[|
Migrating from COM* o NET

DIREJLLY. Jupal Loy

COM and .NET Component Services

Dedication
Foreword

Preface
Scope of This Book
Some Assumptions About the Reader
Definitions and Text Conventions
Other COM+ Books and References
How to Contact Us
Acknowledgments

1. COM+ Component Services
1.1 COM+ Component Services
1.2 The Component Services Explorer
1.3 Hello COM+
1.4 COM+ Configured Components
1.5 Applications, DLLs, and Components
1.6 Configuring COM+ Applications
1.7 Debugging COM+ Applications
1.8 Deploying COM+ Applications
1.9 Summary

2. COM+ Context
2.1 Encapsulation via Marshaling in COM
2.2 Encapsulation via Interception in COM+
2.3 The Context Object
2.4 The Call Object
2.5 Cross-Context Manual Marshaling
2.6 Summary

3. COM+ Instance Management
3.1 Client Types
3.2 Instance Management and Scaling
3.3 Object Pooling
3.4 Just-in-Time Activation
3.5 Combining JITA with Object Pooling
3.6 Object Constructor String
3.7 COM+ Instance Management Pitfalls

4. COM+ Transactions
4.1 Transaction Basics
4.2 Transaction Properties
4.3 Transaction Scenarios
4.4 COM+ Transactions Architecture
4.5 Configuring Transactions
4.6 Voting on a Transaction
4.7 Transactional Object Life Cycle
4.8 Designing Transactional Components
4.9 Nontransactional Clients
4.10 Transactions and Object Pooling
4.11 Compensating Transactions
4.12 Transaction Execution Time

4.13 Tracing Transactions

4.14 In-Doubt Transactions

4.15 Transaction Statistics

4.16 COM+ Transactions Pitfalls

. COM+ Concurrency Model

5.1 Object-Oriented Programming and Multiple Threads
5.2 Apartments: The Classic COM Solution
5.3 Activities: The COM+ Innovation

5.4 COM+ Configuration Settings

5.5 Activities and JITA

5.6 Activities and Transactions

5.7 Tracing Activities

5.8 The Neutral Threaded Apartment

5.9 Summary

. Programming the COM+ Catalog
6.1 Why Program the Catalog?

6.2 The Catalog Programming Model
6.3 Catalog Structure

6.4 Interacting with the Catalog

6.5 Features of COMAdminCatalog

6.6 The COM+ Catalog and Transactions
6.7 Summary

. COM+ Security

7.1 The Need for Security

7.2 Basic Security Terms

7.3 Role-Based Security

7.4 Securing a Server Application

7.5 Securing a Library Application

7.6 Programmatic Role-Based Security
7.7 Security Boundaries

7.8 Advanced COM+ Security

7.9 COM+ Security Pitfalls

7.10 Summary

. COM+ Queued Components

8.1 Major Benefits of Queued Components

8.2 Queued Components Architecture

8.3 Component Services Explorer Configuration

8.4 Invoking Queued Components on the Client Side
8.5 Designing Queued Component Interfaces

8.6 Receiving Output from a Queued Component
8.7 Queued Component Error Handling

8.8 Queued Components and Transactions

8.9 Synchronous Versus Asynchronous Components
8.10 Queued Components Security

8.11 Queued Components Pitfalls

8.12 Summary

. COM+ Event Service
9.1 Classic COM Events
9.2 COM+ Event Model
9.3 The Event Class
9.4 Subscription Types
9.5 Delivering Events

9.6 Event Filtering

9.7 Distributed COM+ Events

9.8 Asynchronous Events

9.9 COM+ Events and Transactions

9.10 COM+ Events and Security

9.11 COM+ Events Limitation

9.12 Summary

10. .NET Serviced Components
10.1 Developing Serviced Components
10.2 .NET Assemblies and COM+ Applications
10.3 Registering Assemblies
10.4 Configuring Serviced Components
10.5 Application Activation Type
10.6 The Description Attribute
10.7 Accessing the COM+ Context
10.8 COM+ Context Attributes
10.9 COM+ Object Pooling
10.10 COM+ Just-in-Time Activation
10.11 COM+ Constructor String
10.12 COM+ Transactions
10.13 COM+ Synchronization
10.14 Programming the COM+ Catalog
10.15 COM+ Security
10.16 COM+ Queued Components
10.17 COM+ Loosely Coupled Events
10.18 Summary

A. The COM+ Logbook
A.1 Logbook Requirements
A.2 Log File Example
A.3 Using the Logbook
A.4 Configuring the Logbook
A.5 How Does the Logbook Work?
A.6 Summary

B. COM+ 1.5
B.1 Improved User Interface Usability
B.2 Legacy Applications and Components
B.3 Disabling Applications and Components
B.4 Pausing Applications
B.5 Service Activation Type
B.6 Improved Queuing Support
B.7 Application Pooling and Recycling
B.8 Application Dump
B.9 Application Partitioning
B.10 Aliasing Components
B.11 Configurable Transaction Isolation Level
B.12 Improved Context Activation Setting
B.13 Private Components
B.14 Web Services in COM+ 1.5
B.15 Summary

C. Introduction to .NET
C.1 .NET Programming Languages
C.2 Packaging .NET Components: Assemblies
C.3 Developing .NET Components

C.4 Writing .NET Client-Side Code
C.5 .NET as a Component Technology
C.6 Composing Assemblies

Colophon

Dedication

To my wife, Dana

Foreword

| first ran into COM+ back in 1996. In those days, | was working as
a Common Object Request Broker Architecture (CORBA) consultant
and was fresh out of IBM, where | had been heavily involved in
IBM’s original CORBA implementation.

CORBA was the first of the architectures that we might describe
today as Distributed Component architectures, which set the stage
for both COM/DCOM in the Microsoft space and RMI/II1OP in the Java
space.

Back then, | was interested in a particularly knotty problem related
to distributed component architectures. Systems built with such
architectures had a characteristic performance pattern. They could
handle large numbers of transactions, as long as those transactions
originated from a small number of clients. So, for example, 5,000
transactions per minute divided between 5 clients worked fine. But
when those same 5,000 transactions per minute were split among
1,000 clients, each processing 5 transactions per minute, the
systems choked.

This was odd, | thought. Why should 5 clients, each processing
1,000 transactions per minute, be fundamentally different than
1,000 clients, each processing 5 transactions per minute? What is
the difference between the first 5,000 transactions per minute and
the second?

Distributed component architectures, as they existed in 1996,
dictated a one-to-one relationship between clients and component
instances. The business logic of such architectures is in the
component instances. And it is the business logic that makes
transactional requests of transactional resources, such as the
database. In order to make transactional requests, the component
instances require expensive resources, such as database
connections. We run out of steam (i.e., transactional throughput)
when one of two things happen: we overload the system with
transactional requests or we run out of resources (e.g., database
connections).

Clearly, going from 5 clients, each making 1,000 transactional
requests per minute, to 1,000 clients, each making 5 transactional
requests per minute, has no overall impact on the transactional
throughput. Therefore, the reason why our distributed component
systems must be dying is that we are running out of resources.

So the answer to getting lots of clients on a distributed component
architecture is not going to come from increased capability of the
back-end transactional resources (e.g., databases). It will have to
come from something else-something that allows resource sharing.
This, then, is the problem | worked on back in 1996. How do you

get several clients to share resources in a distributed component
architecture?

The solution to this problem came from an unexpected source. |
was asked to write a book on COM and DCOM. | knew very little
about COM and DCOM back then. As | looked over the COM/DCOM
white papers on the Microsoft web site, | quickly recognized it as a
typical distributed component architecture and predicted the same
throughput problems | had seen in other distributed component
systems.

As | browsed through the white papers, | noticed an obscure beta
product called Microsoft Transaction Server (MTS). At first, |
dismissed MTS as an API used to manage distributed transactions.
But as | read more about MTS, | realized that it had little to do with
transactions. Instead, it attacked a much more interesting problem:
how to share resources among clients. In a nutshell, MTS addressed
the very problem that had so vexed the existing distributed
component systems-how to support a large number of low-
transaction generating clients!

| did eventually write that book, as well as many articles on the
importance of the ideas introduced by MTS. Many of these articles
appeared in my ObjectWatch newsletter (available at
www.objectwatch.com), a newsletter that has, over time, become
influential in its space.

Back in 1996, | predicted that MTS would be a historically important
product-one that would redefine approaches to scalability in
distributed component systems. In fact, that prediction has come
true. Today, every infrastructure designed to support high
scalability in distributed component systems is based directly on the
ideas, algorithms, and principals first introduced by MTS in 1996.
Enterprise JavaBeans, for example, the Java scalability
infrastructure, is almost a direct copy of MTS.

But what does this have to do with COM+, you may ask. It turns
out that COM+ and MTS are one and the same. Microsoft, never
known for its marketing savvy, decided to wait until customers
finally got used to the name MTS (itself a misleading name), and
then it pulled a fast one-it switched the name! And not just any
name, but one that would be as confusing as possible! So they
renamed MTS as COM+ . Naturally, customers assumed that COM+
was the next release of COM. In fact, COM+ was the next release of
MTS.

Now Microsoft has announced .NET. Once again, the brilliant
Microsoft marketing organization has left many customers confused.
Is COM+ now dead? Far from it—.NET is a series of interesting new
features, none of which replace COM+. COM+ is still the scalable
infrastructure that supports resource sharing and deals with the
myriad of issues (such as security and transaction boundary

management) that are so closely related to resource sharing and so
crucial to distributed applications.

So whether you are rushing into Microsoft’s new .NET technology
platform or taking a wait and see attitude, if you need to put a lot of
clients around your system, you need to understand COM+.
Therefore, this book is very timely. COM+ is going to be with us for
a long time. Its name may change again, just to confuse the
innocent; but the ideas, algorithms, and principals will not. COM+,
under whatever name, is here to stay!

Roger Sessions,

CEO, ObjectWatch, Inc.

Publisher, ObjectWatch newsletter (www.objectwatch.com)

Author, COM+ and the Battle for the Middle Tier

Austin, Texas

Preface

This book discusses COM+ component services. Each service is
covered in its own chapter, and each chapter discusses a similar
range of issues: the problem the service addresses, possible
solutions to that problem, an in-depth description of the COM+
solution, tradeoffs, design, and implementation guidelines, tips, and
known pitfalls. | have tried to provide useful design information and
lessons | learned while applying COM+. | also describe COM+ helper
classes and utilities | developed that will enhance your productivity
significantly. (The COM+ Events helper objects and the COM+
Logbook are prime examples.) This book focuses on the "how to"—
that is, it provides practical information. You should read the
chapters in order, since most chapters rely on information discussed
in the preceding chapters. The book also aims to explain COM+ step
by step. A software engineer already familiar with COM who wants
to know what COM+ is and how to use it can read this book and
start developing COM+ applications immediately.

Scope of This Book

Here is a brief summary of the chapters and appendixes in this
book:

e Chapter 1 introduces the Component Services Explorer and
basic COM+ terminology. This chapter deliberately holds your
hand as you develop your first "Hello World" COM+
component. Subsequent chapters do much less handholding
and assume you are familiar with the COM+ environment. If
you already have experience with basic COM+ development,
feel free to skip this chapter.

e Chapter 2 demystifies the COM+ context by presenting it as
the key mechanism for providing component services using
call interception. Generally, you need not be concerned with
contexts at all. However, the COM+ context underlies the way
COM+ services are implemented.

e Chapter 3 describes two scalability-enabling mechanisms that
COM+ provides for a modern enterprise application: object
pooling and Just-in-Time Activation (JITA). The discussion of
instance management, and especially JITA, is independent of
transactions. Early COM+ documentation and books tended to
couple instance management and transactions. However, |
found that not only can you use instance management
independently of transactions, but it is easier to explain it that

10

way. Besides explaining how to best use object pooling and
JITA, Chapter 3 describes other activation and instance
management COM+ services such as the constructor string.
Chapter 4 explains the difficult, yet common, problems that
transactions address, and provides you with a distilled
overview of transaction processing and the transaction
programming model. The difficult part of writing this chapter
was finding a way to convey the right amount of transaction
processing theory. | want to help you understand and accept
the resulting programming model, but not bury you in the
details of theory and COM+ plumbing. This chapter focuses on
COM+ transaction architecture and the resulting design
considerations you have to be aware of.

Chapter 5 first explains the need in the component world for a
concurrency model and the limitations of the classic COM
solution. It then describes how the COM+ solution, activities,
improves deficiencies of apartments.

Chapter 6 shows how to access component and application
configuration information programmatically using the COM+
Catalog interfaces and objects. Programmatic access is
required when using some advanced COM+ services and to
automate setup and development tasks. This chapter provides
you with comprehensive catalog structure diagrams, plenty of
sample code, and a handy utility.

Chapter 7 explains how to secure a modern application using
the rich and powerful (yet easy to use) security infrastructure
provided by COM+. This chapter defines basic security
concepts and shows you how to design security into your
application from the ground up. You can design this security
by using COM+ declarative security via the Component
Services Explorer and by using advanced programmatic
security.

Chapter 8 explains what COM+ queued components are and
how to use them to develop asynchronous, potentially
disconnected applications and components. In addition to
showing you how to configure queued components, this
chapter addresses required changes to the programming
model. If you have ever had to develop an asynchronous
method invocation option for your components, you will love
COM+ queued components.

Chapter 9 covers COM+ loosely coupled events, why there is
a need for such a service, and how the service ties into other
COM+ services described in earlier chapters (such as
transactions, security, and queued components). Many people
consider COM+ events their favorite service. If you have had
to confront COM connection points, you will appreciate COM+
Events.

11

e Chapter 10 shows how .NET components can take advantage
of the component services described in the previous chapters.
If you are not familiar with .NET, | suggest you read Appendix
C first—it contains an introduction to .NET and C#. Chapter
10 repeats in C# many of the C++ or VB 6.0 code samples
found in earlier chapters, showing you how to implement
them in .NET.

 Appendix A helps you develop a useful and important utility—
a flight recorder that logs method calls, errors, and events in
your application. Logging is an essential part of every
application and is especially important in an enterprise
environment. The logbook is also an excellent example of the
synergies arrived at by combining multiple COM+ services. It
is also a good representation of the design approaches you
may consider when combining services.

 Appendix B describes the changes, improvements, and
enhancements introduced to COM+ in the next release of
Windows, Windows XP. Instead of writing the book as if
Windows XP were available now (as of this writing it is only in
beta), | chose to write the book for the developer who has to
deliver applications today, using Windows 2000. When you
start using Windows XP, all you need to do is read Appendix
B—it contains the additional information you need.

« Appendix C describes the essential elements of the .NET
framework, such as the runtime, assemblies, and how to
develop .NET components. The appendix allows a reader who
is not familiar with .NET to follow Chapter 10.

Some Assumptions About the Reader

| assume that you are an experienced COM developer who feels
comfortable with COM basics such as interfaces, CoClasses, and
apartments. This book is about COM+ component services, not the
component technology used to develop a COM/DCOM or .NET
component. You can still read the book without this experience, but
you will benefit more by having COM under your belt. | assume you
develop your components mostly in C+ + and ATL and that you
write occasional, simple client code in Visual Basic. | also use trivial
C# in Chapter 10 to demonstrate how .NET takes advantage of
COM+ services, but you don't need to know C# to read that
chapter. A .NET developer should also find this book useful: read
and understand the services in Chapter 1 through Chapter 9, and
then use Chapter 10 as a reference guide for the syntax of .NET
attributes.

12

Definitions and Text Conventions

The following definitions and conventions apply throughout this
book:

e A component is an implementation of a set of interfaces. A
component is what you mark in your IDL file (or type library)
with CoClass or a class in C# .

« An object is an instance of a component. You can create
objects by calling CoCreateInstance() in C++, specifying
the class ID (the type) of the object you want to create. If you
use Visual Basic 6.0, you can create objects using new or
CreateObject (). A C# client uses new to create a new
instance of a component.

e | use the following terms in the book: CoCreating refers to
calling CoCreateInstance () in C++, Or new or
CreateObiject () in Visual Basic. Querying an object for an
interface refers to calling IUnknown: :QueryInterface() on
the object. Releasing an object refers to calling
IUnknown: :Release () on the object.

e The graphical notations in Figure P-1 are used in almost every
design diagram in the book. The "lollipop" denotes an
interface, and a method call on an interface is represented by
an arrow beginning with a full circle.

Figure P-1. Interface and method call graphical notations

T [OM Interfoce

Object Method coll on
(M Interfoce

Client

e Error handling in the code samples is rudimentary. The code
samples serve to demonstrate a design or a technical point,
and cluttering them with too much error handing would miss
the point. In a production environment, you should verify the
returned HRESULT of every COM call, catch and handle
exceptions in C#, and assert every assumption.

| use the following font conventions in this book:

o J[talicis used for new terms, citations, online links, filenames,
directories, and pathnames.

e Constant width is used to indicate command-line computer
output and code examples, as well as classes, constants,
functions, interfaces, methods, variables, and flow-controlled
statements.

13

e Constant-width bold is used for code emphasis and user
input.

e Constant-width italic is used to indicate replaceable
elements in code statements.

This icon indicates a note or tip.

= This icon indicates a warning.

Other COM+ Books and References

This book describes how to use COM+ component services in your
application. It focuses on how to apply the technology, how to avoid
specific pitfalls, and design guidelines. If you want to know more
about COM+ in general and the nature of component technology, |
recommend the following two books that helped me a great deal in
my attempt to grasp COM+.

COM+ and the Battle for the Middle Tier by Roger Sessions (John
Wiley & Sons, 2000) is hands down the best "why" COM+ book. It
explains in detail, with excellent examples and in plain language,
the need for software components and component services. For
example, instead of the page or two this book includes on the
motivation for using transactions, Sessions devotes two fascinating
chapters to the topic. The book goes on to compare existing
component technologies (such as COM, CORBA, and Java) and their
corresponding suites of component services. It also contains a few
case studies from real-life systems that use COM+ . Roger Sessions
also has a unique way of eloquently naming things—providing the
most appropriate term, which is often not the name Microsoft uses.
Whenever it makes sense, this book uses Sessions' terminology,
such as "instance management" instead of the Microsoft term
"activation."

Understanding COM+ by David S. Platt (Microsoft Press, 1999) is
probably the best "what" COM+ book. The book describes the
services available by COM+ and provides sidebar summaries for the
busy reader. It is one of the first COM+ books, and Platt worked on
it closely with the COM+ team.

| also used the MSDN Library extensively, especially the
"Component Services" section, while writing this book. Although the
information in this library tends to be terse, the overall structure is
good. Use this book to learn how to apply COM+ productively and

14

effectively, and use the MSDN Library as a reference for technical
details and a source for additional information.

How to Contact Us

We have tested and verified the information in this book to the best
of our ability, but you may find that features have changed (or even
that we have made mistakes!). Please address comments and
questions concerning this book to the publisher:

O’Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international/local)

(707) 829-0104 (fax)

The web site for the book lists examples, errata, and plans for
future editions. You can access this page at:
http://www.oreilly.com/catalog/comdotnetsvs

To ask technical questions or comment on this book, send email to:
bookquestions@oreilly.com

Or to me directly:

juval.lowy@componentware.net

For more information about our books, conferences, software,
resource centers, and the O’Reilly Network, see our web site:
http://www.oreilly.com

Acknowledgments

A book is by no means the product of just the author’s work. It is
the result of many events and individuals, like links in a chain. |
cannot possibly name everyone, ranging from my parents to my
friends. | am especially grateful for my two friends and colleagues,
Marcus Pelletier and Chris W. Rea. Marcus worked with me on large
COM+ projects, and together we confronted the unknown. Marcus’s
thoroughness and technical expertise is a model for every
programmer. Chris’s comments and insight into a reader’s mind
have contributed greatly to this book’s accuracy, integrity, and flow.
| wish to thank Yasser Shohoud for verifying my approach to
transaction processing and sharing with me his own, Richard Grimes
for reviewing the book, and Roger Sessions for writing the
Foreword. Thanks also to Johnny Blumenstock for providing me with
a place to write. Finally, this book would not be possible without my

15

wife, Dana, whose constant support and encouragement made this
book a reality. Thank you, Dana.

16

Chapter 1. COM+ Component Services

By now, most developers of large-scale enterprise applications are
convinced of the benefits of component-oriented development. They
have discovered that by breaking a large system down into smaller
units, they can write code that is easier to reuse on other projects,
easier to distribute across multiple computers, and easier to
maintain. As long as these components adhere to a binary standard
that defines how they communicate with one another, they can be
invoked as needed at runtime and discarded when they have
finished their work. This type of application is also particularly
suited to the Web, where clients request services of remote
applications and then, once satisfied, move on to other tasks.

For nearly a decade, the Microsoft Component Object Model (COM)
has been the standard for components that run on Windows
machines, including Windows 9x and Me clients and Windows NT
and 2000 servers. The COM model is well documented by the
Microsoft Component Object Model Specification. Tools such as
Visual C+ + and Visual Basic make it easy to create COM
components, and scores of books, training classes, and articles are
available to teach programmers how to use them. Many features of
the Windows operating system are now implemented as COM
components, and many companies have invested heavily in COM-
based systems of their own.

In July 2000, Microsoft announced a radically new component model
as part of its .NET development platform, suddenly calling into
guestion the viability of existing COM applications. .NET components
bear little resemblance to legacy COM components and are not
backwards compatible. They can be made to interoperate with COM
components but do not do so naturally.

When it comes to the services and tools programmers use to build
enterprise-scale .NET applications, however, one facility continues
to provide the necessary runtime infrastructure and services: COM+
component services. These services have been available on
Windows 2000 since its release, but they will gain greater
importance in the months ahead. As it turns out, they offer a bridge
between traditional COM and .NET applications, making your
understanding and mastery of them as important now as it has ever
been.

In this chapter, we provide a quick overview of the COM+ suite of
component services and then introduce you to the Component
Services Explorer, your primary tool for building and managing both
COM and .NET enterprise applications. You will also create, debug,
and deploy a simple COM+ "Hello World" application, using a
traditional COM component and learning about COM+ application
types and configured components as you do so.

17

1.1 COM+ Component Services

Components need runtime services to work. The original COM
runtime supported components located on the same machine,
typically a desktop PC. As the focus of Windows development
shifted from standalone PCs to networked systems, Microsoft found
it necessary to add additional services (see The Evolution of COM+
Services). First, they added support for distributed applications, or
applications whose components are located on more than one
machine (sometimes referred to as "COM on a wire"). Later,
Microsoft added new services to support enterprise applications,
whose complexity and scale placed new demands on the resources
of a system and required an entirely new level of support. These
trends were only exacerbated by the move to web-based
applications aimed at huge numbers of customers connected over
the public Internet.

Collectively, the services that support COM and .NET component-
based applications are known as the COM+ component services, or
simply as COM+ .

The Evolution of COM+ Services

COM solved a number of problems facing early component
developers by providing a binary standard for components,
defining a communication interface, and providing a way to
link components dynamically. COM freed developers from
having to deal with "plumbing" and connectivity issues,
allowing them to concentrate on designing components.

By the mid-1990s, however, it was clear that Windows
developers needed additional services to support distributed
and transaction-oriented applications. Distributed COM
(DCOM) was released in 1995, a specification and service
used to distribute components across different machines and
invoke them remotely. Then, Microsoft released the Microsoft
Transaction Server (MTS) in 1998, which provided
component developers with new services for transaction
management, declarative role-based security, instance
activation management, component deployment and
installation, and an administration tool for managing
component configurations.

There was more to MTS than just new services. MTS
represented a programming model in which the component
developer simply declared (using the MTS administrative
tool) which services a component required, and left it to MTS
to brovide an apboropriate runtime environment. Developers

18

could now spend even less effort on low-level service
plumbing (such as interacting with transaction processing
monitors or managing the life cycle of an object), and more
on the business logic the customer paid for. Yet, MTS had its
limitations. Foremost was the fact that MTS was built on top
of conventional COM/DCOM. The underlying operating
system and COM itself were unaware that MTS even existed.
MTS resorted to esoteric hacks and kludges to provide its
services, and MTS could not provide its services to every
COM object (multithreaded apartment objects were
excluded). Some services, such as object pooling, were
either not possible or unavailable.

The development of a new version of the Windows NT
operating system (initially called NT 5.0 and later renamed
Windows 2000), gave Microsoft an opportunity to correct the
deficiencies of MTS and DCOM by fusing them into a new
comprehensive component services suite. Microsoft added
yet more services, including object pooling, queued
components, and events, and made the package a part of
the core Windows operating system. The new suite of
services was named COM+ 1.0, the subject of this book. The
next version of COM+, COM+ 1.5, is scheduled for release
with Windows XP in Q4 2001 and is described in Appendix B.
The COM+ acronym is an overloaded and often misused
term. Today it is used informally to refer to both the latest
version of the COM component specification and the
component services available on the latest versions of
Windows. In this book, we use the term COM+ to refer to the
COM+ component services. When we speak of COM+
components, we refer to COM components configured to run
under those services. However, as you will see, a COM+
application may consist of either COM or .NET components
(see COM+: The Migration Path to .NET).

Here is a quick summary of the most important services provided

by COM+ :
Administration
Tools and services that enable programmers and

administrators to configure and manage components and
component-based applications. The most important tool is the
Microsoft Management Console Component Services Explorer.
COM+ also provides a standard location, the COM+ Catalog,
for storing configuration information. The Component Services
Explorer is explained in the following section. The COM+
Catalog is described in Chapter 6.

Just-in-Time Activation (JITA)

19

Services that instantiate components when they are called
and discard them when their work is done. JITA is explained
in Chapter 3.
Object pooling
Services that allow instances of frequently used, but
expensive, resources, such as database connections, to be
maintained in a pool for use by numerous clients. Object
pooling can improve the performance and responsiveness of a
distributed application dramatically. It is explained in Chapter
3.
Transactions
Services that allow operations carried out by distributed
components and resources such as databases to be treated as
a single operation. Transaction management is a requirement
of most commercial systems. COM+ Transaction services are
discussed in Chapter 4.
Synchronization
Services for controlling concurrent access to objects. These
services are explained in Chapter 5.
Security
Services for authenticating clients and controlling access to an
application. COM+ supports role-based security, which is
explained in Chapter 7.
Queued components
Services that allow components to communicate through
asynchronous messaging, a feature that makes possible
loosely coupled applications or even disconnected
applications. Queued components are discussed in Chapter 8.
Events
Services that allow components to inform one another of
significant events, such as changes in data or system state.
COM+ supports a publish-subscribe model of event
notification, which is described in Chapter 9.
To summarize, COM+ is about component services and has almost
nothing to do with the way a component is developed. The .NET
framework allows you to develop binary components more easily
than does COM, but it continues to rely on component services
available through COM+. The manner in which .NET and COM
components are configured to use these services, however, is not
the same. Currently, most Windows enterprise developers are
developing applications based on the existing COM standard using
Visual Basic 6 and Visual C++ 6 with ATL. For this reason, this book
uses COM examples to demonstrate COM+. However, these same
services are available to .NET components as well. Chapter 10
shows you how to use them.
COM+ 1.0 is an integral part of Windows 2000 and requires no
special installation. Some COM+ features are available only when

20

both the client and server are running on Windows 2000 machines,
but COM+ clients can usually run on Windows 9.x and Windows NT
machines as well.

COM+: The Migration Path to .NET

.NET is Microsoft’s next-generation component technology
and application development platform. (For a quick overview
of the .NET platform, see Appendix C.) However, adopting a
radically new technology such as .NET is never an easy
endeavor for companies and developers. Most have made a
considerable investment in an existing, often COM-based,
code base and the developer skills needed to maintain it.
Unless companies have a compelling reason to move to .NET
or a reasonable migration path, they postpone or avoid
making the change.

However, because COM and .NET components can coexist in
the same COM+ application, companies can continue to build
COM components today, adding .NET serviced components to
their applications at a later time when the advantages of
doing so are more compelling. This is a migration strategy
worth your consideration.

When Windows XP is released in Q4 2001, it will include a new
version of COM+ component services, COM+ 1.5. This new version
improves COM+ 1.0 usability and addresses some of the pitfalls of
using COM+ 1.0 on Windows 2000, as described in this book. COM+
1.5 also adds new features to existing services and lays the
foundation for integration with .NET web services. Appendix B
summarizes the forthcoming changes.

1.2 The Component Services Explorer

COM+ components and applications are managed through the
Component Services Explorer (formerly known as the COM+
Explorer).The Component Services Explorer is a Microsoft
Management Console snap-in and is available on every Windows
2000 machine.

To fire up the Component Services Explorer, go to the Start menu
and select Settings —»Control Panel. When the Control Panel window
appears, select the Administrative Tools directory and then select
the Component Services application.

The first thing you should do after locating the Component Services
Explorer is create a shortcut to it on your desktop. As a developer,
you need easy access to the Component Services Explorer, your
main gateway into COM+ (see Figure 1-1). You can use the
Component Services Explorer to create and configure COM+

21

applications, import and configure COM or .NET components, export
and deploy your applications, and administer your local machine.
You can even administer COM+ on other machines on the network,
provided you have administrative privileges on those machines.

A COM+ application is a logical group of COM+ components.
Components usually share an application if they depend on one
another to accomplish their tasks and when all the components
require the same application level configuration, as with security or
activation policy. Components in the same application are often
developed by the same team, and are meant to be deployed
together.

You can see all the COM+ applications installed on your machine by
opening the Component Services Explorer and expanding the
Computers folder in the Tree window: Computers —>My Computer
—>COM+ Applications. Every icon in the COM+ Applications folder
represents a COM+ application. Each COM+ application contains
COM+ components. Components must be explicitly imported into
the Component Services Explorer to take advantage of COM+
services.

The Component Services Explorer offers a hierarchical approach to
managing COM+ services and configurations: a computer contains
applications, and an application contains components. A component
has interfaces, and an interface has methods. Each item in the
hierarchy has its own configurable properties. Note that the
hierarchy allows you to view the parameters of any method listed in
the hierarchy.

Figure 1-1. The Component Services Explorer

't Component Services = O] |
*f) Conscle Window Help =181 x|
fction Wew || &= Exflan =) bW
Trea ’ £
i » @ 2
|1 Computers il - :
|= 2 My Computer COM& GC COM4+ Utiltles Logboak
| =i Dead Let...
| + SO O Dead Letber Queus Liskener s
| ¥ COM+ Uitiitiss ":-}
| !
| + Logbook:
Sripat
! + % System Spplication ﬁpbic:‘;n
| +- | Distributed Transaction Coordinator

1.3 Hello COM+

The best way to become acquainted with the Component Services
Explorer and basic COM+ terminology is to do a trivial example.
This section walks you through the COM+ equivalent of the

22

canonical "Hello World" program. You will build a COM+ application
containing a COM component that displays a message box saying
"Hello COM+".

When developing your "Hello COM+" application, follow these steps:

1. Create a classic COM component. All COM+ components start
their life as classic COM components, developed with such
tools as ATL, MFC, or Visual Basic 6.0.

2. Create a new COM+ application to host the component.

3. Add the component to the application.

4. Write a client and test the component.

The rest of this chapter uses this "Hello COM+" example to
demonstrate various COM+ features and capabilities. The example
is also available as part of the source files provided with this book
(see the Preface for information on how to access these files).

1.3.1 Building a COM Component

We will use ATL 7.0 to generate a classic COM component, although
you can also do it in Visual Basic 6.0 with almost the same ease.
Start a new ATL project in Visual Studio.NET and name it Hello. For
simplicity, do not use Attributed project (deselect Attributed in the
ATL Project Wizard under Application Settings). Also, do not select
COM+ 1.0 support. This selection adds a few interfaces explained in
subsequent chapters that are not relevant to this example. Bring up
the Add Class dialog ATL and select the Simple ATL Object item.
This step should bring up the ATL Simple Object Wizard dialog (see
Figure 1-2). Type the following entries, in order:

1. In the Short Name field, enter Message .
2. In the CoClass field, enter Hello .

Your completed dialog should look like Figure 1-2. There is no need

to access the Options selection in the dialog (just use the defaults).
Click OK when you’re done.

Figure 1-2. Use the ATL object wizard to generate a simple COM object

23

ATL Simple Dbject Wizard - Hello x|
Welcome to the ATL Simple Object Wizard
This wizard adds a smple ATL object to your project,

C++
Sheet name: i Fike:
|Hassa;|3 Harssal;ls.h _t
Class: Jcpp Fila:
|E|"'I¢ssugc Hcssauc.r.pp _J
[~ Attribubed

COM
Codass: Type:
|Helu:| Hall:- Class
Interface: ProglD:
|[Mcssn-:|c Hcln.Hcln

Frish | cancel | nep |

Right-click the IMessage interface icon in the Class View, and select
Add and then Add Method... from the pop-up context menu. This
step brings up the Add Method Wizard. Enter ShowMessage as the
method name and click OK.

After following these steps, the ATL Object Wizard will generate a
new interface definition in the project IDL file, and the new method
wizard will add a method to that interface. Verify that the interface
definition in the IDL file looks like this:

[

//various IDL attributes

]

interface IMessage : IDispatch
{

[1id (1), helpstring("method ShowMessage")] HRESULT
ShowMessage () ;

bi
Also make sure that the IDL file contains a type library section with
the CoClass definition:
[
//you will have a different CLSID here:
uuid (C530E78E-9EE4-47D3-86CC—3B4EE39CBD26) ,
helpstring ("Message Class")

]

coclass Hello

{

[default] interface IMessage;
i
Next, go to the message.cpp file and implement the showMessage()
method of the CMessage class:
STDMETHODIMP CMessage: :ShowMessage ()
{

24

::MessageBox (::GetActiveWindow(),"Hello COM+","First
COM+ Application",MB_OK) ;

return S_OK;
}
You can now compile and build the DLL. Every COM+ component
must reside in a DLL, and that DLL must contain a type library
embedded in it as a resource. ATL will compile and build the DLL for
you and add a reference to the type library in the project resource
file, the hello.rc file. COM+ does not require you to register your
component, although the ATL build process will register it for you.
As you will see later, COM+ maintains its own components
registration and configuration repository.

1.3.2 Creating a COM+ Application

Open the Component Services Explorer and expand My Computer
—COM+ Applications folder. Right-click the COM+ Applications
folder and select New —2Application from the pop-up context menu.
This step brings up the Application Install Wizard. Click Next on the
first wizard screen.

In the next wizard screen, select the Create an Empty Application
option in the next wizard screen. Now the wizard will let you specify
the new application name and its application type, which can be
either a library or a server type (see Figure 1-3). Enter Hello COM+
for the application name, and change the application type from the
default Server application to Library application. A library
application indicates that the components in the application will be
loaded directly in the process of their clients (like a classic COM in-
proc server). A server application indicates that the components will
run in their own process (similar to a classic COM local server). You
can always change the application name and its activation type later
with the Component Services Explorer. Click Next and Finish in the
last wizard screen. You have just created your first COM+
application.

Figure 1-3. Naming your new COM+ application and configuring it to be a
library or a server application

25

Create Empty Application \{ o
Flease specify the name af the nev spplicaion

Emiter 2 name foe the new application
il—ié'lo'lfljt;ilm s b R A L R R D R R

Aclivation type

L ibea spplic.ation
{Components will be activated in the creator's ploces:]

" Sewer applicalion
Components wall be activated in a dedicated sarver process.

<Back [New> | Concel |

If you examine the Applications folder now, you will see your Hello
COM+ application. Right-click its icon and select Properties from the
pop-up context menu. The application’s properties page—a
collection of tabs that let you configure the application—will now
appear. In fact, every item in the Component Services Explorer
(applications, components, interfaces, methods, roles, and
subscriptions) has a properties page accessible in the same way (by
selecting Properties on the item's context menu or the properties
button on the Component Services Explorer toolbar). The Hello
COM+ application's properties page is shown in Figure 1-4. The
General tab contains the application name, which you can change
here if you'd like, and a description field. The description field is a
useful place to put a few sentences documenting the application's
purpose, its owner, etc. Each COM+ application is uniquely
identified by a GUID, called the Application ID, shown at the bottom
of the General tab. You will almost never use the Application ID
directly, but COM+ uses it internally.

Figure 1-4. The application properties page

2x

General |Escuip] Idently | Activation | Dusuing | Advanced |

TP [Helo COM«

Descrphon:

by First COM+ Apphcation

Application ID: {CCFOFS0S-4500-41 24-50AF-BTCFECACMALT

oK | Cancel |

26

Other tabs on the application properties page let you configure the
application activation mode, support for queued components,
security settings, and idle-time management. Later chapters
describe these application-level configurations in depth.

Close the properties page and examine the application’s
Components folder. As you might expect, it is empty now. You will
now add a new component to this application.

1.3.3 Adding a Component to a COM+ Application

You can add a new component to your application (not surprisingly)
by using another wizard. Right-click the Components folder, select
New from the pop-up context menu, and click Component. The
Component Install Wizard will now appear. Click Next on the first
screen. On the next screen, select Install New Component from the
three choices. The wizard will open a standard file-open dialog box.
Look for the folder where you built hello.dll and select it. The wizard
will present you with all the components it could find in the specified
DLL. In the case of hello.dll, the wizard shows only the single
component contained in it (see Figure 1-5). The wizard actually
loads the embedded type library in the DLL and looks for CoClass
definitions. You can use the Add button to specify additional DLLs.
Note that all the components in the selected DLL will be added. If
you want to add just a subset of them, you must add them all first
and then remove the ones that do not belong in the application
manually. Click Next, and then click Finish in the last wizard screen.
Your component is now part of the Hello COM+ application.

=

= Avoid using the "Import component(s) that are

already registered" option in the Component Install
Wizard. This option has a bug and will not retrieve
information about the component(s) interfaces.
You will not see the component(s) interfaces and
methods in the Component Services Explorer and
will not be able to configure them.

Figure 1-5. The Component I nstall Wizard

27

e o COMComponent st Vi .

Install new components \(_\
Flease specily the fie(s] that contain the components wou want 1o install

X,

Click &dd 1o choose the filefs] that conlain the companents wou wan! 1o inglal
Files bo ivtal:

File Contents .

CADat=ACOM + Bock\Chaptes 1., components, bpelib
Compoments found:

Companent | Properties Inberfaces v Detai:

Hello COM+ found

< Back | Met = I Cancsl |

Because type information is embedded in the DLL, COM+ knows
about your component’s interfaces and methods. You can expand
the Interfaces and Methods folders (under the Hello.Message
component) to verify that COM+ has imported the component
correctly. As shown in Figure 1-6, the IMessage interface and the
ShowMessage method were both imported.

Figure 1-6. The Hello COM+ application and its contained component

“jif Component Services - =10] x|
“Fi Console Window Help =18 %
Acion Wiew | 4= = mx®E 2o =L :-Elet
Tree | a

) Computers
= & My Computer m:'sn:;. 1

=] Cois Applicabions
4 3 COM4 OC Dead Letber Queus Listaner
+) T COM+ Utiities
=| O Hello COM+
g
=gl Helo. Message 1
= Interfaces
- %0 IMessage
-] Methods
s ShowMessage
4]] Subscriptions
¥ _] Rolas
= @ Logbook
+ | _] Compaonents
+|_| Roles
+ 4 System spplcation
#-|_1 Distribagted Transzction Coordinator

The Interfaces folder contains one entry for each interface your
component supports. The interfaces on the CoClass definition in the
type library determine the number of entries. The Methods folder

28

contains one item for each method in that interface, again based on
the interface definition in the type library.

1.3.4 Writing a Test Client

Clients can create the component using the class ID CLSID_Hello
(C++) or Hello (Visual Basic 6.0). Although the component is now
a COM+ component and is part of a COM+ application, the client-
side code is the same as if the component were still a classic COM
component. To prove this point (and test your component), write a
short C+ + client, such as the code in Example 1-1.

Example 1-1. A simple COM+ client

#import "Hello.dll" no_namespace named_guids
::ColInitialize (NULL) ;

HRESULT hres = S_OK;
IMessage* pMessage = NULL;

hres = ::CoCreatelInstance (CLSID_Hello,NULL,CLSCTX_ALL,

IID_IMessage, (void**) &pMessage) ;

hres = pMessage—->ShowMessage();
pMessage—>Release () ;
::CoUninitialize();

When you run the client, you will see the "Hello COM+" message
box (see Figure 1-7).

Figure 1-7. The "Hello COM+ " message box from your first COM+
component

Alternatively, you can write the client side in Visual Basic 6.0. Add
the component type library Hello.TLB, the Visual Basic project

references browser, and write:
Dim obj As Hello

Set obj = New Hello

obj.ShowMessage

set obj = Nothing

Visual Basic 6.0 clients can also create the object using its prog-I1D.
In that case, the type-library is not required (at the expense of
type-safety):

29

Dim obj As Object

Set obj = CreateObject ("Hello.Message.l")

obj.ShowMessage

set obj = Nothing

Because the client side remains constant, regardless of the
component configuration and application type, COM+ helps
decouple the client from the server. This point is discussed in depth
in the next chapter.

1.4 COM+ Configured Components

COM+ allows you to import only in-proc (DLL) components. You
cannot import COM components that reside in a local server (EXE);
COM+ lets you configure the activation type of your application,
server, or library. In the case of a library, the client simply loads the
original DLL into its process and uses the component. If you
configure the application to be a server application, COM+ promotes
your original DLL to become a local server by hosting it in a
surrogate process of its own. However, COM+ cannot make a library
application out of a COM local server. In addition, many COM+
services require explicit process-level administration that the local
server’s code simply does not contain.

Once an in-proc component is imported to COM+, it is called a
configured component to emphasize the fact that much component
functionality and behavior is actually configured and administered
outside the component. A classic COM component (be it in-proc or
local) that has not been imported into COM+ is called a
nonconfigured component. Configured and nonconfigured
components can interact freely and call each other’s interfaces. The
configured component must reside on a Windows 2000 machine,
but the client of a configured component can reside on any
Windows-family machine, such as Windows NT, Windows Me, or
Windows 9x.

Configuration lets you control the way your application, component,
interface, or method behaves under COM+. The COM+ development
paradigm lets COM+ manage as much of the nonbusiness logic
plumbing as possible by declaring what services you want to use.
Doing so lets you focus on the domain problem you are trying to
solve and add business value instead of plumbing code to your
product.

Your configured component’s interfaces can be dual, dispatch, or
custom interfaces. If you use automation-compliant interfaces, you
do not need to provide COM+ with a proxy/stub DLL (see COM
Interface Types for more information).

30

COM Interface Types

In general, there are two kinds of COM interface types:
automation-compliant interfaces and custom interfaces.
Contrary to common conceptions, an automation-compliant
interface does not have to derive from IDispatch or have all
the parameters be variants or variants-compatible types
(such as a BSTR or long). An automation-compliant interface
must have one of the following two directives in its
definition: dual or oleautomation. For example:
[
object,

uuid (30548235-4EC3-4087-9956-ED26748F47E9),

dual,

helpstring ("An example for automation
compliant interface"),

]

interface IMyInterface : IUnknown

{
HRESULT MyMethod([in]long 1Number);

bi

COM can marshal an automation-compliant interface by
creating the appropriate proxy and stub automatically at
runtime. However, automation-compliant interfaces do have
limitations on parameter types; for example, they cannot
have as method parameters structs with pointers in them.
For ultimate flexibility, you can use custom interfaces. These
interfaces do not have dual or oleautomation in their
interface definition, and it is the developer’s responsibility to
provide a proxy and a stub DLL.

However, if your design calls for custom interfaces, you should
provide COM+ with a proxy/stub DLL that was built using the MIDL
switch /0icf to enable type library marshaling. In any case,
configured components cannot use interfaces that require custom
marshaling. You can develop configured components in C+ +, Visual
Basic, or even C#, since one of the core principles of COM,
language independence, is maintained in COM+ .

You may be wondering by now, where does COM+ store the
configuration information for all your applications and components?
Unlike classic COM, COM+ does not use the Windows registry.
COM+ uses a dedicated repository called the COM+ catalog. No
formal Microsoft documentation of the exact physical location of the
catalog exists, simply because it is not useful to you. The only bit of
configuration information still stored in the Windows registry is the
component threading model and remaining classic COM information
(such as Inprocserver32 and prog-ID registry keys).

31

1.5 Applications, DLLs, and Components

COM+ applications are logical packaging units; DLLs, however, are
physical packaging units. There is no correlation between logical
and physical packaging. The only requirement is that a configured
component must belong to exactly one COM+ application; it cannot
belong to more than one, and it must belong to at least one to take
advantage of COM+ component services. As demonstrated in Figure
1-8, a COM+ application can host components from one or multiple
DLLs (Application 2 has components from two DLLs). It is also
possible that not all the components in a DLL are hosted in COM+
applications (such as component E), and one DLL can contribute
components to multiple COM+ applications (DLL 1 contributes
components to Application 1 and Application 2).

Figure 1-8. COM+ applications and DLLs

camp A comp B camp camp [

f } f]
[[
comp & comp B camp comp D camp E

The separation of physical from logical packaging gives you great
flexibility in designing your application’s layout. All the components
in the same COM+ application share the same application-level
configuration settings, regardless of their underlying DLL packaging.
However, | recommend that you avoid installing components from
the same DLL into more than one application, such as components
B and C in Figure 1-8. The reason is that components in the same
application are assumed to operate tightly together and trust each
other. On the other hand, nothing is assumed about components
from different applications. By placing components from the same
DLL into multiple applications, you may introduce needless security
checks. You might also introduce cross-process marshaling
overhead, if those components need one another to operate, which
is probably why they were put in the same DLL in the first place.
The COM+ Component Install Wizard also does not handle
components from the same DLL in multiple applications very well.
When you use the wizard to add components from a DLL to an
application, the wizard tries to add all components in the DLL to the
application. If some of the components are already part of other
applications, the wizard will treat this situation as an error since it

32

will think you are trying to include a component in more than one
application.

The bottom line is that you should put all components that
cooperate closely or perform related functionality into a single
application. Those components can be written by multiple
developers and be contained in multiple DLLs, but they will
ultimately share the same application configuration and be deployed
together.

1.6 Configuring COM+ Applications

The primary benefit of using COM+ is that you can configure a
component or the application containing it without changing any
code on the object or the client side. This advantage enables you to
focus your object code on its intended purpose, relying on the
various services COM+ provides instead of having to develop them
yourself. This section shows you how to configure some of the
application-level options for the Hello COM+ program you created.

1.6.1 COM+ Application Types

As mentioned previously, the application activation type (a server or
a library application) is a configurable application-level attribute
called activation. You can configure the application’s activation type
in the application’s properties page, under the Activation tab (see
Figure 1-9).

Figure 1-9. Application Activation tab

x|
General | Secuily | Identty Activation ||3|uau'ng| Advanced |
Achvation lype

" Libwary application
Components will be acliveted in the cresto's piocess,

= Server application
Componerts: will be activated in a dedicated ssrver procass,

Femole s=rver name

OF. I Canced |

Changing the application type has significant implications for most
COM+ services. The application type is a design-time decision that
should consider the security needs of your components, the calling
patterns of your clients, fault isolation (a server application gets its

33

own process), and specific COM+ services requirements.
Throughout the book, a particular service configuration that is
related to the activation type is pointed out explicitly. However,
even without knowing much about COM+, you can use the following
rule to decide on your activation type: prefer server type
applications, unless you absolutely need to run in the client process
for performance reasons. Library applications have some limitations
in using COM+ services (such as security and queued component
support), and they cannot be accessed from another machine.

1.6.2 COM+ Surrogate Processes

If the original COM components resided in a DLL, how does COM+
achieve different activation modes for the configured components?
When the application is configured as a library, the client loads the
DLL directly into its process. When the application is configured as a
server application, COM+ creates a surrogate process for it, called
dllhost.exe, that loads the DLL. COM+ then places a proxy in the
client process and a stub in the surrogate process to connect the
client to the object. You can have multiple instances of the dllhost
process running on your machine simultaneously; if clients have
created objects from different server applications, each server
application gets its own instance of dllhost.

To verify these points yourself, configure the Hello COM+ example
to run as a server application. Run the test client again, create the
object, and call the SshowMessage () method, but do not press the
OK button. The Component Services Explorer gives you visual
feedback when a server application is running: the application icon
and the active components will be spinning. Library applications will
have no visual feedback when they are running in a client process,
even if that process is another COM+ server application. Expand the
COM+ Applications folder and select the Status View on the
Component Services Explorer toolbar (the button at the far right
end of the toolbar; see Figure 1-10). The Component Services
Explorer will display the process ID of the running server
applications. Record the process ID for the Hello COM+ application.
Next, bring up Windows Task Manager and locate the process with a
matching ID. Its image name will be dl/lhost.exe.

Figure 1-10. Examining a running server application

34

Vi Component Services T =0 x|
fy Console Window Help = |2 %]
Ackicn Yiew g & | @& I B - o
Tree | | Mame: Running Pl
] Computers | & CoM OC Dead L.
= 2 My Computer | S COM+ Libties
- JW [Sotello Co Yes 1444
H-58 COMH QC Dead Letter Quaws Listensar -%Lulj:m}‘
¥ COMH Ukilties | B system Application Yes 1764
¥4 Hello COME
¥4 Loghoak
+ ﬁ System Applic stion
=1-|_] Digtributed Transaction Coordinator

The first CoCreateInstance () request for a component in a server
application creates a new dllhost process, to host components from
that application only. Subsequent CoCreateInstance () calls to
objects from the same application create new objects in the existing
dllhost instance. Unlike classic COM, there is no way to create each
object in its own process. No COM+ equivalent to the COM call you
make to CoRegisterClassObject (...REGCLS_SINGLEUSE...)
exists.

The Component Services Explorer also lets you manage server
application activation administratively. You can shut down a running
application by right-clicking on its icon in the Component Services
Explorer and selecting Shutdown from the pop-up context menu.
You can shut it down even when clients are holding active
references to objects in the application. (You shut down applications
this way frequently during debugging sessions.) The Component
Services Explorer does not provide a way to shut down library
applications, since COM+ may not even manage their client process.
You can also select Start from the server application pop-up context
menu to launch a new dllhost process associated with that
application. However, no objects will be created unless you use
object pooling, which is discussed in Chapter 3.

1.6.3 Idle Time Management

Another distinction between a classic COM local server and a COM+
server application is process shutdown. In classic COM, when the
last client has released its last reference on an object in the
process, COM would shut down that process. COM+ provides idle
time management for COM+ server applications. COM+ server
applications can be left running indefinitely even when idle (when
there are no external clients), or you can have COM+ shut them
down after a predetermined timeout. This shutdown is done for the
sake of performance. Imagine a situation in which a client creates
an object from a server application every 2 minutes on average,
uses it for 1 minute and 55 seconds, and then releases it. Under
classic COM, you would pay an unnecessary performance penalty

35

for creating and destroying the server process. Under COM+, you
can configure the server application to be left running when idle for
a specific time. If during that time no client request for creating a
new object has come through, COM+ is allowed to shut down the
process to release its resources. In this example, you would
perhaps configure the server application to be left running when idle
for 3 minutes, as you would want to compensate for variances in
the client calling pattern. If a new call comes in within those 3
minutes, COM+ zeros the idle time counter and starts it up when
the application is idle again. You can configure server application
idle time management under the Advanced tab on the server’s
properties page (see Figure 1-11). Library applications do not have
an idle time management option and will be unloaded from their
client process once the last object has been released.

Figure 1-11. Configuring server application idle time management

2

General | Secunty | Identhy | Activation | Oueuing Advanced |
Server Process Shutdown
7 Leave nnning sihen ide

e P S S =3 SR

Peimission
I Dizable delsbon
I Dizable changes

Drebesgging
I Launch in debugger

Debugger path: |

[Enable Compensating Resouice Managers
™ Enable 3GB suppost

S .:,K sk .:‘,n,:,_; S

1.7 Debugging COM+ Applications

Debugging a COM+ application, be it a library or a server
application, is not much different from debugging an in-proc COM
object or a local server. A library application has the clear
advantage of allowing you to step through your code directly from
the test client, since a library and a server application share the
same process. A server application always runs in a different
process than your test client and, therefore, in a different debug

36

session (a different instance of Visual Studio is attached to that
process). When debugging the business logic part of your
application, you may find it useful to debug it as a library
application, even if the design calls for a server application. When
debugging a library application, you may also need to point Visual
Studio to the exact location of the component’s DLLs. This step is
required so you can set breakpoints in the component’s code.

When debugging a component in a server application, you can step
into the component’s code from the test client side in two ways.
First, you can start the client project in the debugger, break at a
line where you call a method on a component in the server
application, and simply step into it (F11 in Visual C++ or F8 in
Visual Basic). This process launches a new instance of the debugger
and attaches it to the running dllhost containing your component.
You can then step through your component’s code. Second, you can
attach a debugger to a server application by configuring it to launch
in a debugger. On the server application properties page, under the
Advanced tab, there is the Debugging properties group. If you
check the Launch in debugger checkbox (see Figure 1-12), when
the first request for creating an object from that application comes
in, COM+ launches the application in a Visual C+ + debugger
session. You may use this option often to track bugs in the
constructors of components or bugs that do not happen in the scope
of a client call. COM+ is able to attach the debugger to the
application using a command-line option for Visual Studio. When
you launch the debugger with an executable filename as a
parameter, the debugger starts a debug session and creates the
specified process (in COM+’s case, always dllhost). COM+ also
specifies the server application ID as a command line parameter for

dllhost:
msdev.exe dllhost.exe /ProcessID:{CCFOF9D9-4500-4124-
8DAF-B7CEF8CBC94AC}

This code informs dllhost that it is now associated with the specified
server application.

Figure 1-12. Launching COM+ server application in a debugger

37

21 x|
General | Secunty | Identty | Activation | Oweuing Advanced |

Server Process Shutdown

T Leave unning when ide

b e e bk !3 A A AR

Permission
I™ Dizable delation
I Dizable charges

Drabasgging
& Launch indsbugges

th: |medew.exe’” dinskexe /Process Brovess, .
eDuUQEET pathc

[T Enable Compenzating Resounce Managers

[Enable 358 suppost

oK I Cancel

1.8 Deploying COM+ Applications

Once you have tested your COM+ application and configured all the
COM+ services to your liking, you need to install your application on
a customer/client machine. The Component Services Explorer can
generate a special file that captures all your application components
and settings. This file is a Windows Installer (MSI) file, identified by
the .msi file extension. Clicking on an MSI file launches the
Windows Installer and installs the application with all its COM+
configuration parameters. There is a one-to-one relationship
between an application and an MSI file. Thus, if you have multiple
applications in your product, you must generate one MSI file for
each application.

To generate the MSI file, right-click on your application icon in the
Component Services Explorer and select Export from the pop-up
context menu. This action should bring up the Application Export
Wizard. Click Next to go to the second wizard screen, where you are
requested to enter the name and location for the application export
file to be created (see Figure 1-13). Next, you should decide how to
export the application: as a Server application or as an Application
proxy (see Figure 1-13). Click Next and then click Finish on the next
Wizard screen.

Figure 1-13. Exporting a COM+ application

38

Application Export Information J’ -~
Flease erter nformation requited to export this application :

Enmiten the il path and flename for the application fle o be created. Component fles wll be
coped inlo the directony wou specily far the appicaice fe.

!E-\Terrc.\\Helﬁ}ﬁﬁmm 2l I A A S LR R L Ty

Expoal ax
™+ Sepver application - Instal this application onto other machines
™ Esport wser iceniibes with rles

™ Applcatios prosy - Instal on other machines lo enable access 1o this machine

coce

1.8.1 Proxy COM+ Applications

The names Server application and Application proxy are confusing.
A "Server application" export is relevant for both library and server
applications. It means that the application will include in the MSI file
the COM objects themselves, their settings, and their proxy/stub
DLLs (if required), and will install all on the server machine.

An "Application proxy" export installs on the client machine only the
type information in the MSI it creates (as well as the proxy/stub
DLLs, if required). The generated file does not have to include the
components themselves (unless the type information is embedded
in the components, in which case the components are only used as
containers and are not registered). You can use a proxy installation
when you want to enable remote access from a client machine to
the machine where the application actually resides. A proxy export
is available only for a COM+ server application, not for a library
application.

When you install a server export on another machine, it will install
the components for local activation. CoCreatelInstance() requests
create the objects locally—in the client process, if it is a library
application, or in a dllhost process, if it is a server application.
When you install a proxy export, activation requests on that
machine will be redirected to another remote machine. In a way, a
proxy export installed on a client machine is a third kind of COM+
application. This kind is usually called a proxy application. You can
configure the proxy application to access any remote machine on
the network where the server application is installed, not just the
machine that generated the proxy export. You specify the "real"
application location on the proxy application properties page under
the Activation tab.

39

A proxy application can even be installed on machines running
Windows NT or Windows 9x with DCOM, provided those machines
have Windows Installer installed on them. Because the Windows
Installer cannot use the COM+ catalog to store the proxy
application information on a non-Windows 2000 machine, it will use
the registry and will store only the subset of information required
for DCOM there. Windows Installer is not commonly found on non-
Windows 2000 machines. To make sure clients on those machines
are able to access your COM+ applications, you should incorporate
the Windows Installer installation in your product installation. The
Windows Installer installation file is called instmsi.exe and is
available as part of the Developers Platform SDK.

A proxy application cannot export another MSI file. In fact, all the
application-component, interface, and method-level settings on a
proxy application are disabled, except the Remote server name
under the Activation tab. The Remote server name edit box is
disabled in library and server applications.

1.8.2 I nstalling and Uninstalling an Exported Application

The most common way to install an MSI file on another machine is
simply to click on it, which will launch the Windows Installer. The
application files (DLLs and proxy/stubs) will be placed in a default
location:

\Program Files\COMPlus Applications\{<the application’s
guid>}

If you wish to have the application installed in a different location,
you must use the Component Services Explorer Application Install
Wizard. Bring up the wizard and select Install pre-built
application(s). Browse to where the MSI file is stored, and select it.
The wizard will let you choose whether you want to use the default
location for installation or specify a different one.

If you want to automate uninstalling COM+ applications, you can
use a command line instruction to invoke the Windows Installer to
uninstall a COM+ application:

msiexec —-x <application name>.msi

You can also use the Windows Control Panel’s Add/Remove
Programs applet to add or remove COM+ applications.

1.9 Summary

In this chapter, you created a trivial example COM component and
implemented it in a DLL. You used it as an in-proc server or as a
local server and even controlled its life cycle and idle time
management by configuring the component (actually its containing
application) differently. All this was achieved without changing a

40

single line of code on the object or the client side. This achievement
reflects the power of COM+ : it enables you to focus on your product
and domain problems at hand, while declaratively taking advantage
of available services. The rest of this book discusses these services
thoroughly, including their interactions and pitfalls, and provides
tips and tricks for how to apply them productively.

41

Chapter 2. COM+ Context

COM+ provides services to components by intercepting the calls the
client makes to component interfaces. The idea of providing
services through an interception mechanism is not a COM+
innovation. As you will see, classic COM also provides component
services via interception. What is new is the length to which COM+
takes the idea. This chapter starts by describing the way classic
COM uses marshaling to provide its services and to encapsulate the
runtime requirements of its objects. Next, the chapter introduces
you to the COM+ context—the innermost execution scope of an
object. COM+ call interception occurs at context boundaries.
Generally, you need not be concerned with contexts at all. They are
transparent to you, whether you develop a client or a component.
However, the COM+ context is a good model for explaining the way
COM+ services are implemented. This book clearly outlines the few
cases when you should interact with the contexts directly.
Interaction with the contexts occurs mostly when dealing with
COM+ instance management and transactions, but also when
dealing with some security issues.

2.1 Encapsulation via Marshaling in COM

One of the core principles of classic COM is location transparency.
Location transparency allows the client code to be independent of
the actual object's location. Nothing in the client's code pertains to
where the object executes, although the client can insist on a
specific location as well. A client CoCreates its objects and COM
instantiates them in the client's process, in another process on the
client's machine, or on another machine altogether. COM decides
where the objects will execute based on a few Registry values.
Those values are maintained outside the object code. A change in
those values can cause the same object to be activated in a
different location. The same client code handles all cases of object
location. You can say that COM completely encapsulates the object
location. A key idea in object-oriented and component-oriented
programming is encapsulation, or information hiding. Encapsulation
promotes the design of more maintainable and extensible systems.
By ignoring the object location, the client code is decoupled further
from the object. The client code does not need to be modified if the
object location changes. COM encapsulates the object location by
introducing a proxy and stub between the object and its client. The
client then interacts with the object directly or through a proxy, and
COM marshals the call from the client to the object's true location, if

42

it needs to (all three cases are shown in Figure 2-1). The important
observation here is that the client code is not required to make
assumptions about the location of its called objects or to make
explicit calls across processes (using named pipes, for instance) or
across machines (using sockets).

Figure 2-1. Classic COM completely encapsulates the object location from
the client by introducing a proxy/ stub between them

Machine B Machine A
Stub — T Gt T Obiea
'
Dbjed l
Marshaling
Smb T Obiject

To provide location transparency, COM proxies are polymorphic with
the object; they support exactly the same set of interfaces as the
real object, so the client cannot tell the difference between the
proxy and the real object.

Another time when classic COM encapsulates an object property
using marshaling is in its handling of the object’s synchronization
needs. The object’s developer declares in the Registry what
threading model the object uses. If an incompatibility exists
between the creating client-threading model and the object’s
threading model, COM puts a proxy and stub between them and
marshals calls from the client thread to the object thread. Since
many threads can exist in a given process, COM divides a process
into apartments, and any call crossing an apartment boundary is
marshaled (see Figure 2-2). Again, the proxy and stub completely
encapsulate the object’s execution thread. The same client code can
handle calling methods on objects on the same thread (in the same
apartment), on a different thread (in a different apartment) in the
same process, or on another thread in a different process. The
proxy and stub are responsible for performing a thread context
switch when marshaling the call from the client thread to the object
thread. Because the object needs to appear to the client as though
it is executing on the same thread as the client, the proxy and stub
will also handle the required synchronization; the proxy has to block
the client thread and wait for the stub to return from the call on the
object thread. COM concurrency management makes it possible for

43

the client to ignore the exact synchronization requirement of the
object. A dedicated synchronization protocol, such as posting
messages between the client and the object, or signaling and
waiting on events or named events is not necessary. Because
nothing in the client’s code considers the object’s threading need,
when the object’s threading model changes (when a new version of
the object with a new threading model is deployed), the client code
remains unchanged.

Figure 2-2. Classic COM encapsulates the object execution thread by
inserting a proxy and a stub between the client and the object

Process B Process A
Stub Loty | Gt T Object
} '
Obiect A
w# Marshaling
Aprg.l:ﬂ::dm Shh T Object

The two examples have a few things in common. The proxy
intercepts calls from the client to the object, making sure the object
gets the runtime environment it requires to operate properly. The
proxy and stub marshal away incompatibilities between the client
and the object, and they perform pre- and post-call processing,
such as thread context switching, cross-process communication,
blocking the calling thread, and signaling internal events. In both
examples, the object declares its requirements in the Registry,
rather than providing specific code for implementing them.

While classic COM provides only a few services by intercepting the
client’s calls, you can see the potential for implementing additional
services through this mechanism. Ideally, you could declare which
services your component requires and then use system component
services instead of implementing them yourself. This is where
COM+ comes in.

2.2 Encapsulation via I nterception in COM+

COM+ provides its component services via interception. You can
configure your component to take advantage of services, and COM+

44

puts a proxy and stub between the component and its client, if the
client and the component instance are incompatible with any one of
the services. It also puts a proxy and stub between them if a
service requires interception, regardless of the way the client and
the object are configured. The exact object configuration is
completely encapsulated by the proxy and stub and the call
interception. Nothing in the client code couples it to the object
configuration. This development is a major step toward ultimate
encapsulation, in which the component contains almost nothing but
business logic and in which the way it uses component services
such as transactions, security, events, and activation is hidden from
the client. Similarly, the component does not care about its client
configuration, as the two do not need to interact with each other
about the way they use the services.

Because an object can have the same threading model as its
creating client while differing in other service configuration,
apartments can no longer be the innermost execution scope of an
object. Instead, COM+ subdivides apartments, so each object can
be placed in a correct runtime environment appropriate to its needs
and intercept all calls to the object. The subdivision of an apartment
into units of objects that share the same configuration is called a
context. Each apartment has one or more contexts, and a given
context belongs to exactly one apartment. A context can host
multiple objects, and each object belongs to exactly one context.
Figure 2-3 shows an example of how processes and apartments can
be broken down into contexts under COM+.

Figure 2-3. COM+ subdivides apartments into contexts

Process A Process B
Context | Context 3 Context 3
Context 2 Contaxt 4

Because a COM+ object must belong to exactly one context, every
apartment has at least one context and potentially many more.
There is no limitation to the number of contexts an apartment can
host. All calls in and out of a context must be marshaled via a proxy
and stub so that COM+ can intercept the calls and provide
configured services. This idea is similar to the classic COM
requirement that all cross-apartment calls be marshaled so that

45

COM can enforce threading model configurations. Objects in the
same context can have direct pointers to one another, because they
are configured to use the same set of services in a way that allows
same-context activation, and hence, direct access. Mediating
between objects in the same context is not necessary.

2.2.1 Lightweight Proxies

When COM+ marshals a call between two contexts in the same
apartment, it does not need to perform a thread context switch.
However, COM+ still puts a proxy and stub in place to intercept the
call from the client to the object and perform a service context
switch. This switch ensures that the object gets the runtime
environment it requires. COM+ uses a new kind of proxy for this
marshaling: a lightweight proxy. It is called a lightweight proxy
because no expensive thread context switch is needed to marshal
calls from the client to the object. The performance hit for a service
context switch is a fraction of that incurred when performing a
thread context switch. A service context switch can sometimes be
as lightweight as simply checking the value of a flag, but usually it
involves some pre- and post-call processing to marshal away
differences in the runtime environment between the client and the
object.

The lightweight proxies are not the standard proxies used for cross-
apartment/process/ machine calls. Standard proxies are either
created using the MIDL compiler or provided by the standard type
library marshaler. For a service switch, COM+ generates the
lightweight proxies on the fly, at runtime, based on the exact object
configuration. A lightweight proxy, like any other proxy, presents
the client with the exact same set of interfaces as those found on
the actual object. COM+ provides the lightweight proxy with the
right interface signatures based on the type library embedded in the
component’s DLL.

An example for a lightweight proxy is a proxy that provides calls
synchronization to the object. If the object is configured to require
synchronization (to prevent access by multiple concurrent threads),
but its client does not require synchronization, COM+ puts a
lightweight synchronization proxy between the two. Another
example is security. If the object is configured to require an access
check before accessing it, verifying that the caller was granted
access to the object, but its client does not care about security,
there will be a lightweight security proxy in between. This proxy
makes sure that only authorized callers are allowed access to the
object

If the object is in a different context from that of its caller because
of incompatibility in just one component service (or if a service
always mandates a separate context), there will be just one

46

lightweight proxy between the caller and the object. Therefore,
what should COM+ do if the client and the object differ in more than
one service? The exact way the lightweight proxies mechanism is
implemented is not documented or widely known. However, in this
case, COM+ probably does not generate just one lightweight proxy
to do multiple service switches, but rather puts in place as many
lightweight proxies as needed, one for every service switch. For
example, consider an object that implements the interface
IMyInterface and is configured to use two COM+ services: Service
A and Service B. If the client does not use Service A and Service B,
COM+ puts two lightweight proxies in place, as shown in Figure 2-4.
The lightweight proxy to Service A only knows how to do a Service
A switch, and the lightweight proxy to Service B only knows how to
do a Service B switch. Both services support the IMyInterface
interface, and would delegate the client call from the first proxy to
the second, to the object, and then back again. The net result is
that when the client calls into the context where the object resides,
the object gets the correct runtime environment it requires to
operate. If the client and the object both use Service C, no
lightweight proxy to Service C is required. (Stubs have been
removed from Figure 2-4 for clarity.)

Figure 2-4. Lightweight proxies perform service switches

Context | Interception Context 2

I Hinterface [H¥Tnterface
Client Object
2.2.2 Assighing Objects to Contexts
When a client calls CoCreateInstance() (New Or CreateObject (

), in Visual Basic), asking for a new instance of a configured
component (an object), COM+ first constructs the object and then
decides which context to place the object in. In COM+ terminology,
COM+ decides in which context to activate the object. COM+ bases
its decision on two factors: the component’s configuration and the
configuration of its creating client. Obviously, it would be best if the
object could share a context with the client. Doing so would
obliterate the need for COM+ to marshal calls from the client to the
object, and thus avoid having to pay even the slight performance
penalty of lightweight proxies.

COM+ examines the newly created object’s configuration in the
COM+ catalog and compares it with the configuration (or rather, the

47

context attributes) of the creating client. If the client’s context can
provide the object with a sufficient runtime environment for its
configuration, COM+ places the object in the client’s context.

If, on the other hand, the client’s context cannot provide the object
with its required runtime environment, COM+ creates a new
context, places the object in it, and puts lightweight proxies
between the two contexts. Note that COM+ does not try to find out
if another appropriate context for the object in that apartment
already exists. The algorithm is simple—the object either shares its
creator's context or gets a new context. Obviously, the precondition
for same-context activation is having a compatible threading model
between the client and the object. Otherwise, the object is placed in
a different apartment, and hence, a different context by definition,
since a context belongs to exactly one apartment.

Classic COM components (nonconfigured components) do not rely
on COM+ services to operate and do not require lightweight proxies
to mediate between their client runtime environment and their own.
If a nonconfigured component can share the same apartment as its
creating client (compatible threading model), it will also share its
context, and the client will get a direct pointer to it, instead of a
proxy. However, if the nonconfigured object requires a different
apartment, it is placed in a suitable apartment, in what is known as
the default context. Each apartment has one default context used
for hosting nonconfigured components. The default context is
defined mostly for COM+ internal consistency (every object must
have a context), and no lightweight proxies are used when objects
in other contexts (in the same apartment) access it.

You can sum up the COM+ algorithm for allocating objects to
contexts with this rule: a configured component is usually placed in
its own context, and a nonconfigured component shares its creator's
context.

2.3 The Context Object

COM+ represents each context by an object called the context
object. Every context has exactly one context object. Objects can
obtain a pointer to their context object by calling
CoGetObjectContext () (see Figure 2-5). All objects in the same
context get the same context object.

CoGetObjectContext () is defined as:

Figure 2-5. By calling CoGetObjectContext(), objects can get a pointer to
their context’s context object

48

CobeiOeciContext) COM+

10bjectContextinfa T Obect 1 MT5 legocy
IComtextSiute Cartet
10bjectContext Object
R P AT
10bjectContexthctivity CobetObjectContext() ~ Object 2

HRESULT CoGetObjectContext (REFIID riid, void**
pplnterface);

The context object supports a few interfaces, so the first parameter
of CoGetObjectContext () is always an |ID that specifies which
interface to retrieve. Two of the context object’s interfaces,
IObjectContext and IObjectContextActivity, are legacy
interfaces from MTS and are provided primarily for backward
compatibility with MTS components running under COM+. The other
two interfaces, IContextState and IObjectContextInfo, are
specific to COM+ . Throughout this book, all chapters use these two
interfaces, rather than the legacy MTS interfaces.

Programming in the COM+
Environment

To make programmatic calls in C+ + against COM+ -specific
interfaces, such as T0bjectContextInfo, you need to install
the latest Platform SDK and include the header file
comsvces.h (from the SDK include directory, not the Visual
Studio 6.0 include directory) or import the DLL comsvcs.dll
from your system directory and provide the following import
directives:
#import "COMSVCS.DLL"
raw_interfaces_only, raw_native_types,
no_namespace, named_guids,
no_auto_exclude
Visual Basic 6.0 developers should import the COM+ Services
Type Library to access COM+ services programmatically.

The IContextState interface controls object deactivation
(discussed in Chapter 3) and transaction voting (discussed in
Chapter 4) by manipulating state bits in the context object.
IObjectContextInfo gains access to various aspects of the current
transaction, retrieves the current activity ID (discussed in Chapter
5), and retrieves the current context ID. The T0bjectContextInfo

interface is defined as:

interface IObjectContextInfo : IUnknown

{
BOOL IsInTransaction();
HRESULT GetTransaction ([out]IUnknown** ppTransaction);
HRESULT GetTransactionId([out]GUID* pTransactionId);

49

HRESULT GetActivityId([out]GUID* pActivityId);
HRESULT GetContextId([out]GUID* pContextId);
bi
Every COM+ context has a unique ID (a GUID) associated with it.
Retrieving the current context ID is sometimes useful for tracing
and debugging purposes. Example 2-1 shows how to trace the
current context ID by calling CoGetObjectContext (), requesting
the I0bjectContextInfo interface, and then calling the
IObjectContextInfo::GetContextId() method.

Example 2-1. Retrieving the current context ID with
I ObjectContextlnfo::GetContextld()

HRESULT hres = S_OK;
IObjectContextInfo* pObjectContextInfo = NULL;
GUID guidContextID = GUID_NULL;

hres

=::CoGetObjectContext (IID_IObjectContextInfo, (void**) &pOb
jectContextInfo);

ASSERT (pObjectContextInfo != NULL);//not a configured
component?

hres = pObjectContextInfo->GetContextId (&guidContextID);
pObjectContextInfo->Release();

USES_CONVERSION;

WCHAR pwsGUID[150];

::StringFromGUID2 (guidContextID, pwsGUID, 150) ;
TRACE ("The object is in context with ID
%s",W2A (pwsGUID)) ;

[
t‘f.
- Note that only COM+ -configured components
%3 4. should call CoGetObjectContext (). When a
%* nonconfigured component calls
CoGetObjectContext (), the call will fail with the

return value of E_NOINTERFACE, and the returned
interface pointer will be set to NULL. The assertion
check in Example 2-1 tests for that condition.

One more point regarding the context object: the context object
and its interfaces are private to the specific context they represent
and should not be shared with or passed to objects in other
contexts. Doing so may introduce hard-to-detect bugs and

50

nondeterministic behavior of object deactivation and destruction,
and it may affect transaction semantics and accuracy.

2.4 The Call Object

In addition to providing a context object to represent the context of
an object, COM+ creates a transient object called the call object
each time that object is called. The transient call object represents
the current call in progress. Objects can access their call object by
calling CoGetCallContext () (see Figure 2-6). The
CoGetCallContext () signature is defined as:

HRESULT CoGetCallContext (REFIID riid, void**
pplnterface);

The call object only exists as long as a call from a client is in
progress, and it is destroyed by COM+ after the called method
returns. You should not cache a pointer to the call object as a
member variable of your object because that pointer will be invalid
once the method that saved it returns. Furthermore, if your object
is doing work in the background—that is, no method call from the
client is currently in progress—it will not have access to a call
object. If you try to access a call object while a call is not in
progress, CoGetCallContext () will fail and return the error code
RPC_E_CALL_COMPLETE. You can, however, still access the context
object, which exists as long as the context exists, and whose
pointer can be cached by the objects associated with it.

The call object exposes two interfaces used to obtain information
about the call security settings. These interfaces, discussed in
Chapter 7, are ISsecurityCallContext and IServerSecurity.

Figure 2-6. When a method call is in progress, a COM+ object has access
to the call object

I0bjectContextlnfo CobelDbjectContex)
il Context
m'm:::‘:::: n My Object T Interception = Cient
I5ecurityCuliContext Gl

CoBer(allCamext()
1ServerSecurity %m

(0M+
W5 legocy

51

2.5 Cross-Context Manual Marshaling

Cross-context call interception via marshaling is how COM+
provides its component services to your object. A client in a
different context cannot access your object directly, even if it has a
direct raw pointer to it. Intercepting the call and performing the
right service switches requires a proxy and a stub in between.
Otherwise, the object executes in the client context, possibly in an
ill-suited runtime environment. If the client gets the pointer to your
object in one of the following ways:

e CoCreating the object

« Querying an object the client already has for additional
interfaces

e Receiving the pointer as a method parameter on a COM
interface

Then COM+ will, under the hood, put interceptors (proxys and
stubs) in place, to make sure all calls into the object are marshaled.
If the client does anything else to obtain the interface pointer, such
as retrieve it from a global variable or a static member variable
shared among all clients, you have to marshal the pointer manually
yourself. Dealing with pooled objects is another situation requiring
manual marshaling, as you will see in the next chapter.

Classic COM requires that all cross-apartment calls be marshaled,
even when the call is in the same process, to ensure threading
model compatibility. The classic COM mechanisms for manually
marshaling interface pointers across apartment boundaries have
been made context-aware. They are what you should use to
marshal interface pointers manually across context boundaries with
COM+.

Generally, these mechanisms rely on the CoMarshalInterface ()
and CoUnmarshalInterface() functions. When you need to
manually marshal an interface pointer from Context A to Context B,
you would serialize the interface pointer into a stream in Context A
using CoMarshalInterface(), and get it out of the stream using
CoUnmarshallInterface () in Context B. This sequence would
manually set up proxies in Context B for accessing the object. You
can also use the CoMarshalInterThreadInterfaceInStream()
and CoGetInterfaceAndReleaseStream() helper methods to
automate some of the steps required when using just
CoMarshalInterface() and CoUnmarshalInterface().

