

 2

COM and .NET Com ponent Services

Dedicat ion

Foreword

Preface
 Scope of This Book
 Som e Assum pt ions About t he Reader
 Definit ions and Text Convent ions
 Other COM+ Books and References
 How to Contact Us
 Acknowledgm ents

1. COM+ Com ponent Services
 1.1 COM+ Com ponent Services
 1.2 The Com ponent Services Explorer
 1.3 Hello COM+
 1.4 COM+ Configured Com ponents
 1.5 Applicat ions, DLLs, and Com ponents
 1.6 Configur ing COM+ Applicat ions
 1.7 Debugging COM+ Applicat ions
 1.8 Deploying COM+ Applicat ions
 1.9 Sum m ary

2. COM+ Context
 2.1 Encapsulat ion v ia Marshaling in COM
 2.2 Encapsulat ion v ia I ntercept ion in COM+
 2.3 The Context Object
 2.4 The Call Obj ect
 2.5 Cross-Context Manual Marshaling
 2.6 Sum m ary

3. COM+ I nstance Managem ent
 3.1 Client Types
 3.2 I nstance Managem ent and Scaling
 3.3 Object Pooling
 3.4 Just - in-Tim e Act ivat ion
 3.5 Com bining JI TA with Object Pooling
 3.6 Object Const ructor St r ing
 3.7 COM+ I nstance Managem ent Pit falls

4. COM+ Transact ions
 4.1 Transact ion Basics
 4.2 Transact ion Propert ies
 4.3 Transact ion Scenarios
 4.4 COM+ Transact ions Archit ecture
 4.5 Configur ing Transact ions
 4.6 Vot ing on a Transact ion
 4.7 Transact ional Object Life Cycle
 4.8 Designing Transact ional Com ponents
 4.9 Nont ransact ional Clients
 4.10 Transact ions and Object Pooling
 4.11 Com pensat ing Transact ions
 4.12 Transact ion Execut ion Tim e

 3

 4.13 Tracing Transact ions
 4.14 I n-Doubt Transact ions
 4.15 Transact ion Stat ist ics
 4.16 COM+ Transact ions Pit falls

5. COM+ Concurrency Model
 5.1 Object -Oriented Program m ing and Mult iple Threads
 5.2 Apartm ents: The Classic COM Solut ion
 5.3 Act iv it ies: The COM+ I nnovat ion
 5.4 COM+ Configurat ion Set t ings
 5.5 Act iv it ies and JI TA
 5.6 Act iv it ies and Transact ions
 5.7 Tracing Act iv it ies
 5.8 The Neut ral Threaded Apartm ent
 5.9 Sum m ary

6. Program m ing the COM+ Catalog
 6.1 Why Program the Catalog?
 6.2 The Catalog Program m ing Model
 6.3 Catalog St ructure
 6.4 I nteract ing with t he Catalog
 6.5 Features of COMAdm inCatalog
 6.6 The COM+ Catalog and Transact ions
 6.7 Sum m ary

7. COM+ Secur ity
 7.1 The Need for Secur ity
 7.2 Basic Secur ity Term s
 7.3 Role-Based Secur ity
 7.4 Secur ing a Server Applicat ion
 7.5 Secur ing a Library Applicat ion
 7.6 Program m at ic Role-Based Secur ity
 7.7 Secur ity Boundar ies
 7.8 Advanced COM+ Security
 7.9 COM+ Secur ity Pit falls
 7.10 Sum m ary

8. COM+ Queued Com ponents
 8.1 Major Benefits of Queued Com ponents
 8.2 Queued Com ponents Architecture
 8.3 Com ponent Services Explorer Configurat ion
 8.4 I nvoking Queued Com ponents on the Client Side
 8.5 Designing Queued Com ponent I nterfaces
 8.6 Receiv ing Output from a Queued Com ponent
 8.7 Queued Com ponent Error Handling
 8.8 Queued Com ponents and Transact ions
 8.9 Synchronous Versus Asynchronous Com ponents
 8.10 Queued Com ponents Secur ity
 8.11 Queued Com ponents Pit falls
 8.12 Sum m ary

9. COM+ Event Service
 9.1 Classic COM Events
 9.2 COM+ Event Model
 9.3 The Event Class
 9.4 Subscript ion Types
 9.5 Delivering Events

 4

 9.6 Event Filter ing
 9.7 Dist r ibuted COM+ Events
 9.8 Asynchronous Events
 9.9 COM+ Events and Transact ions
 9.10 COM+ Events and Securit y
 9.11 COM+ Events Lim itat ion
 9.12 Sum m ary

10. .NET Serviced Com ponents
 10.1 Developing Serviced Com ponents
 10.2 .NET Assem blies and COM+ Applicat ions
 10.3 Register ing Assem blies
 10.4 Configur ing Serviced Com ponents
 10.5 Applicat ion Act ivat ion Type
 10.6 The Descr ipt ion At t r ibute
 10.7 Accessing the COM+ Context
 10.8 COM+ Context At t r ibutes
 10.9 COM+ Object Pooling
 10.10 COM+ Just - in-Tim e Act ivat ion
 10.11 COM+ Const ructor St r ing
 10.12 COM+ Transact ions
 10.13 COM+ Synchronizat ion
 10.14 Program m ing the COM+ Catalog
 10.15 COM+ Secur ity
 10.16 COM+ Queued Com ponents
 10.17 COM+ Loosely Coupled Events
 10.18 Sum m ary

A. The COM+ Logbook
 A.1 Logbook Requirem ents
 A.2 Log File Exam ple
 A.3 Using the Logbook
 A.4 Configur ing the Logbook
 A.5 How Does the Logbook Work?
 A.6 Sum m ary

B. COM+ 1.5
 B.1 I m proved User I nterface Usabilit y
 B.2 Legacy Applicat ions and Com ponents
 B.3 Disabling Applicat ions and Com ponents
 B.4 Pausing Applicat ions
 B.5 Service Act ivat ion Type
 B.6 I m proved Queuing Support
 B.7 Applicat ion Pooling and Recycling
 B.8 Applicat ion Dum p
 B.9 Applicat ion Part it ioning
 B.10 Aliasing Com ponents
 B.11 Configurable Transact ion I solat ion Level
 B.12 I m proved Context Act ivat ion Set t ing
 B.13 Pr ivate Com ponents
 B.14 Web Services in COM+ 1.5
 B.15 Sum m ary

C. I nt roduct ion to .NET
 C.1 .NET Program m ing Languages
 C.2 Packaging .NET Com ponents: Assem blies
 C.3 Developing .NET Com ponents

 5

 C.4 Writ ing .NET Client -Side Code
 C.5 .NET as a Com ponent Technology
 C.6 Com posing Assem blies

Colophon

 6

Dedicat ion

To my wife, Dana

 7

Forew ord

I f irst ran into COM+ back in 1996. I n those days, I was work ing as
a Common Object Request Broker Architecture (CORBA) consultant
and was fresh out of IBM, where I had been heavily involved in
IBM’s or iginal CORBA implementat ion.
CORBA was the first of the architectures that we m ight describe
today as Dist r ibuted Component architectures, which set the stage
for both COM/ DCOM in the Microsoft space and RMI / I IOP in the Java
space.
Back then, I was interested in a part icular ly knot ty problem related
to dist r ibuted component architectures. Systems built with such
architectures had a character ist ic performance pat tern. They could
handle large num bers of t ransact ions, as long as those t ransact ions
originated from a small number of clients. So, for example, 5,000
t ransact ions per m inute div ided between 5 clients worked fine. But
when those same 5,000 t ransact ions per m inute were split among
1,000 clients, each processing 5 t ransact ions per m inute, the
systems choked.
This was odd, I thought . Why should 5 clients, each processing
1,000 t ransact ions per m inute, be fundamentally different than
1,000 clients, each processing 5 t ransact ions per m inute? What is
the difference between the first 5,000 t ransact ions per m inute and
the second?
Dist r ibuted com ponent architectures, as they ex isted in 1996,
dictated a one- to-one relat ionship between clients and com ponent
instances. The business logic of such architectures is in the
component instances. And it is the business logic that makes
t ransact ional requests of t ransact ional resources, such as the
database. In order to make t ransact ional requests, the component
instances require expensive resources, such as database
connect ions. We run out of steam (i.e., t ransact ional throughput)
when one of two things happen: we over load the system with
t ransact ional requests or we run out of resources (e.g., database
connect ions) .
Clearly , going from 5 clients, each making 1,000 t ransact ional
requests per m inute, to 1,000 clients, each making 5 t ransact ional
requests per m inute, has no overall impact on the t ransact ional
throughput . Therefore, the reason why our dist r ibuted component
systems must be dying is that we are running out of resources.
So the answer to get t ing lots of clients on a dist r ibuted component
architecture is not going to come from increased capability of the
back-end t ransact ional resources (e.g., databases) . I t will have to
come from something else-something that allows resource shar ing.
This, then, is the problem I worked on back in 1996. How do you

 8

get several clients to share resources in a dist r ibuted component
architecture?
The solut ion to this problem came from an unexpected source. I
was asked to write a book on COM and DCOM. I knew very lit t le
about COM and DCOM back then. As I looked over the COM/ DCOM
white papers on the Microsoft web site, I quickly recognized it as a
typical dist r ibuted component architecture and predicted the sam e
throughput problems I had seen in other dist r ibuted component
systems.
As I browsed through the white papers, I not iced an obscure beta
product called Microsoft Transact ion Server (MTS) . At first , I
dism issed MTS as an API used to manage dist r ibuted t ransact ions.
But as I read more about MTS, I realized that it had lit t le to do with
t ransact ions. I nstead, it at tacked a much more interest ing problem:
how to share resources am ong clients. I n a nutshell, MTS addressed
the very problem that had so vexed the exist ing dist r ibuted
component systems-how to support a large number of low-
t ransact ion generat ing clients!
I did eventually write that book, as well as many ar t icles on the
importance of the ideas int roduced by MTS. Many of these ar t icles
appeared in my ObjectWatch newslet ter (available at
www.objectwatch.com) , a newslet ter that has, over t ime, become
influent ial in its space.
Back in 1996, I predicted that MTS would be a histor ically important
product -one that would redefine approaches to scalabilit y in
dist r ibuted component systems. I n fact , that predict ion has come
t rue. Today, every infrastructure designed to support high
scalability in dist r ibuted component system s is based direct ly on the
ideas, algorithms, and pr incipals first int roduced by MTS in 1996.
Enterprise JavaBeans, for example, the Java scalabilit y
infrastructure, is almost a direct copy of MTS.
But what does this have to do with COM+ , you may ask. I t turns
out that COM+ and MTS are one and the sam e. Microsoft , never
known for its market ing savvy, decided to wait unt il custom ers
finally got used to the name MTS (itself a m isleading name) , and
then it pulled a fast one- it switched the name! And not just any
name, but one that would be as confusing as possible! So they
renamed MTS as COM+ . Naturally, customers assumed that COM+
was the next release of COM. In fact , COM+ was the next release of
MTS.
Now Microsoft has announced .NET. Once again, the br illiant
Microsoft market ing organizat ion has left many customers confused.
I s COM+ now dead? Far from it—.NET is a series of interest ing new
features, none of which replace COM+ . COM+ is st ill the scalable
infrastructure that supports resource shar ing and deals with the
myr iad of issues (such as security and t ransact ion boundary

 9

managem ent) that are so closely related to resource sharing and so
crucial to dist r ibuted applicat ions.
So whether you are rushing into Microsoft ’s new .NET technology
plat form or taking a wait and see at t itude, if you need to put a lot of
clients around your system , you need to understand COM+ .
Therefore, this book is very t imely. COM+ is going to be with us for
a long t ime. I ts name may change again, just to confuse the
innocent ; but the ideas, algor ithms, and principals will not . COM+ ,
under whatever name, is here to stay!
Roger Sessions,
CEO, ObjectWatch, Inc.
Publisher, ObjectWatch newslet ter (www.objectwatch.com)
Author, COM+ and the Bat t le for the Middle Tier
Aust in, Texas

 10

Preface

This book discusses COM+ component services. Each service is
covered in its own chapter , and each chapter discusses a sim ilar
range of issues: the problem the serv ice addresses, possible
solut ions to that problem , an in-depth descript ion of the COM+
solut ion, t radeoffs, design, and implementat ion guidelines, t ips, and
known pit falls. I have t r ied to provide useful design informat ion and
lessons I learned while applying COM+ . I also descr ibe COM+ helper
classes and ut ilit ies I developed that will enhance your product iv ity
significant ly . (The COM+ Events helper objects and the COM+
Logbook are prime examples.) This book focuses on the "how to"—
that is, it prov ides pract ical informat ion. You should read the
chapters in order, since most chapters rely on inform at ion discussed
in the preceding chapters. The book also aims to explain COM+ step
by step. A software engineer already fam iliar with COM who wants
to know what COM+ is and how to use it can read this book and
star t developing COM+ applicat ions im m ediately .

Scope of This Book

Here is a brief summary of the chapters and appendixes in this
book:

• Chapter 1 int roduces the Component Serv ices Explorer and
basic COM+ term inology. This chapter deliberately holds your
hand as you develop your first "Hello World" COM+
component . Subsequent chapters do m uch less handholding
and assume you are fam iliar with the COM+ environment . I f
you already have experience with basic COM+ development,
feel free to sk ip this chapter.

• Chapter 2 demyst ifies the COM+ context by present ing it as
the key mechanism for providing component services using
call intercept ion. Generally , you need not be concerned with
contexts at all. However, the COM+ context underlies the way
COM+ serv ices are implemented.

• Chapter 3 describes two scalability-enabling mechanisms that
COM+ provides for a modern enterprise applicat ion: object
pooling and Just- in-Time Act ivat ion (JITA) . The discussion of
instance m anagement , and especially JITA, is independent of
t ransact ions. Ear ly COM+ documentat ion and books tended to
couple instance management and t ransact ions. However, I
found that not only can you use instance management
independent ly of t ransact ions, but it is easier to explain it that

 11

way. Besides explaining how to best use object pooling and
JITA, Chapter 3 describes other act ivat ion and instance
managem ent COM+ serv ices such as the const ructor st r ing.

• Chapter 4 explains the difficult , yet com m on, problems that
t ransact ions address, and provides you with a dist illed
overv iew of t ransact ion processing and the t ransact ion
programming model. The difficult part of wr it ing this chapter
was finding a way to convey the r ight amount of t ransact ion
processing theory. I want to help you understand and accept
the result ing program ming model, but not bury you in the
details of theory and COM+ plumbing. This chapter focuses on
COM+ transact ion architecture and the result ing design
considerat ions you have to be aware of.

• Chapter 5 first explains the need in the component world for a
concurrency model and the lim itat ions of the classic COM
solut ion. I t then descr ibes how the COM+ solut ion, act iv it ies,
improves deficiencies of apartments.

• Chapter 6 shows how to access component and applicat ion
configurat ion inform at ion programm at ically using the COM+
Catalog inter faces and objects. Programmat ic access is
required when using some advanced COM+ serv ices and to
automate setup and development tasks. This chapter prov ides
you with comprehensive catalog st ructure diagrams, plenty of
sample code, and a handy ut ilit y.

• Chapter 7 explains how to secure a modern applicat ion using
the r ich and powerful (yet easy to use) security infrastructure
provided by COM+ . This chapter defines basic security
concepts and shows you how to design security into your
applicat ion from the ground up. You can design this secur ity
by using COM+ declarat ive secur ity via the Com ponent
Serv ices Explorer and by using advanced program mat ic
security .

• Chapter 8 explains what COM+ queued components are and
how to use them to develop asynchronous, potent ially
disconnected applicat ions and components. I n addit ion to
showing you how to configure queued components, this
chapter addresses required changes to the program ming
model. I f you have ever had to develop an asynchronous
method invocat ion opt ion for your components, you will love
COM+ queued components.

• Chapter 9 covers COM+ loosely coupled events, why there is
a need for such a service, and how the service t ies into other
COM+ serv ices described in ear lier chapters (such as
t ransact ions, security , and queued components) . Many people
consider COM+ events their favor ite service. I f you have had
to confront COM connect ion points, you will appreciate COM+
Events.

 12

• Chapter 10 shows how .NET components can take advantage
of the component services descr ibed in the previous chapters.
I f you are not fam iliar with .NET, I suggest you read Appendix
C first—it contains an int roduct ion to .NET and C# . Chapter
10 repeats in C# m any of the C+ + or VB 6.0 code samples
found in earlier chapters, showing you how to implem ent
them in .NET.

• Appendix A helps you develop a useful and important ut ility—
a flight recorder that logs m ethod calls, errors, and events in
your applicat ion. Logging is an essent ial part of every
applicat ion and is especially important in an enterprise
environment. The logbook is also an excellent example of the
synergies arr ived at by combining mult iple COM+ serv ices. I t
is also a good representat ion of the design approaches you
may consider when combining services.

• Appendix B describes the changes, im provem ents, and
enhancements int roduced to COM+ in the next release of
Windows, Windows XP. I nstead of writ ing the book as if
Windows XP were available now (as of this writ ing it is only in
beta) , I chose to wr ite the book for the developer who has to
deliver applicat ions today, using Windows 2000. When you
star t using Windows XP, all you need to do is read Appendix
B—it contains the addit ional informat ion you need.

• Appendix C describes the essent ial elem ents of the .NET
framework, such as the runt ime, assem blies, and how to
develop .NET components. The appendix allows a reader who
is not fam iliar with .NET to follow Chapter 10.

Som e Assum pt ions About the Reader

I assume that you are an experienced COM developer who feels
comfortable with COM basics such as interfaces, CoClasses, and
apartments. This book is about COM+ component services, not the
component technology used to develop a COM/ DCOM or .NET
component . You can st ill read the book without this experience, but
you will benefit more by having COM under your belt . I assume you
develop your com ponents most ly in C+ + and ATL and that you
write occasional, sim ple client code in Visual Basic. I also use t r iv ial
C# in Chapter 10 to demonst rate how .NET takes advantage of
COM+ serv ices, but you don't need to know C# to read that
chapter . A .NET developer should also find this book useful: read
and understand the services in Chapter 1 through Chapter 9, and
then use Chapter 10 as a reference guide for the syntax of .NET
at t r ibutes.

 13

Definit ions and Text Convent ions

The following definit ions and convent ions apply throughout this
book:

• A component is an implementat ion of a set of inter faces. A
component is what you mark in your IDL file (or type library)
with CoClass or a class in C# .

• An object is an instance of a component . You can create
objects by calling CoCreateInstance() in C+ + , specify ing
the class ID (the type) of the object you want to create. I f you
use Visual Basic 6.0, you can create objects using new or
CreateObject(). A C# client uses new to create a new
instance of a component .

• I use the following terms in the book: CoCreat ing refers to
calling CoCreateInstance() in C+ + , or new or
CreateObject() in Visual Basic. Query ing an object for an
inter face refers to calling IUnknown::QueryInterface() on
the object . Releasing an object refers to calling
IUnknown::Release() on the object .

• The graphical notat ions in Figure P-1 are used in almost every
design diagram in the book. The " lollipop" denotes an
inter face, and a method call on an inter face is represented by
an arrow beginning with a full circle.

Figure P- 1 . I nterface and m ethod call graphical notat ions

• Error handling in the code samples is rudim entary. The code
samples serve to demonst rate a design or a technical point ,
and clut ter ing them with too m uch error handing would m iss
the point . I n a product ion environm ent , you should ver ify the
returned HRESULT of every COM call, catch and handle
except ions in C# , and assert every assumpt ion.

I use the following font convent ions in this book:

• I talic is used for new terms, citat ions, online links, filenam es,
directories, and pathnames.

• Constant width is used to indicate command- line computer
output and code examples, as well as classes, constants,
funct ions, interfaces, methods, variables, and flow-cont rolled
statements.

 14

• Constant-width bold is used for code emphasis and user
input .

• Constant-width italic is used to indicate replaceable
elements in code statements.

This icon indicates a note or t ip.

This icon indicates a warning.

Other COM+ Books and References

This book describes how to use COM+ component serv ices in your
applicat ion. I t focuses on how to apply the technology, how to avoid
specific pit falls, and design guidelines. I f you want to know more
about COM+ in general and the nature of component technology, I
recommend the following two books that helped me a great deal in
my at tempt to grasp COM+ .
COM+ and the Bat t le for the Middle Tier by Roger Sessions (John
Wiley & Sons, 2000) is hands down the best "why" COM+ book. I t
explains in detail, with excellent examples and in plain language,
the need for software components and component services. For
example, instead of the page or two this book includes on the
mot ivat ion for using t ransact ions, Sessions devotes two fascinat ing
chapters to the topic. The book goes on to compare ex ist ing
component technologies (such as COM, CORBA, and Java) and their
corresponding suites of com ponent serv ices. I t also contains a few
case studies from real- life systems that use COM+ . Roger Sessions
also has a unique way of eloquent ly nam ing things— providing the
most appropr iate term , which is often not the name Microsoft uses.
Whenever it makes sense, this book uses Sessions' term inology,
such as " instance m anagement" instead of the Microsoft term
"act ivat ion."
Understanding COM+ by David S. Plat t (Microsoft Press, 1999) is
probably the best "what " COM+ book. The book describes the
serv ices available by COM+ and provides sidebar summaries for the
busy reader. I t is one of the first COM+ books, and Plat t worked on
it closely with the COM+ team.
I also used the MSDN Library extensively, especially the
"Component Services" sect ion, while writ ing this book. Although the
informat ion in this library tends to be terse, the overall st ructure is
good. Use this book to learn how to apply COM+ product ively and

 15

effect ively , and use the MSDN Library as a reference for technical
details and a source for addit ional informat ion.

How to Contact Us

We have tested and verified the informat ion in this book to the best
of our abilit y, but you may find that features have changed (or even
that we have made m istakes!) . Please address comm ents and
quest ions concerning this book to the publisher:
O’Reilly & Associates, Inc.
101 Morris St reet
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (internat ional/ local)
(707) 829-0104 (fax)
The web site for the book lists exam ples, errata, and plans for
future edit ions. You can access this page at :
ht tp: / / www.oreilly .com/ catalog/ comdotnetsvs
To ask technical quest ions or comment on this book, send email to:
bookquest ions@oreilly .com
Or to me direct ly:
juval. lowy@componentware.net
For more informat ion about our books, conferences, software,
resource centers, and the O’Reilly Network, see our web site:
ht tp: / / www.oreilly .com

Acknow ledgm ents

A book is by no means the product of just the author’s work. I t is
the result of many events and individuals, like links in a chain. I
cannot possibly nam e everyone, ranging from m y parents to my
fr iends. I am especially grateful for my two fr iends and colleagues,
Marcus Pellet ier and Chris W. Rea. Marcus worked with me on large
COM+ projects, and together we confronted the unknown. Marcus’s
thoroughness and technical expert ise is a model for every
programmer. Chris’s comments and insight into a reader ’s m ind
have cont r ibuted great ly to this book’s accuracy, integrity , and flow.
I wish to thank Yasser Shohoud for verify ing my approach to
t ransact ion processing and sharing with me his own, Richard Grimes
for reviewing the book, and Roger Sessions for writ ing the
Foreword. Thanks also to Johnny Blumenstock for providing me with
a place to write. Finally, this book would not be possible without my

 16

wife, Dana, whose constant support and encouragement made this
book a reality. Thank you, Dana.

 17

Chapter 1 . COM+ Com ponent Services

By now, most developers of large-scale enterprise applicat ions are
convinced of the benefits of component -oriented development . They
have discovered that by breaking a large system down into smaller
unit s, they can write code that is easier to reuse on other projects,
easier to dist r ibute across mult iple computers, and easier to
maintain. As long as these components adhere to a binary standard
that defines how they communicate with one another, they can be
invoked as needed at runt ime and discarded when they have
finished their work. This type of applicat ion is also part icular ly
suited to the Web, where clients request services of rem ote
applicat ions and then, once sat isfied, m ove on to other tasks.
For nearly a decade, the Microsoft Com ponent Object Model (COM)
has been the standard for components that run on Windows
machines, including Windows 9x and Me clients and Windows NT
and 2000 servers. The COM model is well documented by the
Microsoft Com ponent Object Model Specificat ion. Tools such as
Visual C+ + and Visual Basic m ake it easy to create COM
components, and scores of books, t raining classes, and art icles are
available to teach programm ers how to use them. Many features of
the Windows operat ing system are now im plemented as COM
components, and m any companies have invested heavily in COM-
based systems of their own.
In July 2000, Microsoft announced a radically new component m odel
as part of its .NET developm ent plat form , suddenly calling into
quest ion the viabilit y of exist ing COM applicat ions. .NET components
bear lit t le resemblance to legacy COM components and are not
backwards compat ible. They can be m ade to interoperate with COM
components but do not do so naturally.
When it com es to the services and tools programmers use to build
enterprise-scale .NET applicat ions, however, one facilit y cont inues
to provide the necessary runt ime infrast ructure and services: COM+
component services. These serv ices have been available on
Windows 2000 since its release, but they will gain greater
importance in the m onths ahead. As it t urns out , they offer a bridge
between t radit ional COM and .NET applicat ions, making your
understanding and mastery of them as important now as it has ever
been.
In this chapter, we provide a quick overview of the COM+ suite of
component services and then int roduce you to the Component
Serv ices Explorer, your pr imary tool for building and managing both
COM and .NET enterpr ise applicat ions. You will also create, debug,
and deploy a simple COM+ "Hello World" applicat ion, using a
t radit ional COM com ponent and learning about COM+ applicat ion
types and configured components as you do so.

 18

1 .1 COM+ Com ponent Services

Components need runt ime services to work. The original COM
runt im e supported components located on the same machine,
typically a desktop PC. As the focus of Windows development
shifted from standalone PCs to networked systems, Microsoft found
it necessary to add addit ional serv ices (see The Evolut ion of COM+
Serv ices) . First , they added support for dist r ibuted applicat ions, or
applicat ions whose components are located on more than one
machine (somet imes referred to as "COM on a wire") . Later ,
Microsoft added new services to support enterprise applicat ions,
whose complexity and scale placed new demands on the resources
of a system and required an ent irely new level of support . These
t rends were only exacerbated by the m ove to web-based
applicat ions aimed at huge numbers of customers connected over
the public Internet .
Collect ively, the services that support COM and .NET component-
based applicat ions are known as the COM+ component services, or
simply as COM+ .

The Evolut ion of COM+ Services

COM solved a number of problems facing early component
developers by providing a binary standard for components,
defining a communicat ion inter face, and providing a way to
link components dynam ically. COM freed developers from
having to deal with "plumbing" and connect iv ity issues,
allowing them to concent rate on designing components.
By the m id-1990s, however, it was clear that Windows
developers needed addit ional services to support dist r ibuted
and t ransact ion-or iented applicat ions. Dist r ibuted COM
(DCOM) was released in 1995, a specificat ion and service
used to dist r ibute components across different machines and
invoke them remotely. Then, Microsoft released the Microsoft
Transact ion Server (MTS) in 1998, which provided
component developers with new services for t ransact ion
managem ent , declarat ive role-based security , instance
act ivat ion management, com ponent deploym ent and
installat ion, and an adm inist rat ion tool for managing
component configurat ions.
There was m ore to MTS than just new services. MTS
represented a programming model in which the component
developer simply declared (using the MTS adm inist rat ive
tool) which services a component required, and left it to MTS
to provide an appropr iate runt im e environment . Developers

 19

could now spend even less effor t on low- level serv ice
plum bing (such as interact ing with t ransact ion processing
monitors or managing the life cycle of an object) , and m ore
on the business logic the customer paid for. Yet , MTS had it s
lim itat ions. Foremost was the fact that MTS was built on top
of convent ional COM/ DCOM. The underly ing operat ing
system and COM itself were unaware that MTS even existed.
MTS resorted to esoteric hacks and kludges to provide its
serv ices, and MTS could not provide its services to every
COM object (mult ithreaded apartment objects were
excluded) . Some serv ices, such as object pooling, were
either not possible or unavailable.
The development of a new version of the Windows NT
operat ing system (init ially called NT 5.0 and later renamed
Windows 2000) , gave Microsoft an opportunity to correct the
deficiencies of MTS and DCOM by fusing them into a new
comprehensive component services suite. Microsoft added
yet more services, including object pooling, queued
components, and events, and made the package a part of
the core Windows operat ing system. The new suite of
serv ices was named COM+ 1.0, the subject of this book. The
next version of COM+ , COM+ 1.5, is scheduled for release
with Windows XP in Q4 2001 and is described in Appendix B.
The COM+ acronym is an overloaded and often m isused
term . Today it is used inform ally to refer to both the latest
version of the COM component specificat ion and the
component services available on the latest versions of
Windows. I n this book, we use the term COM+ to refer to the
COM+ component services. When we speak of COM+
components, we refer to COM components configured to run
under those services. However, as you will see, a COM+
applicat ion may consist of either COM or .NET components
(see COM+ : The Migrat ion Path to .NET) .
Here is a quick summary of the most important serv ices provided
by COM+ :
Administ rat ion

Tools and serv ices that enable programmers and
adm inist rators to configure and manage components and
component -based applicat ions. The most important tool is the
Microsoft Managem ent Console Com ponent Serv ices Explorer.
COM+ also provides a standard locat ion, the COM+ Catalog,
for stor ing configurat ion informat ion. The Com ponent Services
Explorer is explained in the following sect ion. The COM+
Catalog is descr ibed in Chapter 6.

Just - in-Time Act ivat ion (JI TA)

 20

Serv ices that instant iate components when they are called
and discard them when their work is done. JITA is explained
in Chapter 3.

Object pooling
Serv ices that allow instances of frequent ly used, but
expensive, resources, such as database connect ions, to be
maintained in a pool for use by numerous clients. Object
pooling can improve the performance and responsiveness of a
dist r ibuted applicat ion dramat ically . I t is explained in Chapter
3.

Transact ions
Serv ices that allow operat ions carr ied out by dist r ibuted
components and resources such as databases to be t reated as
a single operat ion. Transact ion management is a requirem ent
of most commercial systems. COM+ Transact ion services are
discussed in Chapter 4.

Synchronizat ion
Serv ices for cont rolling concurrent access to objects. These
serv ices are explained in Chapter 5.

Security
Serv ices for authent icat ing clients and cont rolling access to an
applicat ion. COM+ supports role-based security , which is
explained in Chapter 7.

Queued components
Serv ices that allow components to communicate through
asynchronous messaging, a feature that makes possible
loosely coupled applicat ions or even disconnected
applicat ions. Queued com ponents are discussed in Chapter 8.

Events
Serv ices that allow components to inform one another of
significant events, such as changes in data or system state.
COM+ supports a publish-subscr ibe model of event
not ificat ion, which is described in Chapter 9.

To summ arize, COM+ is about component services and has alm ost
nothing to do with the way a component is developed. The .NET
framework allows you to develop binary components more easily
than does COM, but it cont inues to rely on com ponent serv ices
available through COM+ . The manner in which .NET and COM
components are configured to use these services, however, is not
the same. Current ly, most Windows enterpr ise developers are
developing applicat ions based on the exist ing COM standard using
Visual Basic 6 and Visual C+ + 6 with ATL. For this reason, this book
uses COM examples to dem onst rate COM+ . However, these sam e
serv ices are available to .NET com ponents as well. Chapter 10
shows you how to use them.
COM+ 1.0 is an integral part of Windows 2000 and requires no
special installat ion. Some COM+ features are available only when

 21

both the client and server are running on Windows 2000 machines,
but COM+ clients can usually run on Windows 9.x and Windows NT
machines as well.

COM+ : The Migrat ion Path to .NET

.NET is Microsoft ’s next -generat ion component technology
and applicat ion development plat form . (For a quick overv iew
of the .NET plat form , see Appendix C.) However, adopt ing a
radically new technology such as .NET is never an easy
endeavor for companies and developers. Most have m ade a
considerable investment in an ex ist ing, often COM-based,
code base and the developer sk ills needed to maintain it .
Unless companies have a com pelling reason to move to .NET
or a reasonable m igrat ion path, they postpone or avoid
making the change.
However, because COM and .NET com ponents can coexist in
the same COM+ applicat ion, companies can cont inue to build
COM components today, adding .NET serviced components to
their applicat ions at a later t ime when the advantages of
doing so are more compelling. This is a m igrat ion st rategy
worth your considerat ion.
When Windows XP is released in Q4 2001, it will include a new
version of COM+ component services, COM+ 1.5. This new version
improves COM+ 1.0 usability and addresses some of the pit falls of
using COM+ 1.0 on Windows 2000, as described in this book. COM+
1.5 also adds new features to ex ist ing services and lays the
foundat ion for integrat ion with .NET web serv ices. Appendix B
summarizes the forthcom ing changes.

1 .2 The Com ponent Services Explorer

COM+ components and applicat ions are managed through the
Component Services Explorer (formerly known as the COM+
Explorer) .The Component Serv ices Explorer is a Microsoft
Management Console snap- in and is available on every Windows
2000 machine.
To fire up the Component Services Explorer, go to the Start menu
and select Set t ings Cont rol Panel. When the Control Panel window
appears, select the Administ rat ive Tools directory and then select
the Component Services applicat ion.
The first thing you should do after locat ing the Component Services
Explorer is create a shortcut to it on your desktop. As a developer,
you need easy access to the Component Services Explorer , your
main gateway into COM+ (see Figure 1-1) . You can use the
Component Services Explorer to create and configure COM+

 22

applicat ions, import and configure COM or .NET components, export
and deploy your applicat ions, and adm inister your local machine.
You can even adm inister COM+ on other m achines on the network,
provided you have adm inist rat ive priv ileges on those machines.
A COM+ applicat ion is a logical group of COM+ components.
Components usually share an applicat ion if they depend on one
another to accom plish their tasks and when all the components
require the sam e applicat ion level configurat ion, as with security or
act ivat ion policy. Components in the sam e applicat ion are often
developed by the same team, and are m eant to be deployed
together.
You can see all the COM+ applicat ions installed on your machine by
opening the Component Services Explorer and expanding the
Computers folder in the Tree window: Computers My Computer

COM+ Applicat ions. Every icon in the COM+ Applicat ions folder
represents a COM+ applicat ion. Each COM+ applicat ion contains
COM+ components. Components must be explicit ly imported into
the Component Services Explorer to take advantage of COM+
serv ices.
The Com ponent Serv ices Explorer offers a hierarchical approach to
managing COM+ serv ices and configurat ions: a computer contains
applicat ions, and an applicat ion contains components. A component
has interfaces, and an interface has methods. Each item in the
hierarchy has its own configurable propert ies. Note that the
hierarchy allows you to v iew the parameters of any method listed in
the hierarchy.

Figure 1 - 1 . The Com ponent Services Explorer

1 .3 Hello COM+

The best way to become acquainted with the Component Services
Explorer and basic COM+ term inology is to do a t r iv ial example.
This sect ion walks you through the COM+ equivalent of the

 23

canonical "Hello World" program. You will build a COM+ applicat ion
containing a COM component that displays a message box saying
"Hello COM+ ".
When developing your "Hello COM+ " applicat ion, follow these steps:

1. Create a classic COM com ponent . All COM+ components star t
their life as classic COM components, developed with such
tools as ATL, MFC, or Visual Basic 6.0.

2. Create a new COM+ applicat ion to host the component .
3. Add the component to the applicat ion.
4. Write a client and test the component .

The rest of this chapter uses this "Hello COM+ " example to
demonstrate various COM+ features and capabilit ies. The exam ple
is also available as part of the source files provided with this book
(see the Preface for informat ion on how to access these files) .

1 .3 .1 Building a COM Com ponent

We will use ATL 7.0 to generate a classic COM component , although
you can also do it in Visual Basic 6.0 with almost the same ease.
Star t a new ATL project in Visual Studio.NET and name it Hello. For
simplicity, do not use At t r ibuted project (deselect At t r ibuted in the
ATL Project Wizard under Applicat ion Set t ings) . Also, do not select
COM+ 1.0 support . This select ion adds a few inter faces explained in
subsequent chapters that are not relevant to this example. Bring up
the Add Class dialog ATL and select the Sim ple ATL Object item.
This step should bring up the ATL Sim ple Object Wizard dialog (see
Figure 1-2) . Type the following entr ies, in order:

1. In the Short Name field, enter Message .
2. In the CoClass f ield, enter Hello .

Your completed dialog should look like Figure 1-2. There is no need
to access the Opt ions select ion in the dialog (just use the defaults) .
Click OK when you’re done.

Figure 1 - 2 . Use the ATL object w izard to generate a sim ple COM object

 24

Right -click the I Message inter face icon in the Class View, and select
Add and then Add Method... from the pop-up context menu. This
step brings up the Add Method Wizard. Enter ShowMessage as the
method name and click OK.
After following these steps, the ATL Object Wizard will generate a
new interface definit ion in the project IDL file, and the new method
wizard will add a m ethod to that inter face. Ver ify that the interface
definit ion in the IDL file looks like this:
[
 //various IDL attributes
]
interface IMessage : IDispatch
{
 [id(1), helpstring("method ShowMessage")] HRESULT
ShowMessage();
};
Also make sure that the IDL file contains a type library sect ion with
the CoClass definit ion:
[
 //you will have a different CLSID here:
 uuid(C530E78E-9EE4-47D3-86CC-3B4EE39CBD26),
 helpstring("Message Class")
]
coclass Hello
{
 [default] interface IMessage;
};
Next , go to the message.cpp file and im plement the ShowMessage()
method of the CMessage class:
STDMETHODIMP CMessage::ShowMessage()
{

 25

 ::MessageBox(::GetActiveWindow(),"Hello COM+","First
COM+ Application",MB_OK);
 return S_OK;
}
You can now com pile and build the DLL. Every COM+ component
must reside in a DLL, and that DLL must contain a type library
embedded in it as a resource. ATL will com pile and build the DLL for
you and add a reference to the type library in the project resource
file, the hello.rc file. COM+ does not require you to register your
component , although the ATL build process will register it for you.
As you will see later, COM+ maintains its own components
regist rat ion and configurat ion repository.

1 .3 .2 Creat ing a COM+ Applicat ion

Open the Component Services Explorer and expand My Computer
COM+ Applicat ions folder. Right -click the COM+ Applicat ions

folder and select New Applicat ion from the pop-up context menu.
This step br ings up the Applicat ion I nstall Wizard. Click Next on the
first wizard screen.
In the next wizard screen, select the Create an Em pty Applicat ion
opt ion in the next wizard screen. Now the wizard will let you specify
the new applicat ion name and its applicat ion type, which can be
either a library or a server type (see Figure 1-3) . Enter Hello COM+
for the applicat ion name, and change the applicat ion type from the
default Server applicat ion to Library applicat ion. A library
applicat ion indicates that the components in the applicat ion will be
loaded direct ly in the process of their clients (like a classic COM in-
proc server) . A server applicat ion indicates that the components will
run in their own process (sim ilar to a classic COM local server) . You
can always change the applicat ion name and its act ivat ion t ype later
with the Component Services Explorer . Click Next and Finish in the
last wizard screen. You have just created your first COM+
applicat ion.

Figure 1 -3 . Nam ing your new COM+ applicat ion and configuring it to be a
library or a server applicat ion

 26

I f you exam ine the Applicat ions folder now, you will see your Hello
COM+ applicat ion. Right -click its icon and select Propert ies from the
pop-up context m enu. The applicat ion’s propert ies page— a
collect ion of tabs that let you configure the applicat ion— will now
appear. I n fact , every item in the Component Services Explorer
(applicat ions, components, interfaces, methods, roles, and
subscript ions) has a propert ies page accessible in the same way (by
select ing Propert ies on the item 's context menu or the propert ies
but ton on the Component Serv ices Explorer toolbar) . The Hello
COM+ applicat ion's propert ies page is shown in Figure 1-4. The
General tab contains the applicat ion name, which you can change
here if you'd like, and a descr ipt ion field. The descript ion field is a
useful place to put a few sentences document ing the applicat ion's
purpose, its owner, etc. Each COM+ applicat ion is uniquely
ident ified by a GUID, called the Applicat ion I D, shown at the bot tom
of the General tab. You will almost never use the Applicat ion ID
direct ly, but COM+ uses it internally.

Figure 1 - 4 . The applicat ion propert ies page

 27

Other tabs on the applicat ion propert ies page let you configure the
applicat ion act ivat ion m ode, support for queued components,
security set t ings, and idle- t ime m anagem ent . Later chapters
describe these applicat ion- level configurat ions in depth.
Close the propert ies page and exam ine the applicat ion’s
Components folder. As you m ight expect , it is em pty now. You will
now add a new component to this applicat ion.

1 .3 .3 Adding a Com ponent to a COM+ Applicat ion

You can add a new component to your applicat ion (not surpr isingly)
by using another wizard. Right -click the Components folder, select
New from the pop-up context menu, and click Component . The
Component Install Wizard will now appear. Click Next on the first
screen. On the next screen, select I nstall New Component from the
three choices. The wizard will open a standard file-open dialog box.
Look for the folder where you built hello.dll and select it . The wizard
will present you with all the components it could find in the specified
DLL. In the case of hello.dll, the wizard shows only the single
component contained in it (see Figure 1-5) . The wizard actually
loads the embedded type library in the DLL and looks for CoClass
definit ions. You can use the Add but ton to specify addit ional DLLs.
Note that all t he components in the selected DLL will be added. I f
you want to add just a subset of them , you m ust add them all f irst
and then rem ove the ones that do not belong in the applicat ion
manually. Click Next , and then click Finish in the last wizard screen.
Your component is now part of the Hello COM+ applicat ion.

Avoid using the " Im port component (s) that are
already registered" opt ion in the Component I nstall
Wizard. This opt ion has a bug and will not ret r ieve
informat ion about the component (s) inter faces.
You will not see the component (s) interfaces and
methods in the Com ponent Serv ices Explorer and
will not be able to configure them.

Figure 1 -5 . The Com ponent I nstall W izard

 28

Because type inform at ion is embedded in the DLL, COM+ knows
about your component ’s interfaces and m ethods. You can expand
the I nter faces and Methods folders (under the Hello.Message
component) to verify that COM+ has im ported the component
correct ly. As shown in Figure 1-6, the IMessage inter face and the
ShowMessage method were both imported.

Figure 1 - 6 . The Hello COM+ applicat ion and its contained com ponent

The I nterfaces folder contains one ent ry for each inter face your
component supports. The interfaces on the CoClass definit ion in the
type library determ ine the number of ent r ies. The Methods folder

 29

contains one item for each method in that interface, again based on
the inter face definit ion in the type library.

1 .3 .4 W rit ing a Test Client

Clients can create the component using the class ID CLSID_Hello
(C+ +) or Hello (Visual Basic 6.0) . Although the component is now
a COM+ component and is part of a COM+ applicat ion, the client-
side code is the same as if the component were st ill a classic COM
component . To prove this point (and test your component) , wr ite a
short C+ + client , such as the code in Example 1-1.

Exam ple 1 - 1 . A sim ple COM+ client

#import "Hello.dll" no_namespace named_guids
::CoInitialize(NULL);

HRESULT hres = S_OK;
IMessage* pMessage = NULL;

hres = ::CoCreateInstance(CLSID_Hello,NULL,CLSCTX_ALL,

IID_IMessage,(void**)&pMessage);

hres = pMessage->ShowMessage();
pMessage->Release();

::CoUninitialize();
When you run the client , you will see the "Hello COM+ " message
box (see Figure 1-7) .

Figure 1 - 7 . The "Hello COM+ " m essage box from your first COM+
com ponent

Alternat ively, you can write the client side in Visual Basic 6.0. Add
the component type library Hello.TLB, the Visual Basic project
references browser, and wr ite:
Dim obj As Hello

Set obj = New Hello
obj.ShowMessage
set obj = Nothing
Visual Basic 6.0 clients can also create the object using its prog- ID.
In that case, the type- library is not required (at the expense of
type-safety) :

 30

Dim obj As Object
Set obj = CreateObject("Hello.Message.1")
obj.ShowMessage
set obj = Nothing
Because the client side remains constant , regardless of the
component configurat ion and applicat ion type, COM+ helps
decouple the client from the server. This point is discussed in depth
in the next chapter.

1 .4 COM+ Configured Com ponents

COM+ allows you to import only in-proc (DLL) components. You
cannot im port COM com ponents that reside in a local server (EXE) ;
COM+ lets you configure the act ivat ion type of your applicat ion,
server, or library. I n the case of a library, the client simply loads the
original DLL into its process and uses the com ponent . I f you
configure the applicat ion to be a server applicat ion, COM+ promotes
your or iginal DLL to become a local server by host ing it in a
surrogate process of its own. However, COM+ cannot make a library
applicat ion out of a COM local server. I n addit ion, m any COM+
serv ices require explicit process- level adm inist rat ion that the local
server ’s code simply does not contain.
Once an in-proc component is imported to COM+ , it is called a
configured component to em phasize the fact that m uch com ponent
funct ionality and behavior is actually configured and adm inistered
outside the component . A classic COM component (be it in-proc or
local) that has not been imported into COM+ is called a
nonconfigured component . Configured and nonconfigured
components can interact freely and call each other’s inter faces. The
configured component must reside on a Windows 2000 machine,
but the client of a configured component can reside on any
Windows- fam ily m achine, such as Windows NT, Windows Me, or
Windows 9x.
Configurat ion lets you cont rol the way your applicat ion, component ,
inter face, or method behaves under COM+ . The COM+ development
paradigm lets COM+ manage as much of the nonbusiness logic
plum bing as possible by declar ing what serv ices you want to use.
Doing so lets you focus on the dom ain problem you are t rying to
solve and add business value instead of plumbing code to your
product .
Your configured component ’s inter faces can be dual, dispatch, or
custom inter faces. I f you use automat ion-compliant inter faces, you
do not need to provide COM+ with a proxy/ stub DLL (see COM
Inter face Types for more inform at ion) .

 31

COM I nterface Types

I n general, there are two k inds of COM inter face types:
automat ion-compliant interfaces and custom interfaces.
Cont rary to comm on concept ions, an automat ion-compliant
inter face does not have to derive from IDispatch or have all
the parameters be var iants or variants-compat ible types
(such as a BSTR or long) . An automat ion-compliant interface
must have one of the following two direct ives in its
definit ion: dual or oleautomat ion. For example:
[
 object,
 uuid(30548235-4EC3-4087-9956-ED26748F47E9),
 dual,
 helpstring("An example for automation
compliant interface"),
]
interface IMyInterface : IUnknown
{
 HRESULT MyMethod([in]long lNumber);
};
COM can marshal an automat ion-compliant inter face by
creat ing the appropr iate proxy and stub autom at ically at
runt im e. However, automat ion-compliant inter faces do have
lim itat ions on parameter types; for example, they cannot
have as method parameters st ructs with pointers in them.
For ult im ate f lexibility , you can use custom interfaces. These
inter faces do not have dual or oleautom at ion in their
inter face definit ion, and it is the developer’s responsibilit y to
provide a proxy and a stub DLL.
However, if your design calls for custom interfaces, you should
provide COM+ with a proxy/ stub DLL that was built using the MIDL
switch /Oicf to enable type library m arshaling. In any case,
configured components cannot use interfaces that require custom
marshaling. You can develop configured components in C+ + , Visual
Basic, or even C# , since one of the core pr inciples of COM,
language independence, is m aintained in COM+ .
You may be wondering by now, where does COM+ store the
configurat ion inform at ion for all your applicat ions and components?
Unlike classic COM, COM+ does not use the Windows regist ry.
COM+ uses a dedicated repository called the COM+ catalog. No
formal Microsoft docum entat ion of the exact physical locat ion of the
catalog ex ists, simply because it is not useful to you. The only bit of
configurat ion inform at ion st ill stored in the Windows regist ry is the
component threading model and remaining classic COM informat ion
(such as InprocServer32 and prog-ID regist ry keys) .

 32

1 .5 Applicat ions, DLLs, and Com ponents

COM+ applicat ions are logical packaging units; DLLs, however, are
physical packaging unit s. There is no correlat ion between logical
and physical packaging. The only requirement is that a configured
component must belong to exact ly one COM+ applicat ion; it cannot
belong to more than one, and it must belong to at least one to take
advantage of COM+ component serv ices. As demonstrated in Figure
1-8, a COM+ applicat ion can host components from one or m ult iple
DLLs (Applicat ion 2 has components from two DLLs) . I t is also
possible that not all the com ponents in a DLL are hosted in COM+
applicat ions (such as com ponent E) , and one DLL can contr ibute
components to mult iple COM+ applicat ions (DLL 1 cont r ibutes
components to Applicat ion 1 and Applicat ion 2) .

Figure 1 - 8 . COM+ applicat ions and DLLs

The separat ion of physical from logical packaging gives you great
flex ibilit y in designing your applicat ion’s layout . All the components
in the sam e COM+ applicat ion share the same applicat ion- level
configurat ion set t ings, regardless of their underly ing DLL packaging.
However, I recom mend that you avoid installing components from
the same DLL into m ore than one applicat ion, such as com ponents
B and C in Figure 1-8. The reason is that components in the same
applicat ion are assum ed to operate t ight ly together and t rust each
other. On the other hand, nothing is assumed about components
from different applicat ions. By placing components from the same
DLL into mult iple applicat ions, you may int roduce needless security
checks. You m ight also int roduce cross-process m arshaling
overhead, if those components need one another to operate, which
is probably why they were put in the same DLL in the first place.
The COM+ Com ponent Install Wizard also does not handle
components from the same DLL in m ult iple applicat ions very well.
When you use the wizard to add components from a DLL to an
applicat ion, the wizard t r ies to add all components in the DLL to the
applicat ion. I f some of the components are already part of other
applicat ions, the wizard will t reat this situat ion as an error since it

 33

will think you are t ry ing to include a component in more than one
applicat ion.
The bot tom line is that you should put all components that
cooperate closely or perform related funct ionality into a single
applicat ion. Those components can be writ ten by mult iple
developers and be contained in m ult iple DLLs, but they will
ult imately share the same applicat ion configurat ion and be deployed
together.

1 .6 Configuring COM+ Applicat ions

The prim ary benefit of using COM+ is that you can configure a
component or the applicat ion containing it without changing any
code on the object or the client side. This advantage enables you to
focus your object code on its intended purpose, relying on the
var ious serv ices COM+ provides instead of having to develop them
yourself. This sect ion shows you how to configure some of the
applicat ion- level opt ions for the Hello COM+ program you created.

1 .6 .1 COM+ Applicat ion Types

As ment ioned previously, the applicat ion act ivat ion type (a server or
a library applicat ion) is a configurable applicat ion- level at t r ibute
called act ivat ion. You can configure the applicat ion’s act ivat ion type
in the applicat ion’s propert ies page, under the Act ivat ion tab (see
Figure 1-9) .

Figure 1 - 9 . Applicat ion Activat ion tab

Changing the applicat ion type has signif icant im plicat ions for most
COM+ serv ices. The applicat ion type is a design- t ime decision that
should consider the security needs of your com ponents, the calling
pat terns of your clients, fault isolat ion (a server applicat ion gets its

 34

own process) , and specific COM+ serv ices requirements.
Throughout the book, a part icular serv ice configurat ion that is
related to the act ivat ion type is pointed out explicit ly . However,
even without knowing much about COM+ , you can use the following
rule to decide on your act ivat ion type: prefer server type
applicat ions, unless you absolutely need to run in the client process
for performance reasons. Library applicat ions have some lim itat ions
in using COM+ serv ices (such as secur it y and queued component
support) , and they cannot be accessed from another machine.

1 .6 .2 COM+ Surrogate Processes

I f the or iginal COM components resided in a DLL, how does COM+
achieve different act ivat ion modes for the configured components?
When the applicat ion is configured as a library, the client loads the
DLL direct ly into its process. When the applicat ion is configured as a
server applicat ion, COM+ creates a surrogate process for it , called
dllhost .exe, that loads the DLL. COM+ then places a proxy in the
client process and a stub in the surrogate process to connect the
client to the object . You can have mult iple instances of the dllhost
process running on your machine simultaneously; if clients have
created objects from different server applicat ions, each server
applicat ion gets its own instance of dllhost .
To verify these points yourself, configure the Hello COM+ example
to run as a server applicat ion. Run the test client again, create the
object , and call t he ShowMessage() m ethod, but do not press the
OK but ton. The Component Serv ices Explorer gives you v isual
feedback when a server applicat ion is running: the applicat ion icon
and the act ive components will be spinning. Library applicat ions will
have no v isual feedback when they are running in a client process,
even if that process is another COM+ server applicat ion. Expand the
COM+ Applicat ions folder and select the Status View on the
Component Services Explorer toolbar (the but ton at the far r ight
end of the toolbar; see Figure 1-10) . The Component Services
Explorer will display the process ID of the running server
applicat ions. Record the process ID for the Hello COM+ applicat ion.
Next , br ing up Windows Task Manager and locate the process with a
matching ID. I ts im age name will be dllhost .exe.

Figure 1 - 1 0 . Exam ining a running server applicat ion

 35

The first CoCreateInstance() request for a component in a server
applicat ion creates a new dllhost process, to host components from
that applicat ion only. Subsequent CoCreateInstance() calls to
objects from the same applicat ion create new objects in the exist ing
dllhost instance. Unlike classic COM, there is no way to create each
object in its own process. No COM+ equivalent to the COM call you
make to CoRegisterClassObject(...REGCLS_SINGLEUSE...)
exists.
The Com ponent Serv ices Explorer also lets you manage server
applicat ion act ivat ion adm inist rat ively. You can shut down a running
applicat ion by r ight-click ing on it s icon in the Component Services
Explorer and select ing Shutdown from the pop-up context menu.
You can shut it down even when clients are holding act ive
references to objects in the applicat ion. (You shut down applicat ions
this way frequent ly during debugging sessions.) The Component
Serv ices Explorer does not provide a way to shut down library
applicat ions, since COM+ may not even manage their client process.
You can also select Start from the server applicat ion pop-up context
menu to launch a new dllhost process associated with that
applicat ion. However, no objects will be created unless you use
object pooling, which is discussed in Chapter 3.

1 .6 .3 I dle Tim e Managem ent

Another dist inct ion between a classic COM local server and a COM+
server applicat ion is process shutdown. I n classic COM, when the
last client has released its last reference on an object in the
process, COM would shut down that process. COM+ provides idle
t ime management for COM+ server applicat ions. COM+ server
applicat ions can be left running indefinitely even when idle (when
there are no external clients) , or you can have COM+ shut them
down after a predeterm ined t imeout . This shutdown is done for the
sake of perform ance. Im agine a situat ion in which a client creates
an object from a server applicat ion every 2 m inutes on average,
uses it for 1 m inute and 55 seconds, and then releases it . Under
classic COM, you would pay an unnecessary perform ance penalty

 36

for creat ing and dest roy ing the server process. Under COM+ , you
can configure the server applicat ion to be left running when idle for
a specific t ime. I f during that t im e no client request for creat ing a
new object has come through, COM+ is allowed to shut down the
process to release its resources. I n this example, you would
perhaps configure the server applicat ion to be left running when idle
for 3 m inutes, as you would want to compensate for variances in
the client calling pat tern. I f a new call comes in within those 3
m inutes, COM+ zeros the idle t im e counter and starts it up when
the applicat ion is idle again. You can configure server applicat ion
idle t ime managem ent under the Advanced tab on the server’s
propert ies page (see Figure 1-11) . Library applicat ions do not have
an idle t ime management opt ion and will be unloaded from their
client process once the last object has been released.

Figure 1 -1 1 . Configuring server applicat ion idle t im e m anagem ent

1 .7 Debugging COM+ Applicat ions

Debugging a COM+ applicat ion, be it a library or a server
applicat ion, is not much different from debugging an in-proc COM
object or a local server. A library applicat ion has the clear
advantage of allowing you to step through your code direct ly from
the test client , since a library and a server applicat ion share the
same process. A server applicat ion always runs in a different
process than your test client and, therefore, in a different debug

 37

session (a different instance of Visual Studio is at tached to that
process) . When debugging the business logic part of your
applicat ion, you may find it useful to debug it as a library
applicat ion, even if the design calls for a server applicat ion. When
debugging a library applicat ion, you may also need to point Visual
Studio to the exact locat ion of the component ’s DLLs. This step is
required so you can set breakpoints in the component ’s code.
When debugging a component in a server applicat ion, you can step
into the com ponent ’s code from the test client side in two ways.
First , you can star t the client project in the debugger, break at a
line where you call a method on a component in the server
applicat ion, and sim ply step into it (F11 in Visual C+ + or F8 in
Visual Basic) . This process launches a new instance of the debugger
and at taches it to the running dllhost containing your com ponent .
You can then step through your component ’s code. Second, you can
at tach a debugger to a server applicat ion by configur ing it t o launch
in a debugger. On the server applicat ion propert ies page, under the
Advanced tab, there is the Debugging propert ies group. I f you
check the Launch in debugger checkbox (see Figure 1-12) , when
the first request for creat ing an object from that applicat ion comes
in, COM+ launches the applicat ion in a Visual C+ + debugger
session. You may use this opt ion often to t rack bugs in the
const ructors of com ponents or bugs that do not happen in the scope
of a client call. COM+ is able to at tach the debugger to the
applicat ion using a command- line opt ion for Visual Studio. When
you launch the debugger with an executable filename as a
parameter, the debugger star ts a debug session and creates the
specified process (in COM+ ’s case, always dllhost) . COM+ also
specifies the server applicat ion ID as a command line param eter for
dllhost :
msdev.exe dllhost.exe /ProcessID:{CCF0F9D9-4500-4124-
8DAF-B7CF8CBC94AC}
This code informs dllhost that it is now associated with the specified
server applicat ion.

Figure 1 -1 2 . Launching COM+ server applicat ion in a debugger

 38

1 .8 Deploying COM+ Applicat ions

Once you have tested your COM+ applicat ion and configured all the
COM+ serv ices to your lik ing, you need to install your applicat ion on
a customer/ client m achine. The Component Services Explorer can
generate a special file that captures all your applicat ion components
and set t ings. This file is a Windows I nstaller (MSI) file, ident ified by
the .msi file extension. Clicking on an MSI file launches the
Windows Installer and installs the applicat ion with all it s COM+
configurat ion param eters. There is a one- to-one relat ionship
between an applicat ion and an MSI file. Thus, if you have mult iple
applicat ions in your product , you must generate one MSI f ile for
each applicat ion.
To generate the MSI file, r ight-click on your applicat ion icon in the
Component Services Explorer and select Export from the pop-up
context menu. This act ion should br ing up the Applicat ion Export
Wizard. Click Next to go to the second wizard screen, where you are
requested to enter the name and locat ion for the applicat ion export
file to be created (see Figure 1-13) . Next , you should decide how to
export the applicat ion: as a Server applicat ion or as an Applicat ion
proxy (see Figure 1-13) . Click Next and then click Finish on the next
Wizard screen.

Figure 1 - 1 3 . Export ing a COM+ applicat ion

 39

1 .8 .1 Proxy COM+ Applicat ions

The names Server applicat ion and Applicat ion proxy are confusing.
A "Server applicat ion" export is relevant for both library and server
applicat ions. I t means that the applicat ion will include in the MSI file
the COM objects themselves, their set t ings, and their proxy/ stub
DLLs (if required) , and will install all on the server machine.
An "Applicat ion proxy" export installs on the client m achine only the
type inform at ion in the MSI it creates (as well as the proxy/ stub
DLLs, if required) . The generated file does not have to include the
components themselves (unless the type informat ion is em bedded
in the com ponents, in which case the components are only used as
containers and are not registered) . You can use a proxy installat ion
when you want to enable remote access from a client machine to
the machine where the applicat ion actually resides. A proxy export
is available only for a COM+ server applicat ion, not for a library
applicat ion.
When you install a server export on another machine, it will install
the components for local act ivat ion. CoCreateInstance() requests
create the objects locally— in the client process, if it is a library
applicat ion, or in a dllhost process, if it is a server applicat ion.
When you install a proxy export , act ivat ion requests on that
machine will be redirected to another rem ote machine. I n a way, a
proxy export installed on a client machine is a third kind of COM+
applicat ion. This k ind is usually called a proxy applicat ion. You can
configure the proxy applicat ion to access any remote machine on
the network where the server applicat ion is installed, not just the
machine that generated the proxy export . You specify the " real"
applicat ion locat ion on the proxy applicat ion propert ies page under
the Act ivat ion tab.

 40

A proxy applicat ion can even be installed on machines running
Windows NT or Windows 9x with DCOM, provided those machines
have Windows Installer installed on them . Because the Windows
Installer cannot use the COM+ catalog to store the proxy
applicat ion informat ion on a non-Windows 2000 machine, it will use
the regist ry and will store only the subset of informat ion required
for DCOM there. Windows I nstaller is not commonly found on non-
Windows 2000 machines. To make sure clients on those m achines
are able to access your COM+ applicat ions, you should incorporate
the Windows I nstaller installat ion in your product installat ion. The
Windows Installer installat ion file is called instmsi.exe and is
available as part of the Developers Plat form SDK.
A proxy applicat ion cannot export another MSI f ile. I n fact , all the
applicat ion-com ponent , interface, and method- level set t ings on a
proxy applicat ion are disabled, except the Remote server name
under the Act ivat ion tab. The Remote server name edit box is
disabled in library and server applicat ions.

1 .8 .2 I nstalling and Uninstalling an Exported Applicat ion

The m ost common way to install an MSI f ile on another machine is
simply to click on it , which will launch the Windows Installer . The
applicat ion files (DLLs and proxy/ stubs) will be placed in a default
locat ion:
\Program Files\COMPlus Applications\{<the application’s
guid>}
I f you wish to have the applicat ion installed in a different locat ion,
you m ust use the Component Services Explorer Applicat ion I nstall
Wizard. Bring up the wizard and select Install pre-built
applicat ion(s) . Browse to where the MSI file is stored, and select it .
The wizard will let you choose whether you want to use the default
locat ion for installat ion or specify a different one.
I f you want to autom ate uninstalling COM+ applicat ions, you can
use a com mand line inst ruct ion to invoke the Windows I nstaller to
uninstall a COM+ applicat ion:
msiexec -x <application name>.msi
You can also use the Windows Cont rol Panel’s Add/ Remove
Programs applet to add or remove COM+ applicat ions.

1 .9 Sum m ary

I n this chapter, you created a t r iv ial example COM component and
implemented it in a DLL. You used it as an in-proc server or as a
local server and even cont rolled its life cycle and idle t ime
managem ent by configur ing the component (actually its containing
applicat ion) different ly. All this was achieved without changing a

 41

single line of code on the object or the client side. This achievement
reflects the power of COM+ : it enables you to focus on your product
and domain problems at hand, while declarat ively taking advantage
of available services. The rest of this book discusses these serv ices
thoroughly, including their interact ions and pit falls, and provides
t ips and t r icks for how to apply them product ively .

 42

Chapter 2 . COM+ Context

COM+ provides services to components by intercept ing the calls the
client makes to component inter faces. The idea of prov iding
serv ices through an intercept ion mechanism is not a COM+
innovat ion. As you will see, classic COM also provides component
serv ices v ia intercept ion. What is new is the length to which COM+
takes the idea. This chapter star ts by describing the way classic
COM uses marshaling to provide its services and to encapsulate the
runt im e requirem ents of its objects. Next , the chapter int roduces
you to the COM+ context— the innermost execut ion scope of an
object . COM+ call intercept ion occurs at context boundar ies.
Generally , you need not be concerned with contexts at all. They are
t ransparent to you, whether you develop a client or a component .
However, the COM+ context is a good model for explaining the way
COM+ serv ices are implemented. This book clearly out lines the few
cases when you should interact with the contexts direct ly.
Interact ion with the contexts occurs most ly when dealing with
COM+ instance m anagement and t ransact ions, but also when
dealing with some security issues.

2 .1 Encapsulat ion via Marshaling in COM

One of the core principles of classic COM is locat ion t ransparency.
Locat ion t ransparency allows the client code to be independent of
the actual object's locat ion. Nothing in the client's code pertains to
where the object executes, although the client can insist on a
specific locat ion as well. A client CoCreates its objects and COM
instant iates them in the client's process, in another process on the
client's machine, or on another machine altogether. COM decides
where the objects will execute based on a few Regist ry values.
Those values are maintained outside the object code. A change in
those values can cause the same object to be act ivated in a
different locat ion. The same client code handles all cases of object
locat ion. You can say that COM com pletely encapsulates the object
locat ion. A key idea in object -or iented and component-or iented
programming is encapsulat ion, or informat ion hiding. Encapsulat ion
promotes the design of more maintainable and extensible systems.
By ignoring the object locat ion, the client code is decoupled further
from the object . The client code does not need to be modified if the
object locat ion changes. COM encapsulates the object locat ion by
int roducing a proxy and stub between the object and its client . The
client then interacts with the object direct ly or through a proxy, and
COM m arshals the call from the client to the object's t rue locat ion, if

 43

it needs to (all three cases are shown in Figure 2-1) . The important
observat ion here is that the client code is not required to make
assumpt ions about the locat ion of its called objects or to make
explicit calls across processes (using named pipes, for instance) or
across machines (using sockets) .

Figure 2 -1 . Classic COM com pletely encapsulates the object locat ion from
the client by int roducing a proxy/ stub betw een them

To provide locat ion t ransparency, COM proxies are polymorphic with
the object ; they support exact ly the same set of interfaces as the
real object , so the client cannot tell the difference between the
proxy and the real object .
Another t ime when classic COM encapsulates an object property
using m arshaling is in its handling of the object ’s synchronizat ion
needs. The object ’s developer declares in the Regist ry what
threading model the object uses. I f an incompat ibilit y exists
between the creat ing client- threading model and the object ’s
threading model, COM puts a proxy and stub between them and
marshals calls from the client thread to the object thread. Since
many threads can exist in a given process, COM div ides a process
into apartments, and any call crossing an apartm ent boundary is
marshaled (see Figure 2-2) . Again, the proxy and stub completely
encapsulate the object ’s execut ion thread. The same client code can
handle calling methods on objects on the sam e thread (in the same
apartment) , on a different thread (in a different apartment) in the
same process, or on another thread in a different process. The
proxy and stub are responsible for perform ing a thread context
switch when marshaling the call from the client thread to the object
thread. Because the object needs to appear to the client as though
it is execut ing on the same thread as the client , the proxy and stub
will also handle the required synchronizat ion; the proxy has to block
the client thread and wait for the stub to return from the call on the
object thread. COM concurrency management makes it possible for

 44

the client to ignore the exact synchronizat ion requirement of the
object . A dedicated synchronizat ion protocol, such as post ing
messages between the client and the object , or signaling and
wait ing on events or nam ed events is not necessary. Because
nothing in the client ’s code considers the object ’s threading need,
when the object ’s threading model changes (when a new version of
the object with a new threading model is deployed) , the client code
rem ains unchanged.

Figure 2 - 2 . Classic COM encapsulates the object execut ion thread by
insert ing a proxy and a stub betw een the client and the object

The two examples have a few things in common. The proxy
intercepts calls from the client to the object , making sure the object
gets the runt ime environm ent it requires to operate proper ly . The
proxy and stub marshal away incompat ibilit ies between the client
and the object , and they perform pre- and post -call processing,
such as thread context switching, cross-process communicat ion,
block ing the calling thread, and signaling internal events. I n both
examples, the object declares its requirements in the Regist ry,
rather than providing specific code for implement ing them.
While classic COM provides only a few serv ices by intercept ing the
client ’s calls, you can see the potent ial for implement ing addit ional
serv ices through this mechanism. Ideally, you could declare which
serv ices your component requires and then use system component
serv ices instead of implement ing them yourself. This is where
COM+ comes in.

2 .2 Encapsulat ion via I ntercept ion in COM+

COM+ provides its component services via intercept ion. You can
configure your component to take advantage of services, and COM+

 45

puts a proxy and stub between the component and its client , if t he
client and the com ponent instance are incom pat ible with any one of
the serv ices. I t also puts a proxy and stub between them if a
serv ice requires intercept ion, regardless of the way the client and
the object are configured. The exact object configurat ion is
completely encapsulated by the proxy and stub and the call
intercept ion. Nothing in the client code couples it to the object
configurat ion. This development is a m ajor step toward ult imate
encapsulat ion, in which the component contains almost nothing but
business logic and in which the way it uses component services
such as t ransact ions, secur ity, events, and act ivat ion is hidden from
the client . Sim ilar ly, the component does not care about its client
configurat ion, as the two do not need to interact with each other
about the way they use the serv ices.
Because an object can have the same threading model as its
creat ing client while differ ing in other serv ice configurat ion,
apartments can no longer be the innermost execut ion scope of an
object . Instead, COM+ subdivides apartments, so each object can
be placed in a correct runt ime environment appropr iate to its needs
and intercept all calls to the object . The subdivision of an apartm ent
into units of objects that share the sam e configurat ion is called a
context . Each apartm ent has one or more contexts, and a given
context belongs to exact ly one apartment . A context can host
mult iple objects, and each object belongs to exact ly one context .
Figure 2-3 shows an example of how processes and apartments can
be broken down into contexts under COM+ .

Figure 2 - 3 . COM+ subdivides apartm ents into contexts

Because a COM+ object must belong to exact ly one context , every
apartment has at least one context and potent ially many m ore.
There is no lim itat ion to the number of contexts an apartment can
host . All calls in and out of a context m ust be marshaled v ia a proxy
and stub so that COM+ can intercept the calls and provide
configured serv ices. This idea is sim ilar to the classic COM
requirement that all cross-apartment calls be marshaled so that

 46

COM can enforce threading model configurat ions. Objects in the
same context can have direct pointers to one another, because they
are configured to use the same set of services in a way that allows
same-context act ivat ion, and hence, direct access. Mediat ing
between objects in the same context is not necessary.

2 .2 .1 Lightw eight Proxies

When COM+ m arshals a call between two contexts in the same
apartment , it does not need to perform a thread context switch.
However, COM+ st ill puts a proxy and stub in place to intercept the
call from the client to the object and perform a service context
switch. This switch ensures that the object gets the runt im e
environment it requires. COM+ uses a new k ind of proxy for this
marshaling: a lightweight proxy . I t is called a lightweight proxy
because no expensive thread context switch is needed to marshal
calls from the client to the object . The performance hit for a serv ice
context switch is a fract ion of that incurred when perform ing a
thread context switch. A service context switch can som et imes be
as lightweight as simply checking the value of a flag, but usually it
involves some pre- and post -call processing to marshal away
differences in the runt ime environment between the client and the
object .
The lightweight proxies are not the standard proxies used for cross-
apartment / process/ machine calls. Standard proxies are either
created using the MIDL com piler or provided by the standard type
library marshaler . For a service switch, COM+ generates the
lightweight prox ies on the fly , at runt im e, based on the exact object
configurat ion. A lightweight proxy, like any other proxy, presents
the client with the exact same set of interfaces as those found on
the actual object . COM+ provides the lightweight proxy with the
r ight interface signatures based on the t ype library embedded in the
component ’s DLL.
An example for a lightweight proxy is a proxy that prov ides calls
synchronizat ion to the object . I f the object is configured to require
synchronizat ion (to prevent access by mult iple concurrent threads) ,
but its client does not require synchronizat ion, COM+ puts a
lightweight synchronizat ion proxy between the two. Another
example is secur ity. I f the object is configured to require an access
check before accessing it , ver ify ing that the caller was granted
access to the object , but its client does not care about security,
there will be a lightweight security proxy in between. This proxy
makes sure that only author ized callers are allowed access to the
object
I f the object is in a different context from that of its caller because
of incom pat ibility in just one component service (or if a service
always mandates a separate context) , there will be just one

 47

lightweight proxy between the caller and the object . Therefore,
what should COM+ do if the client and the object differ in more than
one serv ice? The exact way the lightweight proxies mechanism is
implemented is not documented or widely known. However, in this
case, COM+ probably does not generate just one lightweight proxy
to do mult iple serv ice switches, but rather puts in place as m any
lightweight prox ies as needed, one for every serv ice switch. For
example, consider an object that im plements the interface
IMyInterface and is configured to use two COM+ serv ices: Service
A and Service B. I f the client does not use Service A and Service B,
COM+ puts two lightweight proxies in place, as shown in Figure 2-4.
The lightweight proxy to Serv ice A only knows how to do a Serv ice
A switch, and the lightweight proxy to Service B only knows how to
do a Service B switch. Both serv ices support the IMyInterface
inter face, and would delegate the client call from the first proxy to
the second, to the object , and then back again. The net result is
that when the client calls into the context where the object resides,
the object gets the correct runt ime environment it requires to
operate. I f the client and the object both use Service C, no
lightweight proxy to Service C is required. (Stubs have been
rem oved from Figure 2-4 for clar ity.)

Figure 2 - 4 . Lightw eight proxies perform service sw itches

2 .2 .2 Assigning Objects to Contexts

When a client calls CoCreateInstance() (New or CreateObject(
), in Visual Basic) , asking for a new instance of a configured
component (an object) , COM+ first constructs the object and then
decides which context to place the object in. In COM+ term inology,
COM+ decides in which context to act ivate the object . COM+ bases
its decision on two factors: the component ’s configurat ion and the
configurat ion of its creat ing client . Obviously, it would be best if t he
object could share a context with the client . Doing so would
obliterate the need for COM+ to marshal calls from the client to the
object , and thus avoid having to pay even the slight performance
penalty of lightweight proxies.
COM+ examines the newly created object ’s configurat ion in the
COM+ catalog and compares it with the configurat ion (or rather, the

 48

context at t r ibutes) of the creat ing client . I f the client ’s context can
provide the object with a suff icient runt im e environment for its
configurat ion, COM+ places the object in the client ’s context .
I f, on the other hand, the client ’s context cannot prov ide the object
with its required runt ime environment, COM+ creates a new
context , places the object in it , and puts lightweight proxies
between the two contexts. Note that COM+ does not t ry to find out
if another appropr iate context for the object in that apartm ent
already exists. The algorithm is simple— the object either shares its
creator's context or gets a new context . Obviously, the precondit ion
for sam e-context act ivat ion is having a compat ible threading m odel
between the client and the object . Otherwise, the object is placed in
a different apartm ent , and hence, a different context by definit ion,
since a context belongs to exact ly one apartment .
Classic COM components (nonconfigured components) do not rely
on COM+ services to operate and do not require lightweight proxies
to m ediate between their client runt ime environment and their own.
I f a nonconfigured component can share the sam e apartment as its
creat ing client (com pat ible threading model) , it will also share its
context , and the client will get a direct pointer to it , instead of a
proxy. However, if the nonconfigured object requires a different
apartment , it is placed in a suitable apartment , in what is known as
the default context . Each apartment has one default context used
for host ing nonconfigured components. The default context is
defined most ly for COM+ internal consistency (every object must
have a context) , and no lightweight proxies are used when objects
in other contexts (in the same apartment) access it .
You can sum up the COM+ algorithm for allocat ing objects to
contexts with this rule: a configured component is usually placed in
its own context , and a nonconfigured component shares its creator's
context .

2 .3 The Context Object

COM+ represents each context by an object called the context
object . Every context has exact ly one context object . Objects can
obtain a pointer to their context object by calling
CoGetObjectContext() (see Figure 2-5) . All objects in the same
context get the same context object .
CoGetObjectContext() is defined as:

Figure 2 -5 . By calling CoGet ObjectContext () , objects can get a pointer to
their context ’s context object

 49

HRESULT CoGetObjectContext(REFIID riid, void**
ppInterface);
The context object supports a few inter faces, so the f irst parameter
of CoGetObjectContext() is always an I ID that specifies which
inter face to ret r ieve. Two of the context object ’s interfaces,
IObjectContext and IObjectContextActivity, are legacy
inter faces from MTS and are provided prim arily for backward
compat ibilit y with MTS components running under COM+ . The other
two inter faces, IContextState and IObjectContextInfo, are
specific to COM+ . Throughout this book, all chapters use these two
inter faces, rather than the legacy MTS interfaces.

Program m ing in the COM+
Environm ent

To make programmat ic calls in C+ + against COM+ -specific
inter faces, such as IObjectContextInfo, you need to install
the latest Plat form SDK and include the header file
comsvcs.h (from the SDK include directory, not the Visual
Studio 6.0 include directory) or import the DLL comsvcs.dll
from your system directory and provide the following import
direct ives:
#import "COMSVCS.DLL"
raw_interfaces_only,raw_native_types,
 no_namespace,named_guids,
 no_auto_exclude
Visual Basic 6.0 developers should import the COM+ Serv ices
Type Library to access COM+ services programmat ically .
The IContextState inter face cont rols object deact ivat ion
(discussed in Chapter 3) and t ransact ion vot ing (discussed in
Chapter 4) by manipulat ing state bits in the context object .
IObjectContextInfo gains access to various aspects of the current
t ransact ion, ret r ieves the current act iv it y ID (discussed in Chapter
5) , and ret r ieves the current context ID. The IObjectContextInfo
inter face is defined as:
interface IObjectContextInfo : IUnknown
{
 BOOL IsInTransaction();
 HRESULT GetTransaction([out]IUnknown** ppTransaction);
 HRESULT GetTransactionId([out]GUID* pTransactionId);

 50

 HRESULT GetActivityId([out]GUID* pActivityId);
 HRESULT GetContextId([out]GUID* pContextId);
};
Every COM+ context has a unique ID (a GUID) associated with it .
Retr ieving the current context ID is somet imes useful for t racing
and debugging purposes. Example 2-1 shows how to t race the
current context ID by calling CoGetObjectContext(), request ing
the IObjectContextInfo inter face, and then calling the
IObjectContextInfo::GetContextId() m ethod.

Exam ple 2 - 1 . Retr ieving the current context I D w ith
I ObjectContext I nfo::GetContext I d()

HRESULT hres = S_OK;
IObjectContextInfo* pObjectContextInfo = NULL;
GUID guidContextID = GUID_NULL;

hres
=::CoGetObjectContext(IID_IObjectContextInfo,(void**)&pOb
jectContextInfo);
ASSERT(pObjectContextInfo != NULL);//not a configured
component?

hres = pObjectContextInfo->GetContextId(&guidContextID);
pObjectContextInfo->Release();

USES_CONVERSION;
WCHAR pwsGUID[150];
::StringFromGUID2(guidContextID,pwsGUID,150);
TRACE("The object is in context with ID
%s",W2A(pwsGUID));

Note that only COM+ -configured components
should call CoGetObjectContext(). When a
nonconfigured component calls
CoGetObjectContext(), the call will fail with the
return value of E_NOINTERFACE, and the returned
interface pointer will be set to NULL. The assert ion
check in Exam ple 2-1 tests for that condit ion.

One more point regarding the context object : the context object
and its interfaces are private to the specific context they represent
and should not be shared with or passed to objects in other
contexts. Doing so may int roduce hard- to-detect bugs and

 51

nondeterm inist ic behavior of object deact ivat ion and dest ruct ion,
and it may affect t ransact ion semant ics and accuracy.

2 .4 The Call Object

I n addit ion to providing a context object to represent the context of
an object , COM+ creates a t ransient object called the call object
each t im e that object is called. The t ransient call object represents
the current call in progress. Objects can access their call object by
calling CoGetCallContext() (see Figure 2-6) . The
CoGetCallContext() signature is defined as:
HRESULT CoGetCallContext(REFIID riid, void**
ppInterface);
The call object only ex ists as long as a call from a client is in
progress, and it is dest royed by COM+ after the called method
returns. You should not cache a pointer to the call object as a
member var iable of your object because that pointer will be invalid
once the m ethod that saved it returns. Furthermore, if your object
is doing work in the background— that is, no method call from the
client is current ly in progress— it will not have access to a call
object . I f you t ry to access a call object while a call is not in
progress, CoGetCallContext() will fail and return the error code
RPC_E_CALL_COMPLETE. You can, however, st ill access the context
object , which exists as long as the context ex ists, and whose
pointer can be cached by the objects associated with it .
The call object exposes two interfaces used to obtain inform at ion
about the call security set t ings. These inter faces, discussed in
Chapter 7, are ISecurityCallContext and IServerSecurity.

Figure 2 -6 . W hen a m ethod call is in progress, a COM+ object has access
to the call object

 52

2 .5 Cross- Context Manual Marshaling

Cross-context call intercept ion via marshaling is how COM+
provides its component services to your object . A client in a
different context cannot access your object direct ly , even if it has a
direct raw pointer to it . I ntercept ing the call and perform ing the
r ight service switches requires a proxy and a stub in between.
Otherwise, the object executes in the client context , possibly in an
ill- suited runt im e environment . I f the client gets the pointer to your
object in one of the following ways:

• CoCreat ing the object
• Querying an object the client already has for addit ional

inter faces
• Receiv ing the pointer as a method parameter on a COM

inter face

Then COM+ will, under the hood, put interceptors (proxys and
stubs) in place, to make sure all calls into the object are marshaled.
I f the client does anything else to obtain the interface pointer, such
as retr ieve it from a global variable or a stat ic member var iable
shared am ong all clients, you have to marshal the pointer manually
yourself. Dealing with pooled objects is another situat ion requir ing
manual marshaling, as you will see in the next chapter .
Classic COM requires that all cross-apartment calls be m arshaled,
even when the call is in the same process, to ensure threading
model compat ibilit y. The classic COM m echanisms for m anually
marshaling interface pointers across apartment boundaries have
been made context-aware. They are what you should use to
marshal interface pointers manually across context boundar ies with
COM+ .
Generally , these mechanisms rely on the CoMarshalInterface()
and CoUnmarshalInterface() funct ions. When you need to
manually marshal an interface pointer from Context A to Context B,
you would serialize the interface pointer into a st ream in Context A
using CoMarshalInterface(), and get it out of the st ream using
CoUnmarshalInterface() in Context B. This sequence would
manually set up proxies in Context B for accessing the object . You
can also use the CoMarshalInterThreadInterfaceInStream()
and CoGetInterfaceAndReleaseStream() helper methods to
automate some of the steps required when using just
CoMarshalInterface() and CoUnmarshalInterface().

