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C.1. XUL Element Set
action -- Child element in a XUL template structure that draws content for matched data
arrowscrollbox -- Container box for scrolling contents
autorepeatbutton -- Provides arrows for a scrolling area
binding -- Child element in a XUL template that optionally matchesin the data
bindings -- Substructure in a XUL template that collects the optional binding rules
box -- Generic container and layout element
broadcaster -- Notifies el ements when a change occursin the Ul
broadcasterset -- Container for broadcaster elements
browser -- Web-content container
button -- A widget that activates some functionality when pressed




caption -- Provides heading for a groupbox element

checkbox -- Indicates a specified feature's on/off state

colorpicker -- Widget used to choose a color

column -- A columnin agrid

columns -- Container for the number of columnsin agrid

command -- Defines functionality that can be called from multiple sources
commands -- Container for a group of command sets

commandset -- A container for multiple command el ements
conditions -- Defines the conditions within atemplate rule

content -- Binds variablesin atemplate

deck -- Box container that displays one child element at atime
description -- Holder for block of text that can wrap to multiple lines
dialog -- Root element for secondary XUL window

dialogheader -- Styled text heading for Ul panel

editor -- Content area for editable web content

grid -- Widget for laying out content in a structured tabular fashion
arippy -- Visible widget used on a grippy bar to expand or collapse a Ul region
groupbox -- Box with frame surrounding it

hbox -- Box container whose children are laid out horizontally
iframe -- Web content area

image -- Display of a supported type image

key -- Definition for a keyboard shortcut

keybinding -- Container for akeyset or group of keysets

keyset -- Container for one or more key elements

label -- Simple text display element and label for a control element
listbox -- Used for display of aflat list of items

listcell -- Single cell of alistbox

listcol -- Listbox column definition

listcols -- Container for listbox columns (listcol)

listhead -- Container for column header in list boxes (listheader)
listheader -- Text header for listbox column

listitem -- Listbox row definition

member -- Matches container relationships in which the parent element is given by a container element

and the child by a child element
menu -- A menu element for containing menu items

menubar -- Containing element for one or more menus

menuitem -- Single selectable choice in amenu

menulist -- Drop-down list of selectable items

menupopup -- Pop-up container for menu items

menuseparator -- Line separating menu items

observes -- Broadcast event and attribute listener

overlay -- Root element in a separate file that contains reusable XUL content
page -- Root element of XUL file loaded in a content frame

popup -- Box container as child window

popupset -- Container for popup e ements

progressmeter -- Visual progress indicator of a time-consuming operation
radio -- Single on/off choice represented as selectable circle



radiogroup -- Framed box for containing radio elements
resizer -- Window-resizing element
row -- Container for grid cells laid out consecutively
rows -- Definition for grid rows
rule -- Definesrules for rendering data as XUL
script -- Declaration of script used in XUL file
scrollbar -- Widget for scrolling in a container
scrollbarbutton -- Button used to move position of scrollbar thumb
scrollbox -- Box for scrolling content
separator -- Bar between elements
slider -- A scrollbar without buttons
spacer -- Blank space separating el ement
splitter -- Element for dragging and resizing associated elements
stack -- Shows children one on top of one another, al at the same time
statusbar -- Box container for status elements
statusbarpanel -- Single unit of a statusbar
stringbundle -- Holder of localized properties for use in script
stringbundleset -- Container for stringbundle elements
tab -- A single selectable tab of atabbox
tabbox -- Box container for tab panels
tabbrowser -- Tabbed holder for a set of web content views
tabpanel -- A single panel of atabbox
tabpanels -- Container for tabpanel elements
tabs -- Container for tab elements
template -- A high-level widget used to build content dynamically from data
textbox -- Acceptstext input from user
thumb -- Object used to move content in scrollable area
toolbar -- Holder of buttons for quick-access Ul functionality
toolbarbutton -- Specially adapted button for use in atoolbar
toolbarseparator -- Visible separator for elements contained in a toolbar
toolbox -- Optional container for menu bars and toolbars
tooltip -- Pop-up window for context-sensitive help
tree -- Hierarchical holder of information represented as rows
treecell -- A singlecell in atree
treechildren -- The main body of atree; a container for treeitems
treecol -- A single column of atree
treecols -- Container for tree columns
treeitem -- A treerow container
treerow -- A single row of atree
triple -- Substructure of atemplate that matches RDF statements in the data
vbox -- Box container with vertically laid out children
window -- Root element of atop-level XUL window document
wizard -- Window used to step though a task
wizardpage -- A single pand (step) of awizard
C.2. XBL Element Set
binding -- A single XBL binding
bindings -- An XBL document's root element




