Creating Applications with Mozilla

Table of Contents

Copyright
Preface

1. Mozilla Background
2. The State of Mozilla
3. Who Should Read This Book
4. Platform and Applications
5. Structure of the Book
6. How This Book Was Written
7. Mozilla Licensing Information
8. Conventions
9. Comments and Questions
10. Acknowledgments
1. Mozillaas Platform
1.1. Visualizing Mozilla's Front End
1.1.1. XPFE Framework
1.1.2. Comparing XPFE and DHTML
1.1.3. Components of aMozilla Application
1.2. Setting Up Your System
1.3. Mozilla Applications
1.3.1. Applications as Web Pages
2. Getting Started
2.1. Simple XUL Example
2.2. Basic XUL Concepts
2.2.1. The XUL File Format
2.2.2. Conventions
2.2.3. The XUL Namespace
2.2.4. Basic XUL Layout
2.2.5. Using XUL Windows
2.3. Making MozillaWork for You
2.3.1. Importing Resources from Mozilla
2.4. Displaying XUL Files as Chrome
2.5. Creating a Package
2.5.1. Architecture of a Chrome Package
2.5.2. Package Components
2.5.3. Directory Structure
2.5.4. Package Manifests
2.5.5. Separating the Files
2.5.6. Reqgistering a Package
2.6. Launching the Application
2.6.1. Windows launch

3. XUL Elements and Features
3.1. The XUL Document Object
3.1.1. XUL Parsing and the Document Object Model

3.2. Application Windows
3.2.1. Dialogs
3.2.2. Pages
3.2.3. Wizards
3.3. Application Widgets
3.3.1. The Toolbox
3.3.2. Selection Lists
3.4. Tabular and Hierarchical Information
3.4.1. List Boxes
3.4.2. High Performance Trees
3.4.3. Grid
3.5. Words and Pictures

3.5.1. Text Input
3.5.2. Text Display

3.5.3. Images
3.6. Form Controls

3.6.1. Radio
3.6.2. Checkbox
3.6.3. Buttons
3.7. Widget Interaction
3.7.1. Broadcaster and Observers
3.7.2. Commands
3.8. Content Panels
3.8.1. Browser and |Frame
3.8.2. Editor
3.9. The Box Model
3.9.1. Box Attributes
3.9.2. Box-Like Containers
3.9.3. Additional Box Features
3.9.4. Stacks and Decks
3.10. XUL Attributes
3.10.1. Stretchiness
3.10.2. Style
3.10.3. Persistence
3.10.4. The debug Attribute
3.11. Overlays
3.11.1. How to Use Overlays
3.11.2. Content Positioning
3.12. The Extras
3.12.1. Tooltips
3.12.2. Progress Meter
3.12.3. Links
3.13. Building the Application Shell
4, CSSin Mozilla Applications

4.1. Interface Basics
4.1.1. Skins Versus Themes
4.1.2. Limitations of a Skin
4.1.3. Theme Abstraction (or Building Good Skins)
4.1.4. Cross-Platform Interface Considerations
4.2. Introduction to CSSin Mozilla
4.2.1. Basic XUL + CSS Interaction
4.2.2. Stylesheet Syntax
4.2.3. Special Mozilla Extensions
4.2.4. Referencing Imagesin CSS
4.2.5. Menu Skinning
4.3. Morzilla Skins
4.3.1. CSS and Skin Hierarchies
4.3.2. Basic Skin Structure
4.3.3. The Modern and Classic Themes
4.3.4. Skin Files
4.4. Creating New Skins
4.4.1. Importing the Global Skin
4.4.2. Getting Started with Custom Styles
4.4.3. Creating Styles for the xFly Buttons
4.4.4. Describing the Skinin RDF
4.5. What |s Possible in a Skin?
4.5.1. Binding New Widgets to the Interface Using XBL
4.5.2. User Stylesheets
4.5.3. Theme Security Restrictions
5. Scripting Mozilla
5.1. Faces of JavaScript in Mozilla
5.2. JavaScript and the DOM
5.2.1. What Isthe DOM?
5.2.2. The DOM Standards and Mozilla
5.2.3. DOM Methods and Properties
5.3. Adding Scripts to the Ul
5.3.1. Handling Events from a XUL Element
5.3.2. Events and the Mozilla Event Model
5.3.3. Changing an Element's CSS Style Using JavaScript
5.3.4. Creating Elements Dynamically
5.3.5. Sharing Data Between Documents
5.4. XPConnect and Scriptable Components
5.4.1. What |s XPConnect?
5.5. JavaScript Application Code
5.5.1. JavaScript Libraries
6. Packaging and Installing Applications
6.1. Packaging and Installing Overview
6.2. Packaging Mozilla Applications
6.2.1. Package Manifests
6.2.2. Reqgistering Packages
6.2.3. Creating a Package