2 .5 .1 The Global I nterface Table

 53

The preferred way to manually m arshal interface pointers between
contexts is by using the global interface table (GIT) . Every process
has one globally accessible table used for manually marshaling
inter face pointers. Globally accessible means accessible from every
context and every apartment in the process. An inter face pointer is
checked into the GIT in one context . Then you get back an
ident ify ing cookie (a number) , which is context -neut ral and can be
passed freely between clients across context boundar ies, placed in
global var iable or class m embers, etc. Any client , at any context in
the process, can access the GIT and use the cookie to get a
proper ly m arshaled inter face pointer for its context . The GIT is only
useful in cross-context marshaling in the sam e process and has no
role in cross-process marshaling.
The GIT saves you the agony of programm ing direct ly against
CoMarshalInterface() or its helper funct ions, and m ore
important ly , it overcomes a ser ious lim itat ion of the
CoMarshalInterface() funct ion. Using CoMarshalInterface(),
you can unmarshal an interface pointer just once for every
CoMarshalInterface() call. Using the GIT, you can check an
inter face pointer into the GIT once and check out inter face pointers
mult iple t imes.
The GIT supports the IGlobalInterfaceTable inter face, which is
defined as:
interface IGlobalInterfaceTable : IUnknown
{
 HRESULT RegisterInterfaceInGlobal([in]IUnknown *pUnk,
 [in]REFIID riid,
 [out]DWORD
*pdwCookie);
 HRESULT RevokeInterfaceFromGlobal([in]DWORD dwCookie);
 HRESULT GetInterfaceFromGlobal([in]DWORD dwCookie,
 [in]REFIID riid,\
 [out]void**
ppInterface);
}
You can create the GIT with the class I D of
CLSID_StdGlobalInterfaceTable.
RegisterInterfaceInGlobal() is used to check an inter face
pointer into the GIT from within one context and to get back the
ident ify ing cookie. GetInterfaceFromGlobal() is used to get a
proper ly m arshaled inter face pointer at any other context using the
cookie. RevokeInterfaceFromGlobal() is used to remove the
inter face pointer from the GIT. Exam ple 2-2 shows how to use the
IGlobalInterfaceTable inter face to m anually marshal a pointer of
type IMyInterface from Context A to Context B, or any other
context in the process, using the GIT and a global variable.

Exam ple 2 - 2 . Manually m arshaling a pointer using the GI T

 54

//In context A:
HRESULT hres = S_OK;
extern DWORD dwCookie;//A global variable accessible in
any context
IMyInterface* pMyInterface = NULL;

/* Some code to initialize pMyInterface, by creating an
object that supports it*/

//Now, you want to make this object accessible from other
contexts.
dwCookie = 0;

//Create the GIT
IGlobalInterfaceTable* pGlobalInterfaceTable = NULL;
hres =
::CoCreateInstance(CLSID_StdGlobalInterfaceTable,NULL,

CLSCTX_INPROC_SERVER,IID_IGlobalInterfaceTable,

(void**)&pGlobalInterfaceTable);

//Register the interface in the GIT
hres = pGlobalInterfaceTable -
>RegisterInterfaceInGlobal(pMyInterface,

IID_IMyInterface,

&dwCookie);

pGlobalInterfaceTable->Release();//Don’t need the GIT
///
////////////////////////
//In context B:
IMyInterface* pMyInterface = NULL;
IGlobalInterfaceTable* pGlobalInterfaceTable = NULL;

hres =
::CoCreateInstance(CLSID_StdGlobalInterfaceTable,NULL,

CLSCTX_INPROC_SERVER,IID_IGlobalInterfaceTable,

(void**)&pGlobalInterfaceTable);

//Get the interface from the GIT
hres = pGlobalInterfaceTable-
>GetInterfaceFromGlobal(dwCookie,

IID_IGlobalInterfaceTable,

(void**)&pMyInterface);

 55

pGlobalInterfaceTable->Release();

/* code that uses pMyInterface */

pMyInterface->Release();

///
/////////////////////////
//Don’t forget to revoke from the GIT when you are done
or before shutting down

IGlobalInterfaceTable* pGlobalInterfaceTable = NULL;

//You can use a cached pointer to the GIT or re-create
it:
hres =
::CoCreateInstance(CLSID_StdGlobalInterfaceTable,NULL,

CLSCTX_INPROC_SERVER,IID_IGlobalInterfaceTable,

(void**)&pGlobalInterfaceTable);

hres = pGlobalInterfaceTable-
>RevokeInterfaceFromGlobal(dwCookie);
pGlobalInterfaceTable->Release();
The GIT increments the reference count of the interface pointer
when it is registered. As a result , the client that registered the
inter face pointer can actually let go of its own copy of the interface
pointer, and the object would not be destroyed. When you revoke
the object from the GIT, the GIT releases its copy. When the
process shuts down gracefully , if you forget to revoke your
inter faces, the GIT revokes all the objects it st ill has, allowing them
to be released. The GIT will AddRef() an interface pointer that is
returned from a call to GetInterfaceFromGlobal(). A client
should call a matching Release() for every
GetInterfaceFromGlobal() called. Any client in the process can
revoke a registered inter face pointer . However, I recom mend as a
convent ion that the client who registered the object should be the
one revoking it .

2 .5 .2 The GI T W rapper Class

Using the raw global inter face table has a few drawbacks. The
result ing code is som ewhat cumbersome and the
IGlobalInterfaceTable method nam es are too long. I n addit ion,
the methods are not type safe because they require you to cast to
and from a void* pointer . Previously, I saw a need for wr it ing a
simple C+ + wrapper class that compensates for the raw usage
drawbacks. The wrapper class provides bet ter method names and

 56

type safety, and because the class ID for the GIT is standard, its
const ructor creates the global interface table and its dest ructor
releases it .
The wrapper class is called CGlobalInterfaceTable and is defined
as:
template <class Itf,const IID* piid>
class CGlobalInterfaceTable
{
public:
 CGlobalInterfaceTable();
 ~CGlobalInterfaceTable();
 HRESULT Register(Itf* pInterface,DWORD *pdwCookie);
 HRESULT Revoke(DWORD dwCookie);
 HRESULT GetInterface(DWORD dwCookie,Itf**
ppInterface);

protected:
 IGlobalInterfaceTable* m_pGlobalInterfaceTable;

private://prevent misuse
 CGlobalInterfaceTable(const CGlobalInterfaceTable&);
 void operator =(const CGlobalInterfaceTable&);
};
By defining the GIT helper macro:
#define GIT(Itf) CGlobalInterfaceTable<Itf,&IID_##Itf>
You get automat ic t ype safety because the com piler enforces the
match between the interface ID and the interface pointer used.
Using the wrapper class is t r iv ial. Here is the code required to
ret r ieve an inter face pointer from the table, for example:
IMyInterface* pMyInterface = NULL;
GIT(IMyInterface) git;
git.GetInterface(dwCookie,&pMyInterface);
Compare this code to Example 2-2. Using the wrapper class results
in concise, elegant , and type-safe code. The GIT wrapper class is
included as part of the source code available with this book.

2 .6 Sum m ary

This chapter int roduced the COM+ context concept : a mechanism
for prov iding component services. By intercept ing client calls and
perform ing addit ional processing, COM+ can ensure that the object
has just the runt im e environment it requires.
As stated at the beginning of this chapter, you usually do not need
to interact with COM context or be aware that they exist . But
understanding this abstract concept helps demyst ify the way COM+
serv ices operate. Context and call intercept ion is an extensible
mechanism . As t ime goes by, new services can be added this way

 57

without affect ing exist ing applicat ions. When a client creates
instances of your old component in the new environment , COM+
silent ly does its context compat ibility in the background, and your
exist ing component never knows that new serv ices are available.

 58

Chapter 3 . COM+ I nstance Managem ent

A few years ago, the dom inant programming model and design
pat tern was the client / server model. COM and DCOM were
predominant com ponent technologies, and all was well. Then came
the Internet revolut ion. Almost overnight , a new paradigm
emerged— the mult it ier architecture . Scalabilit y is perhaps the
single most important dr iv ing force behind the move from classic
two- t ier client / server to mult it ier applicat ions. Today, being able to
handle a very large num ber of clients is necessary for surv ival. The
classic two- t ier model simply does not scale well from a few dozen
clients to tens of thousands of clients ham mering on your system at
peak load. The two- t ier model of dedicat ing one server object per
client quickly causes cr it ical resources to dwindle under such loads.
Allocat ing resources such as a database connect ion, a system
handle, or a worker thread to each client is unrealist ic. The m iddle
t ier was int roduced precisely because you could no longer m ap
client objects direct ly to your data processing objects. The m iddle
t ier allows pooling of resources, such as database connect ions,
hardware objects, or communicat ion ports. The m iddle t ier also
allows you to act ivate your objects just when they are required and
release them as soon as possible.
COM+ provides you with two elegant and user- fr iendly instance
managem ent serv ices that you can use to build scalabilit y into your
system design from day one: object pooling and Just - in-Time
Act ivat ion (JITA) .
This chapter first defines the problems you face when designing a
modern dist r ibuted system; it then explains COM+ st rategies for
managing objects that compose it .

3 .1 Client Types

A dist r ibuted system, by its very nature, im plies that its clients are
not on the same machine as the objects providing the services. I n
every dist r ibuted system , there are typically two kinds of clients:
r ich clients and I nternet clients. The r ich client typically shares the
same local area network, called the I nt ranet . (A r ich client can also
be called an int ranet client .) I n most cases, no firewalls between the
r ich client and the applicat ion exist , so the r ich client can invoke
binary calls on com ponents in the applicat ion. The I nternet client
connects to your applicat ion typically by using a web browser, but
more of the other opt ions, such as hand-held PDAs and cellular
phones, are possible as well. The I nternet client is located outside of
your local area network and can reside anywhere on the I nternet . I n

 59

most cases, a firewall exists between the I nternet client and your
applicat ion.
Most applicat ions have a m ixture of r ich and I nternet clients. Som e
systems had only r ich clients unt il they were opened to the
Internet . Other systems were designed pr imarily for the Internet ,
but had to support r ich clients— perhaps for applicat ion
managem ent , back-office operat ions, or other specific needs. In any
case, when you design an applicat ion, you should plan to support
both kinds of clients. The two k inds differ not only in the way they
connect to your applicat ion, but also in their pat tern of interact ion
with it . Your design should be able to scale up to both k inds of
clients and compensate for their differences. COM+ instance
managem ent serv ices were developed to answer precisely that
challenge.

3 .1 .1 Scaling Up w ith Rich Clients

A r ich client's interact ion with the server objects of a dist r ibuted
applicat ion resembles that of the classic client / server applicat ion.
The client connects to the server m achine using a network protocol
such as TCP/ IP. Because the I nt ranet is considered a secure
environment, it usually contains no firewalls and the client can
connect direct ly to your server objects in the m iddle t ier using
DCOM (see Figure 3-1) . The calling pat tern to your applicat ion is as
follows: create an object , use it , and eventually release it . The r ich
client usually presents to the user a r ich user inter face. The word
"r ich" in this context means that the user interface contains and
executes binary code, processing inform at ion and rendering it to the
user. The user inter face is typically built with tools such as Visual
Basic or Visual C+ + with MFC. The new .NET Framework provides a
new library of Windows Forms classes for building r ich clients. (See
Chapter 10) . Even if the user accesses your applicat ion with a web
browser, that browser may contain binary Act iveX cont rols. Int ranet
clients use r ich user interfaces because they m ust usually provide a
r ich user experience. This exper ience supports more pr iv ileges and
features for employees than are available to customers connect ing
to the same system via an I nternet browser.

Figure 3 - 1 . Rich client connect ing to a m ult it ier system

 60

Consider your bank, for example. Most banks today provide easy
access over the I nternet for their customers, allowing sim ple
operat ions such as viewing account balances and t ransferr ing funds
between accounts. However, only bank tellers can perform
operat ions such as opening or closing accounts and select ing
var ious saving and investment plans. The next t ime you are in your
bank, peek over the teller ’s screen. The teller probably uses a r ich
client user interface that does not look like the one you use when
you log on to the Internet banking applicat ion offered by the bank.
In a typical system, there are significant ly fewer r ich clients than
Internet clients (as there are fewer bank tellers than bank
customers) . The overhead of creat ing a few server-side objects,
allocat ing resources, and doing the cleanup for each client is not a
scalability lim itat ion. What really impedes scalability is the potent ial
that r ich client applicat ions have for holding onto objects for long
per iods of t ime, while actually using the object in only a fract ion of
that t im e.
I t is possible that when an I nt ranet applicat ion is star ted, it
instant iates all t he objects it needs and releases them only at
shutdown, in an at tempt to achieve bet ter perform ance and
responsiveness to the user. I f your design calls for allocat ing an
object for each client , you will t ie up crucial lim ited resources for
long per iods and eventually run out of resources.

3 .1 .2 Scaling Up w ith I nternet Clients

When users access your system over the Internet , they actually use
a web browser to connect to an I nternet web server (such as the
Microsoft I nternet I nformat ion Server, I I S) . The browser generates
a service request as part of the HTTP st ream. The web server
creates objects required for handling the client request , and when it
finishes processing the request , it releases the objects (see Figure
3-2) . I t is important to emphasize that the I nternet client
connect ion is stateless; no object references are maintained outside
the scope of individual requests. The client is usually a thin user
inter face, another name for an inter face that consists of simple
HTML rendered by a web browser. The browser’s main job is to
send the user’s requests to the server and display the web server ’s

 61

reply. Although som e scripts sent by the web server, such as
Dynamic HTML (DHTML) , may execute on the client side, such
client- side logic is used prim arily to format the inform at ion on the
user’s screen and has nothing to do with server-side objects.

Figure 3 -2 . I n ternet client connect ing to a m ult it ier system

Depending on how widely your system is used, you could have a
huge number of clients asking for service at any given moment . The
length of t ime the web server holds the objects for an indiv idual
client request is usually not a scalabilit y lim itat ion. However,
because there are so many I nternet clients, scalabilit y is lim ited by
the overhead for each client request : creat ing objects, init ializing
them, allocat ing expensive resources such as database connect ions,
set t ing up proxies, doing cross-machine or process calls, and doing
cleanup. This problem is the opposite of the scalabilit y problem for
r ich clients. Systems that use an ineffect ive approach of allocat ing
objects per client request simply cannot handle a large num ber of
clients. At periods of peak dem and, the serv ice appears to be
unavailable or has irr itat ingly slow response t im e.

3 .2 I nstance Managem ent and Scaling

Being sm art about the way you allocate your objects to clients is
the key to scalabilit y in a modern dist r ibuted system. Sim ple
algorithms can be used to govern when and how expensive objects
that have access to scarce resources will actually service a client
request . I n dist r ibuted-systems term inology, these algorithm s and
heur ist ics are called instance managem ent . COM+ refers to instance
managem ent as act ivat ion.
COM+ provides every configured component with access to ready-
made instance managem ent serv ices. Every COM+ component has
on its propert ies page an Act ivat ion tab that lets you cont rol the
way objects are created and accessed (see Figure 3-3) . You can use
COM+ ’s two instance managem ent services, object pooling and
JITA, indiv idually, or combine them in a very powerful way. Neither
technique is a COM+ innovat ion. What is new about COM+ is the
ease with which you can take advantage of the service. That ease

 62

allows you to focus your development effor ts on the domain
problem at hand, not on the wr it ing of instance management
plum bing.

Figure 3 -3 . The COM + com ponent ’s Act ivat ion tab

3 .3 Object Pooling

The idea behind object pooling is just as the name implies: COM+
can maintain a pool of objects that are already created and ready to
serve clients. The pool is created per object type; different objects
types have separate pools. You can configure each component type
pool by set t ing the pool param eters on the component ’s propert ies
Act ivat ion tab (as shown in Figure 3-3) . With object pooling, for
each object in the pool, you pay the cost of creat ing the object only
once and reuse it with m any clients. The same object instance is
recycled repeatedly for as long as the containing applicat ion runs.
The object ’s const ructor and dest ructor are each called only once.
Object pooling is an instance m anagement technique designed to
deal with the interact ion pat tern of Internet clients— num erous
clients creat ing objects for every request , not holding references on
the objects, but releasing their object references as soon as the
request processing is done. Object pooling is useful when
instant iat ing the object is cost ly or when you need to pool access to
scant resources. Object pooling is most appropr iate when the object
init ializat ion is generic enough to not require client -specific

 63

parameters. When using object pooling, you should always st r ive to
perform in the object ’s const ructor as much as possible of the t ime-
consuming work that is the same for all clients, such as acquir ing
connect ions (OLEDB, ADO, ODBC) , running init ializat ion scripts,
init ializing external devices, creat ing file handles, and fetching
init ializat ion data from files or across a network. Avoid using object
pooling if const ruct ing a new object is not a t ime-consuming
operat ion because the use of a pool requires a fixed overhead for
pool management every t ime the client creates or releases an
object .
Any COM+ applicat ion, whether a server or a library applicat ion,
can host object pools. I n the case of a server applicat ion, the scope
of the pool is the m achine. I f you install proxies to that applicat ion
on other machines, the scope of the pool can be the local network.
In contrast , if the applicat ion is a library applicat ion, then a pool of
objects is created for each client process that loads the library
applicat ion. As a result , two clients in different processes will end up
using two dist inct pools. I f you would like to have just one pool of
objects, configure your applicat ion to be a server applicat ion.

3 .3 .1 Pooled Object Life Cycle

When a client issues a request to create a component instance and
that component is configured to use object pooling, instead of
creat ing the object , COM+ first checks to see if an available object
is in the pool. I f an object is available, COM+ returns that object to
client . I f there is no available object in the pool and the pool has not
yet reached its maximum configured size, COM+ creates a new
object and hands it back to the creat ing client . I n any case, once a
client gets a reference to the object , COM+ stays out of the way. I n
every respect except one, the client ’s interact ion with the object is
the same as if it were a nonpooled object . The except ion occurs
when the client calls the final release on the object (when the
reference count goes down to zero) . Instead of releasing the object ,
COM+ returns it to the pool. Figure 3-4 describes this life cycle
graphically in a UML act iv ity diagram. [1]

[1] I f you are not fam iliar with UML act iv it ies diagram s, read UML Dist illed by Fowler and
Scott (Addison Wesley, 1997) . Chapter 9 in that book contains a detailed explanat ion and
an example.

Figure 3 - 4 . A pooled object life cycle

 64

I f the client chooses to hold onto the pooled object for a long t ime,
it is allowed to do so. Object pooling is designed to m inim ize the
cost of creat ing an object , not the cost of using it .

3 .3 .2 Configuring Pool Param eters

To use object pooling for a given component , you should first
enable it by select ing the "Enable object pooling" checkbox on
component ’s Act ivat ion tab. The checkbox allows you to enable or
disable object pooling. The two other parameters let you cont rol the
pool size and the object creat ion t imeout . The m inim um pool size
determ ines how many objects COM+ should keep in the pool, even
when no clients want an object . When an applicat ion that is
configured to contain pools of objects is first launched, COM+
creates a number of objects for each pool equal to the specified
m inimum pool size for the applicat ion. I f the m inim um pool size is
zero, COM+ doesn’t create any objects unt il t he first client request
comes in. Minimum pool size is used to m it igate sudden spikes in
demand by having a cache of ready- to-use, init ialized objects. The
m inimum pool size must be less than the maximum pool size, and
the Component Services Explorer enforces this condit ion.
The m aximum pool size configurat ion is used to cont rol the total
number of objects that can be created, not just how many objects
the pool can contain. For exam ple, suppose you configure the pool
to have a m inim um size of zero and a m axim um of four. When the
first creat ion request comes in, COM+ sim ply creates an object and
hands it over to the client . I f a second request comes in and the
first object is st ill t ied up by the first client , COM+ creates a new

 65

object and hands it over to the second client . The same is t rue for
the third and fourth clients. However, when a fif th request comes
along, four objects are already created and the pool has reached its
maximum potent ial size, even though it is empty. Once you reach
that lim it and all objects are in use, further clients requests for
objects are blocked unt il an object is returned to the pool. At that
t ime, COM+ hands it over to the wait ing client . I f, on the other
hand, the client waited for the durat ion specified in the t imeout
field, the client is unblocked and CoCreateInstance() returns the
error code CO_E_ACTIVATIONFAILED_TIMEOUT (not E_TIMEOUT, as
documented in the COM+ sect ion of the MSDN) . COM+ maintains a
queue for each pool of wait ing clients to handle the situat ion in
which more than one client is blocked while wait ing for an object to
becom e available. COM+ services the clients in the queue on a first -
come, first - served basis as objects are returned to the pool. A
creat ion t imeout of zero causes all client calls to fail, regardless of
the state of the pool and availability of objects.
I f the pool contains more objects than the configured m inimum size,
COM+ per iodically cleans the pool and dest roys the surplus objects.
There is no docum entat ion of when or how COM+ decides to do the
cleanup.
Deciding on the m inimum and m aximum pool size configurat ion
depends largely on the nature of your applicat ion and the work
performed by your objects. For example, the pool size can be
affected by:

• Expected system load highs and lows
• Perform ance profiling done on your product to opt im ize the

usage of resources
• Various param eters captured dur ing installat ion, such as user

preferences and mem ory size
• The number of licenses your customer has paid for ; you can

set the pool size to that number and have an easy- to-manage
licensing m echanism

In general, when configur ing your pool size, t ry to balance available
resources. You usually need to t rade mem ory used to maintain a
pool of a certain size and the pool management overhead in
exchange for faster client access and use of objects.

3 .3 .3 Pooled Object Design Requirem ents

When you want to pool instances of your component , you must
adhere to certain requirements and const raints. COM+ implements
object pooling by aggregat ing your object in a COM+ supplied
wrapper. The aggregat ing wrapper’s implementat ion of AddRef()
and Release() manage the reference count and return the object

 66

to the pool when the client has released its reference. Your
component must therefore support aggregat ion to be able to use
object pooling. When you import a COM component into a COM+
applicat ion, COM+ verifies that your component supports
aggregat ion. I f it does not , COM+ disables object pooling in the
Component Services Explorer. I f you implement your object using
ATL, m ake sure your code does not contain the ATL macro
DECLARE_NOT_AGGREGATABLE(), as this macro prevents your object
from being aggregated. By default , the Visual C+ + 6.0 ATL Wizard
inserts this macro into your component ’s header file when
generat ing MTS components. You must remove this macro to
enable object pooling (it is safe to do so— there are no side effects
in COM+) .
Another design point to pay at tent ion to is your pooled object's
threading model. A pooled object should have no thread affinity of
any sort— it should make no assumpt ion about the ident ity of the
thread it executes on, or use thread local storage, because the
execut ion thread can be different each t ime the object is pulled
from the pool to serve a client . The pooled object therefore cannot
use the single- threaded apartment model (STA) because STA
objects always require execut ion on the sam e thread. When you
import a component to a COM+ applicat ion, if the component's
threading model is marked as apartm ent (STA) , COM+ disables
object pooling for that component . A pooled object can only use the
free mult ithreaded apartm ent model (MTA) , the both model, or the
neut ral threaded apartment m odel (NTA, covered in Chapter 5) . I f
performance is important to you, you may want to base your pooled
component's threading model on your clients' threading model. I f
your clients are predominant ly STA-based, mark your component as
Both so that it can be loaded direct ly in the client's STA. I f your
clients are predominant ly MTA based, mark your component as
either Free or Both (the Both m odel also allows direct use by STA
clients) . I f your clients are of no part icular apartment designat ion,
mark your com ponent as Neutral. For m ost pract ical purposes, the
neut ral- threading model should be the most flex ible and
performance-oriented model. Table 3-1 summ arizes these
decisions.

7DEOH������3RROHG�REMHFW�WKUHDGLQJ�PRGHO��
&OLHQWV�WKUHDGLQJ�PRGHO� 5HFRPPHQGHG�SRROHG�REMHFW�WKUHDGLQJ�PRGHO�

No part icular m odel NTA
STA Both
MTA Both/ MTA
Both Both
NTA NTA

Deciding not to use STA has two important consequences:

 67

• Pooled objects cannot display a user interface because all user
inter faces require the STA message loop.

• You cannot develop pooled objects using Visual Basic 6.0
because all COM components developed in Version 6 are STA
based and use thread local storage. The next version of Visual
Basic, called Visual Basic.NET, allows you to develop
mult it hreaded com ponents.

3 .3 .4 Object Pooling and Context

When a pooled object is placed in the pool, it does not have any
context . I t is in stasis— frozen and wait ing for the next client
act ivat ion request . When it is brought out of the pool, COM+ uses
its usual context act ivat ion logic to decide in which context to place
the object— in its creator's context (if the two are com pat ible) or in
its own new context . From the object's perspect ive, it is always
placed in a new context ; different from the one it had the last t ime
it was act ivated. Objects often require context- specific init ializat ion,
such as retr iev ing inter face pointers or fine- tuning security. Object
pooling only saves you the cost of reconstruct ing a new object and
init ializing it to gener ic state. Each t ime an object is act ivated, you
must st ill do a context -specific init ializat ion, and you benefit from
using object pooling only if the context -specific init ializat ion t ime is
short compared to that of the object's const ructor. But when
context -specific init ializat ion is used, how does the object know it
has been placed in a new context? How does it object know when it
has been returned to the pool? I t knows by implement ing the
IObjectControl interface, defined as:
interface IObjectControl : IUnknown
{
 HRESULT Activate();
 void Deactivate();
 BOOL CanBePooled();
};
COM+ automat ically calls the IObjectControl m ethods at the
appropr iate t imes. Clients of your object don't ever need to call
these methods.
COM+ calls the Activate() method each t im e the object is pulled
from the pool to serve a client— just after it is placed in the
execut ion context , but before the actual call from the client . You
should put context-specific init ializat ion in the Activate()
method. Activate() is your pooled object's wakeup call— it tells it
when it is about to start serving a new client . When using
Activate(), you should ensure that you have no leftovers in your
object state (data members) from previous calls, or from a state
that was modified from interact ion with previous clients. Your object

 68

should be indist inguishable from a newly created object . The state
should appear as if the object ’s const ructor was just called.
COM+ calls Deactivate() after the client releases the object , but
before leaving the context . You should put any context- specific
cleanup code in Deactivate().
When object pooling is enabled, after calling the Deactivate()
method, COM+ invokes the CanBePooled() method to let your
object decide whether it wants to be recycled. This is your object ’s
opportunity to overr ide the configured object pooling set t ing at
runt im e. I f your object returns FALSE from CanBePooled(), the
object is released and not returned to the pool. Usually , you can
return FALSE when you cannot init ialize the object ’s state to that of
a brand-new object , because of an inconsistency or error , or if you
want to have runt ime fine tuning of the pool size and the number of
objects in it . I n the most cases, your im plementat ion of
CanBePooled() should be one line: return TRUE;, and you should
use the Component Serv ices Explorer to adm inister the pool.
Implement ing IObjectControl is not required for a pooled object .
I f you choose not to implement it and you enable object pooling,
your object is always returned to the pool after the client calls
Release() on it .
Figure 3-5 emphasizes the calling sequence on a pooled object that
supports IObjectControl. I t shows when COM+ calls the methods
of IObjectControl and when the object is part of a COM+ context .

Figure 3 - 5 . The life cycle of a pooled object using I ObjectControl

 69

Finally, IObjectControl has two abnorm alit ies worth m ent ioning:
first , the inter face contains two methods that do not return
HRESULT, the required returned value according to the COM
standard of any COM inter face. IObjectControl’s second
abnormality is that only COM+ can invoke its methods. The
inter face is not accessible to the object ’s clients or to the object
itself. I f a client queries for the IObjectControl interface,
QueryInterface() returns E_NOINTERFACE.

3 .4 Just - in- Tim e Act ivat ion

Object pooling is a great instance management service, but what
should you do when you deal with r ich clients who can hold onto
object references for long periods of t ime? I t is one thing if the r ich
clients make intensive use of the object , but as you saw ear lier,
they actually maintain the reference on the object to improve
performance on their side, and may actually call m ethods on the
object for only a fract ion of that t ime. From the object ’s
perspect ive, it must st ill hold onto its resources because a call m ay

 70

come through at any moment. Object pooling is of lit t le benefit ,
since it saves you the cost of creat ing the object , not the cost of
maintaining it while t ied up with a client . Clear ly, another tact ic is
required to handle greedy Int ranet clients.
COM+ provides another instance management technique called
Just - in-Time Act ivat ion (JITA) that allows you to dedicate an object
per client only while a call is in progress. JITA is most useful when
instant iat ing the object is not a cost ly operat ion compared with the
expensive or scarce resources the object holds onto. I t is especially
useful if the object holds onto them for long periods.

3 .4 .1 How JI TA W orks

JITA intercepts the call from the client to the object , act ivates the
object just when the client issues a method call, and then dest roys
the object as soon as the method returns. As a result , the client
must never have a direct reference to the object . As explained in
Chapter 2, if the client is in a different context than the object , the
client actually holds a pointer to a proxy and the proxy interacts
with a stub. The COM+ proxy and stub perform the JITA
intercept ion, and together they const itute a single logical ent ity.
Let ’s call t his ent ity the interceptor . To guarantee that there is
always an interceptor between the client and the object , component
instances configured to use JITA are always placed in their own
context , regardless of potent ial com pat ibility with their creator.
Figure 3-6 shows how this intercept ion works:

1. The interceptor calls the object ’s method on behalf of the
client .

2. When the method call returns, if the object indicates that it
can be deact ivated, the interceptor releases the object and
notes to itself that it no longer has the object . Meanwhile, the
client cont inues to hold a reference to a proxy and does not
know its object was released.

3. When the client makes another call, the interceptor notes that
it is not connected to an object .

4. The interceptor creates a new object .
5. The interceptor delegates the call to the new object .

When the client releases the object , only the interceptor needs to
be destroyed because the object was already released.

Figure 3 - 6 . The interceptor handles the m ethod calls in JI TA by creat ing
the object as it is needed and disposing of it betw een calls

 71

3 .4 .2 Benefits of Using JI TA

JITA is beneficial because you can now release the expensive
resources the object occupies long before the client releases the
object . By that sam e token, acquisit ion of the resources is
postponed unt il a client actually needs them. Remem ber that
act ivat ing and dest roying the object repeatedly on the object side,
without tear ing down the connect ion to the client (with its client
side proxy) is much cheaper than normally creat ing and releasing
the object . Another side effect of JITA is that it improves overall
reliabilit y. Imagine the case of a client that crashed or simply forgot
to release an object . When using JITA, the object and the resources
it holds are released independent ly of unreliable or undisciplined
clients.

3 .4 .3 Using JI TA

You can configure any COM+ component to use JITA. On the
Act ivat ion tab of the component ’s propert ies page (see Figure 3-3) ,
you can check the "Enable Just I n Time Act ivat ion" checkbox to
enable JITA for your com ponent . I n fact , when you use the
Component Installat ion Wizard to add a new component , it enables
JITA for the new component by default .
However, COM+ cannot arbit rar ily k ill your object just because the
method has returned. What if an object is not ready to be
deact ivated? What if it needs to perform addit ional act iv it ies to
bring itself to a consistent state, and can only then be dest royed?
An object that wants to get the most out of JITA is required to do
two things: first , it should be state-aware. Second, it should tell
COM+ when the object can be deact ivated. Mind you, a JITA object
does not need to be stateless. I n fact , if it were t ruly stateless,
there would be no need for JITA in the first place. The object has to
proact ively m anage its state, m uch like a t ransact ional object , as
discussed in the next chapter . Ideally, a JITA object should be
act ivated at the beginning of every method call and deact ivated
after the call. I f you intend to signal to COM+ to deact ivate your
object only after a part icular m ethod returns or when a special

 72

event has occurred, the client m ay hold onto the object between the
calls for long periods of t ime and significant ly hamper scalabilit y.
So, if a JITA object is to be act ivated just before every method call
and deact ivated immediately after each call, t hen it needs to do two
things: at the beginning of each call, the object should init ialize its
state from values saved in durable storage. At the end of the call, it
should return its state to the storage. Commonly used durable
storage opt ions include databases and the Windows filesystem.

Although a JITA object can store its state in
nondurable storage, namely in-memory, I
recom mend not doing so for two reasons. First , if
the JITA object part icipates in t ransact ions
(discussed in the next chapter) , the storage has to
be durable. Second, memory storage t ies the
object to a part icular machine and precludes
mult imachine load balancing.

Not all of the state of an object can be saved by value. For example,
if the state includes interface pointers to other objects, the object
should release those objects and re-create them on the next
act ivat ion. A database connect ion from a connect ions pool is
another example of a state that cannot be stored. An object should
return the connect ion to the pool before returning from a m ethod
call and grab a new connect ion from the pool upon act ivat ion.
Using JITA has one important implicat ion for interface design— every
method call m ust include a param eter to ident ify the object of which
the method is a member. The object uses that param eter to
ret r ieve its state from the durable storage, and not the state of
another instance of the same type. Exam ples for such parameters
include the account number for bank account objects and the order
number for objects represent ing store orders. Example 3-1 shows a
method on a JITA object that accepts a parameter of type PARAM (a
pseudotype invented for this example) used to ident ify the object :
STDMETHODIMP CMyClass::MyMethod(PARAM objectIdentifier)
The object then uses the ident if ier to ret r ieve its state and save the
state back at the end of the m ethod call.
JITA clear ly offers you a t radeoff between performance (the
overhead of reconstruct ing the object state on each method call)
and scalability (holding onto the state and its resources) . No
definit ive rules descr ibe when and to what extent you should t rade
performance for scalabilit y. You may need to profile your system,
and ult imately redesign som e objects to use JITA and som e not to
use JITA. Nevertheless, JITA is a powerful instance m anagement
technique available with one click of your mouse.
JITA also lets COM+ know when it is allowed to deact ivate the
object . You have already seen that each JITA object must reside in
a context separate from that of its caller. Each context has a

 73

context object associated with it , as explained in the previous
chapter . Each context object has a value in it called the done bit ,
which, as the name implies, is a one-bit Boolean flag. Whenever a
context is init ialized, and an object is placed in it , the done bit is set
to zero (FALSE) .
A JITA object lets COM+ know that it is ready to be dest royed by
set t ing the done bit on the context object to TRUE. The object
interceptor checks the done bit every t ime a m ethod returns control
to it . I f t he done bit is set to TRUE, t he interceptor releases the JITA
object . Because each COM+ context maps to a single context
object , a JITA object always resides in its own pr ivate, dedicated
context . I f more than one object were in the context , any one could
set the done bit to TRUE, and the interceptor m ight deact ivate the
wrong object .
You can set the value of the done bit either program mat ically or
adm inist rat ively. You can set the done bit program mat ically in two
ways, and both require accessing an interface exposed by the
context object . The recommended way to set the done bit for a JITA
object is to use the inter face IContextState, an interface that
Microsoft fine tuned to support JITA objects. I ts definit ion is as
follows:
enum tagTransactionVote
{
 TxCommit= 0,
 TxAbort = TxCommit + 1
}TransactionVote;

interface IContextState : IUnknown
{
 HRESULT SetDeactivateOnReturn([in] BOOL bDeactivate);
 HRESULT GetDeactivateOnReturn([out]BOOL*
pbDeactivate);
 HRESULT SetMyTransactionVote ([in]TransactionVote
txVote);
 HRESULT GetMyTransactionVote ([out]TransactionVote*
ptxVote);
}
IContextState defines methods for set t ing the done bit and
ret r iev ing its current value. IContextState is also used in
t ransact ion vot ing, discussed in the next chapter. You can obtain
IContextState by using the call CoGetObjectContext(); you can
call the IContextState method SetDeactivateOnReturn() to set
the done bit , as shown in Example 3-1.

Exam ple 3 - 1 . Using I ContextSt ate to tell COM+ to deact ivate the object

STDMETHODIMP CMyClass::MyMethod(PARAM objectIdentifier)
{

 74

 GetState(objectIdentifier);
 DoWork();
 SaveState(objectIdentifier);
 //Let COM+ deactivate the object once the method
returns
 HRESULT hres = S_OK;
 IContextState* pContextState = NULL;
 hres =
::CoGetObjectContext(IID_IContextState,(void**)&pContextS
tate);
 ASSERT(pContextState != NULL)//Will be NULL if not
imported to the COM+ Explorer

 hres = pContextState->SetDeactivateOnReturn(TRUE);
 ASSERT(hres != CONTEXT_E_NOJIT)//will return
CONTEXT_E_NOJIT if JITA was not
 //enabled for this
object
 pContextState->Release();
}
Another way of set t ing the done bit uses the IObjectContext
inter face. You can obtain this interface by using
CoGetObjectContext() and calling its SetComplete() m ethod.
However, IObjectContext is a legacy inter face from MTS, and
using it to deact ivate the object can have t ransact ion vot ing side
effects, discussed in the next chapter . A COM+ JITA object should
use IContextState.

Deact ivat ing a JI TA Object
Developed in VB 6 .0

I f you use Visual Basic 6.0 to develop your JITA object , you
must access IObjectContext first , and then query it for
IContextState to flag the object for deact ivat ion:
Dim objectContext As ObjectContext
Dim contextState As IContextState
Set objectContext = GetObjectContext

’QueryInterface for IContextState:
Set contextState = objectContext
contextState.SetDeactivateOnReturn (True)

Programmat ic control over when COM+ should deact ivate your
object gives you ult imate control over when deact ivat ion occurs.
When using JITA, however, you are more likely to want to
deact ivate your object each t ime a method returns. COM+ provides
you with an adm inist rat ive way to inst ruct it to always deact ivate
the object upon method return. When JITA is enabled for a
component , you can search in the Com ponent Services Explorer for

 75

the method level, display the method propert ies page, select the
General tab, and check "Automat ically deact ivate this object when
this method returns" (see Figure 3-7) .

Figure 3 - 7 . The m ethod’s General tab

The "Autom at ically deact ivate" set t ing is done at
the m ethod level, not the interface level. This
set t ing potent ially leaves the object with some
methods that do not deact ivate the object on
return (especially if they do not acquire expensive
resources) and some that do. However, for
consistency’s sake, you should set all interface
methods and all component interfaces in a uniform
fashion.

Even when you adm inist rat ively configure a method to deact ivate
the object when it returns, you can st ill overr ide this configurat ion
programmat ically at runt im e by calling
IContextState::SetDeactivateOnReturn(FALSE). COM+ only
uses the adm inist rat ive set t ing when you do not m ake a
programmat ic call yourself to set the context object ’s done bit .

3 .4 .4 JI TA and I ObjectCont rol

Your JITA object can choose to implem ent the IObjectControl
inter face. COM+ queries for the inter face and calls
IObjectControl::Activate() each t ime a new instance of your
component is created and placed in the COM+ context after the
object const ructor is called, but before the actual method is called.
By let t ing the object know when it enters a context , COM+ allows
the object to perform context- specific init ializat ion in Activate(),
such as passing a reference to the object to another object , caching
inter face pointers to other COM+ objects (such as IContextState) ,
or perform ing programmat ic security checks (see Chapter 7) .

 76

I f you set the done bit to TRUE, after the method has returned (but
before the object dest ructor is called) COM+ calls
IObjectControl::Deactivate(). You should put your context -
specific cleanup code, such as releasing cached interface pointers,
in Deactivate(). After calling Deactivate(), COM+ dest roys
(releases) the object .
I f the JITA object is not configured to use object pooling, then
COM+ never calls IObjectControl::CanBePooled(). However,
you st ill must implement all the methods of a COM inter face your
object support . Just return TRUE from CanBePooled(), which
makes your object support pooling (you may st ill want to configure
it to support pooling in the future) .
Figure 3-8 shows the life cycle of a JITA object that implem ents
IObjectControl. A JITA object that supports IObjectControl is
not ified by COM+ when the object is placed in a new context and
also just before the object leaves the context and is dest royed.

Figure 3 -8 . Life cycle of a JI TA object that im plem ents I ObjectControl

Here are a few more important points about JITA objects and
IObjectControl:

• I f you return anything except S_OK from
IObjectControl::Activate(), perhaps out of failure to
init ialize a context -specific state, the client gets the HRESULT
of CO_E_INITIALIZATIONFAILED as a return value from the
method it wanted to call.

 77

• Merely enabling JITA and implement ing IObjectControl will
not get your object deact ivated after every method call— you
must either configure the method adm inist rat ively or set the
done bit programmat ically. I f you do not want to use JITA,
but wish to know when you enter a context in order to do
context -specific init ializat ion, you can enable JITA support and
implement IObjectControl.

• Even though implement ing IObjectControl is opt ional, I
st rongly recommend that you implem ent it when you use JITA
because it makes managing your object's life cycle much
easier.

3 .5 Com bining JI TA w ith Object Pooling

The two instance m anagement techniques provided by COM+ are
not mutually exclusive. JITA and object pooling can be combined in
a very powerful way. Using both object pooling and JITA on the
same component is useful in situat ions when object init ializat ion is
both gener ic (not client specific) and expensive. Thus, using just
JITA would not make sense; when you have no control over the
length of t ime, the object's client keeps its reference to the object ,
so you would realize marginal gain from object pooling. When you
configure your object to use both, instead of creat ing and releasing
the object on each m ethod call, COM+ grabs an object from the
pool and returns the object to the pool after the method com pletes
its execut ion. The JI TA aspects are st ill m aintained because the
object instance will be torn away from its client . The pool will also
be used on every method call, not just on CoCreate and Release
calls from the client . Implem ent ing IObjectControl is opt ional, but
I st rongly recom mend it . As always, a call to
IObjectControl::Activate() marks ent ry to a context , and a call
to IObjectControl::Deactivate() marks an exit . COM+ calls
IObjectControl::CanBePooled() after every Deactivate(),
let t ing the object decide whether it wants to be recycled or
dest royed. This life cycle is shown in Figure 3-9. When you
configure your component to support both JITA and object pooling,
COM+ deact ivates the object every t ime the done bit is set and
returns it to the pool instead of releasing it . New method calls are
served by recycled objects from the pool, not with new instances.

Figure 3 -9 . The life cycle of a com ponent using JI TA and object pooling

 78

Objects now can maintain state between calls because they are not
dest royed, but rather returned to the pool. The t ruth is, when you
use JITA and object pooling together, your object st ill cannot
maintain a client- specific state between invocat ions; Once the
object is back in the pool, it could very well be ret r ieved to serve a
different client than the previous one. A JITA object can maintain
just the generic part of the state and benefit from going through
that init ializat ion only once.
When a pooled object is configured to use JITA, the semant ics of
the maximum pool size value actually sets the total number of
objects that COM+ is forced to create to serve act ive client calls,
not the total num ber of connect ions to clients. The number of
connect ions (the number of clients holding references to proxies)
may be a much larger number because many clients m ay not be
engaged in calling a method on objects.
Configuring a COM+ component to be a singleton is an interest ing
example of what you can do when combining JITA with object
pooling. A singleton is a com ponent with only one instance. All
clients share the same singleton— the clients are often not even
aware that there is just one instance of the class. [2] For exam ple,
suppose you have a configured component used to control a single
resource, such as a hardware device or a comm unicat ion port . To
make sure that all clients get the same object , you can configure

 79

your component to use JITA and object pooling, with m inimum and
maximum pool sizes set to one. Having a pool size of exact ly one
ensures that at any given moment , exact ly one object (a singleton)
is associated with a resource. Using JITA ensures that once the
object has finished serv icing one client , it can serve another, even if
the current client has not released its reference to it . The singleton
is also the only case of a JITA object that can m aintain full state
between method calls, since you can be certain that the same
object is called to serve all clients. However, before you star t using
a singleton, make sure that its disadvantages (a single point of
failure, a perform ance hot spot , a bot t leneck, and an inabilit y to
scale to large num ber or clients) are not relevant in your design and
that it is a valid m odeling of an ent ity in your applicat ion domain.

[2] See Design Pat terns—Elements of Reusable Object- Oriented Software, by Gamma, et
al. (Addison Wesley, 1995) , p. 127.

3 .6 Object Constructor Str ing

COM+ allows you to pass a construct ion parameter to new instances
of your component . This instance act ivat ion service has nothing to
do with applicat ion scalability , JITA, or object pooling, and is
nothing more than a neat service.
On your com ponent ’s Propert ies page, there is a propert ies group
named "Object construct ion" on the Act ivat ion tab. Once you enable
this serv ice (by checking the "Enable object const ruct ion"
checkbox) , you can specify a st r ing in free form . Every instance of
your component has access to this one st r ing (you cannot specify a
st r ing per instance) . Because calls to CoCreateInstance() or
CreateObject() do not accept init ializat ion parameters, you have
to work to gain access to the const ructor st r ing.
The first thing you need to do (besides enable the service) is have
your component im plement an inter face called IObjectConstruct,
defined as:
interface IObjectConstruct : IUnknown
{
 HRESULT Construct([in]IDispatch* pConstructionObj);
};
I f you enable object const ruct ion but do not implement the
inter face, all client at tempts to create a new instance of your
component will fail, showing the error code E_NOINTERFACE. They
will fail because COM+ will refuse to hand over to the client an
object that could not be init ialized proper ly . IObjectConstruct has
only one method, Construct(), which COM+ uses to pass in a

 80

pointer to another inter face called IObjectConstructString,
defined as:
interface IObjectConstructString : IDispatch
{
 [id(1),propget] HRESULT ConstructString([out, retval]
BSTR* pVal);
};
COM+ calls your object ’s implementat ion of
IObjectConstruct::Construct() to deliver the st r ing only once,
immediately after calling the object constructor. Note that COM+
passes the construct ion st r ing to your object before the call to
IObjectControl::Activate(), since the init ializat ion parameter
should provide gener ic, rather than context -specific, inform at ion.
Example 3-2 shows how to use the constructor st r ing object passed
into IObjectConstruct::Construct() to access your com ponent ’s
configured const ructor st r ing.

Exam ple 3 - 2 . I m plem ent ing I ObjectConst ruct ::Construct () and accessing
your com ponent ’s configured constructor str ing

// IObjectConstruct::Construct()
STDMETHODIMP CMyComponent::Construct(IDispatch *
pConstructionObj)
{
 HRESULT hres = S_OK;
 BSTR bstrConstruct;

 IObjectConstructString* pString = NULL;
 hres = pConstructionObj-
>QueryInterface(IID_IObjectConstructString,

(void**)&pString);

 hres = pString->get_ConstructString(&bstrConstruct);
 pString->Release();

 //Use bstrConstruct

 return S_OK;
}
Note that empty st r ings m ay be valid parameters and that your
object should be writ ten to handle an empty st r ing.
However, why go through a somewhat odd mechanism of ret r ieving
the st r ing from a dedicated interface, rather than passing
IObjectConstruct::Construct() a BSTR direct ly? The answer is
that in the future, COM+ m ay allow you to pass other kinds of
parameters for construct ion, such as numbers, data st ructures, or
maybe even inter face pointers. The COM+ designers wanted to put

 81

in place a generic m echanism that could extend to handling more
than just st r ings.
You can use a const ruct ion st r ing to specify parameters com mon to
all components, but whose value is deployment specific, such as:

• Log filenam e and locat ion. The COM+ logbook, presented in
Appendix A, uses the constructor st r ing to do just that .

• Applicat ion or component configurat ion filename and locat ion.
• I f your com ponent holds a generic ODBC connect ion, you can

specify a DSN file name— referencing a file containing
informat ion about the database to be used by this
component— instead of either passing it in as a m ethod
parameter or hardcoding it .

3 .7 COM+ I nstance Managem ent Pit fa lls

COM+ instance m anagement and object act ivat ion have a few
m inor pit falls and lim itat ions you should be aware of to make the
best use of what COM+ has to offer . This sect ion also discusses a
feature of the Component Serv ices Explorer that will help you
profile your applicat ion and keep t rack of your object instances.

3 .7 .1 I dle Tim e Managem ent

Under classic COM, a process host ing COM objects would be left
running as long as clients with act ive references to objects are in
that process. Once the last client releases its reference on the last
object in that process, COM would shut down the host ing process.
This policy clearly conflicts with COM+ object pooling— the idea is to
keep objects alive, even if they do not serve any clients. COM+
allows you to configure your server applicat ion's idle t ime
managem ent on the Advanced tab of the applicat ion's propert ies
page (see Figure 3-10) . The Advanced tab has a propert ies group
called Server Process Shutdown. I f your applicat ion contains pools
of objects, you can leave the host ing process running when the
applicat ion is idle— that is, when the applicat ion is not serv icing
clients and all objects are in the pool. However, your objects
cont inue to occupy resources as long as the process is running, and
if the client act ivat ion requests are few and far between, this may
not be a good t radeoff.
Alternat ively, you can specify how long you want to keep the
applicat ion idle by providing any number between 0 and 999
m inutes. You should decide on the exact value based on your
clients' calling pat tern and opt im ize the overall act ivat ion overhead
and resource consumpt ion. For example, if you expect the interval

 82

between clients’ act ivat ions of pooled objects to be 10 m inutes, you
should configure the applicat ion to be left idle at least that long,
plus a certain safety factor (20 percent for example) . I n this case,
you would set the idle t imeout to 12 m inutes. I f you set the t im eout
to 0, you will get the classic COM behavior . Set t ing the t im eout to 0
is especially useful during debugging because as long as the
applicat ion is running, you cannot rebuild the component DLL; you
cannot rebuild it because the applicat ion process has that DLL
loaded and locked. Usually , when you discover a defect dur ing a
debug session, you should fix it , rebuild the com ponent , and retest .
By set t ing the t imeout to 0, you can rebuild im mediately. By
default , after creat ing a new COM+ applicat ion, the applicat ion is
configured to shut down after 3 m inutes of idle t ime.

Figure 3 - 1 0 . Consider leaving an applicat ion host ing object pools running
even w hen idle

3 .7 .2 Too Large a Minim um Pool Size

I f you set a component to have an object pool with a m inimum size
greater than zero, then when the applicat ion containing the
component is launched, COM+ creates the m inimum size number of
objects and puts them in the pool. The first act ivat ion request for
any object (pooled or not) from that applicat ion may take a long
t ime to complete if you have a too large a m inim um pool size.
Objects from your applicat ion may end up paying the pool
init ializat ion pr ice, result ing in slow response t ime to their clients.
To m it igate this problem, consider start ing your applicat ion

 83

explicit ly, either manually from the Component Serv ices Explorer or
programmat ically by program ming with the COM+ catalog, as
explained in Chapter 6.

3 .7 .3 Request ing a JI TA Object in the Caller ’s Context

The Com ponent Serv ices Explorer lets you require that a component
always be act ivated in its creator ’s context by checking the "Must be
act ivated in caller ’s[3] context " checkbox on the Act ivat ion tab in the
component propert ies page (see Figure 3-3) . I f the creat ing client
were in another context , the act ivat ion call would fail with the error
code CO_E_ATTEMPT_TO_CREATE_OUTSIDE_CLIENT_CONTEXT.

[3] The nam e is inaccurate— it should be "Must be act ivated in creator's context ."

You can use this set t ing only when you are sure that the creat ing
client will not be in another process and will have configurat ion
set t ings close enough to allow the com ponent instance to share its
context . This set t ing is available as an advanced opt im izat ion
serv ice for cases when the calling client makes short , frequent calls
to the component and the overhead of cross-context marshaling
gets in your way.
As you saw before, a JITA instance must have its own context so it
can have its own done bit to set and an in interceptor between it
and the client . The two set t ings, "Enable Just I n Time Act ivat ion"
and "Must be act ivated in the caller ’s context ," are mutually
exclusive, yet the Com ponent Serv ices Explorer gladly lets you set a
component to use both set t ings. Beware of configur ing a JI TA object
to always be act ivated in its caller ’s context because this
configurat ion causes all act ivat ion requests to fail.

3 .7 .4 Failing to Release Pooled Object Data Mem bers

When ret r ieved from the pool, a pooled object should be placed in a
different context on each act ivat ion. As explained in the previous
chapter , object references under COM+ are context- relat ive and
must be marshaled between contexts. Your design of the pooled
object may have it include inter face pointers to other objects as
data members. Those references are required for the pooled object
to funct ion properly. In fact , such references may be the very
reason why you made it a pooled object , if creat ing the contained
objects takes a long t ime to com plete. Clear ly , your object cannot
create the contained objects and save them as data m embers
because the data members would be invalidated on the next
deact ivat ion.
You can get around this problem in two ways. First , you can create
the contained objects, register them in the Global Interface Table
(GIT) (covered in the previous chapter) , and save the ident ify ing

 84

GIT cookies as data mem bers, rather than raw interface pointers.
The pooled object should implem ent IObjectControl, and on every
call to IObjectControl::Activate(), it should get the objects
out of the GIT and have a current -context safe copy of the data
members. When COM+ calls IObjectControl::Deactivate(), the
object should release its local copy. When the pooled object is
finally released, it should revoke the interface pointers from the
GIT.
The second solut ion would use pooled objects as data mem bers. On
every call to IObjectControl::Activate(), the pooled object
should create (ret r ieve from their pools) all the helper objects it
needs, and on calls to IObjectControl::Deactivate(), it should
release its local copies. Because the helper objects are pooled
objects themselves, there should not be much of a penalty for
creat ing them. The only thing you should remember is to configure
the various pools to have enough objects in them . You can, of
course, m ix the two solut ions (have som e objects pooled and use
the GIT on the rest) . As always, you, as the applicat ion designer,
are responsible for finding the r ight solut ion for your design and
addressing the part icular constraints of the domain problem at
hand.

3 .7 .5 Pooled Objects and Aggregat ion

COM+ implements object pooling by aggregat ing your object and
intercept ing the act ivat ion calls from the client . By doing so, COM+
keeps t rack of your pooled object and manages its life cycle
(returns it to the pool instead of releasing it and calls
IObjectControl m ethods at appropriate t imes) . As a result , your
pooled object is discouraged from aggregat ing other COM/ COM+
objects. Imagine, for example, that Object A is a pooled object , and
it aggregates another pooled Object B. COM+ aggregates Object A
and manages its act ivat ion recycling, but who would manage Object
B’s recycling? Because there is no way for the client to tell that a
given object is pooled, it is bet ter to be safe than sorry in this case.
Even if you are certain that Object B is not a pooled object , there is
no guarantee that it will not be configured to be a pooled object in
the future. Avoid aggregat ion within a pooled object .

3 .7 .6 Tracking I nstance Act ivity

When developing a configured component that takes advantage of
COM+ instance m anagement serv ices, it is somet imes hard to keep
t rack of exact ly what is going on with instances of your component :
how many are in the pool, how many are actually servicing clients,
etc. Trying to gauge the var ious parameters, such as pool size and
act ivat ion t imeout , may require a lot of profiling of the average call

 85

t ime and the client ’s calling pat terns. The Component Services
Explorer prov ides you with crucial inform at ion to help you develop
and fine tune your applicat ion. I f you expand the component folder
and select the Status View from the toolbar, COM+ displays var ious
stat ist ics on instances of each component in your applicat ion (see
Figure 3-11) . The status view columns descr ipt ion is in Table 3-2.
You will f ind the status view helpful in almost all phases of
development and deployment .

Figure 3 -1 1 . Select the com ponent folder Status View to display various
stat ist ics on instances of your com ponents

7DEOH������7KH�&RPSRQHQW�IROGHU�VWDWXV�YLHZ�FROXPQV��IURP�OHIW�WR�ULJKW��

&ROXPQ� 'HVFULSWLRQ�
Prog I D The com ponent ident ify ing program m at ic I D.

Objects

The total num ber of outstanding references to objects of this type. I f
you use JI TA, t his num ber is t he num ber of clients that st ill hold a
reference to an instance. The num ber m ay be m uch larger t han all the
other num bers.

Act ivated

The num ber of current ly act ivated object s— objects that are in a context
t ied up with a client . I f the object uses JI TA and sets the done bit to
TRUE after every call, then the num ber in t he Act ivated colum n will be
the sam e as the num ber in the I n Call colum n.

Pooled
The total num ber of pooled objects created. This num ber includes both
the objects in t he pool and pooled objects outside the pool that serv ices
clients.

I n Call

The num ber of objects current ly execut ing m ethod calls on behalf of
clients. This num ber is always less than or equal t o t he Act ivated
colum n because the obj ects can use JI TA and deact ivate them selves
between calls.

Call Tim e

The average call t im e in m illiseconds of all the calls, on all the m ethods,
across all instances in t he last 20 seconds. A call t im e is def ined as the
t im e it took the object to execute the call, and does not include object
act ivat ion, t he t im e spent m arshaling the call across context , process,
or m achine boundary.

Collect ing the stat ist ics causes a small performance hit . COM+ only
presents the status inform at ion on objects that are configured to
provide it . Configure your component to support stat ist ics on the
component Act ivat ion tab by checking "Component supports events

 86

and stat ist ics" (see Figure 3-3) . By default , COM+ enables this
support when you install a new configured component .

 87

Chapter 4 . COM+ Transact ions

Consider the everyday operat ion of withdrawing cash from an
automated teller m achine (ATM) , an operat ion you perform
frequent ly . You access your account , specify the amount to
withdraw, and then receive cash from the machine. Yet even an
operat ion this mundane involves mult iple m achines (the ATM, the
bank mainframe, and probably a few other machines) and mult iple
databases (an accounts database, a m oney t ransfer database, an
audit database, and so on) , each of which may also reside on a
machine of its own. At the ATM itself, the withdrawal involves both
a software user inter face and mechanical devices such as the card
reader, keypad, bill delivery mechanism , and receipt pr inter.
The difficulty in developing an ATM applicat ion lies in the fact that
all of these steps can succeed or fail independent ly of the others.
For example, suppose the ATM can’t connect to the mainframe at
the bank or for som e reason cannot execute your request . Or,
suppose there is a secur ity problem (the wrong PIN code was
entered) or the hardware fails (the ATM runs out of bills) .
I n addit ion, m ult iple users may access the bank’s system
simultaneously. Their access and the changes they m ake to the
system must be isolated from one another. For example, while you
are withdrawing money at the ATM, your spouse could be accessing
the account online and a teller could be doing a balance check for a
loan approval.
Nevertheless, both you and the bank expect either all t he
operat ions involved in accom plishing the request to succeed, or all
the operat ions to fail. Part ial success or part ial failure of a banking
t ransact ion is simply not acceptable; you don’t want the bank to
deduct the money from the customer’s account but not dispense the
bills, or to dispense the bills but not deduct money from the
account .
The expectat ion for an all- or-nothing ser ies of operat ions
characterizes many business scenar ios. Enterpr ise- level serv ices
such as funds management, inventory m anagement , reservat ion
systems, and retail systems require an all-or-nothing series of
operat ions. A logical operat ion (such as cash withdrawal) that
complies with this requirement is called a t ransact ion.
The fundamental problem in im plement ing a t ransact ional system is
that execut ing all the operat ions necessary to complete the
t ransact ion requires t ransit ioning between intermediate inconsistent
system states— states that cannot them selves be tolerated as valid
outcomes of the t ransact ion. For example, an inconsistent state
would result if you were to deduct money from one account but not
credit it to another in a simple t ransfer of funds between the two
accounts. In essence, an inconsistent state is any system-state that

 88

is the result of part ial success or failure of the elements of one
logical operat ion.
One approach to addressing the complex failure scenar ios of a
t ransact ion is to add error-handling code to the business logic of
your applicat ion. However, such an approach is impract ical. A
t ransact ion can fail in numerous ways. I n fact , the num ber of failure
permutat ions is exponent ially proport ional to the number of objects
and resources part icipat ing in the t ransact ion. You are almost
certain to m iss som e of the rare and hard- to-produce failure
situat ions. Even if you m anage to cover them all, what will you do
when the system evolves— when the behavior of ex ist ing
components changes and more components and resources are
added, thereby mult iply ing the number of errors you have to deal
with? The result ing code will be a fragile solut ion. Instead of adding
business value to the com ponents, you will spend most of your t ime
writ ing error-handling code, perform ing test ing and debugging, and
t rying to reproduce bizarre failure condit ions. Addit ionally, the tons
of error-handling code will int roduce a ser ious performance penalty .
The proper solut ion is not to have the t ransact ion error-handling
logic in your code. Suppose the t ransact ion could be abstracted
enough that your com ponents could focus on execut ing their
business logic and let some other party m onitor the t ransact ion
success or failure. That third party would also ensure that the
system be kept in a consistent state and that the changes made to
the system (in the case of a failed t ransact ion) would be rolled
back.
That solut ion is exact ly the idea behind the COM+ t ransact ion
managem ent serv ice. COM+ simplif ies the use of t ransact ions in the
enterprise environment . COM+ provides adm inist rat ive
configurat ion of t ransact ional support for your components. COM+
enables auto-enlistment of resources part icipat ing in the t ransact ion
and supports managing and execut ing the t ransact ion across
machine boundaries. The COM+ t ransact ion managem ent service is
based on the MTS t ransact ions m anagement model, with a few
improvements and innovat ions.

4 .1 Transact ion Basics

Before we discuss COM+ t ransact ion support , you need to
understand the basics of t ransact ion processing, the fundamental
propert ies that every t ransact ion m ust have, and some common
t ransact ion scenarios. I f you are already fam iliar with the basic
t ransact ion concepts, feel free to skip direct ly to Sect ion 4.4 later in
this chapter .
Formally , a t ransact ion is a set of potent iality com plex operat ions
that will all succeed or fail as one atom ic operat ion. Transact ions

 89

are the foundat ion of electronic inform at ion processing, support ing
almost every aspect of modern life.
Transact ions were first int roduced in the early 1960s by database
vendors. Today, other resource products, such as m essaging
systems, support t ransact ions as well. Tradit ionally , the applicat ion
developer programmed against a com plex Transact ion Processing
Monitor (TPM)— a third party that coordinated the execut ion of
t ransact ions across m ult iple databases and applicat ions. The idea
behind a TPM is simple: because any object part icipat ing in a
t ransact ion can fail and because the t ransact ion cannot proceed
without having all of them succeed, each object should be able to
help determ ine success or failure of the ent ire t ransact ion. This is
called vot ing on the t ransact ion's outcome. While a t ransact ion is in
progress, the system can be in an inconsistent state. When the
t ransact ion completes, however, it must leave the system in a
consistent state— either the state it was in before the t ransact ion
executed or a new one.
Transact ions are so crucial to the consistency of an informat ion
system that , in general, whenever you update a persistent storage
(usually a database) , you need to do it under the protect ion of a
t ransact ion. Another important t ransact ion quality is it s durat ion.
Well-designed t ransact ions are of short durat ion because the speed
with which your applicat ion can process t ransact ions has a major
impact on its scalability and throughput . For example, imagine an
online retail store. The store applicat ion should process customer
orders as quickly as possible and manage every client's order in a
separate t ransact ion. The faster the t ransact ion executes, the m ore
customers per second the applicat ion can service (throughput) and
the more prepared the applicat ion is to scale up to a higher number
of customers.

4 .2 Transact ion Propert ies

Modern standards call for a t ransact ion to be atom ic, consistent ,
isolated, and durable. I n t ransact ion processing term inology, these
propert ies are referred to as the ACID propert ies. When you design
t ransact ional components, you must adhere to the ACID
requirements; they are not opt ional. As you will see, COM+
enforces them r igorously. Once you understand the ACID
requirements and follow simple design guidelines, developing
t ransact ional components in COM+ becomes st raight forward.

4 .2 .1 The Atom ic Property

When a t ransact ion completes, all the changes it made to the
system's state must be made as if they were all one atom ic

 90

operat ion. The word atom comes from the Greek word atomos,
meaning indivisible. The changes made to the system are made as
if everything else in the universe stops, the changes are m ade, and
then everything resumes. I t is not possible to observe the system
with only some of the changes.
A t ransact ion is allowed to change the system state only if all the
part icipat ing objects and resources execute their part successfully .
Changing the system state by making the changes is called
commit t ing the t ransact ion. I f any object encounters an error
execut ing its part , the t ransact ion aborts and none of the changes is
commit ted. This process is called abort ing the t ransact ion.
Commit t ing or abort ing a t ransact ion m ust be done as an atom ic
operat ion.
A t ransact ion should not leave things to do in the background once
it is done, since those operat ions violate atom icity . Every operat ion
result ing from the t ransact ion m ust be included in the t ransact ion
itself.
Because t ransact ions are atom ic, a client applicat ion becomes a lot
easier to develop. The client does not have to manage part ial failure
of its request or have complex recovery logic. The client knows that
the t ransact ion either succeeded or failed as a whole. In case of
failure, the client can choose to issue a new request (star t a new
t ransact ion) or do som ething else, such as alert the user. The
important thing is that the client does not have to recover the
system.

4 .2 .2 The Consistent Property

A t ransact ion m ust leave the system in a consistent state. Note that
consistency is different from atom icity. Even if all changes are
commit ted as one atom ic operat ion, the t ransact ion is required to
guarantee that all those changes are consistent— that they make
sense. The component developer is responsible for making sure the
semant ics of the operat ions are consistent . A t ransact ion is required
to t ransfer the system from one consistent state to another. Once a
t ransact ion commits, the system is in a new consistent state. In
case of error, the t ransact ion should abort and roll back the system
from the current inconsistent and intermediate state to the init ial
consistent state.
Consistency cont r ibutes to simple client -side code as well. I n case of
failure, the client knows that the system is in a consistent state and
can use its higher- level logic to decide the next step (or maybe
none at all, since the system is in a consistent state) .

4 .2 .3 The I solated Property

While a t ransact ion is in progress, it m akes changes to the system
state. I solat ion means no other ent ity (t ransact ional or not) is able

 91

to see the intermediate state of the system. The intermediate state
shouldn’t be seen outside of the t ransact ion because it may be
inconsistent . Even if it were consistent , the t ransact ion could st ill
abort and the changes could be rolled back. I solat ion is crucial to
overall system consistency. Suppose Transact ion A allows
Transact ion B access to its intermediate state. Transact ion A aborts,
and Transact ion B decides to com mit . The problem is that
Transact ion B based its execut ion on a system state that was rolled
back, and therefore Transact ion B is left unknowingly inconsistent .
Managing isolat ion is not t r iv ial. The resources part icipat ing in a
t ransact ion must lock the data accessed by the t ransact ion from all
others and must synchronize access to that data when the
t ransact ion commits or aborts. The t ransact ion monitor ing party
should detect and resolve deadlocks between t ransact ions using
t imeouts or queues. A deadlock occurs when two t ransact ions
contend for resources the other one holds. COM+ resolves
deadlocks between t ransact ions by abort ing the deadlocked
t ransact ions.
Theoret ically, various degrees of t ransact ion isolat ion are possible.
In general, the m ore isolated the t ransact ions, the more consistent
their results are, but the lower the overall applicat ion throughput—
the applicat ion's abilit y to process t ransact ions as fast as it can.
COM+ 1.0 t ransact ions use the highest degree of isolat ion, called
serializat ion . This term means that the results obtained from a set
of concurrent t ransact ions are ident ical to the results obtained by
running each t ransact ion serially. To achieve ser ializat ion, all the
resources a t ransact ion in process touches are locked from other
t ransact ions. I f other t ransact ions t ry to access those resources,
they are blocked and cannot cont inue execut ing unt il the or iginal
t ransact ion commits or aborts. The next version of COM+ (see
Appendix B) allows configuring the isolat ion level of your
t ransact ions and t rades consistency for throughput .

4 .2 .4 The Durable Property

I f a t ransact ion succeeds and commits, the changes it makes to the
system state should persist in a durable storage, such as a
filesystem, magnet ic tapes, or opt ical storage. Transact ions require
commitment of their changes to a durable storage because at any
moment the machine host ing the applicat ion could crash and its
memory could be erased. I f the changes to the system's state were
in-m emory changes, they would be lost and the system would be in
an inconsistent state. The changes a t ransact ion makes to the
system state must persist even if the machine crashes im mediately
after the decision to commit the changes is made. The component's
developer is required to store the new system state only in durable
resources. The durable resource must be robust enough to

 92

withstand a crash while t ry ing to commit the changes. One way to
achieve such robustness would be to manage log files to recover
from the crash and complete the changes.
However, how resilient to catast rophic failure the resource really
should be is an open quest ion that depends on the nature and
sensit iv ity of the data, your budget , available t ime, and available
system adm inist rat ion staff. A durable system can be anything from
a hard disk to a RAID disk system that has mult iple m irror sites in
places with no earthquakes.

4 .3 Transact ion Scenarios

Applicat ions differ great ly in their complexity and need for COM+
transact ions support . To understand the COM+ t ransact ions
architecture and the needs it addresses, you should first exam ine a
few gener ic t ransact ion cases.

4 .3 .1 Single Object / Single Resource Transact ion

Consider an applicat ion that comprises j ust one component
instance, an object that processes a client ’s request and accesses a
single resource (such as a database) that takes part in a
t ransact ion. This situat ion is depicted in Figure 4-1. The applicat ion
(in this case, the object) has to inform the resource when a
t ransact ion is started. This act is called enlist ing the resource in the
t ransact ion. The object starts m aking calls on the resource
inter faces, making changes to its state. However, at this point the
resource should only record (log) the changes and not actually
perform them.
I f the object encounters no errors when execut ing a client ’s request ,
then on complet ion it inform s the resource that it should t ry to
commit the changes. I f t he object encounters errors, it should
inst ruct the resource to abort and roll back the changes. Even if the
object wants to com mit the t ransact ion, any exist ing errors on the
resource side m ight cause the t ransact ion to abort .

Figure 4 - 1 . Managing a t ransact ion in a single object / single resource
scenario

Note that only the applicat ion can request to comm it the
t ransact ion, but either the applicat ion or the resource can abort it .

 93

You can easily deal with a single object / single resource scenar io on
your own without relying on COM+ transact ions by m aking explicit
programmat ic calls to enlist a resource in a t ransact ion and
inst ruct ing it to com mit or roll back at the end of the t ransact ion.
Most resources support this sort of interact ion out-of- the-box and
expose sim ple funct ions, such as BeginTransaction() and
EndTransaction(commit/abort).

4 .3 .2 Mult iple Objects/ Single Resource Transact ion

Suppose you have mult iple objects in your applicat ion, each of
which requires access to the same resource to service a part icular
client request . Suppose your design calls for containing all t he
changes the objects make to the resource in the same t ransact ion,
to ensure consistency of these m ult iple changes (see Figure 4-2) .

Figure 4 - 2 . Mult iple com ponents w ith a single resource t ransact ion

Unfortunately, things get much more complicated than in the
previous scenario. The main problem is coordinat ion. Since the
resource should be enlisted in the t ransact ion just once, who should
be responsible for enlist ing it? Should it be the first object that
accesses it? Or maybe it should be the first object that is created?
How would the objects know and coordinate this informat ion? In
addit ion, since the objects can all be on different machines, how
would you propagate the t ransact ion from one machine to the next?
How would the objects know what t ransact ion they are in? What
should you do if one machine crashes while the other machines
cont inue to execute the client request?
Each of the objects can encounter errors and abort the t ransact ion,
and they ask the resource to commit the changes only if they all
succeed. The problem here is deciding which object is responsible
for collect ing the votes. How would an object know that a
t ransact ion is over? Who is responsible for not ify ing the resource of
the vot ing result— that is, inst ruct ing the resource to t ry to commit
or roll back the changes? What should the objects do with their own
state (their data members)? I f the resource is unable to commit the
changes, the t ransact ion m ust abort ; in that case, the objects' state

 94

reflects inconsistent system state. Who will inform the objects to
purge their inconsistent state? How would the objects know what
part of their state const itutes system inconsistency?
Fortunately, COM+ t ransact ions support makes this scenario as
easy to deal with as the previous one. COM+ takes care of enlist ing
the resource, propagat ing the t ransact ion across machine
boundar ies, collect ing the components’ votes, and maintaining
overall resource and object state consistency.

4 .3 .3 Mult iple Objects/ Mult iple Resources Transact ion

An enterprise applicat ion often consists of mult iple objects
accessing mult iple resources within the same t ransact ion (see
Figure 4-3) .

Figure 4 - 3 . An enterpr ise applicat ion com prising m ult iple com ponents
and resources

I n addit ion to all the coordinat ion challenges posed by the previous
scenar io, you now have to enlist all the resources just once in the
t ransact ion. Who keeps t rack of what resources are used? You
definitely don’t want to have that knowledge in your code because it
could change. Who is responsible for inform ing the resources about
the t ransact ion outcom e (the com ponents’ votes) and asking them
to t ry to commit or abort? Since any one of the resources can
refuse to commit the changes, how do you know about it and how
would you inst ruct the other resources to roll back their changes?
Your components and resources may all be on different machines,
result ing in mult iple points of failure. Transact ion processing
monitors (TPMs) have evolved to answer these challenges, but they
require explicit calls from the applicat ion, which result s in a
cumbersome programming model.
Yet again, COM+ t ransact ions support makes this situat ion as easy
as the first one. Even in a dist r ibuted environm ent with m ult iple
resources, your programming model is elegant and simple. I t allows
you to focus on your business logic while relying on COM+ to
manage the t ransact ion for you.

 95

4 .4 COM+ Transact ions Architecture

COM+ is an advanced TPM that provides your com ponents with
easy- to-use adm inist rat ive configurat ion for your t ransact ional
needs. COM+ encapsulates the under ly ing t ransact ion monitor ing
and coordinat ion required to manage a t ransact ion. The COM+
transact ions architecture defines a few basic concepts you need to
understand to take advantage of COM+ t ransact ions support :
resource m anagers, the t ransact ion root , the two-phase commit
protocol, and the Dist r ibuted Transact ion Coordinator (DTC).

4 .4 .1 Resource Managers

A resource (such as a database managem ent system) that can
part icipate in a COM+ t ransact ion is called a resource manager. A
resource m anager knows how to conduct itself proper ly in the scope
of a COM+ t ransact ion— it records the changes done by your
applicat ion's objects and will only commit the changes when told to
do so. A resource manager knows how to discard the changes and
revert to its previous state if it is told to roll back. A resource
manager can auto-enlist in a t ransact ion— the resource manager
can detect it is being accessed by a t ransact ion and enlist itself in it .
Every COM+ t ransact ion has a unique t ransact ion ID (a GUID) ,
created by COM+ at the beginning of the t ransact ion. The resource
manager keeps t rack of the t ransact ion ID and will not enlist twice.
Auto-enlist ing m eans that your components are not required to
explicit ly enlist the resources needed for a t ransact ion; therefore,
they do not have to deal with the problem of mult iple objects
accessing the same resource, not knowing whether or not it is
already enlisted in the t ransact ion.
A resource manager m ust store its data in a durable storage to
maintain the t ransact ion durabilit y. To maintain the t ransact ion's
isolat ion, a resource m anager m ust lock all data (such as rows,
tables, and queues) touched by the t ransact ion, and allow only
objects that take part in that t ransact ion to access that data. Note
that all the hard work required to m anage a resource m anager is
hidden from your com ponents. The burden is on the resource
manager's shoulders, not yours.
A resource manager m ust vote on the t ransact ion's result . Once the
t ransact ion is over, COM+ asks each part icipat ing resource
manager, " I f you were asked to commit the changes, could you?". A
resource m anager is represented by a system serv ice that manages
the resource, and your objects access the resource manager v ia a
proxy.
Quite a few resources today comply with these requirements: first
and forem ost is Microsoft SQL Server (Versions 6.5 and above) , but

 96

other non-Microsoft databases, such as Oracle 8 i and IBM DB2, are
COM+ resource m anagers as well. A resource manager does not
have to be a database; for example, Microsoft Message Queue
(MSMQ) is a resource m anager.

4 .4 .2 Transact ion Root

When m ult iple objects take part in a t ransact ion, one of them has to
be the first to ask that a t ransact ion be created to contain the
operat ion (usually a client ’s request) . That f irst object is called the
t ransact ion root . A given t ransact ion has exact ly one root (see
Figure 4-4) .

Figure 4 - 4 . A t ransact ion’s root object

Designat ing an object as a t ransact ion’s root , or as an internal
object , is done adm inist rat ively . The com ponent ’s developer
configures it to either not take part in t ransact ions; to require a
t ransact ion, (to join an ex ist ing t ransact ion if one exists) ; or to star t
a new t ransact ion if none exists. I f the component starts a new
t ransact ion, then it becomes the root of that t ransact ion. The
developer can also configure the component to always start a new
t ransact ion— to always be the root of a new t ransact ion.
Once a t ransact ion is created, when Object A in Transact ion T1
creates another object , Object B, according to B's configurat ion, it
will:

• Be part of Transact ion T1.
• Not be part of T1 or any other t ransact ion. This may

comprom ise isolat ion and consistency because B can perform
operat ions that will persist even if T1 aborts. Also, B has no
way of deciding whether T1 should abort in case B has an
error .

• Start a new Transact ion T2. I n that case, Object B becomes
the root of the new t ransact ion. This opt ion may also
comprom ise isolat ion and consistency, as one t ransact ion
could commit and the other one could abort independent ly of
the other.

Neither A nor B needs to act ively do anything to decide on the
t ransact ion. COM+ checks the object's configurat ion and places it in
the correct t ransact ion automat ically.

 97

4 .4 .3 The Tw o- Phase Com m it Protocol

COM+ uses a t ransact ion m anagement protocol called the two-
phase commit to decide on a t ransact ion result , comm it changes to
the system state, and enforce atom icit y and consistency. The two-
phase commit protocol enables COM+ to support t ransact ions that
involve mult iple resources.
After the t ransact ion’s root starts a new t ransact ion, COM+ stays
out of the way. New objects may join the t ransact ion, and every
resource m anager accessed automat ically enlists itself with that
t ransact ion. The objects execute business logic and the resource
managers record the changes made under the scope of the
t ransact ion. You already saw that all t he applicat ion’s objects in a
t ransact ion must vote during the t ransact ion for whether the
t ransact ion should abort (if the objects had an error) or be allowed
to commit (if the objects have done their work successfully) . Again,
abstaining from vot ing on the t ransact ion’s outcome is not an opt ion
for any object in the t ransact ion. A t ransact ion ends when the root
object is released (or deact ivated, when you’re using JITA) . At that
point , COM+ steps back into the picture and checks the com bined
vote of the part icipat ing objects. I f any object voted to abort , the
t ransact ion is term inated. All part icipat ing resource managers are
inst ructed to roll back the changes made dur ing the t ransact ion.
I f all the objects in the t ransact ion vote to commit , the two-phase
commit protocol star ts. I n the first phase, COM+ asks all the
resource m anagers that took part in the t ransact ion if they have
any reservat ions in commit t ing the changes recorded during the
t ransact ion. Note that COM+ is not inst ruct ing the resource
managers to commit the changes. COM+ merely asks for their vote
on the mat ter . At the end of the first phase, COM+ has the
combined vote of the resource managers. The second phase of the
protocol acts upon that combined vote. I f all resource managers
voted to commit the t ransact ion in the f irst phase, then COM+
would inst ruct all of them to com m it the changes. I f even one of the
resource m anagers said in phase one that it could not com mit the
changes, then in phase two, COM+ would instruct all t he resource
managers to roll back the changes made, thus abort ing the
t ransact ion.
I t is important to emphasize that a resource manager ’s vote that
has no reservat ions about commit t ing is special: it is an
unbreakable prom ise. I f a resource manager votes to comm it a
t ransact ion, it means that it cannot fail if, in the second phase,
COM+ inst ructs it to commit . The resource manager should ver ify
before vot ing to com mit that all t he changes are consistent and
legit imate. A resource manager never goes back on its vote. This is
the basis for enabling t ransact ions. The various resource manager

 98

vendors have gone to great lengths to implement this behavior
exact ly.

4 .4 .4 The Dist r ibuted Transact ion Coordinator

As demonst rated in the t ransact ion scenarios descr ibed previously,
there is a clear need to coordinate a t ransact ion in a dist r ibuted
environment, to monitor the objects and resources in the
t ransact ion, and to manage the two-phase commit . Managing the
interact ion between the components (by collect ing their votes) is
done by COM+ ; m anaging the two-phase com mit protocol is done
by the Dist r ibuted Transact ion Coordinator (DTC) . The DTC is a
system service t ight ly integrated with COM+ . The DTC creates new
t ransact ions, propagates t ransact ions across machines, collects
resource m anagers’ votes, and instructs resource managers to roll
back or comm it .
Every m achine running COM+ has a DTC system service. When an
object that is part of a t ransact ion on Machine A t r ies to access
another object or a resource on Machine B, it actually has a proxy
to the rem ote object or resource. That proxy propagates the
t ransact ion ID to the object / resource stub on Machine B. The stub
contacts the local DTC on Machine B, passing it the t ransact ion ID
and inform ing it to star t managing that t ransact ion on Machine B.
Because the t ransact ion ID gets propagated to Machine B, resource
managers on Machine B can now auto-enlist with it .
When the t ransact ion is done, COM+ examines the com bined
t ransact ion vote of all par t icipat ing objects. I f the combined vote
decides to abort the t ransact ion, COM+ instructs all t he
part icipat ing resource managers on all part icipat ing machines to roll
back their changes. I f the combined objects’ vote was to t ry to
commit the t ransact ion, then it is t ime to start the two-phase
commit protocol. The DTC on the root machine collects the resource
managers’ votes on the root machine and contacts the DTC on
every machine that took part in the t ransact ion, inst ruct ing them to
conduct the first phase on their machines (see Figure 4-5) . The
DTCs on the remote machines collect the resource managers’ votes
on their machines and forward the results back to the DTC on the
root machine.
After the DTC on the root machine receives the results from all the
rem ote DTCs, it has the combined resource managers’ vote. I f all of
them voted to commit , then the DTC on the root machine again
contacts all the DTCs on the remote machines, inst ruct ing them to
conduct phase two on their respect ive machines and to commit the
t ransact ion. I f, however, even one resource manager voted to abort
the t ransact ion, then the DTC on the root machine informs all the
DTCs on the remote machines to conduct phase two on their
respect ive machines and abort the t ransact ion. Note that only the

 99

DTC on the root machine has the combined vote of phase one, and
only it can inst ruct the final abort or comm it .

