
DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 1

EJB 3RD EDITION - Richard Monson-Haefel

Authors’ Note

In the winter of 1997 I was working on a distributed object project using Java
RMI. Not surprisingly, the project failed miserably because Java RMI didn’t
address performance, scalability, fail-over, security, and transactions; qualities of
service that are so vital in a production environment. Although that lesson was
not new for me—I had seen the same thing happen with CORBA—the timing of
the project was especially interesting. It was at that same time Enterprise
JavaBeans was first introduced by Sun Microsystems – had Enterprise
JavaBeans been available earlier, that same project probably would have
succeeded.

At the time I was working on that ill-fated Java RMI project, I was also writing a
column for JavaReport Online called the “The Cutting Edge”. The column
covered what were then, new Java technologies like Java Naming and Directory
Interface (JNDI) and the JavaMail API. I was actually looking for a new topic for
the 3rd edition of “The Cutting Edge”, when I discovered the first public draft of
Enterprise JavaBeans, version 0.8. I had first heard about this technology in 1996,
but this was the first time anything public has been available. Having worked on
CORBA, Java RMI and other distributed object technologies, I knew a good
thing when I saw it and immediately began writing an article about this new
“Enterprise JavaBeans”. Although the article in question has long since been
lost in the ether of the Internet, it was at that time the first article ever written on
Enterprise JavaBeans.

That seems like eons ago. Since I published that article in March 1998, literally
hundreds of articles have been written on Enterprise JavaBeans and several
books have come and gone on the subject. Over the past three years this book
has kept pace with three versions of the EJB specification and in its 3rd edition is
considered by many, to my enormous satisfaction, to be the best book on
Enterprise JavaBeans. As the newest version of the specification takes flight
and a slew of new books on the subject daybew I can’t help but remember the
days when the words “Enterprise JavaBeans” drew blank looks from just about
everyone. I’m glad those days are over.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 2

What Is Enterprise JavaBeans?

When Java™ was first introduced in the summer of 1995, most of the IT industry
focused on its graphical user interface characteristics and the competitive
advantage it offered in terms of distribution and platform independence. Those
were interesting times. The Applet was king, and only a few of us were
attempting to use it on the server side. I reality we spent about half our time
coding and the other half trying to convince management that Java was not a
fad.

Today, the focus has broadened considerably: Java has been recognized as an
excellent platform for creating enterprise solutions, specifically for developing
distributed server-side applications. This shift has much to do with Java’s
emerging role as a universal language for producing implementation-independent
abstractions for common enterprise technologies. The JDBC™ API is the first
and most familiar example. JDBC provides a vendor-independent Java interface
for accessing SQL relational databases. This abstraction has been so successful
that it’s difficult to find a relational database vendor that doesn’t support JDBC.
Java abstractions for enterprise technologies have expanded considerably to
include JNDI (Java Naming and Directory Interface™) for abstracting directory
services, JTA (Java Transaction API) for abstracting access to transaction
managers, JMS™ (Java Messaging Service) for abstracting access to different
message-oriented middleware products, and so on.

Enterprise JavaBeans™ was first introduced as a draft specification in late 1997
and has since established itself as one of the most important Java enterprise
technologies provided by Sun Microsystems. Enterprise JavaBeans (EJB)
provides an abstraction for component transaction monitors (CTMs).
Component transaction monitors represent the convergence of two technologies:
traditional transaction processing monitors, such as CICS, TUXEDO, and Encina,
and distributed object services, such as CORBA (Common Object Request
Broker Architecture), DCOM, and native Java RMI. Combining the best of both
technologies, component transaction monitors provide a robust, component-
based environment that simplifies distributed development while automatically
managing the most complex aspects of enterprise computing, such as object
brokering, transaction management, security, persistence, and concurrency.

Enterprise JavaBeans (EJB) defines a server-side component model that allows
business objects to be developed and moved from one brand of EJB container to
another. A component (an enterprise bean) presents a simple programming model
that allows the developer to focus on its business purpose. An EJB server is
responsible for making the component a distributed object and for managing
services such as transactions, persistence, concurrency, and security. In
addition to defining the bean’s business logic, the developer defines the bean’s
runtime attributes in a way that is similar to choosing the display properties of
visual widgets. The transactional, persis tence, and security behaviors of a
component can be defined by choosing from a list of properties. The end result is

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 3

that Enterprise JavaBeans makes developing distributed component systems that
are managed in a robust transactional environment much easier. For developers
and corporate IT shops that have struggled with the complexities of delivering
mission-critical, high-performance distributed systems using CORBA, DCOM, or
Java RMI, Enterprise JavaBeans provides a far simpler and more productive
platform on which to base development efforts.

When Enterprise JavaBeans 1.0 was finalized in 1998, it quickly become a de
facto industry standard. Many vendors announced their support even before the
specification was finalized. Since that time Enterprise JavaBeans has been
enhanced twice: The specification was first updated in 1999 to version 1.1, which
was covered by the 2nd edition. The most recent revision to the specification,
version 2.0, is covered by this, the 3rd edition of O’Reilly’s EJB book. This 3rd

edition also covers EJB 1.1, which is for the most part a subset of functionality
offered by EJB 2.0.

Products that conform to the EJB standard have come from every sector of the IT
industry, including the TP monitor, CORBA ORB, application server, relational
database, object database, and web server industries. Some of these products are
based on proprietary models that have been adapted to EJB; many more
wouldn’t even exist without EJB.

In short, Enterprise JavaBeans 2.0 and 1.1 provides a standard distributed
component model that greatly simplifies the development process and allows
beans that are developed and deployed on one vendor’s EJB server to be easily
deployed on a different vendor’s EJB server. This book will provide you with the
foundation you need to develop vendor-independent EJB solutions.

Who Should Read This Book?

This book explains and demonstrates the fundamentals of the Enterprise
JavaBeans 2.0 and 1.1 architecture. Although EJB makes distributed computing
much simpler, it is still a complex technology that requires a great deal of time to
master. This book provides a straightforward, no-nonsense explanation of the
underlying technology, Java classes and interfaces, component model, and
runtime behavior of Enterprise JavaBeans. It includes material that is backward
compatible with EJB 1.1 and provides special notes and chapters when there are
significant differences between 1.1 and 2.0.

Although this book focuses on the fundamentals, it’s no “dummies” book.
Enterprise JavaBeans embodies an extremely complex and ambitious enterprise
technology. While using EJB may be fairly simple, the amount of work required
to truly understand and master EJB is significant. Before reading this book, you
should be fluent with the Java language and have some practical experience
developing business solutions. Experience with distributed object systems is not
a must, but you will need some experience with JDBC (or at least an

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 4

understanding of the basics) to follow the examples in this book. If you are
unfamiliar with the Java language, I recommend that you pick up a copy of
Learning Java™ by Patrick Neimeyer and Jonathan Knudsen, formerly
Exploring Java™, (O’Reilly). If you are unfamiliar with JDBC, I recommend
Database Programming with JDBC™ and Java™, 2 nd Edition by George Reese
(O’Reilly). If you need a stronger background in distributed computing, I
recommend Java™ Distributed Computing by Jim Farley (O’Reilly).

Organization

Here’s how the book is structured. The first three chapters are largely
background material, placing Enterprise JavaBeans 2.0 and 1.1 in the context of
related technologies, and explaining at the most abstract level how the EJB
technology works and what makes up an enterprise bean. Chapters 4 through 13
go into detail about developing enterprise beans of various types. Chapters 14
and 15 could be considered “advanced topics,” except that transactions
(Chapter 14) are essential to everything that happens in enterprise computing,
and design strategies (Chapter 15) help you deal with a number of real-world
issues that influence bean design. Chapter 16 describes in detail the XML
deployment descriptors used in EJB 2.0 and 1.1. Finally, Chapter 17 is an
overview of the Java™ 2, Enterprise Edition (J2EE) includes Servlets, JSP and
EJB.

Chapter 1, Introduction
This chapter defines component transaction monitors and explains how they
form the underlying technology of the Enterprise JavaBeans component
model.

Chapter 2, Architectural Overview
This chapter defines the architecture of the Enterprise JavaBeans
component model and examines the difference between the three basic types
of enterprise beans: entity beans, session beans, and message-driven beans.

Chapter 3, Resource Management and the Primary Services
This chapter explains how the EJB-compliant server manages an enterprise
bean at runtime.

Chapter 4, Developing Your First Enterprise Beans
This chapter walks the reader through the development of some simple
enterprise beans.

Chapter 5, The Client View
This chapter explains in detail how enterprise beans are accessed and used
by a remote client application.

Chapter 6, EJB 2.0 CMP: Basic Persistence
This chapter provides an explanation of how to develop basic container-
managed entity beans in EJB 2.0

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 5

Chapter 7, EJB 2.0 CMP: Entity Relationships
This chapter picks up where Chapter 6 left off, expanding your
understanding of container-managed persistence to complex bean-to-bean
relationships

Chapter 8, EJB 2.0 CMP: EJB QL
This chapter addresses the Enterprise JavaBeans Query Language (EJB QL),
which is used to query EJBs and locate specific entity beans in EJB 2.0
container-managed persistence.

Chapter 9, EJB 1.1: Container-Managed Persistence
This chapter covers EJB 1.1 container-managed persistence, which is
supported in EJB 2.0 for backward compatibility. Read this chapter only if
you need to support legacy EJB applications.

Chapter 10, Bean-Managed Persistence
This chapter covers the development of bean-managed persistence beans
including when to store, load, and remove data from the database.

Chapter 11, Entity-Container Contract
This chapter covers the general protocol between an entity bean and its
container at runtime and applies to container-managed persistence in EJB 2.0
and 1.1, as well as bean-managed persistence.

Chapter 12, Session Beans
This chapter shows how to develop stateless and stateful session beans.

Chapter 13, Message-Driven Beans
This chapter shows how to develop message-driven beans in EJB 2.0.

Chapter 14, Transactions
This chapter provides an in-depth explanation of transactions and describes
the transactional model defined by Enterprise JavaBeans.

Chapter 15, Design Strategies
This chapter provides some basic design strategies that can simplify your
EJB development efforts and make your EJB system more efficient.

Chapter 16, XML Deployment Descriptors
This chapter provides an in-depth explanation of the XML deployment
descriptors used in EJB 1.1 and 2.0.

Chapter 17, Java 2, Enterprise Edition
This chapter provides an overview of the Java 2, Enterprise Edition 1.3 and
explains how 2.0 fits into this new platform.

Appendix A, The Enterprise JavaBeans API
This appendix provides a quick reference to the classes and interfaces
defined in the EJB packages.

Appendix B, State and Sequence Diagrams
This appendix provides diagrams that clarify the life cycle of enterprise
beans at runtime.

Appendix C, EJB Vendors
This appendix provides information about the vendors of EJB servers.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 6

Software and Versions

This book covers Enterprise JavaBeans version 2.0 and version 1.1, including all
optional features. It uses Java language features from the Java 1.2 platform and
JDBC. Because the focus of this book is to develop vendor-independent
Enterprise JavaBeans components and solutions, I have stayed away from
proprietary extensions and vendor- dependent idioms. Any EJB-compliant server
can be used with this book; you should be familiar with that server’s specific
installation, deployment, and runtime management procedures to work with the
examples.

This book covers both EJB 2.0 and EJB 1.1. These two versions have a lot in
common, but when they differ, chapters, or text with in a chapter, that specific to
each version is clearly marked. Feel free to skip version-specific sections that do
not concern you. Unless indicated, the source code in this book has been written
for both EJB 2.0 and 1.1

Examples developed in this book are available from
ftp://ftp.oreilly.com/pub/examples/java/ejb . The examples are organized by
chapter.

Example Workbooks

Although EJB applications themselves are portable, the manor in which you
install and run EJB products vary wildly from one vendor to the next. For this
reason its nearly impossible to cover all the EJB products available, so we have
chosen a radical but very effective way to address these differences:
Workbooks.

To help you deploy the book examples in different EJB products, the author will
publish several free “workbooks” which are used along with this book to run the
examples on specific commercial and non-commercial EJB servers. The workbook
for a specific product will address that products most advanced server. So for
example, if the vendor supports EJB 2.0, then the examples in the workbook will
address EJB 2.0 features. If, on the other hand, the vendor only supports EJB 1.1,
then the examples in the workbook will be specific to EJB 1.1.