2.5.1 The Global I nterface Table

52

The preferred way to manually marshal interface pointers between
contexts is by using the global interface table (GIT). Every process
has one globally accessible table used for manually marshaling
interface pointers. Globally accessible means accessible from every
context and every apartment in the process. An interface pointer is
checked into the GIT in one context. Then you get back an
identifying cookie (a number), which is context-neutral and can be
passed freely between clients across context boundaries, placed in
global variable or class members, etc. Any client, at any context in
the process, can access the GIT and use the cookie to get a
properly marshaled interface pointer for its context. The GIT is only
useful in cross-context marshaling in the same process and has no
role in cross-process marshaling.

The GIT saves you the agony of programming directly against

CoMarshalInterface () or its helper functions, and more
importantly, it overcomes a serious limitation of the
CoMarshalInterface () function. Using CoMarshalInterface(),

you can unmarshal an interface pointer just once for every
CoMarshalInterface () call. Using the GIT, you can check an
interface pointer into the GIT once and check out interface pointers
multiple times.

The GIT supports the 1GlobalInterfaceTable interface, which is

defined as:
interface IGloballInterfaceTable : IUnknown

{

HRESULT RegisterInterfaceInGlobal ([in]IUnknown *pUnk,

[in]REFIID riid,
[out] DWORD

*pdwCookie) ;

HRESULT RevokeInterfaceFromGlobal ([in]DWORD dwCookie);

HRESULT GetInterfaceFromGlobal ([in]DWORD dwCookie,

[in]REFIID riid, \
[out]void**

pplInterface);
}
You can create the GIT with the class ID of
CLSID_StdGloballInterfaceTable.
RegisterInterfaceInGlobal () is used to check an interface
pointer into the GIT from within one context and to get back the
identifying cookie. Get InterfaceFromGlobal () is used to get a
properly marshaled interface pointer at any other context using the
cookie. RevokeInterfaceFromGlobal () is used to remove the
interface pointer from the GIT. Example 2-2 shows how to use the
IGloballInterfaceTable interface to manually marshal a pointer of
type IMyInterface from Context A to Context B, or any other
context in the process, using the GIT and a global variable.

Example 2-2. Manually marshaling a pointer using the GIT

53

//In context A:

HRESULT hres = S_OK;

extern DWORD dwCookie;//A global variable accessible in
any context

IMyInterface* pMyInterface = NULL;

/* Some code to initialize pMyInterface, by creating an
object that supports it*/

//Now, you want to make this object accessible from other
contexts.

dwCookie = 0;

//Create the GIT

IGlobalInterfaceTable* pGlobalInterfaceTable = NULL;
hres =

::CoCreateInstance (CLSID_StdGlobalInterfaceTable, NULL,
CLSCTX_INPROC_SERVER, IID_IGlobalInterfaceTable,
(void**) &pGlobalInterfaceTable);

//Register the interface in the GIT

hres = pGlobalInterfaceTable -
>RegisterInterfacelInGlobal (pMyInterface,
IID_IMyInterface,

&dwCookie) ;

pGlobalInterfaceTable->Release();//Don’t need the GIT
L1777 0077770077777 77777 7777777777777 7
L1770 7777777777777 7777

//In context B:

IMyInterface* pMyInterface = NULL;

IGlobalInterfaceTable* pGlobalInterfaceTable = NULL;

hres =
::CoCreateInstance (CLSID_StdGlobalInterfaceTable, NULL,

CLSCTX_INPROC_SERVER, IID_IGlobalInterfaceTable,
(void**) &pGlobalInterfaceTable);

//Get the interface from the GIT

hres = pGlobalInterfaceTable-
>GetInterfaceFromGlobal (dwCookie,

IID_IGlobalInterfaceTable,

(void**) &pMyInterface);

54

pGloballInterfaceTable—>Release () ;
/* code that uses pMyInterface */

pMyInterface—>Release();

N N N N N NN NN,
LIV TT 0000770077

//Don’t forget to revoke from the GIT when you are done
or before shutting down

IGlobalInterfaceTable* pGlobalInterfaceTable = NULL;

//You can use a cached pointer to the GIT or re-create
it:

hres =

::CoCreateInstance (CLSID_StdGlobalInterfaceTable, NULL,

CLSCTX_INPROC_SERVER, IID_IGlobalInterfaceTable,
(void**) &pGlobalInterfaceTable);

hres = pGloballInterfaceTable-
>RevokeInterfaceFromGlobal (dwCookie) ;
pGlobalInterfaceTable—>Release () ;

The GIT increments the reference count of the interface pointer
when it is registered. As a result, the client that registered the
interface pointer can actually let go of its own copy of the interface
pointer, and the object would not be destroyed. When you revoke
the object from the GIT, the GIT releases its copy. When the
process shuts down gracefully, if you forget to revoke your
interfaces, the GIT revokes all the objects it still has, allowing them
to be released. The GIT will Addref () an interface pointer that is
returned from a call to GetInterfaceFromGlobal (). A client
should call a matching Release () for every
GetInterfaceFromGlobal () called. Any client in the process can
revoke a registered interface pointer. However, | recommend as a
convention that the client who registered the object should be the
one revoking it.

2.5.2 The GIT Wrapper Class

Using the raw global interface table has a few drawbacks. The
resulting code is somewhat cumbersome and the
IGlobalInterfaceTable method names are too long. In addition,
the methods are not type safe because they require you to cast to
and from a void* pointer. Previously, | saw a need for writing a
simple C+ + wrapper class that compensates for the raw usage
drawbacks. The wrapper class provides better method names and

55

type safety, and because the class ID for the GIT is standard, its
constructor creates the global interface table and its destructor
releases it.
The wrapper class is called cGlobalInterfaceTable and is defined
as:
template <class Itf,const IID* piid>
class CGlobalInterfaceTable
{
public:
CGloballInterfaceTable();
~CGlobalInterfaceTable () ;
HRESULT Register (Itf* pInterface,DWORD *pdwCookie) ;
HRESULT Revoke (DWORD dwCookie) ;
HRESULT GetInterface (DWORD dwCookie, Itf**
pplInterface);

protected:
IGlobalInterfaceTable* m_pGloballInterfaceTable;

private://prevent misuse
CGloballInterfaceTable (const CGlobalInterfaceTable&);
void operator =(const CGlobalInterfaceTables&);
bi
By defining the GIT helper macro:
#define GIT(Itf) CGloballnterfaceTable<Itf,&IID ##Itf>
You get automatic type safety because the compiler enforces the
match between the interface ID and the interface pointer used.
Using the wrapper class is trivial. Here is the code required to
retrieve an interface pointer from the table, for example:
IMyInterface* pMyInterface = NULL;
GIT (IMyInterface) git;
git.GetInterface (dwCookie, &pMyInterface) ;
Compare this code to Example 2-2. Using the wrapper class results
in concise, elegant, and type-safe code. The GIT wrapper class is
included as part of the source code available with this book.

2.6 Summary

This chapter introduced the COM+ context concept: a mechanism
for providing component services. By intercepting client calls and
performing additional processing, COM+ can ensure that the object
has just the runtime environment it requires.

As stated at the beginning of this chapter, you usually do not need
to interact with COM context or be aware that they exist. But
understanding this abstract concept helps demystify the way COM+
services operate. Context and call interception is an extensible
mechanism. As time goes by, new services can be added this way

56

without affecting existing applications. When a client creates
instances of your old component in the new environment, COM+
silently does its context compatibility in the background, and your
existing component never knows that new services are available.

57

Chapter 3. COM+ Instance Management

A few years ago, the dominant programming model and design
pattern was the client/server model. COM and DCOM were
predominant component technologies, and all was well. Then came
the Internet revolution. Almost overnight, a new paradigm
emerged—the multitier architecture . Scalability is perhaps the
single most important driving force behind the move from classic
two-tier client/server to multitier applications. Today, being able to
handle a very large number of clients is necessary for survival. The
classic two-tier model simply does not scale well from a few dozen
clients to tens of thousands of clients hammering on your system at
peak load. The two-tier model of dedicating one server object per
client quickly causes critical resources to dwindle under such loads.
Allocating resources such as a database connection, a system
handle, or a worker thread to each client is unrealistic. The middle
tier was introduced precisely because you could no longer map
client objects directly to your data processing objects. The middle
tier allows pooling of resources, such as database connections,
hardware objects, or communication ports. The middle tier also
allows you to activate your objects just when they are required and
release them as soon as possible.

COM+ provides you with two elegant and user-friendly instance
management services that you can use to build scalability into your
system design from day one: object pooling and Just-in-Time
Activation (JITA).

This chapter first defines the problems you face when designing a
modern distributed system; it then explains COM+ strategies for
managing objects that compose it.

3.1 Client Types

A distributed system, by its very nature, implies that its clients are
not on the same machine as the objects providing the services. In
every distributed system, there are typically two kinds of clients:
rich clients and Internet clients. The rich client typically shares the
same local area network, called the Intranet. (A rich client can also
be called an intranet client.) In most cases, no firewalls between the
rich client and the application exist, so the rich client can invoke
binary calls on components in the application. The Internet client
connects to your application typically by using a web browser, but
more of the other options, such as hand-held PDAs and cellular
phones, are possible as well. The Internet client is located outside of
your local area network and can reside anywhere on the Internet. In

58

most cases, a firewall exists between the Internet client and your
application.

Most applications have a mixture of rich and Internet clients. Some
systems had only rich clients until they were opened to the
Internet. Other systems were designed primarily for the Internet,
but had to support rich clients—perhaps for application
management, back-office operations, or other specific needs. In any
case, when you design an application, you should plan to support
both kinds of clients. The two kinds differ not only in the way they
connect to your application, but also in their pattern of interaction
with it. Your design should be able to scale up to both kinds of
clients and compensate for their differences. COM+ instance
management services were developed to answer precisely that
challenge.

3.1.1 Scaling Up with Rich Clients

A rich client's interaction with the server objects of a distributed
application resembles that of the classic client/server application.
The client connects to the server machine using a network protocol
such as TCP/IP. Because the Intranet is considered a secure
environment, it usually contains no firewalls and the client can
connect directly to your server objects in the middle tier using
DCOM (see Figure 3-1). The calling pattern to your application is as
follows: create an object, use it, and eventually release it. The rich
client usually presents to the user a rich user interface. The word
"rich" in this context means that the user interface contains and
executes binary code, processing information and rendering it to the
user. The user interface is typically built with tools such as Visual
Basic or Visual C+ + with MFC. The new .NET Framework provides a
new library of Windows Forms classes for building rich clients. (See
Chapter 10). Even if the user accesses your application with a web
browser, that browser may contain binary ActiveX controls. Intranet
clients use rich user interfaces because they must usually provide a
rich user experience. This experience supports more privileges and
features for employees than are available to customers connecting
to the same system via an Internet browser.

Figure 3-1. Rich client connecting to a multitier system

59

Consider your bank, for example. Most banks today provide easy
access over the Internet for their customers, allowing simple
operations such as viewing account balances and transferring funds
between accounts. However, only bank tellers can perform
operations such as opening or closing accounts and selecting
various saving and investment plans. The next time you are in your
bank, peek over the teller’s screen. The teller probably uses a rich
client user interface that does not look like the one you use when
you log on to the Internet banking application offered by the bank.
In a typical system, there are significantly fewer rich clients than
Internet clients (as there are fewer bank tellers than bank
customers). The overhead of creating a few server-side objects,
allocating resources, and doing the cleanup for each client is not a
scalability limitation. What really impedes scalability is the potential
that rich client applications have for holding onto objects for long
periods of time, while actually using the object in only a fraction of
that time.

It is possible that when an Intranet application is started, it
instantiates all the objects it needs and releases them only at
shutdown, in an attempt to achieve better performance and
responsiveness to the user. If your design calls for allocating an
object for each client, you will tie up crucial limited resources for
long periods and eventually run out of resources.

3.1.2 Scaling Up with Internet Clients

When users access your system over the Internet, they actually use
a web browser to connect to an Internet web server (such as the
Microsoft Internet Information Server, 11S). The browser generates
a service request as part of the HTTP stream. The web server
creates objects required for handling the client request, and when it
finishes processing the request, it releases the objects (see Figure
3-2). It is important to emphasize that the Internet client
connection is stateless; no object references are maintained outside
the scope of individual requests. The client is usually a thin user
interface, another name for an interface that consists of simple
HTML rendered by a web browser. The browser’s main job is to
send the user’s requests to the server and display the web server’s

60

reply. Although some scripts sent by the web server, such as
Dynamic HTML (DHTML), may execute on the client side, such
client-side logic is used primarily to format the information on the
user’s screen and has nothing to do with server-side objects.

Figure 3-2. I nternet client connecting to a multitier system

'..':.'.:'...':.'.' - Sarver M
= s ‘

Wy ST K Server Objet T DB

Depending on how widely your system is used, you could have a
huge number of clients asking for service at any given moment. The
length of time the web server holds the objects for an individual
client request is usually not a scalability limitation. However,
because there are so many Internet clients, scalability is limited by
the overhead for each client request: creating objects, initializing
them, allocating expensive resources such as database connections,
setting up proxies, doing cross-machine or process calls, and doing
cleanup. This problem is the opposite of the scalability problem for
rich clients. Systems that use an ineffective approach of allocating
objects per client request simply cannot handle a large number of
clients. At periods of peak demand, the service appears to be
unavailable or has irritatingly slow response time.

3.2 Instance Management and Scaling

Being smart about the way you allocate your objects to clients is
the key to scalability in a modern distributed system. Simple
algorithms can be used to govern when and how expensive objects
that have access to scarce resources will actually service a client
request. In distributed-systems terminology, these algorithms and
heuristics are called instance management. COM+ refers to instance
management as activation.

COM+ provides every configured component with access to ready-
made instance management services. Every COM+ component has
on its properties page an Activation tab that lets you control the
way objects are created and accessed (see Figure 3-3). You can use
COM+’s two instance management services, object pooling and
JITA, individually, or combine them in a very powerful way. Neither
technique is a COM+ innovation. What is new about COM+ is the
ease with which you can take advantage of the service. That ease

61

allows you to focus your development efforts on the domain
problem at hand, not on the writing of instance management
plumbing.

Figure 3-3. The COM+ component’s Activation tab

2| x|

Ganaall Tlanzami\:hel Secunby Aclivation |I:mcurnm:_l.l Aa:hlanced|

[+ Enable chject poaling

Object pooling
Melirvnum peal size ||:|
Magirnum pocl see: ['”J
Creation tmeaout [me): |E|:III|'J

™ Enable ghyect constiuction

DObpect constuction

Constuchor shing

[+ Enable Just In Tine Activation
v Component supparts avenits and statistics
[T Must be activated in caller’s contest

S I.].R. : E.we.l

3.3 Object Pooling

The idea behind object pooling is just as the name implies: COM+
can maintain a pool of objects that are already created and ready to
serve clients. The pool is created per object type; different objects
types have separate pools. You can configure each component type
pool by setting the pool parameters on the component’s properties
Activation tab (as shown in Figure 3-3). With object pooling, for
each object in the pool, you pay the cost of creating the object only
once and reuse it with many clients. The same object instance is
recycled repeatedly for as long as the containing application runs.
The object’s constructor and destructor are each called only once.
Object pooling is an instance management technique designed to
deal with the interaction pattern of Internet clients—numerous
clients creating objects for every request, not holding references on
the objects, but releasing their object references as soon as the
request processing is done. Object pooling is useful when
instantiating the object is costly or when you need to pool access to
scant resources. Object pooling is most appropriate when the object
initialization is generic enough to not require client-specific

62

parameters. When using object pooling, you should always strive to
perform in the object’s constructor as much as possible of the time-
consuming work that is the same for all clients, such as acquiring
connections (OLEDB, ADO, ODBC), running initialization scripts,
initializing external devices, creating file handles, and fetching
initialization data from files or across a network. Avoid using object
pooling if constructing a new object is not a time-consuming
operation because the use of a pool requires a fixed overhead for
pool management every time the client creates or releases an
object.

Any COM+ application, whether a server or a library application,
can host object pools. In the case of a server application, the scope
of the pool is the machine. If you install proxies to that application
on other machines, the scope of the pool can be the local network.
In contrast, if the application is a library application, then a pool of
objects is created for each client process that loads the library
application. As a result, two clients in different processes will end up
using two distinct pools. If you would like to have just one pool of
objects, configure your application to be a server application.

3.3.1 Pooled Object Life Cycle

When a client issues a request to create a component instance and
that component is configured to use object pooling, instead of
creating the object, COM+ first checks to see if an available object
is in the pool. If an object is available, COM+ returns that object to
client. If there is no available object in the pool and the pool has not
yet reached its maximum configured size, COM+ creates a new
object and hands it back to the creating client. In any case, once a
client gets a reference to the object, COM+ stays out of the way. In
every respect except one, the client’s interaction with the object is
the same as if it were a nonpooled object. The exception occurs
when the client calls the final release on the object (when the
reference count goes down to zero). Instead of releasing the object,
COM+ returns it to the pool. Figure 3-4 describes this life cycle
graphically in a UML activity diagram.

['1'If you are not familiar with UML activities diagrams, read UML Distilled by Fowler and
Scott (Addison Wesley, 1997). Chapter 9 in that book contains a detailed explanation and
an example.

Figure 3-4. A pooled object life cycle

63

.

EI:;L:T& the _‘_ (Hal

Rolurn fo
the poal

If the client chooses to hold onto the pooled object for a long time,
it is allowed to do so. Object pooling is designed to minimize the
cost of creating an object, not the cost of using it.

3.3.2 Configuring Pool Parameters

To use object pooling for a given component, you should first
enable it by selecting the "Enable object pooling" checkbox on
component’s Activation tab. The checkbox allows you to enable or
disable object pooling. The two other parameters let you control the
pool size and the object creation timeout. The minimum pool size
determines how many objects COM+ should keep in the pool, even
when no clients want an object. When an application that is
configured to contain pools of objects is first launched, COM+
creates a number of objects for each pool equal to the specified
minimum pool size for the application. If the minimum pool size is
zero, COM+ doesn’t create any objects until the first client request
comes in. Minimum pool size is used to mitigate sudden spikes in
demand by having a cache of ready-to-use, initialized objects. The
minimum pool size must be less than the maximum pool size, and
the Component Services Explorer enforces this condition.

The maximum pool size configuration is used to control the total
number of objects that can be created, not just how many objects
the pool can contain. For example, suppose you configure the pool
to have a minimum size of zero and a maximum of four. When the
first creation request comes in, COM+ simply creates an object and
hands it over to the client. If a second request comes in and the
first object is still tied up by the first client, COM+ creates a new

64

object and hands it over to the second client. The same is true for
the third and fourth clients. However, when a fifth request comes
along, four objects are already created and the pool has reached its
maximum potential size, even though it is empty. Once you reach
that limit and all objects are in use, further clients requests for
objects are blocked until an object is returned to the pool. At that
time, COM+ hands it over to the waiting client. If, on the other
hand, the client waited for the duration specified in the timeout
field, the client is unblocked and CoCreateInstance() returns the
error code CO_E_ACTIVATIONFAILED_TIMEOUT (not E_TIMEOUT, as
documented in the COM+ section of the MSDN). COM+ maintains a
queue for each pool of waiting clients to handle the situation in
which more than one client is blocked while waiting for an object to
become available. COM+ services the clients in the queue on a first-
come, first-served basis as objects are returned to the pool. A
creation timeout of zero causes all client calls to fail, regardless of
the state of the pool and availability of objects.

If the pool contains more objects than the configured minimum size,
COM+ periodically cleans the pool and destroys the surplus objects.
There is no documentation of when or how COM+ decides to do the
cleanup.

Deciding on the minimum and maximum pool size configuration
depends largely on the nature of your application and the work
performed by your objects. For example, the pool size can be
affected by:

 Expected system load highs and lows

« Performance profiling done on your product to optimize the
usage of resources

o Various parameters captured during installation, such as user
preferences and memory size

e The number of licenses your customer has paid for; you can
set the pool size to that number and have an easy-to-manage
licensing mechanism

In general, when configuring your pool size, try to balance available
resources. You usually need to trade memory used to maintain a
pool of a certain size and the pool management overhead in
exchange for faster client access and use of objects.

3.3.3 Pooled Object Design Requirements

When you want to pool instances of your component, you must
adhere to certain requirements and constraints. COM+ implements
object pooling by aggregating your object in a COM+ supplied
wrapper. The aggregating wrapper’s implementation of AddrRef ()
and Release () manage the reference count and return the object

65

to the pool when the client has released its reference. Your
component must therefore support aggregation to be able to use
object pooling. When you import a COM component into a COM+
application, COM+ verifies that your component supports
aggregation. If it does not, COM+ disables object pooling in the
Component Services Explorer. If you implement your object using
ATL, make sure your code does not contain the ATL macro
DECLARE_NOT_AGGREGATABLE (), as this macro prevents your object
from being aggregated. By default, the Visual C++ 6.0 ATL Wizard
inserts this macro into your component’s header file when
generating MTS components. You must remove this macro to
enable object pooling (it is safe to do so—there are no side effects
in COM+).

Another design point to pay attention to is your pooled object's
threading model. A pooled object should have no thread affinity of
any sort—it should make no assumption about the identity of the
thread it executes on, or use thread local storage, because the
execution thread can be different each time the object is pulled
from the pool to serve a client. The pooled object therefore cannot
use the single-threaded apartment model (STA) because STA
objects always require execution on the same thread. When you
import a component to a COM+ application, if the component's
threading model is marked as apartment (STA), COM+ disables
object pooling for that component. A pooled object can only use the
free multithreaded apartment model (MTA), the both model, or the
neutral threaded apartment model (NTA, covered in Chapter 5). If
performance is important to you, you may want to base your pooled
component's threading model on your clients' threading model. If
your clients are predominantly STA-based, mark your component as
Both so that it can be loaded directly in the client's STA. If your
clients are predominantly MTA based, mark your component as
either Free or Both (the Both model also allows direct use by STA
clients). If your clients are of no particular apartment designation,
mark your component as Neutral. For most practical purposes, the
neutral-threading model should be the most flexible and
performance-oriented model. Table 3-1 summarizes these
decisions.

Table 3-1. Pooled object threading model

‘ Clients threading model ‘ Recommended pooled object threading model
\No particular model \NTA

STA Both

IMTA Both/MTA

Both Both

INTA NTA

Deciding not to use STA has two important consequences:

66

» Pooled objects cannot display a user interface because all user
interfaces require the STA message loop.

* You cannot develop pooled objects using Visual Basic 6.0
because all COM components developed in Version 6 are STA
based and use thread local storage. The next version of Visual
Basic, called Visual Basic.NET, allows you to develop
multithreaded components.

3.3.4 Object Pooling and Context

When a pooled object is placed in the pool, it does not have any
context. It is in stasis—frozen and waiting for the next client
activation request. When it is brought out of the pool, COM+ uses
its usual context activation logic to decide in which context to place
the object—in its creator's context (if the two are compatible) or in
its own new context. From the object's perspective, it is always
placed in a new context; different from the one it had the last time
it was activated. Objects often require context-specific initialization,
such as retrieving interface pointers or fine-tuning security. Object
pooling only saves you the cost of reconstructing a new object and
initializing it to generic state. Each time an object is activated, you
must still do a context-specific initialization, and you benefit from
using object pooling only if the context-specific initialization time is
short compared to that of the object's constructor. But when
context-specific initialization is used, how does the object know it
has been placed in a new context? How does it object know when it
has been returned to the pool? It knows by implementing the
IObjectControl interface, defined as:

interface IObjectControl : IUnknown
{

HRESULT Activate();

void Deactivate();

BOOL CanBePooled();

b

COM+ automatically calls the T0bjectControl methods at the
appropriate times. Clients of your object don't ever need to call
these methods.

COM+ calls the Activate () method each time the object is pulled
from the pool to serve a client—just after it is placed in the
execution context, but before the actual call from the client. You
should put context-specific initialization in the Activate ()

method. Activate () is your pooled object's wakeup call—it tells it
when it is about to start serving a new client. When using
Activate (), you should ensure that you have no leftovers in your

object state (data members) from previous calls, or from a state
that was modified from interaction with previous clients. Your object

67

should be indistinguishable from a newly created object. The state
should appear as if the object’s constructor was just called.

COM+ calls Deactivate () after the client releases the object, but
before leaving the context. You should put any context-specific
cleanup code in Deactivate().

When object pooling is enabled, after calling the beactivate()
method, COM+ invokes the CanBePooled() method to let your
object decide whether it wants to be recycled. This is your object’s
opportunity to override the configured object pooling setting at
runtime. If your object returns FALSE from CanBePooled(), the
object is released and not returned to the pool. Usually, you can
return FALSE when you cannot initialize the object’s state to that of
a brand-new object, because of an inconsistency or error, or if you
want to have runtime fine tuning of the pool size and the number of
objects in it. In the most cases, your implementation of
CanBePooled() should be one line: return TRUE;, and you should
use the Component Services Explorer to administer the pool.
Implementing I0bjectControl is not required for a pooled object.
If you choose not to implement it and you enable object pooling,
your object is always returned to the pool after the client calls
Release () on it.

Figure 3-5 emphasizes the calling sequence on a pooled object that
supports I0bjectControl. It shows when COM+ calls the methods
of TObjectControl and when the object is part of a COM+ context.

Figure 3-5. The life cycle of a pooled object using | ObjectControl

68

o

(lient calls
(olreate

I

(et abject

om

Aetivate()

Return to
the poal

M S—
| -@- J

Finally, TObjectControl has two abnormalities worth mentioning:
first, the interface contains two methods that do not return
HRESULT, the required returned value according to the COM
standard of any COM interface. T0bjectControl’s second
abnormality is that only COM+ can invoke its methods. The
interface is not accessible to the object’s clients or to the object
itself. If a client queries for the T0bjectControl interface,
QueryInterface() returns E_NOINTERFACE.

3.4 Just-in-Time Activation

Object pooling is a great instance management service, but what
should you do when you deal with rich clients who can hold onto
object references for long periods of time? It is one thing if the rich
clients make intensive use of the object, but as you saw earlier,
they actually maintain the reference on the object to improve
performance on their side, and may actually call methods on the
object for only a fraction of that time. From the object’s
perspective, it must still hold onto its resources because a call may

69

come through at any moment. Object pooling is of little benefit,
since it saves you the cost of creating the object, not the cost of
maintaining it while tied up with a client. Clearly, another tactic is
required to handle greedy Intranet clients.

COM+ provides another instance management technique called
Just-in-Time Activation (JITA) that allows you to dedicate an object
per client only while a call is in progress. JITA is most useful when
instantiating the object is not a costly operation compared with the
expensive or scarce resources the object holds onto. It is especially
useful if the object holds onto them for long periods.

3.4.1 How JITA Works

JITA intercepts the call from the client to the object, activates the
object just when the client issues a method call, and then destroys
the object as soon as the method returns. As a result, the client
must never have a direct reference to the object. As explained in
Chapter 2, if the client is in a different context than the object, the
client actually holds a pointer to a proxy and the proxy interacts
with a stub. The COM+ proxy and stub perform the JITA
interception, and together they constitute a single logical entity.
Let’s call this entity the interceptor. To guarantee that there is
always an interceptor between the client and the object, component
instances configured to use JITA are always placed in their own
context, regardless of potential compatibility with their creator.
Figure 3-6 shows how this interception works:

1. The interceptor calls the object’s method on behalf of the
client.

2. When the method call returns, if the object indicates that it
can be deactivated, the interceptor releases the object and
notes to itself that it no longer has the object. Meanwhile, the
client continues to hold a reference to a proxy and does not
know its object was released.

3. When the client makes another call, the interceptor notes that
it is not connected to an object.

4. The interceptor creates a new object.

5. The interceptor delegates the call to the new object.

When the client releases the object, only the interceptor needs to
be destroyed because the object was already released.

Figure 3-6. The interceptor handles the method calls in JITA by creating
the object as it is needed and disposing of it between calls

70

Client : » Server
ien Interceplor Obiec

—_— — ||
Clignt Inferceptor | I

Client ! . Server
ien Interceptor Obiect

3.4.2 Benefits of Using JITA

JITA is beneficial because you can now release the expensive
resources the object occupies long before the client releases the
object. By that same token, acquisition of the resources is
postponed until a client actually needs them. Remember that
activating and destroying the object repeatedly on the object side,
without tearing down the connection to the client (with its client
side proxy) is much cheaper than normally creating and releasing
the object. Another side effect of JITA is that it improves overall
reliability. Imagine the case of a client that crashed or simply forgot
to release an object. When using JITA, the object and the resources
it holds are released independently of unreliable or undisciplined
clients.

3.4.3 Using JITA

You can configure any COM+ component to use JITA. On the
Activation tab of the component’s properties page (see Figure 3-3),
you can check the "Enable Just In Time Activation" checkbox to
enable JITA for your component. In fact, when you use the
Component Installation Wizard to add a new component, it enables
JITA for the new component by default.

However, COM+ cannot arbitrarily kill your object just because the
method has returned. What if an object is not ready to be
deactivated? What if it needs to perform additional activities to
bring itself to a consistent state, and can only then be destroyed?
An object that wants to get the most out of JITA is required to do
two things: first, it should be state-aware. Second, it should tell
COM+ when the object can be deactivated. Mind you, a JITA object
does not need to be stateless. In fact, if it were truly stateless,
there would be no need for JITA in the first place. The object has to
proactively manage its state, much like a transactional object, as
discussed in the next chapter. Ideally, a JITA object should be
activated at the beginning of every method call and deactivated
after the call. If you intend to signal to COM+ to deactivate your
object only after a particular method returns or when a special

71

event has occurred, the client may hold onto the object between the
calls for long periods of time and significantly hamper scalability.

So, if a JITA object is to be activated just before every method call
and deactivated immediately after each call, then it needs to do two
things: at the beginning of each call, the object should initialize its
state from values saved in durable storage. At the end of the call, it
should return its state to the storage. Commonly used durable
storage options include databases and the Windows filesystem.

- Although a JITA object can store its state in
%3 4. nondurable storage, namely in-memory, |

8 recommend not doing so for two reasons. First, if
the JITA object participates in transactions
(discussed in the next chapter), the storage has to
be durable. Second, memory storage ties the
object to a particular machine and precludes
multimachine load balancing.

Not all of the state of an object can be saved by value. For example,
if the state includes interface pointers to other objects, the object
should release those objects and re-create them on the next
activation. A database connection from a connections pool is
another example of a state that cannot be stored. An object should
return the connection to the pool before returning from a method
call and grab a new connection from the pool upon activation.

Using JITA has one important implication for interface design—every
method call must include a parameter to identify the object of which
the method is a member. The object uses that parameter to
retrieve its state from the durable storage, and not the state of
another instance of the same type. Examples for such parameters
include the account number for bank account objects and the order
number for objects representing store orders. Example 3-1 shows a
method on a JITA object that accepts a parameter of type PARAM (a
pseudotype invented for this example) used to identify the object:
STDMETHODIMP CMyClass: :MyMethod (PARAM objectIdentifier)
The object then uses the identifier to retrieve its state and save the
state back at the end of the method call.

JITA clearly offers you a tradeoff between performance (the
overhead of reconstructing the object state on each method call)
and scalability (holding onto the state and its resources). No
definitive rules describe when and to what extent you should trade
performance for scalability. You may need to profile your system,
and ultimately redesign some objects to use JITA and some not to
use JITA. Nevertheless, JITA is a powerful instance management
technique available with one click of your mouse.

JITA also lets COM+ know when it is allowed to deactivate the
object. You have already seen that each JITA object must reside in
a context separate from that of its caller. Each context has a

72

context object associated with it, as explained in the previous
chapter. Each context object has a value in it called the done bit ,
which, as the name implies, is a one-bit Boolean flag. Whenever a
context is initialized, and an object is placed in it, the done bit is set
to zero (FALSE).

A JITA object lets COM+ know that it is ready to be destroyed by
setting the done bit on the context object to TRUE. The object
interceptor checks the done bit every time a method returns control
to it. If the done bit is set to TRUE, the interceptor releases the JITA
object. Because each COM+ context maps to a single context
object, a JITA object always resides in its own private, dedicated
context. If more than one object were in the context, any one could
set the done bit to TRUE, and the interceptor might deactivate the
wrong object.

You can set the value of the done bit either programmatically or
administratively. You can set the done bit programmatically in two
ways, and both require accessing an interface exposed by the
context object. The recommended way to set the done bit for a JITA
object is to use the interface IContextState, an interface that
Microsoft fine tuned to support JITA objects. Its definition is as
follows:

enum tagTransactionVote

{

TxCommit= O,

TxAbort = TxCommit + 1
}TransactionVote;

interface IContextState : IUnknown
{

HRESULT SetDeactivateOnReturn([in] BOOL bDeactivate);

HRESULT GetDeactivateOnReturn ([out]BOOL*
pbDeactivate) ;

HRESULT SetMyTransactionVote ([in]TransactionVote
txVote);

HRESULT GetMyTransactionVote ([out]TransactionVote*
ptxVote) ;
}
IContextState defines methods for setting the done bit and
retrieving its current value. IContextState is also used in
transaction voting, discussed in the next chapter. You can obtain
IContextState by using the call CoGetObjectContext (); you can
call the IContextState method SetDeactivateOnReturn() to set
the done bit, as shown in Example 3-1.

Example 3-1. Using | ContextState to tell COM+ to deactivate the object

STDMETHODIMP CMyClass::MyMethod (PARAM objectIdentifier)
{

73

GetState (objectlIdentifier);

DoWork () ;

SaveState (objectIdentifier);

//Let COM+ deactivate the object once the method
returns

HRESULT hres = S_OK;

IContextState* pContextState = NULL;

hres =
::CoGetObjectContext (IID_IContextState, (void**) &pContextS
tate);

ASSERT (pContextState != NULL)//Will be NULL if not
imported to the COM+ Explorer

hres = pContextState->SetDeactivateOnReturn (TRUE) ;

ASSERT (hres != CONTEXT_E_NOJIT)//will return
CONTEXT_E_NOJIT if JITA was not

//enabled for this

object

pContextState—>Release () ;
}
Another way of setting the done bit uses the TO0bjectContext
interface. You can obtain this interface by using
CoGetObjectContext () and calling its SetComplete () method.
However, T0bjectContext is a legacy interface from MTS, and
using it to deactivate the object can have transaction voting side
effects, discussed in the next chapter. A COM+ JITA object should
use IContextState.

Deactivating a JITA Object
Developed in VB 6.0

If you use Visual Basic 6.0 to develop your JITA object, you
must access I0bjectContext first, and then query it for
IContextState to flag the object for deactivation:

Dim objectContext As ObjectContext

Dim contextState As IContextState

Set objectContext = GetObjectContext

"QueryInterface for IContextState:
Set contextState = objectContext
contextState.SetDeactivateOnReturn (True)

Programmatic control over when COM+ should deactivate your
object gives you ultimate control over when deactivation occurs.
When using JITA, however, you are more likely to want to
deactivate your object each time a method returns. COM+ provides
you with an administrative way to instruct it to always deactivate
the object upon method return. When JITA is enabled for a
component, you can search in the Component Services Explorer for

74

the method level, display the method properties page, select the
General tab, and check "Automatically deactivate this object when
this method returns" (see Figure 3-7).

Figure 3-7. The method’s General tab

21|
Genetal |5my|
@P Myhdsthod
[Descrphon;
¥ Hutomalically deactivabe ihis abject when this melhad retuma
i | Cancel |
e The "Automatically deactivate" setting is done at

s, the method level, not the interface level. This
setting potentially leaves the object with some
methods that do not deactivate the object on
return (especially if they do not acquire expensive
resources) and some that do. However, for
consistency’s sake, you should set all interface
methods and all component interfaces in a uniform
fashion.

=
ey

Even when you administratively configure a method to deactivate
the object when it returns, you can still override this configuration
programmatically at runtime by calling

IContextState: :SetDeactivateOnReturn (FALSE). COM+ only
uses the administrative setting when you do not make a
programmatic call yourself to set the context object’s done bit.

3.4.4 JITA and | ObjectControl

Your JITA object can choose to implement the T0bjectControl
interface. COM+ queries for the interface and calls
IObjectControl::Activate() each time a new instance of your
component is created and placed in the COM+ context after the
object constructor is called, but before the actual method is called.
By letting the object know when it enters a context, COM+ allows
the object to perform context-specific initialization in Activate (),
such as passing a reference to the object to another object, caching
interface pointers to other COM+ objects (such as IContextState),
or performing programmatic security checks (see Chapter 7).

75

If you set the done bit to TRUE, after the method has returned (but
before the object destructor is called) COM+ calls

IObjectControl: :Deactivate (). You should put your context-
specific cleanup code, such as releasing cached interface pointers,
in Deactivate (). After calling Deactivate(), COM+ destroys

(releases) the object.
If the JITA object is not configured to use object pooling, then

COM+ never calls I0bjectControl::CanBePooled(). However,
you still must implement all the methods of a COM interface your
object support. Just return TRUE from CanBePooled(), which

makes your object support pooling (you may still want to configure
it to support pooling in the future).

Figure 3-8 shows the life cycle of a JITA object that implements
IObjectControl. A JITA object that supports TObjectControl is
notified by COM+ when the object is placed in a new context and
also just before the object leaves the context and is destroyed.

Figure 3-8. Life cycle of a JITA object that implements | ObjectControl

[Client colls o methad)

Method
execution

[o] [Tes]—p‘ Deactivaie()]—»[Releasel) ‘

!
®

Here are a few more important points about JITA objects and
IObjectControl:

e |If you return anything except s_OX from
IObjectControl: :Activate(), perhaps out of failure to
initialize a context-specific state, the client gets the HRESULT
of CO_E_INITIALIZATIONFAILED as a return value from the
method it wanted to call.

76

e Merely enabling JITA and implementing I0bjectControl will
not get your object deactivated after every method call—you
must either configure the method administratively or set the
done bit programmatically. If you do not want to use JITA,
but wish to know when you enter a context in order to do
context-specific initialization, you can enable JITA support and
implement I0bjectControl.

e Even though implementing T0bjectControl is optional, |
strongly recommend that you implement it when you use JITA
because it makes managing your object's life cycle much
easier.

3.5 Combining JITA with Object Pooling

The two instance management techniques provided by COM+ are
not mutually exclusive. JITA and object pooling can be combined in
a very powerful way. Using both object pooling and JITA on the
same component is useful in situations when object initialization is
both generic (not client specific) and expensive. Thus, using just
JITA would not make sense; when you have no control over the
length of time, the object's client keeps its reference to the object,
so you would realize marginal gain from object pooling. When you
configure your object to use both, instead of creating and releasing
the object on each method call, COM+ grabs an object from the
pool and returns the object to the pool after the method completes
its execution. The JITA aspects are still maintained because the
object instance will be torn away from its client. The pool will also
be used on every method call, not just on CoCreate and Release
calls from the client. Implementing I0bjectControl is optional, but
| strongly recommend it. As always, a call to
IObjectControl::Activate () marks entry to a context, and a call
to I0bjectControl::Deactivate () marks an exit. COM+ calls
IObjectControl: :CanBePooled() after every Deactivate(),
letting the object decide whether it wants to be recycled or
destroyed. This life cycle is shown in Figure 3-9. When you
configure your component to support both JITA and object pooling,
COM+ deactivates the object every time the done bit is set and
returns it to the pool instead of releasing it. New method calls are
served by recycled objects from the pool, not with new instances.

Figure 3-9. The life cycle of a component using JITA and object pooling

77

S T

Aetivate()]

I [Client calls 0 methed]
{ j]

Method |
execulion |
L, —

[Yes] —I-{ Deactivate() ‘

E[un] [‘I’u-s}]
[Releose the ‘ i Return to ‘
object | the pool

| - @)- J

Objects now can maintain state between calls because they are not
destroyed, but rather returned to the pool. The truth is, when you
use JITA and object pooling together, your object still cannot
maintain a client-specific state between invocations; Once the
object is back in the pool, it could very well be retrieved to serve a
different client than the previous one. A JITA object can maintain
just the generic part of the state and benefit from going through
that initialization only once.

When a pooled object is configured to use JITA, the semantics of
the maximum pool size value actually sets the total number of
objects that COM+ is forced to create to serve active client calls,
not the total number of connections to clients. The number of
connections (the number of clients holding references to proxies)
may be a much larger number because many clients may not be
engaged in calling a method on objects.

Configuring a COM+ component to be a singleton is an interesting
example of what you can do when combining JITA with object
pooling. A singleton is a component with only one instance. All
clients share the same singleton—the clients are often not even
aware that there is just one instance of the class.” For example,
suppose you have a configured component used to control a single
resource, such as a hardware device or a communication port. To
make sure that all clients get the same object, you can configure

78

your component to use JITA and object pooling, with minimum and
maximum pool sizes set to one. Having a pool size of exactly one
ensures that at any given moment, exactly one object (a singleton)
is associated with a resource. Using JITA ensures that once the
object has finished servicing one client, it can serve another, even if
the current client has not released its reference to it. The singleton
is also the only case of a JITA object that can maintain full state
between method calls, since you can be certain that the same
object is called to serve all clients. However, before you start using
a singleton, make sure that its disadvantages (a single point of
failure, a performance hot spot, a bottleneck, and an inability to
scale to large number or clients) are not relevant in your design and
that it is a valid modeling of an entity in your application domain.

(2] See Design Patterns—Elements of Reusable Object-Oriented Software, by Gamma, et
al. (Addison Wesley, 1995), p. 127.

3.6 Object Constructor String

COM+ allows you to pass a construction parameter to new instances
of your component. This instance activation service has nothing to
do with application scalability, JITA, or object pooling, and is
nothing more than a neat service.

On your component’s Properties page, there is a properties group
named "Object construction" on the Activation tab. Once you enable
this service (by checking the "Enable object construction”
checkbox), you can specify a string in free form. Every instance of
your component has access to this one string (you cannot specify a
string per instance). Because calls to CoCreateInstance() or
CreateObject () do not accept initialization parameters, you have
to work to gain access to the constructor string.

The first thing you need to do (besides enable the service) is have
your component implement an interface called T0bjectConstruct,

defined as:
interface IObjectConstruct : IUnknown

{
HRESULT Construct ([in]IDispatch* pConstructionObij) ;

bi

If you enable object construction but do not implement the
interface, all client attempts to create a new instance of your
component will fail, showing the error code E_NOINTERFACE. They
will fail because COM+ will refuse to hand over to the client an
object that could not be initialized properly. T0bjectConstruct has
only one method, Construct (), which COM+ uses to pass in a

79

pointer to another interface called T0bjectConstructString,

defined as:
interface IObjectConstructString : IDispatch

{

[id (1), propget] HRESULT ConstructString([out, retwval]
BSTR* pVal);
i
COM+ calls your object’s implementation of
IObjectConstruct::Construct () to deliver the string only once,
immediately after calling the object constructor. Note that COM+
passes the construction string to your object before the call to
IObjectControl::Activate (), since the initialization parameter
should provide generic, rather than context-specific, information.
Example 3-2 shows how to use the constructor string object passed
into TObjectConstruct::Construct () to access your component’s
configured constructor string.

Example 3-2. Implementing | ObjectConstruct::Construct() and accessing
your component’s configured constructor string

// IObjectConstruct::Construct ()
STDMETHODIMP CMyComponent::Construct (IDispatch *
pConstructionOb7j)

{
HRESULT hres = S_OK;
BSTR bstrConstruct;

IObjectConstructString* pString = NULL;
hres = pConstructionObj—
>QueryInterface (IID_IObjectConstructString,

(void**) &pString) ;

hres = pString->get_ConstructString (&bstrConstruct);
pString->Release () ;

//Use bstrConstruct

return S_OK;
}
Note that empty strings may be valid parameters and that your
object should be written to handle an empty string.
However, why go through a somewhat odd mechanism of retrieving
the string from a dedicated interface, rather than passing
IObjectConstruct::Construct () a BSTR directly? The answer is
that in the future, COM+ may allow you to pass other kinds of
parameters for construction, such as numbers, data structures, or
maybe even interface pointers. The COM+ designers wanted to put

80

in place a generic mechanism that could extend to handling more
than just strings.

You can use a construction string to specify parameters common to
all components, but whose value is deployment specific, such as:

e Log filename and location. The COM+ logbook, presented in
Appendix A, uses the constructor string to do just that.

» Application or component configuration filename and location.

e If your component holds a generic ODBC connection, you can
specify a DSN file name—referencing a file containing
information about the database to be used by this
component—instead of either passing it in as a method
parameter or hardcoding it.

3.7 COM+ Instance Management Pitfalls

COM+ instance management and object activation have a few
minor pitfalls and limitations you should be aware of to make the
best use of what COM+ has to offer. This section also discusses a
feature of the Component Services Explorer that will help you
profile your application and keep track of your object instances.

3.7.1 Idle Time Management

Under classic COM, a process hosting COM objects would be left
running as long as clients with active references to objects are in
that process. Once the last client releases its reference on the last
object in that process, COM would shut down the hosting process.
This policy clearly conflicts with COM+ object pooling—the idea is to
keep objects alive, even if they do not serve any clients. COM+
allows you to configure your server application's idle time
management on the Advanced tab of the application's properties
page (see Figure 3-10). The Advanced tab has a properties group
called Server Process Shutdown. If your application contains pools
of objects, you can leave the hosting process running when the
application is idle—that is, when the application is not servicing
clients and all objects are in the pool. However, your objects
continue to occupy resources as long as the process is running, and
if the client activation requests are few and far between, this may
not be a good tradeoff.

Alternatively, you can specify how long you want to keep the
application idle by providing any number between 0 and 999
minutes. You should decide on the exact value based on your
clients' calling pattern and optimize the overall activation overhead
and resource consumption. For example, if you expect the interval

81

between clients’ activations of pooled objects to be 10 minutes, you
should configure the application to be left idle at least that long,
plus a certain safety factor (20 percent for example). In this case,
you would set the idle timeout to 12 minutes. If you set the timeout
to 0, you will get the classic COM behavior. Setting the timeout to 0
is especially useful during debugging because as long as the
application is running, you cannot rebuild the component DLL; you
cannot rebuild it because the application process has that DLL
loaded and locked. Usually, when you discover a defect during a
debug session, you should fix it, rebuild the component, and retest.
By setting the timeout to 0, you can rebuild immediately. By
default, after creating a new COM+ application, the application is
configured to shut down after 3 minutes of idle time.

Figure 3-10. Consider leaving an application hosting object pools running
even when idle

2] x|

Ganstall Ee-t:utp! Identiy | ﬁch’valiml Oueuing Advanced |

Server Process Shutdown

T Minutes untl idle shubdown

Peimizsion
I Dizable debshon
I Duzable changes

Drebusgging
]

[rebuggesr path: |
[Enable Compensaling Resounce Managers

! UK ,:anw

3.7.2 Too Large a Minimum Pool Size

If you set a component to have an object pool with a minimum size
greater than zero, then when the application containing the
component is launched, COM+ creates the minimum size number of
objects and puts them in the pool. The first activation request for
any object (pooled or not) from that application may take a long
time to complete if you have a too large a minimum pool size.
Objects from your application may end up paying the pool
initialization price, resulting in slow response time to their clients.
To mitigate this problem, consider starting your application

82

explicitly, either manually from the Component Services Explorer or
programmatically by programming with the COM+ catalog, as
explained in Chapter 6.

3.7.3 Requesting a JITA Object in the Caller’s Context

The Component Services Explorer lets you require that a component
always be activated in its creator’s context by checking the "Must be
activated in caller’s® context" checkbox on the Activation tab in the
component properties page (see Figure 3-3). If the creating client
were in another context, the activation call would fail with the error
code CO_E_ATTEMPT_TO_CREATE_OUTSIDE_CLIENT_CONTEXT.

3] The name is inaccurate—it should be "Must be activated in creator's context."

You can use this setting only when you are sure that the creating
client will not be in another process and will have configuration
settings close enough to allow the component instance to share its
context. This setting is available as an advanced optimization
service for cases when the calling client makes short, frequent calls
to the component and the overhead of cross-context marshaling
gets in your way.

As you saw before, a JITA instance must have its own context so it
can have its own done bit to set and an in interceptor between it
and the client. The two settings, "Enable Just In Time Activation”
and "Must be activated in the caller’s context," are mutually
exclusive, yet the Component Services Explorer gladly lets you set a
component to use both settings. Beware of configuring a JITA object
to always be activated in its caller’s context because this
configuration causes all activation requests to fail.

3.7.4 Failing to Release Pooled Object Data Members

When retrieved from the pool, a pooled object should be placed in a
different context on each activation. As explained in the previous
chapter, object references under COM+ are context-relative and
must be marshaled between contexts. Your design of the pooled
object may have it include interface pointers to other objects as
data members. Those references are required for the pooled object
to function properly. In fact, such references may be the very
reason why you made it a pooled object, if creating the contained
objects takes a long time to complete. Clearly, your object cannot
create the contained objects and save them as data members
because the data members would be invalidated on the next
deactivation.

You can get around this problem in two ways. First, you can create
the contained objects, register them in the Global Interface Table
(GIT) (covered in the previous chapter), and save the identifying

83

GIT cookies as data members, rather than raw interface pointers.
The pooled object should implement T0bjectControl, and on every
call to TObjectControl::Activate(), it should get the objects
out of the GIT and have a current-context safe copy of the data
members. When COM+ calls I0bjectControl: :Deactivate(), the
object should release its local copy. When the pooled object is
finally released, it should revoke the interface pointers from the
GIT.

The second solution would use pooled objects as data members. On
every call to TObjectControl::Activate(), the pooled object
should create (retrieve from their pools) all the helper objects it
needs, and on calls to TObjectControl: :Deactivate(), it should
release its local copies. Because the helper objects are pooled
objects themselves, there should not be much of a penalty for
creating them. The only thing you should remember is to configure
the various pools to have enough objects in them. You can, of
course, mix the two solutions (have some objects pooled and use
the GIT on the rest). As always, you, as the application designer,
are responsible for finding the right solution for your design and
addressing the particular constraints of the domain problem at
hand.

3.7.5 Pooled Objects and Aggregation

COM+ implements object pooling by aggregating your object and
intercepting the activation calls from the client. By doing so, COM+
keeps track of your pooled object and manages its life cycle
(returns it to the pool instead of releasing it and calls
IObjectControl methods at appropriate times). As a result, your
pooled object is discouraged from aggregating other COM/ COM+
objects. Imagine, for example, that Object A is a pooled object, and
it aggregates another pooled Object B. COM+ aggregates Object A
and manages its activation recycling, but who would manage Object
B’s recycling? Because there is no way for the client to tell that a
given object is pooled, it is better to be safe than sorry in this case.
Even if you are certain that Object B is not a pooled object, there is
no guarantee that it will not be configured to be a pooled object in
the future. Avoid aggregation within a pooled object.

3.7.6 Tracking I nstance Activity

When developing a configured component that takes advantage of
COM+ instance management services, it is sometimes hard to keep
track of exactly what is going on with instances of your component:
how many are in the pool, how many are actually servicing clients,
etc. Trying to gauge the various parameters, such as pool size and
activation timeout, may require a lot of profiling of the average call

84

time and the client’s calling patterns. The Component Services
Explorer provides you with crucial information to help you develop
and fine tune your application. If you expand the component folder
and select the Status View from the toolbar, COM+ displays various
statistics on instances of each component in your application (see
Figure 3-11). The status view columns description is in Table 3-2.
You will find the status view helpful in almost all phases of
development and deployment.

Figure 3-11. Select the component folder Status View to display various
statistics on instances of your components

i Companent Services ; o (=1 S
Yy Comoe Wwdow Helo =18] x|
gton Wew || &2 @ EiE o B, Te i MR
Tres [brog o Choects | Ackivabed | Pooled IniCa Call Trres (mg]
— % Myhop o | Fvpe. My Component. 1 1 1 z 1 E9E53
=5
= igll MyApp My Componant. 1
-] Irkerfaces |
= W WMyrkedface =
=] Mathods
+ B Mybethod w|
‘ s al sl

Table 3-2. The Component folder status view columns, from left to right

Column Description

Prog ID |The component identifying programmatic ID.

The total number of outstanding references to objects of this type. If
you use JITA, this number is the number of clients that still hold a
reference to an instance. The number may be much larger than all the
other numbers.

Objects

The number of currently activated objects—objects that are in a context
tied up with a client. If the object uses JITA and sets the done bit to
TRUE after every call, then the number in the Activated column will be
the same as the number in the In Call column.

Activated

The total number of pooled objects created. This number includes both
Pooled |the objects in the pool and pooled objects outside the pool that services
clients.

The number of objects currently executing method calls on behalf of
clients. This number is always less than or equal to the Activated
column because the objects can use JITA and deactivate themselves
between calls.

In Call

The average call time in milliseconds of all the calls, on all the methods,
across all instances in the last 20 seconds. A call time is defined as the
Call Time(time it took the object to execute the call, and does not include object
activation, the time spent marshaling the call across context, process,
or machine boundary.

Collecting the statistics causes a small performance hit. COM+ only
presents the status information on objects that are configured to
provide it. Configure your component to support statistics on the
component Activation tab by checking "Component supports events

85

and statistics" (see Figure 3-3). By default, COM+ enables this
support when you install a new configured component.

86

Chapter 4. COM+ Transactions

Consider the everyday operation of withdrawing cash from an
automated teller machine (ATM), an operation you perform
frequently. You access your account, specify the amount to
withdraw, and then receive cash from the machine. Yet even an
operation this mundane involves multiple machines (the ATM, the
bank mainframe, and probably a few other machines) and multiple
databases (an accounts database, a money transfer database, an
audit database, and so on), each of which may also reside on a
machine of its own. At the ATM itself, the withdrawal involves both
a software user interface and mechanical devices such as the card
reader, keypad, bill delivery mechanism, and receipt printer.

The difficulty in developing an ATM application lies in the fact that
all of these steps can succeed or fail independently of the others.
For example, suppose the ATM can’t connect to the mainframe at
the bank or for some reason cannot execute your request. Or,
suppose there is a security problem (the wrong PIN code was
entered) or the hardware fails (the ATM runs out of bills).

In addition, multiple users may access the bank’s system
simultaneously. Their access and the changes they make to the
system must be isolated from one another. For example, while you
are withdrawing money at the ATM, your spouse could be accessing
the account online and a teller could be doing a balance check for a
loan approval.

Nevertheless, both you and the bank expect either all the
operations involved in accomplishing the request to succeed, or all
the operations to fail. Partial success or partial failure of a banking
transaction is simply not acceptable; you don’t want the bank to
deduct the money from the customer’s account but not dispense the
bills, or to dispense the bills but not deduct money from the
account.

The expectation for an all-or-nothing series of operations
characterizes many business scenarios. Enterprise-level services
such as funds management, inventory management, reservation
systems, and retail systems require an all-or-nothing series of
operations. A logical operation (such as cash withdrawal) that
complies with this requirement is called a transaction.

The fundamental problem in implementing a transactional system is
that executing all the operations necessary to complete the
transaction requires transitioning between intermediate inconsistent
system states—states that cannot themselves be tolerated as valid
outcomes of the transaction. For example, an inconsistent state
would result if you were to deduct money from one account but not
credit it to another in a simple transfer of funds between the two
accounts. In essence, an inconsistent state is any system-state that

87

is the result of partial success or failure of the elements of one
logical operation.

One approach to addressing the complex failure scenarios of a
transaction is to add error-handling code to the business logic of
your application. However, such an approach is impractical. A
transaction can fail in numerous ways. In fact, the number of failure
permutations is exponentially proportional to the number of objects
and resources participating in the transaction. You are almost
certain to miss some of the rare and hard-to-produce failure
situations. Even if you manage to cover them all, what will you do
when the system evolves—when the behavior of existing
components changes and more components and resources are
added, thereby multiplying the number of errors you have to deal
with? The resulting code will be a fragile solution. Instead of adding
business value to the components, you will spend most of your time
writing error-handling code, performing testing and debugging, and
trying to reproduce bizarre failure conditions. Additionally, the tons
of error-handling code will introduce a serious performance penalty.
The proper solution is not to have the transaction error-handling
logic in your code. Suppose the transaction could be abstracted
enough that your components could focus on executing their
business logic and let some other party monitor the transaction
success or failure. That third party would also ensure that the
system be kept in a consistent state and that the changes made to
the system (in the case of a failed transaction) would be rolled
back.

That solution is exactly the idea behind the COM+ transaction
management service. COM+ simplifies the use of transactions in the
enterprise environment. COM+ provides administrative
configuration of transactional support for your components. COM+
enables auto-enlistment of resources participating in the transaction
and supports managing and executing the transaction across
machine boundaries. The COM+ transaction management service is
based on the MTS transactions management model, with a few
improvements and innovations.

4.1 Transaction Basics

Before we discuss COM+ transaction support, you need to
understand the basics of transaction processing, the fundamental
properties that every transaction must have, and some common
transaction scenarios. If you are already familiar with the basic
transaction concepts, feel free to skip directly to Section 4.4 later in
this chapter.

Formally, a transaction is a set of potentiality complex operations
that will all succeed or fail as one atomic operation. Transactions

88

are the foundation of electronic information processing, supporting
almost every aspect of modern life.

Transactions were first introduced in the early 1960s by database
vendors. Today, other resource products, such as messaging
systems, support transactions as well. Traditionally, the application
developer programmed against a complex Transaction Processing
Monitor (TPM)—a third party that coordinated the execution of
transactions across multiple databases and applications. The idea
behind a TPM is simple: because any object participating in a
transaction can fail and because the transaction cannot proceed
without having all of them succeed, each object should be able to
help determine success or failure of the entire transaction. This is
called voting on the transaction's outcome. While a transaction is in
progress, the system can be in an inconsistent state. When the
transaction completes, however, it must leave the system in a
consistent state—either the state it was in before the transaction
executed or a new one.

Transactions are so crucial to the consistency of an information
system that, in general, whenever you update a persistent storage
(usually a database), you need to do it under the protection of a
transaction. Another important transaction quality is its duration.
Well-designed transactions are of short duration because the speed
with which your application can process transactions has a major
impact on its scalability and throughput. For example, imagine an
online retail store. The store application should process customer
orders as quickly as possible and manage every client's order in a
separate transaction. The faster the transaction executes, the more
customers per second the application can service (throughput) and
the more prepared the application is to scale up to a higher number
of customers.

4.2 Transaction Properties

Modern standards call for a transaction to be atomic, consistent,
isolated, and durable. In transaction processing terminology, these
properties are referred to as the ACID properties. When you design
transactional components, you must adhere to the ACID
requirements; they are not optional. As you will see, COM+
enforces them rigorously. Once you understand the ACID
requirements and follow simple design guidelines, developing
transactional components in COM+ becomes straightforward.

4.2.1 The Atomic Property

When a transaction completes, all the changes it made to the
system's state must be made as if they were all one atomic

89

operation. The word atom comes from the Greek word atomos,
meaning indivisible. The changes made to the system are made as
if everything else in the universe stops, the changes are made, and
then everything resumes. It is not possible to observe the system
with only some of the changes.

A transaction is allowed to change the system state only if all the
participating objects and resources execute their part successfully.
Changing the system state by making the changes is called
committing the transaction. If any object encounters an error
executing its part, the transaction aborts and none of the changes is
committed. This process is called aborting the transaction.
Committing or aborting a transaction must be done as an atomic
operation.

A transaction should not leave things to do in the background once
it is done, since those operations violate atomicity. Every operation
resulting from the transaction must be included in the transaction
itself.

Because transactions are atomic, a client application becomes a lot
easier to develop. The client does not have to manage partial failure
of its request or have complex recovery logic. The client knows that
the transaction either succeeded or failed as a whole. In case of
failure, the client can choose to issue a new request (start a new
transaction) or do something else, such as alert the user. The
important thing is that the client does not have to recover the
system.

4.2.2 The Consistent Property

A transaction must leave the system in a consistent state. Note that
consistency is different from atomicity. Even if all changes are
committed as one atomic operation, the transaction is required to
guarantee that all those changes are consistent—that they make
sense. The component developer is responsible for making sure the
semantics of the operations are consistent. A transaction is required
to transfer the system from one consistent state to another. Once a
transaction commits, the system is in a new consistent state. In
case of error, the transaction should abort and roll back the system
from the current inconsistent and intermediate state to the initial
consistent state.

Consistency contributes to simple client-side code as well. In case of
failure, the client knows that the system is in a consistent state and
can use its higher-level logic to decide the next step (or maybe
none at all, since the system is in a consistent state).

4.2.3 The I solated Property

While a transaction is in progress, it makes changes to the system
state. Isolation means no other entity (transactional or not) is able

90

to see the intermediate state of the system. The intermediate state
shouldn’t be seen outside of the transaction because it may be
inconsistent. Even if it were consistent, the transaction could still
abort and the changes could be rolled back. Isolation is crucial to
overall system consistency. Suppose Transaction A allows
Transaction B access to its intermediate state. Transaction A aborts,
and Transaction B decides to commit. The problem is that
Transaction B based its execution on a system state that was rolled
back, and therefore Transaction B is left unknowingly inconsistent.
Managing isolation is not trivial. The resources participating in a
transaction must lock the data accessed by the transaction from all
others and must synchronize access to that data when the
transaction commits or aborts. The transaction monitoring party
should detect and resolve deadlocks between transactions using
timeouts or queues. A deadlock occurs when two transactions
contend for resources the other one holds. COM+ resolves
deadlocks between transactions by aborting the deadlocked
transactions.

Theoretically, various degrees of transaction isolation are possible.
In general, the more isolated the transactions, the more consistent
their results are, but the lower the overall application throughput—
the application's ability to process transactions as fast as it can.
COM+ 1.0 transactions use the highest degree of isolation, called
serialization . This term means that the results obtained from a set
of concurrent transactions are identical to the results obtained by
running each transaction serially. To achieve serialization, all the
resources a transaction in process touches are locked from other
transactions. If other transactions try to access those resources,
they are blocked and cannot continue executing until the original
transaction commits or aborts. The next version of COM+ (see
Appendix B) allows configuring the isolation level of your
transactions and trades consistency for throughput.

4.2.4 The Durable Property

If a transaction succeeds and commits, the changes it makes to the
system state should persist in a durable storage, such as a
filesystem, magnetic tapes, or optical storage. Transactions require
commitment of their changes to a durable storage because at any
moment the machine hosting the application could crash and its
memory could be erased. If the changes to the system's state were
in-memory changes, they would be lost and the system would be in
an inconsistent state. The changes a transaction makes to the
system state must persist even if the machine crashes immediately
after the decision to commit the changes is made. The component's
developer is required to store the new system state only in durable
resources. The durable resource must be robust enough to

91

withstand a crash while trying to commit the changes. One way to
achieve such robustness would be to manage log files to recover
from the crash and complete the changes.

However, how resilient to catastrophic failure the resource really
should be is an open question that depends on the nature and
sensitivity of the data, your budget, available time, and available
system administration staff. A durable system can be anything from
a hard disk to a RAID disk system that has multiple mirror sites in
places with no earthquakes.

4.3 Transaction Scenarios

Applications differ greatly in their complexity and need for COM+
transactions support. To understand the COM+ transactions
architecture and the needs it addresses, you should first examine a
few generic transaction cases.

4.3.1 Single Object/ Single Resource Transaction

Consider an application that comprises just one component
instance, an object that processes a client’s request and accesses a
single resource (such as a database) that takes part in a
transaction. This situation is depicted in Figure 4-1. The application
(in this case, the object) has to inform the resource when a
transaction is started. This act is called enlisting the resource in the
transaction. The object starts making calls on the resource
interfaces, making changes to its state. However, at this point the
resource should only record (log) the changes and not actually
perform them.

If the object encounters no errors when executing a client’s request,
then on completion it informs the resource that it should try to
commit the changes. If the object encounters errors, it should
instruct the resource to abort and roll back the changes. Even if the
object wants to commit the transaction, any existing errors on the
resource side might cause the transaction to abort.

Figure 4-1. Managing a transaction in a single object/ single resource
scenario

> Tronsaction
Client

Objet
|

Note that only the application can request to commit the
transaction, but either the application or the resource can abort it.

92

You can easily deal with a single object/single resource scenario on
your own without relying on COM+ transactions by making explicit
programmatic calls to enlist a resource in a transaction and
instructing it to commit or roll back at the end of the transaction.
Most resources support this sort of interaction out-of-the-box and
expose simple functions, such as BeginTransaction() and
EndTransaction (commit/abort).

4.3.2 Multiple Objects/ Single Resource Transaction

Suppose you have multiple objects in your application, each of
which requires access to the same resource to service a particular
client request. Suppose your design calls for containing all the
changes the objects make to the resource in the same transaction,
to ensure consistency of these multiple changes (see Figure 4-2).

Figure 4-2. Multiple components with a single resource transaction

> Transaction
Client

Obiject
e o

l J
H

DB

Unfortunately, things get much more complicated than in the
previous scenario. The main problem is coordination. Since the
resource should be enlisted in the transaction just once, who should
be responsible for enlisting it? Should it be the first object that
accesses it? Or maybe it should be the first object that is created?
How would the objects know and coordinate this information? In
addition, since the objects can all be on different machines, how
would you propagate the transaction from one machine to the next?
How would the objects know what transaction they are in? What
should you do if one machine crashes while the other machines
continue to execute the client request?

Each of the objects can encounter errors and abort the transaction,
and they ask the resource to commit the changes only if they all
succeed. The problem here is deciding which object is responsible
for collecting the votes. How would an object know that a
transaction is over? Who is responsible for notifying the resource of
the voting result—that is, instructing the resource to try to commit
or roll back the changes? What should the objects do with their own
state (their data members)? If the resource is unable to commit the
changes, the transaction must abort; in that case, the objects' state

93

reflects inconsistent system state. Who will inform the objects to
purge their inconsistent state? How would the objects know what
part of their state constitutes system inconsistency?

Fortunately, COM+ transactions support makes this scenario as
easy to deal with as the previous one. COM+ takes care of enlisting
the resource, propagating the transaction across machine
boundaries, collecting the components’ votes, and maintaining
overall resource and object state consistency.

4.3.3 Multiple Objects/ Multiple Resources Transaction

An enterprise application often consists of multiple objects
accessing multiple resources within the same transaction (see
Figure 4-3).

Figure 4-3. An enterprise application comprising multiple components
and resources

i Transaction
Client i Dbjedt

Object £ Object

I I
' 1

DB DB DB

In addition to all the coordination challenges posed by the previous
scenario, you now have to enlist all the resources just once in the
transaction. Who keeps track of what resources are used? You
definitely don’t want to have that knowledge in your code because it
could change. Who is responsible for informing the resources about
the transaction outcome (the components’ votes) and asking them
to try to commit or abort? Since any one of the resources can
refuse to commit the changes, how do you know about it and how
would you instruct the other resources to roll back their changes?
Your components and resources may all be on different machines,
resulting in multiple points of failure. Transaction processing
monitors (TPMs) have evolved to answer these challenges, but they
require explicit calls from the application, which results in a
cumbersome programming model.

Yet again, COM+ transactions support makes this situation as easy
as the first one. Even in a distributed environment with multiple
resources, your programming model is elegant and simple. It allows
you to focus on your business logic while relying on COM+ to
manage the transaction for you.

94

4.4 COM+ Transactions Architecture

COM+ is an advanced TPM that provides your components with
easy-to-use administrative configuration for your transactional
needs. COM+ encapsulates the underlying transaction monitoring
and coordination required to manage a transaction. The COM+
transactions architecture defines a few basic concepts you need to
understand to take advantage of COM+ transactions support:
resource managers, the transaction root, the two-phase commit
protocol, and the Distributed Transaction Coordinator (DTC).

4.4.1 Resource Managers

A resource (such as a database management system) that can
participate in a COM+ transaction is called a resource manager. A
resource manager knows how to conduct itself properly in the scope
of a COM+ transaction—it records the changes done by your
application's objects and will only commit the changes when told to
do so. A resource manager knows how to discard the changes and
revert to its previous state if it is told to roll back. A resource
manager can auto-enlist in a transaction—the resource manager
can detect it is being accessed by a transaction and enlist itself in it.
Every COM+ transaction has a unique transaction ID (a GUID),
created by COM+ at the beginning of the transaction. The resource
manager keeps track of the transaction ID and will not enlist twice.
Auto-enlisting means that your components are not required to
explicitly enlist the resources needed for a transaction; therefore,
they do not have to deal with the problem of multiple objects
accessing the same resource, not knowing whether or not it is
already enlisted in the transaction.

A resource manager must store its data in a durable storage to
maintain the transaction durability. To maintain the transaction's
isolation, a resource manager must lock all data (such as rows,
tables, and queues) touched by the transaction, and allow only
objects that take part in that transaction to access that data. Note
that all the hard work required to manage a resource manager is
hidden from your components. The burden is on the resource
manager's shoulders, not yours.

A resource manager must vote on the transaction's result. Once the
transaction is over, COM+ asks each participating resource
manager, "If you were asked to commit the changes, could you?". A
resource manager is represented by a system service that manages
the resource, and your objects access the resource manager via a
proxy.

Quite a few resources today comply with these requirements: first
and foremost is Microsoft SQL Server (Versions 6.5 and above), but

95

other non-Microsoft databases, such as Oracle 8/ and IBM DB2, are
COM+ resource managers as well. A resource manager does not
have to be a database; for example, Microsoft Message Queue
(MSMQ) is a resource manager.

4.4.2 Transaction Root

When multiple objects take part in a transaction, one of them has to
be the first to ask that a transaction be created to contain the
operation (usually a client’s request). That first object is called the
transaction root. A given transaction has exactly one root (see
Figure 4-4).

Figure 4-4. A transaction’s root object

. Transaction
Client

Roaot
=l o

Designating an object as a transaction’s root, or as an internal
object, is done administratively. The component’s developer
configures it to either not take part in transactions; to require a
transaction, (to join an existing transaction if one exists); or to start
a new transaction if none exists. If the component starts a new
transaction, then it becomes the root of that transaction. The
developer can also configure the component to always start a new
transaction—to always be the root of a new transaction.

Once a transaction is created, when Object A in Transaction T1
creates another object, Object B, according to B's configuration, it
will:

 Be part of Transaction T1.

e Not be part of T1 or any other transaction. This may
compromise isolation and consistency because B can perform
operations that will persist even if T1 aborts. Also, B has no
way of deciding whether T1 should abort in case B has an
error.

o Start a new Transaction T2. In that case, Object B becomes
the root of the new transaction. This option may also
compromise isolation and consistency, as one transaction
could commit and the other one could abort independently of
the other.

Neither A nor B needs to actively do anything to decide on the

transaction. COM+ checks the object's configuration and places it in
the correct transaction automatically.

96

4.4.3 The Two-Phase Commit Protocol

COM+ uses a transaction management protocol called the two-
phase commit to decide on a transaction result, commit changes to
the system state, and enforce atomicity and consistency. The two-
phase commit protocol enables COM+ to support transactions that
involve multiple resources.

After the transaction’s root starts a new transaction, COM+ stays
out of the way. New objects may join the transaction, and every
resource manager accessed automatically enlists itself with that
transaction. The objects execute business logic and the resource
managers record the changes made under the scope of the
transaction. You already saw that all the application’s objects in a
transaction must vote during the transaction for whether the
transaction should abort (if the objects had an error) or be allowed
to commit (if the objects have done their work successfully). Again,
abstaining from voting on the transaction’s outcome is not an option
for any object in the transaction. A transaction ends when the root
object is released (or deactivated, when you’re using JITA). At that
point, COM+ steps back into the picture and checks the combined
vote of the participating objects. If any object voted to abort, the
transaction is terminated. All participating resource managers are
instructed to roll back the changes made during the transaction.

If all the objects in the transaction vote to commit, the two-phase
commit protocol starts. In the first phase, COM+ asks all the
resource managers that took part in the transaction if they have
any reservations in committing the changes recorded during the
transaction. Note that COM+ is not instructing the resource
managers to commit the changes. COM+ merely asks for their vote
on the matter. At the end of the first phase, COM+ has the
combined vote of the resource managers. The second phase of the
protocol acts upon that combined vote. If all resource managers
voted to commit the transaction in the first phase, then COM+
would instruct all of them to commit the changes. If even one of the
resource managers said in phase one that it could not commit the
changes, then in phase two, COM+ would instruct all the resource
managers to roll back the changes made, thus aborting the
transaction.

[t is important to emphasize that a resource manager’s vote that
has no reservations about committing is special: it is an
unbreakable promise. If a resource manager votes to commit a
transaction, it means that it cannot fail if, in the second phase,
COM+ instructs it to commit. The resource manager should verify
before voting to commit that all the changes are consistent and
legitimate. A resource manager never goes back on its vote. This is
the basis for enabling transactions. The various resource manager

97

vendors have gone to great lengths to implement this behavior
exactly.

4.4.4 The Distributed Transaction Coordinator

As demonstrated in the transaction scenarios described previously,
there is a clear need to coordinate a transaction in a distributed
environment, to monitor the objects and resources in the
transaction, and to manage the two-phase commit. Managing the
interaction between the components (by collecting their votes) is
done by COM+; managing the two-phase commit protocol is done
by the Distributed Transaction Coordinator (DTC). The DTC is a
system service tightly integrated with COM+. The DTC creates new
transactions, propagates transactions across machines, collects
resource managers’ votes, and instructs resource managers to roll
back or commit.

Every machine running COM+ has a DTC system service. When an
object that is part of a transaction on Machine A tries to access
another object or a resource on Machine B, it actually has a proxy
to the remote object or resource. That proxy propagates the
transaction ID to the object/resource stub on Machine B. The stub
contacts the local DTC on Machine B, passing it the transaction ID
and informing it to start managing that transaction on Machine B.
Because the transaction ID gets propagated to Machine B, resource
managers on Machine B can now auto-enlist with it.

When the transaction is done, COM+ examines the combined
transaction vote of all participating objects. If the combined vote
decides to abort the transaction, COM+ instructs all the
participating resource managers on all participating machines to roll
back their changes. If the combined objects’ vote was to try to
commit the transaction, then it is time to start the two-phase
commit protocol. The DTC on the root machine collects the resource
managers’ votes on the root machine and contacts the DTC on
every machine that took part in the transaction, instructing them to
conduct the first phase on their machines (see Figure 4-5). The
DTCs on the remote machines collect the resource managers’ votes
on their machines and forward the results back to the DTC on the
root machine.

After the DTC on the root machine receives the results from all the
remote DTCs, it has the combined resource managers’ vote. If all of
them voted to commit, then the DTC on the root machine again
contacts all the DTCs on the remote machines, instructing them to
conduct phase two on their respective machines and to commit the
transaction. If, however, even one resource manager voted to abort
the transaction, then the DTC on the root machine informs all the
DTCs on the remote machines to conduct phase two on their
respective machines and abort the transaction. Note that only the

98

DTC on the root machine has the combined vote of phase one, and
only it can instruct the final abort or commit.

Figure 4-5. COM+ and the DTC manage a distributed transaction

Machine A
feiah gl E
Client Roal e Vnsas Collection

RMI ;
%3 <-... Dhjed
Ad
Machine € Machine B
- - “uaph -
i a “
Obiec Object Object Obiect
RMZ | RM3 RM4 = RMS

4.4.5 Transactions and Context

A given transaction can contain objects from multiple contexts,
apartments, processes, and machines (see Figure 4-6).

Figure 4-6. A transaction (whose scope is indicated by the dashed line) is
unrelated to machine, process, apartment, and context

Process A Process B
Context | Context 3 Confext 5
Context 2 Context 4

Each COM+ context belongs to no more than one transaction, and
maybe none at all. COM+ dedicates a single bit in the context
object (discussed in Chapter 2) for transaction voting. An object
votes on a transaction’s outcome (whether to proceed to phase one
of the two-phase commit protocol or to abort) by setting the value
of that bit. As a result, a transactional object must have its own

99

private context. Two transactional objects cannot share a context
because they only have one bit to vote with. If two objects share a
context and one of them wants to abort and the other wants to
commit, then you would have a problem. Therefore, each COM+
object belongs to at most one transaction (because it belongs to
exactly one context) and an object can only vote on the outcome of
its own transaction. Collecting the object’s vote is done by the
context’s interceptor when the object is released or deactivated.
The context object has more to do with the transaction than just
holding the object’s vote bit. Internally, each context object stores
references to the transaction it belongs to, if any exist. The context
object stores the transaction’s ID and a pointer to the transaction
object itself. Every transaction is represented by an interface called
ITransaction, and the context object stores an ITransaction*
pointer to the current transaction it belongs to. You can gain access
to that information by accessing the context object and obtaining
the I0bjectContextInfo (first presented in Chapter 2), defined as:
interface IObjectContextInfo : IUnknown

{
BOOL IsInTransaction();
HRESULT GetTransaction (IUnknown** ppTransaction);
HRESULT GetTransactionId([out] GUID* pTransactionlID);
HRESULT GetActivityId([out] GUID* pActivityID);
HRESULT GetContextId([out] GUID* pContextId);
i
The GetTransactionId() method returns the transaction ID (a
GUID). The IsInTransaction() method returns TRUE if the
context is included in a transaction. The GetTransaction()
method returns a pointer to the current transaction this context is
part of, in the form of a ITransaction* interface pointer.
A full discussion of the ITransaction interface is beyond the scope
of this chapter. It is used by resource managers to auto-enlist in a
transaction and to vote during the two-phase commit protocol.
Briefly, when the object accesses a resource manager, it does so via
a proxy. The resource manager’s proxy retrieves the transaction ID
and the ITransaction* pointer from the context object and
forwards them to the resource manager for auto-enlistment. The
resource manger looks at the transaction ID. If it is already enlisted
in that transaction, then it does nothing. However, if this is the first
time the resource manager is accessed by that transaction, it uses
the ITransaction* pointer to enlist.