Figure 4 - 5 . COM+ and the DTC m anage a distr ibuted t ransact ion

4 .4 .5 Transact ions and Context

A given t ransact ion can contain objects from m ult iple contexts,
apartments, processes, and machines (see Figure 4-6) .

Figure 4 - 6 . A t ransact ion (w hose scope is indicated by the dashed line) is
unrelated to m achine, process, apart m ent , and context

Each COM+ context belongs to no more than one t ransact ion, and
maybe none at all. COM+ dedicates a single bit in the context
object (discussed in Chapter 2) for t ransact ion vot ing. An object
votes on a t ransact ion’s outcome (whether to proceed to phase one
of the two-phase com mit protocol or to abort) by set t ing the value
of that bit . As a result , a t ransact ional object must have it s own

 100

private context . Two t ransact ional objects cannot share a context
because they only have one bit to vote with. I f two objects share a
context and one of them wants to abort and the other wants to
commit , then you would have a problem. Therefore, each COM+
object belongs to at m ost one t ransact ion (because it belongs to
exact ly one context) and an object can only vote on the outcome of
its own t ransact ion. Collect ing the object ’s vote is done by the
context ’s interceptor when the object is released or deact ivated.
The context object has more to do with the t ransact ion than just
holding the object ’s vote bit . I nternally , each context object stores
references to the t ransact ion it belongs to, if any exist . The context
object stores the t ransact ion’s ID and a pointer to the t ransact ion
object itself. Every t ransact ion is represented by an interface called
ITransaction, and the context object stores an ITransaction*
pointer to the current t ransact ion it belongs to. You can gain access
to that inform at ion by accessing the context object and obtaining
the IObjectContextInfo (first presented in Chapter 2) , defined as:
interface IObjectContextInfo : IUnknown
{
 BOOL IsInTransaction();
 HRESULT GetTransaction(IUnknown** ppTransaction);
 HRESULT GetTransactionId([out] GUID* pTransactionID);
 HRESULT GetActivityId([out] GUID* pActivityID);
 HRESULT GetContextId([out] GUID* pContextId);
};
The GetTransactionId() method returns the t ransact ion ID (a
GUID) . The IsInTransaction() method returns TRUE if the
context is included in a t ransact ion. The GetTransaction()
method returns a pointer to the current t ransact ion this context is
part of, in the form of a ITransaction* interface pointer.
A full discussion of the ITransaction interface is beyond the scope
of this chapter . I t is used by resource managers to auto-enlist in a
t ransact ion and to vote during the two-phase commit protocol.
Br iefly, when the object accesses a resource manager, it does so via
a proxy. The resource manager’s proxy ret r ieves the t ransact ion ID
and the ITransaction* pointer from the context object and
forwards them to the resource m anager for auto-enlistment . The
resource m anger looks at the t ransact ion ID. I f it is already enlisted
in that t ransact ion, then it does nothing. However, if this is the first
t ime the resource manager is accessed by that t ransact ion, it uses
the ITransaction* pointer to enlist .

4 .4 .6 COM+ Transact ions Architecture Benefits

The benefits of COM+ t ransact ions architecture were implied in the
previous discussion of the architecture’s elem ents. Now that you

 101

have the comprehensive picture, you can see that the main benefits
are as follows:

• Auto-enlistment of resource managers saves you the t rouble
of making sure that resources are enlisted exact ly once.
Otherwise, components would be coupled to one another by
having to coordinate who enlists what resource and when.

• An object and its client do not ever need to know what the
other objects are doing, whether they require t ransact ions, or
what another object ’s vote is. COM+ places objects in
t ransact ions autom at ically, according to their configurat ion.
COM+ collects the objects’ votes and rollback changes. All an
object has to do is vote.

• The program ming model is sim plified, robust , easier, and
faster to im plement .

• The COM+ t ransact ions architecture decouples the
components from specific TPM calls. There is nothing in the
components’ code that relates to the DTC or to t ransact ion
managem ent .

4 .5 Configuring Transact ions

Now that you understand what t ransact ions are and what they are
good for and have rev iewed the COM+ t ransact ion architecture, it is
t ime to put that knowledge into pract ice to build and configure
t ransact ional components in COM+ .
You can use the Com ponent Serv ices Explorer to configure
t ransact ion support for your components. Every component has a
Transact ions tab on its propert ies page. The tab offers you five
opt ions for t ransact ion support (see Figure 4-7) : Disabled, Not
Supported, Supported, Required, and Requires New. The set t ings let
you control whether instances of your component take part in a
t ransact ion and if so, whether and when they should be the root of
that t ransact ion.

Figure 4 -7 . Configure t ransact ion support for a com ponent on the
com ponent ’s Transact ions tab

 102

COM+ determ ines which t ransact ion to place the object in when it
creates the object . COM+ bases its decision on two factors: the
t ransact ion of the object ’s creator and the configured t ransact ion
support of the object (actually, for the component that the object is
an instance of) .
A COM+ object can belong to its creator’s t ransact ion, be a root of a
new t ransact ion, or not take part in a t ransact ion. I f the object is
configured with t ransact ion support Disabled or Not Supported, it
will never be part of a t ransact ion, regardless of whether its creator
has a t ransact ion or not . I f the object is configured with Supported
and its creator has a t ransact ion, then COM+ places the object in it s
creator’s t ransact ion. I f the creat ing object does not have a
t ransact ion, then the newly created object will not have a
t ransact ion. I f the object is configured with t ransact ion support set
to Required, then COM+ puts it in its creator’s t ransact ion if the
creat ing object has a t ransact ion. I f the creat ing object does not
have a t ransact ion and the object is configured to require a
t ransact ion, COM+ creates a new t ransact ion for the object , making
it t he root of that new t ransact ion. I f t he object is configured with
t ransact ion support set to Requires New, then COM+ creates a new
t ransact ion for it , m aking it the root of that new t ransact ion,
regardless whether its creator has a t ransact ion or not . The COM+
transact ion allocat ion decision mat r ix is summarized in Table 4-1.

7DEOH������&20��WUDQVDFWLRQ�DOORFDWLRQ�GHFLVLRQ�PDWUL[��
2EMHFW�WUDQVDFWLRQDO�VXSSRUW� &UHDWRU�LV�LQ�WUDQVDFWLRQ� 7KH�REMHFW�ZLOO�WDNH�SDUW�LQ��
Disabled/ Not Supported No No Transact ion
Supported No No Transact ion
Required No New Transact ion (will be the root)
Required New No New Transact ion (will be the root)
Disabled/ Not Supported Yes No Transact ion
Supported Yes Creator ’s Transact ion

 103

Required Yes Creator ’s Transact ion
Required New Yes New Transact ion (will be the root)

Once COM+ determ ines what t ransact ion to place the object in, that
placement is f ixed for the life of the object , unt il the object is
released by the client . I f the object is not part of a t ransact ion, it
will never be part of one. I f the object is part of a t ransact ion, it will
always be part of that t ransact ion.
Figure 4-8 shows an example of how objects are allocated to
t ransact ions. A client that does not have a t ransact ion creates an
object configured to require a t ransact ion. COM+ creates a new
t ransact ion for that object (Transact ion 1) , making it the root of the
t ransact ion. The object then creates five more objects, each with a
different t ransact ion configurat ion. The objects configured as
Disabled and Not Supported are placed outside Transact ion 1. The
objects market Supported and Required are placed in Transact ion 1.
However, the object configured as Requires New cannot share its
creator’s t ransact ion, so COM+ creates a new t ransact ion
(Transact ion 2) for that object .

Figure 4 - 8 . Allocat ing objects to t ransact ions based on their
configurat ion and the t ransact ion requirem ents of the creat ing object

4 .5 .1 Transact ion Disabled

When you configure a component with t ransact ion support set to
Disabled, the component never takes part in any t ransact ion. COM+
also does not consider t ransact ional configurat ion when deciding on
act ivat ion context for this com ponent or other com ponents it
creates. As a result , the object m ay or may not share its creator ’s
context , depending on the configurat ion of other serv ices.
You should be careful when m ixing t ransact ional objects with
nont ransact ional objects, as it can jeopardize isolat ion and
consistency. The nont ransact ional objects may have errors, but
because they are not part of the t ransact ion, they cannot affect

 104

t ransact ion outcom e (threatens consistency) . I n addit ion, the
nont ransact ional objects can act based on informat ion not yet
commit ted (threatens isolat ion) .
The Disabled t ransact ion support set t ing is useful in two situat ions.
The first situat ion is when you have no need for t ransact ions. The
second is when you want to provide custom behavior and you need
to perform your own programm at ic t ransact ion support or enlist
resources manually . Note that you are not allowed to vote on the
outcome of any COM+ transact ion; you have to manage your
t ransact ion yourself.

4 .5 .2 Transact ion Not Supported

When you configure a component with t ransact ion support set to
Not Supported, even though it never takes part in any t ransact ion,
COM+ takes into account t ransact ional configurat ion when deciding
on the act ivat ion context for this component or other components it
creates. As a result , the object shares it s creator ’s context only if
the creat ing object is also configured with Not Supported.
Not Supported is the default value when import ing a classic COM
component to COM+ . Transact ion support set to Not Supported is
useful when the operat ions performed by the component are nice to
have, but should not abort the t ransact ion that created them if the
operat ions fail. For example, in the ATM use case, pr int ing the
receipt is not a cr it ical operat ion. The withdrawal t ransact ion should
commit and the customer should get the bills even if the ATM was
unable to pr int a receipt . I n all other circumstances, t ransact ions
configured as Not Supported can jeopardize isolat ion and
consistency when m ixed with t ransact ional com ponents, for the
same reasons discussed when t ransact ion support is set to
Disabled.

4 .5 .3 Transact ion Supported

When you configure a component with t ransact ion support set to
Supported, the object joins that t ransact ion if the object ’s creat ing
client has a t ransact ion. I f the creat ing object does not have a
t ransact ion, the object does not take part in any t ransact ion.
Surpr isingly , this awkward set t ing can be useful. Imagine a
situat ion when you want to propagate a t ransact ion from the
creat ing client of your object to downst ream objects your object
creates, but your object has no use for t ransact ions itself. I f the
downst ream objects require t ransact ion support and you configure
your object to not require a t ransact ion, then the downst ream
objects will be placed in separate t ransact ions. Set t ing the
t ransact ion support to Supported allows you to propagate the
t ransact ion downstream . I n all other cases, you should avoid this
set t ing; it can jeopardize consistency and isolat ion when the

 105

creat ing client does not have a t ransact ion, but the downst ream
objects you create st ill require t ransact ion support and are placed in
t ransact ions separate from your client .
Even though the component may not have a direct need for
t ransact ion support , it st ill has to abide by t ransact ional com ponent
design guidelines (discussed later in this chapter) , which m ay be a
liabilit y if it does not require a t ransact ion. Use this set t ing
judiciously .

4 .5 .4 Transact ion Required

When you configure a component with t ransact ion support set to
Required, you state to COM+ that your com ponent requires a
t ransact ion to operat ion properly and that you have no object ion to
sharing your creator’s t ransact ion. I f the creat ing client has a
t ransact ion, the object joins it . I f the client does not have one,
COM+ must create a new t ransact ion for the object , m aking it the
root of the new t ransact ion.
Note that your component ’s code should operate ident ically when it
is the root and when it just takes part in a t ransact ion. There is no
way your object can tell the difference anyway.
Set t ing t ransact ion support to Required is by far the m ost
commonly used t ransact ion support set t ing for t ransact ional
components. Of course, the component must adhere to the design
requirements of a t ransact ional component .

4 .5 .5 Transact ion Requires New

When you configure a component with t ransact ion support set to
Requires New, an instance of your component is always the root of
a new t ransact ion, regardless of whether its creat ing client has a
t ransact ion or not . This set t ing is useful when you want to perform
t ransact ional work outside the scope of the creat ing t ransact ion.
Examples would be when you want to perform logging or audit
operat ion or when you want to publish events to subscribers,
regardless of whether your creat ing t ransact ion commits or aborts.
You should be extrem ely careful when using the Requires New
set t ing. Verify that the two t ransact ions (the creat ing t ransact ion
and the one created for your object) do not jeopardize consistency
if one aborts and the other com mits.
You can also use Requires New when you want your object to
cont rol the durat ion of the t ransact ion because once that object is
released, the t ransact ion ends.

4 .5 .6 Transact ion Support I DL Extension

When you import a COM component into the COM Explorer, COM+
selects Not Supported as the default configurat ion for your

 106

component ’s t ransact ion support . However, t ransact ion support is
an int r insic part of your COM+ com ponent design. COM+
components should specify in the IDL file what their required
t ransact ion support is, using a dedicated IDL extension. When you
import a COM+ component that uses the IDL extension into the
Component Services Explorer, COM+ uses the declared t ransact ion
support from the component ’s type library as the init ial value. You
can overr ide that value later . For example, if you use the
TRANSACTION_REQUIRED at t r ibute on your CoClass definit ion:
[
 uuid(94072015-7D6B-4811-BDB5-08983088D9C2),
 helpstring("MyComponent Class"),
 TRANSACTION_REQUIRED
]
coclass MyComponent
{
 [default] interface IMyInterface;
};
COM+ selects the Required set t ing for the com ponent when it is
imported to the Component Serv ices Explorer. The following
at t r ibutes are also available:

• TRANSACTION_NOT_SUPPORTED
• TRANSACTION_SUPPORTED
• TRANSACTION_REQUIRES_NEW

Note that there is no TRANSACTION_DISABLED at t r ibute because that
at t r ibute is used most ly when import ing exist ing COM components
to COM+ . To use these IDL extensions you have to include the
mtxat t r .h f ile in your IDL file.

ATL 7 Transact ion At t r ibute

I f you are using at t r ibuted ATL 7 project under Visual
Studio.NET, you can take advantage of precompiler-specific
support for COM+ 1.0 services, using special at t r ibutes. I f
you add a new class to your ATL 7 project and select "ATL
COM+ 1.0 Component" from the Add Class dialog, the wizard
will let you configure t ransact ion support for your class. Once
you select the t ransact ion support (for example, Required) ,
the at t r ibuted class will have a custom at t r ibute as part of its
declarat ion:
[coclass,
 //other attributes
 custom(TLBATTR_TRANS_REQUIRED,0)]
class MyComponent : IMyInterface
{
 //class declaration
}

 107

Before compiling your code, ATL 7 feeds your sources to a
special precompiler that parses the at t r ibutes and generates
convent ional, nonat t r ibuted ATL source files, including the
IDL file. The "new" sources are then fed to the convent ional
C+ + compiler . I n that process, the
TLBATTR_TRANS_REQUI RED custom at t r ibute is converted to
the IDL TRANSACTION_REQUIRED extension.

4 .6 Vot ing on a Transact ion

As ment ioned before, a t ransact ional object votes whether to
commit or abort the t ransact ion by set t ing the value of a bit in the
context object . That bit is called the consistency bit . The name is
appropr iate. Consistency is the only t ransact ion property under the
applicat ion’s objects cont rol. COM+ can manage atom icity and the
resource m anagers guarantee isolat ion and durabilit y, but only the
objects know whether the changes they make to the system state
are consistent or if they encounter errors that mer it abort ing the
t ransact ion.
When COM+ creates a t ransact ional object , it puts it in its own
private context and sets the context object consistency bit to TRUE.
As a result , if the object makes no explicit at tempt to set the
consistency bit to FALSE, the object ’s votes to commit the
t ransact ion.

An object can actually share its context with other
objects whose t ransact ion set t ing is set to
Disabled.

The object can set the value of the consistency bit by accessing the
context object and get t ing hold of IContextState interface, defined
as:
enum tagTransactionVote
{
 TxCommit= 0,
 TxAbort = TxCommit + 1
}TransactionVote;

interface IContextState : IUnknown
{
 HRESULT SetDeactivateOnReturn([in] BOOL bDeactivate);
 HRESULT GetDeactivateOnReturn([out]BOOL*
pbDeactivate);
 HRESULT SetMyTransactionVote ([in]TransactionVote
txVote);
 HRESULT GetMyTransactionVote ([out]TransactionVote*
ptxVote);
}

 108

IContextState is also discussed in Chapter 3, in the context of
deact ivat ing JITA objects. IContextState provides the method
SetMyTransactionVote() used to set the t ransact ion vote. You
can pass SetMyTransactionVote() the enum value TxCommit, if
you want to commit , or the enum value TxAbort, if you want to
abort the t ransact ion.
SetMyTransactionVote() returns CONTEXT_E_NOTRANSACTION
when called by a nontransact ional component .
Your object should vote to abort the t ransact ion when it encounters
an error that mer its abort ing the t ransact ion. I f all went well, your
object should vote to commit the t ransact ion. Exam ple 4-1 shows a
typical vot ing sequence. The object performs som e work (the
DoWork() method) and, according to it s success or failure, votes to
commit or abort the t ransact ion. I f your component decides to abort
the t ransact ion, it should return an error code indicat ing to its client
that it aborted the t ransact ion. The client can then decide to ret ry
the t ransact ional operat ion or handle the error some other way.
This is why the com ponent in Example 4-1 returns
CONTEXT_E_ABORTING from the method after abort ing the
t ransact ion. CONTEXT_E_ABORTING is the standard returned value
from a component that aborted a t ransact ion.

Exam ple 4 - 1 . Vot ing on the t ransact ion’s outcom e by accessing the
I ContextState interface and calling SetMyTransact ionVote()

STDMETHODIMP CMyComponent::MyMethod()
{
 HRESULT hres = S_OK;
 hres = DoWork();
 //Vote on the transaction outcome

 IContextState* pContextState = NULL;

::CoGetObjectContext(IID_IContextState,(void**)&pContextS
tate);
 ASSERT(pContextState!= NULL);//Not a configured
component

 if(FAILED(hres))
 {
 hres = pContextState-
>SetMyTransactionVote(TxAbort);
 ASSERT(hres != CONTEXT_E_NOTRANSACTION);//No
transaction support
 hres = CONTEXT_E_ABORTING;
 }
 else
 {

 109

 hres = pContextState-
>SetMyTransactionVote(TxCommit);
 ASSERT(hres != CONTEXT_E_NOTRANSACTION);//No
transaction support

 }
 pContextState->Release();
 return hres;
}
However, what should the client do if an inner object (not the root)
votes to abort the t ransact ion? The root object may not know that
an inner component has aborted the t ransact ion (and may st ill vote
to commit and return S_OK to the client) . I f S_OK is allowed to
return to the client , then the client never knows that its request was
aborted. To prevent this situat ion, the interceptor between the root
object and its client detects that the t ransact ion is already doomed
if an inner object votes to abort and the root object votes to comm it
and t r ies to return S_OK to the client ; it returns CONTEXT_E_ABORTED
to the client instead.

One interest ing point regarding t ransact ion
term inat ion involves except ions. Any unhandled
except ion in any object in the t ransact ion (not just
the root) term inates the t ransact ion im mediately.

4 .7 Transact ional Object Life Cycle

I f a t ransact ion aborts, the intermediate and potent ially inconsistent
state of the system should be rolled back to ensure consistency.
The system state is the data in the resource managers; it also
consists of the state of all the objects that took part in the
t ransact ion. An object ’s state is the data members it holds. I f the
object part icipated in an aborted t ransact ion, then that object ’s
state should be purged too. The object is not allowed to m aintain
that state, since it is the product of act iv it ies that were rolled back.
The problem is that once a t ransact ion ends, even if the object
votes to comm it , it does not know whether that t ransact ion will
actually comm it . The DTC st ill has to collect all the resource
managers’ votes, conduct the f irst phase of the two-phase commit
protocol, and ver ify that all of the resource m anagers vote to
commit the t ransact ion. While this process takes place, the object
must not accept any new client calls (as part of a new t ransact ion)
because the object would act on a system state that may roll back,
which would jeopardize consistency and isolat ion.
To enforce consistency and isolat ion, once a t ransact ion ends,
regardless of its outcom e, COM+ releases all t he objects that took

 110

part in it . COM+ does not count on objects’ having the discipline or
knowledge to do the r ight thing. Besides, even with good intent ions,
how would the objects know exact ly what part of their state to
purge?
However, even though the objects are deact ivated and released,
COM+ rem embers their posit ion in the general layout of the
t ransact ion: who the root was, who created whom, pointers
between objects, and the context , apartment , and process each
object belongs to.
When a new method call from the client comes into an object
(usually to the root object) that was deact ivated at the end of a
t ransact ion, COM+ creates a new t ransact ion for that method call
and a new instance of the object . COM+ then forwards the call to
the new instance. I f the object t r ies to access other objects in the
t ransact ion, COM+ re-creates them as well.
I n short , COM+ star ts a new t ransact ion with new objects in the
same t ransact ion layout , also called a t ransact ion st ream . The
t ransact ion itself is a t ransient , short - lived event ; the layout can
persist for long periods of t ime. Only when the client explicit ly
releases the root will the objects really be gone and the t ransact ion
layout dest royed.

4 .7 .1 State- Aw are Objects

Because COM+ dest roys any object that took part in a t ransact ion
at the end of the t ransact ion, t ransact ional objects have to be state-
aware, meaning they m anage their state act ively . A state-aware
object is not the same as a stateless object . First , as long as a
t ransact ion is in progress, the object is allowed to maintain state in
memory. Second, the object is allowed to maintain state between
t ransact ions, but the state cannot be stored in memory or in the
filesystem. Between t ransact ions, a t ransact ional object should
store its state in a resource m anager. When a new t ransact ion
star ts, the newly created object should ret r ieve its state from the
resource m anager. Accessing the resource manager causes it to
auto-enlist with that t ransact ion. When the t ransact ion ends, the
object should store its m odified state back in the resource manager.
Now here is why you should go though all this hassle: if the
t ransact ion aborts, the resource m anager will roll back all t he
changes made dur ing the t ransact ion— in this case, the changes
made to the object state. When a new t ransact ion starts, the object
again ret r ieves its state from the resource manager and has a
consistent state. I f the t ransact ion com mits, then the object has a
newly updated consistent state. So the object does have state, as
long as the object act ively manages it .
The only problem now is determ ining when the object should store
its state in the resource manager. When the object is created and

 111

placed in a t ransact ion, it is because som e other object (its client)
t r ies to invoke a m ethod call on the object . When the call returns, it
can be some t ime unt il the next method call. Between the two
method invocat ions, the root object can be released or deact ivated,
ending the t ransact ion. COM+ releases the object , and the object
would be gone without ever stor ing its state back to the resource
manager.
The only solut ion for the object is to ret r ieve its state at the
beginning of every method call and save it back to the resource
manager at the end of the method call. From the object ’s
perspect ive, it must assume that the scope of every t ransact ion is
the scope of one method call on it and that the t ransact ion would
end when the method returns. The object m ust therefore also vote
on the t ransact ion’s outcome at the end of every method.
Because from the object ’s perspect ive every m ethod call represents
a new t ransact ion, and because the object must ret r ieve its state
from the resource m anager, every m ethod definit ion m ust contain
some parameters that allow the object to find its state in the
resource m anager. Because m any objects could be of the same type
accessing the same resource manager, the object must have some
key that ident ifies its state. That key must be provided by the
object ’s client . Typical object ident if iers are account numbers and
order numbers. For example, the client creates a new t ransact ional
order-processing object , and on every method call the client must
provide the order num ber as a param eter, in addit ion to other
parameters. Between method calls, COM+ destroys and re-creates
a new instance to serve the client . The client does not know the
difference because the two instances have the same consistent
state.
Example 4-2 shows a generic implementat ion of a method on a
t ransact ional object . A t ransact ional object must ret r ieve its state at
the beginning of every method and save its state at the end. The
object uses an object ident if ier prov ided by the client to get and
save its state.
The m ethod signature contains an object ident if ier parameter used
to get the state from a resource manager with the GetState()
helper m ethod. The object then performs its work using the
DoWork() helper method. Then the object saves its state back to
the resource manager using the SaveState() m ethod, specify ing
its ident ifier . Finally, the object votes on the t ransact ion outcome
based of the success of the DoWork() method.

Exam ple 4 - 2 . I m plem ent ing a m ethod on a t ransact ional object

STDMETHODIMP CMyComponent::MyMethod(PARAM
objectIdentifier)
{
 HRESULT hres = S_OK;

 112

 GetState(objectIdentifier);
 hres = DoWork();
 SaveState(objectIdentifier);
//Vote on the transaction outcome
 IContextState* pContextState = NULL;

::CoGetObjectContext(IID_IContextState,(void**)&pContextS
tate);
 ASSERT(pContextState!= NULL);//Not a configured
component

 if(FAILED(hres))
 {
 hres = pContextState-
>SetMyTransactionVote(TxAbort);
 ASSERT(hres != CONTEXT_E_NOTRANSACTION);//No
transaction support
 hres = CONTEXT_E_ABORTING;
 }
 else
 {
 hres = pContextState-
>SetMyTransactionVote(TxCommit);
 ASSERT(hres != CONTEXT_E_NOTRANSACTION);//No
transaction support

 }
 pContextState->Release();
 return hres;
}
Note that not all of the object ’s state can be saved by value to the
resource m anager. I f the state contains pointers to other COM+
objects, GetState() should create those objects and SaveState(
) should release them . Sim ilar ly, if the state contains such
resources as database connect ion, GetState() should acquire a
new connect ion and SaveState() should release the connect ion.

4 .7 .2 Transact ions and JI TA

I f the object goes through the t rouble of ret r ieving its state and
saving it on every m ethod call, why wait unt il the end of the
t ransact ion to dest roy the object? The t ransact ional object should
be able to signal to COM+ that it can be deact ivated at the end of
the method call, even though the t ransact ion may not be over yet .
I f the object is deact ivated between method calls, COM+ should re-
create the object when a new method call from the client com es in.
The behavioral requirem ents for a state-aware t ransact ional object
and the requirements of a well-behaved JITA object are the same.
As discussed in Chapter 3, a well-behaved JITA object should

 113

deact ivate itself at method boundar ies, as well as ret r ieve and store
its state on every method call. Since COM+ already has an efficient
mechanism for cont rolling object act ivat ion and deact ivat ion (JITA) ,
it m akes perfect sense to use JITA to manage dest roying the
t ransact ional object and reconnect ing it to the client , as explained in
Chapter 3.
Every COM+ t ransact ional component is also a JITA component .
When you configure your component to require a t ransact ion
(including Supported) , COM+ configures the component to require
JITA as well. You cannot configure your component to not require
JITA because COM+ disables the JITA checkbox.
At the end of a method call, like any other JITA object , your
t ransact ional object can call
IContextState::SetDeactivateOnReturn() to set the value of
the done bit in the context object to TRUE, signaling to COM+ to
deact ivate it , as shown in Example 4-3.

Exam ple 4 - 3 . A t ransact ional object deact ivat ing itself at the end of the
m ethod

STDMETHODIMP CMyComponent::MyMethod(PARAM
objectIdentifier)
{
 HRESULT hres = S_OK;
 GetState(objectIdentifier);
 hres = DoWork();
 SaveState(objectIdentifier);

 IContextState* pContextState = NULL;

::CoGetObjectContext(IID_IContextState,(void**)&pContextS
tate);
 ASSERT(pContextState!= NULL);//Not a configured
component

 if(FAILED(hres))
 {
 hres = pContextState-
>SetMyTransactionVote(TxAbort);
 ASSERT(hres != CONTEXT_E_NOTRANSACTION);//No
transaction support
 hres = CONTEXT_E_ABORTING;
 }
 else
 {
 hres = pContextState-
>SetMyTransactionVote(TxCommit);
 ASSERT(hres != CONTEXT_E_NOTRANSACTION);//No
transaction support

 114

 }
 hres = pContextState->SetDeactivateOnReturn(TRUE);
 pContextState->Release();
 return hres;
}
The done bit is set to FALSE by default . I f you never set it to TRUE,
your object is dest royed only at the end of the t ransact ion or when
its client releases it . I f the object is the root of a t ransact ion, self-
deact ivat ion signals to COM+ the end of the t ransact ion, j ust as if
the client released the root object . Of course, by combining
t ransact ions with JI TA you gain all the benefits of JITA: im proved
applicat ion scalabilit y, throughput , and reliabilit y.

4 .7 .3 Collect ing Objects’ Votes

Using JITA has a side effect on your object ’s t ransact ion vote. When
the object is deact ivated, the t ransact ion could end while the object
is not around to vote. Thus, the object must vote before
deact ivat ing itself. When a method call returns, COM+ checks the
value of the done bit . I f it is TRUE, COM+ checks the value of the
consistency bit , the object ’s vote.
COM+ collects the objects’ votes during the t ransact ion. Each
t ransact ion has a doom ed flag, which if set to TRUE dooms a
t ransact ion to abort . COM+ sets the value of a new t ransact ion’s
doom ed flag to FALSE.
When an object is deact ivated and its vote was to commit , COM+
does not change the current value of the doomed flag. Only if the
vote was to abort will COM+ change the doomed flag to TRUE. As a
result , once set to TRUE, the doomed flag value will never be FALSE
again, and the t ransact ion is t ruly doomed.
When the root object is deact ivated/ released, COM+ star ts the two-
phase commit protocol only if t he doomed flag is set to FALSE. Note
that COM+ does not waste t ime at the end of a t ransact ion polling
objects for their vote. COM+ already knows their vote via the
doom ed flag.

4 .7 .4 The I ObjectContext I nterface

The context object supports a legacy MTS interface, called
IObjectContext, defined as:
interface IObjectContext : IUnknown
{
 HRESULT CreateInstance([in]GUID* rclsid,[in] GUID*
riid,[out,retval]void** ppv);
 HRESULT SetComplete();
 HRESULT SetAbort();
 HRESULT EnableCommit();
 HRESULT DisableCommit();

 115

 BOOL IsInTransaction();
 BOOL IsSecurityEnabled();
 HRESULT IsCallerInRole([in]BSTR
bstrRole,[out,retval]BOOL* pfIsInRole);
};
IObjectContext is worth ment ioning only because most of the
COM+ documentat ion and examples st ill use it instead of the new
COM+ inter face, IContextState.
IObjectContext has two methods used to vote on a t ransact ion
outcome and to control object deact ivat ion. Calling SetComplete()
sets the consistency and done bits to TRUE. SetComplete() sets
the vote to commit and gets the object deact ivated once the
method returns. SetAbort() sets the vote to abort the t ransact ion
and sets the done bit to TRUE, causing the object to deact ivate
when the method returns. COM+ objects should avoid using
IObjectContext and should use IContextState instead.
IContextState is f ine- tuned for COM+ because it sets one bit at a
t ime. I t also verifies the presence of a t ransact ion— it returns an
error if the object is not part of a t ransact ion.
COM+ objects writ ten in VB 6.0 have no way of accessing
IContextState direct ly. They have to go through IObjectContext
first and query it for IContextState, as shown in Example 4-4.
Objects writ ten in Visual Basic.NET can access IContextState
direct ly.

Exam ple 4 - 4 . Querying I ObjectContext for I ContextState

Dim objectContext As ObjectContext
Dim contextState As IContextState

Set objectContext = GetObjectContext

’QueryInterface for IContextState:
Set contextState = objectContext
contextState.SetMyTransactionVote TxCommit

4 .7 .5 Method Auto- Deact ivat ion

As shown in Chapter 3, you can configure any method on a JITA
object to autom at ically deact ivate the object when it returns.
Configuring the method to use auto-deact ivat ion changes the done
bit from its default value of FALSE to TRUE. Because the default
value for the consistency bit is TRUE, unless you change the context
object bits programmat ically, auto-deact ivat ion automat ically
results in a vote to commit the t ransact ion.
However, COM+ examines the HRESULT that the method returns. I f
the HRESULT indicates failure, then the interceptor sets the

 116

consistency bit to FALSE, as if you voted to abort . This behavior
gives you a new programming model for vot ing and deact ivat ing
your object : if you select auto-deact ivat ion for a method, don’t take
any effort to set any context object bits. I nstead, use the method’s
returned HRESULT:

• I f it is S_OK, it is as though you voted to commit . (S_FALSE
would also vote to com mit .)

• I f it indicates failure, it is as though you voted to abort .

When you use auto-deact ivat ion, the programming model becomes
much more elegant and concise, and shown in Example 4-5. With
auto-deact ivat ion, the object does not have to explicit ly vote on the
t ransact ion’s outcom e or deact ivate itself. Compare this with
Example 4-3. Both have the same effect , but note how elegant ,
readable, and concise Example 4-5 is.

Exam ple 4 - 5 . Using m ethod auto-deact ivat ion

STDMETHODIMP CMyComponent::MyMethod(PARAM
objectIdentifier)
{
 HRESULT hres = S_OK;
 GetState(objectIdentifier);
 hres = DoWork();
 SaveState(objectIdentifier);
 return hres;
}
Addit ionally, the object ’s client should exam ine the returned
HRESULT. I f it indicates failure, then it also indicates that the object
voted to abort the t ransact ion; the client should not waste any
more t ime on the t ransact ion because it is doom ed.

4 .7 .6 Object Life Cycle Exam ple

The following simple example demonst rates the important concepts
discussed in this sect ion. Suppose a nontransact ional client creates
Object A, configured with t ransact ion support set to Required.
Object A creates Object B, which also requires a t ransact ion. The
developers of Object A and Object B wrote the code so that the
objects vote and get themselves deact ivated on method boundar ies.
The client calls two methods on Object A and releases it . Object A
then releases Object B.
When the client creates Object A, COM+ notes that the client does
not have a t ransact ion and that Object A needs t ransact ion support ,
so COM+ creates a new t ransact ion for it , making Object A the root
of that t ransact ion. Object A then goes on to create Object B, and
Object B shares Object A’s t ransact ion. Note that Object B is in a

 117

separate context because t ransact ional objects cannot share a
context . Now the t ransact ion layout is established. The t ransact ion
layout persists unt il the client releases Object A, the root of this
t ransact ion. Note that both the client and the objects have
references to cross-context interceptors, not to actual objects.
While a call from the client is in progress, both objects exist (see
Figure 4-9) and the t ransact ion layout hosts an actual t ransact ion.

Figure 4 -9 . Transact ion layout w hile a t ransact ion is in progress

However, between the two m ethod calls from the client , only the
t ransact ion layout is maintained; no objects or a t ransact ion are in
progress, only interceptors and contexts (see Figure 4-10) . When
the second call com es in, COM+ creates Object A, and Object A
ret r ieves its state from the resource manager. When Object A
accesses Object B to help it process the client request , COM+
creates Object B and hooks it up with the interceptor Object A is
using (see Figure 4-9) . When the call comes to Object B, it t oo
ret r ieves its state from the resource manager. When the method
returns from Object B, Object B deact ivates itself; when the method
returns to the client , Object A deact ivates itself. When the client
releases its reference to Object A, the t ransact ion layout is
dest royed, along with the contexts and the interceptors.

Figure 4 -1 0 . Transact ion layout betw een m ethod calls

 118

4 .8 Designing Transact ional Com ponents

I ncorporat ing correct t ransact ion support in your component is an
integral part of your design and cannot be done as an afterthought .
Support ing t ransact ions is far from sim ply select ing the correct
radio but ton in the Component Serv ices Explorer . In part icular , your
object has to be state-aware, act ively manage its state, and control
its own act ivat ion and deact ivat ion, as described in previous
sect ions. You should also design your interfaces to support
t ransact ions and to acquire resources in a part icular order.

4 .8 .1 Designing Transact ional I nterfaces

I nter face design is an im portant factor in designing t ransact ional
components. From the object ’s perspect ive, method calls demarcate
t ransact ions, so you should avoid coupling interface methods to
each other. Each m ethod should contain enough parameters for the
object to perform its work and decide whether the t ransact ion
should commit or abort . In theory, you could build a t ransact ional
component that votes on the t ransact ion outcome only after
receiving a few method calls. However, in pract ice, a t ransact ion
should not span m ult iple method calls. You already saw that a
t ransact ional object uses JITA and should deact ivate itself at
method boundar ies. COM+ checks the object ’s vote once it is
deact ivated. I f the inter face the object implem ents requires more
than one method call for the object to decide on its vote, then the
object could not deact ivate itself; it m ust wait for another call from
the client . What should the object do if the t ransact ion suddenly
ends (because the root was deact ivated or the t ransact ion t imed
out) and the ant icipated call from the client never comes?
Wait ing for addit ional informat ion from the client has a serious
effect on overall applicat ion throughput . While your t ransact ion is in
progress, the resource managers involved lock out all other

 119

t ransact ions from the data being m odified by your t ransact ion. The
other t ransact ions are blocked unt il your t ransact ion commits or
aborts. The longer you wait for client calls that may never come,
the more your applicat ion’s throughput will suffer.
Consider, for example, a poorly designed interface used to handle
customer orders:
[
 helpstring("Bad design of IOrder interface"),
]
interface IOrder : IUnknown
{
 HRESULT SetOrder([in]DWORD dwOrderNumber);
 HRESULT SetItem([in]DWORD dwItemNumber);
 HRESULT SetCustomerAccount([in]DWORD
dwCustomerAccount);
 HRESULT ProcessOrder();
};
The interface designer intends for the client to call t he Set()
methods, supplying the object with the order param eters, and then
call ProcessOrder(). The problem with this design is that the
t ransact ional object cannot vote on the t ransact ion outcom e unless
the client calls all the Set() methods and then the ProcessOrder(
) method, in that sequence. There is no clear delineat ion of
t ransact ion boundaries in this interface design.
The correct way to design the interface while maintaining
t ransact ion semant ics is:
[
 helpstring("Correct design of IOrder interface"),
]
interface IOrder : IUnknown
{
 HRESULT ProcessOrder([in]DWORD dwOrderNumber,[in]DWORD
dwItemNumber,
 [in]DWORD dwCustomerAccount);
};
This interface is also a lot easier to im plem ent . The order number is
used to ident ify the object and allow it t o ret r ieve its corresponding
state from the resource manager— in this case, the orders database:
STDMETHODIMP COrder::ProcessOrder(DWORD
dwOrderNumber,DWORD wItemNumber,
 DWORD
dwCustomerAccount)
{
 HRESULT hres = S_OK;
 GetState(dwOrderNumber);//retrieve the state of the
corresponding
 //order object
 hres = DoProcessOrder(wItemNumber,dwCustomerAccount);
 SaveState(dwOrderNumber);

 120

 // Using auto-deactivation. No need to vote
explicitly.
 return hres;
}
The second interface design yields bet ter performance as well,
because there are fewer calls to the object from the client machine,
which may be across the network.

4 .8 .2 Acquir ing Resources

Suppose you have two t ransact ions, T1 and T2, that execute in
parallel, and both require access to two resource managers, RM1
and RM2. Suppose T1 has acquired RM1, and T2 has acquired RM2.
What would happen if T1 t r ies to access RM2, and T2 t r ies to access
RM1? You would have a deadlock. Neither t ransact ion is able to
proceed. Each needs a resource the other holds to complete its
work. Each is blocked and never frees the resource manager it
holds.
The solut ion to this deadly embrace is to be m indful about the order
in which objects in your t ransact ion t ry to acquire resources. You
can avoid the deadlock by always t ry ing to acquire the resources in
the same order. I n the previous example, if both t ransact ions t ry to
acquire RM1 and then RM2, then the first one to actually acquire
RM1 will cont inue on to acquire RM2; the second t ransact ion will be
blocked, as it waits for RM1 to be released.

4 .9 Nontransact ional Clients

Consider the situat ion in which a nont ransact ional client creates a
few t ransact ional objects, all configured to require t ransact ions. The
client would like to scope all it s interact ions with the objects it
creates under one transact ion— in essence, to funct ion like the root
of that t ransact ion. The problem is that the client is not configured
to require t ransact ions (maybe it is a legacy component or maybe it
is not even a component , such as a form or a script client) , so it
cannot have a t ransact ion to include the objects it creates. On the
other hand, the objects require t ransact ion support to operate
proper ly, so for every object the client creates, COM+ creates a
t ransact ion. As a result , even if the client intended to com bine the
work of mult iple COM+ objects into a single t ransact ion, the net
result would be mult iple t ransact ions (see Figure 4-11) . The real
problem now is that each t ransact ion can commit or abort
independent ly. The operat ions the client perform s on the system
(using the objects) are no longer atom ic, so the client jeopardizes
system consistency. Furthermore, even if all objects were under one

 121

t ransact ion, how would the client vote to commit or abort that
t ransact ion?

Figure 4 - 1 1 . A nont ransact ional client ends up w ith m ult iple t ransact ions
instead of one

There is an elegant and sim ple solut ion to this predicam ent . The
solut ion is to int roduce a m iddleman— a t ransact ional component
that creates the objects on behalf of the client . The m iddleman
creates the objects and returns inter face pointers back to the client .
The m iddleman objects also should provide the client with abilit y to
commit or abort the t ransact ion.
These m iddlem an requirements are gener ic. Therefore, COM+
provides a readymade m iddleman called the t ransact ion context
component . As part of the COM+ Ut ilit ies applicat ion, COM+
provides two components (one for VB 6.0 and one for C+ +) , each
support ing a slight ly different interface. A VB 6.0 client should use
the ITransactionContext interface, creatable via the prog- ID
TxCtx.TransactionContext (or the class name
TransactionContext) . A C+ + client should use the
ITransactionContextEx inter face, which is creatable via the class
ID CLSID_TransactionContextEx.
The two interfaces are defined as:
interface ITransactionContext : IDispatch
{
 HRESULT CreateInstance([in]BSTR pszProgId,[out,
retval]VARIANT* pObject);
 HRESULT Commit();
 HRESULT Abort();
};
interface ITransactionContextEx : IUnknown
{
 HRESULT CreateInstance([in]GUID* rclsid,[in]IID* riid,
 [out,retval]void** pObject);
 HRESULT Commit();

 122

 HRESULT Abort();
};
These inter faces allow the client to create new component instances
and com mit or abort the t ransact ion. The two t ransact ion context
components are configured to require a new t ransact ion, so they
are always the root of that t ransact ion. This configurat ion also
prevents you from m isusing the t ransact ion context objects by
enlist ing them in an exist ing t ransact ion. All objects created by the
t ransact ion context object share the same t ransact ion (see Figure
4-12) .

Figure 4 - 1 2 . Using a m iddlem an, a nont ransact ional client ends up w ith
one t ransact ion

All the client has to do is create the t ransact ion context object , and
then use it to create the other objects v ia the CreateInstance()
method. I f the client wants to commit the t ransact ion, it m ust
explicit ly call the Commit() m ethod. Once the client calls the
Commit() method, the t ransact ion ends on return from the
Commit() method. I f one of the internal objects votes to abort the
t ransact ion before the client calls Commit(), the client ’s call to
Commit() returns with the error code of CONTEXT_E_ABORT,
indicat ing that the t ransact ion was already aborted. The client can
chose to start a new t ransact ion or handle the error in some other
manner.
I f the client does not call Commit(), the t ransact ion is aborted,
even if all the part icipat ing objects voted to commit . This abort ion is
intent ional, to force the client to voice its opinion on the work done
by the objects it created. Only the client knows whether their
combined work was consistent and legit imate. Apparent ly , when the
client creates the t ransact ion context object , the t ransact ion context
object sets the consistency bit to FALSE and never deact ivates itself.
As a result , t he t ransact ion is doomed unless the client calls

 123

Commit(), which causes the t ransact ion context object to change
the bit back to TRUE and deact ivate itself, thus ending the
t ransact ion.
The client can abort the combined t ransact ion by calling the Abort(
) method. The t ransact ion ends on return from the Abort()
method. The client is also responsible for releasing the references it
has on the internal objects created by the t ransact ion context
object . I t is a good pract ice to do so even though these objects are
released when the t ransact ion ends.
Example 4-6 shows how to use the t ransact ion context object . I n
the example, the client creates the t ransact ion context object and
then uses it to create three t ransact ional objects (as in Figure 4-
12) . The client votes to comm it or abort the t ransact ion, based on
the combined success of the method invocat ions on the three
objects.

Exam ple 4 - 6 . Using the t ransact ion context object to create three
t ransact ional objects

HRESULT hres1 = S_OK;
HRESULT hres2 = S_OK;
HRESULT hres3 = S_OK;

IMyInterface* pObj1= NULL;
IMyInterface* pObj2= NULL;
IMyInterface* pObj3= NULL;
ITransactionContextEx* pTransContext = NULL;

::CoCreateInstance(CLSID_TransactionContextEx,NULL,CLSCTX
_ALL,

IID_ITransactionContextEx,(void**)&pTransContext);

pTransContext-
>CreateInstance(CLSID_MyComponent,IID_IMyInterface,(void*
*)&pObj1);
pTransContext-
>CreateInstance(CLSID_MyComponent,IID_IMyInterface,(void*
*)&pObj2);
pTransContext-
>CreateInstance(CLSID_MyComponent,IID_IMyInterface,(void*
*)&pObj3);

hres1 = pObj1->MyMethod();
hres2 = pObj2->MyMethod();
hres3 = pObj3->MyMethod();

if(S_OK == hres1 && S_OK == hres2 && S_OK == hres3)
 pTransContext->Commit();
else

 124

 pTransContext->Abort();

pObj1->Release();
pObj2->Release();
pObj3->Release();
pTransContext->Release();

4 .1 0 Transact ions and Object Pooling

As discussed in Chapter 3, to speed up performance, your pooled
object acquires expensive resources, such as database connect ions,
at creat ion t ime and holds onto them while pooled. The problem is
that one of the requirements for resource managers is auto-
enlistm ent in t ransact ions. When an object creates a resource such
as a database connect ion, the connect ion (actually the resource
manager) auto-enlists with the object ’s t ransact ion. A pooled object
only creates the resources once, and then the object is called out of
the pool to serve clients. Every t ime the object is ret r ieved from the
pool, it could potent ially be part of a different t ransact ion. I f the
pooled object is forced to re-create the expensive resources it holds
to allow them to auto-enlist , that would negate the whole point of
using object pooling.
Unfortunately, the only way to com bine t ransact ions with a pooled
object that holds references to resource managers is to give up on
auto-enlistment . The pooled object has to manually enlist the
resources it holds in the t ransact ions it part icipates with.
The pooled object must follow these steps:

1. The object must im plement the IObjectControl interface.
The object needs to manually enlist the resource managers it
holds when it is placed in an act ivat ion context in it s
implementat ion of IObjectControl::Activate(). The
object also needs to perform operat ions in
IObjectControl::Deactivate() and
IObjectControl::CanBePooled(), explained later .

2. After creat ing the connect ion to the resource manager, the
pooled object turns off the resource manager’s auto-
enlistm ent . This step requires programming against the
resource m anager API . All resource managers support this
funct ionality, although in slight ly different ways and syntax.

3. When the object is called out of the pool to serve a client and
is placed in a COM+ context , it must detect whether a
t ransact ion is in progress. This detect ion is done either by
calling IObjectContextInfo::IsInTransaction() or calling
IObjectContextInfo::GetTransactionId(). I f t he context
the object is placed in is not part of a t ransact ion, the

 125

returned t ransact ion ID is GUID_NULL. I f a t ransact ion is in
progress, the object must m anually enlist any resource
manager it holds. Enlist ing manually is done in a resource-
specific m anner. For example, in ODBC, the object should call
SQLSetConnectAttr() with the
SQL_COPT_SS_ENLIST_IN_DTC at t r ibute.

Note that IObjectControl::Activate() is called before the
actual call from the client is allowed to access the object . The
client call is executed against an object with enlisted resource
managers.

4. The object must reflect the current state of its resources and
indicate in IObjectControl::CanBePooled() when it can’t
be reused (if a connect ion is bad) . Returning FALSE from
CanBePooled() dooms a t ransact ion.

Clearly , m ixing resource managers with pooled objects is not for the
faint of heart . Besides labor ious programming, m anually enlist ing all
resources the object holds every t ime the object is called from the
pool implies a needless performance penalty if the object is called to
serve a client in the same t ransact ion as the previous act ivat ion.
COM+ is aware of the perform ance penalty and it provides a sim ple
solut ion. As you saw in Chapter 3, COM+ maintains a pool per
component type. However, if a com ponent is configured to use
object pooling and require a t ransact ion, COM+ m aintains
t ransact ion-specific pools for objects of that type.
COM+ actually opt im izes object pooling: when the client request ing
an object has a t ransact ion associated with it , COM+ scans the pool
for an available object that is already associated with that
t ransact ion. I f an object with the r ight t ransact ion aff inity is found,
it is returned to the client . Otherwise, an object from the general
pool is returned. In essence, this situat ion is equivalent to
maintaining special subpools containing objects with aff init y for a
part icular t ransact ion in progress. Once the t ransact ion ends, the
objects from that t ransact ion’s pool are returned to the general pool
with no t ransact ion affinity , ready to serve any client .
With this feature, a t ransact ional-pooled object can relieve the
performance penalt y. Before manually enlist ing its resources in a
t ransact ion, it should first check to see whether it has already
enlisted them in that t ransact ion. I f so, there is no need to enlist
them again. Your object can achieve that by keeping t rack of the
last t ransact ion ID and compar ing it to the current t ransact ion ID
using IObjectContextInfo::GetTransactionId().
Example 4-7 shows a pooled object that takes advantage of COM+
subpooling. In the object ’s im plementat ion of
IObjectControl::Activate(), it gets the current t ransact ion ID.

 126

The object verifies that a t ransact ion is in progress (the t ransact ion
ID is not GUID_NULL) and that the current t ransact ion ID is different
from the t ransact ion ID saved dur ing the previous act ivat ion. I f t his
t ransact ion is new, then the object enlists a resource manager it
holds m anually. To manually enlist the resource, the object passes
the current t ransact ion object (in the form of ITransaction*) to
the private helper method EnlistResource().
The object saves the current t ransact ion ID in its implementat ion of
IObjectControl::Deactivate(). The object uses the private
helper m ethod IsResourceOK() in
IObjectControl::CanBePooled() to ver ify that it returns to the
pool only if the resource manager is in a consistent state.

Exam ple 4 - 7 . A t ransact ional pooled object m anually enlist ing a resource
m anager it holds betw een act ivat ions

HRESULT CMyPooledObj::Activate()
{
 HRESULT hres = S_OK;
 GUID guidCurrentTras = GUID_NULL;
 hres = ::CoGetObjectContext(IID_IObjectContextInfo,

(void**)&m_pObjectContextInfo);

 hres = m_pObjectContextInfo-
>GetTransactionId(&guidCurrentTras);
 if(guidCurrentTras!= GUID_NULL && guidCurrentTras !=
m_guidLastTrans)
 {
 ITransaction* pTransaction = NULL;
 hres = m_pObjectContextInfo-
>GetTransaction(&pTransaction);
 hres = EnlistResource(pTransaction);//Helper Method
 }
 return hres;
}
void CMyPooledObj::Deactivate()
{
 //Save the current transaction ID
 m_pObjectContextInfo-
>GetTransactionId(&m_guidLastTrans);
 //if no transaction, m_guidLastTrans will be GUID_NULL
 m_pObjectContextInfo->Release();
}
BOOL CMyPooledObj::CanBePooled()
{
 return IsResourceOK();//Helper Method
}

 127

Note that though the object is a t ransact ional object , it maintains
state across t ransact ions and act ivat ions. This maintenance is
possible because the object is not really dest royed (only returned to
the pool) and its internal state does not jeopardize system
consistency.
COM+ does subpooling regardless of whether your t ransact ional-
pooled object manages its own resource managers. I f your
t ransact ional-pooled object does not manually enlist resource
managers, then you can just ignore the subpooling.

4 .1 1 Com pensat ing Transact ions

Some business operat ions have a logical undo. Consider the way
banks handle bad checks. When you deposit a bad check at the
ATM, the bank adds the amount of the check to your account . When
the bank discovers the check is bad, it undoes the deposit by
deduct ing an ident ical amount from your account and returns the
check to you in the mail. This logical undo is called a compensat ing
t ransact ion. Not every t ransact ion has a compensat ing t ransact ion,
but if it does, you should use caut ion when incorporat ing
compensat ing t ransact ions into your applicat ion. I t is very t r icky to
use compensat ing t ransact ions without jeopardizing system
consistency. For example, imagine that after deposit ing the check,
you apply for a loan. The bank’s loan consultant checks your
balance and decides to grant you the loan based on the new
increased balance. Once the bank executes the compensat ing
t ransact ion, the system is in an inconsistent state— the account
balance is correct , but a loan program is in progress— one that
should not have been launched based on the corrected balance. The
bank could, of course, perform a compensat ing t ransact ion for the
loan applicat ion, except that in the meant im e you m ight have used
that loan to star t a new business, and so on. As you can see, once
the cat is out of the bag, it is diff icult to com pensate in a
comprehensive and consistent manner.
I f compensat ing t ransact ions are bad, why bother with them at all?
Compensat ing t ransact ions are necessary because they enable you
to deal efficient ly with t ransact ions whose normal execut ion t im e is
unacceptable. Even though the bad check may bounce after two
days, the bank does not expect a customer to wait at the ATM for
two days unt il t he check is cleared. Addit ionally , it is unrealist ic to
keep a lock on the customer's account for two days because no
other operat ion on the account can take place unt il the deposit ing
t ransact ion is done. The bank has to take the chance and use a
compensat ing t ransact ion as a safety net . The bank, in this case,
t rades t ransact ion throughput for a small, calculated r isk in system
consistency.

 128

I n general, compensat ing t ransact ions are useful when the
t ransact ion for which they compensate is potent ially long.
Compensat ing t ransact ions offer a high throughput alternat ive,
allowing you to maintain locks in the resource m anagers for a
m inimum am ount of t ime.

4 .1 2 Transact ion Execut ion Tim e

Transact ion execut ion t im e should be m inimal. The reason is
obvious: a t ransact ion occupies expensive resources. As long as the
t ransact ion executes, no other t ransact ion can access those
resources. Every resource manager the t ransact ion accesses has to
lock relevant data, isolat ing that t ransact ion from the rest of the
world. As long as the locks are held, nobody else can access the
data. The more t ransact ions per second your applicat ion can
process, the bet ter its scalabilit y and throughput .
Transact ion execut ion usually requires, at most , a few seconds. For
lengthy operat ions, consider using a short t ransact ion backed up by
a compensat ing t ransact ion.
COM+ allows you to configure a maximum execut ion t im e for your
t ransact ions. I f your t ransact ion reaches that t imeout , COM+ aborts
it automat ically. Transact ion t imeouts prevent resource manager
deadlocks from hanging the system. Eventually, one of the two
t ransact ions deadlocking each other would reach the t imeout and
abort , allowing the other t ransact ion to proceed.
You can configure two kinds of t ransact ion t imeouts. The first is a
machine-wide parameter called the global t ransact ion t imeout . The
global t im eout applies to all t ransact ions on that machine. You
configure the global t imeout by r ight -click ing on the My Computer
icon in the Component Services Explorer , select ing Propert ies from
the context menu, and select ing the Opt ions tab (see Figure 4-13) .
The default t im eout is set to 60 seconds, but you can set it to any
value you like, up to 999 seconds. A global t im eout set to zero
means an infinite t imeout . Transact ions on that machine never t ime
out . I nfinite t imeout is useful most ly for debugging, when you want
to t ry to isolate a problem in your business logic by stepping
through your code and you do not want the t ransact ion you debug
to t im e out while you figure out the problem. Be ext rem ely careful
with infinite t imeout in all other cases because it means there are
no safeguards against t ransact ion deadlocks.

Figure 4 -1 3 . Set t ing global t ransact ion t im eout

 129

You can also configure t ransact ion t imeout at the component level,
on its Transact ions tab. Component - level t ransact ion t im eout is
disabled by default , and you have to explicit ly enable it .
Component - level t ransact ion t im eout means that any t ransact ion
this component is part of must end within the t ime specified, or else
COM+ aborts it . Obviously, the component - level t imeout is effect ive
only if it is less than the global t imeout . The default component -
level t im eout is set by COM+ to zero, which indicates infinit y. You
can use component - level t imeout in two cases. The first case is
during development , when you want to test the way your
applicat ion handles aborted t ransact ions. By set t ing the component-
level t im eout to a small value (such as one second) , you cause your
t ransact ion to fail and can thus observe your error handling code.
The second case in which you set the component - level t ransact ion
t imeout to be less than the global t im eout is when you believe that
the component is involved in m ore than its fair share of resource
content ion, result ing in deadlocks. In that case, you should abort
the t ransact ion as soon as possible and not wait for the global
t imeout to expire.

4 .1 3 Tracing Transact ions

Somet im es, during development , or perhaps during deployment for
logging purposes, you may want to t race the current t ransact ion ID
under which your object executes. COM+ provides you with two
ways to ret r ieve the t ransact ion ID, programmat ically and
adm inist rat ively, using the Component Services Explorer .
To t race the current t ransact ion ID programm at ically, you should
use IObjectContextInfo::GetTransactionId(). Example 4-8
shows how to t race the current t ransact ion ID to the output window
in the debugger.

Exam ple 4 - 8 . Tracing the current t ransact ion I D to the output w indow

 130

HRESULT hres = S_OK;
GUID guidTransactionID = GUID_NULL;
IObjectContextInfo* pObjectContextInfo = NULL;

hres = ::CoGetObjectContext(IID_IObjectContextInfo,
 (void**)&pObjectContextInfo);

ASSERT(pObjectContextInfo != NULL); //a non-configure
object maybe?

hres = pObjectContextInfo-
>GetTransactionId(&guidTransactionID);

pObjectContextInfo->Release();

if(guidTransactionID == GUID_NULL)
{
 ATLTRACE("The object does not take part in a
transaction");
}
else
{
 USES_CONVERSION;
 WCHAR pwsGUID[150];
 ::StringFromGUID2(guidTransactionID,pwsGUID,150);
 ATLTRACE("The object takes place in transaction with
ID %s ",W2A(pwsGUID));
}
As long as a t ransact ion is in progress, you can v iew its t ransact ion
ID in the Component Services Explorer when using the
adm inist rat ive m ethod. Under the My Computer icon in the
Component Services Explorer is the Dist r ibuted Transact ion
Coordinator (DTC) folder. Expand the DTC folder and select the
Transact ion List item. The r ight pane in the Component Services
Explorer contains a list of all the t ransact ions execut ing on your
machine (see Figure 4-14) .

Figure 4 - 1 4 . The t ransact ion list view

 131

The Com ponent Serv ices Explorer presents a few bits of informat ion
on every t ransact ion. The Status colum n contains the type of the
root com ponent and the status of the t ransact ion, and the Unit of
Work ID column contains the t ransact ion ID.

4 .1 4 I n- Doubt Transact ions

Somet im es COM+ (actually , the DTC) is unable to decide on the
fate of a t ransact ion. This indecisiveness is usually the result of
some unexpected catast rophe. One possible catast rophe is network
failure after the root object is deact ivated, but before the DTC could
conduct the two-phase commit protocol with rem ote resource
managers. Another possible catast rophe is when a resource
manager ’s machine crashes in the m iddle of the two-phase commit
protocol. In those cases, the t ransact ion is said to be in-doubt .
COM+ cannot decide on the fate of in-doubt t ransact ions. I t is up to
the system administ rator to manually resolve those t ransact ions,
using the Component Services Explorer. COM+ lists the in-doubt
t ransact ions under the DTC folder, on the Transact ion List pane. An
in-doubt t ransact ion has the com ment (In Doubt) in its status
colum n. The system administ rator should r ight -click on the in-doubt
t ransact ion and select Resolve from the pop-up menu. COM+ offers
three opt ions to resolve a t ransact ion: Commit , Abort , or Forget
(see Figure 4-15) .

Figure 4 - 1 5 . Resolving in- doubt t ransact ions

 132

When the adm inist rator selects Com mit or Abort , COM+ inst ructs all
accessible resource managers that took part in the t ransact ion to
commit or abort , respect ively. Later on, when the rest of the
resource m anagers becom e available, your system administ rator
should use an adm inist rat ive ut ilit y to launch a compensat ing
t ransact ion on those resources.
The interest ing resolving opt ion is Forget . By choosing to forget
about the t ransact ion, your adm inist rator instructs COM+ to do
absolutely nothing with this t ransact ion besides rem ove it from the
list . The adm inist rator is willing to accept the inconsistent state the
system is in, and does not wish to com mit or abort the t ransact ion.
Forget t ing a t ransact ion may be useful in some esoter ic scenarios.
Imagine that while a t ransact ion was in doubt , some administ rator
manually changed ent r ies in the database because he did not wish
to wait for the t ransact ion to be resolved. I n such a case, your
applicat ion adm inist rator may choose to forget about the or iginal
t ransact ion and accept the current state.

4 .1 5 Transact ion Stat ist ics

The Com ponent Serv ices Explorer can show you various
t ransact ions stat ist ics. You view the stat ist ics by select ing the
Transact ion Stat ist ics item in the DTC folder (see Figure 4-16) . The
stat ist ics view contains various num bers regarding the current ly
execut ing t ransact ions, as well as aggregated numbers result ing
from all t ransact ions that took place since the last machine reboot .

Figure 4 - 1 6 . The Transact ion Stat ist ics item

 133

The following list contains explanat ions of the var ious stat ist ics:
Act ive

The total number of current ly execut ing t ransact ions.
Max. Act ive

The m aximum num ber of t ransact ions that were act ive
concurrent ly since the last reboot . This number can be used
as a crude throughput indicator.

I n Doubt
The total number of t ransact ions current ly in doubt .

Commit ted
The total number of t ransact ions comm it ted since the last
reboot .

Aborted
The total number of t ransact ions aborted since the last
reboot .

Forced Com mit
The total number of t ransact ion that were in doubt that the
adm inist rator resolved by forcing to com mit . A value other
then zero is usually the result of a catast rophe that was
resolved manually .

Forced Abort
The total number of t ransact ions that were in doubt that the
adm inist rator resolved by forcing to abort . A value other then
zero is usually the result of a catast rophe that was resolved
manually.

Unknown
The total number of t ransact ions whose fate is unknown.

Total
The total number of t ransact ions created since the last reboot .

The stat ist ics are useful when you t ry to calibrate various
applicat ion param eters, such as pool sizes, to m axim ize throughput .
An important throughput indicator is the number of t ransact ions
processed in a given amount of t ime. You can get that number and

 134

quality metr ics, such as the num ber of aborted t ransact ions, from
the stat ist ics v iew.

4 .1 6 COM+ Transact ions Pit fa lls

I ’ll end this chapter by point ing out a few more pit falls you should
be aware of when designing and developing t ransact ional
components in COM+ . Some of these pit falls have already been
implied elsewhere in this chapter , but elaborat ing on a pit fall is
always a good idea.

4 .1 6 .1 Accessing Nontransact ional Resources

A t ransact ional com ponent should avoid accessing resources that
are not resource managers. Typical examples are the filesystem,
the Regist ry, network calls, and user interact ion such as printouts or
message boxes. The reason is obvious— if the t ransact ion aborts,
changes made to those t ransact ion- ignorant resources will persist
and jeopardize system consistency.

4 .1 6 .2 Passing Subroot Objects to Clients

You should avoid passing subroot objects to any client outside your
t ransact ion, be it the client that created the root or any other client .
You have to avoid this by design because COM+ allows you to
stumble into the pit fall. The problem with sharing subroot objects
with clients outside of your t ransact ion is that at any moment the
client that created the root object can release the root object . A
COM+ transact ion requires a root to funct ion, and the root
designat ion does not change, no matter how the t ransact ion is
star ted. With the root gone, the t ransact ion layout is defect ive. I n
Figure 4-17, any call from Client B to Object 2 will fail with the error
code CONTEXT_E_OLDREF. The only thing Client B can do is release
its reference to Object 2.

Figure 4 -1 7 . Avoid passing or sharing subroot objects w ith any client
outside the t ransact ion

4 .1 6 .3 Accessing Objects Outside the Transact ion

 135

You should avoid accessing COM+ objects outside your t ransact ion,
whether those objects are part of another t ransact ion or not . Look
at the objects layout in Figure 4-18.

Figure 4 - 1 8 . Accessing COM+ objects outside your t ransact ion can
jeopardize system consistency

I n this f igure, Object 1 has access to Object 2 and Object 3, both
outside its t ransact ion. The problem is that Transact ion A could
abort and Transact ion B could comm it . Object 3 acts based on its
interact ion with an object from an aborted t ransact ion, and
therefore Object 3 jeopardizes system consistency when its
t ransact ion commits. Sim ilar ly , when Object 1 accesses Object 2
(which does not have a t ransact ion at all) , Object 2 may operate
based on inconsistent state if Transact ion A aborts. I n addit ion, the
interact ion between Object 1 and Object 2 is not well defined. For
example, should Object 1 abort its t ransact ion if Object 2 returns an
error? For these reasons, objects should only access other objects
within the same t ransact ion.

 136

Chapter 5 . COM+ Concurrency Model

Employing mult iple threads of execut ion in your applicat ion opens
the way for many benefits impossible to achieve using just a single
thread. These benefits include:
Responsive user interface

Your applicat ion can process user requests (such as print ing
or connect ing to a remote machine) on a different thread than
that of the user interface. I f it were done on the same thread,
the user inter face would appear to hang unt il the other
requests were processed. Because the user interface is on a
different thread, it can cont inue to respond to the user’s
request .

Enhanced performance
I f the machine your applicat ion runs on has mult iple CPUs and
the applicat ion is required to perform mult iple calculat ion-
intensive independent operat ions, the only way to use the
ext ra processing power is to execute the operat ions on
different threads.

I ncreased throughput
I f your applicat ion is required to process incom ing client
requests as fast at it can, you often spin off a number of
worker threads to handle requests in parallel.

Asynchronous m ethod calls
I nstead of blocking the client while the object processes the
client request , the object can delegate the work to another
thread and return cont rol to the client immediately .

In general, whenever you have two or more operat ions that can
take place in parallel and are different in nature, using
mult it hreading can bring significant gains to your applicat ion.
The problem is that int roducing m ult ithreading to your applicat ion
opens up a can of worms. You have to worry about threads
deadlocking themselves while contest ing for the sam e resources,
synchronize access to objects by concurrent mult iple threads, and
be prepared to handle object method re-ent rancy. Mult ithreading
bugs and defects are notoriously hard to detect , reproduce, and
elim inate. They often involve rare race condit ions (in which mult iple
threads write and read shared data without appropriate access
synchronizat ion) , and fix ing one problem often int roduces another.
Writ ing robust , high performance mult ithreading object -or iented
code is no t r iv ial mat ter. I t requires a great deal of sk ill and
discipline on behalf of the developers.
Clearly there is a need to provide some concurrency managem ent
serv ice to your components so you can focus on the business
problem at hand, instead of on mult ithreading synchronizat ion
issues. The classic COM concurrency management model addresses

 137

the problems of developing mult ithreaded object-or iented
applicat ions. However, the classic COM solut ion has its own set of
deficiencies.
COM+ concurrency management service addresses the problems
with the classic COM solut ion. I t also provides you with
adm inist rat ive support for the service via the Component Services
Explorer.
This chapter first br iefly exam ines the way classic COM solves
concurrency and synchronizat ion problems in classic object -or iented
programming, and then int roduces the COM+ concurrency
managem ent model, showing how it im proves classic COM
concurrency management . The chapter ends by descr ibing a new
Windows 2000 threading model, the neutral threaded apartm ent ,
and how it relates to COM+ components.

5 .1 Object -Oriented Program m ing and Mult iple
Threads

The classic COM threading model was designed to address the set of
problems inherent with objects execut ing in different threads.
Consider, for example, the situat ion depicted in Figure 5-1. Under
classic object-or iented programming, two objects on different
threads that want to interact with each other have to worry about
synchronizat ion and concurrency.

Figure 5 - 1 . Objects execut ing on tw o different threads

Object 1 resides in Thread A and Object 2 resides in Thread B.
Suppose that Object 1 wants to invoke a method of Object 2, and
that method, for whatever reason, must run in the context of
Thread B. The problem is that , even if Object 1 has a pointer to
Object 2, it is useless. I f Object 1 uses such a pointer to invoke the
call, the m ethod executes in the context of Thread A.
This behavior is the direct result of the implementat ion language
used to code the objects. Programm ing languages such as C+ + are
completely thread-obliv ious— there is nothing in the language itself
to denote a specific execut ion context , such as a thread. I f you have
a pointer to an object and you invoke a method of that object , the
compiler places the method's param eters and return address on the
calling thread's stack— in this case, Thread A's stack. That does not
have the intended effect of execut ing the call in the context of

 138

Thread B. With a direct call, knowledge that the method should
have executed on another thread remains in the design document,
on the whiteboard, or in the m ind of the programmer.
The classic object-or iented programming (OOP) solut ion is to post
or send a message to Thread B. Thread B would process the
message, invoke the method on Object 2, and signal Thread A when
it f inished. Meanwhile, Object 1 would have had to block itself and
wait for a signal or event from Object 2 signify ing that the method
has completed execut ion.
This solut ion has several disadvantages: you have to handcraft the
mechanism , the likelihood of m istakes (result ing in a deadlock) is
high, and you are forced to do it over and over again every t ime
you have objects on m ult iple threads.
The m ore acute problem is that the OOP solut ion int roduces t ight
coupling between the two objects and the synchronizat ion
mechanism . The code in the two objects has to be aware of their
execut ion contexts, of the way to post messages between objects,
of how to signal events, and so on. One of the core principals of
OOP, encapsulat ion or inform at ion hiding, is violated; as a result ,
maintenance of classic m ult ithreaded object-or iented programs is
hard, expensive, and error-prone.
That is not all. When developers started developing components
(packaging objects in binary units, such as DLLs) , a classic problem
in dist r ibuted comput ing raised its head. The idea behind
component -oriented development is building systems out of well-
encapsulated binary ent it ies, which you can plug or unplug at will
like Lego bricks. With component-oriented development, you gain
modular ity, extensibility , m aintainabilit y , and reusabilit y.
Developers and system designers wanted to get away from
monolithic object -or iented applicat ions to a collect ion of interact ing
binary components. Figure 5-2 shows a product that consists of
components.
The applicat ion is const ructed from a set of components that
interact with one another. Each component was im plemented by an
independent vendor or team. However, what should be done about
the synchronizat ion requirements of the components? What
happens if Components 3 and 1 t ry to access Component 2 at the
same t im e? Could Component 2 handle it? Will it crash? Will
Component 1 or Component 3 be blocked? What effect would that
have on Com ponent 4 or 5? Because Com ponent 2 was developed
as a standalone component , its developer could not possibly know
what the specific runt ime environm ent for the components would
be. With that lack of knowledge, m any quest ions arise. Should the
component be defensive and protect it self from mult iple threads
accessing it? How can it part icipate in an applicat ion-wide
synchronizat ion mechanism that may be in place? Perhaps
Component 2 will never be accessed sim ultaneously by two threads

 139

in this applicat ion; however, Component 2’s developer cannot know
this in advance, so it may choose to always protect the component ,
taking an unnecessary performance hit in many cases for the sake
of avoiding deadlocks.

Figure 5 - 2 . Objects packaged in binary units have no w ay of know ing
about the synchronizat ion needs of other objects in other units

5 .2 Apartm ents: The Classic COM Solut ion

The solut ion used by classic COM is decept ively sim ple: each
component declares its synchronizat ion needs. Classic COM m akes
sure that instances (objects) of that class always reside in an
execut ion context that fit s their declared requirements, hence the
term apartment . A com ponent declares its synchronizat ion needs by
assigning a value to its ThreadingModel named-value in the
Regist ry . The value of ThreadingModel determ ines the component ’s
threading model. The available values under classic COM are
Apartment, Free, Both or no value at all.
Components that set their threading model to Apartment or leave it
blank indicate to COM that they cannot handle concurrent access.
COM places these objects in a single- threaded environment called a
single- threaded apartm ent (STA) . STA objects always execute on
the same STA thread, and therefore do not have to worry about
concurrent access from mult iple threads.
Components that are capable of handling concurrent access from
mult iple clients on mult iple threads set their threading model to
Free. COM places such objects in a mult ithreaded apartment (MTA) .
Components that would like to always be in the same apartm ent as
their client set their threading model to Both. Note that a Both
component must be capable of handling concurrent access from
mult iple clients on mult iple threads because its client may be in the
MTA.
As discussed in Chapter 2, classic COM marshals away the thread
differences between the client and an object by placing a proxy and
stub pair in between. The proxy and stub pair blocks the calling
thread, perform s a context switch, builds the calling stack on the

 140

object ’s thread, and calls the method. When the call is finished,
cont rol returns to the calling thread that was blocked.
Although apartments solve the problem of methods execut ing
outside their threads, they cont r ibute to other problems,
specifically:

• Classic COM achieves synchronizat ion by having an object- to-
thread affinity. I f an object always executes on the same
thread, then all access to it is synchronized. But what if the
object does not care about thread affinity, but only requires
synchronizat ion? That is, as long as no more than one thread
accesses the object at a given t im e, the object does not care
which thread accesses it .

• The STA m odel int roduces a situat ion called object starvat ion.
I f one object in a STA hogs the thread (that is, perform s
lengthy processing in a method call) then all other objects in
the same STA cannot serve their clients because they must
execute on the sam e thread.

• Sharing the same STA thread is an overkill of protect ion— calls
to all objects in a STA are serialized; not only can clients not
access the same object concurrent ly, but they can't access
different objects in the same thread concurrent ly.

• Even if a developer goes through the t rouble of making its
object thread-safe (and marks it as using the Free threading
model) , if the object's client is in another apartment , the
object st ill m ust be accessed via a proxy-stub and incur a
performance penalt y.

• Sim ilar ly, all access to an object marked as Both that is
loaded in a STA is serialized for no reason.

• I f your applicat ion contains a client and an object each in
different apartments, you pay for thread context- switch
overhead. I f the calling pat tern is frequent calls to m ethods
with short execut ion t imes, it could kill your applicat ion's
performance.

• MTA objects have the potent ial of deadlock. Each call into the
MTA comes in on a different thread. MTA objects usually lock
themselves for access while they are serving a call. I f two
MTA objects serve a call and t ry to access each other, a
deadlock occurs.

• Local servers that host MTA objects face esoteric race
condit ions when the process is shut down while they are
handling new act ivat ion requests.

5 .3 Act ivit ies: The COM+ I nnovat ion

The task for COM+ was not only to solve the classic OOP problems
but also to address the classic COM concurrency m odel deficiencies

 141

and maintain backward compat ibilit y. I magine a client calling a
method on a com ponent . The com ponent can be in the sam e
context as the client , in another apartment or a process on the
same machine, or in a process on another machine. The called
component may in turn call other components, and so on, creat ing
a st r ing of nested calls. Even though you cannot point to a single
thread that carr ies out the calls, the com ponents involved do share
a logical thread of execut ion.
Despite the fact that the logical thread can span mult iple threads,
processes, and m achines, there is only one root client . There is also
only one thread at a t ime execut ing in the logical thread, but not
necessarily the sam e physical thread at all t imes.
The idea behind the COM+ concurrency model is simple, but
powerful: instead of achiev ing synchronizat ion through physical
thread affinity, COM+ achieves synchronizat ion through logical
thread affinity. Because in a logical thread there is just one physical
thread execut ing in any given point in t ime, logical thread affinity
implies physical threads synchronizat ion as well. I f a component is
guaranteed not to be accessed by mult iple logical threads at the
same t im e, then synchronizat ion to that component is guaranteed.
Note that there is no need to guarantee that a com ponent is always
accessed by the sam e logical thread. All COM+ provides is a
guarantee that the component is not accessed by more than one
logical thread at a t ime.
A logical thread is also called a causality, a nam e that emphasizes
the fact that all of the nested calls t r iggered by the root client share
the same cause— the root client's request on the topmost object .
Due to the fact that most of the COM+ documentat ion refers to a
logical thread as causality, the rest of this chapter uses causality
too. COM+ tags each causality with its own unique ID— a GUID
called the causality I D.
To prevent concurrent access to an object by mult iple causalit ies,
COM+ must associate the object with some sort of a lock, called a
causality lock . However, should COM+ assign a causality lock per
object? Doing so may be a waste of resources and processing t ime,
if by design the components are all m eant to part icipate in the same
act iv ity on behalf of a client . As a result , it is up to the com ponent
developer to decide how the object is associated with causality-
based locks: whether the object needs a lock at all, whether it can
share a lock with other objects, or whether it requires a new lock.
COM+ groups together components than can share a causality-
based lock. This grouping is called an act ivity .
I t is important to understand that an act iv ity is only a logical term
and is independent of process, apartment , and context : objects
from different contexts, apartments, or processes can all share the
same act iv ity (see Figure 5-3) .

 142

Figure 5 -3 . Act ivit ies (indicated by dashed lines) are independent of
contexts, apartm ents, and processes

Within an act iv ity, concurrent calls from mult iple causalit ies are not
allowed and COM+ enforces this requirement . Act iv it ies are very
useful for MTA objects and for neut ral threaded apartment (NTA)
objects, a new threading model discussed at the end of the chapter;
these objects may require synchronizat ion, but not physical thread
affinity with all it s lim itat ions. STA objects are synchronized by
vir tue of thread affinity and do not benefit from act iv it ies.

5 .3 .1 Causality- Based Lock

To achieve causality-based synchronizat ion for objects that take
part in an act iv ity, COM+ maintains a causality-based lock for each
act iv ity . The act iv ity lock can be owned by at most one causality at
a t ime. The act iv ity lock keeps t rack of the causality that current ly
owns it by t racking that causality ’s ID. The causality ID is used as
an ident ify ing key to access the lock. When a causality enters an
act iv ity , it must t ry to acquire the act iv ity lock first by present ing
the lock with its ID. I f the lock is already owned by a different
causality (it will have a different ID) , the lock blocks the new
causality that t r ies to enter the act iv ity . I f the lock is free (no
causality owns it or the lock has no causality ID associated with it) ,
the new causality will own it . I f t he causality already owns that lock,
it will not be blocked, which allows for callbacks. The lock has no
t imeout associated with it ; as a result , a call from outside the
act iv ity is blocked unt il the current causality ex its the act iv ity . I n
the case of more than one causality t ry ing to enter the act iv ity ,
COM+ places all pending causalit ies in a queue and lets them enter
in the act iv ity in order.
The act iv ity lock is effect ive process-wide only. When an act iv ity
flows from Process 1 to Process 2, COM+ allocates a new lock in
Process 2 for that act iv ity, so that at tempts to access the local
objects in Process 2 will not have to pay for expensive cross-process
or cross-machine lookups.

 143

An interest ing observat ion is that a causality-based lock is unlike
any other Win32 API -provided locks. Normal locks (cr it ical sect ions,
mutexes, and sem aphores) are all based on a physical thread ID. A
normal physical thread-based lock records the physical thread ID
that owns it , block ing any other physical thread that t r ies to access
it , all based on physical thread IDs. The causality-based lock lets all
the physical threads that take part in the same logical thread (same
causality) go through; it only blocks threads that call from different
causalit ies. There is no documented API for the causality lock.
Act iv ity-based synchronizat ion solves the classic COM deadlock of
cyclic calling— if Object 1 calls Object 2, which then calls Object 3,
which then calls Object 1, the call back to Object 1 would go
through because it shares the same causality, even if all the objects
execute on different threads.

5 .3 .2 Act ivit ies and Contexts

So how does COM+ know which act iv ity a given object belongs to?
What propagates the act iv ity across contexts, apartments, and
processes? Like alm ost everything else in COM+ , the proxy and
stub pair does the t r ick.
COM+ maintains an ident ify ing GUID called the act iv ity I D for every
act iv ity . When a client creates a COM+ object that wants to take
part in an act iv ity and the client has no act iv ity associated with it ,
COM+ generates an act iv ity ID and stores it as a property of the
context object (discussed in Chapter 2) . A COM+ context belongs to
at m ost one act iv ity at any given t ime, and maybe none at all.
The object that created the act iv ity ID is called the root of the
act iv ity . When the root object creates another object in a different
context— say Object 2— the proxy to Object 2 grabs the act iv ity ID
from the context object and passes it to the stub of Object 2,
potent ially across processes and machines. I f Object 2 requires
synchronizat ion, its context uses the act iv ity ID of the root .

5 .4 COM+ Configurat ion Set t ings

Every COM+ component has a tab called Concurrency on its
propert ies page that lets you set the component synchronizat ion
requirements (see Figure 5-4) . The possible values are:

• Disabled
• Not Supported
• Supported
• Required
• Requires New

 144

Figure 5 - 4 . The Concurrency tab lets you configure your com ponent ’s
synchronizat ion requirem ents

The synchronizat ion is act iv ity based, as explained before. These
set t ings are used to decide in which act iv ity the object will reside in
relat ion to its creator . As you may suspect , the way the
synchronizat ion values operate is completely analogous to the
t ransact ion support configurat ion values, discussed in Chapter 4. An
object can reside in any of these act iv it ies:

• I n its creator’s act iv ity : the object shares a lock with its
creator.

• I n a new act iv ity: the object has its own lock and star ts a new
causality.

• I n no act iv ity at all: there is no lock, so concurrent access is
allowed.

An object ’s act iv ity is determ ined at creat ion t im e, based on the
act iv ity of the creator and the configured requirement of the object .
For example, if the object is configured to have a synchronizat ion
set t ing of Required, it will share its creator’s act iv ity if it has one. I f
the creator does not have an act iv ity, then COM+ creates a new
act iv ity for the object . The effects of this synchronizat ion support
are defined in Table 5-1.