Although there are plans to publish workbooks for as many different EJB server,
at least two workbooks will be made available immediately. These workbooks are
free on-line in PDF format. The workbooks are all available at
http://www.oreilly.com/catalog/entjbeans3/ or http://www.monson-haefel.com.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 7

Conventions

Italic is used for:

• Filenames and pathnames

• Hostnames, domain names, URLs, and email addresses

• New terms where they are defined

Constant width is used for:

• Code examples and fragments

• Class, variable, and method names, and Java keywords used within the text

• SQL commands, table names, and column names

• XML elements and tags

Constant width bold is used for emphasis in some code examples.

Constant width italic is used to indicate text that is replaceable. For
example, in BeanNamePK, you would replace BeanName with a specific bean
name.

An Enterprise JavaBean consists of many parts; it’s not a single object, but a
collection of objects and interfaces. To refer to an Enterprise JavaBean as a
whole, we use the name of its business name in Roman type followed by the
acronym, EJB (Enterprise JavaBean). For example, we will refer to the Customer
EJB when we want to talk about the enterprise bean in general. If we put the
name in a constant width font, we are referring explicitly to the bean’s remote
interface. So CustomerRemote is the remote interface that defines the
business methods of the Customer EJB.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

You can also send us messages electronically. To be put on our mailing list or to
request a catalog, send email to:

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 8

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we’ll list errata and any plans for future
editions. You can access this page at:

http://www.oreilly.com/catalog/entjbeans2/

For more information about this book and others, see the O’Reilly web site at:

http://www.oreilly.com/

The author maintains a web site for the discussion of EJB and related distributed
computing technologies (http://www.ejbnow.com). EJBNow.com provides news
about this book as well as code tips, articles, and an extensive list of links to EJB
resources.

Acknowledgments

While there is only one name on the cover of this book, the credit for its
development and delivery is shared by many individuals. Michael Loukides, my
editor, was pivotal to the success of every edition of this book. Without his
experience, craft, and guidance, this book would not have been possible.

Many expert technical reviewers helped ensure that the material was technically
accurate and true to the spirit of Enterprise JavaBeans. Of special note are David
Chappell of David Chappell & Associates, Jim Farley, author of Java™
Distributed Computing (O’Reilly, 1998), Greg Nyberg of ObjectPartners, Prasad
Muppirala and Shannon Pieper of BORN Information Services, …………. They
contributed greatly to the technical accuracy of this book and brought a
combination of industry and real-world experience to bear, helping to make this
one of the best books on Enterprise JavaBeans published today.

Special thanks also go to Sriram Srinivasan of BEA, Anne Thomas of Sun
Microsystems, and Ian McCallion of IBM Hursley, Tim Rohaly of jGuru.com,
James D. Frentress of ITM Corp., Andrzej Jan Taramina of Accredo Systems,
Marc Loy, co-author of Java™ Swing (O’Reilly, 1998), Don Weiss of Step 1,
Mike Slinn of The Dialog Corporation, and Kevin Dick of Kevin Dick &
Associates. The contributions of these technical experts were critical to the
technical and conceptual accuracy of earlier editions of this book. Others I would
like to thank include Maggie Mezquita, Greg Hartzel, John Klug and Jon Jamsa of
BORN Information who all suffered though the first draft of the first edition so
long ago to provide valuable feedback.

Thanks also to Vlad Matena and Mark Hapner of Sun Microsystems, the primary
architects of Enterprise JavaBeans; Linda DeMichiel, EJB 2.0 specification lead;

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 9

and Bonnie Kellett J2EE Program Manager – they were all willing to answer
several of my most complex questions. Thanks to all the participants in the EJB-
INTEREST mailing list hosted by Sun Microsystems for their interesting and
sometimes controversial, but always informative, postings over the past four
years.

Finally, the most sincere gratitude must be extended to my wife, Hollie, for
supporting and assisting me through three years of painstaking research and
writing which were required to produce three editions of this book. Without her
unfailing support and love, this book would not have been completed.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

1

Introduction

This book is about Enterprise JavaBeans 1.1 and 2.0 the second and third versions of the
Enterprise JavaBeans specification. Just as the Java platform has revolutionized the way
we think about software development, Enterprise JavaBeans has revolutionized the way
we think about developing mission-critical enterprise software. It combines server-side
components with distributed object technologies and asynchronous messaging to greatly
simplify the task of application development. It automatically takes into account many of
the requirements of business systems: security, resource pooling, persistence,
concurrency, and transactional integrity.

This book shows you how to use Enterprise JavaBeans to develop scalable, portable
business systems. But before we can start talking about EJB itself, we’ll need a brief
introduction to the technologies addressed by EJB, such as component models,
distributed objects, component transaction monitors (CTMs), and asynchronous
messaging. It’s particularly important to have a basic understanding of component
transaction monitors, the technology that lies beneath EJB. In Chapters 2 and 3, we’ll start
looking at EJB itself and see how enterprise beans are put together. The rest of this book
is devoted to developing enterprise beans for an imaginary business and dis cussing
advanced issues.

It is assumed that you’re already familiar with Java; if you’re not, Exploring Java™ by
Patrick Niemeyer and Josh Peck is an excellent introduction. This book also assumes that

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

you’re conversant in the JDBC API, or at least SQL. If you’re not familiar with JDBC, see
Database Programming with JDBC™ and Java™, 2 nd Edition, by George Reese.

One of Java’s most important features is platform independence. Since it was first
released, Java has been marketed as “write once, run anywhere.” While the hype has got-
ten a little heavy-handed at times, code written with Sun’s Java programming language is
remarkably platform independent. Enterprise JavaBeans isn’t just platform independent—
it’s also implementation independent. If you’ve worked with JDBC, you know a little about
what this means. Not only can the JDBC API run on a Windows machine or on a Unix
machine, it can also access relational databases of many different vendors (DB2, Oracle,
Sybase, SQLServer, etc.) by using different JDBC drivers. You don’t have to code to a
particular database implementation; just change JDBC drivers and you change databases.
It’s the same with Enterprise JavaBeans. Ideally, an Enterprise JavaBeans component, an
enterprise bean, can run in any application server that implements the Enterprise
JavaBeans (EJB) specification.1 This means that you can develop and deploy your EJB
business system in one server, such as Orion , and later move it to a different EJB server,
such as Pramati, BEA’s WebLogic, IBM’s WebSphere, or open source projects like
OpenEJB, JOnAS, and JBoss. Implementation independence means that your business
components are not dependent on the brand of server, which means there are more
options before you begin development, during development, and after deployment.

Setting the Stage

Before defining Enterprise JavaBeans more precisely, let’s set the stage by discussing a
number of important concepts: distributed objects, business objects, and component
transaction monitors and asynchronous messaging.

Distributed Objects

Distributed computing allows a business system to be more accessible. Distributed sys-
tems allow parts of the system to be located on separate computers, possibly in many dif-
ferent locations, where they make the most sense. In other words, distributed computing
allows business logic and data to be reached from remote locations. Customers, business
partners, and other remote parties can use a business system at any time from almost any-
where. The most recent development in distributed computing is distributed objects. Dis-

1 Provided that the bean components and EJB servers comply with the specification and no
proprietary functionality is used in development.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

tributed object technologies such as Java RMI, CORBA, and Microsoft’s .NET allow
objects running on one machine to be used by client applications on different computers.

Distributed objects evolved from a legacy form of three-tier architecture, which is used in
TP monitor systems such as IBM’s CICS or BEA’s TUXEDO. These systems separate the
presentation, business logic, and database into three distinct tiers (or layers). In the past,
these legacy systems were usually composed of a “green screen” or dumb terminals for
the presentation tier (first tier), COBOL or PL/1 applications on the middle tier (second
tier), and some sort of database, such as DB2, as the backend (third tier). The introduction
of distributed objects in recent years has given rise to a new form of three-tier
architecture. Distributed object technologies make it possible to replace the procedural
COBOL and PL/1 applications on the middle tier with business objects. A three-tier dis-
tributed business object architecture might have a sophisticated graphical or web based
interface, business objects on the middle tier, and a relational or some other database on
the backend. More complex architectures are often used in which there are many tiers:
different objects reside on different servers and interact to get the job done. Creating
these n- tier architectures with Enterprise JavaBeans is relatively easy.

Server-Side Components

Object-oriented languages, such as Java, C++, and Smalltalk, are used to write software
that is flexible, extensible, and reusable—the three axioms of object-oriented development.
In business systems, object-oriented languages are used to improve development of
GUIs, to simplify access to data, and to encapsulate the business logic. The encapsulation
of business logic into business objects has become is a fairly recent focus in the infor-
mation technology industry. Business is fluid, which means that a business’s products,
processes, and objectives evolve over time. If the software that models the business can
be encapsulated into business objects, it becomes flexible, extensible, and reusable, and
therefore evolves as the business evolves.

A server-side component model may define an architecture for developing distributed
business objects. They combine the accessibility of distributed object systems with the
fluidity of objectified business logic. Server-side component models are used on the
middle-tier application servers, which manage the components at runtime and make them
available to remote clients. They provide a baseline of functionality that makes it easy to
develop distributed business objects and assemble them into business solutions.

Server-side components can also be used to model other aspects of a business system,
such as presentation and routing. The Java Servlet for example is a server-side
component that is used to generate HTML and XML data for presentation layer of a
three-tier architecture. The EJB 2.0 message-driven beans, which are discussed later, are a

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

server-side components that is used for routing asynchronous messages from one source
to another.

Server-side components, like other components, can be bought and sold as independent
pieces of executable software. They conform to a standard component model and can be
executed without direct modification in a server that supports that component model.
Server-side component models often support attribute-based programming, which allows
the runtime behavior of the component to be modified when it is deployed, without having
to change the programming code in the component. Depending on the component model,
the server administrator can declare a server-side component’s transactional, security, and
even persistence behavior by setting these attributes to specific values.

As an organization’s services, products and operating procedures evolve, server-side
components can be reassembled, modified, and extended so that the business system
reflects those changes. Imagine a business system as a collection of server-side
components that model concepts like customers, products, reservations, and warehouses.
Each component is like a Lego block that can be combined with other components to build
a business solution. Products can be stored in the warehouse or delivered to a customer;
a customer can make a reservation or purchase a product. You can assemble components,
take them apart, use them in different combinations, and change their definitions. A
business system based on server-side components is fluid because it is objectified, and it
is accessible because the components can be distributed.

Component Transaction Monitors

A new breed of software called application servers has recently evolved to manage the
complexities associated with developing business systems in today’s Internet world. An
application server is often made up of some combination of several different technologies,
including web servers, ORBs, MOM (message-oriented middleware), databases, and so
forth. An application server can also focus on one technology, such as distributed
objects. Application servers that are based on distributed objects vary in sophistication.
The simplest facilitate connectivity between the client applications and the distributed
objects and are called object request brokers (ORBs). ORBs allow client applications to
locate and use distributed objects easily. ORBs, however, have frequently proven to be
inadequate in high-volume transactional environments. ORBs provide a communication
backbone for distributed objects, but they fail to provide the kind of robust infrastructure
that is needed to handle larger user populations and mission-critical work. In addition,
ORBs provide a fairly crude server-side component model that places the burden of
handling transactions, concurrency, persistence, and other system-level considerations
on the shoulders of the application developer. These services are not automatically

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

supported in an ORB. Application developers must explicitly access these services (if
they are available) or, in some cases, develop them from scratch.

Early in 1999, Anne Manes2 coined the term component transaction monitor (CTM) to
describe the most sophisticated distributed object application servers. CTMs evolved as a
hybrid of traditional TP monitors and ORB technologies. They implement robust server-
side component models that make it easier for developers to create, use, and deploy
business systems. CTMs provide an infrastructure that can automatically manage
transactions, object distribution, concurrency, security, persis tence, and resource
management. They are capable of handling huge user populations and mission-critical
work, but also provide value to smaller systems because they are easy to use. CTMs are
the ultimate application server. Other terms for these kinds of technology include object
transaction monitor (OTM), component transaction server, distributed component server,
COMware, and so forth. This book uses the term “component transaction monitor”
because it embraces the three key characteristics of this technology: the use of a
component model, the focus on transactional management, and the resource and service
management typically associated with monitors.

