" codes - in particular, the "host unreachable" and "network
unreachable" codes.

e The "destination administratively unreachable" codes - in particular, the "host administratively
unreachable" and "network administratively unreachable" codes.

The first pair of ICMP error codes that the router might return, "host unreachable" and "network unreachable",
were designed to indicate serious network problems: the destination host is down or something in the only path
to the host is down. These error codes predate firewalls and packet filtering. The problem with returning one of
these error codes is that some hosts (particularly if they're running older versions of Unix) take them quite
literally. If these machines get back a "host unreachable" for a given host, they will assume that the host is
totally unreachable and will close all currently open connections to it, even if the other connections were working
perfectly well.

The second set of ICMP error codes the router might return, "host administratively unreachable" and "network
administratively unreachable", were added to the official list of ICMP message types later, specifically to give
packet filtering systems something to return when they dropped a packet. Even though they're in the standard,
they're not implemented everywhere. Theoretically, this is not a problem; the RFCs specify that a host that gets
an ICMP code it doesn't understand should simply ignore the packet. In practice, not all systems will handle this
gracefully. The best the standard can do for you is ensure that it is officially not your fault if somebody else's
system crashes when you send it an ICMP packet it doesn't understand.

There are several issues to consider when you are deciding whether or not your packet filtering system should
return ICMP error codes:

e Which message should you send?
e Can you afford the overhead of generating and returning error codes?

. Will returning these codes enable attackers to get too much information about your packet filtering?

Which set of error codes makes sense for your site? Returning the old "host unreachable" and "network
unreachable" codes is technically incorrect (remember that the host may or may not be unreachable, according to
the packet filtering policy, depending on what host is attempting to access what service). Also, these error codes
can cause many systems to react excessively (shutting down all connections to that host or network).

Returning the new "host administratively unreachable" or "network administratively unreachable" codes
advertises the fact that there is a packet filtering system at your site, which you may or may not want to do.
These codes may also cause excessive reactions in faulty IP implementations.

There is another consideration as well. Generating and returning ICMP error codes takes a certain small amount
of effort on the part of the packet filtering router. An attacker could conceivably mount a denial of service attack
by flooding the router with packets the router would reject and for which it would try to generate ICMP error
packets. The issue isn't network bandwidth; it's CPU load on the router. (While it's busy generating ICMP packets,
it's not able to do other things as quickly, like make filtering decisions.) On the other hand, not returning ICMP
error codes will cause a small amount of excess network traffic, as the sending system tries and retries to send
the packet being dropped. This traffic shouldn't amount to much, because the number of packets blocked by a
packet filtering system should be a fraction of the total number of packets processed. (If it's not a small fraction,
you've got more serious problems because people are apparently trying lots of things that "aren't allowed".)

page 114

Building Internet Firewalls

If your router returns an ICMP error code for every packet that violates your filtering policy, you're also giving an
attacker a way to probe your filtering system. By observing which packets evoke an ICMP error response,
attackers can discover what types of packets do and don't violate your policy (and thus what types of packets are
and are not allowed into your network). You should not give this information away because it greatly simplifies
the attacker's job. The attacker knows that packets that don't get the ICMP error are going somewhere and can
concentrate on those protocols where you actually have vulnerabilities. You'd rather that the attacker spent
plenty of time sending you packets that you happily throw away. Returning ICMP error codes speeds up attack
programs; if they get back an ICMP error for something they try, they don't have to wait for a timeout.

All in all, the safest thing to do seems to be to drop packets without returning any ICMP error codes. If your
router offers enough flexibility, it might make sense to configure it to return ICMP error codes to internal systems
(which would like to know immediately that something is going to fail, rather than wait for a timeout) but not to
external systems (where the information would give an attacker a means to probe the filtering configuration of
the firewall). Even if your router doesn't seem to offer such flexibility, you may be able to accomplish the same
result by specifying packet filtering rules to allow the relevant inbound ICMP packets and disallow the relevant
outbound ICMP packets.

Some packet filtering systems also allow you to shut off TCP connections without using ICMP, by responding with
a TCP reset, which aborts the connection. This is the response that a machine would normally give if it received a
TCP packet bound for a port where nothing was listening. Although TCP resets give away less information than
ICMP error codes, they still speed up attack programs.

There is one case where you do not usually want to drop packets without an error. A number of systems use the
authorization service implemented by identd to attempt to do user authentication on incoming connections
(usually on mail and IRC connections). If you are not running identd or another server that provides information
via the Auth protocol, it is advisable to return errors on these attempts, in order to speed up mail delivery to
systems using this kind of authorization. If you drop packets without errors, the other system will have to wait for
its request to time out before continuing the process of accepting the mail. This can significantly increase the load
on your mail system if you need to deliver large amounts of mail. Auth and identd are discussed further in
Section 21.1.

8.3.3 Making Changes

More complicated packet filtering systems may take more complicated actions. In addition to deciding whether or
not to forward the packet, they can decide to forward the packet to something other than its original destination,
to change states, or to change the contents of the packet itself.

A packet filter can change the destination of the packet either by changing the destination information in the
packet (for instance, as part of network address translation or load balancing between servers), or by
encapsulating the packet inside another one (this allows a packet filtering router to cooperate with another
machine to provide transparent proxying).

When a stateful packet filter gets a packet, it decides not only whether to forward or drop the packet, but also
whether to modify its state based on the packet. For instance, if the packet is an outbound UDP packet, the
packet filter may change state to allow inbound packets that appear to be replies. If the packet is the first packet
in a TCP connection (it has the SYN bit set but no ACK, see Section 4.1, for more details), the packet filter may
change state to expect a packet with both the SYN bit and the ACK bit set. When it gets that second packet, it
will then change state to expect packets with the ACK bit but not the SYN bit set. This enforces a correct TCP
handshake, getting rid of some attacks involving interesting settings of header bits.

Some packet filtering systems will also modify parts of packets besides the destination. This is the basis of packet
filtering systems that provide network address translation; they need to modify not only destination information,
but also source information and sometimes embedded IP addresses further into the packet.

8.4 Packet Filtering Tips and Tricks

Packet filtering systems are complicated, and administering them has some subtlety. Here are some ways to deal
with them more effectively and make them more secure.

8.4.1 Edit Your Filtering Rules Offline

The filter-editing tools on most systems are usually pretty minimal. Also, it's not always clear how new rules will
interact with existing rule sets. In particular, it's often difficult to delete rules, or to add new rules in the middle
of an existing rule set.

page 115

Building Internet Firewalls

You might find it more convenient to keep your filters in a text file on one of your Unix or PC systems, so that
you can edit them there with the tools you're familiar with, and then load the file on the filtering system as if it
contained commands you were typing at the console. Different systems support various ways of doing this. For
example, on Cisco products, you can use TFTP to obtain command files from a server. (Be careful of where you
enable a TFTP server, though. See the discussion of TFTP in Chapter 17, and think about using something like
TCP Wrapper to control what hosts can activate that TFTP server.)

An added advantage of keeping the filters elsewhere as a file is that you can keep comments in the file (stripping
them out of the copy sent to the router, if necessary). Most filtering systems discard any comments in the
commands they're given; if you later go look at the active filters on the system, you'll find that the comments
aren't retained.

8.4.2 Reload Rule Sets from Scratch Each Time

The first thing the file should do is clear all the old rules, so that each time you load the file you're rebuilding the
rule set from scratch; that way, you don't have to worry about how the new rules will interact with the old. Next,
specify the rules you want to establish, followed by whatever commands are necessary to apply those rules to the
appropriate interfaces.

When you clear the old filtering rules, many filtering systems will default to allowing all packets through. If you
have any problems loading the new filtering rules, your filtering system could be allowing everything through
while you sort out the problems with the new rules. Therefore, it's a good idea to temporarily disable or shut
down the external interface while you update filtering rules, then re-enable it when you're done updating the
rules. Make sure that you aren't connecting to the filtering system and doing the update through the external
interface, or you'll cut yourself off in mid-session when you shut down the external interface.

8.4.3 Replace Packet Filters Atomically

Sometimes you want to update filtering rules without temporarily shutting off all access (as was discussed
previously). This is possible, as long as:

® Your packet filtering system allows you to identify a rule set and then assign the rule set to an
interface, replacing the rule set previously assigned to the interface. (Some systems do not allow you
to identify rule sets; others do not allow you to assign a rule set to an interface that already has one
assigned.)

. When a rule set assignment fails, the packet filtering system reverts to the rule set previously in use.
(Some systems will remove all rules in this case, which is unsafe.)

If your system meets both of these conditions, you can update rules with the following system:

Load the new rules with an unused identifier.
Assign the new rules to the interface.
Verify that the new rules are in place and working correctly.

Delete the old rules.

u A W N =

In order to keep your configuration consistent, load the new rules again with the original identifier and
assign them to the interface again. (This doesn't change the rule set, but it returns you to your normal
identifier.)

6. Update any offline copies of the configuration with the new rules.
It is possible to automate and script this process if copious and very pessimistic error checking is performed.

8.4.4 Always Use IP Addresses, Never Hosthames

Always specify hosts and networks in filtering rules by IP address, never by hostname or by network name (if
your filtering product even supports that). If you specify filtering rules by hostname, your filtering could be
subverted if someone accidentally or intentionally corrupts the name-to-address translation (e.g., by feeding
false data to your DNS server).

page 116

Building Internet Firewalls

8.4.5 Password Protect Your Packet Filters

Packet filtering systems have to be configured, and many provide ways to do this interactively over the network,
perhaps using Telnet or SNMP. If the packet filtering system is based upon a general-purpose computer, then you
should take the same remote access precautions as you would when configuring a bastion host. For specialized
packet filtering systems, you should take very similar precautions. In particular, if the system stores a master
password, even if it is hashed, in a configuration file and attackers can obtain that information, they can use
password-cracking tools to guess or break the password. Some packet filtering systems have different password
modes; be sure to consult vendor documentation and use a mode that cannot be trivially broken.

8.4.6 If Possible, Use Named Access Lists

Some packet filtering systems allow names to be assigned to sets of rules. In addition, these names may get
included in log messages. Using meaningful names can be very useful for both debugging and parsing error log
files.

8.5 Conventions for Packet Filtering Rules

The rest of this chapter and the chapters in Part III show the kinds of rules you can specify for your packet
filtering router in order to control what packets can and cannot flow to and from your network. There are a few
things you need to know about these rules.

To avoid confusion, the example rules are specified with abstract descriptions, rather than with real addresses, as
much as possible. Instead of using real source and destination addresses (e.g., 172.16.51.50), we use "internal"
or "external" to identify which networks we're talking about. Actual packet filtering systems usually require you to
specify address ranges explicitly; the syntax varies from router to router.

In all of our packet filtering examples, the assumption is that, for each packet, the router goes through the rules
in order until it finds one that matches, and then it takes the action specified by that rule. We assume an implicit
default "deny" if no rules apply, although it's a good idea to specify an explicit default (and we generally do).

The syntax used in our filtering examples specifies the number of bits significant for comparison to other
addresses after a slash character (/). Thus, 10.0.0.0/8 matches any address that starts with 10; it's equivalent
to 10.0.0.0 with a Unix netmask of 255.0.0.0, or 10.0.0.0 with a Cisco wildcard mask of 0.255.255.255, or (if it
is a filename) 10.*.*.*, Please note that it is also equivalent to 10.255.255.255/8 or 10.1.27.32/8. The last three
octets are simply ignored. Although the examples in this book systematically use "0" for ignored numbers or omit
them entirely, that will not be true of all configurations you see in real life, and this is a common source of errors.

Although we try to be as specific as possible in these examples, it's impossible to tell you precisely what you have
to specify for your particular packet filtering product. The exact mechanism for specifying packet filtering rules
varies widely from product to product. Some products allow you to specify a single set of rules that are applied to
all packets routed by the system. Others allow you to specify rules for particular interfaces. Still others allow you
to specify sets of rules and then apply sets by name to particular interfaces (so that you might define one set of
rules that is shared by a number of different interfaces, for example, and put the rules that are unique to a given
interface into a different set).

Here's a simple example to illustrate the differences. We chose these systems because they represent somewhat
different ways of specifying filters, not because of any particular preference for them; in general, other systems
are similar to these.

Let's say that you want to allow all IP traffic between a trusted external host (host 172.16.51.50) and hosts on
your internal network (Class C net 192.168.10.0). In our examples, we would show this case as follows.

Rule | Direction Source Address Dest. Address ACK Set | Action
A Inbound Trusted external host Internal Any Permit
B Outbound Internal Trusted external host Any Permit
C Either Any Any Any Deny

page 117

Building Internet Firewalls

On a Cisco router, you specify rules as sets, and apply the relevant sets to the right direction on the right
interface. If your external interface is named "seriall1", your rules would look like this:

access-1list 101 permit ip 172.16.51.50 0.0.0.0 192.168.10.0 0.0.0.255
access-1list 101 deny 1ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
interface serial 1

access-group 101 1in

access-1ist 102 permit ip 192.168.10.0 0.0.0.255 172.16.51.50 0.0.0.0
access-1list 102 deny 1ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
interface serial 1

access-group 102 out

The Linux ipchains rules (assuming that ethO is the internal interface and eth1l is the external interface) would
look like this:

ipchains -P input DENY

ipchains -P output DENY

ipchains -P forward DENY

ipchains -A input -i eth0 -s 192.168.10.0/24 -d 172.16.51.50 -j ACCEPT
ipchains -A input -i ethl -s 172.16.51.50 -d 192.168.10.0/24 -j ACCEPT
ipchains -A input -1 -j DENY

ipchains -A output -i ethl -s 192.168.10.0/24 -d 172.16.51.50 -j ACCEPT
ipchains -A output -i ethO -s 172.16.51.50 -d 192.168.10.0/24 -3 ACCEPT
ipchains -A output -1 -j DENY

ipchains -A forward -b -s 172.16.51.50 -d 192.168.10.0/24 -j ACCEPT
ipchains -A forward -1 -j DENY

The rules for ipfilter, which would be placed in ipf's configuration file (assuming that le0 is the internal interface
and lel is the external interface) look like this:

pass in quick on 1e0 from 192.168.10.0/24 to 172.16.51.50
pass in quick on lel from 172.16.51.50 to 192.168.10.0/24
pass out quick on Tel from 192.168.10.0/24 to 172.16.51.50
pass out quick on 1e0 from 172.16.51.50 to 192.168.10.0/24
block in all

bTock out all

Using Windows NT's Routing and Remote Access Service filtering, you would add two rules:
. Source address 192.168.10.0 and mask 255.255.255.0, destination address 172.16.51.50 and mask
255.255.255.255, protocol any
. Source address 172.16.51.50 and mask 255.255.255.255, destination address 192.168.10.0 and
mask 255.255.255.0, protocol any

and then select "Drop all except listed below".

For detailed information on the syntax of a particular package or product, consult the documentation for that
package or product. Once you understand the syntax for the particular system you are using, you shouldn't have
too much difficulty translating from our tables to that system's syntax.

Watch out for implicit defaults. Different filtering systems have different default
actions they take if a packet doesn't match any of the filtering rules specified. Some
systems deny all such packets. Other systems make the default the opposite of the
last rule; that is, if the last rule was a "permit", the system default is to "deny", and
if the last rule was a "deny", the default is to "permit". In any case, it's a good idea
to put an explicit default rule at the end of your list of packet filtering rules, so you
don't have to worry about (or even remember) which implicit default your system is
going to use.

page 118

Building Internet Firewalls

8.6 Filtering by Address

The simplest, although not the most common, form of packet filtering is filtering by address. Filtering in this way
lets you restrict the flow of packets based on the source and/or destination addresses of the packets without
having to consider what protocols are involved. Such filtering can be used to allow certain external hosts to talk
to certain internal hosts, for example, or to prevent an attacker from injecting forged packets (packets
handcrafted so they appear to come from somewhere other than their true source) into your network.

For example, let's say that you want to block incoming packets with forged source addresses; you would specify
the following rule.

Rule Direction Source Address Dest. Address Action
A Inbound Internal Any Deny

Note that Direction is relative to your internal network. In the router between your internal network and the
Internet, you could apply an inbound rule either to incoming packets on the Internet interface or to outgoing
packets on the internal interface; either way, you will achieve the same results for the protected hosts. The

difference is in what the router itself sees. If you filter outgoing packets, the router is not protecting itself.

8.6.1 Risks of Filtering by Source Address

It's not necessarily safe to trust source addresses because source addresses can be forged. Unless you use some
kind of cryptographic authentication between you and the host you want to talk to, you won't know if you're
really talking to that host, or to some other machine that is pretending to be that host. The filters we've
discussed previously will help you if an external host is claiming to be an internal host, but they won't do
anything about an external host claiming to be a different external host.

There are two kinds of attacks that rely on forgery: source address and man in the middle.

In a basic source address forgery attack (shown earlier in Figure 8.1), an attacker sends you packets that claim
to be from someone you trust in some way, hoping to get you to take some action based on that trust, without
expecting to get any packets back from you. If the attacker doesn't care about getting packets back from you, it
doesn't matter where the attacker is. In fact, your responses will go to whomever the attacker is pretending to
be, not to the attacker. However, if the attacker can predict your responses, it doesn't matter that they're going
somewhere else. Many (if not most) protocols are predictable enough for a skilled attacker to be successful at
this. Plenty of attacks can be carried out without the attacker's needing to see the results directly. For example,
suppose an attacker issues a command to your system that causes it to mail back your password file; if your
system is going to send the attacker the password file in the mail, there is no need to see it during the attack
itself.

In many circumstances - particularly those involving TCP connections - the real machine (that the attacker is
pretending to be) will react to your packets (packets that are attempting to carry on a conversation it knows
nothing about) by trying to reset the bogus connection. Obviously, the attacker doesn't want this to happen.
Therefore, the attack must complete before the real machine gets the packets you're sending, or before you get
the reset packets from the real machine. There are a number of ways to ensure this - for example:

. Carrying out the attack while the real machine is down

. Crashing the real machine so the attack can be carried out

° Flooding the real machine while the attack is carried out

. Confusing the routing between the real machine and the target

° Using an attack where only the first response packet is required, so that the reset doesn't matter

Attacks of this kind used to be considered a theoretical problem with little real-world effect, but they are now
common enough to be considered a serious threat.®

16 In general, it's not a good idea to dismiss theoretical attacks completely because they eventually become actual attacks. This kind of attack
was known as a theoretical possibility for many years before it actually occurred, yet many people didn't bother to protect against it.

page 119

Building Internet Firewalls

The man in the middle forgery attack depends on being able to carry out a complete conversation while claiming
to be the trusted host. In order to do this, the attacking machine needs to be able to not only send you packets,
but also intercept the packets you reply with. To do this, the attacker needs to do one of the following:

. Insinuate the attacking machine into the path between you and the real machine. This is easiest to do
near the ends of the path, and most difficult to do somewhere in the middle, because given the nature
of modern IP networks, the path through "the middle" can change at any second.

. Alter the path between the machines so it leads through the attacking machine. This may be very
easy or very difficult, depending on the network topology and routing system used by your network,
the remote network, and the Internet service providers between those networks.

Although this kind of attack is called "man in the middle", it's relatively rare for it to actually be carried out in the
middle (external to the sites at each end) because nobody but a network provider is in a position to carry it out in
that way, and network providers are rarely compromised to that extent. (People who compromise network
providers tend to be working on quantity. Packet sniffing will give them many hosts rapidly, but man in the
middle attacks give them only one site at a time.) These attacks tend to be problems only if one of the involved
sites has hostile users who have physical access to the network (for example, this might be the case if one site is
a university).

So, who can you trust? At the extreme, nobody, unless you trust the machines involved at both ends and the
path between them. If you trust the machines but not the path, you can use encryption and integrity protection
to give you a secure connection over an insecure path.

8.7 Filtering by Service

Blocking incoming forged packets, as discussed previously, is just about the only common use of filtering solely
by address. Most other uses of packet filtering involve filtering by service, which is somewhat more complicated.

From a packet filtering point of view, what do the packets associated with particular services look like? As an
example, we're going to take a detailed look at Telnet. Telnet allows a user to log in to another system, as if the
user had a terminal directly connected to that system. We use Telnet as an example because it is fairly common,
fairly simple, and from a packet filtering point of view, representative of several other protocols such as SMTP
and NNTP. We show both outbound and inbound Telnet service.

8.7.1 Outbound Telnet Service

Let's look first at outbound Telnet service, in which a local client (a user) is talking to a remote server. We need
to handle both outgoing and incoming packets. (Figure 8.3 shows a simplified view of outbound Telnet.)

Figure 8.3. Outbound Telnet

Client Server

L

Usér

page 120

Building Internet Firewalls

The outgoing packets for this outbound service contain the user's keystrokes and have the following
characteristics:

e The IP source address of the outgoing packets is the local host's IP address.

e The IP destination address is the remote host's IP address.

e Telnet is a TCP-based service, so the IP packet type is TCP.

e The TCP destination port is 23; that's the well-known port number Telnet servers use.

e The TCP source port number (which we'll call "Y" in this example) is some seemingly random number
greater than 1023.

e The first outgoing packet, establishing the connection, will not have the ACK bit set; the rest of the
outgoing packets will.

The incoming packets for this outbound service contain the data to be displayed on the user's screen (for
example, the "login:" prompt) and have the following characteristics:

e The IP source address of the incoming packets is the remote host's IP address.

e The IP destination address is the local host's IP address.

e The IP packet type is TCP.

e The TCP source port is 23; that's the port the server uses.

e The TCP destination port is the same "Y" we used as the source port for the outgoing packets.

e All incoming packets will have the ACK bit set (again, only the first packet, establishing a connection,
has the ACK bit off; in this example, that first packet was an outgoing packet, not an incoming
packet).

Note the similarities between the header fields of the outgoing and incoming packets for Telnet. The same
addresses and port numbers are used; they're just exchanged between source and destination. If you compare
an outgoing packet to an incoming packet, the source and destination addresses are exchanged, and the source
and destination port numbers are exchanged.

Why is the client port - the source port for the outgoing packets, and the destination port for the incoming
packets - restricted to being greater than 1023? This is a legacy of the BSD versions of Unix, the basis for almost
all Unix networking code. BSD Unix reserved ports from to 1023 for local use only by root. These ports are
normally used only by servers, not clients, because servers are run by the operating system as privileged users,
while clients are run by users. (The major exceptions are the BSD "r" commands like rcp and rlogin, as we'll
discuss in Section 18.1.) Because TCP/IP first became popular on Unix, this convention spread to other operating
systems, even those that don't have a privileged root user (for instance, Macintosh and MS-DOS systems). No
actual standard requires this behavior, but it is still consistent on almost every TCP/IP implementation. When
client programs need a port number for their own use, and any old port nhumber will do, the programs are
assigned a port above 1023. Different systems use different methods to allocate the numbers, but most of them
are either pseudo-random or sequential.

page 121

Building Internet Firewalls

8.7.2 Inbound Telnet Service

Next, let's look at inbound Telnet service, in which a remote client (a remote user) communicates with a local
Telnet server. Again, we need to handle both incoming and outgoing packets.

The incoming packets for the inbound Telnet service contain the user's keystrokes and have the following
characteristics:

The IP source address of these packets is the remote host's address.
The IP destination address is the local host's address.
The IP packet type is TCP.

The TCP source port is some random port number greater than 1023 (which we'll call "Z" in this
example).

The TCP destination port is 23.

The TCP ACK bit will not be set on the very first inbound packet, establishing the connection, but it will
be set on all other inbound packets.

The outgoing packets for this inbound Telnet service contain the server responses (the data to be displayed for
the user) and have the following characteristics:

The IP source address is the local host's address.

The IP destination address is the remote host's address.

The IP packet type is TCP.

The TCP source port is 23 (these packets are from the Telnet server).

The TCP destination port is the same random port "Z" that was used as the source port for the
inbound packets.

The TCP ACK bit will be set on all outgoing packets.

Again, note the similarities between the relevant headers of the incoming and the outgoing packets: the source
and destination addresses are exchanged, and the source and destination ports are exchanged.

8.7.3 Telnet Summary

The following table illustrates the various types of packets involved in inbound and outbound Telnet services.

S_,ervif:e I?ackgt Source Dest. Packet Source Dest.Port ACKSet
Direction Direction Address Address Type Port

Outbound Outgoing Internal External TCP Y 23 17
Outbound Incoming External Internal TCP 23 Y Yes
Inbound Incoming External Internal TCP 4 23

Inbound Outgoing Internal External TCP 23 z Yes

Note that Y and Z are both random (from the packet filtering system's point of view) port numbers above 1023.

17 The TCP ACK bit will be set on all but the first of these packets, which establishes the connection.

page 122

Building Internet Firewalls

If you want to allow outgoing Telnet, but nothing else, you would set up your packet filtering as follows.

Rule|Direction I-\sc‘l):rfses Ac?:fet.ss Protocol S:g:(t:e I:ii: gglt(Action
A Out Internal Any TCP >1023 23 Either |Permit
B In Any Internal TCP 23 >1023 Yes Permit
C Either Any Any Any Any Any Either | Deny

. Rule A allows packets out to remote Telnet servers.

. Rule B allows the returning packets to come back in. Because it verifies that the ACK bit is set, rule B
can't be abused by an attacker to allow incoming TCP connections from port 23 on the attacker's end
to ports above 1023 on your end (e.g., an X11 server on port 6000).

. Rule C is the default rule. If none of the preceding rules apply, the packet is blocked. Remember from
our previous discussion that any blocked packet should be logged, and that it may or may not cause
an ICMP message to be returned to the originator.

8.7.4 Risks of Filtering by Source Port

Making filtering decisions based on source port is not without its risks. There is one fundamental problem with
this type of filtering: you can trust the source port only as much as you trust the source machine.

Suppose you mistakenly assume that the source port is associated with a particular service. Someone who is in
control of the source machine (e.g., someone with root access on a Unix system, or anyone at all with a
networked PC) could run whatever client or server he or she wanted on a "source port" that you're allowing
through your carefully configured packet filtering system. Furthermore, as we've discussed previously, you can't
necessarily trust the source address to tell you for certain what the source machine is; you can't tell for sure if
you're talking to the real machine with that address, or to an attacker who is pretending to be that machine.

What can you do about this situation? You want to restrict the local port numbers as much as possible, regardless
of how few remote ports you allow to access them. If you only allow inbound connections to port 23, and if port
23 has a Telnet server on it that is trustworthy (a server that will only do things that a Telnet client should be
able to tell it to do), it doesn't actually matter whether or not the program that is talking to it is a genuine Telnet
client. Your concern is to limit inbound connections to only ports where you are running trustworthy servers, and
to be sure that your servers are genuinely trustworthy. Part III discusses how you can achieve these goals for
various services.

This problem is particularly bad for servers that use ports above 1023 because you need to allow packets in to
those ports in order to let in traffic bound for clients. For instance, in the preceding example, we allow inbound
packets for any port over 1023 from source port 23. This would allow an attacker to run anything at all on port
23 (for instance, an X Window System client) and send packets to any server above port 1023 (for instance, an X
Window System server). We avoided this problem in our example by using the ACK bit to accept inbound packets
but not inbound connections. With UDP, you have no such option, because there is no equivalent to the ACK bit.
Fortunately, relatively few important UDP-based protocols are used across the Internet. (The notable exception is
DNS, which is discussed further in Section 20.1.)

8.8 Choosing a Packet Filtering Router

A number of packet filtering routers are available, some good and some not so good. Almost every dedicated
router supports packet filtering in some form. In addition, packet filtering packages are available for many
general-purpose Unix and PC platforms you might want to use as routers.

How do you choose the best packet filtering router for your site? This section outlines the most important
capabilities a filtering router should have. You should determine which of these capabilities are important to you
and select a filtering system that offers at least those capabilities.

page 123

Building Internet Firewalls

8.8.1 It Should Have Good Enough Packet Filtering Performance for Your Needs

Many people worry unnecessarily about packet filtering performance. In most Internet firewalls, in fact, the
limiting factor on performance is the speed of your connection to the Internet, not the speed of the packet
filtering system. The right question to ask about a packet filtering system is not "How fast is it?" The right
question is "Is it fast enough for my needs?"

Internet connections are commonly either 56-Kbps or 1.544-Mbps (T-1) lines. Packet filtering is a per-packet
operation. Therefore, the smaller the packets, the more packets will be handled every second and the more
filtering decisions a packet filtering system will have to make every second. The smallest possible IP packet - a
bare packet containing only an IP header and no data whatsoever - is 20 bytes (160 bits) long. Thus, a line
capable of 56 Kbps can carry at most 350 packets per second, and a line capable of 1.544 Mbps (a T-1 line, for
example) can carry at most 9,650 packets per second, as shown in the following table. (Cable modems and DSL
are variable-rate technologies; depending on the provider, the price you're willing to pay, your location, and the
number of other users, speeds may vary from a few hundred kilobits a second to tens of megabits. It's generally
safe to assume that theoretical 10-base T speeds are an effective maximum for both.)

Connection Type (Approximate) | (20-byte Packets) | (40-byte Packets)
V.32bis modem 14,400 90 45
V.90 modem or 56-Kbps leased line 56,000 350 175
ISDN 128,000 800 400
T-1 leased line 1,544,000 9,650 4,825
10-base T or Ethernet (practical) 3,000,000 18,750 9,375
10-base T or Ethernet (theoretical) 10,000,000 62,500 31,250
T-3 leased line 45,000,000 281,250 140,625
FDDI or 100-base T 100,000,000 625,000 312,500

In fact, though, you will rarely see bare IP packets; there is always something in the data segment (e.g., a TCP,
UDP, or ICMP packet). A typical packet crossing a firewall would be a TCP/IP packet because most Internet
services are TCP-based. The minimum possible TCP/IP packet size, for a packet containing only the IP header and
TCP header and no actual data, is 40 bytes, which cuts the maximum packet rates in half, to 175 packets per
second for a 56-Kbps line and 4,825 packets per second for a 1.544-Mbps line. Real packets containing real data
are going to be larger still, reducing the packet-per-second rates still further.

These per-second packet rates are well within the capabilities of many of the packet filtering systems, both
commercial and freely available off the Internet, that are available today. Some can go much faster.

Many manufacturers of firewalls cite speeds in Mbps in order to provide numbers that are comparable to network
speeds. These numbers can be highly misleading because firewall performance is dependent on packets per
second, not bits per second. Two firewalls that claim to process packets at exactly the same speed may show
dramatically different bits per second rates, depending on the assumptions their manufacturers have made about
average packet sizes. Ask for rates in packets per second, and compare that to data about your incoming packet
rates. If this information is not directly available, insist on knowing what assumptions were made about packet
sizes, so that you can make reasonable comparisons.

In addition, firewall performance depends on the complexity of packet filters. You should be sure that the speeds
you are quoted are speeds with a reasonable filter set (some manufacturers quote the speed achieved with
packet filtering enabled but no filters set, for instance). Stateful packet filtering, intelligent packet filtering, and
reassembly of fragmented packets will all slow down performance.

Do not assume that firewall performance will depend on processor speed. The speed of a router (and a packet
filter is just a special kind of router) tends to be much more dependent on other factors, including the amount of
available memory, the performance of the network interfaces themselves, and the speed and bandwidth of
internal connections. Upgrading a machine's processor often has little or no effect on its speed at processing
network traffic.

Speed is likely to be more of an issue in a firewall that is internal to an organization's network. Such a firewall will
need to run at local area network speeds, which are usually theoretically at least 10 Mbps, and may be much
higher. (Firewalls are not practical within a gigabit-per-second network at this point. Fortunately, from a firewalls
perspective, such networks are fairly rare at present.) In addition, internal firewalls often require more complex
filter sets and support for a larger number of protocols, which will further reduce their performance.

page 124

Building Internet Firewalls

A firewall with more than two connections may also have higher speed requirements. With two connections, the
maximum required speed is that of the slowest connection. With three connections, the required speed can rise.
For example, if you put a second Internet connection onto an external router, it now needs to drive both at full
speed if it's not going to be a limiting factor. If you put two internal networks onto it, it's going to need to achieve
the higher speed of those networks to route between them.

If you have a truly high-speed connection to the Internet (because you have a lot of internal Internet users, a lot
of services that you're offering to the Internet, or both), router performance may be a real issue. In fact, many
really large sites require more performance and more reliability than any single router can provide. In this
situation, it's appropriate to worry a great deal about performance. The fewer routers you use to connect to the
Internet, the better. Each independent Internet connection is another possible hole in your security. If you must
use multiple routers, get the best performance you can, so as to use as few routers as possible. In some cases,
this may require carefully designing your network so that you simplify the filtering rules on routers that have to
support large amounts of traffic.

8.8.2 It Can Be a Single-Purpose Router or a General-Purpose Computer

Don't expect a single device to serve as your packet filtering router and also to do something that's not part of
your firewall. (You may have a device that's doing packet filtering and proxying, or packet filtering and selected
bastion host services, or even all three.) In a practical sense, you should expect to be using a dedicated packet
filtering router. This doesn't mean you have to buy a single-purpose router, however. You might choose to use
either a traditional, single-purpose router, or a general-purpose computer dedicated to routing. What are the pros
and cons of each choice?

If you have a large number of networks or multiple protocols, you will probably need a single-purpose router.

Routing packages for general-purpose computers usually do not have the speed or flexibility of single-purpose
routers, and you may find that you will need an inconveniently large machine to accommodate the necessary

interface boards.

On the other hand, if you are filtering a single Internet link, you may not need to do any more than route IP
packets between two Ethernets. This is well within the capabilities of a reasonable 486-based (or comparable)
computer, and such a machine will certainly be cheaper than a single-purpose router. (It may even be free, if you
already have one available within your organization.) Routing and filtering packages are available for Windows NT
and many other Microsoft operating systems, as well as most variants of Unix. (See Appendix B for information
about available packages.)

Whatever device you use for your filtering router, firewalling should be all the router does. For example, if
possible, don't use one device as both your filtering router and the backbone router that ties together multiple
separate internal networks. Instead, use one device to tie together your internal networks and a separate (much
smaller) device as your filtering router. The more complex the filtering router and its configuration, the more
likely it is that you'll make a mistake in its configuration, which could have serious security implications. Filtering
also has a significant speed impact on a router and may slow the router down to the point where it has difficulty
achieving acceptable performance for the internal networks.

Some commercial firewall packages combine packet filtering with proxying on a machine that behaves like a
single-purpose router. Others combine packet filtering with proxying or bastion host services on a high-powered
general-purpose computer. This is fine, although it will increase your speed requirements. Don't expect to use a
small machine to do this. Depending on what machines you have available, this may either be a good bargain
(you buy a single large machine instead of multiple medium-sized ones) or a bad one (you buy a single large
machine instead of adding a small machine to an existing configuration). As we've said in Chapter 6, combining
the bastion host with the external packet filter is a reasonable thing to do from a security perspective.

8.8.3 It Should Allow Simple Specification of Rules

You want to be able to specify the rules for your packet filtering as simply as possible. Look for this feature in any
device you select. From a conceptual point of view, packet filtering is complicated to begin with, and it's further
complicated by the details and quirks of the various protocols. You don't want your packet filtering system to add
any more complexity to the complications you already have to deal with.

In particular, you want to be able to specify rules at a fairly high level of abstraction. Avoid any packet filtering
implementations that treat packets as simply unstructured arrays of bits and require you to state rules in terms
of the offset and state of particular bits in the packet headers.

On the other hand, you do not want the packet filter to entirely hide the details. You should also avoid packet
filtering implementations that require you turn on protocols by name, without specifying exactly what ports this
will allow in what directions.

page 125

Building Internet Firewalls

As we discussed before, you'll also probably want to be able to download the rules from another machine if you're
using a single-purpose router. Nevertheless, you need a user interface that allows you to create and edit the
rules without extreme pain, because you may periodically have to do so.

8.8.4 It Should Allow Rules Based on Any Header or Meta-Packet Criteria

You want to be able to specify rules based on any of the header information or meta-packet information available
for your packets. Header information includes the following:

° IP source and destination address

. IP options

. Protocol, such as TCP, UDP, or ICMP

e TCP or UDP source and destination port
(] ICMP message type

° Start-of-connection (ACK bit) information for TCP packets

and similar information for any other protocols you're filtering on. Meta-packet information includes any
information about the packet that the router knows but that isn't in the headers themselves (e.g., which router
interface the packet came in on or is going out on). You want to be able to specify rules based on combinations of
these header and meta-packet criteria.

For various reasons, many filtering products don't let you look at the TCP or UDP source port in making packet
filtering decisions; they let you look only at the TCP or UDP destination port. This makes it impossible to specify
certain kinds of filters. Some manufacturers who omit TCP/UDP source ports from packet filtering criteria
maintain that such filtering isn't useful anyway, or that its proper use is "too dangerous" for customers to
understand (because, as we've pointed out previously, source port information is not reliable). We believe that
this is a fallacy and that such decisions are better left to well-informed customers.

8.8.5 It Should Apply Rules in the Order Specified

You want your packet filter to apply, in a predictable order, the rules you specify for it. By far the simplest order
is the order in which you, the person configuring the router, specify the rules. Unfortunately, some products,
instead of applying rules in the order you specify, try to reorder and merge rules to achieve greater efficiency in
applying the rules. (One innovative vendor even touts this as a user interface benefit, because you no longer
have to worry about what order to specify the rules in!) This causes several problems:

° Reordering rules makes it difficult for you to figure out what's going on, and what the router is going
to do with a particular set of filtering instructions. Configuring a packet filtering system is already
complicated enough, without having a vendor add additional complications by merging and reordering
rule sets.

. If any quirks or bugs are in the merging or reordering of rule sets (and there often are because it's
something that's very difficult for the vendors to test), it becomes impossible to figure out what the
system is going to do with a given set of filters.

° Most importantly, reordering rules can break a rule set that would work just fine if it had not been
reordered.

Let's consider an example. Imagine that you're in a corporation, working on a special project with a local
university. Your corporate Class B network is 172.16 (i.e., your IP addresses are 172.16.0.0 through
172.16.255.255). The university owns Class A net 10 (i.e., their IP addresses are 10.0.0.0 through
10.255.255.255).18

18 172.16 and 10 are both reserved network numbers, which no company or university could have. They're used for example purposes only. Not
all the IP addresses in a network's range are valid host addresses; addresses where the host portion is all ones or all zeros are reserved and
cannot be allocated to hosts, making the range of host addresses on 172.16 actually 172.16.0.1 through 172.16.255.254.

page 126

Building Internet Firewalls

For the purposes of this project, you're linking your network directly to the university's, using a packet filtering
router. You want to disallow all Internet access over this link (Internet access should go through your Internet
firewall). Your special project with the university uses the 172.16.6 subnet of your Class B network (i.e., IP
addresses 172.16.6.0 through 172.16.6.255). You want all subnets at the university to be able to access this
project subnet. The university's eight-bit 10.1.99 subnet has a lot of hostile activity on it; you want to ensure
that this subnet can only reach your project subnet.

How can you meet all these requirements? You could try the following three packet filtering rules. (In this
example, we are considering only the rules for traffic incoming to your site; you'd need to set up corresponding
rules for outgoing traffic.)

Rule Source Address Dest. Address Action
A 10.0.0.0/8 172.16.6.0/24 Permit
B 10.1.99.0/24 172.16.0.0/16 Deny
C Any Any Deny

. Rule A permits the university to reach your project subnet.
° Rule B locks the hostile subnet at the university out of everything else on your network.

° Rule C disallows Internet access to your network.
Now let's look at what happens in several different cases, depending on exactly how these rules are applied.
8.8.5.1 If the rules are applied in the order ABC

If the rules are applied in the order ABC - the same order specified by the user - the following table shows what
happens with a variety of sample packets.

Packet | Source Address Dest. Address Desired Action Actual Action (by Rule)
1 10.1.99.1 172.16.1.1 Deny Deny (B)
2 10.1.99.1 172.16.6.1 Permit Permit (A)
3 10.1.1.1 172.16.6.1 Permit Permit (A)
4 10.1.1.1 172.16.1.1 Deny Deny (C)
5 192.168.3.4 172.16.1.1 Deny Deny (C)
6 192.168.3.4 172.16.6.1 Deny Deny (C)

° Packet 1 is from a machine at the university on the hostile subnet to a random machine on your
network (not on the project subnet); you want it to be denied; it is, by rule B.

. Packet 2 is from a machine at the university on the hostile subnet to a machine on your project
subnet; you want it to be permitted; it is, by rule A.

° Packet 3 is from a random machine at the university to a machine on your project subnet; you want it
to be permitted; it is, by rule A.

° Packet 4 is from a random machine at the university to one of your nonproject machines; you want it
to be denied; it is, by rule C.

° Packet 5 is from a random machine on the Internet to one of your nonproject machines; you want it
to be denied; it is, by rule C.

. Packet 6 is from a random machine on the Internet to one of your project machines; you want it to be
denied; it is, by rule C.

Thus, if the rules are applied in the order ABC, they accomplish what you want.

page 127

Building Internet Firewalls
8.8.5.2 If the rules are applied in the order BAC

What would happen if the router reordered the rules by the number of significant bits in the source address, so
that more specific rules are applied first? In other words, rules applying to more specific IP source addresses
(i.e., rules that apply to a smaller range of source addresses) would be applied before rules applying to less

specific IP source addresses. In this case, the rules would be applied in the order BAC.

Here are the same six sample packets, with the new outcomes if the rules are applied in the order BAC; in bold
face, we show how the actions differ from the previous case (in which rules are applied in the order specified by

Rule Source Address Dest. Address Action
B 10.1.99.0/24 172.16.0.0/16 Deny
A 10.0.0.0/8 172.16.6.0/24 Permit
C Any Any Deny

the user).
Packet | Source Address Dest. Address Desired Action | Actual Action (by Rule)
1 10.1.99.1 172.16.1.1 Deny Deny (B)
2 10.1.99.1 172.16.6.1 Permit Deny (B)
3 10.1.1.1 172.16.6.1 Permit Permit (A)
4 10.1.1.1 172.16.1.1 Deny Deny (C)
5 192.168.3.4 172.16.1.1 Deny Deny (C)
6 192.168.3.4 172.16.6.1 Deny Deny (C)

If the rules are applied in the order BAC, then packet 2, which should be permitted, is improperly denied by rule
B. Now, denying something that should be permitted is safer than permitting something that should be denied,
but it would be better if the filtering system simply did what you wanted it to do.

You can construct a similar example for systems that reorder rules based on the number of significant bits in the
destination address, which is the most popular other reordering criteria.

8.8.5.3 Rule B is actually not necessary

If you consider this example carefully, you can see that the discussion about the hostile subnet, which is the
reason for rule B, is redundant and isn't necessary to achieve the desired results. Rule B is intended to limit the
hostile subnet to accessing only your project subnet. Rule A, however, already restricts the entire university -
including the hostile subnet - to accessing only your project subnet. If you omit rule B, then the rules will be
applied in order AC regardless of whether or not the system reorders based on the number of significant bits in
the IP source address. The following tables show what happens in either case.

Rule Source Address Dest. Address Action
A 10.0.0.0/8 172.16.6.0/24 Permit
C Any Any Deny
Packet | Source Address Dest. Address Desired Action Actual Action (by Rule)
1 10.1.99.1 172.16.1.1 Deny Deny (C)
2 10.1.99.1 172.16.6.1 Permit Permit (A)
3 10.1.1.1 172.16.6.1 Permit Permit (A)
4 10.1.1.1 172.16.1.1 Deny Deny (C)
5 192.168.3.4 172.16.1.1 Deny Deny (C)
6 192.168.3.4 172.16.6.1 Deny Deny (C)

Building Internet Firewalls

8.8.5.4 Packet filtering rules are tricky

The point here is that getting filtering rules right is tricky. In this example, we are considering a relatively simple
situation, and we've still managed to come up with a rule set that had a subtle error in it. Real-life rule sets are
significantly more complex than these, and often include tens or hundreds of rules. Considering the implications
and interactions of all those rules is nearly impossible, unless they are simply applied in the order specified. So-
called "help" from a router, in the form of reordering rule sets, can easily turn an over-specified but working rule
set into a nonworking rule set. You should make sure that the packet filtering router you select doesn't reorder
rule sets.

It's OK if the router does optimization, as long as the optimization doesn't change the effect of the rules. Pay
close attention to what kind of optimizations your packet filtering implementation tries to do. If a vendor will not
or cannot tell you what order rules are applied in, do not buy that vendor's product.

8.8.6 It Should Apply Rules Separately to Incoming and Outgoing Packets, on a Per-Interface Basis

For maximum flexibility, capability, and performance, you want to be able to specify a separate rule set for
incoming and outgoing packets on each interface. In this section, we'll show an example that demonstrates the
problems you can run into with routers that aren't that flexible.

A limitation unfortunately shared by many packet filtering systems is that they let you examine packets only as
they are leaving the system. This limitation leads to three problems:

e The system is always "outside" its own filters.
° Detecting forged packets is difficult or impossible.

° Configuring such systems is extremely difficult if they have more than two interfaces.

Let's look at the first problem. If a router lets you look only at outgoing packets, then packets directed to the
router itself are never subjected to packet filtering. The result is that the filtering doesn't protect the router itself.
This is usually not too serious a problem because there are typically few services on the router that could be
attacked, and there are other ways to protect those services. Telnet is an example of a service that can be
attacked in this way, but you can usually get around the routing problem by disabling the Telnet server, or by
controlling from where it will accept incoming connections. SNMP is another commonly available and vulnerable
service.

Now consider the second problem. If a router can filter only outgoing packets, it's difficult or impossible to detect
forged packets being injected from the outside (that is, packets coming in from the outside but that claim to have
internal source addresses), as is illustrated in Figure 8.1. Forgery detection is most easily done when the packet
enters the router, on the inbound interface. Detecting forgeries on the outbound interface is complicated by
packets generated by the router itself (which will have internal source addresses if the router itself has an
internal address) and by legitimate internal packets mistakenly directed to the router (packets that should have
been sent directly from their internal source to their internal destinations but were instead sent to the filtering
router, for instance, by systems following a default route that leads to the filtering router).