6.2.4. The Chrome Registry
6.3. Installing Mozilla Applications
6.3.1. The XPI File Format
6.3.2. Install ation Scripts
6.3.3. XPInstall
6.3.4. Uninstalling Applications
6.4. Finishing Things Up
6.4.1. Creating the xFly XPI
6.4.2. Adding the Installation Script
6.4.3. Web Page Installer
6.5. Extra Tricks for Customizing an Application
6.5.1. Icons
6.5.2. Splash Screen
7. Extending the Ul with XBL
7.1. What 1s XBL?
7.1.1. XBL Terminology
7.1.2. An XBL Document
7.1.3. Namespaces and XBL
7.1.4. XBL and HTML
7.2. Anatomy of aBinding
7.2.1. CSS Attachment
7.2.2. The XBL Content Element
7.2.3. The Implementation Element
7.2.4. Handlers
7.2.5. Style
7.3. Adding Behavior to Bindings
7.3.1. Binding Methods
7.3.2. Binding Properties
7.4. XBL and the DOM
7.4.1. The XBL DOM Interfaces
7.4.2. Binding Parents
7.4.3. Accessing Anonymous Nodes
7.4.4. ExtraBinding Content and Insertion Points
7.5. Inheritance
7.5.1. Binding Inheritance
7.5.2. Attribute Inheritance
7.5.3. Implementation |nheritance
7.6. Event Handling
7.6.1. The Time and Venue
7.7. Resources for Bindings
7.7.1. Stylesheetsin XBL

8. XPCOM
8.1. What Is XPCOM?
8.1.1. What |s a Component?
8.1.2. XPConnect and the Component Object
8.1.3. XPCOM Interfaces and the IDL
8.1.4. XPCOM Type Libraries

8.1.5. XPCOM ldentifiers
8.1.6. Component Manager
8.1.7. Getting and Using XPCOM

8.2. Creating XPCOM Components

8.2.1. Creating a JavaScript XPCOM Component
8.2.2. Compiling the Component

8.2.3. Testing the Component

8.2.4. Useful C++ Macros and Types

8.2.5. C++ Implementation of nslSimple

8.2.6. The nsSimple module code

8.2.7. Other Languages for XPCOM

8.2.8. XPCOM as an Open Cross-Platform Solution

9. XUL Templates
9.1. Understanding XUL Templates

9.1.1. Basic template structure

9.2. Enhancing XUL Templates

9.2.1. Nested Content Sample
9.2.2. Using Datafor Style
9.2.3. Tree Template

9.2.4. Multiple Rules Tree
9.2.5. Multiple Rules Menubar

9.3. Using Other XUL Tags for Templates

10. RDF, RDF Tools, and the Content Model

10.1. RDF Basics

10.1.1. RDF Data Model

10.1.2. RDF Syntax
10.1.3. Building an RDF File from Scratch

10.2. The Mozilla Content M odel

10.2.1. Datasources

10.3. RDF Components and I nterfaces

10.3.1. What Is an RDF Component?

10.3.2. What Are RDF Interfaces?

10.3.3. nsIRDFService

10.3.4. nslRDFCompositeDataSource

10.3.5. nslRDFDataSource

10.3.6. nslRDFRemoteDataSource

10.3.7. nslRDFPurgeableDataSource

10.3.8. nslRDFNode, nslRDFResource, and nsIRDFL iteral

10.3.9. nslRDFContainerUtils
10.3.10. nslRDFContainer
10.3.11. nsIRDFXML Interfaces

10.4. Template Dynamics

10.4.1. Template Dynamicsin XBL

10.5. JSLib RDF Files

10.6. Manifests

11. Localization

10.6.1. RDF and Dynamic Overlays

11.1. Locdlization Basics
11.1.1. For the Developer
11.1.2. Files and File Formats
11.1.3. Ul Aesthetics and Principles
11.2. DTD Entities
11.2.1. Inserting Entities
11.2.2. External and Inline Entities
11.3. String Bundles
11.3.1. Inside aBundle
11.3.2. String Bundle M ethods and Properties
11.3.3. Creating Y our Own Bundle
11.4. Programming and L ocalization
11.4.1. Naming Conventions
11.4.2. Breaking Up the Text
11.4.3. Anonymous Content and Locale
11.4.4. Localizable Resourcesin HTML
11.4.5. Localizable Resourcesin RDF
11.5. The Chrome Registry and Locale
11.5.1. The Directory Structure
11.5.2. Interaction with the Chrome Registry
11.5.3. Distribution
11.6. Locdlization Issues
11.6.1. XPFE and Unicode
11.6.2. Language Quirks
12. Remote Applications
12.1. Directions in Remote Application Devel opment
12.2. Basic Remote Application Example
12.2.1. Case Study: Snake (ak.a. Hiss-zilla)
12.3. Setting Up XPFE for Remote Applications
12.3.1. Server Configuration
12.4. Generated Content
12.4.1. Generating Content with Scripting L anguages
12.4.2. Generating Content from a Database
12.4.3. Localizing Remote Applications
12.5. Certificate Authorities and Digital Signatures
12.5.1. Mozilla Network Security Services (NSS)
12.5.2. CA Certificates, Signing Certificates, and the Certificate Chain
12.5.3. Setting Up a Certificate Authority
12.5.4. |ssuing Signing Certificates
12.5.5. Distributing Distribution Certificates
12.6. Creating Signed Remote Applications
12.6.1. certs.mozdev.org CA Certificate
12.6.2. Signing Certificates
12.6.3. Creating and Signing the Application
12.6.4. Receiving a Signed Application
12.7. Expanded Privilegesin Mozilla
12.8. Signed Remote Snake Game