Enterprise JavaBeans: Defined

Sun Microsystems’ definition of Enterprise JavaBeans is:

The Enterprise JavaBeans architecture is a component architecture for the development
and deployment of component-based distributed business applications. Applications
written using the Enterprise JavaBeans architecture are scalable, transactional, and multi-
user secure. These applications may be written once, and then deployed on any server
platform that supports the Enterprise JavaBeans specification.3

Wow! Now that’s a mouthful and not atypical of how Sun defines many of its Java tech-
nologies—have you ever read the definition of the Java language itself? It’s about twice
as long. This book offers a shorter definition:

2 At the time that Ms. Manes coined the term she worked for the Patricia Seybold Group under her
maiden name, Anne Thomas. Ms. Manes is now the Directory of Business Strategy for Sun
Microsystems, Sun Software division.

3 Sun Microsystems’ Enterprise JavaBeans™ Specification, v2.0, Copyright 2001 by Sun
Microsystems, Inc.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

Enterprise JavaBeans is a standard server-side component model for component transac-
tion monitors.

We have already set the stage for this definition by briefly defining the terms distributed
objects, server-side components, and component transaction monitors. To provide you
with a complete and solid foundation for learning about Enterprise JavaBeans, this chap-
ter will now expand on these definitions.

If you already have a clear understanding of distributed objects, transaction monitors,
CTMs, and asynchronous messaging feel free to skip the rest of this chapter an move on
to chapter 2.

Distributed Object Architectures

EJB is a component model for component transaction monitors, which are based on dis-
tributed object technologies. Therefore, to understand EJB you need to understand how
distributed objects work. Distributed object systems are the foundation for modern three-
tier architectures. In a three-tier architecture, as shown in Figure 1-1, the presentation logic
resides on the client (first tier), the business logic on the middle tier (second tier), and
other resources, such as the database, reside on the backend (third tier).

[FIGURE]

Figure 1-1: Three-tier architecture

All distributed object protocols are built on the same basic architecture, which is designed
to make an object on one computer look like it’s residing on a different computer. Dis-
tributed object architectures are based on a network communication layer that is really
very simple. Essentially, there are three parts to this architecture: the business object, the
skeleton, and the stub.

The business object is the business object that resides on the middle tier. It's an instance
of an object that models the state and business logic of some real-world concept, like
person, order, account. Every business object class has matching stub and skeleton
classes built specifically for that type of business object. So, for example, a distributed
business object called Person would have matching Person_Stub and
Person_Skeleton classes. As shown in Figure 1-3, the business object and skeleton
reside on the middle tier, and the stub resides on the client.

The stub and the skeleton are responsible for making the business object, which lives on
the middle tier, look as if it is running locally on the client machine. This is accomplished

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

through some kind of remote method invocation (RMI) protocol. An RMI protocol is
used to communicate method invocations over a network. CORBA, Java RMI, and
Microsoft .NET all use their own RMI protocol.4 Every instance of the business object on
the middle tier is wrapped by an instance of its matching skeleton class. The skeleton is
set up on a port and IP address and listens for requests from the stub, which resides on
the client machine and is connected via the network to the skeleton. The stub acts as the
business object’s surrogate on the client and is responsible for communicating requests
from the client to the business object through the skeleton. Figure 1-3 illustrates the
process of communicating a method invocation from the client to the server object and
back. The stub and the skeleton hide the communication specifics of the RMI protocol
from the client and the implementation class, respectively.

[FIGURE]

Figure 1-2: RMI loop

The business object implements a public interface that declares its business methods. The
stub implements the same interface as the business object, but the stub’s methods do not
contain business logic. Instead, the business methods on the stub implement whatever
networking operations are required to forward the request to the business object and
receive the results. When a client invokes a business method on the stub, the request is
communicated over the network by streaming the name of the method invoked, and the
values passed in as parameters, to the skeleton. When the skeleton receives the incoming
stream, it parses the stream to discover which method is requested, and then invokes the
corresponding business method on the business object. Any value that is returned from
the method invoked on the business object is streamed back to the stub by the skeleton.
The stub then returns the value to the client application as if it had processed the
business logic locally.

Rolling Your Own Distributed Object

The best way to illustrate how distributed objects work is to show how you can implement
a distributed object yourself, with your own distributed object protocol. This will give you
some appreciation for what a true distributed object protocol like CORBA does. Actual
distributed object systems such as DCOM, CORBA, and Java RMI are, however, much
more complex and robust than the simple example we will develop here. The dis tributed
object system we develop in this chapter is only illustrative; it is not a real technology,

4 The acronym RMI isn’t specific to Java RMI. This section uses the term RMI to describe distributed
object protocols in general. Java RMI is the Java language version of a distributed object protocol.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

nor is it part of Enterprise JavaBeans. The purpose is to provide you with some
understanding of how a more sophisticated distributed object system works.

Here’s a very simple distributed business object called PersonServer that implements
the Person interface. The Person interface captures the concept of a person business
object. It has two business methods: getAge() and getName(). In a real application,
we would probably define many more behaviors for the Person business object, but two
methods are enough for this example:

public interface Person {
 public int getAge() throws Throwable;
 public String getName() throws Throwable;
}

The implementation of this interface, PersonServer, doesn’t contain anything at all
surprising. It defines the business logic and state for a Person:

public class PersonServer implements Person {
 int age;
 String name;

 public PersonServer(String name, int age){
 this.age = age;
 this.name = name;
 }
 public int getAge(){
 return age;
 }
 public String getName(){
 return name;
 }
}

Now we need some way to make the PersonServer available to a remote client. That’s
the job of the Person_Skeleton and Person_Stub. The Person interface
describes the concept of a person independent of implementation. Both the Person-
Server and the Person_Stub implement the Person interface because they are both
expected to support the concept of a person. The PersonServer implements the
interface to provide the actual business logic and state; the Person_Stub implements
the interface so that it can look like a Person business object on the client and relay
requests back to the skeleton, which in turn sends them to the object itself. Here’s what
the stub looks like:

import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

import java.net.Socket;

public class Person_Stub implements Person {
 Socket socket;

 public Person_Stub() throws Throwable {
 /* Create a network connection to the skeleton.
 Use "localhost" or the IP Address of the skeleton
 if it's on a different machine. */
 socket = new Socket("localhost",9000);
 }
 public int getAge() throws Throwable {
 // When this method is invoked, stream the method name to the
 // skeleton.
 ObjectOutputStream outStream =
 new ObjectOutputStream(socket.getOutputStream());
 outStream.writeObject("age");
 outStream.flush();
 ObjectInputStream inStream =
 new ObjectInputStream(socket.getInputStream());
 return inStream.readInt();
 }
 public String getName() throws Throwable {
 // When this method is invoked, stream the method name to the
 // skeleton.
 ObjectOutputStream outStream =
 new ObjectOutputStream(socket.getOutputStream());
 outStream.writeObject("name");
 outStream.flush();
 ObjectInputStream inStream =
 new ObjectInputStream(socket.getInputStream());
 return (String)inStream.readObject();
 }
}

When a method is invoked on the Person_Stub, a String token is created and
streamed to the skeleton. The token identifies the method that was invoked on the stub.
The skeleton parses the method-identifying token, invokes the corresponding method on
the business object, and streams back the result. When the stub reads the reply from the
skeleton, it parses the value and returns it to the client. From the client’s perspective, the
stub processed the request locally. Now let’s look at the skeleton:

import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.net.Socket;

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

import java.net.ServerSocket;

public class Person_Skeleton extends Thread {
 PersonServer myServer;

 public Person_Skeleton(PersonServer server){
 // Get a reference to the business object that this skeleton wraps.
 this.myServer = server;
 }
 public void run(){
 try {
 // Create a server socket on port 9000.
 ServerSocket serverSocket = new ServerSocket(9000);
 // Wait for and obtain a socket connection from stub.
 Socket socket = serverSocket.accept();
 while (socket != null){
 // Create an input stream to receive requests from stub.
 ObjectInputStream inStream =
 new ObjectInputStream(socket.getInputStream());
 // Read next method request from stub. Block until request is
 // sent.
 String method = (String)inStream.readObject();
 // Evaluate the type of method requested.
 if (method.equals("age")){
 // Invoke business method on server object.
 int age = myServer.getAge();
 // Create an output stream to send return values back to
 // stub.
 ObjectOutputStream outStream =
 new ObjectOutputStream(socket.getOutputStream());
 // Send results back to stub.
 outStream.writeInt(age);
 outStream.flush();
 } else if(method.equals("name")){
 // Invoke business method on server object.
 String name = myServer.getName();
 // Create an output stream to send return values back to
 // the stub.
 ObjectOutputStream outStream =
 new ObjectOutputStream(socket.getOutputStream());
 // Send results back to stub.
 outStream.writeObject(name);
 outStream.flush();
 }

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

 }
 } catch(Throwable t) {t.printStackTrace();System.exit(0); }
 }
 public static void main(String args []){
 // Obtain a unique instance Person.
 PersonServer person = new PersonServer("Richard", 36);
 Person_Skeleton skel = new Person_Skeleton(person);
 skel.start();
 }
}

The Person_Skeleton routes requests received from the stub to the business object,
PersonServer. Essentially, the Person_Skeleton spends all its time waiting for
the stub to stream it a request. Once a request is received, it is parsed and delegated to the
corresponding method on the PersonServer. The return value from the business
object is then streamed back to the stub, which returns it as if it was processed locally.

Now that we’ve created all the machinery, let’s look at a simple client that makes use of
the Person:

public class PersonClient {
 public static void main(String [] args){
 try {
 Person person = new Person_Stub();
 int age = person.getAge();
 String name = person.getName();
 System.out.println(name+" is "+age+" years old");
 } catch(Throwable t) {t.printStackTrace();}
 }
}

This client application shows how the stub is used on the client. Except for the instantia-
tion of the Person_Stub at the beginning, the client is unaware that the Person busi-
ness object is actually a network proxy to the real business object on the middle tier. In
Figure 1-5, the RMI loop diagram is changed to represent the RMI process as applied to
our code.

[FIGURE]

Figure 1-3: RMI Loop with Person business object

As you examine Figure 1-5, notice how the RMI loop was implemented by our distributed
Person object. RMI is the basis of distributed object systems and is responsible for
making distributed objects location transparent. Location transparency means that a
server object’s actual location—usually on the middle tier—is unknown and unimportant

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

to the client using it. In this example, the client could be located on the same machine or
on a different machine very far away, but the client’s interaction with the business object
is the same. One of the biggest benefits of distributed object systems is location transpar-
ency. Although transparency is beneficial, you cannot treat distributed objects as local
objects in your design because of the performance differences. This book will provide you
with good distributed object design strategies that take advantage of transparency while
maximizing the distributed system’s performance.

When this book talks about the stub on the client, we will often refer to it as a remote ref-
erence to the business object. This allows us to talk more directly about the business
object and its representation on the client.

Distributed object protocols such as CORBA, DCOM, and Java RMI provide a lot more
infrastructure for distributed objects than the Person example. Most implementations of
distributed object protocols provide utilities that automatically generate the appropriate
stubs and skeletons for business objects. This eliminates custom development of these
constructs and allows a lot more functionality to be included in the stub and skeleton.

Even with automatic generation of stubs and skeletons, the Person example hardly
scratches the surface of a sophisticated distributed object protocol. Real world protocols
like Java RMI and CORBA IIOP provide error and exception handling, parameter passing,
and other services like the passing of transaction and security context. In addition,
distributed object protocols support much more sophisticated mechanisms for connecting
the stub to the skeleton; the direct stub-to-skeleton connection in the Person example is
fairly primitive.