The third problem with outbound-only filtering is that it can be difficult to configure packet filtering on such a
router when it has more than two interfaces. If it has only two interfaces, then being able to do only outbound
filtering on each interface is no big deal. There are only two paths through the router (from the first interface to
the second, and vice versa). Packets going one way can be filtered as outgoing packets on one interface, while
packets going the other way can be filtered as outgoing packets on the other interface. Consider, on the other
hand, a router with four interfaces: one for the site's Internet connection, one for a finance network, and two for
engineering networks. In such an environment, it wouldn't be unreasonable to impose the following policy:

e The two engineering networks can communicate with each other without restrictions.

e The two engineering networks and the Internet can communicate with each other with certain
restrictions.

e The two engineering networks and the finance network can communicate with each other with certain
restrictions - restrictions that are different from those between the engineering nets and the Internet.

e The finance network cannot communicate with the Internet under any circumstances.

page 129

Building Internet Firewalls

Figure 8.4 illustrates this environment.

Figure 8.4. Packet filtering restrictions on different interfaces

Sereening Router [ECLLI] J

Engineering Net B
Finance Nel

Engineering Met A

There are 12 paths through this router, from each of four interfaces to each of three other interfaces (in general,
there are N * (N-1) paths through an N-interface router). With an outbound-only filtering system, you would
have to establish the following filtering on each interface:

Engineering Net A

Internet filters, finance net filters, engineering net B filters
Engineering Net B

Internet filters, finance net filters, engineering net A filters
Finance Net

Internet filters, engineering net A filters, engineering net B filters
Internet

Engineering net A filters, engineering net B filters, finance net filters

Merging multiple filtering requirements in a single interface like this can be very tricky. Depending on the
complexity of the filters and the flexibility of the filtering system, it may actually be impossible in some
situations.

A more subtle problem with such a setup is that it imposes packet filtering overhead between the two
engineering networks (which may result in a significant performance problem). With this setup, the router has to
examine all the packets flowing between the two engineering nets, even though it will never decide to drop any
of those packets.

Now look at the same scenario, assuming that the packet filtering system has both inbound and outbound filters.
In this case, you could put:

e All the filters related to the Internet (regardless of whether they apply to the engineering nets or the
finance net) on the Internet interface

. All the filters related to the finance net (regardless of whether they apply to the engineering nets or
the Internet) on the finance interface

° No filters at all on the engineering interfaces (thus allowing maximum performance for traffic between
the engineering nets because it wouldn't pass through any filters)

page 130

Building Internet Firewalls

What if a packet filtering system had inbound-only filters, rather than outbound-only filters? A system of this kind
would address the first and second problems we described in this section: a router with inbound-only filters can
be protected by its own filters and can detect forged packets. However, such a system would not address the
third and most serious problem; you still have problems merging filtering rules on routers with more than two
interfaces.

What if the packet filtering system had both kinds of filters but didn't allow you to specify individual interfaces?
This kind of system has all the problems of an outbound-only system (you have to merge all of the rules into a
single set and incur packet filtering overhead even on unfiltered connections). In addition, it becomes very
difficult to detect forged source addresses. Most such systems have special configurations to deal with forged
source addresses, but these are less flexible than the controls you can get by directly specifying rules. In
particular, they may protect you from external forgeries without detecting internal forgeries.

8.8.7 It Should Be Able to Log Accepted and Dropped Packets

Make sure the packet filtering router gives you the option of logging all of the packets it drops. You want to know
about any packets that are blocked by your packet filtering rules. These rules reflect your security policy, and you
want to know when somebody attempts to violate that policy. The simplest way to learn about these attempted
violations is through such a log.

You'd also like to be able to log selected packets that were accepted. For example, you might want to log the
start of each TCP connection. Logging all accepted packets is going to be too much data in normal operation but
may be worth it occasionally for debugging and for dealing with attacks in progress. Although you will probably
be doing some logging at the packet destination, that logging won't work if the destination host has been
compromised, and won't show packets that make it through the packet filter but don't have a valid destination.
Those packets are interesting because they may be probes from an attacker. Without information from the
router, you won't have the complete picture of what the attacker is doing.

The specific information that is logged is also important and packet filtering routers have widely varying
capabilities. You will want information about which rule and packet caused the log entry to be made. Ideally, you
would like to know the definition of the rule, but a name or other constant identifier would be sufficient. A rule
number which changes every time you edit the rule set is the least useful rule identifier, although it's better than
no information at all.

You will also want information about the packet itself. At a minimum you will want to see source and destination
IP addresses and protocol. For TCP and UDP packets you will want to see source and destination port numbers
(and the flags for TCP packets). For ICMP you will want to see the type and code. Without this information it can
be very difficult to debug rulesets or, when you are being attacked, trace or block packets from an unwanted
source. In some situations, it is preferable to log the entire packet, instead of a summary.

The logging should be flexible; the packet filter should give you the ability to log via syslog and to a console or a
local file. It would also be helpful if the logging included the ability to generate SNMP traps on certain events.
Some packet filters also have various alerting capabilities (they can page an administrator or send email). These
capabilities are useful but are less flexible than a generalized alerting system based on SNMP. If the packet
filtering machine has a modem directly attached, and is capable of completing a page independently, paging
capabilities provide a useful alerting mechanism of last resort, where the machine can call for help if it is unable
to send any network traffic at all. Otherwise, paging on the packet filter is not of much interest; you would be
better served by an alert sent to a general-purpose system.

8.8.8 It Should Have Good Testing and Validation Capabilities

An important part of establishing a firewall is convincing yourself (and others within your organization) that
you've done the job right and haven't overlooked anything. To do that, you need to be able to test and validate
your configuration. Most of the packet filtering packages currently available have little or nothing in the way of
testing and validation capabilities.

Testing and validation come down to two related questions:

. Have you properly told the router to do what you want?

° Is the router doing what you've told it to?

page 131

Building Internet Firewalls

Unfortunately, with many products available today, both of these questions tend to be difficult to answer. In the
few products that provide any kinds of testing capabilities, what the test says it will do with a given packet and
what it actually does with such a packet are sometimes different, often because of subtle caching and
optimization bugs. Some sites (and, we hope, some vendors!) have constructed filtering test beds, where they
can generate test packets on one side of a filtering router and watch to see what comes through to the other
side, but that's beyond the capabilities and resources of most sites. About the best you can do is pick something
with a good reputation for not having many problems and good support for when it inevitably does have
problems.

8.9 Packet Filtering Implementations for General-Purpose Computers

These days, a number of operating systems provide packet filtering features, independent of firewall products.
Many Unix variants come with packet filtering, as does Windows NT.

There are two major reasons why you might want to use packet filtering implementations on general-purpose
computers. First, you may want to use a general-purpose computer as a router (either providing only packet
filtering, or as a single-box firewall that provides both packet filtering and proxying). In this case, you are using
the general-purpose computer to provide the same sort of packet filtering services that a router would provide.
Second, you may be using the general-purpose computer as a bastion host, and you may want to use packet
filtering on the computer as a security measure to protect the computer itself.

8.9.1 Linux ipchains and Masquerading

The Linux kernel includes a packet filtering system called ipchains, which provides powerful packet filtering
capabilities. This system provides the same sorts of capabilities that you would get from a modern packet filtering
router and is suitable for using where you'd use a router. Because it's part of the standard Linux kernel source, it
should be present in all up-to-date Linux distributions, although it may not be enabled by default.

Earlier Linux kernels used a filtering system called ipfw (which was a port of a BSD filtering system) and a
configuration utility called ipfwadm. ipchains is a new filtering system, which provides more functionality than
ipfw. ipchains allows you to convert configuration files from ipfwadm to ipchains.

The filtering performed by ipchains is done entirely in the kernel, and it requires only a single external utility to
initialize the filtering rules. This means that it is possible to build a complete Linux filtering system that will fit on
a single 1.44 MB floppy disk. The Linux Router Project is doing exactly this (see Appendix A, for more information
about the Linux Router Project).

Linux also has a facility called masquerading, which is used with ipchains to provide network address translation
for both TCP and UDP. Masquerading keeps track of TCP connection state and supports timeout-based UDP
requests and responses. Because it must be used with packet filtering, it can be considered a dynamic packet
filtering system. In addition to providing straightforward network address translation for simple TCP and UDP
protocols, Linux masquerading allows additional kernel modules to be loaded for more complicated protocols (for
instance, FTP and RealAudio, which require reverse TCP connections or additional UDP ports).

8.9.1.1 ipchains

ipchains is designed around the concept of a chain of rules. Each rule specifies a condition and an action to take if
the condition is met, called a target. The rules in a chain are used in order; a packet is checked against each rule
in turn, and if the packet matches the condition, the specified action is taken.

There are three standard chains, called the input, output, and forward chains. All packets coming in to the
machine are passed through the input chain, and all packets going out of the machine are passed though the
output chain. The forward chain is used for packets that need to be sent to a different network interface from the
one they were received on. Thus, if a packet is received for the machine, it's matched against the input chain; if
the machine generates a packet, it's matched against the output chain. If the machine is acting as a router and
gets a packet addressed to some other machine, the packet will be matched against all three chains.

The standard chains each have a default policy, which is applied when no rules match. It is also possible to create
additional, user-defined, chains. If no rules match when checking a user-defined chain, processing will continue
at the point where the chain was called.

page 132

Building Internet Firewalls
The conditions in a rule can be based on any of the following:

e The IP protocol number (e.g., TCP, UDP, ICMP, or IGMP).

e The source and destination IP addresses. Addresses can be specified as a variable-length subnet (e.g.,
192.168.8.0/22) or a network address with a mask, and negation is allowed (you can specify "all
addresses except those that match this address and mask").

e The source and destination TCP and UDP port numbers. Port numbers can be specified with ranges or
masks, and negation is allowed.

e The ICMP type and code.
. Whether the packet is an IP fragment.
e Whether the packet is a TCP start-of-connection packet.

e The network interface. This is the interface the packet came in on for the input chain and the
destination interface for the output and forward chains.

Each rule in a chain has a target action that is applied when the rule matches. The target of a rule decides what
next happens to a packet. The allowed targets are:

. Deny: Drop the packet without generating a response.

. Reject: Don't process the packet, but generate an ICMP response (which will be passed though the
output chain).

® Accept: Process the packet.
. Masq: Perform masquerading. This target is only valid in the forward chain.
. Redirect: Forward the packet to a different port on the local machine.

° Return: Apply the default policy for a built-in chain or continue processing at the point where a user-
defined chain was called.

. A user-defined chain.

Because a user-defined chain can be the target of a rule, it is possible to build complex filters or make ipchains
behave like other packet filtering systems.

A rule can also make a log entry, which contains information about the action that was taken, the time, and a
summary of the packet headers. Logging is performed by syslog.

8.9.1.2 Testing ipchains rules

ipchains has a very useful feature that allows the kernel-filtering rules to be tested. The ipchains command allows
you to specify IP header values to be tested against the currently loaded kernel filtering rules. Using the standard
target names, the command prints how the kernel would react if the packet had really been sent to the firewall.
At the time of writing, it is not possible to generate and test arbitrary packets.

8.9.1.3 Masquerading

Linux masquerading is a network address translation system. Because it is capable of working at higher protocol
levels, and doing more intricate modifications than simple address changes, it's also called a transparent proxying
system. What it does could be considered either proxying or packet filtering; it's somewhere in between the two.

The IP address of the firewall is used in communicating with remote services. For simple protocols, masquerading
alters only IP header information, including IP addresses, port numbers, and TCP sequence and acknowledgment
numbers. Masquerading uses the IP address of the host doing the masquerading as the externally visible address,
and maps the port humber into one from a pool of 4096 ports starting at 61000. This fixed allocation of ports
does limit Linux masquerading to 4096 simultaneous TCP connections and 4096 UDP ports. At the time of writing,
Linux kernels allocate only ports less than 32768, so the ports used for masquerading will never conflict with
ports used for other purposes.

Linux masquerading is also capable of dealing with more complicated protocols, such as FTP or RealAudio, which
might require reverse TCP connections or additional UDP ports. Support for new protocols can be added by
dynamically loading new kernel modules.

page 133

Building Internet Firewalls

8.9.1.4 How masquerading works

Masquerading works by intercepting packets that are being forwarded by the Linux kernel. Masquerading for
simple protocols works much like simple network address translation, as described in Section 5.1. IP addresses
and port numbers are modified on outgoing packets. For TCP connections, a new sequence number is generated.
The process is reversed for incoming packets. Figure 8.5 is an example of this working for a client connecting to a
remote HTTP server, and shows the IP address and ports for each half of the connection. The masquerading
firewall will continue to pass packets back to the client as long as the client maintains the outgoing half of the
TCP connection. In the case of UDP, the firewall will pass packets back to the client only for a configurable time
period, which is typically set to 15-30 seconds.

Figure 8.5. Masquerading for simple outgoing protocols

From 10.5.2.3:1025 R, 0 A From 192.168.3.5:61001
Client To1T216.42.9:80 : . To 172.16.42 980 Server
Masquerading
{ Firewall]
: From 172.16.42.9:80 19216835 From 1721642, 9:80
m To 10.5.2.3:1025 ! ", M i To182.158.3 5:61001
! S SRR
1623 172.16.42.9

In addition to handling outgoing traffic, masquerading can be used to forward incoming ports to internal services.
The ability to masquerade incoming ports is configured statically for each port that is to be forwarded. Once a
port is forwarded, it can no longer be used to connect to a service on the firewall. Figure 8.6 shows a
masquerading firewall configured to forward SSH to an internal destination and includes the IP addresses and
port numbers for each half of the connection. It's possible to forward the same port to multiple destinations if the
masquerading firewall is configured to listen to multiple IP addresses.

Figure 8.6. Forwarding incoming services using masquerading

From 172164291027 From 172.16.42.9:1027
Destination |0 1052322 : : To 192.168.3.5:22 Client
Masquerading i
i Firewall ; :
1 From 10.5.2.3:22 18018845 From 192.168.3.5:22
m To 172.16.42.9:1027 19SS 5 Tp 172.16.42.9:1027
S
1523 17216428

For more complicated protocols, masquerading can set up additional listening TCP and UDP ports based upon the
contents of packets that have been seen. Masquerading can even rewrite the contents of data packets in order to
replace IP addresses and port numbers.

This is best explained by describing how the masquerading module for FTP works. As we discuss in Chapter 17,
FTP is a tricky protocol to support through a firewall because it normally involves a connection from the server to
the client. An FTP client opens a control channel to a desired FTP server. At the point where data is to be
transferred, the client issues a PORT command that contains the client IP address and a port number the client
expects to receive the data on. The FTP server uses this information to open a new TCP connection to the client in
order to transfer the data.

For masquerading to work, it must intercept the PORT command from the client. The FTP masquerading module
does this by listening to the commands sent over all FTP control channels. When it sees a PORT command, it
does two things; first, it sets up a temporary port on the masquerading host, which is forwarded to the port the
client specified. Next, it rewrites the IP packet containing the PORT command with the IP address of the firewall
and the temporary port. When an incoming connection to the temporary port is made, it is forwarded to the
client. Figure 8.7 describes this process.

page 134

Building Internet Firewalls
Figure 8.7. Masquerading normal-mode FTP
Masquerading
— et

Data Coenmsaid Coenmsnd Digta Coenmsnd
51a1 5150 61000 n H
] L » L] L]
'“0::555? .
—
Dita
s1001 ﬂ__h__h
, Furt 10gy —
(2 B
1 =
' O
] ‘___———_d_—
]
e S . peCnanne 5
" —
oot Cnee
—

8.9.1.5 Available specialized masquerading modules

A number of specialized masquerading modules are available. At the time of writing, they can be split into three
categories: multimedia, games, and access to internal services. An up-to-date list of modules and their
availability can be found in the Linux MASQUERADING-HOWTO. See Appendix A, for information on how to obtain
Linux HOWTO documents.

8.9.1.6 Using ipchains (including masquerading)

To use ipchains, you must compile it into the kernel you are using. The actual kernel compilation flags for turning
it on are different in different Linux releases; you should either consult help for your Linux kernel configuration
utility or use the Linux IPCHAINS-HOWTO. See Appendix A for information on obtaining Linux HOWTO
documents.

We also recommend that you turn on fragment reassembly. See Chapter 4, for information on IP fragmentation
and why this is important.

Masquerading is included as a standard part of Linux 2.1 and 2.2 kernel source code. It does need to be enabled
when the kernel is compiled, and it also depends on the Linux firewalling code. The kernel compile-time option for
enabling Linux masquerading is CONFIG_IP_MASQUERADE=Y.

In order to use all of the facilities of ipchains and masquerading, you will also need the ipchains and ipmasgadm
commands used to define the filtering and masquerading rules.

ipchains rules are built incrementally; when the machine boots, it installs the rules in order, so there will be a
brief period while it is initializing when the chain is not fully built, and the default policy will be used before the
end of the chain has been configured. If the default policy is to accept packets, you may accept packets that you
would otherwise have denied. You should therefore put in an initial explicit default policy that denies packets.

One tempting way to avoid this problem is to build the chains before you actually configure the network
interfaces (if you can't receive the packets, there's no need to worry about what you do with them). In most
situations, this won't work because rules will be rejected if they refer to network interfaces that haven't been
configured. If you have a configuration of the kind we recommend, you will have to configure the network
interface before you can build the chains you are actually going to use. Thus, you will end up using two bootup
scripts for the ipchains configuration. The first script will initialize default deny policies for each chain; the second
will load the rules you wish to use.

page 135

Building Internet Firewalls

When combined with the network interface configuration scripts, this will result in the following three-stage
process:

1. Load default deny polices that do not specify an interface.
2. Configure the network interfaces.

3. Load the real ipchains rules you're going to use.

Since the default policy does not do any logging, it is often useful to duplicate it with a final rule that will also log
denied traffic. In other packet filtering situations, we recommend doing this for documentation purposes; in this
case, you have already documented the default with the initial default policy, but you need both in order to
combine security and logging.

When masquerading is operating, the standard Unix netstat program does not list masqueraded ports. This
means that the machine will be accepting packets for ports that don't show up when you run netstat, which may
be disconcerting to experienced network administrators.

8.9.2 ipfilter

ipfilter is another packet filtering system for Unix. It works on the free BSD implementations (FreeBSD,
OpenBSD, and NetBSD) and has also been ported to and tested on other Unix operating systems including Solaris
and previous versions of SunOS, IRIX, and Linux.

ipfilter uses a list of rules contained in a single configuration file. Unlike ipchains, ipfilter checks all rules in
sequence, and the last rule that successfully matches determines the fate of a packet. This can be a great source
of confusion. Imagine a filtering configuration file containing only the following rules:

block in all
pass in all

This will pass all packets because the second rule is the last rule that matches. Fortunately an ipfilter rule can
specify the "quick" keyword, which if the rule matches, will terminate the rule checking at that point. The
following rules would block all traffic:

block in quick all
pass in all

Rules may be arranged into groups, which allows you to make more complicated configurations quite easily. A
group has a head rule, which is checked to determine whether the rest of the rules in the group are executed. If
the group is executed, the rules in it are handled in the normal way. At the end of the group, processing
continues at the next line.

The conditions in a rule can be based on any of the following:

e The IP protocol number (for example TCP, UDP, ICMP, or IGMP).
e The IP options that are set.

e The source and destination IP addresses. Addresses can be specified as a variable-length subnet (for
example 192.168.8.0/22) or a network address with a mask, and negation is allowed (you can specify
"all addresses except those that match this address and mask").

e The source and destination TCP and UDP port numbers. Port numbers can be specified with ranges or
masks, and negation is allowed.

e The ICMP type and code.

e Whether the packet is an IP fragment. Fragments that are too short to contain port numbers, and thus
could prevent port rules from being applied, can be explicitly handled.

e The TCP flags that are set (for instance, the ACK and SYN bits that let you identify a start of
connection packet).

e The network interface the packet came in on.

page 136

Building Internet Firewalls

The actions ipfilter can take are:

o Drop the packet without generating a response.

. Don't process the packet, but return an ICMP response (you can specify what ICMP response to
return).

° Don't process the packet, but return a TCP reset.
° Process the packet.

° Process the packet, keeping state information to make sure that all TCP packets are part of a valid
TCP conversation, with appropriate settings of SYN and ACK and appropriate sequence numbers.

. Change IP address and/or port number information in the packet using a static mapping (this is a
simple form of network address translation).

. Send the packet or a copy of it to a specified network interface or address for logging purposes.

. Log information about the packet via syslog.

ipfilter also has the ability to do some more complicated packet rewriting to support protocols that cannot be
handled by straightforward network address translation. However, there are relatively few supported protocols.
The rewriting system in ipfilter is not dynamically extensible; rewriting capabilities are set at compile time and
cannot be added on the fly.

8.9.3 Comparing ipfilter and ipchains

ipfilter and ipchains provide roughly the same functionality; in many cases, people choose between them based
on the operating system they're using, using ipchains on Linux and ipfilter on other operating systems. On the
other hand, they do have distinct strengths and weaknesses.

ipchains is much stronger as a network address translation system. The network address translation functionality
provided by ipfilter is minimal and is not dynamically updatable. ipchains is also provided as part of Linux, so that
it doesn't require separate integration.

ipfilter provides filtering capabilities that ipchains does not (allowing you to filter on IP options and providing
more flexible handling of TCP options, for instance), and it is more flexible about the responses it gives to blocked
packets. Its packet duplication features are useful for feeding packets to intrusion detection systems.

The architecture of ipchains makes it much easier to extend than ipfilter, so it's likely that the extra ipfilter
features will eventually show up in ipchains. However, ipchains is relatively tightly integrated with the Linux
kernel, which will slow down its spread to other operating systems.

8.9.4 Linux netfilter

At this writing, the Linux packet filtering and network address translation systems are being rewritten. The new
filtering system is called netfilter, and it has several goals. One is to reduce the number of points in the Linux
kernel where filtering occurs. Another is to have a clean separation of filtering from network address translation.
As a result of this separation, netfilter is no longer capable of modifying packets. Some of the concepts from
ipchains still exist in netfilter; in particular, lists of filtering rules are built into named chains. The significant
features that have been added to netfilter are:

e The ability to filter on both the input and output interface in the forward chain

e The ability to pass packets to user-level processes for handling

If you are using ipchains only for packet filtering, you can use netfilter with the same filtering rules. However, if
you use the masquerading chain, you will need to convert to using the new network address translation tools in
order to use netfilter.

page 137

Building Internet Firewalls

8.9.5 Windows NT Packet Filtering

Windows NT 4 comes with a very limited ability to do packet filtering, suitable only for protecting the machine
itself, and that only in some circumstances. From the Network control panel, when you are configuring TCP/IP
properties, you can go to the IP address tab and select Advanced. You have two different ways of doing filtering:

. The Enable PPTP Filtering button will restrict the interface to only using PPTP.*°

e The Configure button under Enable Security will let you configure filtering by TCP port, UDP port, or IP
protocol.

Windows 2000 provides the latter filtering also, as part of the Advanced TCP/IP Settings; it is under the Options
tab and is called TCP/IP filtering. You may specify that you wish to allow everything, or you may provide a list of
what you will allow, by individual port number (that is, if you wish to allow ports above 1023, you will have to
enter each number from 1024 to 65536 separately).

This packet filtering is extremely minimal, and there are very few situations where it's possible to use it. It is
useful for machines that are using PPTP, or that are bastion hosts providing single services like HTTP. Some of
the problems with it are not immediately obvious and are frequently unpleasant surprises to people trying to use
this packet filtering:

. It controls only incoming packets without ACK set; it will not limit outbound connections.

e The "IP protocol" entries do not control UDP and TCP; if you wish to deny UDP and TCP, you must set
the TCP and UDP entries to allow only specified ports and then avoid specifying any ports.

° It will not deny ICMP, even if you set the IP protocol to allow only specified ports and avoid including
ICMP.

If you install the Routing and Remote Access Service for Windows NT 4 or Windows 2000, which is a no-cost
option, you get much more flexible packet filtering, allowing both inbound and outbound filters by protocol,
source and destination address, and source and destination port. This filtering still doesn't compete with full-
fledged packet filtering implementations; it doesn't allow specifications of port ranges, it doesn't give you any
control over what's done with denied packets, and it doesn't allow you to combine allow and deny rules.

Windows 2000 provides packet filtering in a third place as part of its implementation of IPsec (IPsec is discussed
further in Chapter 14). This packet filtering is comparable to the Routing and Remote Access Service filtering for
Windows NT 4, except that it is possible to combine filters into sets (allowing you to mix allow and deny rules),
and a rule can apply four possible actions:

° Permit all packets that match, regardless of their IPsec status.
° Block all packets that match, regardless of their IPsec status.

. Request IPsec protections on all packets that match, but accept them if IPsec is not available.

. Require IPsec protections on all packets that match, and reject them if IPsec is not available.

If you are using packet filtering as part of IPsec, we strongly recommend that you avoid configuring any of the
other possible sorts of packet filtering. Use only one packet filtering package at a time; otherwise, you risk
configuring conflicting filtering rules. Whether or not the computer gets confused, its maintainers certainly will.

Ironically, the most powerful packet filtering package that Microsoft makes available for Windows NT is actually
part of Microsoft's Proxy Server. While it still does not provide all of the features that a packet filtering router
would provide, it does include alerting and logging options, specification of port ranges, and filtering of
fragments. As of this writing, a new version of Proxy Server is due out shortly, and it is expected to have still
more packet filtering features.

19 See Section 14.1, for more information about PPTP.

page 138

Building Internet Firewalls

8.10 Where to Do Packet Filtering

If you look at the various firewall architectures outlined in Chapter 6, you see that you might perform packet
filtering in a variety of places. Where should you do it? The answer is simple: anywhere you can.

Many of the architectures (e.g., the screened host architecture or the single-router screened subnet architecture)
involve only one router. In those cases, that one router is the only place where you could do packet filtering, so
there's not much of a decision to be made.

However, other architectures, such as the two-router screened subnet architecture, and some of the architectural
variations, involve multiple routers. You might do packet filtering on any or all of these routers.

Our recommendation is to do whatever packet filtering you can wherever you can. This is an application of the
principle of least privilege (described in Chapter 3). For each router that is part of your firewall, figure out what
types of packets should legitimately be flowing through it, and set up filters to allow only those packets and no
more. You may also want to put packet filters on destination hosts, using a host-based packet filtering system
like the ones discussed previously, or using special-purpose software designed for filtering on destination
hosts.This is highly advisable for bastion hosts, and destination host filtering packages are discussed further in
the chapters about bastion hosts (Chapter 10, Chapter 11, Chapter 12).

This may lead to duplication of some filters on multiple routers; in other words, you may filter out the same thing
in more than one place. That's good; it's redundancy, and it may save you some day if you ever have a problem
with one of your routers - for example, if something was supposed to be done but wasn't (because of improper
configuration, bugs, enemy action, or whatever). It provides defense in depth and gives you the opportunity to
fail safely - other strategies we outlined in Chapter 3.

If filtering is such a good idea, why not filter on all routers, not just those that are part of the firewall? Basically,
because of performance and maintenance issues. Earlier in this chapter, we discussed what "fast enough" means
for a packet filtering system on the perimeter of your network. However, what's fast enough at the edge of your
network (where the real bottleneck is probably the speed of the line connecting you to the Internet) is probably
not fast enough within your network (where you've probably got many busy local area networks of Ethernet,
FDDI, or perhaps something even faster). Further, if you put filters on all your routers, you're going to have to
maintain all those filter lists. Maintaining filter lists is a manageable problem if you're talking about one or a
handful of routers that are part of a firewall, but it gets out of hand in a hurry as the number of routers
increases. This problem is worsened if some of the routers are purely internal.

Why? Because you probably want to allow more services within your network than you allow between your
network and the Internet. This is going to either make your filter sets longer (and thus harder to maintain), or
make you switch from a "default deny" stance to a "default permit" stance on those internal filters (which is going
to seriously undermine the security they provide anyway). You reach a point of diminishing returns fairly quickly
when you try to apply filtering widely within a local area network, rather than just at its perimeter.

You may still have internal packet filtering routers at boundaries within the local area network (between networks
with different security policies, or networks that belong to different organizations). As long as they're at clearly
defined boundaries, and they're up to the performance requirements, that's not a problem. Whether or not you
duplicate the external rules on these internal packet filters is going to depend on how much you trust the
external packet filters, and how much complexity and overhead the external rules are going to add.

In some cases, you may also be able to run packet filtering packages on bastion hosts. If this is not a
performance problem, it can provide additional security in the event that a packet filtering router is compromised
or misconfigured.

Some people argue against putting packet filters on routers when you also have a firewall inside the router, on
the grounds that allowing packets to reach the firewall system gives you a single logging point, making it easier
to detect attacks. If an attack involves some packets that are filtered out at the router, and others that are
rejected at an internal firewall, the internal firewall may not be successful at detecting the attack. This is not a
convincing argument; the internal firewall will still be successful at detecting any attack that has any chance of
succeeding against it, and any reasonable logging configuration will let you correlate the logs from the packet
filters with the logs from the internal firewall and do intrusion detection on the union of them in any case. The
increased detection benefit from allowing the packets is more than outweighed by the decrease in security.?®

20 We have also heard the argument that "the firewall is more secure than the packet filter, so you should use it instead.” This is relevant only if
you can't use both at the same time. Clearly, the firewall is not more secure than the combination of the firewall and the packet filter!

page 139

Building Internet Firewalls
8.11 What Rules Should You Use?

Clearly, most of the rules that you will put into your packet filtering system will be determined by the kinds of
traffic you want to accept. There are certain rules you will almost always want to use, however.

We've already discussed these rules in various places, but here's a summary list of some standard protections
that you should automatically apply unless you have a strong reason to do otherwise:

° Set up an explicit default deny (with logging) so that you are sure that the default behavior is to reject
packets.

. Deny inbound traffic that appears to come from internal addresses (this is an indication of forged
traffic or bad network configurations).

° Deny outbound traffic that does not appear to come from internal addresses (again, such traffic is
either forged or symptomatic of network misconfigurations).

. Deny all traffic with invalid source addresses (including broadcast and multicast source addresses; see
Chapter 4, for more information about broadcast, multicast, and source addresses).

° Deny all traffic with source routes or IP options set.

. Deny ICMP traffic over a reasonable size (a few kilobytes). ICMP filtering rules are discussed further in
Chapter 22.

° Reassemble fragments into entire packets.

8.12 Putting It All Together

This section works through a few more examples to show how many of the concepts we've talked about in this
chapter come together in the real world. For detailed discussions of the packet filtering characteristics of
particular protocols, see the chapters in Part III.

This section is designed to demonstrate the process of developing a filter set; filters are elaborated as we go on,
rather than being produced in final form. We aren't attempting to show a complete filter set for any site. Every
site is different, and you can get burned by packet filtering if you don't understand all the details and implications
of its use in your particular environment. We want people to carefully consider and understand what they're doing
- not blindly copy something out of a book (even ours!) without a careful consideration of how relevant and
appropriate it is for their own situation. In any case, a full solution for a site requires considering packet filtering,
proxying, and configuration issues. That process is illustrated in Chapter 24.

Let's start with a simple example: allowing inbound and outbound SMTP (so that you can send and receive
electronic mail) and nothing else. You might start with the following rule set.

Rule | Direction Source Address Dest. Address Protocol Dest. Port | Action
A In External Internal TCP 25 Permit
B Out Internal External TCP >1023 Permit
C Out Internal External TCP 25 Permit
D In External Internal TCP >1023 Permit
E Either Any Any Any Any Deny

Rules A and B allow inbound SMTP connections (incoming email).

Rules C and D allow outbound SMTP connections (outgoing email).

Rule E is the default rule that applies if all else fails.

We assume in this example that, for each packet, your filtering system looks at the rules in order. It starts at the
top until it finds a rule that matches the packet, and then it takes the action specified.

page 140

Building Internet Firewalls

Now, let's consider some sample packets to see what happens. Let's say that your host has IP address
172.16.1.1, and that someone is trying to send you mail from the remote host with IP address 192.168.3.4.
Further, let's say the sender's SMTP client uses port 1234 to talk to your SMTP server, which is on port 25. (SMTP
servers are always assumed to be on port 25; see the discussion of SMTP in Chapter 16).

Packet | Direction | Source Address | Dest. Address | Protocol | Dest Port | Action (Rule)
1 In 192.168.3.4 172.16.1.1 TCP 25 Permit (A)
2 Out 172.16.1.1 192.168.3.4 TCP 1234 Permit (B)

Figure 8.8 shows this case.

Figure 8.8. Packet filtering: inbound SMTP (sample packets 1 and 2)

SMTP Client

TCP 1234 | ~
IIIiIIII
192 168.3.4

¢

TGP 25

4

I
1721611

In this case, the packet filtering rules permit your incoming email:
. Rule A permits incoming packets from the sender's SMTP client to your SMTP server (represented by
packet number 1 in the preceding table).

° Rule B permits the responses from your server back to the sender's client (represented by packet
number 2 in the preceding table).

What about outgoing email from you to them? Let's say that your SMTP client uses port 1357 to talk to their
SMTP server, as follows.

Packet | Direction | Source Address | Dest. Address | Protocol | Dest. Port | Action (Rule)
3 Out 172.16.1.1 192.168.3.4 TCP 25 Permit (C)
4 In 192.168.3.4 172.16.1.1 TCP 1357 Permit (D)

page 141

Figure 8.9 shows this case.

Building Internet Firewalls

Figure 8.9. Packet filtering: outbound SMTP (sample packets 3 and 4)

TCp2s |
i L4 5
IIIiIIII
192.168.3.4 gmmmmamanaaas

L¢

TGP 1357

T
1721611

'

Again, in this case, the packet filtering rules permit your outgoing email:

° Rule C permits outgoing packets from your SMTP client to their SMTP server (represented by packet
number 3 above).

. Rule D permits the responses from their server back to your client (represented by packet number 4
above).

Now, let's stir things up. What happens if someone in the outside world (for example, someone on host 10.1.2.3)
attempts to open a connection from port 5150 on his end to the web proxy server on port 8080 on one of your
internal systems (for example, 172.16.3.4) in order to carry out an attack? (See Chapter 15, for a discussion of
web proxy servers and their vulnerabilities.)

Packet | Direction | Source Address | Dest. Address | Protocol | Dest. Port | Action (Rule)
5 In 10.1.2.3 172.16.3.4 TCP 8080 Permit (D)
6 Out 172.16.3.4 10.1.2.3 TCP 5150 Permit (B)

Figure 8.10 shows this case.

Figure 8.10. Packet filtering: inbound SMTP (sample packets 5 and 6)

—

Web Proxy
Server

TCP 8080

4

IIIiIIII_
172.16.3.4

TCP 5150

4

I
10123

page 142

Building Internet Firewalls

The preceding rule set allows this connection to take place! In fact, this rule set allows any connection to take
place as long as both ends of the connection are using ports above 1023. Why?

o Rules A and B together do what you want to allow inbound SMTP connections.

° Rules C and D together do what you want to allow outbound SMTP connections.

. But Rules B and D together end up allowing all connections where both ends are using ports above
1023, and this is certainly not what you intended.

Lots of vulnerable servers are probably listening on ports above 1023 at your site. Examples are web proxy
servers (port 8080), X11 (port 6000), databases (Sybase, Oracle, Informix, and other databases commonly use
site-chosen ports above 1023), and so on. This is why you need to consider a rule set as a whole, instead of
assuming that if each rule or group of rules is OK, the whole set is also OK.

What can you do about this? Well, what if you also looked at the source port in making your filtering decisions?
Here are those same five basic rules with the source port added as a criterion.

Rule | Direction | Source Address | Dest. Address | Protocol | Source Port | Dest. Port | Action
A In External Internal TCP >1023 25 Permit
B Out Internal External TCP 25 >1023 Permit
C Out Internal External TCP >1023 25 Permit
D In External Internal TCP 25 >1023 Permit
E Either Any Any Any Any Any Deny

And here are those same six sample packets, filtered by the new rules.

Packet|Direction I-\s::rfses Ac?::et.ss Protocol Sgg::e I:ii: Action(Rule)
1 In 192.168.3.4 172.16.1.1 TCP 1234 25 Permit (A)
2 Out 172.16.1.1 192.168.3.4 TCP 25 1234 Permit (B)
3 Out 172.16.1.1 192.168.3.4 TCP 1357 25 Permit (C)
4 In 192.168.3.4 172.16.1.1 TCP 25 1357 Permit (D)
5 In 10.1.2.3 172.16.3.4 TCP 5150 8080 Deny (E)
6 Out 172.16.3.4 10.1.2.3 TCP 8080 5150 Deny (E)

As you can see, when the source port is also considered as a criterion, the problem packets (numbers 5 and 6,
representing an attack on your web proxy server) no longer meet any of the rules for packets to be permitted
(rules A through D). The problem packets end up being denied by the default rule.

OK, now what if you're dealing with a slightly smarter attacker? What if the attacker uses port 25 as the client
port on his end (he might do this by killing off the SMTP server on a machine he controls and using its port, or by
carrying out the attack from a machine that never had an SMTP server in the first place, like a PC) and then
attempts to open a connection to your web proxy server? Here are the packets you'd see.

. . Source Dest. Source Dest. .
Packet|Direction Address Address Protocol Port Port Action(Rule)
7 In 10.1.2.3 172.16.3.4 TCP 25 8080 Permit (D)
8 Out 172.16.3.4 10.1.2.3 TCP 8080 25 Permit (C)

Figure 8.11 shows this case.

As you can see, the packets would be permitted, and the attacker would be able to make connections through
your proxy server (as we discuss in Chapter 15, this would certainly be annoying and could be disastrous).

page 143

Building Internet Firewalls

So what can you do? The solution is to also consider the ACK bit as a filtering criterion. Again, here are those
same five rules with the ACK bit also added as a criterion.

Rule|Direction Asc?:rf:s Ac?:::ss Protocol ng::e I:,i':tt I;ilt(Action
A In External Internal TCP >1023 25 Any | Permit
B Out Internal External TCP 25 >1023 Yes Permit
C Out Internal External TCP >1023 25 Any | Permit
D In External Internal TCP 25 >1023 Yes Permit
E Either Any Any Any Any Any Any Deny

Figure 8.11. Packet filtering: inbound SMTP (sample packets 7 and 8)

TCP 25

4

11T}
P O 10123

Y

-

Web Proxy
Server

i TCP 8080
i —
172.16.3.4

Now, packet 7 (the attacker attempting to open a connection to your web proxy server) will fail, as follows.

Packet| Direction Source Dest. Protocol Source Dest. ACK Action
Address Address Port Port Set (Rule)
7 In 10.1.2.3 172.16.3.4 TCP 25 8080 No Deny (E)

The only differences in this rule set are in rules B and D. Of these, rule D is the most important because it
controls incoming connections to your site. Rule B applies to connections outgoing from your site, and sites are
generally more interested in controlling incoming connections than outgoing connections.

Rule D now says to accept incoming packets from things that are supposedly SMTP servers (because the packets
are coming from port 25) only if the packets have the ACK bit set; that is, only if the packets are part of a
connection started from the inside (from your client to his server).

If someone attempts to open a TCP connection from the outside, the very first packet that he or she sends will
not have the ACK bit set; that's what's involved in "opening a TCP connection". (See the discussion of the ACK bit
in Section 4.3.1 of the Section 4.3 discussion in Chapter 4.) If you block that very first packet (packet 7 in the
preceding example), you block the whole TCP connection. Without certain information in the headers of the first
packet - in particular, the TCP sequence nhumbers - the connection can't be established.

Why can't an attacker get around this by simply setting the ACK bit on the first packet? Because the packet will
get past the filters, but the destination will believe the packet belongs to an existing connection (instead of the
one with which the packet is trying to establish a new connection). When the destination tries to match the
packet with the supposed existing connection, it will fail because there isn't one, and the packet will be rejected.

page 144

Building Internet Firewalls

At this point, you now have a simple rule set that allows the traffic you set out to allow, and only that traffic. It's
not a full rule set (it doesn't include the default rules we discussed earlier), and it's not a very interesting rule set
(you almost certainly want to allow more protocols than just SMTP). But it's a functioning rule set that you

understand precisely, and from here you can build a configuration that actually meets your needs, using the
information in the rest of this book.

As a basic rule of thumb, any filtering rule that permits incoming TCP packets for
outgoing connections (that is, connections initiated by internal clients) should
B require that the ACK bit be set.

page 145

Building Internet Firewalls

Chapter 9. Proxy Systems

Proxying provides Internet access to a single host, or a very small number of hosts, while appearing to provide
access to all of your hosts. The hosts that have access act as proxies for the machines that don't, doing what
these machines want done.

A proxy server for a particular protocol or set of protocols runs on a dual-homed host or a bastion host: some
host that the user can talk to, which can, in turn, talk to the outside world. The user's client program talks to this
proxy server instead of directly to the "real" server out on the Internet. The proxy server evaluates requests from
the client and decides which to pass on and which to disregard. If a request is approved, the proxy server talks to
the real server on behalf of the client and proceeds to relay requests from the client to the real server, and to
relay the real server's answers back to the client.

As far as the user is concerned, talking to the proxy server is just like talking directly to the real server. As far as
the real server is concerned, it's talking to a user on the host that is running the proxy server; it doesn't know
that the user is really somewhere else.

Since the proxy server is the only machine that speaks to the outside world, it's the only machine that needs a
valid IP address. This makes proxying an easy way for sites to economize on address space. Network address
translation can also be used (by itself or in conjunction with proxying) to achieve this end.

Proxying doesn't require any special hardware, but something somewhere has to make certain that the proxy
server gets the connection. This might be done on the client end by telling it to connect to the proxy server, or it
might be done by intercepting the connection without the client's knowledge and redirecting it to the proxy
server.

Proxy systems are effective only when they are used in conjunction with some
method of restricting IP-level traffic between the clients and the real servers, such
as a screening router or a dual-homed host that doesn't route packets. If there is
IP-level connectivity between the clients and the real servers, the clients can bypass
the proxy system (and presumably so can someone from the outside).

9.1 Why Proxying?

There's no point in connecting to the Internet if your users can't access it. On the other hand, there's no safety in
connecting to the Internet if there's free access between it and every host at your site. Some compromise has to
be applied.

The most obvious compromise is to provide a single host with Internet access for all your users. However, this
isn't a satisfactory solution because these hosts aren't transparent to users. Users who want to access network
services can't do so directly. They have to log in to the dual-homed host, do all their work from there, and then
somehow transfer the results of their work back to their own workstations. At best, this multiple-step process
annoys users by forcing them to do multiple transfers and work without the customizations they're accustomed
to.

The problem is worse at sites with multiple operating systems; if your native system is a Macintosh, and the
dual-homed host is a Unix system, the Unix system will probably be completely foreign to you. You'll be limited to
using whatever tools are available on the dual-homed host, and these tools may be completely unlike (and may
seem inferior to) the tools you use on your own system.

Dual-homed hosts configured without proxies therefore tend to annoy their users and significantly reduce the
benefit people get from the Internet connection. Worse, they usually don't provide adequate security; it's almost
impossible to adequately secure a machine with many users, particularly when those users are explicitly trying to
get to the external universe. You can't effectively limit the available tools because your users can always transfer
tools from internal machines that are the same type. For example, on a dual-homed host, you can't guarantee
that all file transfers will be logged because people can use their own file transfer agents that don't do logging.

page 146

Building Internet Firewalls

Proxy systems avoid user frustration and the insecurities of a dual-homed host. They deal with user frustration by
automating the interaction with the dual-homed host. Instead of requiring users to deal directly with the dual-
homed host, proxy systems allow all interaction to take place behind the scenes. The user has the illusion of
dealing directly (or almost directly) with the server on the Internet, with a minimum of direct interaction with the
dual-homed host. Figure 9.1 illustrates the difference between reality and illusion with proxy systems.

Figure 9.1. Proxies - reality and illusion

Percaived conmection

-+ --—- Agtual conngction w
- & ﬁﬁdﬂ’%
. :) Ly
b T %,
Bastion Host
: 4 User's Musion
(I
User External Host

Proxy systems deal with the insecurity problems by avoiding user logins on the dual-homed host and by forcing
connections through controlled software. Because the proxy software works without requiring user logins, the
host it runs on is safe from the randomness of having multiple logins. It's also impossible for anybody to install
uncontrolled software to reach the Internet; the proxy acts as a control point.

9.2 How Proxying Works

The details of how proxying works differ from service to service. Some services provide proxying easily or
automatically; for those services, you set up proxying by making configuration changes to normal servers. For
most services, however, proxying requires appropriate proxy server software on the server side. On the client
side, it needs one of the following:

Proxy-aware application software

With this approach, the software must know how to contact the proxy server instead of the real server
when a user makes a request (for example, for FTP or Telnet), and how to tell the proxy server what
real server to connect to.

Proxy-aware operating system software

With this approach, the operating system that the client is running on is modified so that IP connections
are checked to see if they should be sent to the proxy server. This mechanism usually depends on
dynamic runtime linking (the ability to supply libraries when a program is run). This mechanism does not
always work and can fail in ways that are not obvious to users.

Proxy-aware user procedures

With this approach, the user uses client software that doesn't understand proxying to talk to the proxy
server and tells the proxy server to connect to the real server, instead of telling the client software to
talk to the real server directly.

Proxy-aware router

With this approach, nothing on the client's end is modified, but a router intercepts the connection and
redirects it to the proxy server or proxies the request. This requires an intelligent router in addition to
the proxy software (although the routing and the proxying can co-exist on the same machine).

page 147

Building Internet Firewalls

9.2.1 Using Proxy-Aware Application Software for Proxying

The first approach is to use proxy-aware application software for proxying. There are a few problems associated
with this approach, but it is becoming easier as time goes on.

Appropriate proxy-aware application software is often available only for certain platforms. If it's not available for
one of your platforms, your users are pretty much out of luck. For example, the Igateway package from Sun
(written by Jim Thompson) is a proxy package for FTP and Telnet, but you can use it only on Sun machines
because it provides only precompiled Sun binaries. If you're going to use proxy software, you obviously need to
choose software that's available for the needed platforms.