12.8.1. How to Expand Mozillato Full Screen
12.9. Mozillas XML Extras and SOAP
12.9.1. Mozilla, SOAP, and .NET
12.9.2. Setting Up a.NET Web Service
12.9.3. .NET WSDL
12.9.4. SOAP Cal XML Formats
12.9.5. Adding SnakeService SOAP to Snake
12.9.6. Make SOAP Functions Work in XUL Documents
12.9.7. Examining SOAP Functions for Snake
12.10. Looking Forward
A. Getting and Building the Mozilla Source
A.1. Getting the Source Code
A.1.1. Downloading the Source with FTP
A.1.2. Downloading the Source with CVS
A.1.3. Working with Branching
A.2. Building the Source Code
A.2.1. Unix Environment
A.2.2. Windows Environment
A.2.3. Macintosh Environment
B. Development Tools
B.1. XULKIit
B.1.1. new-from-template.pl Script
B.1.2. makexpi.pl Script
B.1.3. Using XULKit
B.2. Patch Maker 2.0
B.2.1. CVS Mode
B.2.2. Build Mode
B.3. The DOM |nspector
B.4. The Component Viewer
B.5. Venkman: The JavaScript Debugger
B.6. MozillaTranslator
B.7. Missing Parts
B.7.1. Visual XUL Editors
B.7.2. Toolkits and Libraries
B.7.3. Integrating the Pieces
C. Programmer's Reference
C.1. XUL Element Set
action -- Child element in a XUL template structure that draws content for matched data
arrowscrollbox -- Container box for scrolling contents
autorepeatbutton -- Provides arrows for a scrolling area
binding -- Child element in a XUL template that optionally matchesin the data
bindings -- Substructure in a XUL template that collects the optional binding rules
box -- Generic container and layout element
broadcaster -- Notifies el ements when a change occursin the Ul
broadcasterset -- Container for broadcaster elements
browser -- Web-content container
button -- A widget that activates some functionality when pressed

caption -- Provides heading for a groupbox element

checkbox -- Indicates a specified feature's on/off state

colorpicker -- Widget used to choose a color

column -- A columnin agrid

columns -- Container for the number of columnsin agrid

command -- Defines functionality that can be called from multiple sources
commands -- Container for a group of command sets

commandset -- A container for multiple command el ements
conditions -- Defines the conditions within atemplate rule

content -- Binds variablesin atemplate

deck -- Box container that displays one child element at atime
description -- Holder for block of text that can wrap to multiple lines
dialog -- Root element for secondary XUL window

dialogheader -- Styled text heading for Ul panel

editor -- Content area for editable web content

grid -- Widget for laying out content in a structured tabular fashion
arippy -- Visible widget used on a grippy bar to expand or collapse a Ul region
groupbox -- Box with frame surrounding it

hbox -- Box container whose children are laid out horizontally
iframe -- Web content area

image -- Display of a supported type image

key -- Definition for a keyboard shortcut

keybinding -- Container for akeyset or group of keysets

keyset -- Container for one or more key elements

label -- Simple text display element and label for a control element
listbox -- Used for display of aflat list of items

listcell -- Single cell of alistbox

listcol -- Listbox column definition

listcols -- Container for listbox columns (listcol)

listhead -- Container for column header in list boxes (listheader)
listheader -- Text header for listbox column

listitem -- Listbox row definition

member -- Matches container relationships in which the parent element is given by a container element

and the child by a child element
menu -- A menu element for containing menu items

menubar -- Containing element for one or more menus

menuitem -- Single selectable choice in amenu

menulist -- Drop-down list of selectable items

menupopup -- Pop-up container for menu items

menuseparator -- Line separating menu items

observes -- Broadcast event and attribute listener

overlay -- Root element in a separate file that contains reusable XUL content
page -- Root element of XUL file loaded in a content frame

popup -- Box container as child window

popupset -- Container for popup e ements

progressmeter -- Visual progress indicator of a time-consuming operation
radio -- Single on/off choice represented as selectable circle