4.4.6 COM+ Transactions Architecture Benefits

The benefits of COM+ transactions architecture were implied in the
previous discussion of the architecture’s elements. Now that you

100

have the comprehensive picture, you can see that the main benefits
are as follows:

o Auto-enlistment of resource managers saves you the trouble
of making sure that resources are enlisted exactly once.
Otherwise, components would be coupled to one another by
having to coordinate who enlists what resource and when.

e An object and its client do not ever need to know what the
other objects are doing, whether they require transactions, or
what another object’s vote is. COM+ places objects in
transactions automatically, according to their configuration.
COM+ collects the objects’ votes and rollback changes. All an
object has to do is vote.

e« The programming model is simplified, robust, easier, and
faster to implement.

« The COM+ transactions architecture decouples the
components from specific TPM calls. There is nothing in the
components’ code that relates to the DTC or to transaction
management.

4.5 Configuring Transactions

Now that you understand what transactions are and what they are
good for and have reviewed the COM+ transaction architecture, it is
time to put that knowledge into practice to build and configure
transactional components in COM+.

You can use the Component Services Explorer to configure
transaction support for your components. Every component has a
Transactions tab on its properties page. The tab offers you five
options for transaction support (see Figure 4-7): Disabled, Not
Supported, Supported, Required, and Requires New. The settings let
you control whether instances of your component take part in a
transaction and if so, whether and when they should be the root of
that transaction.

Figure 4-7. Configure transaction support for a component on the
component’s Transactions tab

101

21

General Transactions |Se::=.|nt5,l- Activation | Concurency | Advanced |

Transaclion support
" Disabled

I Mot Supported
" Suppoited

© et

[Regures New

[Dvemide global transaction limeout valus
Trangachon Tmeout

Tranzaction bmeout |seconds): |

ok | Canced |

COM+ determines which transaction to place the object in when it
creates the object. COM+ bases its decision on two factors: the
transaction of the object’s creator and the configured transaction
support of the object (actually, for the component that the object is
an instance of).

A COM+ object can belong to its creator’s transaction, be a root of a
new transaction, or not take part in a transaction. If the object is
configured with transaction support Disabled or Not Supported, it
will never be part of a transaction, regardless of whether its creator
has a transaction or not. If the object is configured with Supported
and its creator has a transaction, then COM+ places the object in its
creator’s transaction. If the creating object does not have a
transaction, then the newly created object will not have a
transaction. If the object is configured with transaction support set
to Required, then COM+ puts it in its creator’s transaction if the
creating object has a transaction. If the creating object does not
have a transaction and the object is configured to require a
transaction, COM+ creates a new transaction for the object, making
it the root of that new transaction. If the object is configured with
transaction support set to Requires New, then COM+ creates a new
transaction for it, making it the root of that new transaction,
regardless whether its creator has a transaction or not. The COM+
transaction allocation decision matrix is summarized in Table 4-1.

Table 4-1. COM+ transaction allocation decision matrix

Object transactional support |Creator is in transaction The object will take part in:
Disabled/Not Supported |No No Transaction

|Supported |No |No Transaction

|Required |No |New Transaction (will be the root)
|Required New |No |New Transaction (will be the root)
|Disab|ed/Not Supported |Yes |No Transaction

|Supported |Yes |Creator’s Transaction

102

\Required |Yes \Creator’s Transaction

\Required New |Yes \New Transaction (will be the root)

Once COM+ determines what transaction to place the object in, that
placement is fixed for the life of the object, until the object is
released by the client. If the object is not part of a transaction, it
will never be part of one. If the object is part of a transaction, it will
always be part of that transaction.

Figure 4-8 shows an example of how objects are allocated to
transactions. A client that does not have a transaction creates an
object configured to require a transaction. COM+ creates a new
transaction for that object (Transaction 1), making it the root of the
transaction. The object then creates five more objects, each with a
different transaction configuration. The objects configured as
Disabled and Not Supported are placed outside Transaction 1. The
objects market Supported and Required are placed in Transaction 1.
However, the object configured as Requires New cannot share its
creator’s transaction, so COM+ creates a new transaction
(Transaction 2) for that object.

Figure 4-8. Allocating objects to transactions based on their
configuration and the transaction requirements of the creating object

— Disabled
Nt
" Supported

Cient ——» Required E&—» Supported

Roat
—- Required
Transaction |
. Requires
Hew

Trunsuction 2

4.5.1 Transaction Disabled

When you configure a component with transaction support set to
Disabled, the component never takes part in any transaction. COM+
also does not consider transactional configuration when deciding on
activation context for this component or other components it
creates. As a result, the object may or may not share its creator’s
context, depending on the configuration of other services.

You should be careful when mixing transactional objects with
nontransactional objects, as it can jeopardize isolation and
consistency. The nontransactional objects may have errors, but
because they are not part of the transaction, they cannot affect

103

transaction outcome (threatens consistency). In addition, the
nontransactional objects can act based on information not yet
committed (threatens isolation).

The Disabled transaction support setting is useful in two situations.
The first situation is when you have no need for transactions. The
second is when you want to provide custom behavior and you need
to perform your own programmatic transaction support or enlist
resources manually. Note that you are not allowed to vote on the
outcome of any COM+ transaction; you have to manage your
transaction yourself.

4.5.2 Transaction Not Supported

When you configure a component with transaction support set to
Not Supported, even though it never takes part in any transaction,
COM+ takes into account transactional configuration when deciding
on the activation context for this component or other components it
creates. As a result, the object shares its creator’s context only if
the creating object is also configured with Not Supported.

Not Supported is the default value when importing a classic COM
component to COM+. Transaction support set to Not Supported is
useful when the operations performed by the component are nice to
have, but should not abort the transaction that created them if the
operations fail. For example, in the ATM use case, printing the
receipt is not a critical operation. The withdrawal transaction should
commit and the customer should get the bills even if the ATM was
unable to print a receipt. In all other circumstances, transactions
configured as Not Supported can jeopardize isolation and
consistency when mixed with transactional components, for the
same reasons discussed when transaction support is set to
Disabled.

4.5.3 Transaction Supported

When you configure a component with transaction support set to
Supported, the object joins that transaction if the object’s creating
client has a transaction. |f the creating object does not have a
transaction, the object does not take part in any transaction.
Surprisingly, this awkward setting can be useful. Imagine a
situation when you want to propagate a transaction from the
creating client of your object to downstream objects your object
creates, but your object has no use for transactions itself. If the
downstream objects require transaction support and you configure
your object to not require a transaction, then the downstream
objects will be placed in separate transactions. Setting the
transaction support to Supported allows you to propagate the
transaction downstream. In all other cases, you should avoid this
setting; it can jeopardize consistency and isolation when the

104

creating client does not have a transaction, but the downstream
objects you create still require transaction support and are placed in
transactions separate from your client.

Even though the component may not have a direct need for
transaction support, it still has to abide by transactional component
design guidelines (discussed later in this chapter), which may be a
liability if it does not require a transaction. Use this setting
judiciously.

4.5.4 Transaction Required

When you configure a component with transaction support set to
Required, you state to COM+ that your component requires a
transaction to operation properly and that you have no objection to
sharing your creator’s transaction. If the creating client has a
transaction, the object joins it. If the client does not have one,
COM+ must create a new transaction for the object, making it the
root of the new transaction.

Note that your component’s code should operate identically when it
is the root and when it just takes part in a transaction. There is no
way your object can tell the difference anyway.

Setting transaction support to Required is by far the most
commonly used transaction support setting for transactional
components. Of course, the component must adhere to the design
requirements of a transactional component.

4.5.5 Transaction Requires New

When you configure a component with transaction support set to
Requires New, an instance of your component is always the root of
a new transaction, regardless of whether its creating client has a
transaction or not. This setting is useful when you want to perform
transactional work outside the scope of the creating transaction.
Examples would be when you want to perform logging or audit
operation or when you want to publish events to subscribers,
regardless of whether your creating transaction commits or aborts.
You should be extremely careful when using the Requires New
setting. Verify that the two transactions (the creating transaction
and the one created for your object) do not jeopardize consistency
if one aborts and the other commits.

You can also use Requires New when you want your object to
control the duration of the transaction because once that object is
released, the transaction ends.

4.5.6 Transaction Support IDL Extension

When you import a COM component into the COM Explorer, COM+
selects Not Supported as the default configuration for your

105

component’s transaction support. However, transaction support is
an intrinsic part of your COM+ component design. COM+
components should specify in the IDL file what their required
transaction support is, using a dedicated IDL extension. When you
import a COM+ component that uses the IDL extension into the
Component Services Explorer, COM+ uses the declared transaction
support from the component’s type library as the initial value. You
can override that value later. For example, if you use the
TRANSACTION_REQUIRED attribute on your CoClass definition:
[

uuid(94072015-7D6B-4811-BDB5-08983088D9C2),

helpstring ("MyComponent Class"),

TRANSACTION_REQUIRED
]

coclass MyComponent

{
[default] interface IMylInterface;

i

COM+ selects the Required setting for the component when it is
imported to the Component Services Explorer. The following
attributes are also available:

e TRANSACTION_NOT_SUPPORTED
e TRANSACTION_SUPPORTED
e TRANSACTION_REQUIRES_NEW

Note that there is no TRANSACTION_DISABLED attribute because that
attribute is used mostly when importing existing COM components
to COM+. To use these IDL extensions you have to include the
mtxattr.h file in your IDL file.

ATL 7 Transaction Attribute

If you are using attributed ATL 7 project under Visual
Studio.NET, you can take advantage of precompiler-specific
support for COM+ 1.0 services, using special attributes. If
you add a new class to your ATL 7 project and select "ATL
COM+ 1.0 Component" from the Add Class dialog, the wizard
will let you configure transaction support for your class. Once
you select the transaction support (for example, Required),
the attributed class will have a custom attribute as part of its
declaration:

[coclass,

//other attributes

custom (TLBATTR_TRANS_REQUIRED, 0)]
class MyComponent : IMyInterface
{

//class declaration

}

106

Before compiling your code, ATL 7 feeds your sources to a
special precompiler that parses the attributes and generates
conventional, nonattributed ATL source files, including the
IDL file. The "new" sources are then fed to the conventional
C+ + compiler. In that process, the
TLBATTR_TRANS_REQUIRED custom attribute is converted to
the IDL TRANSACTION_REQUIRED extension.

4.6 Voting on a Transaction

As mentioned before, a transactional object votes whether to
commit or abort the transaction by setting the value of a bit in the
context object. That bit is called the consistency bit. The name is
appropriate. Consistency is the only transaction property under the
application’s objects control. COM+ can manage atomicity and the
resource managers guarantee isolation and durability, but only the
objects know whether the changes they make to the system state
are consistent or if they encounter errors that merit aborting the
transaction.

When COM+ creates a transactional object, it puts it in its own
private context and sets the context object consistency bit to TRUE.
As a result, if the object makes no explicit attempt to set the
consistency bit to FALSE, the object’s votes to commit the
transaction.

- An object can actually share its context with other
%3 4. Objects whose transaction setting is set to
¢+ Disabled.

The object can set the value of the consistency bit by accessing the
context object and getting hold of ITContextstate interface, defined
as:
enum tagTransactionVote
{

TxCommit= 0,

TxAbort = TxCommit + 1
}TransactionVote;

interface IContextState : IUnknown
{
HRESULT SetDeactivateOnReturn([in] BOOL bDeactivate);
HRESULT GetDeactivateOnReturn ([out]BOOL*
pbDeactivate) ;
HRESULT SetMyTransactionVote ([in]TransactionVote
txVote) ;
HRESULT GetMyTransactionVote ([out]TransactionVote*
ptxVote) ;
}

107

IContextState is also discussed in Chapter 3, in the context of
deactivating JITA objects. TContextState provides the method
SetMyTransactionVote () used to set the transaction vote. You
can pass SetMyTransactionVote () the enum value TxCommit, if
you want to commit, or the enum value TxAbort, if you want to
abort the transaction.

SetMyTransactionVote () returns CONTEXT_E_NOTRANSACTION
when called by a nontransactional component.

Your object should vote to abort the transaction when it encounters
an error that merits aborting the transaction. If all went well, your
object should vote to commit the transaction. Example 4-1 shows a
typical voting sequence. The object performs some work (the
DoWork () method) and, according to its success or failure, votes to
commit or abort the transaction. If your component decides to abort
the transaction, it should return an error code indicating to its client
that it aborted the transaction. The client can then decide to retry
the transactional operation or handle the error some other way.
This is why the component in Example 4-1 returns
CONTEXT_E_ABORTING from the method after aborting the
transaction. CONTEXT_E_ABORTING is the standard returned value
from a component that aborted a transaction.

Example 4-1. Voting on the transaction’s outcome by accessing the
I ContextState interface and calling SetMyTransactionVote()

STDMETHODIMP CMyComponent::MyMethod ()
{

HRESULT hres = S_OK;

hres = DoWork();

//Vote on the transaction outcome

IContextState* pContextState = NULL;

::CoGetObjectContext (IID_IContextState, (void**) &pContextsS
tate);

ASSERT (pContextState!= NULL);//Not a configured
component

1if (FAILED (hres))
{
hres = pContextState-
>SetMyTransactionVote (TxAbort) ;
ASSERT (hres != CONTEXT_E_NOTRANSACTION) ;//No
transaction support
hres = CONTEXT_E_ABORTING;
}
else

{

108

hres = pContextState-
>SetMyTransactionVote (TxCommit) ;

ASSERT (hres != CONTEXT_E_NOTRANSACTION) ;//No
transaction support

}

pContextState—->Release () ;

return hres;
}
However, what should the client do if an inner object (not the root)
votes to abort the transaction? The root object may not know that
an inner component has aborted the transaction (and may still vote
to commit and return s_oOK to the client). If s_0K is allowed to
return to the client, then the client never knows that its request was
aborted. To prevent this situation, the interceptor between the root
object and its client detects that the transaction is already doomed
if an inner object votes to abort and the root object votes to commiit
and tries to return s_oOK to the client; it returns CONTEXT_E_ABORTED
to the client instead.

- One interesting point regarding transaction
%2 4. termination involves exceptions. Any unhandled

4l exception in any object in the transaction (not just
the root) terminates the transaction immediately.

4.7 Transactional Object Life Cycle

If a transaction aborts, the intermediate and potentially inconsistent
state of the system should be rolled back to ensure consistency.
The system state is the data in the resource managers; it also
consists of the state of all the objects that took part in the
transaction. An object’s state is the data members it holds. If the
object participated in an aborted transaction, then that object’s
state should be purged too. The object is not allowed to maintain
that state, since it is the product of activities that were rolled back.
The problem is that once a transaction ends, even if the object
votes to commit, it does not know whether that transaction will
actually commit. The DTC still has to collect all the resource
managers’ votes, conduct the first phase of the two-phase commit
protocol, and verify that all of the resource managers vote to
commit the transaction. While this process takes place, the object
must not accept any new client calls (as part of a new transaction)
because the object would act on a system state that may roll back,
which would jeopardize consistency and isolation.

To enforce consistency and isolation, once a transaction ends,
regardless of its outcome, COM+ releases all the objects that took

109

part in it. COM+ does not count on objects’ having the discipline or
knowledge to do the right thing. Besides, even with good intentions,
how would the objects know exactly what part of their state to
purge?

However, even though the objects are deactivated and released,
COM+ remembers their position in the general layout of the
transaction: who the root was, who created whom, pointers
between objects, and the context, apartment, and process each
object belongs to.

When a new method call from the client comes into an object
(usually to the root object) that was deactivated at the end of a
transaction, COM+ creates a new transaction for that method call
and a new instance of the object. COM+ then forwards the call to
the new instance. If the object tries to access other objects in the
transaction, COM+ re-creates them as well.

In short, COM+ starts a new transaction with new objects in the
same transaction layout , also called a transaction stream. The
transaction itself is a transient, short-lived event; the layout can
persist for long periods of time. Only when the client explicitly
releases the root will the objects really be gone and the transaction
layout destroyed.

4.7.1 State-Aware Objects

Because COM+ destroys any object that took part in a transaction
at the end of the transaction, transactional objects have to be state-
aware, meaning they manage their state actively. A state-aware
object is not the same as a stateless object. First, as long as a
transaction is in progress, the object is allowed to maintain state in
memory. Second, the object is allowed to maintain state between
transactions, but the state cannot be stored in memory or in the
filesystem. Between transactions, a transactional object should
store its state in a resource manager. When a new transaction
starts, the newly created object should retrieve its state from the
resource manager. Accessing the resource manager causes it to
auto-enlist with that transaction. When the transaction ends, the
object should store its modified state back in the resource manager.
Now here is why you should go though all this hassle: if the
transaction aborts, the resource manager will roll back all the
changes made during the transaction—in this case, the changes
made to the object state. When a new transaction starts, the object
again retrieves its state from the resource manager and has a
consistent state. If the transaction commits, then the object has a
newly updated consistent state. So the object does have state, as
long as the object actively manages it.

The only problem now is determining when the object should store
its state in the resource manager. When the object is created and

110

placed in a transaction, it is because some other object (its client)
tries to invoke a method call on the object. When the call returns, it
can be some time until the next method call. Between the two
method invocations, the root object can be released or deactivated,
ending the transaction. COM+ releases the object, and the object
would be gone without ever storing its state back to the resource
manager.

The only solution for the object is to retrieve its state at the
beginning of every method call and save it back to the resource
manager at the end of the method call. From the object’s
perspective, it must assume that the scope of every transaction is
the scope of one method call on it and that the transaction would
end when the method returns. The object must therefore also vote
on the transaction’s outcome at the end of every method.

Because from the object’s perspective every method call represents
a new transaction, and because the object must retrieve its state
from the resource manager, every method definition must contain
some parameters that allow the object to find its state in the
resource manager. Because many objects could be of the same type
accessing the same resource manager, the object must have some
key that identifies its state. That key must be provided by the
object’s client. Typical object identifiers are account numbers and
order numbers. For example, the client creates a new transactional
order-processing object, and on every method call the client must
provide the order number as a parameter, in addition to other
parameters. Between method calls, COM+ destroys and re-creates
a new instance to serve the client. The client does not know the
difference because the two instances have the same consistent
state.

Example 4-2 shows a generic implementation of a method on a
transactional object. A transactional object must retrieve its state at
the beginning of every method and save its state at the end. The
object uses an object identifier provided by the client to get and
save its state.

The method signature contains an object identifier parameter used
to get the state from a resource manager with the Getstate ()
helper method. The object then performs its work using the
DoWork () helper method. Then the object saves its state back to
the resource manager using the savestate () method, specifying
its identifier. Finally, the object votes on the transaction outcome
based of the success of the DoWwork () method.

Example 4-2. Implementing a method on a transactional object

STDMETHODIMP CMyComponent ::MyMethod (PARAM
objectIdentifier)

{
HRESULT hres = S_OK;

111

GetState (objectIdentifier);
hres = DoWork () ;
SaveState (objectIdentifier);
//Vote on the transaction outcome
IContextState* pContextState = NULL;

::CoGetObjectContext (IID_IContextState, (void**) &pContextS
tate);

ASSERT (pContextState!= NULL);//Not a configured
component

if (FAILED (hres))

{
hres = pContextState-
>SetMyTransactionVote (TxAbort) ;
ASSERT (hres != CONTEXT_E_NOTRANSACTION) ;//No
transaction support
hres = CONTEXT_FE_ABORTING;

}

else

{
hres = pContextState-
>SetMyTransactionVote (TxCommit) ;
ASSERT (hres != CONTEXT_E_NOTRANSACTION) ; //No
transaction support

}

pContextState—->Release () ;

return hres;
}
Note that not all of the object’s state can be saved by value to the
resource manager. If the state contains pointers to other COM+
objects, Getstate () should create those objects and savestate (
) should release them. Similarly, if the state contains such
resources as database connection, Getstate () should acquire a
new connection and savestate () should release the connection.

4.7.2 Transactions and JITA

If the object goes through the trouble of retrieving its state and
saving it on every method call, why wait until the end of the
transaction to destroy the object? The transactional object should
be able to signal to COM+ that it can be deactivated at the end of
the method call, even though the transaction may not be over yet.
If the object is deactivated between method calls, COM+ should re-
create the object when a new method call from the client comes in.
The behavioral requirements for a state-aware transactional object
and the requirements of a well-behaved JITA object are the same.
As discussed in Chapter 3, a well-behaved JITA object should

112

deactivate itself at method boundaries, as well as retrieve and store
its state on every method call. Since COM+ already has an efficient
mechanism for controlling object activation and deactivation (JITA)
it makes perfect sense to use JITA to manage destroying the
transactional object and reconnecting it to the client, as explained in
Chapter 3.

Every COM+ transactional component is also a JITA component.
When you configure your component to require a transaction
(including Supported), COM+ configures the component to require
JITA as well. You cannot configure your component to not require
JITA because COM+ disables the JITA checkbox.

At the end of a method call, like any other JITA object, your
transactional object can call

IContextState: :SetDeactivateOnReturn() to set the value of
the done bit in the context object to TRUE, signaling to COM+ to
deactivate it, as shown in Example 4-3.

Example 4-3. A transactional object deactivating itself at the end of the
method

STDMETHODIMP CMyComponent ::MyMethod (PARAM
objectIdentifier)
{

HRESULT hres = S_OK;

GetState (objectIdentifier);

hres = DoWork () ;

SaveState (objectIdentifier);

IContextState* pContextState = NULL;

::CoGetObjectContext (IID_IContextState, (void**) &pContextS
tate);

ASSERT (pContextState!= NULL); //Not a configured
component

if (FAILED (hres))
{
hres = pContextState-
>SetMyTransactionVote (TxAbort) ;
ASSERT (hres != CONTEXT_E_NOTRANSACTION) ; //No
transaction support
hres = CONTEXT_FE_ABORTING;
}
else
{
hres = pContextState-
>SetMyTransactionVote (TxCommit) ;
ASSERT (hres != CONTEXT_E_NOTRANSACTION) ;//No
transaction support

113

}
hres = pContextState->SetDeactivateOnReturn (TRUE) ;

pContextState—->Release () ;
return hres;

}

The done bit is set to FALSE by default. If you never set it to TRUE,
your object is destroyed only at the end of the transaction or when
its client releases it. |f the object is the root of a transaction, self-
deactivation signals to COM+ the end of the transaction, just as if
the client released the root object. Of course, by combining
transactions with JITA you gain all the benefits of JITA: improved
application scalability, throughput, and reliability.

4.7.3 Collecting Objects’ Votes

Using JITA has a side effect on your object’s transaction vote. When
the object is deactivated, the transaction could end while the object
is not around to vote. Thus, the object must vote before
deactivating itself. When a method call returns, COM+ checks the
value of the done bit. If it is TRUE, COM+ checks the value of the
consistency bit, the object’s vote.

COM+ collects the objects’ votes during the transaction. Each
transaction has a doomed flag, which if set to TRUE dooms a
transaction to abort. COM+ sets the value of a new transaction’s
doomed flag to FALSE.

When an object is deactivated and its vote was to commit, COM+
does not change the current value of the doomed flag. Only if the
vote was to abort will COM+ change the doomed flag to TRUE. As a
result, once set to TRUE, the doomed flag value will never be FALSE
again, and the transaction is truly doomed.

When the root object is deactivated/released, COM+ starts the two-
phase commit protocol only if the doomed flag is set to FALSE. Note
that COM+ does not waste time at the end of a transaction polling
objects for their vote. COM+ already knows their vote via the
doomed flag.

4.7.4 The 1 ObjectContext I nterface

The context object supports a legacy MTS interface, called
IObjectContext, defined as:
interface IObjectContext : IUnknown
{

HRESULT CreatelInstance ([in]GUID* rclsid, [in] GUID*
riid, [out, retvallvoid** ppv);

HRESULT SetComplete();

HRESULT SetAbort();

HRESULT EnableCommit () ;

HRESULT DisableCommit ();

114

BOOL IsInTransaction();

BOOL IsSecurityEnabled();

HRESULT IsCallerInRole ([in]BSTR
bstrRole, [out, retval] BOOL* pfIsInRole);
bi
IObjectContext is worth mentioning only because most of the
COM+ documentation and examples still use it instead of the new
COM+ interface, IContextState.
IObjectContext has two methods used to vote on a transaction
outcome and to control object deactivation. Calling setComplete ()
sets the consistency and done bits to TRUE. SetComplete () sets
the vote to commit and gets the object deactivated once the
method returns. SetAbort () sets the vote to abort the transaction
and sets the done bit to TRUE, causing the object to deactivate
when the method returns. COM+ objects should avoid using
IObjectContext and should use IContextState instead.
IcontextState is fine-tuned for COM+ because it sets one bit at a
time. It also verifies the presence of a transaction—it returns an
error if the object is not part of a transaction.
COM+ objects written in VB 6.0 have no way of accessing
IContextState directly. They have to go through I0bjectContext
first and query it for IContextState, as shown in Example 4-4.
Objects written in Visual Basic.NET can access IContextState
directly.

Example 4-4. Querying | ObjectContext for | ContextState

Dim objectContext As ObjectContext
Dim contextState As IContextState

Set objectContext = GetObjectContext

"QueryInterface for IContextState:
Set contextState = objectContext
contextState.SetMyTransactionVote TxCommit

4.7.5 Method Auto-Deactivation

As shown in Chapter 3, you can configure any method on a JITA
object to automatically deactivate the object when it returns.
Configuring the method to use auto-deactivation changes the done
bit from its default value of FALSE to TRUE. Because the default
value for the consistency bit is TRUE, unless you change the context
object bits programmatically, auto-deactivation automatically
results in a vote to commit the transaction.

However, COM+ examines the HRESULT that the method returns. If
the HRESULT indicates failure, then the interceptor sets the

115

consistency bit to FALSE, as if you voted to abort. This behavior
gives you a new programming model for voting and deactivating
your object: if you select auto-deactivation for a method, don’t take
any effort to set any context object bits. Instead, use the method’s
returned HRESULT:

e |Ifitis s_Ox, it is as though you voted to commit. (S_FALSE
would also vote to commit.)
o |f it indicates failure, it is as though you voted to abort.

When you use auto-deactivation, the programming model becomes
much more elegant and concise, and shown in Example 4-5. With
auto-deactivation, the object does not have to explicitly vote on the
transaction’s outcome or deactivate itself. Compare this with
Example 4-3. Both have the same effect, but note how elegant,
readable, and concise Example 4-5 is.

Example 4-5. Using method auto-deactivation

STDMETHODIMP CMyComponent::MyMethod (PARAM
objectIdentifier)
{

HRESULT hres = S_OK;

GetState (objectIdentifier);

hres = DoWork () ;

SaveState (objectIdentifier);

return hres;
}
Additionally, the object’s client should examine the returned
HRESULT. If it indicates failure, then it also indicates that the object
voted to abort the transaction; the client should not waste any
more time on the transaction because it is doomed.

4.7.6 Object Life Cycle Example

The following simple example demonstrates the important concepts
discussed in this section. Suppose a nontransactional client creates
Object A, configured with transaction support set to Required.
Object A creates Object B, which also requires a transaction. The
developers of Object A and Object B wrote the code so that the
objects vote and get themselves deactivated on method boundaries.
The client calls two methods on Object A and releases it. Object A
then releases Object B.

When the client creates Object A, COM+ notes that the client does
not have a transaction and that Object A needs transaction support,
so COM+ creates a new transaction for it, making Object A the root
of that transaction. Object A then goes on to create Object B, and
Object B shares Object A’s transaction. Note that Object B is in a

116

separate context because transactional objects cannot share a
context. Now the transaction layout is established. The transaction
layout persists until the client releases Object A, the root of this
transaction. Note that both the client and the objects have
references to cross-context interceptors, not to actual objects.
While a call from the client is in progress, both objects exist (see
Figure 4-9) and the transaction layout hosts an actual transaction.

Figure 4-9. Transaction layout while a transaction is in progress

Context A
. — Objed A
Client Inferceptor A S —
S
1]}
Interceptor

Context B l

it ——

However, between the two method calls from the client, only the
transaction layout is maintained; no objects or a transaction are in
progress, only interceptors and contexts (see Figure 4-10). When
the second call comes in, COM+ creates Object A, and Object A
retrieves its state from the resource manager. When Object A
accesses Object B to help it process the client request, COM+
creates Object B and hooks it up with the interceptor Object A is
using (see Figure 4-9). When the call comes to Object B, it too
retrieves its state from the resource manager. When the method
returns from Object B, Object B deactivates itself; when the method
returns to the client, Object A deactivates itself. When the client
releases its reference to Object A, the transaction layout is
destroyed, along with the contexts and the interceptors.

Figure 4-10. Transaction layout between method calls

117

Context A
Client Interceplor

DB
Interceptar

Context B

4.8 Designing Transactional Components

Incorporating correct transaction support in your component is an
integral part of your design and cannot be done as an afterthought.
Supporting transactions is far from simply selecting the correct
radio button in the Component Services Explorer. In particular, your
object has to be state-aware, actively manage its state, and control
its own activation and deactivation, as described in previous
sections. You should also design your interfaces to support
transactions and to acquire resources in a particular order.

4.8.1 Designing Transactional I nterfaces

Interface design is an important factor in designing transactional
components. From the object’s perspective, method calls demarcate
transactions, so you should avoid coupling interface methods to
each other. Each method should contain enough parameters for the
object to perform its work and decide whether the transaction
should commit or abort. In theory, you could build a transactional
component that votes on the transaction outcome only after
receiving a few method calls. However, in practice, a transaction
should not span multiple method calls. You already saw that a
transactional object uses JITA and should deactivate itself at
method boundaries. COM+ checks the object’s vote once it is
deactivated. If the interface the object implements requires more
than one method call for the object to decide on its vote, then the
object could not deactivate itself; it must wait for another call from
the client. What should the object do if the transaction suddenly
ends (because the root was deactivated or the transaction timed
out) and the anticipated call from the client never comes?

Waiting for additional information from the client has a serious
effect on overall application throughput. While your transaction is in
progress, the resource managers involved lock out all other

118

transactions from the data being modified by your transaction. The
other transactions are blocked until your transaction commits or
aborts. The longer you wait for client calls that may never come,
the more your application’s throughput will suffer.
Consider, for example, a poorly designed interface used to handle
customer orders:

[

helpstring("Bad design of IOrder interface"),

]

interface IOrder : IUnknown

{
HRESULT SetOrder ([in]DWORD dwOrderNumber) ;

HRESULT SetItem([in]DWORD dwItemNumber) ;
HRESULT SetCustomerAccount ([in]DWORD
dwCustomerAccount) ;
HRESULT ProcessOrder () ;
i
The interface designer intends for the client to call the set ()
methods, supplying the object with the order parameters, and then
call ProcessOrder (). The problem with this design is that the
transactional object cannot vote on the transaction outcome unless
the client calls all the set () methods and then the ProcessOrder (
) method, in that sequence. There is no clear delineation of
transaction boundaries in this interface design.
The correct way to design the interface while maintaining
transaction semantics is:
[
helpstring ("Correct design of IOrder interface"),
]
interface IOrder : IUnknown
{
HRESULT ProcessOrder ([in]DWORD dwOrderNumber, [in] DWORD
dwItemNumber,
[in]DWORD dwCustomerAccount) ;
i
This interface is also a lot easier to implement. The order number is
used to identify the object and allow it to retrieve its corresponding
state from the resource manager—in this case, the orders database:
STDMETHODIMP COrder: :ProcessOrder (DWORD
dwOrderNumber, DWORD wItemNumber,
DWORD
dwCustomerAccount)
{
HRESULT hres = S_OK;
GetState (dwOrderNumber) ; //retrieve the state of the
corresponding
//order object
hres = DoProcessOrder (wItemNumber, dwCustomerAccount) ;
SaveState (dwOrderNumber) ;

119

// Using auto—-deactivation. No need to vote
explicitly.

return hres;
}
The second interface design yields better performance as well,
because there are fewer calls to the object from the client machine,
which may be across the network.

4.8.2 Acquiring Resources

Suppose you have two transactions, T1 and T2, that execute in
parallel, and both require access to two resource managers, RM1
and RM2. Suppose T1 has acquired RM1, and T2 has acquired RM2.
What would happen if T1 tries to access RM2, and T2 tries to access
RM1? You would have a deadlock. Neither transaction is able to
proceed. Each needs a resource the other holds to complete its
work. Each is blocked and never frees the resource manager it
holds.

The solution to this deadly embrace is to be mindful about the order
in which objects in your transaction try to acquire resources. You
can avoid the deadlock by always trying to acquire the resources in
the same order. In the previous example, if both transactions try to
acquire RM1 and then RM2, then the first one to actually acquire
RM1 will continue on to acquire RM2; the second transaction will be
blocked, as it waits for RM1 to be released.

4.9 Nontransactional Clients

Consider the situation in which a nontransactional client creates a
few transactional objects, all configured to require transactions. The
client would like to scope all its interactions with the objects it
creates under one transaction—in essence, to function like the root
of that transaction. The problem is that the client is not configured
to require transactions (maybe it is a legacy component or maybe it
is not even a component, such as a form or a script client), so it
cannot have a transaction to include the objects it creates. On the
other hand, the objects require transaction support to operate
properly, so for every object the client creates, COM+ creates a
transaction. As a result, even if the client intended to combine the
work of multiple COM+ objects into a single transaction, the net
result would be multiple transactions (see Figure 4-11). The real
problem now is that each transaction can commit or abort
independently. The operations the client performs on the system
(using the objects) are no longer atomic, so the client jeopardizes
system consistency. Furthermore, even if all objects were under one

120

transaction, how would the client vote to commit or abort that
transaction?

Figure 4-11. A nontransactional client ends up with multiple transactions
instead of one

Client
[na trans)

J11

Object 1 ject 7 Obgect 3
(Requied) it ol

Transaciion A Transoction B Tramsaction €

Whal the cliant gats

What the client wants

There is an elegant and simple solution to this predicament. The
solution is to introduce a middleman—a transactional component
that creates the objects on behalf of the client. The middleman
creates the objects and returns interface pointers back to the client.
The middleman objects also should provide the client with ability to
commit or abort the transaction.

These middleman requirements are generic. Therefore, COM+
provides a readymade middleman called the transaction context
component. As part of the COM+ Utilities application, COM+
provides two components (one for VB 6.0 and one for C+ +), each
supporting a slightly different interface. A VB 6.0 client should use
the ITransactionContext interface, creatable via the prog-ID
TxCtx.TransactionContext (or the class name
TransactionContext). A C++ client should use the
ITransactionContextEx interface, which is creatable via the class
ID CLSID TransactionContextEx.

The two interfaces are defined as:

interface ITransactionContext : IDispatch

{
HRESULT CreateInstance([in]BSTR pszProgld, [out,
retval] VARIANT* pObject) ;

HRESULT Commit () ;
HRESULT Abort () ;
}i
interface ITransactionContextEx : IUnknown

{
HRESULT CreateInstance([in]GUID* rclsid, [in]IID* riid,
[out, retval]void** pObject);
HRESULT Commit ();

121

HRESULT Abort();
i
These interfaces allow the client to create new component instances
and commit or abort the transaction. The two transaction context
components are configured to require a new transaction, so they
are always the root of that transaction. This configuration also
prevents you from misusing the transaction context objects by
enlisting them in an existing transaction. All objects created by the
transaction context object share the same transaction (see Figure
4-12).

Figure 4-12. Using a middleman, a nontransactional client ends up with
one transaction

Cliamt
[ma frons)

!

TransactionContext
(Requires New)

Obiect 1 Obijed 2 Obiject 3
{Required) {Required) {Required)

Transaction

(reates
lses ——

All the client has to do is create the transaction context object, and
then use it to create the other objects via the CreateInstance()
method. If the client wants to commit the transaction, it must
explicitly call the commit () method. Once the client calls the

Commit () method, the transaction ends on return from the
Commit () method. If one of the internal objects votes to abort the
transaction before the client calls commit (), the client’s call to
Commit () returns with the error code of CONTEXT_E_ABORT,

indicating that the transaction was already aborted. The client can
chose to start a new transaction or handle the error in some other
manner.

If the client does not call commit (), the transaction is aborted,
even if all the participating objects voted to commit. This abortion is
intentional, to force the client to voice its opinion on the work done
by the objects it created. Only the client knows whether their
combined work was consistent and legitimate. Apparently, when the
client creates the transaction context object, the transaction context
object sets the consistency bit to FALSE and never deactivates itself.
As a result, the transaction is doomed unless the client calls

122

commit (), which causes the transaction context object to change
the bit back to TRUE and deactivate itself, thus ending the
transaction.

The client can abort the combined transaction by calling the Abort (
) method. The transaction ends on return from the abort ()
method. The client is also responsible for releasing the references it
has on the internal objects created by the transaction context
object. It is a good practice to do so even though these objects are
released when the transaction ends.

Example 4-6 shows how to use the transaction context object. In
the example, the client creates the transaction context object and
then uses it to create three transactional objects (as in Figure 4-
12). The client votes to commit or abort the transaction, based on
the combined success of the method invocations on the three
objects.

Example 4-6. Using the transaction context object to create three
transactional objects

HRESULT hresl = S_OK;
HRESULT hres2 = S_OK;
HRESULT hres3 = S_OK;

IMyInterface* pObjl= NULL;
IMyInterface* pObj2= NULL;
IMyInterface* pObj3= NULL;
ITransactionContextEx* pTransContext = NULL;

::CoCreatelInstance (CLSID_ TransactionContextEx,NULL, CLSCTX
_ALL,

IID_ITransactionContextEx, (void**)&pTransContext) ;

pTransContext—

>Createlnstance (CLSID_MyComponent, IID_IMyInterface, (void*
*) &pObJjl) ;

pTransContext—

>CreatelInstance (CLSID_MyComponent, IID_IMyInterface, (void*
*) &pObj2) ;

pTransContext—

>CreatelInstance (CLSID_MyComponent, IID_IMyInterface, (void*
*) &pObj3) ;

hresl = pObjl->MyMethod();

hres2 = pObj2->MyMethod();

hres3 = pObj3->MyMethod ();

1f (S_OK == hresl && S_OK == hres?2 && S_OK == hres3)
pTransContext—->Commit () ;

else

123

pTransContext—->Abort ();

pObjl->Release();
pObj2->Release();
pObj3->Release();
pTransContext—->Release () ;

4.10 Transactions and Object Pooling

As discussed in Chapter 3, to speed up performance, your pooled
object acquires expensive resources, such as database connections,
at creation time and holds onto them while pooled. The problem is
that one of the requirements for resource managers is auto-
enlistment in transactions. When an object creates a resource such
as a database connection, the connection (actually the resource
manager) auto-enlists with the object’s transaction. A pooled object
only creates the resources once, and then the object is called out of
the pool to serve clients. Every time the object is retrieved from the
pool, it could potentially be part of a different transaction. If the
pooled object is forced to re-create the expensive resources it holds
to allow them to auto-enlist, that would negate the whole point of
using object pooling.

Unfortunately, the only way to combine transactions with a pooled
object that holds references to resource managers is to give up on
auto-enlistment. The pooled object has to manually enlist the
resources it holds in the transactions it participates with.

The pooled object must follow these steps:

1. The object must implement the T0bjectControl interface.
The object needs to manually enlist the resource managers it
holds when it is placed in an activation context in its
implementation of T0bjectControl::Activate(). The
object also needs to perform operations in
IObjectControl: :Deactivate() and
IObjectControl::CanBePooled(), explained later.

2. After creating the connection to the resource manager, the
pooled object turns off the resource manager’s auto-
enlistment. This step requires programming against the
resource manager APIl. All resource managers support this
functionality, although in slightly different ways and syntax.

3. When the object is called out of the pool to serve a client and
is placed in a COM+ context, it must detect whether a
transaction is in progress. This detection is done either by
calling TO0bjectContextInfo::IsInTransaction() or calling
IObjectContextInfo::GetTransactionId(). If the context
the object is placed in is not part of a transaction, the

124

returned transaction ID is GUID_NULL. If a transaction is in
progress, the object must manually enlist any resource
manager it holds. Enlisting manually is done in a resource-
specific manner. For example, in ODBC, the object should call
SQLSetConnectAttr () with the
SQIL_COPT_SS_ENLIST_IN_DTC attribute.

Note that TO0bjectControl::Activate() is called before the
actual call from the client is allowed to access the object. The
client call is executed against an object with enlisted resource
managers.

4. The object must reflect the current state of its resources and
indicate in I0bjectControl: :CanBePooled() when it can’t
be reused (if a connection is bad). Returning FALSE from
CanBePooled() dooms a transaction.

Clearly, mixing resource managers with pooled objects is not for the
faint of heart. Besides laborious programming, manually enlisting all
resources the object holds every time the object is called from the
pool implies a needless performance penalty if the object is called to
serve a client in the same transaction as the previous activation.
COM+ is aware of the performance penalty and it provides a simple
solution. As you saw in Chapter 3, COM+ maintains a pool per
component type. However, if a component is configured to use
object pooling and require a transaction, COM+ maintains
transaction-specific pools for objects of that type.

COM+ actually optimizes object pooling: when the client requesting
an object has a transaction associated with it, COM+ scans the pool
for an available object that is already associated with that
transaction. If an object with the right transaction affinity is found,
it is returned to the client. Otherwise, an object from the general
pool is returned. In essence, this situation is equivalent to
maintaining special subpools containing objects with affinity for a
particular transaction in progress. Once the transaction ends, the
objects from that transaction’s pool are returned to the general pool
with no transaction affinity, ready to serve any client.

With this feature, a transactional-pooled object can relieve the
performance penalty. Before manually enlisting its resources in a
transaction, it should first check to see whether it has already
enlisted them in that transaction. If so, there is no need to enlist
them again. Your object can achieve that by keeping track of the
last transaction ID and comparing it to the current transaction ID
using IObjectContextInfo: :GetTransactionId().

Example 4-7 shows a pooled object that takes advantage of COM+
subpooling. In the object’s implementation of
IObjectControl::Activate(), it gets the current transaction ID.

125

The object verifies that a transaction is in progress (the transaction
ID is not GUID_NULL) and that the current transaction ID is different
from the transaction ID saved during the previous activation. If this
transaction is new, then the object enlists a resource manager it
holds manually. To manually enlist the resource, the object passes
the current transaction object (in the form of ITransaction*) to
the private helper method EnlistResource().

The object saves the current transaction ID in its implementation of
IObjectControl: :Deactivate(). The object uses the private
helper method TsResourceOK() in
IObjectControl::CanBePooled() to verify that it returns to the
pool only if the resource manager is in a consistent state.

Example 4-7. A transactional pooled object manually enlisting a resource
manager it holds between activations

HRESULT CMyPooledObj::Activate()
{
HRESULT hres = S_OK;
GUID guidCurrentTras = GUID_NULL;
hres = ::CoGetObjectContext (IID_IObjectContextInfo,

(void**) &m_pObjectContextInfo) ;

hres = m_pObjectContextInfo-
>GetTransactionId(&guidCurrentTras) ;
if (guidCurrentTras!= GUID_NULL && guidCurrentTras !=
m_guidLastTrans)
{
ITransaction* pTransaction = NULL;
hres = m_pObjectContextInfo-
>GetTransaction (&pTransaction);
hres = EnlistResource (pTransaction);//Helper Method
}
return hres;
}
void CMyPooledObj::Deactivate()
{
//Save the current transaction ID
m_pObjectContextInfo-
>GetTransactionId(&m_guidLastTrans) ;
//if no transaction, m_guidLastTrans will be GUID_NULL
m_pObjectContextInfo->Release () ;
}
BOOL CMyPooledOb7j::CanBePooled()
{
return IsResourceOK();//Helper Method

126

Note that though the object is a transactional object, it maintains
state across transactions and activations. This maintenance is
possible because the object is not really destroyed (only returned to
the pool) and its internal state does not jeopardize system
consistency.

COM+ does subpooling regardless of whether your transactional-
pooled object manages its own resource managers. If your
transactional-pooled object does not manually enlist resource
managers, then you can just ignore the subpooling.

4.11 Compensating Transactions

Some business operations have a logical undo. Consider the way
banks handle bad checks. When you deposit a bad check at the
ATM, the bank adds the amount of the check to your account. When
the bank discovers the check is bad, it undoes the deposit by
deducting an identical amount from your account and returns the
check to you in the mail. This logical undo is called a compensating
transaction. Not every transaction has a compensating transaction,
but if it does, you should use caution when incorporating
compensating transactions into your application. It is very tricky to
use compensating transactions without jeopardizing system
consistency. For example, imagine that after depositing the check,
you apply for a loan. The bank’s loan consultant checks your
balance and decides to grant you the loan based on the new
increased balance. Once the bank executes the compensating
transaction, the system is in an inconsistent state—the account
balance is correct, but a loan program is in progress—one that
should not have been launched based on the corrected balance. The
bank could, of course, perform a compensating transaction for the
loan application, except that in the meantime you might have used
that loan to start a new business, and so on. As you can see, once
the cat is out of the bag, it is difficult to compensate in a
comprehensive and consistent manner.

If compensating transactions are bad, why bother with them at all?
Compensating transactions are necessary because they enable you
to deal efficiently with transactions whose normal execution time is
unacceptable. Even though the bad check may bounce after two
days, the bank does not expect a customer to wait at the ATM for
two days until the check is cleared. Additionally, it is unrealistic to
keep a lock on the customer's account for two days because no
other operation on the account can take place until the depositing
transaction is done. The bank has to take the chance and use a
compensating transaction as a safety net. The bank, in this case,
trades transaction throughput for a small, calculated risk in system
consistency.

127

In general, compensating transactions are useful when the
transaction for which they compensate is potentially long.
Compensating transactions offer a high throughput alternative,
allowing you to maintain locks in the resource managers for a
minimum amount of time.

4.12 Transaction Execution Time

Transaction execution time should be minimal. The reason is
obvious: a transaction occupies expensive resources. As long as the
transaction executes, no other transaction can access those
resources. Every resource manager the transaction accesses has to
lock relevant data, isolating that transaction from the rest of the
world. As long as the locks are held, nobody else can access the
data. The more transactions per second your application can
process, the better its scalability and throughput.

Transaction execution usually requires, at most, a few seconds. For
lengthy operations, consider using a short transaction backed up by
a compensating transaction.

COM+ allows you to configure a maximum execution time for your
transactions. If your transaction reaches that timeout, COM+ aborts
it automatically. Transaction timeouts prevent resource manager
deadlocks from hanging the system. Eventually, one of the two
transactions deadlocking each other would reach the timeout and
abort, allowing the other transaction to proceed.

You can configure two kinds of transaction timeouts. The first is a
machine-wide parameter called the global transaction timeout . The
global timeout applies to all transactions on that machine. You
configure the global timeout by right-clicking on the My Computer
icon in the Component Services Explorer, selecting Properties from
the context menu, and selecting the Options tab (see Figure 4-13).
The default timeout is set to 60 seconds, but you can set it to any
value you like, up to 999 seconds. A global timeout set to zero
means an infinite timeout. Transactions on that machine never time
out. Infinite timeout is useful mostly for debugging, when you want
to try to isolate a problem in your business logic by stepping
through your code and you do not want the transaction you debug
to time out while you figure out the problem. Be extremely careful
with infinite timeout in all other cases because it means there are
no safeguards against transaction deadlocks.

Figure 4-13. Setting global transaction timeout

128

21X

Defaull Propeties | Defaull Secwiy | Defaul Protocols |
General Options | M5DTC |

Transaclion Timeout

Tranzaction timaout |seconds]: IE‘]

Export

Application proky ASH:

ok I Cancel

You can also configure transaction timeout at the component level,
on its Transactions tab. Component-level transaction timeout is
disabled by default, and you have to explicitly enable it.
Component-level transaction timeout means that any transaction
this component is part of must end within the time specified, or else
COM+ aborts it. Obviously, the component-level timeout is effective
only if it is less than the global timeout. The default component-
level timeout is set by COM+ to zero, which indicates infinity. You
can use component-level timeout in two cases. The first case is
during development, when you want to test the way your
application handles aborted transactions. By setting the component-
level timeout to a small value (such as one second), you cause your
transaction to fail and can thus observe your error handling code.
The second case in which you set the component-level transaction
timeout to be less than the global timeout is when you believe that
the component is involved in more than its fair share of resource
contention, resulting in deadlocks. In that case, you should abort
the transaction as soon as possible and not wait for the global
timeout to expire.

4.13 Tracing Transactions

Sometimes, during development, or perhaps during deployment for
logging purposes, you may want to trace the current transaction 1D
under which your object executes. COM+ provides you with two
ways to retrieve the transaction 1D, programmatically and
administratively, using the Component Services Explorer.

To trace the current transaction ID programmatically, you should
use IObjectContextInfo::GetTransactionId(). Example 4-8
shows how to trace the current transaction ID to the output window
in the debugger.

Example 4-8. Tracing the current transaction I D to the output window

129

HRESULT hres = S_OK;
GUID guidTransactionID = GUID_NULL;
IObjectContextInfo* pObjectContextInfo = NULL;

hres = ::CoGetObjectContext (IID_IObjectContextInfo,
(void**) &pObjectContextInfo);

ASSERT (pObjectContextInfo != NULL); //a non-configure
object maybe?

hres = pObjectContextInfo-
>GetTransactionId(&guidTransactionID) ;

pObjectContextInfo->Release();

if (guidTransactionID == GUID_NULL)

{
ATLTRACE ("The object does not take part in a

transaction");

}

else
{

USES_CONVERSION;

WCHAR pwsGUID[150];

::StringFromGUID2 (guidTransactionID, pwsGUID, 150) ;

ATLTRACE ("The object takes place in transaction with
ID %s ",W2A (pwsGUID));
}
As long as a transaction is in progress, you can view its transaction
ID in the Component Services Explorer when using the
administrative method. Under the My Computer icon in the
Component Services Explorer is the Distributed Transaction
Coordinator (DTC) folder. Expand the DTC folder and select the
Transaction List item. The right pane in the Component Services
Explorer contains a list of all the transactions executing on your
machine (see Figure 4-14).

Figure 4-14. The transaction list view

130

T Component Seevices LR =8 =
"‘]: Consols ‘Window Help =12 =]
feton few | da i i

Tree Trarsaction List

— el et 211 [Stalus [[urit ob wieek ID

= @ Cumpuren Servies [| [Compores facivel £t 3ecad 52608331 23633207707 1 02

= || Compishees
S| my Computer
=1 -] COM+ Applcations |
- M+ O Dead Lebbear Qusue Lsters
COM+ Lititias | Root Transaction 1D
Myhpp |
=] Comporents
+ gl MyComponent
1|) Rales
- 4} Syrstem Application
= - | Distrioeted Trarsazbon Coordingor
? Trangsction List
#:| Transaction Statistics =

1 | . | 4

The Component Services Explorer presents a few bits of information
on every transaction. The Status column contains the type of the
root component and the status of the transaction, and the Unit of
Work ID column contains the transaction ID.

4.14 In-Doubt Transactions

Sometimes COM+ (actually, the DTC) is unable to decide on the
fate of a transaction. This indecisiveness is usually the result of
some unexpected catastrophe. One possible catastrophe is network
failure after the root object is deactivated, but before the DTC could
conduct the two-phase commit protocol with remote resource
managers. Another possible catastrophe is when a resource
manager’s machine crashes in the middle of the two-phase commit
protocol. In those cases, the transaction is said to be in-doubt.
COM+ cannot decide on the fate of in-doubt transactions. It is up to
the system administrator to manually resolve those transactions,
using the Component Services Explorer. COM+ lists the in-doubt
transactions under the DTC folder, on the Transaction List pane. An
in-doubt transaction has the comment (In Doubt) in its status
column. The system administrator should right-click on the in-doubt
transaction and select Resolve from the pop-up menu. COM+ offers
three options to resolve a transaction: Commit, Abort, or Forget
(see Figure 4-15).

Figure 4-15. Resolving in-doubt transactions

131

T:| Componenl Services =101 x|

1 Conscke Window b |
detion B | | <m | £2)
] Transacton List
] Corvsol: ook I | Stanus | Wil of Yhorks ID
= {2 Componeni: Services | M orpanent [In Doubt) Sadcha-sbE-4735-0071 42531 4202200
o - | |
=1 (] My Comngatar b k
B et tons | Comet_|
+ B COM O Dead Letter Gueus Litener | Cnp(t:thbw:l : q
& 2 COM- Utities | Aree|

4 Myiipp
+ 'ﬁ. System Applicabion
=] || Destributed Trandaction Coordinabor
+ Q‘_] Transaction Lisk
+ ‘J_: Transaction Stabstics
4[5 Event Vigwar (Local) |
- “&. Seryres (Locsl) | Ll LI |

When the administrator selects Commit or Abort, COM+ instructs all
accessible resource managers that took part in the transaction to
commit or abort, respectively. Later on, when the rest of the
resource managers become available, your system administrator
should use an administrative utility to launch a compensating
transaction on those resources.

The interesting resolving option is Forget. By choosing to forget
about the transaction, your administrator instructs COM+ to do
absolutely nothing with this transaction besides remove it from the
list. The administrator is willing to accept the inconsistent state the
system is in, and does not wish to commit or abort the transaction.
Forgetting a transaction may be useful in some esoteric scenarios.
Imagine that while a transaction was in doubt, some administrator
manually changed entries in the database because he did not wish
to wait for the transaction to be resolved. In such a case, your
application administrator may choose to forget about the original
transaction and accept the current state.

4.15 Transaction Statistics

The Component Services Explorer can show you various
transactions statistics. You view the statistics by selecting the
Transaction Statistics item in the DTC folder (see Figure 4-16). The
statistics view contains various numbers regarding the currently
executing transactions, as well as aggregated numbers resulting
from all transactions that took place since the last machine reboot.

Figure 4-16. The Transaction Statistics item

132

Ti Component Services \ =0} *]
) Comsoks Window Help 1=l =]
Aglon Wew || &= = 7
Trez | Transaction Satistcs
o Conscle Root Coamerd
- b Component: Sarvices | Active : INNREENEEEE
=1) Compubers |
=)) ey Corputer Mar, Aciive : ISNENENEEEREEEE
= [o+ Apphcations | In Dok o
+ B COM+ O Dead Letter Gueus Lsterer |
B % COM+ Utilitias | - Aogege
= Mytoo | Correnited 5 ENEEEERN
= B System Appiication |
] Destributed Trarsaction Coordinator Abaited : HEEER
+ 95| Transaction List | Forced Commt 0
e | Tr 2r=sction Skatiskics |
- Evanid Fiawer (Local | Fond Aboet L
L Services (Local) U ko a
lata W SENEREENEENEEEE

The following list contains explanations of the various statistics:
Active
The total number of currently executing transactions.
Max. Active
The maximum number of transactions that were active
concurrently since the last reboot. This number can be used
as a crude throughput indicator.
In Doubt
The total number of transactions currently in doubt.
Committed
The total number of transactions committed since the last
reboot.
Aborted
The total number of transactions aborted since the last
reboot.
Forced Commit
The total number of transaction that were in doubt that the
administrator resolved by forcing to commit. A value other
then zero is usually the result of a catastrophe that was
resolved manually.
Forced Abort
The total number of transactions that were in doubt that the
administrator resolved by forcing to abort. A value other then
zero is usually the result of a catastrophe that was resolved
manually.
Unknown
The total number of transactions whose fate is unknown.
Total
The total number of transactions created since the last reboot.
The statistics are useful when you try to calibrate various
application parameters, such as pool sizes, to maximize throughput.
An important throughput indicator is the number of transactions
processed in a given amount of time. You can get that number and

133

quality metrics, such as the number of aborted transactions, from
the statistics view.

4.16 COM+ Transactions Pitfalls

I’ll end this chapter by pointing out a few more pitfalls you should
be aware of when designing and developing transactional
components in COM+. Some of these pitfalls have already been
implied elsewhere in this chapter, but elaborating on a pitfall is
always a good idea.

4.16.1 Accessing Nontransactional Resources

A transactional component should avoid accessing resources that
are not resource managers. Typical examples are the filesystem,
the Registry, network calls, and user interaction such as printouts or
message boxes. The reason is obvious—if the transaction aborts,
changes made to those transaction-ignorant resources will persist
and jeopardize system consistency.

4.16.2 Passing Subroot Objects to Clients

You should avoid passing subroot objects to any client outside your
transaction, be it the client that created the root or any other client.
You have to avoid this by design because COM+ allows you to
stumble into the pitfall. The problem with sharing subroot objects
with clients outside of your transaction is that at any moment the
client that created the root object can release the root object. A
COM+ transaction requires a root to function, and the root
designation does not change, no matter how the transaction is
started. With the root gone, the transaction layout is defective. In
Figure 4-17, any call from Client B to Object 2 will fail with the error
code CONTEXT_E_OLDREF. The only thing Client B can do is release
its reference to Object 2.

Figure 4-17. Avoid passing or sharing subroot objects with any client
outside the transaction

! Transaction
Client A i

Root
GemtBf - JL
Obiect 2 Object 3

4.16.3 Accessing Objects Outside the Transaction

134

You should avoid accessing COM+ objects outside your transaction,
whether those objects are part of another transaction or not. Look
at the objects layout in Figure 4-18.

Figure 4-18. Accessing COM+ objects outside your transaction can
jeopardize system consistency

& m]if":l2

Transaction A

Transaction B
(bject 3

In this figure, Object 1 has access to Object 2 and Object 3, both
outside its transaction. The problem is that Transaction A could
abort and Transaction B could commit. Object 3 acts based on its
interaction with an object from an aborted transaction, and
therefore Object 3 jeopardizes system consistency when its
transaction commits. Similarly, when Object 1 accesses Object 2
(which does not have a transaction at all), Object 2 may operate
based on inconsistent state if Transaction A aborts. In addition, the
interaction between Object 1 and Object 2 is not well defined. For
example, should Object 1 abort its transaction if Object 2 returns an
error? For these reasons, objects should only access other objects
within the same transaction.

135

Chapter 5. COM+ Concurrency Model

Employing multiple threads of execution in your application opens
the way for many benefits impossible to achieve using just a single
thread. These benefits include:
Responsive user interface
Your application can process user requests (such as printing
or connecting to a remote machine) on a different thread than
that of the user interface. If it were done on the same thread,
the user interface would appear to hang until the other
requests were processed. Because the user interface is on a
different thread, it can continue to respond to the user’s
request.
Enhanced performance
If the machine your application runs on has multiple CPUs and
the application is required to perform multiple calculation-
intensive independent operations, the only way to use the
extra processing power is to execute the operations on
different threads.
Increased throughput
If your application is required to process incoming client
requests as fast at it can, you often spin off a number of
worker threads to handle requests in parallel.
Asynchronous method calls
Instead of blocking the client while the object processes the
client request, the object can delegate the work to another
thread and return control to the client immediately.
In general, whenever you have two or more operations that can
take place in parallel and are different in nature, using
multithreading can bring significant gains to your application.
The problem is that introducing multithreading to your application
opens up a can of worms. You have to worry about threads
deadlocking themselves while contesting for the same resources,
synchronize access to objects by concurrent multiple threads, and
be prepared to handle object method re-entrancy. Multithreading
bugs and defects are notoriously hard to detect, reproduce, and
eliminate. They often involve rare race conditions (in which multiple
threads write and read shared data without appropriate access
synchronization), and fixing one problem often introduces another.
Writing robust, high performance multithreading object-oriented
code is no trivial matter. It requires a great deal of skill and
discipline on behalf of the developers.
Clearly there is a need to provide some concurrency management
service to your components so you can focus on the business
problem at hand, instead of on multithreading synchronization
issues. The classic COM concurrency management model addresses

136

the problems of developing multithreaded object-oriented
applications. However, the classic COM solution has its own set of
deficiencies.

COM+ concurrency management service addresses the problems
with the classic COM solution. It also provides you with
administrative support for the service via the Component Services
Explorer.

This chapter first briefly examines the way classic COM solves
concurrency and synchronization problems in classic object-oriented
programming, and then introduces the COM+ concurrency
management model, showing how it improves classic COM
concurrency management. The chapter ends by describing a new
Windows 2000 threading model, the neutral threaded apartment,
and how it relates to COM+ components.

5.1 Object-Oriented Programming and Multiple
Threads

The classic COM threading model was designed to address the set of
problems inherent with objects executing in different threads.
Consider, for example, the situation depicted in Figure 5-1. Under
classic object-oriented programming, two objects on different
threads that want to interact with each other have to worry about
synchronization and concurrency.

Figure 5-1. Objects executing on two different threads

Ohiect 1 " Objea?

Threod A& Thread B

Object 1 resides in Thread A and Object 2 resides in Thread B.
Suppose that Object 1 wants to invoke a method of Object 2, and
that method, for whatever reason, must run in the context of
Thread B. The problem is that, even if Object 1 has a pointer to
Object 2, it is useless. If Object 1 uses such a pointer to invoke the
call, the method executes in the context of Thread A.

This behavior is the direct result of the implementation language
used to code the objects. Programming languages such as C+ + are
completely thread-oblivious—there is nothing in the language itself
to denote a specific execution context, such as a thread. If you have
a pointer to an object and you invoke a method of that object, the
compiler places the method's parameters and return address on the
calling thread's stack—in this case, Thread A's stack. That does not
have the intended effect of executing the call in the context of

137

Thread B. With a direct call, knowledge that the method should
have executed on another thread remains in the design document,
on the whiteboard, or in the mind of the programmer.

The classic object-oriented programming (OOP) solution is to post
or send a message to Thread B. Thread B would process the
message, invoke the method on Object 2, and signal Thread A when
it finished. Meanwhile, Object 1 would have had to block itself and
wait for a signal or event from Object 2 signifying that the method
has completed execution.

This solution has several disadvantages: you have to handcraft the
mechanism, the likelihood of mistakes (resulting in a deadlock) is
high, and you are forced to do it over and over again every time
you have objects on multiple threads.

The more acute problem is that the OOP solution introduces tight
coupling between the two objects and the synchronization
mechanism. The code in the two objects has to be aware of their
execution contexts, of the way to post messages between objects,
of how to signal events, and so on. One of the core principals of
OOP, encapsulation or information hiding, is violated; as a result,
maintenance of classic multithreaded object-oriented programs is
hard, expensive, and error-prone.

That is not all. When developers started developing components
(packaging objects in binary units, such as DLLs), a classic problem
in distributed computing raised its head. The idea behind
component-oriented development is building systems out of well-
encapsulated binary entities, which you can plug or unplug at will
like Lego bricks. With component-oriented development, you gain
modularity, extensibility, maintainability, and reusability.
Developers and system designers wanted to get away from
monolithic object-oriented applications to a collection of interacting
binary components. Figure 5-2 shows a product that consists of
components.

The application is constructed from a set of components that
interact with one another. Each component was implemented by an
independent vendor or team. However, what should be done about
the synchronization requirements of the components? What
happens if Components 3 and 1 try to access Component 2 at the
same time? Could Component 2 handle it? Will it crash? Will
Component 1 or Component 3 be blocked? What effect would that
have on Component 4 or 5? Because Component 2 was developed
as a standalone component, its developer could not possibly know
what the specific runtime environment for the components would
be. With that lack of knowledge, many questions arise. Should the
component be defensive and protect itself from multiple threads
accessing it? How can it participate in an application-wide
synchronization mechanism that may be in place? Perhaps
Component 2 will never be accessed simultaneously by two threads

138

in this application; however, Component 2’s developer cannot know
this in advance, so it may choose to always protect the component,
taking an unnecessary performance hit in many cases for the sake

of avoiding deadlocks.

Figure 5-2. Objects packaged in binary units have no way of knowing
about the synchronization needs of other objects in other units

[<

-

5.2 Apartments: The Classic COM Solution

The solution used by classic COM is deceptively simple: each
component declares its synchronization needs. Classic COM makes
sure that instances (objects) of that class always reside in an
execution context that fits their declared requirements, hence the
term apartment. A component declares its synchronization needs by
assigning a value to its ThreadingModel named-value in the
Registry. The value of ThreadingModel determines the component’s
threading model. The available values under classic COM are
Apartment, Free, Both or no value at all.

Components that set their threading model to Apartment or leave it
blank indicate to COM that they cannot handle concurrent access.
COM places these objects in a single-threaded environment called a
single-threaded apartment (STA). STA objects always execute on
the same STA thread, and therefore do not have to worry about
concurrent access from multiple threads.

Components that are capable of handling concurrent access from
multiple clients on multiple threads set their threading model to
Free. COM places such objects in a multithreaded apartment (MTA).
Components that would like to always be in the same apartment as
their client set their threading model to Both. Note that a Both
component must be capable of handling concurrent access from
multiple clients on multiple threads because its client may be in the
MTA.

As discussed in Chapter 2, classic COM marshals away the thread
differences between the client and an object by placing a proxy and
stub pair in between. The proxy and stub pair blocks the calling
thread, performs a context switch, builds the calling stack on the

139

object’s thread, and calls the method. When the call is finished,
control returns to the calling thread that was blocked.

Although apartments solve the problem of methods executing
outside their threads, they contribute to other problems,
specifically:

e Classic COM achieves synchronization by having an object-to-
thread affinity. If an object always executes on the same
thread, then all access to it is synchronized. But what if the
object does not care about thread affinity, but only requires
synchronization? That is, as long as no more than one thread
accesses the object at a given time, the object does not care
which thread accesses it.

« The STA model introduces a situation called object starvation.
If one object in a STA hogs the thread (that is, performs
lengthy processing in a method call) then all other objects in
the same STA cannot serve their clients because they must
execute on the same thread.

e Sharing the same STA thread is an overkill of protection—calls
to all objects in a STA are serialized; not only can clients not
access the same object concurrently, but they can't access
different objects in the same thread concurrently.

« Even if a developer goes through the trouble of making its
object thread-safe (and marks it as using the Free threading
model), if the object's client is in another apartment, the
object still must be accessed via a proxy-stub and incur a
performance penalty.

o Similarly, all access to an object marked as Both that is
loaded in a STA is serialized for no reason.

« |If your application contains a client and an object each in
different apartments, you pay for thread context-switch
overhead. If the calling pattern is frequent calls to methods
with short execution times, it could kill your application's
performance.

« MTA objects have the potential of deadlock. Each call into the
MTA comes in on a different thread. MTA objects usually lock
themselves for access while they are serving a call. If two
MTA objects serve a call and try to access each other, a
deadlock occurs.

e Local servers that host MTA objects face esoteric race
conditions when the process is shut down while they are
handling new activation requests.

5.3 Activities: The COM+ Innovation
The task for COM+ was not only to solve the classic OOP problems

but also to address the classic COM concurrency model deficiencies

140

and maintain backward compatibility. Imagine a client calling a
method on a component. The component can be in the same
context as the client, in another apartment or a process on the
same machine, or in a process on another machine. The called
component may in turn call other components, and so on, creating
a string of nested calls. Even though you cannot point to a single
thread that carries out the calls, the components involved do share
a logical thread of execution.

Despite the fact that the logical thread can span multiple threads,
processes, and machines, there is only one root client. There is also
only one thread at a time executing in the logical thread, but not
necessarily the same physical thread at all times.

The idea behind the COM+ concurrency model is simple, but
powerful: instead of achieving synchronization through physical
thread affinity, COM+ achieves synchronization through logical
thread affinity. Because in a logical thread there is just one physical
thread executing in any given point in time, logical thread affinity
implies physical threads synchronization as well. If a component is
guaranteed not to be accessed by multiple logical threads at the
same time, then synchronization to that component is guaranteed.
Note that there is no need to guarantee that a component is always
accessed by the same logical thread. All COM+ provides is a
guarantee that the component is not accessed by more than one
logical thread at a time.

A logical thread is also called a causality, a name that emphasizes
the fact that all of the nested calls triggered by the root client share
the same cause—the root client's request on the topmost object.
Due to the fact that most of the COM+ documentation refers to a
logical thread as causality, the rest of this chapter uses causality
too. COM+ tags each causality with its own unique ID—a GUID
called the causality ID.

To prevent concurrent access to an object by multiple causalities,
COM+ must associate the object with some sort of a lock, called a
causality lock. However, should COM+ assign a causality lock per
object? Doing so may be a waste of resources and processing time,
if by design the components are all meant to participate in the same
activity on behalf of a client. As a result, it is up to the component
developer to decide how the object is associated with causality-
based locks: whether the object needs a lock at all, whether it can
share a lock with other objects, or whether it requires a new lock.
COM+ groups together components than can share a causality-
based lock. This grouping is called an activity.

It is important to understand that an activity is only a logical term
and is independent of process, apartment, and context: objects
from different contexts, apartments, or processes can all share the
same activity (see Figure 5-3).

141

Figure 5-3. Activities (indicated by dashed lines) are independent of
contexts, apartments, and processes

Process A Process B
Comtext 1 Context 3 Comtext 4
Ativity
Context 2 Context 5 Context

Within an activity, concurrent calls from multiple causalities are not
allowed and COM+ enforces this requirement. Activities are very
useful for MTA objects and for neutral threaded apartment (NTA)
objects, a new threading model discussed at the end of the chapter;
these objects may require synchronization, but not physical thread
affinity with all its limitations. STA objects are synchronized by
virtue of thread affinity and do not benefit from activities.

5.3.1 Causality-Based Lock

To achieve causality-based synchronization for objects that take
part in an activity, COM+ maintains a causality-based lock for each
activity. The activity lock can be owned by at most one causality at
a time. The activity lock keeps track of the causality that currently
owns it by tracking that causality’s ID. The causality ID is used as
an identifying key to access the lock. When a causality enters an
activity, it must try to acquire the activity lock first by presenting
the lock with its ID. If the lock is already owned by a different
causality (it will have a different ID), the lock blocks the new
causality that tries to enter the activity. If the lock is free (no
causality owns it or the lock has no causality ID associated with it),
the new causality will own it. If the causality already owns that lock,
it will not be blocked, which allows for callbacks. The lock has no
timeout associated with it; as a result, a call from outside the
activity is blocked until the current causality exits the activity. In
the case of more than one causality trying to enter the activity,
COM+ places all pending causalities in a queue and lets them enter
in the activity in order.

The activity lock is effective process-wide only. When an activity
flows from Process 1 to Process 2, COM+ allocates a new lock in
Process 2 for that activity, so that attempts to access the local
objects in Process 2 will not have to pay for expensive cross-process
or cross-machine lookups.

142

An interesting observation is that a causality-based lock is unlike
any other Win32 API-provided locks. Normal locks (critical sections,
mutexes, and semaphores) are all based on a physical thread ID. A
normal physical thread-based lock records the physical thread ID
that owns it, blocking any other physical thread that tries to access
it, all based on physical thread IDs. The causality-based lock lets all
the physical threads that take part in the same logical thread (same
causality) go through; it only blocks threads that call from different
causalities. There is no documented API for the causality lock.
Activity-based synchronization solves the classic COM deadlock of
cyclic calling—if Object 1 calls Object 2, which then calls Object 3,
which then calls Object 1, the call back to Object 1 would go
through because it shares the same causality, even if all the objects
execute on different threads.

5.3.2 Activities and Contexts

So how does COM+ know which activity a given object belongs to?
What propagates the activity across contexts, apartments, and
processes? Like almost everything else in COM+, the proxy and
stub pair does the trick.

COM+ maintains an identifying GUID called the activity ID for every
activity. When a client creates a COM+ object that wants to take
part in an activity and the client has no activity associated with it,
COM+ generates an activity ID and stores it as a property of the
context object (discussed in Chapter 2). A COM+ context belongs to
at most one activity at any given time, and maybe none at all.

The object that created the activity ID is called the root of the
activity. When the root object creates another object in a different
context—say Object 2—the proxy to Object 2 grabs the activity 1D
from the context object and passes it to the stub of Object 2,
potentially across processes and machines. If Object 2 requires
synchronization, its context uses the activity ID of the root.

5.4 COM+ Configuration Settings

Every COM+ component has a tab called Concurrency on its
properties page that lets you set the component synchronization
requirements (see Figure 5-4). The possible values are:

» Disabled

e Not Supported
e Supported

» Required
 Requires New

143

Figure 5-4. The Concurrency tab lets you configure your component’s
synchronization requirements

2

Genetal | Transactions | Securly | Aclivation Concumency |.l5.d~.lunl:nd|

Synchionzation support
" Dizabled

" Mot Suppoarted

[Suppoited

* Reqursd

[Requres New

Threading Modsl
Thierad Neubial Apartmemt

ok, I Cancel

The synchronization is activity based, as explained before. These
settings are used to decide in which activity the object will reside in
relation to its creator. As you may suspect, the way the
synchronization values operate is completely analogous to the
transaction support configuration values, discussed in Chapter 4. An
object can reside in any of these activities:

e |Inits creator’s activity: the object shares a lock with its

creator.

e In anew activity: the object has its own lock and starts a new
causality.

e In no activity at all: there is no lock, so concurrent access is
allowed.

An object’s activity is determined at creation time, based on the
activity of the creator and the configured requirement of the object.
For example, if the object is configured to have a synchronization
setting of Required, it will share its creator’s activity if it has one. If
the creator does not have an activity, then COM+ creates a new
activity for the object. The effects of this synchronization support
are defined in Table 5-1.

Table 5-1. Determinants of an object's activity

Object synchronization support Is creator in activity? The object will take part in:

|Disab|ed/Not Supported No No Activity

Supported No No Activity

Required No New Activity

Required New No New Activity
Disabled/Not Supported Yes No Activity

|Supported \Yes |Creator’s Activity
|Required \Yes |Creator’s Activity
|Required New \Yes |New Activity

144

Figure 5-5shows an example of activity flow. In the figure, a client
that does not take part in an activity creates an object configured
with Synchronization = Required. Since the object requires an
activity and its creator has none, COM+ makes it the root of a new
activity. The root then goes on to create five more objects. Two of
them, configured with Synchronization = Required and
Synchronization = Supported, are placed in the same activity as the
root. The two components configured with Synchronization = Not
Supported and Synchronization = Disabled will have no activity. The
last component is configured with Synchronization = Requires New,
so COM+ creates a new activity for it, making it the root of its own
activity.

Figure 5-5. Allocating objects to activities based on their configuration
and the activity of their creator

— Disabled
Hot
" Supported

Cient ——» Required €— Supported

—- Required
Activity
. Requires
New

Activity

You may be asking yourself why COM+ bases the decision on the
object’s activity partly on the object’s creating client. The heuristic
technique COM+ uses is that the calling patterns, interactions, and
synchronization needs between objects usually closely match their
creation relationship.

An activity lasts as long as the participating objects exist, and its
lifetime is independent of the causalities that enter and leave it. A
causality is a transient entity that lasts only as long as the client’s
call is in progress. The activity to causality relationship is analogous
to the transaction layout to transaction relationship described in
Chapter 4.

5.4.1 Synchronization Disabled
When you choose to disable synchronization support, you are
instructing COM+ to ignore the synchronization requirements of the

component in determining context for the object. As a result, the
object may or may not share its creator’s context.

145

You can use the Disabled setting when migrating a classic COM
component to COM+. If that component was built to operate in a
multithreaded environment, it already has a synchronization
mechanism of some sort, and you must disable the synchronization
attribute to maintain the old behavior.

In addition, if you disable synchronization on a component, that
component should never access a resource manager because it
might require the activity ID for its own internal locking.

5.4.2 Synchronization Not Supported

An object set to Not Supported never participates in an activity,
regardless of causality. The object must provide its own
synchronization mechanism. This setting is only available for
components that are nontransactional and do not use JITA. |
recommend avoiding this setting because it offers nothing to the
developer except restrictions.

5.4.3 Synchronization Supported

An object set to Supported will share its creator’s activity if it has
one, and will have no synchronization of its own if the creator does
not have one.

This is the least useful setting of them all because the object must
provide its own synchronization mechanism in case its creator does
not have an activity. You must make sure that the mechanism does
not interfere with COM+ activities when COM+ provides
synchronization. As a result, it is more difficult to develop the
component.