7DEOH������'HWHUPLQDQWV�RI�DQ�REMHFW
V�DFWLYLW\��
2EMHFW�V\QFKURQL]DWLRQ�VXSSRUW�� ,V�FUHDWRU�LQ�DFWLYLW\"� 7KH�REMHFW�ZLOO�WDNH�SDUW�LQ��

Disabled/ Not Supported No No Act iv ity
Supported No No Act iv ity
Required No New Act iv it y
Required New No New Act iv it y
Disabled/ Not Supported Yes No Act iv ity
Supported Yes Creator ’s Act iv it y
Required Yes Creator ’s Act iv it y
Required New Yes New Act iv it y

 145

Figure 5-5shows an example of act iv ity flow. I n the figure, a client
that does not take part in an act iv ity creates an object configured
with Synchronizat ion = Required. Since the object requires an
act iv ity and its creator has none, COM+ makes it the root of a new
act iv ity . The root then goes on to create five m ore objects. Two of
them, configured with Synchronizat ion = Required and
Synchronizat ion = Supported, are placed in the same act iv ity as the
root . The two components configured with Synchronizat ion = Not
Supported and Synchronizat ion = Disabled will have no act iv ity . The
last component is configured with Synchronizat ion = Requires New,
so COM+ creates a new act iv ity for it , making it the root of its own
act iv ity .

Figure 5 - 5 . Allocat ing objects to act ivit ies based on their configurat ion
and the act ivity of their creator

You may be asking yourself why COM+ bases the decision on the
object ’s act iv ity part ly on the object ’s creat ing client . The heurist ic
technique COM+ uses is that the calling pat terns, interact ions, and
synchronizat ion needs between objects usually closely match their
creat ion relat ionship.
An act iv ity lasts as long as the part icipat ing objects ex ist , and its
lifet ime is independent of the causalit ies that enter and leave it . A
causality is a t ransient ent ity that lasts only as long as the client ’s
call is in progress. The act iv ity to causality relat ionship is analogous
to the t ransact ion layout to t ransact ion relat ionship descr ibed in
Chapter 4.

5 .4 .1 Synchronizat ion Disabled

When you choose to disable synchronizat ion support , you are
inst ruct ing COM+ to ignore the synchronizat ion requirements of the
component in determ ining context for the object . As a result , the
object may or m ay not share its creator’s context .

 146

You can use the Disabled set t ing when m igrat ing a classic COM
component to COM+ . I f that component was built to operate in a
mult it hreaded environment , it already has a synchronizat ion
mechanism of som e sort , and you must disable the synchronizat ion
at t r ibute to m aintain the old behavior .
I n addit ion, if you disable synchronizat ion on a component , that
component should never access a resource manager because it
m ight require the act iv ity ID for its own internal locking.

5 .4 .2 Synchronizat ion Not Supported

An object set to Not Supported never part icipates in an act iv ity,
regardless of causality . The object must provide its own
synchronizat ion mechanism. This set t ing is only available for
components that are nont ransact ional and do not use JITA. I
recommend avoiding this set t ing because it offers nothing to the
developer except restr ict ions.

5 .4 .3 Synchronizat ion Supported

An object set to Supported will share it s creator ’s act iv ity if it has
one, and will have no synchronizat ion of its own if t he creator does
not have one.
This is the least useful set t ing of them all because the object must
provide its own synchronizat ion mechanism in case its creator does
not have an act iv ity . You must make sure that the mechanism does
not inter fere with COM+ act iv it ies when COM+ provides
synchronizat ion. As a result , it is more difficult to develop the
component .

5 .4 .4 Synchronizat ion Required

When an object is set to Required, all calls to the object will be
synchronized, and the only quest ion is whether your object will
have its own act iv it y or share its creator’s act iv ity . When COM+
creates the object , it looks at the act iv it y status of its creator. I f the
creator has an act iv ity, COM+ extends the creator ’s act iv ity
boundary to include the new object . Otherwise, COM+ creates a
new act iv ity. I f you don’t care about having your own act iv ity,
always use this set t ing.

5 .4 .5 Synchronizat ion Requires New

When an object is set to Requires New, the object must have a new
act iv ity , dist inct from the creator’s act iv ity, and have its own lock.
The object will never share its context with its creator . I n fact , this
is one of the sure ways of ensur ing that your object will always be
created in its own context .

 147

5 .4 .6 Required Versus Requires New

Deciding that your object requires synchronizat ion is usually
st raight forward. I f you ant icipate mult iple clients on mult iple
threads t rying to access your object and you don’t want to wr ite
your own synchronizat ion mechanism, you need synchronizat ion.
The m ore difficult quest ion to answer is whether your object should
require its own act iv ity lock or whether you should configure it to
use the lock of its creator. Try basing your decision on the calling
pat terns to your object . Consider the calling pat tern in Figure 5-6.
Object 2 is configured with synchronizat ion set to Required and is
placed in the same act iv ity as its creator , Object 1. In this example,
besides creat ing Object 2, Object 1 and Object 2 do not interact
with each other.

Figure 5 - 6 . Sharing act ivit ies enable calls to be accepted from another
client

While Client 1 accesses Object 1, Client 2 comes along, want ing to
call m ethods on Object 2. Because Client 2 has a different causality,
it will be blocked. In fact , it could have safely accessed Object 2,
since it does not violate the synchronizat ion requirement for the
creat ing object , Object 1.
On the other hand, if you were to configure Object 2 to require its
own act iv ity by set t ing the Synchronizat ion to Requires New, the
object could process calls from other clients at the same t ime as
Object 1 (see Figure 5-7) .

Figure 5 - 7 . I n th is calling pat tern, having a separat e act ivity for the
creat ed object enables it to service its clients m ore efficient ly

 148

However, calls from the creator object (Object 1) to Object 2 will
now potent ially block and will be more expensive because they
must cross context boundaries and pay the overhead of t rying to
acquire the lock.

5 .5 Act ivit ies and JI TA

Components that use JITA are required to be accessed by one client
at a t ime. I f two clients could call a JITA component sim ultaneously,
one would be left st randed when the object was deact ivated at the
t ime the first method call returned. COM+ enforces synchronizat ion
on components that use JITA. The Concurrency tab for components
that have JITA enabled will only allow you to set your component to
Required or Requires New. In other words, the com ponent m ust
share the act iv ity of its creator or require a new act iv ity. The other
opt ions are disabled on the Concurrency tab. Once you disable JITA,
you can set synchronizat ion to other values.

5 .6 Act ivit ies and Transact ions

Transact ional objects also allow access to them by only one client at
a t ime. Synchronizat ion is required to prevent the case in which one
client on one thread t r ies to comm it a t ransact ion while another
client on a second thread t r ies to abort it . As a result , every
t ransact ion should have a synchronizat ion lock associated with it .
On the other hand, having more than one lock in a given
t ransact ion is undesirable— spinning off a new act iv ity for an object
that is added to an exist ing t ransact ion means always paying for the
overhead for checking the act iv ity lock before accessing the object .
That check is redundant because no two causalit ies are allowed in
the same t ransact ion anyway. I n fact , when an object requires a
new t ransact ion, it could st ill reuse the same causality lock of its
creator and allow the act iv ity to flow into the new t ransact ion.
COM+ therefore enforces the fact that a given t ransact ion can only
be part of one act iv ity (note that an act iv ity can st ill host m ult iple
t ransact ions) .
In addit ion, as discussed in Chapter 4, t ransact ional objects always
use JITA (COM+ automat ically enables JITA for a t ransact ional
object) . The use of JITA is only opt ional for nontransact ional
objects. Table 5-2 summarizes the synchronizat ion values as a
product of the t ransact ion and JITA set t ing. Note that the only case
when a t ransact ional component can star t a new act iv ity is when
that component is also configured to be the root of a new
t ransact ion.

7DEOH������&RPSRQHQW
V�DYDLODEOH�V\QFKURQL]DWLRQ�VHWWLQJV��

 149

7UDQVDFWLRQ�VHWWLQJ� -,7$�VHWWLQJ� $YDLODEOH�V\QFKURQL]DWLRQ�VHWWLQJ��
Disabled Off All
Not Supported Off All
Disabled On Required or Requires New
Not Supported On Required or Requires New
Supported On Required
Required On Required
Requires New On Required or Requires New

5 .7 Tracing Act ivit ies

COM+ makes it easy for an object to ret r ieve its act iv ity ident ity ,
using the context object interface IObjectContextInfo, with the
method:
HRESULT GetActivityID(GUID* pguidActivityID);
I f the object does not take part in an act iv ity , the method returns
GUID_NULL. Ret r ieving the act iv ity ID is useful for debugging and
t racing purposes.
Example 5-1 demonst rates act iv ity ID t racing.

Exam ple 5 - 1 . Tracing the act ivity I D

HRESULT hres = S_OK;
GUID guidActivityID = GUID_NULL;
IObjectContextInfo* pObjectContextInfo = NULL;

hres = ::CoGetObjectContext(IID_IObjectContextInfo,
 (void**)&pObjectContextInfo);

ASSERT(pObjectContextInfo != NULL);//a non-configure
object maybe?

hres = pObjectContextInfo-
>GetActivityId(&guidActivityID);

pObjectContextInfo->Release();

if(guidActivityID == GUID_NULL)
{
 TRACE("The object does not take part in an activity");
}
else
{
 USES_CONVERSION;
 WCHAR pwsGUID[150];

 ::StringFromGUID2(guidActivityID,pwsGUID,150);

 150

 TRACE("The object takes place in activity with ID
%s",W2A(pwsGUID));
}
COM+ provides the act iv ity I D via another interface, called
IObjectContextActivity, obtained by calling
CoGetObjectContext().
IObjectContextActivity has just one method, GetActivityId(),
used exact ly like the method of the same name in the example.

5 .8 The Neutral Threaded Apartm ent

The neut ral threaded apartment (NTA) is a new threading model
available only on Windows 2000. Although it is not specific to COM+
(classic COM objects can also take advantage of the NTA) , the NTA
is the recommended threading model for most COM+ objects that
do not have a user inter face.
The NTA has evolved to address a deficiency in the classic COM MTA
threading model: suppose you have an STA client accessing an MTA
object . Under classic COM, all cross-apartment calls have to be
marshaled via a proxy/ stub pair . Even though the object could have
handled the call on the client STA thread, the call is m arshaled. The
stub performed an expensive thread context switch to an RPC
thread to access the MTA objects.
There was clear ly a need for an apartment that every thread in the
process could enter without paying a heavy performance penalty.
This is what the NTA is: an apartment that every COM-aware thread
can enter. In every process, there is exact ly one NTA. The NTA is
subdiv ided (like any other apartment) into contexts. COM objects
that reside in the NTA set their threading model value in the
Regist ry to Neutral.
Much like an MTA object , an object marked as neutral will reside in
the NTA, regardless of its creator’s apartm ent . Calls into the NTA
are marshaled, but only light -weight prox ies are used (to do cross
COM+ context marshaling, if needed) because no thread-context
switch is involved. A method call on an NTA object is executed on
the caller ’s thread, be it STA or MTA based.
No thread calls the NTA home, and the NTA contains no threads,
only objects. Threads can’t call CoInitializeEx() with a flag
saying NTA, and no such flag exists. When you create a thread, you
st ill m ust assign it to an STA of its own or to the MTA.

5 .8 .1 The NTA and Other COM Threading Models

When you mark your object as Neutral, it will always reside in the
NTA, regardless of the locat ion of its creat ing client . When you mark
your object as Both, if the object ’s creator is an NTA object , the

 151

object will reside in the NTA as well. I f your NTA object creates
other objects marked as Apartment, the locat ion of the creat ing
thread may affects where those objects reside. Table 5-3 presents
the potent ial results when NTA clients create other objects. I t also
shows the result ing object apartment , based on the object
threading model and the thread the NTA client runs on. You can
also see from Table 5-3 that components marked as Neutral will
always be in the NTA, regardless of the apartment of their creator .

7DEOH������$SDUWPHQW�DFWLYDWLRQ�SROLF\��
2EMHFW�LV?&OLHQW�LV�� $SDUWPHQW�)UHH� %RWK� 1HXWUDO�1RW�VSHFLILHG�

STA, not m ain Current STA MTA Current STA NTA Main STA
Main STA Main STA MTA Main STA NTA Main STA
MTA Host STA MTA MTA NTA Main STA
Neut ral (on STA thread) On that STA thread MTA NTA NTA Main STA
Neut ral (on MTA thread) Host STA MTA NTA NTA Main STA

The NTA model obeys the COM rule specify ing that all objects must
be marshaled outside the apartment / context boundary, just like any
other apartment . I f you have to manually marshal an object outside
the NTA, use the Global Inter face Table (the GIT) or the GIT
wrapper class, presented in Chapter 2.
Finally, the NTA offers improved DCOM performance because
incom ing calls from remote machines to NTA objects can execute
direct ly on the thread that handles the incom ing remote call,
without a thread context switch.

5 .8 .2 COM+ and Threading Model

Your COM+ component should run in the STA if any one of the
following statements is valid:

• Your COM+ component displays a user interface or it relies on
having a message loop pum p messages to it . Your component
relies on the STA thread message pump.

• Your COM+ component uses Thread Local Storage (TLS) , a
thread-specific heap allocated off the thread stack. I t must
run in the STA because TLS relies on having the thread
affinity the STA provides.

• Your component was provided by a third party as a COM
component and marked as Apartment. You want to im port it
to your COM+ applicat ion so that it shares your applicat ion
set t ings, such as secur ity and process, and is part of your
applicat ion’s MSI file. You should not change the threading
model, because you do not know how much thread affinity the
component requires.

• Your component is developed using Visual Basic 6.0.

 152

Your COM+ component should use the Both threading model if t he
creat ing client is in the STA or MTA, but not the NTA; it makes very
frequent method calls; and the calls have short durat ion. By using
Both, you will avoid cross-apartment m arshaling, an overhead that
may hinder performance under this scenar io.
In all other cases, your COM+ component should use the Neutral
threading model. You will need to use act iv ity-based
synchronizat ion to provide synchronizat ion to your component .
You should avoid using the Free threading model for your
component because running in the NTA will offer the same
throughput without the addit ional thread context switch involved
with calls into the MTA. Only legacy components im ported into
COM+ should use Free as the threading model.

5 .9 Sum m ary

Act iv ity-based synchronizat ion is a sim ple and elegant concurrency
managem ent serv ice that prov ides both an adm inist rat ive support
and a st raight forward programm ing model. For most cases, if your
design calls for using mult ithreading, configure your component to
require synchronizat ion, and COM+ will do the rest . That way, you
can devote your development effor t to the business problem
(instead of the synchronizat ion issues) , and the result ing code is
robust . COM+ synchronizat ion is almost a form al way of elim inat ing
potent ially hard- to-solve synchronizat ion defects.
The first five chapters present the basic COM+ component serv ices:
applicat ion act ivat ion, instance management, t ransact ion support ,
and concurrency managem ent . The rest of the chapters descr ibe
higher- level COM+ serv ices (security , queued components, and
loosely coupled events) . I call these services "high level" because
they all rely and interact with the basic services. Before you learn
these high- level services, you need to be fam iliar with
programmat ic configurat ion of COM+ services, the subject of the
next chapter.

 153

Chapter 6 . Program m ing the COM+
Catalog

COM+ stores the inform at ion about your applicat ions, your
components’ configurat ion and physical locat ions, global m achine
set t ings, and every other bit of data COM+ requires to operate in a
repository called the COM+ Catalog.
The Catalog exposes COM+ interfaces and com ponents that allow
you to access the informat ion it stores. Anything you can do visually
with the Component Services Explorer , you can do
programmat ically as well— from export ing COM+ applicat ions to
doing fine-grained configurat ion such as enabling auto-deact ivat ion
on a method. I n fact , the Com ponent Serv ices Explorer and the
var ious wizards are merely handy user- inter face wrappers around
the Catalog inter faces and objects.
This chapter covers the COM+ Catalog programming model and
provides you with useful code samples you can use as a start ing
point for autom at ing all tasks of adm inist rat ing COM+ applicat ions
and services.

6 .1 W hy Program the Catalog?

Some of the more advanced features of COM+ lack support in the
Component Services Explorer and are available only by configur ing
your components programm at ically. These features are largely t ied
in with COM+ Events (discussed in Chapter 9) and include COM+
events filter ing and managing t ransient subscr ipt ions to COM+
events.
Programming the COM+ Catalog gives you access to much more
than advanced services. By learning to program the Catalog, you
can provide your system administ rators with helper ut ilit ies that
automate tedious tasks. These helpers interact with the underly ing
Catalog on the adm inist rators' behalf, saving them the t rouble of
learning how to use the Component Serv ices Explorer and
present ing them with fam iliar term inology from the applicat ion
domain. A typical example is adding a new user to the system: you
can create a ut ilit y to programmat ically add the user to an
appropr iate role, without requir ing the adm inist rator to launch and
interact with the Component Services Explorer (role-based secur ity
is discussed in Chapter 7) . You can even create a ut ilit y to enable
your system administ rator to remotely deploy, adm inister , and
configure your product's components and applicat ions on different
machines (by accessing those machines' Catalogs) while rem aining
at his desk.

 154

You can also capture user input or deployment-specific inform at ion
during your applicat ion setup and fine- tune your applicat ion
configurat ion in the Catalog. The user sees just one installat ion
process because all access to the Catalog can be done
programmat ically .
Finally, dur ing your component development, you benefit great ly
from automat ing such tasks as star t ing and shut t ing down
applicat ions. You will see an example of that later in the chapter .

6 .2 The Catalog Program m ing Model

The informat ion stored in the Catalog is st ructured sim ilar ly to its
layout in the Component Services Explorer. Data items in the
Catalog are more or less where you would expect to find them
according to their v isual representat ion. I n general, folders in the
Component Services Explorer (such as applicat ions, roles,
components, and interfaces) correspond to COM+
Catalogcollect ions. A catalog collect ion is a collect ion of item s of
some uniform kind. Every collect ion has a st r ing ident ify ing it , called
the collect ion name. One example of a catalog collect ion is the
Applications collect ion. The items in a collect ion are called catalog
objects. You can add or remove catalog objects in a collect ion, just
as you can add or remove items in a Component Services Explorer
folder. For exam ple, when you add a catalog object to the
Applications collect ion, you are actually adding a COM+
applicat ion.
Every catalog object in a collect ion exposes propert ies that you can
read or configure. The catalog object propert ies are sim ilar or
ident ical to the propert ies available on the propert ies page in the
Component Services Explorer for that part icular item type. For
example, the propert ies of a catalog object from the Applications
collect ions are COM+ applicat ion propert ies— such as act ivat ion
mode (server or library) or idle t ime management t imeouts.
Essent ially , all you ever do with the COM+ Catalog is locate the
collect ion you are interested in, iterate over its catalog objects, find
the object you are looking for, modify its propert ies, and save your
changes. I n pract ice, the Catalog's programming model is uniform ,
whether you iterate over the Applications collect ion or the
Components collect ion of a specific applicat ion. The Catalog exposes
a hierarchy of predefined collect ions and objects, and you program
against those collect ions and objects. The Catalog interfaces are
dual COM inter faces, which enables you to call them from within
adm inist rat ion scripts.
Abstracted, the Catalog design pat tern is depicted in Figure 6-1.
Each catalog collect ion may contain many catalog objects. A
collect ion's sole purpose is to allow you to iterate over the objects it

 155

contains. A collect ion has no propert ies you can configure, much
like how a folder in the Component Services Explorer has no
propert ies. You only set the propert ies of catalog objects. Each
catalog object has a set of propert ies and methods you can invoke.
Each catalog object can also give you access to other collect ions
associated with it . For example, in the Applications collect ion,
every applicat ion object has a Components collect ion associated with
it , analogous to the Components folder under every applicat ion in
the Component Services Explorer. As you can see in Figure 6-1, the
Catalog has a root object . The root is special k ind of a catalog
object , and the Catalog has only one root object . The root object
also has propert ies and methods you can call. The root object gives
you access to top- level collect ions such as the Applications
collect ion. The root object is your gateway to the COM+ Catalog and
is available as a COM object .

Figure 6 - 1 . The COM+ Catalog design pat tern

All three object types (collect ion, object , and root) support three
different interfaces. Every catalog collect ion supports the
ICatalogCollection inter face, and every catalog object supports
the ICatalogObject interface. The ICatalogCollection interface
is designed to iterate over a collect ion of ICatalogObject inter face
pointers. The ICatalogObject allows you to access the object ’s
propert ies by referr ing to each property by a predeterm ined name
(an ident ify ing st r ing) . I n addit ion, each catalog object has a key
that you use to get the collect ions associated with that catalog
object .
The Catalog root supports a third interface called
ICOMAdminCatalog, with special root - level methods and propert ies.
The ICOMAdminCatalog inter face lets you access the top- level
collect ions. When accessing the top- level collect ions, there is no
need for a key because there is only one root object .
The goal of this design pat tern is to have an extremely extensible
programming model. Because all collect ions and objects support the
same interfaces, regardless of the actual collect ion or object , they
are all accessed and m anipulated the sam e way. I f in the future
there is a need to define new collect ions (such as new services in
future versions of COM+) , the same st ructure and programming

 156

model would be able to define and use the new collect ions and
catalog objects.

6 .3 Catalog Structure

This sect ion discusses the Catalog st ructure and the names of the
items in it , not the semant ics of these items. Some of these item s
have already been covered in the previous chapters, and som e are
covered in subsequent chapters. The COM+ Catalog’s actual
st ructure, from the root down to the component level, is m apped
out in Figure 6-2. Each collect ion has a predefined ident ify ing name,
whereas catalog objects’ names are defined by the user. The root of
the Catalog gives you access to top- level collect ions such as the
Applications and TransientSubscription collect ions (see
Chapter 9) . You can also access less useful collect ions such as the
communicat ion protocols used by DCOM or all of the in-proc servers
(COM objects in a DLL) installed on the machine. Another top- level
collect ion shown in Figure 6-2 is the ComputerList collect ion— a list
of all the computers that the Component Services Explorer is
configured to manage.

Figure 6 - 2 . The COM+ Catalog st ructure, from the root dow n to the
com ponent level

The Applications collect ion, as the nam e implies, contains all the
COM+ applicat ions installed on the machine. A catalog object in the
Applications collect ion allows you to set the propert ies of a
part icular COM+ applicat ion. I t also gives you access to two other

 157

collect ions: the Roles and the Components collect ions. As
ment ioned previously, every folder in the Component Services
Explorer corresponds to a catalog collect ion. Just as every
applicat ion in the Component Services Explorer has a Roles and
Components subfolder, a catalog object represent ing an applicat ion
can give you access to these two collect ions.
The Roles collect ion contains a catalog object for each role defined
in the applicat ion. Chapter 7 discusses role-based secur ity at
length. Every catalog object in the Roles collect ion lets you set its
propert ies (such as the role name and descr ipt ion) and give you
access to a collect ion of users associated with that role, called the
UsersInRole collect ion. Every catalog object in the UsersInRole
collect ion represents a user that was added to that role. As you can
see in Figure 6-2, the objects in the UsersInRole collect ion do not
have any collect ions associated with them.
The Components collect ion contains a catalog object for each
component in the applicat ion. You can programmat ically configure
all the propert ies available on the propert ies page of a component in
the Component Services Explorer. Every component catalog object
can give you access to three collect ions: the
InterfacesForComponent collect ion, the
SubscriptionForComponent collect ion, and the RolesForComponent
collect ion (see Figure 6-3) .

Figure 6 - 3 . Every com ponent catalog object has an elaborate st ructure
under it

The InterfacesForComponent collect ion contains a catalog object
for every interface the component supports. Every inter face catalog

 158

object gives you access to its propert ies and to two collect ions— one
is called the RolesForInterface collect ion, used to iterate over the
roles that were granted access for this interface, and the second
collect ion is the MethodsForInterface collect ion. The
MethodsForInterface collect ion contains a catalog object for each
method on that inter face. Each method catalog object can give you
access to its propert ies and to the roles associated with that
method, in a collect ion called RolesForMethod.
Going back to the collect ions accessible from every component
catalog object , the RolesForComponent collect ion lets you access
the roles associated with that component , and the
SubscriptionsForComponent collect ion contains a catalog object
per a subscript ion to a COM+ Event (discussed in Chapter 9) . Every
subscript ion object is associated with two collect ions— the
PublisherProperties and the SubscriberProperties collect ion.
The only role objects that have collect ions of users associated with
them are in the Roles collect ion accessible from every applicat ion
object (see Figure 6-2) . The component , inter face, and method
level role objects do not have user collect ions associated with them
(see Figure 6-3) .
One more bit of COM+ Catalog t r iv ia— every catalog object always
has at least three collect ions associated with it : the
RelatedCollectionInfo, PropertyInfo, and ErrorInfo
collect ions. These collect ions were om it ted from Figure 6-2 and
Figure 6-3 for the sake of clar ity . The RelatedCollectionInfo
collect ion is used for advanced iterat ions over the Catalog, allowing
you to wr ite gener ic recursive iterat ion code that discovers at
runt im e which collect ions a part icular catalog object is associated
with. The PropertyInfo collect ion is used to ret r ieve informat ion
about the propert ies that a specified collect ion supports. The
ErrorInfo collect ion can provide extensive error informat ion for
dealing with errors in methods that update more than one catalog
object at once, so you can find out exact ly which object caused the
error . This chapter does not discuss these three advanced
collect ions.
When program ming against the COM+ Catalog st ructure, you need
not memorize the Catalog int r icate st ructure. You can just follow
the intuit ive st ructure of the Component Serv ices Explorer and
simply provide the correct collect ion name, while using Figures 6-2
and 6-3 as reference navigat ion maps.

 159

6 .4 I nteract ing w ith the Catalog

Besides understanding the Catalog physical st ructure, you need to
be fam iliar with how to interact with the three Catalog interfaces
and object types (root , collect ion, and object) . This sect ion will walk
you through a few programm ing examples and demonstrate most of
what you need to know when programming the Catalog.

6 .4 .1 The Catalog Root Object

The star t ing point for everything you do with the Catalog is the root
object . You create the root object with the class I D of
CLSID_COMAdminCatalog (or the prog- ID of
COMAdmin.COMAdminCatalog) and obtain an inter face pointer to the
ICOMAdminCataloginterface. You use the
ICOMAdminCataloginterface pointer to either invoke root - level
methods or access one of the top- level collect ions by calling the
GetCollection() method, defined as:
[id(1)] HRESULT GetCollection([in]BSTR
bstrCollectionName,
 [out,retval]IDispatch**
ppCatalogCollection);
You can use ICOMAdminCatalog::GetCollection() to access only
the top- level collect ions (such as Applications) shown in Figure 6-
2. Accessing lower level collect ions is done different ly, and you will
see how short ly. GetCollection() returns an
ICatalogCollection pointer to the specified collect ion. Once you
get the collect ion you want , you can release the root object.
Example 6-1 shows how to access the Applications collect ion by
creat ing the root object and calling
ICOMAdminCatalog::GetCollection().

Exam ple 6 - 1 . Accessing a top- level collect ion such as Applicat ions

HRESULT hres = S_OK;
ICOMAdminCatalog* pCatalogRoot = NULL;
ICatalogCollection* pApplicationCollection = NULL;

hres =
::CoCreateInstance(CLSID_COMAdminCatalog,NULL,CLSCTX_ALL,

IID_ICOMAdminCatalog,(void**)&pCatalogRoot);
hres = pCatalogRoot-
>GetCollection(_bstr_t("Applications"),

(IDispatch**)&pApplicationCollection);

 160

pCatalogRoot->Release(); //You don’t need the root any
more

/* use pApplicationCollection */
Later, you will see other uses for the ICOMAdminCatalog inter face
besides just accessing a top- level collect ion.

6 .4 .2 The I CatalogCollect ion I nterface

Every collect ion in the COM+ Catalog implements the
ICatalogCollection inter face. As ment ioned previously, the
ICatalogCollection inter face is used to iterate over a collect ion of
catalog objects. The ICatalogCollection inter face supports
several methods and propert ies. The main m ethods it supports are
Populate(), Add(), Remove(), SaveChanges(), and
GetCollection(). The m ain propert ies are Count and Item.
After obtaining a collect ion inter face (be it a top- level or a lower-
level collect ion) , the first thing you need to do is call the Populate(
) method. The Populate() method reads the inform at ion from the
Catalog into the collect ion object you are holding, populat ing the
collect ion with data for all the items contained in the collect ion.
I f you want to change the collect ion by adding or removing a
catalog object , use the Add() or Remove() methods. The Add()
method is defined as:
[id(2)] HRESULT Add([in]IDispatch* pCatalogObject);
I t accepts just one parameter— a pointer to the catalog object you
wish to add to the collect ion.
The Count property returns the number of objects in the collect ion
and must be prefixed by a get_ when accessed from C+ + (there
are plenty of examples later in the chapter) .
The Item property is defined as:
[id(1),propget] HRESULT Item([in] long lIndex,
 [out,retval]IDispatch**
ppCatalogObject);
This property returns a pointer to a catalog object , given its index.
Collect ion indexes are zero-based, not one-based, meaning the first
element has index zero and the last has index count-1. You can
now wr ite a for loop that iterates over the ent ire collect ion,
ret r iev ing one item at a t ime. Once you have a pointer to a catalog
object , you can read and change its named propert ies.
The Remove() method is defined as:
[id(3)] HRESULT Remove(long lIndex);
I t accepts an index in the collect ion ident ify ing the object you wish
to remove.
Whatever change you make to the collect ion (adding or removing
objects or m odifying object propert ies) will not take effect unless
you call the SaveChanges() method. I t is a com mon pit fall to wr ite

 161

code that iterates correct ly over a collect ion, modifies it , and
releases all the objects properly— but forgets to call SaveChanges(
). Next t ime your Catalog adm inist rat ion code executes and no
apparent change has taken place, go back and make sure you called
SaveChanges().
Finally, the GetCollection() m ethod is defined as:
[id(4] HRESULT GetCollection([in] BSTR
bstrCollectionName,
 [in] VARIANT varObjectKey),
 [out,retval]IDispatch**
ppCollection);
This method is used to ret r ieve a catalog collect ion associated with
a part icular catalog object . As explained previously, a catalog object
can have catalog collect ions associated with it (see Figures 6-2 and
6-3) . The catalog object inter face has no means for prov iding those
collect ions; you get them by calling GetCollection() on the
collect ion containing the object . GetCollection() accepts a key
value as a parameter, so that it can ident ify the object whose
collect ion you wish to access. Note that
ICOMAdminCatalog::GetCollection() did not require a key
because the top- level collect ions are already nam ed uniquely. I n the
case of a lower level collect ion, m any objects will have collect ions
associated with them , all named the same. For example, if you
iterate over the Applications collect ion, you will find that each
item (a catalog object) is an applicat ion and each of them has a
Components collect ion. I f you want to access the Components
collect ion of a part icular applicat ion, you need to call
ICatalogCollection::GetCollection() on the Applications
collect ion interface, passing in the key to the part icular applicat ion
whose Components collect ion you wish to access.

6 .4 .3 The I CatalogObject I nterface

Every catalog object supports the ICatalogObject interface,
allowing you to configure the object's propert ies. All catalog objects
support three predefined read-only propert ies: Key, Name, and
Valid, defined as:
[id(2),propget] HRESULT Key([out,retval]VARIANT*
pvarKey);
[id(3),propget] HRESULT Name([out,retval]VARIANT*
pvarName);
[id(5),propget] HRESULT Valid([out,retval]VARIANT_BOOL*
pbValid);
The Name property contains the name of the object . For example, if
the object is a COM+ applicat ion, the nam e will be the applicat ion's
name. The Valid property returns TRUE if t he object was read
successfully from the COM+ Catalog when its containing collect ion

 162

was populated. The Key property returns a unique key ident ify ing
this object , used to access all the collect ions associated with that
object .
I n addit ion, all catalog objects support , according to their specific
type, named value propert ies. These propert ies are accessible v ia
one read-wr ite property called the Value property, defined as:
[propget, id(1)] HRESULT Value([in]BSTR bstrPropName,
 [out,retval]VARIANT*
pvarValue);
[propput, id(1)] HRESULT Value([in]BSTR
bstrPropName,[in]VARIANT varNewValue);
Each catalog object (applicat ion, component) has a predefined set
of named propert ies and predefined enum values for those
propert ies.
For example, every catalog object in the Applications collect ion
represents a COM+ applicat ion and has a named value property
called Activation t hat cont rols whether the applicat ion should be
act ivated as a library or server applicat ion. The predefined enum
values for the Activation property are
COMAdminActivationInproc and COMAdminActivationLocal.
The ICatalogObject inter face also supports two not -so-useful
helper m ethods, IsPropertyReadOnly() and
IsPropertyWriteOnly(), intended to be used dur ing generic
iterat ion, when you do not know the exact behavior of a property
you are accessing.

6 .4 .4 Using the Catalog I nterfaces

You have probably had as much dry theory as you can take, and an
example can go a long way to dem onst rate the point . Example 6-2
shows many of the points covered so far in this chapter. Suppose
you want to programmat ically set a COM+ applicat ion (called
MyApp) to be a library COM+ applicat ion. Example 6-2 uses Visual
Basic to iterate over the Applications collect ion, looking for the
MyApp COM+ applicat ion, and sets it s act ivat ion m ode to a library
applicat ion.

Exam ple 6 - 2 . Visual Basic exam ple of finding an applicat ion and set t ing
its act ivat ion m ode

Dim catalog As ICOMAdminCatalog
Dim applicationCollection As ICatalogCollection
Dim applicationCount As Long
Dim i As Integer ’Application index
Dim application As ICatalogObject

Set catalog = New COMAdminCatalog

 163

Set applicationCollection =
catalog.GetCollection("Applications")
Set catalog = Nothing ’You don’t need the root any more

’Read the information from the catalog
Call applicationCollection.Populate
applicationCount = applicationCollection.Count()

For i = 0 To applicationCount - 1
 ’Get the current application
 Set application = applicationCollection.Item(i)
 If application.Name = "MyApp" Then
 application.Value("Activation") =
COMAdminActivationInproc
 applicationCollection.SaveChanges
 End If
 Set application = Nothing
 i = i + 1
Next i

Set applicationCollection = Nothing
First , create a Catalog root object , the catalogRoot object . Then
invoke its GetCollection() method, asking for an
ICatalogCollection inter face pointer to the Applications
collect ion. Next , release the root object, because it is no longer
needed. Then populate the applicat ion collect ion object and find out
how many applicat ions you have (the Count property) . The for loop
iterates over the applicat ions and gets one applicat ion at a t ime, in
the form of an ICatalogObject object , using the collect ion’s Item
property . You then check if the catalog object ’s name is MyApp. I f it
is, set its Activation nam ed property to the predefined enum value
of COMAdminActivationInproc. After making the change to the
applicat ion object , call SaveChanges() on the Applications
collect ion object to save the change.
Example 6-3 does the sam e thing as Example 6-2, except it is
writ ten in C+ + instead of Visual Basic.

Exam ple 6 - 3 . C+ + exam ple of finding an applicat ion and set t ing its
act ivat ion m ode

HRESULT hres = S_OK;
ICOMAdminCatalog* pCatalog = NULL;
ICatalogCollection* pApplicationCollection = NULL;
long nApplicationCount = 0;
int i = 0; //Application index

hres =
::CoCreateInstance(CLSID_COMAdminCatalog,NULL,CLSCTX_ALL,

 164

IID_ICOMAdminCatalog,(void**)&pCatalog);
hres = pCatalog->GetCollection(_bstr_t("Applications"),

(IDispatch**)&pApplicationCollection);
pCatalog->Release(); //You don’t need the root any more

hres = pApplicationCollection->Populate(); //Read the
information from the catalog
hres = pApplicationCollection-
>get_Count(&nApplicationCount);

for(i=0;i<nApplicationCount;i++)
{
 ICatalogObject* pApplication = NULL;
 //Get the current application
 hres = pApplicationCollection-
>get_Item(i,(IDispatch**)&pApplication);
 _variant_t varAppName;
 _variant_t
varActivation((bool)COMAdminActivationInproc);
 hres = pApplication->get_Name(&varAppName);
 if(_bstr_t("MyApp") == _bstr_t(varAppName))
 {
 long ret = 0;
 hres = pApplication-
>put_Value(_bstr_t("Activation"),varActivation);
 hres = pApplicationCollection->SaveChanges(&ret);
 }
 pApplication->Release();
}
pApplicationCollection->Release();
A valid quest ion you are probably asking is, "How do I know what
the predefined named propert ies and enum values are for the
property I want to configure?" The answer is simple: the Plat form
SDK documentat ion (available in the MSDN Library, under
Component Services/ COM+ (Component Serv ices) / Reference/ COM+
Administ rat ion Reference) contains a comprehensive list of every
named property and its corresponding enum values (or data type
and range, if applicable) .
Another point worth demonst rat ing with an example is using the
Key property of a catalog object to access a related collect ion.
Suppose you would like to pr int to the t race window all the
components in all t he applicat ions. You would use the Key property
of every COM+ applicat ion to access its Components collect ion.
Example 6-4 shows the TraceTree() method that iterates over the
Applications collect ion, calling the TraceComponents() method
to iterate over an applicat ion component collect ion.

 165

Exam ple 6 - 4 . Tracing all the com ponents in every COM+ applicat ion

#include "COMadmin.h"
void TraceTree()
{
 HRESULT hres = S_OK;
 ICOMAdminCatalog* pCatalog = NULL;
 ICatalogCollection* pApplicationCollection = NULL;
 long nApplicationCount = 0;

 hres =
::CoCreateInstance(CLSID_COMAdminCatalog,NULL,CLSCTX_ALL,

IID_ICOMAdminCatalog,(void**)&pCatalog);

 hres = pCatalog-
>GetCollection(_bstr_t("Applications"),

(IDispatch**)&pApplicationCollection);
 pCatalog->Release(); //You don’t need the root any
more

 //Read the information from the catalog
 hres = pApplicationCollection->Populate();
 hres = pApplicationCollection-
>get_Count(&nApplicationCount);

 //Iterate over the Applications collection
 for(int i=0;i<nApplicationCount;i++)
 {
 ICatalogObject* pApplication = NULL;
 ICatalogCollection* pComponentCollection = NULL;
 _variant_t varAppName;
 //Get the current application
 hres = pApplicationCollection-
>get_Item(i,(IDispatch**)&pApplication);
 hres = pApplication->get_Name(&varAppName);

 TRACE("The components in application \"%s\" are:
\n",

(char*)(_bstr_t(varAppName));

TraceComponents(pApplicationCollection,pApplication);
 pApplication->Release();
 }
 pApplicationCollection->Release();
}

void TraceComponents(ICatalogCollection*
pApplicationCollection,

 166

 ICatalogObject* pApplication)
{
 HRESULT hres = S_OK;
 ICatalogCollection* pComponentCollection = NULL;
 long nComponentCount = 0;
 _variant_t varAppKey;

 //Get the Component collection for this application.
Need the key first
 hres = pApplication->get_Key(&varAppKey);
 hres = pApplicationCollection-
>GetCollection(_bstr_t("Components"),

varAppKey,(IDispatch**)&pComponentCollection);

 //Read the information from the catalog
 hres = pComponentCollection->Populate();
 hres = pComponentCollection-
>get_Count(&nComponentCount);

 for(int j=0;j<nComponentCount;j++)
 {
 ICatalogObject* pComponent = NULL;
 _variant_t varCompName;
 //Get the current component
 hres = pComponentCollection-
>get_Item(j,(IDispatch**)&pComponent);
 hres = pComponent->get_Name(&varCompName);
 //Ugly, but works:
 TRACE(" %d. %s \n"
,j+1,(char*)(_bstr_t(varCompName));
 pComponent->Release();
 }
 pComponentCollection->Release();
}
The output from Example 6-4 should look sim ilar to this (depending,
of course, on the applicat ions installed on your machine) :
The components in application "COM+ Utilities" are:
 1. TxCTx.TransactionContext
 2. TxCTx.TransactionContextEx
 3. RemoteHelper.RemoteHelper
 4. QC.Recorder.1
 5. QC.ListenerHelper.1
The components in application "MyApp" are:
 1. MyApp.MyComponent.1
 2. MyObj2.MyObj2.1
 3. Subscriber.MyEvent.1
 4. EventClass.MyEvent.1
The components in application "COM+ QC Dead Letter Queue
Listener" are:

 167

 1. QC.DLQListener.1
The components in application "Logbook" are:
 1. LogBootEvent.LogbookEventClass.1
 2. LogBook.ComLogHTML.1
 3. LogBook.COMLogXML.1
The components in application "System Application" are:
 1. Mts.MtsGrp.1
 2. COMSVCS.TrackerServer
 3. EventPublisher.EventPublisher.1
 4. Catsrv.CatalogServer.1
The first part of Example 6-4, the TraceTree() method, creates
the root object , gets the top- level Applications collect ion,
populates it , and ret r ieves the number of applicat ions (using the
Count property) . I t then iterates over the Applications collect ion,
get t ing one catalog object at a t ime, t racing its name, and passing
it to the TraceComponents() m ethod. The TraceComponents()
t races out all the components associated with that applicat ion. Note
that it is not suff icient to pass to the TraceComponents() method
just the applicat ion catalog object . You have to pass in as a
parameter the Applications collect ion as well. Recall that when
you want to access a Collect ion 2 associated with Object 1
(contained in Collect ion 1) , you get Collect ion 2 from Collect ion 1,
which contains Object 1. This is why TraceComponents() accepts
pApplicationCollection as a parameter:
void TraceComponents(ICatalogCollection*
pApplicationCollection,
 ICatalogObject* pApplication)
TraceComponents() then calls get_Key() on the applicat ion
catalog object passed in and, using that key, accesses the
applicat ion object ’s Components collect ion. Next , TraceComponents(
) populates the Components collect ion, gets its count , and iterates
over it , t racing one component name at a t im e.
When wr it ing code as in Example 6-4, which iterates over
collect ions and nested collect ions, it is very important to nam e your
var iables correct ly to make your code readable.
ICatalogCollection* pCollection is a poor variable name, but
ICatalogCollection* pApplicationCollection is a meaningful
and readable name that conveys exact ly which collect ion it is
point ing to.
Now you should be get t ing the feel of how t ruly generic and
extensible the COM+ Catalog programm ing model really is. The
same ICatalogCollection interface is used to iterate over every
collect ion, and the same ICatalogObject interface is used to
configure and access all the parameters in the Catalog, be it an
applicat ion- or a method- level property .

6 .4 .5 Saving Changes

 168

When you make changes to a collect ion (adding or removing catalog
objects) or to objects in it (configuring propert ies) , you have to call
ICatalogCollection::SaveChanges() to commit them . You can
also discard changes you made to a collect ion, but did not commit
yet , by calling Populate() again.
When you call ICatalogCollection::SaveChanges(), all objects
and all propert ies on all the objects are writ ten to the Catalog at
once, as an atom ic operat ion. The only problem with this
programming model is that the Catalog presents a last -wr iter-wins
behavior— the object is saved in the Catalog precisely the way the
last writer configured it . This m eans that there is a potent ial for
conflicts and content ions between two applicat ions that modify the
same data set , because neither has a lock on the items in the
Catalog.

6 .4 .6 Object Propert ies I nterdependencies

Somet im es, a part icular value of a catalog object nam ed property
depends on the values of other named propert ies. For example,
when the Transaction nam ed property of a component is set to the
value of COMAdminTransactionRequired or
COMAdminTransactionRequiresNew, the value of the
JustInTimeActivation named property must be set to TRUE. This
is no surprise because all t ransact ional com ponents require JITA to
be turned on (as well as requir ing synchronizat ion) .
The COM+ Catalog is aware of all the propert ies' interdependencies
and will enforce consistency whenever it deem s it fit . I f you t ry to
set a named property in a way that conflicts with another, an error
will occur. For example, if you t ry to turn JITA off on a t ransact ional
component (by set t ing it to FALSE) , SaveChanges() will fail. One
effect of having a smart Catalog is that som e propert ies m ight be
changed for you without you explicit ly set t ing them . For example, if
you set the Transaction named property to the value of
COMAdminTransactionRequired, the Catalog turns JITA on and sets
the value of the Synchronization property to
COMAdminSynchronizationRequired.

6 .5 Features of COMAdm inCata log

There is more to the Catalog root object than providing you with
access to the top- level collect ions. The ICOMAdminCataloginter face
supports 22 methods, prov iding you with many useful features that
allow you to:

• Connect to the Catalog root object on a remote machine

 169

• I nstall a new COM+ applicat ion
• Export an exist ing COM+ applicat ion
• Start or shut down a COM+ applicat ion
• I nstall components into COM+ applicat ions
• Obtain informat ion regarding event classes
• Start , stop, or refresh load balancing rout ing (load balancing

is not available in standard installat ions of COM+)
• Check the status of a COM+ service (current ly, only load

balancing)
• Back up the COM+ Catalog informat ion to a specific f ile
• Restore the Catalog from a specific file

For example, you often need to programmat ically adm inister a
COM+ Catalog on a remote machine, dur ing deployment or for
automat ing remote adm inist rat ion of servers. To do so, you would
use the ICOMAdminCatalog::Connect() method, defined as:
[id(2)] HRESULT Connect([in]BSTR bstrMachineName,
 [out,retval]IDispatch**
pRemoteRootCollection)

The first parameter to Connect() is the remote machine nam e,
and the second is an out parameter— a pointer to a root collect ion
on the remote m achine. After calling Connect(), the
ICOMAdminCatalog you are holding starts affect ing the rem ote
machine to which you have connected— calls made on its methods
adm inister the rem ote machine. You can also use the
pRemoteRootCollection parameter to gain access to remote top-
level collect ions, as shown in Example 6-5.

Exam ple 6 - 5 . Accessing a top- level catalog collect ion on a rem ote
m achine

HRESULT hres = S_OK;
ICOMAdminCatalog* pCatalog = NULL;
ICatalogCollection* pRemoteAppCollection = NULL;
ICatalogCollection* pRemoteRootCollection = NULL;

//Creating a local catalog
hres =
::CoCreateInstance(CLSID_COMAdminCatalog,NULL,CLSCTX_ALL,

IID_ICOMAdminCatalog,(void**)&pCatalog);

//Connecting to the remote machine
hres = pCatalog->Connect(_bstr_t("RemoteMachineName"),

(IDispatch**)&pRemoteRootCollection);

pCatalog->Release();///No need for it anymore

 170

_variant_t varKey("");//Key value will be ignored

//Getting the "Applications" collection on the remote
machine
hres = pRemoteRootCollection-
>GetCollection(_bstr_t("Applications"),varKey,

(IDispatch**)&pRemoteAppCollection);

pRemoteRootCollection->Release();//No need for the
remote root collection anymore

/* use pRemoteAppCollection */

pRemoteAppCollection->Release();
Another example of what you can do with the root object is shut t ing
down and start ing up COM+ applicat ions. The ICOMAdminCatalog
inter face supports the StartApplication() and
ShutdownApplication() methods, defined as:
[id(16)] HRESULT StartApplication(BSTR strAppName);
[id(8)] HRESULT ShutdownApplication(BSTR strAppName);
Start ing up an applicat ion programmat ically is helpful in the case of
queued com ponents (you will see why in Chapter 8) , and shut t ing
down COM+ applicat ions is extremely useful during developm ent .
When you are doing a test -debug- fix-build- retest cycle, you often
discover a problem that you can fix on the spot . However, you
cannot rebuild your components as long as the applicat ion that
hosts them is running because the applicat ion m aintains a lock on
the DLL. A COM+ applicat ion may be running even when idle (the
default is three m inutes) , so you have to shut down the applicat ion
using the Component Services Explorer. After a while, this becom es
very annoying. The situat ion is even worse if you have a number of
interact ing COM+ applicat ions and you have to shut them all
down— for example if you want to change a header file, a lib, or a
component they all use.

Replicat ing the COM+ Catalog

I f your product consists of more than one COM+ applicat ion,
you m ay want to actually clone the ent ire COM+ Catalog on
a machine where the product is installed and use the clone
as an installat ion. COM+ allows you to replicate all COM+
set t ings from a giv ing source computer to one or more target
computers, using a ut ilit y called COMREPL. COMREPL is
typically used to replicate a m aster configurat ion and deploy
it on a set of ident ically configured computers. Another
potent ial use for COMREPL is for product configurat ion
managem ent purposes.

 171

COMREPL is a crude command line-driven ut ility :
COMREPL <source computer name> <target computers
list>
All COM+ applicat ions on the master computer are replicated
to the target com puters, except the COM+ preinstalled
applicat ions. I n addit ion, all COM+ applicat ions previously
installed on the target computers will be deleted as part of
the replicat ion process.
So how about building a ut ilit y that uses
ICOMAdminCatalog::ShutdownApplication() to shut down the
applicat ion specified on the com mand line— or all of the COM+
applicat ions on your machine, if no applicat ion nam e was specified?
I call this ut ility Nuke'm, and I even have a special icon on my
Visual Studio toolbar that I click before every build, just to purge all
the running applicat ions from m y machine and star t a fresh build
and test cycle. Nuke'm contains a light C+ + wrapper class around
the ICOMAdminCatalog interface, called CCatalogAdmin. Example 6-
6 shows its Shutdown() method, which shuts down the specified
applicat ion and, if none is specified, shuts down all the COM+
applicat ions.

Exam ple 6 - 6 . The CCatalogAdm in::ShutDow n() m ethod

HRESULT CCatalogAdmin::ShutDown(BSTR bstrAppName)
{
 //m_pCatalog is a member of the class, initialized in
the constructor
 if(_bstr_t(bstrAppName) != _bstr_t(""))
 {
 return m_pCatalog-
>ShutdownApplication(bstrAppName);
 }
 else//Shut down all the applications
 {
 HRESULT hres = S_OK;
 ICatalogObject* pApplication = NULL;
 ICatalogCollection* pApplicationCollection = NULL;
 long nApplicationCount = 0;
 int i = 0;//Application index

 //Get the application collection
 hres = m_pCatalog-
>GetCollection(_bstr_t("Applications"),

(IDispatch**)&pApplicationCollection);

 hres = pApplicationCollection->Populate();
 hres = pApplicationCollection-
>get_Count(&nApplicationCount);

 172

 for(i=0;i<nApplicationCount;i++)
 {
 //Get the current application
 hres = pApplicationCollection->get_Item(i,
(IDispatch**)&pDispTemp);

 _variant_t varName;
 hres = pApplication->get_Name(&varName);
 _bstr_t bstrName(varName);

 //No point in killing the system app,
 //since it will start up again immediately
 if(bstrName != _bstr_t("System Application"))
 {
 hres = m_pCatalog-
>ShutdownApplication(bstrName);
 }
 pApplication->Release();
 }
 pApplicationCollection->Release();
 return hres;
 }
}
The Nuke’m ut ilit y is available from this book’s web site,
ht tp: / / www.oreilly .com/ catalog/ comdotnetsvs/ .

6 .6 The COM+ Cata log and Transact ions

The COM+ Catalog is a resource manager. When a component that
takes part in a t ransact ion t r ies to access the Catalog, the Catalog
auto-enlists in that t ransact ion. As a result , all the configurat ion
changes made within the scope of that t ransact ion will be
commit ted or aborted as one atom ic operat ion, even across mult iple
catalogs on mult iple machines, according to the t ransact ion success.
The m ain advantage of having the COM+ Catalog take part in your
t ransact ions is that it enormously sim plifies deployment on mult iple
machines. Imagine a situat ion in which you write an elaborate
installat ion scr ipt that t r ies to access and install your product on
mult iple machines. The problem is that almost anything in a
dist r ibuted installat ion scenario can go wrong— from network
failures to security to disk space. Because all the installat ion
at tempts are scoped under one t ransact ion, you can guarantee that
all server m achines are left with ident ical configurat ions— either the
installat ion succeeded on all of them, or the changes were rolled
back and the servers are left just as they were before you t r ied to
install the product .

 173

Another benefit of having the Catalog as a resource manager is
dealing with potent ial content ions and conflicts between two
different applicat ions that t ry to access and modify the Catalog at
the same t im e. To ensure the t ransact ion’s isolat ion, when one
t ransact ion makes a change to the Catalog, the Catalog will block all
writers from other t ransact ions unt il the current t ransact ion
commits or aborts. (COM+ will abort the t ransact ion if a deadlock
situat ion exists because of the blocking.) While a t ransact ion
modifies the Catalog, readers from within that t ransact ion will read
the data as if it were commit ted. Readers from outside the
t ransact ion will not be blocked, and the data they see will not reflect
any inter im changes made within the first t ransact ion unt il t hat
t ransact ion actually commits. You should avoid start ing a new
COM+ applicat ion (either programmat ically or m anually via the
Component Services Explorer) that relies on informat ion that is not
yet commit ted.
One last point regarding t ransact ions and the COM+ Catalog: you
can programmat ically invoke calls that access the filesystem , such
as export ing a COM+ applicat ion. The problem is that the filesystem
and the Windows Installer do not part icipate in t ransact ions. I f your
t ransact ion aborts, you will have to roll back those changes
manually to maintain consistency.

6 .7 Sum m ary

Programming the COM+ Catalog is nothing m ore than
understanding the Catalog program ming model and navigat ing
down the Catalog st ructure, using the Component Services Explorer
or the Catalog st ructure diagrams in this chapter as reference
guide. This chapter focused on the Catalog st ructure, not on the
semant ics of the items it contains. Although the Catalog inter faces
were designed for script ing languages, you can access them from
C+ + as well, and the result ing code is just as concise. Som e COM+
serv ices features are available only by accessing the Catalog
programmat ically (in part icular , some features of COM+ Events,
discussed in Chapter 9) , so knowing how to work with the Catalog is
an essent ial sk ill. Furtherm ore, automat ing mundane and repet it ive
development and deployment tasks by program ming direct ly
against the COM+ Catalog is fair ly easy.

 174

Chapter 7 . COM+ Security

Perhaps nothing epitom izes the differences between developing a
dist r ibuted enterpr ise-wide system using COM+ and developing one
using DCOM more than the COM+ security serv ice. DCOM security
is notor ious for being com plex and hard to learn. Even though
DCOM uses a simple and elegant secur ity programm ing and
configurat ion model, the sheer volume of technical details and the
inherent difficulty of dist r ibuted system s security puts DCOM
security outside the reach of many developers.
COM+ makes using security enjoyable by providing an easy- to-use
adm inist rat ive security infrastructure. COM+ security is based on an
intuit ive new security concept called role-based secur ity. Role-based
security great ly simplifies the m anagement and configurat ion of
your applicat ion’s security . Of all component services provided by
COM+ , security is my favor ite.
COM+ security makes it possible for you to leave all secur it y- related
funct ionality outside the scope of your components and configure
security adm inist rat ively. Roles are used for access cont rol, and
declarat ive at t r ibutes are used for the remaining security set t ings. I f
the adm inist rat ive configurat ions are too coarse for your part icular
needs and you st ill want to have program mat ic cont rol over
security , COM+ provides an easy- to-use program mat ic way to fine-
tune secur ity. In fact , COM+ secur ity solves classic dist r ibuted
comput ing problems that are difficult and would require much work
to solve on your own. Even with a single-machine applicat ion,
COM+ security provides elegant solut ions for adm inist rat ion and
configurat ion issues.
This chapter covers basic security concepts, but it avoids (as m uch
as possible) the gory details of low- level security manipulat ion and
COM+ security implementat ion. I nstead, I ’ll focus on how best to
use the secur ity service, what the available opt ions are, the
t radeoffs between them, and their configurat ion pit falls.

7 .1 The Need for Security

Who needs secur ity? You do. Alm ost nobody today develops a
standalone, single-machine, self- contained applicat ion. Applicat ions
today are dist r ibuted between mult iple machines. Some applicat ions
have a user interface; others execute business logic and interact
with other applicat ions. Your database is probably on a separate set
of machines altogether. The word "secur ity" is int r insic to the word
"dist r ibuted"— meaning that the moment you dist r ibute your
applicat ion, secur ity raises its head.

 175

Security provides ways to ver ify that a part icular user has sufficient
credent ials to perform an operat ion. Secur ity is the way you verify
that the users are who they say they are. Security is the way you
protect your system from innocent user m istakes and malicious
at tacks. For example, imagine a hospital pat ient informat ion
system. I n this system , not all users on all term inals are created
equal. Only doctors can sign a death cert ificate or change a dose of
medicine. Nurses can update pat ient parameters, such as
temperature or the last t ime the pat ient took medicine. Hospital
clerks can v iew some inform at ion and bill t he pat ient ’s insurance
company. However, a clerk should not be allowed to alter anything
considered medical informat ion, not even accidentally . A security
infrastructure provides an easy way to configure these credent ials
and access cont rols. When a doctor logs on at a nurse’s stat ion, you
want to give the doctor proper access, even though the access is
from the nurse’s stat ion. You should protect the privacy of the
pat ient informat ion so malicious part ies— on the inside or outside—
cannot gain access to it . You want to be able to easily change who
is allowed to do what and avoid hardcoding security policies in your
applicat ion. As the system and the domain change (new hospital
regulat ions or new users) , you want to reconfigure the system
security without recoding it .
Security in a m odern system is not an afterthought . You m ust
design secur ity into your COM+ applicat ion and components from
day one, much the same way you design concurrency and threading
models, factor out your inter faces, and allocate interfaces to
components. I f you don't , at best your applicat ion will not work. At
worst , you will int roduce security breaches into your system,
allowing cr it ical applicat ion logic to go ast ray and face data
corrupt ion or inconsistency. Essent ially , lack of security is a failure
to deliver the robust system your custom er pays for . When dealing
with secur ity, you should always assum e that somebody will
eventually find and take advantage of a security hole.

7 .2 Basic Security Term s

To make the most of the secur ity configurat ions COM+ has to offer,
you need to be fam iliar with a few basic terms and concepts. The
rest of this chapter makes frequent use of these terms.

7 .2 .1 Security I dent ity

A security ident ity is a valid account used to ident ify a user. The
account can be local or an account on a domain server. Every
COM+ ent ity, be it a client or an object , must have an ident ity
associated with it so that COM+ can determ ine what that ent ity is

 176

capable of accessing. I n Windows, all objects in the same process
share the same ident ity, unless they make an explicit at tempt to
assume a different ident ity. You can configure a COM+ server
applicat ion to always run under a part icular ident ity or to run under
the ident ity of the user who is current ly logged on that Windows
stat ion. Objects from a COM+ library applicat ion run under the
ident ity of the host ing process by default .

7 .2 .2 Authent icat ion

Authent icat ion has two facets. The first is the process by which
COM+ ver ifies that the callers are who they claim to be. The second
is the process by which COM+ ensures the integr ity of the data sent
by the callers. COM+ authent icat ion relies on the underly ing
security provider— in most cases Windows 2000 built - in security .
I n the Windows default secur ity provider, the challenge/ response
protocol is used to authent icate the caller's ident ity. Given that all
callers must have a security ident ity, if the callers are who they say
they are, then they must know the account password. That
password is also known to the domain server. The security provider
does not want to ask the callers direct ly for their passwords because
a malicious third party can sniff the network to discover the
password. Instead, to authent icate the callers, the security provider
encodes a random block of data with the account password and
sends it to the callers, asking them to decode the encrypted block
using the password and send the result back. This process is the
challenge. I f t he returned block, the response, is the sam e as the
original unencrypted block, then the callers are authent icated.
Authent icat ing caller ident ity is only one problem. The other
problem is that data passed in a method call can be intercepted,
copied, altered, or corrupted by a malicious third party . Under
COM+ , both the caller and the object have a range of choices to
determ ine how secure the connect ion between them should be.
To authent icate data integrity , COM+ can use one of two
techniques: it can append a checksum to every network packet ,
making sure that the data is not tampered with dur ing t ransport , or
it can encrypt all informat ion in the packet .
Both kinds of authent icat ion (ident ity and data integr ity) are, in
most cases, completely t ransparent to both the caller and the object
and done automat ically by COM+ . However, there is a clear t radeoff
between secur ity and performance (when and to what extent to
authent icate) , and it is up to you to choose and configure the
proper authent icat ion level for your applicat ion.

7 .2 .3 Authorizat ion

Authorizat ion is the process of determ ining what the caller is
allowed to access in the system. Authorizat ion is also called access

 177

cont rol. COM+ uses role-based security (discussed in the following
sect ion) to let you define access control at the component ,
inter face, and method levels. Access cont rol is used to protect
objects and resources against unauthor ized access by clients. I f a
user who is not granted access to a component t r ies to invoke a
method on that component , the method invocat ion fails with the
error code E_ACCESSDENIED ("Perm ission Denied" in Visual Basic) .
You configure access cont rol adm inist rat ively using the Component
Serv ices Explorer. Programmat ically, you can st ill f ine- tune access
and execut ion of a method based on the caller ’s ident ity and other
informat ion such as the method parameters and object state.
Note that authorizat ion is not related to authent icat ion.
Authorizat ion assumes that the caller is already authent icated and is
only concerned with whether the caller can access this object . I t is
not concerned with whether the caller is really who he or she claims
to be.

7 .2 .4 Launch Security

Launch secur ity cont rols which users are allowed to create a new
object in a new process. Unlike DCOM, COM+ does not prov ide a
dedicated way to cont rol launch securit y. This is done intent ionally
to avoid a common DCOM secur ity pit fall— allowing a user to launch
a process, but forget t ing to grant the user access to the objects
inside! As a result , t he user could call CoCreateInstance() to
launch the process, but would be denied access to m ethods,
including being unable to call Release() on the object . The
process is ult imately orphaned, and the user has to shut it down
manually or rely on COM garbage collect ion to eventually shut the
process down. I n COM+ , even if the client is not granted access to
the object , (but is a member of at least one role defined for the
applicat ion) , the client can st ill launch a new process with a new
object inside and can call the IUnknown m ethods on the object ,
including Release(). The client cannot access methods on any
other inter face, however.

7 .2 .5 I m personat ion

Authorizat ion and authent icat ion protect the object from being
accessed by unauthor ized and unauthent icated users. This
protect ion ensures that when an object is asked to perform an
operat ion, the invoking client has perm ission to access the system
and the call was not init iated by an adversary client . However, how
should the client be protected from malicious objects? What
prevents the server from assuming the client's ident ity and
credent ials and causing harm? I s the server even allowed to learn
the ident ity of the calling client? By set t ing the impersonat ion level,

 178

COM+ lets callers indicate what they allow objects to do with their
security ident ity. The impersonat ion level indicates the degree to
which the server can impersonate the calling client . Set t ing the
impersonat ion level can be done adm inist rat ively and
programmat ically on the client side; at tempt ing to impersonate the
client can only be done programmat ically by the server.

7 .3 Role-Based Security

The cornerstone of COM+ access cont rol is role-based secur ity. A
role is a symbolic category of users who share the same security
pr iv ileges. When you assign a role to an applicat ion resource, you
grant access to that resource to whoever is a mem ber of that role.

7 .3 .1 Configuring Role- Based Security

The best way to explain role-based security is by demonst rat ion.
Suppose you have a COM+ banking applicat ion. The applicat ion
contains one com ponent , the bank component . The bank
component supports two inter faces that allow users to manage bank
accounts and loans, defined as:
interface IAccountsManager : IUnknown
{
 HRESULT TransferMoney([in]int nSum,[in]DWORD
dwAccountSrc,
 [in]DWORD dwAccountDest);
 HRESULT OpenAccount([out,retval]DWORD* pdwAccount);
 HRESULT CloseAccount([in]DWORD dwAccount);
 HRESULT GetBalance([in]DWORD
dwAccount,[out,retval]int* pnBalance);
};
interface ILoansManager : IUnknown
{
 HRESULT Apply([in]DWORD dwAccount,[out,retval]BOOL*
pbApproved);
 HRESULT CalcPayment([in]DWORD dwSum,[out,retval]DWORD*
pdwPayment);
 HRESULT MakePayment([in]DWORD dwAccount,[in]DWORD
dwSum);
};
During the requirements-gather ing phase of the product
development, you discovered that not every user of the applicat ion
should be able to access every method. In fact , there are four kinds
of users:

• The bank manager, the most powerful user, can access all
methods on all inter faces of the component .

 179

• The bank teller can access all methods of the
IAccountsManager inter face, but is not author ized to deal
with loans. I n fact , the applicat ion is required to prevent a
teller from accessing any ILoansManager interface m ethod.

• Sim ilar ly, the loan consultant can access any m ethod of the
ILoansManager inter face, but a consultant is never t rained to
be a teller and may not access any IAccountsManager
inter face method.

• A bank custom er can access some of the methods on both
inter faces. A custom er can t ransfer funds between accounts
and find the balance on a specified account . However, a
customer cannot open a new account or close an exist ing one.
The customer can make a loan paym ent , but cannot apply for
a loan or calculate the payments.

I f you were to enforce this set of securit y requirements on your
own, you would face an implem entat ion nightm are. You would have
to m anage a list of who is allowed to access what and t ight ly couple
the objects to the secur ity policy. The objects would have to verify
who the caller is and whether the caller has the r ight credent ials to
access them. The result ing solut ion would be fragile. I magine the
work you would have to do if these requirements were to change.
Fortunately, COM+ makes managing such a security access policy
easy. After import ing the bank component into a COM+ applicat ion
(be it a server or a library applicat ion) , you need to define the
appropr iate roles for this applicat ion. Every COM+ applicat ion has a
folder called Roles. Expand the Roles folder, r ight click on it , and
select New from the context menu. Type Bank Manager into the
dialog box that com es up and click OK. I n the Roles folder, you
should see a new item called Bank Manager. Add the rest of the
roles: Customer , Teller , and Loans Consultant . The applicat ion
should look like Figure 7-1.

Figure 7 - 1 . The Roles folder of the bank applicat ion

 180

You can now add users to each role. You can add any user with an
account on the machine or the domain. Every role has a Users
folder under which you add registered users from your domain or
the machine local users. For example, navigate to the Users folder
of the Customer role, r ight -click the Users folder, and select New
from the Context menu. In the dialog box, select the users who are
part of the Customer role, such as Joe Customer (see Figure 7-2) .
You can populate this role and the remaining roles in the bank
applicat ion with their users.

Figure 7 - 2 . Populat ing a role w ith users

The next step is to grant access to components, interfaces, and
methods for the various roles in the applicat ion, according to the

 181

bank applicat ion requirements. Display the bank component
propert ies page and select the Security tab. The tab contains the
list of all roles defined for this applicat ion. Check the Manager role
to allow a manager access to all interfaces and methods on this
component (see Figure 7-3) . When you select a role at the
component level, that role can access all interfaces and methods of
that component . Make sure that the "Enforce component level
access check" checkbox under Author izat ion is selected. This
checkbox, your component access secur ity switch, inst ructs COM+
to ver ify part icipat ion in roles before accessing this component .

Figure 7 -3 . Select ing a role at the com ponent level

Next , configure security at the interface level. Display the
IAccountsManager inter face propert ies page, and select the
Security tab. Select the Teller role to grant access to all methods in
this inter face to any mem ber of the Teller role (see Figure 7-4) . The
upper port ion of the inter face security tab contains inherited roles —
roles that were granted access at the component level, and thus
access to this inter face as well. Even if the Bank Manager role is not
checked at the IAccountsManager interface level, that role can st ill
access the interface.

Figure 7 -4 . Grant ing access to a role at the interface level

 182

Sim ilar ly, configure the ILoansManager interface to grant access to
the Loans Consultant role. The Bank Manager should also be
inherited in that inter face. Note that the Loans Consultant cannot
access any method on the IAccountsManager inter face, j ust as the
requirements st ipulate.
Finally, you can configure access r ights at the method level. A
customer should be able to invoke the GetBalance() and
TransferMoney() methods on the IAccountsManager inter face,
and the MakePayment() method on the ILoansManager inter face,
but no other methods. Grant ing access at the method level is
sim ilar to grant ing it at the inter face or component level. For
example, to configure the GetBalance() method, display that
method’s Propert ies page, select its Security tab and check the
Custom er role (see Figure 7-5) . The method’s Security tab shows
inherited roles from the interface and com ponent levels. COM+
displays roles inherited from the component level with a component
icon; it shows roles inher ited from the interface level with an
inter face icon.

Figure 7 - 5 . Grant ing access to a role at the m ethod level

 183

Because of the inherited nature of roles, you can deduce a simple
guideline for configuring roles: put the more powerful roles
upst ream and the more restr icted roles downst ream.

7 .3 .2 Role- Based Security Benefits

For all pract ical purposes, COM+ role-based access cont rol gives
you ult imate flex ibilit y with zero coding. I t gives you this flex ibilit y
because access cont rol at the m ethod level is usually granular
enough. Role-based security offers a scalable solut ion that does not
depend on the num ber of system users. Without it , you would have
to assign access r ights for all objects and resources m anually, and
in some cases you would have to impersonate users to find out
whether they have the r ight credent ials. (In Sect ion 7.8, you will
see how an object can impersonate a caller.) Configurable role-
based security is an extensible solut ion that makes it easy to modify
a secur ity policy. Like any other requirement , your applicat ion’s
security requirements are likely to change and evolve over t ime, but
now you have the r ight tool to handle it product ively.
Role-based access cont rol is not lim ited to configurat ions m ade with
the Component Services Explorer. You can build more granular
security policies programmat ically if you need to, using role-based
security as a support ing plat form .

7 .3 .3 Designing Role- Based Security

Roles map nicely to term inology from your applicat ion’s domain.
Dur ing the requirements analysis phase, you should aspire to
discern user roles and priv ileges, in addit ion to discover ing
inter faces and classes. Focus your efforts on discovering differences
in the roles users play that dist inguish them from one another,
rather than placing explicit perm issions on each object in the
system. As you saw in the bank example, roles work very well when

 184

you need to characterize groups of users based on what act ions
those users can perform . However, roles don’t work well in a couple
of cases. First , they don’t work well when access decisions rest on
the ident ity of a part icular user: for example, if only the bank teller
Mary Sm iling is allowed to open an account . Second, they don’t
work well when access decisions rest on special informat ion
regarding the nature of a part icular piece of data: for example,
when bank custom ers cannot access accounts outside the count ry.
Role-based secur ity is a serv ice that protects access to m iddle- t ier
objects. Middle- t ier objects should be wr it ten to handle any client
and access any data. Basing your object behavior on part icular user
ident it ies does not scale. Forcing your objects to know int im ate
details about the data does not scale well either. Each secur ity
mechanism has its lim itat ions— if your applicat ion requires you to
implement this sort of behavior , you may want to look at other
opt ions, such perform ing the security access checks at the database
itself.
When designing effect ive roles, t ry to avoid a very int r icate role-
based policy. A policy with many roles that allocates users to
mult iple roles may be too complicated. Role-based security should
be a st raight forward solut ion with cr isp dist inct ions between roles.
Avoid defining roles with am biguous membership cr iter ia. The
simpler the solut ion, the more robust and maintainable it will be.
Your applicat ion adm inist rator should be able to m ap users to roles
instant ly . Use meaningful, self-describing names for roles,
borrowing as much as possible from the applicat ion domain's terms
and vocabulary. For example, Super User is a bad role name,
whereas Bank Manager is a good name (even though your
applicat ion would funct ion just fine with the former) .
Occasionally, you will be tempted to model a real- life situat ion and
define num erous roles. Maybe different branches of the bank have
different policies descr ibing what a teller can do. Try to collapse
roles as much as possible. You can do this either by refactoring your
inter faces (deciding what m ethods will be on what interface and
which com ponent supports which interface) or by defining new
inter faces and components. Breaking the system into more granular
COM+ applicat ions, each with its own small set of roles, is another
design solut ion used to cope with num erous roles. This solut ion
would probably be a bet ter modeling of the system in other respects
as well.

Avoiding numerous roles also improves
performance. On each call, COM+ m ust scan the
list of roles to find out whether the caller is a
member of a role that is granted access.

Roles are defined at the applicat ion level, but they are actually part
of every component's design. I f you write a standalone COM+

 185

component that will be placed in COM+ applicat ion managed by
someone else, you need to have in your documentat ion explicit
inst ruct ions describing how to configure secur ity for the host ing
applicat ion. You need to document that your component needs its
access cont rol turned on for this applicat ion, the required
authent icat ion level, the roles that should be defined for this
applicat ion, and the cr iter ia that should be used to allocate users for
your roles. You need to st ipulate which methods and interfaces each
role should be granted access to and which roles are granted access
to the ent ire component .

7 .3 .4 Deploying and Adm inister ing Role- Based Security

Roles are an integral part of your design, but allocat ion of users to
roles is part of your applicat ion deployment . The applicat ion
adm inist rator should make the final allocat ion of users to roles at
the customer site. Because you need to make the adm inist rator ’s
job as easy as possible, your applicat ion should already have
predefined roles, and the adm inist rator should only need to allocate
users to roles. When adding users to roles, populat ing the roles with
Windows 2000 user groups instead of individual users is wise.
Groups also appear on the same list as users, such as in Figure 7-2,
in the Bank Tellers group. By assigning groups to roles, the
applicat ion is autom at ically configured to handle the new user
correct ly when a new user is added to a domain user group. The
same is t rue when a user is removed from a Windows user group or
rem oved from one group and added to another (for example, when
Mary Sm iling is prom oted to a bank m anager posit ion) . When you
assign groups to roles, your applicat ion reacts t ransparent ly to
normal events in the applicat ion domain.

I f you target internat ional markets, you should
localize your roles and have them t ranslated into
the local language. In m any cases, applicat ion
adm inist rators will be local hires on the foreign
market , and properly t ranslated roles can m ake a
world of difference.

When providing the best support for your applicat ion adm inist rator,
you should clearly docum ent the role-based policy you design,
whether or not role membership is obvious to you. I n part icular, use
the descr ipt ion field available for each role, as shown in Figure 7-6.
The descript ion should be concise. I f you cannot describe who
should belong to the role in three lines, the role is probably too
complex.

Figure 7 - 6 . The Descr iption fie ld on the role propert ies page

 186

Building a helper adm inist rat ive ut ilit y to add users to roles
programmat ically , using the COM+ Catalog’s inter faces and
components, may also be worthwhile; it saves the applicat ion
adm inist rator the t rouble of learning how to use the Com ponent
Serv ices Explorer. The ut ility should present to the adm inist rator a
fam iliar user inter face, preferably the same user interface standard
as the applicat ion itself. The ut ilit y should display the users
select ion dialog box to the adm inist rator and add the selected users
to the appropr iate roles. When you export a COM+ applicat ion, the
Applicat ion Export Wizard gives you the opt ion of export ing the user
ident it ies with the roles (see Figure 7-7)

Figure 7 - 7 . You should usually avoid export ing user ident it ies w ith roles

This opt ion should only be used by the applicat ion adm inist rator
when m aking cloned installat ions at a part icular site, from one
machine to another. Remember that roles are part of the design,
while allocat ion of users to roles is part of deployment. I n fact ,
export ing user informat ion from one deployment site to another
may const itute a secur ity breach. Most customers would not like a
list of their employees, their usernames, and the roles they play in

 187

the organizat ion available at large, let alone at some other
company’s site. As a developer, "export user ident it ies with roles" is
of lit t le use to you.

7 .4 Securing a Server Applicat ion

Cont rolling access to your components v ia role-based security is all
fine and well, but there is more to security than just access cont rol.
You must st ill set the security ident ity for your applicat ion and set
the authent icat ion and impersonat ion levels. Configuring secur ity
for a server applicat ion is different from that of a library applicat ion,
just ify ing each applicat ion type in a separate sect ion.
When designing and configur ing a server applicat ion secur it y, you
need to do the following:

• Decide on the secur ity ident ity under which the server
applicat ion executes.

• Decide what author izat ion (access control) the server
applicat ion requires— how granular access cont rol should be.

• Decide at what authent icat ion level to authent icate incom ing
calls.

• Decide at what impersonat ion level you grant objects in other
applicat ions when this server applicat ion is the client of those
objects.

• Configure your server applicat ion secur ity.

The following sect ions discuss these act ion items in depth.

7 .4 .1 Configuring the Server Applicat ion I dent ity

When you invoke the Applicat ion I nstall Wizard and use it to create
a new server applicat ion, the Wizard presents you with a dialog box
that lets you set the security ident ity of the server applicat ion.
Set t ing the secur ity ident ity determ ines what user account all
components in that applicat ion will run under, which dictates
credent ials, pr iv ileges, and access r ights (see Figure 7-8) . You m ay
either run the applicat ion as the interact ive user (useful during
debugging) or as a designated user (for deployment) .

Figure 7 - 8 . Select ing an ident ity for a new server applicat ion

 188

You can always set a different ident ity later on (and you usually
will) by bringing up the applicat ion propert ies page and select ing
the Ident ity tab (see Figure 7-9) .

Figure 7 - 9 . Select ing an ident ity for an exist ing server applicat ion

When Object A is created in the applicat ion, the applicat ion security
ident ity cont rols everything Object A is allowed to access and do. I f
Object A t r ies to access another object (Object B) in another
applicat ion, and Object B is configured to use role-based secur ity,
COM+ uses the secur ity ident ity of Object A to determ ine whether
to grant access to Object B. The secur it y ident ity of Object A has to
belong to at least one role that Object B allows access to. But there
is more to an object ’s ident ity than role-based security: accessing
the filesystem, accessing Win32 handles, installing new
components, accessing the COM+ Catalog, modifying the Regist ry,

 189

rem ote calls, and so on, are all lim ited by the priv ileges of the
security ident ity.
To make an educated decision on select ing the r ight ident ity for
your objects, you need to know the term Windows stat ion. I n
Windows, every user, or more precisely, every security ident ity ,
gets to run in its own stat ion— it has its own copy of the clipboard,
global atoms table, desktop objects, a keyboard, a mouse, and a
display device. Each logged-on user is provided with a new Windows
stat ion. Obviously, only the Windows stat ion associated with the
current ly interact ive user can actually display a user interface. I f a
component is set to run under a designated security ident ity and
that ident ity is different from that of the interact ive user, it is placed
in its own Windows stat ion.
When you configure your server applicat ion ident ity to run under
the account of the interact ive user, the applicat ion shares the
interact ive Windows stat ion with that user. This opt ion has the clear
benefit of being able to interact with the user. However, it also has
severe lim itat ions: what should COM+ do if no user is logged on
and an act ivat ion request from another machine t r ies to launch the
applicat ion? I n this case, COM+ refuses to launch the applicat ion. I f
the interact ive user logs off, COM+ also term inates the applicat ion.
The second opt ion COM+ provides for configur ing a server
applicat ion's ident it y is to run under a specific designated ident ity .
The applicat ion is placed in its own Windows stat ion. All subsequent
instant iat ions of new components from that applicat ion share that
dedicated windows stat ion and ident ity credent ials. The component
in the applicat ion cannot have a user inter face because their
Windows stat ion cannot interact with the user. However, for a
m iddle- t ier component , a user inter face is not necessary anyway;
all user interact ion is performed at the presentat ion t ier . You can
st ill redirect message boxes to the interact ive Windows stat ion,
using the message box type at t r ibute MB_DEFAULT_DESKTOP_ONLY.
This redirect ion is done by design for debug purposes and is
available for m essage boxes only.

Running as Act ivator

The architects of COM+ actually had, in theory, a third opt ion
for a server applicat ion secur ity ident ity . That third opt ion is
to run under the ident ity of the launching user. This opt ion is
available under classic DCOM (in fact , it is the default for
DCOM) . However, it has a few crit ical lim itat ions: if COM+
were to create a new Windows stat ion for every new
act ivat ion request com ing from a different ident ity, the
system would run out of resources very quick ly because a
Windows stat ion is ext rem ely expensive to create and
maintain. As a result , this opt ion does not scale well at all.
Another lim itat ion is the potent ial for having objects from the

 190

same applicat ion running in different processes because
every Windows stat ion has its own init ial process. This
potent ial could violate design decisions— you may have
wanted all your objects in one process because they may
need to share event handles or som e other process-wide
resource. Given these lim itat ions, you can understand why
the COM+ architects chose not to include the opt ion to
launch the applicat ion under the ident it y of the launching
user.
So, which of the two opt ions should you choose? Running as the
interact ive user has a dist inct advantage during debugging sessions,
because you can use a debugger to t race the execut ion of your
components. I n addit ion, dur ing a debug session, the developer is
logged on to his machine, so COM+ act ivates the applicat ion easily .
Running as a designated user is more useful for deployment
purposes. I t frees you from needing a user logged on to the server
machines when your applicat ion is running. I f you configure more
than one applicat ion to run under the same designated user
account , you also conserve system resources because all
components from those applicat ions share the same Windows
stat ion. Running under a specific ident ity has a few more
advantages:

• Because an object can perform operat ions on behalf of
arbit rary users, lim it ing the object's capabilit ies is often
necessary. By assigning the object a less priv ileged ident it y,
you lim it the potent ial harm malicious callers can do after
being granted access the object (the interact ive user m ay
have unlim ited adm inist rator power, and that could be very
dangerous indeed) .

• I nternet clients calling into your applicat ion have no ident it y
at all and are anonymous in most cases. You can now assign a
specific ident ity to the objects that carry out a request on
behalf of I nternet clients.

7 .4 .2 Enabling Authorizat ion

The propert ies page of each COM+ server applicat ion includes a
Security tab. The security tab is where you set the rest of the
security propert ies for your applicat ion. There are four set t ings on
this tab, each discussed in the following sect ions. At the top of the
tab (see Figure 7-10) , you will find the authorizat ion checkbox.