Even if software is available for your platforms, it may not be software your users want. For example, dozens of
FTP client programs are on the Macintosh. Some of them have really impressive graphical user interfaces. Others
have other useful features; for example, they allow you to automate transfers. You're out of luck if the particular
client you want to use, for whatever reason, doesn't support your particular proxy server mechanism. In some
cases, you may be able to modify clients to support your proxy server, but doing so requires that you have the
source code for the client, as well as the tools and the ability to recompile it. Few client programs come with
support for any form of proxying.

The happy exception to this rule is web browsers like Netscape, Internet Explorer, and Lynx. Many of these
programs support proxies of various sorts (typically SOCKS and HTTP proxying). Most of these programs were
written after firewalls and proxy systems had become common on the Internet; recognizing the environment they
would be working in, their authors chose to support proxying by design, right from the start.

Using application changes for proxying does not make proxying completely transparent to users. The application
software still needs to be configured to use the appropriate proxy server, and to use it only for connections that
actually need to be proxied. Most applications provide some way of assisting the user with this problem and
partially automating the process, but misconfiguration of proxy software is still one of the most common user
problems at sites that use proxies.

In some cases, sites will use the unchanged applications for internal connections and the proxy-aware ones only
to make external connections; users need to remember to use the proxy-aware program in order to make
external connections. Following procedures they've become accustomed to using elsewhere, or procedures that
are written in books, may leave them mystified at apparently intermittent results as internal connections succeed
and external ones fail. (Using the proxy-aware applications internally will work, but it can introduce unnecessary
dependencies on the proxy server, which is why most sites avoid it.)

9.2.2 Using Proxy-Aware Operating System Software

Instead of changing the application, you can change the environment around it, so that when the application tries
to make a connection, the function call is changed to automatically involve the proxy server if appropriate. This
allows unmodified applications to be used in a proxied environment.

Exactly how this is implemented varies from operating system to operating system. Where dynamically linked
libraries are available, you add a library; where they are not, you have to replace the network drivers, which are
a more fundamental part of the operating system.

In either case, there may be problems. If applications do unexpected things, they may go around the proxying or
be disrupted by it. All of the following will cause problems:

. Statically linked software

° Software that provides its own dynamically linked libraries for network functions

° Protocols that use embedded port humbers or IP addresses

° Software that attempts to do low-level manipulation of connections

Because the proxying is relatively transparent to the user, problems with it are usually going to be mysteries to
the user. The user interface for configuring this sort of proxying is also usually designed for the experienced
administrator, not the naive user, further confusing the situation.

page 148

Building Internet Firewalls

9.2.3 Using Proxy-Aware User Procedures for Proxying

With the proxy-aware procedure approach, the proxy servers are designed to work with standard client software;
however, they require the users of the software to follow custom procedures. The user tells the client to connect

to the proxy server and then tells the proxy server which host to connect to. Because few protocols are designed
to pass this kind of information, the user needs to remember not only what the name of the proxy server is, but

also what special means are used to pass the name of the other host.

How does this work? You need to teach your users specific procedures to follow for each protocol. Let's look at
FTP. Imagine that Amalie Jones wants to retrieve a file from an anonymous FTP server (e.g., ftp.greatcircle.com).
Here's what she does:

1. Using any FTP client, she connects to your proxy server (which is probably running on the bastion host
- the gateway to the Internet) instead of directly to the anonymous FTP server.

2. At the username prompt, in addition to specifying the name she wants to use, Amalie also specifies
the name of the real server she wants to connect to. If she wants to access the anonymous FTP server
on ftp.greatcircle.com, for example, then instead of simply typing "anonymous" at the prompt
generated by the proxy server, she'll type "anonymous@ftp.greatcircle.com".

Just as using proxy-aware software requires some modification of user procedures, using proxy-aware
procedures places limitations on which clients you can use. Some clients automatically try to do anonymous FTP;
they won't know how to go through the proxy server. Some clients may interfere in simpler ways, for example,
by providing a graphical user interface that doesn't allow you to type a username long enough to hold the
username and the hostname.

The main problem with using custom procedures, however, is that you have to teach them to your users. If you
have a small user base and one that is technically adept, it may not be a problem. However, if you have 10,000
users spread across four continents, it's going to be a problem. On the one side, you have hundreds of books,
thousands of magazine articles, and tens of thousands of Usenet news postings, not to mention whatever
previous training or experience the users might have had, all of which attempt to teach users the standard way to
use basic Internet services like FTP. On the other side is your tiny voice, telling them how to use a procedure that
is at odds with all the other information they're getting. On top of that, your users will have to remember the
name of your gateway and the details of how to use it. In any organization of a reasonable size, this approach
can't be relied upon.

9.2.4 Using a Proxy-Aware Router

With a proxy-aware router, clients attempt to make connections the same way they normally would, but the
packets are intercepted and directed to a proxy server instead. In some cases, this is handled by having the
proxy server claim to be a router. In others, a separate router looks at packets and decides whether to send
them to their destination, drop them, or send them to the proxy server. This is often called hybrid proxying
(because it involves working with packets like packet filtering) or transparent proxying (because it's not visible to
clients).

A proxy-aware router of some sort (like the one shown in Figure 9.2) is the solution that's easiest for the users;
they don't have to configure anything or learn anything. All of the work is done by whatever device is intercepting
the packets, and by the administrator who configures it.

On the good side, this is the most transparent of the options. In general, it's only noticeable to the user when it
doesn't work (or when it does work, but the user is trying to do something that the proxy system does not allow).
From the user's point of view, it combines the advantages of packet filtering (you don't have to worry about it,
it's automatic) and proxying (the proxy can do caching, for instance).

From the administrator's point of view, it combines the disadvantages of packet filtering with those of proxying:

° It's easy for accidents or hostile actions to make connections that don't go through the system.

. You need to be able to identify the protocol based on the packets in order to do the redirection, so you
can't support protocols that don't work with packet filtering. But you also need to be able to make the
actual connection from the proxy server, so you can't support protocols that don't work with proxying.

. All internal hosts need to be able to translate all external hostnames into addresses in order to try to
connect to them.

page 149

Building Internet Firewalls

Figure 9.2. A proxy-aware router redirecting connections

Real Server

e I e I e [———— -
- mr = -

-
e
-

- v |

s
[Giont] .= &
o
J I — et .
s Rl g
I —
il
Jser's st

9.3 Proxy Server Terminology
This section describes a number of specific types of proxy servers.
9.3.1 Application-Level Versus Circuit-Level Proxies

An application-level proxy is one that knows about the particular application it is providing proxy services for; it
understands and interprets the commands in the application protocol. A circuit-level proxy is one that creates a
circuit between the client and the server without interpreting the application protocol. The most extreme version
of an application-level proxy is an application like Sendmail, which implements a store-and-forward protocol. The
most extreme version of a circuit-level proxy is an application like plug-gw, which accepts all data that it receives
and forwards it to another destination.

The advantage of a circuit-level proxy is that it provides service for a wide variety of different protocols. Most
circuit-level proxy servers are also generic proxy servers; they can be adapted to serve almost any protocol. Not
every protocol can easily be handled by a circuit-level proxy, however. Protocols like FTP, which communicate
port data from the client to the server, require some protocol-level intervention, and thus some application-level
knowledge. The disadvantage of a circuit-level proxy server is that it provides very little control over what
happens through the proxy. Like a packet filter, it controls connections on the basis of their source and
destination and can't easily determine whether the commands going through it are safe or even in the expected
protocol. Circuit-level proxies are easily fooled by servers set up at the port numbers assigned to other services.

In general, circuit-level proxies are functionally equivalent to packet filters. They do provide extra protection
against problems with packet headers (as opposed to the data within the packets). In addition, some kinds of
protections (protection against packet fragmentation problems, for instance) are automatically provided by even
the most trivial circuit-level proxies but are available only from high-end packet filters.

9.3.2 Generic Versus Dedicated Proxies

Although "application-level" and "circuit-level" are frequently used terms in other documents, we more often
distinguish between "dedicated" and "generic" proxy servers. A dedicated proxy server is one that serves a single
protocol; a generic proxy server is one that serves multiple protocols. In practice, dedicated proxy servers are
application-level, and generic proxy servers are circuit-level. Depending on how you argue about shades of
meaning, it might be possible to produce a generic application-level proxy server (one that understands a wide
range of protocols) or a dedicated circuit-level proxy server (one that provides only one service but doesn't
understand the protocol for it). Neither of these ever occur, however, so we use "dedicated" and "generic" merely
because we find them somewhat more intuitive terms than "application-level" and "circuit-level".

page 150

Building Internet Firewalls

9.3.3 Intelligent Proxy Servers

A proxy server can do a great deal more than simply relay requests; one that does is an intelligent proxy server.
For example, almost all HTTP proxy servers cache data, so that multiple requests for the same data don't go out
across the Internet. Proxy servers (particularly application-level servers) can provide better logging and access
controls than those achieved through other methods, although few existing proxy servers take full advantage of
the opportunities. As proxy servers mature, their abilities are increasing rapidly. Now that there are multiple
proxy suites that provide basic functionality, they're beginning to compete by adding features. It's easier for a
dedicated, application-level proxy server to be intelligent; a circuit-level proxy has limited abilities.

9.4 Proxying Without a Proxy Server

Some services, such as SMTP, NNTP, and NTP, naturally support proxying. These services are all designed so that
transactions (email messages for SMTP, Usenet news postings for NNTP, and clock settings for NTP) move
between servers, instead of going directly from a client to a final destination server. For SMTP, the messages are
forwarded towards an email message's destination. NNTP forwards messages to all neighbor servers. NTP
provides time updates when they're requested but supports a hierarchy of servers. With these schemes, each
intermediate server is effectively acting as a proxy for the original sender or server.

If you examine the "Received:" headers of incoming Internet email (these headers trace a message's path
through the network from sender to recipient), you quickly discover that very few messages travel directly from
the sender's machine to the recipient's machine. It's far more common these days for the message to pass
through at least four machines:

e The sender's machine

e The outgoing mail gateway at the sender's site (or the sender's Internet service provider)

e The incoming mail gateway at the recipient's site

. Finally, the recipient's machine

Each of the intermediate servers (the mail gateways) is acting as a proxy server for the sender, even though the
sender may not be dealing with them directly. Figure 9.3 illustrates this situation.

Figure 9.3. Store-and-forward services (like SMTP) naturally support proxying

H | L 1

Sender’s Maching Recipient’s Machine

9.5 Using SOCKS for Proxying

The SOCKS package, originally written by David Koblas and Michelle Koblas, and subsequently maintained by
Ying-Da Lee, is an example of the type of proxy system that can support both proxy-aware applications and
proxy-aware clients. A reference implementation of SOCKS is freely available, and it has become the de facto
standard proxying package on the Internet. It is also a proposed official Internet standard, documented in RFC
1928. Appendix B, tells you how to get the freely available version of SOCKS; multiple commercial versions are
also available.

page 151

Building Internet Firewalls

9.5.1 Versions of SOCKS

Two versions of the SOCKS protocol are currently in use, SOCKS4 and SOCKS5. The two protocols are not
compatible, but most SOCKSS5 servers will detect attempts to use SOCKS4 and handle them appropriately. The
main additions in SOCKS5 are:

. User authentication

(] UDP and ICMP

(] Hostname resolution at the SOCKS server

SOCKS4 does no real user authentication. It bases its decisions on whether to allow or deny connections on the
same sort of information that packet filters use (source and destination ports and IP addresses). SOCKS5
provides support for several different ways of authenticating users, which gives you more precise control and
logging.

SOCKS4 works only for TCP-based clients; it doesn't work for UDP-based clients or ICMP functions like ping and
traceroute. If you are using a UDP-based client, you will need to get another package. You can either use
SOCKSS5 or the UDP Packet Relayer. This program serves much the same function for UDP-based clients as
SOCKS serves for TCP-based clients. Like SOCKS, the UDP Packet Relayer is freely available on the Internet.
SOCKSS is the only widely used freely available proxy for ICMP.

SOCKS4 requires the client to be able to map hostnames to IP addresses. With SOCKS5, the client can provide
the hostname instead of the IP address, and the socks server will do the hostname resolution. This is convenient
for sites that do what is called "fake root" DNS, where internal hosts use a purely internal name server that does
not communicate with the Internet. (This configuration is discussed further in Chapter 20.)

9.5.2 SOCKS Features

In order to make it easy to support new clients, SOCKS is extremely generic. This limits the features that it can
provide. SOCKS doesn't do any protocol-specific control or logging.

SOCKS does log connection requests on the server; provide access control by user, by source host and port
number, or by destination host and port number; and allow configurable responses to access denials. For
example, it can be configured to notify an administrator of incoming access attempts and to let users know why
their outgoing access attempts were denied.

The prime advantage of SOCKS is its popularity. Because SOCKS is widely used, server implementations and
SOCKS-ified clients (i.e., versions of programs like FTP and Telnet that have already been converted to use
SOCKS) are commonly available, and help is easy to find. This can be a double-edged sword; cases have been
reported where intruders to firewalled sites have installed their own SOCKS-knowledgeable clients.

9.5.3 SOCKS Components

The SOCKS package includes the following components:
e The SOCKS server. This server must run on a Unix system, although it has been ported to many
different variants of Unix.
® The SOCKS client library for Unix machines.
o SOCKS-ified versions of several standard Unix client programs such as FTP and Telnet.
° SOCKS wrappers for ping and traceroute.

e The runsocks program to SOCKS-ify dynamically linked programs at runtime without recompiling.

In addition, client libraries for Macintosh and Windows systems are available as separate packages.

page 152

Building Internet Firewalls

Figure 9.4 shows the use of SOCKS for proxying.

Figure 9.4. Using SOCKS for proxying

| telnet Server | | HITP Server |

f
\ Il Bastion Host
' i
4 " A
.ff ! -
/ \
| Teinetciient | | HTTP Client |

9.5.4 Converting Clients to Use SOCKS

Many Internet client programs (both commercial and freely available) already have SOCKS support built in to
them as a compile-time or a runtime option.

How do you convert a client program to use SOCKS? You need to modify the program so it talks to the SOCKS
server, rather than trying to talk to the real world directly. You do this by recompiling the program with the
SOCKS library.

Converting a client program to use SOCKS is usually pretty easy. The SOCKS package makes certain assumptions
about how client programs work, and most client programs already follow these assumptions. For a complete
summary of these assumptions, see the file in the SOCKS release called What_SOCKS_expects.

To convert a client program, you must replace all calls to standard network functions with calls to the SOCKS
versions of those functions. Here are the calls.

Standard Network Function SOCKS Version
connect() Rconnect()
getsockname() Rgetsockname()
bind() Rbind()
accept() Raccept()
Tisten() Rlisten()
select() Rselect()

You can usually do this simply by including the file socks.h, included in the SOCKS distribution. If not, you can
use the older method of adding the following to the CFLAGS= line of the program's Makefile:

-Dconnect=Rconnect
-Dgetsockname=Rgetsockname
-Dbind=Rbind
-Daccept=Raccept
-DTisten=R1isten
-Dselect=Rselect

Then, recompile and link the program with the SOCKS client library.

The client machine needs to have not only the SOCKS-modified clients, but also something to tell it what SOCKS
server to contact for what services (on Unix machines, the /etc/socks.conf file). In addition, if you want to control
access with Auth, the client machines must be running an Auth server (for instance, identd, which will allow the
SOCKS server to identify what user is controlling the port that the connection comes from. Because there's no
way for the SOCKS server to verify that the Auth server is reliable, Auth can't be trusted if anybody might
intentionally be circumventing it; we recommend using SOCKS5 with user authentication instead. See Chapter
21, for more information about Auth.

page 153

Building Internet Firewalls

9.6 Using the TIS Internet Firewall Toolkit for Proxying

The free firewalls toolkit (TIS FWTK), from Trusted Information Systems, includes a number of proxy servers of
various types. TIS FWTK also provides a number of other tools for authentication and other purposes, which are
discussed where appropriate in other chapters of this book. Appendix B, provides information on how to get TIS
FWTK.

Whereas SOCKS attempts to provide a single, general proxy, TIS FWTK provides individual proxies for the most
common Internet services (as shown in Figure 9.5). The idea is that by using small separate programs with a
common configuration file, it can provide intelligent proxies that are provably safe, while still allowing central
control. The result is an extremely flexible toolkit and a rather large configuration file.

Figure 9.5. Using TIS FWTK for proxying

| Telnet Server | | HITP Server |
P N

Bastion Host

@E hllpE B

'y .
LI

| raetcient | | HrTe client |

9.6.1 FTP Proxying with TIS FWTK

TIS FWTK provides FTP proxying either with proxy-aware client programs or proxy-aware user procedures (ftp-
gw). If you wish to use the same machine to support proxied FTP and straight FTP (for example, allowing people
on the Internet to pick up files from the same machine that does outbound proxying for your users), the toolkit
will support it, but you will have to use proxy-aware user procedures.

Using proxy-aware user procedures is the most common configuration for TIS FWTK. The support for proxy-
aware client programs is somewhat half-hearted (for example, no proxy-aware clients or libraries are provided).
Because it's a dedicated FTP proxy, it provides logging, denial, and extra user authentication of particular FTP
commands.

9.6.2 Telnet and rlogin Proxying with TIS FWTK

TIS FWTK Telnet (telnet-gw) and rlogin (rlogin-gw) proxies support proxy-aware user procedures only. Users
connect via Telnet or rlogin to the proxy host, and instead of getting a "login" prompt for the proxy host, they are
presented with a prompt from the proxy program, allowing them to specify what host to connect to (and whether
to make an X connection if the x-gw software is installed, as we describe in Section 9.6.4 that follows).

9.6.3 Generic Proxying with TIS FWTK

TIS FWTK provides a purely generic proxy, plug-gw, which requires no modifications to clients, but supports a
limited range of protocols and uses. It examines the address it received a connection from and the port the
connection came in on, and it creates a connection to another host on an appropriate port. You can't specify
which host it should connect to while making that connection; it's determined by the incoming host. This makes
plug-gw inappropriate for services that are employed by users, who rarely want to connect to the same host
every time. It provides logging but no other security enhancements, and therefore needs to be used with caution
even in situations where it's appropriate (e.g., for NNTP connections).

page 154

Building Internet Firewalls

9.6.4 Other TIS FWTK Proxies

TIS FWTK proxies HTTP and Gopher via the http-gw program. This program supports either proxy-aware clients
or proxy-aware procedures. Most HTTP clients support proxying; you just need to tell them where the proxy
server is. To use http-gw with an HTTP client that's not proxy-aware, you add http://firewall/ in front of the URL.
Using it with a Gopher client that is not proxy-aware is slightly more complex, since all the host and port
information has to be moved into the path specification.

x-gw is an X gateway. It provides some minimal security by requiring confirmation from the user before allowing
a remote X client to connect. The X gateway is started up by connecting to the Telnet or rlogin proxy and typing
"x", which displays a control window.

9.7 Using Microsoft Proxy Server

Logically enough, Microsoft Proxy Server is Microsoft's proxying package. It is part of Microsoft's Back Office suite
of products and is Microsoft's recommended solution for building small firewalls on Windows NT. The Proxy Server
package includes both proxying and packet filtering, in order to support a maximum number of protocols.

Proxy Server provides three types of proxying; an HTTP proxy, a SOCKS proxy, and a WinSock proxy. HTTP
proxying, which will also support several other common protocols used by web browsers, including HTTPS,
Gopher, and FTP, is discussed further in Chapter 15.

9.7.1 Proxy Server and SOCKS

Proxy Server includes a SOCKS server, which implements SOCKS Version 4.3a. Because it is a SOCKS4 server, it
supports only TCP connections and only Auth authentication. On the other hand, it does provide name resolution
service (which most SOCKS4 servers do not). You can use Proxy Server's SOCKS server with any SOCKS4 client
(not just Microsoft applications).

9.7.2 Proxy Server and WinSock

The WinSock proxy is specialized for the Microsoft environment. It uses a modified operating environment on the
client to intercept Windows operating system calls that open TCP/IP sockets. It supports both TCP and UDP.
Because of the architecture of the networking code, WinSock will proxy only native TCP/IP applications like Telnet
and FTP; it won't work with Microsoft native applications like file and printer sharing, which work over TCP/IP by
using an intermediate protocol (NetBT, which is discussed further in Chapter 14). On the other hand, WinSock
proxying will provide native TCP/IP applications with Internet access even when the machines reach the proxy by
protocols other than TCP/IP. For instance, a machine that uses NetBEUI or IPX can use a WinSock proxy to FTP to
TCP/IP hosts on the Internet.

Using a WinSock proxy requires installing modified WinSock libraries on all the clients that are going to use it. For
this reason, it will work only with Microsoft operating systems, and it creates some administrative difficulties on
them (the modified libraries must be reinstalled any time the operating system is installed, upgraded, or
patched). In addition, trying to use WinSock and SOCKS at the same time on the same client machine will create
confusion, as both of them attempt to proxy the same connection.

9.8 What If You Can't Proxy?

You might find yourself unable to proxy a service for one of three reasons:

. No proxy server is available.
. Proxying doesn't secure the service sufficiently.

. You can't modify the client, and the protocol doesn't allow you to use proxy-aware procedures.

We describe each of these situations in the following sections.

page 155

http://firewall/

Building Internet Firewalls

9.8.1 No Proxy Server Is Available

If the service is proxyable, but you can't find a proxy-aware-procedure server or proxy-aware clients for your
platform, you can always do the work yourself. In many cases, you can simply use the dynamic libraries to wrap
existing binaries.

If you can't use dynamic libraries, modifying a normal TCP client program to use SOCKS is relatively trivial. As
long as the SOCKS libraries are available for the platform you're interested in, it's usually a matter of changing a
few library calls and recompiling. You do have to have the source for the client.

Writing your own proxy-aware-procedure server is considerably more difficult because it means writing the server
from scratch.

9.8.2 Proxying Won't Secure the Service

If you need to use a service that's inherently insecure, proxying can't do much for you. You're going to need to
set up a victim machine, as described in Chapter 10, and let people run the service there. This may be difficult if
you're using a dual-homed nonrouting host to make a firewall where all connections must be proxied; the victim
machine is going to need to be on the Internet side of the dual-homed host.

Using an intelligent application-level server that filters out insecure commands may help but requires extreme
caution in implementing the server and may make important parts of the service nonfunctional.

9.8.3 Can't Modify Client or Procedures

There are some services that just don't have room for modifying user procedures (for example ping and
traceroute). Fortunately, services that don't allow the user to pass any data to the server tend to be small,
stupid, and safe. You may be able to safely provide them on a bastion host, letting users log in to a bastion host
but giving them a shell that allows them to run only the unproxyable services you want to support. If you have a
web server on a bastion host, a web frontend for these services may be easier and more controllable than
allowing users to log in.

page 156

Building Internet Firewalls

Chapter 10. Bastion Hosts

A bastion host is your public presence on the Internet. Think of it as the lobby of a building. Outsiders may not be
able to go up the stairs and may not be able to get into the elevators, but they can walk freely into the lobby and
ask for what they want. (Whether or not they will get what they ask for depends upon the building's security
policy.) Like the lobby in your building, a bastion host is exposed to potentially hostile elements. The bastion host
is the system that any outsiders - friends or possible foes - must ordinarily connect with to access your systems
or services.

By design, a bastion host is highly exposed because its existence is known to the Internet. For this reason,
firewall builders and managers need to concentrate security efforts on the bastion host. You should pay special
attention to the host's security during initial construction and ongoing operation. Because the bastion host is the
most exposed host, it also needs to be the most fortified host.

Although we sometimes talk about a single bastion host in this chapter and elsewhere in this book, remember
that there may be multiple bastion hosts in a firewall configuration. The number depends on a site's particular
requirements and resources, as discussed in Chapter 7. Each is set up according to the same general principles,
using the same general techniques.

Bastion hosts are used with many different firewall approaches and architectures; most of the information in this
chapter should be relevant regardless of whether you're building a bastion host to use with a firewall based on
packet filtering, proxying, or a hybrid approach. The principles and procedures for building a bastion host are
extensions of those for securing any host. You want to use them, or variations of them, for any other host that's
security critical, and possibly for hosts that are critical in other ways (e.g., major servers on your internal
network).

This chapter discusses bastion hosts in general; the two following chapters give more specific advice for Unix and
Windows NT bastion hosts. When you are building a bastion host, you should be sure to read both this chapter
and the specific chapter for the operating system you are using.

10.1 General Principles
There are two basic principles for designing and building a bastion host:
Keep it simple

The simpler a bastion host is, the easier it is to secure. Any service a bastion host offers could have
software bugs or configuration errors in it, and any bugs or errors may lead to security problems.
Therefore, you want a bastion host to do as little as possible. It should provide the smallest set of
services with the least privileges it possibly can, while still fulfilling its role.

Be prepared for bastion hosts to be compromised

Despite your best efforts to ensure the security of a bastion host, break-ins can occur. Don't be naive
about it. Only by anticipating the worst, and planning for it, will you be most likely to avert it. Always
keep the question, "What if this bastion host is compromised?" in the back of your mind as you go
through the steps of securing the machine and the rest of the network.

Why do we emphasize this point? The reason is simple: bastion hosts are the machines most likely to be
attacked because they're the machines most accessible to the outside world. They're also the machines
from which attacks against your internal systems are most likely to come because the outside world
probably can't talk to your internal systems directly. Do your best to ensure that each bastion host won't
get broken into, but keep in mind the question, "What if it does?"

In case a bastion host is broken into, you don't want that break-in to lead to a compromise of the entire
firewall. You can prevent it by not letting internal machines trust bastion hosts any more than is
absolutely necessary for the bastion hosts to function. You will need to look carefully at each service a
bastion host provides to internal machines and determine, on a service-by-service basis, how much trust
and privilege each service really needs to have.

Once you've made these decisions, you can use a number of mechanisms to enforce them. For example,
you might install standard access control mechanisms (passwords, authentication devices, etc.) on the
internal hosts, or you might set up packet filtering between bastion hosts and internal hosts.

page 157

Building Internet Firewalls

10.2 Special Kinds of Bastion Hosts

Most of this chapter discusses bastion hosts that are screened hosts or service-providing hosts on a screened
network. There are several kinds of bastion hosts, however, that are configured similarly but have special
requirements.

10.2.1 Nonrouting Dual-Homed Hosts

A nonrouting dual-homed host has multiple network connections but doesn't pass traffic between them. Such a
host might be a firewall all by itself, or might be part of a more complex firewall. For the most part, nonrouting
dual-homed hosts are configured like other bastion hosts but need extra precautions, discussed in the sections
that follow, to make certain they truly are nonrouting. If a nonrouting dual-homed host is your entire firewall,
you need to be particularly paranoid in its configuration and follow the normal bastion host instructions with
extreme care.

10.2.2 Victim Machines

You may want to run services that are difficult to provide safely with either proxying or packet filtering, or
services that are so new that you don't know what their security implications are. For that purpose, a victim
machine (or sacrificial goat) may be useful. This is a machine that has nothing on it you care about, and that has
no access to machines that an intruder could make use of. It provides only the absolute minimum necessary to
use it for the services you need it for. If possible, it provides only one unsafe or untested service, to avoid
unexpected interactions.

Victim machines are configured much as normal bastion hosts are, except that they almost always have to allow
users to log in. The users will almost always want you to have more services and programs than you would
configure on a normal bastion host; resist the pressure as much as possible. You do not want users to be
comfortable on a victim host: they will come to rely on it, and it will no longer work as designed. The key factor
for a victim machine is that it is disposable, and if it is compromised, nobody cares. Fight tooth and nail to
preserve this.

10.2.3 Internal Bastion Hosts

In most configurations, the main bastion host has special interactions with certain internal hosts. For example, it
may be passing electronic mail to an internal mail server, coordinating with an internal name server, or passing
Usenet news to an internal news server. These machines are effectively secondary bastion hosts, and they should
be configured and protected more like the bastion host than like normal internal hosts. You may need to leave
more services enabled on them, but you should go through the same configuration process.

10.2.4 External Service Hosts

Bastion hosts that exist solely to provide services to the Internet (for instance, web servers used to provide
service to customers) have special concerns. They are extremely visible, which makes them popular targets for
attack, and increases the visibility of successful attacks. If a machine that provides mail service for internal users
is compromised, it's not going to be immediately obvious to outsiders, and it's unlikely to make it into the
newspaper. If your web site is replaced by somebody else's page, or a clever satire of your web site, that's
something people outside your site will notice and care about.

Although these machines have increased needs for security, they have some features that make them easier to
secure. They need only limited access to the internal network; they usually provide only a few services, with well-
defined security characteristics; and they don't need to support internal users (often, they don't need to support
any users at all).

10.2.5 One-Box Firewalls

If the machine you're building is an entire firewall, instead of a part of a firewall, it is even more vulnerable. You
are betting your entire site's security on this one machine. It is worth almost any amount of inconvenience and
trouble to be absolutely certain that it's a secure machine. You may want to consider having a duplicate machine
that you use for testing, so that you can check out new configurations without risking your Internet connection.

page 158

Building Internet Firewalls

10.3 Choosing a Machine

The first step in building a bastion host is to decide what kind of machine to use. You want reliability (if a bastion
host goes down, you lose most of the benefit of your Internet connection), supportability, and configurability.
This section looks at which operating system you should run, how fast a bastion host needs to be, and what
hardware configuration should be supported.

10.3.1 What Operating System?

A bastion host should be something you're familiar with. You're going to end up customizing the machine and the
operating system extensively; this is not the time to learn your way around a completely new system. Because a
fully configured bastion host is a very restricted environment, you'll want to be able to do development for it on
another machine, and it helps a great deal to be able to exchange its peripherals with other machines you own.
(This is partly a hardware issue, but it doesn't do you any good to be able to plug your Unix-formatted SCSI disk
into a Macintosh SCSI chain: the hardware interoperates, but the data isn't readable.)

You need a machine that reliably offers the range of Internet services you wish to provide your users, with
multiple connections simultaneously active. If your site is completely made up of MS-DQOS, Windows, or
Macintosh systems, you may find yourself heeding some other platform (perhaps Unix, perhaps Windows NT,
perhaps something else) to use as your bastion host. You may not be able to provide or access all the services
you desire through your native platform because the relevant tools (proxy servers, packet filtering systems, or
even regular servers for basic services such as SMTP and DNS) may not be available for that platform.

Unix is the operating system that has been most popular in offering Internet services, and tools are widely
available to make bastion hosts on Unix systems. If you already have Unix machines, you should seriously
consider Unix for your bastion host. If you have no suitable platforms for a bastion host and need to learn a new
operating system anyway, we recommend you try Unix, because that's where you'll find the largest and most
extensive set of tools for building bastion hosts.

The other popular operating system for this purpose is Windows NT. If you are already running Windows NT
machines as servers, it makes sense to use Windows NT machines as bastion hosts as well. However, you should
bear in mind that Windows NT machines are more complex than Unix machines. If you are familiar with both, we
recommend using Unix rather than Windows NT for bastion hosts wherever practical. If you are familiar only with
Windows NT, use it for bastion hosts; you are more likely to make mistakes securing a new operating system.

If all of your existing multiuser, IP-capable machines are something other than Unix or Windows NT machines
(such as VMS systems, for example), you have a hard decision to make. You can probably use a machine you are
familiar with as a bastion host and get the advantages of familiarity and interchangeability. On the other hand,
solid and extensive tools for building bastion hosts are not likely to be available, and you're going to have to
improvise. You might gain some security through obscurity (don't count on it; your operating system probably
isn't as obscure as you think), but you may lose as much or more if you don't have the history that Unix-based
bastion hosts offer. With Unix or Windows NT, you have the advantage of learning through other people's
mistakes as well as your own.

Most of this book assumes that you will be using some kind of Unix or Windows NT machine as your bastion host.
This is because most bastion hosts are Unix or Windows NT machines, and some of the details are extremely
operating system dependent. See Chapter 11, and Chapter 12, for these details. The principles will be the same if
you choose to use another operating system, but the details will vary considerably.

10.3.2 How Fast a Machine?

Most bastion hosts don't have to be fast machines; in fact, it's better for them not to be especially powerful.
There are several good reasons, besides cost, to make your bastion host as powerful as it needs to be to do its
job, but no more so. It doesn't take much horsepower to provide the services required of most bastion hosts.

Many people use machines in the medium desktop range as their bastion hosts, which is plenty of power for most
purposes. The bastion host really doesn't have much work to do. What it needs to do is mostly limited by the
speed of your connection to the outside world, not by the CPU speed of the bastion host itself. It just doesn't take
that much of a processor to handle mail, DNS, FTP, and proxy services for a 56 Kbps or even a T-1 (1.544 Mbps)
line. You may need more power if you are running programs that do compression/decompression (e.g., NNTP
servers) or searches (e.g., full-featured web servers), or if you're providing proxy services for dozens of users
simultaneously.

You may also need more power to support requests from the Internet if your site becomes wildly popular (e.g., if
you create something that everybody and their mothers want to access, like the Great American Web Page or a
popular and well-stocked anonymous FTP site). At that point, you might also want to start using multiple bastion
hosts, as we describe in Chapter 6. A large company with multiple Internet connections and popular services may
need to use multiple bastion hosts and large, powerful machines.

page 159

Building Internet Firewalls
There are several reasons not to oversize a bastion host:

. A slower machine is a less inviting target. There's no prestige for somebody who brags, "Hey, I broke
into a Sun 3/60!" or some other slow (to an attacker, at least) machine. Far more prestige is involved
in breaking into the latest, greatest hardware. Don't make your bastion host something with high
prestige value (a supercomputer, for example, would be a poor choice of a bastion host).

o If compromised, a slower machine is less useful for attacking internal systems or other sites. It takes
longer to compile code; it's not very helpful for running dictionary or brute-force password attacks
against other machines; and so on. All of these factors make the machine less appealing to potential
attackers, and that's your goal.

. A slower machine is less attractive for insiders to compromise. A fast machine that's spending most of
its time waiting for a slow network connection is effectively wasted, and the pressure from your own
users to use the extra power for other things (for example, as a compilation server, rendering server,
or database server) can be considerable. You can't maintain the security of a bastion host while using
it for other purposes. Extra capacity on the bastion host is an accident waiting to happen.

Web servers are an exception to this rule. You might as well size your web server optimistically, because as web
sites evolve they tend to increase drastically and rapidly in both size and CPU usage. Changes in client technology
also tend to increase the load on web servers (for instance, many clients open multiple connections in order to
download several images at the same time, thereby increasing the performance the user sees at the cost of
increasing the load on the server).

10.3.3 What Hardware Configuration?

You want a reliable hardware configuration, so you should select a base machine and peripherals that aren't the
newest thing on the market. (There's a reason people call it "bleeding edge" as well as "leading edge"
technology.) You also want the configuration to be supportable, so don't choose something so old you can't find
replacement parts for it. The middle range from your favorite manufacturer is probably about right.

While a desktop-class machine probably has the horsepower you need, you may be better off with something in
server packaging; machines packaged as servers are generally easier to exchange disks in, as well as being more
possible to mount in racks when you have lots of them. They're also harder to steal, and less likely to get turned
off by people who need another outlet to plug the vacuum cleaner into.

While you don't need sheer CPU power, you do need a machine that keeps track of a number of connections
simultaneously. This is memory intensive, so you'll want a large amount of memory and probably a large amount
of swap space as well. Caching proxies also need a large amount of free disk space to use for the caches.

Here are some suggestions about tape and disk needs:

e The bastion host can't reasonably use another host's tape drive for backups, as we'll discuss later in
this chapter, so it needs its own tape drive of a size suitable to back itself up.

° A CD-ROM drive also comes in handy for operating system installation and possibly for keeping
checksums on (or for comparing your current files to the original files on the CD-ROM). You may only
need the CD-ROM drive initially when you first install and configure the machine, so an external drive
that you "borrow" from another machine temporarily may be sufficient. In any case, it should be a
CD-ROM or single-session CDW (write) drive, not a drive that will write rewritable or multisession
CDs; one of the purposes of this drive is to hold data that you know the bastion host cannot modify,
even by adding data!

° You should be able to easily add another disk temporarily to the configuration for maintenance work.

® The boot disk should remove easily and attach to another machine - again, for maintenance work.

Both of the disk considerations mentioned suggest that the bastion host should use the same type of disks as
your other machines. For example, it should not be the only machine at your site running IDE disks.

The bastion host doesn't need interesting graphics and shouldn't have them. This is a network services host;
nobody needs to see it. Attach a dumb terminal (the dumber the better) as the console. Having graphics will only
encourage people to use the machine for other purposes and might encourage you to install support programs
(like the X Window System and its derivatives) that are insecure. If you are using a Windows NT machine, which
requires a graphics console, use a cheap and ugly VGA display or a console switch.

Most bastion hosts are critical machines and should have appropriate high-availability hardware, including
redundant disks and uninterruptible power.

page 160

Building Internet Firewalls

10.4 Choosing a Physical Location

The bastion host needs to be in a location that is physically secure.?! There are two reasons for this:

. It is impossible to adequately secure a machine against an attacker who has physical access to it;
there are too many ways the attacker can compromise it.

e The bastion host provides much of the actual functionality of your Internet connection, and if it is lost,
damaged, or stolen, your site may effectively be disconnected. You will certainly lose access to at least
some services.

Never underestimate the power of human stupidity. Even if you don't believe that it's worth anyone's time and
trouble to get physical access to the machine in order to break into it, secure it to prevent well-meaning people
within your organization from inadvertently making it insecure or nonfunctional.

Your bastion hosts should be in a locked room, with adequate air conditioning and ventilation. If you provide
uninterruptible power for your Internet connection, be sure to provide it for all critical bastion hosts as well.

10.5 Locating Bastion Hosts on the Network

Bastion hosts should be located on a network that does not carry confidential traffic, preferably a special network
of their own.

Most Ethernet and token ring interfaces can operate in "promiscuous mode". In this mode, they are able to
capture all packets on the network the interfaces are connected to, rather than just those packets addressed to
the particular machine the interface is a part of. Other types of network interfaces, such as FDDI, may not be
able to capture all packets, but depending on the network architecture, they can usually capture at least some
packets not specifically addressed to them.

This capability has a useful purpose: for network analysis, testing, and debugging, for example, by programs like
Network Manager, etherfind, and tcpdump. Unfortunately, it can also be used by an intruder to snoop on all
traffic on a network segment. This traffic might include Telnet, FTP, or rlogin sessions (from which logins and
passwords can be captured), confidential email, NFS accesses of sensitive files, and so on. You need to assume
the worst: bastion hosts can be compromised. If a bastion host is compromised, you don't want it to snoop on
this traffic.

One way to approach the problem is to not put bastion hosts on internal networks; instead, put them on a
perimeter network. As we've discussed in earlier chapters, a perimeter network is an additional layer of security
between your internal network and the Internet. The perimeter network is separated from the internal network
by a router or bridge. Internal traffic stays on the internal net and is not visible on the perimeter net. All a
bastion host on a perimeter network can see are packets that are either to or from itself, or to or from the
Internet. Although this traffic might still be somewhat sensitive, it's likely to be a lot less sensitive than your
typical internal network traffic, and there are other places (for instance, your Internet service provider) that can
already see much of it.

Using a perimeter net with a packet filtering router between it and the internal network gives you some additional
advantages. It further limits your exposure, if a bastion host is compromised, by reducing the number of hosts
and services the compromised bastion host can access.

If you can't put bastion hosts on a perimeter network, you might consider putting them on a network that's not
susceptible to snooping. For example, you might put them on an intelligent 10-base T hub, an Ethernet switch, or
an ATM network. If this is all you do, then you need to take additional care to make sure that nothing trusts
those bastion hosts, because no further layer of protection is between it and the internal network. Using such a
network technology for your perimeter network is the best of both worlds: bastion hosts are isolated from
internal systems (as with a traditional perimeter network) but can't snoop on traffic on the perimeter network.

21 Practical UNIX & Internet Security by Simson Garfinkel and Gene Spafford (second edition, O'Reilly & Associates, 1996) contains an
excellent and extensive discussion of physical security.

page 161

Building Internet Firewalls

Be careful about how much trust you place in the ability to prevent hosts from snooping the network. Even with
an intelligent or switched hub, broadcast traffic will be visible to all nodes, and this traffic may include data that is
useful to an attacker. For instance, networks that use Microsoft directory services will include a lot of useful
information about machine and filesystem names and types in broadcast traffic. There may also be information
that is sensitive in multicast traffic, which any node can ask to receive. Finally, hubs of this type frequently offer
an administrative capability that can control the reception of all traffic. That may be limited to a specific port or
available to all ports. You should be sure that this is appropriately secured on any hub that bastion hosts are
attached to; otherwise, an attacker may be able to simply ask for all traffic and get it, removing the theoretical
advantages of using a hub.

Whatever networking devices you use, you should be careful to protect the networking devices to the same
degree that you protect the computers. Many network devices support remote administration, often with a wide
variety of interfaces (for instance, a switch may provide a Telnet server, SNMP management, and a web
management interface). An intruder who can reconfigure networking devices can certainly keep your network
from working and may also be able to compromise other machines. Consider disabling all remote management
features (with the possible exception of remote logging of errors) and configuring network devices the old-
fashioned way, with a terminal and a serial cable.

10.6 Selecting Services Provided by a Bastion Host

A bastion host provides any services your site needs to access the Internet, or wants to offer to the Internet -
services you don't feel secure providing directly via packet filtering. (Figure 10.1 shows a typical set.) You should
not put any services on a bastion host that are not intended to be used to or from the Internet. For example, it
shouldn't provide booting services for internal hosts (unless, for some reason, you intend to provide booting
services for hosts on the Internet). You have to assume that a bastion host will be compromised, and that all
services on it will be available to the Internet.

Figure 10.1. The bastion host may run a variety of Internet services

FTP Server | |T|:Im:1 Smerl | DNS Server | IEI'IﬂP Senrerl |H1TP Server
7 ¥ ¥

' ' '] '
b mmmma

Tiviy
Bastion Host

i ' " i
| . TR | H

¥ ¥ ¥ ¥ ¥ 4
FTP Client | |TelnetClient| | DNSClient | | SWTP Client| | HTTP Client

— (it canraction
o - e BONIET CORRECHTN

You can divide services into four classes:
Services that are secure

Services in this category can be provided via packet filtering, if you're using this approach. (In a pure-
proxy firewall, everything must be provided on a bastion host or not provided at all.)

Services that are insecure as normally provided but can be secured

Services in this category can be provided on a bastion host.

page 162

Building Internet Firewalls

Services that are insecure as normally provided and can't be secured

These services will have to be disabled and provided on a victim host (discussed earlier) if you
absolutely need them.

Services that you don't use or that you don't use in conjunction with the Internet
You must disable services in this category.

We'll discuss individual services in detail in later chapters, but here we cover the most commonly provided and
denied services for bastion hosts.

Electronic mail (SMTP) is the most basic of the services bastion hosts normally provide. You may also want to
access or provide information services such as:

FTP

File transfer
HTTP

Hypertext-driven information retrieval (the Web)
NNTP

Usenet news

In order to support any of these services (including SMTP), you must access and provide Domain Name System
(DNS) service. DNS is seldom used directly, but it underlies all the other protocols by providing the means to
translate hostnames to IP addresses and vice versa, as well as providing other distributed information about sites
and hosts.

Many services designed for local area networks include vulnerabilities that attackers can exploit from outside, and
all of them are opportunities for an attacker who has succeeded in compromising a bastion host. Basically, you
should disable anything that you aren't going to use, and you should choose what to use very carefully.

Bastion hosts are odd machines. The relationship between a bastion host and a normal computer on somebody's
desktop is the same as the relationship between a tractor and a car. A tractor and a car are both vehicles, and to
a limited extent they can fulfill the same functions, but they don't provide the same features. A bastion host, like
a tractor, is built for work, not for comfort. The result is functional, but mostly not all that much fun.

For the most part, we discuss the procedures to build a bastion host with the maximum possible security that
allows it to provide services to the Internet. Building this kind of bastion host out of a general-purpose computer
means stripping out parts that you're used to. It means hearing people say "I didn't think you could turn that
off!" and "What do you mean it doesn't run any of the normal tools I'm used to?", not to mention "Why can't I
just log into it?" and "Can't you turn on the software I like just for a little while?" It means learning entirely new
techniques for administering the machine, many of which involve more trouble than your normal procedures.

10.6.1 Multiple Services or Multiple Hosts?

In an ideal world, you would run one service per bastion host. You want a web server? Put it on a bastion host.
You want a DNS server? Put it on a different bastion host. You want outgoing web access via a caching proxy?
Put it on a third bastion host. In this situation, each host has one clear purpose, it's difficult for problems to
propagate from one service to another, and each service can be managed independently.

In the real world, things are rarely this neat. First, there are obvious financial difficulties with the one service,
one host model - it gets expensive fast, and most services don't really need an entire computer. Second, you
rapidly start to have administrative difficulties. What's the good in having one firewall if it's made up of 400
separate machines?

page 163

Building Internet Firewalls

You are therefore going to end up making trade-offs between centralized and distributed services. Here are some
general principles for grouping services together into sensible units:

Group services by importance

If you have services that your company depends on (like a customer-visible web site) and
services you could live without for a while (like an IRC server), don't put them on the same
machine.

Group services by audience

Put services for internal users (employees, for instance) on one machine, services for external
users (customers, for instance) on another, and housekeeping services that are only used by
other computers (like DNS) on a third. Or put services for faculty on one machine and services
for students on a different one.

Group services by security

Put trusted services on one machine, and untrusted services on another. Better yet, put the
trusted services together and put each untrusted service on a separate machine, since they're
the ones most likely to interfere with other things.

Group services by access level

Put services that deal with only publicly readable data on one machine, and services that need
to use confidential data on another.

Sometimes these principles will be redundant (the unimportant services are used by a specific user group, are
untrustworthy, and use only public data). Sometimes, unfortunately, they will be conflicting. There is no
guarantee that there is a single correct answer.