5.4.4 Synchronization Required

When an object is set to Required, all calls to the object will be
synchronized, and the only question is whether your object will
have its own activity or share its creator’s activity. When COM+
creates the object, it looks at the activity status of its creator. If the
creator has an activity, COM+ extends the creator’s activity
boundary to include the new object. Otherwise, COM+ creates a
new activity. If you don’t care about having your own activity,
always use this setting.

5.4.5 Synchronization Requires New

When an object is set to Requires New, the object must have a new
activity, distinct from the creator’s activity, and have its own lock.
The object will never share its context with its creator. In fact, this
is one of the sure ways of ensuring that your object will always be
created in its own context.

146

5.4.6 Required Versus Requires New

Deciding that your object requires synchronization is usually
straightforward. If you anticipate multiple clients on multiple
threads trying to access your object and you don’t want to write
your own synchronization mechanism, you need synchronization.
The more difficult question to answer is whether your object should
require its own activity lock or whether you should configure it to
use the lock of its creator. Try basing your decision on the calling
patterns to your object. Consider the calling pattern in Figure 5-6.
Object 2 is configured with synchronization set to Required and is
placed in the same activity as its creator, Object 1. In this example,
besides creating Object 2, Object 1 and Object 2 do not interact
with each other.

Figure 5-6. Sharing activities enable calls to be accepted from another
client

Creator’s activity

Client 1 Object 1 eevee :

Cient2 ™~ | Ohjpd? -

While Client 1 accesses Object 1, Client 2 comes along, wanting to
call methods on Object 2. Because Client 2 has a different causality,
it will be blocked. In fact, it could have safely accessed Object 2,
since it does not violate the synchronization requirement for the
creating object, Object 1.

On the other hand, if you were to configure Object 2 to require its
own activity by setting the Synchronization to Requires New, the
object could process calls from other clients at the same time as
Object 1 (see Figure 5-7).

Figure 5-7. I n this calling pattern, having a separate activity for the
created object enables it to service its clients more efficiently

Creator’s activity

Client 1 Object 1 - .

New activity

Ciemt2 T~ Objea2 [

147

However, calls from the creator object (Object 1) to Object 2 will
now potentially block and will be more expensive because they
must cross context boundaries and pay the overhead of trying to
acquire the lock.

5.5 Activities and JITA

Components that use JITA are required to be accessed by one client
at a time. If two clients could call a JITA component simultaneously,
one would be left stranded when the object was deactivated at the
time the first method call returned. COM+ enforces synchronization
on components that use JITA. The Concurrency tab for components
that have JITA enabled will only allow you to set your component to
Required or Requires New. In other words, the component must
share the activity of its creator or require a new activity. The other
options are disabled on the Concurrency tab. Once you disable JITA,
you can set synchronization to other values.

5.6 Activities and Transactions

Transactional objects also allow access to them by only one client at
a time. Synchronization is required to prevent the case in which one
client on one thread tries to commit a transaction while another
client on a second thread tries to abort it. As a result, every
transaction should have a synchronization lock associated with it.
On the other hand, having more than one lock in a given
transaction is undesirable—spinning off a new activity for an object
that is added to an existing transaction means always paying for the
overhead for checking the activity lock before accessing the object.
That check is redundant because no two causalities are allowed in
the same transaction anyway. In fact, when an object requires a
new transaction, it could still reuse the same causality lock of its
creator and allow the activity to flow into the new transaction.
COM+ therefore enforces the fact that a given transaction can only
be part of one activity (note that an activity can still host multiple
transactions).

In addition, as discussed in Chapter 4, transactional objects always
use JITA (COM+ automatically enables JITA for a transactional
object). The use of JITA is only optional for nontransactional
objects. Table 5-2 summarizes the synchronization values as a
product of the transaction and JITA setting. Note that the only case
when a transactional component can start a new activity is when
that component is also configured to be the root of a new
transaction.

Table 5-2. Component's available synchronization settings

148

Transaction setting JITA setting Available synchronization setting

Disabled Off All

Not Supported Off All

Disabled On Required or Requires New

Not Supported On Required or Requires New
Supported On Required

Required On Required

|Requires New |On |Required or Requires New

5.7 Tracing Activities

COM+ makes it easy for an object to retrieve its activity identity,
using the context object interface T0bjectContextInfo, with the

method:
HRESULT GetActivityID(GUID* pguidActivityID);

If the object does not take part in an activity, the method returns
GUID_NULL. Retrieving the activity ID is useful for debugging and
tracing purposes.

Example 5-1 demonstrates activity 1D tracing.

Example 5-1. Tracing the activity ID

HRESULT hres = S_OK;
GUID guidActivityID = GUID_NULL;
IObjectContextInfo* pObjectContextInfo = NULL;

hres = ::CoGetObjectContext (IID_IObjectContextInfo,
(void**) &pObjectContextInfo);

ASSERT (pObjectContextInfo != NULL);//a non-configure
object maybe?

hres = pObjectContextInfo-
>GetActivityId (&guidActivityID);

pObjectContextInfo->Release();

if (guidActivityID == GUID_NULL)
{
TRACE ("The object does not take part in an activity");

}

else

{
USES_CONVERSION;
WCHAR pwsGUID[150];

::StringFromGUID2 (guidActivityID, pwsGUID, 150);

149

TRACE ("The object takes place in activity with ID
%s",W2A (pwsGUID)) ;
}
COM+ provides the activity ID via another interface, called
IObjectContextActivity, obtained by calling
CoGetObjectContext ().
IObjectContextActivity has just one method, GetActivityId(),
used exactly like the method of the same name in the example.

5.8 The Neutral Threaded Apartment

The neutral threaded apartment (NTA) is a new threading model
available only on Windows 2000. Although it is not specific to COM+
(classic COM objects can also take advantage of the NTA), the NTA
is the recommended threading model for most COM+ objects that
do not have a user interface.

The NTA has evolved to address a deficiency in the classic COM MTA
threading model: suppose you have an STA client accessing an MTA
object. Under classic COM, all cross-apartment calls have to be
marshaled via a proxy/stub pair. Even though the object could have
handled the call on the client STA thread, the call is marshaled. The
stub performed an expensive thread context switch to an RPC
thread to access the MTA objects.

There was clearly a need for an apartment that every thread in the
process could enter without paying a heavy performance penalty.
This is what the NTA is: an apartment that every COM-aware thread
can enter. In every process, there is exactly one NTA. The NTA is
subdivided (like any other apartment) into contexts. COM objects
that reside in the NTA set their threading model value in the
Registry to Neutral.

Much like an MTA object, an object marked as neutral will reside in
the NTA, regardless of its creator’s apartment. Calls into the NTA
are marshaled, but only light-weight proxies are used (to do cross
COM+ context marshaling, if needed) because no thread-context
switch is involved. A method call on an NTA object is executed on
the caller’s thread, be it STA or MTA based.

No thread calls the NTA home, and the NTA contains no threads,
only objects. Threads can’t call CoInitializeEx() with a flag
saying NTA, and no such flag exists. When you create a thread, you
still must assign it to an STA of its own or to the MTA.

5.8.1 The NTA and Other COM Threading Models
When you mark your object as Neutral, it will always reside in the

NTA, regardless of the location of its creating client. When you mark
your object as Both, if the object’s creator is an NTA object, the

150

object will reside in the NTA as well. If your NTA object creates
other objects marked as Apartment, the location of the creating
thread may affects where those objects reside. Table 5-3 presents
the potential results when NTA clients create other objects. It also
shows the resulting object apartment, based on the object
threading model and the thread the NTA client runs on. You can
also see from Table 5-3 that components marked as Neutral will
always be in the NTA, regardless of the apartment of their creator.

Table 5-3. Apartment activation policy

Object is\Client is: Apartment Free Both Neutral [Not specified
STA, not main Current STA MTA|Current STA|NTA |Main STA
Main STA Main STA MTA Main STA NTA |Main STA
MTA Host STA MTA MTA NTA Main STA
Neutral (on STA thread) |On that STA thread [MTA|NTA NTA |Main STA
Neutral (on MTA thread) |Host STA MTANTA NTA |Main STA

The NTA model obeys the COM rule specifying that all objects must
be marshaled outside the apartment/context boundary, just like any
other apartment. If you have to manually marshal an object outside
the NTA, use the Global Interface Table (the GIT) or the GIT
wrapper class, presented in Chapter 2.

Finally, the NTA offers improved DCOM performance because
incoming calls from remote machines to NTA objects can execute
directly on the thread that handles the incoming remote call,
without a thread context switch.

5.8.2 COM+ and Threading Model

Your COM+ component should run in the STA if any one of the
following statements is valid:

« Your COM+ component displays a user interface or it relies on
having a message loop pump messages to it. Your component
relies on the STA thread message pump.

e Your COM+ component uses Thread Local Storage (TLS), a
thread-specific heap allocated off the thread stack. It must
run in the STA because TLS relies on having the thread
affinity the STA provides.

e Your component was provided by a third party as a COM
component and marked as Apartment. You want to import it
to your COM+ application so that it shares your application
settings, such as security and process, and is part of your
application’s MSI file. You should not change the threading
model, because you do not know how much thread affinity the
component requires.

 Your component is developed using Visual Basic 6.0.

151

Your COM+ component should use the Both threading model if the
creating client is in the STA or MTA, but not the NTA; it makes very
frequent method calls; and the calls have short duration. By using
Both, you will avoid cross-apartment marshaling, an overhead that
may hinder performance under this scenario.

In all other cases, your COM+ component should use the Neutral
threading model. You will need to use activity-based
synchronization to provide synchronization to your component.
You should avoid using the Free threading model for your
component because running in the NTA will offer the same
throughput without the additional thread context switch involved
with calls into the MTA. Only legacy components imported into
COM+ should use Free as the threading model.

5.9 Summary

Activity-based synchronization is a simple and elegant concurrency
management service that provides both an administrative support
and a straightforward programming model. For most cases, if your
design calls for using multithreading, configure your component to
require synchronization, and COM+ will do the rest. That way, you
can devote your development effort to the business problem
(instead of the synchronization issues), and the resulting code is
robust. COM+ synchronization is almost a formal way of eliminating
potentially hard-to-solve synchronization defects.

The first five chapters present the basic COM+ component services:
application activation, instance management, transaction support,
and concurrency management. The rest of the chapters describe
higher-level COM+ services (security, queued components, and
loosely coupled events). | call these services "high level" because
they all rely and interact with the basic services. Before you learn
these high-level services, you need to be familiar with
programmatic configuration of COM+ services, the subject of the
next chapter.

152

Chapter 6. Programming the COM+
Catalog

COM+ stores the information about your applications, your
components’ configuration and physical locations, global machine
settings, and every other bit of data COM+ requires to operate in a
repository called the COM+ Catalog.

The Catalog exposes COM+ interfaces and components that allow
you to access the information it stores. Anything you can do visually
with the Component Services Explorer, you can do
programmatically as well—from exporting COM+ applications to
doing fine-grained configuration such as enabling auto-deactivation
on a method. In fact, the Component Services Explorer and the
various wizards are merely handy user-interface wrappers around
the Catalog interfaces and objects.

This chapter covers the COM+ Catalog programming model and
provides you with useful code samples you can use as a starting
point for automating all tasks of administrating COM+ applications
and services.

6.1 Why Program the Catalog?

Some of the more advanced features of COM+ lack support in the
Component Services Explorer and are available only by configuring
your components programmatically. These features are largely tied
in with COM+ Events (discussed in Chapter 9) and include COM+
events filtering and managing transient subscriptions to COM+
events.

Programming the COM+ Catalog gives you access to much more
than advanced services. By learning to program the Catalog, you
can provide your system administrators with helper utilities that
automate tedious tasks. These helpers interact with the underlying
Catalog on the administrators' behalf, saving them the trouble of
learning how to use the Component Services Explorer and
presenting them with familiar terminology from the application
domain. A typical example is adding a new user to the system: you
can create a utility to programmatically add the user to an
appropriate role, without requiring the administrator to launch and
interact with the Component Services Explorer (role-based security
is discussed in Chapter 7). You can even create a utility to enable
your system administrator to remotely deploy, administer, and
configure your product's components and applications on different
machines (by accessing those machines' Catalogs) while remaining
at his desk.

153

You can also capture user input or deployment-specific information
during your application setup and fine-tune your application
configuration in the Catalog. The user sees just one installation
process because all access to the Catalog can be done
programmatically.

Finally, during your component development, you benefit greatly
from automating such tasks as starting and shutting down
applications. You will see an example of that later in the chapter.

6.2 The Catalog Programming Model

The information stored in the Catalog is structured similarly to its
layout in the Component Services Explorer. Data items in the
Catalog are more or less where you would expect to find them
according to their visual representation. In general, folders in the
Component Services Explorer (such as applications, roles,
components, and interfaces) correspond to COM+
Catalogcollections. A catalog collection is a collection of items of
some uniform kind. Every collection has a string identifying it, called
the collection name. One example of a catalog collection is the
Applications collection. The items in a collection are called catalog
objects. You can add or remove catalog objects in a collection, just
as you can add or remove items in a Component Services Explorer
folder. For example, when you add a catalog object to the
Applications collection, you are actually adding a COM+
application.

Every catalog object in a collection exposes properties that you can
read or configure. The catalog object properties are similar or
identical to the properties available on the properties page in the
Component Services Explorer for that particular item type. For
example, the properties of a catalog object from the Applications
collections are COM+ application properties—such as activation
mode (server or library) or idle time management timeouts.
Essentially, all you ever do with the COM+ Catalog is locate the
collection you are interested in, iterate over its catalog objects, find
the object you are looking for, modify its properties, and save your
changes. In practice, the Catalog's programming model is uniform,
whether you iterate over the Applications collection or the
Components collection of a specific application. The Catalog exposes
a hierarchy of predefined collections and objects, and you program
against those collections and objects. The Catalog interfaces are
dual COM interfaces, which enables you to call them from within
administration scripts.

Abstracted, the Catalog design pattern is depicted in Figure 6-1.
Each catalog collection may contain many catalog objects. A
collection's sole purpose is to allow you to iterate over the objects it

154

contains. A collection has no properties you can configure, much
like how a folder in the Component Services Explorer has no
properties. You only set the properties of catalog objects. Each
catalog object has a set of properties and methods you can invoke.
Each catalog object can also give you access to other collections
associated with it. For example, in the Applications collection,
every application object has a Components collection associated with
it, analogous to the Components folder under every application in
the Component Services Explorer. As you can see in Figure 6-1, the
Catalog has a root object. The root is special kind of a catalog
object, and the Catalog has only one root object. The root object
also has properties and methods you can call. The root object gives
you access to top-level collections such as the Applications
collection. The root object is your gateway to the COM+ Catalog and
is available as a COM object.

Figure 6-1. The COM+ Catalog design pattern

Roal ——=

l s

£ (ofolog
Collection

b

o

All three object types (collection, object, and root) support three
different interfaces. Every catalog collection supports the
ICatalogCollection interface, and every catalog object supports
the ICcatalogObiject interface. The ICatalogCollection interface
is designed to iterate over a collection of ICatalogObject interface
pointers. The ICatalogObject allows you to access the object’s
properties by referring to each property by a predetermined name
(an identifying string). In addition, each catalog object has a key
that you use to get the collections associated with that catalog
object.

The Catalog root supports a third interface called
ICOMAdminCatalog, with special root-level methods and properties.
The 1CcoMAdminCatalog interface lets you access the top-level
collections. When accessing the top-level collections, there is no
need for a key because there is only one root object.

The goal of this design pattern is to have an extremely extensible
programming model. Because all collections and objects support the
same interfaces, regardless of the actual collection or object, they
are all accessed and manipulated the same way. If in the future
there is a need to define new collections (such as new services in
future versions of COM+), the same structure and programming

155

model would be able to define and use the new collections and
catalog objects.

6.3 Catalog Structure

This section discusses the Catalog structure and the names of the
items in it, not the semantics of these items. Some of these items
have already been covered in the previous chapters, and some are
covered in subsequent chapters. The COM+ Catalog’s actual
structure, from the root down to the component level, is mapped
out in Figure 6-2. Each collection has a predefined identifying name,
whereas catalog objects’ names are defined by the user. The root of
the Catalog gives you access to top-level collections such as the
Applications and TransientSubscription collections (see
Chapter 9). You can also access less useful collections such as the
communication protocols used by DCOM or all of the in-proc servers
(COM objects in a DLL) installed on the machine. Another top-level
collection shown in Figure 6-2 is the ComputerList collection—a list
of all the computers that the Component Services Explorer is
configured to manage.

Figure 6-2. The COM+ Catalog structure, from the root down to the
component level

1
\ v ¥ ¥
(ther “Computerlist® = “Appleations” = “TronsientSulrscripfions™
(ollactions (allactian llactinn (ollactian

'S

“Mey App"” Oth
Eull’:l:g 'EEiHI .ﬁppilmelirms
|

“Roles” “Components”
Colbeclion fion
(sher “Mhanoger” rale (thar “My Companent”

Rokes Cofolog bject

!

“IsersinRole”
(ollection

—

*Inhn Doe" Other
Cotnlog Object Users

Campanents Coinlog Object

'

Addstionad
(ollecsians

The Applications collection, as the name implies, contains all the
COM+ applications installed on the machine. A catalog object in the
Applications collection allows you to set the properties of a
particular COM+ application. It also gives you access to two other

156

collections: the Roles and the Components collections. As
mentioned previously, every folder in the Component Services
Explorer corresponds to a catalog collection. Just as every
application in the Component Services Explorer has a Roles and
Components subfolder, a catalog object representing an application
can give you access to these two collections.

The Roles collection contains a catalog object for each role defined
in the application. Chapter 7 discusses role-based security at
length. Every catalog object in the Roles collection lets you set its
properties (such as the role name and description) and give you
access to a collection of users associated with that role, called the
UsersInRole collection. Every catalog object in the UsersInRole
collection represents a user that was added to that role. As you can
see in Figure 6-2, the objects in the UsersInRole collection do not
have any collections associated with them.

The components collection contains a catalog object for each
component in the application. You can programmatically configure
all the properties available on the properties page of a component in
the Component Services Explorer. Every component catalog object
can give you access to three collections: the
InterfacesForComponent collection, the
SubscriptionForComponent collection, and the RolesForComponent
collection (see Figure 6-3).

Figure 6-3. Every component catalog object has an elaborate structure

under it
h[?rulog meﬂ
1
“InterfocasForln nt* “Subscriplicask orln " *Rolest or(omposent”
DE;l:rimw "mliumm Collestion
ther “MyIntesfiace” Oy *My Selstrigmion:” Othes “Mansger” ke
Inteafoces [otobeq Dhject Subuription: {Cotolog Ohject Roles {Coiokog Disject
S 'S y
'Hl.'lesmer[lce' "Hall'ndsfmmarflce' 'P'I.Hisl'lerl’n]:arl'es" *Sehsiribe Properties”
Collection
“Momnes” roe 'lyilmhad' Othes Othes "lyF Qther “MySubsoriber
Hdes Caselog Dbject Casalog Objed Metkod: Properties [arakeg arr Sebseribers (ofaeg Dbject
“RolesForMethed”
Cellestion

Y

Othier “Maneger” o
Rudes {otoog Dhject

The InterfacesForComponent collection contains a catalog object
for every interface the component supports. Every interface catalog

157

object gives you access to its properties and to two collections—one
is called the RolesForInterface collection, used to iterate over the
roles that were granted access for this interface, and the second
collection is the MethodsForInterface collection. The
MethodsForInterface collection contains a catalog object for each
method on that interface. Each method catalog object can give you
access to its properties and to the roles associated with that
method, in a collection called RolesForMethod.

Going back to the collections accessible from every component
catalog object, the RolesForComponent collection lets you access
the roles associated with that component, and the
SubscriptionsForComponent collection contains a catalog object
per a subscription to a COM+ Event (discussed in Chapter 9). Every
subscription object is associated with two collections—the
PublisherProperties and the SubscriberProperties collection.
The only role objects that have collections of users associated with
them are in the Roles collection accessible from every application
object (see Figure 6-2). The component, interface, and method
level role objects do not have user collections associated with them
(see Figure 6-3).

One more bit of COM+ Catalog trivia—every catalog object always
has at least three collections associated with it: the
RelatedCollectionInfo, PropertyInfo, and ErrorInfo
collections. These collections were omitted from Figure 6-2 and
Figure 6-3 for the sake of clarity. The RelatedCollectionInfo
collection is used for advanced iterations over the Catalog, allowing
you to write generic recursive iteration code that discovers at
runtime which collections a particular catalog object is associated
with. The PropertyInfo collection is used to retrieve information
about the properties that a specified collection supports. The
ErrorInfo collection can provide extensive error information for
dealing with errors in methods that update more than one catalog
object at once, so you can find out exactly which object caused the
error. This chapter does not discuss these three advanced
collections.

When programming against the COM+ Catalog structure, you need
not memorize the Catalog intricate structure. You can just follow
the intuitive structure of the Component Services Explorer and
simply provide the correct collection name, while using Figures 6-2
and 6-3 as reference navigation maps.

158

6.4 I nteracting with the Catalog

Besides understanding the Catalog physical structure, you need to
be familiar with how to interact with the three Catalog interfaces
and object types (root, collection, and object). This section will walk
you through a few programming examples and demonstrate most of
what you need to know when programming the Catalog.

6.4.1 The Catalog Root Object

The starting point for everything you do with the Catalog is the root
object. You create the root object with the class ID of
CLSID_COMAdminCatalog (or the prog-ID of
COMAdmin.COMAdminCatalog) and obtain an interface pointer to the
ICOMAdminCataloginterface. You use the
ICOMAdminCataloginterface pointer to either invoke root-level
methods or access one of the top-level collections by calling the
GetCollection() method, defined as:

[id(1)] HRESULT GetCollection([in]BSTR
bstrCollectionName,

[out, retval]IDispatch**
ppCatalogCollection);

You can use ICOMAdminCatalog: :GetCollection() to access only
the top-level collections (such as Applications) shown in Figure 6-
2. Accessing lower level collections is done differently, and you will
see how shortly. GetCollection() returns an
ICatalogCollection pointer to the specified collection. Once you
get the collection you want, you can release the root object.
Example 6-1 shows how to access the Applications collection by
creating the root object and calling

ICOMAdminCatalog: :GetCollection().

Example 6-1. Accessing a top-level collection such as Applications
HRESULT hres = S_OK;
ICOMAdminCatalog* pCatalogRoot = NULL;

ICatalogCollection* pApplicationCollection = NULL;

hres =
::CoCreatelInstance (CLSID_COMAdminCatalog,NULL,CLSCTX_ ALL,

IID_ICOMAdminCatalog, (void**)&pCatalogRoot) ;
hres = pCatalogRoot-—
>GetCollection (_bstr_t ("Applications"),

(IDispatch**) &pApplicationCollection);

159

pCatalogRoot—>Release(); //You don’t need the root any
more

/* use pApplicationCollection */
Later, you will see other uses for the TCOMAdminCatalog interface
besides just accessing a top-level collection.

6.4.2 The I CatalogCollection Interface

Every collection in the COM+ Catalog implements the
ICatalogCollection interface. As mentioned previously, the
ICatalogCollection interface is used to iterate over a collection of
catalog objects. The ICatalogCollection interface supports
several methods and properties. The main methods it supports are
Populate(), Add(), Remove (), SaveChanges (), and
GetCollection(). The main properties are Count and Item.
After obtaining a collection interface (be it a top-level or a lower-
level collection), the first thing you need to do is call the Populate (
) method. The Populate () method reads the information from the
Catalog into the collection object you are holding, populating the
collection with data for all the items contained in the collection.
If you want to change the collection by adding or removing a
catalog object, use the Add() or Remove () methods. The Add ()
method is defined as:
[id(2)] HRESULT Add([in]IDispatch* pCatalogObiject) ;
It accepts just one parameter—a pointer to the catalog object you
wish to add to the collection.
The count property returns the number of objects in the collection
and must be prefixed by a get_ when accessed from C+ + (there
are plenty of examples later in the chapter).
The Item property is defined as:
[id (1) ,propget] HRESULT Item([in] long lIndex,

[out, retval]IDispatch**
ppCatalogObject) ;
This property returns a pointer to a catalog object, given its index.
Collection indexes are zero-based, not one-based, meaning the first
element has index zero and the last has index count-1. You can
now write a for loop that iterates over the entire collection,
retrieving one item at a time. Once you have a pointer to a catalog
object, you can read and change its named properties.
The Remove () method is defined as:
[id (3)] HRESULT Remove (long lIndex);
It accepts an index in the collection identifying the object you wish
to remove.
Whatever change you make to the collection (adding or removing
objects or modifying object properties) will not take effect unless
you call the saveChanges () method. It is a common pitfall to write

160

code that iterates correctly over a collection, modifies it, and
releases all the objects properly—but forgets to call saveChanges (
). Next time your Catalog administration code executes and no
apparent change has taken place, go back and make sure you called
SaveChanges ().
Finally, the GetCollection() method is defined as:
[id (4] HRESULT GetCollection([in] BSTR
bstrCollectionName,

[in] VARIANT varObjectKey),

[out, retval]IDispatch**
ppCollection);
This method is used to retrieve a catalog collection associated with
a particular catalog object. As explained previously, a catalog object
can have catalog collections associated with it (see Figures 6-2 and
6-3). The catalog object interface has no means for providing those
collections; you get them by calling GetCollection() on the
collection containing the object. GetCollection() accepts a key
value as a parameter, so that it can identify the object whose
collection you wish to access. Note that
ICOMAdminCatalog: :GetCollection () did not require a key
because the top-level collections are already named uniquely. In the
case of a lower level collection, many objects will have collections
associated with them, all named the same. For example, if you
iterate over the Applications collection, you will find that each
item (a catalog object) is an application and each of them has a
Components collection. If you want to access the Components
collection of a particular application, you need to call
ICatalogCollection: :GetCollection() on the Applications
collection interface, passing in the key to the particular application
whose Components collection you wish to access.

6.4.3 The I CatalogObject I nterface

Every catalog object supports the 1CatalogObject interface,
allowing you to configure the object's properties. All catalog objects
support three predefined read-only properties: Key, Name, and
valid, defined as:

[id (2) ,propget] HRESULT Key ([out, retval] VARIANT*
pvarKey) ;

[1id (3) ,propget] HRESULT Name ([out,retval] VARIANT¥*
pvarName) ;

[id(5) ,propget] HRESULT Valid([out, retval] VARIANT_BOOL¥*
pbValid) ;

The Name property contains the name of the object. For example, if
the object is a COM+ application, the name will be the application's
name. The valid property returns TRUE if the object was read
successfully from the COM+ Catalog when its containing collection

161

was populated. The Key property returns a unique key identifying
this object, used to access all the collections associated with that
object.
In addition, all catalog objects support, according to their specific
type, named value properties. These properties are accessible via
one read-write property called the value property, defined as:
[propget, 1id(1)] HRESULT Value([in]BSTR bstrPropName,
[out, retval] VARIANT*
pvarValue) ;
[propput, 1d(1l)] HRESULT Value ([in]BSTR
bstrPropName, [in] VARIANT varNewValue) ;
Each catalog object (application, component) has a predefined set
of named properties and predefined enum values for those
properties.
For example, every catalog object in the Applications collection
represents a COM+ application and has a named value property
called Activation that controls whether the application should be
activated as a library or server application. The predefined enum
values for the Activation property are
COMAdminActivationInproc and COMAdminActivationLocal
The ICcatalogObject interface also supports two not-so-useful
helper methods, TsPropertyReadOnly () and
IsPropertyWriteOnly (), intended to be used during generic
iteration, when you do not know the exact behavior of a property
you are accessing.

6.4.4 Using the Catalog I nterfaces

You have probably had as much dry theory as you can take, and an
example can go a long way to demonstrate the point. Example 6-2
shows many of the points covered so far in this chapter. Suppose
you want to programmatically set a COM+ application (called
MyApp) to be a library COM+ application. Example 6-2 uses Visual
Basic to iterate over the Applications collection, looking for the
MyApp COM+ application, and sets its activation mode to a library
application.

Example 6-2. Visual Basic example of finding an application and setting
its activation mode

Dim catalog As ICOMAdminCatalog

Dim applicationCollection As ICatalogCollection
Dim applicationCount As Long

Dim i As Integer ’'Application index

Dim application As ICatalogObject

Set catalog = New COMAdminCatalog

162

Set applicationCollection =
catalog.GetCollection ("Applications™")
Set catalog = Nothing ’"You don’t need the root any more

"Read the information from the catalog
Call applicationCollection.Populate
applicationCount = applicationCollection.Count ()

For 1 = 0 To applicationCount - 1
"Get the current application
Set application = applicationCollection.Item (1)
If application.Name = "MyApp" Then
application.Value ("Activation") =
COMAdminActivationInproc
applicationCollection.SaveChanges
End If
Set application = Nothing
i=1+1
Next i

Set applicationCollection = Nothing

First, create a Catalog root object, the catalogRoot object. Then
invoke its GetCollection () method, asking for an
ICatalogCollection interface pointer to the Applications
collection. Next, release the root object, because it is no longer
needed. Then populate the application collection object and find out
how many applications you have (the Count property). The for loop
iterates over the applications and gets one application at a time, in
the form of an IcatalogObject object, using the collection’s Ttem
property. You then check if the catalog object’s name is MyApp. If it
is, set its Activation named property to the predefined enum value
of cOMAdminActivationInproc. After making the change to the
application object, call saveChanges () on the Applications
collection object to save the change.

Example 6-3 does the same thing as Example 6-2, except it is
written in C+ + instead of Visual Basic.

Example 6-3. C+ + example of finding an application and setting its
activation mode

HRESULT hres = S_OK;

ICOMAdminCatalog* pCatalog = NULL;
ICatalogCollection* pApplicationCollection = NULL;
long nApplicationCount = 0;

int 1 = 0; //Application index

hres =
::CoCreatelInstance (CLSID_COMAdminCatalog,NULL, CLSCTX_ ALL,

163

IID_ICOMAdminCatalog, (void**) &pCatalog) ;
hres = pCatalog->GetCollection(_bstr_t ("Applications"),

(IDispatch**) &pApplicationCollection);
pCatalog—->Release(); //You don’t need the root any more

hres = pApplicationCollection->Populate(); //Read the
information from the catalog

hres = pApplicationCollection-—

>get_Count (&nApplicationCount) ;

for (i=0; i<nApplicationCount; i++)
{
ICatalogObject* pApplication = NULL;
//Get the current application
hres = pApplicationCollection-
>get_TItem (i, (IDispatch**) &pApplication);
_variant_t varAppName;

_variant_t
varActivation ((bool) COMAdminActivationInproc) ;
hres = pApplication->get_Name (&varAppName) ;
if (_bstr_t ("MyApp") == _bstr_t (varAppName))

{
long ret = 0;
hres = pApplication-—
>put_Value (_bstr_t ("Activation"),varActivation);

hres = pApplicationCollection->SaveChanges (&ret);
}
pApplication->Release();
}
pApplicationCollection—>Release();

A valid question you are probably asking is, "How do | know what
the predefined named properties and enum values are for the
property | want to configure?" The answer is simple: the Platform
SDK documentation (available in the MSDN Library, under
Component Services/COM+ (Component Services)/Reference/ COM+
Administration Reference) contains a comprehensive list of every
named property and its corresponding enum values (or data type
and range, if applicable).

Another point worth demonstrating with an example is using the
Key property of a catalog object to access a related collection.
Suppose you would like to print to the trace window all the
components in all the applications. You would use the Key property
of every COM+ application to access its Components collection.
Example 6-4 shows the TraceTree () method that iterates over the
Applications collection, calling the TraceComponents () method
to iterate over an application component collection.

164

Example 6-4. Tracing all the components in every COM+ application

#include "COMadmin.h"

void TraceTree()

{
HRESULT hres = S_OK;
ICOMAdminCatalog* pCatalog
ICatalogCollection* pApplicationCollection
long nApplicationCount = 0;

NULL;
NULL;

hres =

::CoCreatelInstance (CLSID_COMAdminCatalog, NULL,CLSCTX_ALL,

IID_ICOMAdminCatalog, (void**) &pCatalog) ;

hres = pCatalog-
>GetCollection(_bstr_t ("Applications"),

(IDispatch**) &pApplicationCollection);

pCatalog->Release(); //You don’t need the root any

more

//Read the information from the catalog
hres = pApplicationCollection->Populate();
hres = pApplicationCollection-

>get_Count (&nApplicationCount) ;

//Iterate over the Applications collection

for (int i1i=0;i<nApplicationCount;i++)

{
ICatalogObject* pApplication = NULL;
ICatalogCollection* pComponentCollection = NULL;
_variant_t varAppName;
//Get the current application
hres = pApplicationCollection-

>get_TItem (i, (IDispatch**) &pApplication);

hres = pApplication—->get_Name (&varAppName) ;

TRACE ("The components in application \"%$s\" are:
\n",

(char*) (_bstr_t (varAppName)) ;

TraceComponents (pApplicationCollection, pApplication);
pApplication->Release();
}

pApplicationCollection—->Release();

void TraceComponents (ICatalogCollection*
pApplicationCollection,

165

ICatalogObject* pApplication)

HRESULT hres = S_OK;

ICatalogCollection* pComponentCollection =
long nComponentCount = 0;

_variant_t varAppKey;

//Get the Component collection for this application.

Need the key first
hres = pApplication->get_Key (&varAppKey) ;
hres = pApplicationCollection-
>GetCollection(_bstr_t ("Components"),

varAppKey, (IDispatch**) &pComponentCollection);

//Read the information from the catalog
hres = pComponentCollection->Populate();
hres pComponentCollection—

>get_Count (&nComponentCount) ;

for (int j=0; j<nComponentCount; j++)
{
ICatalogObject* pComponent = NULL;
_variant_t varCompName;
//Get the current component
hres = pComponentCollection—
>get_TItem (], (IDispatch**) &pComponent) ;

NULL;

hres = pComponent—->get_Name (&varCompName) ;
//Ugly, but works:
TRACE (" %d. %s \n"
;, J+1, (char*) (_bstr_t (varCompName)) ;
pComponent->Release();
}
pComponentCollection—->Release();

}

The output from Example 6-4 should look similar to this (depending,
of course, on the applications installed on your machine):

The components in application "COM+ Utilities" are:

TxCTx.TransactionContext
TxCTx.TransactionContextEx
RemoteHelper.RemoteHelper
QOC.Recorder.1

QC.ListenerHelper.1

The components in application "MyApp" are:
MyApp .MyComponent .1

MyObj2.MyObj2.1

3. Subscriber.MyEvent.1l

4. EventClass.MyEvent.1l

g w N

N -

The components in application "COM+ QC Dead Letter Queue

Listener" are:

166

1. QOC.DLQListener.1
The components in application "Logbook" are:

1. LogBootEvent.LogbookEventClass.1

2. LogBook.ComLogHTML.1

3. LogBook.COMLogXML. 1
The components in application "System Application" are:

1. Mts.MtsGrp.1

2. COMSVCS.TrackerServer

3. EventPublisher.EventPublisher.1

4. Catsrv.CatalogServer.l
The first part of Example 6-4, the TraceTree () method, creates
the root object, gets the top-level Applications collection,
populates it, and retrieves the number of applications (using the
Count property). It then iterates over the Applications collection,
getting one catalog object at a time, tracing its name, and passing
it to the TraceComponents() method. The TraceComponents ()
traces out all the components associated with that application. Note
that it is not sufficient to pass to the TraceComponents () method
just the application catalog object. You have to pass in as a
parameter the Applications collection as well. Recall that when
you want to access a Collection 2 associated with Object 1
(contained in Collection 1), you get Collection 2 from Collection 1,
which contains Object 1. This is why TraceComponents () accepts
pApplicationCollection as a parameter:
void TraceComponents (ICatalogCollection*
pApplicationCollection,

ICatalogObject* pApplication)

TraceComponents () then calls get_Key () on the application
catalog object passed in and, using that key, accesses the
application object’s Components collection. Next, TraceComponents (
) populates the components collection, gets its count, and iterates
over it, tracing one component name at a time.
When writing code as in Example 6-4, which iterates over
collections and nested collections, it is very important to name your
variables correctly to make your code readable.
ICatalogCollection* pCollection iS a poor variable name, but
ICatalogCollection* pApplicationCollection is a meaningful
and readable name that conveys exactly which collection it is
pointing to.
Now you should be getting the feel of how truly generic and
extensible the COM+ Catalog programming model really is. The
same ICatalogCollection interface is used to iterate over every
collection, and the same ICatalogObiject interface is used to
configure and access all the parameters in the Catalog, be it an
application- or a method-level property.

6.4.5 Saving Changes

167

When you make changes to a collection (adding or removing catalog
objects) or to objects in it (configuring properties), you have to call
ICatalogCollection: :SaveChanges () to commit them. You can
also discard changes you made to a collection, but did not commit
yet, by calling populate () again.

When you call 1catalogCollection: :SaveChanges (), all objects
and all properties on all the objects are written to the Catalog at
once, as an atomic operation. The only problem with this
programming model is that the Catalog presents a last-writer-wins
behavior—the object is saved in the Catalog precisely the way the
last writer configured it. This means that there is a potential for
conflicts and contentions between two applications that modify the
same data set, because neither has a lock on the items in the
Catalog.

6.4.6 Object Properties I nterdependencies

Sometimes, a particular value of a catalog object named property
depends on the values of other named properties. For example,
when the Transaction named property of a component is set to the
value of COMAdminTransactionRequired or
COMAdminTransactionRequiresNew, the value of the
JustInTimeActivation named property must be set to TRUE. This
is no surprise because all transactional components require JITA to
be turned on (as well as requiring synchronization).

The COM+ Catalog is aware of all the properties' interdependencies
and will enforce consistency whenever it deems it fit. If you try to
set a named property in a way that conflicts with another, an error
will occur. For example, if you try to turn JITA off on a transactional
component (by setting it to FALSE), SaveChanges () will fail. One
effect of having a smart Catalog is that some properties might be
changed for you without you explicitly setting them. For example, if
you set the Transaction named property to the value of
COMAdminTransactionRequired, the Catalog turns JITA on and sets
the value of the Synchronization property to
COMAdminSynchronizationRequired.

6.5 Features of COMAdminCatalog

There is more to the Catalog root object than providing you with
access to the top-level collections. The 1coMAdminCataloginterface
supports 22 methods, providing you with many useful features that
allow you to:

« Connect to the Catalog root object on a remote machine

168

e Install a new COM+ application

 Export an existing COM+ application

e Start or shut down a COM+ application

« Install components into COM+ applications

e Obtain information regarding event classes

« Start, stop, or refresh load balancing routing (load balancing
is not available in standard installations of COM+)

e Check the status of a COM+ service (currently, only load
balancing)

« Back up the COM+ Catalog information to a specific file

» Restore the Catalog from a specific file

For example, you often need to programmatically administer a
COM+ Catalog on a remote machine, during deployment or for
automating remote administration of servers. To do so, you would
use the ICOMAdminCatalog: :Connect () method, defined as:
[1d(2)] HRESULT Connect ([in]BSTR bstrMachineName,

[out, retval] IDispatch**
pRemoteRootCollection)
The first parameter to Connect () is the remote machine name,
and the second is an out parameter—a pointer to a root collection
on the remote machine. After calling Connect (), the
ICOMAdminCatalog you are holding starts affecting the remote
machine to which you have connected—calls made on its methods
administer the remote machine. You can also use the
pRemoteRootCollection parameter to gain access to remote top-
level collections, as shown in Example 6-5.

Example 6-5. Accessing a top-level catalog collection on a remote
machine

HRESULT hres = S_OK;

ICOMAdminCatalog* pCatalog = NULL;
ICatalogCollection* pRemoteAppCollection = NULL;
ICatalogCollection* pRemoteRootCollection NULL;

//Creating a local catalog

hres =

::CoCreatelInstance (CLSID_COMAdminCatalog, NULL, CLSCTX_ALL,
IID_ICOMAdminCatalog, (void**)&pCatalog);

//Connecting to the remote machine
hres = pCatalog->Connect (_bstr_t ("RemoteMachineName"),

(IDispatch**) &pRemoteRootCollection);

pCatalog—>Release();///No need for it anymore

169

_variant_t varKey ("");//Key value will be ignored

//Getting the "Applications" collection on the remote
machine

hres = pRemoteRootCollection-
>GetCollection (_bstr_t ("Applications"),varKey,

(IDispatch**) &pRemoteAppCollection);

pRemoteRootCollection->Release();//No need for the
remote root collection anymore

/* use pRemoteAppCollection */

pRemoteAppCollection—>Release();

Another example of what you can do with the root object is shutting
down and starting up COM+ applications. The ICOMAdminCatalog
interface supports the startApplication() and
ShutdownApplication() methods, defined as:

[id(16)] HRESULT StartApplication (BSTR strAppName) ;

[1d(8)] HRESULT ShutdownApplication (BSTR strAppName) ;
Starting up an application programmatically is helpful in the case of
gqueued components (you will see why in Chapter 8), and shutting
down COM+ applications is extremely useful during development.
When you are doing a test-debug-fix-build-retest cycle, you often
discover a problem that you can fix on the spot. However, you
cannot rebuild your components as long as the application that
hosts them is running because the application maintains a lock on
the DLL. A COM+ application may be running even when idle (the
default is three minutes), so you have to shut down the application
using the Component Services Explorer. After a while, this becomes
very annoying. The situation is even worse if you have a number of
interacting COM+ applications and you have to shut them all
down—for example if you want to change a header file, a lib, or a
component they all use.

Replicating the COM+ Catalog

If your product consists of more than one COM+ application,
you may want to actually clone the entire COM+ Catalog on
a machine where the product is installed and use the clone
as an installation. COM+ allows you to replicate all COM+
settings from a giving source computer to one or more target
computers, using a utility called COMREPL. COMREPL is
typically used to replicate a master configuration and deploy
it on a set of identically configured computers. Another
potential use for COMREPL is for product configuration
management purposes.

170

COMREPL is a crude command line-driven utility:

COMREPL <source computer name> <target computers
list>

All COM+ applications on the master computer are replicated
to the target computers, except the COM+ preinstalled
applications. In addition, all COM+ applications previously
installed on the target computers will be deleted as part of
the replication process.

So how about building a utility that uses
ICOMAdminCatalog: : ShutdownApplication() to shut down the
application specified on the command line—or all of the COM+
applications on your machine, if no application name was specified?
| call this utility Nuke'm, and | even have a special icon on my
Visual Studio toolbar that | click before every build, just to purge all
the running applications from my machine and start a fresh build
and test cycle. Nuke'm contains a light C+ + wrapper class around
the ICOMAdminCatalog interface, called cCatalogAdmin. Example 6-
6 shows its Sshutdown () method, which shuts down the specified
application and, if none is specified, shuts down all the COM+
applications.

Example 6-6. The CCatalogAdmin::ShutDown() method

HRESULT CCatalogAdmin::ShutDown (BSTR bstrAppName)
{
//m_pCatalog is a member of the class, initialized in
the constructor
if (_bstr_t (bstrAppName) != _bstr_t(""))
{
return m_pCatalog-
>ShutdownApplication (bstrAppName) ;
}
else//Shut down all the applications
{
HRESULT hres = S_OK;
ICatalogObject* pApplication = NULL;
ICatalogCollection* pApplicationCollection = NULL;
long nApplicationCount = 0;
int 1 = 0;//Application index

//Get the application collection
hres = m_pCatalog-
>GetCollection (_bstr_t ("Applications"),
(IDispatch**) &pApplicationCollection);
hres = pApplicationCollection->Populate();

hres = pApplicationCollection-
>get_Count (&nApplicationCount) ;

171

for (i=0; i<nApplicationCount; i++)
{
//Get the current application
hres = pApplicationCollection->get_TItem(i,
(IDispatch**) &pDispTemp) ;

_variant_t wvarName;
hres = pApplication->get_Name (&varName) ;
_bstr_t bstrName (varName) ;

//No point in killing the system app,
//since it will start up again immediately
if (bstrName != _bstr_t ("System Application"))

{
hres = m_pCatalog-—
>ShutdownApplication (bstrName) ;

}
pApplication->Release();

}
pApplicationCollection->Release();
return hres;
}
}
The Nuke’'m utility is available from this book’s web site,
http://www.oreilly.com/catalog/comdotnetsvs/.

6.6 The COM+ Catalog and Transactions

The COM+ Catalog is a resource manager. When a component that
takes part in a transaction tries to access the Catalog, the Catalog
auto-enlists in that transaction. As a result, all the configuration
changes made within the scope of that transaction will be
committed or aborted as one atomic operation, even across multiple
catalogs on multiple machines, according to the transaction success.
The main advantage of having the COM+ Catalog take part in your
transactions is that it enormously simplifies deployment on multiple
machines. Imagine a situation in which you write an elaborate
installation script that tries to access and install your product on
multiple machines. The problem is that almost anything in a
distributed installation scenario can go wrong—from network
failures to security to disk space. Because all the installation
attempts are scoped under one transaction, you can guarantee that
all server machines are left with identical configurations—either the
installation succeeded on all of them, or the changes were rolled
back and the servers are left just as they were before you tried to
install the product.

172

Another benefit of having the Catalog as a resource manager is
dealing with potential contentions and conflicts between two
different applications that try to access and modify the Catalog at
the same time. To ensure the transaction’s isolation, when one
transaction makes a change to the Catalog, the Catalog will block all
writers from other transactions until the current transaction
commits or aborts. (COM+ will abort the transaction if a deadlock
situation exists because of the blocking.) While a transaction
modifies the Catalog, readers from within that transaction will read
the data as if it were committed. Readers from outside the
transaction will not be blocked, and the data they see will not reflect
any interim changes made within the first transaction until that
transaction actually commits. You should avoid starting a new
COM+ application (either programmatically or manually via the
Component Services Explorer) that relies on information that is not
yet committed.

One last point regarding transactions and the COM+ Catalog: you
can programmatically invoke calls that access the filesystem, such
as exporting a COM+ application. The problem is that the filesystem
and the Windows Installer do not participate in transactions. If your
transaction aborts, you will have to roll back those changes
manually to maintain consistency.

6.7 Summary

Programming the COM+ Catalog is nothing more than
understanding the Catalog programming model and navigating
down the Catalog structure, using the Component Services Explorer
or the Catalog structure diagrams in this chapter as reference
guide. This chapter focused on the Catalog structure, not on the
semantics of the items it contains. Although the Catalog interfaces
were designed for scripting languages, you can access them from
C++ as well, and the resulting code is just as concise. Some COM+
services features are available only by accessing the Catalog
programmatically (in particular, some features of COM+ Events,
discussed in Chapter 9), so knowing how to work with the Catalog is
an essential skill. Furthermore, automating mundane and repetitive
development and deployment tasks by programming directly
against the COM+ Catalog is fairly easy.

173

Chapter 7. COM+ Security

Perhaps nothing epitomizes the differences between developing a
distributed enterprise-wide system using COM+ and developing one
using DCOM more than the COM+ security service. DCOM security
is notorious for being complex and hard to learn. Even though
DCOM uses a simple and elegant security programming and
configuration model, the sheer volume of technical details and the
inherent difficulty of distributed systems security puts DCOM
security outside the reach of many developers.

COM+ makes using security enjoyable by providing an easy-to-use
administrative security infrastructure. COM+ security is based on an
intuitive new security concept called role-based security. Role-based
security greatly simplifies the management and configuration of
your application’s security. Of all component services provided by
COM+, security is my favorite.

COM+ security makes it possible for you to leave all security-related
functionality outside the scope of your components and configure
security administratively. Roles are used for access control, and
declarative attributes are used for the remaining security settings. If
the administrative configurations are too coarse for your particular
needs and you still want to have programmatic control over
security, COM+ provides an easy-to-use programmatic way to fine-
tune security. In fact, COM+ security solves classic distributed
computing problems that are difficult and would require much work
to solve on your own. Even with a single-machine application,
COM+ security provides elegant solutions for administration and
configuration issues.

This chapter covers basic security concepts, but it avoids (as much
as possible) the gory details of low-level security manipulation and
COM+ security implementation. Instead, I'll focus on how best to
use the security service, what the available options are, the
tradeoffs between them, and their configuration pitfalls.

7.1 The Need for Security

Who needs security? You do. AImost nobody today develops a
standalone, single-machine, self-contained application. Applications
today are distributed between multiple machines. Some applications
have a user interface; others execute business logic and interact
with other applications. Your database is probably on a separate set
of machines altogether. The word "security" is intrinsic to the word
"distributed"—meaning that the moment you distribute your
application, security raises its head.

174

Security provides ways to verify that a particular user has sufficient
credentials to perform an operation. Security is the way you verify
that the users are who they say they are. Security is the way you
protect your system from innocent user mistakes and malicious
attacks. For example, imagine a hospital patient information
system. In this system, not all users on all terminals are created
equal. Only doctors can sign a death certificate or change a dose of
medicine. Nurses can update patient parameters, such as
temperature or the last time the patient took medicine. Hospital
clerks can view some information and bill the patient’s insurance
company. However, a clerk should not be allowed to alter anything
considered medical information, not even accidentally. A security
infrastructure provides an easy way to configure these credentials
and access controls. When a doctor logs on at a nurse’s station, you
want to give the doctor proper access, even though the access is
from the nurse’s station. You should protect the privacy of the
patient information so malicious parties—on the inside or outside—
cannot gain access to it. You want to be able to easily change who
is allowed to do what and avoid hardcoding security policies in your
application. As the system and the domain change (new hospital
regulations or new users), you want to reconfigure the system
security without recoding it.

Security in a modern system is not an afterthought. You must
design security into your COM+ application and components from
day one, much the same way you design concurrency and threading
models, factor out your interfaces, and allocate interfaces to
components. If you don't, at best your application will not work. At
worst, you will introduce security breaches into your system,
allowing critical application logic to go astray and face data
corruption or inconsistency. Essentially, lack of security is a failure
to deliver the robust system your customer pays for. When dealing
with security, you should always assume that somebody will
eventually find and take advantage of a security hole.

7.2 Basic Security Terms

To make the most of the security configurations COM+ has to offer,
you need to be familiar with a few basic terms and concepts. The
rest of this chapter makes frequent use of these terms.

7.2.1 Security I dentity
A security identity is a valid account used to identify a user. The
account can be local or an account on a domain server. Every

COM+ entity, be it a client or an object, must have an identity
associated with it so that COM+ can determine what that entity is

175

capable of accessing. In Windows, all objects in the same process
share the same identity, unless they make an explicit attempt to
assume a different identity. You can configure a COM+ server
application to always run under a particular identity or to run under
the identity of the user who is currently logged on that Windows
station. Objects from a COM+ library application run under the
identity of the hosting process by default.

7.2.2 Authentication

Authentication has two facets. The first is the process by which
COM+ verifies that the callers are who they claim to be. The second
is the process by which COM+ ensures the integrity of the data sent
by the callers. COM+ authentication relies on the underlying
security provider—in most cases Windows 2000 built-in security.

In the Windows default security provider, the challenge/response
protocol is used to authenticate the caller's identity. Given that all
callers must have a security identity, if the callers are who they say
they are, then they must know the account password. That
password is also known to the domain server. The security provider
does not want to ask the callers directly for their passwords because
a malicious third party can sniff the network to discover the
password. Instead, to authenticate the callers, the security provider
encodes a random block of data with the account password and
sends it to the callers, asking them to decode the encrypted block
using the password and send the result back. This process is the
challenge. If the returned block, the response, is the same as the
original unencrypted block, then the callers are authenticated.
Authenticating caller identity is only one problem. The other
problem is that data passed in a method call can be intercepted,
copied, altered, or corrupted by a malicious third party. Under
COM+, both the caller and the object have a range of choices to
determine how secure the connection between them should be.

To authenticate data integrity, COM+ can use one of two
techniques: it can append a checksum to every network packet,
making sure that the data is not tampered with during transport, or
it can encrypt all information in the packet.

Both kinds of authentication (identity and data integrity) are, in
most cases, completely transparent to both the caller and the object
and done automatically by COM+. However, there is a clear tradeoff
between security and performance (when and to what extent to
authenticate), and it is up to you to choose and configure the
proper authentication level for your application.

7.2.3 Authorization

Authorization is the process of determining what the caller is
allowed to access in the system. Authorization is also called access

176

control. COM+ uses role-based security (discussed in the following
section) to let you define access control at the component,
interface, and method levels. Access control is used to protect
objects and resources against unauthorized access by clients. If a
user who is not granted access to a component tries to invoke a
method on that component, the method invocation fails with the
error code E_ACCESSDENIED ("Permission Denied" in Visual Basic).
You configure access control administratively using the Component
Services Explorer. Programmatically, you can still fine-tune access
and execution of a method based on the caller’s identity and other
information such as the method parameters and object state.

Note that authorization is not related to authentication.
Authorization assumes that the caller is already authenticated and is
only concerned with whether the caller can access this object. It is
not concerned with whether the caller is really who he or she claims
to be.

7.2.4 Launch Security

Launch security controls which users are allowed to create a new
object in a new process. Unlike DCOM, COM+ does not provide a
dedicated way to control launch security. This is done intentionally
to avoid a common DCOM security pitfall—allowing a user to launch
a process, but forgetting to grant the user access to the objects
inside! As a result, the user could call CoCreateInstance() to
launch the process, but would be denied access to methods,
including being unable to call Release () on the object. The
process is ultimately orphaned, and the user has to shut it down
manually or rely on COM garbage collection to eventually shut the
process down. In COM+, even if the client is not granted access to
the object, (but is a member of at least one role defined for the
application), the client can still launch a new process with a new
object inside and can call the Tunknown methods on the object,
including Release (). The client cannot access methods on any
other interface, however.

7.2.5 Impersonation

Authorization and authentication protect the object from being
accessed by unauthorized and unauthenticated users. This
protection ensures that when an object is asked to perform an
operation, the invoking client has permission to access the system
and the call was not initiated by an adversary client. However, how
should the client be protected from malicious objects? What
prevents the server from assuming the client's identity and
credentials and causing harm? |Is the server even allowed to learn
the identity of the calling client? By setting the impersonation level,

177

COM+ lets callers indicate what they allow objects to do with their
security identity. The impersonation level indicates the degree to
which the server can impersonate the calling client. Setting the
impersonation level can be done administratively and
programmatically on the client side; attempting to impersonate the
client can only be done programmatically by the server.

7.3 Role-Based Security

The cornerstone of COM+ access control is role-based security. A
role is a symbolic category of users who share the same security
privileges. When you assign a role to an application resource, you
grant access to that resource to whoever is a member of that role.

7.3.1 Configuring Role-Based Security

The best way to explain role-based security is by demonstration.
Suppose you have a COM+ banking application. The application
contains one component, the bank component. The bank
component supports two interfaces that allow users to manage bank
accounts and loans, defined as:
interface IAccountsManager : IUnknown
{
HRESULT TransferMoney ([in]int nSum, [in]DWORD
dwAccountSrc,
[in]DWORD dwAccountDest) ;
HRESULT OpenAccount ([out, retval] DWORD* pdwAccount) ;
HRESULT CloseAccount ([in]DWORD dwAccount) ;
HRESULT GetBalance ([1in]DWORD
dwAccount, [out, retval]lint* pnBalance);
bi
interface ILoansManager : IUnknown

{
HRESULT Apply ([in]DWORD dwAccount, [out, retval] BOOL*

pbApproved) ;

HRESULT CalcPayment ([in]DWORD dwSum, [out, retval] DWORD*
pdwPayment) ;

HRESULT MakePayment ([in]DWORD dwAccount, [in]DWORD
dwSum) ;
i
During the requirements-gathering phase of the product
development, you discovered that not every user of the application
should be able to access every method. In fact, there are four kinds
of users:

e The bank manager, the most powerful user, can access all
methods on all interfaces of the component.

178

o« The bank teller can access all methods of the
IAccountsManager interface, but is not authorized to deal
with loans. In fact, the application is required to prevent a
teller from accessing any ILoansManager interface method.

o Similarly, the loan consultant can access any method of the
ILoansManager interface, but a consultant is never trained to
be a teller and may not access any IAccountsManager
interface method.

e A bank customer can access some of the methods on both
interfaces. A customer can transfer funds between accounts
and find the balance on a specified account. However, a
customer cannot open a new account or close an existing one.
The customer can make a loan payment, but cannot apply for
a loan or calculate the payments.

If you were to enforce this set of security requirements on your
own, you would face an implementation nightmare. You would have
to manage a list of who is allowed to access what and tightly couple
the objects to the security policy. The objects would have to verify
who the caller is and whether the caller has the right credentials to
access them. The resulting solution would be fragile. Imagine the
work you would have to do if these requirements were to change.
Fortunately, COM+ makes managing such a security access policy
easy. After importing the bank component into a COM+ application
(be it a server or a library application), you need to define the
appropriate roles for this application. Every COM+ application has a
folder called Roles. Expand the Roles folder, right click on it, and
select New from the context menu. Type Bank Manager into the
dialog box that comes up and click OK. In the Roles folder, you
should see a new item called Bank Manager. Add the rest of the
roles: Customer , Teller , and Loans Consultant . The application
should look like Figure 7-1.

Figure 7-1. The Roles folder of the bank application

179

T- Component Services
"f] Console Window Help

&.:t,m = = EE

Tres |

=1 COM+ Apolications
=% Bark Agp
=l] Components
= g3 Bank Component
=] Interfaces
=0 1accountsManager
=] Methods

Getalance
[= *i ILoarshanager
=1 Methods
Apply
1 Subscriptions
Bank Manages

Custamer
Loan Corsultant

.I.
+++|‘

4]

ChosmAcount

OpenAccaunt
TransferMonsy

CalcPayment
MakePayment

L4

=l

-

=
=]
:
1
il

Roles 4 objectis)

&

Bank Managsr

Teller
Corsultank

You can now add users to each role. You can add any user with an
account on the machine or the domain. Every role has a Users

folder under which you add registered users from your domain or

the machine local users. For example, navigate to the Users folder

of the Customer role, right-click the Users folder, and select New

from the Context menu. In the dialog box, select the users who are

part of the Customer role, such as Joe Customer (see Figure 7-2).

You can populate this role and the remaining roles in the bank

application with their users.

Figure 7-2. Populating a role with users

1 Select Users or Groups 7] x|
Look e =] gank, DOMAIN xl
Mame | I Foldes [=]
CloeCustomer BeNKDOMAW
€5 Juval Lovy BAME DTMAIN
T Everpore BAME DOMAIN
£ wilhelim Tel BAME, DOMAIN
T tchministrabors BAME DOMAIN __J
g Bark Teler: BAME DOMAIN
Guests BAME DOMAIN hd
t Check Mames
|BANE DORMAIN g Custorme:

s

Cancel |

The next step is to grant access to components, interfaces, and

methods for the various roles in the application, according to the

180

bank application requirements. Display the bank component
properties page and select the Security tab. The tab contains the
list of all roles defined for this application. Check the Manager role
to allow a manager access to all interfaces and methods on this
component (see Figure 7-3). When you select a role at the
component level, that role can access all interfaces and methods of
that component. Make sure that the "Enforce component level
access check" checkbox under Authorization is selected. This
checkbox, your component access security switch, instructs COM+
to verify participation in roles before accessing this component.

Figure 7-3. Selecting a role at the component level

Bank Component it .
Gcnuall Transactions Secuny |.5'.I:Iil.natioﬂ| Cancumency | .I!ud\lancbd|

Authanzalion

¥ Enfcece component level access checks

Floles explicily et for zelected kemlz);

Marme
§‘;‘ Cuaskomer

B el

Lal Bzl Manager
¥ Loan Consukant

0K I Cancel |

Next, configure security at the interface level. Display the
IAccountsManager interface properties page, and select the
Security tab. Select the Teller role to grant access to all methods in
this interface to any member of the Teller role (see Figure 7-4). The
upper portion of the interface security tab contains inherited roles —
roles that were granted access at the component level, and thus
access to this interface as well. Even if the Bank Manager role is not
checked at the IAccountsManager interface level, that role can still
access the interface.

Figure 7-4. Granting access to a role at the interface level

181

21X

General | Qusuing Seculy |

Reles inherited by selected fem(sk

Hame

@

Roles explicilly set for seleched bem(s):

Hame
B Customer

< b
‘?!' Bank Manager
g’_#‘ Losn Consubant

oK | Cancel |

Similarly, configure the ILoansManager interface to grant access to
the Loans Consultant role. The Bank Manager should also be
inherited in that interface. Note that the Loans Consultant cannot
access any method on the IAccountsManager interface, just as the
requirements stipulate.

Finally, you can configure access rights at the method level. A
customer should be able to invoke the GetBalance() and
TransferMoney () methods on the TAccountsManager interface,
and the MakePayment () method on the ILoansManager interface,
but no other methods. Granting access at the method level is
similar to granting it at the interface or component level. For
example, to configure the GetBalance () method, display that
method’s Properties page, select its Security tab and check the
Customer role (see Figure 7-5). The method’s Security tab shows
inherited roles from the interface and component levels. COM+
displays roles inherited from the component level with a component
icon; it shows roles inherited from the interface level with an
interface icon.

Figure 7-5. Granting access to a role at the method level

182

ax

Fodes inhesited by selected Ramisk

Hame

‘d
@

Beles explicily set for seleched kem(s):

Hame

¥ B Customer
i Teller
¢ Bank Manager

gb‘ Lean Cansukant

oK. | Canced |

Because of the inherited nature of roles, you can deduce a simple
guideline for configuring roles: put the more powerful roles
upstream and the more restricted roles downstream.

7.3.2 Role-Based Security Benefits

For all practical purposes, COM+ role-based access control gives
you ultimate flexibility with zero coding. It gives you this flexibility
because access control at the method level is usually granular
enough. Role-based security offers a scalable solution that does not
depend on the number of system users. Without it, you would have
to assign access rights for all objects and resources manually, and
in some cases you would have to impersonate users to find out
whether they have the right credentials. (In Section 7.8, you will
see how an object can impersonate a caller.) Configurable role-
based security is an extensible solution that makes it easy to modify
a security policy. Like any other requirement, your application’s
security requirements are likely to change and evolve over time, but
now you have the right tool to handle it productively.

Role-based access control is not limited to configurations made with
the Component Services Explorer. You can build more granular
security policies programmatically if you need to, using role-based
security as a supporting platform.

7.3.3 Designing Role-Based Security

Roles map nicely to terminology from your application’s domain.
During the requirements analysis phase, you should aspire to
discern user roles and privileges, in addition to discovering
interfaces and classes. Focus your efforts on discovering differences
in the roles users play that distinguish them from one another,
rather than placing explicit permissions on each object in the
system. As you saw in the bank example, roles work very well when

183

you need to characterize groups of users based on what actions
those users can perform. However, roles don’t work well in a couple
of cases. First, they don’t work well when access decisions rest on
the identity of a particular user: for example, if only the bank teller
Mary Smiling is allowed to open an account. Second, they don’t
work well when access decisions rest on special information
regarding the nature of a particular piece of data: for example,
when bank customers cannot access accounts outside the country.
Role-based security is a service that protects access to middle-tier
objects. Middle-tier objects should be written to handle any client
and access any data. Basing your object behavior on particular user
identities does not scale. Forcing your objects to know intimate
details about the data does not scale well either. Each security
mechanism has its limitations—if your application requires you to
implement this sort of behavior, you may want to look at other
options, such performing the security access checks at the database
itself.

When designing effective roles, try to avoid a very intricate role-
based policy. A policy with many roles that allocates users to
multiple roles may be too complicated. Role-based security should
be a straightforward solution with crisp distinctions between roles.
Avoid defining roles with ambiguous membership criteria. The
simpler the solution, the more robust and maintainable it will be.
Your application administrator should be able to map users to roles
instantly. Use meaningful, self-describing names for roles,
borrowing as much as possible from the application domain's terms
and vocabulary. For example, Super User is a bad role name,
whereas Bank Manager is a good name (even though your
application would function just fine with the former).

Occasionally, you will be tempted to model a real-life situation and
define numerous roles. Maybe different branches of the bank have
different policies describing what a teller can do. Try to collapse
roles as much as possible. You can do this either by refactoring your
interfaces (deciding what methods will be on what interface and
which component supports which interface) or by defining new
interfaces and components. Breaking the system into more granular
COM+ applications, each with its own small set of roles, is another
design solution used to cope with numerous roles. This solution
would probably be a better modeling of the system in other respects
as well.

i

Avoiding numerous roles also improves

#+ J. performance. On each call, COM+ must scan the

8 list of roles to find out whether the caller is a
member of a role that is granted access.

Roles are defined at the application level, but they are actually part
of every component's design. If you write a standalone COM+

184

component that will be placed in COM+ application managed by
someone else, you need to have in your documentation explicit
instructions describing how to configure security for the hosting
application. You need to document that your component needs its
access control turned on for this application, the required
authentication level, the roles that should be defined for this
application, and the criteria that should be used to allocate users for
your roles. You need to stipulate which methods and interfaces each
role should be granted access to and which roles are granted access
to the entire component.

7.3.4 Deploying and Administering Role-Based Security

Roles are an integral part of your design, but allocation of users to
roles is part of your application deployment. The application
administrator should make the final allocation of users to roles at
the customer site. Because you need to make the administrator’s
job as easy as possible, your application should already have
predefined roles, and the administrator should only need to allocate
users to roles. When adding users to roles, populating the roles with
Windows 2000 user groups instead of individual users is wise.
Groups also appear on the same list as users, such as in Figure 7-2,
in the Bank Tellers group. By assigning groups to roles, the
application is automatically configured to handle the new user
correctly when a new user is added to a domain user group. The
same is true when a user is removed from a Windows user group or
removed from one group and added to another (for example, when
Mary Smiling is promoted to a bank manager position). When you
assign groups to roles, your application reacts transparently to
normal events in the application domain.

— If you target international markets, you should
%+ 4. localize your roles and have them translated into

8% the local language. In many cases, application
administrators will be local hires on the foreign
market, and properly translated roles can make a
world of difference.

When providing the best support for your application administrator,
you should clearly document the role-based policy you design,
whether or not role membership is obvious to you. In particular, use
the description field available for each role, as shown in Figure 7-6.
The description should be concise. If you cannot describe who
should belong to the role in three lines, the role is probably too
complex.

Figure 7-6. The Description field on the role properties page

185

2%

Genesal |

ﬁv |Earlcr-1anager |
] i1l

Dlescription:

& bank manager iz alowed to acces: al the méerfaces and all the method:
of the bank comporent. Thes iole i@ ganted access al the componen
bl

o, | Cancel |

Building a helper administrative utility to add users to roles
programmatically, using the COM+ Catalog’s interfaces and
components, may also be worthwhile; it saves the application
administrator the trouble of learning how to use the Component
Services Explorer. The utility should present to the administrator a
familiar user interface, preferably the same user interface standard
as the application itself. The utility should display the users
selection dialog box to the administrator and add the selected users
to the appropriate roles. When you export a COM+ application, the
Application Export Wizard gives you the option of exporting the user
identities with the roles (see Figure 7-7)

Figure 7-7. You should usually avoid exporting user identities with roles

Application Export Informalion \i .

Flesse erter nlicemabon requited to exporl this appication s

Eriter the full path and flename for the application file bo be created. Componest fles will be
copied into the drectony wou specify for the appication fle.

Banr,ﬁmf,erlp s B R L R R e Mg

Expeoat az
f+ Server applicstion - Instal this spplication onlo other machines
[T Export wser identities with roles

T Application proxy - Instal on other machines lo enable access lo this machine

coce |

This option should only be used by the application administrator
when making cloned installations at a particular site, from one
machine to another. Remember that roles are part of the design,
while allocation of users to roles is part of deployment. In fact,
exporting user information from one deployment site to another
may constitute a security breach. Most customers would not like a
list of their employees, their usernames, and the roles they play in

186

the organization available at large, let alone at some other
company’s site. As a developer, "export user identities with roles" is
of little use to you.

7.4 Securing a Server Application

Controlling access to your components via role-based security is all
fine and well, but there is more to security than just access control.
You must still set the security identity for your application and set
the authentication and impersonation levels. Configuring security
for a server application is different from that of a library application,
justifying each application type in a separate section.

When designing and configuring a server application security, you
need to do the following:

 Decide on the security identity under which the server
application executes.

« Decide what authorization (access control) the server
application requires—how granular access control should be.

» Decide at what authentication level to authenticate incoming
calls.

» Decide at what impersonation level you grant objects in other
applications when this server application is the client of those
objects.

« Configure your server application security.

The following sections discuss these action items in depth.
7.4.1 Configuring the Server Application I dentity

When you invoke the Application Install Wizard and use it to create
a new server application, the Wizard presents you with a dialog box
that lets you set the security identity of the server application.
Setting the security identity determines what user account all
components in that application will run under, which dictates
credentials, privileges, and access rights (see Figure 7-8). You may
either run the application as the interactive user (useful during
debugging) or as a designated user (for deployment).

Figure 7-8. Selecting an identity for a new server application

187

Welcome to the COM Application Tnstall Wizard x|
Set Application Identity \(_\
Flease specify the spphcalion idenfily b

Account

The applcation identiy wil be zet o the folking account. Components in the
apgplication will pun under this sccount, IF you a2 cizaling mars than one appication,
thiz sattirg wil ba apphed to each applicabon.

[+ Iriteractve user - the current Ingged on wser

T Thig usen

User: { 3

FPazswond: |

LConfim paszwaord |

< Back | Hemt = I Canc=l |

You can always set a different identity later on (and you usually
will) by bringing up the application properties page and selecting
the Identity tab (see Figure 7-9).

Figure 7-9. Selecting an identity for an existing server application

Bank App Properties |
General | Securiy | 1dentty]| Activation | Queuing | Advanced |

Thie spphication wil ren under the following account,
Account

W Inberactive ussr - the cunent bgged on uge

" This wer;

Lizer [

Pazaword |

Confirm password |

oK Cancel
| | |

When Object A is created in the application, the application security
identity controls everything Object A is allowed to access and do. If
Object A tries to access another object (Object B) in another
application, and Object B is configured to use role-based security,
COM+ uses the security identity of Object A to determine whether
to grant access to Object B. The security identity of Object A has to
belong to at least one role that Object B allows access to. But there
is more to an object’s identity than role-based security: accessing
the filesystem, accessing Win32 handles, installing new
components, accessing the COM+ Catalog, modifying the Registry,

188

remote calls, and so on, are all limited by the privileges of the
security identity.

To make an educated decision on selecting the right identity for
your objects, you need to know the term Windows station. In
Windows, every user, or more precisely, every security identity,
gets to run in its own station—it has its own copy of the clipboard,
global atoms table, desktop objects, a keyboard, a mouse, and a
display device. Each logged-on user is provided with a new Windows
station. Obviously, only the Windows station associated with the
currently interactive user can actually display a user interface. If a
component is set to run under a designated security identity and
that identity is different from that of the interactive user, it is placed
in its own Windows station.

When you configure your server application identity to run under
the account of the interactive user, the application shares the
interactive Windows station with that user. This option has the clear
benefit of being able to interact with the user. However, it also has
severe limitations: what should COM+ do if no user is logged on
and an activation request from another machine tries to launch the
application? In this case, COM+ refuses to launch the application. If
the interactive user logs off, COM+ also terminates the application.
The second option COM+ provides for configuring a server
application's identity is to run under a specific designated identity.
The application is placed in its own Windows station. All subsequent
instantiations of new components from that application share that
dedicated windows station and identity credentials. The component
in the application cannot have a user interface because their
Windows station cannot interact with the user. However, for a
middle-tier component, a user interface is not necessary anyway;
all user interaction is performed at the presentation tier. You can
still redirect message boxes to the interactive Windows station,
using the message box type attribute MB_DEFAULT_DESKTOP_ONLY.
This redirection is done by design for debug purposes and is
available for message boxes only.

Running as Activator

The architects of COM+ actually had, in theory, a third option
for a server application security identity. That third option is
to run under the identity of the launching user. This option is
available under classic DCOM (in fact, it is the default for
DCOM). However, it has a few critical limitations: if COM+
were to create a new Windows station for every new
activation request coming from a different identity, the
system would run out of resources very quickly because a
Windows station is extremely expensive to create and
maintain. As a result, this option does not scale well at all.
Another limitation is the potential for havina obiects from the

189

same application running in different processes because
every Windows station has its own initial process. This
potential could violate design decisions—you may have
wanted all your objects in one process because they may
need to share event handles or some other process-wide
resource. Given these limitations, you can understand why
the COM+ architects chose not to include the option to
launch the application under the identity of the launching
user.

So, which of the two options should you choose? Running as the
interactive user has a distinct advantage during debugging sessions,
because you can use a debugger to trace the execution of your
components. In addition, during a debug session, the developer is
logged on to his machine, so COM+ activates the application easily.
Running as a designated user is more useful for deployment
purposes. It frees you from needing a user logged on to the server
machines when your application is running. If you configure more
than one application to run under the same designated user
account, you also conserve system resources because all
components from those applications share the same Windows
station. Running under a specific identity has a few more
advantages:

 Because an object can perform operations on behalf of
arbitrary users, limiting the object's capabilities is often
necessary. By assigning the object a less privileged identity,
you limit the potential harm malicious callers can do after
being granted access the object (the interactive user may
have unlimited administrator power, and that could be very
dangerous indeed).

* Internet clients calling into your application have no identity
at all and are anonymous in most cases. You can now assign a
specific identity to the objects that carry out a request on
behalf of Internet clients.

7.4.2 Enabling Authorization

The properties page of each COM+ server application includes a
Security tab. The security tab is where you set the rest of the
security properties for your application. There are four settings on
this tab, each discussed in the following sections. At the top of the
tab (see Figure 7-10), you will find the authorization checkbox.

Figure 7-10. A server application Security tab

190

4 2l x|
Genesal Securly | Identty | Activation | Dueuing | Advanced |

Authanzalion

Secuily level

[Perfom access checks only at the proce:s kevel
Securnty propesty wall not be included o the object contest
COM+ secuity call cortest wil mot be avalable.

¥ Peifoim access checks 3t the process and comporent level,
Secunty propesy will be inchaded on the object contest The
COM+ zecuily call cortest i availsble

Authertication level for calk:

|F'ac|=et ‘Fl

Impersonation lavel

[Impersanate =

UK .:‘,nw| B

The authorization checkbox is the access security master switch for
the application (The component’s developer still has to enable the
component-level authorization on a component by component basis,
as discussed previously; see Figure 7-3). When you install a new
COM+ application, either a library or a server application, the
default setting for this switch is off. You must turn on authorization
yourself by checking the checkbox to enable role-based security for
your application. When authorization is enabled, COM+ verifies in
every call that the calling identity is a member of at least one of the
roles defined for the application, and denies access if it is not. If the
caller is a member of at least one role, but the target component
does not grant access to any of the roles the caller is a member of,
the call is denied access downstream at the component level.
Application-level authorization is also the COM+ way of enforcing
launch control. The caller cannot launch a new process (by trying to
create an object) if it is not a member of at least one role.

7.4.3 Setting the Security Level

The Security Level properties group (which consists of two radio
buttons; see Figure 7-10) is the center of the Security tab. This
group is the role-based security master switch for all the
components in this application. If you set it to the upper position
("Perform access checks only at the process level"), all role-based
security configurations at lower levels (component, interface, and
method) will be disabled and ignored (see, for example, the bank
component security tab in Figure 7-11). When access checks are
performed at the process level only, all calls will be allowed through

191

regardless of the settings at the lower levels, as long as they passed
the generic application-level security access check.

Figure 7-11. Setting the security access check to be done at the process
level only disables component-level security

aonk Componen Propeties 21
Genetal | Tranzactions Secunly |ﬁ.cliwlioﬂ| Concurency | Advanced |

Authanzation

-

Flofes explicilly zat for zeleched bemfz):

Hame
ﬁ;‘ Cusstomer
¥ Teller
L g:‘ Bank Manager
' Loan Cansukant

oK | Cancel |

One side effect of performing the security checks at the process
level only is that you cannot make any programmatic role-based
security checks inside your components because the security
information will not be part of the call object. You cannot access
interfaces such as ISsecurityCallContext. Additionally, when new
objects are activated, COM+ ignores their security requirements
when deciding in which context to activate them.

When you set the access security to be performed at the process
level and the component level, you can take advantage of role-
based security, either administratively or programmatically. COM+
considers the object security requirements when deciding on its
activation context. Components that do not want to use role-based
security can still choose to do so.

As you can see, disabling component-level security checks globally
for an application is of little use to you. You can always disable it on
a component-by-component basis.

7.4.4 Setting the Authentication Level

Next, you need to configure the desired authentication level by
selecting values from the "Authentication level for calls" combo box
(see Figure 7-10). The authentication level controls both caller
identity authentication and data integrity authentication. The
configured authentication level affects all calls to and from the
application.