Figure 7 -1 0 . A server applicat ion Security tab

 191

The author izat ion checkbox is the access secur ity master switch for
the applicat ion (The component ’s developer st ill has to enable the
component - level authorizat ion on a com ponent by com ponent basis,
as discussed previously; see Figure 7-3) . When you install a new
COM+ applicat ion, either a library or a server applicat ion, the
default set t ing for this switch is off. You must turn on author izat ion
yourself by checking the checkbox to enable role-based security for
your applicat ion. When authorizat ion is enabled, COM+ verifies in
every call that the calling ident ity is a member of at least one of the
roles defined for the applicat ion, and denies access if it is not . I f t he
caller is a member of at least one role, but the target component
does not grant access to any of the roles the caller is a member of,
the call is denied access downst ream at the component level.
Applicat ion- level author izat ion is also the COM+ way of enforcing
launch cont rol. The caller cannot launch a new process (by t ry ing to
create an object) if it is not a m ember of at least one role.

7 .4 .3 Set t ing the Security Level

The Security Level propert ies group (which consists of two radio
but tons; see Figure 7-10) is the center of the Security tab. This
group is the role-based secur ity master switch for all the
components in this applicat ion. I f you set it to the upper posit ion
("Perform access checks only at the process level") , all role-based
security configurat ions at lower levels (component , inter face, and
method) will be disabled and ignored (see, for example, the bank
component secur ity tab in Figure 7-11) . When access checks are
performed at the process level only, all calls will be allowed through

 192

regardless of the set t ings at the lower levels, as long as they passed
the generic applicat ion- level security access check.

Figure 7 -1 1 . Set t ing the security access check to be done at the process
level only disables com ponent - level security

One side effect of perform ing the secur ity checks at the process
level only is that you cannot make any program mat ic role-based
security checks inside your components because the security
informat ion will not be part of the call object . You cannot access
inter faces such as ISecurityCallContext. Addit ionally , when new
objects are act ivated, COM+ ignores their secur ity requirem ents
when deciding in which context to act ivate them.
When you set the access security to be performed at the process
level and the component level, you can take advantage of role-
based security , either adm inist rat ively or program mat ically . COM+
considers the object security requirements when deciding on its
act ivat ion context . Components that do not want to use role-based
security can st ill choose to do so.
As you can see, disabling com ponent - level secur ity checks globally
for an applicat ion is of lit t le use to you. You can always disable it on
a component-by-component basis.

7 .4 .4 Set t ing the Authent icat ion Level

Next , you need to configure the desired authent icat ion level by
select ing values from the "Authent icat ion level for calls" combo box
(see Figure 7-10) . The authent icat ion level cont rols both caller
ident ity authent icat ion and data integrity authent icat ion. The
configured authent icat ion level affects all calls to and from the
applicat ion.
COM+ lets you set the authent icat ion level to one of six set t ings:
None, Connect , Call, Packet , Packet I ntegr ity, and Packet Pr ivacy.
The first four authent icat ion levels deal with the caller ’s ident ity only
and the last two add data integrity as well.

 193

7 .4 .4 .1 Authent icat ion = None

When the authent icat ion level is set to None, you instruct COM+ not
to authent icate the caller at all. I f the caller claim s to be Joe
Custom er, then he is believed to be so. Clear ly , disabling
authent icat ion exposes your applicat ion and renders it completely
defenseless to anything ranging from innocent user m istakes to
malicious third-party at tacks. Set t ing authent icat ion to None may
be useful in isolated cases when clients calling in are anonymous
and no data privacy or integrity guarantee for data in t ransit is
required. However, you should generally avoid disabling
authent icat ion com pletely .

7 .4 .4 .2 Authent icat ion = Connect

When the authent icat ion level is set to Connect , COM+
authent icates the user ident ity only when a client connects to an
object in the applicat ion. Connect ing to the object means creat ing
the object or t ry ing to access an object (given to the client from
another client) for the first t ime. COM+ uses the challenge/ response
protocol to authent icate the client ’s ident ity . I f the same client t r ies
to connect to another object , COM+ authent icates the client ’s
ident ity again. However, COM+ stays out of the way once a
connect ion is established. This approach to authent icat ion leaves
the door open for a malicious third party to sniff the network, wait
for COM+ to authent icate a genuine caller, and then make
subsequent calls in place of the legit im ate caller, because future
calls are not authent icated. Connect ion- level authent icat ion is the
bare m inimum required for meaningful role-based secur ity because
it ver ifies at least once that the caller is who it says it is.
Connect ion- level authent icat ion, however, provides no privacy or
integr ity guarantee for the data in t ransit .

7 .4 .4 .3 Authent icat ion = Call

When the authent icat ion level is set to Call, COM+ authent icates the
caller ’s ident ity using challenge/ response on every m ethod call to
every object in the applicat ion, not just the first call. This approach
is clearly an improvement over authent icat ion done only at
connect ion t ime.

7 .4 .4 .4 Authent icat ion = Packet

Authent icat ing at the beginning of every call m ay not be secure
enough if the m ethod invocat ion payload is spread over mult iple
network packets. The underly ing network t ransport protocol may
div ide the payload (parameters, returned value, source and
dest inat ion, and so on) over mult iple packets regularly . A

 194

determ ined malicious third party may wait for the f irst packet to be
authent icated, and then intercept the rest of the packets, change
them, or send his own. To handle this possibilit y, you can inst ruct
COM+ to authent icate each packet from the caller, not j ust the first
packet of every call. This level of authent icat ion is the default used
for every new COM+ server applicat ion. Packet level authent icat ion
may be the first meaningful authent icat ion set t ing. However, it st ill
provides no pr ivacy or integrity guarantee for the data in t ransit .

7 .4 .4 .5 Authent icat ion = Packet I ntegrity

The previous four authent icat ion levels dealt with authent icat ing the
caller ’s ident ity only. Authent icat ing every packet from the caller
would prevent a malicious third party from being tempt ing to be the
caller or pretending to change the packet flow. However, nothing
stops a malicious third party from modify ing the packets’ content .
The malicious third party could st ill, for example, change parameter
values inside individual packets.
By set t ing the authent icat ion level to Packet Integrity , you instruct
COM+ to append a hashed checksum to each packet . The receiv ing
side calculates the checksum on the packet just received, and if the
result ing checksum differs from that appended to the packet , COM+
fails the call. Packet integrity increases the packet size and network
t ransport t ime, but it provides a data integrity guarantee.
Authent icat ing data integr ity is done on top of packet - level ident ity
authent icat ion.

7 .4 .4 .6 Authent icat ion = Packet Privacy

Although the Packet I ntegrity level of authent icat ion protects the
data integrity of each packet , the malicious third party can st ill read
the packets’ content . I f you want to protect the pr ivacy of the
informat ion, you can inst ruct COM+ to not only provide packet
integr ity with a checksum, but also to encrypt the packet ’s content
when in t ransit and decrypt it when it is received. Packet Privacy is
the highest authent icat ion level possible, providing you with
authent icated caller ident ity, data integr ity, and privacy for data in
t ransit on every network packet . You will encounter a performance
hit for the ext ra computat ional effor t of encrypt ing and decrypt ing
every packet . However, for many enterprise applicat ions, this level
of security may be required to protect sensit ive data properly
according to organizat ional secur ity policy.

7 .4 .4 .7 Deciding on the authent icat ion level

Every authent icat ion set t ing offers a clear t radeoff of applicat ion
security versus performance. You should decide on the r ight
authent icat ion level based on the nature and sensit iv ity of the

 195

serv ices your components expose, potent ial- threats analysis, and
the calling pat tern from your clients (the lower the call frequency
and the longer the method execut ion t ime is, the less not iceable the
authent icat ion penalty will be) . The applicat ion authent icat ion
set t ing affects all components in your applicat ion. I f the
components in your applicat ion differ great ly in their authent icat ion
needs, consider put t ing the more sensit ive components in a
separate applicat ion and configur ing that applicat ion to have a
higher level of authent icat ion. Don’t m ake components pay for an
authent icat ion level they do not require.
On the other hand, if your threats analysis demands an
authent icat ion level that degrades the applicat ion perform ance
significant ly , or if t rade-off is impossible because of organizat ional
security policy, upgrading hardware to improve applicat ion
performance is an opt ion.

7 .4 .4 .8 Client authenticat ion level com pat ibility

COM+ prefers to secure the server as m uch as possible. I f the
calling client uses an authent icat ion level lower than that of the
server (for example, if the client is configured to use Connect and
the server applicat ion is configured to use Packet) , then COM+ fails
the call. I f , on the other hand, the server is the one using the lower
set t ing, COM+ promotes the connect ion to the client level.

7 .4 .5 Set t ing the I m personat ion Level

When an object in Applicat ion A calls another object in Applicat ion
B, ident ity issues are st raight forward: each applicat ion has its own
ident ity , used to decide whether to grant access to objects or to
resources such as files. However, suppose that Applicat ion B needs
to access an object in Applicat ion C to cont inue its work on behalf of
the original caller in Applicat ion A. The immediate quest ion is, under
what ident ity should B access C? Should it access C as B or as A?
Suppose that the object in C needs to call back into Applicat ion A to
complete its work. Should it access Applicat ion A as C, B, or A?
One approach would let the server objects impersonate the client .
This would be fine in an ideal world, where servers are never
malicious. However, in an ideal world, you don’t need security
either. Clearly, client applicat ions need to declare what ident ity the
serv icing objects could use when accessing another applicat ion or a
secured resource. This is what impersonat ion is all about . The
Impersonat ion level combo box (see Figure 7-10) is at the bot tom
of the server applicat ion security tab. The im personat ion level
select ion is used only when the applicat ion you configure is act ing
as a client of an object in another applicat ion. The impersonat ion
level is really a measure of t rust— how m uch this applicat ion t rusts
another applicat ion when it acts on its behalf. Does this applicat ion

 196

allow other objects to find it s security ident ity? Does it allow them
to impersonate itself and perform their work under the client
ident ity , t rust ing the other applicat ions’ objects not to abuse the
t rust? Does it allow the objects to make addit ional calls with the
original client secur ity ident ity? These are important quest ions from
any client applicat ion perspect ive. COM+ defines four levels of t rust ,
or impersonat ion levels: Anonymous, I dent ify, Impersonate, and
Delegate.

Impersonat ion of any level requires authent icat ion
to be at least Connect (that is, any authent icat ion
level except None) to propagate the client ident ity
to the server side.

7 .4 .5 .1 I m personat ion = Anonym ous

Anonymous is the least t rust ing impersonat ion level. The client does
not even allow any server object to learn the security ident ity of the
client .

7 .4 .5 .2 I m personat ion = I dent ify

When the client sets the im personat ion level to Ident ify, the server
can ident ify the client— that is, obtain the security ident ity of the
calling client . The server object is not allowed to im personate the
client— everything the object does is st ill done under the server's
own ident ity. Note that allowing or prevent ing the object from
ident ify ing the caller is not the sam e as having the object learn
programmat ically whether the caller is a m ember of a part icular
role. When the object queries for the caller's role membership (you
will see how later on) , the quest ion and the answer are in role
terms (Bank Manager, Teller) and not in ident ity terms (Joe
Custom er) .

7 .4 .5 .3 I m personat ion = I m personate

When the client applicat ion sets the impersonat ion level to
Impersonate, the object can impersonate and assum e the client
ident ity's credent ials. This impersonat ion level is the default value
COM+ uses for new applicat ions. I mpersonat ion indicates a great
deal of t rust between the client and the serv icing object ; the server
can do anything the client can do, even if the server applicat ion is
configured to use a less priv ileged ident ity. The only difference
between the real client and the object is that if the object is on a
separate machine from the client , it cannot access resources or
objects on other machines as the client . This lack of access is a
direct result of the underly ing authent icat ion m echanism— the
challenge/ response protocol. I f the object , im personat ing the client ,

 197

t r ied to access another machine while claim ing to be the client , it
would fail to authent icate itself as the client because it does not
know the client ’s password. I f the object and the client were on the
same machine, the object impersonat ing the client could m ake one
network hop to another machine, since the machine it resides on
could st ill authent icate the client ident it y— but it could go no fur ther.

7 .4 .5 .4 I m personat ion = Delegate

The only difference between delegat ion and impersonat ion is that
with delegat ion, the object can freely access any object on any
machine as the client . I f any of these server objects use delegat ion,
the client ident ity could be propagated further and further down the
call chain. Delegat ion is possible because Windows 2000 can use
the Kerberos authent icat ion serv ice, which uses a different
authent icat ion m ethod than challenge/ response. Both the client and
server user accounts must be configured in the Act ive Directory
proper ly to support delegat ion, [1] (in addit ion to the client grant ing
author ity to do delegate- level impersonat ion) , due to the enormous
t rust (and hence, secur ity r isk) involved. Delegat ion uses, by
default , another secur ity service called cloaking, which propagates
the caller ident ity along the call chain. Delegat ion is ext remely
dangerous from the client perspect ive because the client has no
cont rol over who uses its ident ity or where. When the impersonat ion
level is set to Impersonate, the client takes a calculated r isk
because it knows which objects it was accessing. I f those objects
are on a difference m achine, the client ident ity could not have
propagated across the network.

[1] For more inform at ion, see Windows 2000 Administ rat ion in a Nutshell by Mitch Tulloch
(O’Reilly, 2000) .

7 .5 Securing a Library Applicat ion

A library applicat ion is hosted in its client process. As such, it has no
cont rol over the host ing applicat ion ident ity and security set t ings. I t
runs under the ident ity of the host ing process (the I dent ity tab is
st ill present in the applicat ion's propert ies page, but it is grayed out
and ignored) . Thus, the library applicat ion has only as much
priv ilege as the host ing client does. This lim itat ion may be
significant because the library could be loaded by many different
clients and may not always have sufficient credent ials to do its
work. As a rule of thumb, put your m eaningful business logic
processing components in a server applicat ion, where you can
configure exact ly the applicat ion security ident ity . Deploy a library
applicat ion in situat ions when you expect very a intensive calling

 198

pat tern from your clients and when you can filter or process the
calls before forwarding them to the server applicat ion, where the
real work should take place. Another ident ity- related lim itat ion is
that a library applicat ion cannot declare an impersonat ion level, so
it norm ally uses the process-wide impersonat ion level. The library
applicat ion can set a desired authent icat ion and impersonat ion level
programmat ically , as descr ibed in Sect ion 7.8 later in the chapter .
A library applicat ion has no control over the process- level secur ity
set t ings, and the only way for it to perform its own secur it y access
checks is to employ component- level role-based security (role-
based security at the component level is the same as with a server
applicat ion) . Before you dive into the details of securing a library
applicat ion, consider the following point : because the library
applicat ion is loaded into the client process, it has access to all t he
process resources, memory, objects, GIT, handles, etc. The client
should be very careful when loading a library applicat ion, as it m ay
contain m alicious objects. Agreeing to use a library applicat ion
implies that the client has a level of t rust and fam iliar ity of the
library applicat ion.
Once you set an applicat ion to be a library applicat ion, the
applicat ion’s Securit y tab will be different from that of a server
applicat ion (see Figure 7-12) .

Figure 7 - 1 2 . A library applicat ion’s Security tab

Not iceable by their absence are the authent icat ion and
impersonat ion levels controls, replaced with a single "Enable
authent icat ion" checkbox. The authorizat ion checkbox and the
security- level radio but tons offer the same funct ionality as with a

 199

server applicat ion. I f you want to enable role-based secur ity, the
author izat ion checkbox must be checked and the security level radio
but ton must be at the lower posit ion. This posit ion inst ructs COM+
to perform access checks at the com ponent level.
The interest ing item on this tab is the "Enable authent icat ion"
checkbox. The client process host ing this library applicat ion can
have an authent icat ion level already configured for it . The library
applicat ion can take advantage of the process-wide authent icat ion
and have COM+ use it to authent icate calls com ing from outside the
process to the library applicat ion. However, the library applicat ion
has no control over how r igorous that authent icat ion is. The
process- level authent icat ion may even be set to None. The
immediate conclusion is that in a library applicat ion, you should
avoid perform ing sensit ive work that requires authent icat ion.
Therefore, you have at your disposal two mechanisms to secure
your library applicat ion: process-wide authent icat ion and
component - level role-based access control, and you can turn each
on or off independent ly of the other. These mechanisms give you
four configurat ion opt ions, discussed in the following sect ions.

7 .5 .1 Both Role- Based Security and Global Authent icat ion

Your typical secur ity set t ing for a COM+ library applicat ion has both
role-based security and global authent icat ion enabled. All calls from
outside the process are authent icated, whether they are dest ined
for the library applicat ion or some other COM object in the process
(see Figure 7-13) . I n addit ion, COM+ uses component- level access
security and ver ifies that the caller is a member of a role that was
granted access to the com ponent . However, calls from within the
host ing process are not authent icated. I f the host ing process claims
to run under the ident ity of Joe Customer, and Joe is a mem ber of a
role that was granted access to a component , clients in the host ing
applicat ion can access objects in the library applicat ion freely. This
access opens the way for a malicious client process to load the
library applicat ion and call into it unauthent icated. This secur ity gap
is present in the other three configurat ion set t ings as well. This lack
of security is yet another reason to avoid perform ing sensit ive work
that requires authent icat ion in a library applicat ion.

Figure 7 - 1 3 . Enabling process- level authent icat ion and role-based
security

 200

7 .5 .2 Global Authent icat ion W ithout Role- Based Security

When import ing an exist ing set of legacy COM components to a
COM+ library applicat ion (perhaps to be integrated in a bigger
development, deployment , and adm inist rat ion fram ework) , the
imported legacy components do not use role-based secur ity, and
enforcing it m ay int roduce side effects, because those components
may already have their own access control mechanisms. I t this
case, you can turn off role-based security for the library applicat ion.
As a result , client calls from outside and inside the process access
the components direct ly . However, you st ill may want to take
advantage of the global authent icat ion that may be in place, to
authent icate callers from outside the process (see Figure 7-14) .

Figure 7 -1 4 . Disabling role-based security w hile relying on global
authent icat ion

 201

Since you can turn off role-based security at the component level as
well, I recommend not disabling role-based security at the library
applicat ion level. In the future, you may want to add components to
the library applicat ion that do require role-based security. As a rule,
always enable security at the highest level possible, and disable
security at the lowest level possible.

7 .5 .3 Role- Based Security W ithout Global Authent icat ion

Suppose your host ing process uses a st r ict authent icat ion level, or
at least one that is st r icter than what your library applicat ion needs.
Your applicat ion ends up paying a performance hit for a service it
does not require. You can choose to disable global authent icat ion
support for your applicat ion and exempt all calls from outside the
host ing process to your library applicat ion (see Figure 7-15) .
However, you should st ill use role-based secur ity to cont rol access
to your applicat ion. Of course, there is a downside to disabling
authent icat ion: you cannot tell if the callers are who they say they
are. You can only decide whether to grant the caller access,
assum ing the callers are indeed who they say they are.

Figure 7 - 1 5 . Disabling authenticat ion for the library applicat ion w hile
using role- based security

 202

This configurat ion is usually of lit t le use, as the main mot ivat ion for
configuring an applicat ion as a library is to avoid frequent cross-
process calls from clients. I f the volume of calls from outside the
process is an issue, then just configure the applicat ion as a server
applicat ion, and have your own process-wide authent icat ion level.
This configurat ion has another serious problem: it has the potent ial
for a security breach. Since calls into the library applicat ion are not
authent icated, what happens if a component in the library
applicat ion, while execut ing a method on behalf of an out -of-
process caller, t r ies to access an object in the host ing process
(maybe to fire an event on)? I nt raprocess calls are not
authent icated because all objects in the process share the same
ident ity . Thus, the outside call can bypass the process-wide
authent icat ion. This bypass only st rengthens the idea that when
host ing a library applicat ion, the client process should be on guard,
should load only library applicat ions it knows are benign, and should
m inim ize their interact ion with other objects in the process. At the
very least , the host ing server-applicat ion should use role-based
security , since crossing applicat ion boundar ies forces access checks
and the call from the library applicat ion is made across an
applicat ion boundary. I t will not get you authent icat ion, but it will
give you some access cont rol.

7 .5 .4 Neither Role- Based Security nor Authent icat ion

Surpr isingly , disabling both role-based secur ity and process- level
authent icat ion can be useful. Im agine a situat ion in which
components from your library applicat ion are hosted by a browser
and have to accept calls from anonymous, unauthent icated callers.
The process-wide authent icat ion has to be disabled to allow callers

 203

that cannot be authent icated to go through; role-based secur ity
cannot be used because you cannot add the anonymous callers to
your roles. By turning the security knob all the way down, all calls
into your library applicat ion will always be granted access (see
Figure 7-16) .

Figure 7 - 1 6 . Turning off part icipat ion in process- w ide authent icat ion and
role- based security

�

7 .6 Program m at ic Role-Based Security

Somet im es, adm inist rat ive role-based security it not granular
enough for the task at hand. Consider a situat ion in which your
applicat ion maintains a private resource (such as a database) that
does not expose any public interfaces direct ly to the clients. You st ill
want to allow only some callers of a method to access the resource
and deny access to other callers who are not members of a specific
role. The second (and more common) situat ion is when a method is
invoked on your object and you want to know whether the caller is
a mem ber of a part icular role so you can bet ter handle the call.
To illust rate the second situat ion, suppose in the bank example, one
of the requirements is that a customer can t ransfer money only if
the sum involved is less than $5,000, whereas managers and tellers
can t ransfer any am ount . Declarat ive role-based security goes down
only to the method level (not the parameter level) and can only
assure you that the caller is a member of at least one of the roles
you have granted access to.
To im plement the requirement , you must find out the caller ’s role
programmat ically . Fortunately, COM+ makes it easy to do just that .
Remem ber that every method call is represented by a COM+ call

 204

object (discussed in Chapter 2) . The call object implem ents an
inter face called ISecurityCallContext, obtained by calling
CoGetCallContext(). ISecurityCallContext provides a method
called IsCallerInRole(), which lets you verify the caller ’s role
membership. IsCallerInRole(), is available on IObjectContext,
a legacy from MTS as well. Exam ple 7-1 shows how to implem ent
the new requirement using the call object security inter face.

Exam ple 7 - 1 . Verifying the caller m em bership by calling
I SecurityCallContext ::I sCaller I nRole()

STDMETHODIMP CBank::TransferMoney(int nSum,DWORD
dwAccountSrc,DWORD dwAccountDest)
{
 HRESULT hres = S_OK;
 ISecurityCallContext* pSecurityCallContext = NULL;
 _bstr_t bstrRole = "Customer" ;
 VARIANT_BOOL bInRole = FALSE;

 hres = ::CoGetCallContext(IID_ISecurityCallContext,

(void**)&pSecurityCallContext);
 if(pSecurityCallContext == NULL)
 {
 //No security call context available, role-based
security not in use
 return E_FAIL;
 }
 hres = pSecurityCallContext-
>IsCallerInRole(bstrRole,&bInRole);
 pSecurityCallContext->Release();
 if(bInRole)//The caller is a customer
 {
 if(nSum > 5000)
 return E_FAIL;
 }
 return
DoTransfer(nSum,dwAccountSrc,dwAccountDest);//Helper
method
}

7 .7 Security Boundaries

COM+ makes a sensible assumpt ion: two com ponents from the
same applicat ion t rust each other, and int ra-applicat ion security is
not necessary. As a result , secur ity is checked only at applicat ion
boundar ies. When two applicat ions interact , a secur ity check ex ists
between them. For example, in the case of a library applicat ion that
was loaded into a server applicat ion, there is an applicat ion

 205

boundary, and thus a security boundary, between them. When a
client accesses the library applicat ion in the host ing process, COM+
ver ifies that the client has access to the library applicat ion
component . When a client from the library applicat ion calls a
component in the host ing process, COM+ uses the host ing
applicat ion’s role-based secur ity. The same is t rue when two library
applicat ions interact with each other while both share the same
host ing process. You can draw a design conclusion from this
behavior: if you have two components and you want secur ity checks
done when one calls the other, put them each in separate COM+
applicat ions.
As you have seen, each COM+ method invocat ion has a call context
object associated with it . COM+ will not update the security call
context when no security boundary is crossed. I f one component
has done programm at ic role-based security and is about to call
another component in the sam e applicat ion, repeat ing the role
membership verificat ion is redundant , as no new security context
informat ion will be present .

More on I SecurityCallContext

For most pract ical purposes, finding out whether the caller is
a mem ber of a role is the only part of COM+ secur ity you will
ever deal with programmat ically. However,
ISecurityCallContext prov ides you other extensive
security informat ion details, including:

• The total number of callers in the chain of calls leading
down to this object .

• The m inim um authent icat ion level used to authent icate
callers in the calling chain. Even if the immediate caller
into this applicat ion was proper ly authent icated,
previous callers could have been subjected to less
st r ingent authent icat ion. This may or may not be an
issue in your business logic.

• I nformat ion about whether a part icular user is a
member of a role.

• The direct caller ’s security ident ity .
• The original caller ’s secur ity ident ity.

7 .8 Advanced COM+ Security

On top of incredibly r ich, user- fr iendly adm inist rat ive support for all
your secur ity needs, COM+ provides low- level, advanced

 206

programmat ic security capabilit ies. These features cater to complex
security needs. However, I have found that there is almost always a
good design solut ion that lets me use COM+ configurable set t ings
without having to resort to advanced, programmat ic, low- level
security manipulat ion. I n fact , you can probably lead a product ive
and fulfilling development career using COM+ without using low-
level security manipulat ion at all. I f what you have read so far
fulfills your requirements, feel free to sk ip this sect ion and move to
the conclusion of this chapter and its account of the ever-present
pit falls of COM+ secur ity. I f not , cont inue reading.

7 .8 .1 Server- Side I m personat ion

Set t ing the allowed im personat ion level is a client-side
configurat ion, in which the client declares the level of t rust it has
toward the server. Configuring the impersonat ion level is not an
advanced security measure; it is a necessary precaut ion because
you cannot know what the server is up to and whether it intends to
impersonate the client . However, server-side im personat ion is
advanced security .
You should be aware that server- side impersonat ion is not an
extensible or scalable design approach. Each COM+ applicat ion
should be configured with enough credent ials (that is, a security
ident ity) to perform its work, and should not rely on the client ’s
credent ials by impersonat ing it . Im personat ion couples the server
applicat ion to the client ’s ident ity and prevents the applicat ion from
evolv ing independent ly . I n almost all cases when impersonat ion is a
cr it ical part of the applicat ion design, the design is not scalable.
Consider, for example, an applicat ion in which the database
performs its own authent icat ion and authorizat ion of end users to
secure access to data in the database. Middle- t ier objects have to
impersonate the caller to access the database, result ing in a
programming model that is t ight ly coupled to the ident ity of the
callers (bank tellers can only access the accounts they are
responsible for) . Adding new users is not t r iv ial, and therefore does
not scale. A bet ter design decision would be to have the database
authent icate j ust the COM+ applicat ions accessing it and t rust the
applicat ions to authent icate and author ize the clients securely.
Allocat ing database connect ions per user is another example of
when using impersonat ion is not scalable. The m iddle- t ier objects
have to impersonate the user to get a connect ion. Consequent ly,
the connect ions cannot be shared (no connect ion pooling) and the
total number of users the system can handle is drast ically reduced.
One more impersonat ion liabilit y is performance— impersonat ing the
client can be much slower than m aking the call direct ly under the
applicat ion ident ity. I f the client does not have enough credent ials
to access a resource, the call fails downst ream, when the

 207

impersonat ing object t r ies to access the resource, instead of
upst ream, when the client first accesses the object . Impersonat ion
may also involve intensive under- the-hood t raffic and validat ions.
I f you decide to use impersonat ion, do so judiciously, and only for
the purpose of obtaining the client ’s ident ity to verify access to a
sensit ive resource the server applicat ion has independent access to.
Once the server has ver ified that the client has enough credent ials,
the server object should revert to its own ident ity and access the
resource.
The call context object supports another interface called
IServerSecurity. The server can access IServerSecurity by
calling CoGetCallContext(). Remem ber that the pointer to
IServerSecurity will only be valid for the durat ion of the current
call and cannot be cached.
To im personate the calling client , the server should call
IServerSecurity::ImpersonateClient(). To revert back to its
or iginal ident ity, the server should call
IServerSecurity::RevertToSelf().
Example 7-2 shows a server object im personat ing a client to verify
that the client has access r ights to create a file. I f it does, the
server reverts to its or iginal ident ity and creates the file under its
own ident ity.

Exam ple 7 - 2 . The server im personat ing the client to verify file creat ion
access r ights

STDMETHODIMP CMyServer::CreateFile(BSTR bstrFileName)
{
 HRESULT hres = S_OK;

 IServerSecurity* pServerSecurity = NULL;
 hres =
::CoGetCallContext(IID_IServerSecurity,(void**)&pServerSe
curity);
 ASSERT(pServerSecurity);

 hres = pServerSecurity->ImpersonateClient();
 HANDLE hFile =
::CreateFile(_bstr_t(bstrFileName),STANDARD_RIGHTS_ALL,0,
NULL,

CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);

 //Do the cleanup first, before the error handling
 ::CloseHandle(hFile);//Does not change the value of
hFile
 hres = pServerSecurity->RevertToSelf();
 pServerSecurity->Release();

 208

 if(hFile == INVALID_HANDLE_VALUE)//failure due to lack
of access rights
 //as well as anything
else that can go wrong
 {
 return E_FAIL;
 }
 //The client has the right access rights to this file,
now create it again
 //under the server’s own identity

 //m_hFile is a member of this object
 m_hFile =
::CreateFile(_bstr_t(bstrFileName),STANDARD_RIGHTS_ALL,0,
NULL,

CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);

 if(m_hFile == INVALID_HANDLE_VALUE)//Something went
wrong
 {
 return E_FAIL;
 }
 return hres;
}
COM+ provides two helper funct ions to automate coding sequences
like the one in Example 7-2. CoImpersonateClient() creates the
server security object , impersonates the client , and releases the
server security object . CoRevertToSelf() sim ilar ly creates the
server security object , reverts to the server’s or iginal ident ity , and
releases the server secur ity object . Example 7-3 shows the sam e
sequence as in Example 7-2, using the helper funct ions.

Even though the code in Example 7-3 is m ore
concise and readable than Example 7-2, you should
be aware of a slight performance penalty that using
the impersonat ion helper funct ions int roduces. I n
Example 7-2, the server secur ity object is only
created and released once, while it is done twice in
Example 7-3. Nevertheless, I recommend using the
helper funct ions because that penalty is t ruly
m iniscule and readable code is always essent ial.

Exam ple 7 - 3 . Verifying file creat ion access r ights w ith
CoI m personateClient () and CoRevert ToSelf()

STDMETHODIMP CMyObj::CreateFile(BSTR bstrFileName)
{
 HRESULT hres = S_OK;

 209

 hres = ::CoImpersonateClient();

 HANDLE hFile =
::CreateFile(_bstr_t(bstrFileName),STANDARD_RIGHTS_ALL,0,
NULL,

CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);

 ::CloseHandle(hFile);//Does not change the value of
hFile
 hres = ::CoRevertToSelf();

 if(hFile == INVALID_HANDLE_VALUE)//failure due to lack
of access rights as well
 //as anything else
that can go wrong
 {
 return E_FAIL;
 }
 //The client has the right access rights to this file,
now create it again
 //under server own identity

 //m_hFile is a member of this object
 m_hFile =
::CreateFile(_bstr_t(bstrFileName),STANDARD_RIGHTS_ALL,0,
NULL,

CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);

 if(m_hFile == INVALID_HANDLE_VALUE)//Something went
wrong
 {
 return E_FAIL;
 }

 return hres;

}

7 .8 .2 Program m at ic Client - Side Security

Every client-side proxy supports an interface called
IClientSecurity, which lets the client set the secur ity at t r ibutes
on the com municat ion channel between it and the object behind
that proxy. COM+ calls the set of secur ity at t r ibutes (such as
authent icat ion and im personat ion levels) a security blanket . Using
the IClientSecurity method SetBlanket(), the client can set a
new authent icat ion level, a new impersonat ion level, or both. I t can

 210

also set other security at t r ibutes. However, the proxy may be
shared am ong a few clients, and not all of them may be interested
in a new secur ity blanket . COM+ allows a client to clone a personal
copy of the proxy for its own use, using another method of
IClientSecur ity called CopyProxy() that gives the client a private
new proxy. You can set a secur ity blanket without cloning your own
proxy, but it is recomm ended that you clone it .
Set t ing a security blanket may be useful in a few situat ions:

• When the global applicat ion secur ity level is not granular
enough. For example, some methods may require addit ional
authent icat ion. I n the bank example, the client may want to
set an explicit high authent icat ion level for the
TransferMoney() method but use whatever secur ity level
the applicat ion uses for GetBalance().

• When a library applicat ion is at the mercy of the host ing
process. I f the library applicat ion is a client of other objects,
though, it can set its own authent icat ion and im personat ion
levels using IClientSecurity.

COM+ provides helper funct ions to automate coping a proxy (the
CoCopyProxy() funct ion) and set t ing a security blanket (the
CoSetProxyBlanket() funct ion) . Exam ple 7-4 shows a client of
the bank applicat ion, copies the proxy, and sets explicit
impersonat ion and authent icat ion levels for the TransferMoney()
method, using the helper funct ions.

Exam ple 7 - 4 . Set t ing explicit authent icat ion and im personat ion levels for
the TransferMoney() m ethod

HRESULT hres = S_OK;
//pAccountsManager is initialized somewhere else
IAccountsManager* pPrivateAccountsManager = NULL;//This
client private copy

//copying the proxy to get a private copy, so not to
interfere with other clients
hres =
::CoCopyProxy(pAccountsManager,(IUnknown**)&pPrivateAccou
ntsManager);

//Setting explicit authentication and impersonation
levels
hres = ::CoSetProxyBlanket(pPrivateAccountsManager,//The
private proxy
 RPC_C_AUTHN_DEFAULT,//The
system default authentication
 RPC_C_AUTHZ_DEFAULT ,//Default
authorization

 211

 NULL,
 //Use authentication level
"Packet Integrity"

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY,
 //Impersonation level is
"Identify"
 RPC_C_IMP_LEVEL_IDENTIFY,
 NULL,//Use process identity
 EOAC_DEFAULT);//Default
capabilities
hres = pPrivateAccountsManager-
>TransferMoney(1000,1234,5678);
pPrivateAccountsManager->Release();//Release private
copy
I would advise that you always prefer automat ic, adm inist rat ive,
declarat ive security rather than doing security within components,
whether it is on the server or the client side. Following this simple
rule will make it easier to:

• Write and maintain components
• Design consistent security across an ent ire applicat ion
• Modify an applicat ion’s secur ity policy without recoding it

7 .9 COM+ Security Pit fa lls

Dist r ibuted system s security is a vast , int r icate topic, and certainly
COM+ makes it possible for mere mortals to secure systems in an
elegant , product ive, and extensible manner. All you have to do is
understand a few simple security concepts, configure your
applicat ions proper ly , and let COM+ take care of the rest . However,
no service is without a flaw, and COM+ security is no except ion.
Even though the following list of pit falls may seem long, you should
consider two things: first , consider ing how encompassing COM+
security really is, it is a surprisingly small list , as secur ity affects
almost everything you do in COM+ . Second, this list describes only
things I have encountered, and it is probably only part ial. You will
undoubtedly encounter other var iat ions and pit falls when you do
your own development. However, with a solid understanding of the
way COM+ security works, you should be able to isolate and
t roubleshoot the problems yourself. Some of the pit falls have
already been implied throughout this chapter, but the following is
dedicated and explicit pit fall list .

7 .9 .1 Machine- W ide Security Set t ings

 212

At the root of the Component Serv ices Explorer is the My Computer
item, which lets you set global configurat ions for your computer. I f
you have adm inist rat ive priv ileges on other machines, you can add
them to the list of machines managed by the Com ponent Serv ices
Explorer. Each computer icon has a propert ies page with two tabs
that are seemingly relevant to COM+ secur ity: the Default Secur ity
tab and the Default Propert ies tab.
Though these tabs are part of the Component Services Explorer,
they have lit t le or nothing to do with COM+ applicat ions and are the
reincarnat ion of DCOMCNFG.EXE, the awkward DCOM configurat ion
ut ilit y . The Default Security tab has no bear ing on COM+
applicat ions. I t is used to control default access and launch
perm ission for classic COM local servers. The Default Propert ies tab
is most ly irrelevant for COM+ applicat ions. I t is used to set default
authent icat ion and im personat ion levels for COM local server
processes that can be accessed remotely . I f those processes were
to interact with COM+ applicat ions as clients to the configured
objects (locally or remotely) and did not provide their own secur ity
configurat ions (adm inist rat ively or programmat ically) , then these
set t ings would be used. I t short , neither tab is relevant to COM+
applicat ions.

7 .9 .2 Calling CoI nit ia lizeSecurity()

I f you used DCOM security before, calling CoInitializeSecurity(
) is second nature to you. In the old DCOM days,
CoInitializeSecurity() was the gateway to m anageable
security , and any properly writ ten DCOM server called it to ensure
that the required security levels would be used. However, a
configured component has no point in calling
CoInitializeSecurity() because any configured component is
loaded in a host ing process. I f the com ponent is part of a server
applicat ion, COM+ calls CoInitializeSecurity() when the
process is created, with the applicat ion global security set t ings as
parameters. I f the com ponent is part of a library applicat ion, the
host ing process calls CoInitializeSecurity() before doing
anything else with COM. Otherwise, COM would have called
CoInitializeSecurity() for it .
CoInitializeSecurity() may be an issue when im port ing an
exist ing COM local server to COM+ . I f t he ported server used
CoInitializeSecurity(), you must remove the call from the
code, look at the parameters for CoInitializeSecurity(), and
configure the global applicat ion secur ity levels accordingly.

7 .9 .3 Disabling Changes to the Applicat ion Configurat ion

 213

A perm ission propert ies group is located on every COM+
applicat ion’s Advanced tab (see Figure 7-17) . By select ing "Disable
changes," you can prevent anybody from making changes to your
applicat ion set t ings (and any changes at the com ponent , interface,
and method level) , including the security set t ings and access policy.
The problem is that this checkbox is not password protected, and
anyone with adm inist rat ive priv ileges can modify your precious
security set t ings and int roduce security gaps in your applicat ion.
Custom er-side adm inist rators (who are not your product
adm inist rators) may be tempted to change your security set t ings to
accommodate something else in the system, or just to fool around
with your applicat ion. Be aware of this situat ion. This checkbox is
there for a reason, and I wonder why Microsoft did not take an
ext ra step and make it password protected.

Figure 7 - 1 7 . Disabling and enabling changes to your applicat ion

7 .9 .4 Avoid Sensit ive W ork at the Object Const ructor

Imagine a situat ion in which a client is granted access (using role-
based security) to one component in your applicat ion, Com ponent
A, but is not granted access to another component , Component B.
When the client t r ies to create Component B, COM+ creates the
object , but only lets the client access the IUnknown m ethods of
Component B and denies access to methods on any other interface.
As explained in the Launch Control definit ion at the beginning of this
chapter , this process intent ionally avoids a DCOM pit fall. This pit fall
allows a client to create a new object in a new process, but forgets

 214

to grant the client access to the objects inside. This pit fall resulted
in a zom bie process because the client could not even call
IUnknown::Release() on the object it just created.
However, because the client is allowed to create the object , it
implies that the const ructor of Component B actually executes code
on behalf of a client that is not allowed to access the component . I f
you do any sensit ive work at the object const ructor, it may
const itute a secur ity breach because that work should never be
done for that client . The obvious conclusion is to avoid doing any
sensit ive work in the object constructor, such as erasing or opening
sensit ive files or creat ing sensit ive accounts in a database.

7 .9 .5 Changing Applicat ion Act ivat ion Mode

When you switch between applicat ion act ivat ion m odes (for
example, from a library to a server applicat ion) , COM+ presents you
with the enigmat ic m essage box shown in Figure 7-18. The
message box warns you that certain propert ies will be set to their
default values. Those set t ings are m ost ly secur ity propert ies that
the library applicat ion does not have, such as authent icat ion and
impersonat ion set t ings. After changing the applicat ion act ivat ion
mode, go through the security set t ings and m ake sure the default
values COM+ picked up for you are what your design calls for , and
set them to the correct values if you need to.

Figure 7 - 1 8 . COM+ w arns you that som e set t ings have been set to their
default values

7 .9 .6 I sCaller I nRole() Returns TRUE W hen Security I s Not
Enabled

 215

Programmat ic role-based security, as you have seen, is used to
ver ify the caller ’s m embership in a part icular role. However, role-
based security must be enabled properly for
ISecurityCallContext::IsCallerInRole() to return accurate
results. I n the following cases, IsCallerInRole() always returns
TRUE, regardless of the actual caller role membership:

• Role-based secur ity is enabled at the applicat ion level, but not
enforced at the com ponent level, because the "Enforce
component level access checks" checkbox (shown in Figure 7-
3) is not selected. Calls to
ISecurityCallContext::IsCallerInRole() from within the
component always return TRUE.

• At the applicat ion level, authorizat ion is not enforced because
the "Enforce access checks for this applicat ion" checkbox
(shown in Figure 7-10) is not checked. All calls to
ISecurityCallContext::IsCallerInRole() will always
return TRUE, even if component level access checks are
enabled.

IsCallerInRole() m isbehaves in both library and server
applicat ions when one of these two situat ions occurs.
To overcome this m isbehavior , you should call another method of
ISecurityCallContext to ver ify that secur ity is enabled before
checking role m embership. This m ethod is called
IsSecurityEnabled(), and is available specifically for these cases.
Example 7-5 shows the same code as Exam ple 7-1, except this t ime
IsSecurityEnabled() is used first .

Exam ple 7 - 5 . Verifying that security is enabled before checking the caller
role m em bership

STDMETHODIMP CBank::TransferMoney(int nSum,DWORD
dwAccountSrc,DWORD dwAccountDest)
{
 HRESULT hres = S_OK;
 ISecurityCallContext* pSecurityCallContext = NULL;
 _bstr_t bstrRole = "Customer" ;
 VARIANT_BOOL bInRole = FALSE;
 VARIANT_BOOL bSecurityEnabled = FALSE;

 hres = ::CoGetCallContext(IID_ISecurityCallContext,

(void**)&pSecurityCallContext);
 if(pSecurityCallContext == NULL)
 {
 //No security call context available, role-based
security not in use

 216

 return E_FAIL;
 }
 hres = pSecurityCallContext-
>IsSecurityEnabled(&bSecurityEnabled);
 if(!bSecurityEnabled)
 {
 pSecurityCallContext->Release();
 return E_FAIL;
 }
 hres = pSecurityCallContext-
>IsCallerInRole(bstrRole,&bInRole);
 pSecurityCallContext->Release();
 if(bInRole)//The caller is a customer
 {
 if(nSum > 5000)
 return E_FAIL;
 }

 return
DoTransfer(nSum,dwAccountSrc,dwAccountDest);//Helper
method
}

7 .9 .7 Disabling Applicat ion- Level Authorizat ion

When you disable applicat ion- level author izat ion, even if a
component is set to use and enforce role-based security (as in
Figure 7-3) , all calls to that component will be perm it ted, regardless
of the caller ’s ident ity and role membership. This situat ion is very
dangerous, as the component , by design, may require access
cont rol and does not have another mechanism in place to
implement access cont rol requirements.
In addit ion, unlike the case of set t ing the security level to process-
wide only (which disables component level role-based security and
allows all calls) , the component securit y tab will not be grayed out
as in Figure 7-11. Always leave the applicat ion- level author izat ion
enabled.

7 .9 .8 Enabling Applicat ion- Level Authorizat ion

As explained in the previous pit fall, you should always enable
applicat ion- level authorizat ion. However, what happens if, in your
applicat ion, you have a number of components that require role-
based security and a few other components that do not? The
components that do not require access cont rol may serve a different
set of clients altogether. Applicat ion- level authorizat ion is
problemat ic because when a call comes into an applicat ion, COM+
ver ifies that the caller is a member of at least one role defined for
this applicat ion. I f t he caller is not a m ember, COM+ denies the

 217

caller access, even if the caller t r ies to access a component that
does not require access control.
There are two ways around this pit fall. The first is to move the
components that do not require role-based security to a separate
applicat ion. The second solut ion simply defines a new role in your
applicat ion called Place Holder and adds just one user to it : the
Everyone group (see Figure 7-19) . Now all callers are members of
at least one role, and components that do not require role-based
security can accept calls from any user while applicat ion-wide
author izat ion is enabled.

Be aware that using the Place Holder role with the
Everyone user in it actually m oves the first line of
defense to the component layer instead of the
applicat ion layer. This movement m ay open the
way for a denial of serv ice at tack by a malicious
client that bombards your applicat ion with requests
to create new components. COM+ allows the
at tacker to create the com ponents, but not access
them. The bom bardment m ay cause your
applicat ion to run out of resources.

Figure 7 - 1 9 . Adding a role as a placeholder for the Everyone user

�

 218

7 .1 0 Sum m ary

COM+ security offers the component developer a wide spect rum of
security support , from sim ple and adm inist rat ive role-based secur ity
to advanced programmat ic security. Security is all about t radeoffs:
performance versus r isk m it igat ion, ease of use versus flex ibilit y,
and ease of adm inist rat ion versus potent ial at tacks. Regardless of
where you find yourself in this spect rum , you will learn to
appreciate the elegance and power of COM+ security.
You can also combine COM+ secur ity with the high- level COM+
serv ices described in the next chapters: COM+ queued components
and COM+ loosely coupled events.

 219

Chapter 8 . COM+ Queued Com ponents

COM+ Queued Com ponents is a service that allows a client to call
object methods asynchronously. The client is blocked only for a
short durat ion while COM+ processes the request , and the object
executes the call at a later point . You can think of queued
components as asynchronous COM+ .
Under classic COM and DCOM, all method calls on your object are
synchronous— the client is blocked while the object executes the
call. Classic COM developers often had to develop a proprietary
mechanism for asynchronously invoking calls on their objects. One
recurr ing mechanism had the object spin off a worker thread to
process the client request and immediately return cont rol to the
client . The object would later signal the client somehow when the
call completed (if the client needed to know) , and the client had to
dist inguish between m ethod complet ions of mult iple objects.
Such solut ions coupled the clients to the objects and were
inconsistent . Different vendors provided slight ly different solut ions,
requir ing different programming models on the client side at t im es.
The first release of MTS and Microsoft Message Queue (MSMQ) in
1998 provided another way to support asynchronous object method
calls with COM. MSMQ is a message queuing serv ice that allows you
to post m essages from one queue to another, potent ially across
machines.
Clients and objects could use MSMQ to facilitate COM asynchronous
method calls. With MSMQ, the client posts a message to a
designated queue that contains the method name and parameters.
The object ret r ieves the message off the queue, parses the
message, and executes the call. The object and client developers
agree about the queue locat ion, the message format, and other
details required for asynchronous interact ion in advance.
However, using MSMQ for asynchronous calls has some
disadvantages:

• The nonstandard interact ion couples the object to its clients.
• The client developers st ill have to design and im plement a

way to package the m ethod informat ion into a message, and
object developers st ill have to design and implement a way to
parse the message.

• MSMQ is not easy to install and use. Developers have to learn
how to write code to use MSMQ inter faces.

• The client is very much aware that it uses MSMQ to post the
call to the object . The result ing asynchronous m ethod
invocat ion code does not resem ble the synchronous method
invocat ion on the sam e COM interface.

 220

This approach is analogous to the pre-DCOM days when developers
wrote raw RPC calls to invoke methods on remote objects.
The idea behind COM+ queued components is simple: let COM+
encapsulate the interact ion with MSMQ and provide a uniform way
of invoking asynchronous method calls. I n fact , the method
invocat ion code itself is the sam e as a synchronous call. The only
difference is in the way the client creates the object .
You can think of MSMQ as the t ransport layer between the client
and object , m uch like RPC is the t ransport layer in the case of
rem ote act ivat ion. A DCOM client does not care about the
underly ing details of RPC protocol and marshaling when invoking a
method on a remote machine. Sim ilar ly , a queued com ponents
client does not need to care about the details of the MSMQ protocol
and the m ethods- to-message conversion.
Queued components are an essent ial addit ion to your arsenal
because implem ent ing robust asynchronous execut ion on your own
is a demanding task; it requires you to spend much effort on
design, implementat ion, and test ing. By providing you with queued
components, COM+ lets you focus on the domain problems at hand,
rather than on com plicated asynchronous plumbing.

8 .1 Major Benefits of Queued Com ponents

Besides simplify ing asynchronous method invocat ion, queued
components provide you with other major benefits (discussed in the
following sect ions) .

8 .1 .1 Disconnected W ork

When the client calls a queued component , the call is converted to a
message and placed in a queue. MSMQ detects the message in the
queue and dispatches the message to the queued component . I f the
client and the object are on different machines, the message can be
placed in a local queue on the client m achine, if necessary.
Imagine that the client is disconnected from the network: suppose a
sales person is working on a laptop at the airport while wait ing for a
flight . The client applicat ion on the laptop can st ill m ake calls to
queued com ponents— to update order numbers, for exam ple. The
calls are stored locally by MSMQ. The next t ime the client m achine
is connected to the network, MSMQ is aware that the local queue
contains messages, so it dispatches them to the remote component .
The server host ing the objects could be disconnected as well. MSMQ
transfers queued messages from the client machine once the object
machine is brought back online.
The benefits of disconnected work are twofold. First , your system's
robustness improves because network outage between a client and

 221

a queued component is handled easily . Second, allowing
disconnected work in your applicat ion, by design, has pract ical
importance: approxim ately 40 percent of all new computers sold are
for mobile and portable use. These devices benefit great ly from
queued com ponents, as they allow users to cont inue working while
offline or on the road. Target ing the portable market is an important
considerat ion for many modern applicat ions.

8 .1 .2 Real Life Business Model

Many enterprise-wide applicat ions are developed to automate
exist ing business processes and informat ion f low. These processes,
such as email and voicemail, are often messaging-based by nature,
and modeling them with queued components is very appropriate.

8 .1 .3 Com ponent Availability

A component may not be available because of server over load or
networking problems. Under classic DCOM, you would have to abort
the whole t ransact ion or wait for the component to become
accessible. Using queued components, you can separate the
t ransact ion into act iv it ies that must be completed now and those
that can be com pleted later. Your end users will be unaware of
server slowdowns or failures.

8 .1 .4 MSMQ Part icipates in Transact ions

MSMQ is a resource manager, and will thus auto-enlist in your
t ransact ions. When your applicat ion makes calls to queued
components dur ing a t ransact ion, your applicat ion (via COM+) adds
messages to an MSMQ queue. Those messages will not persist in
the queue if the t ransact ion is aborted. The t ransact ion coordinator
(DTC) inst ructs all resource m anagers that part icipated in the
t ransact ion to roll back the changes. MSMQ’s rollback rejects the
messages that were added to the queue dur ing the t ransact ion.

8 .1 .5 Auto- Retry Mechanism

Once a m essage is added to a queue, COM+ tr ies to invoke the call
in that message on the object . When COM+ ret r ieves the message
from the queue, it creates a new t ransact ion for the ret r ieval. I f the
object part icipates in that t ransact ion, and that t ransact ion is
aborted, MSMQ’s rollback in this case will return the message to the
queue. This, in turn, causes COM+ to t ry again to invoke the call on
the object .

8 .1 .6 Scalability

 222

A m ajor scalability bot t leneck is the length of t ime the client t ies up
an instance of the server. In a dist r ibuted system, you should
m inim ize that t ime as much as possible by reducing the number of
network round t r ips to allow your server to accept calls from other
clients. When a client makes calls on a queued component , COM+
records the calls the client makes and combines them into a single
message. Message delivery generally requires just a single network
operat ion, so the t ime the server instance is occupied is reduced.

8 .1 .7 W orkload Buffer ing

Every system has a peak load of clients asking for serv ices.
Systems architects have to design the system to handle that peak
load. The quest ion is, what do you do if the workload is uneven
throughout the day? Designing your system to handle the peak load
in real t ime may require huge investments in expensive hardware,
load balancing machines, longer development t ime, and more
difficult design goals. Such an approach results in a system that
may handle the peak load, but remains vast ly underut ilized on
average. A more realist ic alternat ive is to accept client requests,
buffer them, and execute them later on. For example, most online
web stores do exact ly that— they accept your order immediately and
you are free to surf other web sites. The store buffers your request
and can handle the next client . I n the background, at the system's
leisure, it processes the request and sends you an email
confirmat ion once your order is processed and shipped.
Using queued components, you can separate the purchasing task
into two stages: a short - durat ion, front -end, synchronous
acknowledgement , and an offline, queued task— the order
processing itself.

8 .1 .8 W hen Should You Use Queued Com ponents?

Clearly , queued com ponents offer solut ions to several real- life
problems, saving you precious development t ime and increasing
overall system quality. The quest ion is, when should you use
queued com ponents?
Dur ing system requirements analysis, t ry to ident ify business
act iv it ies that can be separated by t ime. You may execute each
act iv ity synchronously, but you connect them with queued
components.
For example, im agine an online store. Orders are collected from the
customers immediately and synchronously. Processing the order—
parts orders to var ious vendors, billing updates, and so on— can be
done later . All tasks must be done, but they don't all have to be
done at once.

 223

8 .2 Queued Com ponents Architecture

One of the major requirements for the COM+ queued components
architecture specifies that the component developer should take no
special steps to make a component asynchronous; the developer
writes synchronous code, and COM+ provides the mechanism to
allow clients to call the m ethod asynchronously.
As a result , t he client cannot create the component direct ly, since it
would result in the usual blocking calls. I nstead, COM+ uses the
architecture shown in Figure 8-1. For every queued component ,
COM+ provides a recorder object . The recorder object supports the
same set of interfaces as the queued component . When the client
calls methods on the recorder interfaces (Step 1) , the recorder (as
the nam e implies) merely records the calls. When the client releases
the recorder, the recorder converts the calls to an MSMQ m essage
and posts that message to the recorder queue (Step 2) .
Every applicat ion that contains queued components has a queue
associated with it . MSMQ transfers the message to the applicat ion
queue from the recorder queue (Step 3) . For each applicat ion,
COM+ maintains a listener object that detects when a message was
added to the applicat ion queue (Step 4) . The listener creates a
player object (Step 5) and inst ructs it to ret r ieve the message from
the queue (Step 6) . The player creates the actual component and
plays the calls back to it (Step 7) . When the player is finished
playing back calls, it releases the component .

Figure 8 -1 . COM+ queued com ponents architecture

8 .2 .1 The Recorder

You can think of the recorder as the component proxy. The recorder
is responsible for forwarding the call across processes or machines
to where the object resides. The recorder lives in the client process
and supports the same set of queued inter faces as the com ponent .
When clients query the recorder for a different inter face, then the
recorder must also provide recording abilit y for the interface if it is
supported by the real component .

8 .2 .2 The Player

 224

The player in this architecture is analogous to the stub— it t ranslates
the MSMQ message to method calls and then makes those calls to
the object . The player is responsible for removing the message from
the queue and is configured to always require a t ransact ion. As a
result , creat ing the player kicks off a new t ransact ion that includes
in its scope the message removal and the playback of method calls.
Every act ion the queued component takes when execut ing the
methods, such as database updates, executes within that
t ransact ion. I f, for exam ple, the database update fails, the
t ransact ion aborts and every resource m anager that took part in it
has to roll back. As ment ioned previously, MSMQ is a resource
manager and its rollback puts the message back in the queue. The
listener detects its presence there and ret r ies the playback
sequence (m ore on that later) .

8 .2 .3 The Listener

Every COM+ applicat ion has at most one listener associated with it ,
serv ing all queued com ponents in the applicat ion by listening to the
applicat ion queue and creat ing the player objects.
Note that the queued components design separates the act of
detect ing a message from the act of playing it back to the
component . I f the listener were responsible for calling methods on
the objects, then all calls to queued components would be
asynchronous, but serialized— that is, occurr ing one at a t im e. That
kind of design would have killed performance. By having a
dedicated player for each component , the listener can process
asynchronous calls as fast as they can be added to the queue.
The listener object lives in the applicat ion process. I f you configure
your applicat ion to support queued components, COM+ creates a
listener in the applicat ion process when the applicat ion is launched.
In fact , if the applicat ion is not running, then no one will listen to its
message queue, and, as a result , no queued components will ever
be instant iated. COM+ cannot possibly know when it is a good t ime
to create the applicat ion and have it start servicing queued calls for
you. Only the applicat ion adm inist rator has that knowledge (for
example, what hours of the day or what load level) .
You have a num ber of opt ions available for launching the
applicat ion:

• Start the applicat ion manually from the Com ponent Serv ices
Explorer.

• Provide your applicat ion adm inist rator with a simple ut ilit y
that makes programmat ic calls to the COM+ Catalog (as
explained in Chapter 6) to star t the applicat ion.

• Use the Windows Task Scheduler to invoke your ut ility at
designated t imes.

 225

• Act ivate nonqueued component in the same applicat ion. This
act ivat ion causes COM+ to launch the applicat ion, and by
doing so, it creates the listener.

8 .3 Com ponent Services Explorer Configurat ion

Before you begin configur ing the Component Services Explorer,
make sure you have MSMQ installed on your m achine. The Windows
2000 installat ion does not install MSMQ by default . To add MSMQ to
your system, go to the Cont rol Panel and click on Add/ Remove
Programs. In the dialog box, click Add/ Remove Windows
Components, and instruct the wizard to install Message Queuing
Serv ices. This step starts the MSMQ installat ion. Choose the
Workgroup installat ion for a single-machine setup, or if you have a
domain account on a domain server, choose the dom ain installat ion
for secure cross-machine invocat ions.

8 .3 .1 Applicat ion Configurat ion

Every COM+ Server applicat ion can host queued components. On
the applicat ion propert ies page, a Queuing tab (see Figure 8-2)
enables and configures queued component host ing by that
applicat ion. The tab contains two checkboxes, "Queued" and
"Listen".

Figure 8 - 2 . The COM+ server applicat ion Propert ies page’s Queuing tab

Checking the Queued check box causes COM+ to create a public
message queue, named as the applicat ion, for the use of any
queued com ponents in the applicat ion. I ncom ing messages for
queued com ponents in the applicat ion are posted to that queue.
You can actually see the queue associated with your applicat ion by
using the MSMQ Explorer. To bring up the MSMQ Explorer, go to the
Cont rol Panel, open the Administ rat ive Tools folder and expand

 226

Computer Management Serv ices and Applicat ion Message
Queuing. You will see all the MSMQ queues installed on your
computer. I f, for example, your COM+ applicat ion is called MyQC
App, once you check the Queued check box, under the Public
Queues folder you should see a new queue called myqc app (see
Figure 8-3) .

Figure 8 - 3 . Using the MSMQ Explorer , you can see the queue associated
w ith your applicat ion

Checking the "Listen" checkbox on the Queuing tab inst ructs COM+
to act ivate a listener for the applicat ion when the applicat ion is
launched.
Normally , if you have queued com ponents in the applicat ion, you
should have the "Listen" checkbox checked. However, COM+ allows
you to turn off processing queued calls (by unchecking the "Listen"
checkbox) to allow nonqueued components in the applicat ion to
sever their clients adequately without the performance hit of the
queued calls. The perform ance can be sustained at a later point in
t ime.
A COM+ library applicat ion cannot contain COM+ queued
components because it is hosted at runt ime by a client process,
over which COM+ has no cont rol. I n fact , the client process m ay not
even be a COM+ server applicat ion. COM+ cannot create MSMQ
queues as needed for a process or inject listener objects into it . I f
you use queued components, you m ust put them in a server
applicat ion.

8 .3 .2 Queued Com ponent I nterface Configurat ion

The fact that a client wants to make asynchronous calls on a
component does not mean that the component developer allows it .
You have to enable queuing for every interface on which you expect
to receive asynchronous calls. You do that by displaying the

 227

inter face propert ies page and then select ing the Queuing tab. The
tab has a single checkbox (see Figure 8-4) . When checked, that
inter face on your component can accept queued calls.

Figure 8 - 4 . The interface Propert ies page’s Queuing tab

8 .4 I nvoking Queued Com ponents on the Client Side

A queued component client cannot create the component using
CoCreateInstance() (or CreateObject()/New for Visual Basic
6.0) because it would result with the norm al synchronous mode of
interact ion. The client must create the component in a way that
would make COM+ create a recorder for the calls instead.
Consider, for example, the system in Figure 8-5, which shows the
component layout of an online retail shoe store. The customer
interacts with a top- level Store component . The interact ion with the
customer m ust be fast and synchronous. The customer specifies
shoe size, shipping method, email address, credit card number, and
so on. The Store component saves the order informat ion using the
Order com ponent and processes the order using the Shipment
component .

Figure 8 -5 . A sim ple online retail store system containing Store and
Order COM+ com ponents and a queued Shipm ent com ponent

However, shipping the order (order ing the shoes from the vendor,
updat ing inventory, interact ing with the shipping company, etc.)
can take a long t im e to complete. Processing and shipping the order
should be done offline, using COM+ queued components.
The Shipment component exposes the IShipment interface, defined
as:

 228

interface IShipment: IDispatch
{
 [id(1)] HRESULT ShipOrder([in]DWORD dwOrderNumber);
}
The Shipment component prog- ID is MyApp.Shipment.
The first step in using queued components configures the
applicat ion containing the Shipment component to host queued
components, and then configures the IShipment interface on the
Shipment component , as shown in the previous sect ion.
The client of a queued component creates a recorder for the calls
made using a moniker — a st r ing that shows how to bind to an
object . I f the client is writ ten using Visual Basic, the client uses the
GetObject() call. A C+ + client would use the equivalent
CoGetObject().
For example, if the Store component were implemented using Visual
Basic, you would write the following code to create a recorder for
the queued Shipment object and execute the call:
orderNumber = 123
Dim Shipment As Object
Set Shipment = GetObject("queue:/new: MyApp.Shipment")
Shipment.ShipOrder(orderNumber)
And if it were wr it ten in C+ + :
IShipment* pShipment = NULL;
HRESULT hres = S_OK;
DWORD dwOrderNumber = 123;

hres = ::CoGetObject(L"queue:/new: MyApp.Shipment", NULL,
 IID_IShipment,(void**)&pShipment);

hres = pShipment->ShipOrder(dwOrderNumber);

pShipment->Release();
Alternat ively, the C+ + client can create the queued com ponent
using the component CLSI D instead of the nonunique prog- ID:
hres = CoGetObject(L"queue:/new:{8B5C3B80-6D0C-49C7-8F74-
14E59D4BEF40}",...,);
Nothing in the client's code differs from interact ing with the sam e
component synchronously, except creat ing the object .
COM+ actually uses two m onikers to create the queued com ponent .
The first is the new moniker that has existed since the ear ly days of
COM. The new moniker, an alternat ive to CreateObject() and
CoCreateIntance(), is used to create a component .
For example, the following two Visual Basic lines are equivalent :
Set Order = CreateObject("MyApp.Shipment")

Set Order = GetObject("new: MyApp.Shipment")
Either line would create the nonqueued component .

 229

The queue moniker is a new addit ion, int roduced by COM+ to
support queued com ponents. The combinat ion of queue:/new: tells
COM+ to create a recorder instead of the real object . For pract ical
purposes, the syntax used to create a queued component (shown
previously) is all you will ever need.
However, COM+ provides the queued component client with many
extensions to the queued moniker that allow you to overr ide its
default behavior. These extensions include:

• Post ing the recorded method calls to a specified queue,
instead of the one associated with the queued component
applicat ion. You can specify the queue name and locat ion (the
machine on which the queue resides) , as well as applicat ion-
specific informat ion that will be at tached to the message.

• The m essage security authent icat ion level.
• The m essage encrypt ion opt ions.
• Whether MSMQ should keep a journal of the message.
• Various send and receive t imeouts.
• The m essage prior ity within the queue.

Please refer to the MSDN Library for more inform at ion about these
and other extensions. The very fine-grained cont rol a client can
have over the queued method recording is another reason why the
convent ional mechanism for creat ing components
(CoCreateInstance or New) cannot be used for queued
components.

8 .5 Designing Queued Com ponent I nterfaces

When a client m akes calls to a queued component , it interacts with
the recorder provided by COM+ . No actual calls to the real object
occur. So, at the t ime of the call, the client has no way to receive
output from the method, nor can it tell whether the call succeeded
or failed. Consequent ly , when you design an interface to be
supported by a COM+ queued component , you must avoid any
outgoing param eters on any inter face method.
Specifically, do not use any [out], [in,out], or [retval] IDL
at t r ibutes on your method param eters. When you import a
component into the Component Services Explorer, COM+ inspects
the inter faces supported by that com ponent , and if it detects an
output at t r ibute, COM+ disables the queuing opt ion for that
inter face.
I f you develop your COM+ component using Visual Basic 6.0, you
do not have direct access to your component IDL. Normally, this
lack of access would not be a problem. However, Visual Basic, by
default , t reats method parameters as [in,out] parameters. I f you

 230

expect your component to be accessed as a queued component , you
have to explicit ly use the Visual Basic ByVal at t r ibute on your
method parameters.

I n the next version of Visual Basic, Visual
Basic.NET, all parameters are, by default , passed in
by value instead of by reference. See Chapter 10
for more inform at ion.

A different kind of a parameter returned from a method is its return
value. You should avoid using custom HRESULT codes to indicate
part icular failure cases. The client only receives the HRESULT from
the recorder, indicat ing the success or failure of recording the call.
When your object executes, its HRESULT codes are delivered to the
player, which does not understand your custom semant ics. COM+
does not require you to st ick to the standard HRESULT codes, but
there is no point in not doing so.
Another rest r ict ion on queued com ponent inter faces is that the
client cannot pass in a pointer to another COM object . The reason is
obvious— when the actual call takes place later, there is no
guarantee that the object passed in as a param eter is st ill around.
Implement ing a queued com ponent implies m ore than just a few
method parameters restr ict ions and clicked checkboxes on the
Component Services Explorer. I t really m eans a change in your
design pat terns and program ming m odel.
The only way to pass in COM objects as a method parameter to a
queued object is if the object you pass in supports the interface
IPersistStream. IPersistStream is a standard interface used for
object ser ializat ion, defined in the early days of OLE2 and COM.
Objects that support IPersistStream can ser ialize their state into a
COM+ provided st ream and reconst ruct their state out of such a
st ream.
Whenever you pass a COM object as a m ethod parameter, COM+
quer ies it for IPersistStream. I f t he object supports it , COM+ calls
IPersistStream::Save(), passing in a pointer to an IStream
object . The input object saves its state to the st ream. The recorder
stores the saved state informat ion in the message sent to the
queued com ponent applicat ion queue. When the player ret r ieves the
message, it creates a st ream object from the message and calls
IPersistStream::Load() to init ialize the object to the state it was
in when the call was made. I t then invokes the call on the
component , passing in the input object as parameter.
When you design an interface used by a queued component , you
can use a new IDL extension, an inter face at t r ibute called
QUEUEABLE, to denote it as an interface used by a queued
component . The mtxat t r .h header file defines this extension.

 231

Example 8-1 shows the IShipment interface definit ion again, this
t ime using the QUEUEABLE at t r ibute.

Exam ple 8 - 1 . Using the I DL QUEUEABLE at t ribute to denote an interface
as queued-com ponents com pat ible

#include "mtxattr.h" // For QUEUEABLE
[
 object,
 uuid(97184D0F-F7EF-413A-8C6D-C1745018B2E9),
 dual,
 pointer_default(unique),
 QUEUEABLE
]
interface IShipment: IDispatch
{
 [id(1)] HRESULT ShipOrder([in]DWORD dwOrderNumber);
};
This at t r ibute autoconfigures the inter face as Queued when you
import a component that supports the interface into the Component
Serv ices Explorer. This autoconfigurat ion saves you the t rouble of
doing it yourself. The at t r ibute has no semant ic meaning for the
MIDL compiler; it will not stop you from defining [out] parameters
on an inter face marked QUEUEABLE. Only COM+ examines this
at t r ibute.

ATL 7 Queuing At t r ibute

As explained in Chapter 4, if you use the at t r ibuted ATL 7
project under Visual Studio.NET, you can take advantage of
precompiler-specific support for COM+ 1.0 serv ices, using
special at t r ibutes. I f you add a new class to your ATL 7
project , and you select "ATL COM+ 1.0 Component" from the
Add Class dialog, the wizard will let you configure queued-
component support for the inter face. I f you select the
"Queueable" checkbox, the at t r ibuted inter face will have a
custom at t r ibute as part of its decelerat ion:
[
 object,
 uuid(97184D0F-F7EF-413A-8C6D-C1745018B2E9),
 dual,
 custom(TLBATTR_QUEUEABLE,0)
 pointer_default(unique)
]
__interface IShipment: IDispatch
{
 [id(1)] HRESULT ShipOrder([in]DWORD
dwOrderNumber);
};

 232

Before compiling your code, ATL 7 feeds your sources to a
special precompiler that parses the at t r ibutes and generates
convent ional, nonat t r ibuted ATL source files, including an IDL
file. The new sources are then fed to the convent ional C+ +
compiler . I n that process, the TLBATTR_QUEUEABLE custom
at t r ibute is converted to the IDLQUEUEABLE extension.

8 .6 Receiving Output from a Queued Com ponent

Banishing all output opt ions for a queued component would be too
draconian and impract ical. Somet imes expect ing output from a
queued com ponent is appropriate. Consider the online shoe store.
After the Shipment object ships the order, you would like it to not ify
another object about it . The Store object would like to pass in the
Not ificat ion object as a parameter to the ShipOrder() m ethod.
From a design perspect ive, it is a good idea to decouple the
not ificat ion act ions from the Shipment process itself. You should
decouple the act ion to ensure that the Shipm ent object knows only
about a generic not ificat ion interface and that it calls a method on it
once the order is shipped. I t is up to the Store object to decide
which not if icat ion object to pass in as a parameter. You could have
mult iple implementat ions of the Not if icat ion interface— for example,
one Not if icat ion object sends an email to the customer to say that
the shoes are on the way and another also sends promot ional
mater ial.
You have already seen that COM+ allows you to pass in inter face
pointers for objects that support the IPersistStream interface.
COM+ also lets you pass in as a method parameter an inter face
pointer to another queued com ponent . This technique is called
Response Object because it allows the client to receive a response
from the queued component and be not ified about the results of the
queued call. The response object does not need to support the
IPersistStream interface, as COM+ will not t ry to t ransfer it by
value to the queued component .
The client can use a response object in two ways. First , it can create
the response object , create the queued component , and pass in the
response object inter face pointer (which actually points to the
response object recorder) . After the method call, the client can
release the response object .
Figure 8-6 shows how a response object in the online store example
is used to send not if icat ion email to the customer once the order is
processed and shipped.
In the example, the customer submits the purchase order to the
Store objects (Step 1) . The Store object creates a Not ificat ion
object (Step 2) and a Shipm ent object (Step 3) , in both cases
creat ing recorders only. The Store object passes in the Not if icat ion

 233

object as a parameter for the Shipment object . The Shipm ent
recorder knows how to ext ract from the Not ificat ion recorder its
queue name and locat ion, and packs it in the message (Step 4) .
When the method call is played back to the Shipment object (Step
5) , based on the informat ion in the message, the player creates a
not ificat ion recorder (Step 6) and passes it as a method param eter
to the Shipment object . The Shipm ent object calls methods on the
Not ificat ion recorder (Step 7) . Once released, the not ificat ion
recorder posts the queued calls to the Not ificat ion queue (Step 8) ,
where they are eventually played back to the Not if icat ion object
(Step 9) . I n this example, the Not if icat ion object then not ifies the
customer about the shipment by sending him em ail (Step 10) .

Figure 8 - 6 . Online store exam ple: using a response object to send
not ificat ion em ail

The second way a client can use a response object is to pass in
st r ing method parameters that instruct the queued component how
the response object should be created. In the example, the Store
object would create only the Shipment recorder and pass in as
parameters where and how the Shipment object should create the
Response object (machine and queue name, authent icat ion level,
and so on) . The Shipm ent object would use these parameters as
arguments for the moniker to create the Not ificat ion object .
Passing in a queued com ponent as a param eter is more t ransparent
to both the client and the queued com ponent and does not
contam inate the interface with param eters, which expose execut ion
locat ion and invocat ion mode. However, passing in the response
object queue informat ion provides ult im ate flexibility for the client
cont rolling the response object .
Error handling is another use for response objects. The client has no
way of knowing about the success of the queued call. Imagine, for
example, that while processing the order, the Shipment object was
unable to com plete it successfully ; perhaps the vendor ran out of
shoes in the requested color , or the custom er supplied an expired
credit card number.

 234

The Shipment object cannot possibly handle all the error cases
correct ly. However, it can not ify the response object that the order
processing failed. The response object not ifies the customer—
perhaps request ing the custom er to select a different color or
supply a new card number. Error handling is the subject of the next
sect ion.

8 .7 Queued Com ponent Error Handling

I n classic synchronous COM, the client knew immediately about the
success or failure of a m ethod call by inspect ing the returned
HRESULT. A queued component client interacts with the recorder
only, and the returned success code only indicates the success of
recording the call. Once recorded, a queued component call can fail
because of delivery problems or dom ain-specific errors. COM+
provides a few opt ions for handling errors on both the client side
and the server side. These opt ions include an except ion- like
mechanism , auto- retr ies, and a few administ rat ive tools. You can
always use a response object to handle errors, as well.

8 .7 .1 Handling Poison Calls

Once a call is placed successfully in the applicat ion queue, plenty
can st ill go wrong; perhaps the component was removed, its
installat ion was corrupted, or the com ponent failed while execut ing
the call (for example, if the customer provided a bogus credit card
number) . I n case of failure, if the call is simply returned back to the
queue, COM+ could be t rapped in an endless cycle of removing the
call from the queue— trying to call the component , failing, placing it
back in the queue, and so on. COM+ would never know when to
stop ret ry ing— perhaps the call could succeed the next t ime.
This scenario in dist r ibuted messaging systems is called the poison
message syndrom e because it can literally k ill your applicat ion.
COM+ addresses the poison message syndrome by keeping t rack of
the number of ret r ies and managing the interval between them.
Besides creat ing the applicat ion public queue (where the calls are
placed) , COM+ creates five pr ivate ret ry queues and one dead
queue when you enable queuing for a COM+ applicat ion (seeFigure
8-7) . The dead queue is the f inal rest ing place for a message for
which all delivery attempts have failed— it is a suspected poison
message.
When a call is posted to a queued com ponent , it is placed in the
applicat ion public queue and a player t r ies to invoke it .
I f the invocat ion fails, the message is put into Queue 0. COM+ t r ies
to process the message again three t im es from queue 0, with a
one-m inute interval between ret r ies. I f the call st ill fails, the

 235

message cont inues to move up the ret ry queues, where COM+
ret r ies three t imes from each queue, with ever- increasing intervals
between the ret r ies. The higher the num ber of the retry queue, the
longer the interval between ret r ies (Q_1 is 2 m inutes, Q_2 is 4, Q_3
is 8, and Q_4 is 16) . After the last at tempt from the last ret ry
queue fails, COM+ puts the message in the dead queue, from which
there are no more ret r ies, and the message is deemed poisonous.

Figure 8 - 7 . COM+ applicat ion private ret ry queues and dead let ter queue

The dead queue can accumulate an infinite number of messages. I t
is up to your applicat ion adm inist rator to manage the dead queue.
One simple course of act ion available to the adm inist rator is to
simply purge the queue of all the messages it contains. Another
opt ion is to put the message back in the applicat ion or ret ry queues,
if the adm inist rator believes that the call will succeed this t ime.
Your applicat ion adm inist rator can also delete one or more of the
ret ry queues and by doing so cont rol the number and length of the
ret r ies; COM+ cont inues to move a message that cont inuously fails
up the remaining retry queues. I f all ret ry queues are deleted, a
message that fails will be moved direct ly to the dead queue.

8 .7 .2 Queued Com ponent Except ion Classes

Somet im es it may not be possible for the call to succeed due to
domain-specific constraints. For example, a customer m ay at tem pt
to withdraw money from an account that has insufficient funds, or
the customer account may close when the message is in the queue.
Or, plain security set t ings may be a problem— the user who issued
the queued call sim ply does not have the r ight credent ials to carry
out the call.
I f the situat ion is brought to your product adm inist rator's at tent ion
(on the client and the server side) he or she m ight be able to do

 236

something about it . COM+ lets you associate an except ion class
with your queued component . In case of repeated failure, COM+
creates the except ion class object and not ifies it about the failure.
You associate an except ion class with your queued com ponent on
the Advanced tab of your component ’s propert ies page by
specify ing the prog- ID of the except ion calls (see Figure 8-8) . I f a
queued call cannot reach your component , COM+ instant iates the
except ion class and lets it handle the failure.

Figure 8 - 8 . Specifying an except ion class for a queued com ponent

A queued component except ion class is a COM+ component that
implements all t he queued interfaces supported by your com ponent
and a special interface called IPlaybackControl. COM+ uses the
except ion class object if the call could not be delivered to the
queued com ponent , or if the call persistent ly failed.
IPlaybackControl has only two m ethods and is defined as:
interface IPlaybackControl : IUnknown
{
 HRESULT FinalClientRetry();
 HRESULT FinalServerRetry();
};
The terms client and server are defined loosely in the inter face. I t
really refers to which side of the queued call the error occurred on.
Both the client and the server adm inist rators can install t he
except ion class, although each will be m ore interested in what
happened on their side.

8 .7 .2 .1 Client - side except ion handling

Delivering a message to the queued component queue is never
guaranteed. I f all at tempts to deliver the message to the queued
component queue fail, COM+ places the call on the client side in a
public queue called the Xact Dead Let ter queue. The Xact Dead
Let ter queue is shared by all clients on the same machine.
The dead let ter queue has a listener associated with it called the
Dead Let ter Queue Monitor (DLQM)— a COM+ server applicat ion
installed on every Windows 2000 m achine. You can start the DLQM
applicat ion manually or programmat ically by calling into the COM+
Catalog. When the DLQM app is running, and it detects the message

 237

in the queue, it ret r ieves the target component from the message
and checks for an except ion class.
I f the component has an except ion class associated with it , the
DLQM instant iates the except ion class and quer ies it for
IPlaybackControl. Since this is a client- side failure, the DLQM calls
IPlaybackControl::FinalClientRetry() on the except ion class,
let t ing it know that client -side failure of delivery is the reason it is
invoked.
Next , the DLQM plays back all method calls from the message to
the except ion class. Recall that the except ion class is required to
implement the sam e set of queued interfaces as the component it is
associated with.
I f the except ion class returns a failure status from any one of the
method calls, the m essage is returned to the Xact Dead Let ter
queue. The DLQM deletes the message from the Xact Dead Let ter
Queue only if the except ion class returns S_OK on all calls.
This error-handling schema allows the except ion class to im plem ent
an alternat ive behavior for messages that cannot be sent to the
server. For example, the except ion class could generate a
compensat ing t ransact ion. Another course of act ion would pass in a
queued not ificat ion object as a method parameter. The except ion
class would call the not ificat ion object , let t ing it know which calls
failed. The not if icat ion object can in turn send an em ail to the
customers asking them to resubmit the order, or it can take some
other domain-specific error handling act ion.
Because all COM+ knows about the except ion class is it s ID, you
can even provide deployment-specific except ion classes and have a
per-customer error handling policy.

8 .7 .2 .2 Server -side except ion handling

Successful delivery of the message to the server side does not
mean that the call will succeed— it could st ill fail for domain-specific
reasons, including invalid method param eters, corrupt installat ion,
and m issing components.
As explained before, the message moves up through the ret ry
queues in case of repet it ive invocat ion failures. When the final ret ry
on the last ret ry queue fails, COM+ ret r ieves the target component
from the m essage and checks for an except ion class. Sim ilar to its
handling of the failure on the sending client side, if the com ponent
has an except ion class associated with it , COM+ instant iates the
except ion class, quer ies for IPlaybackControl, and calls
IPlaybackControl::FinalServerRetry(). I t does this to let the
except ion class know that the failure took place on the server side
and that the message is about to be placed in the dead queue.
COM+ then plays back all method calls from the message to the
except ion class. The except ion class can do whatever it deems fit to

 238

handle the error, from sending an em ail to the applicat ion
adm inist rator to alert ing the user. I f the except ion class returns
S_OK from all method calls, COM+ considers the message delivered.
I f the except ion class returned failure on any of the queued calls,
COM+ puts the message in the dead let ter queue.

8 .7 .2 .3 The MessageMover class

Regardless of where the error took place (sending or receiving
side) , your system or applicat ion adm inist rator has to deal with it .
Applicat ion adm inist rators usually do not develop software for a
liv ing and know nothing about COM+ , queued components, MSMQ
ret ry queues, etc. I t is up to you, the enterpr ise applicat ion
developer, to provide your applicat ion adm inist rator with tools to
manage your product . You should deliver your main product with an
applicat ion-oriented adm inist rat ion ut ilit y to m anage ret r ies of
asynchronous calls and dead calls (on the server and client side) .
The applicat ion adm inist rat ion ut ilit y should use, in its user
inter face, term inology from the domain at hand (such as shipm ent
details) rather than queue names. Internally , it will probably
interact with except ion classes and not ificat ion objects. Your helper
ut ilit y will probably need to move m essages between ret ry queues,
the dead queue, and the applicat ion queue.
For example, suppose a queued call dest ined for a custom er
accounts m anagement component failed because the specified
account num ber was invalid. The adm inist rat ion ut ilit y may prompt
the adm inist rator to enter the correct account number for the
customer and then put the message back in the applicat ion queue,
this t im e with the correct account num ber. To enable you to m ove
messages between queues easily, COM+ provides you with the
IMessageMover inter face and a standard implementat ion of it . The
standard implem entat ion is available for the C+ + developer by
calling CoCreateInstance() using CLSID_MessageMover and for
the Visual Basic developer by calling CreateObject() using the
prog- ID QC.MessageMover.
The interface IMessageMover is defined as:
interface IMessageMover : IDispatch
{
 [id(1),propget] HRESULT SourcePath([out,retval]BSTR*
pbstrPath);
 [id(1),propput] HRESULT SourcePath([in] BSTR
bstrPath);
 [id(2),propget] HRESULT DestPath([out,retval] BSTR*
pbstrPath);
 [id(2),propput] HRESULT DestPath([in]BSTR bstrPath);
 [id(3),propget] HRESULT
CommitBatchSize([out,retval]long* plSize);

 239

 [id(3),propput] HRESULT CommitBatchSize([in]long
lSize);
 [id(4)] HRESULT MoveMessages([out, retval]long*
plMessagesMoved);
};
As you can see, IMessageMover is a sim ple inter face. You can set
the source and dest inat ion queues and call MoveMessages(), as
shown in Example 8-2, in Visual Basic 6.0.