10.7 Disabling User Accounts on Bastion Hosts

If at all possible, don't allow any user accounts access to bastion hosts. For various reasons, bastion hosts may
know about users, but users should not have accounts that actually allow them to use the host. Keeping such
accounts off bastion hosts will give you the best security. There are several reasons why, including:

e Vulnerabilities of the accounts themselves

° Vulnerabilities of the services required to support the accounts

° Reduced stability and reliability of the machine

o Inadvertent subversion of the bastion host's security by users

° Increased difficulty in detecting attacks

User accounts provide relatively easy avenues of attack for someone who is intent on breaking into a bastion
host. Each account usually has a reusable password that can be attacked through a variety of means, including
dictionary searches, brute force searches, or capture by network eavesdropping. Multiply this by many users, and
you have a disaster in the making.

Supporting user accounts in any useful fashion requires a bastion host to enable services (for example, printing
and local mail delivery services) that could otherwise be disabled on the bastion host. Every service that is
available on a bastion host provides another avenue of attack, through software bugs or configuration errors.

Having to support user accounts also can reduce the stability and reliability of the machine itself. Machines that
do not support user accounts tend to run predictably and are stable. Many sites have found that machines
without users tend to run pretty much indefinitely (or at least until the power fails) without crashing.

page 164

Building Internet Firewalls

Users themselves can contribute to security problems on bastion hosts. They don't (usually) do it deliberately,
but they can subvert the system in a variety of ways. These range from trivial (e.g., choosing a poor password)
to complex (e.g., setting up an unauthorized information server that has unknown security implications). Users
are seldom trying to be malicious; they're normally just trying to get their own jobs done more efficiently and
effectively.

It's usually easier to tell if everything is "running normally" on a machine that doesn't have user accounts
muddying the waters. Users behave in unpredictable ways, but you want a bastion host to have a predictable
usage pattern, in order to detect intrusions by watching for interruptions in the pattern.

If you need to allow user accounts on a bastion host, keep them to a minimum. Add accounts individually,
monitor them carefully, and regularly verify that they're still needed.

There is one circumstance where you should have user accounts. Every person who needs to log into a bastion
host for administrative purposes should have an individual account and should log in with that account. Nobody
should log into the machine directly as "administrator” or "root" if there is any other way for them to get work
done. These accounts should be kept to a minimum and closely controlled. It should be made impossible to reach
these accounts from the Internet with a reusable password (if the capability is there, some administrator will use
it). In fact, it's better not to allow access to the accounts from the Internet at all, and you might want to consider
disallowing network logins altogether. (Note that whitehouse.gov was broken into because its administrators, who
knew better, succumbed to temptation and logged into it across the Internet to do administration.) We will
discuss appropriate mechanisms for remote administration in the following chapters about specific operating
systems.

10.8 Building a Bastion Host

Now that you've figured out what you want your bastion host to do, you need to actually build the bastion host.
This process of configuring a machine to be especially secure and resistant to attack is generally known as
hardening. The basic hardening process is as follows:

Secure the machine.
Disable all nonrequired services.
Install or modify the services you want to provide.

Reconfigure the machine from a configuration suitable for development into its final running state.

Run a security audit to establish a baseline.

o v pH w N

Connect the machine to the network it will be used on.

You should be very careful to make sure the machine is not accessible from the Internet until the last step. If
your site isn't yet connected to the Internet, you can simply avoid turning on the Internet connection until the
bastion host is fully configured. If you are adding a firewall to a site that's already connected to the Internet, you
need to configure the bastion host as a standalone machine, unconnected to your network.

If the bastion host is vulnerable to the Internet while it is being built, it may become an attack mechanism
instead of a defense mechanism. An intruder who gets in before you've run the baseline audit will be difficult to
detect and will be well positioned to read all of your traffic to and from the Internet. Cases have been reported
where machines have been broken into within minutes of first being connected to the Internet; while rare, it can
happen.

Take copious notes on every stage of building the system. Assume that sometime in the future, a compromise
will occur that causes the machine to burst into flames and be destroyed. In order to rebuild your system, you
will need to be able to follow all of the steps you took previously.

You will also need all of the software that you used, so you should be sure to securely store all of the things you
need to do the installation, including:

The disks, CDs, or tapes you install software from
e The source code for any software you build from source

e The environment you used to build software from source, if it's different from the one you're
installing; this includes the operating system, compiler, and header files (and a machine they run on)

e The manuals and documents you were working from

page 165

Building Internet Firewalls

The following sections briefly describe each of the main steps involved in building a bastion host; these steps will
be covered in more detail in the following separate chapters for Unix and Windows NT. They also touch briefly on
ongoing maintenance and protection of the bastion host; note, though, that maintenance issues are discussed
primarily in Chapter 26.

10.9 Securing the Machine

To start with, build a machine with a standard operating system, secured as much as possible. Start with a clean
operating system and follow the procedures we describe in this section:

1 Start with a minimal clean operating system installation.
2 Fix all known system bugs.

3. Use a checklist.
4

Safeguard the system logs.
10.9.1 Start with a Minimal Clean Operating System Installation

Start with a clean operating system installation, straight from vendor distribution media. If you do this, you will
know exactly what you're working with. You won't need to retrofit something that may already have problems.

Using such a system will also make later work easier. Most vendor security patches you later obtain, as well as

the vendor configuration instructions and other documentation, assume that you're starting from an unmodified
installation.

While you're installing the operating system, install as little as you can get away with. It's much easier to avoid
installing items than it is to delete them completely later on. For that matter, once your operating system is
minimally functional, it's not hard to add components if you discover you need them. Don't install any optional
subsystems unless you know you will need them.

If you are reusing a machine that has already had an operating system installed on it, be sure to erase all data
from the disks before doing the reinstall. Otherwise, you cannot guarantee that all traces of the old system are
gone.

10.9.2 Fix All Known System Bugs

Get a list of known security patches and advisories for your operating system; work through them to determine
which are relevant for your own particular system, and correct all of the problems described in the patches and
advisories. You can get this information from your vendor sales or technical support contacts, or from the user
groups, newsgroups, or electronic mailing lists devoted to your particular platform.

In addition, be sure to get from the Computer Emergency Response Team Coordination Center (CERT-CC) any
advisories relevant to your platform, and work through them. (For information on how to contact CERT-CC and
retrieve its information, see the list of resources in Appendix A.)

Many operating systems have both recommended and optional patches or have periodic patch sets (called service
packs for Windows NT) with individual patches issued in between (Microsoft calls these hot fixes). You should
install the current recommended patch set, plus all other security-related patches that are relevant to your
installation.

10.9.3 Use a Checklist

To be sure you don't overlook anything in securing your bastion host, use a security checklist. Several excellent
checklists are around. Be sure to use one that corresponds to your own platform and operating system version.

page 166

Building Internet Firewalls

10.9.4 Safeguard the System Logs

As a security-critical host, the bastion host requires considerable logging. The next step in building the bastion
host is to make sure that you have a way of safeguarding the system logs for the bastion host. The system logs
on the bastion host are important for two reasons:

e They're one of the best methods of determining if your bastion host is performing as it should be. If
everything the bastion host does is logged (and it should be), you should be able to examine the logs
to determine exactly what it's doing and decide if that's what it's supposed to be doing. Chapter 26,
describes the use of system logs in maintaining your firewall.

e When (not if!) someday someone does successfully break in to the bastion host, the system logs are
one of the primary mechanisms that determine exactly what happened. By examining the logs and
figuring out what went wrong, you should be able to keep such a break-in from happening again.

Where should you put the system logs? On the one hand, you want the system logs to be somewhere
convenient; you want them to be where they can be easily examined to determine what the bastion host is doing.
On the other hand, you want the system logs to be somewhere safe; this will keep them from any possible
tampering in case you need to use them to reconstruct an incident.

The solution to these seemingly contradictory requirements is to keep two copies of the system logs - one for
convenience, the other for catastrophes. The details of the logging services are operating-system dependent and
are discussed in the chapters on individual operating systems.

10.9.4.1 System logs for convenience

The first copy of the system logs is the one you'll use on a regular basis to monitor the ongoing activity of the
machine. These are the logs against which you run your daily and weekly automated analysis reports. You can
keep these logs either on the bastion host itself or on some internal host.

The advantage of keeping them on the bastion host is simplicity: you don't have to set up logging to go to some

other system, nor do you have to configure the packet filters to allow this. The advantage to keeping them on an
internal host is ease of access: you don't have to go to the bastion host, which doesn't have any tools anyway, to
examine the logs. Avoid logging in to the bastion host, in any case.

10.9.4.2 System logs for catastrophes

The second copy of the system logs is the one you'll use after a catastrophe. You can't use your convenience logs
at a time like this. Either the convenience logs won't be available, or you won't be sure of their integrity any
longer.

These logs need to be kept separate from the bastion host and kept for a long time. Sometimes you will discover
an intruder a long time after the original compromise (among other things, it's not unusual for an intruder to
break into a bunch of machines and install back doors for later use; a compromised machine may be left alone
for months).

If you have a write-once device available to you, use that device; doing so is probably the technically easiest way
to keep the logs, especially if your write-once device can emulate a filesystem. Be sure you can trust the write-
once feature. Some magneto-optical drives are capable of both multiple-write and write-once operations and
keep track of the mode they're in via software. If the system is compromised, it may be possible to overwrite or
damage previously written parts of the supposedly write-once media.

The other methods available to you will differ depending on the operating system you are using and are discussed
in Chapter 11, and Chapter 12.

10.9.4.3 Logging and time

Knowing the time (within minutes and sometimes seconds) when something occurred can be very useful when
dealing with break-ins. You will need date and time information if you (or law enforcement agencies) need to
request information from other sites. You should make sure that your bastion hosts have accurate and
synchronized times in their logs. See Chapter 22, for more information about time synchronization protocols.

page 167

Building Internet Firewalls

10.9.4.4 Choosing what to log

Choosing the information you want to log is a delicate business. You don't want gigantic logs full of routine
events; that just wastes space and time and makes it harder to find important information. On the other hand,
you do want logs that are general enough that you can debug problems and figure out what intruders did.

What you would like to do is to log everything except events that are frequent and nonthreatening. Don't try to
limit your logging to dangerous or interesting events because it's hard to successfully predict which those are
going to be. Instead, log everything you can stand, eliminating only the known clutter.

For instance, Windows NT provides the ability to log all accesses to files. You don't want to turn this on for all files
on a bastion host; you'll drown in routine accesses to files that are accessed as it provides services. On the other
hand, you probably do want to log all accesses to system files that aren't accessed by the services. These files
shouldn't be touched often, and the nuisance caused by the log entries when you do maintenance work will be
compensated for by the number of attacks you can detect.

10.10 Disabling Nonrequired Services

Once you've completed the basic process of securing your bastion host, go on to the next step: disabling any
services that aren't absolutely necessary for the bastion host to provide. You will want to disable all services
except the ones you have decided to provide, and the supporting services necessary for those to run, as
described earlier. You may not always know which services are the required support services, particularly
because service names tend to be cryptic and uninformative.

How do you know which services to disable? There are three simple rules to apply:

. If you don't need it, turn it off.
. If you don't know what it does, turn it off (you probably didn't need it anyway).

. If turning it off causes problems, you now know what it does, and you can either turn it back on again
(if it's really necessary) or figure out how to do without it.

Any service provided by the bastion host might have bugs or configuration problems that could lead to security
problems. Obviously, you'll have to provide some services that users need, as long as your site's security policy
allows them. But if the service isn't absolutely necessary, don't borrow trouble by providing it. If a service isn't
provided by the bastion host, you won't have to worry about possible bugs or configuration problems.

If you can live without a service, it should be turned off. It's worth suffering some inconvenience. This means
that you're going to need to think very carefully about services. You'll be disabling not just services you never
heard of and never used, but also services you've purposefully enabled on other machines (and, unfortunately,
services you've never heard of because they're considered too basic ever to do anything to). Look at every
service and ask yourself "How could I avoid enabling this? What do I lose if I turn it off ?"

10.10.1 How to Disable Services

The first step in disabling services is ensuring that you have a way to boot the machine if you accidentally disable
a critical service. This could be a second hard disk with a full boot partition on it or a CD-ROM drive with the
operating system install disk. It could even be a second installation of the operating system on the same hard
disk. You need to be ruthless; if you can't reboot when you delete the wrong thing, at best you're going to be
over-cautious about deleting things, and at worst you're going to end up with an unusable computer. (These
fallback operating systems are also useful places to copy files from or compare files to if things go wrong.)

Second, you must save a clean copy of every file before you modify it. Even when you're just commenting things
out, every so often your fingers slip, and you delete something you didn't mean to, or you change a critical
character. If you are using a user interface to change things instead of directly modifying files, you may not know
what files are actually being changed, so you may need to simply back up the entire system. If possible, do this
with another disk, rather than with a standard program and a tape; if you have to back out a change, you will
want to be able to replace just the files that are actually involved, and that's easiest to determine by comparing
things on disk. On Windows NT, you should note that the registry is not backed up or copied by normal
procedures; be sure that you include it. You will also want to build a new Emergency Repair Disk (which includes
the most important parts of the registry) immediately before you begin the reconfiguration.

page 168

Building Internet Firewalls

When you disable a service, you should also disable all services that depend on it. This will prevent nasty warning
messages and will also mean that reenabling a service will not result in a cascade of unfortunate surprises as
other services are also turned on.

Finally, we've said it before and we'll say it again: you should not connect a machine to a hostile network until it
has been fully configured. That means that all of your work on disabling services should be done with the
machine either entirely disconnected from the network, or on a safe test network. The reason that you are
disabling services is that they are unsafe, and if you are connected to a hostile network, they may be exploited
before you finish disabling them.

10.10.1.1 Next steps after disabling services

In general, you'll need to reboot your machine after you have changed the configuration files. The changes won't
take effect until you do so.

After you have rebooted and tested the machine, and you are comfortable that the machine works without the
disabled services, you may want to remove the executables for those services (as long as they are not used by
other services). If the executables are lying around, they may be started by somebody - if not you, some other
system administrator, or an intruder. A few services may even be executable by nonroot users if they use
nonstandard ports.

If you feel uncertain about removing executables, consider encrypting them instead. You should use a program
that provides genuinely strong encryption. The Unix crypt program is not appropriate; neither are many of the
available packages for Microsoft systems. Instead, use a more secure encryption program like snuffle or
something that uses the DES or IDEA algorithm. Choose a secure key; if you forget the key, you're no worse off
than if you'd deleted the files, but if an intruder gets the key, you're considerably worse off.

10.10.2 Running Services on Specific Networks

In some cases, you want to run services that need to respond to only one network on a machine with multiple
network interfaces. You may be able to limit those services to just the networks you wish to use them on. Under
Unix, this usually means specifying which IP addresses and/or network interfaces you want the service to respond
to as part of the service's startup options; this will be slightly different for every service, and not all services
provide this facility. Under Windows NT, only a few basic services can be controlled this way. In the Networking
control panel, go to the Bindings tab and set it to show bindings for all adapters. Select the services that you wish
to turn off and press the Disable button.

10.10.3 Turning Off Routing

If you have a dual-homed host that is not supposed to be a router, you will need to specifically disable routing. In
order to act as an IP router, a dual-homed host needs to accept packets that are addressed to other machines' IP
addresses, and send them on appropriately. This is known as IP forwarding, and it's usually implemented at a low
level in the operating system kernel. An IP-capable host with multiple interfaces normally does this automatically,
without any special configuration.

Other machines have to know that the dual-homed host is a router in order to use it as such. Sometimes this is
done simply by configuring those machines to always route packets for certain networks to the dual-homed host
(this is called static routing). More often, however, the dual-homed host is configured to broadcast its routing
capabilities via a routing protocol such as Routing Information Protocol (RIP). Other machines hear these routing
broadcasts and adjust their own routing tables accordingly (this is called dynamic routing). This broadcast of
routing information by the dual-homed host is usually done by an additional program (for example, routed or
gated on a Unix system), which often has to be turned on explicitly.

To use a dual-homed host as a firewall, you need to convert it to a nonrouting dual-homed host; you take a
machine that has two network interfaces, and you configure it so it can't act as a router between those two
interfaces. This is a two-step process:

1. Turn off any program that might be advertising it as a router; this is usually relatively straightforward.

2. Disable IP forwarding; this can be equally easy or considerably more difficult, and may require
modifying the operating system kernel.

Unfortunately, turning off IP forwarding does not always turn off all routing. On some systems, you can turn off
IP forwarding, but the IP source-routing option usually remains a security hole.

page 169

Building Internet Firewalls

What is source routing ? Normal IP packets have only source and destination addresses in their headers, with no
information about the route the packet should take from the source to the destination. It's the job of the routers
in between the source and the destination to determine the most efficient route. However, source-routed IP
packets contain additional information in the IP header that specifies the route the packet should take. This
additional routing information is specified by the source host - thus the term "source-routed".

When a router receives a source-routed packet, it follows the route specified in the packet, instead of determining
the most efficient route from source to destination. The source-routing specification overrides the ordinary
routing. Because of the way the routing code is implemented in many operating systems, turning off IP
forwarding does not disable forwarding of source-routed packets. It's implemented completely separately and
must be turned off separately, often by completely different (and more difficult) mechanisms.

Source-routed packets can easily be generated by modern applications like the Telnet client that's freely available
on the Internet as part of the BSD 4.4 release. Unless you block source-routed packets somewhere else, such as
in a router between the dual-homed host and the Internet, source-routed packets can blow right past your dual-
homed host and into your internal network.

Worse still, source routing goes both ways. Once source-routed packets make their way to an internal system,
the system is supposed to reply with source-routed packets that use the inverse of the original route. The reply
from your internal system back to the attacker will also blow right through your dual-homed host, allowing two-
way connection through a firewall that was supposed to block all communications across it.

Fortunately, it is now common practice for firewalls to ignore all source routing, either by dropping packets with
source routing or by stripping the source routing itself. In addition, systems that will accept source routes will
rarely include them on the return packet.

If you are not going to screen your dual-homed host, you will need to patch your operating system so that it
rejects source-routed packets. Consult your vendor, and/or appropriate security mailing lists (discussed in
Appendix A) for information on how to do this on your platform.

10.10.4 Controlling Inbound Traffic

As we discussed in Chapter 8, many general-purpose computers are provided with packet filtering packages.
Even when these packages are not adequate for building packet filtering routers, they can provide an extra level
of protection for bastion hosts. If packet filtering is available to you, you should set it up so that it allows only the
traffic that you intend to support. In most configurations, this will be multiply redundant; it will duplicate
protections provided on routers, and most of the rules will prevent connections to services that don't exist
anyway. This is a useful kind of redundancy, which will help to protect you from configuration errors.

Packet filters will also keep you from successfully adding new services to the machine. You should document the
filters carefully to avoid puzzling failures later.

10.10.5 Installing and Modifying Services

Some of the services you want to provide may not be provided with your operating system. Others may be
provided with servers that are inappropriate for use in a secure environment or are missing features you probably
want (for example, stock fingerd and ftpd). Even those few remaining services that are provided, secure, and up
to date in your vendor's operating system release usually need to be specially configured for security.

For information on general schemes for protecting services in the operating system you are using, see Chapter
11, and Chapter 12, as appropriate. For detailed information about individual services, including advice on
selecting HTTP, NNTP, and FTP servers, see the chapters relevant to the services you want to provide (for
instance, Chapter 15, for HTTP; Chapter 16, for NNTP; and Chapter 17, for FTP).

10.10.6 Reconfiguring for Production

Now it's time to move the machine from the configuration that was useful to you when you were building it to the
best configuration for running it. You'll need to do several things:

1. Finalize the operating system configuration.
2. Remove all unnecessary programs.

3. Mount as many filesystems as possible as read-only.

page 170

Building Internet Firewalls

10.10.6.1 Finalize the operating system configuration

Once you've deleted all the services that aren't used on a day-to-day basis, you'll find that it is very difficult to
work on the bastion host - for example, when you need to install new software packages or upgrade existing
ones. Here are some suggestions for what to do when you find it necessary to do extensive work on the bastion
host:

° Write all the tools to tape before deleting them, and then restore them from tape when needed. Don't
forget to delete them each time after you're done.

. Set up a small, external, alternate boot disk with all the tools on it. Then, plug the disk in and boot
from it when you need the tools. Don't leave the disk connected during routine operations, however;
you don't want an attacker to be able to mount the disk and use the tools against you.

You don't want an intruder to attack the machine while you're working on it. To keep that from happening, follow
these steps:

1. Either disconnect the bastion host from the network or disconnect your network from the Internet
before you begin.

2. Give the bastion host back the tools you'll need to use (as we've described earlier).

3. After you've finished your work on the machine, return it to its normal (stripped down) operating
condition.

4. Reconnect the bastion host to the network or your network to the Internet.

You may find it easier to simply remove the bastion host's disk and attach it to an internal host as a nonsystem
disk; you can then use the internal host's tools without fear of having them remain available when the bastion
host is returned to service. This procedure also guarantees that the bastion host is not vulnerable to compromise
from the outside while you are doing the work, since it is entirely nonfunctional while its disk is removed and not
susceptible to accidental reconnection.

10.10.6.2 Mount filesystems as read-only

Once you've got the bastion host configured, you don't want anybody (particularly an attacker) to be able to
change the configuration. To guard against this happening, mount the filesystems on the bastion host as read-
only if possible (particularly the filesystems that contain program binaries) to protect against tampering.

It's much better if you can use hardware write-protect; an attacker may be able to remount disks with write
permission without getting physical access to the machine, but it's not going to do any good if the hardware
write-protect on the disk is on. Many SCSI disks have a "write-disable" jumper or switch you can set. If you find
powering the disk down and removing it from the case unacceptable as a way to get write access, you could wire
this jumper to an external switch on the drive enclosure.

10.10.7 Running a Security Audit

Once you've got the bastion host reconfigured, the next step is to run a security audit. There are two reasons for
doing this. First, it gives you a way to ensure you haven't overlooked anything during system setup. Second, it
establishes a "baseline", or a basis for comparison, against which you can compare future audits. In this way,
you'll be able to detect any tampering with the machine.

10.10.7.1 Auditing packages
Most auditing packages have two basic purposes:
Checking for well-known security holes

These are holes that have been uncovered by system administrators, exploited by attackers in system
break-ins, or documented in computer security books and papers.

Establishing a database of checksums of all files on a system

Doing this allows a system administrator to recognize future changes to files - particularly unauthorized
changes.

page 171

Building Internet Firewalls

Several very good automated auditing packages are freely available on the Internet.

How do you use the various auditing packages to audit your system? The details of what you do depend upon
which package you're using. (See the documentation provided with the packages for detailed instructions.) This
section provides some general tips.

You will need to do some configuration. Don't just install the program, run it, and expect you'll get reasonable
results. Expect to go through several iterations of running the auditing package, getting warnings, and
reconfiguring your machine or the auditing package to get rid of warnings. When you get warnings, you have to
decide whether the auditing package is wrong, or you are. There will be some cases where the right thing to do is
to turn off checks, but it shouldn't be your automatic response.

Once you've used the tools described in the previous section to create your initial baseline, store a copy of the
tools and these initial audit results somewhere safe. Under no circumstances should you store the only copy of
the baseline or the tools on the bastion host. Prepare for the worst: if someone were to break into the bastion
host and tamper with the only copy of the baseline audit, this would compromise your ability to use the audit
later on to detect illicit changes on the system. If intruders can change the auditing software, it doesn't matter
whether they can change the baseline; they could simply set up the auditing software to reproduce the baseline.
Keeping a copy of the baseline audit on a floppy disk or magnetic tape that's locked up some place safe is a good
way to protect against such a compromise. Preferably, you don't want an intruder to even read the audit results;
why tell them what you expect the system to look like and what files you aren't watching?

Periodically, (e.g., daily or weekly, depending on your own site's needs and capabilities), audit the machine once
again and compare the new audit to the baseline. Make sure you can account for any differences you find.
Ideally, you should automate this periodic reaudit so it happens regularly and reliably. Unfortunately, this is
easier said than done. It can be difficult to arrange automatic audits that can't be defeated by "replay" attacks. In
a replay attack, an attacker who has compromised your auditing system simply sends you a recording of a prior
good audit whenever your system invokes the automatic auditing capability. The most practical defense against
this is to run your automated auditing system often enough that it's unlikely an attacker could break in, discover
the auditing system, and subvert it (covering his tracks) before the next audit runs. This suggests that you
should run an audit at least daily. It may help to run the audit at random intervals, although it can be difficult to
automate this well. It is better to run the audit at frequent but predictable intervals than to rely on human beings
remembering to run it by hand.

If you start receiving warnings from the auditing system and you decide that they are incorrect, you should
immediately reconfigure the auditing system or the operating system so that the warnings go away. If you get
used to getting warnings, you will end up ignoring important new messages. Also, if you go on vacation, your
replacement may not realize that the messages are benign and may take drastic action to remedy nonproblems.

10.10.7.2 Use cryptographic checksums for auditing

Checksums are very helpful in auditing. An intruder who changes a program or configuration file will almost
certainly correct the modification dates afterwards, so you can't use these dates as a reliable index. Comparing
every file to a baseline copy avoids that problem but takes a lot of time and requires that you store a copy of
every single file, effectively doubling your storage requirements. Storing checksums is probably your best bet.

A checksum is a number calculated on data that is designed to detect changes to the data. This is useful for a
communications channel; if a sender calculates a checksum as data is being sent and a receiver does the same,
then the two can simply compare checksums to see if the data was changed during transmission. You can also do
exactly the same checksum calculation for files, but instead of sending the file elsewhere, you recalculate and
compare the checksum at a later time. Calculating checksums can be time consuming because you have to read
the contents of every file, but it is not as time consuming as reading everything twice and doing a bit-by-bit
compare. In addition, storing a checksum takes up much less space than storing an entire file.

However, checksums are not full representations of the file, and every checksum algorithm has cases where it
will give the same checksum for two different files. This is called a collision, and checksum algorithms are
designed to make this unlikely to occur for the differences they are designed to detect.

page 172

Building Internet Firewalls

In order for a checksum to be useful in detecting unauthorized changes to files, it must have several
characteristics:

° It must be practically impossible to deliberately create a file that has a checksum that matches
another. This can be achieved by designing the algorithm so that it cannot be reversed and run
backwards (you can't start with a checksum and use a known method to create a file that produces
that checksum).

e The checksum must be of a large enough size so that you cannot create a list of files, one for each
value the checksum can have, and match a given checksum that way. In practical terms, this means
that a useful checksum should be larger than 128 bits in size.

. If you change something only very slightly in the file, the checksum must change by a large amount.

A checksum algorithm that has these characteristics is sometimes called a cryptographic checksum.
Cryptographic checksums are discussed further in Appendix C.

You will sometimes hear rumors that these algorithms are vulnerable to the same sort of trickery that can be
used with standard checksums. This is not true; there are no known incidents where anybody has managed to
subvert a cryptographic checksum. These rumors are based on three grounds:

1. They're due to confusions with CRC-style checksums, which are in fact often subverted.

2. They're due to incidents in which people have missed changes when using cryptographic checksums
because intruders have been able to rewrite the checksum database or replace the checksumming
program.

3. They're due to misunderstanding of some technical arguments about the security of early
cryptographic checksums. Such algorithms are no longer used because of theoretical weaknesses, but
those weaknesses were never exploited and are not present in current cryptographic checksums.

It is important not to run checksums on files that are supposed to change and to update checksum data promptly
when you make intentional changes. If there are frequent false warnings from the checksum system, you will
miss genuine problems.

10.10.8 Connecting the Machine

Now that you have the machine fully secured, you can finally connect it to its destination network and run it. You
want to do this when you're going to be around to see what happens; don't make it the last thing you do before
that long overdue vacation.

10.11 Operating the Bastion Host

Once you put the bastion host into production, your job has only just begun. You'll need to keep a close watch on
the operations of the bastion host. Chapter 26, provides more information on how to do this; this section
discusses specific concerns for bastion hosts.

10.11.1 Learn What the Normal Usage Profile Is

If you're going to monitor the bastion host, looking for abnormalities that might indicate break-ins or other types
of system compromise, you will need to first develop an understanding of what the "normal" usage profile of the
bastion host is. Ask these questions and others like them:

. How many jobs tend to be running at any one time?

. How much CPU time do these jobs consume relative to each other?

. What is the typical load at different times throughout the day?

Your goal is to develop an almost intuitive grasp of what your system normally runs like, so you'll be able to
recognize - and investigate - anomalous activity very quickly.

page 173

Building Internet Firewalls

10.11.2 Consider Using Software to Automate Monitoring

Doing a thorough job of system monitoring is tough. Although the logs produced by your system provide lots of
useful information, it's easy to get overwhelmed by the sheer volume of logging data. The important information
may often be buried. Too often, the logs end up being used only after a break-in, when, in fact, they could be
used to detect - and thus perhaps stop - a break-in while it is occurring.

Because each operating system and site is different, each bastion host is configured differently, and each site has
different ideas about what the response of a monitoring system should be. For example, some want electronic
mail; some want the output fed to an existing SNMP-based management system, some want the systems to trip
the pagers of the system administrators, and so on. Monitoring tends to be very site- and host-specific in the
details.

A large and growing number of monitoring packages is available for Unix, including both freely available and
commercial options. Among the freely available options, NOCOL and NetSaint are both popular, extensible
systems that provide the ability to watch logs, to test to make certain machines are still running and providing
services, and to alert people when things go wrong (see Appendix B, for information about how to get them).

MRTG is a special sort of monitoring package, which provides graphing services but not alerting services. It is
extremely useful for watching trends. Furthermore, MRTG makes very impressive web pages with very little
effort, so you not only find out what's going on, you also get an important public relations tool for convincing
people that you know what's going on. Information about MRTG is also available in Appendix B.

Normally, monitoring of Windows NT systems is done with the Performance Monitor. Unfortunately, Performance
Monitor is yet another tool based on SMB transactions, which cannot be used without enabling all of SMB.
Furthermore, Performance Monitor is fairly limited as a monitoring solution for critical systems; it doesn't provide
all of the alarm and process-monitoring features you may want.

You will probably want to use an SNMP-based monitoring tool. Windows NT provides an SNMP server, so all you
will need to add is the monitoring tool. Some public domain monitoring tools are now available for Windows NT,
although fewer than there are for Unix. Some tools that were originally available only under Unix have now been
ported to Windows NT (for instance, MRTG). Unix-based monitoring tools will monitor Windows NT systems
without problems. In addition, there are a large number of commercial SNMP-based tools you can use.

10.12 Protecting the Machine and Backups

Once the bastion host has been fully configured and is in operation, protect the physical machine and make sure
that its backups are protected from theft or other compromise.

10.12.1 Watch Reboots Carefully

How will you know if someone has breached security? Sometimes, it's painfully obvious. But sometimes, you'll
have to draw conclusions from the behavior of the system. Unexplained reboots or downtime on the system may
be a clue. Many attacks (e.g., modifying a kernel) can't succeed unless the system is rebooted.

On the bastion host, crashes and reboots should be rare occurrences. Once the bastion host has been fully
configured and is in production, it should be a very stable system, often running for weeks or months at a stretch
without a crash or a reboot. If a crash or a reboot does occur, investigate it immediately to determine whether it
was caused by some legitimate problem or might have been the result of some kind of attack.

You might want to consider configuring the bastion host so that it doesn't bring itself up automatically after an
attempted reboot. That way, if someone does manage to crash or force a reboot of the machine, you'll know
about it: the machine will sit there waiting for you to reboot it. The machine won't be able to come back up until
you decide it should do so. Many machines treat crashes and explicit reboots differently, and while most of them
will let you disable an automatic reboot on a crash, it may be harder to disable an automatic reboot after a clean
shutdown that requests a reboot. Even if your machine does not appear to allow you to disable autobooting, you
can usually cause autoboots to fail under Unix by configuring the machine to autoboot from a nonexistent disk.
(Be sure to leave instructions on how to boot the machine by hand with the machine.) Under Windows NT, you
can simply edit boot.ini to set the timeout to -1, and it will wait forever for a human being to specify what
operating system to boot. This has the advantage of being self-explanatory to an operator sitting in front of the
console.

page 174

Building Internet Firewalls

10.12.2 Do Secure Backups
Backups on a bastion host are tricky because of trust issues. Who can you trust?

You definitely don't want internal machines to trust the bastion host enough for it to dump to their tape drives. If
the bastion host has somehow been compromised, this could be disastrous. You also don't want the bastion host
to trust the internal machines; this could lead to subversion of the bastion host by (well-intentioned) internal
users, or to attack from some host pretending to be an internal system.

Common remote backup mechanisms (for example, those used by the BSD dump and rdump programs) will
probably be blocked by packet filtering between the bastion host and the internal systems anyway. Therefore,
you will normally want to do backups to a tape device attached directly to the bastion host. Under no
circumstances should you rely on backing up the bastion host to disks that remain attached to the bastion host.
You must do backups that are removed from the bastion host so they cannot be accessed by an attacker who
compromises it.

Fortunately, because the bastion host is an infrequently changing machine, you won't have to do frequent
backups. Once the bastion host is fully configured and in production, it should be very stable. A weekly or even
monthly manual backup will probably be sufficient.

Backups of the bastion host aren't done just to guard against normal system catastrophes like disk crashes.
They're also a tool that you can use later to investigate a break-in or some other security incident. They give you
a way to compare what's currently on the bastion host's disk with what was there before the incident.

If you're only doing weekly or monthly backups, how you handle logging becomes an issue. If the bastion host is
not being backed up daily, you must do your logging to some system other than the bastion host itself. If an
incident does occur, the logs are going to be critical in reconstructing what happened. If it turns out that your
only copy of the logs was on the (compromised) bastion host, and backups of the logs haven't been done for
three weeks, you're going to be severely hampered in your investigative efforts.

As with all backups on all systems, you need to guard your bastion host backups as carefully as you guard the
machine itself. The bastion host backups contain all the configuration information for the bastion host. An
attacker who gets access to these backups would be able to analyze the security of your bastion host without
ever touching it. The information these backups provide might possibly include a way to break in without setting
off any of the alarms on the bastion host.

10.12.3 Other Objects to Secure

In addition to securing the backups, you will need to physically secure anything else that contains important data
about the machine. This includes:

e The log files

. Any alternate boot disks you use to do maintenance

e The Emergency Repair Disks for Windows NT bastion hosts (including account data!)

e The documentation for the details of the bastion host configuration

Although secrecy is not sufficient to give you security, it's an important part of maintaining security. You should
treat the configuration details of your bastion hosts as proprietary information, available only to people you trust.
Anybody who has this information can compromise your firewall.

page 175

Building Internet Firewalls

Chapter 11. Unix and Linux Bastion Hosts

This chapter discusses the details of configuring Unix for use in a firewall environment, building on the principles
discussed in Chapter 10. You should be sure to read both chapters before attempting to build a bastion host. As
usual, we use the word "Unix" for both Unix and Linux, except when we explicitly say otherwise.

It's impossible to give complete instructions on how to configure any given machine; the details vary greatly
depending on what version of Unix you're running and exactly what you intend to do with the machine. This
chapter is intended to give you an outline of what needs to be done, and how to figure out how to do it. For more
complete configuration details, you will need to look at resources that are specific to your platform.

Useful Unix Capabilities

Every operating system has certain special capabilities or features that can be useful in building a
bastion host. We can't describe all these capabilities for all systems, but we'll tell you about a few
special features of Unix because it's a common bastion host platform:

setuid/setgid

Every Unix user has a humeric user identification (uid) in addition to his or her login name
and belongs to one or more groups of users, also identified by numbers (gids). The Unix
kernel uses the uid and the various gids of a particular user to determine what files that user
has access to. Normally, Unix programs run with the file access permissions of the user who
executes the program. The setuid capability allows a program to be installed so that it
always runs with the permissions of the owner of the program, regardless of which user is
running the program. The setgid capability is similar; it allows the program temporarily
(while running the program) to grant membership in a group to users who are not normally
members of that group.

chroot

The chroot mechanism allows a program to irreversibly change its view of the filesystem by
changing the program's idea of where the root of the filesystem is. Once a program chroots
to a particular piece of the filesystem, that piece becomes the whole filesystem as far as the
program is concerned; the rest of the filesystem ceases to exist from the program's point of
view. This can provide a very high level of protection, but it is by no means perfect.
Programs may not need access to the filesystem to achieve nefarious ends, particularly if
they have large numbers of other permissions.

Environmental modifications, such as those made by setuid/setgid and chroot, are inherited by any
subsidiary processes a program starts. A common way of restricting what the programs on a bastion
host can do is to run the programs under "wrapper" programs; the wrapper programs do whatever
setuid/setgid, chroot, or other environmental change work is necessary, and then start the real
program. chrootuid is a wrapper program for this purpose; Appendix B, gives information on how to
get it.

page 176

Building Internet Firewalls

11.1 Which Version of Unix?

Which version of Unix should you choose? You want to balance what you're familiar with against which tools are
available for which versions. If your site already uses one version of Unix, you will most likely want to use that
version. If your site has some familiarity with several versions of Unix, and the relevant tools (discussed
throughout this chapter) and support are available for all of them, use the /east popular one that you still like.
Doing so maximizes your happiness and minimizes the likelihood that attackers have precompiled ways of
attacking your bastion host. If you have no Unix familiarity, choose any version you like, provided that it is in
reasonably widespread use (you don't want "Joe's Unix, special today $9.95"). As a rule of thumb, if your chosen
version of Unix has a user's group associated with it, it's probably well-known enough to rely on.

Although Unix suppliers differ vastly in their openness about security issues, the difference in the actual security
between different general-purpose versions of Unix is much smaller. Don't assume that the publicity given to
security holes reflects the number of security holes; it's a more accurate reflection of the popularity of the
operating system and the willingness of a vendor to admit and fix security problems. Don't assume that
proprietary versions of Unix are more secure than open source versions, either; paying money to a vendor
doesn't guarantee that they care about security, only that they care about money. Ironically, the operating
systems with the most worrisome tales may be the most secure ones, because they're the ones getting fixed.

Some versions of Unix are particularly designed for security and are therefore particularly suited for use in
bastion hosts. "Designed for security" means different things to different vendors. It ranges from relatively minor
changes to the packages that are installed (for instance, the Debian Linux distribution tries to install securely,
and the SuSE Linux distribution provides a post installation security script) to major changes to the internals (for
instance, OpenBSD has made significant changes to all parts of the operating system).

Several commercial vendors offer secure versions of their operating systems that are designed to meet
government security needs. These versions usually lag behind the main releases (the government approval
process is slow) and may not support all the add-on products that the main releases do. On the other hand, the
auditing capabilities they offer are useful for bastion hosts. If you can afford the extra cost and the delayed
release schedule, these operating systems are a good choice for bastion hosts.

11.2 Securing Unix

Once you have chosen a machine, you need to make sure that it has a reasonably secure operating system
installation. The first steps in this process are the same as for any other operating system and were discussed in
Chapter 10. They are:

1. Start with a minimal clean operating system installation. Install the operating system from scratch
onto empty disks, selecting only the subsystems you need.

2. Fix known bugs. Consult CERT-CC, your vendor, and any other sources of security information you
may have to make certain that you have all appropriate patches, and only the appropriate patches,
installed.

3. Use a checklist to configure the system. Practical UNIX & Internet Security, by Simson Garfinkel and
Gene Spafford (O'Reilly & Associates, 1996), contains an extensive checklist that covers most Unix
platforms. More specific checklists for particular operating system releases are often available through
the formal or informal support channels for those platforms; check with your vendor support contacts,
or the user groups, newsgroups, or mailing lists that are devoted to the platform.

11.2.1 Setting Up System Logs on Unix

On a Unix system, logging is handled through syslog. The syslog daemon records log messages from various local
and remote clients (programs with messages they want logged). Each message is tagged with facility and priority
codes: the facility code tells syslog what general subsystem this message is from (for example, the mail system,
the kernel, the printing system, the Usenet news system, etc.), and the priority code tells syslog how important
the message is (ranging from debugging information and routine informational messages through several levels
up to emergency information). The /etc/syslog.conf file controls what syslog does with messages, based on their
facility and priority. A given message might be ignored, logged to one or more files, forwarded to the syslog
daemon on another system, flashed onto the screens of certain or all users who are currently logged in, or any
combination.

When you configure syslog to record messages to files, you could configure it to send all messages to a single
file, or to split messages up to multiple files by facility and priority codes. If you split messages by facility and
priority codes, each log file will be more coherent, but you'll have to monitor multiple files. If you direct
everything to a single file, on the other hand, you'll have only a single file to check for all messages, but that file
will be much larger.

page 177

Building Internet Firewalls

Many non-Unix systems, particularly network devices such as routers, can be configured to log messages via
syslog. If your systems have that capability, configuring them so they all log to your bastion host provides a
convenient way to collect all their messages in a single place.

Be aware that remote logging via syslog (e.g., from a router to your bastion host, or from your bastion host to
some internal host) is not 100 percent reliable. For one thing, syslog is a UDP-based service, and the sender of a
UDP packet has no way of knowing whether or not the receiver got the packet unless the receiver tells the sender
(syslog daemons don't confirm receipt to their senders). Some syslog variants can be made to remotely log using
TCP. Unfortunately, you still cannot absolutely depend on them not to lose messages; what if the receiving
system was down or otherwise unavailable? One solution is to have a local method to reliably capture all syslog
messages. (See Section 11.2.1.2, later in this chapter.)

syslog will accept messages from anywhere and does no checking on the data that it receives. This means that
attackers can use syslog for denial of service attacks or can hide important sys/log messages in a blizzard of fake
ones. Some syslog daemons can be configured not to accept messages over the network. If this option is
available to you, you should use it on all systems except those that you intend to use as log servers.

Despite its weaknesses, though, syslog is a useful service; you should make extensive use of it.
11.2.1.1 syslog Linux example

Most versions of syslog are derived from the original BSD version. Example 11.1 is taken from Linux, which
includes some enhancements. It allows wildcards for either the facility or the priority and also allows a facility to
be ignored by using the syntax facility.none. One peculiar feature of almost all syslog daemons is that they
require the use of the Tab character to delimit fields. The use of spaces can cause a syslog line to be silently
ignored.

Example 11.1. Linux syslog.conf Example

Log anything (except mail) of level info or higher.
Don't log private authentication messages!

*_.info;mail.none;authpriv.none /var/Tog/messages

The authpriv file has restricted access.

authpriv.* /var/log/secure

Log all the mail messages in one place.

mail.debug /var/Tog/maillog

Everybody gets emergency messages, plus Tog them on another
machine.

*.emerg :

*.emerg @logger.greatcircle.com
11.2.1.2 System logs for catastrophe

One of the simplest ways to create catastrophe logs is to attach a line printer to one of the bastion host's serial
ports, and simply log a copy of everything to that port. There are some problems with this approach, though.
First, you have to keep the printer full of paper, unjammed, and with a fresh ribbon. Second, once the logs are
printed, you can't do much with them except look at them. Because they aren't in electronic form, you have no
way to search or analyze them in an automated fashion.

If you have a write-once device available to you, direct logs to that device; that will give you reasonably
trustworthy logs in an electronic form. Be sure you can trust the write-once feature. Some magneto-optical drives
are capable of both multiple-write and write-once operations, and keep track of the mode they're in via software.
If the system is compromised, it may be possible to overwrite or damage previously written parts of the
supposedly write-once media.

Some operating systems (notably BSD 4.4-Lite and systems derived from it, such as current releases of BSDI,
FreeBSD, and NetBSD) support append-only files. These are not an advisable alternative to write-once media.
Even if you can trust the implementation of append-only files, the disk that they're on is itself writable, and there
may be ways to access it outside of the filesystem, particularly for an intruder who wants to destroy the logs.

page 178

Building Internet Firewalls

11.3 Disabling Nonrequired Services

When you have a secure machine, you can start to set up the services on it. The first step is to remove the
services that you don't want to run. Consult Chapter 10, for more information about deciding which services you
don't want to run. The main idea is to remove all services that you don't actually need for the machine to do the
work it's designed to do, even if they seem convenient or harmless.

11.3.1 How Are Services Managed Under Unix?

On Unix machines, most services are managed in one of two ways:

. By controlling when they start and who can use them

. By service-specific configuration files

There are two ways services get started on Unix systems:

. At boot time from a machine's configuration files (for example in /etc/inittab and /etc/rc files or
directories)

e On demand by the inetd daemon (which is itself started at boot time)

A few services - for example, Sendmail - can be configured to run under either or both mechanisms, but most of
them strongly prefer one of the two options.

11.3.1.1 Services started by /etc/rc files or directories

Services in the first category are designed to run indefinitely. They are started once (when the machine boots),
and they are never supposed to exit. (Of course, sometimes they do exit, either because they're killed by a
system administrator, or because they trip over a bug or some other error.) Servers are written in this way if
they need to handle small transactions quickly, or if they need to "remember" information. Writing them in this
way avoids the delays associated with starting a new copy of the server to handle each request made to it.

Servers of this kind are started from a Unix system's /etc/rc files, which are shell scripts executed when the
machine boots. Examples of servers typically started from /etc/rc files are those that handle NFS, SMTP, and
DNS. In BSD-based versions of Unix, there are customarily a few files in /etc with names that start with "rc". (for
example /etc/rc.boot). In other versions of Unix, there are customarily directories in /etc instead of files (for
instance, /etc/rc0.d); the directories contain the various startup commands, each in its own little file.

In either case, you need to be careful to look at all of the startup scripts and all of the scripts they call. Usually,
more than one script is run in the process of bringing a system all the way up. On modern Unix systems, those
scripts often call others, sometimes through multiple levels of indirection. For example, you may find that a
startup script calls another script to start up networking, and that one calls yet another script to start up file
service. You may also find that startup scripts use mystical options to familiar commands (e.g., they often run
ifconfig with little-used options that cause ifconfig to pick up configuration information from obscure places). Be
sure that you understand these options and that you replace any that tell the machine to pick up information
about itself from the network (or from services it normally provides but that you are going to turn off).

Linux and some versions of Unix have a utility called chkconfig that is used to determine whether or not services
are started up. When a service is installed on a system that's using chkconfig, a startup script is also installed
and always runs, but the startup script uses the chkconfig command to determine whether or not it should
actually start the service. Administrators also use the chkconfig command to change or check the status of
services. Different versions of the chkconfig system use different methods of storing the configuration status;
some of them create files, while others store the status in the startup scripts themselves.