COM+ lets you set the authentication level to one of six settings:
None, Connect, Call, Packet, Packet Integrity, and Packet Privacy.
The first four authentication levels deal with the caller’s identity only
and the last two add data integrity as well.

192

7.4.4.1 Authentication = None

When the authentication level is set to None, you instruct COM+ not
to authenticate the caller at all. If the caller claims to be Joe
Customer, then he is believed to be so. Clearly, disabling
authentication exposes your application and renders it completely
defenseless to anything ranging from innocent user mistakes to
malicious third-party attacks. Setting authentication to None may
be useful in isolated cases when clients calling in are anonymous
and no data privacy or integrity guarantee for data in transit is
required. However, you should generally avoid disabling
authentication completely.

7.4.4.2 Authentication = Connect

When the authentication level is set to Connect, COM+
authenticates the user identity only when a client connects to an
object in the application. Connecting to the object means creating
the object or trying to access an object (given to the client from
another client) for the first time. COM+ uses the challenge/response
protocol to authenticate the client’s identity. If the same client tries
to connect to another object, COM+ authenticates the client’s
identity again. However, COM+ stays out of the way once a
connection is established. This approach to authentication leaves
the door open for a malicious third party to sniff the network, wait
for COM+ to authenticate a genuine caller, and then make
subsequent calls in place of the legitimate caller, because future
calls are not authenticated. Connection-level authentication is the
bare minimum required for meaningful role-based security because
it verifies at least once that the caller is who it says it is.
Connection-level authentication, however, provides no privacy or
integrity guarantee for the data in transit.

7.4.4.3 Authentication = Call

When the authentication level is set to Call, COM+ authenticates the
caller’s identity using challenge/response on every method call to
every object in the application, not just the first call. This approach
is clearly an improvement over authentication done only at
connection time.

7.4.4.4 Authentication = Packet

Authenticating at the beginning of every call may not be secure
enough if the method invocation payload is spread over multiple
network packets. The underlying network transport protocol may
divide the payload (parameters, returned value, source and
destination, and so on) over multiple packets regularly. A

193

determined malicious third party may wait for the first packet to be
authenticated, and then intercept the rest of the packets, change
them, or send his own. To handle this possibility, you can instruct
COM+ to authenticate each packet from the caller, not just the first
packet of every call. This level of authentication is the default used
for every new COM+ server application. Packet level authentication
may be the first meaningful authentication setting. However, it still
provides no privacy or integrity guarantee for the data in transit.

7.4.4.5 Authentication = Packet I ntegrity

The previous four authentication levels dealt with authenticating the
caller’s identity only. Authenticating every packet from the caller
would prevent a malicious third party from being tempting to be the
caller or pretending to change the packet flow. However, nothing
stops a malicious third party from modifying the packets’ content.
The malicious third party could still, for example, change parameter
values inside individual packets.

By setting the authentication level to Packet Integrity, you instruct
COM+ to append a hashed checksum to each packet. The receiving
side calculates the checksum on the packet just received, and if the
resulting checksum differs from that appended to the packet, COM+
fails the call. Packet integrity increases the packet size and network
transport time, but it provides a data integrity guarantee.
Authenticating data integrity is done on top of packet-level identity
authentication.

7.4.4.6 Authentication = Packet Privacy

Although the Packet Integrity level of authentication protects the
data integrity of each packet, the malicious third party can still read
the packets’ content. If you want to protect the privacy of the
information, you can instruct COM+ to not only provide packet
integrity with a checksum, but also to encrypt the packet’s content
when in transit and decrypt it when it is received. Packet Privacy is
the highest authentication level possible, providing you with
authenticated caller identity, data integrity, and privacy for data in
transit on every network packet. You will encounter a performance
hit for the extra computational effort of encrypting and decrypting
every packet. However, for many enterprise applications, this level
of security may be required to protect sensitive data properly
according to organizational security policy.

7.4.4.7 Deciding on the authentication level
Every authentication setting offers a clear tradeoff of application

security versus performance. You should decide on the right
authentication level based on the nature and sensitivity of the

194

services your components expose, potential-threats analysis, and
the calling pattern from your clients (the lower the call frequency
and the longer the method execution time is, the less noticeable the
authentication penalty will be). The application authentication
setting affects all components in your application. If the
components in your application differ greatly in their authentication
needs, consider putting the more sensitive components in a
separate application and configuring that application to have a
higher level of authentication. Don’t make components pay for an
authentication level they do not require.

On the other hand, if your threats analysis demands an
authentication level that degrades the application performance
significantly, or if trade-off is impossible because of organizational
security policy, upgrading hardware to improve application
performance is an option.

7.4.4.8 Client authentication level compatibility

COM+ prefers to secure the server as much as possible. If the
calling client uses an authentication level lower than that of the
server (for example, if the client is configured to use Connect and
the server application is configured to use Packet), then COM+ fails
the call. If, on the other hand, the server is the one using the lower
setting, COM+ promotes the connection to the client level.

7.4.5 Setting the Impersonation Level

When an object in Application A calls another object in Application
B, identity issues are straightforward: each application has its own
identity, used to decide whether to grant access to objects or to
resources such as files. However, suppose that Application B needs
to access an object in Application C to continue its work on behalf of
the original caller in Application A. The immediate question is, under
what identity should B access C? Should it access C as B or as A?
Suppose that the object in C needs to call back into Application A to
complete its work. Should it access Application A as C, B, or A?
One approach would let the server objects impersonate the client.
This would be fine in an ideal world, where servers are never
malicious. However, in an ideal world, you don’t need security
either. Clearly, client applications need to declare what identity the
servicing objects could use when accessing another application or a
secured resource. This is what impersonation is all about. The
Impersonation level combo box (see Figure 7-10) is at the bottom
of the server application security tab. The impersonation level
selection is used only when the application you configure is acting
as a client of an object in another application. The impersonation
level is really a measure of trust—how much this application trusts
another application when it acts on its behalf. Does this application

195

allow other objects to find its security identity? Does it allow them
to impersonate itself and perform their work under the client
identity, trusting the other applications’ objects not to abuse the
trust? Does it allow the objects to make additional calls with the
original client security identity? These are important questions from
any client application perspective. COM+ defines four levels of trust,
or impersonation levels: Anonymous, ldentify, Impersonate, and
Delegate.

i

Impersonation of any level requires authentication
%3 4. 1o be at least Connect (that is, any authentication

4 level except None) to propagate the client identity
to the server side.

7.4.5.1 Impersonation = Anonymous

Anonymous is the least trusting impersonation level. The client does
not even allow any server object to learn the security identity of the
client.

7.4.5.2 Impersonation = ldentify

When the client sets the impersonation level to Identify, the server
can identify the client—that is, obtain the security identity of the
calling client. The server object is not allowed to impersonate the
client—everything the object does is still done under the server's
own identity. Note that allowing or preventing the object from
identifying the caller is not the same as having the object learn
programmatically whether the caller is a member of a particular
role. When the object queries for the caller's role membership (you
will see how later on), the question and the answer are in role
terms (Bank Manager, Teller) and not in identity terms (Joe
Customer).

7.4.5.3 Impersonation = Impersonate

When the client application sets the impersonation level to
Impersonate, the object can impersonate and assume the client
identity's credentials. This impersonation level is the default value
COM+ uses for new applications. Impersonation indicates a great
deal of trust between the client and the servicing object; the server
can do anything the client can do, even if the server application is
configured to use a less privileged identity. The only difference
between the real client and the object is that if the object is on a
separate machine from the client, it cannot access resources or
objects on other machines as the client. This lack of access is a
direct result of the underlying authentication mechanism—the
challenge/response protocol. If the object, impersonating the client,

196

tried to access another machine while claiming to be the client, it
would fail to authenticate itself as the client because it does not
know the client’s password. If the object and the client were on the
same machine, the object impersonating the client could make one
network hop to another machine, since the machine it resides on
could still authenticate the client identity—but it could go no further.

7.4.5.4 Impersonation = Delegate

The only difference between delegation and impersonation is that
with delegation, the object can freely access any object on any
machine as the client. If any of these server objects use delegation,
the client identity could be propagated further and further down the
call chain. Delegation is possible because Windows 2000 can use
the Kerberos authentication service, which uses a different
authentication method than challenge/response. Both the client and
server user accounts must be configured in the Active Directory
properly to support delegation, (in addition to the client granting
authority to do delegate-level impersonation), due to the enormous
trust (and hence, security risk) involved. Delegation uses, by
default, another security service called cloaking, which propagates
the caller identity along the call chain. Delegation is extremely
dangerous from the client perspective because the client has no
control over who uses its identity or where. When the impersonation
level is set to Impersonate, the client takes a calculated risk
because it knows which objects it was accessing. If those objects
are on a difference machine, the client identity could not have
propagated across the network.

'] For more information, see Windows 2000 Administration in a Nutshell by Mitch Tulloch
(O'Reilly, 2000).

7.5 Securing a Library Application

A library application is hosted in its client process. As such, it has no
control over the hosting application identity and security settings. It
runs under the identity of the hosting process (the lIdentity tab is
still present in the application's properties page, but it is grayed out
and ignored). Thus, the library application has only as much
privilege as the hosting client does. This limitation may be
significant because the library could be loaded by many different
clients and may not always have sufficient credentials to do its
work. As a rule of thumb, put your meaningful business logic
processing components in a server application, where you can
configure exactly the application security identity. Deploy a library
application in situations when you expect very a intensive calling

197

pattern from your clients and when you can filter or process the
calls before forwarding them to the server application, where the
real work should take place. Another identity-related limitation is
that a library application cannot declare an impersonation level, so
it normally uses the process-wide impersonation level. The library
application can set a desired authentication and impersonation level
programmatically, as described in Section 7.8 later in the chapter.
A library application has no control over the process-level security
settings, and the only way for it to perform its own security access
checks is to employ component-level role-based security (role-
based security at the component level is the same as with a server
application). Before you dive into the details of securing a library
application, consider the following point: because the library
application is loaded into the client process, it has access to all the
process resources, memory, objects, GIT, handles, etc. The client
should be very careful when loading a library application, as it may
contain malicious objects. Agreeing to use a library application
implies that the client has a level of trust and familiarity of the
library application.

Once you set an application to be a library application, the
application’s Security tab will be different from that of a server
application (see Figure 7-12).

Figure 7-12. A library application’s Security tab

Bank App Propertics 2 =]
General Securily | Identty | Activation | Oueuing | Advanced |

Aulhatizalion

Iv Enforce access checks fon this applicatian

Secuity level

(" Perfom access checks only at the process level
Secutity peopesly will mot be included o the object conlexl.
COM# secunty call contest wil not be avalable.

e S
{Sacurity property will be inchaded on the object conbest The |
[EaM s cecurvcall conet i avalale. -]

Authentication

v Enable authentication

2 ,:,K o Canw | Rt

Noticeable by their absence are the authentication and
impersonation levels controls, replaced with a single "Enable
authentication" checkbox. The authorization checkbox and the
security-level radio buttons offer the same functionality as with a

198

server application. If you want to enable role-based security, the
authorization checkbox must be checked and the security level radio
button must be at the lower position. This position instructs COM+
to perform access checks at the component level.

The interesting item on this tab is the "Enable authentication”
checkbox. The client process hosting this library application can
have an authentication level already configured for it. The library
application can take advantage of the process-wide authentication
and have COM+ use it to authenticate calls coming from outside the
process to the library application. However, the library application
has no control over how rigorous that authentication is. The
process-level authentication may even be set to None. The
immediate conclusion is that in a library application, you should
avoid performing sensitive work that requires authentication.
Therefore, you have at your disposal two mechanisms to secure
your library application: process-wide authentication and
component-level role-based access control, and you can turn each
on or off independently of the other. These mechanisms give you
four configuration options, discussed in the following sections.

7.5.1 Both Role-Based Security and Global Authentication

Your typical security setting for a COM+ library application has both
role-based security and global authentication enabled. All calls from
outside the process are authenticated, whether they are destined
for the library application or some other COM object in the process
(see Figure 7-13). In addition, COM+ uses component-level access
security and verifies that the caller is a member of a role that was
granted access to the component. However, calls from within the
hosting process are not authenticated. If the hosting process claims
to run under the identity of Joe Customer, and Joe is a member of a
role that was granted access to a component, clients in the hosting
application can access objects in the library application freely. This
access opens the way for a malicious client process to load the
library application and call into it unauthenticated. This security gap
is present in the other three configuration settings as well. This lack
of security is yet another reason to avoid performing sensitive work
that requires authentication in a library application.

Figure 7-13. Enabling process-level authentication and role-based
security

199

Another Process
Client Client

l Hosting Client Process

Client

7.5.2 Global Authentication Without Role-Based Security

When importing an existing set of legacy COM components to a
COM+ library application (perhaps to be integrated in a bigger
development, deployment, and administration framework), the
imported legacy components do not use role-based security, and
enforcing it may introduce side effects, because those components
may already have their own access control mechanisms. It this
case, you can turn off role-based security for the library application.
As a result, client calls from outside and inside the process access
the components directly. However, you still may want to take
advantage of the global authentication that may be in place, to
authenticate callers from outside the process (see Figure 7-14).

Figure 7-14. Disabling role-based security while relying on global
authentication

200

Another Process
Client Client

l Hosting Client Process

Client

Since you can turn off role-based security at the component level as
well, | recommend not disabling role-based security at the library
application level. In the future, you may want to add components to
the library application that do require role-based security. As a rule,
always enable security at the highest level possible, and disable
security at the lowest level possible.

7.5.3 Role-Based Security Without Global Authentication

Suppose your hosting process uses a strict authentication level, or
at least one that is stricter than what your library application needs.
Your application ends up paying a performance hit for a service it
does not require. You can choose to disable global authentication
support for your application and exempt all calls from outside the
hosting process to your library application (see Figure 7-15).
However, you should still use role-based security to control access
to your application. Of course, there is a downside to disabling
authentication: you cannot tell if the callers are who they say they
are. You can only decide whether to grant the caller access,
assuming the callers are indeed who they say they are.

Figure 7-15. Disabling authentication for the library application while
using role-based security

201

Another Process
Client Client

Hosting Client Process

Client

This configuration is usually of little use, as the main motivation for
configuring an application as a library is to avoid frequent cross-
process calls from clients. |If the volume of calls from outside the
process is an issue, then just configure the application as a server
application, and have your own process-wide authentication level.
This configuration has another serious problem: it has the potential
for a security breach. Since calls into the library application are not
authenticated, what happens if a component in the library
application, while executing a method on behalf of an out-of-
process caller, tries to access an object in the hosting process
(maybe to fire an event on)? Intraprocess calls are not
authenticated because all objects in the process share the same
identity. Thus, the outside call can bypass the process-wide
authentication. This bypass only strengthens the idea that when
hosting a library application, the client process should be on guard,
should load only library applications it knows are benign, and should
minimize their interaction with other objects in the process. At the
very least, the hosting server-application should use role-based
security, since crossing application boundaries forces access checks
and the call from the library application is made across an
application boundary. It will not get you authentication, but it will
give you some access control.

7.5.4 Neither Role-Based Security nor Authentication

Surprisingly, disabling both role-based security and process-level
authentication can be useful. Imagine a situation in which
components from your library application are hosted by a browser
and have to accept calls from anonymous, unauthenticated callers.
The process-wide authentication has to be disabled to allow callers

202

that cannot be authenticated to go through; role-based security
cannot be used because you cannot add the anonymous callers to
your roles. By turning the security knob all the way down, all calls
into your library application will always be granted access (see
Figure 7-16).

Figure 7-16. Turning off participation in process-wide authentication and
role-based security

Another Process
Client Client

Hosting Client Process

Client

7.6 Programmatic Role-Based Security

Sometimes, administrative role-based security it not granular
enough for the task at hand. Consider a situation in which your
application maintains a private resource (such as a database) that
does not expose any public interfaces directly to the clients. You still
want to allow only some callers of a method to access the resource
and deny access to other callers who are not members of a specific
role. The second (and more common) situation is when a method is
invoked on your object and you want to know whether the caller is
a member of a particular role so you can better handle the call.

To illustrate the second situation, suppose in the bank example, one
of the requirements is that a customer can transfer money only if
the sum involved is less than $5,000, whereas managers and tellers
can transfer any amount. Declarative role-based security goes down
only to the method level (not the parameter level) and can only
assure you that the caller is a member of at least one of the roles
you have granted access to.

To implement the requirement, you must find out the caller’s role
programmatically. Fortunately, COM+ makes it easy to do just that.
Remember that every method call is represented by a COM+ call

203

object (discussed in Chapter 2). The call object implements an
interface called IsecurityCallContext, obtained by calling
CoGetCallContext (). ISecurityCallContext provides a method
called IsCallerInRole (), which lets you verify the caller’s role
membership. IsCallerInRole(), is available on T0bjectContext,
a legacy from MTS as well. Example 7-1 shows how to implement
the new requirement using the call object security interface.

Example 7-1. Verifying the caller membership by calling
I SecurityCallContext::l sCallerl nRole()

STDMETHODIMP CBank::TransferMoney (int nSum, DWORD
dwAccountSrc, DWORD dwAccountDest)
{
HRESULT hres = S_OK;
ISecurityCallContext* pSecurityCallContext = NULL;
_bstr_t bstrRole = "Customer" ;
VARIANT_BOOL bInRole = FALSE;

hres = ::CoGetCallContext (IID_ISecurityCallContext,

(void**) &pSecurityCallContext) ;
if (pSecurityCallContext == NULL)
{
//No security call context available, role-based
security not in use
return E_FATIL;

}

hres = pSecurityCallContext-
>IsCallerInRole (bstrRole, &bInRole) ;

pSecurityCallContext—->Release();

if (bInRole)//The caller is a customer

{
if (nSum > 5000)
return E_FAIL;
}

return
DoTransfer (nSum, dwAccountSrc, dwAccountDest) ; //Helper
method

}
7.7 Security Boundaries

COM+ makes a sensible assumption: two components from the
same application trust each other, and intra-application security is
not necessary. As a result, security is checked only at application
boundaries. When two applications interact, a security check exists
between them. For example, in the case of a library application that
was loaded into a server application, there is an application

204

boundary, and thus a security boundary, between them. When a
client accesses the library application in the hosting process, COM+
verifies that the client has access to the library application
component. When a client from the library application calls a
component in the hosting process, COM+ uses the hosting
application’s role-based security. The same is true when two library
applications interact with each other while both share the same
hosting process. You can draw a design conclusion from this
behavior: if you have two components and you want security checks
done when one calls the other, put them each in separate COM+
applications.

As you have seen, each COM+ method invocation has a call context
object associated with it. COM+ will not update the security call
context when no security boundary is crossed. |f one component
has done programmatic role-based security and is about to call
another component in the same application, repeating the role
membership verification is redundant, as no new security context
information will be present.

More on | SecurityCallContext

For most practical purposes, finding out whether the caller is
a member of a role is the only part of COM+ security you will
ever deal with programmatically. However,
ISecurityCallContext provides you other extensive
security information details, including:

e« The total number of callers in the chain of calls leading
down to this object.

e The minimum authentication level used to authenticate
callers in the calling chain. Even if the immediate caller
into this application was properly authenticated,
previous callers could have been subjected to less
stringent authentication. This may or may not be an
issue in your business logic.

e Information about whether a particular user is a
member of a role.

« The direct caller’s security identity.

 The original caller’s security identity.

7.8 Advanced COM+ Security

On top of incredibly rich, user-friendly administrative support for all
your security needs, COM+ provides low-level, advanced

205

programmatic security capabilities. These features cater to complex
security needs. However, | have found that there is almost always a
good design solution that lets me use COM+ configurable settings
without having to resort to advanced, programmatic, low-level
security manipulation. In fact, you can probably lead a productive
and fulfilling development career using COM+ without using low-
level security manipulation at all. If what you have read so far
fulfills your requirements, feel free to skip this section and move to
the conclusion of this chapter and its account of the ever-present
pitfalls of COM+ security. If not, continue reading.

7.8.1 Server-Side Impersonation

Setting the allowed impersonation level is a client-side
configuration, in which the client declares the level of trust it has
toward the server. Configuring the impersonation level is not an
advanced security measure; it is a necessary precaution because
you cannot know what the server is up to and whether it intends to
impersonate the client. However, server-side impersonation is
advanced security.

You should be aware that server-side impersonation is not an
extensible or scalable design approach. Each COM+ application
should be configured with enough credentials (that is, a security
identity) to perform its work, and should not rely on the client’s
credentials by impersonating it. Impersonation couples the server
application to the client’s identity and prevents the application from
evolving independently. In almost all cases when impersonation is a
critical part of the application design, the design is not scalable.
Consider, for example, an application in which the database
performs its own authentication and authorization of end users to
secure access to data in the database. Middle-tier objects have to
impersonate the caller to access the database, resulting in a
programming model that is tightly coupled to the identity of the
callers (bank tellers can only access the accounts they are
responsible for). Adding new users is not trivial, and therefore does
not scale. A better design decision would be to have the database
authenticate just the COM+ applications accessing it and trust the
applications to authenticate and authorize the clients securely.
Allocating database connections per user is another example of
when using impersonation is not scalable. The middle-tier objects
have to impersonate the user to get a connection. Consequently,
the connections cannot be shared (no connection pooling) and the
total number of users the system can handle is drastically reduced.
One more impersonation liability is performance—impersonating the
client can be much slower than making the call directly under the
application identity. If the client does not have enough credentials
to access a resource, the call fails downstream, when the

206

impersonating object tries to access the resource, instead of
upstream, when the client first accesses the object. Impersonation
may also involve intensive under-the-hood traffic and validations
If you decide to use impersonation, do so judiciously, and only for
the purpose of obtaining the client’s identity to verify access to a
sensitive resource the server application has independent access to.
Once the server has verified that the client has enough credentials,
the server object should revert to its own identity and access the
resource.

The call context object supports another interface called
IServerSecurity. The server can access IServerSecurity by
calling CoGetCallContext (). Remember that the pointer to
IServerSecurity will only be valid for the duration of the current
call and cannot be cached.

To impersonate the calling client, the server should call
IServerSecurity::ImpersonateClient (). To revert back to its
original identity, the server should call
IServerSecurity::RevertToSelf ().

Example 7-2 shows a server object impersonating a client to verify
that the client has access rights to create a file. If it does, the
server reverts to its original identity and creates the file under its
own identity.

Example 7-2. The server impersonating the client to verify file creation
access rights

STDMETHODIMP CMyServer: :CreateFile (BSTR bstrFileName)

{
HRESULT hres = S_OK;

IServerSecurity* pServerSecurity = NULL;

hres =
::CoGetCallContext (IID_IServerSecurity, (void**) &pServerSe
curity);

ASSERT (pServerSecurity);

hres = pServerSecurity->ImpersonateClient ();

HANDLE hFile =
::CreatefFile (_bstr_t (bstrFileName), STANDARD_RIGHTS_ALL, O,
NULL,

CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL) ;

//Do the cleanup first, before the error handling

::CloseHandle (hFile);//Does not change the value of
hFile

hres = pServerSecurity->RevertToSelf();

pServerSecurity—->Release();

207

if (hFile == INVALID HANDLE VALUE)//failure due to lack
of access rights
//as well as anything
else that can go wrong

{
return E_FATIL;

}

//The client has the right access rights to this file,
now create it again

//under the server’s own identity

//m_hFile is a member of this object

m_hFile =
::CreateFile (_bstr_t (bstrFileName), STANDARD RIGHTS_ALL, O,
NULL,

CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL) ;

if (m_hFile == INVALID_HANDLE_VALUE)//Something went
wrong

{
return E_FAIL;

}

return hres;
}
COM+ provides two helper functions to automate coding sequences
like the one in Example 7-2. CoImpersonateClient () creates the
server security object, impersonates the client, and releases the
server security object. CoRevertToSelf () similarly creates the
server security object, reverts to the server’s original identity, and
releases the server security object. Example 7-3 shows the same
sequence as in Example 7-2, using the helper functions.

e Even though the code in Example 7-3 is more
%3 4. concise and readable than Example 7-2, you should

be aware of a slight performance penalty that using
the impersonation helper functions introduces. In
Example 7-2, the server security object is only
created and released once, while it is done twice in
Example 7-3. Nevertheless, | recommend using the
helper functions because that penalty is truly
miniscule and readable code is always essential.

Example 7-3. Verifying file creation access rights with
ColmpersonateClient() and CoRevertToSelf()

STDMETHODIMP CMyObj::CreateFile (BSTR bstrFileName)

{
HRESULT hres = S_O0OK;

208

hres = ::CoImpersonateClient();

HANDLE hFile =
::CreatefFile (_bstr_t (bstrFileName), STANDARD_ _RIGHTS_ALL, O,
NULL,

CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL) ;

::CloseHandle (hFile);//Does not change the value of
hFile
hres = ::CoRevertToSelf();

if (hFile == INVALID HANDLE_VALUE)//failure due to lack
of access rights as well
//as anything else
that can go wrong

{
return E_FATIL;

}

//The client has the right access rights to this file,
now create it again

//under server own identity

//m_hFile is a member of this object

m_hFile =
::CreateFile (_bstr_t (bstrFileName), STANDARD RIGHTS_ALL, O,
NULL,

CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL) ;

if (m_hFile == INVALID_HANDLE_VALUE)//Something went
wrong

{
return E_FATL;

return hres;

7.8.2 Programmatic Client-Side Security

Every client-side proxy supports an interface called
IClientSecurity, which lets the client set the security attributes
on the communication channel between it and the object behind
that proxy. COM+ calls the set of security attributes (such as
authentication and impersonation levels) a security blanket. Using
the IClientSecurity method SetBlanket (), the client can set a
new authentication level, a new impersonation level, or both. It can

209

also set other security attributes. However, the proxy may be
shared among a few clients, and not all of them may be interested
in a new security blanket. COM+ allows a client to clone a personal
copy of the proxy for its own use, using another method of
IClientSecurity called copyProxy () that gives the client a private
new proxy. You can set a security blanket without cloning your own
proxy, but it is recommended that you clone it.

Setting a security blanket may be useful in a few situations:

« When the global application security level is not granular
enough. For example, some methods may require additional
authentication. In the bank example, the client may want to
set an explicit high authentication level for the
TransferMoney () method but use whatever security level
the application uses for GetBalance ().

« When a library application is at the mercy of the hosting
process. If the library application is a client of other objects,
though, it can set its own authentication and impersonation
levels using IClientSecurity.

COM+ provides helper functions to automate coping a proxy (the
CoCopyProxy () function) and setting a security blanket (the
CoSetProxyBlanket () function). Example 7-4 shows a client of
the bank application, copies the proxy, and sets explicit
impersonation and authentication levels for the TransferMoney ()
method, using the helper functions.

Example 7-4. Setting explicit authentication and impersonation levels for
the TransferMoney() method

HRESULT hres = S_OK;

//pAccountsManager is initialized somewhere else
IAccountsManager* pPrivateAccountsManager = NULL;//This
client private copy

//copying the proxy to get a private copy, so not to
interfere with other clients

hres =

: :CoCopyProxy (pAccountsManager, (IUnknown**) &pPrivateAccou
ntsManager) ;

//Setting explicit authentication and impersonation
levels
hres = ::CoSetProxyBlanket (pPrivateAccountsManager, //The
private proxy

RPC_C_AUTHN_DEFAULT, //The
system default authentication

RPC_C_AUTHZ_DEFAULT ,//Default
authorization

210

NULL,
//Use authentication level
"Packet Integrity"

RPC_C_AUTHN_ LEVEL_PKT INTEGRITY,
//Impersonation level is
"Identify"
RPC_C_IMP_LEVEL_IDENTIFY,
NULL, //Use process identity
EOAC_DEFAULT) ; //Default
capabilities
hres = pPrivateAccountsManager-
>TransferMoney (1000,1234,5678) ;
pPrivateAccountsManager—>Release();//Release private
copy
| would advise that you always prefer automatic, administrative,
declarative security rather than doing security within components,
whether it is on the server or the client side. Following this simple
rule will make it easier to:

 Write and maintain components
« Design consistent security across an entire application
 Modify an application’s security policy without recoding it

7.9 COM+ Security Pitfalls

Distributed systems security is a vast, intricate topic, and certainly
COM+ makes it possible for mere mortals to secure systems in an
elegant, productive, and extensible manner. All you have to do is
understand a few simple security concepts, configure your
applications properly, and let COM+ take care of the rest. However,
no service is without a flaw, and COM+ security is no exception.
Even though the following list of pitfalls may seem long, you should
consider two things: first, considering how encompassing COM+
security really is, it is a surprisingly small list, as security affects
almost everything you do in COM+. Second, this list describes only
things | have encountered, and it is probably only partial. You will
undoubtedly encounter other variations and pitfalls when you do
your own development. However, with a solid understanding of the
way COM+ security works, you should be able to isolate and
troubleshoot the problems yourself. Some of the pitfalls have
already been implied throughout this chapter, but the following is
dedicated and explicit pitfall list.

7.9.1 Machine-Wide Security Settings

211

At the root of the Component Services Explorer is the My Computer
item, which lets you set global configurations for your computer. If
you have administrative privileges on other machines, you can add
them to the list of machines managed by the Component Services
Explorer. Each computer icon has a properties page with two tabs
that are seemingly relevant to COM+ security: the Default Security
tab and the Default Properties tab.

Though these tabs are part of the Component Services Explorer,
they have little or nothing to do with COM+ applications and are the
reincarnation of DCOMCNFG.EXE, the awkward DCOM configuration
utility. The Default Security tab has no bearing on COM+
applications. It is used to control default access and launch
permission for classic COM local servers. The Default Properties tab
is mostly irrelevant for COM+ applications. It is used to set default
authentication and impersonation levels for COM local server
processes that can be accessed remotely. If those processes were
to interact with COM+ applications as clients to the configured
objects (locally or remotely) and did not provide their own security
configurations (administratively or programmatically), then these
settings would be used. It short, neither tab is relevant to COM+
applications.

7.9.2 Calling Col nitializeSecurity()

If you used DCOM security before, calling CoInitializeSecurity (
) is second nature to you. In the old DCOM days,
CoInitializeSecurity() was the gateway to manageable
security, and any properly written DCOM server called it to ensure
that the required security levels would be used. However, a
configured component has no point in calling
CoInitializeSecurity() because any configured component is
loaded in a hosting process. If the component is part of a server
application, COM+ calls CoInitializeSecurity() when the
process is created, with the application global security settings as
parameters. If the component is part of a library application, the
hosting process calls CoInitializeSecurity () before doing
anything else with COM. Otherwise, COM would have called
CoInitializeSecurity() for it.

CoInitializeSecurity() may be an issue when importing an
existing COM local server to COM+. If the ported server used
CoInitializeSecurity(), you must remove the call from the
code, look at the parameters for CoInitializeSecurity (), and
configure the global application security levels accordingly.

7.9.3 Disabling Changes to the Application Configuration

212

A permission properties group is located on every COM+
application’s Advanced tab (see Figure 7-17). By selecting "Disable
changes," you can prevent anybody from making changes to your
application settings (and any changes at the component, interface,
and method level), including the security settings and access policy.
The problem is that this checkbox is not password protected, and
anyone with administrative privileges can modify your precious
security settings and introduce security gaps in your application.
Customer-side administrators (who are not your product
administrators) may be tempted to change your security settings to
accommodate something else in the system, or just to fool around
with your application. Be aware of this situation. This checkbox is
there for a reason, and | wonder why Microsoft did not take an
extra step and make it password protected.

Figure 7-17. Disabling and enabling changes to your application

X
General | Secunly | Identty | Activation | Dueuing Advanced |

Servel Process Shutdown

= Leave nnning when jde

" Minutez ustl idle shutdown

Peimission

¥ Dizable changes

Drabesgging
I Launch in debugger

Debugger path: |

[Enable Compensating Resouice Managers
™ Enable 3GB suppost

m.(... i .L.:‘.m; |

7.9.4 Avoid Sensitive Work at the Object Constructor

Imagine a situation in which a client is granted access (using role-
based security) to one component in your application, Component
A, but is not granted access to another component, Component B.
When the client tries to create Component B, COM+ creates the
object, but only lets the client access the TUnknown methods of
Component B and denies access to methods on any other interface.
As explained in the Launch Control definition at the beginning of this
chapter, this process intentionally avoids a DCOM pitfall. This pitfall
allows a client to create a new object in a new process, but forgets

213

to grant the client access to the objects inside. This pitfall resulted
in a zombie process because the client could not even call
IUnknown: :Release () on the object it just created.

However, because the client is allowed to create the object, it
implies that the constructor of Component B actually executes code
on behalf of a client that is not allowed to access the component. If
you do any sensitive work at the object constructor, it may
constitute a security breach because that work should never be
done for that client. The obvious conclusion is to avoid doing any
sensitive work in the object constructor, such as erasing or opening
sensitive files or creating sensitive accounts in a database.

7.9.5 Changing Application Activation Mode

When you switch between application activation modes (for
example, from a library to a server application), COM+ presents you
with the enigmatic message box shown in Figure 7-18. The
message box warns you that certain properties will be set to their
default values. Those settings are mostly security properties that
the library application does not have, such as authentication and
impersonation settings. After changing the application activation
mode, go through the security settings and make sure the default
values COM+ picked up for you are what your design calls for, and
set them to the correct values if you need to.

Figure 7-18. COM+ warns you that some settings have been set to their
default values

7| %
General | Secuily | Idently Activalion | Quesing | Advanced |
Activatice lype

f* Librany apphcaton
Components will be actrrated in the crestor's process.

" Server apphcation

Components will be aciivated in a dedicated server procezs.

\p IF ywoos chiange the activation of this application, certan properties will be regst to ther defauk values onos the

activation setting has besn saved,

ok | Carcal | |

7.9.6 I sCallerInRole() Returns TRUE When Security I's Not
Enabled

214

Programmatic role-based security, as you have seen, is used to
verify the caller’'s membership in a particular role. However, role-
based security must be enabled properly for
ISecurityCallContext::IsCallerInRole() to return accurate
results. In the following cases, IsCallerInRole () always returns
TRUE, regardless of the actual caller role membership:

 Role-based security is enabled at the application level, but not
enforced at the component level, because the "Enforce
component level access checks" checkbox (shown in Figure 7-
3) is not selected. Calls to
ISecurityCallContext::IsCallerInRole() from within the
component always return TRUE.

» At the application level, authorization is not enforced because
the "Enforce access checks for this application" checkbox
(shown in Figure 7-10) is not checked. All calls to
ISecurityCallContext::IsCallerInRole() will always
return TRUE, even if component level access checks are
enabled.

IsCallerInRole() misbehaves in both library and server
applications when one of these two situations occurs.

To overcome this misbehavior, you should call another method of
ISecurityCallContext to verify that security is enabled before
checking role membership. This method is called

IsSecurityEnabled(), and is available specifically for these cases.
Example 7-5 shows the same code as Example 7-1, except this time
IsSecurityEnabled() is used first.

Example 7-5. Verifying that security is enabled before checking the caller
role membership

STDMETHODIMP CBank::TransferMoney (int nSum, DWORD
dwAccountSrc, DWORD dwAccountDest)
{
HRESULT hres = S_OK;
ISecurityCallContext* pSecurityCallContext = NULL;
_bstr_t bstrRole = "Customer" ;
VARIANT_BOOL bInRole = FALSE;
VARIANT_BOOL bSecurityEnabled = FALSE;

hres = ::CoGetCallContext (IID_ISecurityCallContext,

(void**) &pSecurityCallContext) ;
if (pSecurityCallContext == NULL)

{

//No security call context available, role-based
security not in use

215

return E_FAIL;

}

hres = pSecurityCallContext-
>IsSecurityEnabled (&bSecurityEnabled);

if (!bSecurityEnabled)

{
pSecurityCallContext->Release () ;
return E_FATL;

}

hres = pSecurityCallContext-
>IsCallerInRole (bstrRole, &bInRole) ;

pSecurityCallContext—->Release();

if (bInRole)//The caller is a customer

{
if (nSum > 5000)
return E_FATL;

}

return
DoTransfer (nSum, dwAccountSrc, dwAccountDest) ; //Helper
method
}

7.9.7 Disabling Application-Level Authorization

When you disable application-level authorization, even if a
component is set to use and enforce role-based security (as in
Figure 7-3), all calls to that component will be permitted, regardless
of the caller’s identity and role membership. This situation is very
dangerous, as the component, by design, may require access
control and does not have another mechanism in place to
implement access control requirements.

In addition, unlike the case of setting the security level to process-
wide only (which disables component level role-based security and
allows all calls), the component security tab will not be grayed out
as in Figure 7-11. Always leave the application-level authorization
enabled.

7.9.8 Enabling Application-Level Authorization

As explained in the previous pitfall, you should always enable
application-level authorization. However, what happens if, in your
application, you have a number of components that require role-
based security and a few other components that do not? The
components that do not require access control may serve a different
set of clients altogether. Application-level authorization is
problematic because when a call comes into an application, COM+
verifies that the caller is a member of at least one role defined for
this application. If the caller is not a member, COM+ denies the

216

caller access, even if the caller tries to access a component that
does not require access control.

There are two ways around this pitfall. The first is to move the
components that do not require role-based security to a separate
application. The second solution simply defines a new role in your
application called Place Holder and adds just one user to it: the
Everyone group (see Figure 7-19). Now all callers are members of
at least one role, and components that do not require role-based
security can accept calls from any user while application-wide
authorization is enabled.

N

e Be aware that using the Place Holder role with the

Everyone user in it actually moves the first line of
defense to the component layer instead of the
application layer. This movement may open the
way for a denial of service attack by a malicious
client that bombards your application with requests
to create new components. COM+ allows the
attacker to create the components, but not access
them. The bombardment may cause your
application to run out of resources.

Figure 7-19. Adding a role as a placeholder for the Everyone user

“ja Companent Services =101 x|
F) Conscle Window Help -] =
Acton View = & [D [f{?J
Tree | g
[4| %% Bark fpp a]
+ COM4 T Dead Lather Ques Everyone
1 COM Ltilties
+ Logoaok.
- Myipo
+__] Components
=] Roles
= 2% place Holder
=
+ Everyons -l
' L

217

7.10 Summary

COM+ security offers the component developer a wide spectrum of
security support, from simple and administrative role-based security
to advanced programmatic security. Security is all about tradeoffs:
performance versus risk mitigation, ease of use versus flexibility,
and ease of administration versus potential attacks. Regardless of
where you find yourself in this spectrum, you will learn to
appreciate the elegance and power of COM+ security.

You can also combine COM+ security with the high-level COM+
services described in the next chapters: COM+ queued components
and COM+ loosely coupled events.

218

Chapter 8. COM+ Queued Components

COM+ Queued Components is a service that allows a client to call
object methods asynchronously. The client is blocked only for a
short duration while COM+ processes the request, and the object
executes the call at a later point. You can think of queued
components as asynchronous COM+.

Under classic COM and DCOM, all method calls on your object are
synchronous—the client is blocked while the object executes the
call. Classic COM developers often had to develop a proprietary
mechanism for asynchronously invoking calls on their objects. One
recurring mechanism had the object spin off a worker thread to
process the client request and immediately return control to the
client. The object would later signal the client somehow when the
call completed (if the client needed to know), and the client had to
distinguish between method completions of multiple objects.

Such solutions coupled the clients to the objects and were
inconsistent. Different vendors provided slightly different solutions,
requiring different programming models on the client side at times.
The first release of MTS and Microsoft Message Queue (MSMQ) in
1998 provided another way to support asynchronous object method
calls with COM. MSMQ is a message queuing service that allows you
to post messages from one queue to another, potentially across
machines.

Clients and objects could use MSMQ to facilitate COM asynchronous
method calls. With MSMQ, the client posts a message to a
designated queue that contains the method name and parameters.
The object retrieves the message off the queue, parses the
message, and executes the call. The object and client developers
agree about the queue location, the message format, and other
details required for asynchronous interaction in advance.

However, using MSMQ for asynchronous calls has some
disadvantages:

« The nonstandard interaction couples the object to its clients.

o The client developers still have to design and implement a
way to package the method information into a message, and
object developers still have to design and implement a way to
parse the message.

« MSMQ is not easy to install and use. Developers have to learn
how to write code to use MSMQ interfaces.

e The client is very much aware that it uses MSMQ to post the
call to the object. The resulting asynchronous method
invocation code does not resemble the synchronous method
invocation on the same COM interface.

219

This approach is analogous to the pre-DCOM days when developers
wrote raw RPC calls to invoke methods on remote objects.

The idea behind COM+ queued components is simple: let COM+
encapsulate the interaction with MSMQ and provide a uniform way
of invoking asynchronous method calls. In fact, the method
invocation code itself is the same as a synchronous call. The only
difference is in the way the client creates the object.

You can think of MSMQ as the transport layer between the client
and object, much like RPC is the transport layer in the case of
remote activation. A DCOM client does not care about the
underlying details of RPC protocol and marshaling when invoking a
method on a remote machine. Similarly, a queued components
client does not need to care about the details of the MSMQ protocol
and the methods-to-message conversion.

Queued components are an essential addition to your arsenal
because implementing robust asynchronous execution on your own
is a demanding task; it requires you to spend much effort on
design, implementation, and testing. By providing you with queued
components, COM+ lets you focus on the domain problems at hand,
rather than on complicated asynchronous plumbing.

8.1 Major Benefits of Queued Components

Besides simplifying asynchronous method invocation, queued
components provide you with other major benefits (discussed in the
following sections).

8.1.1 Disconnected Work

When the client calls a queued component, the call is converted to a
message and placed in a queue. MSMQ detects the message in the
queue and dispatches the message to the queued component. If the
client and the object are on different machines, the message can be
placed in a local queue on the client machine, if necessary.

Imagine that the client is disconnected from the network: suppose a
sales person is working on a laptop at the airport while waiting for a
flight. The client application on the laptop can still make calls to
queued components—to update order numbers, for example. The
calls are stored locally by MSMQ. The next time the client machine
is connected to the network, MSMQ is aware that the local queue
contains messages, so it dispatches them to the remote component.
The server hosting the objects could be disconnected as well. MSMQ
transfers queued messages from the client machine once the object
machine is brought back online.

The benefits of disconnected work are twofold. First, your system's
robustness improves because network outage between a client and

220

a queued component is handled easily. Second, allowing
disconnected work in your application, by design, has practical
importance: approximately 40 percent of all new computers sold are
for mobile and portable use. These devices benefit greatly from
queued components, as they allow users to continue working while
offline or on the road. Targeting the portable market is an important
consideration for many modern applications.

8.1.2 Real Life Business Model

Many enterprise-wide applications are developed to automate
existing business processes and information flow. These processes,
such as email and voicemail, are often messaging-based by nature,
and modeling them with queued components is very appropriate.

8.1.3 Component Availability

A component may not be available because of server overload or
networking problems. Under classic DCOM, you would have to abort
the whole transaction or wait for the component to become
accessible. Using queued components, you can separate the
transaction into activities that must be completed now and those
that can be completed later. Your end users will be unaware of
server slowdowns or failures.

8.1.4 MSMQ Participates in Transactions

MSMQ is a resource manager, and will thus auto-enlist in your
transactions. When your application makes calls to queued
components during a transaction, your application (via COM+) adds
messages to an MSMQ queue. Those messages will not persist in
the queue if the transaction is aborted. The transaction coordinator
(DTC) instructs all resource managers that participated in the
transaction to roll back the changes. MSMQ’s rollback rejects the
messages that were added to the queue during the transaction.

8.1.5 Auto-Retry Mechanism

Once a message is added to a queue, COM+ tries to invoke the call
in that message on the object. When COM+ retrieves the message
from the queue, it creates a new transaction for the retrieval. If the
object participates in that transaction, and that transaction is
aborted, MSMQ’s rollback in this case will return the message to the
queue. This, in turn, causes COM+ to try again to invoke the call on
the object.

8.1.6 Scalability

221

A major scalability bottleneck is the length of time the client ties up
an instance of the server. In a distributed system, you should
minimize that time as much as possible by reducing the number of
network round trips to allow your server to accept calls from other
clients. When a client makes calls on a queued component, COM+
records the calls the client makes and combines them into a single
message. Message delivery generally requires just a single network
operation, so the time the server instance is occupied is reduced.

8.1.7 Workload Buffering

Every system has a peak load of clients asking for services.
Systems architects have to design the system to handle that peak
load. The question is, what do you do if the workload is uneven
throughout the day? Designing your system to handle the peak load
in real time may require huge investments in expensive hardware,
load balancing machines, longer development time, and more
difficult design goals. Such an approach results in a system that
may handle the peak load, but remains vastly underutilized on
average. A more realistic alternative is to accept client requests,
buffer them, and execute them later on. For example, most online
web stores do exactly that—they accept your order immediately and
you are free to surf other web sites. The store buffers your request
and can handle the next client. In the background, at the system's
leisure, it processes the request and sends you an email
confirmation once your order is processed and shipped.

Using queued components, you can separate the purchasing task
into two stages: a short-duration, front-end, synchronous
acknowledgement, and an offline, queued task—the order
processing itself.

8.1.8 When Should You Use Queued Components?

Clearly, queued components offer solutions to several real-life
problems, saving you precious development time and increasing
overall system quality. The question is, when should you use
queued components?

During system requirements analysis, try to identify business
activities that can be separated by time. You may execute each
activity synchronously, but you connect them with queued
components.

For example, imagine an online store. Orders are collected from the
customers immediately and synchronously. Processing the order—
parts orders to various vendors, billing updates, and so on—can be
done later. All tasks must be done, but they don't all have to be
done at once.

222

8.2 Queued Components Architecture

One of the major requirements for the COM+ queued components
architecture specifies that the component developer should take no
special steps to make a component asynchronous; the developer
writes synchronous code, and COM+ provides the mechanism to
allow clients to call the method asynchronously.

As a result, the client cannot create the component directly, since it
would result in the usual blocking calls. Instead, COM+ uses the
architecture shown in Figure 8-1. For every queued component,
COM+ provides a recorder object. The recorder object supports the
same set of interfaces as the queued component. When the client
calls methods on the recorder interfaces (Step 1), the recorder (as
the name implies) merely records the calls. When the client releases
the recorder, the recorder converts the calls to an MSMQ message
and posts that message to the recorder queue (Step 2).

Every application that contains queued components has a queue
associated with it. MSMQ transfers the message to the application
queue from the recorder queue (Step 3). For each application,
COM+ maintains a listener object that detects when a message was
added to the application queue (Step 4). The listener creates a
player object (Step 5) and instructs it to retrieve the message from
the queue (Step 6). The player creates the actual component and
plays the calls back to it (Step 7). When the player is finished
playing back calls, it releases the component.

Figure 8-1. COM+ queued components architecture

Rocorder Application
iMyinterfoce Queue uewre IWylnterfce
— — S — My
Client Recorder] i
MO T
Listener

8.2.1 The Recorder

You can think of the recorder as the component proxy. The recorder
is responsible for forwarding the call across processes or machines
to where the object resides. The recorder lives in the client process
and supports the same set of queued interfaces as the component.
When clients query the recorder for a different interface, then the
recorder must also provide recording ability for the interface if it is
supported by the real component.

8.2.2 The Player

223

The player in this architecture is analogous to the stub—it translates
the MSMQ message to method calls and then makes those calls to
the object. The player is responsible for removing the message from
the queue and is configured to always require a transaction. As a
result, creating the player kicks off a new transaction that includes
in its scope the message removal and the playback of method calls.
Every action the queued component takes when executing the
methods, such as database updates, executes within that
transaction. If, for example, the database update fails, the
transaction aborts and every resource manager that took part in it
has to roll back. As mentioned previously, MSMQ is a resource
manager and its rollback puts the message back in the queue. The
listener detects its presence there and retries the playback
sequence (more on that later).

8.2.3 The Listener

Every COM+ application has at most one listener associated with it,
serving all queued components in the application by listening to the
application queue and creating the player objects.

Note that the queued components design separates the act of
detecting a message from the act of playing it back to the
component. If the listener were responsible for calling methods on
the objects, then all calls to queued components would be
asynchronous, but serialized—that is, occurring one at a time. That
kind of design would have killed performance. By having a
dedicated player for each component, the listener can process
asynchronous calls as fast as they can be added to the queue.

The listener object lives in the application process. If you configure
your application to support queued components, COM+ creates a
listener in the application process when the application is launched.
In fact, if the application is not running, then no one will listen to its
message queue, and, as a result, no queued components will ever
be instantiated. COM+ cannot possibly know when it is a good time
to create the application and have it start servicing queued calls for
you. Only the application administrator has that knowledge (for
example, what hours of the day or what load level).

You have a number of options available for launching the
application:

o Start the application manually from the Component Services
Explorer.

e Provide your application administrator with a simple utility
that makes programmatic calls to the COM+ Catalog (as
explained in Chapter 6) to start the application.

e Use the Windows Task Scheduler to invoke your utility at
designated times.

224

o Activate nonqueued component in the same application. This
activation causes COM+ to launch the application, and by
doing so, it creates the listener.

8.3 Component Services Explorer Configuration

Before you begin configuring the Component Services Explorer,
make sure you have MSMQ installed on your machine. The Windows
2000 installation does not install MSMQ by default. To add MSMQ to
your system, go to the Control Panel and click on Add/Remove
Programs. In the dialog box, click Add/Remove Windows
Components, and instruct the wizard to install Message Queuing
Services. This step starts the MSMQ installation. Choose the
Workgroup installation for a single-machine setup, or if you have a
domain account on a domain server, choose the domain installation
for secure cross-machine invocations.

8.3.1 Application Configuration

Every COM+ Server application can host queued components. On
the application properties page, a Queuing tab (see Figure 8-2)
enables and configures queued component hosting by that
application. The tab contains two checkboxes, "Queued" and
"Listen".

Figure 8-2. The COM+ server application Properties page’s Queuing tab

x|
Gcnnrall Securty | Identty | Activation Qusuing |Mvuncm:| |

¥ DQueusd - Thiz applcation can be reached by MSHMO quewes,

[¥ Listers - This application, when activated, will process messages ‘
that arive on its MSME quaus |

€ MOTE: If thiz apphcation i abeady wunning, you will need to restait the |
spplication before ary changes made here wil lake effect

0Ok | Cancel |

Checking the Queued check box causes COM+ to create a public
message queue, named as the application, for the use of any
queued components in the application. Incoming messages for
queued components in the application are posted to that queue.
You can actually see the queue associated with your application by
using the MSMQ Explorer. To bring up the MSMQ Explorer, go to the
Control Panel, open the Administrative Tools folder and expand

225

Computer Management —>Services and Application —?Message
Queuing. You will see all the MSMQ queues installed on your
computer. If, for example, your COM+ application is called MyQC
App, once you check the Queued check box, under the Public
Queues folder you should see a new queue called myqc app (see
Figure 8-3).

Figure 8-3. Using the MSMQ Explorer, you can see the queue associated
with your application

=101 x|

ackion View = &l m @D%@

Tree |

Mame

@.« Computer Management (Local) | 1 Outgaing Queves
£ i, System Tools | _JPuilic Cusues
¥ " Storage | _IPrivate Queuss
}-:I Sarvioes and Applications |) System Queuss
&y Wil Contral l
“%‘;} Services

+ &l Indexing Senvice
SR e s age CUELng
+ 7] Dutgning Queuss
=1-_7]) Pulblic Cuesues
= mac aop
&5l Queue messages

+ i doumnal messages
+_] Private Queuss

Checking the "Listen" checkbox on the Queuing tab instructs COM+
to activate a listener for the application when the application is
launched.

Normally, if you have queued components in the application, you
should have the "Listen" checkbox checked. However, COM+ allows
you to turn off processing queued calls (by unchecking the "Listen"
checkbox) to allow nonqueued components in the application to
sever their clients adequately without the performance hit of the
queued calls. The performance can be sustained at a later point in
time.

A COM+ library application cannot contain COM+ queued
components because it is hosted at runtime by a client process,
over which COM+ has no control. In fact, the client process may not
even be a COM+ server application. COM+ cannot create MSMQ
queues as needed for a process or inject listener objects into it. If
you use queued components, you must put them in a server
application.

8.3.2 Queued Component I nterface Configuration
The fact that a client wants to make asynchronous calls on a
component does not mean that the component developer allows it.

You have to enable queuing for every interface on which you expect
to receive asynchronous calls. You do that by displaying the

226

interface properties page and then selecting the Queuing tab. The
tab has a single checkbox (see Figure 8-4). When checked, that
interface on your component can accept queued calls.

Figure 8-4. The interface Properties page’s Queuing tab

2] %

Geneal Oueuing |5wuritv]

Duewsng Properhes

I¥ Queued

0K I Cancel

8.4 Invoking Queued Components on the Client Side

A queued component client cannot create the component using
CoCreateInstance() (Or CreateObject ()/New for Visual Basic
6.0) because it would result with the normal synchronous mode of
interaction. The client must create the component in a way that
would make COM+ create a recorder for the calls instead.

Consider, for example, the system in Figure 8-5, which shows the
component layout of an online retail shoe store. The customer
interacts with a top-level Store component. The interaction with the
customer must be fast and synchronous. The customer specifies
shoe size, shipping method, email address, credit card number, and
so on. The Store component saves the order information using the
Order component and processes the order using the Shipment
component.

Figure 8-5. A simple online retail store system containing Store and
Order COM+ components and a queued Shipment component

== (rders
(Order 08

Custamer =~ Siore

Shipment — miﬁ?"

However, shipping the order (ordering the shoes from the vendor,
updating inventory, interacting with the shipping company, etc.)
can take a long time to complete. Processing and shipping the order
should be done offline, using COM+ queued components.

The Shipment component exposes the Ishipment interface, defined
as:

227

interface IShipment: IDispatch

{
[id(1)] HRESULT ShipOrder ([in]DWORD dwOrderNumber) ;

}

The Shipment component prog-1D is MyApp.Shipment.

The first step in using queued components configures the
application containing the Shipment component to host queued
components, and then configures the Ishipment interface on the
Shipment component, as shown in the previous section.

The client of a queued component creates a recorder for the calls
made using a moniker —a string that shows how to bind to an
object. If the client is written using Visual Basic, the client uses the
GetObject () call. A C++ client would use the equivalent
CoGetObject ().

For example, if the Store component were implemented using Visual
Basic, you would write the following code to create a recorder for
the queued Shipment object and execute the call:

orderNumber = 123

Dim Shipment As Object

Set Shipment = GetObject ("queue:/new: MyApp.Shipment")
Shipment.ShipOrder (orderNumber)

And if it were written in C+ +:

IShipment* pShipment = NULL;

HRESULT hres = S_OK;

DWORD dwOrderNumber = 123;

hres = ::CoGetObject (L"queue:/new: MyApp.Shipment", NULL,
IID_IShipment, (void**) &pShipment) ;

hres = pShipment->ShipOrder (dwOrderNumber) ;

pShipment->Release();

Alternatively, the C+ + client can create the queued component
using the component CLSID instead of the nonunique prog-I1D:
hres = CoGetObject (L"queue:/new: {8B5C3B80-6D0C-49C7-8F 74—
14E59D4BEF40}™, ...,);

Nothing in the client's code differs from interacting with the same
component synchronously, except creating the object.

COM+ actually uses two monikers to create the queued component.
The first is the new moniker that has existed since the early days of
COM. The new moniker, an alternative to CreateObject () and
CoCreatelIntance(), is used to create a component.

For example, the following two Visual Basic lines are equivalent:
Set Order = CreateObject ("MyApp.Shipment")

Set Order = GetObject ("new: MyApp.Shipment")
Either line would create the nonqueued component.

228

The queue moniker is a new addition, introduced by COM+ to
support queued components. The combination of queue: /new: tells
COM+ to create a recorder instead of the real object. For practical
purposes, the syntax used to create a queued component (shown
previously) is all you will ever need.

However, COM+ provides the queued component client with many
extensions to the queued moniker that allow you to override its
default behavior. These extensions include:

» Posting the recorded method calls to a specified queue,
instead of the one associated with the queued component
application. You can specify the queue name and location (the
machine on which the queue resides), as well as application-
specific information that will be attached to the message.

« The message security authentication level.

e The message encryption options.

e Whether MSMQ should keep a journal of the message.

» Various send and receive timeouts.

« The message priority within the queue.

Please refer to the MSDN Library for more information about these
and other extensions. The very fine-grained control a client can
have over the queued method recording is another reason why the
conventional mechanism for creating components
(CoCreatelInstance or New) cannot be used for queued
components.

8.5 Designing Queued Component Interfaces

When a client makes calls to a queued component, it interacts with
the recorder provided by COM+. No actual calls to the real object
occur. So, at the time of the call, the client has no way to receive
output from the method, nor can it tell whether the call succeeded
or failed. Consequently, when you design an interface to be
supported by a COM+ queued component, you must avoid any
outgoing parameters on any interface method.

Specifically, do not use any [out], [in,out], or [retval] IDL
attributes on your method parameters. When you import a
component into the Component Services Explorer, COM+ inspects
the interfaces supported by that component, and if it detects an
output attribute, COM+ disables the queuing option for that
interface.

If you develop your COM+ component using Visual Basic 6.0, you
do not have direct access to your component IDL. Normally, this
lack of access would not be a problem. However, Visual Basic, by
default, treats method parameters as [in, out] parameters. If you

229

expect your component to be accessed as a queued component, you
have to explicitly use the Visual Basic Byval attribute on your
method parameters.

- In the next version of Visual Basic, Visual

%3 4. Basic.NET, all parameters are, by default, passed in

8 by value instead of by reference. See Chapter 10
for more information.

A different kind of a parameter returned from a method is its return
value. You should avoid using custom HRESULT codes to indicate
particular failure cases. The client only receives the HRESULT from
the recorder, indicating the success or failure of recording the call.
When your object executes, its HRESULT codes are delivered to the
player, which does not understand your custom semantics. COM+
does not require you to stick to the standard HRESULT codes, but
there is no point in not doing so.

Another restriction on queued component interfaces is that the
client cannot pass in a pointer to another COM object. The reason is
obvious—when the actual call takes place later, there is no
guarantee that the object passed in as a parameter is still around.
Implementing a queued component implies more than just a few
method parameters restrictions and clicked checkboxes on the
Component Services Explorer. It really means a change in your
design patterns and programming model.

The only way to pass in COM objects as a method parameter to a
queued object is if the object you pass in supports the interface
IPersistStream. IPersistStream is a standard interface used for
object serialization, defined in the early days of OLE2 and COM.
Objects that support TPersistStream can serialize their state into a
COM+ provided stream and reconstruct their state out of such a
stream.

Whenever you pass a COM object as a method parameter, COM+
queries it for TPersiststream. If the object supports it, COM+ calls
IPersistStream: :Save (), passing in a pointer to an IStream
object. The input object saves its state to the stream. The recorder
stores the saved state information in the message sent to the
queued component application queue. When the player retrieves the
message, it creates a stream object from the message and calls
IPersistStream: :Load () to initialize the object to the state it was
in when the call was made. It then invokes the call on the
component, passing in the input object as parameter.

When you design an interface used by a queued component, you
can use a new IDL extension, an interface attribute called
QUEUEABLE, to denote it as an interface used by a queued
component. The mtxattr.h header file defines this extension.

230

Example 8-1 shows the Ishipment interface definition again, this
time using the QUEUEABLE attribute.

Example 8-1. Using the IDL QUEUEABLE attribute to denote an interface
as queued-components compatible

#include "mtxattr.h" // For QUEUEABLE
[
object,
uuid (97184D0F-F7EF-413A-8C6D-C1745018B2E9),
dual,
pointer_default (unique),
QUEUEABLE

]
interface IShipment: IDispatch

{
[id (1)] HRESULT ShipOrder ([in]DWORD dwOrderNumber) ;

i

This attribute autoconfigures the interface as Queued when you
import a component that supports the interface into the Component
Services Explorer. This autoconfiguration saves you the trouble of
doing it yourself. The attribute has no semantic meaning for the
MIDL compiler; it will not stop you from defining [out] parameters
on an interface marked QUEUEABLE. Only COM+ examines this
attribute.

ATL 7 Queuing Attribute

As explained in Chapter 4, if you use the attributed ATL 7
project under Visual Studio.NET, you can take advantage of
precompiler-specific support for COM+ 1.0 services, using
special attributes. If you add a new class to your ATL 7
project, and you select "ATL COM+ 1.0 Component" from the
Add Class dialog, the wizard will let you configure queued-
component support for the interface. If you select the
"Queueable" checkbox, the attributed interface will have a
custom attribute as part of its deceleration:
[
object,
uuid (97184D0F-F7EF-413A-8C6D-C1745018B2E9),
dual,
custom (TLBATTR_QUEUEABLE, 0)
pointer_default (unique)
]
__interface IShipment: IDispatch
{
[id (1)] HRESULT ShipOrder ([in]DWORD
dwOrderNumber) ;

}i

231

Before compiling your code, ATL 7 feeds your sources to a
special precompiler that parses the attributes and generates
conventional, nonattributed ATL source files, including an IDL
file. The new sources are then fed to the conventional C+ +
compiler. In that process, the TLBATTR_QUEUEABLE custom
attribute is converted to the IDLQUEUEABLE extension.

8.6 Receiving Output from a Queued Component

Banishing all output options for a queued component would be too
draconian and impractical. Sometimes expecting output from a
queued component is appropriate. Consider the online shoe store.
After the Shipment object ships the order, you would like it to notify
another object about it. The Store object would like to pass in the
Notification object as a parameter to the shipOrder () method.
From a design perspective, it is a good idea to decouple the
notification actions from the Shipment process itself. You should
decouple the action to ensure that the Shipment object knows only
about a generic notification interface and that it calls a method on it
once the order is shipped. It is up to the Store object to decide
which notification object to pass in as a parameter. You could have
multiple implementations of the Notification interface—for example,
one Notification object sends an email to the customer to say that
the shoes are on the way and another also sends promotional
material.

You have already seen that COM+ allows you to pass in interface
pointers for objects that support the IPersistStream interface.
COM+ also lets you pass in as a method parameter an interface
pointer to another queued component. This technique is called
Response Object because it allows the client to receive a response
from the queued component and be notified about the results of the
queued call. The response object does not need to support the
IPersistStream interface, as COM+ will not try to transfer it by
value to the queued component.

The client can use a response object in two ways. First, it can create
the response object, create the queued component, and pass in the
response object interface pointer (which actually points to the
response object recorder). After the method call, the client can
release the response object.

Figure 8-6 shows how a response object in the online store example
is used to send notification email to the customer once the order is
processed and shipped.

In the example, the customer submits the purchase order to the
Store objects (Step 1). The Store object creates a Notification
object (Step 2) and a Shipment object (Step 3), in both cases
creating recorders only. The Store object passes in the Notification

232

object as a parameter for the Shipment object. The Shipment
recorder knows how to extract from the Notification recorder its
gueue name and location, and packs it in the message (Step 4).
When the method call is played back to the Shipment object (Step
5), based on the information in the message, the player creates a
notification recorder (Step 6) and passes it as a method parameter
to the Shipment object. The Shipment object calls methods on the
Notification recorder (Step 7). Once released, the notification
recorder posts the queued calls to the Notification queue (Step 8),
where they are eventually played back to the Notification object
(Step 9). In this example, the Notification object then notifies the
customer about the shipment by sending him email (Step 10).

Figure 8-6. Online store example: using a response object to send
notification email

Hotification
Recarder
T Order B ﬂ'gﬁm
Customer > Slore
A _L
: Shipment === Shipment — ; — Shipmenl
' Recorder yer Shigment ?JT
b pmail l |
g =+— Nojification =~~~ Nofification
Hotification Ployer b

The second way a client can use a response object is to pass in
string method parameters that instruct the queued component how
the response object should be created. In the example, the Store
object would create only the Shipment recorder and pass in as
parameters where and how the Shipment object should create the
Response object (machine and queue name, authentication level,
and so on). The Shipment object would use these parameters as
arguments for the moniker to create the Notification object.

Passing in a queued component as a parameter is more transparent
to both the client and the queued component and does not
contaminate the interface with parameters, which expose execution
location and invocation mode. However, passing in the response
object queue information provides ultimate flexibility for the client
controlling the response object.

Error handling is another use for response objects. The client has no
way of knowing about the success of the queued call. Imagine, for
example, that while processing the order, the Shipment object was
unable to complete it successfully; perhaps the vendor ran out of
shoes in the requested color, or the customer supplied an expired
credit card number.

233

The Shipment object cannot possibly handle all the error cases
correctly. However, it can notify the response object that the order
processing failed. The response object notifies the customer—
perhaps requesting the customer to select a different color or
supply a new card number. Error handling is the subject of the next
section.

8.7 Queued Component Error Handling

In classic synchronous COM, the client knew immediately about the
success or failure of a method call by inspecting the returned
HRESULT. A queued component client interacts with the recorder
only, and the returned success code only indicates the success of
recording the call. Once recorded, a queued component call can fail
because of delivery problems or domain-specific errors. COM+
provides a few options for handling errors on both the client side
and the server side. These options include an exception-like
mechanism, auto-retries, and a few administrative tools. You can
always use a response object to handle errors, as well.

8.7.1 Handling Poison Calls

Once a call is placed successfully in the application queue, plenty
can still go wrong; perhaps the component was removed, its
installation was corrupted, or the component failed while executing
the call (for example, if the customer provided a bogus credit card
number). In case of failure, if the call is simply returned back to the
queue, COM+ could be trapped in an endless cycle of removing the
call from the queue—trying to call the component, failing, placing it
back in the queue, and so on. COM+ would never know when to
stop retrying—perhaps the call could succeed the next time.

This scenario in distributed messaging systems is called the poison
message syndrome because it can literally kill your application.
COM+ addresses the poison message syndrome by keeping track of
the number of retries and managing the interval between them.
Besides creating the application public queue (where the calls are
placed), COM+ creates five private retry queues and one dead
gueue when you enable queuing for a COM+ application (seeFigure
8-7). The dead queue is the final resting place for a message for
which all delivery attempts have failed—it is a suspected poison
message.

When a call is posted to a queued component, it is placed in the
application public queue and a player tries to invoke it.

If the invocation fails, the message is put into Queue 0. COM+ tries
to process the message again three times from queue 0, with a
one-minute interval between retries. If the call still fails, the

234

message continues to move up the retry queues, where COM+
retries three times from each queue, with ever-increasing intervals
between the retries. The higher the number of the retry queue, the
longer the interval between retries (Q_1 is 2 minutes, Q_2 is 4, Q_3
is 8, and Q_4 is 16). After the last attempt from the last retry
queue fails, COM+ puts the message in the dead queue, from which
there are no more retries, and the message is deemed poisonous.

Figure 8-7. COM+ application private retry queues and dead letter queue

=10 |
Bm NE @
i e
= = Message Queling .‘.l Sl admin_queusd
-] Cubgoing Queues Apmais_ouaues
+ -] Public Queijes Arryqc app_0
o= Srrwyac app_t
- admin_gueued Q_fﬂrrrg.-qu: app_2
+ 34 mogs_quevsd Btmyqe app_3
+ A4 myaz app_0 Bbrrac app_4
+ 3 myoe ape_t Frrwyc app_dezdquens
+ 24 myac app_2 Snotfy_queusf
+ 3 myac app_3 Barder_queus
+ 3_11 myac app_%
+ B rvee app_deadgusus
+ A4 notify_queued
+ \y arder_quewuss
+ 7] System Queves]
. S A O s ot g J

The dead queue can accumulate an infinite number of messages. It
is up to your application administrator to manage the dead queue.
One simple course of action available to the administrator is to
simply purge the queue of all the messages it contains. Another
option is to put the message back in the application or retry queues,
if the administrator believes that the call will succeed this time.
Your application administrator can also delete one or more of the
retry queues and by doing so control the number and length of the
retries; COM+ continues to move a message that continuously fails
up the remaining retry queues. If all retry queues are deleted, a
message that fails will be moved directly to the dead queue.

8.7.2 Queued Component Exception Classes

Sometimes it may not be possible for the call to succeed due to
domain-specific constraints. For example, a customer may attempt
to withdraw money from an account that has insufficient funds, or
the customer account may close when the message is in the queue.
Or, plain security settings may be a problem—the user who issued
the queued call simply does not have the right credentials to carry
out the call.

If the situation is brought to your product administrator's attention
(on the client and the server side) he or she might be able to do

235

something about it. COM+ lets you associate an exception class
with your queued component. In case of repeated failure, COM+
creates the exception class object and notifies it about the failure.
You associate an exception class with your queued component on
the Advanced tab of your component’s properties page by
specifying the prog-1D of the exception calls (see Figure 8-8). If a
queued call cannot reach your component, COM+ instantiates the
exception class and lets it handle the failure.

Figure 8-8. Specifying an exception class for a queued component

2l
Genesal | Transactions | Secunty | Activation | Concumency -‘f‘-d\ﬂ'a“CQd; :

Queuing exception class;

[My#ipe OCExcepbon.]

I 0K 1 Cancel

A queued component exception class is a COM+ component that
implements all the queued interfaces supported by your component
and a special interface called TPlaybackControl. COM+ uses the
exception class object if the call could not be delivered to the
queued component, or if the call persistently failed.
IPlaybackControl has only two methods and is defined as:

interface IPlaybackControl : IUnknown
{
HRESULT FinalClientRetry();
HRESULT FinalServerRetry();

i

The terms client and server are defined loosely in the interface. It
really refers to which side of the queued call the error occurred on.
Both the client and the server administrators can install the
exception class, although each will be more interested in what
happened on their side.

8.7.2.1 Client-side exception handling

Delivering a message to the queued component queue is never
guaranteed. If all attempts to deliver the message to the queued
component queue fail, COM+ places the call on the client side in a
public queue called the Xact Dead Letter queue. The Xact Dead
Letter queue is shared by all clients on the same machine.

The dead letter queue has a listener associated with it called the
Dead Letter Queue Monitor (DLQM)—a COM+ server application
installed on every Windows 2000 machine. You can start the DLQM
application manually or programmatically by calling into the COM+
Catalog. When the DLQM app is running, and it detects the message

236

in the queue, it retrieves the target component from the message
and checks for an exception class.

If the component has an exception class associated with it, the
DLQM instantiates the exception class and queries it for
IPlaybackControl. Since this is a client-side failure, the DLQM calls
IPlaybackControl::FinalClientRetry() on the exception class,
letting it know that client-side failure of delivery is the reason it is
invoked.

Next, the DLQM plays back all method calls from the message to
the exception class. Recall that the exception class is required to
implement the same set of queued interfaces as the component it is
associated with.

If the exception class returns a failure status from any one of the
method calls, the message is returned to the Xact Dead Letter
queue. The DLQM deletes the message from the Xact Dead Letter
Queue only if the exception class returns s_ox on all calls.

This error-handling schema allows the exception class to implement
an alternative behavior for messages that cannot be sent to the
server. For example, the exception class could generate a
compensating transaction. Another course of action would pass in a
queued notification object as a method parameter. The exception
class would call the notification object, letting it know which calls
failed. The notification object can in turn send an email to the
customers asking them to resubmit the order, or it can take some
other domain-specific error handling action.

Because all COM+ knows about the exception class is its ID, you
can even provide deployment-specific exception classes and have a
per-customer error handling policy.

8.7.2.2 Server-side exception handling

Successful delivery of the message to the server side does not
mean that the call will succeed—it could still fail for domain-specific
reasons, including invalid method parameters, corrupt installation,
and missing components.

As explained before, the message moves up through the retry
queues in case of repetitive invocation failures. When the final retry
on the last retry queue fails, COM+ retrieves the target component
from the message and checks for an exception class. Similar to its
handling of the failure on the sending client side, if the component
has an exception class associated with it, COM+ instantiates the
exception class, queries for TPlaybackControl, and calls
IPlaybackControl::FinalServerRetry (). It does this to let the
exception class know that the failure took place on the server side
and that the message is about to be placed in the dead queue.
COM+ then plays back all method calls from the message to the
exception class. The exception class can do whatever it deems fit to

237

handle the error, from sending an email to the application
administrator to alerting the user. If the exception class returns
S_OK from all method calls, COM+ considers the message delivered.
If the exception class returned failure on any of the queued calls,
COM+ puts the message in the dead letter queue.

8.7.2.3 The MessageMover class

Regardless of where the error took place (sending or receiving
side), your system or application administrator has to deal with it.
Application administrators usually do not develop software for a
living and know nothing about COM+, queued components, MSMQ
retry queues, etc. It is up to you, the enterprise application
developer, to provide your application administrator with tools to
manage your product. You should deliver your main product with an
application-oriented administration utility to manage retries of
asynchronous calls and dead calls (on the server and client side).
The application administration utility should use, in its user
interface, terminology from the domain at hand (such as shipment
details) rather than queue names. Internally, it will probably
interact with exception classes and notification objects. Your helper
utility will probably need to move messages between retry queues,
the dead queue, and the application queue.

For example, suppose a queued call destined for a customer
accounts management component failed because the specified
account number was invalid. The administration utility may prompt
the administrator to enter the correct account number for the
customer and then put the message back in the application queue,
this time with the correct account number. To enable you to move
messages between queues easily, COM+ provides you with the
IMessageMover interface and a standard implementation of it. The
standard implementation is available for the C+ + developer by
calling CoCreateInstance () using CLSID_MessageMover and for
the Visual Basic developer by calling CreateObject () using the
prog-1D QC.MessageMover.

The interface IMessageMover is defined as:

interface IMessageMover : IDispatch

{

[id (1), propget] HRESULT SourcePath ([out,retval] BSTR*
pbstrPath) ;

[id (1), propput] HRESULT SourcePath([in] BSTR
bstrPath) ;

[1id(2),propget] HRESULT DestPath ([out,retval] BSTR*
pbstrPath) ;

[1id(2),propput] HRESULT DestPath([in]BSTR bstrPath);

[1d(3),propget] HRESULT
CommitBatchSize ([out, retval]long* plSize);

238

[1d(3),propput] HRESULT CommitBatchSize ([in]long
1Size);

[id(4)] HRESULT MoveMessages ([out, retval]long*
plMessagesMoved) ;
bi
As you can see, IMessageMover is a simple interface. You can set
the source and destination queues and call MoveMessages (), as
shown in Example 8-2, in Visual Basic 6.0.

Example 8-2. Using the | MessageMover interface to move messages from
the last retry queue to the application queue

Dim MessageMover As Object
Dim MessagesMoved As Long

Set MessageMover = CreateObject ("QC.MessageMover")

"move all the messages from the last retry queue to the
application queue

MessageMover.SourcePath = ".\PRIVATES\MyApp_4"
MessageMover.DestPath = "_\PUBLICS$\MyRApp"

MessagesMoved = MessageMover.MoveMessages

IMessageMover does not provide you with a way to move fewer
than the total number of messages on the queue, but it does save
you the agony of interacting directly with the MSMQ APIs.

See the MSDN Library for more information about using the
IMessageMover interface.

8.8 Queued Components and Transactions

As mentioned before, MSMQ is a resource manager. By default,
when COM+ creates the application and retry queues, they are all
transactional queues; they auto-enlist in the transaction that adds
or removes a message to or from the queue.

The recorder and the listener are COM+ components installed in the
COM+ Utilities application—a library application that is part of every
Windows 2000 installation. These components are configured to
require a transaction and take part in an existing transaction, or
spawn a new one if none exists. (COM+ will not let you change the
Utilities application components settings). Every time a client uses
queued components, three transactions are involved—recording the
calls, delivering the message to the application queue, and
replaying the calls.

You can see this concept work with the online store (see Figure 8-
9); all the calls made by the Store object on the Shipment recorder
are packaged into one message and placed in an intermediate
recorder queue. These calls were made in the scope of the

239

transaction that accepted the order parameters from the customer
(Transaction 1). Since MSMQ is a resource manager, the recorder
queue rolls back and rejects the message if the order transaction is
aborted.

MSMQ then has to transfer the message to the queued component
application queue, potentially across the network. MSMQ creates a
new transaction for the transfer, and both the source and the
destination queues participate in it. If the transfer was unsuccessful,
the transaction aborts, the queues roll back, and the message
remains in the recorder queue. This action avoids a partial success
situation, in which the message is removed from the source queue,
but never added to the destination queue. This transaction is called
Transaction 2 in Figure 8-9.

Figure 8-9. The three transactions involved when a client uses queued
components

Transaction |

—* (rders
ﬂI'dEr 0B

Costomer Slore
Recorder
Queve
Transoction 2 —_— e
ma
MG

Tramsaction 3

'

e
Shipment Sh%'rll

Once the message is safely in the application queue, the listener
starts a new transaction for removing it and playing it back to the
component (called Transaction 3 in Figure 8-9). If the invocation
fails, the application queue rollback moves it to the first retry
queue, instead of adding it back to the application queue, to detect
a potential poison message.

Usually you take the MSMQ transfer transaction for granted and
omit it from your design documents. If you use a response object,
the response object playback would be in a transaction of its own
because it is just another queued component (see Figure 8-10).