radiogroup -- Framed box for containing radio elements
resizer -- Window-resizing element
row -- Container for grid cells laid out consecutively
rows -- Definition for grid rows
rule -- Definesrules for rendering data as XUL
script -- Declaration of script used in XUL file
scrollbar -- Widget for scrolling in a container
scrollbarbutton -- Button used to move position of scrollbar thumb
scrollbox -- Box for scrolling content
separator -- Bar between elements
slider -- A scrollbar without buttons
spacer -- Blank space separating el ement
splitter -- Element for dragging and resizing associated elements
stack -- Shows children one on top of one another, al at the same time
statusbar -- Box container for status elements
statusbarpanel -- Single unit of a statusbar
stringbundle -- Holder of localized properties for use in script
stringbundleset -- Container for stringbundle elements
tab -- A single selectable tab of atabbox
tabbox -- Box container for tab panels
tabbrowser -- Tabbed holder for a set of web content views
tabpanel -- A single panel of atabbox
tabpanels -- Container for tabpanel elements
tabs -- Container for tab elements
template -- A high-level widget used to build content dynamically from data
textbox -- Acceptstext input from user
thumb -- Object used to move content in scrollable area
toolbar -- Holder of buttons for quick-access Ul functionality
toolbarbutton -- Specially adapted button for use in atoolbar
toolbarseparator -- Visible separator for elements contained in a toolbar
toolbox -- Optional container for menu bars and toolbars
tooltip -- Pop-up window for context-sensitive help
tree -- Hierarchical holder of information represented as rows
treecell -- A singlecell in atree
treechildren -- The main body of atree; a container for treeitems
treecol -- A single column of atree
treecols -- Container for tree columns
treeitem -- A treerow container
treerow -- A single row of atree
triple -- Substructure of atemplate that matches RDF statements in the data
vbox -- Box container with vertically laid out children
window -- Root element of atop-level XUL window document
wizard -- Window used to step though a task
wizardpage -- A single pand (step) of awizard
C.2. XBL Element Set
binding -- A single XBL binding
bindings -- An XBL document's root element

body -- Container for JavaScript code to be executed by an XBL method

children -- Insertion point for children of abound element, or inherited binding

constructor -- Container for code to be executed when a binding is created

content -- Container for anonymous content to be inserted into a bound document

destructor -- Container for code to be executed when abinding is destroyed

element -- Insertion point for bound elements in anonymous content

field -- Holder property for smple data

getter -- Script access point for an element's property

handler -- Single event handler for an XBL element

handlers -- Container for event-handler elements

image -- An image resource in abinding

implementation -- Container for binding methods and properties

method -- Script function to be accessed on a binding object

parameter -- Single paramter declaration for a method

property -- Definition of a single binding object property

resources -- Container for list of resources that can be used by abinding

setter -- Change a binding property's value

stylesheet -- Captures an external stylesheet for use by anonymous content
C.3. Event Attributes

onblur -- //FIXME purpose should go here

onbroadcast -- //FIXME purpose should go here

onchange -- //FIXME purpose should go here

onclick -- //[FIXME purpose should go here

onclose -- /[FIXME purpose should go here

oncommand -- //FIXME purpose should go here

oncommandupdate -- //FIXME purpose should go here

oncontextmenu -- //FIXME purpose should go here

oncreate -- //FIXME purpose should go here

ondblclick -- //FIXME purpose should go here

ondestroy -- //FIXME purpose should go here

ondragdrop -- //FIXME purpose should go here

ondragenter -- //FIXME purpose should go here

ondragexit -- //FIXME purpose should go here

ondraggesture -- //[FIXME purpose should go here

ondragover -- //[FIXME purpose should go here

onfocus -- //FIXME purpose should go here

oninput -- //FIXME purpose should go here

onkeydown -- //FIXME purpose should go here

onkeypress -- //FIXME purpose should go here

onkeyup -- //FIXME purpose should go here

onload -- //FIXME purpose should go here

onmousedown -- //FIXME purpose should go here

onmousemove -- //FIXME purpose should go here

onmouseout -- //FIXME purpose should go here

onmouseover -- //[FIXME purpose should go here

onmouseup -- //FIXME purpose should go here

onoverflow -- //FIXME purpose should go here

onoverflowchanged -- //FIXME purpose should go here
onpopuphidden -- //FIXME purpose should go here
onpopuphiding -- //FIXME purpose should go here
onpopupshowing -- //FIXME purpose should go here
onpopupshown -- //FIXME purpose should go here
onselect -- //FIXME purpose should go here
onunderflow -- //FIXME purpose should go here
onunload -- //FIXME purpose should go here

Colophon

List of Tables
3-1. Main features of the tree

3-2. Treeviews

3-3. Button types

3-4. Common box attributes

4-1. Relational selectors

4-2. CSS spacing and layout properties

4-3. The position property

4-4. Mozilla CSS extensions

5-1. JSLib classes

6-1. Install object methods

6-2. Install Trigger interface showing the role of the Install Trigger object in the overall installation process
8-1. The IlUnknown interface