Real distributed object protocols, like CORBA, also provide an Object Request Broker
(ORB), which allows clients to locate and communicate with distributed objects across the
network. ORBs are the communication backbone, the switchboard, for distributed objects.
In addition to handling communications, ORBs generally use a naming system for locating
objects and many other features such as reference passing, distributed garbage collection,
and resource management. However, ORBs are limited to facilitating communication
between clients and distributed business objects. While they may support services like
transaction management and security, use of these services is not automatic. With ORBs,
most of the responsibility for creating system-level functionality or incorporating services
falls on the shoulders of the application developer.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

Component Models

The term “component model” has many different interpretations. Enterprise JavaBeans
specifies a server-side component model. Using a set of classes and interfaces from the
javax.ejb package, developers can create, assemble, and deploy components that
conform to the EJB specification.

The original JavaBeans™, is also a component model, but it’s not a server-side
component model like EJB. In fact, other than sharing the name “JavaBeans,” these two
component models are completely unrelated. In the past, a lot of the literature had referred
to EJB as an extension of the original JavaBeans, but this is a misrepresentation. Other
than the shared name, and the fact that they are both Java component models, the two
APIs serve very different purposes. EJB does not extend or use the original JavaBeans
component model.

JavaBeans is intended to be used for intraprocess purposes, while EJB is designed to be
used for interprocess components. In other words, the original JavaBeans was not
intended for distributed components. JavaBeans can be used to solve a variety of
problems, but is primarily used to build clients by assembling visual (GUI) and nonvisual
widgets. It’s an excellent component model, possibly the best component model for
intraprocess development ever devised, but it’s not a server-side component model. EJB
is designed to address issues involved with managing distributed business objects in a
three-tier architecture.

Given that JavaBeans and Enterprise JavaBeans are completely different, why are they
both called component models? In this context, a component model defines a set of
contracts between the component developer and the system that hosts the component.
The contracts express how a component should be developed and packaged. Once a
component is defined, it becomes an independent piece of software that can be
distributed and used in other applications. A component is developed for a specific
purpose but not a specific application. In the original JavaBeans, a component might be a
push button or spreadsheet that can be used in any GUI application according to the rules
specified in the original JavaBeans component model. In EJB, a component might be a
customer business object that can be deployed in any EJB server and used to develop
any business application that needs a customer business object. Other types of Java
component models include Servlets, JSPs, and Applets.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

Component Transaction Monitors

The CTM industry grew out of both the ORB and the transaction processing monitor (TP
monitor) industries. The CTM is really a hybrid of these two technologies that provides a
powerful, robust distributed object platform. To better understand what a CTM is, we will
examine the strengths and weakness of TP monitors and ORBs.

TP Monitors

Transaction processing monitors have been evolving for about 30 years (CICS was intro-
duced in 1968) and have become powerful, high-speed server platforms for mission-critical
applications. Some TP products like CICS and TUXEDO may be familiar to you. TP
monitors are operating systems for business applications written in languages like
COBOL. It may seem strange to call a TP monitor an “operating system,” but because they
control an application’s entire environment, it’s a fitting description. TP monitor systems
automatically manage the entire environment that a business application runs in, including
transactions, resource management, and fault tolerance. The business applications that
run in TP monitors are written in procedural programming languages (e.g. COBOL and C)
that are often accessed through network messaging or remote procedure calls (RPC).
Messaging allows a client to send a message to a TP monitor requesting that some
application be run with certain parameters. It’s similar in concept to the Java event model.
Messaging can be synchronous or asynchronous, meaning that the sender may or may
not be required to wait for a response. RPC, which is the ancestor of RMI, is a distributed
mechanism that allows clients to invoke procedures on applications in a TP monitor as if
the procedure was executed locally. The primary difference between RPC and RMI is that
RPC is used for procedure-based applications and RMI is used for distributed object
systems. With RMI, methods can be invoked on a specific object identity, a specific
business entity. In RPC, a client can call procedures on a specific type of application, but
there is no concept of object identity. RMI is object oriented; RPC is procedural.

TP monitors have been around for a long time, so the technology behind them is as solid
as a rock; that is why they are used in many mission-critical systems today. But TP moni-
tors are not object oriented. Instead, they work with procedural code that can perform
complex tasks but has no sense of identity. Accessing a TP monitor through RPC is like
executing static methods; there’s no such thing as a unique object. In addition, because
TP monitors are based on procedural applications, and not objects, the business logic in a
TP monitor is not as flexible, extensible, or reusable as business objects in a distributed
object system.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

Object Request Brokers

Distributed object systems allow unique objects that have state and identity to be
accessed across a network. Distributed object technologies like CORBA and Java RMI
grew out of RPC with one significant difference: when you invoke a distributed object
method, it’s on an object instance, not an application procedure. Distributed objects are
usually deployed on some kind of ORB, which is responsible for helping client
applications find distributed objects easily.

ORBs, however, do not define an “operating system” for distributed objects. They are
simply communications backbones that are used to access and interact with unique
remote objects. When you develop a distributed object application using an ORB, all the
responsibility for concurrency, transactions, resource management, and fault tolerance
falls on your shoulders. These services may be supported by an ORB, but the application
developer is responsible for incorporating them into the business objects. In an ORB,
there is no concept of an “operating system,” where system-level functionality is handled
automatically. The lack of implicit system-level infrastructure places an enormous burden
on the application developer. Developing the infrastructure required to handle
concurrency, transactions, security, persistence, and everything else needed to support
large user populations is a Herculean task that few corporate development teams are
equipped to accomplish.

CTMs: The Hybrid of ORBs and TP Monitors

As the advantages of distributed objects became apparent, the number of systems
deployed using ORBs increased very quickly. ORBs support distributed objects by
employing a somewhat crude server-side component model that allows distributed objects
to be connected to a communication backbone, but don’t implicitly support transactions,
security, persistence, and resource management. These services must be explicitly
accessed through APIs by the distributed object, resulting in more complexity and,
frequently, more development problems. In addition, resource management strategies
such as instance swapping, resource pooling, and activation may not be supported at all.
These types of strategies make it possible for a distributed object system to scale, improv-
ing performance and throughput and reducing latency. Without automatic support for
resource management, application developers must implement homegrown resource
management solutions, which requires a very sophisticated understanding of distributed
object systems. ORBs fail to address the complexities of managing a component in a high-
volume, mission-critical environment, an area where TP monitors have always excelled.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

With three decades of TP monitor experience, it wasn’t long before companies like IBM
and BEA began developing a hybrid of ORBs and TP monitor systems, which we refer to
as component transaction monitors. These types of application servers combine the fluid-
ity and accessibility of distributed object systems based on ORBs with the robust
“operating system” of a TP monitor. CTMs provide a comprehensive environment for
server- side components by managing concurrency, transactions, object distribution, load
balancing, security, and resource management automatically. While application
developers still need to be aware of these facilities, they don’t have to explicitly implement
them when using a CTM.

The basic features of a CTM are distributed objects, an infrastructure that includes trans-
action management and other services, and a server-side component model. CTMs sup-
port these features in varying degrees; choosing the most robust and feature-rich CTM is
not always as critical as choosing one that best meets your needs. Very large and robust
CTMs can be enormously expensive and may be overkill for smaller projects. CTMs have
come out of several different industries, including the relational database industry, the
application server industry, the web server industry, the CORBA ORB industry, and the
TP monitor industry. Each vendor offers products that reflect their particular area of
expertise. However, when you’re getting started, choosing a CTM that supports the
Enterprise JavaBeans component model may be much more important than any particular
feature set. Because Enterprise JavaBeans is implementation independent, choosing an
EJB CTM provides the business system with the flexibility to scale to larger CTMs as
needed. We will discuss the importance of EJB as a standard component model for CTMs
later in this chapter.

Analogies to Relational Databases

This chapter spent a lot of time talking about CTMs because they are essential to the defi-
nition of EJB. The discussion of CTMs is not over, but to make things as clear as possible
before proceeding, we will use relational databases as an analogy for CTMs.

Relational databases provide a simple development environment for application develop-
ers, in combination with a robust infrastructure for data. As an application developer
using a relational database, you might design the table layouts, decide which columns are
primary keys, and define indexes and stored procedures, but you don’t develop the index-
ing algorithm, the SQL parser, or the cursor management system. These types of system-
level functionality are left to the database vendor; you simply choose the product that
best fits your needs. Application developers are concerned with how business data is
organized, not how the database engine works. It would be waste of resources for an
application developer to write a relational database from scratch when vendors like
Microsoft, Oracle, and others already provide them.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

Distributed business objects, if they are to be effective, require the same system-level
management from CTMs as business data requires from relational databases. System-
level functionality like concurrency, transaction management, and resource management is
necessary if the business system is going to be used for large user populations or mis-
sion-critical work. It is unrealistic and wasteful to expect application developers to rein-
vent this system-level functionality when commercial solutions already exist.

CTMs are to business objects what relational databases are to data. CTMs handle all the
system-level functionality, allowing the application developer to focus on the business
problems. With a CTM, application developers can focus on the design and development
of the business objects without having to waste thousands of hours developing the infra-
structure that the business objects operate in.

EJB 2.0: Asynchronous Messaging

An asynchronous messaging system allows two or more applications to exchange
information in the form of messages. A message, in this case, is a self-contained package
of business data and network routing headers. The business data contained in a message
can be anything—depending on the business scenario—and usually contains information
about some business transaction. In enterprise messaging systems, messages inform an
application of some event or occurrence in another system.

Messages are transmitted from one application to another on a network using message-
oriented middleware (MOM). MOM products ensure that messages are properly
distributed among applications. In addition, MOMs usually provide fault tolerance, load
balancing, scalability, and transactional support for enterprises that need to reliably
exchange large quantities of messages.

MOM vendors use different message formats and network protocols for exchanging
messages, but the basic semantics are the same. An API is used to create a message, give
it a payload (application data), assign it routing information, and then send the message.
The same API is used to receive messages produced by other applications.

In all modern enterprise messaging systems, applications exchange messages through
virtual channels called destinations. When sending a message, it's addressed to a
destination, not a specific application. Any application that subscribes or registers an
interest in that destination may receive that message. In this way, the applications that
receive messages and those that send messages are decoupled. Senders and receivers are
not bound to each other in any way and may send and receive messages as they see fit.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

Java Message Service

Each MOM vendor implements its own networking protocols, routing, and administration
facilities, but the basic semantics of the developer API provided by different MOMs are
the same. It's this similarity in APIs that makes the Java Message Service possible.

The Java Message Service (JMS) is a vendor-agnostic Java API that can be used with
many different MOM vendors. JMS is very similar to JDBC in that application developer
reuses the same API to access many different systems. If a vendor provides a compliant
service provider for JMS, then the JMS API can be used to send and receive messages to
that vendor. For example, you can use the same JMS API to send messages using
Progress’ SonicMQ as you do IBM’s MQSeries.

Message-Driven Beans

All JMS vendors provide application developers with the same API for sending and
receiving messages, and sometimes they provide a component model for developing
routers that can receive and send messages. These component models, however, are
proprietary and not portable across MOM vendors.

Enterprise JavaBeans 2.0 introduces a new kind of component, called a message-driven
bean, which is a kind of standard JMS bean. It can receive and send asynchronous JMS
messages, because it’s co-located with other kinds of RMI beans (entity and session
beans) it can also interact with RMI components.

Message-driven beans in EJB 2.0 act as an integration point for a EJB application,
allowing other applications to asynchronous messages which can be captured and
processed by an EJB application. This is an extremely important feature that will allow EJB
applications to better integrate with legacy and other proprietary systems.

Message-driven beans are also transactional and required all the infrastructure associated
with other RMI based transactional server-side components. Like other RMI based
components, message-driven beans are considered business objects, which full fill an
important role of routing and interpreting requests and coordinating the application of
those requests against other RMI based components, namely enterprise beans. Message-
driven beans are a good fit for the component transaction manager landscape and are an
excellent addition to the Enterprise JavaBeans platform.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

CTMs and Server-Side Component Models

CTMs require that business objects adhere to the server-side component model imple-
mented by the vendor. A good component model is critical to the success of a develop-
ment project because it defines how easily an application developer can write business
objects for the CTM. The component model is a contract that defines the responsibilities
of the CTM and the business objects. With a good component model, a developer knows
what to expect from the CTM and the CTM understands how to manage the business
object. Server-side component models are great at describing the responsibilities of the
application developer and CTM vendor.