Figure 8-10. The transaction involved when using a response object

240

Transaction 1

—* (rders
_J” Drder b
Store
1 shil]mm c---.l
Recorder :
Customer : Trunsaction 2
A v
: Shipment — i — Shipmeni
: Shipment
mauﬂ' m lEE

Tronsaction 3

seea 4— Hafificotion = - - - Mofification
Hotifcafion Flayer Recorder

A word of caution when configuring the transactional setting of a
queued component: avoid configuring your queued component to
require a new transaction of its own. If you configure your
component’s transaction setting to have Requires New, the recorder
is in a separate transaction from that of the client, and MSMQ
accepts the recorded calls and posts them to the application queue
even if the original client transaction fails (see Figure 8-11).

Figure 8-11. Avoid configuring a queued component to require a new
transaction

Transaction |
—I—. Oder T l]r{tlii!rs
Customer Slore
Transaction 2
Recorder
Queve
Transaction 3 - b %ﬁm
B
MG
Tromsaction 4

'

Shipment —* Shipmeni
Tmm %nﬂm

A similar inconsistency may exist if you configure the application
gqueue as a nontransactional queue, as MSMQ removes the message
from the queue even if the Shipment transaction is aborted.

241

You should always set the transaction setting of your queued
component to Required—that is what will be necessary in most
business situations.

8.9 Synchronous Versus Asynchronous Components

By now you have probably come to appreciate the elegance of using
queued components and the great ease with which you can turn a
synchronous component and its client code to asynchronous.
However, although it is technically possible to use the same
components both synchronously (using CoCreateInstance() to
create it) or asynchronously (using the queued moniker), the
likelihood that a component will be used in both cases is low for the
following reasons: using a queued component introduces changes in
the semantics of the transactions the component will take part in,
and using a queued component implies a change in the client
program workflow. You simply cannot use the same synchronous
execution sequence logic. The rest of this section elaborates on
these two reasons. These arguments were first presented in Roger
Session's book COM+ and the Battle for the Middle Tier (John Wiley
& Sons, 2000).

8.9.1 Changes in Transaction Semantics

Suppose your online store does not use queued components. When
the customer places an order, the Store object uses the Order and
the Shipment objects synchronously. All the order and shipment
database updates that these objects perform are under the
umbrella of one transaction. Both databases are consulted
regarding committing the transaction (see Figure 8-12).

Figure 8-12. Synchronous invocation scopes all operations in one
transaction

Transaction Scope
—* (Orders
o=
—_—
Store 1

B

Customer
Shipment

However, if the Store object uses a queued Shipment component,
as shown in Figure 8-9, the shipment database and component are
not part of the originating transaction and are not consulted
regarding its success. The Shipment transaction is now entirely
different from the Order transaction. By the time the shipment
transaction takes place, the order transaction has already been

242

committed. Even if the shipment transaction aborts, the order
transaction remains committed and its changes will not roll back. Of
course, the shipment transaction may retry and eventually succeed
and commit, and that may be fine. On the other hand, it may
always fail, and that is probably not so fine.

The conclusion is that configuring a component to be asynchronous
has serious implications regarding the semantics of the transactions
it participates with.

8.9.2 Changes in Workflow

The other major difference between working with a queued
component as opposed to its nonqueued version has to do with the
client workflow. Currently, your Store object calls the Order object
synchronously, and only if the Order object succeeds in processing
the order will the Store object call the Shipment queued
component. Suppose the Store object would like to use a queued
version of the Order component (besides a queued Shipment
component). The Store object records the calls to the Order
component, records the calls to the Shipment components, and
then releases the recorders.

The problem is that the Order and Shipment objects might be
invoked in random order, depending on the network topology,
MSMQ setup, number of retries, and so on. The result can be
disastrous if things go wrong—for example, if the Shipment object
discovers that no shoes in the store match the customer request,
but the Order object has already billed the client for it.

Again, you will find that you cannot just configure components as
queued and use them asynchronously since doing so results in
potentially flawed workflow.

Using a queued component instead of a synchronous version of the
same component requires you to change your code and your
workflow. If the Store component developer wants to use both
queued Order and queued Shipment components, the Store object
should only call the queued Order component. To avoid the
potential inconsistencies mentioned earlier, the call to the Shipment
queued component should be done by the Order object only if the
order processing was successful (see Figure 8-13).

Figure 8-13. Queued Order and Shipment components require changing
the application workflow

Order — Order — Ordey T Orders
Recorder Payer L DB

Shipment —* Shipment —* i —* Shi
i i Shipment T e

Customer ~ Slore

'

243

In general, if you have more than one queued component in your
workflow, you should have each component invoke the next one in
the logical execution sequence. Needless to say, such a
programming model introduces tight coupling between components
(they’ll have to know about each other) and changes to their
interfaces, since you have to pass in additional parameters required
for the desired invocation of queued components down the road.

In addition to changes in the workflow and interfaces, you still face
the problem of having the order and shipment operations in
separate transactions. The only way to have them share the same
transaction is to make them synchronous.

The conclusion from this simple example is that using the
asynchronous version of a component instead of its synchronous
version introduces major changes to the component interfaces, the
client workflow, and the supporting transaction semantics. A queued
component should be designed for queuing from the ground up. The
handy "Queued" checkbox is merely configuration sugar on top.

8.10 Queued Components Security

As you saw in Chapter 7, security is an essential part of any
distributed application, and COM+ provides you with a rich, user-
friendly security infrastructure. When a client makes a queued call,
the queued component may still require the same level of security
services and protection as if it were invoked synchronously, and rely
on COM+ to provide authentication and authorization.

However, the underlying method call invocation is different, and the
synchronous security mechanism simply will not do—by the time
the actual object is invoked, the client may be long gone (with its
security identity and credentials). The synchronous authentication
that uses the challenge-response mechanism cannot be used.

The idea behind queued component security is simple—have the
recorder capture the security identity (and other security-related
information) of the client as it records the method calls. The
security information is bundled in the message along with the
method calls and sent to the queued component application queue.
Before the player makes the call on the component itself, COM+
uses the captured security information to validate that the client is
allowed to access the component.

The underlying implementation of this idea relies heavily on MSMQ
security services to capture the client security details in the
message and transfer it securely to the application queue. To
ensure authenticity of the message, the messages can carry a
digital signature from the client. MSMQ can even encrypt the
message for transfer. If, on the receiving side, MSMQ encounters a
message with insufficient security credentials or a message that

244

was tampered with, then MSMQ puts it in the application’s dead
queue.

8.10.1 Queued Calls Authentication

The default call authentication level actually depends on the queued
component application settings. |If the application uses role-based
security, then during the call to CoGetObject (), COM+ captures
the information required to authenticate the call during playback in
the message. The queued component client can explicitly specify
the desired authentication level for the queued call and the required
privacy level by providing the queued moniker with additional
parameters.

If the client requires authentication, MSMQ digitally signs the
message with the user’s security certificate. If this is the case, your
application administrator has to issue an MSMQ security certificate
for each potential user by using the MSMQ administration applet in
the Control Panel.

In Example 8-3, the Store object explicitly turns on authentication
and instructs MSMQ to encrypt the message body.

Example 8-3. Explicitly setting authentication and encryption levels for a
queued call

IShipment* pShipment = NULL;

HRESULT hres = S_OK;

DWORD dwOrderNumber = 123;

hres = ::CoGetObject (L"queue:AuthlLevel=

MOMSG_AUTH_LEVEL_ALWAYS,
PrivLevel= MQMSG_PRIV_LEVEL_BODY
/new: MyApp.Shipment", NULL,
IID_IShipment, (void**) &pShipment) ;

hres = pShipment->ShipOrder (dwOrderNumber) ;

pShipment->Release();

Exceptionally paranoid clients can also specify the encryption
algorithm to use and a cryptographic hash function (see the MSDN
Library for details on these advanced parameters for the queue
moniker).

Insisting on high security carries with it the usual
performance/security tradeoff. Decide on your security setting
wisely. For example, you may want to authenticate only the actual
order shipment call, but not less sensitive method calls.

8.10.2 Queued Components and Role-Based Security

Despite the fact that under-the-hood COM+ uses a drastically
different mechanism for queued components security, the queued

245

component can, once instantiated, take advantage of role-based
security with the same ease as if it were invoked synchronously.
You can configure your component administratively to use role-
based security on the component, interface, and method levels, and
even use programmatic role-based security calls such as
IObjectContext::IsCallerInRole().

The only requirement for using role-based security is that the call
be authenticated. If the client explicitly turns authentication off
while role-based security is in use, the call will fail during playback,
since COM+ has no way of authenticating what role the client
belongs to.

8.10.3 Queued Components Security Limitations

A queued component developer has access to similar security
features and services as a nonqueued component, and from a
security standpoint, your code will be the same as if you were
developing a normal synchronous component. However, some
differences do exist, especially if you plan to use the more advanced
or esoteric security services. You should be aware of the following
limitations:

e The queued component developer is discouraged from
performing low-level security manipulation, such as
interacting directly with the Kerberos authentication service,
because the Kerberos cookies are not part of the MSMQ
message. Generally, if you want to do low-level security calls,
you are restricted to whatever MSMQ supports.

e Queued components do not support impersonating the client.
This is done (by design) to close a potential security hole in
which an untrustworthy source has generated a message
whose format resembles that of a message to a queued
component and placed it in the application queue. COM+
requires the original client’s security identity to compare with
the message sender identity to verify that the message came
from the client. By doing so, however, COM+ inhibits
impersonation.

e If you install MSMQ using the Workgroup configuration, MSMQ
cannot authenticate queued calls. As a result, you should turn
off security access checks at the application and component
levels.

246

8.11 Queued Components Pitfalls

Queued components is a great service, no doubt, but it does have a
few quirks and pitfalls that | would like to point out.

8.11.1 MSMQ Setup

MSMQ can be installed in two configurations. The first relies on
having a Windows 2000 domain server present on the network. The
workstation onto which you wish to install MSMQ must be part of
that domain. The second installation option is for a Windows
Workgroup.

To call queued components across the network securely, queued
components require the presence of a Message Queuing Primary
Enterprise Controller (PEC) on the network. If you install MSMQ for
Workgroup, you have to turn the security knob all the way down
(set the authentication level for the queued components application
to None and avoid using access control checks). Any cross-machine
calls must be unauthenticated. This limitation is serious. For any
Enterprise-level worthy application, you need the MSMQ domain
server installation.

8.11.2 Queued Component Client

A client of a queued component can run only on a Windows 2000
machine. There is no apparent reason for this condition, as every
Microsoft platform supports MSMQ. What makes it even more
awkward is the fact that most portable devices that could benefit
from disconnected sessions will not run Windows 2000.

(1| can only say that | find this situation very strange, and | hope that Microsoft will
amend this predicament soon.

8.11.3 Visual Basic Persistable Objects

As mentioned before, a queued component client can pass in as a
method parameter an interface pointer to a COM object, provided
that the object supports the IPersistStream (so that COM+ can
serialize the object state into a stream).

However, if the object is written in Visual Basic 6, the object must
be initialized before making the call on the recorder interface by
querying it for Tpersiststream and calling one of the
IPersistStream methods Init (), InitNew(), or Load().

If your client is written in Visual Basic as well, the Visual Basic
runtime handles the object initialization automatically for you. If the
client application is written in C+ +, the application must initialize
the component explicitly. Requiring the client to know the language
used to implement the queued component couples the client to the

247

component, but knowing of a limitation is better than trying to
figure out what went wrong.

8.11.4 IDispatch Considerations

When a queued component client makes a call, it actually interacts
with a recorder. The recorder has to match as much as possible the
behavior of the real component, including its implementation of
IUnknown: :QueryInterface(). The recorder bases everything it
does on the component-type library. It is common for a component
to support multiple interfaces derived from IDispatch . If that is
the case, what interface should the recorder return to the client
when it is queried for IDispatch()?

The recorder uses the following algorithm to provide the right
IDispatch():

« If the component default interface inherits from IDispatch,
the default interface is returned.

« If nointerface is marked as default, but only one interface
inherits from IDispatch, that interface is returned.

o |f nointerface is marked as default and multiple interfaces
inherit from IDispatch, the recorder returns E_NOINTERFACE.

The obvious recommendation is to always mark one of your
component IDispatch-derived interfaces as the default interface.

8.11.5 Queued Component Application Startup

When an application hosts queued components, COM+ must
activate a listener for queued calls sent to its queue whenever the
application is launched. If you package queued and nonqueued
components in a single application, the application might service
clients of nonqueued components when a queued call arrives. This
situation may be a cause for concern if the queued component
makes a lot of CPU-intensive calculations or requires other
expensive resources. These characteristics may be the reasons you
made that component queued—so that your component will not be
in the way of other components and will do the expensive
processing at times when the system load is low.

When deciding on component allocation to applications, make sure
that you really want queued components to start when a nonqueued
component executes. If you would like to control the queued
components' execution time, package the queued components into
a separate COM+ application and explicitly start it up when you
deem it fit.

248

8.12 Summary

Component developers benefit from COM+ queued components on
different levels. First, they take away the need to handcraft
asynchronous method invocation solutions, allowing developers (as
with the other COM+ component services) to focus on the business
problem at hand. Second, and perhaps just as important, queued
components’ ability to take seamless advantage of other COM+
services, such as transactions and role-based security, is something
that would be almost impossible to provide in a custom solution.
You can even combine queued components with COM+ loosely
coupled events, the subject of the next chapter.

249

Chapter 9. COM+ Event Service

In a component-oriented program, an object provides services to
clients by letting clients invoke methods on the object’s interfaces.
But what if a client (or more than one client) wants to be notified
about an event that occurs on the object side? Traditionally, the
client implements a callback interface called a sink interface. To
notify the client of an occurring event, the object calls a method on
the sink interface. Each method on a sink interface corresponds to a
type of event fired by the object.

This model raises a few questions: How does the object access the
sink interfaces? How do clients find out which sink interfaces the
object fires events on? How do the clients unsubscribe from event
notification?

As you will see shortly, the COM+ events service is an exciting new
service that evolved to address the classic problems of event
notification and reception. COM+ events are also known as Loosely
Coupled Events (LCE), because they provide an effective way of
decoupling components. They put the logic for publishing and
subscribing to events outside the scope of the component. Besides
significantly improving on the classic COM model for handling
events, LCE takes full advantage of such COM+ services as
transactions, queuing, and security. Managing event publishing and
subscription can be done both declaratively via the Component
Services Explorer and programmatically using the COM+ Catalog.
To fully appreciate the elegance of the COM+ events service, you
should first understand the drawbacks of the way classic COM
handles events.

9.1 Classic COM Events

In classic COM, when a client wants to receive events from an
object, the client has to pass the object an interface pointer to a
client implementation of the sink interface. This operation is called
advising the object of the sink. Advising takes place by either using
a standard mechanism (connection points) or a custom one very
similar in nature. These mechanisms have changed little since the
early days of OLE 2.0 and COM.

If you use connection points, the object has to implement an
interface called IConnectionPointContainer (see Figure 9-1). The
client uses the connection point container interface to find out
whether the object supports firing events on a specified sink
interface IID. Think of it like a kind of reverse QueryInterface()
call: the client queries the object for its ability to use an interface
implemented by the client.

250

Establishing a connection point usually follows a pattern similar to
this one:

1. The client queries an existing object interface for
IConnectionPointContainer.

2. The client uses IConnectionPointContainer to find out
whether the object supports firing events on a specified sink
interface. If it does, the object returns to the client an object-
side implementation of another interface called
IConnectionPoint.

3. The client uses IConnectionPoint to advise the object of the
client-side sink interface.

4. The object has to maintain a list of sinks that have
subscribed. It adds the new sink to the list and returns to the
client a cookie identifying the connection. Note that the object
manages the subscription list.

5. The object uses the sink interface to notify the client(s) about
events.

6. When the client wants to stop receiving events and break the
connection, it calls IConnectionPoint::Unadvise (),
passing in the cookie that identifies the connection.

Figure 9-1. Classic COM managed events using connection points

IMylnterface
Object - Client
[ty Sink
Sink " Sink
ICanmectionPaimtomtainer
Sink -+
Sink IComnectionPaint

Establishing the connection requires expensive round trips,
potentially across the network. The client must repeat this
cumbersome sequence for every sink interface on which it wants to
receive events and for every object from which it wants to receive
events. Using connection points, there is no way for the client to
subscribe to a subset of events the object can fire. The client has no
way of filtering events that are fired (Notify me about the event
only if...); as a result, a COM designer often opts for the use of a
custom mechanism (instead of the generic connection points) that
allows subscription to a subset of events. Needless to say, this
solution introduces coupling between the object and its clients
regarding the specific interaction.

Connection point clients must also have a way to access a server
instance (the object) to advise it of the sink. Usually the clients

251

know the server CLSID, get the object from another client, or go
through some initialization protocol. That, in turn, also introduces
coupling between clients and objects and coupling between
individual clients.

On the object side, the object has to manage a list of sinks. This
code has almost nothing to do with the domain problem the object
is designed to solve. Properly managing the list of sinks requires
marshaling sink pointers to a worker thread manually to actually
perform event firing. That extra code introduces bugs, testing time,
and development overhead. To make matters worse, the same code
for managing connections is repeated in many servers.

With this model, the object and the clients have coupled lifetimes—
the server usually AddRefs the sinks and the clients have to be
running to receive events. There is no way for a client to say to
COM "If any object fires this particular event, then please create an
instance of me and let me handle it."

There is no easy way to do disconnected work—that is, the object
fires the event from an offline machine and the event is
subsequently delivered to clients once the machine is brought
online. The reverse is also not possible—having a client running on
an offline machine and receiving events fired while the connection
was down.

Setting up connections has to be done programmatically. There is
no administrative way to set up connections.

The events, like any other COM call, are synchronous. The object is
blocked while the client handles an event. Other clients are not
notified until the current client returns control back to the object.
Well-behaved clients avoid lengthy processing of the events (by
perhaps delegating to a client-side worker thread), but there is no
way of forcing clients to behave nicely or to fire the events on
multiple threads without writing a lot of complex code.

There is no safe way to mix transactions and events. Suppose an
event fires, but then the transaction the object took part in is
subsequently aborted. How can the object notify the clients to roll
back?

9.2 COM+ Event Model

The COM+ event model is based on a simple idea—put the
connection setup and the event firing plumbing outside the scope of
the components. Under COM+, an object that fires events is called a
publisher. A client who wants to receive events is called a
subscriber. Subscribers who want to receive events register with
COM+ and manage the subscribe/unsubscribe process via COM+
not the object. Similarly, publishers hand over the events to COM+,
not directly to the subscribed clients.

252

COM+ delivers an event to the clients that have subscribed. By
having this layer of indirection, COM+ decouples your system. Your
clients no longer have any knowledge about the identity of the
publishers. The subscription mechanism is uniform across all
publishers, and the publishers do not manage lists of connections.
The rest of this chapter explains the details of the COM+ events
service, its capabilities and limitations, and its interaction with other
COM+ services.

9.3 The Event Class

A publisher object fires an event at COM+ (to be delivered to the
subscribers) using an event class. The event class is a COM+
provided implementation of the sink interfaces the publisher can fire
the events at. The implementation is synthesized by COM+, based
on a type library you provide. This library contains the interface
definitions and stipulates which CoClass implements them. COM+
uses the same CoClass definition for its implementation of the event
classes. To publish an event, the publisher first CoCreates the event
class (the publisher has to know the event class CLSID) and then
fires the events at its interfaces.

For example, suppose an object wants to fire events at the sink
interface IMysSink, using an event class called MyEventClass.
IMySink is defined as:

interface IMySink : IUnknown
{
HRESULT OnEventl ();
HRESULT OnEvent2 ();

i
The publisher code looks like:
HRESULT hres = S_OK;

IMySink* pMySink = NULL;

hres =:
=:CoCreatelnstance (CLSID_MyEventClass,NULL,CLSCTX_ ALL,IID
_IMySink,
(void**) &pMySink) ;
ASSERT (SUCCEEDED (hres)) ;

hres = pMyEvent->OnEventl () ;
ASSERT (hres == S_OK) ;

pMyEvent—->Release();
Compare the simplicity on the publisher side to classic COM
connection points—the publisher does not have to manage lists of

253

subscribers. All the publisher has to do is create an event class and
fire the event on it.

Figure 9-2 illustrates the interaction between the publisher, the
event class, COM+, and the subscribers. The client creates the
event class (Step 1) and fires the event at it (Step 2). When the
publisher is finished with the event class, it can either release it or
cache the event class interface pointer for the sake of performance,
to be used the next time the publisher wants to publish events.

Figure 9-2. The COM+ event system at work

Register Transient
il (enf
mpon
f;n IJ'I::I:]r [substriber)
Fires event " Fires event
l + o Colreate
ik i ¥ Look for o subseripfian
Evenl Class ——
: * * * [t | islent
i omponeal parsisle
@V@ d}f d}j d}? ;.fhnmi'::. list
v o Colreate
Fires event H
=& {omponent
— {subscriber)

The COM+ implementation of the event class interfaces goes
through the list of subscribers on that event class (Step 3) and
publishes the events to them. COM+ maintains a list of
subscriptions for every event class. The subscriptions can be
interface pointers to existing objects (called transient subscriptions)
or CLSID for a class (called persistent subscriptions).

In the case of a persistent subscription, COM+ creates an object of
the type specified by the CLSID (Step 4), calls the appropriate sink
method on the object (Step 5), and releases the object. In the case
of a transient subscription, COM+ simply calls the appropriate sink
method on the object (Step 5).

It is interesting to note that firing the event is by default serial and
synchronous—that is, the subscribers are called by default one after
the other (serial), and control returns to the publisher object only
after all the subscribers are notified (synchronous).

9.3.1 Adding an Event Class

You can add an event class to the Component Services Explorer by
using the Component Install Wizard. Bring up the wizard for
installing a new component to your application and select Install
new event class(es) (see Figure 9-3).

Figure 9-3. The Component I nstall Wizard is used to add a new event
class

254

Impart of Install & Component \f -
Flease choose whether pou veanl 1o install & new componen! o0 inslall components
that are akeady regiztaned, g

Install ness companeri]s).

Impaort companert]s] that are aheady iegistered.

Install nes event class|es)

Mptpp
By Computar

| et | Cancel |

The rest of the steps in the wizard are the same as when adding a
new COM+ component. When you point the wizard at a DLL
containing a type library with sink interface and event CoClass
definitions (more about those in a minute), under-the-hood COM+
synthesizes its own implementation of the interfaces and installs the
synthesized components instead of yours.

After installing the event class in the Component Services Explorer,
the only way to detect that it is not a user-implemented COM+
component is to inspect its component properties page on the
Advanced tab. The Advanced tab of an event class contains the
Loosely Coupled Event (LCE) group (see Figure 9-4).

Figure 9-4. The LCE group configures event class-specific settings

: 2%
Geneal | Transactions | Seeuiity | Activation | Concunency Advanced |

Hueuing excaphion clazs:

LCE

[™ [Ewe npasalel

Iv &llowy n-process subscnbers
Bublizher |1 |

DEK I Cancel

You can add an event class component to any COM+ application, be
it a library or a server application.

9.3.2 Supplying the Event Class Definition

255

For COM+ to implement an event class for you, you have to provide
COM+ with the sink interfaces definitions, the event class CLSID,
and the interface each event class supports. You provide this
information in the form of a type library. The type library has to be
embedded as a resource in a DLL. The Component Install Wizard
knows how to read the type library from the DLL and detect the
CoClass definitions inside.
For every CoClass in the type library, COM+ tries to generate an
event class and add it to your application as a component. COM+
synthesizes implementation only to interfaces that are part of the
event class CoClass definition in the type library.
For example, to define the event class MyEventClass that supports
the sink interface IMysink (shown earlier), your IDL file should look
like this:
[

uuid (0A9BO9E44-E456-4153-9FC8-5D72234B7C82),

version (1.0),

helpstring ("Event Class 1.0 Type Library")

]
library EVENTCLASSLib

{
importlib ("stdole32.tlb");
importlib ("stdole2.tl1lb");
importlib ("SubApp.tlb");//The subscribers’ TLB

[
uuid (5CAF8E95-3FEF-40F1-94C3-3F408240D53B),
helpstring ("MyEventClass Class")

]

coclass MyEventClass

{
interface IMySink;

bi
bi
To avoid repeating the definition of the sink interfaces in both the
subscriber application and the event class type library, the event
class IDL file should import the sink interface (IMysink) definitions
from the type library of the subscribers. This is what the line
importlib ("SubApp.tlb");was used for in the previous example.
The easiest way to generate a type library is to have the Visual
Studio ATL create one for you. The default behavior in ATL is to
embed the type library in the DLL, since the ATL Application Wizard
adds a reference to the type library in the project RC file.
| strongly recommend that you put only event classes in the event
class DLL. Do not put event classes in the same type library with
regular CoClasses; such a mix confuses the Install Wizard—the
Wizard will install all components as event classes. This installation
has potentially catastrophic results, since it may corrupt an existing

256

installation of the regular components. However, as you have
already seen in Chapter 1, you can map more than one DLL to the
same COM+ application—you can put your event class and other
components in the same application.

When you supply the event class, COM+ tries to register it. You are
responsible for providing proper registration code in the DLL for all
components contained in the DLL. Again, the easiest way is to use
ATL to generate a skeleton implementation of the event class for
you. Simply have the ATL Object Wizard insert new components
into the event classes DLL. Since the implementation of these event
classes is never called, it is a bug if anybody ever uses them. This
would usually happen as a result of not installing the event class in
the COM+ Catalog and only building and registering it as a normal
COM object. | therefore suggest that you provide default behavior
to the ATL code-assert on every method call. See Example 9-1.

Example 9-1. Skeleton implementation of the event class

class CMyEventClass
public CComObjectRootEx<CComMultiThreadModel>,
public CComCoClass<CMyEventClass, &CLSID_MyEventClass>,
public IMySink

{

public:
CMyEventClass() {};
DECLARE_REGISTRY_RESOURCEID (IDR_MYEVENTCLASS)
DECLARE_PROTECT_FINAL_CONSTRUCT ()

BEGIN_COM_MAP (CMyEventClass)
COM_INTERFACE_ENTRY (IMySink)
END_COM_MAP ()

// IMySink
public:

STDMETHOD (OnEvent1) () {ATLASSERT (0) ; return
E_NOTIMPL; };

STDMETHOD (OnEvent2) () {ATLASSERT (0); return

E_NOTIMPL; };
bi

9.3.3 Event Class Interface Design Guidelines

The sink interface can be a custom interface or an automation-
compliant interface. However, the methods of a sink interface can
contain only input parameters. [out] or [in,out] parameters are
not allowed. Since COM+ seeks to decouple the publisher from the
subscribers, there is no way for a subscriber to return information
back to the publisher—the call on the subscriber interface returns to
COM+, not to the publisher.

257

From the publisher’s perspective, it only fires an event on one
object—the event class.

COM+ uses type library marshaling to marshal the call on the sink
interface from the event class to the subscribers. Interfaces that
use type library marshaling must comply with the following
requirements:

e All the methods must return HRESULT.

e The methods do not use certain IDL attributes such as
[size_is] and [length_is]. See the MSDN documentation
for the exact specification of typelib-compliant IDL attributes.

9.4 Subscription Types

As | mentioned earlier in the chapter, there are two types of
subscribers. The first type is an existing instance of a class that
supports a sink interface. That instance can be added at runtime to
the list of subscribers of a particular event class. This type of
subscription is called transient subscription because it exists as long
as the subscriber is running and will not persist or survive a system
reboot or a crash.

Note that when a particular instance of a class subscribes to an
event class, only that instance will receive events published using
that class. Other instances will receive the events only if they
transiently subscribe themselves.

Adding a transient subscription can only be done programmatically
using theCOM+ Catalog interfaces and objects. There is no
administrative Component Services Explorer support. On the other
hand, since all you give the COM+ Catalog is a pointer to a sink,
even a nonconfigured COM component can register as a transient
subscription, as long as it supports the sink interface.

— A transient subscription does not even need to be
%3 4. on a Windows 2000 machine, as long as it is

8! registered with a COM+ Catalog on the Windows
2000 machine where the event class resides.

The second type of subscription is used when you want COM+ to
instantiate an object of a particular class when an event is
published, let it handle the event, and release it. This type of
subscription is called persistent subscription. Every event class has
a list of persistent subscribers associated with it, stored in the
COM+ Catalog. Persistent subscriptions, as the name implies,
persist in the COM+ Catalog and survive a system restart.

Objects created by a persistent subscription are always released
after each event delivery, even if more events are on the way. As a

258

result, your subscribing component should be written to handle
each event independently of other events that may or may not be
published or delivered.

9.4.1 Adding a Persistent Subscription

Every component in the Component Services Explorer has a
Subscription folder, containing the persistent subscriptions the
product administrator or developer has set up. Every subscription
represents an event class (or a list of event classes) that the
component should be instantiated to receive events from whenever
any publisher uses those event classes.

To add a persistent subscription, expand the subscription folder,
right-click on it and select New from the pop-up context menu. This
action invokes the New Subscription Wizard (see Figure 9-5).

Figure 9-5. The New Subscription Wizard

Select Subzcription Method[z). J’,_\
Select the subsetiphion method o metbods

Flaase choose the method which will used for the subscription. IF pou gelect an
rheface, al methods for that nteiface wil be uzed.

P My

gy

OnEvent2
}‘ﬁ Iylrteiface
| 8 DoSomething

I Use all nterfaces for thiz component

coce |

The New Subscription Wizard lets you subscribe to events published
to all the sink interfaces your class supports, to a particular
interface, or even just to a particular method. The wizard displays
all the interfaces your component supports, including nonsink
interfaces—COM+ doesn't know whether they are sinks or not; only
you know.

You can set up a subscription at the method or interface level. At
the method level, COM+ delivers the event to your component only
when publishers use that method. If you want to subscribe to
another method, you have to add a new subscription.

A subscription at the interface level means that any event targeting
any method on that interface should be delivered to your
component. By providing you with these two options, you have the
ability to subscribe to only a subset of the events publishers can
publish or to all of them.

259

After you select the interfaces and methods, the wizard displays a
list of all installed event classes that support the interfaces you
selected in the previous steps. You can select a particular event
class or all of them. The last step in the wizard lets you name the
subscription and enable it. You can always enable or disable a
subscription by highlighting it in the Subscriptions folder, displaying
its properties page, selecting the Options tab, and enabling or
disabling the subscription (see Figure 9-6).

Figure 9-6. A persistent subscription’s Options tab

20 x|
General Opbons] Publishar Properties | i
v Enabled

[T Queued

Servar name:

ok | Canced |

9.4.2 Adding a Transient Subscription

The only way to receive events on an already running object is to
use transient subscription. Unlike persistent subscription, there is
no administrative way to add a transient subscription. You have to
program against the COM+ Catalog using the catalog objects and
interfaces discussed in Chapter 6. In addition, it is your
responsibility to remove the transient subscription from the Catalog
when the subscribing component is released or if you want to
unsubscribe.

Like a persistent subscriber, the object has to implement a sink
interface for receiving events. The transient subscriber can choose
to subscribe to all the sinks a particular event class supports, to a
particular interface, or even to a particular method on a particular
interface.

To add a transient subscription, you must follow these steps:

1. Create the catalog object (CLSID_COMAdminCatalog) and get
a pointer to TCOMAdminCatalog.

2. Call IcOMAdminCatalog: :GetCollection() to retrieve a
collection called TransientSubscription and get back an
ICatalogCollection interface pointer.

3. Call 1catalogCollection::Add() to get ICatalogObject.

260

4. Call 1catalogObiject::put_Value() once for each desired
property of the transient subscription you want to set. Some
examples are the event class you want to subscribe to,
subscribing interfaces, and the subscription name. An
important property you need to set is whether or not you
want to enable the subscription.

5. Call ICcatalogCollection: :SaveChanges ().

6. Release everything.

You are required to perform a similar sequence to remove the
transient subscription.

In fact, as you will see later on, managing a transient subscription is
not the only feature of COM+ events that requires programming
against the COM+ Catalog: implementing, adding, and removing a
publisher filter and transient subscriptions filtering are also only
available programmatically. In all these cases, the developer is
required to program against the Catalog interfaces.

The Catalog interfaces have the following limitations:

« They are not type safe:

o A BSTR s used for representing GUID, IID, and CLSID.

o A BSTR s used instead of normal string.

o Amorphous Variants are used to represent many data
types.

« The COM+ interfaces and the underlying programming model
and objects hierarchy require tons of generic code for
iterating over the Catalog, even for simple tasks.

e The resulting code is tedious and error prone.

To alleviate the situation, | developed an easy-to-use wrapper
object around the COM+ Catalog. The wrapper object saves you the
agony of programming directly against the Catalog, reducing
hundreds of lines of code to a mere line or two.

The wrapper object encapsulates the catalog objects and interfaces,
exposing instead simple custom interfaces (with type safety) that
perform all the hard work for you (see Figure 9-7). The wrapper
object interfaces provide one-stop shopping for easy management
of transient subscriptions and publisher filtering, providing you the

same functionality as the Catalog interfaces with a fraction of the
code.

Figure 9-7. The Catalog wrapper helper object

261

ITransientSubseription

Catolog Wropper ‘ dlieat
IFilterinstoller
[0+
Cnfalog

In the rest of this chapter, the use of the wrapper object will be
demonstrated. Its implementation will also be described. The
wrapper object source files are available on this book’s web site,
http://oreilly.com/catalog/comdotnetsvs/.

The first thing you will use the wrapper object for is registering a
transient subscription with the COM+ Catalog. The Catalog wrapper
encapsulates the code required to register a transient subscription
by exposing the ITransientSubscription interface, defined as:
interface ITransientSubscription : IUnknown

{
HRESULT Add([in, string] LPCWSTR pwzName, [in]CLSID
clsidEventClass,
[in]REFIID iidInterface, [in] IUnknown
*pSink) ;
HRESULT Remove ([in, string] LPCWSTR pwzName) ;

HRESULT AddFilter ([in, string] LPCWSTR pwzSubName,
[in, string] LPCWSTR pwzCriteria);

HRESULT RemoveFilter ([in, string] LPCWSTR pwzSubName) ;
i
ITransientSubscription provides you with everything you need to
easily manage a transient subscription—you can add a subscription
to all the interfaces of a specified event class or to a particular
interface on that class. Later, you will use
ITransientSubscription to install or remove a transient
subscriber-side filter.
Adding a transient subscription using the helper object is a one
liner—a vastly simplified programming model that completely
encapsulates the underlying Catalog. After initializing a pointer to a
sink (pMysink) that you want to receive events on, create the
wrapper object using CLSID_CatalogWrapper and call
TransientSubscription::Add() :
//Creating the wrapper object:
ITransientSubscription* pTransSubs = NULL;

::CoCreatelInstance (CLSID_CatalogWrapper, ..., 1ID_ITransien
tSubscription,
(void**) &pTransSubs) ;

//Adding a transient subscription:
pTransSubs —->Add(L"My Subs",CLSID_MyEventClass,

262

IID NULL,//All interfaces of the event
class
pMySink) ;

//When you wish to unsubscribe:
pTransSubs —->Remove (L"My Subs");

//Releasing the wrapper object:

pTransSubs —->Release();

When you add a subscription, you provide the Catalog wrapper with
the subscription name—a string identifying the subscription. The
name is used to identify the subscription when you want to remove
it later or when you want to associate a filter with it.

Transient subscriptions are more efficient than persistent
subscriptions because they do not require you to pay the overhead
of creating the object. However, transient subscriptions raise some
lifetime issues of classic COM tightly-coupled events. Another
deficiency of transient subscriptions is that the party adding them
has to have administrative privileges to modify the Catalog.

9.5 Delivering Events

Once an event is published, COM+ is responsible for delivering the
event to the subscribers. By default, publishers have very little to
do with the delivery itself, to ensure decoupling of publishers from
subscribers. However, COM+ does provide you ways to fine-tune
the delivery and obtain additional information on the result of firing
the event to the subscribers.

9.5.1 Serial Versus Parallel Publishing

Events by default are fired serially at subscribers—COM+ goes
through the list of subscribers and publishes to them one at a time.
The call to the event class does not return to the publisher until the
last subscriber is notified. As a result, the publisher is blocked
during publishing. To minimize the blocking time, you can configure
your event class to use multiple threads for publishing by checking
the "Fire in parallel" checkbox in the Advanced tab of the event
class properties page (see Figure 9-4).

This setting is a mere request that COM+ will fire in parallel, and
COM+ is not required to comply. COM+ uses threads from the RPC
pool of threads to publish to subscribers, so parallel publishing is
subjected to pool limitations. You should consider Fire in parallel as
an optimization technique only; avoid relying on it in your design.
For example, do not count on having all the subscribers get the
event at the same time.

263

9.5.2 Error Handling

When an event class succeeds in publishing to all the subscribers, it
returns s_OK to the publisher. If the event is delivered to COM+ but
there are no subscribers, the return code is
EVENT_S_NOSUBSCRIBERS. If the event is delivered, but is unable to
invoke any of the subscribers, the return code is
EVENT_E_ALL_SUBSCRIBERS_FAILED. In the case of partial delivery
(an event that invokes some, but not all, subscribers), the return
code is EVENT_S_SOME_SUBSCRIBERS_FATILED.

To promote loose coupling between the publisher and the
subscribers, COM+ does not provide success or failure information
about delivery for particular subscribers. The rationale is that
publishers should not care about particular subscribers.

However, if your publisher does care about success or failure when
delivering events to particular subscribers, you can implement a
publisher filter to handle this case, which is discussed in the next
section.

9.5.3 Publishing Order

COM+ does not, by default, provide a way to specify the order in
which an event gets delivered to multiple subscribers. The publisher
fires at the event class, and under-the-hood COM+ scans the list of
subscribers and publishes to them. The events are published one at
a time to the subscribers, in no determined or necessarily
repeatable order. Publishers can control the order in which
subscribers receive an event by implementing a publisher filter.

9.6 Event Filtering

If you would like to alter the default publish/subscribe behavior,
COM+ provides a mechanism called event filtering. There are two
kinds of filtering. The first, publisher filtering, lets you change the
way events are published and therefore affect all the subscribers for
an event class. The second, subscriber filtering, affects only the
subscriber using that filter.

Both kinds of filters usually let you filter events without changing
the publisher or the subscriber code. However, | find that event
filtering is either cumbersome to use and implement, or limited and
incomplete in what it offers. Those shortcomings are mitigated by
the use of the COM+ Catalog wrapper object.

9.6.1 Publisher Filtering

264

Publisher filtering is a powerful mechanism that gives the publisher
fine-grained control over event delivery. You can use a filter to
publish to only certain subscribers, control the order in which
subscribers get an event, and find out which subscribers did not get
an event or had encountered an error processing it. The publisher-
side filter intercepts the call the publisher makes to the event class,
applies filtering logic on the call, and performs the actual publishing
(see Figure 9-8).

Figure 9-8. A publisher filter

Subscriber

— Event —» :
Palsier Clss i '__L"' Subseriber
Subscriber

If you associate a filter with an event class, all events published
using that class go through the filter first. You are responsible for
implementing the filter (you will see how shortly) and to register it
in the COM+ Catalog. The publisher filter CLSID is stored in the
COM+ Catalog as a property of the event class that it filters. At any
given time, an event class has at most one filter CLSID associated
with it. As a result, installing a new filter overrides the existing one.
When a publisher fires events on the event class, COM+ creates the
publisher object and lets it perform the filtering.

9.6.1.1 Implementing a publisher filter

A publisher-side filter is a COM object that implements an interface
called TMultiInterfacePublisherFilter. The filter need not
necessarily be a COM+ configured component. The filter interface
name contains the word Multi because it filters all the events fired
on all the interfaces of the event class. Another interface, called
TPublisherFilter, allows you to associate a filter with just one
sink interface supported by an event class. It is still mentioned in
the documentation, but has been deprecated (i.e., don’t use it).
The definition for IMultiInterfacePublisherFilter is:
interface IMultilInterfacePublisherFilter : IUnknown

{
HRESULT Initialize([in]IMultiInterfaceEventControl*

pMultiInterfaceEventControl);

HRESULT PrepareToFire ([in]IID* piidSink, [in]BSTR
bstrMethodName,
[in]IFiringControl™
pFiringControl);
}

265

Only COM+ calls the methods of
IMultiInterfacePublisherFilter as part of the event publishing
sequence. If an event class has a publisher filter object associated
with it, COM+ CoCreates the filter object and calls the Tnitialize (
) method when the publisher CoCreates the event class.

Each time the publisher fires an event at the event class, instead of
publishing the event to the subscribers, COM+ calls the
PrepareToFire () method and lets you do the filtering. When the
publisher releases the event class, COM+ releases the filter object.
When the Initialize() method is called, COM+ passes in as a
parameter an interface pointer of type
IMultiInterfaceEventControl, defined as:

interface IMultilInterfaceEventControl : IUnknown

{
HRESULT GetSubscriptions(
[in] IID* piidSink,
[in] BSTR bstrMethodName,
[in] BSTR bstrCriteria,
[in] int* nOptionalErrorIndex,
[out, retval] IEventObjectCollection**
ppCollection);
//Other methods

}

The only method of IMultiInterfaceEventControl relevant to
publisher-side filtering is GetSubscriptions(), used to get the list
of subscribers at the time the event is published. Since COM+ calls
the Initialize () method only once, you should cache the
IMultiInterfaceEventControl pointer as a member variable of
the filter object.

The actual filtering work is performed in the scope of the
PrepareToFire () method. The first thing you need to do in the
PrepareToFire () method is call the
IMultiInterfaceEventControl: :GetSubscriptions() method,
passing an initial filtering criteria in as a parameter.

Filtering criteria are mere optimizations—a filter is used to inspect
subscribers, and the filter may provide COM+ with an initial
criterion of which subscribers to even consider for publishing.

The criterion is a BSTR containing some information about the
subscribers. For example, consider a filtering criterion of the form:
_bstr_t bstrCriteria = "EventClassID == {F89859D1-6565-
11D1-88C8-0080C7D771BF} AND

MethodName = \"OnNewOrder\"";

This causes COM+ to retrieve only subscribers that have subscribed
to the specified event class and for the method called onNewOrder
on one of the event class interfaces.

266

Another example of a criterion is ALL, meaning just get all the
subscribers. See the IMultiInterfaceEventControl
documentation for more information on the exact criteria syntax.
GetSubscriptions () returns an interface pointer of type
IEventObjectCollection, which you use to access the subscribers
collection.

Next, you call TEventObjectCollection: :get_NewEnum() to get
an enumerator of type IEnumEventObject to iterate over the
subscribers collection. While you iterate, you get one subscriber at a
time in the form of IEventSubscription. You retrieve the
IEventSubscription properties (such as the subscriber’'s name,
description, 11D), apply filtering logic, and decide if you want to
publish to that subscriber. If you want to fire the event at that
subscriber, use the last parameter passed to PrepareToFire(), a
pointer of type IFiringControl, passing in the Subscriber
interface:

pFiringControl->FireSubscription (pSubscription);

At this point, you also get the exact success code of publishing to
that particular subscriber. You then release the current subscriber
and continue to iterate over the subscription collection.

If you want to publish to the subscribers in a different order than
the one in which COM+ handed them to you, you should iterate
over the entire collection, copy the subscribers to your own local
list, sort the list to your liking, and then fire.

9.6.1.2 The CGenericFilter helper class

By now, you probably feel discouraged from implementing a
publisher-side filter. The good news is that the filtering plumbing is
generic, so | was able to implement all of it in an ATL COM object
called CGenericFilter . CGenericFilter performs the messy
interaction with the COM+ event system required of a publisher
filter. All you have to do is provide the filtering logic (which is what
a filter should do).
As part of the source files available with this book at O’Reilly’s web
site, you will find the Filter project—an ATL project containing the
implementation of the CGenericFilter class. CGenericFilter lets
you control which subscribers to publish to. If you want a different
filter, such as one that controls the publishing order, you can
implement that filter yourself, using the source files as a starting
point.
The CGenericFilter class definition is (with some code omitted for
clarity):
class CGenericFilter: public
CComObjectRootEx<CComSingleThreadModel>,

public
CComCoClass<CGenericFilter, &CLSID_MyFilter>,

267

public

IMultiInterfacePublisherFilter
{

public:

CGenericFilter();

void FinalRelease ();

BEGIN_COM_MAP (CGenericFilter)

COM_INTERFACE_ENTRY (IMultiInterfacePublisherFilter)
END_COM_MAP ()

//IMultiInterfacePublisherFilter
STDMETHOD (Initialize) (IMultiInterfaceEventControl*
pMultiEventControl);
STDMETHOD (PrepareToFire) (IID* piidSink, BSTR
bstrMethodName,
IFiringControl*
pFiringControl) ;

//Helper methods, used for domain logic specific
filtering

HRESULT ExtractSubscriptionData (IEventSubscription*
pSubscription,

SubscriptionData*

pSubscriptionData) const;

BOOL ShouldFire (const SubscriptionDataé&
subscriptionData) const;

bstr t GetCriteria()const;

IMultiInterfaceEventControl* m_pMultiEventControl;
i
The only thing you have to provide is the application domain-
specific filtering logic, encapsulated in the two simple helper

methods: CGenericFilter: :ShouldFire() and
CGenericFilter::GetCriteria(). The CGenericFilter
implementation calls GetCriteria() once per event to allow you

to provide a filtering criteria. The default implementation returns
ALL:
_bstr_t CGenericFilter::GetCriteria()const

{
_bstr_t bstrCriteria = "ALL";//ALL means all the
subscribers,
//regardless of event
classes

return bstrCriteria;
}
CGenericFilter::ShouldFire() isthe most interesting method
here. CGenericFilter calls the method once per subscriber for a
particular event. It passes in as a parameter a custom struct of type

268

SubscriptionData, which contains every available bit of
information about the subscriber—including the name, description,
and machine name:
struct SubscriptionData
{

_bstr_t DbstrSubscriptionID;

_bstr_t DbstrSubscriptionName;

_bstr_t bstrPublisherID;

_bstr_t DbstrEventClassID;

_bstr_t DbstrMethodName;

_bstr_t DbstrOwnerSID;

_bstr_t DbstrDescription;

_bstr_t bstrMachineName;

BOOL bPerUser;

CLSID clsidSubscriberCLSID;
IID iidSink;

IID iidInterfacelD;

i

ShouldFire () examines the subscriber and returns TRUE if you
wish to publish to this subscriber or FALSE otherwise.

An example for implementing filtering logic in ShouldFire() isto
publish only to subscribers whose description field in the
Component Services Explorer says Paid Extra. See Example 9-2.

Example 9-2. Base your implementation of Shouldfire() on the
information in SubscriptionData

BOOL CGenericFilter::ShouldFire (const SubscriptionDatas
subscriptionData)const

{

if (subscriptionData.bstrDescription == _bstr_t ("Paid
Extra"))
return TRUE;
else
return FALSE;
}
Finally, Example 9-3 shows the CGenericFilter implementation of
PrepareToFire (), which contains all the interaction with the
COM+ event system outlined previously; some error-handling code
was removed for clarity.

Example 9-3. CGenericFilter implementation of PrepareToFire()

STDMETHODIMP CGenericFilter: :PrepareToFire (IID* piidSink,
BSTR bstrMethodName,

IFiringControl* pFiringControl)

{
HRESULT hres = S_OK;
DWORD dwCount = 0;

269

IEnumEventObject* pEnum = NULL;
IEventSubscription* pSubscription = NULL;
IEventObjectCollection* pEventCollection = NULL;

_bstr_t bstrCriteria = GetCriteria();//You provide
the criteria

hres = m_pMultiEventControl-
>GetSubscriptions (piidSink,

bstrMethodName,
bstrCriteria, NULL,
&pEventCollection);

//Iterate over the subscribers, and filter in this
example by name

hres = pEventCollection->get_NewEnum (&pEnum) ;

pEventCollection->Release();

while (TRUE)
{
hres = pEnum-
>Next (1, (IUnknown**) &pSubscription, &dwCount) ;
1f(S_OK != hres)
{
//Returns S_FALSE when no more items
if (S_FALSE == hres)
{
hres = S_OK;
}
break;
}
long bEnabled = FALSE;
hres = pSubscription->get_Enabled (&bEnabled);

1f (FAILED (hres) || bEnabled == FALSE)
{
pSubscription->Release();
continue;

SubscriptionData subscriptionData;
subscriptionData.iidSink = *piidSink;

//A helper method for retrieving all of the
subscription

//properties and packaging them in the handy
SubscriptionData

hres =

ExtractSubscriptionData (pSubscription, &subscriptionData) ;

270

if (FAILED (hres))
{

pSubscription->Release();
continue;

}

//You provide the filtering logic in ShouldFire()
BOOL bFire = ShouldFire (subscriptionData);

if (bFire)

{

pFiringControl->FireSubscription (pSubscription) ;

}

pSubscription->Release();

}

pEnum->Release();

return hres;
}
Again, let me emphasize that all you have to provide is the filtering
logic in ShouldFire() and GetCriteria(); let CGenericFilter
do the hard work for you.

9.6.1.3 Parameters-based publisher filtering

What begs an answer now (as | am sure you have already
wondered) is why is PrepareToFire () called "Prepare" if the event
is fired there? Why not just call it Fire ()? It is called Prepare to
support filtering based on the event parameters as well. In
PrepareToFire (), COM+ only tells you what event is fired.

What if you need to examine the actual event parameters to make a
sound decision on whether or not you want to publish? In that case,
the publisher filter can implement the same sink interfaces as the
event class it is filtering.

After calling PrepareToFire(), COM+ queries the filter object for
the sink interface. If the filter supports the event interface, COM+
only fires to the filter. The filter should cache the information from
PrepareToFire () and perform the fine-tuned parameters-based
filtering. In its implementation of the sink method, it uses
IFireControl to fire the event to the client.

9.6.1.4 Custom subscription properties

Publisher-side filters usually base their filtering logic on the
standard subscription properties—the subscription name,
description, and so on. These properties are pre-defined and are
available for every subscription. COM+ also allows you to define
new custom properties for subscriptions and assign values to these
properties, to be used by the publisher filter. Usually, you can take
advantage of custom properties if you develop both the subscribing

271

component and the publisher filter. You can define custom
subscription properties administratively only for persistent
subscribers.

To define a new custom property, display the subscription
properties page, and select the Publisher Properties tab (the name
is misleading). You can click the Add button to define a new
property and specify its value (see Figure 9-9).

Figure 9-9. Defining new custom properties and assigning values on the
Publisher Properties tab

2=
Ganedal | Options Pulblisher Propedties |
Publizhes properlies
Hame Dala Add.
Compary Mame Cangornerdsale
Edit .
Bemove
Add/Edit property : 7| x|

Marme:

Drata:

I Cancel

.Egmiuma#;.fm”mm.|

Transient subscribers have to program against the component
COM+ Catalog. Get hold of the transient subscription collection, find
your transient subscription catalog object, and navigate from it to
the PublisherProperties collection. You can then add or remove
custom properties in the collection.

As explained before, when the publisher filter iterates over the
subscription collection, it gets one subscriber at a time in the form
of an IEventSubscription interface pointer. The filter can call
IEventSubscription::GetPublisherProperty (), specify the
custom property name, and retrieve its value.

For example, here is how you retrieve a custom subscriber property
called Company Name:

_bstr_t bstrPropertyName = "Company Name";

_variant_t varPropertyValue;

hres = pSubscription-—

>GetPublisherProperty (bstrPropertyName, &varPropertyValue)
4

If the subscriber does not have this property defined,
GetPublisherProperty () returns S_FALSE. You can even define
method parameter names as custom properties and specify a value
or range in the property data. If the filter is doing parameters-

272

based filtering, it can be written to parse the custom property value
and to publish to that subscriber only when the parameter value is
in that range.

9.6.1.5 I nstalling a publisher filter

There are two ways for associating a publisher filter with an event
class. In the absence of any names for these two ways from the
COM+ team at Microsoft, | call the first static association and the
second dynamic association.

Static association requires you to program against the COM+
Catalog and store the filter CLSID as a property of the event class.
The filter will stay there until you remove it or override it with
another CLSID. Static association affects all publishers that use that
event class, in addition to all instances of the event class.

Dynamic association takes place at runtime. The publisher will not
only create an event class, but also directly creates a filter object
and associates it only with the instance of the event class it
currently has. Dynamic association affects only the publishers that
use that particular instance of the event class. Dynamic association
does not persist beyond the lifetime of the event class object. Once
you release the event class, the association is gone. Dynamic
association allows a publisher to bind a particular instance of an
event class with a particular instance of a filter; it overrides any
static filter currently installed.

The main disadvantage of dynamic association is that you cannot
dynamically associate a filter with an instance of a queued event
class (discussed later on), since you are interacting with the
recorder for the event class, not the event class itself.

9.6.1.6 Static association of a publisher filter with an event class

To statically associate a publisher filter CLSID with the event class
you want it to filter, you have to follow these steps:

1. Create the catalog object.

2. Get the Applications collection.

3. For each application in the collection, get the Components
collection.

4. lterate through the components collection looking for the
event class. If the class is not found, get the next
Application collection and scan its Components collection.

5. Once you find the event class, set the
MultiInterfacePublisherFilterCLSID event class property
to the CLSID of the filter.

6. Save changes on the Components collection and release
everything.

273

Again, the Catalog wrapper helper object is useful, as it saves you
the interaction with the COM+ Catalog. The helper object
implements an interface called IFilterInstaller, defined as:
interface IFilterInstaller : IUnknown
{

HRESULT Install([in]CLSID clsidEventClass, [in]CLSID
clsidFilter);

HRESULT Remove ([in]CLSID clsidEventClass);
bi
IFilterInstaller makes adding a filter a breeze—just specify the
CLSID of the event class and the CLSID of the filter, and it will do
the rest for you:
HRESULT hres = S_OK;

hres =
::CoCreatelInstance (CLSID_CatalogWrapper, NULL, CLSCTX_ALL,

IID_IFilterInstaller, (void**)&pFilterInstaller);

hres = pFilterInstaller—
>Install (CLSID_MyEventClass,CLSID_MyFilter);

pFilterInstaller->Release () ;

Note that you do not need to specify the application name as a
parameter; just specify the event class and the filter CLSID. Use
IFilterInstaller::Remove () to remove any filter associated
with a specified event class.

9.6.1.7 Dynamic association of a publisher filter with an event class

To associate a publisher filter object with an event class instance
dynamically, follow these steps:

1. Create the event class and get the sink interface.
2. Query the event class for IMultiInterfaceEventControl

interface.

3. Create the filter object.

4. Call
IMultiInterfaceEventControl::SetMultilInterfacePublis
herFilter () and pass in the filter object.

5. Release IMultilInterfaceEventControl.

6. Publish events to the event class object. The events will go
through the filter you have just set up.

7. Release the event class and the filter when you are done
publishing.

Example 9-4 shows some sample code that uses this technique.

Example 9-4. I nstalling a publisher-side filter dynamically

274

HRESULT hres = S_OK;

IMySink* pMySink = NULL;
IMultiInterfacePublisherFilter* pFilter = NULL;
IMultiInterfaceEventControl* pEventControl = NULL;

//Create the filter
hres = ::CoCreatelnstance (CLSID_MyFilter,NULL,CLSCTX_ALL,

IID_IMultiInterfacePublisherFilter, (void**)&pFilter);

//Create the event class

hres =

::CoCreatelnstance (CLSID_MyEventClass,NULL, CLSCTX_ ALL,
IID_IMySink, (void**) &pMySink) ;

//Query the event class for IMultiInterfaceEventControl

hres = pMySink -

>QueryInterface (IID_IMultiInterfaceEventControl,
(void**)pEventControl) ;

//Setting the filter

hres = pEventControl-
>SetMultiInterfacePublisherFilter (pFilter);
pEventControl->Release () ;

//Firing the event

hres = pMySink->OnEventl();//The event is now filtered
pMySink->Release();
pFilter->Release();

Unfortunately, COM+ has a bug regarding correct handling of
dynamically associating a publisher filter with an event class. COM+
does not call the filter method
IMultiInterfacePublisherFilter::Initialize(), and as a
result, you can’t do much filtering. | hope this situation will be fixed
in a future release of COM+.

This defect, plus dynamic association’s inability to work with queued
event classes, renders it effectively useless. Avoid dynamic
association of a publisher filter; use static association instead.

9.6.2 Subscriber-Side Filtering

Not all subscribers have meaningful operations to do as a response
to every published event. Your subscriber may want to take action
only if your favorite stock is trading, or perhaps only if it is trading
above a certain mark. One possible course of action is to accept the
event, examine the parameters and decide whether to process the
event or discard it.

However, this action is inefficient if the subscriber is not interested
in the event for the following reasons:

275

o It forces a context switch to allow the subscriber to examine
the event.

e It adds redundant network round trips.

« Writing extra examination code may introduce defects and
require additional testing.

 Event examination and processing policies change over time
and between customers. You will chase your tail trying to
satisfy everybody.

What you should really do is to put the filtering logic outside the
scope of the subscriber. You should have an administrative,
configurable, post-compilation, deployment-specific filtering ability.
This is exactly what subscriber-side filtering is all about (see Figure
9-10). Subscribers that do not want to be notified of every event
published to them, but want to be notified only if an event meets
certain criteria, can specify filtering criteria.

Figure 9-10. Specifying filtering criteria for a persistent subscriber

[’ e 1T 5""‘;""3'
Event

(s T ke [9| ke
hh?h

A subscriber-side filter is a string containing the filtering criteria. For
example, suppose you subscribe to an event notifying you of a new
user in your portfolio management system, and the method

signature is:
HRESULT OnNewUser ([in]BSTR bstrName, [in]BSTR bstrStatus);

You can specify such filtering criteria as:
bstrName = "Bill Gates" AND bstrStatus = "Rich"

The event will only be delivered to your object if the username is
Bill Gates and his current status is Rich.

The filter criteria string recognizes relational operators for checking
equality (==,!=), nested parentheses, and logical keywords AND, OR,
and noT. COM+ evaluates the expression and allows the call
through only if the criteria are evaluated to be true.

=

Publisher ~

= If you have wrong parameters or spelling mistakes,
or if the parameter names were changed, the
subscriber will never be notified.

Because subscriber-side filtering occurs only after the event has
been fired, if a publisher filter is used, then the event has to pass

276

the publisher filter first. The obvious conclusion is that publisher-
side filtering takes precedence over subscriber-side filtering.

9.6.2.1 Persistent subscriber-side filtering

Only persistent subscribers can specify a subscriber filter
administratively. They can do so by displaying the persistent
subscription properties page, selecting the Options tab, and
specifying the Filter criteria (see Figure 9-11).

Figure 9-11. Subscriber-side filtering

21
Genzal Optons] Publisher Properties |
v Enabled

[Queusd

Server pame

Filies criteniz
|I:-:t|N ame = "Bl Gates" AND bstiStabus = "Rich”

0K, I Cancel

9.6.2.2 Transient subscriber-side filtering

Transient subscribers have to program against the Catalog to set a
transient subscription filter criteria, following similar steps to those
performed when registering a transient subscription:

Get hold of the Catalog interface.

Get the transient subscription collection object.

Find your transient subscription.

Set a subscription property called FilterCriteria to the
string value of your filter.

5. Save changes and release everything.

A OWOND =

The Catalog wrapper’s interface ITransientSubscription,
discussed earlier, allows you to add (or remove) a subscriber-side
filter to a transient subscription with the Addrilter() and
RemoveFilter () methods. The methods accept the subscription
name and a filtering string.

Example 9-5 demonstrates the same example from the persistent
subscriber filter, but for a transient subscriber for the same event.

Example 9-5. Adding a transient subscription filtering criteria using the
wrapper object

277

//Adding a transient subscription filter:
LPCWSTR pwzCriteria = L"bstrUser = \"Bill Gates\" AND
bstrStatus = \"Rich\""

//"MySubs" is the transient subscription name

hres = pTransSubs->AddFilter (L"MySubs",pwzCriteria);

//Or removing the filter:

pTransSubs —>RemoveFilter (L"MySubs");

The main disadvantage of a transient subscriber filter compared to a
persistent subscriber filter is that you hardcode a filter, which is
sometimes deployment- or customer-specific. Persistent subscribers
can always change the filtering criteria using the Component
Services Explorer during deployment.

9.7 Distributed COM+ Events

As long as the publisher, the event class, and the subscribers are all
installed on the same machine, you can have pretty much any
topology of interaction (see Figure 9-12). On the same machine,
publishers can publish to any event class, event classes can deliver
events to any subscriber, and subscribers can subscribe to as many
event classes as they like.

Figure 9-12. You can have any publisher and subscriber topology on the
same machine

5 5 S Subscriber Pubilisher
T }f Event Closs
P P P

Unfortunately, the COM+ event service has a serious limitation—the
event class and all its subscribers have to be on the same machine.
This means that a deployment, such as the one shown in Figure 9-
13, is not possible.

Figure 9-13. The event class and the subscriber must reside on the same
machine

278

P>l < » s

The rest of this section presents you with a few workaround
solutions for this problem that allow you to distribute your events
across the network. All the solutions adhere to the limitation that
the event class and the subscribers have to reside on the same
machine, and they solve the problem by designing around it. Like
most things in life, each solution has pros and cons. It will be
ultimately up to you, the system designer, to select the most
appropriate solution for your domain problem at hand.

9.7.1 Solution 1: One Machine for All the Subscribers and
Event Classes

This solution is the simplest to implement. You install all event
classes on one machine, along with all subscribers. You install the
event classes in a COM+ server application and generate a proxy
installation (see Chapter 1) for the event classes’ application.
(Remember, the event class application has to be a server
application for you to export it as a proxy application.) You then
deploy the event class proxy application on all the machines that
host publishers, making sure the proxy applications point to the
event classes/subscribers machine (see Figure 9-14). .

Figure 9-14. This solution requires having all subscribers and event
classes on the same machine

P — o —= 5 5
— s
P ~—» -— P
Subscriber Publisher
Event Closs Event Class Proxy

When a publisher on a remote Machine A wants to fire an event of
type Ei, it creates a proxy for that event class and calls the event
method on it. The event call will be marshaled to the place where
the event class resides—on the subscribers machine—and get

279

published to all the subscribers that subscribed to it. It is also very
easy for subscribers to subscribe to more than one event class,
since all the event classes are installed locally on the subscribers
machine

This solution has the following disadvantages:

1. By locating the event classes away from the publishers, you
introduce extra expensive round trips across the network.

2. The single machine hosting all the event classes and the
subscribers becomes a hot spot for performance. The machine
CPU and operating system have to handle all the traffic. There
is no load balancing in your product, and load balancing is a
major reason for distributing your components in the first
place.

3. The subscribers machine solution is a single point of failure in
your system.

4. The subscribers are not necessarily ideally deployed. If the
subscribers do not have to reside where the event classes are,
you may have put them somewhere else—maybe on the same
machine where the database is if they have to access it
frequently. Performance may suffer.

9.7.2 Solution 2: Machine-Specific Event Classes

This solution allows you to distribute your subscribers anywhere,
according to whatever design preference you have. This distribution
makes it possible for you to publish from one machine to
subscribers that reside on multiple other machines (see Figure 9-
15). However, this particular solution is more complex to manage
and deploy than the previous solution.

Figure 9-15. A hub machine has machine-specific event class proxies
used to distribute events

280

The idea behind this solution is to create a COM+ events hub on
one designated machine. The hub machine is responsible for
distributing the events to where the subscribers really reside.

This solution uses two kinds of event classes. The first is an event
class that resides only on the hub machine, called E;. You install
proxies to E, on all the publishers’ machines. Publishers will only
publish using Ey.

The second kind of event class is a machine-specific event class.
Every machine that hosts subscribers has its own dedicated event
class type, installed only on that machine. In Figure 9-15, these
types are E,, Ep, and E., corresponding to the three machines in the
figure. You need to install a proxy to every machine-specific event
classes on the hub machine. All event classes in this solution
support the exact same set of sink interfaces.

When a publisher on Machine A wants to publish an event to
subscribers on Machines A, B, and C, the publisher on Machine A
creates an instance of the E, event class (which only actually
creates a proxy) and fires to it. The E, proxy forwards the call to
where E;, really executes—on the hub machine. On the hub machine
there is a hub subscriber (Sy) that subscribes to the E, event. The
way Sy handles the event is to create all the machine-specific event
classes (Ea, Ep, and Ec) and fire that particular event to them.
Because there are only proxy installations of the machine-specific
event classes on the hub machine, the event is distributed to
multiple machines, where local subscribers—the real subscribers—
handle the event.

The main advantage of using this solution is that it gives you
complete freedom in locating your subscribers. However, the
flexibility comes with a hefty price:

« When you publish, you encounter many expensive round trips
across the network. Even if all the subscribers are on the
publisher machine, the publisher still has to go through the
hub machine.

* You have to duplicate this solution for every kind of event
class you have, and you therefore end up with separate sets
of machine-specific and hub event classes.

e The added complexity of this solution means that you
probably have a deployment, administration, and
maintenance nightmare on your hands.

« The hub machine is potentially a single point of failure in your
system.

9.7.3 Solution 3: COM+ Routing

This last solution for distributing events to subscribers on multiple
remote machines takes advantage of a feature provided for you by

281

COM+. However, it is a partial solution because it only works with
persistent subscribers. If your application uses transient subscribers
(as it most likely will), you have to use one of the two solutions
discussed previously. The idea here is similar to the hub machine
solution, and to distinguish between them, | call this one the
routing solution.

COM+ provides a field called Server name on the Options tab for
every persistent subscription (see Figure 9-16).

Figure 9-16. Instructing COM+ to create the subscriber object on the
machine specified in the Server name field

2 x|

Geneal Options] Publisher Properties |
[+ Enabled
[Queusd

Servel pame

|Ma:ﬁn'ea'

Eilter critesiz

|

ITI Cancel |

Whenever an event is published to a persistent subscriber, before
CoCreating the subscriber object, COM+ first checks the value of
the Server name property. If it is not an empty string, COM+
CoCreates the subscriber on the specified machine, fires the event
to the sink interface, and releases the subscriber.
Routing events to multiple machines takes advantage of this
feature. Instead of using machine-specific event classes like in
Solution 2, the routing solution uses machine-specific persistent
subscriptions.
For example, suppose you have a publisher on Machine A and a
subscribing component called MySubscriber that you want to deploy
on Machines B and C. The publisher publishes using an event class
called E. On Machines B and C you add subscriptions to the event
class, to the locally installed copies of MySubscriber. You then install
the MySubscriber component on another designated routing
machine, together with the event class E, and install on Machine A
only the proxy to E (see Figure 9-17).

Figure 9-17. The routing solution uses machine-specific subscriptions
and a routing machine

282

P — —_— —e 5 " ¢

To the installation of MySubscriber on the router machine (called Sg
in Figure 9-17) add machine-specific subscriptions: for every
deployment of MySubscriber on another machine, add a
subscription and redirect the invocation to that machine, using the
Server name field. See Figure 9-18.

Figure 9-18. The router machine has a machine-specific subscription
used to route the event to corresponding machines

i Component Services 3 =10 x|
“F) Conscle Window Help =] x|
Achion View = [|2
il A o FEE
Tres | ‘-D, D
| Compubers - # W

=5 My Computer || Route ko Fouke to
=[] CoM+ Applications | MachineB Machine C

+ Activity Demo
4 COMe O Dead Letber Cuusue Listane

+ COM4 Utilties
Roubar
= |] Components
- @ MySubscriber
#-] Interfaces —
=
+ 425 Route to Machine B
+-a7 Route to Machine C |

1 | ¥]

Now, when the publisher on Machine A CoCreates a proxy to the
event class and fires an event at it, the call goes to the router
machine. COM+ inspects the subscriptions on the router machine
for the event class, detects the Server name in the subscriptions,
creates the subscribers on the remote machines, and publishes to
them.

| already pointed out the main drawback of this solution (persistent
subscribers only), but it has a few others:

o Setting up and configuring the system is nontrivial effort. You
have to either write some installation scripts to help you
automate it or manually configure it at every customer
deployment. Every customer site has its own machine names;
you will not be able to specify the machine names in your
application MSI file, exported for release.

283

 You have to go through the router machine, so you end up
paying for an extra network hop.

« The router machine can be a performance bottleneck.

« The router machine is potentially a single point of failure.

9.8 Asynchronous Events

So far, in this discussion of the COM+ event model, it was always
assumed that publishing the event is a synchronous operation—
during publishing, the publisher is blocked and that blocking time is
proportional to the number of subscribers and their individual
processing times. A true loosely coupled event mechanism
decouples the publisher from the subscriber even further. It allows
the publishers to publish asynchronously and permits the
subscribers to handle the event asynchronously as well.

COM+ provides this capability by using COM+ queued components
(see Chapter 8). As you will see, both the event class and the
subscribers can be queued components, to enable asynchronous
publishing and subscribing.

9.8.1 Asynchronous Publishing

COM+ has a built-in service for asynchronous execution: queued
components. COM+ events and queued components go together
very well, giving you the benefits of a loosely coupled system and
the flexibility of asynchronous execution.

Every event class supports a set of sink interfaces. As with any
other COM+ component, you can configure any one of the sink
interfaces as Queued. A publisher creates a queued event class
using the queue moniker. When a publisher fires an event to a
queued event class interface, COM+ performs its usual handling of a
queued component (recording the call, placing it in a queue, and so
on). The COM+ queued component listener pulls the messages (the
events) from the event class queue and plays them back to the
event class.

The publisher is blocked only for the relatively short period time it
takes COM+ to record the call. Contrast this with the Fire in
Parallel attribute, which returns control to the publisher only after
all subscribers have been notified.

A publisher that is interested in creating a queued event class
creates it using the queue moniker, like any other queued
component. Because of the inherited limitation of queued
components—that a queued component cannot reside in a library
application—an event class that uses a queued component cannot
be in a library application.

One interesting side effect of using queued components is that if
you publish events on two queued event classes, events may not

284

replay in the order in which they were originally fired. This situation
can be a source of trouble if the two publishing sessions are related
in some manner. |If having one event take place before another is
important, you need to make the calls on the same specific queued
event class.

9.8.2 Asynchronous Subscribers

COM+ can use queued components to invoke calls on a component
that also uses persistent subscriptions. Because COM+ is the one
that creates the subscriber, you have to let COM+ know that it
should create the component using the queue moniker, rather than
CoCreateInstance(). You do that by checking the Queued
property of the persistent subscription (see Figure 9-6).

When COM+ publishes to a queued subscriber, it posts a message
to the subscriber’s message queue. The listener of the COM+
application that hosts the subscriber will detect the messages in the
queue, create a player, and play back the events to the subscriber.
There are two main advantages of using queued subscribers:

 The publisher code remains the same for queued and normal
subscribers, and it allows for lengthy processing of the event
on the subscriber side, instead of having to spin off a worker
thread, as if you were using classic COM.

 Having both the publisher and the subscriber using queued
components allows both to work offline at the same time and
be completely disconnected.

There are also two main disadvantages:

 The publisher is still blocked while looking through the
subscribers list and, for each subscriber, while creating a
recorder, posting messages to queues, and performing other
queued component management activities.

o |f somebody adds a nonqueued subscription to your system,
then publishing is not fully asynchronous. The publisher is
blocked while the nonqueued subscriber processes the event.

9.9 COM+ Events and Transactions

COM+ transactions flow downward from the transaction root, as you
have seen in Chapter 4. New objects created during the transaction
take part in their creator’s transaction or are placed in a transaction
of their own, according to their transaction configuration.

285

If the publisher takes part in a transaction, it is recommended that
the subscribers participate in the publisher’s transaction. But how
would the transaction be propagated by the publisher to the
subscriber if the publisher does not create the subscriber directly?
To propagate the publisher’s transaction to the subscriber, you
should configure the event class to support or require transactions.
Like any other COM+ component, the event class has a Transaction
tab that applies to the COM+ synthesized implementation.

Adding the event class to your transaction will not affect the
transaction voting result; in any COM+ context the consistency bit
is set by default to TRUE and the COM+ -provided implementation of
the event class does not change that bit. You also need to configure
the (persistent) subscriber component to support transactions. Now
the subscriber takes part in the publisher’s transaction and it can
abort the publisher’s transaction or vote to commit it.

There is one more thing you should keep in mind when mixing
COM+ events and transactions: Do not configure the event class to
require a new transaction. This causes the subscriber to take part in
a separate transaction, the one initiated by the event class (see
Figure 9-19).

Figure 9-19. Configuring the event class to require new transaction
results in a separate transaction for the persistent subscriber

Publisher's Event Class's
Transaction Transaction

J—' Subscrber ~ DB
— Event
Publisher it 1 T

If the publisher’s transaction is aborted, the subscriber’s transaction
can still commit successfully, which may involve changes to the
database and other persistent changes to your system state.
Nobody tells the subscriber to roll back those changes, despite the
fact that the event that triggered the changes is fired from a
transaction that aborts.

In addition, when the publisher tries again, the event may be fired
once more, leaving the subscriber in an inconsistent state.

Substriber

9.9.1 Persistent Subscribers and Transactions

Similarly, avoid configuring any persistent subscriber’s transaction
setting to Requires New and do not mix nontransactional
subscribers with transactional ones; such practices may introduce
unwelcome side effects when the publisher’s transaction is aborted
(see Figure 9-20).

286

Figure 9-20. Avoid configuring subscribers to require new transactions or
to mix nontransactional subscribers with transactional ones

Publisher"s Transaction Mew Transaction

Ei Subseriber —™ DB

Reqs new
Publisher —> Bet =" Subsaiber —]
tlos not supparted

e Subscriber —* DB
Required,/supp

9.9.2 Transient Subscribers and Transactions

Transient subscribers are already instantiated when the event is
fired and may be part of their creator’s transaction. | can only
recommend being mindful when combining transient subscriptions
with a transactional publisher because you may end up with the
same inconsistencies mentioned in the previous section.

In particular, transient subscribers should not abort their
client/creator’s transaction as a response to a publisher’s event, an
event that may have been fired from within another transaction.
The problems that arise when you combine transient subscribers
and publisher transactions are typical of passing object references
across transaction boundarie. The object does not know whether it
is allowed to abort the transaction or not (as discussed in Chapter
4).

9.10 COM+ Events and Security

The fact that the publisher does not call methods on the subscribers
directly is an important software engineering capability.
Nevertheless, you should never decouple your components at the
expense of security. COM+ must still allow the system
administrators to configure the access rights to subscribers. COM+
events take advantage of the rich security infrastructure offered by
COM+, and COM+ also provides you with event system-specific
security settings.

9.10.1 The Event Class and Role-Based Security
Like other configured components, an event class can use role-

based security. The most common use of use role-based security for
event classes is to control which publisher is allowed to fire events.

287

However, since roles in COM+ are per application, be sure to add
roles and users for each product to the event class application if you
intend to share event classes between a few applications and
products.

You can use role-based security in another way: to implement a
publisher-side filter that calls
ISecurityCallContext::IsCallerInRole() (discussed in
Chapter 7) and controls the order of publishing based on the
publisher’s role.

9.10.2 Subscribers and Role-Based Security

The subscriber can use role-based security to control access to its
services. Unlike an event class usage of role-based security (which
affects the publishing side and therefore all the subscribers), when
a subscriber uses role-based security, only that subscriber is
affected by the access checks. If all your subscribers have uniform
security requirements, putting the security check on the event class
is the right decision because it improves performance (the publisher
does not publish at all if it is not allowed to). However, if the
security requirements of your subscribers vary (if some require
tighter security than others), putting the security access checks on
the sensitive subscribers may provide you with the better solution.

9.10.3 I n-Process Subscribers

From a security point of view, an interesting situation arises when
the event class and the subscriber component are both library
applications. As a result, when the publisher CoCreates the event
class and publishes to it, the subscriber is loaded into the publisher
process.

Unlike a conventional library application that is intended to share
the address space of its client (and may very well be developed by
the same team), the publisher/subscriber relationship is much less
trusting and coupled.

Most software vendors would feel uneasy letting an unknown entity
into their process. The subscriber may be of dubious quality (and
may take the publisher down with it when it crashes) or even
malicious (| will leave it to your imagination what you can do if
somebody lets you into their process).

To protect the publisher, the system administrator can enforce all
subscribers to be created in their own process. On the Advanced tab
of the Event Class properties page, if "Allow in-process subscribers"
is not checked, the subscriber object will be created in a separate
process, even if it is configured to run as a library application (see
Figure 9-4).

288

9.10.4 Per-User Subscriptions

COM+ allows you to deliver an event to a particular subscriber only
if a specific user is logged on to the publisher’s machine. When the
user logs off, the subscription is disabled. Per-user subscription
requires the publisher and subscriber to be on the same computer,
since logon and logoff are only detected locally in Windows.

To activate per-user Subscription you must set the pPerUser flag on
the subscription record to TRUE and specify a username. You can do
that by programming against the COM+ Catalog.

Per-user subscription is an esoteric security mechanism, and |
recommend using role-based security instead to achieve similar
capabilities with a fraction of the code and restrictions.