Exam ple 8 - 2 . Using the I MessageMover interface to m ove m essages from
the last ret ry queue to the applicat ion queue

Dim MessageMover As Object
Dim MessagesMoved As Long

Set MessageMover = CreateObject("QC.MessageMover")

’move all the messages from the last retry queue to the
application queue
MessageMover.SourcePath = ".\PRIVATE$\MyApp_4"
MessageMover.DestPath = ".\PUBLIC$\MyApp"

MessagesMoved = MessageMover.MoveMessages
IMessageMover does not provide you with a way to move fewer
than the total number of messages on the queue, but it does save
you the agony of interact ing direct ly with the MSMQ API s.
See the MSDN Library for m ore informat ion about using the
IMessageMover inter face.

8 .8 Queued Com ponents and Transact ions

As ment ioned before, MSMQ is a resource manager. By default ,
when COM+ creates the applicat ion and ret ry queues, they are all
t ransact ional queues; they auto-enlist in the t ransact ion that adds
or removes a m essage to or from the queue.
The recorder and the listener are COM+ components installed in the
COM+ Ut ilit ies applicat ion— a library applicat ion that is part of every
Windows 2000 installat ion. These com ponents are configured to
require a t ransact ion and take part in an exist ing t ransact ion, or
spawn a new one if none exists. (COM+ will not let you change the
Ut ilit ies applicat ion components set t ings) . Every t ime a client uses
queued com ponents, three t ransact ions are involved— recording the
calls, deliver ing the message to the applicat ion queue, and
replay ing the calls.
You can see this concept work with the online store (see Figure 8-
9) ; all the calls made by the Store object on the Shipment recorder
are packaged into one message and placed in an intermediate
recorder queue. These calls were m ade in the scope of the

 240

t ransact ion that accepted the order parameters from the customer
(Transact ion 1) . Since MSMQ is a resource manager, the recorder
queue rolls back and rejects the m essage if the order t ransact ion is
aborted.
MSMQ then has to t ransfer the m essage to the queued component
applicat ion queue, potent ially across the network. MSMQ creates a
new t ransact ion for the t ransfer, and both the source and the
dest inat ion queues part icipate in it . I f the t ransfer was unsuccessful,
the t ransact ion aborts, the queues roll back, and the message
rem ains in the recorder queue. This act ion avoids a part ial success
situat ion, in which the m essage is removed from the source queue,
but never added to the dest inat ion queue. This t ransact ion is called
Transact ion 2 in Figure 8-9.

Figure 8 -9 . The three t ransact ions involved w hen a client uses queued
com ponents

Once the m essage is safely in the applicat ion queue, the listener
star ts a new t ransact ion for removing it and play ing it back to the
component (called Transact ion 3 in Figure 8-9) . I f the invocat ion
fails, the applicat ion queue rollback m oves it to the first ret ry
queue, instead of adding it back to the applicat ion queue, to detect
a potent ial poison message.
Usually you take the MSMQ transfer t ransact ion for granted and
om it it from your design documents. I f you use a response object ,
the response object playback would be in a t ransact ion of it s own
because it is j ust another queued component (see Figure 8-10) .

Figure 8 - 1 0 . The t ransact ion involved w hen using a response object

 241

A word of caut ion when configur ing the t ransact ional set t ing of a
queued com ponent : avoid configuring your queued component to
require a new t ransact ion of its own. I f you configure your
component ’s t ransact ion set t ing to have Requires New, the recorder
is in a separate t ransact ion from that of the client , and MSMQ
accepts the recorded calls and posts them to the applicat ion queue
even if the original client t ransact ion fails (see Figure 8-11) .

Figure 8 -1 1 . Avoid configuring a queued com ponent to require a new
transact ion

A sim ilar inconsistency may exist if you configure the applicat ion
queue as a nont ransact ional queue, as MSMQ rem oves the message
from the queue even if the Shipment t ransact ion is aborted.

 242

You should always set the t ransact ion set t ing of your queued
component to Required— that is what will be necessary in most
business situat ions.

8 .9 Synchronous Versus Asynchronous Com ponents

By now you have probably com e to appreciate the elegance of using
queued com ponents and the great ease with which you can turn a
synchronous component and its client code to asynchronous.
However, although it is technically possible to use the same
components both synchronously (using CoCreateInstance() to
create it) or asynchronously (using the queued moniker) , the
likelihood that a component will be used in both cases is low for the
following reasons: using a queued component int roduces changes in
the semant ics of the t ransact ions the component will take part in,
and using a queued component implies a change in the client
program workflow. You sim ply cannot use the same synchronous
execut ion sequence logic. The rest of this sect ion elaborates on
these two reasons. These arguments were first presented in Roger
Session's book COM+ and the Bat t le for the Middle Tier (John Wiley
& Sons, 2000) .

8 .9 .1 Changes in Transact ion Sem ant ics

Suppose your online store does not use queued components. When
the customer places an order, the Store object uses the Order and
the Shipm ent objects synchronously. All the order and shipm ent
database updates that these objects perform are under the
umbrella of one t ransact ion. Both databases are consulted
regarding commit t ing the t ransact ion (see Figure 8-12) .

Figure 8 - 1 2 . Synchronous invocat ion scopes all operat ions in one
t ransact ion

However, if the Store object uses a queued Shipment component ,
as shown in Figure 8-9, the shipment database and component are
not part of the originat ing t ransact ion and are not consulted
regarding its success. The Shipment t ransact ion is now ent irely
different from the Order t ransact ion. By the t ime the shipm ent
t ransact ion takes place, the order t ransact ion has already been

 243

commit ted. Even if the shipment t ransact ion aborts, the order
t ransact ion remains commit ted and its changes will not roll back. Of
course, the shipment t ransact ion may retry and eventually succeed
and com mit , and that may be fine. On the other hand, it m ay
always fail, and that is probably not so fine.
The conclusion is that configuring a component to be asynchronous
has ser ious implicat ions regarding the semant ics of the t ransact ions
it part icipates with.

8 .9 .2 Changes in W orkflow

The other major difference between working with a queued
component as opposed to its nonqueued version has to do with the
client workflow. Current ly, your Store object calls the Order object
synchronously, and only if the Order object succeeds in processing
the order will the Store object call the Shipm ent queued
component . Suppose the Store object would like to use a queued
version of the Order component (besides a queued Shipment
component) . The Store object records the calls to the Order
component , records the calls to the Shipment com ponents, and
then releases the recorders.
The problem is that the Order and Shipment objects m ight be
invoked in random order, depending on the network topology,
MSMQ setup, number of ret r ies, and so on. The result can be
disast rous if things go wrong— for example, if the Shipment object
discovers that no shoes in the store m atch the customer request ,
but the Order object has already billed the client for it .
Again, you will find that you cannot just configure components as
queued and use them asynchronously since doing so results in
potent ially flawed workflow.
Using a queued component instead of a synchronous version of the
same component requires you to change your code and your
workflow. I f the Store component developer wants to use both
queued Order and queued Shipment components, the Store object
should only call the queued Order component . To avoid the
potent ial inconsistencies ment ioned earlier , the call to the Shipment
queued com ponent should be done by the Order object only if the
order processing was successful (see Figure 8-13) .

Figure 8 - 1 3 . Queued Order and Shipm ent com ponents require changing
the applicat ion w orkflow

 244

I n general, if you have more than one queued component in your
workflow, you should have each component invoke the next one in
the logical execut ion sequence. Needless to say, such a
programming model int roduces t ight coupling between components
(they’ll have to know about each other) and changes to their
inter faces, since you have to pass in addit ional parameters required
for the desired invocat ion of queued com ponents down the road.
In addit ion to changes in the workflow and interfaces, you st ill face
the problem of having the order and shipment operat ions in
separate t ransact ions. The only way to have them share the same
t ransact ion is to make them synchronous.
The conclusion from this simple example is that using the
asynchronous version of a component instead of its synchronous
version int roduces major changes to the component inter faces, the
client workflow, and the support ing t ransact ion semant ics. A queued
component should be designed for queuing from the ground up. The
handy "Queued" checkbox is merely configurat ion sugar on top.

8 .1 0 Queued Com ponents Security

As you saw in Chapter 7, secur ity is an essent ial part of any
dist r ibuted applicat ion, and COM+ provides you with a r ich, user-
fr iendly secur ity infrast ructure. When a client m akes a queued call,
the queued component may st ill require the same level of security
serv ices and protect ion as if it were invoked synchronously, and rely
on COM+ to provide authent icat ion and authorizat ion.
However, the underly ing method call invocat ion is different , and the
synchronous security mechanism sim ply will not do— by the t ime
the actual object is invoked, the client may be long gone (with its
security ident ity and credent ials) . The synchronous authent icat ion
that uses the challenge-response mechanism cannot be used.
The idea behind queued component security is simple— have the
recorder capture the security ident ity (and other security- related
informat ion) of the client as it records the method calls. The
security informat ion is bundled in the m essage along with the
method calls and sent to the queued component applicat ion queue.
Before the player makes the call on the component itself, COM+
uses the captured security informat ion to validate that the client is
allowed to access the component .
The under ly ing implementat ion of this idea relies heavily on MSMQ
security serv ices to capture the client security details in the
message and t ransfer it securely to the applicat ion queue. To
ensure authent icity of the message, the messages can carry a
digital signature from the client . MSMQ can even encrypt the
message for t ransfer . I f, on the receiving side, MSMQ encounters a
message with insufficient security credent ials or a m essage that

 245

was tampered with, then MSMQ puts it in the applicat ion’s dead
queue.

8 .1 0 .1 Queued Calls Authent icat ion

The default call authent icat ion level actually depends on the queued
component applicat ion set t ings. I f the applicat ion uses role-based
security , then dur ing the call to CoGetObject(), COM+ captures
the informat ion required to authent icate the call dur ing playback in
the message. The queued com ponent client can explicit ly specify
the desired authent icat ion level for the queued call and the required
privacy level by providing the queued moniker with addit ional
parameters.
I f the client requires authent icat ion, MSMQ digitally signs the
message with the user’s security cert ificate. I f this is the case, your
applicat ion adm inist rator has to issue an MSMQ security cert ificate
for each potent ial user by using the MSMQ administ rat ion applet in
the Cont rol Panel.
I n Example 8-3, the Store object explicit ly turns on authent icat ion
and instructs MSMQ to encrypt the m essage body.

Exam ple 8 - 3 . Explicit ly set t ing authent icat ion and encrypt ion levels for a
queued call

IShipment* pShipment = NULL;
HRESULT hres = S_OK;
DWORD dwOrderNumber = 123;
hres = ::CoGetObject(L"queue:AuthLevel=
MQMSG_AUTH_LEVEL_ALWAYS,
 PrivLevel= MQMSG_PRIV_LEVEL_BODY
 /new: MyApp.Shipment", NULL,
 IID_IShipment,(void**)&pShipment);

hres = pShipment->ShipOrder(dwOrderNumber);

pShipment->Release();
Except ionally paranoid clients can also specify the encrypt ion
algorithm to use and a cryptographic hash funct ion (see the MSDN
Library for details on these advanced parameters for the queue
moniker) .
I nsist ing on high secur ity carr ies with it the usual
performance/ security t radeoff. Decide on your security set t ing
wisely. For example, you may want to authent icate only the actual
order shipment call, but not less sensit ive method calls.

8 .1 0 .2 Queued Com ponents and Role- Based Security

Despite the fact that under- the-hood COM+ uses a drast ically
different mechanism for queued components secur ity, the queued

 246

component can, once instant iated, take advantage of role-based
security with the same ease as if it were invoked synchronously.
You can configure your component administ rat ively to use role-
based security on the component , inter face, and method levels, and
even use program mat ic role-based secur ity calls such as
IObjectContext::IsCallerInRole().
The only requirement for using role-based secur ity is that the call
be authent icated. I f the client explicit ly turns authent icat ion off
while role-based secur ity is in use, the call will fail dur ing playback,
since COM+ has no way of authent icat ing what role the client
belongs to.

8 .1 0 .3 Queued Com ponents Security Lim itat ions

A queued component developer has access to sim ilar secur ity
features and serv ices as a nonqueued component , and from a
security standpoint , your code will be the same as if you were
developing a normal synchronous component . However, some
differences do exist , especially if you plan to use the more advanced
or esoteric security serv ices. You should be aware of the following
lim itat ions:

• The queued component developer is discouraged from
perform ing low- level security m anipulat ion, such as
interact ing direct ly with the Kerberos authent icat ion service,
because the Kerberos cookies are not part of the MSMQ
message. Generally, if you want to do low- level security calls,
you are rest r icted to whatever MSMQ supports.

• Queued components do not support im personat ing the client .
This is done (by design) to close a potent ial security hole in
which an unt rustworthy source has generated a message
whose format resembles that of a m essage to a queued
component and placed it in the applicat ion queue. COM+
requires the or iginal client ’s security ident ity to compare with
the message sender ident ity to ver ify that the m essage cam e
from the client . By doing so, however, COM+ inhibit s
impersonat ion.

• I f you install MSMQ using the Workgroup configurat ion, MSMQ
cannot authent icate queued calls. As a result , you should turn
off security access checks at the applicat ion and component
levels.

 247

8 .1 1 Queued Com ponents Pit fa lls

Queued components is a great service, no doubt , but it does have a
few quirks and pit falls that I would like to point out .

8 .1 1 .1 MSMQ Setup

MSMQ can be installed in two configurat ions. The first relies on
having a Windows 2000 domain server present on the network. The
workstat ion onto which you wish to install MSMQ m ust be part of
that domain. The second installat ion opt ion is for a Windows
Workgroup.
To call queued components across the network securely, queued
components require the presence of a Message Queuing Primary
Enterprise Cont roller (PEC) on the network. I f you install MSMQ for
Workgroup, you have to turn the secur ity knob all the way down
(set the authent icat ion level for the queued components applicat ion
to None and avoid using access control checks) . Any cross-machine
calls must be unauthent icated. This lim itat ion is ser ious. For any
Enterprise- level worthy applicat ion, you need the MSMQ domain
server installat ion.

8 .1 1 .2 Queued Com ponent Client

A client of a queued com ponent can run only on a Windows 2000
machine. There is no apparent reason for this condit ion, as every
Microsoft plat form supports MSMQ. What m akes it even more
awkward is the fact that most portable devices that could benefit
from disconnected sessions will not run Windows 2000. [1]

[1] I can only say that I find this situat ion very st range, and I hope that Microsoft will
am end this predicament soon.

8 .1 1 .3 Visual Basic Persistable Objects

As ment ioned before, a queued component client can pass in as a
method parameter an interface pointer to a COM object , provided
that the object supports the IPersistStream (so that COM+ can
serialize the object state into a st ream) .
However, if the object is writ ten in Visual Basic 6, the object must
be init ialized before making the call on the recorder interface by
querying it for IPersistStream and calling one of the
IPersistStream m ethods Init(), InitNew(), or Load().
I f your client is wr it ten in Visual Basic as well, the Visual Basic
runt im e handles the object init ializat ion automat ically for you. I f the
client applicat ion is writ ten in C+ + , the applicat ion must init ialize
the component explicit ly . Requir ing the client to know the language
used to im plement the queued component couples the client to the

 248

component , but knowing of a lim itat ion is bet ter than t rying to
figure out what went wrong.

8 .1 1 .4 I Dispatch Considerat ions

When a queued com ponent client m akes a call, it actually interacts
with a recorder. The recorder has to match as much as possible the
behavior of the real component , including its implem entat ion of
IUnknown::QueryInterface(). The recorder bases everything it
does on the component- type library. I t is common for a component
to support mult iple interfaces derived from IDispatch . I f t hat is
the case, what interface should the recorder return to the client
when it is quer ied for IDispatch()?
The recorder uses the following algorithm to provide the r ight
IDispatch():

• I f the component default interface inher its from IDispatch,
the default inter face is returned.

• I f no interface is marked as default , but only one interface
inherits from IDispatch, that inter face is returned.

• I f no interface is marked as default and mult iple inter faces
inherit from IDispatch, the recorder returns E_NOINTERFACE.

The obvious recomm endat ion is to always mark one of your
component IDispatch- der ived interfaces as the default interface.

8 .1 1 .5 Queued Com ponent Applicat ion Startup

When an applicat ion hosts queued components, COM+ must
act ivate a listener for queued calls sent to its queue whenever the
applicat ion is launched. I f you package queued and nonqueued
components in a single applicat ion, the applicat ion m ight service
clients of nonqueued components when a queued call arr ives. This
situat ion m ay be a cause for concern if the queued component
makes a lot of CPU- intensive calculat ions or requires other
expensive resources. These character ist ics may be the reasons you
made that component queued— so that your component will not be
in the way of other components and will do the expensive
processing at t imes when the system load is low.
When deciding on component allocat ion to applicat ions, make sure
that you really want queued components to star t when a nonqueued
component executes. I f you would like to cont rol the queued
components' execut ion t ime, package the queued components into
a separate COM+ applicat ion and explicit ly start it up when you
deem it fit .

 249

8 .1 2 Sum m ary

Component developers benefit from COM+ queued components on
different levels. First , they take away the need to handcraft
asynchronous method invocat ion solut ions, allowing developers (as
with the other COM+ component services) to focus on the business
problem at hand. Second, and perhaps just as important , queued
components’ abilit y to take seamless advantage of other COM+
serv ices, such as t ransact ions and role-based secur ity, is something
that would be almost impossible to provide in a custom solut ion.
You can even combine queued com ponents with COM+ loosely
coupled events, the subject of the next chapter.

 250

Chapter 9 . COM+ Event Service

I n a component -or iented program, an object provides services to
clients by let t ing clients invoke methods on the object ’s interfaces.
But what if a client (or m ore than one client) wants to be not ified
about an event that occurs on the object side? Tradit ionally, the
client implements a callback interface called a sink interface. To
not ify the client of an occurr ing event , the object calls a method on
the sink inter face. Each m ethod on a sink inter face corresponds to a
type of event fired by the object .
This model raises a few quest ions: How does the object access the
sink interfaces? How do clients find out which sink inter faces the
object fires events on? How do the clients unsubscr ibe from event
not ificat ion?
As you will see short ly, the COM+ events service is an excit ing new
serv ice that evolved to address the classic problems of event
not ificat ion and recept ion. COM+ events are also known as Loosely
Coupled Events (LCE) , because they provide an effect ive way of
decoupling components. They put the logic for publishing and
subscribing to events outside the scope of the component . Besides
significant ly improving on the classic COM m odel for handling
events, LCE takes full advantage of such COM+ serv ices as
t ransact ions, queuing, and secur ity. Managing event publishing and
subscript ion can be done both declarat ively v ia the Component
Serv ices Explorer and programmat ically using the COM+ Catalog.
To fully appreciate the elegance of the COM+ events service, you
should first understand the drawbacks of the way classic COM
handles events.

9 .1 Classic COM Events

I n classic COM, when a client wants to receive events from an
object , the client has to pass the object an interface pointer to a
client implementat ion of the sink interface. This operat ion is called
advising the object of the sink. Advising takes place by either using
a standard mechanism (connect ion points) or a custom one very
sim ilar in nature. These mechanism s have changed lit t le since the
ear ly days of OLE 2.0 and COM.
I f you use connect ion points, the object has to implement an
inter face called IConnectionPointContainer (see Figure 9-1) . The
client uses the connect ion point container inter face to find out
whether the object supports fir ing events on a specified sink
inter face I ID. Think of it like a k ind of reverse QueryInterface()
call: the client quer ies the object for its abilit y to use an inter face
implemented by the client .

 251

Establishing a connect ion point usually follows a pat tern sim ilar to
this one:

1. The client queries an exist ing object interface for
IConnectionPointContainer.

2. The client uses IConnectionPointContainer to find out
whether the object supports fir ing events on a specified sink
inter face. I f it does, the object returns to the client an object -
side implementat ion of another interface called
IConnectionPoint.

3. The client uses IConnectionPoint to advise the object of the
client- side sink interface.

4. The object has to maintain a list of sinks that have
subscribed. I t adds the new sink to the list and returns to the
client a cookie ident ify ing the connect ion. Note that the object
manages the subscr ipt ion list .

5. The object uses the sink interface to not ify the client (s) about
events.

6. When the client wants to stop receiving events and break the
connect ion, it calls IConnectionPoint::Unadvise(),
passing in the cookie that ident ifies the connect ion.

Figure 9 - 1 . Classic COM m anaged events using connect ion points

Establishing the connect ion requires expensive round t r ips,
potent ially across the network. The client must repeat this
cumbersome sequence for every sink inter face on which it wants to
receive events and for every object from which it wants to receive
events. Using connect ion points, there is no way for the client to
subscribe to a subset of events the object can fire. The client has no
way of filter ing events that are fired (Not ify me about the event
only if.. .) ; as a result , a COM designer often opts for the use of a
custom mechanism (instead of the generic connect ion points) that
allows subscript ion to a subset of events. Needless to say, this
solut ion int roduces coupling between the object and its clients
regarding the specific interact ion.
Connect ion point clients must also have a way to access a server
instance (the object) to advise it of the sink. Usually the clients

 252

know the server CLSID, get the object from another client , or go
through some init ializat ion protocol. That , in turn, also int roduces
coupling between clients and objects and coupling between
individual clients.
On the object side, the object has to m anage a list of sinks. This
code has alm ost nothing to do with the domain problem the object
is designed to solve. Proper ly managing the list of sinks requires
marshaling sink pointers to a worker thread manually to actually
perform event fir ing. That ext ra code int roduces bugs, test ing t ime,
and development overhead. To make mat ters worse, the sam e code
for managing connect ions is repeated in many servers.
With this model, the object and the clients have coupled lifet imes—
the server usually AddRefs the sinks and the clients have to be
running to receive events. There is no way for a client to say to
COM " I f any object fires this part icular event , then please create an
instance of me and let me handle it ."
There is no easy way to do disconnected work— that is, the object
fires the event from an offline machine and the event is
subsequent ly delivered to clients once the machine is brought
online. The reverse is also not possible— having a client running on
an offline m achine and receiv ing events fired while the connect ion
was down.
Set t ing up connect ions has to be done program mat ically . There is
no adm inist rat ive way to set up connect ions.
The events, like any other COM call, are synchronous. The object is
blocked while the client handles an event . Other clients are not
not ified unt il the current client returns cont rol back to the object .
Well-behaved clients avoid lengthy processing of the events (by
perhaps delegat ing to a client -side worker thread) , but there is no
way of forcing clients to behave nicely or to fire the events on
mult iple threads without writ ing a lot of complex code.
There is no safe way to m ix t ransact ions and events. Suppose an
event fires, but then the t ransact ion the object took part in is
subsequent ly aborted. How can the object not ify the clients to roll
back?

9 .2 COM+ Event Model

The COM+ event m odel is based on a simple idea— put the
connect ion setup and the event fir ing plum bing outside the scope of
the components. Under COM+ , an object that fires events is called a
publisher . A client who wants to receive events is called a
subscriber . Subscr ibers who want to receive events register with
COM+ and manage the subscr ibe/ unsubscribe process via COM+ ,
not the object . Sim ilar ly , publishers hand over the events to COM+ ,
not direct ly to the subscr ibed clients.

 253

COM+ delivers an event to the clients that have subscr ibed. By
having this layer of indirect ion, COM+ decouples your system. Your
clients no longer have any knowledge about the ident ity of the
publishers. The subscr ipt ion mechanism is uniform across all
publishers, and the publishers do not manage lists of connect ions.
The rest of this chapter explains the details of the COM+ events
serv ice, its capabilit ies and lim itat ions, and its interact ion with other
COM+ serv ices.

9 .3 The Event Class

A publisher object fires an event at COM+ (to be delivered to the
subscribers) using an event class. The event class is a COM+
provided implementat ion of the sink interfaces the publisher can fire
the events at . The im plementat ion is synthesized by COM+ , based
on a type library you provide. This library contains the inter face
definit ions and st ipulates which CoClass im plements them. COM+
uses the same CoClass definit ion for its implementat ion of the event
classes. To publish an event , the publisher first CoCreates the event
class (the publisher has to know the event class CLSID) and then
fires the events at its interfaces.
For example, suppose an object wants to fire events at the sink
inter face IMySink, using an event class called MyEventClass.
IMySink is defined as:
interface IMySink : IUnknown
{
 HRESULT OnEvent1();
 HRESULT OnEvent2();
};
The publisher code looks like:
HRESULT hres = S_OK;

IMySink* pMySink = NULL;

hres =:
=:CoCreateInstance(CLSID_MyEventClass,NULL,CLSCTX_ALL,IID
_IMySink,
 (void**)&pMySink);
ASSERT(SUCCEEDED(hres));

hres = pMyEvent->OnEvent1();
ASSERT(hres == S_OK);

pMyEvent->Release();
Compare the simplicity on the publisher side to classic COM
connect ion points— the publisher does not have to manage lists of

 254

subscribers. All the publisher has to do is create an event class and
fire the event on it .
Figure 9-2 illust rates the interact ion between the publisher, the
event class, COM+ , and the subscr ibers. The client creates the
event class (Step 1) and fires the event at it (Step 2) . When the
publisher is finished with the event class, it can either release it or
cache the event class inter face pointer for the sake of perform ance,
to be used the next t im e the publisher wants to publish events.

Figure 9 -2 . The COM+ event system at w ork

The COM+ implementat ion of the event class inter faces goes
through the list of subscr ibers on that event class (Step 3) and
publishes the events to them . COM+ m aintains a list of
subscript ions for every event class. The subscript ions can be
inter face pointers to exist ing objects (called t ransient subscript ions)
or CLSID for a class (called persistent subscr ipt ions) .
In the case of a persistent subscr ipt ion, COM+ creates an object of
the type specified by the CLSID (Step 4) , calls the appropr iate sink
method on the object (Step 5) , and releases the object . I n the case
of a t ransient subscript ion, COM+ simply calls the appropriate sink
method on the object (Step 5) .
I t is interest ing to note that fir ing the event is by default ser ial and
synchronous— that is, the subscribers are called by default one after
the other (ser ial) , and cont rol returns to the publisher object only
after all the subscr ibers are not ified (synchronous) .

9 .3 .1 Adding an Event Class

You can add an event class to the Com ponent Serv ices Explorer by
using the Component Install Wizard. Br ing up the wizard for
installing a new component to your applicat ion and select I nstall
new event class(es) (see Figure 9-3) .

Figure 9 - 3 . The Com ponent I nstall W izard is used to add a new event
class

 255

The rest of the steps in the wizard are the sam e as when adding a
new COM+ com ponent . When you point the wizard at a DLL
containing a type library with sink inter face and event CoClass
definit ions (more about those in a m inute) , under- the-hood COM+
synthesizes its own implem entat ion of the interfaces and installs the
synthesized components instead of yours.
After installing the event class in the Component Services Explorer,
the only way to detect that it is not a user- im plemented COM+
component is to inspect its com ponent propert ies page on the
Advanced tab. The Advanced tab of an event class contains the
Loosely Coupled Event (LCE) group (see Figure 9-4) .

Figure 9 - 4 . The LCE group configures event class- specific set t ings

You can add an event class component to any COM+ applicat ion, be
it a library or a server applicat ion.

9 .3 .2 Supplying the Event Class Definit ion

 256

For COM+ to implement an event class for you, you have to provide
COM+ with the sink inter faces definit ions, the event class CLSID,
and the inter face each event class supports. You provide this
informat ion in the form of a type library. The type library has to be
embedded as a resource in a DLL. The Com ponent Install Wizard
knows how to read the type library from the DLL and detect the
CoClass definit ions inside.
For every CoClass in the type library, COM+ t r ies to generate an
event class and add it to your applicat ion as a com ponent . COM+
synthesizes implem entat ion only to inter faces that are part of the
event class CoClass definit ion in the type library.
For example, to define the event class MyEventClass that supports
the sink interface IMySink (shown ear lier) , your IDL file should look
like this:
[
 uuid(0A9B9E44-E456-4153-9FC8-5D72234B7C82),
 version(1.0),
 helpstring("Event Class 1.0 Type Library")
]
library EVENTCLASSLib
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");
 importlib("SubApp.tlb");//The subscribers’ TLB

 [
 uuid(5CAF8E95-3FEF-40F1-94C3-3F408240D53B),
 helpstring("MyEventClass Class")
]
 coclass MyEventClass
 {
 interface IMySink;
 };
};
To avoid repeat ing the definit ion of the sink interfaces in both the
subscriber applicat ion and the event class type library, the event
class IDL file should import the sink interface (IMySink) definit ions
from the type library of the subscribers. This is what the line
importlib("SubApp.tlb");was used for in the previous example.
The easiest way to generate a type library is to have the Visual
Studio ATL create one for you. The default behavior in ATL is to
embed the type library in the DLL, since the ATL Applicat ion Wizard
adds a reference to the type library in the project RC file.
I st rongly recom mend that you put only event classes in the event
class DLL. Do not put event classes in the sam e type library with
regular CoClasses; such a m ix confuses the Install Wizard— the
Wizard will install all components as event classes. This installat ion
has potent ially catast rophic results, since it m ay corrupt an ex ist ing

 257

installat ion of the regular com ponents. However, as you have
already seen in Chapter 1, you can map m ore than one DLL to the
same COM+ applicat ion— you can put your event class and other
components in the same applicat ion.
When you supply the event class, COM+ tr ies to register it . You are
responsible for providing proper regist rat ion code in the DLL for all
components contained in the DLL. Again, the easiest way is to use
ATL to generate a skeleton implementat ion of the event class for
you. Simply have the ATL Object Wizard insert new components
into the event classes DLL. Since the implem entat ion of these event
classes is never called, it is a bug if anybody ever uses them. This
would usually happen as a result of not installing the event class in
the COM+ Catalog and only building and register ing it as a normal
COM object . I therefore suggest that you provide default behavior
to the ATL code-assert on every method call. See Example 9-1.

Exam ple 9 - 1 . Skeleton im plem entat ion of the event class

class CMyEventClass :
 public CComObjectRootEx<CComMultiThreadModel>,
 public CComCoClass<CMyEventClass,&CLSID_MyEventClass>,
 public IMySink
{
public:
 CMyEventClass(){};
 DECLARE_REGISTRY_RESOURCEID(IDR_MYEVENTCLASS)
 DECLARE_PROTECT_FINAL_CONSTRUCT()

 BEGIN_COM_MAP(CMyEventClass)
 COM_INTERFACE_ENTRY(IMySink)
 END_COM_MAP()

// IMySink
public:
 STDMETHOD(OnEvent1)(){ATLASSERT(0);return
E_NOTIMPL;};
 STDMETHOD(OnEvent2)(){ATLASSERT(0);return
E_NOTIMPL;};
};

9 .3 .3 Event Class I nterface Design Guidelines

The sink interface can be a custom inter face or an automat ion-
compliant interface. However, the methods of a sink interface can
contain only input parameters. [out] or [in,out] param eters are
not allowed. Since COM+ seeks to decouple the publisher from the
subscribers, there is no way for a subscriber to return informat ion
back to the publisher— the call on the subscr iber interface returns to
COM+ , not to the publisher.

 258

From the publisher’s perspect ive, it only fires an event on one
object— the event class.
COM+ uses type library marshaling to m arshal the call on the sink
inter face from the event class to the subscr ibers. Interfaces that
use type library marshaling must comply with the following
requirements:

• All the methods must return HRESULT.
• The m ethods do not use certain IDL at t r ibutes such as

[size_is] and [length_is]. See the MSDN documentat ion
for the exact specificat ion of typelib-compliant I DL at t r ibutes.

9 .4 Subscript ion Types

As I ment ioned ear lier in the chapter, there are two types of
subscribers. The first type is an exist ing instance of a class that
supports a sink interface. That instance can be added at runt ime to
the list of subscribers of a part icular event class. This type of
subscript ion is called t ransient subscript ion because it exists as long
as the subscriber is running and will not persist or surv ive a system
reboot or a crash.
Note that when a part icular instance of a class subscribes to an
event class, only that instance will receive events published using
that class. Other instances will receive the events only if they
t ransient ly subscr ibe themselves.
Adding a t ransient subscript ion can only be done programmat ically
using theCOM+ Catalog inter faces and objects. There is no
adm inist rat ive Com ponent Serv ices Explorer support . On the other
hand, since all you give the COM+ Catalog is a pointer to a sink,
even a nonconfigured COM component can register as a t ransient
subscript ion, as long as it supports the sink interface.

A t ransient subscr ipt ion does not even need to be
on a Windows 2000 machine, as long as it is
registered with a COM+ Catalog on the Windows
2000 machine where the event class resides.

The second type of subscr ipt ion is used when you want COM+ to
instant iate an object of a part icular class when an event is
published, let it handle the event , and release it . This type of
subscript ion is called persistent subscript ion. Every event class has
a list of persistent subscr ibers associated with it , stored in the
COM+ Catalog. Persistent subscript ions, as the name implies,
persist in the COM+ Catalog and surv ive a system restar t .
Objects created by a persistent subscript ion are always released
after each event delivery, even if m ore events are on the way. As a

 259

result , your subscribing component should be wr it ten to handle
each event independent ly of other events that may or may not be
published or delivered.

9 .4 .1 Adding a Persistent Subscript ion

Every component in the Component Serv ices Explorer has a
Subscript ion folder, containing the persistent subscript ions the
product adm inist rator or developer has set up. Every subscr ipt ion
represents an event class (or a list of event classes) that the
component should be instant iated to receive events from whenever
any publisher uses those event classes.
To add a persistent subscr ipt ion, expand the subscript ion folder,
r ight- click on it and select New from the pop-up context menu. This
act ion invokes the New Subscr ipt ion Wizard (see Figure 9-5) .

Figure 9 - 5 . The New Subscript ion W izard

The New Subscr ipt ion Wizard lets you subscr ibe to events published
to all the sink interfaces your class supports, to a part icular
inter face, or even just to a part icular method. The wizard displays
all the inter faces your component supports, including nonsink
inter faces— COM+ doesn't know whether they are sinks or not ; only
you know.
You can set up a subscr ipt ion at the method or interface level. At
the method level, COM+ delivers the event to your com ponent only
when publishers use that method. I f you want to subscribe to
another method, you have to add a new subscript ion.
A subscr ipt ion at the interface level m eans that any event target ing
any m ethod on that inter face should be delivered to your
component . By providing you with these two opt ions, you have the
abilit y to subscr ibe to only a subset of the events publishers can
publish or to all of them.

 260

After you select the interfaces and m ethods, the wizard displays a
list of all installed event classes that support the interfaces you
selected in the previous steps. You can select a part icular event
class or all of them . The last step in the wizard lets you name the
subscript ion and enable it . You can always enable or disable a
subscript ion by highlight ing it in the Subscript ions folder, display ing
its propert ies page, select ing the Opt ions tab, and enabling or
disabling the subscript ion (see Figure 9-6) .

Figure 9 - 6 . A persistent subscription’s Opt ions tab

9 .4 .2 Adding a Transient Subscript ion

The only way to receive events on an already running object is to
use t ransient subscr ipt ion. Unlike persistent subscript ion, there is
no adm inist rat ive way to add a t ransient subscript ion. You have to
program against the COM+ Catalog using the catalog objects and
inter faces discussed in Chapter 6. I n addit ion, it is your
responsibility to rem ove the t ransient subscript ion from the Catalog
when the subscribing component is released or if you want to
unsubscribe.
Like a persistent subscriber, the object has to im plement a sink
inter face for receiv ing events. The t ransient subscriber can choose
to subscribe to all the sinks a part icular event class supports, to a
part icular inter face, or even to a part icular method on a part icular
inter face.
To add a t ransient subscr ipt ion, you must follow these steps:

1. Create the catalog object (CLSID_COMAdminCatalog) and get
a pointer to ICOMAdminCatalog.

2. Call ICOMAdminCatalog::GetCollection() to ret r ieve a
collect ion called TransientSubscription and get back an
ICatalogCollection inter face pointer .

3. Call ICatalogCollection::Add() to get ICatalogObject.

 261

4. Call ICatalogObject::put_Value() once for each desired
property of the t ransient subscr ipt ion you want to set . Som e
examples are the event class you want to subscr ibe to,
subscribing interfaces, and the subscript ion name. An
important property you need to set is whether or not you
want to enable the subscript ion.

5. Call ICatalogCollection::SaveChanges().
6. Release everything.

You are required to perform a sim ilar sequence to remove the
t ransient subscript ion.
In fact , as you will see later on, managing a t ransient subscr ipt ion is
not the only feature of COM+ events that requires programming
against the COM+ Catalog: im plement ing, adding, and removing a
publisher filter and t ransient subscript ions filter ing are also only
available programmat ically. In all these cases, the developer is
required to program against the Catalog inter faces.
The Catalog inter faces have the following lim itat ions:

• They are not type safe:
o A BSTR is used for represent ing GUID, I ID, and CLSI D.
o A BSTR is used instead of normal st r ing.
o Am orphous Var iants are used to represent many data

types.
• The COM+ interfaces and the underly ing programming model

and objects hierarchy require tons of generic code for
iterat ing over the Catalog, even for simple tasks.

• The result ing code is tedious and error prone.

To alleviate the situat ion, I developed an easy- to-use wrapper
object around the COM+ Catalog. The wrapper object saves you the
agony of program ming direct ly against the Catalog, reducing
hundreds of lines of code to a mere line or two.
The wrapper object encapsulates the catalog objects and interfaces,
exposing instead simple custom interfaces (with type safety) that
perform all the hard work for you (see Figure 9-7) . The wrapper
object interfaces provide one-stop shopping for easy management
of t ransient subscript ions and publisher filter ing, providing you the
same funct ionality as the Catalog inter faces with a fract ion of the
code.

Figure 9 - 7 . The Catalog w rapper helper object

 262

I n the rest of this chapter , the use of the wrapper object will be
demonstrated. I ts implementat ion will also be described. The
wrapper object source files are available on this book’s web site,
ht tp: / / oreilly .com/ catalog/ comdotnetsvs/ .
The first thing you will use the wrapper object for is register ing a
t ransient subscript ion with the COM+ Catalog. The Catalog wrapper
encapsulates the code required to register a t ransient subscr ipt ion
by exposing the ITransientSubscription interface, defined as:
interface ITransientSubscription : IUnknown
{
 HRESULT Add([in,string]LPCWSTR pwzName,[in]CLSID
clsidEventClass,
 [in]REFIID iidInterface,[in]IUnknown
*pSink);
 HRESULT Remove([in,string]LPCWSTR pwzName);

 HRESULT AddFilter([in,string]LPCWSTR pwzSubName,
 [in,string]LPCWSTR pwzCriteria);
 HRESULT RemoveFilter([in,string]LPCWSTR pwzSubName);
};
ITransientSubscription prov ides you with everything you need to
easily manage a t ransient subscr ipt ion— you can add a subscr ipt ion
to all the inter faces of a specified event class or to a part icular
inter face on that class. Later , you will use
ITransientSubscription to install or remove a t ransient
subscriber- side filter .
Adding a t ransient subscript ion using the helper object is a one
liner— a vast ly simplified programming model that com pletely
encapsulates the underly ing Catalog. After init ializing a pointer to a
sink (pMySink) that you want to receive events on, create the
wrapper object using CLSID_CatalogWrapper and call
TransientSubscription::Add():
//Creating the wrapper object:
ITransientSubscription* pTransSubs = NULL;

::CoCreateInstance(CLSID_CatalogWrapper,...,IID_ITransien
tSubscription,
 (void**)&pTransSubs);

//Adding a transient subscription:
pTransSubs ->Add(L"My Subs",CLSID_MyEventClass,

 263

 IID_NULL,//All interfaces of the event
class
 pMySink);

//When you wish to unsubscribe:
pTransSubs ->Remove(L"My Subs");

//Releasing the wrapper object:
pTransSubs ->Release();
When you add a subscr ipt ion, you provide the Catalog wrapper with
the subscript ion name— a str ing ident ify ing the subscript ion. The
name is used to ident ify the subscript ion when you want to remove
it later or when you want to associate a filter with it .
Transient subscr ipt ions are more efficient than persistent
subscript ions because they do not require you to pay the overhead
of creat ing the object . However, t ransient subscr ipt ions raise some
lifet ime issues of classic COM t ight ly-coupled events. Another
deficiency of t ransient subscript ions is that the party adding them
has to have adm inist rat ive pr iv ileges to modify the Catalog.

9 .5 Delivering Events

Once an event is published, COM+ is responsible for delivering the
event to the subscribers. By default , publishers have very lit t le to
do with the delivery itself, to ensure decoupling of publishers from
subscribers. However, COM+ does provide you ways to fine- tune
the delivery and obtain addit ional informat ion on the result of fir ing
the event to the subscribers.

9 .5 .1 Seria l Versus Parallel Publishing

Events by default are fired serially at subscribers— COM+ goes
through the list of subscr ibers and publishes to them one at a t ime.
The call to the event class does not return to the publisher unt il the
last subscriber is not ified. As a result , t he publisher is blocked
during publishing. To m inim ize the blocking t ime, you can configure
your event class to use m ult iple threads for publishing by checking
the "Fire in parallel" checkbox in the Advanced tab of the event
class propert ies page (see Figure 9-4) .
This set t ing is a mere request that COM+ will f ire in parallel, and
COM+ is not required to comply. COM+ uses threads from the RPC
pool of threads to publish to subscr ibers, so parallel publishing is
subjected to pool lim itat ions. You should consider Fire in parallel as
an opt im izat ion technique only; avoid relying on it in your design.
For example, do not count on having all the subscr ibers get the
event at the same t im e.

 264

9 .5 .2 Error Handling

When an event class succeeds in publishing to all t he subscribers, it
returns S_OK to the publisher. I f the event is delivered to COM+ but
there are no subscr ibers, the return code is
EVENT_S_NOSUBSCRIBERS. I f t he event is delivered, but is unable to
invoke any of the subscribers, the return code is
EVENT_E_ALL_SUBSCRIBERS_FAILED. I n the case of part ial delivery
(an event that invokes some, but not all, subscribers) , the return
code is EVENT_S_SOME_SUBSCRIBERS_FAILED.
To promote loose coupling between the publisher and the
subscribers, COM+ does not provide success or failure informat ion
about delivery for part icular subscr ibers. The rat ionale is that
publishers should not care about part icular subscribers.
However, if your publisher does care about success or failure when
delivering events to part icular subscr ibers, you can implem ent a
publisher filter to handle this case, which is discussed in the next
sect ion.

9 .5 .3 Publishing Order

COM+ does not , by default , provide a way to specify the order in
which an event gets delivered to mult iple subscribers. The publisher
fires at the event class, and under- the-hood COM+ scans the list of
subscribers and publishes to them. The events are published one at
a t ime to the subscr ibers, in no determ ined or necessarily
repeatable order. Publishers can cont rol the order in which
subscribers receive an event by implement ing a publisher filter.

9 .6 Event Filter ing

I f you would like to alter the default publish/ subscr ibe behavior ,
COM+ provides a mechanism called event filter ing. There are two
kinds of filter ing. The first , publisher filter ing, lets you change the
way events are published and therefore affect all the subscribers for
an event class. The second, subscriber filter ing, affects only the
subscriber using that filter.
Both kinds of filters usually let you filter events without changing
the publisher or the subscriber code. However, I find that event
filter ing is either cumbersome to use and implem ent , or lim ited and
incom plete in what it offers. Those shortcom ings are m it igated by
the use of the COM+ Catalog wrapper object .

9 .6 .1 Publisher Filter ing

 265

Publisher filter ing is a powerful mechanism that gives the publisher
fine-grained cont rol over event delivery. You can use a f ilter to
publish to only certain subscr ibers, cont rol the order in which
subscribers get an event , and find out which subscribers did not get
an event or had encountered an error processing it . The publisher-
side filter intercepts the call the publisher makes to the event class,
applies filter ing logic on the call, and performs the actual publishing
(see Figure 9-8) .

Figure 9 -8 . A publisher filter

I f you associate a filter with an event class, all events published
using that class go through the filter first . You are responsible for
implement ing the f ilter (you will see how short ly) and to register it
in the COM+ Catalog. The publisher filter CLSID is stored in the
COM+ Catalog as a property of the event class that it filters. At any
given t ime, an event class has at most one filter CLSID associated
with it . As a result , installing a new filter overr ides the ex ist ing one.
When a publisher fires events on the event class, COM+ creates the
publisher object and lets it perform the filter ing.

9 .6 .1 .1 I m plem ent ing a publisher filter

A publisher-side filter is a COM object that implements an inter face
called IMultiInterfacePublisherFilter. The filter need not
necessarily be a COM+ configured component . The filter interface
name contains the word Mult i because it f ilters all t he events fired
on all the interfaces of the event class. Another interface, called
IPublisherFilter, allows you to associate a filter with j ust one
sink interface supported by an event class. I t is st ill ment ioned in
the docum entat ion, but has been deprecated (i.e., don’t use it) .
The definit ion for IMultiInterfacePublisherFilter is:
interface IMultiInterfacePublisherFilter : IUnknown
{
 HRESULT Initialize([in]IMultiInterfaceEventControl*
 pMultiInterfaceEventControl);

 HRESULT PrepareToFire([in]IID* piidSink,[in]BSTR
bstrMethodName,
 [in]IFiringControl*
pFiringControl);
}

 266

Only COM+ calls the methods of
IMultiInterfacePublisherFilter as part of the event publishing
sequence. I f an event class has a publisher filter object associated
with it , COM+ CoCreates the filter object and calls the Initialize(
) method when the publisher CoCreates the event class.
Each t ime the publisher fires an event at the event class, instead of
publishing the event to the subscr ibers, COM+ calls the
PrepareToFire() method and lets you do the filter ing. When the
publisher releases the event class, COM+ releases the filter object .
When the Initialize() method is called, COM+ passes in as a
parameter an inter face pointer of type
IMultiInterfaceEventControl, defined as:
interface IMultiInterfaceEventControl : IUnknown
{
 HRESULT GetSubscriptions(
 [in] IID* piidSink,
 [in] BSTR bstrMethodName,
 [in] BSTR bstrCriteria,
 [in] int* nOptionalErrorIndex,
 [out, retval] IEventObjectCollection**
ppCollection);
 //Other methods

}
The only method of IMultiInterfaceEventControl relevant to
publisher-side filter ing is GetSubscriptions(), used to get the list
of subscribers at the t ime the event is published. Since COM+ calls
the Initialize() method only once, you should cache the
IMultiInterfaceEventControl pointer as a member variable of
the filter object .
The actual f ilter ing work is performed in the scope of the
PrepareToFire() method. The first thing you need to do in the
PrepareToFire() method is call the
IMultiInterfaceEventControl::GetSubscriptions() m ethod,
passing an init ial f ilt er ing cr iter ia in as a parameter.
Filter ing cr iter ia are mere opt im izat ions— a filter is used to inspect
subscribers, and the filter may provide COM+ with an init ial
cr iter ion of which subscr ibers to even consider for publishing.
The cr iter ion is a BSTR containing som e informat ion about the
subscribers. For example, consider a filt er ing cr iter ion of the form :
_bstr_t bstrCriteria = "EventClassID == {F89859D1-6565-
11D1-88C8-0080C7D771BF} AND
MethodName = \"OnNewOrder\"";
This causes COM+ to ret r ieve only subscr ibers that have subscr ibed
to the specified event class and for the method called OnNewOrder
on one of the event class inter faces.

 267

Another example of a cr iter ion is ALL, m eaning just get all the
subscribers. See the IMultiInterfaceEventControl
documentat ion for more informat ion on the exact cr iter ia syntax.
GetSubscriptions() returns an inter face pointer of type
IEventObjectCollection, which you use to access the subscr ibers
collect ion.
Next , you call IEventObjectCollection::get_NewEnum() to get
an enumerator of type IEnumEventObject to iterate over the
subscribers collect ion. While you iterate, you get one subscriber at a
t ime in the form of IEventSubscription. You ret r ieve the
IEventSubscription propert ies (such as the subscriber ’s nam e,
descript ion, I ID) , apply filter ing logic, and decide if you want to
publish to that subscriber. I f you want to fire the event at that
subscriber, use the last param eter passed to PrepareToFire(), a
pointer of type IFiringControl, passing in the Subscr iber
inter face:
pFiringControl->FireSubscription(pSubscription);
At this point , you also get the exact success code of publishing to
that part icular subscriber. You then release the current subscriber
and cont inue to iterate over the subscr ipt ion collect ion.
I f you want to publish to the subscr ibers in a different order than
the one in which COM+ handed them to you, you should iterate
over the ent ire collect ion, copy the subscr ibers to your own local
list , sort the list to your lik ing, and then fire.

9 .6 .1 .2 The CGenericFilter helper class

By now, you probably feel discouraged from im plement ing a
publisher-side filter. The good news is that the filter ing plumbing is
generic, so I was able to implement all of it in an ATL COM object
called CGenericFilter . CGenericFilter per forms the messy
interact ion with the COM+ event system required of a publisher
filter . All you have to do is provide the filter ing logic (which is what
a filter should do) .
As part of the source files available with this book at O’Reilly ’s web
site, you will find the Filter project— an ATL project containing the
implementat ion of the CGenericFilter class. CGenericFilter lets
you control which subscr ibers to publish to. I f you want a different
filter , such as one that controls the publishing order, you can
implement that f ilter yourself, using the source files as a start ing
point .
The CGenericFilter class definit ion is (with some code om it ted for
clar ity) :
class CGenericFilter: public
CComObjectRootEx<CComSingleThreadModel>,
 public
CComCoClass<CGenericFilter,&CLSID_MyFilter>,

 268

 public
IMultiInterfacePublisherFilter
{
 public:
 CGenericFilter();
 void FinalRelease();
 BEGIN_COM_MAP(CGenericFilter)
 COM_INTERFACE_ENTRY(IMultiInterfacePublisherFilter)
 END_COM_MAP()

 //IMultiInterfacePublisherFilter
 STDMETHOD(Initialize)(IMultiInterfaceEventControl*
pMultiEventControl);
 STDMETHOD(PrepareToFire)(IID* piidSink, BSTR
bstrMethodName,
 IFiringControl*
pFiringControl);

 //Helper methods, used for domain logic specific
filtering
 HRESULT ExtractSubscriptionData(IEventSubscription*
pSubscription,
 SubscriptionData*
pSubscriptionData)const;
 BOOL ShouldFire(const SubscriptionData&
subscriptionData)const;
 _bstr_t GetCriteria()const;

 IMultiInterfaceEventControl* m_pMultiEventControl;
};
The only thing you have to provide is the applicat ion domain-
specific filter ing logic, encapsulated in the two simple helper
methods: CGenericFilter::ShouldFire() and
CGenericFilter::GetCriteria(). The CGenericFilter
implementat ion calls GetCriteria() once per event to allow you
to provide a filter ing cr iter ia. The default implementat ion returns
ALL:
_bstr_t CGenericFilter::GetCriteria()const
{
 _bstr_t bstrCriteria = "ALL";//ALL means all the
subscribers,
 //regardless of event
classes

 return bstrCriteria;
}
CGenericFilter::ShouldFire() is the most interest ing method
here. CGenericFilter calls the method once per subscriber for a
part icular event . I t passes in as a parameter a custom struct of type

 269

SubscriptionData, which contains every available bit of
informat ion about the subscriber— including the nam e, descr ipt ion,
and machine nam e:
struct SubscriptionData
{
 _bstr_t bstrSubscriptionID;
 _bstr_t bstrSubscriptionName;
 _bstr_t bstrPublisherID;
 _bstr_t bstrEventClassID;
 _bstr_t bstrMethodName;
 _bstr_t bstrOwnerSID;
 _bstr_t bstrDescription;
 _bstr_t bstrMachineName;
 BOOL bPerUser;
 CLSID clsidSubscriberCLSID;
 IID iidSink;
 IID iidInterfaceID;
};
ShouldFire() exam ines the subscriber and returns TRUE if you
wish to publish to this subscr iber or FALSE otherwise.
An example for implement ing filter ing logic in ShouldFire() is to
publish only to subscr ibers whose descr ipt ion field in the
Component Services Explorer says Paid Extra. See Example 9-2.

Exam ple 9 - 2 . Base your im plem entat ion of Shouldfire() on the
inform at ion in SubscriptionData

BOOL CGenericFilter::ShouldFire(const SubscriptionData&
subscriptionData)const
{
 if(subscriptionData.bstrDescription == _bstr_t("Paid
Extra"))
 return TRUE;
 else
 return FALSE;
}
Finally, Example 9-3 shows the CGenericFilter implementat ion of
PrepareToFire(), which contains all t he interact ion with the
COM+ event system out lined previously; some error-handling code
was removed for clar ity.

Exam ple 9 - 3 . CGenericFilter im plem entat ion of PrepareToFire()

STDMETHODIMP CGenericFilter::PrepareToFire(IID* piidSink,
BSTR bstrMethodName,

IFiringControl* pFiringControl)
{
 HRESULT hres = S_OK;
 DWORD dwCount = 0;

 270

 IEnumEventObject* pEnum = NULL;
 IEventSubscription* pSubscription = NULL;
 IEventObjectCollection* pEventCollection = NULL;

 _bstr_t bstrCriteria = GetCriteria();//You provide
the criteria

 hres = m_pMultiEventControl-
>GetSubscriptions(piidSink,

bstrMethodName,

bstrCriteria,NULL,

&pEventCollection);

 //Iterate over the subscribers, and filter in this
example by name
 hres = pEventCollection->get_NewEnum(&pEnum);
 pEventCollection->Release();

 while(TRUE)
 {
 hres = pEnum-
>Next(1,(IUnknown**)&pSubscription,&dwCount);
 if(S_OK != hres)
 {
 //Returns S_FALSE when no more items
 if(S_FALSE == hres)
 {
 hres = S_OK;
 }
 break;
 }
 long bEnabled = FALSE;
 hres = pSubscription->get_Enabled(&bEnabled);
 if(FAILED(hres) || bEnabled == FALSE)
 {
 pSubscription->Release();
 continue;
 }

 SubscriptionData subscriptionData;
 subscriptionData.iidSink = *piidSink;

 //A helper method for retrieving all of the
subscription
 //properties and packaging them in the handy
SubscriptionData
 hres =
ExtractSubscriptionData(pSubscription,&subscriptionData);

 271

 if(FAILED(hres))
 {
 pSubscription->Release();
 continue;
 }
 //You provide the filtering logic in ShouldFire()
 BOOL bFire = ShouldFire(subscriptionData);
 if(bFire)
 {
 pFiringControl->FireSubscription(pSubscription);
 }
 pSubscription->Release();
 }
 pEnum->Release();

 return hres;
}
Again, let me emphasize that all you have to provide is the filter ing
logic in ShouldFire() and GetCriteria(); let CGenericFilter
do the hard work for you.

9 .6 .1 .3 Param eters-based publisher filtering

What begs an answer now (as I am sure you have already
wondered) is why is PrepareToFire() called "Prepare" if t he event
is fired there? Why not just call it Fire()? I t is called Prepare to
support filter ing based on the event parameters as well. I n
PrepareToFire(), COM+ only tells you what event is f ired.
What if you need to exam ine the actual event parameters to make a
sound decision on whether or not you want to publish? In that case,
the publisher filter can implement the same sink interfaces as the
event class it is filter ing.
After calling PrepareToFire(), COM+ quer ies the filter object for
the sink inter face. I f the filter supports the event interface, COM+
only fires to the filter . The filter should cache the inform at ion from
PrepareToFire() and perform the fine- tuned parameters-based
filter ing. I n its implementat ion of the sink m ethod, it uses
IFireControl to fire the event to the client .

9 .6 .1 .4 Custom subscript ion propert ies

Publisher-side filters usually base their filter ing logic on the
standard subscript ion propert ies— the subscr ipt ion name,
descript ion, and so on. These propert ies are pre-defined and are
available for every subscript ion. COM+ also allows you to define
new custom propert ies for subscr ipt ions and assign values to these
propert ies, to be used by the publisher filter. Usually , you can take
advantage of custom propert ies if you develop both the subscr ibing

 272

component and the publisher filter. You can define custom
subscript ion propert ies adm inist rat ively only for persistent
subscribers.
To define a new custom property , display the subscr ipt ion
propert ies page, and select the Publisher Propert ies tab (the nam e
is m isleading) . You can click the Add but ton to define a new
property and specify its value (see Figure 9-9) .

Figure 9 - 9 . Defin ing new custom propert ies and assigning values on the
Publisher Propert ies tab

Transient subscr ibers have to program against the component
COM+ Catalog. Get hold of the t ransient subscr ipt ion collect ion, find
your t ransient subscript ion catalog object , and navigate from it to
the PublisherProperties collect ion. You can then add or rem ove
custom propert ies in the collect ion.
As explained before, when the publisher filter iterates over the
subscript ion collect ion, it gets one subscr iber at a t ime in the form
of an IEventSubscription interface pointer. The filter can call
IEventSubscription::GetPublisherProperty(), specify the
custom property name, and ret r ieve its value.
For example, here is how you retr ieve a custom subscriber property
called Company Name:
_bstr_t bstrPropertyName = "Company Name";
_variant_t varPropertyValue;
hres = pSubscription-
>GetPublisherProperty(bstrPropertyName,&varPropertyValue)
;
I f the subscriber does not have this property defined,
GetPublisherProperty() returns S_FALSE. You can even define
method parameter names as custom propert ies and specify a value
or range in the property data. I f the f ilt er is doing parameters-

 273

based filter ing, it can be wr it ten to parse the custom property value
and to publish to that subscr iber only when the parameter value is
in that range.

9 .6 .1 .5 I nstalling a publisher filter

There are two ways for associat ing a publisher filter with an event
class. I n the absence of any nam es for these two ways from the
COM+ team at Microsoft , I call the first stat ic associat ion and the
second dynamic associat ion.
Stat ic associat ion requires you to program against the COM+
Catalog and store the filter CLSID as a property of the event class.
The filter will stay there unt il you remove it or overr ide it with
another CLSID. Stat ic associat ion affects all publishers that use that
event class, in addit ion to all instances of the event class.
Dynamic associat ion takes place at runt im e. The publisher will not
only create an event class, but also direct ly creates a filter object
and associates it only with the instance of the event class it
current ly has. Dynamic associat ion affects only the publishers that
use that part icular instance of the event class. Dynamic associat ion
does not persist beyond the lifet ime of the event class object . Once
you release the event class, the associat ion is gone. Dynamic
associat ion allows a publisher to bind a part icular instance of an
event class with a part icular instance of a filter ; it overr ides any
stat ic filter current ly installed.
The m ain disadvantage of dynamic associat ion is that you cannot
dynamically associate a filter with an instance of a queued event
class (discussed later on) , since you are interact ing with the
recorder for the event class, not the event class itself.

9 .6 .1 .6 Stat ic associa t ion of a publisher filter w ith an event class

To stat ically associate a publisher filter CLSID with the event class
you want it to filter , you have to follow these steps:

1. Create the catalog object .
2. Get the Applications collect ion.
3. For each applicat ion in the collect ion, get the Components

collect ion.
4. I terate through the Components collect ion looking for the

event class. I f t he class is not found, get the next
Application collect ion and scan its Components collect ion.

5. Once you find the event class, set the
MultiInterfacePublisherFilterCLSID event class property
to the CLSID of the filter.

6. Save changes on the Components collect ion and release
everything.

 274

Again, the Catalog wrapper helper object is useful, as it saves you
the interact ion with the COM+ Catalog. The helper object
implements an inter face called IFilterInstaller, defined as:
interface IFilterInstaller : IUnknown
{
 HRESULT Install([in]CLSID clsidEventClass,[in]CLSID
clsidFilter);
 HRESULT Remove ([in]CLSID clsidEventClass);
};
IFilterInstaller makes adding a filter a breeze— just specify the
CLSID of the event class and the CLSID of the filter , and it will do
the rest for you:
HRESULT hres = S_OK;

hres =
::CoCreateInstance(CLSID_CatalogWrapper,NULL,CLSCTX_ALL,

IID_IFilterInstaller,(void**)&pFilterInstaller);

hres = pFilterInstaller-
>Install(CLSID_MyEventClass,CLSID_MyFilter);

pFilterInstaller->Release();
Note that you do not need to specify the applicat ion name as a
parameter; just specify the event class and the filter CLSID. Use
IFilterInstaller::Remove() to remove any filter associated
with a specified event class.

9 .6 .1 .7 Dynam ic associat ion of a publisher filter w ith an event class

To associate a publisher filter object with an event class instance
dynamically , follow these steps:

1. Create the event class and get the sink inter face.
2. Query the event class for IMultiInterfaceEventControl

inter face.
3. Create the filter object .
4. Call

IMultiInterfaceEventControl::SetMultiInterfacePublis
herFilter() and pass in the f ilter object .

5. Release IMultiInterfaceEventControl.
6. Publish events to the event class object . The events will go

through the filter you have just set up.
7. Release the event class and the filter when you are done

publishing.

Example 9-4 shows some sam ple code that uses this technique.

Exam ple 9 - 4 . I nstalling a publisher-side filter dynam ically

 275

HRESULT hres = S_OK;
IMySink* pMySink = NULL;
IMultiInterfacePublisherFilter* pFilter = NULL;
IMultiInterfaceEventControl* pEventControl = NULL;

//Create the filter
hres = ::CoCreateInstance(CLSID_MyFilter,NULL,CLSCTX_ALL,

IID_IMultiInterfacePublisherFilter,(void**)&pFilter);
//Create the event class
hres =
::CoCreateInstance(CLSID_MyEventClass,NULL,CLSCTX_ALL,
 IID_IMySink,(void**)&pMySink);

//Query the event class for IMultiInterfaceEventControl
hres = pMySink -
>QueryInterface(IID_IMultiInterfaceEventControl,
 (void**)pEventControl);

//Setting the filter
hres = pEventControl-
>SetMultiInterfacePublisherFilter(pFilter);
pEventControl->Release();

//Firing the event
hres = pMySink->OnEvent1();//The event is now filtered

pMySink->Release();
pFilter->Release();
Unfortunately, COM+ has a bug regarding correct handling of
dynamically associat ing a publisher filter with an event class. COM+
does not call the filt er m ethod
IMultiInterfacePublisherFilter::Initialize(), and as a
result , you can’t do much filter ing. I hope this situat ion will be fixed
in a future release of COM+ .
This defect , plus dynamic associat ion’s inability to work with queued
event classes, renders it effect ively useless. Avoid dynamic
associat ion of a publisher filter ; use stat ic associat ion instead.

9 .6 .2 Subscriber- Side Filter ing

Not all subscribers have meaningful operat ions to do as a response
to every published event . Your subscriber m ay want to take act ion
only if your favor ite stock is t rading, or perhaps only if it is t rading
above a certain mark. One possible course of act ion is to accept the
event , exam ine the parameters and decide whether to process the
event or discard it .
However, this act ion is inefficient if t he subscriber is not interested
in the event for the following reasons:

 276

• I t forces a context switch to allow the subscr iber to exam ine
the event .

• I t adds redundant network round t r ips.
• Writ ing extra exam inat ion code may int roduce defects and

require addit ional test ing.
• Event exam inat ion and processing policies change over t ime

and between customers. You will chase your tail t ry ing to
sat isfy everybody.

What you should really do is to put the filter ing logic outside the
scope of the subscriber. You should have an adm inist rat ive,
configurable, post- compilat ion, deployment-specific filter ing ability .
This is exact ly what subscriber-side filter ing is all about (see Figure
9-10) . Subscr ibers that do not want to be not ified of every event
published to them, but want to be not if ied only if an event meets
certain cr iter ia, can specify filter ing cr iter ia.

Figure 9 - 1 0 . Specifying filter ing cr iter ia for a persistent subscriber

A subscr iber-side filter is a st r ing containing the f ilter ing cr iter ia. For
example, suppose you subscribe to an event not ify ing you of a new
user in your port folio management system , and the method
signature is:
HRESULT OnNewUser([in]BSTR bstrName,[in]BSTR bstrStatus);
You can specify such filter ing cr iter ia as:
bstrName = "Bill Gates" AND bstrStatus = "Rich"
The event will only be delivered to your object if the username is
Bill Gates and his current status is Rich.
The filter cr iter ia st r ing recognizes relat ional operators for checking
equality (==,!=) , nested parentheses, and logical keywords AND, OR,
and NOT. COM+ evaluates the expression and allows the call
through only if the cr iter ia are evaluated to be t rue.

I f you have wrong parameters or spelling m istakes,
or if the param eter names were changed, the
subscriber will never be not ified.

Because subscriber-side filter ing occurs only after the event has
been fired, if a publisher filter is used, then the event has to pass

 277

the publisher filter first . The obvious conclusion is that publisher-
side filter ing takes precedence over subscriber-side filter ing.

9 .6 .2 .1 Persistent subscriber- side filtering

Only persistent subscribers can specify a subscr iber filter
adm inist rat ively. They can do so by display ing the persistent
subscript ion propert ies page, select ing the Opt ions tab, and
specify ing the Filter cr iter ia (see Figure 9-11) .

Figure 9 -1 1 . Subscriber -side filtering

9 .6 .2 .2 Transient subscriber- side filtering

Transient subscr ibers have to program against the Catalog to set a
t ransient subscript ion filter cr iter ia, following sim ilar steps to those
performed when register ing a t ransient subscript ion:

1. Get hold of the Catalog interface.
2. Get the t ransient subscr ipt ion collect ion object .
3. Find your t ransient subscr ipt ion.
4. Set a subscript ion property called FilterCriteria to the

st r ing value of your filter.
5. Save changes and release everything.

The Catalog wrapper ’s interface ITransientSubscription,
discussed ear lier, allows you to add (or remove) a subscriber- side
filter to a t ransient subscript ion with the AddFilter() and
RemoveFilter() m ethods. The methods accept the subscr ipt ion
name and a filter ing st r ing.
Example 9-5 demonst rates the same example from the persistent
subscriber filter, but for a t ransient subscr iber for the same event .

Exam ple 9 - 5 . Adding a t ransient subscript ion filtering criter ia using the
w rapper object

 278

//Adding a transient subscription filter:
LPCWSTR pwzCriteria = L"bstrUser = \"Bill Gates\" AND
bstrStatus = \"Rich\""

//"MySubs" is the transient subscription name

hres = pTransSubs->AddFilter(L"MySubs",pwzCriteria);

//Or removing the filter:
pTransSubs ->RemoveFilter(L"MySubs");
The m ain disadvantage of a t ransient subscriber filter com pared to a
persistent subscriber filter is that you hardcode a filter , which is
somet im es deployment- or customer-specific. Persistent subscr ibers
can always change the filter ing cr iter ia using the Component
Serv ices Explorer dur ing deployment .

9 .7 Distr ibuted COM+ Events

As long as the publisher, the event class, and the subscribers are all
installed on the sam e machine, you can have pret ty much any
topology of interact ion (see Figure 9-12) . On the same machine,
publishers can publish to any event class, event classes can deliver
events to any subscr iber, and subscribers can subscribe to as m any
event classes as they like.

Figure 9 -1 2 . You can have any publisher and subscriber topology on the
sam e m achine

Unfortunately, the COM+ event service has a serious lim itat ion— the
event class and all it s subscr ibers have to be on the same machine.
This means that a deployment , such as the one shown in Figure 9-
13, is not possible.

Figure 9 - 1 3 . The event class and the subscriber m ust reside on the sam e
m achine

 279

The rest of this sect ion presents you with a few workaround
solut ions for this problem that allow you to dist r ibute your events
across the network. All the solut ions adhere to the lim itat ion that
the event class and the subscribers have to reside on the sam e
machine, and they solve the problem by designing around it . Like
most things in life, each solut ion has pros and cons. I t will be
ult imately up to you, the system designer, to select the most
appropr iate solut ion for your dom ain problem at hand.

9 .7 .1 Solut ion 1 : One Machine for All the Subscribers and
Event Classes

This solut ion is the simplest to implement. You install all event
classes on one m achine, along with all subscr ibers. You install the
event classes in a COM+ server applicat ion and generate a proxy
installat ion (see Chapter 1) for the event classes’ applicat ion.
(Remember, the event class applicat ion has to be a server
applicat ion for you to export it as a proxy applicat ion.) You then
deploy the event class proxy applicat ion on all the machines that
host publishers, m aking sure the proxy applicat ions point to the
event classes/ subscribers machine (see Figure 9-14) . .

Figure 9 -1 4 . This solut ion requires having all subscribers and event
classes on the sam e m achine

When a publisher on a rem ote Machine A wants to fire an event of
type E1, it creates a proxy for that event class and calls the event
method on it . The event call will be marshaled to the place where
the event class resides— on the subscr ibers machine— and get

 280

published to all the subscribers that subscr ibed to it . I t is also very
easy for subscr ibers to subscribe to more than one event class,
since all the event classes are installed locally on the subscribers
machine
This solut ion has the following disadvantages:

1. By locat ing the event classes away from the publishers, you
int roduce ext ra expensive round t r ips across the network.

2. The single machine host ing all the event classes and the
subscribers becomes a hot spot for perform ance. The machine
CPU and operat ing system have to handle all the t raff ic. There
is no load balancing in your product , and load balancing is a
major reason for dist r ibut ing your components in the first
place.

3. The subscr ibers machine solut ion is a single point of failure in
your system.

4. The subscr ibers are not necessar ily ideally deployed. I f the
subscribers do not have to reside where the event classes are,
you m ay have put them somewhere else— m aybe on the same
machine where the database is if they have to access it
frequent ly . Performance m ay suffer.

9 .7 .2 Solut ion 2 : Machine- Specific Event Classes

This solut ion allows you to dist r ibute your subscr ibers anywhere,
according to whatever design preference you have. This dist r ibut ion
makes it possible for you to publish from one machine to
subscribers that reside on mult iple other machines (see Figure 9-
15) . However, this part icular solut ion is more complex to manage
and deploy than the previous solut ion.

Figure 9 -1 5 . A hub m achine has m achine-specific event class proxies
used to dist ribute events

 281

The idea behind this solut ion is to create a COM+ events hub on
one designated m achine. The hub machine is responsible for
dist r ibut ing the events to where the subscribers really reside.
This solut ion uses two kinds of event classes. The first is an event
class that resides only on the hub machine, called Eh. You install
proxies to Eh on all the publishers’ machines. Publishers will only
publish using Eh.
The second k ind of event class is a machine-specific event class.
Every m achine that hosts subscribers has its own dedicated event
class type, installed only on that m achine. I n Figure 9-15, these
types are Ea, Eb, and Ec, corresponding to the three machines in the
figure. You need to install a proxy to every machine-specific event
classes on the hub machine. All event classes in this solut ion
support the exact same set of sink inter faces.
When a publisher on Machine A wants to publish an event to
subscribers on Machines A, B, and C, the publisher on Machine A
creates an instance of the Eh event class (which only actually
creates a proxy) and fires to it . The Eh proxy forwards the call to
where Eh really executes— on the hub machine. On the hub machine
there is a hub subscriber (Sh) that subscribes to the Eh event . The
way Sh handles the event is to create all the m achine-specific event
classes (Ea, Eb, and Ec) and fire that part icular event to them.
Because there are only proxy installat ions of the machine-specific
event classes on the hub machine, the event is dist r ibuted to
mult iple machines, where local subscr ibers— the real subscribers—
handle the event .
The m ain advantage of using this solut ion is that it gives you
complete freedom in locat ing your subscribers. However, the
flex ibilit y comes with a hefty pr ice:

• When you publish, you encounter many expensive round t r ips
across the network. Even if all the subscr ibers are on the
publisher machine, the publisher st ill has to go through the
hub machine.

• You have to duplicate this solut ion for every kind of event
class you have, and you therefore end up with separate sets
of machine-specific and hub event classes.

• The added complexity of this solut ion m eans that you
probably have a deployment, adm inist rat ion, and
maintenance nightm are on your hands.

• The hub machine is potent ially a single point of failure in your
system.

9 .7 .3 Solut ion 3 : COM+ Rout ing

This last solut ion for dist r ibut ing events to subscribers on mult iple
rem ote machines takes advantage of a feature provided for you by

 282

COM+ . However, it is a part ial solut ion because it only works with
persistent subscribers. I f your applicat ion uses t ransient subscr ibers
(as it most likely will) , you have to use one of the two solut ions
discussed previously. The idea here is sim ilar to the hub m achine
solut ion, and to dist inguish between them , I call this one the
rout ing solut ion.
COM+ provides a field called Server nam e on the Opt ions tab for
every persistent subscript ion (see Figure 9-16) .

Figure 9 -1 6 . I nst ruct ing COM+ to create the subscriber object on the
m achine specified in the Server nam e fie ld

Whenever an event is published to a persistent subscriber, before
CoCreat ing the subscr iber object , COM+ first checks the value of
the Server name property. I f it is not an empty st r ing, COM+
CoCreates the subscriber on the specified machine, fires the event
to the sink interface, and releases the subscriber.
Rout ing events to m ult iple machines takes advantage of this
feature. I nstead of using machine-specific event classes like in
Solut ion 2, the rout ing solut ion uses machine-specific persistent
subscript ions.
For example, suppose you have a publisher on Machine A and a
subscribing component called MySubscriber that you want to deploy
on Machines B and C. The publisher publishes using an event class
called E. On Machines B and C you add subscr ipt ions to the event
class, to the locally installed copies of MySubscriber. You then install
the MySubscr iber component on another designated rout ing
machine, together with the event class E, and install on Machine A
only the proxy to E (see Figure 9-17) .

Figure 9 -1 7 . The rout ing solut ion uses m achine-specific subscript ions
and a routing m achine

 283

To the installat ion of MySubscriber on the router machine (called SR
in Figure 9-17) add machine-specific subscript ions: for every
deployment of MySubscriber on another m achine, add a
subscript ion and redirect the invocat ion to that machine, using the
Server name field. See Figure 9-18.

Figure 9 - 1 8 . The router m achine has a m achine- specific subscript ion
used to route the event to corresponding m achines

Now, when the publisher on Machine A CoCreates a proxy to the
event class and fires an event at it , the call goes to the router
machine. COM+ inspects the subscript ions on the router m achine
for the event class, detects the Server name in the subscr ipt ions,
creates the subscribers on the remote m achines, and publishes to
them.
I already pointed out the main drawback of this solut ion (persistent
subscribers only) , but it has a few others:

• Set t ing up and configuring the system is nontr iv ial effort . You
have to either wr ite some installat ion scr ipts to help you
automate it or manually configure it at every custom er
deployment . Every customer site has it s own m achine nam es;
you will not be able to specify the m achine names in your
applicat ion MSI file, exported for release.

 284

• You have to go through the router machine, so you end up
paying for an ext ra network hop.

• The router machine can be a performance bot t leneck.
• The router machine is potent ially a single point of failure.

9 .8 Asynchronous Events

So far, in this discussion of the COM+ event model, it was always
assumed that publishing the event is a synchronous operat ion—
during publishing, the publisher is blocked and that blocking t ime is
proport ional to the number of subscribers and their indiv idual
processing t im es. A t rue loosely coupled event mechanism
decouples the publisher from the subscriber even fur ther. I t allows
the publishers to publish asynchronously and perm its the
subscribers to handle the event asynchronously as well.
COM+ provides this capabilit y by using COM+ queued components
(see Chapter 8) . As you will see, both the event class and the
subscribers can be queued components, to enable asynchronous
publishing and subscribing.

9 .8 .1 Asynchronous Publishing

COM+ has a built - in serv ice for asynchronous execut ion: queued
components. COM+ events and queued components go together
very well, giv ing you the benefits of a loosely coupled system and
the flex ibility of asynchronous execut ion.
Every event class supports a set of sink inter faces. As with any
other COM+ component , you can configure any one of the sink
inter faces as Queued. A publisher creates a queued event class
using the queue moniker. When a publisher fires an event to a
queued event class inter face, COM+ performs its usual handling of a
queued com ponent (recording the call, placing it in a queue, and so
on) . The COM+ queued component listener pulls the messages (the
events) from the event class queue and plays them back to the
event class.
The publisher is blocked only for the relat ively short period t ime it
takes COM+ to record the call. Cont rast this with the Fire in
Parallel at t r ibute, which returns control to the publisher only after
all subscribers have been not ified.
A publisher that is interested in creat ing a queued event class
creates it using the queue moniker, like any other queued
component . Because of the inher ited lim itat ion of queued
components— that a queued component cannot reside in a library
applicat ion— an event class that uses a queued component cannot
be in a library applicat ion.
One interest ing side effect of using queued components is that if
you publish events on two queued event classes, events may not

 285

replay in the order in which they were or iginally fired. This situat ion
can be a source of t rouble if the two publishing sessions are related
in some manner. I f having one event take place before another is
important , you need to make the calls on the same specific queued
event class.

9 .8 .2 Asynchronous Subscribers

COM+ can use queued components to invoke calls on a component
that also uses persistent subscript ions. Because COM+ is the one
that creates the subscr iber, you have to let COM+ know that it
should create the component using the queue moniker, rather than
CoCreateInstance(). You do that by checking the Queued
property of the persistent subscr ipt ion (see Figure 9-6) .
When COM+ publishes to a queued subscriber, it posts a message
to the subscriber ’s message queue. The listener of the COM+
applicat ion that hosts the subscriber will detect the messages in the
queue, create a player, and play back the events to the subscr iber.
There are two main advantages of using queued subscr ibers:

• The publisher code remains the same for queued and normal
subscribers, and it allows for lengthy processing of the event
on the subscr iber side, instead of having to spin off a worker
thread, as if you were using classic COM.

• Having both the publisher and the subscr iber using queued
components allows both to work offline at the same t ime and
be completely disconnected.

There are also two main disadvantages:

• The publisher is st ill blocked while looking through the
subscribers list and, for each subscr iber, while creat ing a
recorder, post ing messages to queues, and perform ing other
queued com ponent managem ent act iv it ies.

• I f somebody adds a nonqueued subscr ipt ion to your system,
then publishing is not fully asynchronous. The publisher is
blocked while the nonqueued subscr iber processes the event .

9 .9 COM+ Events and Transact ions

COM+ transact ions flow downward from the t ransact ion root , as you
have seen in Chapter 4. New objects created during the t ransact ion
take part in their creator ’s t ransact ion or are placed in a t ransact ion
of their own, according to their t ransact ion configurat ion.

 286

I f the publisher takes part in a t ransact ion, it is recom mended that
the subscribers part icipate in the publisher’s t ransact ion. But how
would the t ransact ion be propagated by the publisher to the
subscriber if the publisher does not create the subscr iber direct ly?
To propagate the publisher’s t ransact ion to the subscr iber, you
should configure the event class to support or require t ransact ions.
Like any other COM+ com ponent , the event class has a Transact ion
tab that applies to the COM+ synthesized implementat ion.
Adding the event class to your t ransact ion will not affect the
t ransact ion vot ing result ; in any COM+ context the consistency bit
is set by default to TRUE and the COM+ -provided implementat ion of
the event class does not change that bit . You also need to configure
the (persistent) subscr iber component to support t ransact ions. Now
the subscriber takes part in the publisher ’s t ransact ion and it can
abort the publisher’s t ransact ion or vote to commit it .
There is one more thing you should keep in m ind when m ix ing
COM+ events and t ransact ions: Do not configure the event class to
require a new t ransact ion. This causes the subscr iber to take part in
a separate t ransact ion, the one init iated by the event class (see
Figure 9-19) .

Figure 9 - 1 9 . Configuring the event class to require new t ransact ion
results in a separat e t ransact ion for the persistent subscriber

I f the publisher’s t ransact ion is aborted, the subscriber’s t ransact ion
can st ill commit successfully, which m ay involve changes to the
database and other persistent changes to your system state.
Nobody tells the subscr iber to roll back those changes, despite the
fact that the event that t r iggered the changes is fired from a
t ransact ion that aborts.
In addit ion, when the publisher t r ies again, the event may be fired
once more, leaving the subscriber in an inconsistent state.

9 .9 .1 Persistent Subscribers and Transact ions

Sim ilar ly, avoid configuring any persistent subscriber ’s t ransact ion
set t ing to Requires New and do not m ix nont ransact ional
subscribers with t ransact ional ones; such pract ices may int roduce
unwelcome side effects when the publisher ’s t ransact ion is aborted
(see Figure 9-20) .

 287

Figure 9 - 2 0 . Avoid configuring subscribers to require new transact ions or
to m ix nont ransact ional subscribers w ith t ransact ional ones

9 .9 .2 Transient Subscribers and Transact ions

Transient subscr ibers are already instant iated when the event is
fired and m ay be part of their creator’s t ransact ion. I can only
recommend being m indful when combining t ransient subscr ipt ions
with a t ransact ional publisher because you m ay end up with the
same inconsistencies ment ioned in the previous sect ion.
In part icular , t ransient subscr ibers should not abort their
client / creator’s t ransact ion as a response to a publisher’s event , an
event that m ay have been fired from within another t ransact ion.
The problem s that ar ise when you com bine t ransient subscribers
and publisher t ransact ions are typical of passing object references
across t ransact ion boundar ie. The object does not know whether it
is allowed to abort the t ransact ion or not (as discussed in Chapter
4) .