Some versions of Unix and Linux have a file called /etc/inittab. On these systems, the init process uses
information in this file to control how the boot process is performed and to keep a number of system processes
running. Normally the processes configured to be run from /etc/inittab allow interactive logins from terminal and
workstation console devices. The init process will start and monitor these processes and, if configured to do so,
will restart them when they terminate or die. Disabling these processes can usually be performed by commenting
out the configuration line or by instructing init not to start them at all. If you change the contents of /etc/inittab,
there is usually a special and operating system-dependent way to signal the init process to re-read the file.

page 179

Building Internet Firewalls

In some versions of Unix, one of the servers that is run from the startup files is designed to restart other servers
if they fail. If such a program exists on a system, it will try to start the other servers if they are removed from
the startup files but not from its configuration file. Either turn off this program or be sure to remove from the
program's configuration file any servers removed from the startup files. You'll notice the program when you work
through the startup files.

11.3.1.2 Services started by inetd

Some servers are designed to be started "on demand" and to exit after they provide the requested service. Such
servers are typically used for services that are requested infrequently, for services that aren't sensitive to delays
in starting a new server from scratch, and for services that require a new server process to deal with each
request (for example, Telnet or FTP sessions, where a separate server is used for each active session).

Servers of this kind are usually run from the inetd server. (The inetd server itself, because it runs indefinitely, is
started from the /etc/rc files, as described in the previous section.) The inetd server listens for requests for
services specified in the /etc/inetd.conf configuration file. When it hears such a request, it starts the right server
to process the request.

11.3.2 Disabling Services Under Unix

As we discussed in Chapter 10, there are four general precautions to take when disabling services:

° Make sure that you have a way to boot the machine if you disable a critical service (for instance, a
secondary hard disk with a full operating system image or a bootable CD-ROM).

° Save a clean copy of everything you modify so that you know how to put it back the way it was if you
do something wrong.

. When you disable a service, disable everything that depends on it.

. Don't connect the machine you are trying to protect to a hostile network before you have completed
the process of disabling services. It is possible for the machine to be compromised while you are
preparing it.

Once you've set up your alternate boot process, check the startup files and directories for your system. This
should be done line by line, making sure you know exactly what each line does - including any command-line
options.

In a perfect world, you would like to disable everything, and then enable only the services you need.
Unfortunately, if you do this, you may find that the machine is no longer able to boot. It is slightly easier to work
from the other direction by disabling services you definitely don't need, and then examining the rest of the boot
process and adjusting it slowly so that the machine will always boot.

One way to start this process is to take a snapshot of all the services that are running on your machine by using
the netstat utility. This utility allows you to list all of the open network connections and, with additional options,
the TCP and UDP network ports that have a service configured to listen or accept datagrams. The Linux netstat
utility has a very useful feature that allows you to directly list the numeric process identifier and name associated
with each network port. Other versions of Unix are supplied with tools, such as fuser, which will map the network
ports to the numeric process identifier. You can also use the /sof utility (see Appendix B for information on where
to get Isof). Once the process name is known, it can be used to search through the configuration files to find
where it is started.

As mentioned before, some versions of Unix and Linux include the chkconfig program that can administratively
enable and disable services. The command can be used to test whether a service is turned on, to list the services
that can be controlled, and to enable or disable services. These systems work because the startup file checks to
see if the service should be run. Disabling a service can be as simple as using chkconfig to turn the service off.
This is a convenient and standard way to disable a service, but it doesn't leave any documentation of why the
service is off, and it's very easy to re-enable a service that's been disabled this way.

Although it's more work, it's a good idea to comment out the code that starts the service or to remove the
startup file altogether. This will prevent people from simply turning it back on with chkconfig, and will give you a
good place to put comments about why you've disabled the service. If you do disable services with chkconfig, you
should be sure to keep a list in a standard place that says what services are supposed to be disabled and why.
This will help keep people from re-enabling them by mistake, and it will also allow you to easily reconfirm the list
if you upgrade, patch, or reinstall software, which may change the chkconfig status of services.

page 180

Building Internet Firewalls

On other versions of Unix, you will have no choice; you will have to comment out or delete the lines that start
services you don't need. You will frequently see services that are started after a check for some configuration file.
If you don't want the service to run, comment out the entire code block. Don't leave the code active simply
because the configuration file doesn't currently exist and the service won't currently be started. Someone or
something might create the configuration file some time in the future. Commenting out the entire thing is more
secure and less risky.

Commenting out lines is preferable to removing them because it leaves evidence of your intent. When you
comment something out, add a comment about why you have commented it out. If you delete something,
replace it with a comment about why you have deleted it. Make sure that the next person to look at the files
knows that you got rid of things on purpose and doesn't helpfully "fix" it for you. If you comment out a call to
another script, add a comment in that script indicating that it's not supposed to be started and why. Renaming it
or commenting out its contents are also good ways to help ensure that it won't accidentally reappear.

For every service that you leave enabled, apply the same line-by-line procedure to the service's configuration
files. Obviously, you want to pay particular attention to inetd 's configuration file. On most systems, this file is
called /etc/inetd.conf. (On other systems, this file might be called /etc/servers or something else; check your
manual pages for inetd). If you have a daemon-watcher and have decided to leave it on, its configuration files
are also particularly important.

This process will need to be repeated if you install new software or a patch, because sometimes the startup
scripts are modified or replaced. Installation scripts often assume that you will want to run all the software you
are installing, and will helpfully turn it on for you, in its default, insecure configuration, even when you are
upgrading an old installation on which it was turned off. You will want to have good documentation about your
desired configuration to refer to when you install upgrades, patches, or new software. In any case, you should
certainly disconnect the system from any hostile networks before performing any software installation or
patching.

11.3.3 Which Services Should You Leave Enabled?

Certain services are essential to the operation of the machine, and you'll probably need to leave these enabled,
no matter what else the machine is configured to do. On a Unix system, these processes include:

init, swap, and page

The three kernel pseudo-processes used to manage all other processes.

cron
Runs other jobs at fixed times, for housekeeping and so on.

syslogd
Collects and records log messages from the kernel and other daemons. If the sys/log daemon is only
going to send messages, check to see if it is possible to disable the ability to log remote syslog events.

inetd

Starts network servers (such as telnetd and ftpd) when such services are requested by other machines.

In addition, you'll obviously need server processes for the services that you've decided to provide on your bastion
host (e.g., real or proxy Telnet, FTP, SMTP, and DNS servers). You will also need servers for any protocols you
intend to use for remote administration of the machine (usually, sshd).

You should audit the configuration files for the services you leave enabled, to be sure that they are configured
appropriately. The manual page for a service is a good place to find out which configuration files are used. In the
preceding list, we have already discussed the configuration files for syslogd and inetd. Checking the configuration
files for the cron service is frequently overlooked. Vendors typically provide a number of housekeeping functions
that are not suitable for a bastion host. In particular, you should check for places where the system log files are
rotated. You will typically find that cron will attempt to rotate log files on a weekly basis and may discard
information older than two weeks. We suggest that you check these housekeeping rules and bring them into
alignment with your policy on how long to keep log files.

page 181

Building Internet Firewalls

11.3.4 Specific Unix Services to Disable

You will want to disable all unneccessary services, but some are particularly dangerous and particularly unlikely
to be needed on a firewall.

11.3.4.1 NFS and related services

Start with NFS and related network services. You aren't going to need them. No internal machine should trust
your bastion host enough to let the bastion host mount the internal machine's disks via NFS. Besides that, there
probably won't be anything on the bastion host that you'll want to export via NFS. NFS is very convenient, but it's
incredibly insecure.

NFS services are provided by a whole set of servers; the specific set of servers, and the names of the individual
servers, varies slightly from one version of Unix to the next. Look for these names or names like them:

e nfsd

e biod

e mountd

e statd

e Jockd

. automount

® keyserv

. rquotad

. amd

Most of these services are started at boot time from the /etc/rc files, although some are started on demand by
inetd. mountd is somewhat peculiar in that it is often started at boot time and is listed in the inetd configuration
file, apparently so that it will be restarted if the copy that was started at boot time crashes for some reason.

11.3.4.2 Other RPC services

You should also disable other services based on the Remote Procedure Call (RPC) system. The most critical of
these is NIS, a service that is provided by the following servers:

° ypserv
. ypbind
. ypupdated

These servers are generally started at boot time from the /etc/rc files.

Also disable these RPC-based services:

. rexd (the remote execution service, started by inetd)

. walld (the "write all", or wall daemon, started by inetd)

All RPC-based services depend on a single service usually called portmap (on some machines it is known as
rpcbind). If you've disabled all of the RPC-based services, you can (and should) also disable the portmap service.
How can you tell if you've disabled all the RPC-based services? Before disabling portmap, but after disabling what
you think are the rest of the RPC-based services, reboot the machine and then issue a rpcinfo -p command. If the
output of that command shows only entries for portmap itself, this means that no other RPC services are running.
On the other hand, if the output shows that other RPC services are still running, you will need to investigate
further to determine what and why. If you decide to provide any RPC-based services, you must also provide the
portmap service. In that case, consider using Wietse Venema's replacement portmap, which is more secure than
the versions shipped with most Unix systems (see Appendix B for information on where to find it).

page 182

Building Internet Firewalls
11.3.4.3 Booting services

Your bastion host should probably not provide booting services; nothing should trust the host enough to be
willing to boot from it. This means that, in most cases, you should disable these services:

o tftpd

e bpootd

. bootpd
. dhcpd

11.3.4.4 BSD "r" command services

These should all be disabled. The servers for these services are typically named rshd, rlogind, and rexecd and are
typically started by inetd. The remaining "r" services are based on them and will not run without them.

11.3.4.5 routed

Another server that your bastion host probably doesn't need is routed. This server is started at boot time from
the /etc/rc files, listens to routing information broadcasts, and updates the kernel routing table based on what it
hears.

You probably don't need routed on your bastion host because your bastion host is probably located on the
perimeter of your network, where routing should be fairly simple. A more secure approach is to create static
routes pointing to your internal networks and a default route pointing to your Internet gateway router. You do
this at boot time by adding appropriate "route add" commands to the /etc/rc files.

If you must do dynamic routing on your bastion host, obtain and use a routing daemon that will provide some
sort of authentication on the source of routing information. Either it should filter routes based on their source
address, or it should support an authenticated routing protocol like RIP v2. If you want to use an authenticated
routing protocol, be sure that your routers also support it; if you want to filter on source address, be sure to
actually configure the daemon to do so. Traditionally, the most popular routing daemon of this type has been
GateD, but others are now available, including Zebra. Appendix B, has information on how to get these daemons.

11.3.4.6 fingerd

The finger server supplies information about existing accounts and accounts on Unix systems. This server is
started on demand by inetd. The information provided by fingerd can be valuable to attackers; it tells them
information about potential targets, such as:

Which accounts exist
This tells them which accounts they should try to guess passwords for.
Personal information about the people with accounts
This tells them what passwords to start guessing with.
Which accounts are in use
This tells them which accounts should be avoided, at least until they're not in use.
Which accounts haven't been used lately

This tells them which accounts are good targets for attack because the owners probably won't notice
that the accounts are being used.

page 183

Building Internet Firewalls

On the other hand, Internet users often use finger (the program that talks to your fingerd daemon) quite
legitimately. finger is helpful in locating email addresses and telephone numbers. Instead of simply disabling
fingerd, you might want to replace it with a program that obtains information from a more basic source of contact
information for your site; the information might include:

° Your main phone number
e Who to contact if they have questions about your site's products or services

. Sample email addresses if standardized aliases such as Firstname_Lastname are used

. Who to contact in case of network or security problems involving your site

You can provide this kind of generic information to anybody who uses finger to check on your site, regardless of
what specific information they've requested. The easiest way to accomplish this is to put the information in a file
(for example, /etc/finger_info) and then replace the part of the /etc/inetd.conf entry for fingerd that specifies the
program to run with something like /bin/cat /etc/finger_info. Doing this causes the contents of the
/etc/finger_info file to be returned to anyone contacting your fingerd server.

For example, here is the old /etc/inetd.conf line from Great Circle Associate's system:

finger stream tcp nowait nobody /usr/Tibexec/fingerd fingerd

and here is the new /etc/inetd.conf line:

finger stream tcp nowait nobody /bin/cat cat /etc/finger_info

and here are the contents of the /etc/finger_info file:

Great Circle Associates

Phone: +1 415 555 0841

Email: Info@GreatCircle.COM

For more information, or to report system problems, please
send email or call.

11.3.4.7 ftpd

If you're going to provide anonymous FTP service on your bastion host, you need to reconfigure the FTP server
appropriately. You should replace the ftpd program with one more suited to providing anonymous FTP service
than the standard ftpd programs shipped by most Unix vendors. (See Chapter 17, for information about providing
anonymous FTP service.)

If you're not going to provide anonymous FTP, you can probably disable your FTP server entirely; it's started on
demand by inetd.

Even if you've disabled the FTP server on your bastion host, you can still use the FTP client program (typically
called simply ftp) on the bastion host to transfer files to and from other systems. You'll just have to do the work
from the bastion host, instead of from the other systems.

11.3.4.8 Other services

There are lots of other services you probably don't need and should disable. Although the specific list depends on
your own site's security policy and needs, and on the platform you're using, it should probably include the
following:

uucpd

UUCP over TCP/IP
rwhod

Sort of like fingerd, in that it tells you who's currently logged in on the system
Ipd

The BSD printer daemon or other printing services

page 184

Building Internet Firewalls

11.3.5 Running Services on Specific Networks

In some cases, you want to run some services that need to respond to only one network on a machine with
multiple network interfaces. You may be able to limit those services to just the networks you wish to use them
on. Under Unix, this usually means specifying which IP addresses and/or network interfaces you want the service
to respond to as part of the service's startup options; this will be slightly different for every service, and not all
services provide this facility.

11.3.6 Turning Off Routing

As we discussed in Chapter 10, most machines with more than one network interface will automatically attempt
to route traffic between interfaces. You do not normally want a bastion host to do this. If you are not trying to
configure a bastion host that is also a router, you should turn off routing, which is a three-part process:

1. Turn off services that advertise the system as a router.
2. Turn off IP forwarding, which actually does the routing.

3. If necessary, turn off source routing separately.

We discussed turning off routing services in Chapter 10. If you have decided to leave these services running
(perhaps you are running routed or GateD because the bastion host is in a complex and changeable routing
environment), you will need to explicitly configure these services not to advertise the machine as a router.

You will also need to turn off IP forwarding. Turning off routing services merely keeps the machine from
advertising itself as a router; it doesn't keep the machine from routing packets. Preventing the machine from
routing packets requires modifications to the kernel. Fortunately, these days most Unix vendors provide
supported parameters for turning off IP forwarding. Even for vendors that don't, it's about as easy as kernel
patches get on most machines: turning off IP forwarding requires a change in the value of only a single kernel
variable. You need to consult your vendor to find out how to turn off IP forwarding on your machines.

On some machines, turning off normal IP forwarding will not also turn off source routing; it will still be possible
for an attacker to get packets through the machine. (Source routing is discussed further in Chapter 10.) If you
are not screening out all source routed packets before they reach the bastion host, you should consult your
vendor to find out how to disable source routing in addition to normal IP forwarding.

11.4 Installing and Modifying Services

Some of the services you want to provide may not be provided with your operating system (for example, web
servers generally are not). Others may be provided in versions that are inappropriate for use in a secure
environment or that are missing features you probably want (for example, stock fingerd and ftpd). Even those
few remaining services that are provided, secure, and up to date in your vendor's operating system release
should be protected with the TCP Wrapper package or the netacl program from TIS FWTK to improve security and
provide logging. (Although TCP Wrapper and netacl will increase security, they're not perfect; they rely on the
source IP address to identify hosts, and IP addresses can be forged.)

For detailed information about individual services, including advice on selecting HTTP, NNTP, and FTP servers, see
the chapters in Part III.

Whatever services you do leave enabled should also be protected to the extent possible by the TCP Wrapper
package or the netacl program, as we describe in the following sections. For example, you might want to set up
your bastion host so that it accepts Telnet connections from only one specific machine, such as the workstation
you normally use.

11.4.1 Using the TCP Wrapper Package to Protect Services

The TCP Wrapper package, written by Wietse Venema, monitors incoming network traffic and controls network
activity. It is a simple but very effective piece of publicly available software set up to run whenever certain ports
(corresponding to certain services) are connected. TCP Wrapper provides simple access control list protection, as
well as improved logging, for services that are started by inetd.

page 185

Building Internet Firewalls

Using the TCP Wrapper package is easy. Here's what you do:

1. Install the package and set up a pair of simple access control files that define which hosts and
networks are allowed to access which services.

2. Reconfigure your inetd to run the main TCP Wrapper program (called tcpd) instead of the "real"
server.

3. When a request for a service comes in, inetd starts tcpd, which evaluates the request against the TCP
Wrapper configuration files. This program decides whether or not to log the request, and whether or
not to carry out the request.

4. If tcpd decides that the request is acceptable, it starts the "real" server to process the request.
11.4.1.1 TCP Wrapper example

For example, if you want to allow Telnet connections from a specific host (e.g., 172.16.1.2) to your machine, but
deny Telnet connections from all other hosts, you would change the line for telnetd in your /etc/inetd.conf file to
say something like:

telnet stream tcp nowait root /usr/local/Tibexec/tcpd telnetd

You would also need to create an /etc/hosts.allow file that tells the TCP Wrapper package (the tcpd program)
which host to allow connections from:

telnetd : 172.16.1.2

And finally, you'd need to create an /etc/hosts.deny file to tell the TCP Wrapper package to deny all connections
from all hosts by default, and to send email to root about each probe:

ALL : ALL : (/usr/local/etc/safe_finger -1 @%h | \
/usr/ucb/mMail -s "PROBE %d from %c" root)&

Note that the /etc/hosts.deny file only applies to services protected by the TCP Wrapper package (that is,
services for which you've configured inetd to run tcpd instead of the real server). If you don't tell inetd to run the
TCP Wrapper package (the tcpd program) for a given service, then the TCP Wrapper package won't do anything
regarding that service.

Despite its name, the TCP Wrapper package supports UDP-based services in addition to TCP-based services. Be
aware, however, that the TCP Wrapper package can only control when to start UDP-based servers; it cannot
control access to those servers once they're started, and many UDP-based servers are designed to process
requests for some period of time beyond the initial startup request. Many eventually time out and exit, but once
they've been started through a legitimate request, they're vulnerable to illegitimate requests.

In addition, TCP Wrapper relies on the source IP address for authentication. It is relatively difficult to spoof

source IP addresses when TCP is used, because the connection setup process requires a dialog between the
source and the destination. It is much easier to spoof source IP addresses when using UDP, so TCP Wrapper
provides less protection.

11.4.1.2 Using netacl to protect services

The netacl component of TIS FWTK (described in some detail in Chapter 9) provides much the same capability as
the TCP Wrapper package. To implement the same example as the one shown in the previous section (except for
the ability to trace probes from unauthorized systems) using netac/, you would change the line for telnetd in your
/etc/inetd.conf file to:

telnet stream tcp nowait root /usr/local/Tlib/netacl telnetd

Then, you would add the following lines to your FWTK netperm configuration file (wherever that is):

netacl-telnetd: permit-hosts 172.16.1.2 -exec /usr/Tibexec/telnetd

page 186

Building Internet Firewalls

11.4.2 Evaluating and Configuring Unix Services

If you need to install a new service on a bastion host, you will want to secure it as much as possible. You should
not assume that services are safe; reputable software companies often ship unsafe packages, and in many cases,
their worst problems are easy to find and repair.

Install a test copy of the service on a machine that is otherwise stable and will not change while you are doing
the installation. Use find to identify all the files that were changed during the installation, and check to make sure
that those files are acceptable. In particular:

. Make sure that file permissions are as restrictive as possible; arbitrary users shouldn't be able to write
to any executables, configuration files, or temporary directories. If possible, limit read and execute
permissions as well.

. Closely check all programs that have the setuid bit set, particularly if they are setuid to root. If they
can run without setuid, or if it is at all possible to avoid running them, remove setuid permissions.

° If the program installs a user account, make sure that the password is set to something other than the
program's default. If possible, change the account name to something other than the program's
default; attackers will often focus on well-known account names.

. Make sure that all programs are run by users with appropriate permissions. Do not run services as
root unless they need to be run as root (for instance, to use ports below 1024). If you must run
services as root, try to run them under chroot to control what they can access.

. If you add special user accounts for services, make sure that they cannot be used as normal login
accounts; both the password and shell entries should be invalid, so that attackers cannot use the
accounts as entry points.

. Check any additions the program has made to startup files or crontab files.

11.5 Reconfiguring for Production

Now it's time to move the machine from the configuration that was useful to you when you were building it to the
best configuration for running it. You'll need to do several things:

1. Reconfigure and rebuild the kernel.
2. Remove all nonessential programs.

3. Mount as many filesystems as possible as read-only.
11.5.1 Reconfigure and Rebuild the Kernel

The first step in this phase of building your bastion host is to rebuild the operating system kernel to remove
kernel capabilities you don't need. This may sound intimidating, but it's generally a relatively straightforward
operation; it needs to be, because you'll be using the same capabilities you'd use to install a new type of device
on your system. Every Unix system, as shipped, contains some form of configuration support (they range
considerably in how kernel reconfiguration is supported and in what you can do). Besides reducing the size of
your kernel (and thereby making more memory available for other purposes), rebuilding the kernel denies to
attackers the chance to exploit these capabilities.

Some capabilities are particularly dangerous. In particular, you should probably remove the following capabilities
or device drivers:

° NFS and related capabilities

e Anything that enables network sniffing - for example, Network Interface Tap (NIT) or Berkeley Packet
Filter (BPF)

Although NIT and BPF are provided for testing and debugging purposes, they are frequently used by attackers.
NIT and BPF are dangerous because they let the machine grab all packets off the Ethernet it's attached to,
instead of only the packets addressed to it. Disabling these capabilities may prevent you from using the machine
as a packet filtering system, so you may not be able to delete them in all architectures.

page 187

Building Internet Firewalls

If your bastion host is a dual-homed host, this is the time to disable IP forwarding.

You have to be more careful when you disable kernel capabilities than when you disable services started by inetd
or at boot time from the /etc/rc files (as described earlier). There are a lot of interdependencies between kernel
capabilities. For this reason, it's sometimes hard to determine exactly what a given capability is used for. The
consequences of disabling a capability that is actually needed can be severe - for example, the new kernel might
not boot.

Make sure you follow your vendor's instructions for building and installing new kernels. Always keep a backup
copy of your old kernel. If you have a backup, you can boot from it if you find out that something is wrong with
the new kernel. Some boot systems need all the kernels to reside in the same partition, or they may need to be
configured with the names of all the kernels you wish to boot. Either way, be sure that you have a backup kernel,
that it's possible to boot that kernel, and that you know how to do so, all before you change the working kernel.

When you know you can safely reboot the machine, go through the kernel configuration files the same way you
went through the startup files, checking every single line to make certain that it's something you want. Again,
watch for places where one configuration file contains another, and check your documentation to be sure that
you've looked at all the configuration files that are consulted. Often there is one file for including device drivers
and one or more for parameters; IP forwarding will be in the latter.

Once you've got a working kernel, you'll probably want to delete or encrypt your old "full function" kernel.
Replace it with a backup copy of the working minimal kernel. Doing so will keep an attacker who somehow
manages to break into your machine from simply using that old kernel to reboot, and thereby restore all of the
services you so carefully disabled. For similar reasons, you'll probably also want to delete the files and programs
needed to build a new kernel.

If your kernel uses loadable modules, it may be difficult to determine when they're used. You will want to delete
or encrypt all the ones that you don't want used, but because they're not always explicitly loaded, you may not
know which those are. Keeping an alternate boot medium handy, try moving them out of the directory for
loadable modules. Run the machine through its paces before you finally remove or encrypt them.

Beware! Your vendor may have provided copies of "generic" kernels (which typically have every possible
capability enabled) in unexpected locations for use during the installation of the machine and its (nonexistent)
client machines. Poke around in all the directories where installation files are kept and all the directories for
clients. The documentation generally tells you where client kernels are but rarely tells you about the internals of
the install process. Check the documentation for disaster recovery advice, which may helpfully tell you where to
locate spare kernel images.

11.5.2 Remove Nonessential Programs

The next step is to remove all of the programs that aren't essential for day-to-day operation. If a program isn't
there, an attacker can't exploit any bugs that it might contain. This is especially true for setuid/setgid programs,
which are a very tempting target for an attacker. You should remove programs you normally think of as being
essential. Remember that the bastion host is purely providing Internet services; it does not need to be a
comfortable environment in which to work.

Window systems and compilers are examples of major programs you can get rid of. Attackers find these
programs very useful: window systems are fertile ground for security problems, and compilers can be used to
build the attacker's own tools. Graphical system administration programs are also usually powerful, vulnerable,
and frequently unnecessary; however, on some platforms, they may be impossible to remove. Documentation
and help systems (including manual pages) are at best an education for attackers, and at worst another source of
vulnerabilities. Attackers have been known to hide programs and files among manual pages. Make sure that you
have the information internally, but remove it from all bastion hosts.

Before deleting programs like compilers, make sure you've finished using them yourself; make sure you've built,
installed, and tested everything you're going to need on this machine, such as the tools for auditing the system
(discussed in Section 11.6, later in this chapter).

Instead of simply deleting key tools you'd expect an attacker to use, such as the compiler, you might want to
replace them with programs that raise an alarm (for example, sending electronic mail or tripping your pager)
when someone tries to run them. You might even want to have the programs halt the system after raising the
alarm, if you believe it's better for the machine to be down than under attack. This is a prime way to humiliate
yourself, however; you yourself are probably the one person most likely to forget where you are when you try to
run a forbidden command. It's also a good way to set yourself up for denial of service attacks.

page 188

Building Internet Firewalls

You'll want to do two scans looking for things to delete:

1. Walk through all the standard directories for binaries on your system (everything that's in root's path
or in the default user path). If you're unsure whether a program is needed, turn off execute
permission on it for a while (a few days) before you remove or encrypt it and see what happens. You
may also want to run the machine for a while before you do the scan and check the access times on
files to see if they've been used.

2. Use find to look for every file on the system that has the setuid or setgid bit turned on. The arguments
to find differ radically from system to system, but you will probably want something like this:

find / -type f \(-perm -04000 -o -perm -02000 \) -1s

3. Some versions of find provide special primitives for identifying setuid and setgid files.
If your operating system provides a list of installed packages, you'll also want to look at that list.
11.5.3 Mount Filesystems as Read-Only

Once you've configured a bastion host, you don't want it to change, so you should mount as many filesystems as
possible as read-only. How much of the machine you can protect this way will depend on the version of Unix that
you're running and the services that you're providing. A machine that you're using as a packet filtering router
may be able to run with all of its disk space protected; a machine that's providing mail service will need space to
keep temporary files in, if nothing else.

On a service host, you have to provide a certain amount of writable filesystem space for things like scratch space,
system logs, and the mail spool. You might be able to use a RAM disk for this; however, you'll have to be sure
that your operating system supports it, that you have enough RAM, and that you think you can afford to lose the
contents of the RAM disk (for example, email in transit between internal hosts and the Internet) whenever your
machine reboots.

With most versions of Unix, you'll also have to either provide writable disk space for memory swapping or turn off
swapping. Many versions of Unix do not allow you to turn off swapping; however, they will usually allow you to
use a separate disk for swap space, and that disk can safely be left writable. Using a RAM disk will increase your
memory usage to the point where you will probably need swap space.

Systems based on BSD 4.4-Lite (for instance, current releases of NetBSD, FreeBSD, and the BSDI product) have
a new immutable attribute that can be set on a per-file basis. If a file is marked "immutable", the file cannot be
changed, not even by root, unless the system is running in single-user mode. If your operating system provides
this capability, use it to protect your programs and configuration files from tampering by an attacker. (We
recommend this approach only if you cannot use hardware write protection, or as an additional layer of security
to use with hardware write protection. Because it's implemented in software, it is more likely to be
compromisable.)

11.6 Running a Security Audit

Several very good automated auditing packages are freely available on the Internet. The four most commonly
used are these:

COPS
The Computer Oracle and Password System, developed by Dan Farmer and Gene Spafford
SATAN

Security Administrator's Tool for Analyzing Networks (also known as SANTA), developed by Dan Farmer
and Wietse Venema

Tiger
Developed as part of the TAMU package by Texas A&M University
Tripwire

Developed by Gene H. Kim and Gene Spafford

page 189

Building Internet Firewalls

COPS and Tiger both check for well-known security holes on the host they are run on. There is significant overlap
in what COPS and Tiger check; however, they're both free, so it's a good idea to obtain and run both of them to
get the best possible coverage. Tripwire is a filesystem integrity checker. It is strictly a tool for dealing with
checksum databases; it is much better at this than either COPS or Tiger (which both have basic checksum
database capabilities) but has no ability to check for well-known security holes. SATAN is a network-based
application which tests hosts other than the one it is running on. These packages are independent of each other;
there's nothing to prevent you from using all of them in combination on your bastion host, and that would
probably be a good idea. Appendix B, gives you information on how to get all four packages.

Because the well-known security holes tend to be somewhat operating system-specific, the effectiveness of the
packages that check for these security holes is very dependent on which operating system you have, and which
version of the operating system it is. If it's an operating system and version the package knows about, that's
great. If it isn't, then the package has to grope around blindly, trying to guess what holes might exist.
(Fortunately, attackers will usually have the same problem, if not to the same extent.) In some cases, packages
will report holes that don't exist when they're run on unfamiliar systems.

Commercial packages that perform similar functions are now available. In general, the security scanning products
are similar to PC virus software in that they require periodic updates in order to keep up with the latest
vulnerabilities.

When you are doing security audits, you should be sure to use an appropriate checksum program. The standard
Unix checksum programs (/bin/sum, for example) use a 16-bit cyclic redundancy check (CRC) algorithm that is
designed to catch a sequence of random bit errors during data transfers. This does not work for detecting
unauthorized changes to files because it is possible to reverse the CRC algorithm. This is known to attackers, and
they have programs that manipulate the unused bytes in a file (particularly an executable binary file) to make the
checksum for that file come out to whatever they want it to be. They can make a modified copy of /bin/login that
produces the same checksum, and sum will not be able to detect any difference.

For real security, you need to use a "cryptographic" checksum algorithm like MD5 or Snefru; these algorithms
produce larger and less predictable checksums that are much more difficult to spoof. The COPS, Tiger, and
Tripwire auditing packages mentioned earlier all include and use such algorithms in place of the normal Unix
checksum programs.

The IRIX operating system from Silicon Graphics uses a process called re-quickstarting (RQS) to precalculate
data needed for loading binaries and to speed up start time. RQS is run automatically as a part of most
installations and can update every system binary. This should not be a problem on a bastion host, where
software should not be installed regularly in any case. However, you should be aware that small installations may
have wide-ranging effects and will require the recalculation of all checksums.

page 190

Building Internet Firewalls

Chapter 12. Windows NT and Windows 2000 Bastion Hosts

This chapter discusses the details of configuring Windows NT for use in a firewall environment, building on the
principles discussed in Chapter 10. You should be sure to read both chapters before attempting to build a bastion
host. This chapter is not a complete introduction to Windows NT security, which is a complex subject. Instead, it
attempts to cover those issues that are specific to bastion hosts, and that are not covered in most Windows NT
security texts. As usual, we use the term "Windows NT" for both Windows NT and Windows 2000, except where
we explicitly say otherwise.

Just as with Unix, it's impossible to give complete instructions on how to configure any given machine; the details
vary greatly depending on what version of Windows NT you're running and exactly what you intend to do with the
machine. This chapter is intended to give you an outline of what needs to be done, and how to do it.

12.1 Approaches to Building Windows NT Bastion Hosts

There are two major approaches to building bastion hosts under Windows NT. As usual, people hold very strong
opinions about which one is correct.

One method of building Windows NT bastion hosts is to take the same approach that we recommend for Unix
machines: you disable all normal administration tools, remove the machine from all forms of resource and
information sharing, and run it as an island unto itself, where nothing is quite the same as it is on the mainland.
This is a very secure approach, but it makes the machines quite difficult to administer.

The other method of building Windows NT bastion hosts is to use a split administrative network, as described in
Chapter 6, and build the machines as relatively normal Windows machines that can participate in domains, use
standard administrative tools, and otherwise behave pretty much the way everybody expects. In this
configuration, the machine has two network interfaces, and services are disabled only for the externally visible
interface. The machine is configured with higher security than normal but not with the extreme measures that
make it impossible to administer normally.

Partisans describe the first configuration as "impossible to use" and the second as "impossible to secure". The
truth is, of course, somewhere between the two. The first configuration can be used and administered, but it's
difficult and peculiar. It's not appropriate for machines that need to change often and provide large numbers of
services. The second configuration can be secured, but it's relatively fragile; small accidents can make services
available on the external interface. It's not appropriate for the highest security environments, or environments
where there are no other protections for the machines.

This chapter is primarily aimed at the first kind of configuration. This is the more extreme configuration, and the
one which is not adequately covered by other sources of information. If you want to build the second kind of
configuration, you will follow the same basic procedures we describe, but you will leave more services enabled.

12.2 Which Version of Windows NT?

Once you have decided to use Windows NT, you have to decide which version to run. In most cases, you will
want to use a version designed to be a server: Windows NT 4 Server rather than Windows NT 4 Workstation,
Windows 2000 Server rather than Windows 2000 Professional. Although the differences are not always gigantic,
versions intended to be servers support more network connections and more powerful hardware, and often come
with more software. In addition, machines that are part of a firewall are, in fact, servers, and Microsoft will
attempt to discourage you from running Workstation on them by means that vary from release to release. Don't
assume that software intended for workstations is a long-term solution just because it will meet your needs
today; if you need to install new software, upgrade your hardware, or upgrade your operating system, you may
well find yourself forced to move to versions intended for servers.

You will want the most recent, stable, fully released version of Windows NT. Because Microsoft tends to have very
long prerelease periods (beta versions of the operating system now called Windows 2000 were in circulation for
at least two years before the final release), it becomes tempting to avoid future upgrades by using prerelease
operating systems. Don't do it. It isn't going to significantly improve the upgrade situation, and it will mean that
you're running critical systems on unsupported software.

In addition to the Windows NT software itself, you will want to get the most recent version of the relevant
Resource Kit, which contains useful documentation and tools. These resources are essential for all Windows NT
administrators but will be even more reassuring if you come from a Unix background, since they include many
command-line oriented tools that will be familiar to Unix people.

page 191

Building Internet Firewalls

12.3 Securing Windows NT

Once you have chosen a machine, you need to make sure that it has a reasonably secure operating system
installation. The first steps in this process are the same as for any other operating system and were discussed in
Chapter 10. They are:

1. Start with a minimal clean operating system installation. Install the operating system from scratch
onto empty disks, selecting only the subsystems you need.

2. Fix known bugs. Consult CERT-CC, Microsoft, your hardware vendor, and any other sources of security
information you may have to make certain that you have all appropriate hot fixes and service packs
installed. (Note that you may need to reapply hot fixes and service packs after you install software.)

3. Use a checklist to configure the system. Microsoft's security web site, located at
http://www.microsoft.com/security,provides links for checklists.

12.3.1 Setting Up System Logs Under Windows NT

Under Windows NT, logging is done by the Event Logger, and logs are read with the Event Viewer. This poses a
number of problems:

e The Event Logger keeps information only locally and doesn't support remote logging.

° No way is provided to reduce the amount of information in the active log automatically without
destroying information.

e The Event Viewer doesn't provide a very flexible or powerful way of looking at events.

By default, Windows NT keeps a log of a fixed size, and when the log is full, old events are deleted to make room
for new ones. This is not a secure configuration; an attacker can create a lot of unimportant events to force
crucial ones to be removed from the log. You'll notice that something's wrong, but you won't know what.

You can set up Windows NT so that it does not delete old items when the log fills. However, if you do so, it will
simply stop logging items when the log fills, which is even worse for security. If you're really confident about your
ability to keep the log small by hand, you can set the machine up so that if the log fills up, it will not only stop
logging, it will also shut the machine down. This approach is very radical; it does not do a graceful shutdown but
simply crashes, probably losing information in open files. On the other hand, as long as the machine isn't set to
autoboot, it will make sure that you don't lose logging information.

If you are very careful, you can get an Event Logger set up that is relatively secure but that requires considerable
maintenance. To do so, you'll need to configure the Event Logger for a large log that does not overwrite old
events, have it shut down the machine if the log fills, turn off autobooting, and then regularly save the log to
removable media and clear the logs. This still leaves you vulnerable to denial of service attacks and to attackers
who modify the logs before you copy them. You can add some security by changing the location to which Event
Logger writes and putting the log on write-once media.

To keep events from being overwritten, use the Event Viewer, go to the Log menu, select Log Settings, and select
Do Not Overwrite Events (Clear Log Manually). To shut down the machine when the log fills up, set the registry
key

\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\CrashonAuditFail

to 1. To change the location where files are stored, look in:

\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\EventLog

You will find an entry for each of the three Windows NT logs (application, system, and security), each of which
has a key named "File". Change the value of this key to change the files used to store event logs.

You are better advised to use an add-on product to copy events out of the Event Logger as they are logged. You
can then let old events be deleted, since you'll be working from the other copies. Microsoft sells a program that
turns events into SNMP traps as they are logged as part of the System Management Service; you can also get
programs that will make syslog entries for events (see Chapter 11, for more information about sys/og). The
Windows NT Resource Kit provides a utility called dumpel that will dump the event log to a text file, which can
also be handy for saving event log information. None of these systems are perfect; they have a significant risk of
losing or duplicating events. You will therefore want to protect the original event logs as well.

page 192

http://www.microsoft.com/security,provides

Building Internet Firewalls

Although Microsoft does not provide tools for rotating event logs, there is a programming interface to the event
logger that would allow you to write your own. If you do this, you should still leave the machine set to crash
when the log fills, so that you are protected in case of rotation problems.

You will also want to be careful about the amount of logging you do. Logging takes a significant amount of effort
under Windows NT, and logging large numbers of events can noticeably slow down a server, particular if you are
running add-on software that requires every event to be logged twice. The auditing system can log immense
amounts of data if you are incautious about what you turn on.

12.4 Disabling Nonrequired Services

When you have a secure machine, you can start to set up the services on it. The first step is to remove the
services that you don't want to run. Consult Chapter 10, for more information about deciding which services you
don't want to run. The main idea is to remove all services that you don't actually need for the machine to do the
work it's designed to do, even if they seem convenient or harmless.

12.4.1 How Are Services Managed Under Windows NT?

There are two parts to service management. First, the administrative interfaces, which you use to install, remove,
and configure services, and to manually start and stop them. Second, the underlying mechanisms, which
automatically handle services and make them continuously available. You do not normally need to know about
these mechanisms in order to administer a machine. We discuss them here for two reasons:

° If you end up building a particularly specialized bastion host, you may need a very fine degree of
comprehension and control over the services, in which case you will need this information.

. People who are accustomed to administering Unix hosts expect to have this level of information, and
will attempt to control services at this level, only to become confused and hostile when they run into
some of the more obscure side effects of the differences between the two operating systems.

Under Windows NT, the tool that is normally used to install services that are provided by Microsoft is the
Networking control panel. Services that are provided by other vendors will come with their own installation
programs. Some services are configured from the Networking control panel, while others have their own
configuration and management programs.

The tool that is used to manually start and stop services is the Services control panel. The Services control panel
can also set up some generic configuration information for services, but any service-specific parameters have to
be managed separately. Windows 2000 gives more information and control from the Services control panel than
Windows NT 4; a number of things are accessible only from the registry in Windows NT 4 but are nicely
presented in the user interface in Windows 2000 (for instance, information about which services depend on each
other).

The rest of this section discusses the underlying mechanisms; you may feel free to ignore it if you do not need
control of services beyond that presented by the user interface.

Services under Windows NT are always started by the Service Control Manager (SCM). (The SCM is unfortunately
completely different from the user-visible Services control panel.) Services can be started as part of the boot
process or on demand. Services started during boot can start at any time from the very beginning (for services
with a "boot" startup type) to after users are already able to log in (for services with an "autostart" type). While
Unix boot mechanisms specify an explicit order for services to start up in, Windows NT services specify their
dependencies and type, and the operating system figures out what order to start them in. This is in general more
effective at letting you add new services and get them started correctly but makes it harder to calculate the order
that services actually start in.

"On demand" can also cover a range of situations. Most commonly, it means that the service starts when a user
starts an application that needs the service.??> "On demand" services can also be started explicitly from the
Services control panel, or any other application that talks to the Service Control Manager (for instance, the SQL
Service Manager). Services that are RPC providers (directly or through DCOM) will be started if there is a request
for them. Finally, services can have dependency information, and a demand service can be started because a
service that depends on it attempts to start. This can create a situation where a service is marked as demand but
actually starts at boot time, because a service that depends on it is marked as autostart.

22 Note that this depends on the application explicitly attempting to start the service; "on demand services" will not be started simply because
an application demands them, despite the name.

page 193

Building Internet Firewalls

Not everything that you think of as a service will appear in the Services control panel. Some things that behave
like services are implemented entirely or in part as drivers that are loaded into the operating system and do not
run as separate processes at all. These are not actually services from the operating system's point of view, and
they are listed in the Devices control panel instead of the Services control panel. They are, however, listed as
services in the registry, with registry entries in the following:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services

This lists all services in alphabetical order, and you will have to look at the value for "Start" to see if they are
turned on and when they start up.

Not everything in the Services section of the registry is a network server; the registry also includes normal device
drivers and filesystem drivers in this section, and some things that function as servers in the context of the local
machine function as clients in the Internet context. That is, they provide a centralized service for programs
running on the local machine, but they do not accept requests from other hosts. For instance, a DHCP service is
installed by default; it acts as a client, requesting information from a DHCP server. However, it then distributes
this information to other processes on the machine, which makes it a service from the operating system's point of
view. There is no straightforward way to tell whether something is a purely local service or a network service, or
whether something marked as a filesystem driver is a genuine filesystem driver or part of a network service.

Just to add a final note of confusion, there is no need for one Windows NT service to be implemented as one
executable. For performance reasons, multiple Windows NT services may be implemented in the same executable
(for instance, the simple TCP/IP services, DHCP, and Berkeley LPD print service are all in the same executable).
What the executable does will be controlled by the registry entries for the relevant services. It's also possible for
one service to be made up of more than one file, with one running as a kernel driver for maximum speed and the
other running as a normal service to avoid burdening the kernel too far. And, in fact, it's not at all uncommon for
both these things to happen at once, so that a service is split into a kernel driver and a standard service, and the
standard service shares an executable with several others.

Note that the kernel drivers by themselves do not provide services. They are simply an efficient way of providing
data to the actual servers. Unix people who are attempting to disable services on Windows NT often disable the
actual service, note that the port is not listed as open in netstat, and then become severely distressed when port
scans show that something is listening to the port. This is a symptom of split service that's using a kernel driver,
not of some horrible secret way that the operating system is preventing you from turning off the server and then
lying about it. The server is off; the port is not bound; but the kernel driver is picking up the data and throwing it
away. No significant security problem is involved, and if you wish to get rid of the apparent problem, you can use
the Devices control panel to disable the relevant device.

The Resource Kit provides a command named sc that presents information about the running services and
drivers; this gives you a much more usable interface than the registry and removes the large amounts of
information about services and drivers that aren't in use.

There is no standard way of giving options to individual services under Windows NT, aside from a few parameters
dealing with startup order and dependencies, which are in well-defined places in the registry. You will have to
research each server separately. In general, service parameters are stored somewhere in the registry - the
Microsoft-approved locations are in:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ServiceName\Parameters
or
HKEY_LOCAL_MACHINE\Software\ CompanyName\ ServiceName

but servers are free to put them anywhere they can write to, in or out of the registry. Normally, service authors
should provide a management interface in the form of a control panel or a plug-in for the Microsoft Management
Console, which will modify some or all of the parameters.

page 194

Building Internet Firewalls
12.4.1.1 Registry keys

Here is an overview of the registry keys for services and their use in determining what services do in order to
secure a bastion host:

DependOnGroup

A list of service groups that this service depends on. This is relatively rarely set. The main group of
interest for networking purposes is "TDI", which is the group that contains base network interface
drivers.

DependOnService

A list of services that this service depends on. A service that depends on LanmanServer is almost
certainly a network server. Services that depend on LanmanWorkstation are probably not network
servers but are clients. Services that depend on one of the other networking groups (NetDDE, TCPIP,
NetBT, or AppleTalk, for instance) may be either servers or clients, but your suspicions should be
aroused.

DisplayName
This is the name shown in the Services or Devices control panel.
ErrorControl

This shows what to do if this service won't run. Check here before you disable the service! If this is set
to 0x02 or 0x03, and you disable the service, the machine will reenable it by restoring the previous
configuration. If that doesn't work, at 0x03, it will refuse to boot. Possible values are shown here.

Value Meaning
0x00 Ignore failure; continue without doing anything.
0x01 Produce a warning dialog box.
0x02 Switch to the last known good configuration if one is available;
otherwise, boot anyway.
0x03 Count this boot as a failure, switch to the last known good
configuration if one is available, and fail to boot if not.

Group
This is the group name that is used in DependOnGroup. Anything in TDI or Network is networking
related.

ImagePath
This is the location of the executable, which tells you what to remove or rename if you want to be sure
that the service cannot be easily reenabled.

ObjectName
This is actually the name of the account that the service runs under, if it runs as an independent
process. Almost all services run as LocalSystem (which is the most privileged account on the system). In
order to run as any other user, the service needs to provide a password for the user, which is stored
separately, in the Secrets section of the registry. If the service is a kernel driver, this specifies which
kernel object will load it.