Server-side component models are based on a specification. As long as the component
adheres to the specification, it can be used by the CTM. The relationship between the
server-side component and the CTM is like the relationship between a CD-ROM and a CD
player. As long as the component (CD-ROM) adheres to the player’s specifications, you
can play it.

A CTM’s relationship with its component model is also similar to the relationship the
railway system has with trains. The railway system manages the train’s environment, pro-
viding alternate routes for load balancing, multiple tracks for concurrency, and a traffic
control system for managing resources. The railway provides the infrastructure that trains
run on. Similarly, a CTM provides server-side components with the entire infrastructure
needed to support concurrency, transactions, load balancing, etc.

Trains on the railway are like server-side components: they all perform different tasks but
they do so using the same basic design. The train, like a server-side component, focuses
on performing a task, such as moving cars, not managing the environment. For the engi-
neer, the person driving the train, the interface for controlling the train is fairly simple: a
brake and throttle. For the application developer, the interface to the server-side compo-
nent is similarly limited.

Different CTMs may implement different component models, just as different railways
have different kinds of trains. The differences between the component models vary, like
railway systems having different track widths and different controls, but the fundamental
operations of CTMs are the same. They all ensure that business objects are managed so
that they can support large populations of users in mission-critical situations. This means
that resources, concurrency, transactions, security, persistence, load balancing, and
distribution of objects can be handled automatically, limiting the application developer to
a simple interface. This allows the application developer to focus on the business logic
instead of the enterprise infrastructure.

DRAFT 10/21/0107/06/01

Copyright (c) 2001 O'Reilly & Associates

Microsoft’s .NET Framework

Microsoft was the first vendor to ship a CTM. Originally called the Microsoft Transaction
Server (MTS), it was later renamed COM+. Microsoft’s COM+ is based on the Component
Object Model (COM), originally designed for use on the desktop but eventually pressed
into service as a server-side component model. For distributed access, COM+ clients use
DCOM (Distributed Component Object Model).

When MTS was introduced in 1996, it was exciting because it provided a very
comprehensive environment for business objects. With MTS, application developers
could write COM components without worrying about system-level concerns. Once a
business object was designed to conform to the COM model, MTS (and now COM+)
would take care of everything else, including transaction management, concurrency,
resource management—everything!

Recently, COM+ has become part of Microsoft’s new .NET Framework. The core
functionality provided by COM+ services remains essentially the same in .NET, but the
way it’s appears to a developer changes significantly. Rather than writing components as
COM objects, applications written for the .NET Framework are built as managed objects.
All managed objects, and in fact all code written for the .NET Framework, depends on a
Common Language Runtime (CLR). For Java-oriented developers, the CLR is much like a
Java VM, and a managed object is very analogous to an instance of a Java class, i.e., to a
Java object.

Although .NET Framework provides many interesting features, as an open standard, it
falls short. The COM+ services in the .NET Framework are Microsoft’s proprietary CTM,
which means that using this technology binds you to the Microsoft platform. This may
not be so bad, because .NET promises to work well, and the Microsoft platform is
pervasive. In addition, the .NET Framework’s support for SOAP (Simple Object Access
Protocol) will enable business objects in the .NET world to communicate with objects on
any other platform written in any language. This can potentially make business objects in
.NET universally accessible, a feature that is not easily dismissed.

If, however, your company is expected to deploy server-side components on a non-
Microsoft platform, .NET is not a viable solution. In addition, the COM+ services in the
.NET Framework are focused on stateless components; there’s no built-in support for
persistent transactional objects. Although stateless components can offer higher
performance, business systems need the kind of flexibility offered by CTMs that include
stateful and persistent components.

DRAFT, 10/21/017/6/20016/9/2001

21

EJB and CORBA CTMs

Until the fall of 1997, non-Microsoft CTMs were pretty much nonexistent.
Promising products from IBM, BEA, and Hitachi were on the drawing board,
while MTS was already on the market. Although the non-MTS designs were only
designs, they all had one thing in common: they all used CORBA as a distributed
object service.

Most non-Microsoft CTMs were focused on, what was at the time, the more
open standard of CORBA so that they could be deployed on non-Microsoft
platforms and support non-Microsoft clients. CORBA is both language and
platform independent, so CORBA CTM vendors could provide their customers
with more implementation options5. The problem with CORBA CTM designs was
that they all had different server-side component models. In other words, if you
developed a component for one vendor’s CTM, you couldn’t turn around and
use that same component in another vendor’s CTM. The component models
were too different.

With Microsoft’s MTS far in the lead by 1997 (it had already been around a
year), CORBA-based CTM vendors needed a competitive advantage. One
problem CTMs faced was a fragmented CORBA market where each vendor’s
product was different from the next. A fragmented market wouldn’t benefit
anyone, so the CORBA CTM vendors needed a standard to rally around.
Besides the CORBA protocol, the most obvious standard needed was a
component model, which would allow clients and third-party vendors to develop
their business objects to one specification that would work in any CORBA CTM.
Microsoft was, of course, pushing their component model as a standard—which
was attractive because MTS was an actual working product—but Microsoft
didn’t support CORBA. The OMG (Object Management Group), the same people
who developed the CORBA standard, were defining a server-side component
model. This held promise because it was sure to be tailored to CORBA, but the
OMG was slow in developing a standard—at least too slow for the evolving
CTM market6.

5 Recently, the introduction of SOAP (Simple Object Access Protocol) brings into
question the future of the CORBA IIOP protocol (Internet-InterOperability Protocol).
It’s obvious that these two protocols are competing to become the standard language-
independent protocol for distributed computing. IIOP has been around for several years
and is therefore far more mature, but as a late entry SOAP may quickly catch up by
leveraging lessons learned in the development of IIOP.

6 Eventually, CORBA’s CTM component model was released and called CCM, for
CORBA Component Model. It has seen lackluster acceptance is general, and was forced
to adopt Enterprise JavaBeans as part of its component model just to be viable and
interesting.

DRAFT, 10/21/017/6/20016/9/2001

22

In 1997, Sun Microsystems was developing the most promising standard for
server-side components called Enterprise JavaBeans. Sun offered some key
advantages. First, Sun was respected and was known for working with vendors
to define Java-based and vendor-agnostic APIs for common services. Sun had a
habit of adopting the best ideas in the industry and then making the Java
implementation an open standard—usually successfully. The Java database
connectivity API, called JDBC, was a perfect example. Based largely on
Microsoft’s own ODBC, JDBC offered vendors a more flexible model for plugging
in their own database access drivers. In addition, developers found the JDBC
API much easier to work with. Sun was doing the same thing in its newer
technologies like the JavaMail™ API and the Java Naming and Directory
Interface (JNDI). These technologies were still being defined, but the
collaboration among vendors was encouraging and the openness of the APIs
was attractive.

Although CORBA offered an open standard, it attempted to standardize very
low-level facilities like security and transactions. Vendors could not justify
rewriting existing products such as TUXEDO and CICS to the CORBA standards.
EJB got around that problem by saying it doesn’t matter how you implement the
low-level services; all that matters is all the facilities be applied to the
components according to the specification—a much more palatable solution for
existing and prospective CTM vendors. In addition, the Java language offered
some pretty enticing advantages, not all of them purely technical. First, Java was
a hot and sexy technology and simply making your product Java-compatible
seemed to boost your exposure in the market. Java also offered some very
attractive technical benefits. Java was more or less platform independent. A
component model defined in the Java language would have definite marketing
and technical benefits.

As it turned out, Sun had not been idle after it announced Enterprise JavaBeans.
Sun’s engineers had been working with several leading vendors to define a
flexible and open standard to which vendors could easily adapt their existing
products. This was a tall order because vendors had different kinds of servers
including web servers, database servers, relational database servers, application
servers, and early CTMs. It’s likely that no one wanted to sacrifice their
architecture for the common good, but eventually the vendors agreed on a model
that was flexible enough to accommodate different implementations yet solid
enough to support real mission-critical development. In December of 1997, Sun
Microsystems released the first draft specification of Enterprise JavaBeans, EJB
1.0, and vendors have been flocking to the server-side component model ever
since.

DRAFT, 10/21/017/6/20016/9/2001

23

Benefits of a Standard Server-Side Component
Model

So what does it mean to be a standard server-side component model? Quite
simply, it means that you can develop business objects using the Enterprise
JavaBeans (EJB) component model and expect them to work in any CTM that
supports the complete EJB specification. This is a pretty powerful statement
because it largely eliminates the biggest problem faced by potential customers of
CORBA-based CTM products: fear of vendor “lock-in.” With a standard server-
side component model, customers can commit to using an EJB-compliant CTM
with the knowledge that they can migrate to a better CTM if one becomes
available. Obviously, care must be taken when using proprietary extensions
developed by vendors, but this is nothing new. Even in relational database
industry— which has been using the SQL standard for a couple of decades—
optional proprietary extensions abound.

Having a standard server-side component model has benefits beyond
implementation independence. A standard component model provides a vehicle
for growth in the third- party products. If numerous vendors support EJB, then
creating add-on products and component libraries is more attractive to software
vendors. The IT industry has seen this type of cottage industry grow up around
other standards like SQL, where hundreds of add-on products can be purchased
to enhance business systems whose data is stored in SQL-compliant relational
databases. Report generating tools and data warehouse products are typical
examples. The GUI component industry has seen the growth of its own third-
party products. A healthy market for component libraries already exists for GUI
component models like Microsoft’s ActiveX and Sun’s original JavaBeans
component models.

There are many examples of third-party product for Enterprise JavaBeans today
Add-on products that provide services to EJB-compliant systems like credit card
processing, legacy database access, and other business services have been
introduced. These types of products make development of EJB systems simpler
and faster than the alternatives, making the EJB component model attractive to
corporate IS and server vendors alike. The industry has market grow for
prepackaged EJB components in several domains including sales, finance,
education, web content management, collaboration and other areas.

Titan Cruises: An Imaginary Business

To make things a little easier, and more fun, we will attempt to discuss all the
concepts in this book in the context of one imaginary business, a cruise line
called Titan. A cruise line makes a particularly interesting example because it
incorporates several different businesses: a cruise has cabins that are similar to

DRAFT, 10/21/017/6/20016/9/2001

24

hotel rooms, serves meals like a restaurant, offers various recreational
opportunities, and needs to interact with other travel businesses.

This type of business is a good candidate for a distributed object system
because many of the system’s users are geographically dispersed. Commercial
travel agents, for example, who need to book passage on Titan ships, will need to
access the reservation system. Supporting many—possibly hundreds—of travel
agents requires a robust transactional system to ensure that agents have access
and reservations are completed properly.

Throughout this book we will build a fairly simple slice of Titan’s EJB system
that focuses on the process of making a reservation for a cruise. This will give us
an opportunity to develop enterprise beans like Ship, Cabin, TravelAgent,
ProcessPayment, and so forth. In the process, you will need to create relational
database tables for persisting data used in the example. It is assumed that you
are familiar with relational database management systems and that you can create
tables according to the SQL statements provided. EJB can be used with any kind
of database or legacy application, but relational databases seem to be the most
commonly understood database so we have chosen this as the persis tence layer.

What’s Next?

In order to develop business objects using EJB, you have to understand the life
cycle and architecture of EJB components. This means understanding
conceptually how EJB’s components are managed and made available as
distributed objects. Developing an understanding of the EJB architecture is the
focus of the next two chapters.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 1

2

Architectural Overview

As you learned in Chapter 1, Enterprise JavaBeans is a component model for
component transaction monitors, the most advanced type of business
application server available today. To effectively use Enterprise JavaBeans, you
need to understand the EJB architecture, so this book includes two chapters on
the subject. This chapter explores the core of EJB: how enterprise beans are
distributed as business objects. Chapter 3 explores the services and resource
management techniques supported by EJB.

To be truly versatile, the EJB component design had to be smart. For application
developers, assembling enterprise beans is simple, requiring little or no expertise
in the complex system-level issues that often plague three-tier development
efforts. While EJB makes it easy for application developers, it also provides
system developers (the people who write EJB servers) with a great deal of
flexibility in how they support the EJB specification.