body -- Container for JavaScript code to be executed by an XBL method

children -- Insertion point for children of abound element, or inherited binding

constructor -- Container for code to be executed when a binding is created

content -- Container for anonymous content to be inserted into a bound document

destructor -- Container for code to be executed when abinding is destroyed

element -- Insertion point for bound elements in anonymous content

field -- Holder property for smple data

getter -- Script access point for an element's property

handler -- Single event handler for an XBL element

handlers -- Container for event-handler elements

image -- An image resource in abinding

implementation -- Container for binding methods and properties

method -- Script function to be accessed on a binding object

parameter -- Single paramter declaration for a method

property -- Definition of a single binding object property

resources -- Container for list of resources that can be used by abinding

setter -- Change a binding property's value

stylesheet -- Captures an external stylesheet for use by anonymous content
C.3. Event Attributes

onblur -- //FIXME purpose should go here

onbroadcast -- //FIXME purpose should go here

onchange -- //FIXME purpose should go here

onclick -- //[FIXME purpose should go here

onclose -- /[FIXME purpose should go here

oncommand -- //FIXME purpose should go here

oncommandupdate -- //FIXME purpose should go here

oncontextmenu -- //FIXME purpose should go here

oncreate -- //FIXME purpose should go here

ondblclick -- //FIXME purpose should go here

ondestroy -- //FIXME purpose should go here

ondragdrop -- //FIXME purpose should go here

ondragenter -- //FIXME purpose should go here

ondragexit -- //FIXME purpose should go here

ondraggesture -- //[FIXME purpose should go here

ondragover -- //[FIXME purpose should go here

onfocus -- //FIXME purpose should go here

oninput -- //FIXME purpose should go here

onkeydown -- //FIXME purpose should go here

onkeypress -- //FIXME purpose should go here

onkeyup -- //FIXME purpose should go here

onload -- //FIXME purpose should go here

onmousedown -- //FIXME purpose should go here

onmousemove -- //FIXME purpose should go here

onmouseout -- //FIXME purpose should go here

onmouseover -- //[FIXME purpose should go here

onmouseup -- //FIXME purpose should go here

onoverflow -- //FIXME purpose should go here




onoverflowchanged -- //FIXME purpose should go here
onpopuphidden -- //FIXME purpose should go here
onpopuphiding -- //FIXME purpose should go here
onpopupshowing -- //FIXME purpose should go here
onpopupshown -- //FIXME purpose should go here
onselect -- //FIXME purpose should go here
onunderflow -- //FIXME purpose should go here
onunload -- //FIXME purpose should go here
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Preface

Mozillais not just aweb browser. It isalso aframework for building cross-platform applications using standards such as
Cascading Style Sheets (CSS), XML languages such as the XML -based User-interface Language (XUL), eXtensible
Binding Language (XBL), and Resource Description Framework (RDF).

Gecko, Mozillas rendering engine, is used as part of the framework, along with other technologies such as X PConnect
and XPCOM, Mozilla's component model. The Mozilla devel opment framework also uses programming languages such
as JavaScript, C++, C, Python, and Interface Definition Language (IDL).

The Mozillaframework is used to create Netscape's Mozilla-based browsers (Netscape 6.x and 7.x), other browsers such
as Galeon and Camino, and chat clients like ChatZilla and JabberZilla. Devel opers also use Mozillato create
devel opment tools, browser enhancements, games, and other types of add-ons and applications.

This book explains how applications are created with Mozilla and provides step-by-step information that shows how to
create your own programs using Mozilla's powerful cross-platform development framework. It also includes exampl es of
different existing applications to demonstrate the possibilities of Mozilla devel opment.

1. Mozilla Background

When Netscape Communications Corporation was founded, it planned to create a better version of NCSA's Mosaic
browser, the first application that made accessing the Internet possible for ordinary users. This new application would be
aMosaic Killer. In time, the word "Mozilla" became the shortened version of this phrase and the code word for
Netscape's browsers.

Mozilla has become more than a reference to one of Netscape's products. On March 31, 1998, http://www.mozilla.org/
was launched as the site where the development of Netscape's next-generation Communicator 5.0 browser suite would
take place. At that point, Mozilla became an open source project and began to take on alife of its own beyond its origins
at Netscape.

When Netscape rel eased its Communicator code to the open source community, it did something that was never done
before: no other major software company had given away the source code to a proprietary product. At the time, many
people in the software industry and the press debated the wisdom of this decision.

Many other companies have followed Netscape's lead and released their own products to the open source community.
Sun Microsystems sponsors several projects, including http://www.openoffice.org/ and http://www.netbeans.org/. Apple
also bases the core of its new operating system on an open source project called Darwin, hosted at http://devel oper.apple.
com/darwin/.

A year after the Mozilla source code was rel eased, Mike Homer, a senior executive at Netscape, made the following
comments: "Mozillais larger than Netscape, and that was its intention. Mozillais essentially a collaborative project that
was sponsored by acommercial entity. Some of the people that staff mozilla.org are Netscape employees, and the code
that was contributed was code previously owned by Netscape. However, it's also true that the code base will take on alife


http://www.mozilla.org/
http://www.openoffice.org/
http://www.netbeans.org/
http://developer.apple.com/darwin/

of its own someday."