PlugPlayServiceType

This indicates whether or not it is a Plug and Play service, and if so, what kind. Normally, network
services are not Plug and Play.

page 195

Building Internet Firewalls

Start
This key indicates when the service should be started. Possible variables are as follows.
Value Meaning
0x00 Boot
0x01 System
0x02 Autoload
0x03 On demand
0x04 Disabled
(filesystem drivers will load anyway)
Tag
This specifies what order services in the same group start in; lowest value goes first.
Type
The type of service. 0x100 will be added if the service is capable of interacting directly with the user.
Possible values are as follows.
Value Meaning
0x01 Kernel-mode device driver
0x02 Filesystem driver
0x04 Arguments to network adapter
0x10 Server, standalone process
0x20 Server, can share address space
Subkeys

The only useful subkey is the Parameters subkey, which may contain parameters to the service. Many
services have parameters controllable here that are not documented elsewhere.

12.4.1.2 Other ways to start programs under Windows NT

All the descriptions in the previous section are about official Windows NT services. There are several other ways

to automatically start programs under Windows NT, and you may run into "services" that use one of these other
methods. In general, this is an extremely bad sign. These are not genuine Windows NT services; they are almost
certainly originally written to run under other operating systems, and there is very little chance that they will be

either secure or reliable. If at all possible, you should avoid running such programs on bastion hosts, or for that

matter, other security-critical hosts.

The following registry key:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager\BootExecute

contains a command line that is executed at boot time. This is normally used to run autocheck to do filesystem
checking and, as far as we know, is never used by legitimate services. Because it runs early in the boot process,
it would be a tempting place to hide a virus.

The following registry key:
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Currentversion

contains three keys that are used to start programs at user login: Run, RunOnce, and RunServices. These are
normal ways to start persistent programs under Windows 95/98 and may be used by legitimate programs that
are designed for that environment. Some programs may also still use a model where they configure a persistent
program to autostart when a particular user logs in, under the expectation that the machine will be set up to log
that user in automatically at bootup.

page 196

Building Internet Firewalls

Programs started in these ways may behave like services from the user's point of view, but they are not services
from the operating system's point of view and are not managed by the Service Control Manager. This gives them
very different security models. In particular, unless otherwise configured, the SCM runs services using the
System account, which has the odd property that it is all-powerful on the local machine but is incapable of using
the network. Programs started at user login will run as the user who just logged in, which will make significant
changes to the permissions they have. A regular user will have more access to the network and to user files than
the System account, but less access to operating system files and capabilities (meaning that a program that is
auto-started at login instead of being a service will have more opportunities to be hostile and fewer to be useful).

Run models that require a user to be logged in are a significant security problem under Windows NT, because
having a user logged in adds vulnerabilities. If you can't avoid servers like these, try to convert them to services
using the Resource Kit's srvany.exe.

12.4.2 How to Disable Services Under Windows NT

As we discussed in Chapter 10, there are four general precautions to take when disabling services:

. Make sure that you have a way to boot the machine if you disable a critical service (for instance, a
secondary hard disk with a full operating system image or a bootable CD-ROM).

° Save a clean copy of everything you modify so that you know how to put it back the way it was if you
do something wrong. Since it's hard to identify modified files precisely on Windows NT, you should
have a full backup of the system, including a dump of the registry.

e When you disable a service, disable everything that depends on it.

° Don't connect the machine you are trying to protect to a hostile network before you have completed
the process of disabling services. It is possible for the machine to be compromised while you are
preparing it.

Once you've set up your alternate boot process, start by going into the Networking control panel's Services tab
and removing the things you don't need, which will probably be most, if not all, of them. Section 12.4.5, later in
this chapter, provides more information about which services you should remove. The advantage of disabling
services by removing them from the Services tab is that if possible, it removes the services altogether, and the
only way to turn them on will be to reinstall them.

You can also disable services by setting them to the startup status "Disabled" from the Services control panel.
This is very easy to undo later, which may not be desirable. On the other hand, doing anything more permanent
involves untraditional and relatively risky moves. For instance, you can remove the registry keys for services you
have disabled. Without the registry keys, the Service Control Manager can't start them, and you have to know
what the keys should be in order to put them back. Removing the relevant executables is another solution, but as
noted earlier, it's common for multiple Windows NT services to run as part of the same executable. If you want
any of the services provided by a given executable, you will have to leave it.

Some Microsoft documentation claims that some services can be disabled by stopping them (from the Services
control panel or the "net stop" command). This is not true; a stopped service will be restarted at boot time unless
it is also disabled.

12.4.3 Next Steps After Disabling Services

You will need to reboot the machine after you change the service configuration. When it has been rebooted, you
should check to make certain that the services are actually off and that the machine is still functional. One way to
check that a service is turned off is to use the netstat utility to list the network ports the machine is listening on.

After you have rebooted and tested the machine, and you are comfortable that the machine works without the
disabled services, you may want to remove the executables for those services (as long as they are not used by
other services). If the executables are lying around, they may be started by somebody - if not you, some other
system administrator or an intruder.

If you feel uncertain about removing executables, consider encrypting them instead. Use an encryption program
that has a stable implementation of a standard algorithm, like Network Associates' version of PGP (see Appendix
B, for information about how to get this package).

page 197

Building Internet Firewalls

12.4.4 Which Services Should You Leave Enabled?

Certain services are essential to the operation of the machine, and you'll probably need to leave these enabled,
no matter what else the machine is configured to do. On a Windows NT system, nothing in the Services tab of the
Networking control panel is actually required for basic functionality. In the Services control panel, the critical
services include:

EventLog
This is what puts things in the event log, even for local programs.
NT LM Security Support Provider

This is required if the machine will be running services that need to authenticate users (for instance, FTP
or HTTP servers).

Protected Storage

This is part of the encrypted filesystem support and should be left enabled.
Remote Procedure Call (RPC)

Many servers use loopback RPC calls and will not work if RPC is not available.
In some circumstances you will also need these services:
IPSEC Policy Agent (Windows 2000)

This is required if you're using IPsec to secure network connections.
Net Logon

This is required if the machine will be authenticating accounts for other machines or from other
machines (for instance, if it's a member server in a domain or a primary domain server for a domain
that contains other servers). A bastion host should use only local accounts, in which case this service is
not required.

Plug and Play

This is either pointless or critical, depending on your hardware configuration. It is not network-accessible
in either case. Note that it is even required for correct functioning of peripherals on some server
configurations that have no hot-swappable components.

Smart Card (Windows 2000)

This is required if you have a smart card reader and want to use it for authentication; it depends on Plug
and Play.

Spooler
This is needed for printing (even local printing) to work. You can remove it if you are not going to print.

In addition, you'll obviously need server processes for the services that you've decided to provide on your bastion
host (e.g., real or proxy Telnet, FTP, SMTP, and DNS servers).

page 198

Building Internet Firewalls

12.4.5 Specific Windows NT Services to Disable

As discussed earlier, there are three separate places where you can disable services for Windows NT:

e The Services tab of the Networking control panel
® The Services control panel

® The registry

You need to disable services from the registry only in very exceptional cases; you should be able to do everything
you need from the Networking and Services control panels.

The Networking control panel

In general, nothing in the Services tab of the Networking control panel is actually required, and you
should disable all of the services if possible. Here we list services with special considerations:

Microsoft DNS server (Server)

You do not normally want to run a DNS server on a bastion host unless that bastion host is dedicated to
name service. You will therefore turn this off on most bastion hosts.

If you are building a bastion host to be a nhame server, the Microsoft DNS server is a reasonable choice
for a DNS server to run, but in a bastion host configuration, you will need to keep two things in mind.
First, you do not want a bastion host to rely on data from a WINS server on another machine, so the
DNS server should not be configured to fall back to WINS unless the WINS server is on the same bastion
host. Second, the DNS Manager (which is often used to configure the DNS server) relies on NetBT, which
may not be available on a bastion host, so you may not be able to use it except at the console.

Microsoft TCP/IP printing (Server and Workstation)

Microsoft's implementation of /pr. Although Ipris not a secure protocol, it is often safer than using SMB
printing, which cannot be enabled without enabling more dangerous services at the same time.
Therefore, if you want to be able to print from a Windows NT bastion host, but do not have the
resources to dedicate a printer, your best choice may be to install the Microsoft TCP/IP Printing
subsystem on the bastion host and the print server and then disable the /pd server on the bastion host.
(Do not use a bastion host as a print server, via any protocol; if you directly attach a printer to the
bastion host, resign yourself to having it be a dedicated printer for that single host.)

NetBIOS interface (Default Server and Workstation)

The base for many of the Microsoft-native services. You will need it if you intend to use normal Microsoft
networking. Ideally, you should avoid this service on bastion hosts.

Remote Access Service (Server and Workstation)

This provides networking either over phone lines or via PPTP (which is discussed further in Chapter 14).
It should not be installed unless the machine will provide or use dial-up networking or virtual private
networking services.

Simple TCP/IP services (Server and Workstation)

This package consists of echo, chargen, discard, daytime, and quotd, which are discussed further in
Chapter 22. The standard advice is to avoid it unless you need one of the services; it is hard to imagine
how you could possibly need any of them. Do not install it.

page 199

Building Internet Firewalls

Server (Default Server and Workstation)

This is the server for inbound NetBIOS connections, including SMB connections. This includes file
sharing, printer sharing, and remote execution of the Registry Editor, Event Viewer, and User Manager.
You should probably remove it, although the machine will then be inaccessible via all normal Windows
NT networking. If you need to use normal Windows NT networking (this is practically everything but FTP,
HTTP, and SMTP), you should be sure that NetBT access is blocked at some other point and/or that the
Server is unbound from high-risk network interfaces (see the discussion of configuring services to run on
specific network interfaces).

Because of the way that NetBT name service works, a machine that has no Server service running will
register its name correctly at boot time but won't be able to defend itself if another machine tries to
claim the name. This may seem unimportant (who cares what happens to the NetBT name if the
machine doesn't speak NetBT anyway?), but in fact, most Microsoft machines will look for a NetBT name
before a DNS name, and attempts to reach the machine via HTTP or FTP from local clients will use NetBT
resolution. If it's important to reach the machine from internal Microsoft machines, you need to protect it
from masquerades. There are two ways to do this. If you have a reliable WINS configuration with a
limited number of WINS servers, you can configure a static mapping for the name in each WINS server.
If that is impractical, give the machine a name at least 16 characters long, and NetBT name resolution
will be impossible, forcing clients to fall back to DNS, which is not vulnerable to the same sorts of trivial
and/or accidental masquerading.

SNMP service (Server and Workstation)

SNMP is a dangerous service that provides a great deal of information and control with very little
security, and you should normally avoid it. Many references will advise you to install SNMP in order to
get TCP/IP performance statistics in the Performance Monitor. If you install SNMP for this reason, you
will also have installed the SNMP agent service, which you do not need to run and which should be
disabled from the Services control panel.

If you do wish to run the SNMP agent, you must run a version of Windows NT later than 4.0 Service
Pack 4; versions before that do not correctly handle settings and will provide read and write access to
the "public" community. You should also be sure to configure the SNMP Security Properties (available
from the Network control panel in Services =& SNMP Service =& Security):

a. If you have an SNMP monitoring station, leave Send Authentication Trap on, and configure
the correct address for the station into the Traps panel. This will cause the machine to send
a warning message if it receives a request with an invalid community name in it. (This is all
this option does; it does not actually enable any authentication beyond SNMP's default
method, which uses the community name as a form of cleartext password.)

b. Edit the Accepted Community Names so that "public" is no longer accepted, and the only
accepted value is an unguessable name unique to your site. Do not leave this field blank! If
this field is blank, any community name will be accepted, and all SNMP requests will be
valid.

c. Set Only Accept SNMP Packets from These Hosts. You must include a host here; put in your
SNMP monitoring station's address if you intend to use one, or use 127.0.0.1 (the loopback
address). Note that this relies on authenticating by source address. If attackers can forge
an accepted address on an incoming packet, they can reset important networking
parameters. This is especially dangerous because it is an attack that does not require reply
packets to be useful. Do not use an SNMP monitoring station unless you can prevent forged
packets with its address from reaching the machine.

12.4.5.1 The Services control panel

Once you have removed the services you don't want, there should be relatively little left in the Services control
panel. You will probably want to disable all but the necessary services previously discussed and the services you
intend to provide. You should be particularly careful to disable the UPS service and the Schedule service unless
you are absolutely certain that they are required and you have taken steps to protect them from misuse. Both of
these services have known vulnerabilities.

page 200

Building Internet Firewalls

12.4.6 Turning Off Routing

As we discussed in Chapter 10, most machines with more than one network interface will automatically attempt
to route traffic between interfaces. You do not normally want a bastion host to do this. If you are not trying to
configure a bastion host that is also a router, you should turn off routing, which is a three-part process:

1. Turn off services that advertise the system as a router.
2. Turn off IP forwarding, which actually does the routing.

3. If necessary, turn off source routing separately.

Under Windows NT, turning off IP forwarding can be done either from the Networking control panel (under
Protocols = TCP/IP = Routing), by unchecking Enable IP Forwarding or from the registry by setting the following
key to 0:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\IPEnableRouter

It will automatically be off if there is only one network interface. If you later add a second network interface,
Windows NT may helpfully turn it on for you. Be sure to turn it off after you install all the interfaces you intend to
have on the machine. In addition, the TCP/IP Properties dialog will not inform you if the registry change it is
trying to make fails; you should verify by exiting and returning to the dialog to make certain that your change is
still shown, or better yet by simply checking the value in the registry.

As Microsoft points out, the ease with which this can be changed is not particularly comforting from a security
point of view:

A major concern with [using a dual-interface Windows NT machine with routing turned off as a
firewall] is that the separation between the Internet and your intranet depends on a single option in
the TCP/IP configuration (or in the associated Registry entry)... An individual familiar with Windows NT
configuration tools and administrative permissions can find and change the Router check box in a
matter of minutes.

- Microsoft Windows NT Resource Kit Internet Guide, Chapter 3

This is @ major understatement on their part; an individual who actually remembers where to find it ought to be
able to change it in well under a minute. In order to slow down an attacker, and also decrease your chances of
accidentally reenabling IP forwarding yourself, set the permissions on the Parameters key so that Administrator
has the same Special Access rights that Everyone has (Query Value, Create Subkey, Enumerate Subkeys, Notify,
and Read Control) and additionally has Write DAC (so that if you want to change things later you can).?® Note
that this will create one situation in which TCP/IP Properties appears to work, but your changes silently
disappear; in this situation, this is not necessarily a bad thing.

12.5 Installing and Modifying Services

Some of the services you want to provide may not be provided with your operating system. Others may be
provided in versions that are inappropriate for use in a secure environment or are missing features you probably
want. You will have to choose servers to provide these services and install them.

Windows NT does not have an equivalent to the Unix TCP wrappers (which provide global controls that can be
enforced on most services). Instead, you will need to secure every service separately. You should not assume
that services are safe; reputable software companies often ship unsafe packages, and in many cases, their worst
problems are easy to find and repair.

23 Jf Everyone has Full Access permissions, you have failed to install current service packs on the machine. You are likely to have severe
security problems.

page 201

Building Internet Firewalls

Install a test copy of the service on a machine that is otherwise stable and will not change while you are doing
the installation. Use Find to identify all the files that were changed during the installation, and check to make
sure that those files are acceptable. In particular:

. Make sure that file permissions are as restrictive as possible; arbitrary users shouldn't be able to write
to any executables, configuration files, or temporary directories. If possible, limit read and execute
permissions as well.

. Verify the permissions on all registry entries to make sure that arbitrary users can't change them.
Again, you will probably want to limit read permissions as well. In particular, many services store
passwords in registry keys, sometimes with extremely weak protection. You do not want these keys to
be readable!

° If the program installs a user account, make sure that the password is set to something other than the
program's default. If possible, change the account name to something other than the program's
default.

° Make sure that all programs are run by users with appropriate permissions. Do not run services as
Administrator unless they need to be run as Administrator. If you add special user accounts for
services, make sure that they cannot be used as normal login accounts.

Note that many services have interesting interactions with hot fixes and service packs. Services, hot fixes, and
service packs all have a tendency to change system files. You will need to install them in the correct order to
make sure that you have the most desirable version of the system files. In general, this means installing the
services first and then the hot fixes or service packs that you need. In a few cases, you may need to install hot
fixes or service packs both before and after you install a service (for instance, if the service requires a particular
service pack, you will have to install that service pack, install the service, and then install the service pack you
want to run). Extremely rarely, you need to install the service after the hot fix or service pack (which means that
you will need to reinstall the service if you install a new hot fix or service pack).

page 202

Building Internet Firewalls

Part III: Internet Services

This part of the book describes the details of how to configure Internet services in a
firewall environment.

It presents general principles and then describes the details for nearly a hundred
specific services.

It concludes with two extended examples of configurations for sample firewalls.

page 203

Building Internet Firewalls

Chapter 13. Internet Services and Firewalls

This chapter gives an overview of the issues involved in using Internet services through a firewall, including the
risks involved in providing services and the attacks against them, ways of evaluating implementations, and ways
of analyzing services that are not detailed in this book.

The remaining chapters in Part III describe the major Internet services: how they work, what their packet
filtering and proxying characteristics are, what their security implications are with respect to firewalls, and how to
make them work with a firewall. The purpose of these chapters is to give you the information that will help you
decide which services to offer at your site and to help you configure these services so they are as safe and as
functional as possible in your firewall environment. We occasionally mention things that are not, in fact, Internet
services but are related protocols, languages, or APIs that are often used in the Internet context or confused with
genuine Internet services.

These chapters are intended primarily as a reference; they're not necessarily intended to be read in depth from
start to finish, though you might learn a lot of interesting stuff by skimming this whole part of the book.

At this point, we assume that you are familiar with what the various Internet services are used for, and we
concentrate on explaining how to provide those services through a firewall. For introductory information about
what particular services are used for, see Chapter 2.

Where we discuss the packet filtering characteristics of particular services, we use the same abstract tabular form
we used to show filtering rules in Chapter 8. You'll need to translate various abstractions like "internal",
"external”, and so on to appropriate values for your own configuration. See Chapter 8 for an explanation of how
you can translate abstract rules to rules for particular products and packages, as well as more information on
packet filtering in general.

Where we discuss the proxy characteristics of particular services, we rely on concepts and terminology discussed
in Chapter 9.

Throughout the chapters in Part III, we'll show how each service's packets flow through a firewall. The following
figures show the basic packet flow: when a service runs directly (Figure 13.1) and when a proxy service is used
(Figure 13.2). The other figures in these chapters show variations of these figures for individual services. If there
are no specific figures for a particular service, you can assume that these generic figures are appropriate for that
service.

Figure 13.1. A generic direct service

il Bastion Host

Sarvar Host ‘E===| Exterior Router

Interior Router |E==m

A
[l —
Client Host

page 204

Real Server

Sarvar Host

F'y

B | Exterior Router

Figure 13.2. A generic proxy service

| 4]
.
Bastion Host

Interior Router |

Proxy Cliont
i

i —
Client Host

Building Internet Firewalls

We frequently characterize client port numbers as "a random port number above
1023". Some protocols specify this as a requirement, and on others, it is merely a
convention (spread to other platforms from Unix, where ports below 1024 cannot be
opened by regular users). Although it is theoretically allowable for clients to use
ports below 1024 on non-Unix platforms, it is extraordinarily rare: rare enough that
many firewalls, including ones on major public sites that handle clients of all types,
rely on this distinction and report never having rejected a connection because of it.

13.1 Attacks Against Internet Services

As we discuss Internet services and their configuration, certain concepts are going to come up repeatedly. These
reflect the process of evaluating exactly what risks a given service poses. These risks can be roughly divided into
two categories - first, attacks that involve making allowed connections between a client and a server, including:

Data-driven attacks

Third-party attacks

Command-channel attacks

False authentication of clients

and second, those attacks that get around the need to make connections, including:

Hijacking

Packet sniffing

Denial of service

Data injection and modification

page 205

Building Internet Firewalls

13.1.1 Command-Channel Attacks

A command-channel attack is one that directly attacks a particular service's server by sending it commands in
the same way it regularly receives them (down its command channel). There are two basic types of command-
channel attacks; attacks that exploit valid commands to do undesirable things, and attacks that send invalid
commands and exploit server bugs in dealing with invalid input.

If it's possible to use valid commands to do undesirable things, that is the fault of the person who decided what
commands there should be. If it's possible to use invalid commands to do undesirable things, that is the fault of
the programmer(s) who implemented the protocol. These are two separate issues and need to be evaluated
separately, but you are equally unsafe in either case.

The original headline-making Internet problem, the 1988 Morris worm, exploited two kinds of command-channel
attacks. It attacked Sendmail by using a valid debugging command that many machines had left enabled and
unsecured, and it attacked finger by giving it an overlength command, causing a buffer overflow.

13.1.2 Data-Driven Attacks

A data-driven attack is one that involves the data transferred by a protocol, instead of the server that implements
it. Once again, there are two types of data-driven attacks; attacks that involve evil data, and attacks that
compromise good data. Viruses transmitted in electronic mail messages are data-driven attacks that involve evil
data. Attacks that steal credit card numbers in transit are data-driven attacks that compromise good data.

13.1.3 Third-Party Attacks

A third-party attack is one that doesn't involve the service you're intending to support at all but that uses the
provisions you've made to support one service in order to attack a completely different one. For instance, if you
allow inbound TCP connections to any port above 1024 in order to support some protocol, you are opening up a
large number of opportunities for third-party attacks as people make inbound connections to completely different
servers.

13.1.4 False Authentication of Clients

A major risk for inbound connections is false authentication: the subversion of the authentication that you require
of your users, so that an attacker can successfully masquerade as one of your users. This risk is increased by
some special properties of passwords.

In most cases, if you have a secret you want to pass across the network, you can encrypt the secret and pass it
that way. That doesn't help if the information doesn't have to be understood to be used. For instance, encrypting
passwords will not work because an attacker who is using packet sniffing can simply intercept and resend the
encrypted password without having to decrypt it. (This is called a playback attack because the attacker records
an interaction and plays it back later.) Therefore, dealing with authentication across the Internet requires
something more complex than encrypting passwords. You need an authentication method where the data that
passes across the network is nonreusable, so an attacker can't capture it and play it back.

Simply protecting you against playback attacks is not sufficient, either. An attacker who can find out or guess
what the password is doesn't need to use a playback attack, and systems that prevent playbacks don't
necessarily prevent password guessing. For instance, Windows NT's challenge/response system is reasonably
secure against playback attacks, but the password actually entered by the user is the same every time, so if a
user chooses to use "password", an attacker can easily guess what the password is.

Furthermore, if an attacker can convince the user that the attacker is your server, the user will happily hand over
his username and password data, which the attacker can then use immediately or at leisure. To prevent this,
either the client needs to authenticate itself to the server using some piece of information that's not passed
across the connection (for instance, by encrypting the connection) or the server needs to authenticate itself to
the client.

page 206

Building Internet Firewalls

13.1.5 Hijacking

Hijacking attacks allow an attacker to take over an open terminal or login session from a user who has been
authenticated and authorized by the system. Hijacking attacks generally take place on a remote computer,
although it is sometimes possible to hijack a connection from a computer on the route between the remote
computer and your local computer.

How can you protect yourself from hijacking attacks on the remote computer? The only way is to allow
connections only from remote computers whose security you trust; ideally, these computers should be at least as
secure as your own. You can apply this kind of restriction by using either packet filters or modified servers.
Packet filters are easier to apply to a collection of systems, but modified servers on individual systems allow you
more flexibility. For example, a modified FTP server might allow anonymous FTP from any host, but authenticated
FTP only from specified hosts. You can't get this kind of control from packet filtering. Under Unix, connection
control at the host level is available from Wietse Venema's TCP Wrapper or from wrappers in TIS FWTK (the
netacl program); these may be easier to configure than packet filters but provide the same level of discrimination
- by host only.

Hijacking by intermediate sites can be avoided using end-to-end integrity protection. If you use end-to-end
integrity protection, intermediate sites will not be able to insert authentic packets into the data stream (because
they don't know the appropriate key and the packets will be rejected) and therefore won't be able to hijack
sessions traversing them. The IETF IPsec standard provides this type of protection at the IP layer under the name
of "Authentication Headers", or AH protocol (RFC 2402). Application layer hijacking protection, along with privacy
protection, can be obtained by adding a security protocol to the application; the most common choices for this
are Transport Layer Security (TLS) or the Secure Socket Layer (SSL), but there are also applications that use the
Generic Security Services Application Programming Interface (GSSAPI). For remote access to Unix systems the
use of SSH can eliminate the risk of network-based session hijacking. IPsec, TLS, SSL, and GSSAPI are discussed
further in Chapter 14. ssh is discussed in Chapter 18.

Hijacking at the remote computer is quite straightforward, and the risk is great if people leave connections
unattended. Hijacking from intermediate sites is a fairly technical attack and is only likely if there is some reason
for people to target your site in particular. You may decide that hijacking is an acceptable risk for your own
organization, particularly if you are able to minimize the number of accounts that have full access and the time
they spend logged in remotely. However, you probably do not want to allow hundreds of people to log in from
anywhere on the Internet. Similarly, you do not want to allow users to log in consistently from particular remote
sites without taking special precautions, nor do you want users to log in to particularly secure accounts or
machines from the Internet.

The risk of hijacking can be reduced by having an idle session policy with strict enforcement of timeouts. In
addition, it's useful to have auditing controls on remote access so that you have some hope of noticing if a
connection is hijacked.

13.1.6 Packet Sniffing

Attackers may not need to hijack a connection in order to get the information you want to keep secret. By simply
watching packets pass - anywhere between the remote site and your site - they can see any unencrypted
information that is being transferred. Packet sniffing programs automate this watching of packets.

Sniffers may go after passwords or data. Different risks are associated with each type of attack. Protecting your
passwords against sniffing is usually easy: use one of the several mechanisms described in Chapter 21, to use
nonreusable passwords. With nonreusable passwords, it doesn't matter if the password is captured by a sniffer;
it's of no use to them because it cannot be reused.

Protecting your data against sniffers is more difficult. The data needs to be encrypted before it passes across the
network. There are two means you might use for this kind of encryption; encrypting files that are going to be
transferred, and encrypting communications links.

Encrypting files is appropriate when you are using protocols that transfer entire files (you're sending mail, using
the Web, or explicitly transferring files), when you have a safe way to enter the information that will be used to
encrypt them, and when you have a safe way to get the recipient the information needed to decrypt them. It's
particularly useful if the file is going to cross multiple communications links, and you can't be sure that all of
them will be secured, or if the file will spend time on hosts that you don't trust. For instance, if you're writing
confidential mail on a laptop and using a public key encryption system, you can do the entire encryption on the
machine you control and send on the entire encrypted file in safety, even if it will pass through multiple mail
servers and unknown communications links.

page 207

Building Internet Firewalls

Encrypting files won't help much if you're logging into a machine remotely. If you type in your mail on a laptop
and encrypt it there, you're relatively safe. If you remotely log into a server from your laptop and then type in
the mail and encrypt it, an attacker can simply watch you type it and may well be able to pick up any secret
information that's involved in the encryption process.

In many situations, instead of encrypting the data in advance, it's more practical to encrypt the entire
conversation. Either you can encrypt at the IP level via a virtual private network solution, or you can choose an
encrypted protocol (for instance, SSH for remote shell access). We discuss virtual private networks in Chapter 5,
and we discuss the availability of encrypted protocols as we describe each protocol in the following chapters.

These days, eavesdropping and encryption are both widespread. You should require encryption on inbound
services unless you have some way to be sure that no confidential data passes across them. You may also want
to encrypt outbound connections, particularly if you have any reason to believe that the information in them is
sensitive.

13.1.7 Data Injection and Modification

An attacker who can't successfully take over a connection may be able to change the data inside the connection.
An attacker that controls a router between a client and a server can intercept a packet and modify it, instead of
just reading it. In rare cases, even an attacker that doesn't control a router can achieve this (by sending the
modified packet in such a way that it will arrive before the original packet).

Encrypting data won't protect you from this sort of attack. An attacker will still be able to modify the encrypted
data. The attacker won't be able to predict what you'll get when you decrypt the data, but it certainly won't be
what you expected. Encryption will keep an attacker from intentionally turning an order for 200 rubber chickens
into an order for 2,000 rubber chickens, but it won't keep the attacker from turning the order into garbage that
crashes your order input system. And you can't even be sure that the attacker won't turn the order into
something else meaningful by accident.

Fully protecting services from modification requires some form of message integrity protection, where the packet
includes a checksum value that is computed from the data and can't be recomputed by an attacker. Message
integrity protection is discussed further in Appendix C.

13.1.8 Replay

An attacker who can't take over a connection or change a connection may still be able to do damage simply by
saving up information that has gone past and sending it again. We've already discussed one variation of this
attack, involving passwords.

There are two kinds of replays, ones in which you have to be able to identify certain pieces of information (for
instance, the password attacks), and ones where you simply resend the entire packet. Many forms of encryption
will protect you from attacks where the attacker is gathering information to replay, but they won't help you if it's
possible to just reuse a packet without knowing what's in it.

Replaying packets doesn't work with TCP because of the sequence numbers, but there's no reason for it to fail
with UDP-based protocols. The only protection against it is to have a protocol that will reject the replayed packet
(for instance, by using timestamps or embedded sequence numbers of some sort). The protocol must also do
some sort of message integrity checking to prevent an attacker from updating the intercepted packet.

13.1.9 Denial of Service

As we discussed in Chapter 1, a denial of service attack is one where the attacker isn't trying to get access to
information but is just trying to keep anybody else from having access. Denial of service attacks can take a
variety of forms, and it is impossible to prevent all of them.

Somebody undertaking a denial of service attack is like somebody who's determined to keep other people from
accessing a particular library book. From the attackers' point of view, it's very desirable to have an attack that
can't be traced back and that requires a minimum of effort (in a library, they implement this sort of effect by
stealing all the copies of the book; on a network, they use source address forgery to exploit bugs). These attacks,
however, tend to be preventable (in a library, you put in alarm systems; in a network, you filter out forged
addresses). Other attacks require more effort and caution but are almost impossible to prevent. If a group of
people bent on censorship coordinate their efforts, they can simply keep all the copies of a book legitimately
checked out of the library. Similarly, a distributed attack can prevent other people from getting access to a
service while using only legitimate means to reach the service.

page 208

Building Internet Firewalls

Even though denial of service attacks cannot be entirely prevented, they can be made much more difficult to
implement. First, servers should not become unavailable when invalid commands are issued. Poorly implemented
servers may crash or loop in response to hostile input, which greatly simplifies the attacker's task. Second,
servers should limit the resources allocated to any single entity. This includes:

e The number of open connections or outstanding requests
e The elapsed time a connection exists or a request is being processed
° The amount of processor time spent on a connection or request

e The amount of memory allocated to a connection or request

e The amount of disk space allocated to a connection or request
13.1.10 Protecting Services
How well does a firewall protect against these different types of attacks?
Command-channel attacks

A firewall can protect against command-channel attacks by restricting the number of machines to which
attackers can open command channels and by providing a secured server on those machines. In some
cases, it can also filter out clearly dangerous commands (for instance, invalid commands or commands
you have decided not to allow).

Data-driven attacks

A firewall can't do much about data-driven attacks; the data has to be allowed through, or you won't
actually be able to do anything. In some cases, it's possible to filter out bad data. For instance, you can
run virus scanners over email and other file transfer protocols. Your best bet, however, is to educate
users to the risks they run when they bring files to their machine and when they send data out, and to
provide appropriate tools allowing them to protect their computers and data. These include virus
checkers and encryption software.

Third-party attacks

Third-party attacks can sometimes be prevented by the same sort of tactics used against command-
channel attacks: limit the hosts that are accessible to ones where you know only the desired services are
available, and/or do protocol checking to make certain that the commands you're getting are for the
service you're trying to allow.

False authentication of clients

A firewall cannot prevent false authentication of clients. It can, however, limit incoming connections to
ones on which you enforce the use of nonreusable passwords.

Hijacking

A firewall can rarely do anything about hijacking. Using a virtual private network with encryption will
prevent it; so will protocols that use encryption with a shared secret between the client and the server,
which will keep the hijacker from being able to send valid packets. Using TCP implementations that have
highly unpredictable sequence numbers will decrease the possibility of hijacking TCP connections. It will
not protect you from a hijacker that can see the legitimate traffic. Even somewhat unpredictable
sequence numbers will help; hijacking attempts will create a burst of invalid packets that may be
detectable by a firewall or an intrusion detection system. (Sequence numbers and hijacking are
discussed in more detail in Chapter 4.)

Packet sniffing

A firewall cannot do anything to prevent packet sniffing. Virtual private networks and encrypted
protocols will not prevent packet sniffing, but they will make it less damaging.

page 209

Building Internet Firewalls

Data injection and modification

There's very little a firewall can do about data injection or modification. A virtual private network will
protect against it, as will a protocol that has message integrity checking.

Replay

Once again, a firewall can do very little about replay attacks. In a few cases, where there is literally a
replay of exactly the same packet, a stateful packet filter may be able to detect the duplication;
however, in many cases, it's perfectly reasonable for that to happen. The primary protection against
replay attacks is using a protocol that's not vulnerable to them (one that involves message integrity and
includes a timestamp, for instance).

Denial of service

Firewalls can help prevent denial of service attacks by filtering out forged or malformed requests before
they reach servers. In addition, they can sometimes provide assistance by limiting the resources
available to an attacker. For instance, a firewall can limit the rate with which it sends traffic to a server,
or control the balance of allowed traffic so that a single source cannot monopolize services.

13.2 Evaluating the Risks of a Service

When somebody requests that you allow a service through your firewall, you will go through a process of
evaluation to decide exactly what to do with the service. In the following chapters, we give you a combination of
information and analysis, based on our evaluations. This section attempts to lay out the evaluation process for
you, so that you can better understand the basis for our statements, and so that you can make your own
evaluations of services and servers we don't discuss.

When you evaluate services, it's important not to make assumptions about things beyond your control. For
instance, if you're planning to run a server, you shouldn't assume that the clients that connect to it are going to
be the clients it's designed to work with; an attacker can perfectly well write a new client that does things
differently. Similarly, if you're running a client, you shouldn't assume that all the servers you connect to are well
behaved unless you have some means of controlling them.

13.2.1 What Operations Does the Protocol Allow?

Different protocols are designed with different levels of security. Some of them are quite safe by design (which
doesn't mean that they're safe once they've been implemented!), and some of them are unsafe as designed.
While a bad implementation can make a good protocol unsafe, there's very little that a good implementation can
do for a bad protocol, so the first step in evaluating a service is evaluating the underlying protocol.

This may sound dauntingly technical, and indeed it can be. However, a perfectly useful first cut can often be done
without any actual knowledge of the details of how the protocol works, just by thinking about what it's supposed
to be doing.

13.2.1.1 What is it designed to do?

No matter how little else you know about a protocol, you know what it's supposed to be able to do, and that gives
you a powerful first estimate of how risky it must be. In general, the less a protocol does, the safer it is.

For instance, suppose you are going to invent a protocol that will be used to talk to a coffee maker, so that you
can put your coffee maker on the Web. You could, of course, build a web server into the coffee maker (or wait for
coffee makers to come with web servers, which undoubtedly will happen soon) or use an existing protocol,?* but
as a rugged individualist you have decided to make up a completely new protocol. Should you allow this protocol
through your firewall?

24 An appropriate choice would be the Hyper Text Coffee Pot Control Protocol (HTCPCP), defined in RFC 2324, April 1, 1998, but like most
RFCs issued on April 1st, it is rarely implemented.

page 210

Building Internet Firewalls

Well, if the protocol just allows people to ask the coffee maker how much coffee is available and how hot it is,
that sounds OK. You probably don't care who has that information. If you're doing something very secret, maybe
it's not OK. What if the competition finds out you're suddenly making coffee in the middle of the night? (The U.S.
government discovered at one point that journalists were tracking important news stories by watching the rates
at which government agencies ordered pizza deliveries late at night.)

What if the protocol lets people make coffee? Well, that depends. If there's a single "make coffee" command, and
the coffee maker will execute it only if everything's set up to make coffee, that's still probably OK. But what if
there's a command for boiling the water and one for letting it run through the coffee? Now your competitors can
reduce your efficiency rate by ensuring your coffee is weak and undrinkable.

What if you decided that you wanted real flexibility, so you designed a protocol that gave access to each switch,
sensor, and light in the machine, allowing them to be checked and set, and then you provided a program with
settings for making weak coffee, normal coffee, and strong coffee? That would be a very useful protocol,
providing all sorts of interesting control options, and a malicious person using it could definitely explode the
coffee machine.

Suppose you're not interested in running the coffee machine server; you just want to let people control the coffee
machine from your site with the coffee machine controller. So far, there doesn't seem to be much reason for
concern (particularly if you're far enough away to avoid injury when the coffee machine explodes). The server
doesn't send much to the client, just information about the state of the coffee machine. The client doesn't send
the server any information about itself, just instructions about the coffee machine.

You could still easily design a coffee machine client that would be risky. For instance, you could add a feature to
shut down the client machine if the coffee machine was about to explode. It would make the client a dangerous
thing to run without changing the protocol at all.

While you will probably never find yourself debating coffee-making protocols, this discussion covers the questions
you'll want to ask about real-life protocols; what sort of information do they give out and what can they change?
The following table provides a very rough outline of things that make a protocol more or less safe.

Safer Less Safe
Receives data that will be displayed only to Changes the state of the machine

the user

Exchanges predefined data in a known Exchanges data flexibly, with multiple types and the
format ability to add new types

Gives out no information Gives out sensitive information
Allows the other end to execute very Allows the other end to execute flexible commands
specific commands

13.2.1.2 Is the level of authentication and authorization it uses appropriate for doing that?

The more risky an operation is, the more control you want to have over who does it. This is actually a question of
authorization (who is allowed to do something), but in order to be able to determine authorization information,
you must first have good authentication. It's no point being able to say "Cadmus may do this, but Dorian may
not", if you can't be sure which one of them is trying to do what.

A protocol for exchanging audio files may not need any authentication (after all, we've already decided it's not
very dangerous), but a protocol for remotely controlling a computer definitely needs authentication. You want to
know exactly who you are talking to before you decide that it's okay for them to issue the "delete all files"
command.

Authentication can be based on the host or on the user and can range considerably in strength. A protocol could
give you any of the following kinds of information about clients:
° No information about where a connection comes from

. Unverifiable information (for instance, the client may send a username or hostname to the server
expecting the server to just trust this information, as in SMTP)

. A password or other authenticator that an attacker can easily get hold of (for instance, the community
string in SNMP or the cleartext password used by standard Telnet)

. A nonforgeable way to authenticate (for instance, an SSH negotiation)

page 211

Building Internet Firewalls

Once the protocol provides an appropriate level of authentication, it also needs to provide appropriate controls
over authorization. For instance, a protocol that allows both harmless and dangerous commands should allow you
to give some users permission to do everything, and others permission to do only harmless things. A protocol
that provides good authentication but no authorization control is a protocol that permits revenge but not
protection (you can't keep people from doing the wrong thing; you can only track them down once they've done
it).

13.2.1.3 Does it have any other commands in it?

If you have a chance to actually analyze a protocol in depth, you will want to make sure that there aren't any
hidden surprises. Some protocols include little-used commands that may be more risky than the commands that
are the main purpose of the protocol. One example that occurred in an early protocol document for SMTP was the
TURN command. It caused the SMTP protocol to reverse the direction of flow of electronic mail; a host that had
originally been sending mail could start to receive it instead. The intention was to support polling and systems
that were not always connected to the network. The protocol designers didn't take authentication into account,
however; since SMTP has no authentication, SMTP senders rely on their ability to control where a connection goes
to as a way to identify the recipient. With TURN, a random host could contact a server, claim to be any other
machine, and then issue a TURN to receive the other machine's mail. Thus, the relatively obscure TURN
command made a major and surprising change in the security of the protocol. The TURN command is no longer
specified in the SMTP protocol.

13.2.2 What Data Does the Protocol Transfer?

Even if the protocol is reasonably secure itself, you may be worried about the information that's transferred. For
instance, you can imagine a credit card authorization service where there was no way that a hostile client could
damage or trick the server and no way that a hostile server could damage or trick the client, but where the credit
card numbers were sent unencrypted. In this case, there's nothing inherently dangerous about running the
programs, but there is a significant danger to the information, and you would not want to allow people at your
site to use the service.

When you evaluate a service, you want to consider what information you may be sharing with it, and whether
that information will be appropriately protected. In the preceding TURN command example, you would certainly
have been alert to the problem. However, there are many instances that are more subtle. For instance, suppose
people want to play an online game through your firewall - no important private information could be involved
there, right? Wrong. They might need to give usernames and passwords, and that information provides important
clues for attackers. Most people use the same usernames and passwords over and over again.

In addition to the obvious things (data that you know are important secrets, like your credit card number, the
location the plutonium is hidden in, and the secret formula for your product), you will want to be careful to watch
out for protocols that transfer any of the following:

. Information that identifies individual people (Social Security numbers or tax identifiers, bank account
numbers, private telephone numbers, and other information that might be useful to an impersonator
or hostile person)

. Information about your internal network or host configuration, including software or hardware serial
numbers, machine names that are not otherwise made public, and information about the particular
software running on machines

. Information that can be used to access systems (passwords and usernames, for instance)
13.2.3 How Well Is the Protocol Implemented?

Even the best protocol can be unsafe if it's badly implemented. You may be running a protocol that doesn't
contain a "shutdown system" command but have a server that shuts down the system anyway whenever it gets
an illegal command.

This is bad programming, which is appallingly common. While some subtle and hard-to-avoid attacks involve
manipulating servers to do things that are not part of the protocol the servers are implementing, almost all of the
attacks of this kind involve the most obvious and easy ways to avoid errors. The number of commercial programs
that would receive failing grades in an introductory programming class is beyond belief.

In order to be secure, a program needs to be very careful with the data that it uses. In particular, it's important
that the program verify assumptions about data that comes from possibly hostile sources. What sources are
possibly hostile depends on the environment that the program is running in. If the program is running on a
secured bastion host with no hostile users, and you are willing to accept the risk that any attacker who gets
access to the machine has complete control over the program, the only hostile data source you need to worry
about is the network.

page 212

Building Internet Firewalls

On the other hand, if there are possibly hostile users on the machine, or you want to maintain some degree of
security if an attacker gets limited access to the machine, then all incoming data must be untrusted. This includes
command-line arguments, configuration data (from configuration files or a resource manager), data that is part
of the execution environment, and all data read from the network. Command-line arguments should be checked
to make sure they contain only valid characters; some languages interpret special characters in filenames to
mean "run the following program and give me the output instead of reading from the file". If an option exists to
use an alternate configuration file, an attacker might be able to construct an alternative that would allow him or
her greater access. The execution environment might allow override variables, perhaps to control where
temporary files are created; such values need to be carefully validated before using them. All of these flaws have
been discovered repeatedly in real programs on all kinds of operating systems.

An example of poor argument checking, which attackers still scan for, occurred in one of the sample CGI
programs that were originally distributed with the NCSA HTTP server. The program was installed by default when
the software was built and was intended to be an example of CGI programming. The program used an external
utility to perform some functions, and it gave the utility information that was specified by the remote user. The
author of the program was even aware of problems that can occur when running external utilities using data you
have received. Code had been included to check for a list of bad values. Unfortunately, the list of bad values was
incomplete, and that allowed arbitrary commands to be run by the HTTP server. A better approach, based upon
"That Which Is Not Expressly Permitted Is Prohibited", would have been to check the argument for allowable
characters.

The worst result of failure to check arguments is a "buffer overflow", which is the basis for a startlingly large
number of attacks. In these attacks, a program is handed more input data than its programmer expected; for
instance, a program that's expecting a four-character command is handed more than 1024 characters. This sort
of attack can be used against any program that accepts user-defined input data and is easy to use against almost
all network services. For instance, you can give a very long username or password to any server that
authenticates users (FTP, POP, IMAP, etc.), use a very long URL to an HTTP server, or give an extremely long
recipient name to an SMTP server. A well-written program will read in only as much data as it was expecting.
However, a sloppily written program may be written to read in all the available input data, even though it has
space for only some of it.

When this happens, the extra data will overwrite parts of memory that were supposed to contain something else.
At this point, there are three possibilities. First, the memory that the extra data lands on could be memory that
the program isn't allowed to write on, in which case the program will promptly be killed off by the operating
system. This is the most frequent result of this sort of error.

Second, the memory could contain data that's going to be used somewhere else in the program. This can have all
sorts of nasty effects; again, most of them result in the program's crashing as it looks up something and gets a
completely wrong answer. However, careful manipulation may get results that are useful to an attacker. For
instance, suppose you have a server that lets users specify what name they'd like to use, so it can say "Hi, Fred!"
It asks the user for a nickname and then writes that to a file. The user doesn't get to specify what the name of
the file is; that's specified by a configuration file read when the server starts up. The name of the nickname file
will be in a variable somewhere. If that variable is overwritten, the program will write its nicknames to the file
with the new value as its name. If the program runs as a privileged user, that file could be an important part of
the operating system. Very few operating systems work well if you replace critical system files with text files.

Finally, the memory that gets overwritten could be memory that's not supposed to contain data at all, but instead
contains instructions that are going to be executed. Once again, this will usually cause a crash because the result
will not be a valid sequence of instructions. However, if the input data is specifically tailored for the computer
architecture the program is running on, it can put in valid instructions. This attack is technically difficult, and it is
usually specific to a given machine and operating system type; an attack that works on a Sun running Solaris will
not work on an Intel machine running Solaris, nor will an attack that works on the same Intel machine running
Windows 95. If you can't move a binary program between two machines, they won't both be vulnerable to
exactly the same form of this attack.

Preventing a "buffer overflow" kind of attack is a matter of sensible programming, checking that input falls within
expected limits. Some programming languages automatically include the basic size checks that prevent buffer
overflows. Notably, C does not do this, but Java does.