8-2. The nsl Supports interface

8-3. Special XPCOM attributes in Python

9-1. Output of each template iteration

9-2. Scenarios used for building template rules

10-1. Synonymsin RDF

10-2. Types of datasources

10-3. Mozilla's built-in RDF interfaces

11-1. Entity definitions for the XUL menu

12-1. Expanded privileges available to signed scripts
12-2. Expanded privileges available to signed scripts
A-1. Platform tools used to build the Mozilla source code
A-2. Windows environment variables used to build Mozilla
A-3. Make flags

B-1. Options for the new-from-template.pl script

B-2. Options for the makexpi.pl script

B-3. Patch Maker's CV'S mode commands

C-1. Common XUL element attributes

List of Figures
1-1. XPFE framework

1-2. Comparison of DHTML and XPFE

1-3. ChatZilla, an IRC chat client created by using Mozilla
1-4. The Mozilla browser rendering itself

2-1. Thefirst Hello xFly example

2-2. The second Hello xFly example loaded in the browser
2-3. The second Hello xFly example launched in its own window
2-4. A sample package layout in the directory system
2-5. xFly package directory structure

2-6. Modified shortcut properties

3-1. Preferences panel loaded as a page

3-2. Application menu bar

3-3. Visual comparison of menu widgets

3-4. Listbox

3-5. Multilevel tree hierarchy

3-6. Autocomplete for Open Web Location

3-7. Checkbox widget

3-8. menu-button for browser's back functionality
3-9. Default box positioning

3-10. Box packing and alignment effects

3-11. Text stacked on an image

3-12. xFly example viewing application

4-1. Scrollbars on Windows and on the Macintosh
4-2. The Open Web L ocation dialog in Windows and the Macintosh
4-3. The different states for buttons in the Modern theme
4-4. Composite styles for the reload button

4-5. The contents of the modern.jar file

4-6. XUL file and skin loading

4-7. Classic and Modern Navigation toolbars

4-8. Stylesheet additionsto a XUL file

4-9. XUL button with no style

4-10. Modern menu button

5-1. Scripting in Mozilla

5-2. Toggling the state of menu itemsin xFly

5-3. Event capturing

5-4. How XPConnect fitsinto the application model
6-1. Mozilla packaging components

6-2. Package interaction overview

6-3. xFly item in Tools menu

6-4. Installation process overview

6-5. Simplest XPI archive

6-6. Windows taskbar with Mozillaicon

6-7. Mozilla's splash screen

7-1. Mozilla XBL binding structure

7-2. CSS binding attachment components

7-3. Theinputfield alone in the XUL document

9-1. DOM representation of XUL template generation
9-2. View of XUL treein Mozilla

9-3. Listbox and tree template

9-4. Tree template with hyphen rule

9-5. Menubar template with menus

10-1. Simple labeled-directed graph

10-2. Resource to literal relationship

10-3. RDF Graph with five nodes

10-4. Namespaces applied to Figure 10-3

10-5. Thefirst statement of the graph, with labeled parts
10-6. The second statement of the graph, with |abeled parts
10-7. The third statement of the graph, with labeled parts
10-8. Thefull graph

10-9. Diagram of Mozilla's content model

11-1. Localized menus in English and Spanish

11-2. Local€'s placement in typical chrome layout

12-1. Distributed remote Mozilla application

12-2. Remote XUL file-accessing skin

12-3. Hiss-zilla, aremote game

12-4. A Netscape Object Signing certificate chain

12-5. Downloading a certificate window

12-6. Certificate manager with a certs.mozdev.org CA certificate
12-7. SignTool's processes for creating a signed application
12-8. Receiving asigned application

12-9. Snake gamein full-screen mode on Windows

12-10. Result of using the GetScore function

A-1. Mozilla Cross Reference code browsing tool

B-1. The DOM inspector interface

B-2. An interface displayed in the Component Viewer

B-3. The JavaScript Debugger

B-4. Chrome view in MozillaTransl ator

List of Examples

2-1. Hello xFly
2-2. The XUL namespace declaration

2-3. Mixed namespaces in an XML document
2-4. Sample XUL window

2-5. chrome/xfly/content/contents.rdf file

2-6. chrome/xfly/skin/contents.rdf file

2-7. chrome/xfly/locale/contents.rdf file

2-8. The contents of the xfly.cssfile

2-9. XUL using external style data

2-10. XUL using an external script

2-11. The contents of the xfly.jsfile

2-12. The contents of the xfly.dtd file

2-13. XUL using an external DTD file

2-14. Tree structure of a completed sample xFly package
2-15. Additionsto the installed-chrome.txt file
3-1. XUL dialog