The similarities among different component transaction monitors (CTMs) allow
the EJB abstraction to be a standard component model for all of them. Each
vendor’s CTM is implemented differently, but they all support the same primary
services and similar resource management techniques. The primary services and
resource management techniques are covered in more detail in Chapter 3, but
some of the infrastructure for supporting them is addressed in this chapter.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates2

The Enterprise Bean Component

Enterprise JavaBeans server-side components come in three fundamentally
different types: entity, session, and message-driven beans. Both session and
entity beans are RMI based server-side components that are accessed using
distributed object protocols. The message-driven bean, which is new to EJB 2.0,
is an asynchronous server-side component that responds to JMS asyncrhonous
messages.

A good rule of thumb is that entity beans model business concepts that can be
expressed as nouns. For example, an entity bean might represent a customer, a
piece of equipment, an item in inventory, or even a place. In other words, entity
beans model real-world objects; these objects are usually persistent records in
some kind of database. Our hypothetical cruise line will need entity beans that
represent cabins, customers, ships, etc.

Session beans are an extension of the client application and are responsible for
managing processes or tasks. A Ship bean provides methods for doing things
directly to a ship but doesn’t say anything about the context under which those
actions are taken. Booking passengers on the ship requires that we use a Ship
bean, but also requires a lot of things that have nothing to do with the Ship itself:
we’ll need to know about passengers, ticket rates, schedules, and so on. A
session bean is responsible for this kind of coordination. Session beans tend to
manage particular kinds of activities, for example, the act of making a reservation.
They have a lot to do with the relationships between different enterprise beans.
A TravelAgent session bean, for example, might make use of a Cruise, a Cabin,
and a Customer—all entity beans—to make a reservation.

Similarly, the message-driven beans in EJB 2.0 are responsible for coordinating
tasks involving other session and entity beans. The major difference between a
message-driven bean and a session bean is how they are accessed. While a
session bean provides a remote interface that defines which methods can be
invoked, a message-driven bean does not. Instead, the message driven bean
subscribes or listens for specific asynchronous messages to which it responds
by processing the message and managing the activities of other beans in
response to those messages. For example, a TravelAgent message-driven bean
would receive to a asynchronous messages—perhaps from a legacy reservation
system—from which it would coordinate the interactions of the Cruise, Cabin,
and Customer beans to make a reservation.

The activity that a session or message-driven bean represents is fundamentally
transient: you start making a reservation, you do a bunch of work, and then it’s
finished. The session and message-driven beans do not represent things in the
database. Obviously, session and message-driven beans have lots of side effects
on the database: in the process of making a reservation, you might create a new
Reservation by assigning a Customer to a particular Cabin on a particular Ship.
All of these changes would be reflected in the database by actions on the

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 3

respective entity beans. Session and message-driven beans like TravelAgent,
which are responsible for making a reservation on a cruise, can even access a
database directly and perform reads, updates, and deletes to data. But there’s no
TravelAgent record in the database—once the bean has made reservation is, it
waits to process another.

What makes this distinction difficult is that it’s extremely flexible. The relevant
distinction for Enterprise JavaBeans is that an entity bean has persistent state;
the session and message-driven beans model interactions but do not have
persistent state.

Classes and Interfaces

A good way to understand the design of enterprise beans is to look at how
you’d go about implementing one. To implement entity and session enterprise
beans, you need to define the component interfaces, a bean class, and a primary
key:

There are basically two kinds of component interfaces, remote and local. The
remote interfaces are supported by both EJB 2.0 and 1.1 while the local
component interfaces are new in EJB 2.0 and are not supported by EJB 1.1.

Remote interface
The remote interface for an enterprise bean defines the bean’s business
methods that can be accessed from applications outside the EJB container:
the business methods a bean presents to the outside world to do its work. It
enforces conventions and idioms that are well suited for distributed object
protocols. The remote interface extends javax.ejb.EJBObject, which
in turn extends java.rmi.Remote. The remote interface is one of the
bean’s component interfaces and is used by session and entity beans in
conjunction with the remote home interface.

Remote Home interface
The home interface defines the bean’s life cycle methods that can be
accessed from applications outside the EJB container: the life-cycle methods
for creating new beans, removing beans, and finding beans. It enforces
conventions and idioms that are well suited for distributed object protocols.
The home interface extends javax.ejb.EJBHome, which in turn extends
java.rmi.Remote. The remote home interface is one of the bean’s
component interfaces and is used by session and entity beans in
conjunction with the remote interface.

EJB 2.0: Local interface
The local interface for an enterprise bean defines the bean’s business
methods that can be used by other beans co-located in the same EJB
container: the business methods a bean presents other beans in the same
address space. It allows beans to interact without the overhead of a
distributed object protocol, which makes them more performant. The local

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates4

interface extends javax.ejb.EJBLocalObject. The local interface is
one of the bean’s component interfaces and is used by session and entity
beans in conjunction with the local home interface.

EJB 2.0: Local Home interface
The home interface defines the bean’s life cycle methods that can be used
by other beans co-located in the same EJB container: that is, the life-cycle
methods a bean presents to other beans in the same address space. It allows
beans to interact without the overhead of a distributed object protocol,
which improves their performance. The local home interface extends
javax.ejb.EJBLocalHome. The local home interface is one of the
bean’s component interfaces and is used by session and entity beans in
conjunction with the local interface.

Bean class
The session and entity bean classes actually implement the bean’s business
and life-cycle methods. Note, however, that the bean class for session and
entity beans usually does not implement any of the bean’s component
interfaces directly. However, it must have methods matching the signatures
of the methods defined in the remote and local interfaces and must have
methods corresponding to some of the methods in the both the remote and
local home interfaces. If this sounds perfectly confusing, it is. The book will
clarify this as we go along. An entity bean must implement
javax.ejb.EntityBean; a session bean must implement
javax.ejb.SessionBean. The EntityBean and SessionBean
extend javax.ejb.EnterpriseBean.

The message-driven bean in EJB 2.0 does not use any of the component
interfaces, because it is never accessed by method calls from other
applications or beans. Instead, the message-driven bean contains a single
method, onMessage(), which is called by the container when a new
message arrives. So the message-driven bean does not have a component
interface as does the session and entity beans, it only needs the bean class
to operate. The message-driven bean class implements the
javax.ejb.MessageDrivenBean and
javax.jms.MessageListener interfaces. The JMS
MessageListener interface is what makes a message-driven bean
specific to JMS, instead of some other protocol. EJB 2.0 requires the use of
JMS, but future versions may allow other messaging systems. The
MessageDrivenBean, like the EntityBean and SessionBean,
extends the javax.ejb.EnterpriseBean interface.

Primary key
The primary key is a very simple class that provides a pointer into the
database. Only entity beans need a primary key; the only requirement for
this class is that it implements java.io.Serializable.

EJB 2.0 adds the crucial distinction between remote and local interfaces. Local
interfaces provide a way for beans in the same container to interact efficiently;
calls to methods in the local interface don’t involve RMI; the methods in the

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 5

local interfaces don’t need to declare that they throw RemoteException, and
so on. An enterprise bean isn’t required to provide a local interface, if you know
when you’re developing the enterprise bean that it will only interact with remote
clients. Likewise, an enterprise bean doesn’t need to provide a remote interface if
it knows it will only be called by enterprise beans in the same container. You can
provide local or remote component interface or both.

The complexity—particularly all the confusion about classes implementing the
methods of an interface but not implementing the interface itself—comes about
because enterprise beans exist in the middle between some kind of client
software and some kind of database. The client never interacts with a bean class
directly; it always uses the methods of the entity or session bean’s component
interfaces to do its work, interacting with stubs that are generated automatically.
(For that matter, a bean that needs the services of another bean is just another
client: it uses the same stubs, rather than interacting with the bean class directly.)

Although the local component interfaces (local and local home) in EJB 2.0
represent session and entity beans in the same address space and do not use
distributed object protocols, they still represent a stub or proxy to the bean class.
While there is no network between co-located beans, the stubs allow the
container to monitor the interactions between co-located beans and apply
security and transactions as appropriate.

Its important to note, that EJB 2.0’s message-driven bean doesn’t have any
component interfaces, but it may become the client of other session or entity
beans and interact with those beans through their component interfaces. The
entity and session beans with which the message-driven bean interacts may be
co-located, in which case it uses their local component interfaces, or they may be
located in a different address space and EJB container, in which case the remote
component interfaces are used.

There are also lots of interactions between an enterprise bean and its server.
These interactions are managed by a “container,” which is responsible for
presenting a uniform interface between the bean and the server. (Many people
use the terms “container” and “server” interchangeably, which is understandable
because the difference between them isn’t clearly defined.) The container is
responsible for creating new instances of beans, making sure that they are stored
properly by the server, and so on. Tools provided by the container’s vendor do a
tremendous amount of work behind the scenes. At least one tool will take care of
creating the mapping between entity beans and records in your database. Other
tools generate a lot of code based on the component interfaces and the bean
class itself. The code generated does things like create the bean, store it in the
database, and so on. This code (in addition to the stubs) is what actually
implements the component interfaces, and is the reason your bean class doesn’t
have to.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates6

Before going on, let’s first establish some conventions. When we speak about an
enterprise bean as a whole, its component interfaces, bean class, and so forth, we
will call it by its common business name, followed by the word “bean.” For
example, an enterprise bean that is developed to model a cabin on a ship will be
called the “Cabin EJB.” Notice that we didn’t use a constant width font for
“Cabin.” We do this because we are referring to all the parts of the bean (the
component interfaces, bean class, etc.) as a whole, not just one particular part
like the remote interface or bean class. The term enterprise bean denotes any
kind of bean including entity, session, or message-driven beans. Similarly, entity
bean denotes a entity type enterprise bean; session bean a session type
enterprise bean; and message-driven bean a message-driven type enterprise
bean. It’s popular to use the acronym EJB for enterprise bean, a style adopted in
this book to distinguish an enterprise bean as a whole from its component parts.

We will also use suffixes to distinguish between local component interfaces and
remote component interfaces. When we are talking about the remote interface of
the Cabin EJB we will use combine the common business name with the word
Remote. For example, the remote interface for the Cabin EJB is called the
CabinRemote interface. In EJB 2.0, the local component interface of the Cabin
EJB would be the CabinLocal interface. The home interfaces follow the
convention by adding the word Home to the mix. The remote and local home
interfaces for the Cabin EJB would be CabinHomeRemote and
CabinHomeLocal respectively. The bean class is always the common
business name followed by the word Bean. For example, the Cabin EJB’s bean
class would be named CabinBean.

The remote interface

Having introduced the machinery, let’s look at how to build an entity or stateful
enterprise bean with remote component interfaces. In this section, we will
examine the Cabin EJB, an entity bean that models a cabin on a cruise ship. Let’s
start with its remote interface.

We’ll define the remote interface for a Cabin bean using the interface called
CabinRemote, which defines business methods for working with cabins. All
remote-interface types extend the javax.ejb.EJBObject interface.

import java.rmi.RemoteException;

public interface CabinRemote extends javax.ejb.EJBObject {
 public String getName() throws RemoteException;
 public void setName(String str) throws RemoteException;
 public int getDeckLevel() throws RemoteException;
 public void setDeckLevel(int level) throws RemoteException;
}

These are methods for naming the cabin and methods for setting the cabin’s
deck level; you can probably imagine lots of other methods that you’d need, but
this is enough to get started. All of these methods declare that they throw

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 7

RemoteException, which is required of all methods on remote component
interfaces, but not EJB 2.0’s local component interfaces. EJB requires the use of
Java RMI-IIOP conventions with remote component interfaces, although the
underlying protocol can be CORBA IIOP, Java Remote Method Protocol (JRMP),
or some other protocol. Java RMI-IIOP will be dis cussed in more detail in the next
chapter.

The remote home interface

The remote home interface defines life-cycle methods used by clients of entity
and session bean for locating enterprise beans. The remote home interface
extends javax.ejb.EJBHome. We’ll call the home interface for the Cabin
bean CabinHomeRemote and define it like this:

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.FinderException;

public interface CabinHomeRemote extends javax.ejb.EJBHome {
 public Cabin create(Integer id)
 throws CreateException, RemoteException;
 public Cabin findByPrimaryKey(Integer pk)
 throws FinderException, RemoteException;
}

The create() method will be responsible for initializing an instance of our
bean. If your application needs it, you can provide other create() methods,
with different arguments.