13.2.3.1 Does it have any other commands in it?

Some protocol implementations include extra debugging or administrative features that are not specified in the
protocol. These may be poorly implemented or less well thought out and can be more risky than those specified
in the protocol. The most famous example of this was exploited by the 1988 Morris worm, which issued a special
SMTP debugging command that allowed it to tell Sendmail to execute anything the intruder liked. The debugging
command is not specified in the SMTP protocol.

page 213

Building Internet Firewalls

13.2.4 What Else Can Come in If I Allow This Service?

Suppose somebody comes up with a perfect protocol - it protects the server from the client and vice versa, it
securely encrypts data, and all the known implementations of it are bullet proof. Should you just open a hole for
that protocol to any machine on your network? No, because you can't guarantee that every internal and external
host is running that protocol at that port nhumber.

There's no guarantee that traffic on a port is using the protocol that you're interested in. This is particularly true
for protocols that use large numbers of ports or ports above 1024 (where port numbers are not assigned to
individual protocols), but it can be true for any protocol and any port number. For instance, a number of
programs send protocols other than HTTP to port 80 because firewalls frequently allow all traffic to port 80.

In general, there are two ways to ensure that the packets you're letting in belong to the protocol that you want.
One is to run them through a proxy system or an intelligent packet filter that can check them; the other is to
control the destination hosts they're going to. Protocol design can have a significant effect on your ability to
implement either of these solutions.

If you're using a proxy system or an intelligent packet filter to make sure that you're allowing in only the protocol
that you want, it needs to be able to tell valid packets for that protocol from invalid ones. This won't work if the
protocol is encrypted, if it's extremely complex, or if it's extremely generic. If the protocol involves compression
or otherwise changes the position of important data, validating it may be too slow to be practical. In these
situations, you will either have to control the hosts that use the ports, or accept the risk that people will use other
protocols.

13.3 Analyzing Other Protocols

In this book, we discuss a large number of protocols, but inevitably there are some that we've left out. We've left
out protocols that we felt were no longer popular (like FSP, which appeared in the first edition), protocols that
change often (including protocols for specific games), protocols that are rarely run through firewalls (including
most routing protocols), and protocols where there are large numbers of competitors with no single clear leader
(including remote access protocols for Windows machines). And those are just the protocols that we intentionally
decided to leave out; there are also all the protocols that we haven't heard about, that we forgot about, or that
hadn't been invented yet when we wrote this edition.

How do you go about analyzing protocols that we don't discuss in this book? The first question to ask is: Do you
really need to run the protocol across your firewall? Perhaps there is some other satisfactory way to provide or
access the service desired using a protocol already supported by your firewall. Maybe there is some way to solve
the underlying problem without providing the service across the firewall at all. It's even possible that the protocol
is so risky that there is no satisfactory justification for running it. Before you worry about how to provide a
protocol, analyze the problem you're trying to solve.

If you really need to provide a protocol across your firewall, and it's not discussed in later chapters, how do you
determine what ports it uses and so on? While it's sometimes possible to determine this information from
program, protocol, or standards documentation, the easiest way to figure it out is usually to ask somebody else,
such as the members of the Firewalls mailing list*® (see Appendix A).

If you have to determine the answer yourself, the easiest way to do it is usually empirically. Here's what you
should do:

1. Set up a test system that's running as little as possible other than the application you want to test.

2. Next, set up another system to monitor the packets to and from the test system (using etherfind,
Network Monitor, netsnoop, tcpdump, or some other package that lets you watch traffic on the local
network). Note that this system must be able to see the traffic; if you are attaching systems to a
switch, you will need to put the monitoring system on an administrative port, or otherwise rearrange
your networking so that the traffic can be monitored.

3. Run the application on the test system and see what the monitoring system records.
You may need to repeat this procedure for every client implementation and every server implementation you

intend to use. There are occasionally unpredictable differences between implementations (e.g., some DNS clients
always use TCP, even though most DNS clients use UDP by default).

25 But make sure you check the archives first, to see if the question has already been asked and answered.

page 214

Building Internet Firewalls

Finding Assignhed Port Numbers

Port numbers are officially assigned by the Internet Assigned Number Authority (IANA). They used to
be documented in an IETF RFC; a new assigned numbers RFC was issued every few years (generally
carefully timed to be a round number). These days, this would be an extremely large document, so
instead, all numbers assigned by IANA are documented by files at an FTP site:

ftp://ftp.isi.edu/in-notes/iana/assignments

Port numbers are found in the file named port-numbers. Not all protocols use well-defined and legally
assigned port numbers, and the names that protocols are given in the assignments list are sometimes
misleading (for instance, there are numerous listed protocols with names like "sqlnet" and "sqgl-net",
none of which is Oracle's SQL*Net). Nonetheless, this is a useful starting place for clues about the
relationship between protocols and port numbers.

You may also find it useful to use a general-purpose client to connect to the server to see what it's doing. Some
text-based services will work perfectly well if you simply connect with a Telnet client (see Chapter 18, for more
information about Telnet). Others are UDP-based or otherwise more particular, but you can usually use netcat to
connect to them (see Appendix B, for information on where to find netcat). You should avoid doing this kind of
testing on production machines; it's not unusual to discover that simple typing mistakes are sufficient to cause
servers to go haywire. This is something useful to know before you allow anybody to access the server from the
Internet, but it's upsetting to discover it by crashing a production system.

This sort of detective work will be simplified if you have a tool that allows you to match a port number to a
process (without looking at every running process). Although netstat will tell you which ports are in use, it
doesn't always tell you the processes that are using them. A popular tool for this purpose on Windows NT is
inzider . Under Unix, this is usually done with fuser, which is provided with the operating system on most
systems; versions of Unix that do not have fuser will probably have an equivalent with some other name. Another
useful Unix tool for examining ports and the programs that are using them is /sof. Information on finding inzider
and /sof is in Appendix B.

13.4 What Makes a Good Firewalled Service?

The ideal service to run through a firewall is one that makes a single TCP connection in one direction for each
session. It should make that connection from a randomly allocated port on the client to an assigned port on the
server, the server port should be used only by this particular service, and the commands it sends over that
connection should all be secure. The following sections look at these ideal situations and some that aren't so
ideal.

13.4.1 TCP Versus Other Protocols

Because TCP is a connection-oriented protocol, it's easy to proxy; you go through the overhead of setting up the
proxy only once, and then you continue to use that connection. UDP has no concept of connections; every packet
is a separate transaction requiring a separate decision from the proxy server. TCP is therefore easier to proxy
(although there are UDP proxies). Similarly, ICMP is difficult to proxy because each packet is a separate
transaction. Once again, ICMP is harder to proxy than TCP but not impossible; some ICMP proxies do exist.

The situation is much the same for packet filters. It's relatively easy to allow TCP through a firewall and control
what direction connections are made in; you can use filtering on the ACK bit to ensure that you allow internal
clients only to initiate connections, while still letting in responses. With UDP or ICMP, there's no way to easily set
things up this way. Using stateful packet filters, you can watch for packets that appear to be responses, but you
can never be sure that a packet is genuinely a response to an earlier one, and you may be waiting for responses
to packets that don't require one.

page 215

ftp://ftp.isi.edu/in-notes/iana/assignments

Building Internet Firewalls

13.4.2 One Connection per Session

It's easy for a firewall to intercept the initial connection from a client to a server. It's harder for it to intercept a
return connection. With a proxy, either both ends of the conversation have to be aware of the existence of the
proxy server, or the server needs to be able to interpret and modify the protocol to make certain the return
connection is made correctly and uniquely. With plain packet filtering, the inbound connection has to be
permitted all the time, which often will allow attackers access to ports used by other protocols. Stateful packet
filtering, like proxying, has to be able to interpret the protocol to figure out where the return connection is going
to be and open a hole for it.

For example, in normal-mode FTP the client opens a control connection to the server. When data needs to be
transferred:

1. The client chooses a random port above 1023 and prepares it to accept a connection.

2. The client sends a PORT command to the server containing the IP address of the machine and the port
the client is listening on.

3. The server then opens a new connection to that port.
In order for a proxy server to work, the proxy server must:

Intercept the PORT command the client sends to the server.
Set up a new port to listen on.
Connect back to the client on the port the client specified.

Send a replacement PORT command (using the port number on the proxy) to the FTP server.

SIE I S

Accept the connection from the FTP server, and transfer data back and forth between it and the client.

It's not enough for the proxy server to simply read the PORT command on the way past because that port may
already be in use. A packet filter must either allow all inbound connections to ports above 1023, or intercept the
PORT command and create a temporary rule for that port. Similar problems are going to arise in any protocol
requiring a return connection.

Anything more complex than an outbound connection and a return is even worse. The talk service is an example;
see the discussion in Chapter 19, for an example of a service with a tangled web of connections that's almost
impossible to pass through a firewall. (It doesn't help any that talk is partly UDP-based, but even if it were all
TCP, it would still be a firewall designer's nightmare.)

13.4.3 One Session per Connection

It's almost as bad to have multiple sessions on the same connection as it is to have multiple connections for the
same session. If a connection is used for only one purpose, the firewall can usually make security checks and logs
at the beginning of the connection and then pay very little attention to the rest of the transaction. If a connection
is used for multiple purposes, the firewall will need to continue to examine it to see if it's still being used for
something that's acceptable.

13.4.4 Assigned Ports

For a firewall, the ideal thing is for each protocol to have its own port number. Obviously, this makes things
easier for packet filters, which can then reliably identify the protocol by the port it's using, but it also simplifies
life for proxies. The proxy has to get the connection somehow, and that's easier to manage if the protocol uses a
fixed port number that can easily be redirected to the proxy. If the protocol uses a port humber selected at
configuration time, that port number will have to be configured into the proxy or packet filter as well. If the
protocol uses a negotiated or dynamically assigned port, as RPC-based protocols do, the firewall has to be able to
intercept and interpret the port negotiation or lookup. (See Chapter 14, for more information about RPC.)

Furthermore, for security it's desirable for the protocol to have its very own assigned port. It's always tempting to
layer things onto an existing protocol that the firewall already permits; that way, you don't have to worry about
changing the configuration of the firewall. However, when you layer protocols that way, you change the security
of the firewall, whether or not you change its configuration. There is no way to let a new protocol through without
having the risks of that new protocol; hiding it in another protocol will not make it safer, just harder to inspect.

page 216

Building Internet Firewalls

13.4.5 Protocol Security

Some services are technically easy to allow through a firewall but difficult to secure with a firewall. If a protocol is
inherently unsafe, passing it through a firewall, even with a proxy, will not make it any safer, unless you also
modify it. For example, X11 is mildly tricky to proxy, for reasons discussed at length in Chapter 18, but the real
reason it's difficult to secure through firewalls has nothing to do with technical issues (proxy X servers are not
uncommon as ways to extend X capabilities). The real reason is that X provides a number of highly insecure
abilities to a client, and an X proxy system for a firewall needs to provide extra security.

The two primary ways to secure inherently unsafe protocols are authentication and protocol modification.
Authentication allows you to be certain that you trust the source of the communication, even if you don't trust
the protocol; this is part of the approach to X proxying taken by SSH. Protocol modification requires you to catch
unsafe operations and at least offer the user the ability to prevent them. This is reasonably possible with X (and
TIS FWTK provides a proxy called x-gw that does this), but it requires more application knowledge than would be
necessary for a safer protocol.

If it's difficult to distinguish between safe and unsafe operations in a protocol, or impossible to use the service at
all if unsafe operations are prevented, and you cannot restrict connections to trusted sources, a firewall may not
be a viable solution. In that case, there may be no good solution, and you may be reduced to using a victim host,
as discussed in Chapter 10. Some people consider HTTP to be such a protocol (because it may end up
transferring programs that are executed transparently by the client).

13.5 Choosing Security-Critical Programs

The world of Internet servers is evolving rapidly, and you may find that you want to use a server that has not
been mentioned here in a security-critical position. How do you figure out whether or not it is secure?

13.5.1 My Product Is Secure Because...

The first step is to discount any advertising statements you may have heard about it. You may hear people claim
that their server is secure because:

. It contains no publicly available code, so it's secret.

. It contains publicly available code, so it's been well reviewed.

° It is built entirely from scratch, so it didn't inherit any bugs from any other products.

° It is built on an old, well-tested code base.

° It doesn't run as root (under Unix) or as Administrator or LocalSystem (under Windows NT).

° It doesn't run under Unix / it doesn't run on a Microsoft operating system.

e There are no known attacks against it.

. It uses public key cryptography (or some other secure-sounding technology).

None of these things guarantees security or reliability. Horrible security bugs have been found in programs with
all these characteristics.

13.5.1.1 It contains no publicly available code, so it's secret

People don't need to be able to see the code to a program in order to find problems with it. In fact, most attacks
are found by trying attack methods that worked on similar programs, watching what the program does, or
looking for vulnerabilities in the protocol, none of which require access to the source code. It is also possible to
reverse-engineer an application to find out exactly how it was written. This can take a considerable amount of
time, but even if you are not willing to spend the time, it doesn't mean that attackers feel the same way.
Attackers are also unlikely to obey any software license agreements that prohibit reverse engineering.

In addition, some vendors who make this claim apply extremely narrow definitions of "publicly available code".
For instance, they may in fact use licensed code that is distributed in source format and is free for noncommercial
use. Check copyright acknowledgments - a program that includes copyright acknowledgments for the University
of California Board of Regents, for instance, almost certainly includes code from some version of the Berkeley
Unix operating system, which is widely available. There's nothing wrong with that, but if you want to use
something based on secret source code, you deserve to get what you're paying for.

page 217

Building Internet Firewalls

13.5.1.2 It contains publicly available code, so it's been well reviewed

Publicly available code could be well reviewed, but there's no guarantee. Thousands of people can read publicly
available code, but most of them don't. In any case, reviewing code after it's written isn't a terribly effective way
of ensuring its security; good design and testing are far more efficient.

People also point out that publicly available code gets more bug fixes and more rapid bug fixes than most
privately held code; this is true, but this increased rate of change also adds new bugs.

13.5.1.3 It is built entirely from scratch, so it didn't inherit any bugs from any other products

No code is bug free. Starting from scratch replaces the old bugs with new bugs. They might be less harmful or
more harmful. They might also be identical; people tend to think along the same lines, so it's not uncommon for
different programmers to produce the same bug. (See Knight, Leveson, and St. Jean, "A Large-Scale Experiment
in N-Version Programming," Fault-Tolerant Computing Systems Conference 15, for an actual experience with
common bugs.)

13.5.1.4 1t is built on an old, well-tested code base

New problems show up in old code all the time. Worse yet, old problems that hadn't been exploited yet suddenly
become exploitable. Something that's been around for a long time probably isn't vulnerable to attacks that used
to be popular, but that doesn't predict much about its resistance to future attacks.

13.5.1.5 It doesn't run as root/Administrator/LocalSystem

A program that doesn't run as one of the well-known privileged accounts may be safer than one that does. At the
very least, if it runs amok, it won't have complete control of your entire computer. However, that's a very long
distance from actually being safe. For instance, no matter what user is involved, a mail delivery system has to be
able to write mail into users' mailboxes. If the mail delivery system can be subverted, it can be used to fill up
disks or forge email, no matter what account it runs as. Many mail systems have more power than that.

There are two separate problems with services that are run as "unprivileged" users. The first is that the privileges
needed for the service to function carry risks with them. A mail system must be able to deliver mail, and that's
inherently risky. The second is that few operating systems let you control privileges so precisely that you can give
a service exactly the privileges that it needs. The ability to deliver mail often comes with the ability to write files
to all sorts of other places, for instance. Many programs introduce a third problem by creating accounts to run the
service and failing to turn off default privileges that are unneeded. For instance, most programs that create
special accounts to run the service fail to turn off the ability for their special accounts to log in. Programs rarely
need to log in, but attackers often do.

13.5.1.6 It doesn't run under Unix, or it doesn't run on a Microsoft operating system

People produce dozens of reasons why other operating systems are less secure than their favorite one. (Unix
source code is widely available to attackers! Microsoft source code is too big! The Unix root concept is inherently
insecure! Windows NT's layered model isn't any better!) The fact is, almost all of these arguments have a grain of
truth. Both Unix and Windows NT have serious design flaws as secure operating systems; so does every other
popular operating system.

Nonetheless, it's possible to write secure software on almost any operating system, with enough effort, and it's

easy to write insecure software on any operating system. In some circumstances, one operating system may be
better matched to the service you want to provide than another, but most of the time, the security of a service

depends on the effort that goes into securing it, both at design and at deployment.

13.5.1.7 There are no known attacks against it

Something can have no known attacks without being at all safe. It might not have an installed base large enough
to attract attackers; it might be vulnerable but usually installed in conjunction with something easier to attack; it
might just not have been around long enough for anybody to get around to it; it might have known flaws that are
difficult enough to exploit that nobody has yet implemented attacks for them. All of these conditions are
temporary.

page 218

Building Internet Firewalls

13.5.1.8 It uses public key cryptography (or some other secure-sounding technology)

As of this writing, public key cryptography is a popular victim for this kind of argument because most people
don't understand much about how it works, but they know it's supposed to be exciting and secure. You therefore
see firewall products that say they're secure because they use public key cryptography, but that don't say what
specific form of public key cryptography and what they use it for. This is like toasters that claim that they make
perfect toast every time because of "digital processing technology". They can be digitally processing anything
from the time delay to the temperature to the degree of color-change in the bread, and a digital timer will burn
your toast just as often as an analog one.

Similarly, there's good public key cryptography, bad public key cryptography, and irrelevant public key
cryptography. Merely adding public key cryptography to some random part of a product won't make it secure.
The same is true of any other technology, no matter how exciting it is. A supplier who makes this sort of claim
should be prepared to back it up by providing details of what the technology does, where it's used, and how it
matters.

13.5.2 Their Product Is Insecure Because...

You'll also get people who claim that other people's software is insecure (and therefore unusable or worse than
their competing product) because:

. It's been mentioned in a CERT-CC advisory or on a web site listing vulnerabilities.
. It's publicly available.

. It's been successfully attacked.
13.5.2.1 It's been mentioned in a CERT-CC advisory or on a web site listing vulnerabilities

CERT-CC issues advisories for programs that are supposed to be secure, but that have known problems for which
fixes are available from the supplier. While it's always unfortunate to have a problem show up, if there's a CERT-
CC advisory for it, at least you know that the problem was unintentional and the vendor has taken steps to fix it.
A program with no CERT-CC advisories might have no problems; but it might also be completely insecure by
design, be distributed by a vendor who never fixes security problems, or have problems that were never reported
to CERT-CC. Since CERT-CC is relatively inactive outside of the Unix world, problems on non-Unix platforms are
less likely to show up there, but they still exist.

Other lists of vulnerabilities are often a better reflection of actual risks, since they will list problems that the
vendor has chosen to ignore and problems that are there by design. On the other hand, they're still very much a
popularity contest. The "exploit lists" kept by attackers, and people trying to keep up with them, focus heavily on
attacks that provide the most compromises for the least effort. That means that popular programs are mentioned
often, and unpopular programs don't get much publicity, even if the popular programs are much more secure
than the unpopular ones.

In addition, people who use this argument often provide big scary numbers without putting them in context;
what does it mean if you say that a given web site lists 27 vulnerabilities in a program? If the web site is carefully
run by a single administrator, that might be 27 separate vulnerabilities; if it's not, it may be the same 9
vulnerabilities reported three times each. In either case, it's not very interesting if competing programs have
270!

13.5.2.2 It's publicly available

We've already argued that code doesn't magically become secure by being made available for inspection. The
other side of that argument is that it doesn't magically become insecure, either. A well-written program doesn't
have the kind of bugs that make it vulnerable to attack just because people have read the code. (And most
attackers don't actually read code any more frequently than defenders do - in both cases, the conscientious and
careful read the code, and the vast majority of people just compile it and hope.)

In general, publicly available code is modified faster than private code, which means that security problems are
fixed more rapidly when they are found. This higher rate of change has downsides, which we discussed earlier,
but it also means that you are less likely to be vulnerable to old bugs.

page 219

Building Internet Firewalls

13.5.2.3 It's been successfully attacked

Obviously, you don't want to install software that people already know how to attack. However, what you should
pay the most attention to is not attacks but the response to them. A successful attack (even a very high-profile
and public successful attack) may not be important if the problem was novel and rapidly fixed. A pattern where
variations on the same problem show up repeatedly or where the supplier is slow to fix problems is genuinely
worrisome, but a single successful attack usually isn't, even if it makes a national newspaper.

13.5.3 Real Indicators of Security

Any of the following things should increase your comfort:

° Security was one of the design criteria.

e The supplier appears to be aware of major types of security problems and can speak to how they have
been avoided.

. It is possible for you to review the code.

. Somebody you know and trust actually has reviewed the code.

° A process is in place to distribute notifications of security problems and updates to the server.
e The server fully implements a recent (but accepted) version of the protocol.

e The program uses standard error-logging mechanisms (syslog under Unix, the Event Viewer under
Windows NT).

. There is a secure software distribution mechanism.
13.5.3.1 Security was one of the design criteria

The first step towards making a secure program is trying to make one. It's not something you can achieve by
accident. The supplier should have convincing evidence that security was kept in mind at the design stage, and
that the kind of security they had in mind is the same kind that you have in mind. It's not enough for "security"
to be a checkbox item on a list somewhere. Ask what they were trying to secure, and how this affected the final
product.

For instance, a mail system may list "security" as a goal because it incorporates anti-spamming features or
facilitates encryption of mail messages as they pass across the Internet. Those are both nice security goals, but
they don't address the security of the server itself if an attacker starts sending it evil commands.

13.5.3.2 The supplier can discuss how major security problems were avoided

Even if you're trying to be secure, you can't get there if you don't know how. Somebody associated with your
supplier and responsible for the program should be able to intelligently discuss the risks involved, and what was
done about them. For instance, if the program takes user-supplied input, somebody should be able to explain to
you what's been done to avoid buffer overflow problems.

13.5.3.3 It is possible for you to review the code

Security through obscurity is often better than no security at all, but it's not a viable long-term strategy. If there
is no way for anybody to see the code, ever, even a bona-fide expert who has signed a nondisclosure agreement
and is acting on behalf of a customer, you should be suspicious. It's perfectly reasonable for people to protect
their trade secrets, and it's also reasonable for people to object to having sensitive code examined by people who
aren't able to evaluate it anyway (for instance, it's unlikely that most people can do an adequate job of
evaluating the strength of encryption algorithms). However, if you're willing to provide somebody who's
competent to do the evaluation, and to provide strong protection for trade secrets, you should be allowed to
review the code. Code that can't stand up to this sort of evaluation will not stand the test of time, either.

You may not be able and willing to review the code under appropriate conditions. That's usually OK, but you
should at least verify that there is some procedure for code review.

page 220

Building Internet Firewalls

13.5.3.4 Somebody you know and trust actually has reviewed the code

It doesn't matter how many people could look at a piece of software if nobody ever does. If it's practical to do so,
it's wise to make the investment to have somebody reasonably knowledgeable and trustworthy actually look at
the code. While anybody could review open source, very few people do. It's relatively cheap and easy, and any
competent programmer can at least tell you whether it's well-written code. Don't assume that somebody else has
done this.

13.5.3.5 There is a security notification and update procedure

All programs eventually have security problems. A well-defined process should be in place for notifying the
supplier of security problems and for getting notifications and updates from them. If the supplier has been
around for any significant amount of time, there should be a positive track record, showing that they react to
reported problems promptly and reasonably.

13.5.3.6 The server implements a recent (but accepted) version of the protocol

You can have problems with protocols, not just with the programs that implement them. In order to have some
confidence in the security of the protocol, it's helpful to have an implementation of an accepted, standard
protocol in a relatively recent version. You want an accepted and/or standard protocol so that you know that the
protocol design has been reviewed; you want a relatively recent version so that you know that old problems have
been fixed. You don't want custom protocols, or experimental or novel versions of standard protocols, if you can
avoid them. Protocol design is tricky, few suppliers do a competent job in-house, and almost nobody gets a
protocol right on the first try.

13.5.3.7 The program uses standard error-logging mechanisms

In order to secure something, you need to manage it. Using standard logging mechanisms makes programs much
easier to manage; you can simply integrate them into your existing log management and alerting tools.
Nonstandard logging not only interferes with your ability to find messages, it also runs the risk of introducing new
security holes (what if an attacker uses the logging to fill your disk?).

13.5.3.8 There is a secure software distribution mechanism

You should have some confidence that the version of the software you have is the correct version. In the case of
software that you download across the Internet, this means that it should have a verifiable digital signature (even
if it is commercial software!).

More subtly, if you're getting a complex commercial package, you should be able to trust the distribution and
release mechanism, and know that you have a complete and correct version with a retrievable version nhumber. If
your commercial vendor ships you a writable CD burned just for you and then advises you to FTP some patches,
you need to know that some testing, integration, and versioning is going on. If they don't digitally sign
everything and provide signatures to compare to, they should at least be able to provide an inventory list
showing all the files in the distribution with sizes, dates, and version numbers.

13.6 Controlling Unsafe Configurations

As we've discussed in earlier sections, your ability to trust a protocol often depends on your ability to control
what it's talking to. It's not unusual to have a protocol that can be perfectly safe, as long as you know that it's
going to specific clients with specific configurations, or otherwise horribly unsafe. For instance, the Simple Mail
Transport Protocol (SMTP) is considered acceptable at most sites, as long as it's going to a machine with a
reliable and well-configured server on it. On the other hand, it's extremely dangerous when talking to a badly
configured server.

Normally, if you want to use a protocol like this, you will use bastion hosts, and you will allow the protocol to
come into your site only when it is destined for a carefully controlled and configured machine that is administered
by your trusted security staff. Sometimes you may not be able to do this, however; you may find that you need
to allow a large number of machines, or machines that are not directly controlled by the staff responsible for the
firewall. What do you do then?

The first thing to be aware of is that you cannot protect yourself from hostile insiders in this situation. If you
allow a protocol to come to machines, and the people who control those machines are actively trying to subvert
your security, they will succeed in doing so. Your ability to control hostile insiders is fairly minimal in the first
place, but the more protocols you allow, the more vulnerable you are.

page 221

Building Internet Firewalls

Supposing that the people controlling the machines are not hostile but aren't security experts either, there are
measures you can take to help the situation. One option is to attempt to increase your control over the machines
to the point where they can't get things wrong; this means forcing them to run an operating system like Windows
NT or Unix where you can centralize account administration and remove access to globally powerful accounts
(root or Administrator). This is rarely possible, and when it is possible, it sometimes doesn't help much. This
approach will generally allow you to forcibly configure web browsers into safe configurations, for instance, but it
won't do much for web servers. Enough access to administer a web server in any useful way is enough access to
make it insecure.

Another option is to attempt to increase your control over the protocol until you're certain that it can't be used to
attack a machine even it's misconfigured. For instance, if you can't turn off support for scripting languages in web
browsers, you can filter scripting languages out of incoming HTTP. This is at best an ongoing war - it's usually
impossible to find a safe but useful subset of the protocol, so you end up removing unsafe things as they become
known. At worst, it may be impossible to do this sort of control.

If you can't actually control either the clients or the protocol, you can at least provide peer pressure and social
support to get programs safely configured. You can use local installations under Unix or profiles under Windows
NT to supply defaults that you find acceptable (this will work best if you also provide localizations that are useful
to the user). For instance, you can supply configuration information for web browsers that turns off scripting
languages and that also correctly sets proxying information and provides bookmarks of local interest. You want to
make it easier and more pleasant to do things securely than insecurely.

You can also provide a security policy that makes clear what you want people to do and why. In particular, it
should explain to people why it matters to them, since few people are motivated to go to any trouble at all to
achieve some abstract notion of security. (See Chapter 25, for more information on security policies.)

No matter how you end up trying to manage these configuration issues, you will want to be sure that you are
monitoring for vulnerabilities. Don't fool yourself; you will never get perfect compliance using policies and
defaults. (You'll be very lucky to get perfect compliance even when you're using force, since it requires perfect
enforcement!)

page 222

Building Internet Firewalls

Chapter 14. Intermediary Protocols

Earlier we discussed TCP, UDP, and other protocols directly based on IP. Many application protocols are based
directly on those protocols, but others use intermediary protocols. Understanding these intermediary
protocols is important to understanding the applications that are built on them. This chapter discusses various
general-purpose protocols that are used to build numerous applications or higher-level protocols.

We discuss intermediary protocols here because they form the basis for many of the protocols we discuss
later. However, intermediary protocols are usually invisible, and they are often complex. If you are not
already familiar with network protocols, you may want to skip this chapter initially, and come back to it as
needed.

14.1 Remote Procedure Call (RPC)

The term "RPC", or remote procedure call, can be used for almost any mechanism that lets a program do
something that looks to the programmer like making a simple procedure call but that actually contacts
another program. However, it's also the name of some particular protocols for this purpose, which are
extremely widespread.

Multiple remote procedure call protocols are known as RPCs. In particular, on Unix systems, the protocol
normally known as "RPC" is one developed by Sun and later standardized as Open Network Computing RPC.
On Microsoft systems, the protocol normally known as "RPC" is compatible with a descendent of Sun's RPC
standardized by the Open Systems Foundation (OSF) as part of its Distributed Computing Environment (DCE).
For clarity, we will call these "Sun RPC" and "Microsoft RPC". It is arguably more correct to call them "ONC
RPC" and "DCE RPC"; however, we find that in this case, correctness and clarity are at odds with each other.

Other remote procedure call mechanisms are used on particular implementations, but these two account for
most of the market, and the other RPC mechanisms are similar in concept and difficulties. For simplicity,
when we are making statements that refer to all protocols we know of that anybody calls "RPC", we'll say just
"RPC".

Sun RPC and Microsoft RPC are quite similar and are related, but they do not interoperate. Microsoft RPC is an
implementation of DCE RPC and can interoperate with other DCE RPC implementations. Some Unix machines
support both Sun RPC and DCE RPC (usually Sun RPC is a default, and DCE RPC is an option or an add-on
product). In practice, even if you run DCE RPC on a Unix machine, you will very rarely notice any
interoperability with Microsoft RPC. The DCE RPC standard covers only a small amount of functionality, and
most applications use features that are not in the base set. These features are not guaranteed to be
interoperable between implementations. Since DCE RPC is relatively little used on Unix, Unix applications
often stick to base features. Microsoft, however, makes extensive use of RPC and needs more functionality.
They therefore almost always use incompatible features (mostly by using DCOM, which is discussed later).
This is the main reason for our stubborn insistence on referring to "Microsoft RPC"; we are attempting to
avoid the suggestion that Microsoft applications that use RPC can be expected to work with other DCE RPC
servers or clients.

Like TCP and UDP, the RPCs are used as general-purpose transport protocols by a variety of application
protocols; on Unix machines, this includes NFS and NIS, and on Windows NT machines, it includes Microsoft
Exchange and the administrator applications for a number of services, including DHCP and Exchange. NFS and
NIS are vulnerable services from a network security point of view. An attacker with access to your NFS server
can probably read any file on your system. An attacker with access to your NIS server can probably obtain
your password file and then run a password-cracking attack against your system. The Windows NT
applications that use RPC are less security-critical but by no means safe. While it's not immediately fatal to
have an attacker controlling your mail server, it's not pleasant either.

In the TCP and UDP protocols, port numbers are two-byte fields. This means that there are only 65,536
possible port numbers for TCP and UDP services. There aren't enough ports to be able to assign a unique
well-known port number to every possible service and application that might want one. Among other things,
RPC addresses this limitation. Each RPC-based service is assigned a unique four-byte RPC service number.
This allows for 4,294,967,296 different services, each with a unique number. That's more than enough to
assign a unique number to every possible service and application you'd need.

RPC is built on top of TCP and UDP, so there needs to be some way of mapping the RPC service numbers of
the RPC-based servers in use on a machine to the particular TCP or UDP ports those servers are using. This is
where the location server comes in. On Unix machines, the location server is a program called portmapper ;
under Windows NT, it's the RPC Locator service. The functions and characteristics of the two are the same.

page 223

Building Internet Firewalls

The location server is the only RPC-related server that is guaranteed to run on a particular TCP or UDP port
number (for Sun RPC, it is at port number 111 on both; for Microsoft RPC, it is at port number 135 on both).
When an RPC-based server such as an NFS or NIS server starts, it allocates a TCP and/or UDP (some use
one, some the other, some both) port for itself. Then, it contacts the location server on the same machine to
"register" its unique RPC service number and the particular port(s) it is using at the moment.

Servers usually choose arbitrary port numbers, but they can consistently choose the same port nhumber every
time if they wish. There is no guarantee that a server that does this will be able to register itself; some other
server may have gotten there first, in which case the registration will fail. Obviously, if every server requests
a fixed port number, there's not much point in using RPC at all. One of the major features of RPC is that it
provides access that is not based on fixed port numbers.

An RPC-based client program that wishes to contact a particular RPC-based server on a machine first contacts
the location server on that machine (which, remember, always runs on both TCP and UDP port 111 or 135).
The client tells the location server the unique RPC service number for the server it wishes to access, and the
location server responds with a message saying, in effect, either "I'm sorry, but that service isn't available on
this machine at the moment", or "That service is currently running on TCP (or UDP) port n on this machine at
the moment". At that point, the client contacts the server on the port number it got from the location server
and continues its conversation directly with the server, without further involvement from the location server.
(Figure 14.1 shows this process.)

Figure 14.1. RPC and the portmapper

RPC Server RPC Client
@ Server registers port with e —
... laler ... | Partmapper = E
@ Client contacts portmapper, RPC-Based
A5ks aboul server : Client
© Portmapper talis client what 0)
port server Is using. RPC-Based 0
€ Clignt contacts sarver Server i
© Server responds to client NG

The Sun RPC location service also implements an optimization of this process that allows an RPC client to
send a service lookup request and an RPC call in a single request. The location service not only returns the
information, but also forwards the RPC call to the appropriate service. The service that receives the request
will see the IP address of the local machine instead of the IP address of the machine that sent the query. This
has caused a number of security problems for RPC services, since many of them perform authentication
based upon the source IP addresses of the request. This feature should normally be disabled.

14.1.1 Sun RPC Authentication

In Sun RPC, each server application chooses what kind of authentication it wants. Two authentication
schemes are available in normal Sun RPC, known as "AUTH_NONE" and "AUTH_UNIX". If you have a Kerberos
installation and a recent implementation of Sun RPC, applications can use "AUTH_KERB" to do Kerberos
authentication.

Logically enough, "AUTH_NONE" means that there is no authentication at all. Applications that use
AUTH_NONE are available to all users and ask for no authentication data. "AUTH_UNIX" could more
appropriately be called "AUTH_ALMOST_NONE". Applications that use "AUTH_UNIX" ask the client to provide
the numeric Unix user and group IDs for the user and enforce the permissions appropriate to those user and
group IDs on the server machine. This information is completely forgeable; a hostile client can provide any
user or group ID that seems desirable.

RPC servers are free to implement their own authentication schemes, but Sun RPC does not normally provide
any reliable authentication for them except through Secure RPC. You do not want to allow access to RPC
services unless you are sure that they do have their own, reliable authentication. (In general, this means
simply disabling remote access to RPC altogether.)

page 224

Building Internet Firewalls

Secure RPC provides another authentication scheme, known as "AUTH_DES". Secure RPC is an extension to
Sun RPC that improves user authentication. Secure RPC has become available much more slowly than normal
Sun RPC; for many years, Sun was effectively the only vendor that supported it, and it is still relatively rare
and difficult to use in large heterogeneous networks.

This is partly because Secure RPC requires more infrastructure than regular RPC, and this infrastructure is
often annoyingly visible to the user. Logically, Secure RPC is a classic combination of public key cryptography
and secret key cryptography; Diffie-Hellman public key cryptography is used to securely determine a shared
secret used for encryption with the DES algorithm. Cryptography, Diffie-Hellman, and the DES algorithm are
discussed further in Appendix C.

Secure RPC is based upon using a public key algorithm that has a maximum key size of only 192 bits in
length. This size of key is too small and is considered to make Secure RPC vulnerable to factoring attacks,
where an attacker can discover the private key from computations based upon captured key exchange data.
An attacker would have to use considerable computing resources to break a key, but once a key was broken,
it could be used to impersonate the user at any place those credentials were used.

There are two major difficulties: distributing information about public keys, and getting private keys for
human beings. Public and private keys are both big numbers, and they're security critical. If somebody can
change the database of public keys, that person can put his or her public key in place of some other public
key, and authenticate as any entity he or she would like to be. If somebody can read a private key, he or she
can then authenticate as the entity that owns that private key. Normally, you might deal with this by not
storing the private key on the computer, but human beings are very bad at providing large humbers on
demand.

The Secure RPC infrastructure can deal with the public key information in a number of ways. On Suns, the
normal method is to use NIS+, which has a credentials database. You can also distribute the same
information as a regular NIS map or as a file. If you put the information in a file, you then have to distribute
the file, which is normally done with NFS. As we discuss in Chapter 20, normal NIS is not secure; therefore, if
you distribute the public key information this way, it will be vulnerable to replacement by attackers. As we
discuss in Chapter 17, normal NFS isn't secure, either. To secure it, you run NFS over Secure RPC, which isn't
going to work if you need to have access to NFS before you can get Secure RPC running. If you're going to
rely on Secure RPC, you must ensure that the public keys are distributed via a secure method (which will
generally be NIS+). NIS+ itself uses Secure RPC, but because it is authenticating as the machine (instead of
as a particular user, which is necessary for NFS), and is communicating with a known server, it can locally
store the information necessary to start up a connection to the NIS+ service, avoiding the bootstrapping
problem.

The private key information is also handled by NIS or NIS+. It is distributed in an encrypted form and
decrypted using a user-supplied password.

14.1.2 Microsoft RPC Authentication

Microsoft RPC does provide an authentication system, but not all operating systems support it (in particular, it
is supported on Windows NT, but not on Windows 95 or Windows 98). As a result, very few applications
actually use RPC authentication, since it limits the platforms the application can run on and requires extra
programming effort. Instead, applications that need security with Microsoft RPC usually use RPC over SMB
instead of using RPC directly over TCP/IP, and use SMB authentication. (SMB is described later in this
chapter.)

14.1.3 Packet Filtering Characteristics of RPC

It's very difficult to use packet filtering to control RPC-based services because you don't usually know what
port the service will be using on a particular machine - and chances are that the port used will change every
time the machine is rebooted. Blocking access to the location server isn't sufficient. An attacker can bypass
the step of talking to the location server and simply try all TCP and/or UDP ports (the 65,536 possible ports
can all be checked on a particular machine in a matter of minutes), looking for the response expected from a
particular RPC-based server like NFS or NIS.

page 225

Building Internet Firewalls

. . Source | Dest. Source | Dest. ACK

Direction Addr. Addr. Protocol Port Port Set Notes

In Ext Int UDP >1023 111 t Request, external client to internal Sun RPC
location server

Out Int Ext UDP 111 >1023 Response, internal Sun RPC location server to
external client

Out Int Ext UDP >1023 111 Request, internal client to external Sun RPC
location server

In Ext Int ubP 111 >1023 Response, external Sun RPC location server to
internal client

In Ext Int TCP >1023 111 (21 Request, external client to internal Sun RPC
location server

Out Int Ext TCP 111 >1023 | Yes Response, internal Sun RPC location server to
external client

Out Int Ext TCP >1023 111 Request, internal client to external Sun RPC
location server

In Ext Int TCP 111 >1023 | Yes Response, external Sun RPC location server to
internal client

In Ext Int uUbDP >1023 135 Request, external client to internal
Microsoft/DCE RPC location server

Out Int Ext ubP 135 >1023 Response, internal Microsoft/DCE RPC location
server to external client

Out Int Ext UDP >1023 | 135 Request, internal client to external
Microsoft/DCE RPC location server

In Ext Int UDP 135 >1023 Response, external Microsoft/DCE RPC location
server to internal client

In Ext Int TCP >1023 | 135 Request, external client to internal
Microsoft/DCE RPC location server

Out Int Ext TCP 135 >1023 | Yes Response, internal Microsoft/DCE RPC location
server to external client

Out Int Ext TCP >1023 135 Request, internal client to external
Microsoft/DCE RPC location server

In Ext Int TCP 135 >1023 | Yes Response, external Microsoft/DCE RPC location
server to internal client

In Ext Int UDP >1023 | Any Request, external client to internal RPC server

Out Int Ext UDP Any >1023 Response, internal RPC server to external client

Out Int Ext UDP >1023 | Any Request, internal client to external RPC server

In Ext Int ubP Any >1023 Response, external RPC server to internal client

In Ext Int TCP >1023 | Any Request, external client to internal RPC server

Out Int Ext TCP Any >1023 |Yes Response, internal RPC server to external client

Out Int Ext TCP >1023 | Any Request, internal client to external RPC server

In Ext Int TCP Any >1023 |Yes Response, external RPC server to internal client

1 UDP has no ACK equivalent.

(21 ACK will not be set on the first packet (establishing connection) but will be set on the rest.

page 226

Building Internet Firewalls

Some newer packet filtering products can talk to the location server to determine what services are where
and filter on that basis. Note that this has to be verified on a per-packet basis for UDP-based services. The
packet filter will have to contact the location server every time it receives a packet, because if the machine
has rebooted, the service may have moved. Because TCP is connection-oriented, the port number has to be
verified only on a per-connection basis. Using this mechanism to allow UDP-based services is going to result
in high overhead and is probably not wise for applications that perform a lot of RPC.

Even though it is not sufficient, you should still block access to the location server
because some versions of the location server are capable of being used as proxies
for an attacker's clients.

So, what do you do to guard RPC-based services? A couple of observations: First, it turns out that most of the
"dangerous" RPC-based services (particularly NIS and NFS) are offered by default over UDP. Second, most
services you'd want to access through a packet filter are TCP-based, not UDP-based; the notable exceptions
are DNS, NTP, and syslog. These twin observations lead to the common approach many sites take in dealing
with RPC using packet filtering: block UDP altogether, except for specific and tightly controlled "peepholes" for
DNS, NTP, and syslog. With this approach, if you wish to allow any TCP-based RPC service in a given
direction, you'll need to allow them all, or use a packet filter that can contact the location service.

Windows NT provides more control over the ports used by RPC. This will help if you want to allow remote
clients to access your servers, but it will not help you allow internal clients to access external servers (unless
you can talk the owners of the servers into modifying their machines). Most uses of RPC are actually uses of
DCOM, which provides a user interface to configuring ports that is discussed later in this chapter. You can also
control the size of the port range used by RPC directly. To limit the size of the port range, modify the
following registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\RPC

so that the "Ports" key is set to the port range you wish to use, the "PortsInternetAvailable" key is set to "Y",
and "UselnternetPorts" is also set to "Y".

The procedure for setting the port for a given service varies from service to service. It is sometimes
documented in the manuals, and the Microsoft web site gives instructions on setting RPC ports for services
that are particularly frequently used through firewalls. Again, most RPC services are DCOM services, and
there is a user interface for changing DCOM parameters. It is worth checking the DCOM interface even if you
see documentation that advises you to edit the registry directly.

If you set the port that a service uses, be sure to pick a port that is not in use by another server, and a port
that is not at the beginning of the RPC port range. Since most servers choose the first free number in the RPC
port range, a server that asks for a number very close to the beginning of the port range is quite likely to find
it already in use. At this point, either the server will fail to start at all, because the RPC registration fails, or
the server will select a random port and start on it. In either case, remote clients who are relying on the
server being at a fixed port number will be unable to access it.

page 227

Building Internet Firewalls

14.1.4 Proxying Characteristics of RPC

RPC is difficult to proxy for many of the same reasons that make it difficult to protect with packet filtering.
Using RPC requires using the location service, and the proxy server needs to proxy both the location service
and the specific service that is being provided. Figure 14.2 shows the process that an RPC proxy needs to go
through.

Figure 14.2. Proxying RPC

' 1 = Proxy Location 2 = Location
- 5 Senics 4 3 Service
Appiication 4
T
Create Proxy
6 " Savics § 7 " Service
- g - a

Normal modified-client proxy systems, like SOCKS, do not support RPC, and no modified-procedure proxies
are available for it. This means that there's no external way for the proxy to determine what server the client
is trying to contact. Either the client has to be configured to speak RPC to the proxy server, which then
always connects to the same actual server, or the proxy server must run as a transparent proxy service,
where a router intercepts traffic, complete with server addresses, and hands them to the proxy.

A number of transparent proxy servers do support Sun RPC; a smaller number are now adding support for
DCE/Microsoft RPC. Products vary in the amount of support they provide, with some providing all-or-none
support, and others allowing you to specify which RPC services you wish to allow.

14.1.5 Network Address Translation Characteristics of RPC

None of the RPC versions uses embedded IP addresses; there is no inherent problem using them with
network address translation systems that modify only host addresses. On the other hand, the information
returned by the location service does include port numbers. Using RPC with a network address translation
system that modifies port numbers will require a system that's able to interpret and modify the responses
from the location server so that they show the translated port numbers. In addition, protocols built on top of
RPC are free to exchange IP addresses or pay attention to source IP addresses as well as RPC information, so
there is no guarantee that all RPC applications will work. In particular, both NIS and NFS use IP source
addresses as authenticators and will have to be carefully configured to work with the translated addresses. As
discussed in the next section, DCOM, which is the primary user of Microsoft RPC, uses embedded source
addresses and will not work with network address translation.

14.1.6 Summary of Recommendations for RPC

° Do not allow RPC-based protocols through your firewall.

14.2 Distributed Component Object Model (DCOM)

DCOM is a Microsoft protocol for distributed computing which is based on RPC. DCOM is the mechanism
Microsoft suggests that developers use for all client-server computing on Microsoft platforms, and most
applications that are listed as using Microsoft RPC are actually using DCOM. DCOM can use either TCP or UDP;
under Windows NT 4, it defaults to using UDP, while most other DCOM implementations default to using TCP.
If the default version of RPC does not work, servers will use the other.

Although DCOM is based on RPC, it adds a number of features with important implications for firewalls. On
the positive side, DCOM adds a security layer to RPC; applications can choose to have integrity protection,
confidentiality protection, or both.

page 228

Building Internet Firewalls

On the negative side, DCOM transactions are more complicated to support through firewalls than
straightforward RPC transactions. DCOM transactions include IP addresses, so DCOM cannot be
straightforwardly used with firewall mechanisms that obscure the IP address of the protected machines (for
instance, proxying or network address translation). DCOM servers also may use callbacks, where the server
initiates connections to clients, so for some services, it may be insufficient to allow only client-to-server
connections.