9.11 COM+ Events Limitation

COM+ Events is an outstanding service that saves you a lot of
work—it provides an extensible, feature-rich service that allows you
to focus on adding value to your product, not on event connectivity
plumbing.

However, the event system has a few limitations, and this chapter
would not be complete without pointing them out. Knowing about
them allows you to make the best use of COM+ events:

e As you have seen, COM+ events do not provide you with
absolute location transparency. You have to jump through
hoops to distribute your events across the enterprise.

e Good support for a very large number of subscribers (more
than a few hundred) is lacking. To publish an event, COM+
maintains a linked list of subscribers, and it scans it on every
event—i.e., publishing overhead is linear to a number of
subscribers. There is no way to perform a broadcast.

» All parties involved (publisher, event class, and subscribers)
have to run on a Windows 2000 machine. This is usually not a
problem at the middle tier, but it does rule out most of the
portable devices, such as laptops, PDAs, and cell phones.

e COM+ has difficulty handling a very large amount of data as
parameters for events. Avoid large strings and huge arrays.

« COM+ events cannot handle a high rate of event publishing
because it takes time to publish an event. If events are
published faster than COM+ can handle them, you get
memory bloating and COM+ will occasionally fail. On a stress
test | conducted on COM+ events, | had three publishers,
each on its own machine, creating an event class proxy and
firing every 300 milliseconds at one subscriber on a fourth
machine. COM+ failed after a day and a half.

289

290

9.12 Summary

COM+ loosely coupled events demonstrate all of the core COM+
component services principles discussed in this book: the service
has evolved to improve an existing solution; it offers a spectrum of
features, from simple, to administrative Component Services
Explorer support, to advanced programmatic features; and it
interacts with almost all of the other COM+ services, such as
transactions, security, and queued components. Although this
chapter has discussed the main points of the service, numerous
other possibilities exist, including pooled persistent subscribers. The
important lesson is that once you understand how each individual
service works, you can start combining the services in powerful and
synergetic ways. COM+ loosely coupled events are the last COM+
component service described in this book. You will now learn about
.NET and see how it utilizes COM+ component services.

291

Chapter 10. .NET Serviced Components

.NET is the new platform from Microsoft used to build component-
based applications, from standalone desktop applications to web-
based applications and services. The platform will be available on
forthcoming Microsoft operating systems and supported by the next
release of Visual Studio, called Visual Studio.NET. In addition to
providing a modern object-oriented framework for building
distributed applications, .NET also provides several specialized
application frameworks. These frameworks include Windows Forms
for rich Windows clients, ADO.NET for data access, and ASP.NET for
dynamic web applications. Another important framework is Web
Services, which is used to expose and consume remote objects
using the emerging SOAP and other XML-based protocols.

.NET is Microsoft’s next-generation component technology. It is
designed from the ground up to simplify component development
and deployment, as well as to support interoperability between
programming languages.

Despite its innovations and modern design, .NET is essentially a
component technology. Like COM, .NET provides you with the
means to rapidly build binary components, and Microsoft intends for
.NET to eventually succeed COM. Like COM, .NET does not provide
its own component services. Instead, .NET relies on COM+ to
provide it with instance management, transactions, activity-based
synchronization, granular role-based security, disconnected
asynchronous queued components, and loosely coupled events. The
.NET namespace that contains the types necessary to use COM+
services was named System.EnterpriseServices to reflect the pivotal
role it plays in building .NET enterprise applications.

A .NET component that uses COM+ services is called a serviced
component to distinguish it from the standard managed
components in .NET. If you are not familiar with .NET, you should
first read Appendix C or pick up a copy of .NET Framework
Essentials by Thuan Thai and Hoang Lam (O’Reilly, 2001).

If you are already familiar with the basic .NET concepts, such as the
runtime, assemblies, garbage collection, and C# (pronounced "C
sharp"), continue reading. This chapter shows you how to create
.NET serviced components that can take advantage of the COM+
component services that you have learned to apply throughout this
book.

292

10.1 Developing Serviced Components

A .NET component that takes advantage of COM+ services needs to
derive from the .NET base class ServicedComponent.
ServicedComponent is defined in the System.EnterpriseServices
namespace. Example 10-1 demonstrates how to write a .NET
serviced component that implements the IMessage interface and
displays a message box with "Hello" in it when the interface’s
ShowMessage () method is called.

Example 10-1. A simple .NET serviced component

namespace MyNamespace

{

using System.EnterpriseServices;
using System.Windows.Forms;//for the MessageBox class

public interface IMessage
{
void ShowMessage();
}
/// <summary>
/17 Plain vanilla .NET serviced component
/// </summary>
public class MyComponent:ServicedComponent, IMessage
{
public MyComponent () {}//constructor
public void ShowMessage()
{
MessageBox.Show ("Hello!", "MyComponent") ;

}

- A serviced component is not allowed to have
parameterized constructors. If you require such
parameters, you can either design around them by
introducing a Create () method that accepts
parameters, or use a constructor string.

There are two ways to configure a serviced component to use COM+
services. The first is COM-like: you derive from
ServicedComponent, add the component to a COM+ application,
and configure it there. The second way is to apply special attributes
to the component, configuring it at the source-code level. When the
component is added to a COM+ application, it is configured
according to the values of those attributes. Attributes are discussed

293

in greater detail throughout this chapter as you learn about
configuring .NET components to take advantage of the various
COM+ services.

.NET allows you to apply attributes to your serviced components
with great flexibility. If you do not apply your own attributes, a
serviced component is configured using default COM+ settings when
it is added to a COM+ application. You can apply as many attributes
as you like. A few COM+ services can only be configured via the
Component Services Explorer. These services are mostly
deployment-specific configurations, such as persistent subscriptions
to COM+ Events and allocation of users to roles. In general, almost
everything you can do with the Component Services Explorer can be
done with attributes. | recommend that you put as many design-
level attributes as possible (such as transaction support or
synchronization) in the code and use the Component Services
Explorer to configure deployment-specific details.

10.2 .NET Assemblies and COM+ Applications

When you wish to take advantage of COM+ component services,
you must map the assembly containing your serviced components
to a COM+ application. That COM+ application then contains your
serviced components, just like any other component—COM+ does
not care whether the component it provides services to is a
managed .NET serviced component or a classic COM, unmanaged,
configured component. A COM+ application can contain components
from multiple assemblies, and an assembly can contribute
components to more than one application, as shown in Figure 10-1.
Compare Figure 10-1 to Figure 1-8. There is an additional level of
indirection in .NET because an assembly can contain multiple
modules.

Figure 10-1. COM+ applications and assemblies

Application 1 Application 2
comp A comp B comp tornp 0
- ¢ ¢
comp & comp B camp comp D camp E
Assembly 1 Assembly 2

However, setting up an assembly to contribute components to more
than one COM+ application is not straightforward and is susceptible
to future registrations of the assembly. As a rule, avoid mapping an
assembly to more than one COM+ application.

294

10.3 Registering Assemblies

To add the serviced components in your assembly to a COM+
application, you need to register that assembly with COM+. You can
perform that registration in three ways:

e Manually, using a command line utility called RegSvcs.exe.

e Dynamically, by having the client program register your
assembly automatically.

« Programmatically, by writing code that does the registration
for you using a utility class provided by .NET.

Regardless of the technique you use, the registration process adds
your serviced components to a COM+ application and configures
them according to the default COM+ settings or according to their
attributes (if present in the code). If the assembly contains
incompatible attributes, the incompatibility is detected during
registration and the registration is aborted. Future versions of the
.NET compilers may detect incompatibilities during compilation
time.

Signing Assembly and Assembly
Location

To add an assembly to a COM+ application, the assembly
must be signed (have a strong name) so the assembly
resolver can map a client activation request to the
corresponding assembly. Although in theory you need not
install the assembly in the global assembly cache (GAC), in
practice you should install it because the assembly DLL must
be in a known location—either the system directory (for
server applications that run in DIIHost) or the hosting client
process directory (if the client is not a COM+ server
application). The other known location that the assembly
resolver uses is the GAC. To maintain flexibility (to change
from server to library application) and consistency, make
sure you always install your serviced component assembly in
the GAC.

10.3.1 Specifying Application Name

You can provide .NET with an assembly attribute, specifying the
name of the COM+ application you would like your components to
be part of, by using the ApplicationName assembly attribute:
[assembly: ApplicationName ("MyApp")]

295

If you do not provide an application name, .NET uses the assembly
name. The ApplicationName attribute (and the rest of the serviced
components attributes) is defined in the
System.EnterpriseServices namespace. You must add this
namespace to your project references and reference that

namespace in your assembly information file:
using System.EnterpriseServices;

10.3.2 Understanding Serviced Component Versions

Before exploring the three registration options, you need to
understand the relationship between an assembly’s version and
COM+ components.

Every managed client of your assembly is built against the
particular version of the assembly that contains your components,
whether they are serviced or regular managed components. .NET
zealously enforces version compatibility between the client’s
assembly and any other assembly it uses. The assembly’s version is
the product of its version number (major and minor numbers, such
as 3.11) and the build and revision numbers. The version number is
provided by the developer as an assembly attribute, and the build
or revision numbers can be generated by the compiler—or the
developer can provide them himself.

The semantics of the version and build or revision numbers tell .NET
whether two particular assembly versions are compatible with each
other, and which of the two assemblies is the latest. Assemblies are
compatible if the version number is the same. The default is that
different build and revision numbers do not indicate incompatibility,
but a difference in either major or minor number indicates
incompatibility. A client's manifest contains the version of each
assembly it uses. At runtime, .NET loads for the client the latest
compatible assemblies to use, and latest is defined using the build
and revision numbers.

All this is fine while everything is under tight control of the .NET
runtime. But how would .NET guarantee compatibility between the
assembly's version and the configuration of the serviced
components in the COM+ Catalog? The answer is via the COM+
component's ID.

The first time a serviced component is added to a COM+
application, the registration process generates a CLSID for it, based
on a hash of the class definition and its assembly's version and
strong name. Subsequent registration of the same assembly with an
incompatible version is considered a new registration for that
serviced component, and the component is given a new CLSID.
This way, the serviced component's CLSID serves as its
configuration settings version number. Existing managed clients do
not interfere with one another because each gets to use the

296

assembly version it was compiled with. Each managed client also
uses a particular set of configuration parameters for the serviced
components, captured with a different CLSID. When a managed
client creates a serviced component, the .NET runtime creates for it
a component from an assembly with a compatible version and
applies the COM+ configuration of the matching CLSID.

10.3.3 Manual Registration

To register your component manually, use the RegSvcs.exe
command-line utility. (In the future, Visual Studio.NET will probably
allow you to invoke RegSvcs from the visual environment itself.)
RegSvcs accepts as a parameter the name of the file containing
your assembly’s metadata. In a single DLL assembly, that file is
simply the assembly file. If you do not specify as an assembly
attribute the name of the COM+ application that should host your
components, RegSvcs must be told that name explicitly as a
command-line parameter, using the /appname: switch.

For example, if your single DLL assembly resides in MyAssembly.dll
and you wish to add the serviced components in that assembly to
the MyApp COM+ application, you would use RegSvcs in this
manner:

RegSvcs.exe /appname:MyApp MyAssembly.dll

The command-line application name is ignored if the assembly
contains an application name.

In any case, you must create that COM+ application in the
Component Services Explorer beforehand; otherwise, the previous
command line will fail. You can instruct RegSvcs to create the
application for you using the /c switch:

RegSvcs.exe /c MyApp MyAssembly.dll

Or if the name is specified in the assembly:

RegSvcs.exe /c MyAssembly.dll

When using the /c switch, RegSvcs creates a COM+ application,
names it accordingly, and adds the serviced components to it. If the
Catalog already contains an application with that name, the
registration fails.

You can also ask RegSvcs to try to find a COM+ application with
that name and, if none is found, create one. This is done using the
/fc switch:

RegSvcs.exe /fc MyApp MyAssembly.dll

Or if the name is specified in the assembly:

RegSvcs.exe /fc MyAssembly.dll

If you don’t specify a COM+ application name, either in the
assembly or as a command-line parameter, RegSvcs uses the
assembly name for the application name. If your assembly is called
MyAssembly, RegSvcs adds the components to the MyAssembly

297

COM+ application. This behavior is the same for all the command-
line switches.

By default, RegSvcs does not override the existing COM+
application (and its components) settings. If that assembly version
is already registered with that COM+ application, then RegSvcs
does nothing. If that version is not registered yet, it adds the new
version and assigns new CLSIDs. Reconfiguring an existing version
is done explicitly using the /reconfig switch:

RegSvcs.exe /reconfig /fc MyApp MyAssembly.dll

The /reconfig switch causes RegSvcs to reapply any application,
component, interface, and method attributes found in the assembly
to the existing version and use the COM+ default settings for the
rest, thus reversing any changes you made using the Component
Services Explorer.

When RegSvcs adds a serviced component to the COM+ Catalog, it
must give it a class-1D (CLSID) and a prog-1D. RegSvcs creates a
GUID for every component (based on the assembly’s version and
the class definition) and names it <Namespace>.<Component name>.
For example, when you add the serviced component in Example 10-
1 to the COM+ Catalog, RegSvcs names it
MyNamespace.MyComponent. You can also specify the CLSID and the
prog-ID of your serviced components using attributes.

In addition to adding the serviced components in the assembly to a
COM+ application, RegSvcs creates a type library. This library
contains interface and CoClass definitions to be used by
nonmanaged clients (COM clients). The default type library filename
iS <Assembly name>.tlb—the name of the assembly with a .t/b
extension.

10.3.4 Dynamic Registration

When a managed client creates a serviced component, the .NET
runtime resolves which assembly version to use for that client.
Next, the runtime verifies that the required version is registered
with COM+ . If it is not registered, the runtime installs it
automatically. This process is called dynamic registration. As with
RegSvcs, if the assembly contains an application name, then that
name is used; if it does not, then the assembly's name is used for
the COM+ application's name.

Note that only .NET clients can rely on having dynamic registration
done when they instantiate a .NET serviced component. For COM
clients, you must use the RegSvcs utility. Another limitation of
dynamic registration is that serviced components in the assembly
are configured according to the attributes in the assembly and the
COM+ defaults. If you require configuring some services (such as
events subscriptions) using the Component Services Explorer for
your application to function properly, you must use RegSvcs to

298

register your components and provide the additional configuration
using the Component Services Explorer. Only then can clients use
your serviced components. As a result, dynamic registration is only
useful for serviced components that contain all the service
configurations they need in their code through the use of attributes.
Finally, dynamic registration requires that the user invoking the call
that triggers dynamic registration be a member of the Windows
2000 Administrator group. It has this requirement because dynamic
registration makes changes to the COM+ Catalog; if the user
invoking it is not a member of the Windows 2000 Administrator
group, dynamic registration will fail.

In general, you should use RegSvcs and the Component Services
Explorer rather than relying on dynamic registration. If you want to
rely on dynamic registration of your serviced components, you
should increment the version number of your assembly every time
you make a change to one of the components’ attributes, to ensure
that you trigger dynamic registration.

10.3.5 Programmatic Registration

Both RegSvcs and dynamic registration use a .NET class called
RegistrationHelper to perform the registration.
RegistrationHelper implements the TRegistrationHelper
interface, whose methods are used to register and unregister
assemblies. For example, the InstallAssembly () method
registers the specified assembly in the specified COM+ application
(or the application specified in the assembly). This method is
defined as:
public void InstallAssembly(string assembly,

ref string application,

ref string tlb,

InstallationFlags
installFlags);
The installation flags correspond to the various RegSvcs switches.
See the MSDN Library for additional information on
RegistrationHelper. YOU Can uUsSe RegistrationHelper yourself as
part of your installation program; for more information, see Section
10.14 later in this chapter.

10.3.6 The Applicationl D Attribute

Every COM+ application has a GUID identifying it called the
application ID. You can provide an assembly attribute specifying the
application ID in addition to the application name:

[assembly: ApplicationID ("8BE192FA-57D0-49a0-8608-
6829A314EEBE")]

Unlike the application name, the application ID is guaranteed to be
unique, and you can use it alongside the application name. Once an

299

application ID is specified, all searches for the application during
registration are done using the application ID only, and the
application name is only useful as a human-readable form of the
application identity. Using application ID comes in handy when
deploying the assembly in foreign markets—you can provide a
command-line localized application name for every market while
using the same application ID for your administration needs
internally. The ApplicationID attribute is defined in the
System.EnterpriseServices namespace.

10.3.7 The Guid Attribute

Instead of having the registration process generate a CLSID for
your serviced component, you can specify one for it using the Guid

attribute:
using System.Runtime.InteropServices;

[Guid ("260C9CC7-3B15-4155-BF9A-12CB4174A36E")]

public class MyComponent :ServicedComponent,IMyInterface
{...}

The Guid attribute is defined in the
System.Runtime.InteropServices namespace.

When you specify a class ID, subsequent registrations of the
assembly don't generate a new CLSID for the component,
regardless of the version of the assembly being registered.
Registrations always reconfigure the same component in the COM+
Catalog. Specifying a class ID is useful during development, when
you have multiple cycles of code-test-fix. Without it, every
invocation by the test client triggers a dynamic registration—you
very quickly clutter the COM+ application with dozens of
components, when you actually only use the latest one.

10.3.8 The Progld Attribute

Instead of having the registration process generate a name for your
serviced component (namespace plus component name), you can
specify one for it using the pProgID attribute:

using System.Runtime.InteropServices;

[ProgId("My Serviced Component")]

public class MyComponent :ServicedComponent, IMyInterface
{...}

The ProgId attribute is defined in the
System.Runtime.InteropServices namespace.

300

10.4 Configuring Serviced Components

You can use various .NET attributes to configure your serviced
components to take advantage of COM+ component services. The
rest of this chapter demonstrates this service by service, according
to the order in which the COM+ services are presented in this book.

10.5 Application Activation Type

To specify the COM+ application’s activation type, you can use the
ApplicationActivation assembly attributes. You can request that
the application be a library or a server application:

[assembly:

ApplicationActivation (ActivationOption.Server)]

or:

[assembly:

ApplicationActivation (ActivationOption.Library)]

If you do not provide the ApplicationActivation attribute, then
.NET uses a library activation type by default. Note that this use
differs from the COM+ default of creating a new application as a
server application.

- The next release of Windows 2000, Windows XP

“:). (see Appendix B), allows a COM+ application to be

—4% activated as a system service, so | expect that
ApplicationActivation will be extended to
include the value of ActivationOption.Service.

Before | describe other serviced components attributes, you need to
understand what attributes are. Every .NET attribute is actually a
class, and the attribute class has a constructor (maybe even a few
overloaded constructors) and, usually, a few properties you can set.
The syntax for declaring an attribute is different from that of any
other class. In C#, you specify the attribute type between square
brackets [...]. You specify constructor parameters and the values
of the properties you wish to set between parentheses (...).

In the case of the ApplicationActivation attribute, there are no
properties and the constructor must accept an enum parameter of
type ActivationOption, defined as:

enum ActivationOption{Server,Library}

There is no default constructor for the ApplicationActivation
attribute.

The ApplicationActivation attribute is defined in the
System.EnterpriseServices namespace. Your must add this
namespace to your project references and reference that
namespace in your assembly information file:

301

using System.EnterpriseServices;
The rest of this chapter assumes that you have added these
references and will not mention them again.

- A client assembly that creates a serviced
#+ 4. component or uses any of its base class
M5

ServicedComponent methods must add a reference
to System.EnterpriseServices to its project.
Other clients, which only use the interfaces
provided by your serviced components, need not
add the reference.

10.6 The Description Attribute

The Description attribute allows you to add text to the description
field on the General Properties tab of an application, component,
interface, or method. Example 10-2 shows how to apply the
Description attribute at the assembly, class, interface, and
method levels. After registration, the assembly-level description
string becomes the content of the hosting COM+ application’s
description field; the class description string becomes the content of
the COM+ component description field. The interface and method
descriptions are mapped to the corresponding interface and method
in the Component Services Explorer.

Example 10-2. Applying the Description attribute at the assembly, class,
interface, and method levels

[assembly: Description("My Serviced Components
Application")]

[Description ("IMyInterface description™)]
public interface IMyInterface
{
[Description ("MyMethod description")]
void MyMethod();
}

[Description ("My Serviced Component description")]
public class MyComponent :ServicedComponent, IMyInterface
{

public void MyMethod() {}
}

302

10.7 Accessing the COM+ Context

To access the COM+ context object’s interfaces and properties,
.NET provides you with the helper class ContextUtil. All context
object interfaces (including the legacy MTS interfaces) are
implemented as public static methods and public static properties of
the contextUtil class. Because the methods and properties are
static, you do not have to instantiate a ContextUtil object—you
should just call the methods. For example, if you want to trace the
current COM+ context ID (its GUID) to the Output window, use the
ContextId static property of ContextUtil:

using System.Diagnostics;//For the Trace class

Guid contextID = ContextUtil.ContextId;

String traceMessage = "Context ID is " +
contextID.ToString();

Trace.WritelLine (traceMessage) ;

ContextUtil has also properties used for JITA deactivation,
transaction voting, obtaining the transactions and activity 1Ds, and
obtaining the current transaction object. You will see examples for
how to use these ContextUtil properties later in this chapter.

10.8 COM+ Context Attributes

You can decorate (apply attributes to) your class with two context-
related attributes. The attribute MustRunInClientContext informs
COM+ that the class must be activated in its creator's context:
[MustRunInClientContext (true)]

public class MyComponent :ServicedComponent

{...}

When you register the class above with COM+, the "Must be
activated in caller's context" checkbox on the component's
Activation tab is selected in the Component Services Explorer. If
you do not use this attribute, the registration process uses the
default COM+ setting when registering the component with COM+
—not enforcing same-context activation. As a result, using
MustRunInClientContext with a false parameter passed to the
constructor is the same as using the COM+ default:
[MustRunInClientContext (false)]

Using attributes with the COM+ default values (such as constructing
the MustRunInClientContext attribute with false) is useful when
you combine it with the /reconfig switch of RegSvcs. For example,
you can undo any unknown changes made to your component
configuration using the Component Services Explorer and restore
the component configuration to a known state.

303

The MustRunInClientContext attribute class has an overloaded
default constructor. If you use MustRunInClientContext with no
parameters, the default constructor uses true for the attribute
value. As a result, the following two statements are equivalent:
[MustRunInClientContext]

[MustRunInClientContext (true)]

The second COM+ context-related attribute is the
EventTrackingEnabled attribute. It informs COM+ that the
component supports events and statistics collection during its
execution:

[EventTrackingEnabled (true)]

public class MyComponent2:ServicedComponent

{...}

The statistics are displayed in the Component Services Explorer.
When you register this class with COM+, the "Component supports
events and statistics" checkbox on the component’s Activation tab is
checked in the Component Services Explorer. If you do not use this
attribute, the registration process does not use the default COM+
setting of supporting events when registering the component with
COM+. The .NET designers made this decision consciously to
minimize creation of new COM+ contexts for new .NET components;
a component that supports statistics is usually placed in it own
context.

The EventTrackingEnabled attribute class also has an overloaded
default constructor. If you construct it with no parameters, the
default constructor uses true for the attribute value. As a result,
the following two statements are equivalent:
[EventTrackingEnabled]

[EventTrackingEnabled (true)]

10.9 COM+ Object Pooling

The ObjectPooling attribute is used to configure every aspect of
your component’s object pooling. The ObjectPooling attribute
enables or disables object pooling and sets the minimum or
maximum pool size and object creation timeout. For example, to
enable object pooling of your component’s objects with a minimum
pool size of 3, a maximum pool size of 10, and a creation timeout of
20 milliseconds, you would write:

[ObjectPooling (MinPoolSize = 3,MaxPoolSize =
10,CreationTimeout = 20)]

public class MyComponent :ServicedComponent

{...}

The MinPoolSize, MaxPoolSize, and CreationTimeout properties
are public properties of the ObjectPooling attribute class. If you do
not specify values for these properties (all or just a subset) when

304

your component is registered, the default COM+ values are used for
these properties (a minimum pool size of 0, a maximum pool size of
1,048,576, and a creation timeout of 60 seconds).

The ObjectPooling attribute has a Boolean property called the
Enabled property. If you do not specify a value for it (true or
false), the attribute’s constructor sets it to true. In fact, the
attribute’s constructor has a few overloaded versions—a default
constructor that sets the Enabled property to true and a
constructor that accepts a Boolean parameter. All constructors set
the pool parameters to the default COM+ value. As a result, the
following three statements are equivalent:

[ObjectPooling]

[ObjectPooling (true)]

[ObjectPooling (Enabled = true)]

e If your pooled component is hosted in a library
%3 4. application, then each hosting Application Domain

¢ will have its own pool. As a result, you may have
multiple pools in a single physical process, if that
process hosts multiple Application Domains.

Under COM, the pooled object returns to the pool when the client
releases its reference to it. Managed objects do not have reference
counting—.NET uses garbage collection instead. A managed pooled
object returns to the pool only when it is garbage collected. The
problem with this behavior is that a substantial delay between the
time the object is no longer needed by its client and the time the
object returns to the pool can occur. This delay may have serious
adverse effects on your application scalability and throughput. An
object is pooled because it was expensive to create. If the object
spends a substantial portion of its time waiting for the garbage
collector, your application benefits little from object pooling.

There are two ways to address this problem. The first solution uses
COM+ JITA (discussed next). When you use JITA, the pooled object
returns to the pool after every method call from the client. The
second solution requires client participation.

ServicedComponent has a public static method called

DisposeObject (), defined as:
public static void DisposeObject (ServicedComponent sc);
When the client calls DisposeObject (), passing in an instance of a

pooled serviced component, the object returns to the pool
immediately. DisposeObiject () has the effect of notifying COM+
that the object has been released. Besides returning the object to
the pool, DisposeObject () disposes of the context object hosting
the pooled object and of the proxy the client used.

For example, if the component definition is:
public interface IMyInterface

{

305

void MyMethod();
}

[ObjectPooling]
public class MyComponent : ServicedComponent, IMyInterface
{

public void MyMethod() {}

}

When the client is done using the object, to expedite returning the
object to the pool, the client should call DisposeObject ():
IMyInterface ob7j;

Obj = (IMyInterface) new MyComponent () ;
obj.MyMethod();

ServicedComponent sc = obj as ServicedComponent;
If(sc != null)

ServicedComponent .DisposeObject (sc);
However, calling DisposeObiject () directly is ugly. First, the client
has to know that it is dealing with an object derived from
ServicedComponent, wWhich couples the client to the type used and
renders many benefits of interface-based programming useless.
Even worse, the client only has to call DisposeObject () if this
object is pooled, which couples the client to the serviced
component’s configuration. What if you use object pooling in only
one customer site, but not in others? This situation is a serious
breach of encapsulation—the core principle of object-oriented
programming.
The solution is to have ServicedComponent implement a special
interface (defined in the system namespace) called IDisposable,

defined as:
public interface IDisposable

{

void Dispose();
}
ServicedComponent implementation of Dispose () returns the
pooled object to the pool.
Having the Dispose () method on a separate interface allows the
client to query for the presence of IDisposable and always call it,

regardless of the object's actual type:
IMyInterface ob7j;

obj = (IMyInterface) new MyComponent ();
obj.MyMethod();

//Client wants to expedite whatever needs expediting:
IDisposable disposable = obj as IDisposable;
if (disposable != null)

disposable.Dispose();
The IDisposable technique is useful not only with serviced
components, but also in numerous other places in .NET. Whenever

306

your component requires deterministic disposal of the resources and
memory it holds, IDisposable provides a type-safe, component-
oriented way of having the client dispose of the object without being
too coupled to its type.

10.10 COM+ Just-in-Time Activation

.NET managed components can use COM+ JITA to efficiently handle
rich clients (such as .NET Windows Forms clients), as discussed in
Chapter 3.

To enable JITA support for your component, use the
JustInTimeActivation attribute:

[JustInTimeActivation (true)]

public class MyComponent :ServicedComponent

{..}

When you register this component with COM+ , the JITA checkbox in
the Activation tab on the Component Services Explorer is selected.
If you do not use the JustInTimeActivation attribute, JITA
support is disabled when you register your component with COM+
(unlike the COM+ default of enabling JITA). The
JustInTimeActivation class default constructor enables JITA
support, so the following two statements are equivalent:
[JustInTimeActivation]

[JustInTimeActivation (true)]

Enabling JITA support is just one thing you need to do to use JITA.
You still have to let COM+ know when to deactivate your object.
You can deactivate the object by setting the done bit in the context
object, using the DeactivateOnReturn property of the ContextUtil
class. As discussed at length in Chapter 3, a JITA object should
retrieve its state at the beginning of every method call and save it
at the end. Example 10-3 shows a serviced component using JITA.

Example 10-3. A serviced component using JITA

public interface IMyInterface

{
void MyMethod (long objectIdentifier);

}

[JustInTimeActivation (true)]
public class MyComponent :ServicedComponent, IMyInterface
{
public void MyMethod (long objectIdentifier)
{
GetState (objectlIdentifier);
DoWork () ;
SaveState (objectIdentifier);

307

//inform COM+ to deactivate the object upon
method return
ContextUtil.DeactivateOnReturn = true;

}

//other methods

protected void GetState(long objectIdentifier){...}

protected void DoWork () {...}

protected void SaveState (long objectIdentifier){...}
}
You can also use the Component Services Explorer to configure the
method to use auto-deactivation. In that case, the object is
deactivated automatically upon method return, unless you set the
value of the DeactivateOnReturn property to false.

10.10.1 Using I ObjectControl

If your serviced component uses object pooling or JITA (or both), it
may also need to know when it is placed in a COM+ context to do
context-specific initialization and cleanup. Like a COM+ configured
component, the serviced component can use I0bjectControl for
that purpose. The .NET base class ServicedComponent already
implements I0bjectControl, and its implementation is virtual—so
you can override the implementation in your serviced component,
as shown in Example 10-4.

Example 10-4. A serviced component overriding the ServicedComponent
implementation of | ObjectControl

public class MyComponent :ServicedComponent

{

public override void Activate()

{

//Do context specific initialization here

}

public override void Deactivate()

{

//Do context specific cleanup here

}

public override bool CanBePooled()

{

return true;

}
//other methods

}

If you encounter an error during Activate () and throw an
exception, then the object's activation fails and the client is given
an opportunity to catch the exception.

10.10.2 I1ObjectControl, JITA, and Deterministic Finalization

308

To maintain JITA semantics, when the object deactivates itself, .NET
calls DisposeObject () on it explicitly, thus destroying it. Your
object can do specific cleanup in the Finalize() method (the
destructor in C#), and Finalize () will be called as soon as the
object deactivates itself, without waiting for garbage collection. If
the object is a pooled object (as well as a JITA object), then it is
returned to the pool after deactivation, without waiting for the
garbage collection.

You can also override the ServicedComponent implementation of
IObJjectControl.Deactivate () and perform your cleanup there.
In any case, you end up with a deterministic way to dispose of
critical resources without explicit client participations. This situation
makes sharing your object among clients much easier because now
the clients do not have to coordinate who is responsible for calling
Dispose().

- COM+ JITA gives managed components
%+ 4. deterministic finalization, a service that nothing

@' else in .NET can provide out of the box.

10.11 COM+ Constructor String

Any COM+ configured component that implements the
IObjectConstruct interface has access during construction to a
construction string (discussed in Chapter 3), configured in the
Component Services Explorer. Serviced components are no
different. The base class, servicedComponent, already implements
the I0bjectConstruct interface as a virtual method (it has only
one method). Your derived serviced component can override the

Construct () method, as shown in this code sample:
public class MyComponent :ServicedComponent

{

public override void Construct (string constructString)
{
//use the string. For example:
MessageBox.Show (constructString);
}
}
If the checkbox "Enable object construction" on the component
Activation tab is selected, then the Construct () method is called
after the component’s constructor, providing it with the configured
construction string.
You can also enable construction string support and provide a
default construction string using the ConstructionEnabled
attribute:

309

[ConstructionEnabled (Enabled = true,Default = "My
String")]
public class MyComponent :ServicedComponent

{

public override wvoid Construct (string constructString)

{...}
}
The ConstructionEnabled attribute has two public properties.
Enabled enables construction string support for your serviced
component in the Component Services Explorer (once the
component is registered) and Default provides an initial string
value. When your component is registered with COM+, the
registration process assigns the default string to the constructor
string field on the component Activation tab. The default string has
no further use after registration. New instances of your component
receive as a constructor string the current value of the constructor
string field. For example, if the default string is String A, when the
serviced component is registered, the value of the constructor string
field is set to String A. If you set it to a different value, such as
String B, new instances of the component get String B as their
construction string. They receive the current value, not the default
value.
The ConstructionEnabled attribute has two overloaded
constructors. One constructor accepts a Boolean value for the
Enabled property; the default constructor sets the value of the
Enabled property to true. You can also set the value of the
Enabled property explicitly. As a result, the following three
statements are equivalent:
[ConstructionEnabled]
[ConstructionEnabled (true)]
[ConstructionEnabled (Enabled = true)]

10.12 COM+ Transactions

You can configure your serviced component to use the five available
COM+ transaction support options by using the Transaction
attribute. The Transaction attribute’s constructor accepts an enum
parameter of type TransactionOption, defined as:

public enum TransactionOption

{
Disabled,
NotSupported,
Supported,
Required,
RequiresNew

310

For example, to configure your serviced component to require a
transaction, use the TransactionOption.Required value:
[Transaction (TransactionOption.Required)]

public class MyComponent :ServicedComponent

{...}

The five enum values of TransactionOption map to the five COM+
transaction support options discussed in Chapter 4.

When you use the Transaction attribute to mark your serviced
component to use transactions, you implicitly set it to use JITA and
require activity-based synchronization as well.

The Transaction attribute has an overloaded default constructor,
which sets the transaction support to
TransactionOption.Required. As a result, the following two

statements are equivalent:
[Transaction]
[Transaction (TransactionOption.Required)]

10.12.1 Voting on the Transaction

Not surprisingly, you use the ContextUtil class to vote on the
transaction’s outcome. ContextUtil has a static property of the
enum type TransactionVote called MyTransactionVote.
TransactionVote is defined as:

public enum TransactionVote {Abort,Commit}

Example 10-5 shows a transactional serviced component voting on
its transaction outcome using ContextUtil. Note that the
component still has to do all the right things that a well-designed
transactional component has to do (see Chapter 4); it needs to
retrieve its state from a resource manager at the beginning of the
call and save it at the end. It must also deactivate itself at the end
of the method to purge its state and make the vote take effect.

Example 10-5. A transactional serviced component voting on its
transaction outcome using the ContextUtil MyTransactionVote property

public interface IMyInterface

{
void MyMethod(long objectIdentifier);

}

[Transaction]
public class MyComponent :ServicedComponent, IMyInterface

{
public void MyMethod (long objectIdentifier)

{
try
{
GetState (objectIdentifier);

311

DoWork () ;
SaveState (objectIdentifier);
ContextUtil.MyTransactionVote =
TransactionVote.Commit;
}

catch

{

ContextUtil.MyTransactionVote
TransactionVote.Abort;

}
//Let COM+ deactivate the object once the method

returns
finally
{

ContextUtil.DeactivateOnReturn = true;

}
}
//helper methods
protected void GetState(long objectIdentifier){...}
protected void DoWork () {...}
protected void SaveState(long objectIdentifier){...}

}

Compare Example 10-5 to Example 4-3. A COM+ configured
component uses the returned HRESULT from the DoWork () helper
method to decide on the transaction’s outcome. A serviced
component, like any other managed component, does not use
HRESULT return codes for error handling; it uses exceptions instead.
In Example 10-5 the component catches any exception that was
thrown in the try block by the DoWwork () method and votes to
abort in the catch block.

Alternatively, if you do not want to write exception-handling code,
you can use the programming model shown in Example 10-6. Set
the context object’s consistency bit to false (vote to abort) as the
first thing the method does. Then set it back to true as the last
thing the method does (vote to commit). Any exception thrown in
between causes the method exception to end without voting to
commit.

Example 10-6. Voting on the transaction without exception handling

public interface IMyInterface

{
void MyMethod(long objectIdentifier);

}

[Transaction]
public class MyComponent :ServicedComponent, IMyInterface

{
public void MyMethod (long objectIdentifier)

312

//Let COM+ deactivate the object once the method
returns and abort the

//transaction. You can use ContextUtil.SetAbort (
) as well

ContextUtil.DeactivateOnReturn = true;

ContextUtil .MyTransactionVote =
TransactionVote.Abort;

GetState (objectlIdentifier);
DoWork () ;
SaveState (objectIdentifier);

ContextUtil .MyTransactionVote =
TransactionVote.Commit;

}

//helper methods

protected void GetState(long objectIdentifier){...}
protected void DoWork () {...}

protected void SaveState (long objectIdentifier){...}

}

Example 10-6 has another advantage over Example 10-5: having
the exception propagated up the call chain once the transaction is
aborted. By propagating it, callers up the chain know that they can
also abort their work and avoid wasting more time on a doomed
transaction.

10.12.2 The AutoComplete Attribute

Your serviced components can take advantage of COM+ method
auto-deactivation using the AutoComplete method attribute. During
the registration process, the method is configured to use COM+
auto-deactivation when AutoComplete is used on a method, and the
checkbox "Automatically deactivate this object when the method
returns" on the method’s General tab is selected. Serviced
components that use the AutoComplete attribute do not need to
vote explicitly on their transaction outcome. Example 10-7 shows a
transactional serviced component using the AutoComplete method
attribute.

Example 10-7. Using the AutoComplete method attribute
public interface IMyInterface
{
void MyMethod (long objectIdentifier);
}

[Transaction]
public class MyComponent : ServicedComponent, IMyInterface

313

[AutoComplete (true)]
public void MyMethod (long objectIdentifier)

{
GetState (objectlIdentifier);

DoWork () ;
SaveState (objectIdentifier);

}

//helper methods

protected void GetState(long objectIdentifier){...}

protected void DoWork () {...}

protected void SaveState (long objectIdentifier){...}
}
When you configure the method to use auto-deactivation, the
object’s interceptor sets the done and consistency bits of the
context object to true if the method did not throw an exception and
the consistency bit to false if it did. As a result, the transaction is
committed if no exception is thrown and aborted otherwise.
Nontransactional JITA objects can also use the AutoComplete
attribute to deactivate themselves automatically on method return.
The AutoComplete attribute has an overloaded default constructor
that uses true for the attribute construction. Consequently, the
following two statements are equivalent:
[AutoComplete]
[AutoComplete (true)]
The AutoComplete attribute can be applied on a method as part of

an interface definition:
public interface IMyInterface

{
//Avoid this:

[AutoComplete]

void MyMethod(long objectIdentifier);
}
However, you should avoid using the attribute this way. An
interface and its methods declarations serve as a contract between
a client and an object; using auto completion of methods is purely
an implementation decision. For example, one implementation of
the interface on one component may chose to use autocomplete
and another implementation on another component may choose not
to.

10.12.3 The TransactionContext Object

A nontransactional managed client creating a few transactional
objects faces a problem discussed in Chapter 4 (see Section 4.9).
Essentially, if the client wants to scope all its interactions with the
objects it creates under one transaction, it must use a middleman
to create the objects for it. Otherwise, each object created will be in

314

its own separate transaction. COM+ provides a ready-made
middleman called TransactionContext. Managed clients can use
TransactionContext as well. To use the TransactionContext
object, add to the project references the COM+ services type
library. The TransactionContext class is in the COMSVCSLib
namespace.

The TransactionContext class is especially useful in situations in
which the class is a managed .NET component that derives from a
class other than servicedComponent. Remember that a .NET
component can only derive from one concrete class and since the
class already derives from a concrete class other than
ServicedComponent, it cannot use the Transaction attribute.
Nevertheless, the TransactionContext class gives this client an
ability to initiate and manage a transaction.

Example 10-8 demonstrates usage of the TransactionContext
class, using the same use-case as Example 4-6.

Example 10-8. A nontransactional managed client using the
TransactionContext helper class to create other transactional objects

using COMSVCSLib;

IMyInterface objl,obj2,0bj3;
ITransactionContext transContext;

transContext = (ITransactionContext) new
TransactionContext ();
objl =

(IMyInterface)transContext.Createlnstance ("MyNamespace.My
Component") ;

obj2 =

(IMyInterface)transContext.Createlnstance ("MyNamespace.My
Component") ;

obj3 =

(IMyInterface)transContext.Createlnstance ("MyNamespace.My
Component") ;

try
{
objl.MyMethod();
obj2.MyMethod ();
obj3.MyMethod();
transContext.Commit ();
}
catch//Any error - abort the transaction
{
transContext .Abort ();

315

Note that the client in Example 10-8 decides whether to abort or
commit the transaction depending on whether an exception is
thrown by the internal objects.

10.12.4 COM+ Transactions and Nonserviced Components

Though this chapter focuses on serviced components, it is worth
noting that COM+ transactions are used by other parts of the .NET
framework besides serviced components—in particular, ASP.NET
and Web Services.

10.12.4.1 Web services and transactions

Web services are the most exciting piece of technology in the entire
.NET framework. Web services allow a middle-tier component in one
web site to invoke methods on another middle-tier component at
another web site, with the same ease as if that component were in
its own assembly. The underlying technology facilitating web
services serializes the calls into text format and transports the call
from the client to the web service provider using HTTP. Because
web service calls are text based, they can be made across firewalls.
Web services typically use a protocol called Simple Object Access
Protocol (SOAP) to represent the call, although other text-based
protocols such as HTTP-POST and HTTP-GET can also be used. .NET
successfully hides the required details from the client and the server
developer; a web service developer only needs to use the
WebMethod attribute on the public methods exposed as web
services. Example 10-9 shows the MyWebService web service that
provides the MyMessage web service—it returns the string "Hello" to
the caller.

Example 10-9. A trivial web service that returns the string "Hello"
using System.Web.Services;

public class MyWebService : WebService

{
public MyWebService() {}
[WebMethod]
public string MyMessage()
{

return "Hello";
}
}
The web service class can optionally derive from the WebService
base class, defined in the System.Web.Services namespace (see
Example 10-9). The webService base class provides you with easy
access to common ASP.NET objects, such as those representing

316

application and session states. Your web service probably accesses
resource managers and transactional components. The problem
with adding transaction support to a web service that derived from
WebService is that it is not derived from ServicedComponent, and
.NET does not allow multiple inheritance of implementation.

To overcome this hurdle, the webMethod attribute has a public
property called TransactionOption, of the enum type
Enterprise.Services.TransactionOption discussed previously.
The default constructor of the webMethod attribute sets this
property to TransactionOption.Disabled, so the following two
statements are equivalent:

[WebMethod]

[WebMethod (TransactionOption =
TransactionOption.Disabled)]

If your web service requires a transaction, it can only be the root of
a transaction, due to the stateless nature of the HTTP protocol.
Even if you configure your web method to only require a transaction
and it is called from within the context of an existing transaction, a
new transaction is created for it. Similarly, the value of
TransactionOption. Supported does not cause a web service to
join an existing transaction (if called from within one).
Consequently, the following statements are equivalent—all four
amount to no transaction support for the web service:

[WebMethod]

[WebMethod (TransactionOption
TransactionOption.Disabled)]
[WebMethod (TransactionOption =
TransactionOption.NotSupported)]

[WebMethod (TransactionOption =
TransactionOption.Supported)]

Moreover, the following statements are also equivalent—creating a
new transaction for the web service:

[WebMethod (TransactionOption =
TransactionOption.Required)]

[WebMethod (TransactionOption =
TransactionOption.RequiresNew)]

The various values of TransactionOption are confusing. To avoid
making them the source of errors and misunderstandings, use
TransactionOption.RequiresNew when you want transaction
support for your web method; use TransactionOption.Disabled
when you want to explicitly demonstrate to a reader of your code
that the web service does not take part in a transaction. The
question is, why did Microsoft provide four overlapping transaction
modes for web services? | believe that it is not the result of
carelessness, but rather a conscious design decision. Microsoft is
probably laying down the foundation in .NET for a point in the future
when it will be possible to propagate transactions across web sites.

317

Finally, you do not need to explicitly vote on a transaction from
within a web service. If an exception occurs within a web service
method, the transaction is automatically aborted. Conversely, if no
exceptions occur, the transaction is committed automatically (as if
you used the AutoComplete attribute). Of course, the web service
can still use contextUtil to vote explicitly to abort instead of
throwing an exception, or when no exception occurred and you still
want to abort.

10.12.4.2 ASP.NET and transactions

An ASP.NET web form may access resource managers (such as
databases) directly, and it should do so under the protection of a
transaction. The page may also want to create a few transactional
components and compose their work into a single transaction. The
problem again is that a web form derives from the
System.Web.UI.Page base class, not from ServicedComponent, and
therefore cannot use the [Transaction] attribute.

To provide transaction support for a web form, the Page base class
has a write-only property called TransactionMode of type
TransactionOption. You can assign a value of type
TransactionOption t0 TransactionMode, to configure transaction
support for your web form. You can assign TransactionMode
programmatically in your form contractor, or declaratively by
setting that property in the visual designer. The designer uses the
Transaction page directive to insert a directive in the aspx form file.
For example, if you set the property using the designer to
RequiresNew, the designer added this line to the beginning of the
aspx file:

<@% Page Transaction="RequiresNew" %>

Be aware that programmatic setting will override any designer
setting. The default is no transaction support (disabled).

The form can even vote on the outcome of the transaction (based
on its interaction with the components it created) by using the
ContextUtil methods. Finally, the form can subscribe to events
notifying it when a transaction is initiated and when a transaction is
aborted.

10.13 COM+ Synchronization

Multithreaded managed components can use .NET-provided
synchronization locks. These are classic locks, such as mutexes and
events. However, these solutions all suffer from the deficiencies
described at the beginning of Chapter 5. .NET serviced components
should use COM+ activity-based synchronization by adding the
Synchronization attribute to the class definition. The

318

Synchronization attribute’s constructor accepts an enum
parameter of type SynchronizationOption, defined as:
public enum SynchronizationOption

{
Disabled,

NotSupported,

Supported,

Required,

RequiresNew
}
For example, use the SynchronizationOption.Required value to
configure your serviced component to require activity-based

synchronization:
[Synchronization (SynchronizationOption.Required)]
public class MyComponent :ServicedComponent

{...}

The five enum values of SynchronizationOption map to the five
COM+ synchronization support options discussed in Chapter 5.
The synchronization attribute has an overloaded default
constructor, which sets synchronization support to
SynchronizationOption.Required. As a result, the following two

statements are equivalent:
[Synchronization]
[Synchronization (SynchronizationOption.Required)]

The System.Runtime.Remoting.Context
namespace contains a context attribute called
Synchronization that can be applied to context-
bound .NET classes. This attribute accepts
synchronization flags similar to
SynchronizationOption, and initially looks like
another version of the synchronization class
attribute. However, the synchronization attribute
in the Context namespace provides
synchronization based on physical threads, unlike
the synchronization attribute in the
EnterpriseServices namespace, which uses
causalities. As explained in Chapter 5, causality
and activities are a more elegant and fine-tuned
synchronization strategy.

F
+h %
- e

= I
Tay

10.14 Programming the COM+ Catalog
You can access the COM+ Catalog from within any .NET managed

component (not only serviced components). To write installation or
configuration code (or manage COM+ events), you need to add to

319

your project a reference to the COM+ Admin type library. After you
add the reference, the Catalog interfaces and objects are part of the
COMAdmin namespace. Example 10-10 shows how to create a
catalog object and use it to iterate over the application collection,
tracing to the Output window the names of all COM+ applications on
your computer.

Example 10-10. Accessing the COM+ Catalog and tracing the COM+
application names

using COMAdmin;

ICOMAdminCatalog catalog;
ICatalogCollection applicationCollection;
ICatalogObject application;

int applicationCount;
int i;//Application index

catalog = (ICOMAdminCatalog)new COMAdminCatalog();
applicationCollection =
(ICatalogCollection)catalog.GetCollection ("Applications™)

14

//Read the information from the catalog
applicationCollection.Populate();
applicationCount = applicationCollection.Count;

for(i = 0;i< applicationCount; i++)
{
//Get the current application
application=
(ICatalogObject)applicationCollection.get_TItem(i);
int index = i+1;
String traceMessage = index.ToString()+".
"tapplication.Name.ToString();

Trace.WritelLine (traceMessage) ;

The System.EnterpriseServices.Admin
namespace contains the COM+ Catalog object and
interface definitions. However, in the Visual
Studio.NET Beta 2, the interfaces are defined as
private to that assembly. As a result, you cannot
access them. The obvious workaround is to import
the COM+ Admin type library yourself, as
demonstrated in Example 10-10. In the future, you
will probably be able to use
System.EnterpriseServices.Admin namespace

o

-k %,

- x
= I
e

320

directly. The resulting code, when programming
directly using the
System.EnterpriseServices.Admin hamespace, is
almost identical to Example 10-10.

10.15 COM+ Security

.NET has an elaborate component-oriented security model. .NET
security model manages what the component is allowed to do and
what permissions are given to the component and all its clients up
the call chain. You can (and should) still manage the security
attributes of your hosting COM+ application to authenticate
incoming calls, authorize callers, and control impersonation level.
.NET also has what .NET calls role-based security, but that service
is limited compared with COM+ role-based security. A role in .NET is
actually a Windows NT user group. As a result, .NET role-based
security is only as granular as the user groups in the hosting
domain. Usually, you do not have control over your end customer’s
IT department. If you deploy your application in an environment
where the user groups are coarse, or where they do not map well to
actual roles users play in your application, then .NET role-based
security is of little use to you. COM+ roles are unrelated to the user
groups, allowing you to assign roles directly from the application
business domain.

10.15.1 Configuring Application-Level Security Settings

The assembly attribute ApplicationAccessControl is used to
configure all the settings on the hosting COM+ application’s Security
tab.

You can use ApplicationAccessControl to turn application-level

authentication on or off:
[assembly: ApplicationAccessControl (true)]

The ApplicationAccessControl attribute has a default constructor,
which sets authorization to true if you do not provide a
construction value. Consequently, the following two statements are
equivalent:

[assembly: ApplicationAccessControl]

[assembly: ApplicationAccessControl (true)]

If you do not use the ApplicationAccessControl attribute at all,
then when you register your assembly, the COM+ default takes
effect and application-level authorization is turned off.

The ApplicationAccessControl attribute has three public
properties you can use to set the access checks, authentication, and

321

impersonation level. The AccessChecksLevel property accepts an

enum parameter of type AccessChecksLevelOption, defined as:
public enum AccessChecksLevelOption

{

Application,

ApplicationComponent
}
AccessChecksLevel is used to set the application-level access
checks to the process only
(AccessChecksLevelOption.Application) or process and
component level
(AccessChecksLevelOption.ApplicationComponent). If you do not
specify an access level, then the ApplicationAccessControl
attribute’s constructors set the access level to
AccessChecksLevelOption.ApplicationComponent, the same as
the COM+ default.
The Authentication property accepts an enum parameter of type
AuthenticationOption, defined as:
public enum AuthenticationOption
{

None,

Connect,

Call,

Packet,

Integrity,

Privacy,

Default
}
The values of AuthenticationOption map to the six authentication
options discussed in Chapter 7. If you do not specify an
authentication level or if you use the befault value, the
ApplicationAccessControl attribute’s constructors set the
authentication level to AuthenticationOption.Packet, the same
as the COM+ default.
The Impersonation property accepts an enum parameter of type
ImpersonationLevelOption, defined as:
public enum ImpersonationLevelOption
{

Anonymous,

Identify,

Impersonate,

Delegate,

Default
}
The values of ImpersonationLevelOption map to the four
impersonation options discussed in Chapter 7. If you do not specify
an impersonation level or if you use the Default value, then the
ApplicationAccessControl attribute’s constructors set the

322

impersonation level to TmpersonationlLevelOption.Impersonate,
the same as the COM+ default.

Example 10-11 demonstrates using the
ApplicationAccessControl attribute with a server application. The
example enables application-level authentication and sets the
security level to perform access checks at the process and
component level. It sets authentication to authenticate incoming
calls at the packet level and sets the impersonation level to
Identify.

Example 10-11. Configuring a server application security

[assembly:
ApplicationActivation (ActivationOption.Server)]

[assembly: ApplicationAccessControl (
true, //Authentication is on

AccessChecksLevel=AccessChecksLevelOption.ApplicationComp
onent,
Authentication=AuthenticationOption.Packet,

ImpersonationlLevel=ImpersonationLevelOption.Identify)]

A library COM+ application has no use for impersonation level, and
it can only choose whether it wants to take part in its hosting
process authentication level (that is, it cannot dictate the
authentication level). To turn authentication off for a library
application, set the authentication property to
AuthenticationOption.None. To turn it on, use any other value,
such as AuthenticationOption.Packet. Example 10-12
demonstrates how to use the ApplicationAccessControl to
configure the security setting of a library application.

Example 10-12. Configuring a library application security

[assembly:
ApplicationActivation (ActivationOption.Library)]

[assembly: ApplicationAccessControl (
true, //Authentication

AccessChecksLevel=AccessChecksLevelOption.ApplicationComp
onent,

//use AuthenticationOption.None to turn off
authentication,

//and any other value to turn it on

Authentication=AuthenticationOption.Packet)]

10.15.2 Component-Level Access Checks

323

The component attribute ComponentAccessControl is used to
enable or disable access checks at the component level. Recall from
Chapter 7 that this is your component’s role-based security master
switch. The ComponentAccessControl attribute’s constructor
accepts a Boolean parameter, used to turn access control on or off.
For example, you can configure your serviced component to require
component-level access checks:

[ComponentAccessControl (true)]

public class MyComponent :ServicedComponent

{...}

The ComponentAccessControl attribute has an overloaded default
constructor that uses truefor the attribute construction.
Consequently, the following two statements are equivalent:
[ComponentAccessControl]

[ComponentAccessControl (true)]

10.15.3 Adding Roles to an Application

You can use the Component Services Explorer to add roles to the
COM+ application hosting your serviced components. You can also
use the securityRole attribute to add the roles at the assembly
level. When you register the assembly with COM+, the roles in the
assembly are added to the roles defined for the hosting COM+
application. For example, to add the Manager and Teller roles to a
bank application, simply add the two roles as assembly attributes:
[assembly: SecurityRole ("Manager")]

[assembly: SecurityRole ("Teller")]

The securityRole attribute has two public properties you can set.
The first is Description. Any text assigned to the Description
property will show up in the Component Services Explorer in the
Description field on the role’s General tab:

[assembly: SecurityRole ("Manager",Description = "Can
access all components")]
[assembly: SecurityRole ("Teller",Description = "Can

access IAccountsManager only")]

The second property is the setEveryoneAccess Boolean property. If
you set SetEveryoneAccess to true, then when the component is
registered, the registration process adds the user Everyone as a
user for that role, thus allowing everyone access to whatever the
role is assigned to. If you set it to false, then no user is added
during registration and you have to explicitly add users during
deployment using the Component Services Explorer. The
SecurityRole attribute sets the value of setEveryoneAccess by
default to true. As a result, the following statements are

equivalent:
[assembly: SecurityRole ("Manager")]
[assembly: SecurityRole ("Manager",true)]

324

[assembly: SecurityRole ("Manager", SetEveryoneAccess =
true)]

Automatically granting everyone access is a nice debugging feature;
it eliminates security problems, letting you focus on analyzing your
domain-related bug. However, you must suppress granting
everyone access in a release build, by setting the
SetEveryoneAccess property to false:

#if DEBUG

[assembly: SecurityRole ("Manager")]

#else

[assembly: SecurityRole ("Manager", SetEveryoneAccess =
false)]

#endif

10.15.4 Assigning Roles to Component, I nterface, and
Method

The securityRole attribute is also used to grant access for a role
to a component, interface, or method. Example 10-13 shows how to
grant access to Role1 at the component level, to Role2 at the
interface level, and to Role3 at the method level.

Example 10-13. Assigning roles at the component, interface, and method
levels

[assembly: SecurityRole ("Rolel")]
[assembly: SecurityRole ("Role2")]
[assembly: SecurityRole ("Role3")]

[SecurityRole ("Role2")]
public
interface IMyInterface

{
[SecurityRole ("Role3")]
void MyMethod () ;

}

[SecurityRole ("Rolel")]

public class MyComponent :ServicedComponent, IMyInterface
{...}

Figure 10-2 shows the resulting role assignment in the Component
Services Explorer at the method level. Note that Role1 and Role2
are inherited from the component and interface levels.

Figure 10-2. The resulting role assignment of Example 10-13 in the
Component Services Explorer, as seen at the method level

325

MyMethod Propeities

Geneal Securty

Reles inherited by selected fem(sk

Hame

=

Roles explicifly zat hor 2eleched bemfs):

Hame

o 5 Role3
Q’E Role2
£ Rolet

ok | canca | |

If you only assign a role (at the component, interface, or method
level) but do not define it at the assembly level, then that role is
added to the application automatically during registration. However,
you should define roles at the assembly level to provide one
centralized place for roles description and configuration.

10.15.5 Verifying Caller’s Role Membership

Sometimes it is useful to verify programmatically the caller’s role
membership before granting it access. Your serviced components
can do that just as easily as configured COM components. .NET
provides you the helper class securityCallContext that gives you
access to the security parameters of the current call.
SecurityCallContext encapsulates the COM+ call-object’s
implementation of ISecurityCallContext, discussed in Chapter 7.
The class securityCallContext has a public static property called
CurrentCall. CurrentCall is a read-only property of type
SecurityCallContext (it returns an instance of the same type).
You use the SecurityCallContext object returned from
CurrentCall to access the current call. Example 10-14
demonstrates the use of the security call context to verify a caller’s
role membership, using the same use-case as Example 7-1.

Example 10-14. Verifying the caller’s role membership using the
SecurityCallContext class

public class Bank :ServicedComponent, IAccountsManager
{
void TransferMoney (int sum,ulong accountSrc,ulong
accountDest)
{
bool callerInRole = false;
callerInRole =
SecurityCallContext.CurrentCall.IsCallerInRole ("Customer"
) i

326

if (callerInRole)//The caller is a customer

if (sum > 5000)
throw (new UnauthorizedAccessException(@"Caller
does not have sufficient
credentials
to transfer this sum"));

}

DoTransfer (sum, accountSrc, accountDest) ; //Helper
method

}
//Other methods

}

You should use the Boolean property IsSecurityEnabled of
SecurityCallContext to verify that security is enabled before
accessing the IsCallerInRole() method:

bool securityEnabled =
SecurityCallContext.CurrentCall.IsSecurityEnabled;

if (securityEnabled)

{

//the rest of the verification process

}

10.16 COM+ Queued Components

.NET has a built-in mechanism for invoking a method call on an
object: using a delegate asynchronously. The client creates a
delegate class that wraps the method it wants to invoke
synchronously, and the compiler provides definition and
implementation for a BeginInvoke () method, which
asynchronously calls the required method on the object. The
compiler also generates the EndInvoke () method to allow the
client to poll for the method completion. Additionally, .NET provides
a helper class called AsyncCallback to manage asynchronous
callbacks from the object once the call is done.

Compared with COM+ queued components, the .NET approach
leaves much to be desired. First, .NET does not support
disconnected work. Both the client and the server have to be
running at the same time, and their machines must be connected to
each other on the network. Second, the client’s code in the
asynchronous case is very different from the usual synchronous
invocation of the same method on the object’s interface. Third,
there is no built-in support for transactional forwarding of calls to
the server, nor is there an auto-retry mechanism. In short, you
should use COM+ queued components if you want to invoke
asynchronous method calls in .NET.

327

The ApplicationQueuing assembly attribute is used to configure
queuing support for the hosting COM+ application. The
ApplicationQueuing attribute has two public properties that you
can set. The Boolean Enabledproperty corresponds to the Queued
checkbox on the application’s queuing tab. When set to true, it
instructs COM+ to create a public message queue, named as the
application, for the use of any queued components in the assembly.
The second public property of ApplicationQueuing is the Boolean
QueuelListenerEnabled property. It corresponds to the Listen
checkbox on the application’s queuing tab. When set to true, it
instructs COM+ to activate a listener for the application when the
application is launched. For example, here is how you enable
queued component support for your application and enable a
listener:

//Must be a server application to use queued components
[assembly:

ApplicationActivation (ActivationOption.Server)]
[assembly: ApplicationQueuing (Enabled =

true, QueuelistenerEnabled = true)]

The ApplicationQueuing attribute has an overloaded default
constructor that sets the Enabled attribute to true and the
QueuelistenerEnabled attribute to false. As a result, the

following two statements are equivalent:
[assembly: ApplicationQueuing]
[assembly: ApplicationQueuing (Enabled =
true, QueuelistenerEnabled = false)]

10.16.1 Configuring Queued Interfaces

In addition to enabling queued component support at the
application level, you must mark your interfaces as capable of
receiving queued calls. You do that by using the InterfaceQueuing
attribute. InterfaceQueuing has one public Boolean property called
Enabled that corresponds to the Queued checkbox on the
interface’s Queuing tab.

[InterfaceQueuing (Enabled = true)]

public interface IMyInterface

{
void MyMethod () ;

}

The InterfaceQueuing attribute has an overloaded default
constructor that sets the Enabled property to true and a
constructor that accepts a Boolean parameter. As a result, the
following three statements are equivalent:
[InterfaceQueuing]

[InterfaceQueuing (true)]

[InterfaceQueuing (Enabled = true)]

328

Note that your interface must adhere to the queued components
design guidelines discussed in Chapter 8, such as no out or ref
parameters. If you configure your interface as a queued interface
using the InterfaceQueuing attribute and the interface is
incompatible with queuing requirements, the registration process
fails.

10.16.2 A Queued Component’s Managed Client

The client of a queued component cannot create the queued
component directly. It must create a recorder for its calls using the
queue moniker. A C++ or a Visual Basic 6.0 program uses the
CoGetObject () or GetObject () calls. A .NET managed client can
use the static method BindToMoniker () of the Marshal class,
defined as:

public static object BindToMoniker (string monikerName) ;
BindToMoniker () accepts a moniker string as a parameter and
returns the corresponding object. The Marshal class is defined in
the System.Runtime.InteropServices namespace.

The BindToMoniker () method of the Marshal class makes writing
managed clients for a queued component as easy as if it were a
COM client:

using System.Runtime.InteropServices;//for the Marshal
class

IMyInterface ob7j;

obj

=(IMyInterface)Marshal.BindToMoniker ("queue:/new:MyNamesp
ace.MyComponent") ;

obj.MyMethod();//call is recorded

In the case of a COM client, the recorder records the calls the client
makes. The recorder only dispatches them to the queued
component queue (more precisely, to its application’s queue) when
the client releases the recorder. A managed client does not use
reference counting, and the recorded calls are dispatched to the
queued component queue when the managed wrapper around the
recorder is garbage collected. The client can expedite dispatching
the calls by explicitly forcing the managed wrapper around the
recorder to release it, using the static bisposeObject () method of
the ServicedComponent class, passing in the recorder object:
using System.Runtime.InteropServices;//for the Marshal
class

IMyInterface obij;

obj

=(IMyInterface)Marshal.BindToMoniker ("queue:/new:MyNamesp
ace.MyComponent") ;

obj.MyMethod();//call is recorded

329

//Expedite dispatching the recorded calls by disposing of
the recorder
ServicedComponent sc = obj as ServicedComponent;
If(sc !=null)
ServicedComponent .DisposeObject (sc);
You can use the IDisposable interface instead of calling

DisposeObject ().
10.16.3 Queued Component Error Handling

Due to the nature of an asynchronous queued call, managing a
failure on both the client’s side (failing to dispatch the calls) and the
server’s side (repeatedly failing to execute the call—a poison
message) requires a special design approach. As discussed in
Chapter 8, both the clients and server can use a queued component
exception class to handle the error. You can also provide your
product administrator with an administration utility for moving
messages between the retry queues.

10.16.3.1 Queued component exception class

You can designate a managed class as the exception class for your
queued component using the ExceptionClass attribute. Example
10-15 demonstrates using the ExceptionClass attribute.

Example 10-15. Using the ExceptionClass attribute to designate an error-
handling class for your queued component

using COMSVCSLib;

public class MyQCException
IPlaybackControl, IMyInterface

{
public void FinalClientRetry() {...}

public void FinalServerRetry () {...}
public void MyMethod(){...}

}
[ExceptionClass ("MyQCException")]

public class MyComponent :ServicedComponent, IMyInterface
{...}

In Example 10-15, when you register the assembly containing
MyComponent wWith COM+, on the component's Advanced tab, the
Queuing exception class field will contain the name of its exception
class—in this case, MyQCException, as shown in Figure 10-3.

Figure 10-3. After registering the component in Example 10-15 with
COM+, its Advanced tab contains the exception class

330

Generall Tlangad:ims-| Eecuﬁl:g,ll ﬂ.cliuat'm] Concurency -“-Iﬂ\'dncnd]

Qusuing excapbion class

[MyGCEception

ok | canca | |

You need to know a few more things about designating a managed
class as a queued component’s exception class. First, it has nothing
to do with .NET error handling via exceptions. The word exception is
overloaded. As far as .NET is concerned, a queued component’s
exception class is not a .NET exception class. Second, the queued
component exception class has to adhere to the requirements of a
gueued component exception class described in Chapter 8. These
requirements include implementing the same set of queued
interfaces as the queued component itself and implementing the
IPlaybackControl interface. To add TPlaybackControl to your
class definition you need to add a reference in your project to the
COM+ Services type library. TPlaybackControl is defined in the
COMSVCSLib namespace.

10.16.3.2 The MessageMover class

As explained in Chapter 8, COM+ provides you with the
IMessageMover interface, and a standard implementation of it, for
moving all the messages from one retry queue to another. Managed
clients can access this implementation by importing the COM+
Services type library and using the MessageMover class, defined in
the coMsvCsLib namespace. Example 10-16 implements the same
use-case as Example 8-2.

Example 10-16. MessageMover is used to move messages from the last
retry queue to the application’s queue

using COMSVCSLib;

IMessageMover messageMover;
int moved;//How many messages were moved

messageMover = (IMessageMover) new MessageMover () ;

//Move all the messages from the last retry queue to the
application’s queue

messageMover.SourcePath @" . \PRIVATES\MyApp_4";
messageMover.DestPath = @".\PUBLICS\MyApp";

moved = messageMover.MoveMessages () ;

331

10.17 COM+ Loosely Coupled Events

.NET provides managed classes with an easy way to hook up a
server that fires events with client sinks. The .NET mechanism is
certainly an improvement over the somewhat cumbersome COM
connection point protocol, but the .NET mechanism still suffers from
all the disadvantages of tightly coupled events, as explained at the
beginning of Chapter 9. Fortunately, managed classes can easily
take advantage of COM+ loosely coupled events.

The EventClass attribute is used to mark a serviced component as
a COM+ event class, as shown in Example 10-17.

Example 10-17. Designating a serviced component as an event class
using the EventClass attribute

public interface IMySink
{
void OnEventl () ;
void OnEvent2 ();
}

[EventClass]

public class MyEventClass : ServicedComponent, IMySink
{
public void OnEventl ()

{
throw (new NotImplementedException (exception));

}
public void OnEvent2 ()

{
throw (new NotImplementedException (exception));
}
const string exception = @"You should not call an
event class directly.
Register this assembly using
RegSvcs /reconfig";
}
The event class implements a set of sink interfaces you want to
publish events on. Note that it is pointless to have any
implementation of the sink interface methods in the event class, as
the event class’s code is never used. It is used only as a template,
so that COM+ could synthesize an implementation, as explained in
Chapter 9 (compare Example 10-17 with Example 9-1). This is why
the code in Example 10-17 throws an exception if anybody tries to
actually call the methods (maybe as a result of removing the event
class from the Component Services Explorer).
When you register the assembly with COM+, the event class is
added as a COM+ event class, not as a regular COM+ component.

332

Any managed class (not just serviced components) can publish
events. Any managed class can also implement the sink’s
interfaces, subscribe, and receive the events. For example, to
publish events using the event class from Example 10-17, a

managed publisher would write:
IMySink sink;

sink = (IMySink)new MyEventClass();
sink.OnEventl ();
The onEventl () method returns once all subscribers have been

notified, as explained in Chapter 9.

Persistent subscriptions are managed directly via the Component
Services Explorer because adding a persistent subscription is a
deployment-specific activity. Transient subscriptions are managed in
your code, similar to COM+ transient subscribers.

The EventClass attribute has two public Boolean properties you can
set, called AllowInprocSubscribers and FireInParallel. These
two properties correspond to the Fire in parallel and Allow in-
process subscribers, respectively, on the event class’s Advanced
tab. You can configure these values on the event class definition:
[EventClass (AllowInprocSubscribers =
true,FireInParallel=true)]

public class MyEventClass : ServicedComponent, IMySink
{...}

The EventClass attribute has an overloaded default constructor. If
you do not specify a value for the AllowInprocSubscribers and
FireInParallel properties, it sets them to true and false,
respectively. Consequently, the following two statements are
equivalent:

EventClass]

[EventClass (AllowInprocSubscribers =
true,FireInParallel=false)]

10.18 Summary

Throughout this book, you have learned that you should focus your
development efforts on implementing business logic in your
components and rely on COM+ to provide the component services
and connectivity they need to operate. With .NET, Microsoft has
reaffirmed its commitment to this development paradigm. From a
configuration management point of view, the .NET integration with
COM+ is superior to COM under Visual Studio 6.0 because .NET
allows you to capture your design decisions in your code, rather
than use the separate COM+ Catalog. This development is
undoubtedly just the beginning of seamless support and better
integration of the .NET development tools, runtime, component
services, and the component administration environment. COM+
itself (see Appendix B) continues to evolve, both in features and in

333

usability, while drawing on the new capabilities of the .NET
platform. The recently added ability to expose any COM+
component as a web service is only a preview of the tighter
integration of .NET and COM+ we can expect to see in the future.

334

Appendix A. The COM+ Logbook

One of the most effective steps you can take towards achieving a
more robust application that is faster to market is adding a logging
capability to your application. This appendix presents you with the
COM+ Logbook, a simple utility you can implement to log method
calls, events, errors, and various COM+ information. The logbook is
your product’s flight recorder. In a distributed COM+ environment,
it is worth its weight in gold. It saved my skin whenever | tried to
analyze why something did not work the way it was supposed to. By
examining the log files, you can analyze what took place across
machines and applications, and the source of the problem is almost
immediately evident. The logbook is also useful in post-deployment
scenarios to troubleshoot customer problems—just have your
customer send you the log files.

A.1 Logbook Requirements
The goals for this logbook are as follows:

 Trace the calling tree (the causality) from the original client
down to the lowest components, across threads, processes,
and machines—tracing the logical thread of execution.

 Log the call's/event's/error's time and location.

« Interleave all the calls from all applications into one log file.

e Log the current COM+ execution context.

e Allow administrative customization to determine what is
logged—for example, just errors, or events and errors.

 Allow administrative customization of the log filename.

 Make logging and tracing as easy as possible.

 Save log data in two formats: HTML or XML.

« Have a different lifeline for the logbook application and the
applications using it.

 Be able to toggle logging on or off.

The COM+ Logbook is a COM+ server application that implements
these requirements. In addition to being used by COM+
applications, it can be used in any Win32 application (such as MFC
or classic COM.) The only requirement is that the application needs
to run on Windows 2000.

A.2 Log File Example

335

Figures A-1 and A-2 show the same tracing and logging entries—
one in HTML format and the other in XML. The HTML log file is
already well formatted and can be viewed by a user as is. The XML
log file is less presentable.

Each entry in a log file contains the entry number (different
numbers for method calls, events, and errors); the call, error, and
event time; machine name; process ID; thread ID; context ID;
transaction ID; activity ID; the module name (the EXE or DLL
name); the method name or the error/event description; the source
filename; and the line number.

Figure A-1. Logging entries in HTML

Term Mukra FrocamI DT kv [DHCznie =TT Treawize [0 ActrabdDl Kook Carcrtier Seermm Lea
UNTAI Mylapuop 18D Smile Dbl Gowiee N Trasscaon tio Actmry ‘Tawt.api-Tem som T Log-Bewi Dl OBt Tret Log i Digepg 191
Tedn 3
D W yLapiop 160 i fiF11SBAGIEIC COCIE4ABAJIF. (CRCICHE B Totormedl CTwilug Dodoretong Trrd Logrgp L5
Te4G 13 HCALDSE AR AAFT DA

ool qu B e MECIIBHASEF FTLITOTEA T
DI KyLapeep 130 duile Defvidi Ceapa He Trinsactiin Fa hethary MevlagTleat v CTim LigTiea Db OrligFee Semhling i g Tweakd
1646 13 kg e
TOAI0N Mylapaop 1790 Judk Dl Coniss Yoo Trsssacmicrn Yo Ariniy Tarfaglin: s CTrelLogruewiDAr Drloghocs Siwchiig oesiios Jwvabid
164613 b bogaed P
OV Mylapeop 182 foile Dafdt Conket Ko Tresscios Fio Actiey Tarilagltacs som Semeliling o rvest secng bpged
Te 14
ma;'a:u MLapsp 120 Jeid Defli Conka o T ssisrtin. B sty Tewlaglrat s CTaHLogTle Dl ToCalkmo Tail LogTlieni Dig epg 131
164 1
A Mylapwp 0 B GCINRELLTEIZ SMRMACREMC. (FOOEGOFIMAL Tertererdd CTenlop Deforesiog Tarilogepp 13
1635 15 SFAFIT. E1EF.BLES- AELLBTH-

EFDIhBRIN SEIRCTICHE JCE AR TS0

Figure A-2. Logging entries in XML

“ruml wersion="1.0" 7>

#1

=1392« [

<ThreadlD>=060C - readDx

: Defuult Context:

D=No Activity Aortivity!
sMo Transaction-/ TrancactionlDs

=MyLaptop-/ ETTER
TBstLugclientDIg Cpp-, ircafilas
: Ju TestLDgcllent exe 3"
<Met Mz ETE‘sILugEIlentEllg GnCaIIDbjEd dHames
<Linakume =181« B

N

==07/07 /2000020
o= 16:45:59/ 3

g2

336

A.3 Using the Logbook

Before using the logbook, you need to install it. Download the
logbook.msi installation package and the header file ComLogBook.h
from the O’Reilly web site for this book at
http://www.oreilly.com/catalog/comdotnetsvs (the logbook source
files and a Windows 2000 help file are also available for download).
Then install the msi file.

After installing the logbook application, all you have to do on the
side of the application doing the logging is include the
ComLogBook.h header file in your application. The ComLogBook.h
header file defines four helper macros for logging, described in
Table A-1. Insert these macros in your code. The macros collect
information on the application side and post it to the logbook.

Table A-1. The logging macros

‘ Macro name ‘ Description
ILOGMETHOD () Traces a method call into the logbook
|LOGERROR() \Logsan error into the logbook
|LOGEVENT() \Logs an event into the logbook

LOGERROR_AND_RETURN (|Logs an error into the logbook and returns in case of an
) error, or continues to run if no error has occurred

The macros can be used independently of one another and in every
possible combination. For example, to trace a method call into the
logbook, pass the method name as a string parameter to the
LOGMETHOD () macro:
void CMyClass: :MyMethod()
{

LOGMETHOD ("CMyClass: :MyMethod") ;

//Real work starts here
}
| recommend using LOGMETHOD () before doing anything else in the
method body. Along with the method name, the macro logs all the
required information mentioned earlier. Similarly, you can use
LOGEVENT () to log events and LOGERROR () to log errors (see
Example A-1).

Example A-1. Using the LOGERROR() and the LOGEVENT() macros

//Logging an error:

void CMyClass: :MyMethod()

{
LOGMETHOD ("CMyClass: :MyMethod") ;
//Real work starts here
/*

some code that encountered an error with a pointer

337

*/

LOGERROR (IID_MyInterface, E_POINTER, "CMyClass: :MyMethod", "
The server
returned an
invalid address");
//Continue to run

}

//logging an event into the logbook: specify in free form
text describing the event:
void CMyClass: :MyMethod ()
{
LOGMETHOD ("CMyClass: :MyMethod") ;
//Real work starts here
/*
some code that decides to log an event
*/
LOGEVENT ("The User is banging on the keyboard");
//Continue to run

A.4 Configuring the Logbook

Configuring the various logging options is done directly via the
Component Services Explorer. After installing the logbook, you will
have a new COM+ application called Logbook with three
components—the HTML logger, the XML logger, and an event class
(see Figure A-3). All three components implement the ITLogbook
interface with the methods LogError(), LogEvent (), and
LogMethod (). The HTML and XML components have four persistent
subscriptions—one for each ILogBook method and one for all the
methods on the interface.