9 .1 0 COM+ Events and Security

The fact that the publisher does not call methods on the subscr ibers
direct ly is an important software engineer ing capabilit y.
Nevertheless, you should never decouple your components at the
expense of security . COM+ must st ill allow the system
administ rators to configure the access r ights to subscribers. COM+
events take advantage of the r ich security infrast ructure offered by
COM+ , and COM+ also provides you with event system-specific
security set t ings.

9 .1 0 .1 The Event Class and Role- Based Security

Like other configured components, an event class can use role-
based security . The m ost common use of use role-based security for
event classes is to control which publisher is allowed to fire events.

 288

However, since roles in COM+ are per applicat ion, be sure to add
roles and users for each product to the event class applicat ion if you
intend to share event classes between a few applicat ions and
products.
You can use role-based secur ity in another way: to im plement a
publisher-side filter that calls
ISecurityCallContext::IsCallerInRole() (discussed in
Chapter 7) and cont rols the order of publishing based on the
publisher ’s role.

9 .1 0 .2 Subscribers and Role-Based Security

The subscr iber can use role-based secur ity to cont rol access to its
serv ices. Unlike an event class usage of role-based security (which
affects the publishing side and therefore all the subscribers) , when
a subscriber uses role-based secur ity, only that subscriber is
affected by the access checks. I f all your subscr ibers have uniform
security requirements, put t ing the secur ity check on the event class
is the r ight decision because it improves perform ance (the publisher
does not publish at all if it is not allowed to) . However, if the
security requirements of your subscribers vary (if some require
t ighter security than others) , put t ing the security access checks on
the sensit ive subscribers may provide you with the bet ter solut ion.

9 .1 0 .3 I n- Process Subscribers

From a security point of v iew, an interest ing situat ion arises when
the event class and the subscriber component are both library
applicat ions. As a result , when the publisher CoCreates the event
class and publishes to it , the subscr iber is loaded into the publisher
process.
Unlike a convent ional library applicat ion that is intended to share
the address space of its client (and m ay very well be developed by
the same team) , the publisher/ subscriber relat ionship is m uch less
t rust ing and coupled.
Most software vendors would feel uneasy let t ing an unknown ent ity
into their process. The subscriber m ay be of dubious qualit y (and
may take the publisher down with it when it crashes) or even
malicious (I will leave it to your im aginat ion what you can do if
somebody lets you into their process) .
To protect the publisher, the system administ rator can enforce all
subscribers to be created in their own process. On the Advanced tab
of the Event Class propert ies page, if "Allow in-process subscribers"
is not checked, the subscr iber object will be created in a separate
process, even if it is configured to run as a library applicat ion (see
Figure 9-4) .

 289

9 .1 0 .4 Per- User Subscript ions

COM+ allows you to deliver an event to a part icular subscr iber only
if a specific user is logged on to the publisher’s machine. When the
user logs off, the subscr ipt ion is disabled. Per-user subscript ion
requires the publisher and subscriber to be on the same computer,
since logon and logoff are only detected locally in Windows.
To act ivate per-user Subscr ipt ion you must set the PerUser flag on
the subscript ion record to TRUE and specify a username. You can do
that by programming against the COM+ Catalog.
Per-user subscript ion is an esoteric security m echanism, and I
recommend using role-based security instead to achieve sim ilar
capabilit ies with a fract ion of the code and rest r ict ions.

9 .1 1 COM+ Events Lim ita t ion

COM+ Events is an outstanding service that saves you a lot of
work— it provides an extensible, feature- r ich service that allows you
to focus on adding value to your product , not on event connect iv ity
plum bing.
However, the event system has a few lim itat ions, and this chapter
would not be complete without point ing them out . Knowing about
them allows you to make the best use of COM+ events:

• As you have seen, COM+ events do not provide you with
absolute locat ion t ransparency. You have to jump through
hoops to dist r ibute your events across the enterpr ise.

• Good support for a very large num ber of subscribers (more
than a few hundred) is lack ing. To publish an event , COM+
maintains a linked list of subscribers, and it scans it on every
event— i.e., publishing overhead is linear to a number of
subscribers. There is no way to perform a broadcast .

• All part ies involved (publisher, event class, and subscr ibers)
have to run on a Windows 2000 machine. This is usually not a
problem at the m iddle t ier, but it does rule out most of the
portable devices, such as laptops, PDAs, and cell phones.

• COM+ has difficulty handling a very large amount of data as
parameters for events. Avoid large st r ings and huge arrays.

• COM+ events cannot handle a high rate of event publishing
because it takes t im e to publish an event . I f events are
published faster than COM+ can handle them, you get
memory bloat ing and COM+ will occasionally fail. On a st ress
test I conducted on COM+ events, I had three publishers,
each on its own machine, creat ing an event class proxy and
fir ing every 300 m illiseconds at one subscriber on a fourth
machine. COM+ failed after a day and a half.

 290

 291

9 .1 2 Sum m ary

COM+ loosely coupled events demonst rate all of the core COM+
component services principles discussed in this book: the service
has evolved to improve an exist ing solut ion; it offers a spect rum of
features, from simple, to adm inist rat ive Component Serv ices
Explorer support , to advanced programm at ic features; and it
interacts with almost all of the other COM+ services, such as
t ransact ions, security , and queued components. Although this
chapter has discussed the main points of the service, numerous
other possibilit ies ex ist , including pooled persistent subscr ibers. The
important lesson is that once you understand how each individual
serv ice works, you can star t combining the serv ices in powerful and
synerget ic ways. COM+ loosely coupled events are the last COM+
component service described in this book. You will now learn about
.NET and see how it ut ilizes COM+ component serv ices.

 292

Chapter 1 0 . .NET Serviced Com ponents

.NET is the new plat form from Microsoft used to build component-
based applicat ions, from standalone desktop applicat ions to web-
based applicat ions and serv ices. The plat form will be available on
forthcom ing Microsoft operat ing systems and supported by the next
release of Visual Studio, called Visual Studio.NET. I n addit ion to
providing a modern object -or iented framework for building
dist r ibuted applicat ions, .NET also provides several specialized
applicat ion frameworks. These frameworks include Windows Forms
for r ich Windows clients, ADO.NET for data access, and ASP.NET for
dynamic web applicat ions. Another important framework is Web
Serv ices, which is used to expose and consume rem ote objects
using the emerging SOAP and other XML-based protocols.
.NET is Microsoft ’s next -generat ion component technology. I t is
designed from the ground up to sim plify component development
and deploym ent , as well as to support interoperabilit y between
programming languages.
Despite its innovat ions and modern design, .NET is essent ially a
component technology . Like COM, .NET provides you with the
means to rapidly build binary components, and Microsoft intends for
.NET to eventually succeed COM. Like COM, .NET does not provide
its own component services. Instead, .NET relies on COM+ to
provide it with instance management , t ransact ions, act iv ity-based
synchronizat ion, granular role-based security , disconnected
asynchronous queued components, and loosely coupled events. The
.NET namespace that contains the types necessary to use COM+
serv ices was named System.Enterpr iseServices to reflect the pivotal
role it plays in building .NET enterprise applicat ions.
A .NET component that uses COM+ serv ices is called a serviced
component to dist inguish it from the standard managed
components in .NET. I f you are not fam iliar with .NET, you should
first read Appendix C or pick up a copy of .NET Framework
Essent ials by Thuan Thai and Hoang Lam (O’Reilly , 2001) .
I f you are already fam iliar with the basic .NET concepts, such as the
runt im e, assemblies, garbage collect ion, and C# (pronounced "C
sharp") , cont inue reading. This chapter shows you how to create
.NET serviced com ponents that can take advantage of the COM+
component services that you have learned to apply throughout this
book.

 293

1 0 .1 Developing Serviced Com ponents

A .NET component that takes advantage of COM+ services needs to
der ive from the .NET base class ServicedComponent.
ServicedComponent is defined in the System.EnterpriseServices
namespace. Example 10-1 demonst rates how to wr ite a .NET
serv iced component that implements the IMessage inter face and
displays a m essage box with "Hello" in it when the inter face’s
ShowMessage() m ethod is called.

Exam ple 1 0 -1 . A sim ple .NET serviced com ponent

namespace MyNamespace

{
 using System.EnterpriseServices;
 using System.Windows.Forms;//for the MessageBox class

 public interface IMessage
 {
 void ShowMessage();
 }
 /// <summary>
 /// Plain vanilla .NET serviced component
 /// </summary>
 public class MyComponent:ServicedComponent,IMessage
 {
 public MyComponent() {}//constructor
 public void ShowMessage()
 {
 MessageBox.Show("Hello!","MyComponent");
 }
 }
}

A serv iced component is not allowed to have
param eterized constructors. I f you require such
param eters, you can either design around them by
int roducing a Create() method that accepts
param eters, or use a constructor st r ing.

There are two ways to configure a serviced component to use COM+
serv ices. The first is COM- like: you derive from
ServicedComponent, add the component to a COM+ applicat ion,
and configure it there. The second way is to apply special at t r ibutes
to the component , configuring it at the source-code level. When the
component is added to a COM+ applicat ion, it is configured
according to the values of those at t r ibutes. At t r ibutes are discussed

 294

in greater detail throughout this chapter as you learn about
configuring .NET components to take advantage of the various
COM+ serv ices.
.NET allows you to apply at t r ibutes to your serviced components
with great flex ibility . I f you do not apply your own at t r ibutes, a
serv iced component is configured using default COM+ set t ings when
it is added to a COM+ applicat ion. You can apply as many at t r ibutes
as you like. A few COM+ services can only be configured via the
Component Services Explorer. These services are most ly
deployment -specific configurat ions, such as persistent subscript ions
to COM+ Events and allocat ion of users to roles. In general, almost
everything you can do with the Component Serv ices Explorer can be
done with at t r ibutes. I recommend that you put as many design-
level at t r ibutes as possible (such as t ransact ion support or
synchronizat ion) in the code and use the Component Serv ices
Explorer to configure deployment -specific details.

1 0 .2 .NET Assem blies and COM+ Applicat ions

When you wish to take advantage of COM+ component services,
you m ust map the assembly containing your serv iced components
to a COM+ applicat ion. That COM+ applicat ion then contains your
serv iced components, just like any other component— COM+ does
not care whether the component it provides serv ices to is a
managed .NET serviced com ponent or a classic COM, unmanaged,
configured component . A COM+ applicat ion can contain com ponents
from mult iple assem blies, and an assem bly can cont r ibute
components to more than one applicat ion, as shown in Figure 10-1.
Compare Figure 10-1 to Figure 1-8. There is an addit ional level of
indirect ion in .NET because an assem bly can contain m ult iple
modules.

Figure 1 0 - 1 . COM+ applicat ions and assem blies

However, set t ing up an assembly to cont r ibute components to more
than one COM+ applicat ion is not st raight forward and is suscept ible
to future regist rat ions of the assembly. As a rule, avoid mapping an
assembly to more than one COM+ applicat ion.

 295

1 0 .3 Register ing Assem blies

To add the serviced components in your assembly to a COM+
applicat ion, you need to register that assembly with COM+ . You can
perform that regist rat ion in three ways:

• Manually , using a command line ut ilit y called RegSvcs.exe.
• Dynamically, by having the client program register your

assembly automat ically .
• Programmat ically, by wr it ing code that does the regist rat ion

for you using a ut ilit y class provided by .NET.

Regardless of the technique you use, the regist rat ion process adds
your serviced components to a COM+ applicat ion and configures
them according to the default COM+ set t ings or according to their
at t r ibutes (if present in the code) . I f the assembly contains
incom pat ible at t r ibutes, the incompat ibility is detected during
regist rat ion and the regist rat ion is aborted. Future versions of the
.NET compilers may detect incompat ibilit ies during compilat ion
t ime.

Signing Assem bly and Assem bly
Locat ion

To add an assembly to a COM+ applicat ion, the assembly
must be signed (have a st rong name) so the assembly
resolver can map a client act ivat ion request to the
corresponding assem bly. Although in theory you need not
install the assem bly in the global assembly cache (GAC) , in
pract ice you should install it because the assembly DLL must
be in a known locat ion— either the system directory (for
server applicat ions that run in DllHost) or the host ing client
process directory (if the client is not a COM+ server
applicat ion) . The other known locat ion that the assembly
resolver uses is the GAC. To maintain f lex ibilit y (to change
from server to library applicat ion) and consistency, make
sure you always install your serviced com ponent assembly in
the GAC.

1 0 .3 .1 Specifying Applicat ion Nam e

You can provide .NET with an assembly at t r ibute, specify ing the
name of the COM+ applicat ion you would like your components to
be part of, by using the ApplicationName assembly at t r ibute:
[assembly: ApplicationName("MyApp")]

 296

I f you do not prov ide an applicat ion name, .NET uses the assembly
name. The ApplicationName at t r ibute (and the rest of the serv iced
components at t r ibutes) is defined in the
System.EnterpriseServices namespace. You must add this
namespace to your project references and reference that
namespace in your assembly informat ion file:
using System.EnterpriseServices;

1 0 .3 .2 Understanding Serviced Com ponent Versions

Before exploring the three regist rat ion opt ions, you need to
understand the relat ionship between an assembly ’s version and
COM+ components.
Every m anaged client of your assembly is built against the
part icular version of the assembly that contains your components,
whether they are serv iced or regular managed components. .NET
zealously enforces version compat ibilit y between the client ’s
assembly and any other assem bly it uses. The assembly’s version is
the product of its version number (m ajor and m inor numbers, such
as 3.11) and the build and revision numbers. The version number is
provided by the developer as an assem bly at t r ibute, and the build
or revision numbers can be generated by the compiler— or the
developer can provide them himself.
The semant ics of the version and build or revision numbers tell .NET
whether two part icular assembly versions are compat ible with each
other, and which of the two assemblies is the latest . Assem blies are
compat ible if the version number is the same. The default is that
different build and revision numbers do not indicate incompat ibility ,
but a difference in either major or m inor num ber indicates
incom pat ibilit y . A client's manifest contains the version of each
assembly it uses. At runt im e, .NET loads for the client the latest
compat ible assemblies to use, and latest is defined using the build
and rev ision numbers.
All this is fine while everything is under t ight cont rol of the .NET
runt im e. But how would .NET guarantee compat ibilit y between the
assembly's version and the configurat ion of the serviced
components in the COM+ Catalog? The answer is via the COM+
component's ID.
The first t im e a serviced com ponent is added to a COM+
applicat ion, the regist rat ion process generates a CLSID for it , based
on a hash of the class definit ion and its assem bly's version and
st rong name. Subsequent regist rat ion of the same assembly with an
incom pat ible version is considered a new regist rat ion for that
serv iced component , and the component is given a new CLSID.
This way, the serviced component's CLSID serves as its
configurat ion set t ings version number. Exist ing managed clients do
not inter fere with one another because each gets to use the

 297

assembly version it was compiled with. Each managed client also
uses a part icular set of configurat ion parameters for the serv iced
components, captured with a different CLSID. When a managed
client creates a serviced component , the .NET runt im e creates for it
a component from an assembly with a compat ible version and
applies the COM+ configurat ion of the matching CLSID.

1 0 .3 .3 Manual Regist rat ion

To register your com ponent manually, use the RegSvcs.exe
command- line ut ilit y. (I n the future, Visual Studio.NET will probably
allow you to invoke RegSvcs from the v isual environment it self.)
RegSvcs accepts as a parameter the name of the file containing
your assembly ’s metadata. In a single DLL assembly, that file is
simply the assembly file. I f you do not specify as an assem bly
at t r ibute the name of the COM+ applicat ion that should host your
components, RegSvcs must be told that name explicit ly as a
command- line parameter, using the /appname: switch.
For example, if your single DLL assembly resides in MyAssem bly.dll
and you wish to add the serv iced components in that assem bly to
the MyApp COM+ applicat ion, you would use RegSvcs in this
manner:
RegSvcs.exe /appname:MyApp MyAssembly.dll
The command- line applicat ion name is ignored if the assembly
contains an applicat ion name.
In any case, you must create that COM+ applicat ion in the
Component Services Explorer beforehand; otherwise, the previous
command line will fail. You can inst ruct RegSvcs to create the
applicat ion for you using the /c switch:
RegSvcs.exe /c MyApp MyAssembly.dll
Or if the name is specified in the assem bly:
RegSvcs.exe /c MyAssembly.dll
When using the /c switch, RegSvcs creates a COM+ applicat ion,
names it accordingly, and adds the serv iced components to it . I f the
Catalog already contains an applicat ion with that nam e, the
regist rat ion fails.
You can also ask RegSvcs to t ry to find a COM+ applicat ion with
that name and, if none is found, create one. This is done using the
/fc switch:
RegSvcs.exe /fc MyApp MyAssembly.dll
Or if the name is specified in the assem bly:
RegSvcs.exe /fc MyAssembly.dll
I f you don’t specify a COM+ applicat ion name, either in the
assembly or as a command- line parameter, RegSvcs uses the
assembly name for the applicat ion nam e. I f your assem bly is called
MyAssembly, RegSvcs adds the com ponents to the MyAssembly

 298

COM+ applicat ion. This behavior is the same for all the command-
line switches.
By default , RegSvcs does not overr ide the exist ing COM+
applicat ion (and its components) set t ings. I f that assembly version
is already registered with that COM+ applicat ion, then RegSvcs
does nothing. I f that version is not registered yet , it adds the new
version and assigns new CLSIDs. Reconfiguring an exist ing version
is done explicit ly using the /reconfig switch:
RegSvcs.exe /reconfig /fc MyApp MyAssembly.dll
The /reconfig swit ch causes RegSvcs to reapply any applicat ion,
component , inter face, and method at t r ibutes found in the assem bly
to the exist ing version and use the COM+ default set t ings for the
rest , thus reversing any changes you made using the Com ponent
Serv ices Explorer.
When RegSvcs adds a serv iced component to the COM+ Catalog, it
must give it a class- ID (CLSID) and a prog- ID. RegSvcs creates a
GUID for every component (based on the assembly’s version and
the class definit ion) and names it <Namespace>.<Component name>.
For example, when you add the serv iced component in Exam ple 10-
1 to the COM+ Catalog, RegSvcs names it
MyNamespace.MyComponent. You can also specify the CLSID and the
prog- ID of your serviced components using at t r ibutes.
In addit ion to adding the serv iced components in the assem bly to a
COM+ applicat ion, RegSvcs creates a type library. This library
contains interface and CoClass definit ions to be used by
nonmanaged clients (COM clients) . The default type library filename
is < Assembly name> .t lb— the name of the assembly with a . t lb
extension.

1 0 .3 .4 Dynam ic Regist rat ion

When a managed client creates a serv iced component , the .NET
runt im e resolves which assembly version to use for that client .
Next , the runt ime verifies that the required version is registered
with COM+ . I f it is not registered, the runt ime installs it
automat ically. This process is called dynam ic regist rat ion. As with
RegSvcs, if the assembly contains an applicat ion name, then that
name is used; if it does not , then the assem bly's nam e is used for
the COM+ applicat ion's name.
Note that only .NET clients can rely on having dynamic regist rat ion
done when they instant iate a .NET serviced component . For COM
clients, you must use the RegSvcs ut ilit y . Another lim itat ion of
dynamic regist rat ion is that serviced com ponents in the assembly
are configured according to the at t r ibutes in the assembly and the
COM+ defaults. I f you require configuring som e services (such as
events subscript ions) using the Component Serv ices Explorer for
your applicat ion to funct ion proper ly , you m ust use RegSvcs to

 299

register your components and provide the addit ional configurat ion
using the Component Services Explorer. Only then can clients use
your serviced components. As a result , dynamic regist rat ion is only
useful for serviced components that contain all the service
configurat ions they need in their code through the use of at t r ibutes.
Finally, dynamic regist rat ion requires that the user invoking the call
that t r iggers dynamic regist rat ion be a member of the Windows
2000 Administ rator group. I t has this requirement because dynamic
regist rat ion makes changes to the COM+ Catalog; if the user
invoking it is not a m ember of the Windows 2000 Administ rator
group, dynamic regist rat ion will fail.
I n general, you should use RegSvcs and the Component Serv ices
Explorer rather than rely ing on dynamic regist rat ion. I f you want to
rely on dynamic regist rat ion of your serviced components, you
should increment the version number of your assembly every t ime
you m ake a change to one of the components’ at t r ibutes, to ensure
that you t r igger dynamic regist rat ion.

1 0 .3 .5 Program m at ic Regist rat ion

Both RegSvcs and dynamic regist rat ion use a .NET class called
RegistrationHelper to perform the regist rat ion.
RegistrationHelper implements the IRegistrationHelper
inter face, whose methods are used to register and unregister
assemblies. For example, the InstallAssembly() method
registers the specified assembly in the specified COM+ applicat ion
(or the applicat ion specified in the assembly) . This method is
defined as:
public void InstallAssembly(string assembly,
 ref string application,
 ref string tlb,
 InstallationFlags
installFlags);
The installat ion flags correspond to the var ious RegSvcs switches.
See the MSDN Library for addit ional informat ion on
RegistrationHelper. You can use RegistrationHelper yourself as
part of your installat ion program; for more informat ion, see Sect ion
10.14 later in this chapter .

1 0 .3 .6 The Applicat ionI D At t r ibute

Every COM+ applicat ion has a GUID ident ify ing it called the
applicat ion ID. You can provide an assembly at t r ibute specify ing the
applicat ion ID in addit ion to the applicat ion name:
[assembly: ApplicationID("8BE192FA-57D0-49a0-8608-
6829A314EEBE")]
Unlike the applicat ion name, the applicat ion ID is guaranteed to be
unique, and you can use it alongside the applicat ion name. Once an

 300

applicat ion ID is specified, all searches for the applicat ion dur ing
regist rat ion are done using the applicat ion ID only, and the
applicat ion name is only useful as a human- readable form of the
applicat ion ident ity. Using applicat ion I D com es in handy when
deploy ing the assembly in foreign m arkets— you can provide a
command- line localized applicat ion nam e for every m arket while
using the same applicat ion ID for your adm inist rat ion needs
internally. The ApplicationID at t r ibute is defined in the
System.EnterpriseServices namespace.

1 0 .3 .7 The Guid At t r ibute

I nstead of having the regist rat ion process generate a CLSID for
your serviced component , you can specify one for it using the Guid
at t r ibute:
using System.Runtime.InteropServices;

[Guid("260C9CC7-3B15-4155-BF9A-12CB4174A36E")]
public class MyComponent :ServicedComponent,IMyInterface
{...}
The Guid at t r ibute is defined in the
System.Runtime.InteropServices namespace.
When you specify a class ID, subsequent regist rat ions of the
assembly don't generate a new CLSI D for the component ,
regardless of the version of the assem bly being registered.
Regist rat ions always reconfigure the same com ponent in the COM+
Catalog. Specify ing a class ID is useful during development , when
you have mult iple cycles of code- test - fix. Without it , every
invocat ion by the test client t r iggers a dynamic regist rat ion— you
very quickly clut ter the COM+ applicat ion with dozens of
components, when you actually only use the latest one.

1 0 .3 .8 The ProgI d At t r ibute

I nstead of having the regist rat ion process generate a name for your
serv iced component (namespace plus component name) , you can
specify one for it using the ProgID at t r ibute:
using System.Runtime.InteropServices;

[ProgId("My Serviced Component")]
public class MyComponent :ServicedComponent,IMyInterface
{...}
The ProgId at t r ibute is defined in the
System.Runtime.InteropServices namespace.

 301

1 0 .4 Configuring Serviced Com ponents

You can use various .NET at t r ibutes to configure your serv iced
components to take advantage of COM+ component services. The
rest of this chapter demonst rates this serv ice by service, according
to the order in which the COM+ serv ices are presented in this book.

1 0 .5 Applicat ion Act ivat ion Type

To specify the COM+ applicat ion’s act ivat ion type, you can use the
ApplicationActivation assem bly at t r ibutes. You can request that
the applicat ion be a library or a server applicat ion:
[assembly:
ApplicationActivation(ActivationOption.Server)]
or:
[assembly:
ApplicationActivation(ActivationOption.Library)]
I f you do not prov ide the ApplicationActivation at t r ibute, then
.NET uses a library act ivat ion type by default . Note that this use
differs from the COM+ default of creat ing a new applicat ion as a
server applicat ion.

The next release of Windows 2000, Windows XP
(see Appendix B) , allows a COM+ applicat ion to be
act ivated as a system service, so I expect that
ApplicationActivation will be extended to
include the value of ActivationOption.Service.

Before I describe other serviced components at t r ibutes, you need to
understand what at t r ibutes are. Every .NET at t r ibute is actually a
class, and the at t r ibute class has a constructor (m aybe even a few
overloaded const ructors) and, usually , a few propert ies you can set .
The syntax for declar ing an at t r ibute is different from that of any
other class. I n C# , you specify the at t r ibute type between square
brackets [...]. You specify const ructor param eters and the values
of the propert ies you wish to set between parentheses (...).
I n the case of the ApplicationActivation at t r ibute, there are no
propert ies and the const ructor must accept an enum parameter of
type ActivationOption, defined as:
enum ActivationOption{Server,Library}
There is no default const ructor for the ApplicationActivation
at t r ibute.
The ApplicationActivation at t r ibute is defined in the
System.EnterpriseServices namespace. Your must add this
namespace to your project references and reference that
namespace in your assembly informat ion file:

 302

using System.EnterpriseServices;
The rest of this chapter assumes that you have added these
references and will not ment ion them again.

A client assem bly that creates a serv iced
component or uses any of its base class
ServicedComponent methods must add a reference
to System.EnterpriseServices to it s project .
Other clients, which only use the interfaces
provided by your serviced components, need not
add the reference.

1 0 .6 The Descr ipt ion At t r ibute

The Description at t r ibute allows you to add text to the descript ion
field on the General Propert ies tab of an applicat ion, com ponent ,
inter face, or method. Example 10-2 shows how to apply the
Description at t r ibute at the assembly, class, interface, and
method levels. After regist rat ion, the assembly- level descript ion
st r ing becomes the content of the host ing COM+ applicat ion’s
descript ion field; the class descript ion st r ing becomes the content of
the COM+ component descript ion field. The inter face and method
descript ions are m apped to the corresponding interface and method
in the Component Serv ices Explorer.

Exam ple 1 0 -2 . Applying the Descript ion at t r ibute at the assem bly, class,
interface, and m ethod levels

[assembly: Description("My Serviced Components
Application")]

[Description("IMyInterface description")]
public interface IMyInterface
{
 [Description("MyMethod description")]
 void MyMethod();
}

[Description("My Serviced Component description")]
public class MyComponent :ServicedComponent,IMyInterface
{
 public void MyMethod(){}
}

 303

1 0 .7 Accessing the COM+ Context

To access the COM+ context object ’s inter faces and propert ies,
.NET provides you with the helper class ContextUtil. All context
object interfaces (including the legacy MTS interfaces) are
implemented as public stat ic methods and public stat ic propert ies of
the ContextUtil class. Because the m ethods and propert ies are
stat ic, you do not have to instant iate a ContextUtil object— you
should just call t he methods. For example, if you want to t race the
current COM+ context ID (its GUID) to the Output window, use the
ContextId stat ic property of ContextUtil:
using System.Diagnostics;//For the Trace class

Guid contextID = ContextUtil.ContextId;
String traceMessage = "Context ID is " +
contextID.ToString();
Trace.WriteLine(traceMessage);
ContextUtil has also propert ies used for JITA deact ivat ion,
t ransact ion vot ing, obtaining the t ransact ions and act iv ity IDs, and
obtaining the current t ransact ion object . You will see examples for
how to use these ContextUtil propert ies later in this chapter.

1 0 .8 COM+ Context At t r ibutes

You can decorate (apply at t r ibutes to) your class with two context-
related at t r ibutes. The at t r ibute MustRunInClientContext informs
COM+ that the class must be act ivated in its creator's context :
[MustRunInClientContext(true)]
public class MyComponent :ServicedComponent
{...}
When you register the class above with COM+ , the "Must be
act ivated in caller's context " checkbox on the component's
Act ivat ion tab is selected in the Component Services Explorer. I f
you do not use this at t r ibute, the regist rat ion process uses the
default COM+ set t ing when register ing the component with COM+
— not enforcing sam e-context act ivat ion. As a result , using
MustRunInClientContext with a false parameter passed to the
const ructor is the same as using the COM+ default :
[MustRunInClientContext(false)]
Using at t r ibutes with the COM+ default values (such as const ruct ing
the MustRunInClientContext at t r ibute with false) is useful when
you combine it with the /reconfig swit ch of RegSvcs. For example,
you can undo any unknown changes m ade to your component
configurat ion using the Component Services Explorer and restore
the component configurat ion to a known state.

 304

The MustRunInClientContext at t r ibute class has an over loaded
default const ructor . I f you use MustRunInClientContext with no
parameters, the default const ructor uses true for the at t r ibute
value. As a result , the following two statements are equivalent :
[MustRunInClientContext]
[MustRunInClientContext(true)]
The second COM+ context - related at t r ibute is the
EventTrackingEnabled at t r ibute. I t informs COM+ that the
component supports events and stat ist ics collect ion during its
execut ion:
[EventTrackingEnabled(true)]
public class MyComponent2:ServicedComponent
{...}
The stat ist ics are displayed in the Component Services Explorer .
When you register this class with COM+ , the "Component supports
events and stat ist ics" checkbox on the com ponent ’s Act ivat ion tab is
checked in the Component Services Explorer. I f you do not use this
at t r ibute, the regist rat ion process does not use the default COM+
set t ing of support ing events when register ing the com ponent with
COM+ . The .NET designers made this decision consciously to
m inim ize creat ion of new COM+ contexts for new .NET com ponents;
a component that supports stat ist ics is usually placed in it own
context .
The EventTrackingEnabled at t r ibute class also has an over loaded
default const ructor . I f you construct it with no parameters, the
default const ructor uses true for the at t r ibute value. As a result ,
the following two statements are equivalent :
[EventTrackingEnabled]
[EventTrackingEnabled(true)]

1 0 .9 COM+ Object Pooling

The ObjectPooling at t r ibute is used to configure every aspect of
your component ’s object pooling. The ObjectPooling at t r ibute
enables or disables object pooling and sets the m inim um or
maximum pool size and object creat ion t imeout . For example, to
enable object pooling of your component ’s objects with a m inimum
pool size of 3, a m aximum pool size of 10, and a creat ion t imeout of
20 m illiseconds, you would wr ite:
[ObjectPooling(MinPoolSize = 3,MaxPoolSize =
10,CreationTimeout = 20)]
public class MyComponent :ServicedComponent
{...}
The MinPoolSize, MaxPoolSize, and CreationTimeout propert ies
are public propert ies of the ObjectPooling at t r ibute class. I f you do
not specify values for these propert ies (all or just a subset) when

 305

your component is registered, the default COM+ values are used for
these propert ies (a m inimum pool size of 0, a maximum pool size of
1,048,576, and a creat ion t imeout of 60 seconds) .
The ObjectPooling at t r ibute has a Boolean property called the
Enabled property. I f you do not specify a value for it (true or
false) , the at t r ibute’s const ructor sets it to true. I n fact , the
at t r ibute’s const ructor has a few overloaded versions— a default
const ructor that sets the Enabled property to true and a
const ructor that accepts a Boolean parameter. All constructors set
the pool param eters to the default COM+ value. As a result , the
following three statements are equivalent :
[ObjectPooling]
[ObjectPooling(true)]
[ObjectPooling(Enabled = true)]

I f your pooled component is hosted in a library
applicat ion, then each host ing Applicat ion Domain
will have its own pool. As a result , you m ay have
mult iple pools in a single physical process, if that
process hosts mult iple Applicat ion Dom ains.

Under COM, the pooled object returns to the pool when the client
releases its reference to it . Managed objects do not have reference
count ing— .NET uses garbage collect ion instead. A managed pooled
object returns to the pool only when it is garbage collected. The
problem with this behavior is that a substant ial delay between the
t ime the object is no longer needed by its client and the t ime the
object returns to the pool can occur. This delay m ay have serious
adverse effects on your applicat ion scalabilit y and throughput . An
object is pooled because it was expensive to create. I f the object
spends a substant ial port ion of its t ime wait ing for the garbage
collector, your applicat ion benefits lit t le from object pooling.
There are two ways to address this problem. The first solut ion uses
COM+ JITA (discussed next) . When you use JITA, the pooled object
returns to the pool after every method call from the client . The
second solut ion requires client part icipat ion.
Serv icedComponent has a public stat ic m ethod called
DisposeObject(), defined as:
public static void DisposeObject(ServicedComponent sc);
When the client calls DisposeObject(), passing in an instance of a
pooled serv iced component , the object returns to the pool
immediately . DisposeObject() has the effect of not ify ing COM+
that the object has been released. Besides returning the object to
the pool, DisposeObject() disposes of the context object host ing
the pooled object and of the proxy the client used.
For example, if the com ponent definit ion is:
public interface IMyInterface
{

 306

 void MyMethod();
}

[ObjectPooling]
public class MyComponent : ServicedComponent,IMyInterface
{
 public void MyMethod(){}
}
When the client is done using the object , to expedite returning the
object to the pool, the client should call DisposeObject():
IMyInterface obj;
Obj = (IMyInterface) new MyComponent();
obj.MyMethod();
ServicedComponent sc = obj as ServicedComponent;
If(sc != null)
 ServicedComponent.DisposeObject(sc);
However, calling DisposeObject() direct ly is ugly . First , the client
has to know that it is dealing with an object der ived from
ServicedComponent, which couples the client to the type used and
renders m any benefits of inter face-based programming useless.
Even worse, the client only has to call DisposeObject() if this
object is pooled, which couples the client to the serv iced
component ’s configurat ion. What if you use object pooling in only
one custom er site, but not in others? This situat ion is a ser ious
breach of encapsulat ion— the core pr inciple of object-or iented
programming.
The solut ion is to have ServicedComponent implement a special
inter face (defined in the System namespace) called IDisposable,
defined as:
public interface IDisposable
{
 void Dispose();
}
ServicedComponent implementat ion of Dispose() returns the
pooled object to the pool.
Having the Dispose() method on a separate interface allows the
client to query for the presence of IDisposable and always call it ,
regardless of the object's actual type:
IMyInterface obj;
obj = (IMyInterface) new MyComponent();
obj.MyMethod();

//Client wants to expedite whatever needs expediting:
IDisposable disposable = obj as IDisposable;
if(disposable != null)
 disposable.Dispose();
The IDisposable technique is useful not only with serv iced
components, but also in num erous other places in .NET. Whenever

 307

your component requires determ inist ic disposal of the resources and
memory it holds, IDisposable prov ides a type-safe, com ponent -
oriented way of having the client dispose of the object without being
too coupled to its type.

1 0 .1 0 COM+ Just - in- Tim e Act ivat ion

.NET m anaged components can use COM+ JITA to eff icient ly handle
r ich clients (such as .NET Windows Forms clients) , as discussed in
Chapter 3.
To enable JITA support for your component , use the
JustInTimeActivation at t r ibute:
[JustInTimeActivation(true)]
public class MyComponent :ServicedComponent
{..}
When you register this component with COM+ , the JITA checkbox in
the Act ivat ion tab on the Component Services Explorer is selected.
I f you do not use the JustInTimeActivation at t r ibute, JITA
support is disabled when you register your component with COM+
(unlike the COM+ default of enabling JITA) . The
JustInTimeActivation class default const ructor enables JITA
support , so the following two statements are equivalent :
[JustInTimeActivation]
[JustInTimeActivation (true)]
Enabling JITA support is just one thing you need to do to use JITA.
You st ill have to let COM+ know when to deact ivate your object .
You can deact ivate the object by set t ing the done bit in the context
object , using the DeactivateOnReturn property of the ContextUtil
class. As discussed at length in Chapter 3, a JITA object should
ret r ieve its state at the beginning of every method call and save it
at the end. Example 10-3 shows a serv iced component using JITA.

Exam ple 1 0 -3 . A serviced com ponent using JI TA

public interface IMyInterface
{
 void MyMethod(long objectIdentifier);
}

[JustInTimeActivation(true)]
public class MyComponent :ServicedComponent,IMyInterface
{
 public void MyMethod(long objectIdentifier)
 {
 GetState(objectIdentifier);
 DoWork();
 SaveState(objectIdentifier);

 308

 //inform COM+ to deactivate the object upon
method return
 ContextUtil.DeactivateOnReturn = true;
 }
 //other methods
 protected void GetState(long objectIdentifier){...}
 protected void DoWork(){...}
 protected void SaveState(long objectIdentifier){...}
}
You can also use the Component Serv ices Explorer to configure the
method to use auto-deact ivat ion. In that case, the object is
deact ivated automat ically upon method return, unless you set the
value of the DeactivateOnReturn property to false.

1 0 .1 0 .1 Using I ObjectControl

I f your serviced com ponent uses object pooling or JITA (or both) , it
may also need to know when it is placed in a COM+ context to do
context -specific init ializat ion and cleanup. Like a COM+ configured
component , the serviced component can use IObjectControl for
that purpose. The .NET base class ServicedComponent already
implements IObjectControl, and its im plementat ion is vir tual— so
you can overr ide the im plementat ion in your serv iced component ,
as shown in Example 10-4.

Exam ple 1 0 -4 . A serviced com ponent overr iding the ServicedCom ponent
im plem entat ion of I ObjectControl

public class MyComponent :ServicedComponent
{
 public override void Activate()
 {
 //Do context specific initialization here
 }
 public override void Deactivate()
 {
 //Do context specific cleanup here
 }
 public override bool CanBePooled()
 {
 return true;
 }
 //other methods
}
I f you encounter an error dur ing Activate() and throw an
except ion, then the object's act ivat ion fails and the client is given
an opportunity to catch the except ion.

1 0 .1 0 .2 I ObjectControl, JI TA, and Determ inist ic Finalizat ion

 309

To maintain JITA semant ics, when the object deact ivates itself, .NET
calls DisposeObject() on it explicit ly, thus dest roying it . Your
object can do specific cleanup in the Finalize() method (the
dest ructor in C#) , and Finalize() will be called as soon as the
object deact ivates itself, without wait ing for garbage collect ion. I f
the object is a pooled object (as well as a JITA object) , then it is
returned to the pool after deact ivat ion, without wait ing for the
garbage collect ion.
You can also overr ide the ServicedComponent implementat ion of
IObjectControl.Deactivate() and perform your cleanup there.
In any case, you end up with a determ inist ic way to dispose of
cr it ical resources without explicit client part icipat ions. This situat ion
makes shar ing your object am ong clients much easier because now
the clients do not have to coordinate who is responsible for calling
Dispose().

COM+ JITA gives m anaged components
determ inist ic f inalizat ion, a serv ice that nothing
else in .NET can provide out of the box.

1 0 .1 1 COM+ Constructor String

Any COM+ configured component that implements the
IObjectConstruct inter face has access dur ing construct ion to a
const ruct ion st r ing (discussed in Chapter 3) , configured in the
Component Services Explorer. Serviced com ponents are no
different . The base class, ServicedComponent, already implements
the IObjectConstruct interface as a vir tual method (it has only
one m ethod) . Your der ived serviced com ponent can overr ide the
Construct() method, as shown in this code sample:
public class MyComponent :ServicedComponent
{
 public override void Construct(string constructString)
 {
 //use the string. For example:
 MessageBox.Show(constructString);
 }
}
I f the checkbox "Enable object const ruct ion" on the component
Act ivat ion tab is selected, then the Construct() method is called
after the component ’s const ructor , providing it with the configured
const ruct ion st r ing.
You can also enable construct ion st r ing support and provide a
default const ruct ion st r ing using the ConstructionEnabled
at t r ibute:

 310

[ConstructionEnabled(Enabled = true,Default = "My
String")]
public class MyComponent :ServicedComponent
{
 public override void Construct(string constructString)
 {...}
}
The ConstructionEnabled at t r ibute has two public propert ies.
Enabled enables const ruct ion st r ing support for your serviced
component in the Component Services Explorer (once the
component is registered) and Default prov ides an init ial st r ing
value. When your com ponent is registered with COM+ , the
regist rat ion process assigns the default st r ing to the constructor
st r ing field on the component Act ivat ion tab. The default st r ing has
no fur ther use after regist rat ion. New instances of your component
receive as a constructor st r ing the current value of the const ructor
st r ing field. For example, if the default st r ing is Str ing A, when the
serv iced component is registered, the value of the constructor st r ing
field is set to St r ing A. I f you set it to a different value, such as
St r ing B, new instances of the component get St r ing B as their
const ruct ion st r ing. They receive the current value, not the default
value.
The ConstructionEnabled at t r ibute has two over loaded
const ructors. One const ructor accepts a Boolean value for the
Enabled property; the default const ructor sets the value of the
Enabled property to true. You can also set the value of the
Enabled property explicit ly . As a result , the following three
statements are equivalent :
[ConstructionEnabled]
[ConstructionEnabled(true)]
[ConstructionEnabled(Enabled = true)]

1 0 .1 2 COM+ Transact ions

You can configure your serviced component to use the five available
COM+ transact ion support opt ions by using the Transaction
at t r ibute. The Transaction at t r ibute’s constructor accepts an enum
parameter of type TransactionOption, defined as:
public enum TransactionOption
{
 Disabled,
 NotSupported,
 Supported,
 Required,
 RequiresNew
}

 311

For example, to configure your serviced component to require a
t ransact ion, use the TransactionOption.Required value:
[Transaction(TransactionOption.Required)]
public class MyComponent :ServicedComponent
{...}
The five enum values of TransactionOption map to the five COM+
transact ion support opt ions discussed in Chapter 4.
When you use the Transaction at t r ibute to mark your serviced
component to use t ransact ions, you im plicit ly set it to use JI TA and
require act iv ity-based synchronizat ion as well.
The Transaction at t r ibute has an overloaded default const ructor,
which sets the t ransact ion support to
TransactionOption.Required. As a result , the following two
statements are equivalent :
[Transaction]
[Transaction(TransactionOption.Required)]

1 0 .1 2 .1 Vot ing on the Transact ion

Not surprisingly, you use the ContextUtil class to vote on the
t ransact ion’s outcom e. ContextUtil has a stat ic property of the
enum type TransactionVote called MyTransactionVote.
TransactionVote is defined as:
public enum TransactionVote {Abort,Commit}
Example 10-5 shows a t ransact ional serviced component vot ing on
its t ransact ion outcome using ContextUtil. Note that the
component st ill has to do all the r ight things that a well-designed
t ransact ional component has to do (see Chapter 4) ; it needs to
ret r ieve its state from a resource manager at the beginning of the
call and save it at the end. I t must also deact ivate itself at the end
of the method to purge its state and make the vote take effect .

Exam ple 1 0 -5 . A t ransact ional serviced com ponent vot ing on its
t ransact ion outcom e using the ContextUt il MyTransact ionVote property

public interface IMyInterface
{
 void MyMethod(long objectIdentifier);
}

[Transaction]
public class MyComponent :ServicedComponent,IMyInterface
{
 public void MyMethod(long objectIdentifier)
 {
 try
 {
 GetState(objectIdentifier);

 312

 DoWork();
 SaveState(objectIdentifier);
 ContextUtil.MyTransactionVote =
TransactionVote.Commit;
 }
 catch
 {
 ContextUtil.MyTransactionVote =
TransactionVote.Abort;
 }
 //Let COM+ deactivate the object once the method
returns
 finally
 {
 ContextUtil.DeactivateOnReturn = true;
 }
 }
 //helper methods
 protected void GetState(long objectIdentifier){...}
 protected void DoWork(){...}
 protected void SaveState(long objectIdentifier){...}
}
Compare Example 10-5 to Example 4-3. A COM+ configured
component uses the returned HRESULT from the DoWork() helper
method to decide on the t ransact ion’s outcom e. A serv iced
component , like any other managed component , does not use
HRESULT return codes for error handling; it uses except ions instead.
In Example 10-5 the component catches any except ion that was
thrown in the try block by the DoWork() m ethod and votes to
abort in the catch block.
Alternat ively, if you do not want to wr ite except ion-handling code,
you can use the program ming model shown in Example 10-6. Set
the context object ’s consistency bit to false (vote to abort) as the
first thing the m ethod does. Then set it back to true as the last
thing the method does (vote to commit) . Any except ion thrown in
between causes the method except ion to end without vot ing to
commit .

Exam ple 1 0 -6 . Vot ing on the t ransact ion w ithout except ion handling

public interface IMyInterface
{
 void MyMethod(long objectIdentifier);
}

[Transaction]
public class MyComponent :ServicedComponent,IMyInterface
{
 public void MyMethod(long objectIdentifier)

 313

 {
 //Let COM+ deactivate the object once the method
returns and abort the
 //transaction. You can use ContextUtil.SetAbort(
) as well
 ContextUtil.DeactivateOnReturn = true;
 ContextUtil.MyTransactionVote =
TransactionVote.Abort;

 GetState(objectIdentifier);
 DoWork();
 SaveState(objectIdentifier);

 ContextUtil.MyTransactionVote =
TransactionVote.Commit;
 }
 //helper methods
 protected void GetState(long objectIdentifier){...}
 protected void DoWork(){...}
 protected void SaveState(long objectIdentifier){...}
}
Example 10-6 has another advantage over Example 10-5: having
the except ion propagated up the call chain once the t ransact ion is
aborted. By propagat ing it , callers up the chain know that they can
also abort their work and avoid wast ing more t ime on a doomed
t ransact ion.

1 0 .1 2 .2 The AutoCom plete At t r ibute

Your serv iced components can take advantage of COM+ method
auto-deact ivat ion using the AutoComplete method at t r ibute. Dur ing
the regist rat ion process, the method is configured to use COM+
auto-deact ivat ion when AutoComplete is used on a method, and the
checkbox "Automat ically deact ivate this object when the m ethod
returns" on the method’s General tab is selected. Serv iced
components that use the AutoComplete at t r ibute do not need to
vote explicit ly on their t ransact ion outcome. Example 10-7 shows a
t ransact ional serv iced component using the AutoComplete method
at t r ibute.

Exam ple 1 0 -7 . Using the AutoCom plete m ethod at t ribute

public interface IMyInterface
{
 void MyMethod(long objectIdentifier);
}

[Transaction]
public class MyComponent : ServicedComponent,IMyInterface

 314

{
 [AutoComplete(true)]
 public void MyMethod(long objectIdentifier)
 {
 GetState(objectIdentifier);
 DoWork();
 SaveState(objectIdentifier);
 }
 //helper methods
 protected void GetState(long objectIdentifier){...}
 protected void DoWork(){...}
 protected void SaveState(long objectIdentifier){...}
}
When you configure the method to use auto-deact ivat ion, the
object ’s interceptor sets the done and consistency bits of the
context object to true if t he method did not throw an except ion and
the consistency bit to false if it did. As a result , the t ransact ion is
commit ted if no except ion is thrown and aborted otherwise.
Nontransact ional JITA objects can also use the AutoComplete
at t r ibute to deact ivate them selves autom at ically on method return.
The AutoComplete at t r ibute has an overloaded default constructor
that uses true for the at t r ibute const ruct ion. Consequent ly , the
following two statements are equivalent :
[AutoComplete]
[AutoComplete(true)]
The AutoComplete at t r ibute can be applied on a method as part of
an interface definit ion:
public interface IMyInterface
{
 //Avoid this:
 [AutoComplete]
 void MyMethod(long objectIdentifier);
}
However, you should avoid using the at t r ibute this way. An
inter face and its methods declarat ions serve as a cont ract between
a client and an object ; using auto complet ion of methods is purely
an im plementat ion decision. For example, one implementat ion of
the inter face on one component may chose to use autocomplete
and another implem entat ion on another component may choose not
to.

1 0 .1 2 .3 The Transact ionContext Object

A nont ransact ional managed client creat ing a few t ransact ional
objects faces a problem discussed in Chapter 4 (see Sect ion 4.9) .
Essent ially , if the client wants to scope all it s interact ions with the
objects it creates under one t ransact ion, it must use a m iddleman
to create the objects for it . Otherwise, each object created will be in

 315

it s own separate t ransact ion. COM+ provides a ready-m ade
m iddleman called TransactionContext. Managed clients can use
TransactionContext as well. To use the TransactionContext
object , add to the project references the COM+ services type
library. The TransactionContext class is in the COMSVCSLib
namespace.
The TransactionContext class is especially useful in situat ions in
which the class is a managed .NET component that derives from a
class other than ServicedComponent. Remem ber that a .NET
component can only der ive from one concrete class and since the
class already derives from a concrete class other than
ServicedComponent, it cannot use the Transaction at t r ibute.
Nevertheless, the TransactionContext class gives this client an
abilit y to init iate and manage a t ransact ion.
Example 10-8 demonstrates usage of the TransactionContext
class, using the same use-case as Example 4-6.

Exam ple 1 0 -8 . A nontransact ional m anaged client using the
Transact ionContext helper class to create other t ransact ional objects

using COMSVCSLib;

IMyInterface obj1,obj2,obj3;
ITransactionContext transContext;

transContext = (ITransactionContext) new
TransactionContext();

obj1 =
(IMyInterface)transContext.CreateInstance("MyNamespace.My
Component");
obj2 =
(IMyInterface)transContext.CreateInstance("MyNamespace.My
Component");
obj3 =
(IMyInterface)transContext.CreateInstance("MyNamespace.My
Component");

try
{
 obj1.MyMethod();
 obj2.MyMethod();
 obj3.MyMethod();
 transContext.Commit();
}
catch//Any error - abort the transaction
{
 transContext.Abort();
}

 316

Note that the client in Exam ple 10-8 decides whether to abort or
commit the t ransact ion depending on whether an except ion is
thrown by the internal objects.

1 0 .1 2 .4 COM+ Transact ions and Nonserviced Com ponents

Though this chapter focuses on serviced components, it is worth
not ing that COM+ t ransact ions are used by other parts of the .NET
framework besides serv iced components— in part icular , ASP.NET
and Web Services.

1 0 .1 2 .4 .1 W eb services and t ransact ions

Web services are the most excit ing piece of technology in the ent ire
.NET framework. Web services allow a m iddle- t ier component in one
web site to invoke m ethods on another m iddle- t ier component at
another web site, with the sam e ease as if t hat component were in
its own assem bly. The under ly ing technology facilitat ing web
serv ices ser ializes the calls into text form at and t ransports the call
from the client to the web service provider using HTTP. Because
web service calls are text based, they can be made across firewalls.
Web services typically use a protocol called Simple Object Access
Protocol (SOAP) to represent the call, although other text-based
protocols such as HTTP-POST and HTTP-GET can also be used. .NET
successfully hides the required details from the client and the server
developer; a web service developer only needs to use the
WebMethod at t r ibute on the public methods exposed as web
serv ices. Example 10-9 shows the MyWebService web serv ice that
provides the MyMessage web service— it returns the st r ing "Hello" to
the caller .

Exam ple 1 0 -9 . A t r ivia l w eb service that returns the st ring "Hello"

using System.Web.Services;

public class MyWebService : WebService
{
 public MyWebService(){}
 [WebMethod]
 public string MyMessage()
 {
 return "Hello";
 }
}
The web service class can opt ionally derive from the WebService
base class, defined in the System.Web.Services namespace (see
Example 10-9) . The WebService base class provides you with easy
access to common ASP.NET objects, such as those represent ing

 317

applicat ion and session states. Your web service probably accesses
resource m anagers and t ransact ional components. The problem
with adding t ransact ion support to a web service that der ived from
WebService is that it is not derived from ServicedComponent, and
.NET does not allow mult iple inher itance of implementat ion.
To overcome this hurdle, the WebMethod at t r ibute has a public
property called TransactionOption, of the enum type
Enterprise.Services.TransactionOption discussed previously.
The default constructor of the WebMethod at t r ibute sets this
property to TransactionOption.Disabled, so the following two
statements are equivalent :
[WebMethod]
[WebMethod(TransactionOption =
TransactionOption.Disabled)]
I f your web service requires a t ransact ion, it can only be the root of
a t ransact ion, due to the stateless nature of the HTTP protocol.
Even if you configure your web method to only require a t ransact ion
and it is called from within the context of an exist ing t ransact ion, a
new t ransact ion is created for it . Sim ilar ly , the value of
TransactionOption.Supported does not cause a web service to
join an ex ist ing t ransact ion (if called from within one) .
Consequent ly , the following statements are equivalent— all four
amount to no t ransact ion support for the web service:
[WebMethod]
[WebMethod(TransactionOption =
TransactionOption.Disabled)]
[WebMethod(TransactionOption =
TransactionOption.NotSupported)]
[WebMethod(TransactionOption =
TransactionOption.Supported)]
Moreover, the following statem ents are also equivalent— creat ing a
new t ransact ion for the web service:
[WebMethod(TransactionOption =
TransactionOption.Required)]
[WebMethod(TransactionOption =
TransactionOption.RequiresNew)]
The var ious values of TransactionOption are confusing. To avoid
making them the source of errors and m isunderstandings, use
TransactionOption.RequiresNew when you want t ransact ion
support for your web method; use TransactionOption.Disabled
when you want to explicit ly dem onst rate to a reader of your code
that the web service does not take part in a t ransact ion. The
quest ion is, why did Microsoft provide four over lapping t ransact ion
modes for web serv ices? I believe that it is not the result of
carelessness, but rather a conscious design decision. Microsoft is
probably laying down the foundat ion in .NET for a point in the future
when it will be possible to propagate t ransact ions across web sites.

 318

Finally, you do not need to explicit ly vote on a t ransact ion from
within a web service. I f an except ion occurs within a web serv ice
method, the t ransact ion is autom at ically aborted. Conversely, if no
except ions occur, the t ransact ion is com mit ted automat ically (as if
you used the AutoComplete at t r ibute) . Of course, the web serv ice
can st ill use ContextUtil to vote explicit ly to abort instead of
throwing an except ion, or when no except ion occurred and you st ill
want to abort .

1 0 .1 2 .4 .2 ASP.NET and t ransact ions

An ASP.NET web form may access resource managers (such as
databases) direct ly, and it should do so under the protect ion of a
t ransact ion. The page may also want to create a few t ransact ional
components and compose their work into a single t ransact ion. The
problem again is that a web form der ives from the
System.Web.UI.Page base class, not from ServicedComponent, and
therefore cannot use the [Transaction] at t r ibute.
To provide t ransact ion support for a web form , the Page base class
has a wr ite-only property called TransactionMode of type
TransactionOption. You can assign a value of type
TransactionOption to TransactionMode, to configure t ransact ion
support for your web form . You can assign TransactionMode
programmat ically in your form contractor, or declarat ively by
set t ing that property in the v isual designer. The designer uses the
Transact ion page direct ive to insert a direct ive in the aspx form file.
For example, if you set the property using the designer to
RequiresNew, the designer added this line to the beginning of the
aspx file:
<@% Page Transaction="RequiresNew" %>
Be aware that programm at ic set t ing will overr ide any designer
set t ing. The default is no t ransact ion support (disabled) .
The form can even vote on the outcome of the t ransact ion (based
on its interact ion with the components it created) by using the
ContextUtil methods. Finally, the form can subscr ibe to events
not ify ing it when a t ransact ion is init iated and when a t ransact ion is
aborted.

1 0 .1 3 COM+ Synchronizat ion

Mult ithreaded managed components can use .NET-provided
synchronizat ion locks. These are classic locks, such as m utexes and
events. However, these solut ions all suffer from the deficiencies
described at the beginning of Chapter 5. .NET serviced components
should use COM+ act iv ity-based synchronizat ion by adding the
Synchronization at t r ibute to the class definit ion. The

 319

Synchronization at t r ibute’s const ructor accepts an enum
parameter of type SynchronizationOption, defined as:
public enum SynchronizationOption
{
 Disabled,
 NotSupported,
 Supported,
 Required,
 RequiresNew
}
For example, use the SynchronizationOption.Required value to
configure your serviced component to require act iv ity-based
synchronizat ion:
[Synchronization(SynchronizationOption.Required)]
public class MyComponent :ServicedComponent
{...}
The five enum values of SynchronizationOption map to the five
COM+ synchronizat ion support opt ions discussed in Chapter 5.
The Synchronization at t r ibute has an over loaded default
const ructor, which sets synchronizat ion support to
SynchronizationOption.Required. As a result , the following two
statements are equivalent :
[Synchronization]
[Synchronization(SynchronizationOption.Required)]

The System.Runtime.Remoting.Context
namespace contains a context at t r ibute called
Synchronization t hat can be applied to context-
bound .NET classes. This at t r ibute accepts
synchronizat ion flags sim ilar to
SynchronizationOption, and init ially looks like
another version of the Synchronization class
at t r ibute. However, the Synchronization at t r ibute
in the Context nam espace provides
synchronizat ion based on physical threads, unlike
the Synchronization at t r ibute in the
EnterpriseServices namespace, which uses
causalit ies. As explained in Chapter 5, causality
and act iv it ies are a more elegant and fine- tuned
synchronizat ion st rategy.

1 0 .1 4 Program m ing the COM+ Cata log

You can access the COM+ Catalog from within any .NET managed
component (not only serv iced components) . To write installat ion or
configurat ion code (or manage COM+ events) , you need to add to

 320

your project a reference to the COM+ Admin type library. After you
add the reference, the Catalog interfaces and objects are part of the
COMAdmin namespace. Exam ple 10-10 shows how to create a
catalog object and use it to iterate over the applicat ion collect ion,
t racing to the Output window the names of all COM+ applicat ions on
your computer.

Exam ple 1 0 -1 0 . Accessing the COM+ Catalog and t racing the COM+
applicat ion nam es

using COMAdmin;

ICOMAdminCatalog catalog;
ICatalogCollection applicationCollection;
ICatalogObject application;

int applicationCount;
int i;//Application index

catalog = (ICOMAdminCatalog)new COMAdminCatalog();
applicationCollection =
(ICatalogCollection)catalog.GetCollection("Applications")
;

//Read the information from the catalog
applicationCollection.Populate();
applicationCount = applicationCollection.Count;

for(i = 0;i< applicationCount;i++)
{
 //Get the current application
 application=
(ICatalogObject)applicationCollection.get_Item(i);
 int index = i+1;
 String traceMessage = index.ToString()+".
"+application.Name.ToString();

 Trace.WriteLine(traceMessage);
}

The System.EnterpriseServices.Admin
namespace contains the COM+ Catalog object and
interface definit ions. However, in the Visual
Studio.NET Beta 2, the interfaces are defined as
private to that assem bly. As a result , you cannot
access them. The obvious workaround is to import
the COM+ Admin type library yourself, as
demonstrated in Example 10-10. In the future, you
will probably be able to use
System.EnterpriseServices.Admin namespace
direct ly. The result ing code, when programming

 321

direct ly. The result ing code, when programming
direct ly using the
System.EnterpriseServices.Admin namespace, is
almost ident ical to Example 10-10.

1 0 .1 5 COM+ Security

.NET has an elaborate component-oriented security model. .NET
security model manages what the com ponent is allowed to do and
what perm issions are given to the component and all it s clients up
the call chain. You can (and should) st ill m anage the securit y
at t r ibutes of your host ing COM+ applicat ion to authent icate
incom ing calls, authorize callers, and cont rol impersonat ion level.
.NET also has what .NET calls role-based security, but that service
is lim ited compared with COM+ role-based security. A role in .NET is
actually a Windows NT user group. As a result , .NET role-based
security is only as granular as the user groups in the host ing
domain. Usually, you do not have cont rol over your end custom er’s
IT department . I f you deploy your applicat ion in an environment
where the user groups are coarse, or where they do not map well to
actual roles users play in your applicat ion, then .NET role-based
security is of lit t le use to you. COM+ roles are unrelated to the user
groups, allowing you to assign roles direct ly from the applicat ion
business domain.

1 0 .1 5 .1 Configuring Applicat ion- Level Security Set t ings

The assembly at t r ibute ApplicationAccessControl is used to
configure all t he set t ings on the host ing COM+ applicat ion’s Secur ity
tab.
You can use ApplicationAccessControl to turn applicat ion- level
authent icat ion on or off:
[assembly: ApplicationAccessControl(true)]

The ApplicationAccessControl at t r ibute has a default constructor,
which sets authorizat ion to true if you do not provide a
const ruct ion value. Consequent ly, the following two statem ents are
equivalent :
[assembly: ApplicationAccessControl]
[assembly: ApplicationAccessControl(true)]
I f you do not use the ApplicationAccessControl at t r ibute at all,
then when you register your assembly, the COM+ default takes
effect and applicat ion- level authorizat ion is turned off.
The ApplicationAccessControl at t r ibute has three public
propert ies you can use to set the access checks, authent icat ion, and

 322

impersonat ion level. The AccessChecksLevel property accepts an
enum parameter of type AccessChecksLevelOption, defined as:
public enum AccessChecksLevelOption
{
 Application,
 ApplicationComponent
}
AccessChecksLevel is used to set the applicat ion- level access
checks to the process only
(AccessChecksLevelOption.Application) or process and
component level
(AccessChecksLevelOption.ApplicationComponent) . I f you do not
specify an access level, then the ApplicationAccessControl
at t r ibute’s const ructors set the access level to
AccessChecksLevelOption.ApplicationComponent, the same as
the COM+ default .
The Authentication property accepts an enum parameter of type
AuthenticationOption, defined as:
public enum AuthenticationOption
{
 None,
 Connect,
 Call,
 Packet,
 Integrity,
 Privacy,
 Default
}
The values of AuthenticationOption map to the six authent icat ion
opt ions discussed in Chapter 7. I f you do not specify an
authent icat ion level or if you use the Default value, the
ApplicationAccessControl at t r ibute’s const ructors set the
authent icat ion level to AuthenticationOption.Packet, the same
as the COM+ default .
The Impersonation property accepts an enum parameter of type
ImpersonationLevelOption, defined as:
public enum ImpersonationLevelOption
{
 Anonymous,
 Identify,
 Impersonate,
 Delegate,
 Default
}
The values of ImpersonationLevelOption map to the four
impersonat ion opt ions discussed in Chapter 7. I f you do not specify
an im personat ion level or if you use the Default value, then the
ApplicationAccessControl at t r ibute’s const ructors set the

 323

impersonat ion level to ImpersonationLevelOption.Impersonate,
the same as the COM+ default .
Example 10-11 demonst rates using the
ApplicationAccessControl at t r ibute with a server applicat ion. The
example enables applicat ion- level authent icat ion and sets the
security level to perform access checks at the process and
component level. I t sets authent icat ion to authent icate incom ing
calls at the packet level and sets the im personat ion level to
Identify.

Exam ple 1 0 -1 1 . Configuring a server applicat ion security

[assembly:
ApplicationActivation(ActivationOption.Server)]

[assembly: ApplicationAccessControl(
 true,//Authentication is on

AccessChecksLevel=AccessChecksLevelOption.ApplicationComp
onent,
 Authentication=AuthenticationOption.Packet,

ImpersonationLevel=ImpersonationLevelOption.Identify)]
A library COM+ applicat ion has no use for im personat ion level, and
it can only choose whether it wants to take part in its host ing
process authent icat ion level (that is, it cannot dictate the
authent icat ion level) . To turn authent icat ion off for a library
applicat ion, set the authent icat ion property to
AuthenticationOption.None. To turn it on, use any other value,
such as AuthenticationOption.Packet. Example 10-12
demonstrates how to use the ApplicationAccessControl to
configure the security set t ing of a library applicat ion.

Exam ple 1 0 -1 2 . Configuring a library applicat ion security

[assembly:
ApplicationActivation(ActivationOption.Library)]

[assembly: ApplicationAccessControl(
 true,//Authentication

AccessChecksLevel=AccessChecksLevelOption.ApplicationComp
onent,
 //use AuthenticationOption.None to turn off
authentication,
 //and any other value to turn it on
 Authentication=AuthenticationOption.Packet)]

1 0 .1 5 .2 Com ponent - Level Access Checks

 324

The component at t r ibute ComponentAccessControl is used to
enable or disable access checks at the component level. Recall from
Chapter 7 that this is your component ’s role-based security master
switch. The ComponentAccessControl at t r ibute’s const ructor
accepts a Boolean param eter, used to turn access control on or off.
For example, you can configure your serv iced component to require
component - level access checks:
[ComponentAccessControl(true)]
public class MyComponent :ServicedComponent
{...}
The ComponentAccessControl at t r ibute has an overloaded default
const ructor that uses truefor the at t r ibute construct ion.
Consequent ly , the following two statem ents are equivalent :
[ComponentAccessControl]
[ComponentAccessControl(true)]

1 0 .1 5 .3 Adding Roles to an Applicat ion

You can use the Com ponent Serv ices Explorer to add roles to the
COM+ applicat ion host ing your serviced components. You can also
use the SecurityRole at t r ibute to add the roles at the assem bly
level. When you register the assem bly with COM+ , the roles in the
assembly are added to the roles defined for the host ing COM+
applicat ion. For example, to add the Manager and Teller roles to a
bank applicat ion, simply add the two roles as assembly at t r ibutes:
[assembly: SecurityRole("Manager")]
[assembly: SecurityRole("Teller")]
The SecurityRole at t r ibute has two public propert ies you can set .
The first is Description. Any text assigned to the Description
property will show up in the Component Serv ices Explorer in the
Descript ion field on the role’s General tab:
[assembly: SecurityRole("Manager",Description = "Can
access all components")]
[assembly: SecurityRole("Teller",Description = "Can
access IAccountsManager only")]
The second property is the SetEveryoneAccess Boolean property. I f
you set SetEveryoneAccess to true, then when the component is
registered, the regist rat ion process adds the user Everyone as a
user for that role, thus allowing everyone access to whatever the
role is assigned to. I f you set it to false, then no user is added
during regist rat ion and you have to explicit ly add users during
deployment using the Component Services Explorer . The
SecurityRole at t r ibute sets the value of SetEveryoneAccess by
default to true. As a result , the following statements are
equivalent :
[assembly: SecurityRole("Manager")]
[assembly: SecurityRole("Manager",true)]

 325

[assembly: SecurityRole("Manager",SetEveryoneAccess =
true)]
Automat ically grant ing everyone access is a nice debugging feature;
it elim inates security problems, let t ing you focus on analyzing your
domain- related bug. However, you must suppress grant ing
everyone access in a release build, by set t ing the
SetEveryoneAccess property to false:
#if DEBUG
[assembly: SecurityRole("Manager")]
#else
[assembly: SecurityRole("Manager",SetEveryoneAccess =
false)]
#endif

1 0 .1 5 .4 Assigning Roles to Com ponent , I nterface, and
Method

The SecurityRole at t r ibute is also used to grant access for a role
to a component , inter face, or method. Example 10-13 shows how to
grant access to Role1 at the component level, to Role2 at the
inter face level, and to Role3 at the method level.

Exam ple 1 0 -1 3 . Assigning roles at the com ponent , in terface, and m ethod
levels

[assembly: SecurityRole("Role1")]
[assembly: SecurityRole("Role2")]
[assembly: SecurityRole("Role3")]

[SecurityRole("Role2")]
public
interface IMyInterface
{
 [SecurityRole("Role3")]
 void MyMethod();
}

[SecurityRole("Role1")]
public class MyComponent :ServicedComponent,IMyInterface
{...}
Figure 10-2 shows the result ing role assignment in the Com ponent
Serv ices Explorer at the method level. Note that Role1 and Role2
are inherited from the component and interface levels.

Figure 1 0 -2 . The resu lt ing role assignm ent of Exam ple 1 0 - 1 3 in the
Com ponent Services Explorer , as seen at the m ethod level

 326

I f you only assign a role (at the component , interface, or method
level) but do not define it at the assem bly level, then that role is
added to the applicat ion automat ically dur ing regist rat ion. However,
you should define roles at the assembly level to provide one
cent ralized place for roles descr ipt ion and configurat ion.

1 0 .1 5 .5 Verifying Caller ’s Role Mem bership

Somet im es it is useful to ver ify program mat ically the caller ’s role
membership before grant ing it access. Your serv iced components
can do that just as easily as configured COM components. .NET
provides you the helper class SecurityCallContext that gives you
access to the secur ity param eters of the current call.
SecurityCallContext encapsulates the COM+ call-object ’s
implementat ion of ISecurityCallContext, discussed in Chapter 7.
The class SecurityCallContext has a public stat ic property called
CurrentCall. CurrentCall is a read-only property of type
SecurityCallContext (it returns an instance of the same type) .
You use the SecurityCallContext object returned from
CurrentCall to access the current call. Example 10-14
demonstrates the use of the secur ity call context to ver ify a caller ’s
role membership, using the same use-case as Exam ple 7-1.

Exam ple 1 0 -1 4 . Verifying the caller’s role m em bership using the
SecurityCallContext class

public class Bank :ServicedComponent,IAccountsManager
{
 void TransferMoney(int sum,ulong accountSrc,ulong
accountDest)
 {
 bool callerInRole = false;
 callerInRole =
SecurityCallContext.CurrentCall.IsCallerInRole("Customer"
);

 327

 if(callerInRole)//The caller is a customer
 {
 if(sum > 5000)
 throw(new UnauthorizedAccessException(@"Caller
does not have sufficient
 credentials
to transfer this sum"));
 }
 DoTransfer(sum,accountSrc,accountDest);//Helper
method
 }
 //Other methods
}
You should use the Boolean property IsSecurityEnabled of
SecurityCallContext to verify that security is enabled before
accessing the IsCallerInRole() m ethod:
bool securityEnabled =
SecurityCallContext.CurrentCall.IsSecurityEnabled;
if(securityEnabled)
{
 //the rest of the verification process
}

1 0 .1 6 COM+ Queued Com ponents

.NET has a built - in m echanism for invoking a method call on an
object : using a delegate asynchronously. The client creates a
delegate class that wraps the method it wants to invoke
synchronously, and the compiler prov ides definit ion and
implementat ion for a BeginInvoke() method, which
asynchronously calls the required method on the object . The
compiler also generates the EndInvoke() method to allow the
client to poll for the method complet ion. Addit ionally , .NET provides
a helper class called AsyncCallback to manage asynchronous
callbacks from the object once the call is done.
Compared with COM+ queued components, the .NET approach
leaves much to be desired. First , .NET does not support
disconnected work. Both the client and the server have to be
running at the same t ime, and their machines m ust be connected to
each other on the network. Second, the client ’s code in the
asynchronous case is very different from the usual synchronous
invocat ion of the same method on the object ’s interface. Third,
there is no built - in support for t ransact ional forwarding of calls to
the server, nor is there an auto- retry mechanism . I n short , you
should use COM+ queued components if you want to invoke
asynchronous method calls in .NET.

 328

The ApplicationQueuing assembly at t r ibute is used to configure
queuing support for the host ing COM+ applicat ion. The
ApplicationQueuing at t r ibute has two public propert ies that you
can set . The Boolean Enabledproperty corresponds to the Queued
checkbox on the applicat ion’s queuing tab. When set to true, it
inst ructs COM+ to create a public message queue, named as the
applicat ion, for the use of any queued components in the assembly.
The second public property of ApplicationQueuing is the Boolean
QueueListenerEnabled property . I t corresponds to the Listen
checkbox on the applicat ion’s queuing tab. When set to true, it
inst ructs COM+ to act ivate a listener for the applicat ion when the
applicat ion is launched. For example, here is how you enable
queued com ponent support for your applicat ion and enable a
listener:
//Must be a server application to use queued components
[assembly:
ApplicationActivation(ActivationOption.Server)]
[assembly: ApplicationQueuing(Enabled =
true,QueueListenerEnabled = true)]
The ApplicationQueuing at t r ibute has an over loaded default
const ructor that sets the Enabled at t r ibute to true and the
QueueListenerEnabled at t r ibute to false. As a result , the
following two statements are equivalent :
[assembly: ApplicationQueuing]
[assembly: ApplicationQueuing(Enabled =
true,QueueListenerEnabled = false)]

1 0 .1 6 .1 Configuring Queued I nterfaces

I n addit ion to enabling queued component support at the
applicat ion level, you must mark your interfaces as capable of
receiving queued calls. You do that by using the InterfaceQueuing
at t r ibute. InterfaceQueuing has one public Boolean property called
Enabled that corresponds to the Queued checkbox on the
inter face’s Queuing tab.
[InterfaceQueuing(Enabled = true)]
public interface IMyInterface
{
 void MyMethod();
}
The InterfaceQueuing at t r ibute has an overloaded default
const ructor that sets the Enabled property to true and a
const ructor that accepts a Boolean parameter. As a result , t he
following three statements are equivalent :
[InterfaceQueuing]
[InterfaceQueuing(true)]
[InterfaceQueuing(Enabled = true)]

 329

Note that your inter face must adhere to the queued components
design guidelines discussed in Chapter 8, such as no out or ref
parameters. I f you configure your interface as a queued inter face
using the InterfaceQueuing at t r ibute and the inter face is
incom pat ible with queuing requirements, the regist rat ion process
fails.

1 0 .1 6 .2 A Queued Com ponent ’s Managed Client

The client of a queued component cannot create the queued
component direct ly . I t m ust create a recorder for its calls using the
queue m oniker. A C+ + or a Visual Basic 6.0 program uses the
CoGetObject() or GetObject() calls. A .NET m anaged client can
use the stat ic method BindToMoniker() of the Marshal class,
defined as:
public static object BindToMoniker(string monikerName);
BindToMoniker() accepts a m oniker st r ing as a parameter and
returns the corresponding object . The Marshal class is defined in
the System.Runtime.InteropServices namespace.
The BindToMoniker() method of the Marshal class m akes wr it ing
managed clients for a queued component as easy as if it were a
COM client :
using System.Runtime.InteropServices;//for the Marshal
class

IMyInterface obj;
obj
=(IMyInterface)Marshal.BindToMoniker("queue:/new:MyNamesp
ace.MyComponent");
obj.MyMethod();//call is recorded
I n the case of a COM client , the recorder records the calls the client
makes. The recorder only dispatches them to the queued
component queue (more precisely, to its applicat ion’s queue) when
the client releases the recorder. A managed client does not use
reference count ing, and the recorded calls are dispatched to the
queued com ponent queue when the managed wrapper around the
recorder is garbage collected. The client can expedite dispatching
the calls by explicit ly forcing the managed wrapper around the
recorder to release it , using the stat ic DisposeObject() method of
the ServicedComponent class, passing in the recorder object :
using System.Runtime.InteropServices;//for the Marshal
class

IMyInterface obj;
obj
=(IMyInterface)Marshal.BindToMoniker("queue:/new:MyNamesp
ace.MyComponent");
obj.MyMethod();//call is recorded

 330

//Expedite dispatching the recorded calls by disposing of
the recorder
ServicedComponent sc = obj as ServicedComponent;
If(sc !=null)
 ServicedComponent.DisposeObject(sc);
You can use the IDisposable inter face instead of calling
DisposeObject().

1 0 .1 6 .3 Queued Com ponent Error Handling

Due to the nature of an asynchronous queued call, managing a
failure on both the client ’s side (failing to dispatch the calls) and the
server ’s side (repeatedly failing to execute the call— a poison
message) requires a special design approach. As discussed in
Chapter 8, both the clients and server can use a queued component
except ion class to handle the error. You can also provide your
product adm inist rator with an adm inist rat ion ut ilit y for moving
messages between the ret ry queues.

1 0 .1 6 .3 .1 Queued com ponent except ion class

You can designate a managed class as the except ion class for your
queued com ponent using the ExceptionClass at t r ibute. Example
10-15 demonstrates using the ExceptionClass at t r ibute.

Exam ple 1 0 -1 5 . Using the Except ionClass at t ribute to designate an error -
handling class for your queued com ponent

using COMSVCSLib;

public class MyQCException :
IPlaybackControl,IMyInterface
{
 public void FinalClientRetry() {...}
 public void FinalServerRetry() {...}
 public void MyMethod(){...}
}
[ExceptionClass("MyQCException")]
public class MyComponent :ServicedComponent,IMyInterface
{...}
I n Example 10-15, when you register the assembly containing
MyComponent with COM+ , on the component's Advanced tab, the
Queuing except ion class field will contain the nam e of its except ion
class— in this case, MyQCException, as shown in Figure 10-3.

Figure 1 0 - 3 . After register ing the com ponent in Exam ple 1 0 -1 5 w ith
COM+ , its Advanced tab contains the except ion class

 331

You need to know a few more things about designat ing a m anaged
class as a queued component ’s except ion class. First , it has nothing
to do with .NET error handling via except ions. The word except ion is
overloaded. As far as .NET is concerned, a queued component ’s
except ion class is not a .NET except ion class. Second, the queued
component except ion class has to adhere to the requirements of a
queued com ponent except ion class descr ibed in Chapter 8. These
requirements include implem ent ing the same set of queued
inter faces as the queued component itself and implement ing the
IPlaybackControl inter face. To add IPlaybackControl to your
class definit ion you need to add a reference in your project to the
COM+ Serv ices type library. IPlaybackControl is defined in the
COMSVCSLib namespace.

1 0 .1 6 .3 .2 The MessageMover class

As explained in Chapter 8, COM+ provides you with the
IMessageMover inter face, and a standard implementat ion of it , for
moving all the m essages from one ret ry queue to another. Managed
clients can access this implementat ion by im port ing the COM+
Serv ices type library and using the MessageMover class, defined in
the COMSVCSLib namespace. Example 10-16 implements the same
use-case as Example 8-2.

Exam ple 1 0 -1 6 . MessageMover is used to m ove m essages from the last
retry queue to the applicat ion’s queue

using COMSVCSLib;

IMessageMover messageMover;
int moved;//How many messages were moved

messageMover = (IMessageMover) new MessageMover();

//Move all the messages from the last retry queue to the
application’s queue
messageMover.SourcePath = @".\PRIVATE$\MyApp_4";
messageMover.DestPath = @".\PUBLIC$\MyApp";

moved = messageMover.MoveMessages();

 332

1 0 .1 7 COM+ Loosely Coupled Events

.NET provides managed classes with an easy way to hook up a
server that fires events with client sinks. The .NET mechanism is
certainly an im provem ent over the somewhat cumbersome COM
connect ion point protocol, but the .NET mechanism st ill suffers from
all the disadvantages of t ight ly coupled events, as explained at the
beginning of Chapter 9. Fortunately , m anaged classes can easily
take advantage of COM+ loosely coupled events.
The EventClass at t r ibute is used to mark a serviced com ponent as
a COM+ event class, as shown in Exam ple 10-17.

Exam ple 1 0 -1 7 . Designat ing a serviced com ponent as an event class
using the EventClass at t ribute

public interface IMySink
{
 void OnEvent1();
 void OnEvent2();
}

[EventClass]
public class MyEventClass : ServicedComponent,IMySink
{
 public void OnEvent1()
 {
 throw(new NotImplementedException(exception));
 }
 public void OnEvent2()
 {
 throw(new NotImplementedException(exception));
 }
 const string exception = @"You should not call an
event class directly.
 Register this assembly using
RegSvcs /reconfig";
}
The event class implements a set of sink interfaces you want to
publish events on. Note that it is point less to have any
implementat ion of the sink inter face m ethods in the event class, as
the event class’s code is never used. I t is used only as a template,
so that COM+ could synthesize an im plementat ion, as explained in
Chapter 9 (compare Example 10-17 with Example 9-1) . This is why
the code in Example 10-17 throws an except ion if anybody t r ies to
actually call the methods (maybe as a result of removing the event
class from the Component Services Explorer) .
When you register the assembly with COM+ , the event class is
added as a COM+ event class, not as a regular COM+ component .

 333

Any managed class (not just serviced components) can publish
events. Any managed class can also im plement the sink’s
inter faces, subscribe, and receive the events. For exam ple, to
publish events using the event class from Example 10-17, a
managed publisher would write:
IMySink sink;
sink = (IMySink)new MyEventClass();
sink.OnEvent1();
The OnEvent1() method returns once all subscribers have been
not ified, as explained in Chapter 9.
Persistent subscript ions are managed direct ly via the Component
Serv ices Explorer because adding a persistent subscr ipt ion is a
deployment -specific act iv ity. Transient subscript ions are managed in
your code, sim ilar to COM+ t ransient subscr ibers.
The EventClass at t r ibute has two public Boolean propert ies you can
set , called AllowInprocSubscribers and FireInParallel. These
two propert ies correspond to the Fire in parallel and Allow in-
process subscribers, respect ively, on the event class’s Advanced
tab. You can configure these values on the event class definit ion:
[EventClass(AllowInprocSubscribers =
true,FireInParallel=true)]
public class MyEventClass : ServicedComponent,IMySink
{...}
The EventClass at t r ibute has an over loaded default const ructor . I f
you do not specify a value for the AllowInprocSubscribers and
FireInParallel propert ies, it sets them to true and false,
respect ively. Consequent ly, the following two statem ents are
equivalent :
EventClass]
[EventClass(AllowInprocSubscribers =
true,FireInParallel=false)]

1 0 .1 8 Sum m ary

Throughout this book, you have learned that you should focus your
development efforts on implement ing business logic in your
components and rely on COM+ to provide the component serv ices
and connect iv ity they need to operate. With .NET, Microsoft has
reaffirm ed its comm itm ent to this development paradigm. From a
configurat ion management point of v iew, the .NET integrat ion with
COM+ is super ior to COM under Visual Studio 6.0 because .NET
allows you to capture your design decisions in your code, rather
than use the separate COM+ Catalog. This development is
undoubtedly just the beginning of seam less support and bet ter
integrat ion of the .NET development tools, runt ime, component
serv ices, and the component adm inist rat ion environment . COM+
itself (see Appendix B) cont inues to evolve, both in features and in

 334

usabilit y, while drawing on the new capabilit ies of the .NET
plat form . The recent ly added abilit y to expose any COM+
component as a web service is only a preview of the t ighter
integrat ion of .NET and COM+ we can expect to see in the future.