3-2. XUL page

3-3. A XUL wizard

3-4. Toolbar with buttons and spacing

3-5. Application menu bar

3-6. A sample menu
3-7. Context menu using pop up

3-8. XUL menu list

3-9. Listbox widget

3-10. Tree base model

3-11. Multilevel tree content view

3-12. XUL grid

3-13. Text autocomplete

3-14. A radio group choice of options

3-15. Shortcut keys with command observers
3-16. Tabbed panels

3-17. A deck with three image layers

3-18. Deck layer switching

3-19. Content positioning in a stack

3-20. Flexible buttons

3-21. Positioning attributes

3-22. xFly application main workspace

3-23. Example treein the xFly application
4-1. Class selector in CSS

4-2. Attribute selector in CSS

4-3. limportant keyword in CSS

4-4. Imagein CSS

4-5. Mixing CSS and XUL

4-6. CSS for print button in navigator skin
4-7. CSS Import statementsin global skin
4-8. CSS information from communicator.css
4-9. CSS rules for xFly window

4-10. Custom styles for buttons

4-11. Skin manifest for the xFly sample

4-12. Manifest for the communicator package of the modern skinin Mozilla
4-13. CSS and XBL example

4-14. userChrome.css style rules

5-1. Printing element properties to the console
5-2. Printing the window properties

5-3. Adding toggle functionality to XxFly

5-4. Adding Toggle menusto xFly

5-5. Basic event handler attributes

5-6. Getting event handler attributes from an element
5-7. Event propagation

5-8. stopPropagation() event function

5-9. Dynamic menu generation

5-10. Scriptable component example

5-11. Scripting components from HTML

6-1. Package installation script

6-2. Simple theme package manifest

6-3. Locale package manifest

6-4. manifest.rdf describing the XML Term extension

6-5. The xFly overlay

6-6. Overlay information in the manifest

6-7. Overlaysin navigator.xul

6-8. Top level of the browser.xpi archive

6-9. Smpleinstall script

6-10. Script that explicitly prefixesthe Install object
6-11. A more complicated install script

6-12. Trigger script on aweb page

6-13. Scriptlessinstall of aJAR

6-14. Getting the operating system in an install script
6-15. indall.log

6-16. Common XPInstall functions

6-17. Install script callback

6-18. Non-Mozilla software installation script

6-19. Package metadata in the xFly manifest

6-20. xFly installation script

6-21. Web page trigger

7-1. XBL implementation element

7-2. An XBL property setting and getting avalue
7-3. Performing a Googl e search when setting a property
7-4. Accessing a bound document from a binding
7-5. Selective inclusion of child content in abinding
7-6. Binding inheritance

7-7. Inheriting XUL widget characteristics using extends
7-8. XBL attribute inheritance

7-9. Inheritance of behavior between bindings

8-1. Using an XPCOM object in script

8-2. proglDs

8-3. Querylnterface method for nslSimple interface
8-4. JavaScript implementation of nslSimple

8-5. Scripting the "simple" component in xpcshell
8-6. Reference implementation of Querylnterface
8-7. Platform macros in xpcom/base/nscore.h

8-8. NS IMETHOD macro

8-9. Manual reference counting using raw pointers
8-10. Using nsCOMPtr in your code

8-11. nslSimple header file generated by xpidl compiler
8-12. The component header file nsSimple.h

8-13. nsSimple.cpp

8-14. nsSimpleModule.cpp

8-15. Sample M akefile

8-16. Sample use of component in xpcshell

8-17. Example 8-17: Testing for nsresults from component methods
8-18. Sample Python component implementation
8-19. IDL for the Python component

8-20. Using the Python component in script

9-1. Simple XUL template in alistbox element

9-2. Basic structure of a XUL template

9-3. Hardcoded representation of generated XUL

9-4. XUL treetemplatein Figure 9-3

9-5. Simplified version of 10-4 RDF data

9-6. Tree template code of Figure 9-3

9-7. Tree template with rules

9-8. Menubar template with three rules

9-9. Template implemented in a box with buttons as content
10-1. Smple RDF file with "fly" namespace

10-2. RDF root seguence

10-3. The Horse sequence

10-4. Entire RDF file

10-5. Content model of email datasources

10-6. RDF-specific components built into Mozilla
10-7. Creating aroot node

10-8. Manipulating datasources

10-9. Parse an RDF/XML string into a datasource
10-10. Setup nsIRDFXML Sink with event handlers
10-11. Binding with in-memory datasource and <listbox> template
10-12. Creating and modifying an RDF file using JSLib
10-13. Initialization

10-14. Data updating

10-15. Skin manifest

10-16. Overlay for a sample application menu

10-17. Overlay for an xFly menu item in the browser
11-1. XUL menu with entity references for text and accesskeys
11-2. The Editor's Doctype definitions

11-3. String bundles used by the Mozilla browser

11-4. Creating the bundle via XPConnect

11-5. Using multiple <description> elements

11-6. Using the HTML break tag

11-7. Binding with attribute inheritance

11-8. RDF Description node with localizabl e text

11-9. Thelocale XPl install script, install.js

11-10. Locale-switching script

12-1. Remote XUL example

12-2. Enabling universal X PConnect

12-3. A sample static XUL file

12-4. Using PHP to generate the correct XUL MIME type
12-5. A simple Perl-generated XUL file