Since the project's launch, many people outside Netscape have joined the community, although many Netscape (now
AOL) employees still contribute to its advancement. The Mozilla community is growing beyond the original home of
mozilla.org. Other community resources worth examining include http://www.mozillazine.org/, an advocacy and news
site, and http://www.mozdev.org/, a project-hosting site for Mozilla applications.

Several companies, including IBM, Red Hat, ActiveState, and Sun Microsystems have also contributed to the Mozilla
community. For instance, Red Hat has provided support for Mozilla because it wants to help drive development of an
open source aternative to the closed source Netscape 4.x browser suite that they had included in their Linux distribution.
AOL has also explored the use of Mozillain its latest CompuServe and AOL clients.

Because all Mozilla source code is made available to anyone who isinterested, the community benefits from an increase
in the number of suggestions, bug reports, patches, and new developers. Along with the people who were involved with
the project when it wasfirst released as open source, the new people and companies that joined the community have

hel ped shape the direction and outcome of the Mozilla project.
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2. The State of Mozilla

Mozilla 1.0 was released on June 5, 2002, after more than four years of development as an open source project. This book
was written so that all examples will work with this release and any 1.0.x maintenance release.

After the 1.0 release, two main development branches of Mozillawere created. The stable, long-lived 1.0 branch is
dedicated to fixing bugsin the code of the 1.0 release. From this branch, periodic maintenance releases are labeled as
Version 1.0.x. Every 1.0.x release is designed to be fully compatible with (though less buggy than) the original 1.0
release.

The other development branch is from the Mozilla CV S trunk. New releases from this development effort are labeled as 1.
x and may include new features, changes to architecture, or other additions that help Mozilla evolve as a project.

These new 1.x releases may not be fully compatible with applications created to work with Mozilla 1.0 and the 1.0.x
releases, but mozilla.org made a commitment to preserve frozen APl compatibility (including XUL and XBL syntax)
throughout the 1.x series until afuture 2.0 release. See http://www.mozilla.org/roadmap/mozilla-1.0.html for details.

Because Mozillaitself is under active development, applications built on the framework may be affected when new
versions of Mozillaare released. We recommend that you refer to mozilla.org's devel opment road map for the latest
information about the state of Mozilla; see http://www.mozilla.org/roadmap.html.

We a'so recommend that you use Mozilla 1.0.x versions when working with examples in this book. We encourage you to
use the latest 1.x release as well so you can stay involved with the latest and greatest that Mozilla has to offer.
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3. Who Should Read This Book

Thisbook is primarily aimed at programmers (and would-be programmers) interested in exploring this brand-new
platform -- the Mozilla devel opment framework. However, you do not need to be a professional programmer to create
your own cross-platform Mozilla-based applications.

As shown in the coming chapters, all you need to get started is a basic understanding of afew technologies that are
aready familiar to most web developers: CSS, XML, and JavaScript. In fact, thisis one of the great advantagesto
developing a Mozilla-based application: the learning curve isn't as steep as most aternatives, such as C, C++, or even
Java.

Y our applications will be cross-platform automatically (although you can create platform-specific applications as well)
and easily installable over the Internet by anyone running Mozilla on their computer. What more could you ask for in a
development platform?

This book assumes that the reader has some level of familiarity with JavaScript, CSS, HTML, and XML. Reading this
book in conjunction with other books that are devoted specifically to these topics may be useful if you are not already
comfortable using these technologies. Some useful O'Reilly & Associatestitlesinclude JavaScript: The Definitive Guide,
Cascading Style Sheets: The Definitive Guide, HTML & DHTML: The Definitive Guide, Learning XML, and XML in a
Nutshell, Second Edition. Concepts and technologies that are new to Mozilla or used with Mozillain a new way are
explained in detail throughout the book.

This book also assumes that the reader has access to a computer with Mozilla 1.0 or later installed on it, plus any text
editor or word processor. Mozillaruns on almost any type of personal computer available today, so finding a compatible
platform shouldn't be difficult. The full system requirements for any Mozilla rel ease can be found on the mozilla.org site.
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4. Platform and Applications

Some developers work on Mozilla to improve the way it functions and other developers use Mozilla to create new
applications. These two approaches reflect the dual nature of Mozilla as a development project and a framework for
creating applications, but the line between the two isn't always clear.

People often start developing an application with Mozilla and then notice away to make Mozillaitself work better, which
will in turn make their application work better. In these cases, the devel oper works on both Mozilla applications and the
Mozilla development framework that provides the plumbing those applications run on top of.

This distinction between platform and applicationsis important. This book provides in-depth information about
application development using Mozilla, but it does not directly describe anything relating to the development of Mozilla
itself.

If you are interested in learning how to become a Mozilla developer (and actually hacking the code), we can suggest a
couple of starting points. Getting Your Work Into Mozlla is an article written by two authors who chronicled their own
experiences about becoming a part of the Mozillacommunity, and is available at http://www.oreillynet.com/pub/a/
mozilla/2000/09/29/keys.html. Thereis also great information about getting started with development on Mozillafrom
the mozilla.org site at http://www.mozilla.org/get-i