In addition to the findByPrimaryKey(), you are free to define other
methods that provide convenient ways to look up Cabin beans—for example,
you might want to define a method called findByShip() that returns all the
cabins on a particular ship. Find methods like these are only used in entity beans
and are not used in session beans -- and obviously not message-driven beans.

EJB 2.0: The bean class

EJB 2.0: The bean class

Now let’s look at an actual entity bean. Here’s the code for the CabinBean; it’s
a sparse implementation, but it will show you how the pieces fit together:

import javax.ejb.EntityContext;

public abstract class CabinBean implements javax.ejb.EntityBean {

 // EJB 1.0: return void
 public CabinPK ejbCreate(Integer id){
 setId(id);

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates8

 return null;
 }
 public void ejbPostCreate(int id){
 // do nothing
 }

 public abstract String getName();
 public abstract void setName(String str);

 public abstract int getDeckLevel();
 public abstract void setDeckLevel(int level);

 public abstract Integer getId();
 public abstract void setId(Integer id);

 public void setEntityContext(EntityContext ctx){
 // not implemented
 }
 public void unsetEntityContext(){
 // not implemented
 }
 public void ejbActivate(){
 // not implemented
 }
 public void ejbPassivate(){
 // not implemented
 }
 public void ejbLoad(){
 // not implemented
 }
 public void ejbStore(){
 // not implemented
 }
 public void ejbRemove(){
 // not implemented
 }
}

You will have noticed that the CabinBean class is declared as abstract, as are
several of its methods that access or update the EJB’s persistent state. Also
notices that there are no instance fields that hold the state information that these
methods access. This is because we are working with a container-managed
entity bean, which has its abstract methods implemented by the container system
automatically—this will be explained in detail later in the book. EJB 2.0 container-
managed entity beans are the only beans that are declared as abstract with
abstract accessor methods. You won’t see abstract classes and methods with
other types of entity beans, session beans, or message-driven beans.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 9

EJB 1.1: The bean class

Here’s the code for the CabinBean in EBJ 1.1:

import javax.ejb.EntityContext;

public class CabinBean implements javax.ejb.EntityBean {

 public Integer id;
 public String name;
 public int deckLevel;

 // EJB 1.0: return void
 public Integer ejbCreate(Integer id){
 setId(id);
 return null;
 }
 public void ejbPostCreate(Integer id){
 // do nothing
 }

 public String getName(){
 return name;
 } public void setName(String str){
 name = str;
 }

 public int getDeckLevel(){
 return deckLevel;
 }
 public void setDeckLevel(int level){
 deckLevel = level;
 }
 public Integer getId(){
 return id;
 }
 public void setId(Integer id){
 this.id = id;
 }
 public void setEntityContext(EntityContext ctx){
 // not implemented
 }
 public void unsetEntityContext(){
 // not implemented
 }
 public void ejbActivate(){
 // not implemented
 }
 public void ejbPassivate(){
 // not implemented
 }

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates10

 public void ejbLoad(){
 // not implemented
 }
 public void ejbStore(){
 // not implemented
 }
 public void ejbRemove(){
 // not implemented
 }
}

EJB 2.0 and 1.1: The bean class

The set and get methods for the cabin’s name and deck level are the
CabinBean’s business methods; they match the business methods defined by
the EJB’s remote interface, CabinRemote. The CabinBean class has state
and business behavior that models the concept of a cabin. The business
methods are the only methods that are visible to the client application; the other
methods are visible only to the EJB container or the bean class itself. For
example, the setId()/getId() methods are defined in the bean class but not
the remote interface, which means they can not be called by the entity bean’s
client. The other methods are required by the EJB component model and are not
really part of the bean class’s public business definition.

The ejbCreate() and ejbPostCreate() methods initialize the instance
of the bean class when a new cabin record is to be added to the database. The
last seven methods in the CabinBean are defined in the
javax.ejb.EntityBean interface. These methods are state management
callback methods. The EJB container invokes these callback methods on the
bean class when important state management events occur. The ejbRemove()
method, for example, notifies an entity bean that its data is about to be deleted
from the database. The ejbLoad() and ejbStore() methods notify the
bean instance that its state is being read or written to the database. The
ejbActivate() and ejbPassivate() methods notify the bean instance
that it is about to be activated or deactivated, a process that conserves memory
and other resources. setEntityContext() provides the bean with an
interface to the EJB container that allows the bean class to get information about
itself and its surroundings. unsetEntityContext() is called by the EJB
container to notify the bean instance that it is about to be dereference for
garbage collection.

All these callback methods provide the bean class with notifications of when an
action is about to be taken, or was just taken, on the bean class’s behalf by the
EJB server. These notifications simply inform the bean of an event, the bean
doesn’t have to do anything about it. The callback notifications tell the bean
where it is during its life cycle, when it is about to be loaded, removed,
deactivated, and so on. Most of the callback methods pertain to persistence,
which can be done automatically for the bean class by the EJB container.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 11

Because the callback methods are defined in the javax.ejb.EntityBean
interface, the entity bean class must implement them, but it isn’t required to do
anything meaningful with the methods if it doesn’t need to. Our bean, the
CabinBean, won’t need to do anything when these callback methods are
invoked, so these methods are empty implementations. Details about these
callback methods, when they are called and how a bean should react, are covered
in Chapter 116.

The primary key

The primary key is a pointer that helps locate data that describes a unique record
or entity in the database; it is used in the findByPrimaryKey() method of
the home interface to locate a specific entity. Primary keys are defined by the
bean developer and must be some type of serializable object. The Cabin EJB uses
a simple java.lang.Integer type as its primary key. Its also possible to
define custom primary keys, called compound primary keys, which represent
complex primary keys consisting of several different fields. Primary keys are
covered in detail in Chapter 110.

What about session beans?

CabinBean is an entity bean, but a session bean wouldn’t be all that different.
It would extend SessionBean instead of EntityBean; it would have an
ejbCreate() method that would initialize the bean’s state, but no
ejbPostCreate(). Session beans don’t have an ejbLoad() or
ejbStore() because session beans are not persis tent. While session beans
have a setSessionContext() method, they don’t have an
unsetSessionContext() method. Finally, a session bean would provide
an ejbRemove() method, which would be called to notify the bean that the
client no longer needs it. However, this method wouldn’t tell the bean that its
data was about to be removed from the database, because a session bean
doesn’t represent data in the database.

Session beans don’t have a primary key. That’s because session beans are not
persistent themselves, so there is no need for key that maps to the database.
Session beans are covered in detail in Chapter 12.

EJB 2.0: What about message-driven beans?

Message-driven beans do not have component interfaces so there would not be
a remote, local, or home interface defined for a message-driven bean. Instead the
message-driven bean would define only a few callback methods, and not
business methods. The callback methods include the ejbCreate() method
which is called when the bean class is first created, the ejbRemove() method
when the bean instance is about to be discarded from the system—usally when
the container doesn’t need it any longer—the
setMessageDrivenBeanContext() and the onMessage() method.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates12

The onMessage() method is called every time a new asynchronous message
is delivered to the message-driven bean. The message-driven bean doesn’t
define ejbPasivate()/ejbActivate() or ejbLoad()/ejbStore()
methods because it doesn’t need them.

Message-driven beans don’t have a primary key, for the same reason that
session beans don’t. They are not persistent, so there is no need for a key to the
database. Message-driven beans are covered in detail in Chapter 13.

Deployment Descriptors and JAR Files

Much of the information about how beans are managed at runtime is not
addressed in the interfaces and classes discussed previously. You may have
noticed, for example, that we didn’t talk about how beans interact with security,
transactions, naming, and other services common to distributed object systems.
As you know from prior discussions, these types of primary services are handled
automatically by the EJB CTM server, but the EJB container still needs to know
how to apply the primary services to each bean class at runtime. To do this, we
use deployment descriptors.

Deployment descriptors serve a function very similar to property files. They
allow us to customize behavior of software (enterprise beans) at runtime without
having to change the software itself. Property files are often used with
applications, but deployment descriptors are specific to a class of enterprise
bean. Deployment descriptors are also similar in purpose to property sheets used
in Visual Basic and PowerBuilder. Where property sheets allow us to describe
the runtime attributes of visual widgets (background color, font size, etc.),
deployment descriptors allow us to describe runtime attributes of server-side
components (security, transactional context, etc.). Deployment descriptors allow
certain runtime behaviors of beans to be customized, without altering the bean
class or its interfaces.

When a bean class and its interfaces have been defined, a deployment descriptor
for the bean is created and populated with data about the bean. Frequently, IDEs
(integrated development environments) that support development of Enterprise
JavaBeans will allow developers to graphically set up the deployment descriptors
using visual utilities like property sheets. After the developer has set all the
properties for a bean, the deployment descriptor is saved to a file. Once the
deployment descriptor is complete and saved to a file, the bean can be packaged
in a JAR file for deployment.

JAR (Java archive) files are ZIP files that are used specifically for packaging Java
classes (and other resources such as images) that are ready to be used in some
type of application. JARs are used for packaging applets, Java applications,
JavaBeans, Web applications (Servlets & JSPs), and Enterprise JavaBeans. A
JAR file containing one or more enterprise beans includes the bean classes,

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 13

component interfaces, and supporting classes for each bean. It also contains one
deployment descriptor, which is used for all the beans in the JAR files. When a
bean is deployed, the JAR’s path is given to the container’s deployment tools,
which read the JAR file. The container uses the deployment descriptor to learn
about the beans contained in the JAR file.

When the JAR file is read at deployment time, the container tools read the
deployment descriptor to learn about the bean and how it should be managed at
runtime. The deployment descriptor tells the deployment tools what kind of
beans are in the JAR file (SessionBean or EntityBean), how they should
be managed in transactions, who has access to the beans at runtime, and other
runtime attributes of the beans. The person who is deploying the bean can alter
some of these settings, like transactional and security access attributes, to
customize the bean for a particular application. Many container tools provide
property sheets for graphically reading and altering the deployment descriptor
when the bean is deployed. These graphical property sheets are similar to those
used by bean developers.

The deployment descriptors help the deployment tools to add beans to the EJB
container. Once the bean is deployed, the properties described in the deployment
descriptors will continue to be used to tell the EJB container how to manage the
bean at runtime.

When Enterprise JavaBeans 1.0 was released serializable classes were used for
the deployment descriptor. Starting with Enterprise JavaBeans 1.1, the
serializable deployment descriptor classes used in EJB 1.0 were dropped in favor
of a more flexible file format based on XML (Extensible Markup Language). The
XML deployment descriptors are text files structured according to a standard
EJB DTD (Document Type Definition) that can be extended so the type of
deployment information stored can evolve as the specification evolves.
Chapter 16 provides a detailed description of EJB 2.0 deployment descriptors.
This section provides a brief overview of XML deployment descriptors.

EJB 2.0: Deployment Descriptor

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
EnterpriseJavaBeans 2.0//EN" "http://java.sun.com/j2ee/dtds/ejb-
jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>CabinEJB</ejb-name>
 <home>CabinHomeRemote</home>
 <remote>CabinRemote</remote>
 <local-home>CabinHomeLocal</local-home>
 <local>CabinLocal</local>

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates14

 <ejb-class>java.lang.Integer</prim-key-class>
 <persistence-type>Container</persistence-type>
 <reentrant>False</reentrant>
 </entity>
 </enterprise-beans>
</ejb-jar>

EJB 1.1: Deployment Descriptor

The following deployment descriptor might be used to describe the Cabin bean:

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
EnterpriseJavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-
jar_1_1.dtd">

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>CabinEJB</ejb-name>
 <home>CabinHomeRemote</home>
 <remote>CabinRemote</remote>
 <ejb-class>CabinBean</ejb-class> <prim-key-
class>java.lang.Integer</prim-key-class>
 <persistence-type>Container</persistence-type>
 <reentrant>False</reentrant>
 </entity>
 </enterprise-beans>
</ejb-jar>

EJB 2.0 and 1.1: Elements of the XML Deployment Descriptor

The deployment descriptor for a real bean would have a lot more information;
this example simply illustrates the type of information that you’ll find in an XML
deployment descriptor.