12-6. A Python-generated dynamically updated form
12-7. SQL script with User and Project data

12-8. XUL generated from database

12-9. Creating aroot certificate

12-10. Creating a distribution certificate

12-11. Create asigning certificate

12-12. Sample redirect into a signed application

12-13. Function for switching screen modes

12-14. Minimal .NET web service

12-15. Abbreviated WSDL as produced by .NET web service.
12-16. XML format for SOAP cdlls of Mozilla

12-17. .NET format for SOAP calls of Mozilla

12-18. Preloading scores.js into cache with an HTML association
12-19. SaveScore SOAP function

12-20. Code for GetScore and GetHighScores

B-1. Sample application template

B-2. Sample XPCOM component template

B-3. makexpi.conf file

Next
Copyright

Creating Applicationswith Mozilla
Prev Next

Copyright

Copyright © 2002 O'Reilly & Associates, Inc.

Printed in the United States of America

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or <cor por at e@rei |l | y. conp.

Nutshell Handbook, the Nutshell Handbook 1ogo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between the image of afrilled lizard and
thetopic of Mozillais atrademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility
for errors or omissions, or for damages resulting from the use of the information contained herein.

Prev Home Next
Creating Applications with Mozilla Preface

mailto:corporate@oreilly.com
http://safari.oreilly.com

Creating Applicationswith Mozilla
Prev Next

Preface

Mozillais not just aweb browser. It isalso aframework for building cross-platform applications using standards such as
Cascading Style Sheets (CSS), XML languages such as the XML -based User-interface Language (XUL), eXtensible
Binding Language (XBL), and Resource Description Framework (RDF).

Gecko, Mozillas rendering engine, is used as part of the framework, along with other technologies such as X PConnect
and XPCOM, Mozilla's component model. The Mozilla devel opment framework also uses programming languages such
as JavaScript, C++, C, Python, and Interface Definition Language (IDL).

The Mozillaframework is used to create Netscape's Mozilla-based browsers (Netscape 6.x and 7.x), other browsers such
as Galeon and Camino, and chat clients like ChatZilla and JabberZilla. Devel opers also use Mozillato create
devel opment tools, browser enhancements, games, and other types of add-ons and applications.

This book explains how applications are created with Mozilla and provides step-by-step information that shows how to
create your own programs using Mozilla's powerful cross-platform development framework. It also includes exampl es of
different existing applications to demonstrate the possibilities of Mozilla devel opment.

1. Mozilla Background

When Netscape Communications Corporation was founded, it planned to create a better version of NCSA's Mosaic
browser, the first application that made accessing the Internet possible for ordinary users. This new application would be
aMosaic Killer. In time, the word "Mozilla" became the shortened version of this phrase and the code word for
Netscape's browsers.

Mozilla has become more than a reference to one of Netscape's products. On March 31, 1998, http://www.mozilla.org/
was launched as the site where the development of Netscape's next-generation Communicator 5.0 browser suite would
take place. At that point, Mozilla became an open source project and began to take on alife of its own beyond its origins
at Netscape.

When Netscape rel eased its Communicator code to the open source community, it did something that was never done
before: no other major software company had given away the source code to a proprietary product. At the time, many
people in the software industry and the press debated the wisdom of this decision.

Many other companies have followed Netscape's lead and released their own products to the open source community.
Sun Microsystems sponsors several projects, including http://www.openoffice.org/ and http://www.netbeans.org/. Apple
also bases the core of its new operating system on an open source project called Darwin, hosted at http://devel oper.apple.
com/darwin/.

A year after the Mozilla source code was rel eased, Mike Homer, a senior executive at Netscape, made the following
comments: "Mozillais larger than Netscape, and that was its intention. Mozillais essentially a collaborative project that
was sponsored by acommercial entity. Some of the people that staff mozilla.org are Netscape employees, and the code
that was contributed was code previously owned by Netscape. However, it's also true that the code base will take on alife

http://www.mozilla.org/
http://www.openoffice.org/
http://www.netbeans.org/
http://developer.apple.com/darwin/

of its own someday."

Since the project's launch, many people outside Netscape have joined the community, although many Netscape (now
AOL) employees still contribute to its advancement. The Mozilla community is growing beyond the original home of
mozilla.org. Other community resources worth examining include http://www.mozillazine.org/, an advocacy and news
site, and http://www.mozdev.org/, a project-hosting site for Mozilla applications.

Several companies, including IBM, Red Hat, ActiveState, and Sun Microsystems have also contributed to the Mozilla
community. For instance, Red Hat has provided support for Mozilla because it wants to help drive development of an
open source aternative to the closed source Netscape 4.x browser suite that they had included in their Linux distribution.
AOL has also explored the use of Mozillain its latest CompuServe and AOL clients.