 335

Appendix A. The COM+ Logbook

One of the most effect ive steps you can take towards achieving a
more robust applicat ion that is faster to market is adding a logging
capability to your applicat ion. This appendix presents you with the
COM+ Logbook, a sim ple ut ilit y you can implement to log method
calls, events, errors, and various COM+ inform at ion. The logbook is
your product ’s flight recorder. I n a dist r ibuted COM+ environment,
it is worth its weight in gold. I t saved m y skin whenever I t r ied to
analyze why som ething did not work the way it was supposed to. By
exam ining the log files, you can analyze what took place across
machines and applicat ions, and the source of the problem is almost
immediately evident . The logbook is also useful in post-deployment
scenar ios to t roubleshoot customer problems— just have your
customer send you the log files.

A.1 Logbook Requirem ents

The goals for this logbook are as follows:

• Trace the calling t ree (the causality) from the original client
down to the lowest components, across threads, processes,
and machines— tracing the logical thread of execut ion.

• Log the call's/ event's/ error's t ime and locat ion.
• I nter leave all the calls from all applicat ions into one log file.
• Log the current COM+ execut ion context .
• Allow administ rat ive custom izat ion to determ ine what is

logged— for example, just errors, or events and errors.
• Allow administ rat ive custom izat ion of the log filename.
• Make logging and t racing as easy as possible.
• Save log data in two formats: HTML or XML.
• Have a different lifeline for the logbook applicat ion and the

applicat ions using it .
• Be able to toggle logging on or off.

The COM+ Logbook is a COM+ server applicat ion that implements
these requirem ents. I n addit ion to being used by COM+
applicat ions, it can be used in any Win32 applicat ion (such as MFC
or classic COM.) The only requirement is that the applicat ion needs
to run on Windows 2000.

A.2 Log File Exam ple

 336

Figures A-1 and A-2 show the same t racing and logging ent r ies—
one in HTML format and the other in XML. The HTML log file is
already well format ted and can be viewed by a user as is. The XML
log file is less presentable.
Each entry in a log file contains the ent ry number (different
numbers for method calls, events, and errors) ; the call, error , and
event t ime; m achine nam e; process ID; thread ID; context ID;
t ransact ion ID; act iv ity ID; the module nam e (the EXE or DLL
name) ; the method name or the error/ event descript ion; the source
filename; and the line num ber.

Figure A-1 . Logging ent ries in HTML

Figure A-2 . Logging ent r ies in XML

 337

A.3 Using the Logbook

Before using the logbook, you need to install it . Download the
logbook.msi installat ion package and the header file ComLogBook.h
from the O’Reilly web site for this book at
ht tp: / / www.oreilly .com/ catalog/ comdotnetsvs (the logbook source
files and a Windows 2000 help file are also available for download) .
Then install the msi file.
After installing the logbook applicat ion, all you have to do on the
side of the applicat ion doing the logging is include the
ComLogBook.h header file in your applicat ion. The ComLogBook.h
header file defines four helper macros for logging, descr ibed in
Table A-1. I nsert these macros in your code. The macros collect
informat ion on the applicat ion side and post it to the logbook.

7DEOH�$����7KH�ORJJLQJ�PDFURV��
0DFUR�QDPH�� 'HVFULSWLRQ��

LOGMETHOD() Traces a m ethod call into the logbook
LOGERROR() Logs an error into t he logbook
LOGEVENT() Logs an event into the logbook
LOGERROR_AND_RETURN(
)

Logs an error into t he logbook and returns in case of an
error, or cont inues to run if no error has occurred

The macros can be used independent ly of one another and in every
possible com binat ion. For example, to t race a method call into the
logbook, pass the method name as a st r ing parameter to the
LOGMETHOD() macro:
void CMyClass::MyMethod()
{
 LOGMETHOD("CMyClass::MyMethod");
 //Real work starts here
}
I recommend using LOGMETHOD() before doing anything else in the
method body. Along with the method name, the macro logs all the
required inform at ion ment ioned ear lier. Sim ilar ly , you can use
LOGEVENT() to log events and LOGERROR() to log errors (see
Example A-1) .

Exam ple A- 1 . Using the LOGERROR() and the LOGEVENT() m acros

//Logging an error:
void CMyClass::MyMethod()
{
 LOGMETHOD("CMyClass::MyMethod");
 //Real work starts here
 /*
 some code that encountered an error with a pointer

 338

 */

LOGERROR(IID_MyInterface,E_POINTER,"CMyClass::MyMethod","
The server
 returned an
invalid address");
 //Continue to run
}

//logging an event into the logbook: specify in free form
text describing the event:
void CMyClass::MyMethod()
{
 LOGMETHOD("CMyClass::MyMethod");
 //Real work starts here
 /*
 some code that decides to log an event
 */
 LOGEVENT("The User is banging on the keyboard");
 //Continue to run
}

A.4 Configuring the Logbook

Configuring the various logging opt ions is done direct ly via the
Component Services Explorer. After installing the logbook, you will
have a new COM+ applicat ion called Logbook with three
components— the HTML logger, the XML logger, and an event class
(see Figure A-3) . All three components implement the ILogbook
inter face with the m ethods LogError(), LogEvent(), and
LogMethod(). The HTML and XML com ponents have four persistent
subscript ions— one for each ILogBook m ethod and one for all the
methods on the interface.

Figure A- 3 . The Logbook applicat ion has three com ponents: the HTML
logger, the XML logger, and an event class

 339

The m ain m echanism behind the logging is COM+ loosely coupled
events. The macros publish the data as COM+ events, and the
logbook components are persistent subscr ibers. Each logbook
component has four persistent subscr ipt ions in it s Subscript ion
folder: Errors Only, Methods Only, Events Only, and Log All.
By enabling or disabling a subscr ipt ion, you can cont rol what is
being logged and in what format . After installat ion, by default , both
the HTML and the XML Log All subscript ions are enabled and the
other subscript ions are disabled. I f, for example, you wish to have
only HTML logging of events and errors, you should follow these
steps:

• Go to the XML components, select the Log All subscript ion,
display its propert ies page, go to the Opt ions tab, and disable
the subscript ion.

• Disable the HTML component ’s Log All subscr ipt ion.
• Enable the HTML component ’s Errors Only and Events Only

subscript ions.

The HTML and XML components, by default , will log to the f iles
C: \ Temp\ Logbook.htm and C: \ Temp\ Logbook.xm l, respect ively. The
filenames are provided as constructor st r ings to the components. To
specify a different filename (for exam ple, D: \ MyLog.htm for the
HTML component) , display the HTML component propert ies and
select the Act ivat ion tab (see Figure A-4) . Under Object
const ruct ion, specify the new filename.

Figure A- 4 . The logbook com ponent propert ies page Act ivat ion tab

 340

One interest ing aspect of the logbook is that its lifeline is
independent from that of the applicat ions using it because it uses
persistent subscript ions. As a result , logging from many applicat ion
runs will all be concatenated in the sam e file. I f you want the
logbook to start a new log file, you have to shut down the logbook
applicat ion manually (r ight- click it in the Component Services
Explorer and select Shut Down) . Next t im e an applicat ion publishes
to the logbook, the logbook clears the file and star ts afresh. You can
do that even when the applicat ion doing the logging is running.

A.5 How Does the Logbook W ork?

The logbook uses COM+ events to pass the inform at ion collected
from the applicat ion to the logbook components. The components
(the HTML and XML versions) implement the ILogbook inter face
(see Figure A-3) , a custom interface with methods corresponding to
what is being logged— method call, event , or error. The ILogbook
inter face is defined as:
interface ILogbook : IUnknown
{
 typedef struct tagLOG_ENTRY
 {
 HRESULT hres;
 DWORD dwErrorCode;
 DWORD dwProcessID;
 DWORD dwThreadID;
 GUID guidActivityID;

 341

 GUID guidTransactionID;
 GUID guidContextID;
 BSTR bstrMachineName;
 BSTR bstrSourceFileName;
 BSTR bstrModuleName;
 BSTR bstrMethodName;
 DWORD dwLineNumber;
 BSTR bstrDescription;
 IID iidError;
 FILETIME eventTime;
 }LOG_ENTRY;

 HRESULT LogError ([in]LOG_ENTRY* pErrorEntry);
 HRESULT LogMethod([in]LOG_ENTRY* pMethodEntry);
 HRESULT LogEvent ([in]LOG_ENTRY* pEventEntry);
};
The helper macros collect the informat ion on the applicat ion side,
pack it into a LOG_ENTRY st ruct , create a COM+ event class that
implements ILogbook, and fire the appropriate event . The logbook
receives the event , form ats it appropr iately (to HTML or XML) , and
writes it to the log file.
Deciding to use COM+ events was the easy part of the design.
Deciding how to channel all the events to the same logbook
component and how to collect all the t racing inform at ion you are
interested in is more challenging.
To solve the first challenge, you can use COM+ instance
managem ents serv ices. The components in the logbook applicat ion
are configured to use Object Pooling and Just- in-Time Act ivat ion
(JITA) to create the COM+ equivalent of a singleton (as discussed in
Chapter 3) . Each component (HTML and XML) implements the
IObjectControl interface and returns TRUE from
IObjectControl::CanBePooled(). The object pool is configured to
have a m inimum and a maximum pool size of 1, ensuring that there
is always exact ly one instance of a component of that type (see
Figure A-4) .
When a logging client applicat ion publishes an event , COM+ delivers
the event to the persistent subscript ions of the logbook component .
But because the logbook component is pooled, with a pool size of
exact ly 1, COM+ does not create a new instance of the persistent
subscriber. I nstead, it ret r ieves the logbook component from the
pool, hands the event to the component , and releases it back to the
pool once the method returns. However, what would happen if a
greedy applicat ion created the logbook component direct ly and held
on to it ? The m axim um pool size is 1, so COM+ wouldn’t create
another instance of the logbook component to publish the event to
it , but would instead wait for the exist ing object to return to the
pool. The object wouldn’t return, though, since the greedy
applicat ion would be holding a reference to it . As a result , all

 342

at tempts from other applicat ions to publish to the logbook would fail
after the t im eout specified in the Creat ion Tim eout (see Figure A-4) .
As you saw in Chapter 3, JITA is designed to handle such greedy
clients. I f the logbook component indicates to COM+ that it is willing
to be deact ivated and is configured to use JITA, COM+ deact ivates
the component . In this case, it returns back to the pool, as opposed
to a real release. The greedy applicat ion does not know the
difference because it st ill has a reference to a valid proxy. The next
t ime the greedy client applicat ion t r ies to access the logbook, COM+
detects it , ret r ieves the object from the pool, and hooks it up with
the interceptor so the greedy applicat ion’s logging call goes
through.
The logbook components are therefore configured to use JITA (see
Figure A-4) . However, a logbook component st ill has to let COM+
know when it is okay to deact ivate it . The logical place would be at
method boundar ies when it is done logging to the file. Therefore,
the logbook components use COM+ method auto-deact ivat ion (see
Figure A-5) . Every logging method is configured to autom at ically
deact ivate the object on return.

Figure A- 5 . COM+ deact ivates the object after each m ethod call

Because the logbook applicat ion is a server applicat ion, there is
lit t le impact for the component ’s threading model, since all calls are
marshaled across process boundar ies anyway. For the remote
possibility of ever being deployed in a library applicat ion, the
logbook components use the Both t hreading model. Synchronizat ion
is provided by having the components’ synchronizat ion configured
as Required. Note that , as explained in Chapter 5, JITA requires
synchronizat ion, so the only available synchronizat ion set t ings are
Required and Requires New.
One other configurat ion set t ing used is to have COM+ leave the
logbook applicat ion running when idle (on the Logbook applicat ion
propert ies page, Advanced tab) . This is required to keep the pool
alive, even if there are no external clients using logging. As a result ,
all logging is writ ten to the same file. Because you only have to

 343

create a new applicat ion and component instance once,
performance improves.
You already saw that the f ilename is passed as a const ructor st r ing.
As explained in Chapter 3, the logbook components implement
IObjectConstruct to access that st r ing. COM+ queries for that
inter face after creat ing the object . Then it passes to the only
method, Construct(), a pointer to an IObjectConstructString
object . You can use that pointer to get the const ructor st r ing, which
is a f ilename in this case. Look at Exam ple 3-2 in Chapter 3 to learn
how to gain access to the constructor st r ing.
The other major challenge in developing the logbook is collect ing
the informat ion on the client side. Some of it , like line number, file,
and module name, has nothing to do with COM+ and are j ust neat
programming t r icks that use predefined com piler macros; look at
the source files if you are curious. Obtaining the execut ion and
context IDs is another thing. Fortunately, COM+ has an excellent
infrastructure for this purpose: the IObjectContextInfo interface.
As demonst rated in Chapter 2 and and other chapters in the book,
you can use the IObjectContextInfo interface to ret r ieve the
context , t ransact ion, and act iv ity ID. This is exact ly what the helper
macros (Table A-1) do on the client side. The macros actually use a
helper class, CEventLogger, to collect the informat ion and publish it
to the logbook. Example A-2 shows how the LOGEVENT macro is
implemented.

Exam ple A- 2 . The LOGEVENT helper m acro

#define LOGEVENT(x) DoLogEvent(x)

inline void DoLogEvent(const CString& sEvent)
{
 CEventLogger eventLogger;
 eventLogger.DoLogEvent(sEvent);
}

inline void CEventLogger::DoLogEvent(const CString&
sEvent) const
{
 LOG_ENTRY logEntry;
 HRESULT hres = S_OK;
 ILogbook* pLogbook = NULL;

 FillLogEntry(&logEntry,sEvent);//using
IObjectContextInfo to get the IDs

 //Create the event class and publish
 hres = ::CoCreateInstance(CLSID_LogbookEventClass,..,
 IID_ILogbook,&pLogbook);

 344

 //Publish to the logbook
 hres = pLogbook->LogEvent(&logEntry);
 pLogbook->Release();
}

A.6 Sum m ary

The logbook makes elegant use of many COM+ features, such as
the event system, Just - in-Time Act ivat ion (JITA) , object pooling,
idle t ime m anagem ent , automat ic deact ivat ion of objects,
synchronizat ion, and the object constructor st r ing. The logbook is a
good example of the synergies generated by using mult iple services
simultaneously. You can extend the logbook or improve it by
custom izing it to f it specific requirem ents (such as adding verbosity
levels) . I n any case, once you start enjoying the product iv ity boost
of the logbook, you will f ind yourself asking one quest ion: "How did
I ever m anage without it ?"

 345

Appendix B. COM+ 1 .5

The next release of Windows 2000, Windows XP, will be the first
Windows operat ing system to include the next version of COM+ ,
called COM+ 1.5. This appendix describes the new features and
capabilit ies of this future release of COM+ . The current version of
COM+ is referred to as COM+ 1.0.
In COM+ 1.5, Microsoft improved COM+ usabilit y in a num ber of
ways and addressed som e of COM+ 1.0’s pit falls described in this
book. Microsoft also added new features to exist ing services and
laid the foundat ion for integrat ion with .NET services. COM+ 1.5 is
fully backward-compat ible with COM+ 1.0 components and
applicat ions. I n fact , when you export a COM+ 1.5 applicat ion, the
export wizard lets you export the applicat ion in COM+ 1.0 form at to
be installed on m achines running COM+ 1.0 (although the new
features and propert ies will be lost in such an export) .
The COM+ Catalog inter faces and collect ions have been extended to
handle the new addit ions. When describing a new service, the new
corresponding Catalog items are provided whenever possible
because no other public documentat ion is current ly available.

B.1 I m proved User I nterface Usability

Under COM+ 1.0, the only way to know the act ivat ion type of a
COM+ applicat ion was to br ing up its Act ivat ion tab and exam ine it .
The COM+ 1.5 Explorer assigns different icons to different
applicat ion types, so you can deduce the applicat ion’s type (server,
library, or proxy) just by viewing it . Serv ice applicat ions, (discussed
short ly) , a fourth applicat ion type available in COM+ 1.5, also have
a dist inct icon. A new folder under My Computer called Running
Processes contains all the current ly execut ing applicat ions for easy
runt im e adm inist rat ion.

B.2 Legacy Applicat ions and Com ponents

The COM+ 1.0 Explorer only allows you to manage configured
components. I f your product is made up ent irely of configured
components, then that lim itat ion is probably fine to you. However,
not all developers are that lucky. In real life, configured components
often have to interact with in-house or third-party legacy COM
components. I n such a heterogeneous environment, developers use
such tools as DCOMCNFG, OLEView, Visual Studio, or custom tools

 346

to m anage legacy components in addit ion to the Com ponent
Serv ices Explorer. Developers also have to manage two types of
deployment approaches— one that uses exported COM+ applicat ions
(MSI f iles) and another that is whatever they need to install the
legacy components. One new feature of COM+ 1.5 is com plete
support for legacy applicat ions and com ponents, which allows you
to m anage every aspect of your legacy applicat ions and components
just as well as DCOMCNFG and OLEView do.

B.2 .1 Legacy Applicat ions

I n the COM+ 1.5 Explorer, under the My Computer icon, there is a
new folder called DCOM Config. This folder is a sibling to the COM+
Applicat ions folder (see Figure B-1) .

Figure B- 1 . The COM+ 1 .5 Explorer

The DCOM Config folder contains all the registered COM local
servers (EXE servers) on your machine. Each local server is called a
legacy applicat ion. Unlike a COM+ applicat ion, you cannot expand a
legacy applicat ion down to the component , inter face, or method
level. A legacy applicat ion is opaque as far as COM+ 1.5 is
concerned. The DCOM Config folder simply gives you a cent ralized
place to manage both your COM+ applicat ions and your legacy local
servers without resort ing to other ut ilit ies. When you r ight -click on
a legacy applicat ion and select Propert ies from the pop-up context
menu, you get a propert ies page that lets you manage every aspect
of the legacy applicat ion, much like what DCOMCNFG provides (see
Figure B-2) .

 347

Figure B- 2 . The propert ies page of a legacy applicat ion

The General tab lets you change the applicat ion nam e and set the
authent icat ion level for incom ing calls to this applicat ion. The
Locat ion tab lets you cont rol whether to run the applicat ion on your
computer or on another computer on the network. The Endpoints
tab lets you configure the t ransport protocols for the DCOM calls.
The I dent ity tab lets you specify under which secur ity ident ity to
launch the server, including the system account (for services only) .
The Security tab lets you configure users’ access, launch, and
change perm issions.
COM+ 1.5 defines a new top- level catalog collect ion called
LegacyServers. Every catalog object in that collect ion corresponds
to a local server and provides the main Regist ry ent r ies (CLSID,
ProgID, ClassName, LocalServer32, and InprocServer32) as
named propert ies.

B.2 .2 Legacy Com ponents

COM+ 1.5 calls nonconfigured in-proc COM components legacy
components. I f your COM+ applicat ion uses legacy components, the
COM+ 1.5 Explorer lets you manage them within the scope of your
applicat ion as well. Every COM+ 1.5 applicat ion has a new folder
called Legacy Components (see Figure B-1) . The Legacy
Components folder is a sibling to the Com ponents folder. To add a
legacy component to the folder, expand it , r ight -click on it , and
select New from the context menu. The COM+ 1.5 Explorer br ings
up the Legacy Component Import Wizard. The wizard lets you
choose legacy components (registered in-proc components) to add
to your applicat ion. Like configured components, legacy components
can take part in at most one COM+ 1.5 applicat ion. The m ajor
benefit of having your legacy components as part of your COM+ 1.5
applicat ion is deployment. When you export a COM+ applicat ion, its
MSI f ile contains the legacy com ponents and their set t ings. When
you install the MSI f ile on another machine, the Windows I nstaller

 348

registers the com ponents, thus saving you the t rouble of wr it ing a
separate installat ion program .
The propert ies page of a legacy component presents you with every
relevant Regist ry entry for that component (see Figure B-3) .

Figure B- 3 . The propert ies page of a legacy com ponent

You can change only the values of set t ings that do not collide with
regist ry set t ings in the component itself. For example, you cannot
change the threading model value, but you can provide the nam e of
a surrogate process.
You can even promote a legacy component to a configured
component . Simply br ing up the legacy component ’s context menu
and select Promote (see Figure B-4) . The legacy com ponent is
rem oved from the Legacy Components folder and added to the
Components folder in the same COM+ 1.5 applicat ion.

Figure B- 4 . A legacy com ponent pop-up context m enu

 349

The COM+ 1.5 Catalog root object (COMAdminCatalog) supports a
new interface called ICOMAdminCatalog2, which derives from
ICOMAdminCatalog. ICOMAdminCatalog2 contains the following
methods for handling legacy components:
[id(0x2b)] HRESULT ImportComponentAsLegacy([in]BSTR
bstrAppIdOrName,
 [in]BSTR
bstrCLSIDOrProgId,
 [in]long
lComponentType);

[id(0x2c)] HRESULT PromoteLegacyComponent([in] BSTR
bstrAppIdOrName,
 [in] BSTR
bstrCLSIDOrProgId);
ImportComponentAsLegacy() adds a legacy component to the
specified applicat ion and PromoteLegacyComponent() promotes an
already im ported legacy component to a configured com ponent . I n
addit ion, every applicat ion in the COM+ 1.5 Catalog has a
LegacyComponents collect ion. You can t raverse this collect ion
programmat ically and configure it .

B.3 Disabling Applicat ions and Com ponents

The COM+ 1.5 Explorer lets you disable applicat ions and
components. When you disable an applicat ion, all client at tempts to

 350

create any component from that applicat ion fail, and the following
message is associated with the HRESULT: "The component has been
disabled." To disable an applicat ion, display its pop-up context
menu and select Disable. A disabled applicat ion has a red square on
it (like a player ’s Stop but ton) in the COM+ 1.5 Explorer (see Figure
B-5) . To enable a disabled applicat ion, br ing up the context menu
again and select Enable. You can only disable a COM+ 1.5
applicat ion. Legacy applicat ions cannot be disabled. Interest ingly , a
client that already has a reference to a COM+ object is not affected
by the disabled applicat ion. Only clients that t ry to create new
objects are affected. Consequent ly , you can have a disabled
applicat ion running indefinitely .

Figure B-5 . Disabling or enabling a COM+ 1 .5 applicat ion from its pop-up
context m enu

You can also disable on a component -by-component basis instead of
disabling an ent ire applicat ion. Every component pop-up context
menu has a Disable opt ion. Like a disabled applicat ion, a disabled
component has a red square on it . All client at tempts to create a
disabled component fail, and the following message is associated
with the HRESULT: "The component has been disabled." You can
disable any component in a COM+ 1.5 applicat ion, including legacy
components (see Figure B-4) . To enable a component , select Enable
from its context m enu. Like a disabled applicat ion, a disabled
component only affects new act ivat ion requests. Exist ing references
to objects are not affected. Enabled status for applicat ions and
components is stored in the COM+ Catalog and is therefore
maintained between machine reboots.

 351

Disabling applicat ions or components is useful in two cases. The
first situat ion is when you want to gracefully shut down an
applicat ion on a live server machine to perform maintenance or
upgrades. I f you simply shut down the applicat ion, you m ight cause
failures on client m achines holding ex ist ing references. By disabling
an applicat ion, you can have exist ing clients finish their work, while
new act ivat ions m ay be routed to another machine, providing you
the opportunity to perform m aintenance. The other situat ion in
which disabling an applicat ion is useful is during development and
test ing. I t provides a guaranteed way to fail client calls and is thus a
way to test your client -side error handling.
Current ly, the COM+ Catalog inter face ICOMAdminCatalog2 does
not have methods used to program mat ically disable or enable an
applicat ion, but that situat ion could change by release t im e.
Another possibility is that every COM+ applicat ion catalog object
will have an Enabled named property . Current ly, an applicat ion
object has a Boolean property called IsEnabled that is set to TRUE if
the applicat ion is enabled and FALSE if it is disabled. Sim ilar ity,
components today do not have an Enabled nam ed property, only a
Boolean property called IsEnabled, used the sam e way as in the
applicat ion object .

B.4 Pausing Applicat ions

Pausing an applicat ion is sim ilar to disabling an applicat ion, except
it is used to disable a part icular running applicat ion only, and the
paused status does not survive an applicat ion shutdown. To pause a
running applicat ion, open the Running Processes folder and select
Pause from the applicat ion context m enu. A paused applicat ion has
a paused icon on it (like a player’s Pause but ton) , while a running
applicat ion has a play icon (like a player ’s Play but ton) . To resume a
paused applicat ion, select Resume from its context menu (see
Figure B-6) .

Figure B- 6 . PCOM+ 1 .5 running applicat ion Act ivat ion tab

 352

To pause an applicat ion programmat ically, use the
ICOMAdminCatalog2 interface and the PauseProcess() m ethod.
The ResumeProcess() method is used to resume the applicat ion,
and the IsProcessPaused() method allows you to find out the
status of the applicat ion. The definit ions of these methods follow:
[id(0x1c)] HRESULT PauseProcess([in] BSTR
bstrApplInstanceId);
[id(0x1d)] HRESULT ResumeProcess([in] BSTR
bstrApplInstanceId);
[id(0x1e)] HRESULT IsProcessPaused([in] BSTR
bstrApplInstanceId,

[out,retval]VARIANT_BOOL* bPaused);

B.5 Service Act ivat ion Type

COM+ 1.5 allows you to configure a server applicat ion to run as a
system service. Configur ing your applicat ion as a serv ice allows you
to have your applicat ion running as soon as the m achine boots,
independent of client act ivat ion requests. Another benefit is that a
serv ice applicat ion is the only way to run under the system ident ity
account . The system account is the m ost powerful account on a
given machine.
The applicat ion Act ivat ion tab contains the checkbox "Run
applicat ion as NT Service" (see Figure B-7) . When this opt ion is
selected, you can also configure the various serv ice parameters by
clicking the Setup New Serv ice but ton, saving you the t rouble of
using the Cont rol Panel services applet .

Figure B- 7 . COM+ 1 .5 applicat ion Act ivat ion tab

 353

ICOMAdminCatalog2 prov ides you with programmat ic abilit y to
configure a serv ice with the CreateServiceForApplication()
method and to unconfigure a server applicat ion as a system serv ice
with the DeleteServiceForApplication() method. The service
name is available through the ServiceName property of the
applicat ion’s catalog object .

B.6 I m proved Queuing Support

As explained in Chapter 8, queued components under COM+ 1.0
require the presence of a domain cont roller to provide
authent icat ion for the queued call. I f you do not have a dom ain
cont roller, you must turn off COM+ 1.0 applicat ion authent icat ion
(set it to None) . COM+ 1.5 provides bet ter configurable support for
queued calls by separat ing them from normal synchronous calls.
The applicat ion Queuing tab now lets you configure authent icat ion
for queued calls explicit ly (see Figure B-8) . Your available opt ions
are to:

• Use MSMQ domain cont roller authent icat ion when the
applicat ion is configured to use authent icat ion for
synchronous calls (when the applicat ion authent icat ion is set
to any value except None) .

• Never authent icate queued calls into this applicat ion.
Choosing this opt ion allows you to use queued components
freely without a domain cont roller.

 354

• Always authent icate incom ing queued calls, regardless of the
applicat ion authent icat ion set t ing.

Figure B-8 . COM+ 1 .5 server applicat ion Queuing tab

The Queuing tab also allows you to cont rol the maximum number of
concurrent players the applicat ion can contain. Because every
player is created on a separate thread, some overhead is associated
with creat ing and maintaining a player. In ext reme situat ions, your
applicat ion may grind to a halt if the number of concurrent players
is too large (a few hundred) . When you set a lim it on the number of
players and that lim it is reached, the listener does not create new
players. Rather, queued calls remain in the applicat ion queue,
allowing calls in progress to execute and complete. The lim it is also
good for load-balancing purposes and can be used in conjunct ion
with applicat ion pooling, discussed next .
The COM+ 1.5 Catalog lets you configure the queuing support
programmat ically as nam ed propert ies of the applicat ion catalog
object . The authent icat ion level is accessible via the
QCAuthenticateMsgs named property, and the maximum number
of players is accessible v ia the QCListenerMaxThreads property .

B.7 Applicat ion Pooling and Recycling

COM+ 1.5 provides two new applicat ion lifecycle management
opt ions: applicat ion pooling and recycling. Both opt ions are

 355

configurable on a new tab on the applicat ion’s propert ies page.
Pooling and recycling serv ices are available only for a server
applicat ion. You cannot configure library applicat ions to use pooling
and recycling because they do not own their host ing process.
Library applicat ions have, in effect , the pooling and recycling
parameters of whatever server applicat ion happens to load them.

B.7 .1 Applicat ion pooling

Applicat ion pooling allows you to configure how many surrogate
processes are launched to host your server applicat ion’s
components. Under COM+ 1.0, all instances of com ponents from a
server applicat ion always share the same host ing process. Although
this sharing is also the classic COM default , classic COM local server
developers had the opt ion of allocat ing a process per object (by
register ing the class factories with the REGCLS_SINGLEUSE flag) .
COM+ 1.5 gives you explicit cont rol over how many processes are
launched by configur ing a processes pool. The applicat ion propert ies
page now contains the Pooling & Recycling tab (see Figure B-9) .
You can configure the pool size in the Pool size edit box. The default
pool size is one— a single process hosts all instances of com ponents
from the applicat ion, like in COM+ 1.0. However, if you set it to a
value greater than one, COM+ 1.5 creates a process per each new
instance unt il it reaches the pool size, at which point COM+ star ts
mult iplex ing new instances to the ex ist ing processes, apparent ly in
a round- robin fashion. The maximum configurable pool size is
999,999, enough for all pract ical purposes. Applicat ion pooling is
useful as a fault isolat ion technique. I f one process has to shut
down because of some error or except ion, the other processes and
their clients are not affected. Applicat ion pooling also gives you
same-machine load balancing— you do not have to use a separate
load balancing service with m ult iple machines to allocate different
instances to different processes. The pool size is available as the
ConcurrentApps named property of an applicat ion catalog object .

I f you star t a COM+ 1.5 applicat ion manually or
program mat ically , COM+ 1.5 creates as m any
processes as the configured pool size. This
behavior is analogous to component m inimum pool
size, discussed in Chapter 3, and it only comes into
play when the applicat ion is star ted explicit ly. This
behavior is useful when you want to m it igate
ant icipated spikes in client requests— you shouldn't
pay the overhead of creat ing new processes (and
potent ially , pools of objects in those processes as
well) .

 356

Figure B- 9 . COM+ 1 .5 provides server applicat ions w ith pooling and
recycling services

B.7 .2 Applicat ion Recycling

The other new applicat ion lifet ime management service is recycling.
Applicat ion recycling is used to increase overall applicat ion
robustness and availabilit y by compensat ing for code defects. For
example, one of the most common defects is a memory leak. Not all
products have the necessary quality assurance resources or
commitment during development ; as a result , memory leaks can be
present in the released product . An issue arises when a COM+
applicat ion can be left running indefinitely serv icing clients. Even a
very small memory leak can have a devastat ing effect over a long
per iod of t ime. For example, imagine a system with an
" insignif icant " mem ory leak of only 10 bytes per m ethod call. A
modern system that processes in excess of 100 t ransact ions per
second will, after one day, leak 100 MB of m emory. The process
host ing the applicat ion will consum e this amount of mem ory, thus
severely hampering performance and availabilit y, as a result of
addit ional page faults and memory allocat ion penalt ies. The way
developers t reated such a leak in COM+ 1.0 (other than fix ing it)
was by periodically term inat ing the host ing process and restart ing
it . This technique is called applicat ion recycling. COM+ 1.5 allows
you to configure automat ic recycling on the Pooling and Recycling
tab (see Figure B-9) . You can have COM+ recycle the process when
it reaches a memory lim it (the Memory Lim it edit box) to cope with
memory leaks. A value of zero is the default value, which m eans no
lim it .

 357

By specify ing the Lifet ime Lim it value, you can also instruct COM+
to shut down your applicat ion after a predeterm ined amount of
t ime. This inst ruct ion allows you to cope with defects in handling
other k inds of resources (such as system handles) by specify ing the
Lifet ime Lim it value. A value of zero is the default value, which
means no lifet ime lim it . Note that the semant ics of the lifet ime lim it
is different from the idle t ime management opt ion on the applicat ion
Advanced tab. The Server Process Shutdown value on the Advanced
tab specifies after how many m inutes of idle t im e (i.e. , not serv icing
clients) to shut down the applicat ion. The lifet ime value specifies
after how many m inutes to shut down the applicat ion, irrespect ive
of the work in progress inside the process.
COM+ provides two more recycling t r iggers. You can have COM+
recycle your applicat ion after a specified number of method calls
into your applicat ion by specify ing such a lim it in the Call Lim it edit
box. The number of calls is defined as combined number of calls
made on all objects in the applicat ion. The default value is set to
zero— no lim it . You can also request applicat ion recycling after a
certain number of act ivat ions. Act ivat ions is defined as the total
number of objects that COM+ 1.5 created in that applicat ion. You
specify the act ivat ion lim it in the Act ivat ion Lim it edit box and,
again, the default value is set to zero.
Regardless of how the decision to recycle the applicat ion is made
(the mem ory lim it reached, the lifet im e elapsed, or the call or
act ivat ion lim it was reached) , COM+ 1.5 routes new act ivat ion
requests to a new host process and waits for ex ist ing clients to
release their references to objects in the recycled process. However,
you can specify how long COM+ 1.5 should wait in the Expirat ion
Timeout edit box. After that expirat ion t imeout , COM+ 1.5
term inates the applicat ion, even if clients are st ill holding live
references. The default expirat ion t imeout is 15 m inutes.
Finally, note that recycling is not available for a COM+ applicat ion
configured as system service, nor can you recycle a paused
applicat ion.

B.7 .3 Program m at ic Recycling

The COM+ 1.5 Catalog provides you with programmat ic abilit y to
configure the recycling parameters discussed previously. To
configure m emory and t ime-bound recycling, use the
RecycleMemoryLimit and RecycleLifetimeLimit named propert ies
of the applicat ion's catalog object . To configure the expirat ion
t imeout , use the RecycleExpirationTimeout named property . To
configure call or act ivat ion lim it program mat ically , set the values of
the RecycleCallLimit or RecycleActivationLimit named
propert ies.

 358

Example B-1 shows how to set a recycling lim it programmat ically. I t
implements the SetRecycleByActivations() helper funct ion,
which sets a specified lim it of act ivat ions for recycling a specified
applicat ion.

Exam ple B- 1 . Set t ing a recycling lim it program m at ically

//usage: "MyApp" will be recycled after 1000 object
activations
//hres = SetRecycleByActivations("MyApp",1000);

HRESULT SetRecycleByActivations(LPCSTR lpcszAppName,DWORD
dwActivations)
{
 //Verify app name is valid
 if(_bstr_t(lpcszAppName) == _bstr_t(""))
 {
 return E_INVALIDARG;
 }
 HRESULT hres = S_OK;
 ICOMAdminCatalog2* pCatalog = NULL;
 hres = ::CoCreateInstance(CLSID_COMAdminCatalog,
NULL,CLSCTX_SERVER,

IID_ICOMAdminCatalog2,(void**)&pCatalog);

 ICatalogObject* pApplication = NULL;
 ICatalogCollection* pApplicationCollection = NULL;
 long nApplicationCount = 0;
 int i = 0;//Application index

 //Get the application collection
 hres = pCatalog-
>GetCollection(_bstr_t("Applications"),

(IDispatch**)&pApplicationCollection);
 pCatalog->Release();

 hres = pApplicationCollection->Populate();

 hres = pApplicationCollection-
>get_Count(&nApplicationCount);

 hres = COMADMIN_E_OBJECT_DOES_NOT_EXIST;
 for(i=0;i<nApplicationCount;i++)
 {
 //Get the current application
 hres = pApplicationCollection-
>get_Item(i,(IDispatch**)&pApplication);

 _variant_t varName;

 359

 pApplication->get_Name(&varName);
 _bstr_t bstrName(varName);

 if(bstrName == _bstr_t(lpcszAppName))
 {
 long ret = 0;
 _variant_t
varActivationLimit((long)dwActivations);
 hres = pApplication-
>put_Value(_bstr_t("RecycleActivationLimit"),

varActivationLimit);
 hres = pApplicationCollection-
>SaveChanges(&ret);
 }
 pApplication->Release();
 }
 pApplicationCollection->Release();
 return hres;

}

B.8 Applicat ion Dum p

For debug and analysis purposes, get t ing a complete memory dump
of an applicat ion is somet im es useful, especially at the t ime of a
crash. COM+ 1.5 allows you to configure a dump of a stat ic memory
image of the process host ing your COM+ applicat ion. You can use a
ut ilit y such as WinDbg to view and analyze this image. Every COM+
1.5 applicat ion (including library applicat ions) has a new tab on its
propert ies page called Dump (see Figure B-10) . You can specify a
locat ion for the image dump and how many images to store there.
When the maximum number of im ages is reached, a new dump
image overwrites the oldest one. The maximum number of images
you can have COM+ 1.5 store for you is 200. You can generate a
dump file in several ways. The first (and m ost useful) way is to
inst ruct COM+ to dump a memory image on applicat ion fault (at the
bot tom of the Dump tab— see Figure B-10) . In this context , an
applicat ion's fault is when an except ion is thrown.

Figure B- 1 0 . COM + 1 .5 applicat ion Dum p tab

 360

The second way to generate a dump file is to select Dump from a
running applicat ion context menu (see Figure B-6) . Finally, you can
also request a dump explicit ly by using the DumpProcess() method
of the ICOMAdminCatalog2 inter face, defined as:
[id(0x1f)] HRESULT DumpProcess([in] BSTR
bstrApplInstanceId,
 [in] BSTR bstrDirectory,
 [in] long lMaxImages,
 [out,retval] BSTR*
pbstrDumpFile);
When you use the DumpProcess() method, you have to provide
the dump directory and filename and you cannot rely on the
configured values. Request ing a dump (either by calling
DumpProcess() or select ing Dump from the context menu) on a
running applicat ion is nonint rusive— the process can cont inue to run
and is only frozen temporar ily for the durat ion of the dump.
When COM+ generates a dumped file, it uses the following nam ing
convent ion as a filename:
{<
App-ID>}_year_month_day_hour_minute_second.dmp
This convent ion lets you easily associate a dump file with a reported
system failure. For example, here is a typical dum p filenam e:
{02d4b3f1-fd88-11d1-960d-
00805fc79235}_2001_06_14_13_28_51.dmp
To avoid calling DumpProcess() needlessly, ICOMAdminCatalog2
has a helper method called IsProcessDumpSupported(), used to
find out whether im age dum p is enabled on the machine:

 361

[id(0x20)]HRESULT
IsProcessDumpSupported([out,retval]VARIANT_BOOL*
pbSupported);
You can set the var ious dump propert ies programmat ically as well,
using named propert ies of the applicat ion catalog object . The
DumpEnabled property lets you enable or disable image dum p for
the applicat ion, DumpOnException lets you request a dump on
except ions, MaxDumpCount lets you configure the maximum number
of dumped files, and DumpPath lets you specify where to save the
dumped im age files.

B.9 Applicat ion Part it ioning

Applicat ion part it ioning is an int r icate new service aimed to refine
and improve managem ent of COM+ applicat ions in a large-scale
environment. An in-depth discussion of applicat ion part it ions is
beyond the scope of this appendix and requires an understanding of
Act ive Directory. I nstead, this appendix provides a sim plified
overv iew of the part it ion concept .
An applicat ion part it ion is a group of COM+ 1.5 applicat ions.
Part it ions provide you with an economic way to present each user
(be it a logged-on user or a call com ing in across the network) with
its own set of applicat ions and components. Part it ions are usually
configured in Act ive Directory.
Under COM+ 1.0, a component can belong to only one COM+
applicat ion on a given machine. I f you want to install the same
component (sam e CLSID) in mult iple applicat ions, you have to do
so on mult iple machines. COM+ part it ions allow you to install the
same component in more than one applicat ion, provided the
applicat ions belong to different part it ions. A given m achine can
contain m ult iple part it ions, and each part it ion can have its own set
of applicat ions and components. You can assign users to part it ions
in the Act ive Directory. COM+ 1.5 also defines a base part it ion—a
part it ion that all users share. When a user t r ies to create a
component , COM+ first looks in the part it ion the user is associated
with. I f that part it ion has that com ponent , then COM+ creates it . I f
it does not , COM+ looks in the base part it ion; if it is found in the
base part it ion, COM+ creates it . I f the base part it ion does not
contain the component , then the creat ion fails, even if the
component is part of another part it ion.
For example, consider the part it ion layout in Figure B-11. I f a user
associated with Part it ion A only t r ies to create the component with
CLSID1, that component is created from Part it ion A; the
configurat ion set t ings of App1 in Part it ion A and any component -
level configurat ion are applied. However, if the user t r ies to create

 362

the component with CLSID3, the component from the base part it ion
is created and the base part it ion set t ings are applied. I f the user
t r ies to create with CLSID7, the creat ion fails.

Figure B- 1 1 . Configuring m ult iple sets of applicat ions on the sam e
m achine using part it ions

Figure B-11 demonst rates some other points. A given CLSI D can
belong to more than one part it ion, but a given part it ion can have
only one copy of the component . Different part it ions can contain
applicat ions with the same nam e. The different part it ions inherit t he
base part it ion’s applicat ions and com ponents, but they can overr ide
them, remove them, add new components, and change their
set t ings.
Applicat ion part it ions provide an easier way to manage act ivat ions
and isolate applicat ions between part it ions. Each part it ion can be
managed independent ly of the others, and you can even install
different versions of the sam e component in different part it ions,
thus tailor ing a part icular com pat ibilit y solut ion.
Under COM+ 1.5, the object context has a part it ion property . The
context object supports a new interface called
IObjectContextInfo2 that der ives from IObjectContextInfo,
which enables you to get informat ion about the part it ion and the
applicat ion the object is part of. Clients can request to create an
object in a part icular part it ion using a special moniker.
The ICOMAdminCatalog2 interface provides you with num erous
methods for managing part it ions, including copying an applicat ion
from one part it ion to another, copying and moving a com ponent
from one part it ion to another, get t ing the base applicat ion part it ion
ID, and get t ing the current part it ion ID.

 363

B.1 0 Aliasing Com ponents

Under COM+ 1.0 you cannot use the same com ponent with more
than one set of configurat ions— like in classic COM, a component is
associated with just one CLSID. COM+ 1.5 allows you to alias an
exist ing configured com ponent with a new CLSID and apply a new
set of configurat ions to the "new" com ponent . This process is called
aliasing a component . Aliasing is often a useful feature— you can
develop a piece of business logic and assign more than one set of
configurat ion param eters to it by copying it as m any t imes as you
like. The component's client can now decide which configurat ion
set t ing and business logic implementat ion to instant iate by creat ing
a part icular CLSID. To alias a com ponent , select Alias from its pop-
up context m enu in the Component Services Explorer . This select ion
brings up the Alias Component dialog box (see Figure B-12)

Figure B-1 2 . Aliasing a com ponent

The dialog box lets you select a dest inat ion applicat ion for the new
component . Because you are assigning a new CLSID to the
component , you can even copy it back to its current applicat ion.
The dialog generates the new CLSI D for the copy and a new prog-
ID (<CopyOf>.<Old prog-ID>, see Figure B-12) . You can provide
your own values for the CLSI D and prog- ID, if you like. I nit ially , the
new com ponent has configurat ion set t ings that are ident ical to the
original com ponent . Once you copy a component , the original and
the clone are considered different components from the COM+ point
of v iew. You can configure them different ly, even though the
configurat ions apply to the same actual component at runt ime.
Copying components is also handy in the case of event classes. As
you m ay recall from Chapter 9, you must supply COM+ with a
skeletal implementat ion of an event class (stub out all

 364

implementat ion of the sinks) so that COM+ can synthesize its own
implementat ion of the event class. You may often provide more
than one event class so that some subscribers can subscribe to one
event class and some to another. With component copying, you
only need to provide one, and then just copy it .

B.1 1 Configurable Transact ion I solat ion Level

COM+ 1.0 handles t ransact ion isolat ion very conservat ively . COM+
1.0 only allows the highest level of isolat ion, an isolat ion level called
serialized. With ser ialized t ransact ions, the results obtained from a
set of concurrent t ransact ions are ident ical to the result s obtained
by running each t ransact ion ser ially . Such a high degree of isolat ion
comes at the expense of overall system throughput ; the resource
managers involved have to hold onto both read and write locks for
as long as a t ransact ion is in progress, and all other t ransact ions
are blocked. However, you may want to t rade system consistency
for throughput in some situat ions by lower ing the isolat ion level.
Imagine, for example, a banking system. One of the requirem ents
is to ret r ieve the total amount of m oney in all custom er accounts
combined. Although execut ing that t ransact ion with the serialized
isolat ion level is possible, if the bank has hundreds of thousands of
accounts, it may take quite a while to complete. The t ransact ion
may t im e out and abort because some accounts m ay be accessed
by other t ransact ions at the same t ime. But the num ber of accounts
could be a blessing in disguise. On average, stat ist ically speaking, if
the t ransact ion is allowed to run at a lower isolat ion level, it may
get the wrong balance on some accounts. However, those incorrect
balances would tend to cancel each other out . The actual result ing
error m ay be acceptable for the bank’s need.
COM+ 1.5 allows you to configure the isolat ion level for a
t ransact ional component . The Transact ions tab has a drop-down list
box with five isolat ion levels (see Figure B-13) . The available
isolat ion levels are Any, Read Uncom mit ted, Read Commit ted,
Repeatable Read, and Serialized. The default is set to Serialized.

Figure B- 1 3 . Set t ing t ransact ion isolat ion level for individual com ponents

 365

The under ly ing t ransact ion processing m onitor, the DTC, supports
other t ransact ion isolat ion levels besides Serialized, but COM+ 1.0
passes in a hard-coded isolat ion level of Serialized when it creates a
new DTC t ransact ion. All COM+ 1.5 does to expose these levels is
pass the configured isolat ion level, instead of the or iginal hard-
coded Serialized level in COM+ 1.0, to the DTC.
Select ing an isolat ion level other than Serialized is com monly used
for read- intensive systems. I t requires a solid understanding of
t ransact ion processing theory and the semant ics of the t ransact ion
itself, the concurrency issues involved, and the consequences for
system consistency. A good star t ing point is the bible on t ransact ion
processing: Transact ion Processing: Concepts and Technologies by
Jim Gray and Andreas Reuter (Morgan Kaufmann, 1992) . I n
addit ion, not all resource managers support all levels of isolat ion,
and they may elect to take part in the t ransact ion at a higher level
than the one configured. Every isolat ion level besides Serialized is
suscept ible to some sort of inconsistency result ing from having
other t ransact ions access the same informat ion. The difference
between the four isolat ion levels is in the way they use read and
write locks. A lock can be held only when the t ransact ion accesses
the data in the resource manager, or it can be held unt il the
t ransact ion is comm it ted or aborted. The former is bet ter for
throughput ; the lat ter for consistency. The two k inds of locks and
the two kinds of operat ions (read/ wr ite) give four isolat ion levels.
See a t ransact ion-processing textbook for a com prehensive
descript ion of isolat ion levels.
In a COM+ t ransact ion, the root does more than just star t and end
a t ransact ion. I t also determ ines the isolat ion level for the
t ransact ion. Once determ ined, the isolat ion level is fixed for the life

 366

of the t ransact ion. A component cannot take part in a t ransact ion if
the isolat ion level it requires is greater than that of the t ransact ion.
Consequent ly , every component in a t ransact ion must have its
isolat ion level set to a level equal to or less than that of the root
component . I f a com ponent in a t ransact ion t r ies to create another
component with a greater isolat ion level, COM+ 1.5 refuses to
create the component and CoCreateInstance() returns
CO_E_ISOLEVELMISMATCH.
When isolat ion is set to Any, the component is indifferent to the
isolat ion level of the t ransact ion it is part of. I f that component is
not the root of a t ransact ion, then it sim ply assumes the isolat ion
level of the t ransact ion it is part of when it accesses resource
managers. I f that component is the root of a t ransact ion, then
COM+ 1.5 decides on the isolat ion level for it and uses Ser ialized.
As a result , any component with isolat ion set to Ser ialized or Any
can be the root of a COM+ 1.5 t ransact ion because by definit ion, all
other components have isolat ion levels equal to or less than they
do. Any other isolat ion level for a root m ay not guarantee successful
act ivat ion of internal com ponents. The COM+ 1.5 Explorer displays
a warning message when you change isolat ion level from Serialized
or Any, which is almost correct in its content (see Figure B-14) .

Figure B- 1 4 . W arning m essage w hen changing the isolat ion level from
Serialized or Any to another level

I t is possible for one component to call another component with a
higher configured isolat ion level, as long as the t ransact ion isolat ion
is greater than or equal to that higher level. For example,
Component R with isolat ion set to Repeatable Read is the root of a
t ransact ion, and it creates two other com ponents, A and B, with
isolat ion levels of Read Commit ted and Read Uncomm it ted,
respect ively. Component B can call Com ponent A because the
isolat ion level of A and B is less than that of the root R.
The correct warning message should read: "Changing this level
from Serialized or Any requires that when this component is the
root of a t ransact ion, all components in the t ransact ion have an
isolat ion level less than or equal to the isolat ion level set for this
component ."
You can also set the component ’s isolat ion level programmat ically
by set t ing the TxIsolationLevel nam ed property of a component
catalog object .

 367

NET Serviced Com ponent I solat ion

A .NET t ransact ional serviced component can declare its
isolat ion level under COM+ 1.5 using the Transaction
at t r ibute’s Isolation property:
[Transaction(Isolation=
TransactionIsolationLevel.Serializable)]
public class MyComponent :ServicedComponent
{}

The Isolation property is of the enum type
TransactionIsolationLevel, defined as:
public enum TransactionIsolationLevel
{
 Any,
 ReadUncommitted,
 ReadCommitted,
 RepeatableRead,
 Serializable
}
The default value of the TransactionIsolationLevel
property is TransactionIsolationLevel.Serializable.

B.1 2 I m proved Context Act ivat ion Set t ing

As explained in Chapter 3, configuring your component to use JITA
requires having its own context . COM+ 1.0 lets you configure your
component to use JITA, and configure it to require that the
component always m ust be act ivated in its creator ’s context , by
checking the checkbox "Must be act ivated in caller ’s context " on the
component ’s Act ivat ion tab. (As discussed in Chapter 3, this name
is inaccurate and should read "Must be act ivated in creator’s
context .") These two set t ings are mutually exclusive. I f you
configure a component in this way, all act ivat ions fail. You face a
sim ilar pit fall when configur ing the com ponent to use t ransact ions
or enforce secur ity access checks for the component— all require a
private context . The COM+ 1.5 Explorer remedies this situat ion by
redesigning the component Act ivat ion tab (see Figure B-15) and
adding a new act ivat ion opt ion. The Act ivat ion Context propert ies
group contains three radio but tons. You can select only one of the
but tons at a t ime— thus enforcing mutual exclusion. I f you select
"Don't force act ivat ion context ," you actually select the regular
COM+ context act ivat ion behavior. I n this mode, you can enable
JITA, t ransact ions, and secur ity access checks. In fact , as long as
t ransact ion support or access security are enabled, you cannot

 368

select another opt ion; enabling security checks sets the select ion
back to "Don’t force act ivat ion context" from any other set t ing.
COM+ 1.5 adds a new context act ivat ion select ion— "Must be
act ivated in the default context ." This new opt ion can be useful
when you know that clients of the com ponent reside in the default
context and make frequent calls of short durat ion to your
component , and that your component does not use most of the
COM+ serv ices.

Figure B- 1 5 . The new COM+ 1 .5 com ponent Act ivat ion tab

B.1 3 Private Com ponents

COM+ 1.5 provides a new feature called private components. Every
component has, at the bot tom of its act ivat ion tab, the "Mark
component pr ivate to applicat ion" checkbox (see Figure B-15) . A
private component can only be accessed by other components in
the same applicat ion. Private components are needed in almost
every decent size COM+ project . To promote loose coupling
between clients and objects, you should avoid providing the clients
with access to the internal objects by marking them as private.

.NET Private Serviced Com ponent

A .NET t ransact ional serviced component can declare itself as
a private component , using the Pr ivateComponent at t r ibute:

 369

[PrivateComponent]
public class MyComponent :ServicedComponent
{}
Note that a private com ponent is different from an internal
component . Declar ing the class as internal instead of public
prevents access to it from outside its assembly. A pr ivate
component cannot be accessed by clients outside its COM+
applicat ion, but it can be accessed by other clients in the
same applicat ion, including components from other
assemblies.

B.1 4 W eb Services in COM+ 1 .5

Web services support is the most excit ing new feature of the .NET
plat form . As explained in Chapter 10, web serv ices allow a m iddle-
t ier component in one web site to invoke methods on another
m iddle- t ier component at another web site, with the same ease as if
the two components were on the same site and machine. But .NET
web services come with a pr ice— companies have to invest in
learning new languages such as C# and cope with a new
programming model and new class libraries. I n most organizat ions,
this cost is substant ial. To preserve exist ing investment in COM
components and development expert ise, while providing a m igrat ion
path to the .NET wor ld, COM+ 1.5 can expose any COM+
component that complies with web services design guidelines as a
web service. The applicat ion act ivat ion tab lets you configure SOAP
act ivat ion for your applicat ion (see Figure B-7) . All you need to do is
specify the vir tual directory of the web serv ice associated with this
applicat ion, and COM+ provides the necessary adaptors as a
component service. Each component is exposed as a separate web
serv ice, ident ified by the component prog- ID under the v ir tual
directory. COM+ installs the web services with I IS and generates
the proper web service configurat ion and informat ion files. Note that
I IS and .NET must be installed on the server and client machine to
enable the SOAP act ivat ion mode for your applicat ion.

B.1 5 Sum m ary

COM+ is essent ial for rapid com ponent development and robust ,
scalable applicat ions. COM+ 1.5 sm oothes COM+ 1.0's rough edges,
and its new features are a most welcome addit ion to your
development arsenal. Future releases of COM+ will most likely
int roduce new features and component services, probably to

 370

complement new capabilit ies available with .NET (such as the web
serv ices support) and im prove the integrat ion between the two.
Especially noteworthy is COM+ 1.5’s support for legacy com ponents
and applicat ions. The message is clear: use COM+ as a support ing
component services plat form and unify in the sam e architecture all
your components— from classic COM components, to COM+
configured components, to .NET serv iced components.
As ment ioned at the beginning of the book, COM+ offers a
m igrat ion path for companies and developers. Companies can star t
(or cont inue) their projects in COM, using COM+ for component
serv ices. When the t ime comes to move to .NET, they can star t
plugging into the sam e architecture .NET serv iced components in a
seamless manner, reusing and interact ing with their exist ing COM
and COM+ configured components.

 371

Appendix C. I nt roduct ion to .NET

.NET is based on a Com mon Language Runt ime (CLR) environment
that manages every runt ime aspect of your code. All .NET
components, regardless of the language in which they are
developed, execute in the same runt ime (hence the name) . The CLR
is like a warm blanket that surrounds your code, providing it with
memory m anagement , a secure environment to run in, object
locat ion t ransparency, concurrency m anagement , and access to the
underly ing operat ing system services. Because the CLR m anages
these aspects of your object ’s behavior, code that targets the CLR is
called managed code. The CLR provides absolute language
interoperability , allowing a high degree of component
interoperability . COM, too, prov ides language independence,
allowing binary components developed in two different languages
(such as Visual Basic and C+ +) to call one another’s methods, but
COM language interoperabilit y is only at runt ime. Dur ing
development, .NET allows a component developed in one language
to derive from a component developed in another language
seamlessly . .NET is capable of this process because the CLR is
based on a st r ict type system. To qualify as a .NET language, all
const ructs (such as class, st ruct , or pr im it ive types) in every
language must com pile to CLR-compat ible types. The language
interoperability gain is at the expense of exist ing languages and
compilers. Exist ing compilers produce CLR- ignorant code— code that
does not comply with the CLR type system and that is not managed
by the CLR. Visual Studio.NET comes with four CLR-compliant
languages: C# , Visual Basic.NET, JScript .NET, and Managed C+ + .
Third-party compiler vendors also target the CLR, with m ore than
20 other languages, from COBOL to Eiffel.

C.1 .NET Program m ing Languages

All .NET programming languages use the same set of base classes,
development environment, and CLR types and com ply with the
same CLR design const raints. Compiling code in .NET is a two-phase
process. First , the high- level code is com piled into a gener ic
machine-code- like language called intermediate language (I L) . At
runt im e, on the f irst call into the I L code, the IL is compiled into
nat ive code and executes as nat ive code. The nat ive code is used
unt il t he program term inates. The I L is the common denominator of
all .NET program ming languages, and equivalent const ructs in two
different languages should theoret ically produce ident ical I L. As a

 372

result , all .NET programming languages are equal in performance
and ease of development.
The difference between the languages is m ost ly aesthet ic, and
choosing one over another is a m at ter of personal preference. For
example, to make C+ + CLR compliant , Microsoft had to add
numerous nonstandard compiler direct ives and extensions, result ing
in less readable code than standard unmanaged C+ + . Sim ilar ly ,
Visual Basic.NET bears lit t le resemblance to its Visual Basic 6.0
ancestor , requir ing you to unlearn things you used to do in Visual
Basic 6.0. Only C# has no legacy and is a fresh .NET language. C#
is a C+ + der ivat ive language, combining the power of C+ + with the
ease of Visual Basic 6.0, and offer ing you readable, CLR-compliant
C+ + like code. I n fact , C# looks more like norm al C+ + than
managed C+ + . This appendix and Chapter 10 therefore use C# in
its code sam ples. Bear in m ind, however, that you can do all the
code samples in Visual Basic.NET, managed C+ + , or any other .NET
language.
Other features of .NET languages include their t reatment of every
ent ity as an object (including prim it ive types) , result ing in a cleaner
programming model. .NET provides comm on error handling based
on except ions. The CLR has a r ich predefined set of except ion
classes that you can use as is, or derive and extend for a specific
need. An except ion thrown in one language can be caught and
handled in another language.

C.2 Packaging .NET Com ponents: Assem blies

The basic code packaging unit in .NET is the assem bly . An assembly
is a logical DLL— i.e., assembly can combine more than one physical
DLL into a single deployment , versioning, and secur ity unit .
However, an assembly usually contains just one DLL (the default in
Visual Studio.NET) and you have to use command- line compiler
switches to incorporate more than one DLL in your assembly. An
assembly is not lim ited to containing only DLLs. An assembly can
also contain an EXE. As a component developer, you usually
develop components that reside in a single or m ult iple DLL
assembly to be consumed by a client applicat ion residing in an
assembly that has an EXE. The code in the assembly (in the DLLs or
the EXE) is only the I L code, and at runt ime the I L is compiled to
nat ive code, as explained previously.
An assembly contains more than just the I L code. Embedded in
every assembly is m etadata, a descr ipt ion of all the types declared
in the assembly and a manifest , a descript ion of the assem bly and
all other required assemblies. The manifest contains var ious
assembly-wide informat ion, such as the assembly version

 373

informat ion. The version informat ion is the product of a version
number provided by the developer and a build and revision number
captured by the compiler (or provided by the developer as well)
during the build. All DLLs in the assembly share the sam e version
number and are deployed as one unit .
The assembly boundary serves as the .NET secur ity boundary—
security perm issions are granted at the assembly level. All
components in an assembly share the same set of perm issions.
The assembly can also contain a compiled resource file for icons,
pictures, etc., like any t radit ional DLL or EXE.

C.3 Developing .NET Com ponents

To create a .NET com ponent in C# (or any other .NET Language) ,
you simply declare a class. When the class is instant iated by the
CLR, the result is a binary component . Example C-1 shows a simple
class nam ed MyClass that implements the IMessage inter face and
displays a m essage box with the word "Hello" when the interface's
ShowMessage() m ethod is called.

Exam ple C- 1 . Building a com ponent in .NET

namespace MyNamespace
{
 using System;
 using System.Windows.Forms;

 public interface IMessage
 {
 void ShowMessage();
 }

 public class MyComponent :IMessage
 {
 public MyComponent(){}//constructor
 ~ MyComponent(){}//destructor
 public void ShowMessage()
 {
 MessageBox.Show("Hello!","MyComponent");
 }
 }
 }
The MyComponent class in Example C-1 is defined as public,
making it accessible to any .NET or COM client once you export the
component to COM. You can define a class const ructor to do object
init ializat ion, as in this example, but the dest ructor has different
semant ics than the classic C+ + destructor because .NET uses

 374

nondeterm inist ic object finalizat ion. You can implem ent other
methods to do object cleanup as well. The implementat ion of
ShowMessage() uses the stat ic Show() method of the MessageBox
class. Like in C+ + , C# allows you to call a class (stat ic) method
without instant iat ing an object first .
Example C-1 dem onst rates a few addit ional key points regarding
developing .NET components: using nam espaces and interface-
based programming. These points are discussed next .

C.3 .1 Using Nam espaces

The class definit ion is scoped in a namespace. Namespaces are
opt ional, but you are encouraged to use them . Namespaces in .NET
have the same purpose they have in C+ + : to scope classes so a
client can use different classes from different vendors that have the
same name. For a nam espace, you typically use the product ’s
name, your company’s name, or the assembly’s name. A client of
the class MyComponent in Example C-1 must now refer to it by
qualify ing it with its containing nam espace:
MyNamespace.MyComponent
Alternat ively, the client can say that it is using the MyNamespace
namespace, and avoid put t ing the "MyNamespace" prefix on every
type contained in that namespace:
using MyNamespace;
//MyComponent is now the same as MyNamespace.MyComponent
You can also nest namespaces within one another. For example, if
your company develops more than one product , you would typically
define in the scope of the MyCompany namespace, the nested
namespaces Product1, Product2, and so on:
namespace MyCompany
{
 namespace Product1
 {
 //classes and type definitions
 public class Component1
 {...}
 }
 namespace Product2
 {
 //other classes and type definitions
 }
}
Clients of your components must give the full qualify ing namespace
to access your component :
MyCompany.Product1.Component1
Or, clients can use the using statement :
using MyCompany.Product1;

 375

//Component1 is now the same as
MyCompany.Product1.Component1
The ShowMessage() method in Example C-1 uses the stat ic
method Show() of the MessageBox class, defined in the
System.Windows.Forms namespace. Example C-1 therefore
contains the statem ent :
using System.Windows.Forms;
This statement is used to simplify downst ream code.

C.3 .2 Using I nterfaces

One the m ost important pr inciples of com ponent -or iented
development is the separat ion of interfaces from implementat ion.
COM enforces this separat ion by having you separate the definit ions
of inter faces and classes. .NET does not force you to have your
class methods be part of any interface, but it is imperat ive that you
do so to allow polymorphism between different implementat ions of
the same interface.
Example C-1 includes an inter face definit ion as part of the code—
there is no need for a separate IDL file. The reserved C# word
interface allows you to define a type that is purely v ir tual (it has
no im plementat ion and cannot be instant iated by clients) , j ust like a
C+ + pure vir tual or abstract class. The interface methods do not
have to return HRESULT or any other error handling type. In case of
an error, the method implem entat ion should throw an except ion.

C.4 W rit ing .NET Client - Side Code

All that a .NET client has to do to use a component is add a
reference in its project set t ing to the assembly containing the
component , create an object , and then use it :
using MyNamespace;

//Interface-based programming:
IMessage myObj;
myObj = (IMessage)new MyComponent();
myObj.ShowMessage();
You usually do not use pointers in C# . Everything is referenced
using the dot (.) operator. Note also that the client casts the newly
created object to the IMessage interface. This is the .NET equivalent
of QueryInterface(). I f t he object does not support the interface
it is being cast to, an except ion is thrown.
The client can instead perform a cont rolled query for the interface
using the as keyword. I f the object does not support the interface,
the returned reference is null:
using MyNamespace;

 376

//Even better: check for type mismatch
IMessage myObj;
myObj = new MyComponent() as IMessage;
Debug.Assert(myObj!= null);
myObj.ShowMessage();
As ment ioned before, .NET does not enforce separat ion of interface
from implementat ion, so the client could create the object type
direct ly:
using MyNamespace;

//Avoid doing this:
MyComponent myObj;
myObj = new MyComponent();
myObj.ShowMessage();
However, you should avoid writ ing client code that way because
doing so means that the client code is not polymorphic with other
implementat ions of the same interface. Such client code also
couples interact ing m odules. Imagine a situat ion in which Module 1
creates the object and Module 2 uses it . I f all that the Module 1
passes to Module 2 is the inter face type, Module 1 can change the
implementat ion of the inter face later without affect ing Module 2.

C.5 .NET as a Com ponent Technology

To simplify component development , one of the goals set for the
.NET framework was to im prove COM deficiencies. Some of these
deficiencies, such as awkward concurrency management v ia
apartments, were inher ited with COM itself. Other deficiencies occur
as a result of error-prone developm ent and deployment phases.
Examples include memory and resource leaks result ing from
reference count defects, fragile regist rat ion, the need for developer-
provided proxy stubs pairs, and having interface and type definit ion
in IDL files separate from the code. Frameworks such as ATL do
provide automat ion of some of the required implementat ion
plum bing, such as class factories and regist rat ion, but they
int roduce their own complexity.
.NET is designed to not only improve these deficiencies, but also
maintain the core COM concepts that have proven themselves as
core principles of component-oriented development .
.NET provides you fundam ental component -oriented development
pr inciples, such as binary compat ibilit y between client and
component , separat ion of interface from implementat ion, object
locat ion t ransparency, concurrency m anagement , security , and
language independence. A comprehensive discussion of .NET as a
component technology mer its a book in its own r ight and is beyond

 377

the scope of this appendix. However, the following sect ions descr ibe
the main characterist ics of .NET as a component technology.

C.5 .1 Sim plif ied Com ponent Developm ent

Compared to COM, .NET m ight seem to be m issing many things you
take for granted as part of developing components. However, in
essence, the m issing elements are actually present in .NET,
although in a different fashion:

• There is no canonical base inter face (such as IUnknown) that
all components der ive from. I nstead, all components der ive
from the System.Object class. Every .NET object is therefore
polymorphic with System.Object.

• There are no class factor ies. I n .NET, the runt ime resolves a
type declarat ion to the assem bly containing it and the exact
class or st ruct within the assembly.

• There is no reference count ing of objects. .NET has a
sophist icated garbage collect ion mechanism that detects when
an object is no longer used by clients. Then the garbage
collector destroys the object .

• There are no IDL files or type libraries descr ibing your
inter faces and custom types. I nstead, you put those
definit ions in your source code. The compiler is responsible for
embedding the type definit ions in a special format in your
assembly called metadata.

• There are no GUIDs. Scoping the types with the namespace
and assembly name provides uniqueness of type (class or
inter face) . When shar ing an assembly between clients, the
assembly must contain a st rong nam e— a unique binary blob
generated with an encrypt ion key. Globally unique ident if iers
do ex ist in essence, but you do not have to manage them
anymore.

• There are no apartments. By default , every .NET component
executes in a free- threaded environment and you are
responsible for synchronizing access to your components.
Providing synchronizat ion is done by either relying on .NET
synchronizat ion locks or using COM+ act iv it ies.

.NET has a superb development environment and semant ics, the
product of years of observing how developers use COM and the
hurdles they faced.

C.5 .1 .1 The .NET base classes

As demonst rated in Example C-1, a hard- to- learn component
development framework such as ATL is not required to build binary
managed components. .NET takes care of all the under ly ing

 378

plum bing for you. To help you develop your business logic faster ,
.NET also provides you with more than 3,500 base classes, available
in sim ilar form for all languages. The base classes are easy to learn
and apply. You can use the base classes as is, or der ive from them
to extend and specialize their behavior.

C.5 .1 .2 Com ponent inheritance

.NET enforces st r ict inheritance semant ics and inher itance conflicts
resolut ion. .NET does not allow mult iple inher itance of
implementat ion. You can only der ive from one concrete class. You
can, however, der ive from as many interfaces as you like. When
you overr ide a vir tual funct ion im plementat ion in a base class, you
must declare your intent explicit ly . For example, if you want to
overr ide it , you should use the override reserved word.

C.5 .1 .3 Com ponent visibility

While developing a set of interoperat ing components, you often
have components that are intended only for pr ivate use and should
not be shared with your clients. Under COM, there is no easy way of
guaranteeing that the components are only used pr ivately . The
client can always hunt through the Regist ry , find the CLSID of your
pr ivate component , and use it . I n .NET, you can simply use the
internal keyword on the class definit ion (instead of public, as in
Example C-1) . The runt ime denies access to your component for
any caller outside your assembly.

C.5 .1 .4 At t ribute-based program m ing

When developing components, you can use at t r ibutes to declare
your component needs, instead of coding them. Using at t r ibutes to
declare component needs is sim ilar to the way COM developers
declare the threading model at t r ibute of their com ponents. .NET
provides you with num erous at t r ibutes, allowing you to focus on
your dom ain problem at hand (COM+ services are accessed v ia
at t r ibutes) . You can also define your own at t r ibutes or extend
exist ing ones.

C.5 .1 .5 Com ponent - or iented security

The classic Windows NT security model is based on what a given
user is allowed to do. This m odel has evolved in a t ime when COM
was in its infancy and applicat ions were usually standalone,
monolithic chunks of code. In today’s highly dist r ibuted,
component -oriented environment , there is a need for a security
model based on what a given piece of code— a component— is
allowed to do, and not only on what its caller is allowed to do.

 379

.NET allows you to configure perm issions for a piece of code and
provide an evidence to prove that it has the r ight credent ials to
access a resource or perform sensit ive work. Evidence-based
security is t ight ly related to the component ’s or igin. System
administ rators can decide that they t rust all code that cam e from a
part icular vendor, but dist rust everything else, from downloaded
components to malicious at tacks. A com ponent can also demand
that a perm ission check be performed to ver ify that all callers in its
call chain have the r ight perm issions before it proceeds to do its
work.
This model complements COM+ role-based security and call
authent icat ion. I t prov ides the applicat ion adm inist rator with
granular control over not only what the users are allowed to do, but
also what the components are allowed to do. .NET has it s own role-
based security model, but it is not as granular or user fr iendly as
COM+ role-based security .

C.5 .2 Sim plif ied Com ponent Deploym ent

.NET does not rely on the Regist ry for anything that has to do with
your components. I n fact , installing a .NET component is as simple
as copying it to the directory of the applicat ion using it . .NET
maintains t ight version cont rol, enabling side-by-side execut ion of
new and old versions of the same component on the same m achine.
The net result is zero- impact install— by default , you cannot harm
another applicat ion by installing yours, thus ending the predicam ent
known as DLL Hell. The .NET m ot to is: it just works. I f you want to
install components to be shared by mult iple applicat ions, you can
install them in the Global Assembly Cache (GAC) . I f the GAC
already contains a previous version of your assem bly, it keeps it for
use by clients that were built against the old version. You can purge
old versions as well, but that is not the default .

C.5 .3 Sim plif ied Object Life Cycle Managem ent

.NET does not use reference count ing to manage an object's life
cycle. I nstead, .NET keeps t rack of accessible paths in your code to
the object . As long as any client has a reference to an object , it is
considered reachable. Reachable objects are kept alive.
Unreachable objects are considered garbage, and therefore
dest roying them harms no one. One of the crucial CLR ent it ies is the
garbage collector . The garbage collector periodically t raverses the
list of ex ist ing objects. Using a sophist icated point ing schema, it
detects unreachable objects and releases the mem ory allocated to
these objects. Consequent ly, clients do not have to increment or
decrement a reference count on the objects they create.

C.5 .4 Nondeterm inist ic Finalizat ion

 380

I n COM, the object knows that it is no longer required by its clients
when its reference count goes down to zero. The object then
performs cleanup and dest roys itself by calling delete this;. The
ATL framework even calls a m ethod on your object called
FinalRelease(), let t ing you handle the object cleanup.
In .NET, unlike COM, the object it self is never told when it is
deemed as garbage. I f t he object has specific cleanup to do, it
should implement a method called Finalize(). The garbage
collector calls Finalize() just before destroy ing the object .
Finalize() is your .NET component ’s dest ructor . I n fact , even if
you implement a dest ructor (such as the one in Example C-1) , the
compiler will convert it to a Finalize() method.

C# Destructor

I n C# , do not prov ide a Finalize() method. I nstead,
provide a destructor. The compiler both converts the
dest ructor definit ion to a Finalize() method and calls your
base class Finalize() method.
For example, for this class definit ion:
public class MyClass
{
 public MyClass(){}
 ~MyClass(){}
}
The code that is actually generated would be:
public class MyClass
{
 public MyClass(){}
 protected virtual void Finalize()
 {
 try
 {
 //Your destructor code goes here
 }
 finally
 {
 base.Finalize();//everybody has one,
from Object
 }
 }
}

However, simplify ing the object lifecycle comes with a cost in
system scalabilit y and throughput . I f the object holds on to
expensive resources, such as files or database connect ions, those
resources are released only when Finalize() is called. I t is called
at an undeterm ined point in the future, usually when the process
host ing your component is out of m emory. I n theory, releasing the

 381

expensive resources the object holds m ay never happen, and thus
severely hamper system scalability and throughput .
There are two solut ions to the problems arising from
nondeterm inist ic finalizat ion. The first solut ion is to implem ent
methods on your object that allow the client to explicit ly order
cleanup of expensive resources the object holds. I f t he object holds
onto resources that can be reallocated, then the object should
expose methods such as Open() and Close().
An object encapsulat ing a file is a good example. The client calls
Close() on the object , allowing the object to release the file. I f
the client wants to access the file again, it calls Open() without re-
creat ing the object . The more common case is when disposing of
the resources amounts to destroying the object . In that case, the
object should im plement a method called Dispose(). When a
client calls Dispose(), the object should dispose of all it s
expensive recourses, and the client should not t ry to access the
object again. The problem with both Close() and Dispose() is
that they make sharing the object between clients m uch m ore
complicated than COM’s reference counts. The clients have to
coordinate which one of them is responsible for calling Close() or
Dispose() and when Dispose() should be called; thus, the
clients are coupled to one another.
The second solut ion to nondeterm inist ic finalizat ion is to use COM+
JITA, as explained in Chapter 10.

C.5 .5 COM and W indow s I nteroperability

COM and .NET are fully interoperable. Any COM client can call your
managed objects, and any COM object is accessible to a managed
client . To export your .NET com ponents to COM, use the TlbExp.exe
ut ilit y , also available as a command from the Tools menu. The
ut ilit y generates a type library that COM clients use to CoCreate
managed types and interfaces. You can use var ious at t r ibutes on
your managed class to direct the export process, such as providing
a CLSID and I ID.
To im port an exist ing COM object to .NET (by far the most common
scenar io) , use the TlbI mp.exe ut ility . The ut ilit y generates a
managed wrapper class, which your managed client uses. The
wrapper manages the reference count on the actual COM object .
When the wrapper class is garbage collected, the wrapper releases
the COM object it wraps. You can also import a COM object from
within the Visual Studio.NET environment by select ing the COM
object from the project reference dialog (which makes Visual
Studio.NET call TlbImp for you) .
.NET has support for invoking nat ive Win32 API calls, or any DLL
exported funct ions, by import ing the method signatures to the
managed environment.

 382

C.6 Com posing Assem blies

You provide the compiler with your assembly inform at ion in an
assembly inform at ion file (usually called in a C# project ,
AssemblyI nfo.cs) . The assembly informat ion f ile is compiled with
the rest of the project ’s source files. The informat ion in the file is in
the form of assembly at t r ibutes—direct ives to the compiler on the
informat ion to embed in the assembly. Example C-2 shows a typical
set of assembly at t r ibutes.

Exam ple C- 2 . The assem bly inform at ion file includes a var iety of
assem bly at t ributes

[assembly: AssemblyTitle("MyAssembly")]
[assembly: AssemblyDescription("Assembly containing demo
.NET components")]
[assembly: AssemblyCompany("My Product")]
[assembly: AssemblyCopyright("(c) 2001 My Company ")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("en-US")]
[assembly: AssemblyVersion("1.0.*")]

C.6 .1 Sharing Assem blies

Assemblies can be pr ivate or shared. A private assembly resides in
the same directory of the applicat ion that uses it (or in its path) . A
shared assem bly is in a known locat ion, called the global assembly
cache (GAC) , m ent ioned in Chapter 10Chapter 10. To add an
assembly to the GAC, use either the .NET administ rat ion tool or the
GACUt il command- line ut ilit y. Once in the GAC, the assem bly can be
accessed by mult iple applicat ions, both managed and unmanaged.
To avoid conflicts in the GAC between different assemblies that
have the same nam e, a shared assembly must have a st rong name.
The st rong name authent icates the assembly’s or igin and ident ity
and cannot be generated by a party other than the original
publisher. The st rong name allows any client of the assembly
(usually the assembly loader) to determinist ically verify that the
assembly was not tampered with. Assigning a st rong name to an
assembly is also known as signing the assembly. To assign a st rong
name to your assem bly, you first need to generate private or public
encrypt ion keys. You can generate the pair using the SN.exe
command- line ut ilit y:
SN.exe -k MyAssembly.snk
Future versions of Visual Studio.NET m ay enable you to generate
keys from within the v isual environment . The -k switch inst ructs SN
to generate a new pair of keys and store them in the filename

 383

specified. The convent ion used for the filename is the assembly
name with the st rong name key (snk) extension, but it can actually
be any name and extension you like.
You then add the snk file to the assembly ’s informat ion f ile, using
the AssemblyKeyFile assembly at t r ibute:
[assembly:AssemblyKeyFile("MyAssembly.snk")]
I n addit ion to a version num ber and a st rong name, a shared
assembly must have a namespace and locale ident ifier that ident ify
the human language used in its user inter face. I n Example C-2 the
locale is specified by the AssemblyCulture assembly at t r ibute.

C.6 .2 Assem bly Metadata

Each assembly must contain metadata. The metadata is the .NET
equivalent of COM’s type libraries, except the metadata is more like
a type library on steroids. The metadata contains descript ions of all
the types defined in the assembly, such as interfaces, classes and
their base classes, method signatures, propert ies, events, mem ber
var iables, and custom at t r ibutes. The m etadata is generated
automat ically by the compiler when it compiles the source files of
your project . You can view the metadata of your assembly using the
I LDASM ut ility .

C.6 .3 Assem bly Manifest

While the metadata describes the types in your assembly, the
manifest describes the assembly itself. The manifest contains the
assembly version inform at ion, the locale inform at ion, and the
assembly’s st rong name. The manifest also contains the visibilit y of
the assembly’s types— which types are public (can be accessed by
other assemblies) and which types are internal (can only be
accessed from within the assembly) . Finally , the m anifest contains
the secur ity perm ission checks to run on behalf of the assembly.
Like the m etadata, the manifest is generated autom at ically by the
compiler during assembly compilat ion. You can v iew the m anifest of
your assembly using the I LDASM ut ility .

C.6 .4 Assem bly Files

Because every assembly must contain the manifest and metadata
(and usually I L code and resources) , a single DLL or EXE assem bly
contains all of them in one file. However, the only requirement of a
mult ifile assembly is that a file containing I L must also contain
metadata descr ibing it . Such a f ile is called a module. A mult ifile
assembly must st ill have one DLL file that contains the manifest .
Figure C-1 shows a few possibilit ies for composing assemblies.

Figure C- 1 . Assem bly files

 384

As you can see, you can com pose the assembly in alm ost any way
and use compiler switches to bind all your files together. I n
pract ice, most assemblies contain just one DLL (the Visual
Studio.NET IDE provides only this opt ion) and are composed of one
file.

 385

Colophon

Our look is the result of reader com ments, our own
experimentat ion, and feedback from dist r ibut ion channels.
Dist inct ive covers com plement our dist inct ive approach to technical
topics, breathing personality and life into potent ially dry subjects.
The anim als on the cover of COM and .NET Component Services are
moray and conger eels. Eels m ake up the 10 fam ilies of fish
belonging to the order Arguilliformes. Known for their snakelike
body with no hind fins, eels can move through water, mud, and
rocky crevices. Most eels are less than three feet long, but
freshwater conger eels can grow as large as nine feet . Unt il the
20th century, lit t le was known about the life cycle and m igrat ion of
eels. Scient ists now know that American and European eels t ravel
long distances during their reproduct ive cycles. The female eels
generally mature in freshwater lakes and t ravel to the nearest
ocean, often slithering over wet grass and mud during the journey.
Then they swim or dr ift from Europe or North America to the
Sargasso Sea. There, the fem ales lay up to 20 m illion eggs and then
die. The egg- larvae then dr ift either to North America (after one
year) or back to Europe (after three years) . After reaching their
home cont inent , the eels complete their cycle by gathering at the
mouths of r ivers and swimming upst ream. Eels are also known for
their oily meat , cherished by some as a culinary delicacy.
Ann Schirmer was the product ion editor for COM and .NET
Component Services. Paulet te Miley and Ann Schirmer were the
copyeditors for the book . Ann Schirm er and Leanne Soylemez were
the proofreaders. Claire Clout ier, Mary Brady, and Rachel Wheeler
provided quality cont rol. Kimo Carter, Ann Schirmer, and Sarah
Sherm an did inter ior composit ion. Judy Hoer wrote the index.
Ellie Volckhausen designed the cover of this book, based on a ser ies
design by Edie Freedman. The cover image is a 19th-century
engraving from the Dover Pictor ial Archive. Emma Colby produced
the cover layout with Quark XPress 4.1 using Adobe’s ITC
Garamond font .
David Futato designed the inter ior layout . Neil Walls converted the
files from Microsoft Word to FrameMaker 5.5.6 using tools created
by Mike Sierra. The text font is Linotype Birka, the heading font is
Adobe Myriad Condensed, and the code font is LucasFont ’s TheSans
Mono Condensed. The illust rat ions that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. The t ip and warning icons were
drawn by Chr istopher Bing. This colophon was writ ten by Ann
Schirm er.