Microsoft has produced various ways to run DCOM over HTTP. These methods allow you to pass DCOM
through a firewall without the problems associated with opening all the ports used by Microsoft RPC. On the
other hand, if you use these methods to provide for incoming DCOM access, you are making all your DCOM
servers available to the Internet. DCOM services are not written to be Internet accessible and should not be
opened this way.

You can control DCOM security configuration and the ports used by DCOM with the dcomcnfg application. The
Endpoints tab in dcomcnfg will let you set the port range used for dynamically assigned ports, and if you edit
the configuration for a particular DCOM service, the Endpoints tab will allow you to choose a static port for it.
This is safer than editing the registry directly, but you should still be careful about the port humber you
choose; if port numbers conflict, services will not work correctly. Do not statically assign services to port
numbers that are low in the port range (these will frequently be dynamically assigned) or to port numbers
that are statically assigned to other services.

14.3 NetBIOS over TCP/IP (NetBT)

Although Microsoft supports a humber of services that are directly based on TCP/IP, many older services are
based on NetBIOS and use NetBT on TCP/IP networks. This provides an additional layer of portability for the
services, which can run on TCP/IP networks or NetBEUI networks without the difference being visible to the
application.

NetBT provides three services:

. NetBIOS name service
. Datagram service

. Session service

Name service is at UDP port 137 and is used to do name resolution; see Chapter 20, for more information.
NetBT datagram service is at UDP port 138 and is the NetBT equivalent of UDP, used for connectionless
transactions. NetBT session service is at TCP port 139. NetBT datagram and session service are both used
primarily for protocols based on Server Message Block (SMB), which is discussed later in this chapter.

NetBT doesn't actually provide much by itself. NetBT is simply a way of running NetBIOS over TCP/IP, and
almost all interesting work is done by higher-level protocols (nearly always SMB). NetBT session connections
do provide an extremely minimal level of security. A requester must specify the NetBIOS name and the
TCP/IP address that it wants to connect to, as well as the requester's NetBIOS name and TCP/IP address. The
connection can't be made unless some program has registered to respond to the specified NetBIOS name.
NetBT applications could perform authorization based on the requester's NetBIOS name and/or TCP/IP
address, but in practice, this is rare. (Since both of these are trivially forgeable in any case, it's just as well.)

NetBT session service can also act as a sort of locator service. An application that's registering to respond to a
name can specify another IP address and port number. When a client attempts to connect, it will initially talk
to a NetBT session at port 139, but the NetBT session server will provide another IP address and port
number. The client will then close the initial connection and open a new connection (still using the NetBT
session protocol) to the new IP address and port number. This is intended to support operating systems
where open TCP/IP connections can't be transferred between applications, so that the NetBT session server
can't simply transfer the connection to a listener. It is not a feature in widespread use.

NetBT datagram service also includes a source and destination NetBIOS name (although not TCP/IP address
information). NetBT datagrams may be broadcast, multicast, or sent to a specific destination. The receiving
host looks at the destination NetBIOS name to decide whether or not to process the datagram. This feature is
sometimes used instead of name resolution. Rather than trying to find an address for a particular name,
clients of some protocols send a broadcast packet and assume that the relevant host will answer. This will
work only if broadcast traffic from the client can reach the server. We point out protocols where this feature is
commonly used.

page 229

Building Internet Firewalls

14.3.1 Packet Filtering Characteristics of NetBT

NetBT name service is covered in Chapter 20. NetBT datagram service uses UDP port 138; session service
uses TCP port 139.%% NetBT session service is always directed to a specific host, but NetBT datagram service
may be broadcast. If redirection is in use, NetBT session connections may legitimately be made with any
destination port. Fortunately, this is rare and will not happen on Windows NT or Unix NetBT servers.

Direction Source | Dest. Protocol Source Dest. | ACK Notes
Addr. |Addr. Port Port Set

In Ext Int uDP >1023 138 (i Request, external client to internal
NetBT datagram server

Out Int Ext UDP 138 >1023 Response, internal NetBT datagram
server to external client

Out Int Ext UDP >1023 138 Request, internal client to external
NetBT datagram server

In Ext Int UDP 138 >1023 Response, external NetBT
datagram server to internal client

In Ext Int TCP >1023 139 (2l Request, external client to internal
NetBT session server

Out Int Ext TCP 139 >1023 | Yes Response, internal NetBT session
server to external client

Out Int Ext TCP >1023 139 Request, internal client to external
NetBT session server

In Ext Int TCP 139 >1023 | Yes Response, external NetBT session
server to internal client

1 UDP has no ACK equivalent.
(21 ACK will not be set on the first packet (establishing connection) but will be set on the rest.
14.3.2 Proxying Characteristics of NetBT

NetBT session service would be quite easy to proxy, and NetBT datagram service is designed to be proxied.
Proxying NetBT will not increase security much, although it will allow you to avoid some sorts of forgery and
probably some denial of service attacks based on invalid NetBT datagrams.

14.3.3 Network Address Translation Characteristics of NetBT

Although NetBT does have embedded IP addresses, they do not usually pose a problem for network address
translation systems. There are two places where IP addresses are embedded: session service redirections and
datagrams. Session service redirection is almost never used, and the embedded IP addresses in datagrams
are supposed to be used only for client identification, and not for communication. Replies are sent to the IP
source address, not the embedded source.

In some situations, changes in port numbers can be a problem because some implementations respond to
port 138 for datagram service, ignoring both the IP source port and the embedded NetBT source port.
Fortunately, these older implementations are becoming rare.

14.3.4 Summary of Recommendations for NetBT

o Do not allow NetBT across your firewall.

6 TCP port 138 and UDP port 139 are also registered for use by NetBT but are not actually used.

page 230

Building Internet Firewalls

14.4 Common Internet File System (CIFS) and Server Message Block (SMB)

The Common Internet File System (CIFS) is a general-purpose information-sharing protocol formerly known
as Server Message Block (SMB). SMB is a message-based protocol developed by Microsoft, Intel, and IBM.
SMB is best known as the basis for Microsoft's file and printer sharing, which is discussed further in Chapter
17. However, SMB is also used by many other applications. The CIFS standard extends Microsoft's usage of
SMB.

SMB is normally run on top of NetBT. Newer implementations also support SMB over TCP/IP directly; in this
configuration, it is almost always called CIFS. Note that whatever this protocol is called, it is the exact same
protocol whether it is run over NetBT or over TCP/IP directly, and that it was called CIFS even when it did not
run over TCP/IP directly. We refer to it as "SMB" here mostly because it is used for a variety of things in
addition to file sharing, and we find it misleading to refer to it as a filesystem in this context.

The SMB protocol provides a variety of different operations. Many of these are standard operations for
manipulating files (open, read, write, delete, and set attributes, for instance), but there are also specific
operations for other purposes (messaging and printing, for instance) and several general-purpose
mechanisms for doing interprocess communication using SMB. SMB allows sharing not only of standard files,
but also of other things, including devices, hamed pipes, and mailslots. (Named pipes and mailslots are
mechanisms for interprocess communication; named pipes provide a data stream, while mailslots are
message-oriented.) It therefore provides suitable calls for manipulating these other objects, including support
for device controls (I/0 controls, or ioctls) and several general-purpose transaction calls for communication
between processes. It is also sometimes possible to use the same file manipulation calls that are used on
normal files to manipulate special files.

In practice, there are two major uses for SMB; file sharing and general-purpose remote transactions. General-
purpose remote transactions are implemented by running DCE RPC over SMB, through the sharing of named
pipes. In general, any application is using DCE RPC over SMB if it says it uses named pipes; if it relies on
\PIPE\something_or_other, \Named Pipe\something_or_other, or IPC$; if it requires port 138, 139, or 445; or
if it mentions SMB or CIFS transactions. Applications that normally use this include NTLM authentication, the
Server Manager, the Registry Editor, the Event Viewer, and print spooling.

Any time that you provide SMB access to a machine, you are providing access to all of the applications that
use SMB for transactions. Most of these applications have their own security mechanisms, but you need to be
sure to apply those. If you can't be sure that host security is excellent, you should not allow SMB access.

SMB introduces an additional complication for firewalls. Not only do multiple different protocols with very
different security implications use SMB (thereby ending up on the same port numbers), but they can all use
the very same SMB connection. If two machines connect to each other via SMB for one purpose, that
connection will be reused for all other SMB protocols. Therefore, connection-oriented SMB must be treated
like a connectionless protocol, with every packet a separate transaction that must be evaluated for security.

For instance, if a client connects to a server in order to access a filesystem, it will start an SMB session. If the
client then wants to print to a printer on that server, or run an SMB-based program (like the User Manager or
the Event Viewer) on that server, the existing connection will be reused.

In the most common uses of SMB, a client makes a NetBT session connection to a host and then starts an
SMB session. At the beginning of the SMB session, the server and the client negotiate a dialect of SMB.
Different dialects support different SMB features. Once the dialect has been negotiated, the client
authenticates if the dialect supports authentication at this point, and then requests a resource from the server
with what is called a tree connect. When the client creates the initial SMB connection and authenticates, it
gets an identifier called a user ID or UID. If the client wants another resource, the client will reuse the
existing connection and merely do an additional tree connect request. The server will determine whether the
client is authorized to do the tree request by looking at the permissions granted to the UID. Multiple resource
connections may be used at the same time; they are distinguished by an identifier called a tree ID or TID.

Not all SMB commands require a valid UID and TID. Obviously, the commands to set up connections don't
require them, but others can be used without them, including the messaging commands, the echo command,
and some commands that give server information. These commands can be used by anybody, without
authentication.

14.4.1 Authentication and SMB

Because SMB runs on a number of machines with different authentication models, it supports several different
levels of security. Two different types of authentication are possible, commonly called share level and user
level. Samba, which is a popular SMB implementation for Unix, also refers to "server-level" authentication;
this is a Samba-specific term used when user-level authentication is in effect but the Samba server is not
authenticating users locally. This is not visible to the client. Samba is discussed further in Chapter 17.

page 231

Building Internet Firewalls

14.4.1.1 Share-level authentication

In share-level authentication, the initial SMB connection does not require authentication. Instead, each time
you attach to a resource, you provide a password for that particular resource. This authentication is meant for
servers running under operating systems that don't actually have a concept of users. Since it requires all
users who wish to use a resource to have the same password, it's inherently insecure, and you should avoid
it. It uses the same mechanisms to exchange passwords that are used for user-level authentication (which
are described in detail in Chapter 21), but it does the password exchange during the tree connect instead of
during session setup.

14.4.1.2 User-level authentication

User-level authentication occurs at the beginning of the SMB session, after dialect negotiation. If the
negotiated dialect supports user-level authentication, the client provides authentication information to the
server. The authentication information that's provided is a username and password; the method that's used
to send it depends on the dialect. The password may be sent in cleartext or established via challenge-
response. User-level authentication is discussed in detail in Chapter 21, because it is used for logon
authentication as well as for authenticating users who are connecting to file servers.

Many SMB servers that do user-level authentication provide guest access and will give guest access to clients
that fail to authenticate for any reason. This is meant to provide backward compatibility for clients that cannot
do user-level authentication. In most configurations, it will also provide access to a number of files to
anybody that is able to ask. You should either disable guest access or carefully control file permissions.

14.4.2 Packet Filtering Characteristics of SMB

SMB is generally done over NetBT session service at TCP port 139. It is theoretically possible to run it over
NetBT datagram service at UDP port 138, but this is extremely rare. As of Windows 2000, SMB can also be
run directly over TCP/IP without involving NetBT, in which case it uses TCP or UDP port 445 (again, although
UDP is a theoretical possibility, it does not appear to occur in practice).

Direction Source | Dest. Protocol Source Dest. ACK Notes
Addr. Addr. Port Port Set
In Ext Int TCP >1023 139, 445 | 1] Incoming SMB/TCP connection,

client to server

Out Int Ext TCP 139, 445 | >1023 Yes | Incoming SMB/TCP connection,
server to client

In Ext Int UDP >1023 138, 445 | 2 Incoming SMB/UDP connection,
client to server

Out Int Ext UDP 138, 445 | >1023 Incoming SMB/UDP connection,
server to client

Out Int Ext TCP >1023 139, 445 Outgoing SMB/TCP connection,
client to server

In Ext Int TCP 139, 445 | >1023 Yes | Outgoing SMB/TCP connection,
server to client

Out Int Ext ubpP >1023 138, 445 Outgoing SMB/UDP connection,
client to server

In Ext Int ubP 138, 445 | >1023 Outgoing SMB/UDP connection,
server to client

11 ACK is not set on the first packet of this type (establishing connection) but will be set on the rest.
[21 UDP has no ACK equivalent.

Clients of any SMB protocol will often attempt to reach the destination host via NetBIOS name service as well.
SMB will work even if these packets are denied, but you may log large numbers of denied packets. You should
be aware of this and should not interpret name service requests from SMB clients as attacks. See Chapter 20,
for more information about NetBIOS name service.

page 232

Building Internet Firewalls

14.4.3 Proxying Characteristics of SMB

SMB is not particularly difficult to proxy, but it is difficult to improve its security with a proxy. Because many
things are implemented as general-purpose transactions, it's hard for a proxy to know exactly what effect an
operation will have on the end machine. The proxy can't just track requests but also needs to track the
filenames those requests refer to. In addition, the protocol allows for some operations to be chained together,
so that a single transaction may include a tree connect, an open, and a read (for instance). This means that a
proxy that is trying to control what files are opened has to do extensive parsing on transactions to make
certain that no inappropriate opens are late in the chain. It is not sufficient to simply check the transaction
type.

14.4.4 Network Address Translation Characteristics of SMB

SMB is normally run over NetBT, which includes embedded IP addresses but does not generally use them, as
discussed earlier. In Windows 2000, it is also possible to run SMB directly over IP. In this mode, it does not
have embedded IP addresses and should function with straightforward network address translation.

14.4.5 Summary of Recommendations for SMB

° Don't allow SMB across your firewall.

14.5 Common Object Request Broker Architecture (CORBA) and Internet Inter-Orb Protocol
(II0P)

CORBA is a non-Microsoft-developed object-oriented distributed computing framework. In general, CORBA
objects communicate with each other through a program called an Object Request Broker, or orb.?” CORBA
objects communicate with each other over the Internet via the Internet Inter-Orb Protocol (IIOP), which is
TCP-based but uses no fixed port number.

IIOP provides a great deal of flexibility. It permits callbacks, where a client makes a connection to the server
with a request and the server makes a separate connection to the client with the response. It also permits
bidirectional use of a connection; if a client makes a connection to the server, the server is not limited to
responding to requests from the client but can make requests of its own over the existing connection. IIOP
does not provide authentication or encryption services, leaving them up to the application.

All of this flexibility makes it basically impossible to make blanket statements about CORBA's security. Some
applications of CORBA are quite secure; others are not. You will have to analyze each CORBA application
separately.

In order to help with security, some vendors support IIOPS, which is IIOP over SSL. This protocol provides
the basic protections SSL provides, which are discussed later, and therefore will help protect applications that
use it from packet-sniffing attacks.

14.5.1 Packet Filtering Characteristics of CORBA and IIOP

Because there is no fixed port number for IIOP or IIOPS, the packet filtering characteristics of CORBA will
depend entirely on your implementation. Some orbs come with predefined port numbers for IIOP and IIOPS,
and others allow you to allocate your own or allocate ports dynamically. (Some orbs don't support IIOPS at
all.) In addition, a number of orbs will allow you to run IIOP over HTTP.

IIOP is extremely difficult to control with packet filtering. A packet filter cannot tell whether an IIOP
connection is unidirectional or bidirectional, so it's impossible to keep the server from executing commands on
the client using packet filtering. In addition, if your application uses callbacks, you may need to allow
connections in both directions anyway, further reducing your control over the situation.

7 In a rearguard action against the proliferation of acronyms, CORBA users almost always treat this as a word ("orb") instead of an acronym
("ORB").

page 233

Building Internet Firewalls

14.5.2 Proxying Characteristics of CORBA and IIOP

There are two different ways of using proxying with IIOP. One of them is to use a proxy-aware orb, which
knows how to use a generic proxy like SOCKS or an HTTP proxy server. Another is to use an IIOP-aware
proxy server, which can interpret IIOP port and address information. There are multiple implementations of
each of these solutions.

Either kind of proxying provides better security than can be managed with packet filtering. Using a generic
proxy requires less configuration on the firewall, but it makes your security entirely dependent on the orb and
the applications developer. An IIOP-aware proxy server will allow you to add additional protections by using
the firewall to control what operation requests can be passed to the orb.

14.5.3 Network Address Translation Characteristics of CORBA and IIOP

IIOP includes embedded IP address and port information and will require a network address translation
system that's aware of IIOP and can modify the embedded information.

14.5.4 Summary of Recommendations for CORBA and IIOP

. Do not try to allow all CORBA through your firewall; make specific arrangements for individual CORBA
applications.

. For maximum security, develop single-purpose CORBA-aware proxies along with the CORBA
application.

14.6 ToolTalk

ToolTalk is yet another distributed object system. It is part of the Common Desktop Environment (CDE), a
standard produced by a consortium of Unix vendors, which allows desktop tools to communicate with each
other. For instance, ToolTalk enables you to drag objects from one application to another with the expected
results, and allows multiple applications to keep track of changes to the same file.

Applications using ToolTalk do not communicate with each other directly. Instead, communications are
handled by two kinds of ToolTalk servers. A session server, called ttsession, handles messages that concern
processes, while an object server, called rpc.ttdbserverd, handles messages that concern objects. Applications
register with the appropriate ToolTalk servers to tell them what kinds of messages they are interested in.
When an application has a message to send, it sends the message to the appropriate ToolTalk server, which
redistributes it to any interested applications and returns any replies to the sending application. Session
servers group together related processes (for instance, all the programs started by a given user will normally
be part of one session), and multiple session servers may run on the same machine.

rpc.ttdbserverd is started from inetd and runs as root, while ttsession is started up as needed and runs as the
user that started it. Often, ttsession will be started when a user logs in, but that's not required; if an
application wants to use ToolTalk but no ttsession is available, one will be started up.

ToolTalk is based on Sun RPC. Although ToolTalk provides a range of authentication mechanisms, most
ToolTalk implementations use the simplest one, which authorizes requests based on the unauthenticated Unix
user information embedded in the request. This is completely forgeable. In addition, there have been a
variety of security problems with the ToolTalk implementation, including buffer overflow problems in
rpc.ttdbserverd and in the ToolTalk client libraries. Several of these problems have allowed remote attackers
to run arbitrary programs as root.

14.6.1 Summary of Recommendations for ToolTalk

. Do not allow RPC through your firewall; since ToolTalk is built on Sun RPC, this will prevent it from
crossing the firewall.

° Remove ToolTalk from bastion host machines (this will remove some desktop functionality, but ideally
you should remove all of the graphical user interface and desktop tools anyway).

page 234

Building Internet Firewalls

14.7 Transport Layer Security (TLS) and Secure Socket Layer (SSL)

The Secure Socket Layer (SSL) was designed in 1993 by Netscape to provide end-to-end encryption, integrity
protection, and server authentication for the Web. The security services libraries that were available at the
time didn't provide certain features that were needed for the Web:

. Strong public key authentication without the need for a globally deployed public key infrastructure.

. Reasonable performance with the large number of short connections made necessary by the stateless
nature of HTTP. State associated with SSL can be maintained, at the server's discretion, across a
sequence of HTTP connections.

. The ability for clients to remain anonymous while requiring server authentication.

Like most network protocols, SSL has undergone a number of revisions. The commonly found versions of SSL
are version 2 and version 3. There are known problems with the cryptography in version 2. The cryptography
used in SSL version 3 contains some significant differences from its predecessor and is considered to be free
of the previous version's cryptographic weaknesses. SSL version 3 also provides a clean way to use new
versions of the protocol for forward compatibility. Unless otherwise noted, this discussion refers to SSL
version 3; we suggest that you avoid using SSL version 2.

The SSL protocol is owned by Netscape (and they own a U.S. patent relating to SSL), but they approached
the IETF to create an Internet standard. An IETF protocol definition, RFC 2246, is in the process of becoming
an Internet standard. The protocol is based very heavily on SSL version 3 and is called Transport Layer
Security (TLS). Both TLS and SSL use exactly the same protocol greeting and version extensibility
mechanism. This allows servers to be migrated from supporting SSL to TLS, and provisions have been made
so that services can be created that support both SSL version 3 and TLS. Netscape has granted a royalty-free
license for the SSL patent for any applications that use TLS as part of an IETF standard protocol.

14.7.1 The TLS and SSL Protocols

The TLS and SSL protocols provide server and client authentication, end-to-end encryption, and integrity
protection. They also allow a client to reconnect to a server it has already used without having to
reauthenticate or negotiate new session keys, as long as the new connection is made shortly after the old one
is closed down.

The security of TLS and SSL does not come purely from the fact that they use a specific encryption algorithm,
cryptographic hash, or public key cryptography, but from the way the algorithms are used. The important
characteristics of a secure private communication session are discussed in Appendix C.

Both TLS and SSL meet the characteristics for providing a secure private communication session because:

° The client and server negotiate encryption and integrity protection algorithms.

. The identity of the server a client is connecting to is always verified, and this identity check is
performed before the optional client user authentication information is sent.

° The key exchange algorithms that are used prevent man-in-the-middle attacks.

° At the end of the key exchange is a checksum exchange that will detect any tampering with algorithm
negotiation.

. The server can check the identity of a client in a number of ways (these mechanisms are discussed in
the next section). It is also possible to have anonymous clients.

° All data packets exchanged include message integrity checks. An integrity check failure causes a
connection to be closed.

. It is possible, using certain sets of negotiated algorithms, to use temporary authentication parameters

that will be discarded after a configurable time period to prevent recorded sessions from being
decrypted at a later time.

page 235

Building Internet Firewalls

14.7.2 Cryptography in TLS and SSL

TLS and SSL do not depend on a single algorithm for each of the following: generating keys, encrypting data,
or performing authentication. Instead, they can use a range of different algorithms. Not all combinations of
algorithms are valid, and both TLS and SSL define suites of algorithms that should be used together. This
flexibility provides a number of advantages:

° Different algorithms have different capabilities; supporting multiple ones allows an application to
choose one particularly suited to the kind of data and transaction patterns that it uses.

. There is frequently a trade-off between strength and speed; supporting multiple different algorithms
allows applications to use faster but weaker methods when security is less important.

° As time goes by, people find ways to break algorithms that were previously considered secure;
supporting a range allows applications to stop using algorithms that are no longer considered secure.

The TLS protocol defines sets of algorithms that can be used together. There is only one algorithm suite that
an application must implement in order to be called a TLS compliant application. Even then, if a standard for
the application prevents it from using this base algorithm suite, it may implement a different one and still be
called TLS compliant. The required algorithm suite is a Diffie-Hellman key exchange authenticated with the
Digital Signature Standard (DSS) with triple DES used in cipher block-chaining mode with SHA cryptographic
hashes. The most important thing to know about this string of cryptographic terms is that at this time, this
algorithm suite provides strong encryption and authentication suitable for protecting sensitive information.
For more information about specific cryptographic algorithms and key lengths, see Appendix C.

Some algorithm suites use public key cryptography which, depending on the application, may require the use
of additional network services (such as LDAP for verifying digital certificates) in order to perform server or
client authentication.

TLS allows clients to be authenticated using either DSS or RSA public key cryptography. If clients wish to use
other forms of authentication, such as a token card or a password, they must authenticate with the server
anonymously, and then the application must negotiate to perform the additional authentication. This is the
method which a web browser using TLS or SSL uses to perform HTTP basic authentication.

14.7.3 Use of TLS and SSL by Other Protocols

In order for TLS and SSL to be useful, they have to be used in conjunction with some higher-level protocol
that actually exchanges data between applications. In some cases, this is done by integrating them into new
protocols; for instance, version 2 of the Secure Shell (SSH) protocol uses TLS. However, in other situations
it's useful to add TLS or SSL to an existing protocol. There are two basic mechanisms for doing this. One way
is to use a new port number for the combination of the old protocol and the encrypting protocol; this is the
way SSL and HTTP were originally integrated to create HTTPS. The other common way of integrating TLS or
SSL into an existing protocol is to add a command to the protocol that starts up an encrypted session over
the existing port; this is the approach taken by ESMTP when using the STARTTLS extension.

Neither of these approaches is perfect. Using a new port number is relatively easy to implement (you don't
have to change command parsers) and allows a firewall to easily distinguish between protected and
unprotected versions of the protocol (so that you can require the use of TLS, for instance). However, it uses
up port numbers (and there are only 1024 in the reserved range to be allocated), and it requires changing
firewall configurations to permit TLS-protected connections.

Adding a new command to start up a TLS connection makes more efficient use of port numbers and increases
the chances that the upgraded protocol will work through firewalls (it may still be denied by an intelligent
proxy that's watching the commands that are used). However, it's harder to implement. In particular, it's
hard to make sure that no important data is exchanged before TLS is started up. Furthermore, it's critical for
programmers to be cautious about failure conditions. A server or client that supports TLS needs to fail
gracefully when talking to one that doesn't. However, if both the server and the client support TLS, it should
not be possible for an attacker to force them to converse unprotected by interfering with the negotiation to
use TLS.

In addition, once a protocol has upgraded to using TLS, it should restart all protocol negotiation from the
beginning. Any information from the unprotected protocol could have been modified by an attacker and
cannot be trusted.

page 236

Building Internet Firewalls

14.7.4 Packet Filtering Characteristics of TLS and SSL

Neither TLS nor SSL is associated with an assigned port, although there are a humber of ports assigned to
specific higher-level protocols running over one or the other. We list these ports along with any other ports
assigned to the higher-level protocols (for instance, we list the port assigned to IMAP over SSL in the section
on packet filtering characteristics of IMAP in Chapter 16). You will sometimes see port 443 shown as assigned
to SSL, but in fact, it is assigned to HTTP over SSL.

TLS and SSL connections will always be straightforward TCP connections, but that does not prevent higher-
level protocols that use them from also using other connections or protocols. Because of the end-to-end
encryption, it is impossible to do intelligent packet filtering on TLS and SSL connections; there is no way for a
packet filter to enforce restrictions on what higher-level protocols are being run, for instance.

14.7.5 Proxying Characteristics of TLS and SSL

Because TLS and SSL use straightforward TCP connections, they work well with generic proxies. Proxying
provides very little additional protection with TLS and SSL, because there is no way for a proxy to see the
content of packets to do intelligent logging, control, or content filtering; a proxy can only control where
connections are made.

14.7.6 Network Address Translation Characteristics of TLS and SSL

TLS and SSL will work well with network address translation. However, the end-to-end encryption will prevent
the network address translation system from intercepting embedded addresses. Higher-level protocols that
depend on having correct address or hostname information in their data will not work, and it will not be
possible for the network address translation system to protect you from inadvertently releasing information
about your internal network configuration.

14.7.7 Summary of Recommendations for TLS and SSL

. TLS and SSL version 3 are good choices for adding end-to-end protection to applications.
. Use TLS and SSL version 3 to protect against eavesdropping, session hijacking, and Trojan servers.
° Use TLS or SSL version 3 rather than SSL version 2. TLS should be preferred over SSL version 3.

° When evaluating programs that use TLS or SSL to add protection to existing protocols, verify that the
transition to a protected connection occurs before confidential data is exchanged. Ideally any higher-
level protocol negotiation should be completely restarted once protection has been established.

14.8 The Generic Security Services API (GSSAPI)

The GSSAPI is an IETF standard that provides a set of cryptographic services to an application. The services
are provided via a well-defined application programming interface. The cryptographic services are:

. Context/session setup and shutdown
. Encrypting and decrypting messages

. Message signing and verification

The API is designed to work with a number of cryptographic technologies, but each technology separately
defines the content of packets. Two independently written applications that use the GSSAPI may not be able
to interoperate if they are not using the same underlying cryptographic technology.

There are at least two standard protocol-level implementations of the GSSAPI, one using Kerberos and the
other using RSA public keys. In order to understand what is needed to support a particular implementation of
the GSSAPI, you also need to know which underlying cryptographic technology has been used. In the case of
a Kerberos GSSAPI, you will need a Kerberos Key Distribution Center (see Chapter 21, for more information
on Kerberos). The GSSAPI works best in applications where the connections between computers match the
transactions being performed.

page 237

Building Internet Firewalls

If multiple connections are needed to finish a transaction, each one will require a new GSSAPI session,
because the GSSAPI does not include any support for identifying the cryptographic context of a message.
Applications that need this functionality should probably be using TLS or SSL. Because of the lack of context,
the GSSAPI does not work well with connectionless protocols like UDP; it is really suited only for use with
connection-oriented protocols like TCP.

14.9 IPsec

The IETF has been developing an IP security protocol (IPsec) that is built directly on top of IP and provides
end-to-end cryptographically based security for both IPv4 and IPv6. IPsec is a requirement for every IPv6
implementation and is an option for IPv4. Since IPv6 provides features that are not available in IPv4, the IPv6
and IPv4 versions of IPsec are implemented slightly differently. Although IPsec is still being standardized, it is
sufficiently stable and standard that multiple interoperable implementations are now available and in use on
IPv4. Possibly the best known of these is the IPsec implementation for Linux called FreeS/WAN.

Because IPsec is implemented at the IP layer, it can provide protection to any IP protocol including TCP and
UDP. The security services that IPsec provides are:

Access control

The ability to establish an IPsec communication is controlled by a policy - refusal to negotiate security
parameters will prevent communication.

Data origin authentication
The recipient of a packet can be sure that it comes from the sender it appears to come from.
Message integrity
An attacker cannot modify a packet and have it accepted.
Replay protection
An attacker cannot resend a previously sent packet and have it accepted.
Confidentiality
An attacker cannot read intercepted data.

In addition, it provides limited protections against traffic flow analysis. In some cases, it will keep an attacker
from figuring out which hosts are exchanging data and what protocols they are using.

IPsec is made up of three protocols, each of which is defined as a framework that defines packet layouts and
field sizes and is suitable for use by multiple cryptographic algorithms. The protocols themselves do not
define specific cryptographic algorithms to use, although every implementation is required to support a
specified set of algorithms. The protocols that make up IPsec are:

. The Authentication Header (AH)

. The Encapsulating Security Payload (ESP)

. The Internet Security Association Key Management Protocol (ISAKMP)
The Authentication Header (AH) protocol provides message integrity and data origin authentication; it can
optionally provide anti-replay services as well. The integrity protection that AH provides covers packet header

information including source and destination addresses, but there are exceptions for header parameters that
are frequently changed by routers, such as the IPv4 TTL or IPv6 hop-count.

page 238

Building Internet Firewalls

The Encapsulating Security Payload (ESP) protocol provides confidentiality (encryption) and limited protection
against traffic flow analysis. ESP also includes some of the services normally provided by AH. Both AH and
ESP rely on the availability of shared keys, and neither one has a way to move them from one machine to
another. Generating these keys is handled by the third IPsec protocol, the ISAKMP.

ISAKMP is also a framework protocol; it doesn't by itself define the algorithms that are used to generate the
keys for AH and ESP. The Internet Key Exchange (IKE) protocol uses the ISAKMP framework with specific key
exchange algorithms to set up cryptographic keys for AH and ESP. This layering may seem confusing and
overly complicated, but the separation of ISAKMP from IKE means that the same basic IPsec framework can
be used with multiple different key exchange algorithms (including plain old manual key exchange). The
standardization of IKE allows different people to implement the same key exchange algorithms and be
guaranteed interoperability. The Linux FreeS/WAN project has an implementation of IKE called Pluto.

In IPv6 the AH and ESP protocols can be used simultaneously, with an IPv6 feature called header chaining, to
provide authentication modes that ESP alone cannot provide. When they are used in this way it is
recommended that ESP be wrapped by the additional AH header. In IPv4, it's not possible to use them both at
once (you can have only one header at a time).

IPsec provides two operating modes for AH and ESP, transport and tunnel. In transport mode, AH or ESP
occur immediately after the IP header and encapsulate the remainder of the original IP packet. Transport
mode works only between individual hosts; the packet must be interpreted by the host that receives it.
Transport is used to protect host-to-host communications. Hosts can use it to protect all of their traffic to
other cooperating hosts, or they can use it much the way TLS is used, as a protection layer around specific
protocols.

In tunnel mode, the entire original packet is encapsulated in a new packet, and a new IP header is generated.
IPsec uses the term security gateway for any device that can operate in tunnel mode. This term applies to all
devices that can take IP packets and convert them to and from the IPsec protocols, whether they are hosts or
dedicated routers. Because the whole IP packet is included, the recipient can forward packets to a final
destination after processing. Tunnel mode is used when two security gateways or a gateway and a host
communicate, and it is what allows you to build a virtual private network using IPsec.

The AH and ESP protocols each contain a 32-bit value that is called the Security Parameter Index (SPI). This
is an identifier that is used to distinguish between different conversations going to the same destination.
Every IPsec implementation is required to be able to independently track security parameters for the
combination of SPI, destination IP address, and the security protocol that is being used (either AH or ESP).
This combination of parameters is called a Security Association (SA). It is the responsibility of the specific
ISAKMP key management protocol to negotiate and set the cryptographic parameters, including the SPI, for
each Security Association.

An SA is effectively the collection of the cryptographic keys and parameters for use by either AH or ESP:
AH

The cryptographic keys and algorithm identifiers used for integrity protection and anti-replay
parameters

ESP

The cryptographic keys and algorithm identifiers used for encryption, integrity protection, and anti-
replay parameters

14.9.1 Packet Filtering Characteristics of IPsec

The AH and ESP protocols are implemented directly on top of the IP layer. AH is IP protocol 51, and ESP is IP
protocol 50. The ISAKMP protocol uses UDP port 500 for both sending and receiving. In order to allow IPsec,
you will need a packet filtering system that can filter on IP protocol type. Because IPsec provides end-to-end
protections, a firewall will not be able to modify or even be able to inspect the contents of IPsec packets.

You may note that the table does not include information about the setting for the ACK bit. UDP has no
equivalent of the TCP ACK bit. When TCP packets are incorporated into AH packets, their flags will still be
present; it would be theoretically possible for a firewall that understood AH to use those ACK bits to
determine the direction of the TCP connections and to filter using this information. Similarly, TCP and UDP
packets in AH will have their original source and destination ports available for filtering.

page 239

Building Internet Firewalls

Direction :z:::e R:Zf_ Protocol gg:ntrce g:ftt " | Notes

In Ext Int AH (Incoming AH, client to server
Out Int Ext AH Incoming AH, server to client
In Ext Int ESP Incoming ESP, client to server
Out Int Ext ESP Incoming ESP, server to client
In Ext Int UDP 500 500 Incoming ISAKMP request
Out Int Ext ubpP 500 500 ISAKMP response

Out Int Ext AH Outgoing AH, client to server
In Ext Int AH Outgoing AH, server to client
Out Int Ext ESP Outgoing ESP, client to server
In Ext Int ESP Outgoing ESP, server to client
Out Int Ext ubpP 500 500 Outgoing ISAKMP request

In Ext Int ubpP 500 500 ISAKMP response

1 AH and ESP do not have source or destination ports.
14.9.2 Proxying Characteristics of IPsec

AH and ESP provide end-to-end message integrity protection that is calculated using data from the IP packet

header. Using a proxy will change the header data, thereby causing a message integrity failure. In theory, it

is possible for the IPsec architecture to allow the use of intermediary proxies in end-to-end communications if
they can participate in the negotiation of integrity protection Security Association parameters. Unfortunately,

the details for how this might work have not been defined so it is not currently possible to use IPsec through

proxies.

It is, however, possible to use regular IP to the proxy system and have it speak IPsec to the destination. In
addition, IPsec could be used with SOCKS. In this configuration, the client would set up communications with
the SOCKS server via IPsec, and the SOCKS server would set up a separate IPsec communications channel to
the final destination. However, this double use of IPsec may require significant CPU resources to implement.

14.9.3 Network Address Translation Characteristics of IPsec

Both AH and ESP include message integrity protections for the entire packet, including the headers. If you
modify the packet at all, even to change the source or destination address, you will make the packet invalid.
It is therefore impossible to do network address translation with AH or ESP. On the other hand, it's perfectly
possible to do network address translation on packets that are then tunneled in AH or ESP; they don't care
what happened to the packet while it was still a standard IP packet.

Therefore, you can combine network address translation and IPsec tunneling, as long as you do the network
address translation first and then set up the IPsec tunnel. (Using IPsec parlance, it would be possible to
implement network address translation behind or on a security gateway.)

14.9.4 Summary of Recommendations for IPsec

. IPsec is a good choice for building virtual private networks.

page 240

Building Internet Firewalls

14.10 Remote Access Service (RAS)

Microsoft's Remote Access Service (RAS) provides a consistent user interface to a wide variety of protocols
used to connect a machine in one place to a network in a different place. It is not a single service from a
firewall point of view; instead, it uses multiple different services. In Windows NT 4, RAS is available either as
an installable package provided with the standard Server operating system or in an enhanced version that is
part of the no-cost Routing and Remote Access Service (RRAS) package. In Windows 2000, RAS is always
part of RRAS, and it is an indivisible part of the operating system. You may enable it or disable it, but you
cannot install or remove it.

RAS can be used in two different modes. In one mode, the RAS client has access only to the RAS server; in
the other mode, the RAS server acts as a router, and the RAS client has access to the full network. Allowing
access only to the RAS server gives you more control over the client, but it doesn't provide much
functionality.

As we mentioned before, RAS clients can use multiple different protocols to connect to RAS servers.
Originally, RAS was primarily used to support modems and similar low-level connections, and RAS still
supports the use of PPP over a variety of different transports, including most popular modems, ISDN, and
X.25. However, RAS is now also frequently used to build virtual private networks over IP connections, using
Point-to-Point Tunneling Protocol (PPTP), or in Windows 2000, Layer 2 Transport Protocol (L2TP).

14.11 Point-to-Point Tunneling Protocol (PPTP)

PPTP is an encapsulation protocol based on the Point-to-Point Protocol (PPP) and the Generic Routing
Encapsulation (GRE) protocol. PPP was originally designed to facilitate using IP and similar protocols over
dialup connections and provides a general way to encapsulate protocols at the level of IP. PPTP is an
extension of PPP, which takes PPP packets, encrypts them, and encapsulates them in GRE packets. Figure
14.3 shows the layers of encapsulation involved in sending a TCP packet via PPTP. Since PPP supports
encapsulating multiple protocols, so does PPTP. It is most often used to provide virtual private networking,
tunneling IP over IP, but it can also be used to tunnel non-IP protocols like IPX.

Figure 14.3. PPTP encapsulation of a TCP packet

fnmfprmlﬁﬁf oy
' ¥
IP Header GRE Header : [FPR| 1P [TCP| Data |

Since PPTP tunnels packets over IP, there must be an IP-level connection between the hosts. In many
situations, that connection allows the hosts to be attacked using other protocols. For instance, if you are
using PPTP as a virtual private network across the Internet, the hosts have some sort of Internet connection
and will have all the normal vulnerabilities of Internet-connected hosts. You will need to disable all non-PPTP
connections or otherwise protect the machines. In particular, we recommend avoiding PPTP products that
allow traffic to or from the host to use the underlying network directly.

There's been a great deal of controversy over the security of PPTP. Some of this has been due to weaknesses
in Microsoft implementations of PPTP, many of which have been fixed. However, there are some design
weaknesses in PPTP as well.

14.11.1 Design Weaknesses in PPTP

Although PPTP is an encrypted protocol, not all the parts of the conversation are encrypted. Before the PPTP
server starts accepting the GRE packets, a negotiation takes place over TCP. PPTP encryption protects the
information being tunneled but not the negotiation involved in setting up the tunnel. The negotiation is done
in cleartext and includes client and server IP addresses, the name and software version information about the
client, the username, and sometimes the hashed password used for authentication. All of this information is
exposed to eavesdropping. This negotiation is also done before the client has to authenticate, which makes
the server particularly vulnerable to hostile clients. An attacker doesn't have to be able to authenticate in
order to engage the server in negotiation, tying up resources and potentially confusing the server.

page 241

Building Internet Firewalls

14.11.2 Implementation Weaknesses in PPTP

As we discussed earlier, PPTP sends authentication information in cleartext. In many versions of Microsoft
PPTP, this information can include a LanMan hash of the user's password. As described in Chapter 21, it is
relatively easy to use a LanMan hash to discover a password. You can disable Lan Manager authentication and
should do so on all clients and servers you control. This will force the authentication to use more secure
Windows NT password hashes.

Microsoft's implementation also has problems with the encryption. Microsoft offers two levels of encryption,
both using the symmetric key encryption algorithm called RC4; one uses a 40-bit key, and the other uses a
128-bit key. (See Appendix C, for more information on RC4 and the importance of key length.) The 40-bit
RC4 algorithm is not particularly strong to begin with, and Microsoft weakens it further by basing the key on
the user's password, so that a user will have multiple sessions with the same key. The longer a key is used,
the stronger it needs to be, and the time between password changes may be a very long time indeed.

When 128-bit keys are in use, Microsoft bases the key on the user's password and on a pseudo-random

number so that it's different for each connection. This is a major improvement, although using the user's
password does reduce the number of probable keys and makes it important for PPTP users to have good
passwords.

Most PPTP implementations, including Microsoft's, are susceptible to problems with control negotiations. As
we pointed out earlier, these negotiations take place before the client authentication, which means that any
attacker can send them. It's therefore extremely important for servers to be able to deal with bad
negotiations, but in fact, many servers will crash if they receive garbled negotiations, and some will crash
even when sent random garbage that bears no resemblance to a valid negotiation. Although Microsoft offers
an option to control PPTP access by source IP address, it's enforced on the GRE tunnel, not on the TCP-based
negotiation. If you are doing PPTP from known source addresses, you can protect the PPTP server with a
packet filter in front of it; if you are not, you have no choice but to live with these denial of service attacks.

14.11.3 Packet Filtering Characteristics of PPTP

PPTP negotiation takes place on TCP port 1723. The actual tunnel is based on GRE, which is IP protocol 47,
and uses GRE protocol hexadecimal 880B (indicating that the tunneled packets are PPP). GRE is discussed
further in Chapter 4.

Direction Source | Dest. Protocol Source | Dest. ACK Notes
Addr. |Addr. Port Port Set

In Ext Int GRE (i (i (2 Tunnel data, external client to
internal server

Out Int Ext GRE (1 (1 (2 Tunnel reply, internal server to
external client

In Ext Int TCP >1023 | 1723 B3l Setup request, external client
to internal server

Out Int Ext TCP 1723 >1023 Yes Setup response, internal server
to external client

Out Int Ext GRE (1 (1 2l Tunnel data, internal client to
external server

In Ext Int GRE (1 (1 (Tunnel reply, external server to
internal client

Out Int Ext TCP >1023 |[1723 3] Setup request, internal client to
external server

In Ext Int TCP 1723 >1023 Yes Setup response, external server
to internal client

[*] GRE does not have ports. GRE does have protocol types, and PPTP is type 880B.
[21 GRE has no ACK equivalent.

31 ACK will not be set on the first packet (establishing connection) but will be set on the rest.

page 242

Building Internet Firewalls

14.11.4 Proxying Characteristics of PPTP

It would theoretically be possible to proxy PPTP, as long as you could find a proxy system that supported
GRE. It's not clear that there's any point in proxying a tunneling protocol, however. A proxy system can't
apply much security, since all of the traffic is encrypted. The only thing a proxy system could protect you
from is attacks on the PPTP server over the negotiation protocol.

14.11.5 Network Address Translation Characteristics of PPTP

In general, network address translation won't interfere with PPTP; although there are embedded addresses,
they're intended to pass through a tunnel in any case. You will require a network address translation system
that supports GRE, as well as TCP and UDP. Network address translation will not conceal any information
when used with PPTP, and will not allow you to use PPTP between two networks that are using the same
address space, because the original address information will be visible once the PPTP encapsulation is
removed.

14.11.6 Summary of Recommendations for PPTP

° Use PPTP with caution; it does not provide as much security as other options for doing virtual private
networking but may be an acceptable option if you need to tunnel protocols for reasons other than
securing the information they're carrying.

° If you are going to use PPTP, proxying does not give you any significant protection, and you might as
well simply pass it through packet filters.

° Configure PPTP clients and servers to use the highest available level of encryption.

14.12 Layer 2 Transport Protocol (L2TP)

The Layer 2 Transport Protocol (L2TP) is another generic encapsulation protocol designed to allow you to
tunnel IP networking. Like PPTP, it is an extension of PPP. There are two main differences between PPTP and
L2TP. First, PPTP always runs on top of IP; it requires that you have an IP connection of some sort. L2TP can
run over a number of different protocols, including directly over a phone line (like PPP). Second, PPTP is an
encrypted protocol; it encrypts everything except for the initial negotiations. L2TP is not an encrypted
protocol; it does not encrypt message bodies. On the other hand, L2TP does do mutual authentication for the
initial negotiations and is capable of concealing the information in the initial negotiations.

L2TP is normally used in conjunction with IPsec, so that IPsec can provide the encryption. This results in a
heavily layered protocol stack. Figure 14.4 shows the layers of encapsulation involved in sending a TCP
packet via LT2P securely over an IP network.

Figure 14.4. L2TP encapsulation of a TCP packet, as normally seen crossing an IP network

IP | ESP | ; :
Header Header; P @ UDP :
: gHeaﬂar;Header; LZTP i IP i TGP |
: i ' . Header:Header: Hr.a:lerg

page 243

Building Internet Firewalls

14.12.1 Packet Filtering Characteristics of L2TP

When L2TP is layered on top of IP, it uses UDP port 1701. However, in most implementations, L2TP is actually
transmitted over IP via IPsec, using ESP encapsulation of UDP; this will have the packet filtering
characteristics shown earlier for ESP.

Direction f\zzfe R:Zt Protocol |S’g:|trce gs:tt " | Notes

In Ext Int ubP >1023