Because all Mozilla source code is made available to anyone who isinterested, the community benefits from an increase
in the number of suggestions, bug reports, patches, and new developers. Along with the people who were involved with
the project when it wasfirst released as open source, the new people and companies that joined the community have

hel ped shape the direction and outcome of the Mozilla project.

Prev Home Next
Copyright The State of Mozilla

http://www.mozillazine.org/
http://www.mozdev.org/

Creating Applicationswith Mozilla
Prev Preface Next

2. The State of Mozilla

Mozilla 1.0 was released on June 5, 2002, after more than four years of development as an open source project. This book
was written so that all examples will work with this release and any 1.0.x maintenance release.

After the 1.0 release, two main development branches of Mozillawere created. The stable, long-lived 1.0 branch is
dedicated to fixing bugsin the code of the 1.0 release. From this branch, periodic maintenance releases are labeled as
Version 1.0.x. Every 1.0.x release is designed to be fully compatible with (though less buggy than) the original 1.0
release.

The other development branch is from the Mozilla CV S trunk. New releases from this development effort are labeled as 1.
x and may include new features, changes to architecture, or other additions that help Mozilla evolve as a project.

These new 1.x releases may not be fully compatible with applications created to work with Mozilla 1.0 and the 1.0.x
releases, but mozilla.org made a commitment to preserve frozen APl compatibility (including XUL and XBL syntax)
throughout the 1.x series until afuture 2.0 release. See http://www.mozilla.org/roadmap/mozilla-1.0.html for details.

Because Mozillaitself is under active development, applications built on the framework may be affected when new
versions of Mozillaare released. We recommend that you refer to mozilla.org's devel opment road map for the latest
information about the state of Mozilla; see http://www.mozilla.org/roadmap.html.

We a'so recommend that you use Mozilla 1.0.x versions when working with examples in this book. We encourage you to
use the latest 1.x release as well so you can stay involved with the latest and greatest that Mozilla has to offer.

I
s
3
o

Prev
Preface

Next
Who Should Read This Book

=

http://www.mozilla.org/roadmap/mozilla-1.0.html
http://www.mozilla.org/roadmap.html

Creating Applicationswith Mozilla
Prev Preface Next

3. Who Should Read This Book

Thisbook is primarily aimed at programmers (and would-be programmers) interested in exploring this brand-new
platform -- the Mozilla devel opment framework. However, you do not need to be a professional programmer to create
your own cross-platform Mozilla-based applications.

As shown in the coming chapters, all you need to get started is a basic understanding of afew technologies that are
aready familiar to most web developers: CSS, XML, and JavaScript. In fact, thisis one of the great advantagesto
developing a Mozilla-based application: the learning curve isn't as steep as most aternatives, such as C, C++, or even
Java.

Y our applications will be cross-platform automatically (although you can create platform-specific applications as well)
and easily installable over the Internet by anyone running Mozilla on their computer. What more could you ask for in a
development platform?

This book assumes that the reader has some level of familiarity with JavaScript, CSS, HTML, and XML. Reading this
book in conjunction with other books that are devoted specifically to these topics may be useful if you are not already
comfortable using these technologies. Some useful O'Reilly & Associatestitlesinclude JavaScript: The Definitive Guide,
Cascading Style Sheets: The Definitive Guide, HTML & DHTML: The Definitive Guide, Learning XML, and XML in a
Nutshell, Second Edition. Concepts and technologies that are new to Mozilla or used with Mozillain a new way are
explained in detail throughout the book.

This book also assumes that the reader has access to a computer with Mozilla 1.0 or later installed on it, plus any text
editor or word processor. Mozillaruns on almost any type of personal computer available today, so finding a compatible
platform shouldn't be difficult. The full system requirements for any Mozilla rel ease can be found on the mozilla.org site.

Prev Home Next
The State of Mozilla Platform and Applications

=

Creating Applicationswith Mozilla
Prev Preface Next

4. Platform and Applications

Some developers work on Mozilla to improve the way it functions and other developers use Mozilla to create new
applications. These two approaches reflect the dual nature of Mozilla as a development project and a framework for
creating applications, but the line between the two isn't always clear.

People often start developing an application with Mozilla and then notice away to make Mozillaitself work better, which
will in turn make their application work better. In these cases, the devel oper works on both Mozilla applications and the
Mozilla development framework that provides the plumbing those applications run on top of.

This distinction between platform and applicationsis important. This book provides in-depth information about
application development using Mozilla, but it does not directly describe anything relating to the development of Mozilla
itself.

If you are interested in learning how to become a Mozilla developer (and actually hacking the code), we can suggest a
couple of starting points. Getting Your Work Into Mozlla is an article written by two authors who chronicled their own
experiences about becoming a part of the Mozillacommunity, and is available at http://www.oreillynet.com/pub/a/
mozilla/2000/09/29/keys.html. Thereis also great information about getting started with development on Mozillafrom
the mozilla.org site at http://www.mozilla.org/get-i