Figure A-3. The Logbook application has three components: the HTML
logger, the XML logger, and an event class

338

“F) Console Window Help =1®] =]
Action Yiew = =l | m B A, % B E AT
Treel Componencs 3 objedt(s)
=} Computers d'i’.LU':.f‘”P.' ComLogHTHL, |
= B My Computer kL ogBook, COMLogRML, 1}

—] CoM+ Appleations J 45 LogBootEvent, LoghookEvertClass. 1

=1 7% Loghook
=y Components
=i LogBook, ComLogHTIL, 1
=] Interfaces
—|- ¥ Logbook
=[] Methods
LogError
LogEvert
Logiethod
=1 || Subscriptions
@ Errors Onby
& Events Only
& Log Al
@ Method Cals Onby
+ 5 LogBook, COMLogiMLL L
+ g3 LogBootEvent LoghookEventClass. L |

The main mechanism behind the logging is COM+ loosely coupled
events. The macros publish the data as COM+ events, and the
logbook components are persistent subscribers. Each logbook
component has four persistent subscriptions in its Subscription
folder: Errors Only, Methods Only, Events Only, and Log All.

By enabling or disabling a subscription, you can control what is
being logged and in what format. After installation, by default, both
the HTML and the XML Log All subscriptions are enabled and the
other subscriptions are disabled. If, for example, you wish to have
only HTML logging of events and errors, you should follow these
steps:

« Go to the XML components, select the Log All subscription,
display its properties page, go to the Options tab, and disable
the subscription.

 Disable the HTML component’s Log All subscription.

e Enable the HTML component’s Errors Only and Events Only
subscriptions.

The HTML and XML components, by default, will log to the files
C:\Temp\Logbook.htm and C:\Temp\Logbook.xml, respectively. The
filenames are provided as constructor strings to the components. To
specify a different filename (for example, D:\MyLog.htm for the
HTML component), display the HTML component properties and
select the Activation tab (see Figure A-4). Under Object
construction, specify the new filename.

Figure A-4. The logbook component properties page Activation tab

339

LogBook.ComLogHTML. 1 Properties El E3

General | Tranzactions | Secunhy Aclivation] Concumency | Advanced |

© b e i

Object pooling
Mirnum pool size I"
M aimism pocl size: |'|
Craation imeout [mz): IEI:III"J

[+ Enable ghiect constuction

Obpect construction
Constructor shring: II: ATempLogbaok him

¥ Enable Just In Time Activation
¥ Component supports avents and statishics
[T Must be activated in caller’s contest

S |

One interesting aspect of the logbook is that its lifeline is
independent from that of the applications using it because it uses
persistent subscriptions. As a result, logging from many application
runs will all be concatenated in the same file. If you want the
logbook to start a new log file, you have to shut down the logbook
application manually (right-click it in the Component Services
Explorer and select Shut Down). Next time an application publishes
to the logbook, the logbook clears the file and starts afresh. You can
do that even when the application doing the logging is running.

A.5 How Does the Logbook Work?

The logbook uses COM+ events to pass the information collected
from the application to the logbook components. The components
(the HTML and XML versions) implement the ILogbook interface
(see Figure A-3), a custom interface with methods corresponding to
what is being logged—method call, event, or error. The ILogbook

interface is defined as:
interface ILogbook : IUnknown

{
typedef struct tagLOG_ENTRY

{
HRESULT hres;

DWORD dwErrorCode;
DWORD dwProcessID;
DWORD dwThreadID;
GUID guidActivityID;

340

GUID guidTransactionID;

GUID guidContextID;

BSTR bstrMachineName;
BSTR bstrSourceFileName;
BSTR bstrModuleName;
BSTR bstrMethodName;
DWORD dwLineNumber;

BSTR bstrDescription;
IID iidError;

FILETIME eventTime;
} LOG_ENTRY;

HRESULT LogError ([in]LOG_ENTRY* pErrorEntry);

HRESULT LogMethod ([in]LOG_ENTRY* pMethodEntry) ;

HRESULT LogEvent ([in]LOG_ENTRY* pEventEntry);
bi
The helper macros collect the information on the application side,
pack it into a LOG_ENTRY struct, create a COM+ event class that
implements ILogbook, and fire the appropriate event. The logbook
receives the event, formats it appropriately (to HTML or XML), and
writes it to the log file.
Deciding to use COM+ events was the easy part of the design.
Deciding how to channel all the events to the same logbook
component and how to collect all the tracing information you are
interested in is more challenging.
To solve the first challenge, you can use COM+ instance
managements services. The components in the logbook application
are configured to use Object Pooling and Just-in-Time Activation
(JITA) to create the COM+ equivalent of a singleton (as discussed in
Chapter 3). Each component (HTML and XML) implements the
IObjectControl interface and returns TRUE from
IObjectControl: :CanBePooled(). The object pool is configured to
have a minimum and a maximum pool size of 1, ensuring that there
is always exactly one instance of a component of that type (see
Figure A-4).
When a logging client application publishes an event, COM+ delivers
the event to the persistent subscriptions of the logbook component.
But because the logbook component is pooled, with a pool size of
exactly 1, COM+ does not create a new instance of the persistent
subscriber. Instead, it retrieves the logbook component from the
pool, hands the event to the component, and releases it back to the
pool once the method returns. However, what would happen if a
greedy application created the logbook component directly and held
on to it? The maximum pool size is 1, so COM+ wouldn’t create
another instance of the logbook component to publish the event to
it, but would instead wait for the existing object to return to the
pool. The object wouldn’t return, though, since the greedy
application would be holding a reference to it. As a result, all

341

attempts from other applications to publish to the logbook would fail
after the timeout specified in the Creation Timeout (see Figure A-4).
As you saw in Chapter 3, JITA is designed to handle such greedy
clients. If the logbook component indicates to COM+ that it is willing
to be deactivated and is configured to use JITA, COM+ deactivates
the component. In this case, it returns back to the pool, as opposed
to a real release. The greedy application does not know the
difference because it still has a reference to a valid proxy. The next
time the greedy client application tries to access the logbook, COM+
detects it, retrieves the object from the pool, and hooks it up with
the interceptor so the greedy application’s logging call goes
through.

The logbook components are therefore configured to use JITA (see
Figure A-4). However, a logbook component still has to let COM+
know when it is okay to deactivate it. The logical place would be at
method boundaries when it is done logging to the file. Therefore,
the logbook components use COM+ method auto-deactivation (see
Figure A-5). Every logging method is configured to automatically
deactivate the object on return.

Figure A-5. COM+ deactivates the object after each method call

LogError Propertics EHE

Genetal] Security |

'n.{% Lol ot

Dezscrphan:

b shomatically descteating e cbisct wil retum it b the pool

¥ Automatically deactivate thiz abject when s method retums

ok | canca | |

Because the logbook application is a server application, there is
little impact for the component’s threading model, since all calls are
marshaled across process boundaries anyway. For the remote
possibility of ever being deployed in a library application, the
logbook components use the Both threading model. Synchronization
is provided by having the components’ synchronization configured
as Required. Note that, as explained in Chapter 5, JITA requires
synchronization, so the only available synchronization settings are
Required and Requires New.

One other configuration setting used is to have COM+ leave the
logbook application running when idle (on the Logbook application
properties page, Advanced tab). This is required to keep the pool
alive, even if there are no external clients using logging. As a result,
all logging is written to the same file. Because you only have to

342

create a new application and component instance once,
performance improves.

You already saw that the filename is passed as a constructor string.
As explained in Chapter 3, the logbook components implement
IObjectConstruct to access that string. COM+ queries for that
interface after creating the object. Then it passes to the only
method, Construct (), a pointer to an I0bjectConstructString
object. You can use that pointer to get the constructor string, which
is a filename in this case. Look at Example 3-2 in Chapter 3 to learn
how to gain access to the constructor string.

The other major challenge in developing the logbook is collecting
the information on the client side. Some of it, like line number, file,
and module name, has nothing to do with COM+ and are just neat
programming tricks that use predefined compiler macros; look at
the source files if you are curious. Obtaining the execution and
context IDs is another thing. Fortunately, COM+ has an excellent
infrastructure for this purpose: the I0bjectContextInfo interface.
As demonstrated in Chapter 2 and and other chapters in the book,
you can use the I0bjectContextInfo interface to retrieve the
context, transaction, and activity ID. This is exactly what the helper
macros (Table A-1) do on the client side. The macros actually use a
helper class, CEventLogger, to collect the information and publish it
to the logbook. Example A-2 shows how the LOGEVENT macro is
implemented.

Example A-2. The LOGEVENT helper macro
#define LOGEVENT (x) DoLogEvent (x)

inline void DoLogEvent (const CString& sEvent)
{
CEventLogger eventlLogger;
eventLogger.DoLogEvent (sEvent) ;

}

inline void CEventLogger::DoLogEvent (const CStringé&
sEvent) const
{

LOG_ENTRY logEntry;

HRESULT hres = S_OK;

ILogbook* pLogbook = NULL;

FillLogEntry (&logEntry, sEvent);//using
IObjectContextInfo to get the IDs

//Create the event class and publish

hres = ::CoCreatelnstance (CLSID_LogbookEventClass, ..,
IID_ILogbook, &pLogbook) ;

343

//Publish to the logbook
hres = pLogbook->LogEvent (&logEntry) ;
pLogbook->Release () ;

A.6 Summary

The logbook makes elegant use of many COM+ features, such as
the event system, Just-in-Time Activation (JITA), object pooling,
idle time management, automatic deactivation of objects,
synchronization, and the object constructor string. The logbook is a
good example of the synergies generated by using multiple services
simultaneously. You can extend the logbook or improve it by
customizing it to fit specific requirements (such as adding verbosity
levels). In any case, once you start enjoying the productivity boost
of the logbook, you will find yourself asking one question: "How did
| ever manage without it?"

344

Appendix B. COM+ 1.5

The next release of Windows 2000, Windows XP, will be the first
Windows operating system to include the next version of COM+,
called COM+ 1.5. This appendix describes the new features and
capabilities of this future release of COM+. The current version of
COM+ is referred to as COM+ 1.0.

In COM+ 1.5, Microsoft improved COM+ usability in a number of
ways and addressed some of COM+ 1.0’s pitfalls described in this
book. Microsoft also added new features to existing services and
laid the foundation for integration with .NET services. COM+ 1.5 is
fully backward-compatible with COM+ 1.0 components and
applications. In fact, when you export a COM+ 1.5 application, the
export wizard lets you export the application in COM+ 1.0 format to
be installed on machines running COM+ 1.0 (although the new
features and properties will be lost in such an export).

The COM+ Catalog interfaces and collections have been extended to
handle the new additions. When describing a new service, the new
corresponding Catalog items are provided whenever possible
because no other public documentation is currently available.

B.1 Improved User I nterface Usability

Under COM+ 1.0, the only way to know the activation type of a
COM+ application was to bring up its Activation tab and examine it.
The COM+ 1.5 Explorer assigns different icons to different
application types, so you can deduce the application’s type (server,
library, or proxy) just by viewing it. Service applications, (discussed
shortly), a fourth application type available in COM+ 1.5, also have
a distinct icon. A new folder under My Computer called Running
Processes contains all the currently executing applications for easy
runtime administration.

B.2 Legacy Applications and Components

The COM+ 1.0 Explorer only allows you to manage configured
components. If your product is made up entirely of configured
components, then that limitation is probably fine to you. However,
not all developers are that lucky. In real life, configured components
often have to interact with in-house or third-party legacy COM
components. In such a heterogeneous environment, developers use
such tools as DCOMCNFG, OLEView, Visual Studio, or custom tools

345

to manage legacy components in addition to the Component
Services Explorer. Developers also have to manage two types of
deployment approaches—one that uses exported COM+ applications
(MSI files) and another that is whatever they need to install the
legacy components. One new feature of COM+ 1.5 is complete
support for legacy applications and components, which allows you
to manage every aspect of your legacy applications and components
just as well as DCOMCNFG and OLEView do.

B.2.1 Legacy Applications

In the COM+ 1.5 Explorer, under the My Computer icon, there is a
new folder called DCOM Config. This folder is a sibling to the COM+
Applications folder (see Figure B-1).

Figure B-1. The COM+ 1.5 Explorer

i< Component Services 5 =10 =]
(B File fction View Window Heb = 18] =
= Blm B Qs -EmeE
] Consolke Root | COM4+ Applcations 7 chiedt(s)
- {% Component Servicas & 3

=[] Computers | S rp 2

=1 & My Comouter) A com+ COMEQC COME Lidities
=y COM4 Applcations Explarer Dead Let...

7o com+ Explorer

% COM+ QT Dead Letter Queue Listenss -‘L,:’g‘} P ﬁ‘.’,g;,

#-5 oM+ Liiies A

+ 5 M35 Software Snapshal Provider M5 Software Mybop Systern
- @ Myapp Snzpshat ... Application
=l] Companents
-] __] Legacy Componants P
© gl MylegacyComponant O3
+-_] Roles Wisual Studio
| * 55 Sysbem Application AFE Package
[¥y isusl Ttudio APE Package
=] DCOM Canfig

+ A accstore Class
+ -y APE Chent

= % APE Expedter
= %% APE Instance Mansger -/

1] | i 5

The DCOM Config folder contains all the registered COM local
servers (EXE servers) on your machine. Each local server is called a
legacy application. Unlike a COM+ application, you cannot expand a
legacy application down to the component, interface, or method
level. A legacy application is opaque as far as COM+ 1.5 is
concerned. The DCOM Config folder simply gives you a centralized
place to manage both your COM+ applications and your legacy local
servers without resorting to other utilities. When you right-click on
a legacy application and select Properties from the pop-up context
menu, you get a properties page that lets you manage every aspect
of the legacy application, much like what DCOMCNFG provides (see
Figure B-2).

346

Figure B-2. The properties page of a legacy application

x|
Genesal | Location | Erdpornts | 1dentity | Secuity |

Gereal popelies of this DCOM spplcation

Apphcation name: |I.cv:al‘5ewer

Applcation 1D {FE22D4ET-B99F-4327-ABD3-DCDS11CORE:
Apphcation lype Loca Server |
Authertication level | Packst -]

Laocal Pakhe

OF. | Cancel | Appiy

The General tab lets you change the application name and set the
authentication level for incoming calls to this application. The
Location tab lets you control whether to run the application on your
computer or on another computer on the network. The Endpoints
tab lets you configure the transport protocols for the DCOM calls.
The Identity tab lets you specify under which security identity to
launch the server, including the system account (for services only).
The Security tab lets you configure users’ access, launch, and
change permissions.

COM+ 1.5 defines a new top-level catalog collection called
LegacyServers. Every catalog object in that collection corresponds
to a local server and provides the main Registry entries (CLSID,
ProgID, ClassName, LocalServer32, and InprocServer32) as
named properties.

B.2.2 Legacy Components

COM+ 1.5 calls nonconfigured in-proc COM components /egacy
components. |f your COM+ application uses legacy components, the
COM+ 1.5 Explorer lets you manage them within the scope of your
application as well. Every COM+ 1.5 application has a new folder
called Legacy Components (see Figure B-1). The Legacy
Components folder is a sibling to the Components folder. To add a
legacy component to the folder, expand it, right-click on it, and
select New from the context menu. The COM+ 1.5 Explorer brings
up the Legacy Component Import Wizard. The wizard lets you
choose legacy components (registered in-proc components) to add
to your application. Like configured components, legacy components
can take part in at most one COM+ 1.5 application. The major
benefit of having your legacy components as part of your COM+ 1.5
application is deployment. When you export a COM+ application, its
MSI file contains the legacy components and their settings. When
you install the MSI file on another machine, the Windows Installer

347

registers the components, thus saving you the trouble of writing a
separate installation program.

The properties page of a legacy component presents you with every
relevant Registry entry for that component (see Figure B-3).

Figure B-3. The properties page of a legacy component

2=

General | Puopetie: | Imglementation | Identiy | Secuity |

Ja Myl egacyCompanert

[Dlescrphon:

Myl egacyComponent Class

DLL

CLSID: 139E 345068 96 4-40C2-450 B-F 3D 200376963}
Application:

Application 1D

i i ,:,K Cﬂncd | :

You can change only the values of settings that do not collide with
registry settings in the component itself. For example, you cannot
change the threading model value, but you can provide the name of
a surrogate process.

You can even promote a legacy component to a configured
component. Simply bring up the legacy component’s context menu
and select Promote (see Figure B-4). The legacy component is
removed from the Legacy Components folder and added to the
Components folder in the same COM+ 1.5 application.

Figure B-4. A legacy component pop-up context menu

348

i%*Component Services =10 x|
(@ File Action View Window Help =18}]
= EB@mEXEE R D g

] Consale Root MyLegaoyZomponent 0 obgjed(s)
- @l Component Services
=] Compukters
-1 & My Computer
= [COM+ Apphcations
o CoM+ Explorer
+-# COM+ O Dead Letter Queue Listener
-5 oM+ Utiities
=48 M3 Software Snapshot Provider

= # Muhop
=] Comporents
& g MyCompanent
=] Legacy Comporents
&
+ | Roles .
¥ 48 System Application _ Disable
T g Visual Studo BPEPa yha b
- DCoM Config Miewst Window From Here
+-|_] Diskribwsbed Trarsacton ¢
+-|__] Rurining Processes Delete
£ % Ewvent Wiewer (Local) TR
& Services (Local)
Help

The COM+ 1.5 Catalog root object (coMAdminCatalog) supports a

new interface called TCOMAdminCatalog2, which derives from
ICOMAdminCatalog. ICOMAdminCatalog2 contains the following
methods for handling legacy components:
[1d (0x2b)] HRESULT ImportComponentAsLegacy ([in]BSTR
bstrAppIdOrName,

[in]BSTR
bstrCLSIDOrProgld,

[in] long
1ComponentType) ;

[1d(0x2c)] HRESULT PromotelLegacyComponent ([in] BSTR
bstrAppIdOrName,

[in] BSTR
bstrCLSIDOrProgId) ;
ImportComponentAsLegacy () adds a legacy component to the

specified application and PromotelLegacyComponent () promotes an
already imported legacy component to a configured component. In

addition, every application in the COM+ 1.5 Catalog has a
LegacyComponents collection. You can traverse this collection
programmatically and configure it.

B.3 Disabling Applications and Components

The COM+ 1.5 Explorer lets you disable applications and

components. When you disable an application, all client attempts to

349

create any component from that application fail, and the following
message is associated with the HRESULT: "The component has been
disabled." To disable an application, display its pop-up context
menu and select Disable. A disabled application has a red square on
it (like a player’s Stop button) in the COM+ 1.5 Explorer (see Figure
B-5). To enable a disabled application, bring up the context menu
again and select Enable. You can only disable a COM+ 1.5
application. Legacy applications cannot be disabled. Interestingly, a
client that already has a reference to a COM+ object is not affected
by the disabled application. Only clients that try to create new
objects are affected. Consequently, you can have a disabled
application running indefinitely.

Figure B-5. Disabling or enabling a COM+ 1.5 application from its pop-up
context menu

(# Component Services £ -|oj x|
(@ Fle Action View Window Help I
& = Bm Bl2glh.>EE2m0
= % Component Services | CoM+ Applicstions 10 chiechis)
53 Computess ﬂ,‘?}ﬁ. .ﬂ
- ':1, Iy Computer ‘._':‘\/ w ks % -.5/
— C3M.+ Aipplications OO COM+ QC oM+ Utiiies 115 In-Process
Fg" COME Explores Explarer DeadLet... Appiicatians
=% OO QO Dead Letter Queus Lis
¥ g2 COMH Utiikies 5 S8 Y &
* &2 115 In-Process Applications i O “% i)
+) 8 115 Oub-Of -Process Poaled Appic s 1S Utlkes M5 Software MyApp
+ & 115 Utiliies Out-OF-Pro. .. Snapshat ...
+ &5 M35 Software Snapshot Provider .
- & @ P
S ¢ Export... o :
g Rart Syshen Wiswal Studia
= [JL Shutdowin Apolcation APE Package
+ Do I
* & Syste M= Weindiow From Here
+ A visua
_1DCOM T plate
+ ||| Distribute
_JRuwningl Properties
+ || Event Wiewar (Local) Halp
+ Sy Sarvics (Local) b
i | ﬂ

You can also disable on a component-by-component basis instead of
disabling an entire application. Every component pop-up context
menu has a Disable option. Like a disabled application, a disabled
component has a red square on it. All client attempts to create a
disabled component fail, and the following message is associated
with the HRESULT: "The component has been disabled." You can
disable any component in a COM+ 1.5 application, including legacy
components (see Figure B-4). To enable a component, select Enable
from its context menu. Like a disabled application, a disabled
component only affects new activation requests. Existing references
to objects are not affected. Enabled status for applications and
components is stored in the COM+ Catalog and is therefore
maintained between machine reboots.

350

Disabling applications or components is useful in two cases. The
first situation is when you want to gracefully shut down an
application on a live server machine to perform maintenance or
upgrades. If you simply shut down the application, you might cause
failures on client machines holding existing references. By disabling
an application, you can have existing clients finish their work, while
new activations may be routed to another machine, providing you
the opportunity to perform maintenance. The other situation in
which disabling an application is useful is during development and
testing. It provides a guaranteed way to fail client calls and is thus a
way to test your client-side error handling.

Currently, the COM+ Catalog interface ICOMAdminCatalog2 does
not have methods used to programmatically disable or enable an
application, but that situation could change by release time.
Another possibility is that every COM+ application catalog object
will have an Enabled named property. Currently, an application
object has a Boolean property called IsEnabled that is set to TRUE if
the application is enabled and FALSE if it is disabled. Similarity,
components today do not have an Enabled named property, only a
Boolean property called IsEnabled, used the same way as in the
application object.

B.4 Pausing Applications

Pausing an application is similar to disabling an application, except
it is used to disable a particular running application only, and the
paused status does not survive an application shutdown. To pause a
running application, open the Running Processes folder and select
Pause from the application context menu. A paused application has
a paused icon on it (like a player’s Pause button), while a running
application has a play icon (like a player’s Play button). To resume a
paused application, select Resume from its context menu (see
Figure B-6).

Figure B-6. PCOM+ 1.5 running application Activation tab

351

{*Component Services =|8] x|

@ Fie Action View Window Heb =]
4 i & Bp T EE [HI =
I_| Console Root . Running Processes 2 object(z)

| - I

| = 4 Component Services | =

! =] Compiters I {_.’-h t‘%

| - ':5, My Compubar .

| - | 1y 752 Fyst

' v L COM ppications | RO e

+ | Do Canfig |
¥ || Distributed Transaction C |
= _| Rurning Processes |
= LE]
Em Mivhpe Shut down
& &%) System apg D4R

& @ Evnt Vim0

+ Sy Services (Local) e Window from Here

Help
«]
To pause an application programmatically, use the
ICOMAdminCatalog?2 interface and the PauseProcess () method.
The ResumeProcess () method is used to resume the application,

and the IsProcessPaused() method allows you to find out the

status of the application. The definitions of these methods follow:
[1d(0Ox1lc)] HRESULT PauseProcess([in] BSTR
bstrApplInstancelId);

[1id(0x1d)] HRESULT ResumeProcess([in] BSTR
bstrApplInstancelId);

[1id(0x1le)] HRESULT IsProcessPaused([in] BSTR
bstrApplInstanceld,

[out, retval] VARIANT BOOL* bPaused);

B.5 Service Activation Type

COM+ 1.5 allows you to configure a server application to run as a
system service. Configuring your application as a service allows you
to have your application running as soon as the machine boots,
independent of client activation requests. Another benefit is that a
service application is the only way to run under the system identity
account. The system account is the most powerful account on a
given machine.

The application Activation tab contains the checkbox "Run
application as NT Service" (see Figure B-7). When this option is
selected, you can also configure the various service parameters by
clicking the Setup New Service button, saving you the trouble of
using the Control Panel services applet.

Figure B-7. COM+ 1.5 application Activation tab

352

21X

Advancied | Crump Foalng & Recycing |
Generdl | Secuily | Idenfly Achvation | Queuing |
Achyation ype

7 Libwary apolicahon

Campangnts wil be activated in the creshar's process.
= Server application
Components will be activated in a dedicated serves procass,

W Bun appication az HT Service

Service Mame:
]MH"FF' Setup New Sevice !
S04F
[Uses SOAP

SOAP YRoot |MwbppwebService

SOAP Maibos

Hemobe server name:

Application ool Diecton

| Biowse

0K | Cancal | Apoh

ICOMAdminCatalog2 provides you with programmatic ability to
configure a service with the CreateServiceForApplication()
method and to unconfigure a server application as a system service
with the DeleteServiceForApplication() method. The service
name is available through the serviceName property of the
application’s catalog object.

B.6 Improved Queuing Support

As explained in Chapter 8, queued components under COM+ 1.0
require the presence of a domain controller to provide
authentication for the queued call. If you do not have a domain
controller, you must turn off COM+ 1.0 application authentication
(set it to None). COM+ 1.5 provides better configurable support for
queued calls by separating them from normal synchronous calls.
The application Queuing tab now lets you configure authentication
for queued calls explicitly (see Figure B-8). Your available options
are to:

o« Use MSMQ domain controller authentication when the
application is configured to use authentication for
synchronous calls (when the application authentication is set
to any value except None).

 Never authenticate queued calls into this application.
Choosing this option allows you to use queued components
freely without a domain controller.

353

 Always authenticate incoming queued calls, regardless of the
application authentication setting.

Figure B-8. COM+ 1.5 server application Queuing tab

2] x|

Acheanced | Clump | Paoalng & Recpcling |
Geretal | Secuily | (dently | Achivation [(ueuing

Iv GQueued - Thiz applcation can be ieached bp MSMO queues.

¥ iLishen - This application, when actvatad, wil process messages that |
e onits MSMQ quee.

MSME Message Authenbicalion

[fythenhcate meszages § Authentication Level for Callz
lon S ecusity Propeity Pags] is nat NONE
Thiz iz Windows 2000 behason.

f+ Do pat suthenficate messages.

[Alwaps sthenticate messages.

bl i concunmant plapers

(0~ 1000), enter 0 fos default 17

i MOTE: I this applcalion is abeady wunning, you will need to restat the
apphoaton betore ary change: made hese wil take effect,

ok | Cancel | Apoiy

The Queuing tab also allows you to control the maximum number of
concurrent players the application can contain. Because every
player is created on a separate thread, some overhead is associated
with creating and maintaining a player. In extreme situations, your
application may grind to a halt if the number of concurrent players
is too large (a few hundred). When you set a limit on the number of
players and that limit is reached, the listener does not create new
players. Rather, queued calls remain in the application queue,
allowing calls in progress to execute and complete. The limit is also
good for load-balancing purposes and can be used in conjunction
with application pooling, discussed next.

The COM+ 1.5 Catalog lets you configure the queuing support
programmatically as named properties of the application catalog
object. The authentication level is accessible via the
QCAuthenticateMsgs named property, and the maximum number
of players is accessible via the QCListenerMaxThreads property.

B.7 Application Pooling and Recycling

COM+ 1.5 provides two new application lifecycle management
options: application pooling and recycling. Both options are

354

configurable on a new tab on the application’s properties page.
Pooling and recycling services are available only for a server
application. You cannot configure library applications to use pooling
and recycling because they do not own their hosting process.
Library applications have, in effect, the pooling and recycling
parameters of whatever server application happens to load them.

B.7.1 Application pooling

Application pooling allows you to configure how many surrogate
processes are launched to host your server application’s
components. Under COM+ 1.0, all instances of components from a
server application always share the same hosting process. Although
this sharing is also the classic COM default, classic COM local server
developers had the option of allocating a process per object (by
registering the class factories with the REGCLS_SINGLEUSE flag).
COM+ 1.5 gives you explicit control over how many processes are
launched by configuring a processes pool. The application properties
page now contains the Pooling & Recycling tab (see Figure B-9).
You can configure the pool size in the Pool size edit box. The default
pool size is one—a single process hosts all instances of components
from the application, like in COM+ 1.0. However, if you set it to a
value greater than one, COM+ 1.5 creates a process per each new
instance until it reaches the pool size, at which point COM+ starts
multiplexing new instances to the existing processes, apparently in
a round-robin fashion. The maximum configurable pool size is
999,999, enough for all practical purposes. Application pooling is
useful as a fault isolation technique. If one process has to shut
down because of some error or exception, the other processes and
their clients are not affected. Application pooling also gives you
same-machine load balancing—you do not have to use a separate
load balancing service with multiple machines to allocate different
instances to different processes. The pool size is available as the
ConcurrentApps named property of an application catalog object.

e If you start a COM+ 1.5 application manually or
%3 4. programmatically, COM+ 1.5 creates as many

4% processes as the configured pool size. This
behavior is analogous to component minimum pool
size, discussed in Chapter 3, and it only comes into
play when the application is started explicitly. This
behavior is useful when you want to mitigate
anticipated spikes in client requests—you shouldn't
pay the overhead of creating new processes (and
potentially, pools of objects in those processes as
well).

355

Figure B-9. COM+ 1.5 provides server applications with pooling and
recycling services

2

Generl | Secuwity | Identity | Actvation | Queuing |
Advanced | Durnp Paaling & Recpcing

Applcation Pooling:
Podl size: 1

Applcation Recycing:

Littirre Limet [miruses]: [o

fdemcay Limit (Kbl o

Epialion Timeout (mewtes) — [15

Call Limit: i._.—

i i':' Bestare Dareulls;
OF. I Cancel

B.7.2 Application Recycling

The other new application lifetime management service is recycling.
Application recycling is used to increase overall application
robustness and availability by compensating for code defects. For
example, one of the most common defects is a memory leak. Not all
products have the necessary quality assurance resources or
commitment during development; as a result, memory leaks can be
present in the released product. An issue arises when a COM+
application can be left running indefinitely servicing clients. Even a
very small memory leak can have a devastating effect over a long
period of time. For example, imagine a system with an
"insignificant” memory leak of only 10 bytes per method call. A
modern system that processes in excess of 100 transactions per
second will, after one day, leak 100 MB of memory. The process
hosting the application will consume this amount of memory, thus
severely hampering performance and availability, as a result of
additional page faults and memory allocation penalties. The way
developers treated such a leak in COM+ 1.0 (other than fixing it)
was by periodically terminating the hosting process and restarting
it. This technique is called application recycling. COM+ 1.5 allows
you to configure automatic recycling on the Pooling and Recycling
tab (see Figure B-9). You can have COM+ recycle the process when
it reaches a memory limit (the Memory Limit edit box) to cope with
memory leaks. A value of zero is the default value, which means no
limit.

356

By specifying the Lifetime Limit value, you can also instruct COM+
to shut down your application after a predetermined amount of
time. This instruction allows you to cope with defects in handling
other kinds of resources (such as system handles) by specifying the
Lifetime Limit value. A value of zero is the default value, which
means no lifetime limit. Note that the semantics of the lifetime limit
is different from the idle time management option on the application
Advanced tab. The Server Process Shutdown value on the Advanced
tab specifies after how many minutes of idle time (i.e., not servicing
clients) to shut down the application. The lifetime value specifies
after how many minutes to shut down the application, irrespective
of the work in progress inside the process.

COM+ provides two more recycling triggers. You can have COM+
recycle your application after a specified number of method calls
into your application by specifying such a limit in the Call Limit edit
box. The number of calls is defined as combined number of calls
made on all objects in the application. The default value is set to
zero—no limit. You can also request application recycling after a
certain number of activations. Activations is defined as the total
number of objects that COM+ 1.5 created in that application. You
specify the activation limit in the Activation Limit edit box and,
again, the default value is set to zero.

Regardless of how the decision to recycle the application is made
(the memory limit reached, the lifetime elapsed, or the call or
activation limit was reached), COM+ 1.5 routes new activation
requests to a new host process and waits for existing clients to
release their references to objects in the recycled process. However,
you can specify how long COM+ 1.5 should wait in the Expiration
Timeout edit box. After that expiration timeout, COM+ 1.5
terminates the application, even if clients are still holding live
references. The default expiration timeout is 15 minutes.

Finally, note that recycling is not available for a COM+ application
configured as system service, nor can you recycle a paused
application.

B.7.3 Programmatic Recycling

The COM+ 1.5 Catalog provides you with programmatic ability to
configure the recycling parameters discussed previously. To
configure memory and time-bound recycling, use the
RecycleMemoryLimit and RecyclelLifetimeLimit named properties
of the application's catalog object. To configure the expiration
timeout, use the RecycleExpirationTimeout named property. To
configure call or activation limit programmatically, set the values of
the RecycleCallLimit or RecycleActivationLimit named
properties.

357

Example B-1 shows how to set a recycling limit programmatically.

implements the SetRecycleByActivations () helper function,
which sets a specified limit of activations for recycling a specified
application.

Example B-1. Setting a recycling limit programmatically
//usage: "MyApp" will be recycled after 1000 object

activations
//hres = SetRecycleByActivations ("MyApp",1000);

HRESULT SetRecycleByActivations (LPCSTR lpcszAppName, DWORD

dwActivations)
{

//Verify app name is valid

if (_bstr_t (lpcszAppName) == _bstr_t (""))

{

return E_INVALIDARG;

}

HRESULT hres = S_OK;

ICOMAdminCatalog2* pCatalog = NULL;

hres = ::CoCreatelInstance (CLSID_COMAdminCatalog,
NULL, CLSCTX_SERVER,

IID_ICOMAdminCatalog2, (void**)&pCataloqg);

ICatalogObject* pApplication = NULL;
ICatalogCollection* pApplicationCollection = NULL;
long nApplicationCount = 0;

int 1 = 0;//Application index

//Get the application collection
hres = pCatalog-
>GetCollection (_bstr_t ("Applications"),

(IDispatch**) &pApplicationCollection);
pCatalog->Release () ;

hres = pApplicationCollection->Populate();

hres = pApplicationCollection-
>get_Count (&nApplicationCount) ;

hres = COMADMIN_E_OBJECT_DOES_NOT_EXIST;
for (i=0; i<nApplicationCount; i++)
{
//Get the current application
hres = pApplicationCollection-
>get_TItem (i, (IDispatch**) &pApplication);

_variant_t wvarName;

358

pApplication—->get_Name (&varName) ;
_bstr_t bstrName (varName) ;

if (bstrName == _bstr_t (lpcszAppName))
{
long ret = 0;
_variant_t
varActivationLimit ((long)dwActivations);
hres = pApplication-—
>put_Value (_bstr_t ("RecycleActivationLimit"),

varActivationLimit);
hres = pApplicationCollection-—
>SaveChanges (&ret) ;

}
pApplication->Release();

}

pApplicationCollection—->Release();
return hres;

B.8 Application Dump

For debug and analysis purposes, getting a complete memory dump
of an application is sometimes useful, especially at the time of a
crash. COM+ 1.5 allows you to configure a dump of a static memory
image of the process hosting your COM+ application. You can use a
utility such as WinDbg to view and analyze this image. Every COM+
1.5 application (including library applications) has a new tab on its
properties page called Dump (see Figure B-10). You can specify a
location for the image dump and how many images to store there.
When the maximum number of images is reached, a new dump
image overwrites the oldest one. The maximum number of images
you can have COM+ 1.5 store for you is 200. You can generate a
dump file in several ways. The first (and most useful) way is to
instruct COM+ to dump a memory image on application fault (at the
bottom of the Dump tab—see Figure B-10). In this context, an
application's fault is when an exception is thrown.

Figure B-10. COM+ 1.5 application Dump tab

359

2x

General | Secuity | Iderbty | Actvation | Queuing |
Acvanced Liump | Paalng & Recycling

The Piocess Image Dumg feahue alows the user o dumg &
static mape of thes apglicabon. Thes mape can be lbaded n
the "windbg'” debugoes foa analypsis & 2 laber e

Image Dump Dreclony

BsystemmolEh suslem TP comidmp

M e Mumber of Dump Images

|'§"I| NOTE: Dider images wil be oveswitien
= wihen iz number i reached

Enable Precess Image Dump

ITI Canced | Spply

The second way to generate a dump file is to select Dump from a
running application context menu (see Figure B-6). Finally, you can
also request a dump explicitly by using the bDumpProcess () method
of the TCcOMAdminCatalog?2 interface, defined as:

[id(0x1f)] HRESULT DumpProcess ([in] BSTR
bstrApplInstanceld,

[in] BSTR bstrDirectory,
[in] long 1MaxImages,
[out, retval] BSTR*
pbstrDumpFile) ;
When you use the DumpProcess () method, you have to provide
the dump directory and filename and you cannot rely on the
configured values. Requesting a dump (either by calling
DumpProcess () or selecting Dump from the context menu) on a
running application is nonintrusive—the process can continue to run
and is only frozen temporarily for the duration of the dump.
When COM+ generates a dumped file, it uses the following naming
convention as a filename:
(<
App-ID>}_vyear_month_day_hour_minute_second.dmp
This convention lets you easily associate a dump file with a reported
system failure. For example, here is a typical dump filename:
{02d4b3£f1-£d88-11d1-960d-
00805fc79235}_2001_06_14_13_28_51.dmp
To avoid calling DumpProcess () needlessly, TCOMAdminCatalog2
has a helper method called TsProcessDumpSupported(), used to
find out whether image dump is enabled on the machine:

360

[id (0x20)] HRESULT
IsProcessDumpSupported([out, retval] VARIANT_BOOL*
pbSupported) ;

You can set the various dump properties programmatically as well,
using named properties of the application catalog object. The
DumpEnabled property lets you enable or disable image dump for
the application, DumpOnException lets you request a dump on
exceptions, MaxDumpCount lets you configure the maximum number
of dumped files, and bumpPath lets you specify where to save the
dumped image files.

B.9 Application Partitioning

Application partitioning is an intricate new service aimed to refine
and improve management of COM+ applications in a large-scale
environment. An in-depth discussion of application partitions is
beyond the scope of this appendix and requires an understanding of
Active Directory. Instead, this appendix provides a simplified
overview of the partition concept.

An application partition is a group of COM+ 1.5 applications.
Partitions provide you with an economic way to present each user
(be it a logged-on user or a call coming in across the network) with
its own set of applications and components. Partitions are usually
configured in Active Directory.

Under COM+ 1.0, a component can belong to only one COM+
application on a given machine. If you want to install the same
component (same CLSID) in multiple applications, you have to do
so on multiple machines. COM+ partitions allow you to install the
same component in more than one application, provided the
applications belong to different partitions. A given machine can
contain multiple partitions, and each partition can have its own set
of applications and components. You can assign users to partitions
in the Active Directory. COM+ 1.5 also defines a base partition—a
partition that all users share. When a user tries to create a
component, COM+ first looks in the partition the user is associated
with. If that partition has that component, then COM+ creates it. If
it does not, COM+ looks in the base partition; if it is found in the
base partition, COM+ creates it. If the base partition does not
contain the component, then the creation fails, even if the
component is part of another partition.

For example, consider the partition layout in Figure B-11. If a user
associated with Partition A only tries to create the component with
CLSID1, that component is created from Partition A; the
configuration settings of App1 in Partition A and any component-
level configuration are applied. However, if the user tries to create

361

the component with CLSID3, the component from the base partition
is created and the base partition settings are applied. If the user
tries to create with CLSID7, the creation fails.

Figure B-11. Configuring multiple sets of applications on the same
machine using partitions

App 1 App 2
(LSIo (15i03
(L5in2 (Lsind
App 1 App 3 App 1 Rpp 4
(Lsin (L5IDs asio7? asin
CLSID2 (L5IDe (1502 (15106

Figure B-11 demonstrates some other points. A given CLSID can
belong to more than one partition, but a given partition can have
only one copy of the component. Different partitions can contain
applications with the same name. The different partitions inherit the
base partition’s applications and components, but they can override
them, remove them, add new components, and change their
settings.

Application partitions provide an easier way to manage activations
and isolate applications between partitions. Each partition can be
managed independently of the others, and you can even install
different versions of the same component in different partitions,
thus tailoring a particular compatibility solution.

Under COM+ 1.5, the object context has a partition property. The
context object supports a new interface called
IObjectContextInfo2 that derives from IObjectContextInfo,
which enables you to get information about the partition and the
application the object is part of. Clients can request to create an
object in a particular partition using a special moniker.

The 1CcoMAdminCatalog?2 interface provides you with numerous
methods for managing partitions, including copying an application
from one partition to another, copying and moving a component
from one partition to another, getting the base application partition
ID, and getting the current partition ID.

362

B.10 Aliasing Components

Under COM+ 1.0 you cannot use the same component with more
than one set of configurations—like in classic COM, a component is
associated with just one CLSID. COM+ 1.5 allows you to alias an
existing configured component with a new CLSID and apply a new
set of configurations to the "new" component. This process is called
aliasing a component. Aliasing is often a useful feature—you can
develop a piece of business logic and assign more than one set of
configuration parameters to it by copying it as many times as you
like. The component's client can now decide which configuration
setting and business logic implementation to instantiate by creating
a particular CLSID. To alias a component, select Alias from its pop-
up context menu in the Component Services Explorer. This selection
brings up the Alias Component dialog box (see Figure B-12)

Figure B-12. Aliasing a component

|
Flease select 3 Dedtinalion,

& COM» OC Dead Letbes 0y Original FroglD:

% 115 In-Process Application |MyComponent

115 Dut-0F-Process Poole:
115 Utikties Hew PiaglD
Vieual Shudio APE Packa | -oPvOF MyComponent
Mew CLSID:
(134T0 66E -3583-48F -804 3-67062585ACER}

oF, Cancel |

|4 ﬂ

The dialog box lets you select a destination application for the new
component. Because you are assigning a new CLSID to the
component, you can even copy it back to its current application.
The dialog generates the new CLSID for the copy and a new prog-
ID (<CopyoOf>.<01d prog-ID>, see Figure B-12). You can provide
your own values for the CLSID and prog-ID, if you like. Initially, the
new component has configuration settings that are identical to the
original component. Once you copy a component, the original and
the clone are considered different components from the COM+ point
of view. You can configure them differently, even though the
configurations apply to the same actual component at runtime.
Copying components is also handy in the case of event classes. As
you may recall from Chapter 9, you must supply COM+ with a
skeletal implementation of an event class (stub out all

363

implementation of the sinks) so that COM+ can synthesize its own
implementation of the event class. You may often provide more
than one event class so that some subscribers can subscribe to one
event class and some to another. With component copying, you
only need to provide one, and then just copy it.

B.11 Configurable Transaction | solation Level

COM+ 1.0 handles transaction isolation very conservatively. COM+
1.0 only allows the highest level of isolation, an isolation level called
serialized. With serialized transactions, the results obtained from a
set of concurrent transactions are identical to the results obtained
by running each transaction serially. Such a high degree of isolation
comes at the expense of overall system throughput; the resource
managers involved have to hold onto both read and write locks for
as long as a transaction is in progress, and all other transactions
are blocked. However, you may want to trade system consistency
for throughput in some situations by lowering the isolation level.
Imagine, for example, a banking system. One of the requirements
is to retrieve the total amount of money in all customer accounts
combined. Although executing that transaction with the serialized
isolation level is possible, if the bank has hundreds of thousands of
accounts, it may take quite a while to complete. The transaction
may time out and abort because some accounts may be accessed
by other transactions at the same time. But the number of accounts
could be a blessing in disguise. On average, statistically speaking, if
the transaction is allowed to run at a lower isolation level, it may
get the wrong balance on some accounts. However, those incorrect
balances would tend to cancel each other out. The actual resulting
error may be acceptable for the bank’s need.

COM+ 1.5 allows you to configure the isolation level for a
transactional component. The Transactions tab has a drop-down list
box with five isolation levels (see Figure B-13). The available
isolation levels are Any, Read Uncommitted, Read Committed,
Repeatable Read, and Serialized. The default is set to Serialized.

Figure B-13. Setting transaction isolation level for individual components

364

x|
General Tlamﬂﬂiﬂfﬁ'ISEcuntyf Activation | Concurency | Advanced |

Tranzaclion support

" Disabled

[~ Mot Supported

[Supported

[+ Bequired

" Fequies Mew

[T Owesride ghobal banzachon bnecut vake

Trangachon Tmeout

Tranzachion |zalabion Levet | S erialized |

Ary

Read Uncommilted
Aead Commitbed
Repeatable Read

aK.... 2 .:‘,n,:,_‘ | i .Bm.j;

The underlying transaction processing monitor, the DTC, supports
other transaction isolation levels besides Serialized, but COM+ 1.0
passes in a hard-coded isolation level of Serialized when it creates a
new DTC transaction. All COM+ 1.5 does to expose these levels is
pass the configured isolation level, instead of the original hard-
coded Serialized level in COM+ 1.0, to the DTC.

Selecting an isolation level other than Serialized is commonly used
for read-intensive systems. It requires a solid understanding of
transaction processing theory and the semantics of the transaction
itself, the concurrency issues involved, and the consequences for
system consistency. A good starting point is the bible on transaction
processing: Transaction Processing: Concepts and Technologies by
Jim Gray and Andreas Reuter (Morgan Kaufmann, 1992). In
addition, not all resource managers support all levels of isolation,
and they may elect to take part in the transaction at a higher level
than the one configured. Every isolation level besides Serialized is
susceptible to some sort of inconsistency resulting from having
other transactions access the same information. The difference
between the four isolation levels is in the way they use read and
write locks. A lock can be held only when the transaction accesses
the data in the resource manager, or it can be held until the
transaction is committed or aborted. The former is better for
throughput; the latter for consistency. The two kinds of locks and
the two kinds of operations (read/write) give four isolation levels.
See a transaction-processing textbook for a comprehensive
description of isolation levels.

In a COM+ transaction, the root does more than just start and end
a transaction. It also determines the isolation level for the
transaction. Once determined, the isolation level is fixed for the life

365

of the transaction. A component cannot take part in a transaction if
the isolation level it requires is greater than that of the transaction.
Consequently, every component in a transaction must have its
isolation level set to a level equal to or less than that of the root
component. If a component in a transaction tries to create another
component with a greater isolation level, COM+ 1.5 refuses to
create the component and CoCreateInstance() returns
CO_E_ISOLEVELMISMATCH.

When isolation is set to Any, the component is indifferent to the
isolation level of the transaction it is part of. If that component is
not the root of a transaction, then it simply assumes the isolation
level of the transaction it is part of when it accesses resource
managers. If that component is the root of a transaction, then
COM+ 1.5 decides on the isolation level for it and uses Serialized.
As a result, any component with isolation set to Serialized or Any
can be the root of a COM+ 1.5 transaction because by definition, all
other components have isolation levels equal to or less than they
do. Any other isolation level for a root may not guarantee successful
activation of internal components. The COM+ 1.5 Explorer displays
a warning message when you change isolation level from Serialized
or Any, which is almost correct in its content (see Figure B-14).

Figure B-14. Warning message when changing the isolation level from
Serialized or Any to another level

= Charuging this lewel From "Serialized” o "any” requires that al components called From
\E) this component have an isolation level bass than or equal to the isolation level set for this
component,

It is possible for one component to call another component with a
higher configured isolation level, as long as the transaction isolation
is greater than or equal to that higher level. For example,
Component R with isolation set to Repeatable Read is the root of a
transaction, and it creates two other components, A and B, with
isolation levels of Read Committed and Read Uncommitted,
respectively. Component B can call Component A because the
isolation level of A and B is less than that of the root R.

The correct warning message should read: "Changing this level
from Serialized or Any requires that when this component is the
root of a transaction, all components in the transaction have an
isolation level less than or equal to the isolation level set for this
component.”

You can also set the component’s isolation level programmatically
by setting the TxIsolationLevel named property of a component
catalog object.

366

NET Serviced Component I solation

A .NET transactional serviced component can declare its

isolation level under COM+ 1.5 using the Transaction

attribute’s Isolation property:

[Transaction(Isolation=

TransactionIsolationLevel.Serializable)]

public class MyComponent :ServicedComponent

{}

The Isolation property is of the enum type

TransactionIsolationLevel, defined as:

public enum TransactionIsolationLevel

{
Any,
ReadUncommitted,
ReadCommitted,
RepeatableRead,
Serializable

}

The default value of the TransactionIsolationLevel

property is TransactionIsolationLevel.Serializable.

B.12 Improved Context Activation Setting

As explained in Chapter 3, configuring your component to use JITA
requires having its own context. COM+ 1.0 lets you configure your
component to use JITA, and configure it to require that the
component always must be activated in its creator’s context, by
checking the checkbox "Must be activated in caller’s context" on the
component’s Activation tab. (As discussed in Chapter 3, this name
is inaccurate and should read "Must be activated in creator’s
context.") These two settings are mutually exclusive. If you
configure a component in this way, all activations fail. You face a
similar pitfall when configuring the component to use transactions
or enforce security access checks for the component—all require a
private context. The COM+ 1.5 Explorer remedies this situation by
redesigning the component Activation tab (see Figure B-15) and
adding a new activation option. The Activation Context properties
group contains three radio buttons. You can select only one of the
buttons at a time—thus enforcing mutual exclusion. If you select
"Don't force activation context," you actually select the regular
COM+ context activation behavior. In this mode, you can enable
JITA, transactions, and security access checks. In fact, as long as
transaction support or access security are enabled, you cannot

367

select another option; enabling security checks sets the selection
back to "Don’t force activation context" from any other setting.
COM+ 1.5 adds a new context activation selection—"Must be
activated in the default context." This new option can be useful
when you know that clients of the component reside in the default
context and make frequent calls of short duration to your
component, and that your component does not use most of the
COM+ services.

Figure B-15. The new COM+ 1.5 component Activation tab

2] x|

Ganwall Tlansaui\:hel Secunby Aclivation] Caoncumency A.d\.'ancad|

[Enable object pooing

|
[

l
!

[Enable object conginschon

Achvation Contest

* Don't force actreabon contest
[+ Component supports events and stabistics
v Enzble Just In Time Activation

" Must be activated in the callers contest
O Must be achvated in the default contest.

™ Mark comporent piiviate bo applicaton

UK .:anw

B.13 Private Components

COM+ 1.5 provides a new feature called private components. Every
component has, at the bottom of its activation tab, the "Mark
component private to application" checkbox (see Figure B-15). A
private component can only be accessed by other components in
the same application. Private components are needed in almost
every decent size COM+ project. To promote loose coupling
between clients and objects, you should avoid providing the clients
with access to the internal objects by marking them as private.

.NET Private Serviced Component

A .NET transactional serviced component can declare itself as
a private component, using the PrivateComponent attribute:

368

[PrivateComponent]

public class MyComponent :ServicedComponent

{}

Note that a private component is different from an internal
component. Declaring the class as internal instead of public
prevents access to it from outside its assembly. A private
component cannot be accessed by clients outside its COM+
application, but it can be accessed by other clients in the
same application, including components from other
assemblies.

B.14 Web Services in COM+ 1.5

Web services support is the most exciting new feature of the .NET
platform. As explained in Chapter 10, web services allow a middle-
tier component in one web site to invoke methods on another
middle-tier component at another web site, with the same ease as if
the two components were on the same site and machine. But .NET
web services come with a price—companies have to invest in
learning new languages such as C# and cope with a new
programming model and new class libraries. In most organizations,
this cost is substantial. To preserve existing investment in COM
components and development expertise, while providing a migration
path to the .NET world, COM+ 1.5 can expose any COM+
component that complies with web services design guidelines as a
web service. The application activation tab lets you configure SOAP
activation for your application (see Figure B-7). All you need to do is
specify the virtual directory of the web service associated with this
application, and COM+ provides the necessary adaptors as a
component service. Each component is exposed as a separate web
service, identified by the component prog-ID under the virtual
directory. COM+ installs the web services with 11S and generates
the proper web service configuration and information files. Note that
1S and .NET must be installed on the server and client machine to
enable the SOAP activation mode for your application.

B.15 Summary

COM+ is essential for rapid component development and robust,
scalable applications. COM+ 1.5 smoothes COM+ 1.0's rough edges,
and its new features are a most welcome addition to your
development arsenal. Future releases of COM+ will most likely
introduce new features and component services, probably to

369

complement new capabilities available with .NET (such as the web
services support) and improve the integration between the two.
Especially noteworthy is COM+ 1.5’s support for legacy components
and applications. The message is clear: use COM+ as a supporting
component services platform and unify in the same architecture all
your components—from classic COM components, to COM+
configured components, to .NET serviced components.

As mentioned at the beginning of the book, COM+ offers a
migration path for companies and developers. Companies can start
(or continue) their projects in COM, using COM+ for component
services. When the time comes to move to .NET, they can start
plugging into the same architecture .NET serviced components in a
seamless manner, reusing and interacting with their existing COM
and COM+ configured components.

370

Appendix C. I ntroduction to .NET

.NET is based on a Common Language Runtime (CLR) environment
that manages every runtime aspect of your code. All .NET
components, regardless of the language in which they are
developed, execute in the same runtime (hence the name). The CLR
is like a warm blanket that surrounds your code, providing it with
memory management, a secure environment to run in, object
location transparency, concurrency management, and access to the
underlying operating system services. Because the CLR manages
these aspects of your object’s behavior, code that targets the CLR is
called managed code. The CLR provides absolute language
interoperability, allowing a high degree of component
interoperability. COM, too, provides language independence,
allowing binary components developed in two different languages
(such as Visual Basic and C+ +) to call one another’s methods, but
COM language interoperability is only at runtime. During
development, .NET allows a component developed in one language
to derive from a component developed in another language
seamlessly. .NET is capable of this process because the CLR is
based on a strict type system. To qualify as a .NET language, all
constructs (such as class, struct, or primitive types) in every
language must compile to CLR-compatible types. The language
interoperability gain is at the expense of existing languages and
compilers. Existing compilers produce CLR-ignorant code—code that
does not comply with the CLR type system and that is not managed
by the CLR. Visual Studio.NET comes with four CLR-compliant
languages: C#, Visual Basic.NET, JScript.NET, and Managed C+ +.
Third-party compiler vendors also target the CLR, with more than
20 other languages, from COBOL to Eiffel.

C.1 .NET Programming Languages

All .NET programming languages use the same set of base classes,
development environment, and CLR types and comply with the
same CLR design constraints. Compiling code in .NET is a two-phase
process. First, the high-level code is compiled into a generic
machine-code-like language called intermediate language (IL). At
runtime, on the first call into the IL code, the IL is compiled into
native code and executes as native code. The native code is used
until the program terminates. The IL is the common denominator of
all .NET programming languages, and equivalent constructs in two
different languages should theoretically produce identical IL. As a

371

result, all .NET programming languages are equal in performance
and ease of development.

The difference between the languages is mostly aesthetic, and
choosing one over another is a matter of personal preference. For
example, to make C++ CLR compliant, Microsoft had to add
numerous nonstandard compiler directives and extensions, resulting
in less readable code than standard unmanaged C+ +. Similarly,
Visual Basic.NET bears little resemblance to its Visual Basic 6.0
ancestor, requiring you to unlearn things you used to do in Visual
Basic 6.0. Only C# has no legacy and is a fresh .NET language. C#
is a C+ + derivative language, combining the power of C+ + with the
ease of Visual Basic 6.0, and offering you readable, CLR-compliant
C+ + like code. In fact, C# looks more like normal C+ + than
managed C+ +. This appendix and Chapter 10 therefore use C# in
its code samples. Bear in mind, however, that you can do all the
code samples in Visual Basic.NET, managed C+ +, or any other .NET
language.

Other features of .NET languages include their treatment of every
entity as an object (including primitive types), resulting in a cleaner
programming model. .NET provides common error handling based
on exceptions. The CLR has a rich predefined set of exception
classes that you can use as is, or derive and extend for a specific
need. An exception thrown in one language can be caught and
handled in another language.

C.2 Packaging .NET Components: Assemblies

The basic code packaging unit in .NET is the assembly. An assembly
is a logical DLL—i.e., assembly can combine more than one physical
DLL into a single deployment, versioning, and security unit.
However, an assembly usually contains just one DLL (the default in
Visual Studio.NET) and you have to use command-line compiler
switches to incorporate more than one DLL in your assembly. An
assembly is not limited to containing only DLLs. An assembly can
also contain an EXE. As a component developer, you usually
develop components that reside in a single or multiple DLL
assembly to be consumed by a client application residing in an
assembly that has an EXE. The code in the assembly (in the DLLs or
the EXE) is only the IL code, and at runtime the IL is compiled to
native code, as explained previously.

An assembly contains more than just the IL code. Embedded in
every assembly is metadata, a description of all the types declared
in the assembly and a manifest, a description of the assembly and
all other required assemblies. The manifest contains various
assembly-wide information, such as the assembly version

372

information. The version information is the product of a version
number provided by the developer and a build and revision number
captured by the compiler (or provided by the developer as well)
during the build. All DLLs in the assembly share the same version
number and are deployed as one unit.

The assembly boundary serves as the .NET security boundary—
security permissions are granted at the assembly level. All
components in an assembly share the same set of permissions.
The assembly can also contain a compiled resource file for icons,
pictures, etc., like any traditional DLL or EXE.

C.3 Developing .NET Components

To create a .NET component in C# (or any other .NET Language),
you simply declare a class. When the class is instantiated by the
CLR, the result is a binary component. Example C-1 shows a simple
class named MyClass that implements the TMessage interface and
displays a message box with the word "Hello" when the interface's
ShowMessage () method is called.

Example C-1. Building a component in .NET

namespace MyNamespace

{
using System;
using System.Windows.Forms;

public interface IMessage

{

void ShowMessage();

}

public class MyComponent :IMessage

{
public MyComponent () {}//constructor
~ MyComponent () {}//destructor
public void ShowMessage()
{

MessageBox.Show ("Hello!", "MyComponent") ;
}
}
}
The MyComponent class in Example C-1 is defined as public,
making it accessible to any .NET or COM client once you export the
component to COM. You can define a class constructor to do object
initialization, as in this example, but the destructor has different
semantics than the classic C+ + destructor because .NET uses

373

nondeterministic object finalization. You can implement other
methods to do object cleanup as well. The implementation of
ShowMessage () uses the static show() method of the MessageBox
class. Like in C++, C# allows you to call a class (static) method
without instantiating an object first.

Example C-1 demonstrates a few additional key points regarding
developing .NET components: using namespaces and interface-
based programming. These points are discussed next.

C.3.1 Using Namespaces

The class definition is scoped in a namespace. Namespaces are
optional, but you are encouraged to use them. Namespaces in .NET
have the same purpose they have in C+ +: to scope classes so a
client can use different classes from different vendors that have the
same name. For a namespace, you typically use the product’s
name, your company’s name, or the assembly’s name. A client of
the class MyComponent in Example C-1 must now refer to it by
qualifying it with its containing namespace:
MyNamespace.MyComponent

Alternatively, the client can say that it is using the MyNamespace
namespace, and avoid putting the "MyNamespace" prefix on every
type contained in that namespace:

using MyNamespace;

//MyComponent is now the same as MyNamespace.MyComponent
You can also nest namespaces within one another. For example, if
your company develops more than one product, you would typically
define in the scope of the MyCompany namespace, the nested
namespaces Productl, Product2, and so on:

namespace MyCompany

{

namespace Productl
{
//classes and type definitions
public class Componentl
{...}
}
namespace Product?2
{
//other classes and type definitions
}
}
Clients of your components must give the full qualifying namespace
to access your component:
MyCompany.Productl.Componentl
Or, clients can use the using statement:
using MyCompany.Productl;

374

//Componentl is now the same as
MyCompany.Productl.Componentl

The ShowMessage () method in Example C-1 uses the static
method show () of the MessageBox class, defined in the
System.Windows.Forms namespace. Example C-1 therefore

contains the statement:
using System.Windows.Forms;

This statement is used to simplify downstream code.
C.3.2 Using Interfaces

One the most important principles of component-oriented
development is the separation of interfaces from implementation.
COM enforces this separation by having you separate the definitions
of interfaces and classes. .NET does not force you to have your
class methods be part of any interface, but it is imperative that you
do so to allow polymorphism between different implementations of
the same interface.

Example C-1 includes an interface definition as part of the code—
there is no need for a separate IDL file. The reserved C# word
interface allows you to define a type that is purely virtual (it has
no implementation and cannot be instantiated by clients), just like a
C+ + pure virtual or abstract class. The interface methods do not
have to return HRESULT or any other error handling type. In case of
an error, the method implementation should throw an exception.

C.4 Writing .NET Client-Side Code

All that a .NET client has to do to use a component is add a
reference in its project setting to the assembly containing the

component, create an object, and then use it:
using MyNamespace;

//Interface-based programming:

IMessage myObij;

myObj = (IMessage)new MyComponent ();

myObj.ShowMessage ();

You usually do not use pointers in C#. Everything is referenced
using the dot (.) operator. Note also that the client casts the newly
created object to the IMessage interface. This is the .NET equivalent
of QueryInterface(). If the object does not support the interface
it is being cast to, an exception is thrown.

The client can instead perform a controlled query for the interface
using the as keyword. If the object does not support the interface,
the returned reference is null:

using MyNamespace;

375

//Even better: check for type mismatch
IMessage myObij;

myObj = new MyComponent () as IMessage;
Debug.Assert (myObj!= null);
myObj.ShowMessage () ;

As mentioned before, .NET does not enforce separation of interface
from implementation, so the client could create the object type
directly:

using MyNamespace;

//Avoid doing this:

MyComponent myObij;

myObj = new MyComponent ();

myObj.ShowMessage () ;

However, you should avoid writing client code that way because
doing so means that the client code is not polymorphic with other
implementations of the same interface. Such client code also
couples interacting modules. Imagine a situation in which Module 1
creates the object and Module 2 uses it. If all that the Module 1
passes to Module 2 is the interface type, Module 1 can change the
implementation of the interface later without affecting Module 2.

C.5 .NET as a Component Technology

To simplify component development, one of the goals set for the
.NET framework was to improve COM deficiencies. Some of these
deficiencies, such as awkward concurrency management via
apartments, were inherited with COM itself. Other deficiencies occur
as a result of error-prone development and deployment phases.
Examples include memory and resource leaks resulting from
reference count defects, fragile registration, the need for developer-
provided proxy stubs pairs, and having interface and type definition
in IDL files separate from the code. Frameworks such as ATL do
provide automation of some of the required implementation
plumbing, such as class factories and registration, but they
introduce their own complexity.

.NET is designed to not only improve these deficiencies, but also
maintain the core COM concepts that have proven themselves as
core principles of component-oriented development.

.NET provides you fundamental component-oriented development
principles, such as binary compatibility between client and
component, separation of interface from implementation, object
location transparency, concurrency management, security, and
language independence. A comprehensive discussion of .NET as a
component technology merits a book in its own right and is beyond

376

the scope of this appendix. However, the following sections describe
the main characteristics of .NET as a component technology.

C.5.1 Simplified Component Development

Compared to COM, .NET might seem to be missing many things you
take for granted as part of developing components. However, in
essence, the missing elements are actually present in .NET,
although in a different fashion:

o« There is no canonical base interface (such as TUnknown) that
all components derive from. Instead, all components derive
from the Ssystem.Object class. Every .NET object is therefore
polymorphic with System.Object.

e« There are no class factories. In .NET, the runtime resolves a
type declaration to the assembly containing it and the exact
class or struct within the assembly.

« There is no reference counting of objects. .NET has a
sophisticated garbage collection mechanism that detects when
an object is no longer used by clients. Then the garbage
collector destroys the object.

« There are no IDL files or type libraries describing your
interfaces and custom types. Instead, you put those
definitions in your source code. The compiler is responsible for
embedding the type definitions in a special format in your
assembly called metadata.

e There are no GUIDs. Scoping the types with the namespace
and assembly name provides uniqueness of type (class or
interface). When sharing an assembly between clients, the
assembly must contain a strong name—a unique binary blob
generated with an encryption key. Globally unique identifiers
do exist in essence, but you do not have to manage them
anymore.

e There are no apartments. By default, every .NET component
executes in a free-threaded environment and you are
responsible for synchronizing access to your components.
Providing synchronization is done by either relying on .NET
synchronization locks or using COM+ activities.

.NET has a superb development environment and semantics, the
product of years of observing how developers use COM and the
hurdles they faced.

C.5.1.1 The .NET base classes
As demonstrated in Example C-1, a hard-to-learn component

development framework such as ATL is not required to build binary
managed components. .NET takes care of all the underlying

377

plumbing for you. To help you develop your business logic faster,
.NET also provides you with more than 3,500 base classes, available
in similar form for all languages. The base classes are easy to learn
and apply. You can use the base classes as is, or derive from them
to extend and specialize their behavior.

C.5.1.2 Component inheritance

.NET enforces strict inheritance semantics and inheritance conflicts
resolution. .NET does not allow multiple inheritance of
implementation. You can only derive from one concrete class. You
can, however, derive from as many interfaces as you like. When
you override a virtual function implementation in a base class, you
must declare your intent explicitly. For example, if you want to
override it, you should use the override reserved word.

C.5.1.3 Component visibility

While developing a set of interoperating components, you often
have components that are intended only for private use and should
not be shared with your clients. Under COM, there is no easy way of
guaranteeing that the components are only used privately. The
client can always hunt through the Registry, find the CLSID of your
private component, and use it. In .NET, you can simply use the
internal keyword on the class definition (instead of public, asin
Example C-1). The runtime denies access to your component for
any caller outside your assembly.

C.5.1.4 Attribute-based programming

When developing components, you can use attributes to declare
your component needs, instead of coding them. Using attributes to
declare component needs is similar to the way COM developers
declare the threading model attribute of their components. .NET
provides you with numerous attributes, allowing you to focus on
your domain problem at hand (COM+ services are accessed via
attributes). You can also define your own attributes or extend
existing ones.

C.5.1.5 Component-oriented security

The classic Windows NT security model is based on what a given
user is allowed to do. This model has evolved in a time when COM
was in its infancy and applications were usually standalone,
monolithic chunks of code. In today’s highly distributed,
component-oriented environment, there is a need for a security
model based on what a given piece of code—a component—is
allowed to do, and not only on what its caller is allowed to do.

378

.NET allows you to configure permissions for a piece of code and
provide an evidence to prove that it has the right credentials to
access a resource or perform sensitive work. Evidence-based
security is tightly related to the component’s origin. System
administrators can decide that they trust all code that came from a
particular vendor, but distrust everything else, from downloaded
components to malicious attacks. A component can also demand
that a permission check be performed to verify that all callers in its
call chain have the right permissions before it proceeds to do its
work.

This model complements COM+ role-based security and call
authentication. It provides the application administrator with
granular control over not only what the users are allowed to do, but
also what the components are allowed to do. .NET has its own role-
based security model, but it is not as granular or user friendly as
COM+ role-based security.

C.5.2 Simplified Component Deployment

.NET does not rely on the Registry for anything that has to do with
your components. In fact, installing a .NET component is as simple
as copying it to the directory of the application using it. .NET
maintains tight version control, enabling side-by-side execution of
new and old versions of the same component on the same machine.
The net result is zero-impact install—by default, you cannot harm
another application by installing yours, thus ending the predicament
known as DLL Hell. The .NET motto is: it just works. If you want to
install components to be shared by multiple applications, you can
install them in the Global Assembly Cache (GAC). If the GAC
already contains a previous version of your assembly, it keeps it for
use by clients that were built against the old version. You can purge
old versions as well, but that is not the default.

C.5.3 Simplified Object Life Cycle Management

.NET does not use reference counting to manage an object's life
cycle. Instead, .NET keeps track of accessible paths in your code to
the object. As long as any client has a reference to an object, it is
considered reachable. Reachable objects are kept alive.
Unreachable objects are considered garbage, and therefore
destroying them harms no one. One of the crucial CLR entities is the
garbage collector. The garbage collector periodically traverses the
list of existing objects. Using a sophisticated pointing schema, it
detects unreachable objects and releases the memory allocated to
these objects. Consequently, clients do not have to increment or
decrement a reference count on the objects they create.

C.5.4 Nondeterministic Finalization

379

In COM, the object knows that it is no longer required by its clients
when its reference count goes down to zero. The object then
performs cleanup and destroys itself by calling delete this;. The
ATL framework even calls a method on your object called
FinalRelease(), letting you handle the object cleanup.

In .NET, unlike COM, the object itself is never told when it is
deemed as garbage. If the object has specific cleanup to do, it
should implement a method called Finalize(). The garbage
collector calls Finalize () just before destroying the object.
Finalize() is your .NET component’s destructor. In fact, even if
you implement a destructor (such as the one in Example C-1), the
compiler will convert it to a Finalize () method.

C# Destructor

In C#, do not provide a Finalize () method. Instead,
provide a destructor. The compiler both converts the
destructor definition to a Finalize () method and calls your
base class Finalize () method.

For example, for this class definition:

public class MyClass

{
public MyClass() {}
~MyClass() {}

}

The code that is actually generated would be:

public class MyClass

{
public MyClass() {}
protected virtual void Finalize()

{
try
{
//Your destructor code goes here
}
finally
{

base.Finalize();//everybody has one,
from Object
}
}

}
However, simplifying the object lifecycle comes with a cost in
system scalability and throughput. If the object holds on to
expensive resources, such as files or database connections, those
resources are released only when Finalize() is called. It is called
at an undetermined point in the future, usually when the process
hosting your component is out of memory. In theory, releasing the

380

expensive resources the object holds may never happen, and thus
severely hamper system scalability and throughput.

There are two solutions to the problems arising from
nondeterministic finalization. The first solution is to implement
methods on your object that allow the client to explicitly order
cleanup of expensive resources the object holds. |f the object holds
onto resources that can be reallocated, then the object should
expose methods such as Open() and Close().

An object encapsulating a file is a good example. The client calls
Close () on the object, allowing the object to release the file. If
the client wants to access the file again, it calls open () without re-
creating the object. The more common case is when disposing of
the resources amounts to destroying the object. In that case, the
object should implement a method called Dispose(). When a
client calls Dispose (), the object should dispose of all its
expensive recourses, and the client should not try to access the
object again. The problem with both Close() and Dispose() is
that they make sharing the object between clients much more
complicated than COM’s reference counts. The clients have to
coordinate which one of them is responsible for calling Close () or
Dispose() and when Dispose () should be called; thus, the
clients are coupled to one another.

The second solution to nondeterministic finalization is to use COM+
JITA, as explained in Chapter 10.

C.5.5 COM and Windows Interoperability

COM and .NET are fully interoperable. Any COM client can call your
managed objects, and any COM object is accessible to a managed
client. To export your .NET components to COM, use the TIbExp.exe
utility, also available as a command from the Tools menu. The
utility generates a type library that COM clients use to CoCreate
managed types and interfaces. You can use various attributes on
your managed class to direct the export process, such as providing
a CLSID and 1ID.

To import an existing COM object to .NET (by far the most common
scenario), use the TIbImp.exe utility. The utility generates a
managed wrapper class, which your managed client uses. The
wrapper manages the reference count on the actual COM object.
When the wrapper class is garbage collected, the wrapper releases
the COM object it wraps. You can also import a COM object from
within the Visual Studio.NET environment by selecting the COM
object from the project reference dialog (which makes Visual
Studio.NET call TIbImp for you).

.NET has support for invoking native Win32 API calls, or any DLL
exported functions, by importing the method signatures to the
managed environment.

381

C.6 Composing Assemblies

You provide the compiler with your assembly information in an
assembly information file (usually called in a C# project,
Assemblylnfo.cs). The assembly information file is compiled with
the rest of the project’s source files. The information in the file is in
the form of assembly attributes—directives to the compiler on the
information to embed in the assembly. Example C-2 shows a typical
set of assembly attributes.

Example C-2. The assembly information file includes a variety of
assembly attributes

[assembly: AssemblyTitle ("MyAssembly")]

[assembly: AssemblyDescription ("Assembly containing demo
.NET components")]

[assembly: AssemblyCompany ("My Product")]

[assembly: AssemblyCopyright (" (c) 2001 My Company ")]
[assembly: AssemblyTrademark ("")]

[assembly: AssemblyCulture ("en-US")]

[assembly: AssemblyVersion("1.0.*")]

C.6.1 Sharing Assemblies

Assemblies can be private or shared. A private assembly resides in
the same directory of the application that uses it (or in its path). A
shared assembly is in a known location, called the global assembly
cache (GAC), mentioned in Chapter 10Chapter 10. To add an
assembly to the GAC, use either the .NET administration tool or the
GACUtil command-line utility. Once in the GAC, the assembly can be
accessed by multiple applications, both managed and unmanaged.
To avoid conflicts in the GAC between different assemblies that
have the same name, a shared assembly must have a strong name.
The strong name authenticates the assembly’s origin and identity
and cannot be generated by a party other than the original
publisher. The strong name allows any client of the assembly
(usually the assembly loader) to deterministically verify that the
assembly was not tampered with. Assigning a strong name to an
assembly is also known as signing the assembly. To assign a strong
name to your assembly, you first need to generate private or public
encryption keys. You can generate the pair using the SN.exe
command-line utility:

SN.exe -k MyAssembly.snk

Future versions of Visual Studio.NET may enable you to generate
keys from within the visual environment. The -k switch instructs SN
to generate a new pair of keys and store them in the filename

382

specified. The convention used for the filename is the assembly
name with the strong name key (snk) extension, but it can actually
be any name and extension you like.

You then add the snk file to the assembly’s information file, using
the AssemblyKeyFile assembly attribute:
[assembly:AssemblyKeyFile ("MyAssembly.snk")]

In addition to a version number and a strong name, a shared
assembly must have a namespace and /ocale identifier that identify
the human language used in its user interface. In Example C-2 the
locale is specified by the AssemblyCulture assembly attribute.

C.6.2 Assembly Metadata

Each assembly must contain metadata. The metadata is the .NET
equivalent of COM’s type libraries, except the metadata is more like
a type library on steroids. The metadata contains descriptions of all
the types defined in the assembly, such as interfaces, classes and
their base classes, method signatures, properties, events, member
variables, and custom attributes. The metadata is generated
automatically by the compiler when it compiles the source files of
your project. You can view the metadata of your assembly using the
ILDASM utility.

C.6.3 Assembly Manifest

While the metadata describes the types in your assembly, the
manifest describes the assembly itself. The manifest contains the
assembly version information, the locale information, and the
assembly’s strong name. The manifest also contains the visibility of
the assembly’s types—which types are public (can be accessed by
other assemblies) and which types are internal (can only be
accessed from within the assembly). Finally, the manifest contains
the security permission checks to run on behalf of the assembly.
Like the metadata, the manifest is generated automatically by the
compiler during assembly compilation. You can view the manifest of
your assembly using the ILDASM utility.

C.6.4 Assembly Files

Because every assembly must contain the manifest and metadata
(and usually IL code and resources), a single DLL or EXE assembly
contains all of them in one file. However, the only requirement of a
multifile assembly is that a file containing IL must also contain
metadata describing it. Such a file is called a module. A multifile
assembly must still have one DLL file that contains the manifest.
Figure C-1 shows a few possibilities for composing assemblies.

Figure C-1. Assembly files

383

DLL EXE DIL Maodule Madule

IL code IL code IL code IL code IL code
Manifest Manifest Manifest Metodata Metodata
Metodata Metadota Metadota Resources
Resources

As you can see, you can compose the assembly in almost any way
and use compiler switches to bind all your files together. In
practice, most assemblies contain just one DLL (the Visual

Studio.NET IDE provides only this option) and are composed of one
file.

384

Colophon

Our look is the result of reader comments, our own
experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.
The animals on the cover of COM and .NET Component Services are
moray and conger eels. Eels make up the 10 families of fish
belonging to the order Arguilliformes. Known for their snakelike
body with no hind fins, eels can move through water, mud, and
rocky crevices. Most eels are less than three feet long, but
freshwater conger eels can grow as large as nine feet. Until the
20th century, little was known about the life cycle and migration of
eels. Scientists now know that American and European eels travel
long distances during their reproductive cycles. The female eels
generally mature in freshwater lakes and travel to the nearest
ocean, often slithering over wet grass and mud during the journey.
Then they swim or drift from Europe or North America to the
Sargasso Sea. There, the females lay up to 20 million eggs and then
die. The egg-larvae then drift either to North America (after one
year) or back to Europe (after three years). After reaching their
home continent, the eels complete their cycle by gathering at the
mouths of rivers and swimming upstream. Eels are also known for
their oily meat, cherished by some as a culinary delicacy.

Ann Schirmer was the production editor for COM and .NET
Component Services. Paulette Miley and Ann Schirmer were the
copyeditors for the book . Ann Schirmer and Leanne Soylemez were
the proofreaders. Claire Cloutier, Mary Brady, and Rachel Wheeler
provided quality control. Kimo Carter, Ann Schirmer, and Sarah
Sherman did interior composition. Judy Hoer wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series
design by Edie Freedman. The cover image is a 19th-century
engraving from the Dover Pictorial Archive. Emma Colby produced
the cover layout with QuarkT XPress 4.1 using Adobe’s ITC
Garamond font.

David Futato designed the interior layout. Neil Walls converted the
files from Microsoft Word to FrameMaker 5.5.6 using tools created
by Mike Sierra. The text font is Linotype Birka, the heading font is
Adobe Myriad Condensed, and the code font is LucasFont’s TheSans
Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were
drawn by Christopher Bing. This colophon was written by Ann
Schirmer.

385