The second element in any XML document is !DOCTYPE. This element
describes the organization that defined the DTD for the XML document, the
DTD’s version, and a URL location of the DTD. The DTD describes how a
particular XML document is structured.

All the other elements in the XML document are specific to EJB. They do not
represent all the elements used in deployment descriptors, but they illustrate the
types of elements that are used. Here’s what the elements mean:

ejb-jar

The root of the XML deployment descriptor. All other elements must be
nested below this one. It must contain one enterprise-beans element
as well as other optional elements.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 15

enterprise-beans

Contains declarations for all the enterprise beans described by this XML
document. It may contain entity, session or message-driven
(EJB 2.0) elements, which describe entity, session and message-driven
entrprise beans respectively.

entity

Describes an entity bean and its deployment information. There must be one
of these elements for every entity bean described by the XML deployment
descriptor. The session element is used in the same way to describe a
session bean. The message-driven element is different as it does not
define any component interfaces.

ejb-name

The descriptive name of the enterprise bean. It’s the name we use for the
enterprise bean in conversation, when talking about the bean component as
a whole.

home

The fully qualified class name of the remote home interface. This is the
interface that defines the life-cycle behaviors (create, find, remove) of the
enterprise bean to its clients outside the container system.

remote

The fully qualified class name of the remote interface. This is the interface
that defines the enterprise bean’s business methods to its clients outside
the container system.

EJB 2.0: local-home
The fully qualified class name of the local home interface. This is the
interface that defines the life-cycle behaviors (create, find, remove) of the
enterprise bean to other co-located enterprise beans.

EJB 2.0: local

The fully qualified class name of the local interface. This is the interface that
defines the enterprise bean’s business methods to other co-located
enterprise beans.

ejb-class

The fully qualified class name of the bean class. This is the class that
implements the business methods of the bean.

prim-key-class

The fully qualified class name of the enterprise bean’s primary key. The
primary key is used to find the bean data in the database.

The last two elements in the deployment descriptor, the persistence-type and
reentrant elements, express the persistence strategy and concurrency policies of
the entity bean. These elements are explained in more detail later in the book.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates16

As you progress through this book, you will be introduced to the elements that
describe concepts we have not covered yet, so don’t worry about knowing all of
the things you might find in a deployment descriptor.

EJB objects and EJB home

The entity and session beans both declare the component interfaces that their
clients will use to access them. Clients outside the container system, like
Servlets or Java applications, will always use the enterprise bean’s remote
component interfaces, while clients that are other enterprise beans in the same
container system will usually use local component interfaces to interact. This
section explains in logical terms how the component interfaces are connected to
instances of the bean class at runtime.

While this discussion helps you understand entity and session beans, it doesn’t
apply to EJB 2.0’s message-driven beans at all, because they do not declare
component interfaces. Message-driven beans are a very different kind of animal
and a full description of message-driven beans is left to Chapter 13.

Now that you have a basic understanding of some of the enterprise beans parts
(component interfaces, bean class, and deployment descriptor) it’s time to talk a
little more precisely about how these parts come together inside an EJB container
system. Unfortunately, we can’t talk as precisely as we’d like. There are a number
of ways for an EJB container to implement these relationships; we’ll show some
of the possibilities. Specifically, we’ll talk about how the container implements
the component interface of entity and session beans, so that clients, applications
outside the container or other co-located enterprise beans, can interact with and
invoke methods on the bean class.

The two missing pieces are the EJB object itself and the EJB home. You will
probably never see the EJB home and EJB object classes because their class
definitions are proprietary to the vendor’s EJB implementation and are generally
not made public. This is good because it represents a separation of
responsibilities along areas of expertise. As an application developer, you are
intimately familiar with how your business environment works and needs to be
modeled, so you will focus on creating the applications and beans that describe
your business. System-level developers, the people who write EJB servers, don’t
understand your business, but they do understand how to develop CTMs and
support dis tributed objects. It makes sense for system-level developers to apply
their skills to mechanics of managing distributed objects but leave the business
logic to you, the application developer. Let’s talk briefly about the EJB object
and the EJB home so you understand the missing pieces in the big picture.

The EJB object

This chapter has said a lot about a bean’s remote and local interfaces, which
extends the EJBObject and, for EJB 2.0, the EJBLocalObject interfaces

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 17

respectively. Who implements these interfaces? Clearly, the stub: we understand
that much. But what about the server side?

On the server side, an EJB object is an object that implements the remote and/or
local interfaces of the enterprise bean. Local interface are only available to EJB
2.0 container systems. It wraps the enterprise bean instance—that is, the
enterprise bean class you’ve created (in our example, the CabinBean)—on the
server and expands its functionality to include javax.ejb.EJBObject
and/or javax.ejb.EJBLocalObject behavior.

You will have noticed that “and/or” is used a lot when talking about which
interface the EJB object implements. That’s because enterprise beans in EJB 2.0
can declare either the local interface, remote interface, or both! Local interfaces
dot apply to EJB 1.1, so if you are working with that version, ignore references to
them; they are only relevant to EJB 2.0 container systems.

In EJB 2.0, regardless of which interfaces the bean implements, we can think of
the EJB object as implementing both. In reality there may be a special EJB object
for the remote interface and another special EJB object for the local interface of
each enterprise bean; that depends on the how the vendor choose to implement
it. For our purposes the term EJB object will be used to talk about the
implementation of either local or remote interfaces or both. The functionality of
these interfaces is so similar from the EJB object’s perspective that discussing
separate EJB object implementations wouldn’t be beneficial.

The EJB object is generated by the utilities provided by the vendor of your EJB
container and is based on the bean classes and the information provided by the
deployment descriptor. The EJB object wraps the bean instance and works with
the container to apply transactions, security, and other system- level operations
to the bean at runtime. Chapter 3 talks more about the EJB object’s role with
regard to system-level operations.

There are a number of strategies that a vendor can use to implement the EJB
object; Figure 2-1 illustrates three possibilities using the CabinRemote
interface. The same implementation strategies apply to the CabinLocal and
javax.ejb.EJBLocalObject interfaces.

[FIGURE]

Figure 2-1: Three ways to implement the EJB object

In Figure 2-1(a), the EJB object is a classic wrapper because it holds a reference
to the bean class and delegates the requests to the bean. Figure 2-1(b) shows
that the EJB object class actually extends the bean class, adding functionality
specific to the EJB container. In Figure 2-1(c), the bean class is no longer
included in the model. In this case, the EJB object has both a proprietary
implementation required by the EJB container and bean class method
implementations that were copied from the bean class’s definition.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates18

The EJB object design that is shown in Figure 2-1(a) is perhaps the most
common. Throughout this book, particularly in the next chapter, we will explain
how EJB works with the assumption that the EJB object wraps the bean class
instance as depicted in Figure 2-1(a). But the other implementations are used; it
shouldn’t make a difference which one your vendor has chosen. The bottom line
is that you never really know much about the EJB object: its implementation is up
to the vendor. Knowing that it exists and knowing that its existence answers a lot
of questions about how enterprise beans are structured, should be sufficient.
Everything that any client (including other enterprise beans) really needs to
know about any bean is described by the remote and home interfaces.

The EJB home

The EJB home is a lot like the EJB object. It’s another class that’s generated
automatically when you install an enterprise bean in a container. It implements all
the methods defined by the home interfaces (local and remote) and is responsible
for helping the container in managing the bean’s life cycle. Working closely with
the EJB container, the EJB home is responsible for locating, creating, and
removing enterprise beans. This may involve working with the EJB server’s
resource managers, instance pooling, and persistence mechanisms, the details of
which are hidden from the developer.

For example, when a create method is invoked on a home interface, the EJB home
creates an instance of the EJB object which references a bean instance of the
appropriate type. Once the bean instance is associated with the EJB object, the
instance’s matching ejbCreate() method is called. In the case of an entity
bean, a new record is inserted into the database. With session beans the
instance is simply initialized. Once the ejbCreate() method has completed,
the EJB home returns a remote or local reference (i.e., a stub) for the EJB object to
the client. The client can then begin to work with the EJB object by invoking
business methods using the stub. The stub relays the methods to the EJB object;
in turn, the EJB object delegates those method calls to the bean instance.

In EJB 2.0, how does the EJB home know which type of EJB object reference
(local or remote) to return? It depends on which home interface is being used. If
the client invokes a create() method on the remote home interface, the EJB
home will return a remote interface reference. If the client is working with a local
home interface, the EJB home will return a reference implementing the local
interface. EJB 2.0 requires that the return type of remote home interface methods
be remote interfaces, and that the return type of the local home interface methods
be local interfaces.

// The Cabin EJB’s remote home interface
public interface CabinHomeRemote extends javax.ejb.EJBHome {
 public CabinRemote create(Integer id)
 throws CreateException, RemoteException;
 public CabinRemote findByPrimaryKey(Integer pk)
 throws FinderException, RemoteException;

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 19

}

// The Cabin EJB’s local home interface
public interface CabinHomeLocal extends javax.ejb.EJBHome {
 public CabinLocal create(Integer id)
 throws CreateException, RemoteException;
 public CabinLocalfindByPrimaryKey(Integer pk)
 throws FinderException, RemoteException;
}

Figure 2-3 illustrates the architecture of EJB with the EJB home and EJB object
implementing the home interface and remote or local interface respectively. The
bean class is also shown as being wrapped by the EJB object.

[FIGURE]

Figure 2-1: EJB architecture

Deploying a bean

The EJB objects and EJB homes are generated during the deployment process.
After the files that define the bean (the component interfaces, and the bean
classes) have been packaged into a JAR file, the bean is ready to be deployed:
that is, added to an EJB container so that it can be accessed as a distributed
component. During the deployment process, tools provided by the EJB container
vendor generate the EJB object and EJB home classes by examining the
deployment descriptor and the other interfaces and classes in the JAR file.

EJB 2.0: Local vs. Remote Support

Throughout this book we will consider the EJB object and EJB home as
constructs that support both the remote and local component interfaces. In
reality, we have no idea how the vendor chose to implement the EJB object and
EJB home since they are only logical constructs and may not have equivalent
software counterparts. It’s important to remember that EJB object and EJB home
are simply terms to describe the EJB container’s responsibilities for supporting
the component interfaces. We have chosen to give them a more concrete
description in this book purely for instructional purposes, the EJB object and EJB
home implementations discussed throughout this book are to be considered
illustrative and a true representation of how these terms may be implemented.

Using Enterprise Beans

Let’s look at how a client would work with an enterprise bean to do something
useful. We’ll start with the Cabin EJB that was defined earlier. A cabin is a thing
or place whose description is stored in a database. To make the example a little

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates20

bit more real, imagine that there are other entity beans, including a Ship, Cruise,
Ticket, Customer, Employee, and so on.

Getting Information from an Entity Bean

Imagine that a GUI client needs to display information about a particular cruise,
including the cruise name, the ship name, and a list of cabins. Using the cruise ID
obtained from a text field, we can use some of our beans to populate the GUI with
data about the requested cruise. Here’s what the code would look like:

CruiseHomeRemote cruiseHome = ... use JNDI to get the home
// Get the cruise id from a text field.
String cruiseID = textFields1.getText();
// Create an EJB primary key from the cruise id.
Integer pk = new java.lang.Integer.parseInt(cruiseID);
// Use the primary key to find the cruise.
CruiseRemote cruise = cruiseHome.findByPrimaryKey(pk);
// Set text field 2 to show the cruise name.
textField2.setText(cruise.getName());
// Get a remote reference to the ship that will be used
// for the cruise from the cruise bean.
ShipRemote ship = cruise.getShip();
// Set text field 3 to show the ship's name.
textField3.setText(ship.getName());

// Get a list of all the cabins on the ship as remote references
// to the cabin beans.
Collection cabins = ship.getCabins();
Iterator cabinItr = cabins.iterator();

// Iterate through the enumeration, adding the name of each cabin
// to a list box.
while(cabinItr.hasNext())
 CabinRemote cabin = (CabinRemote)cabinItr.next();
 listBox1.addItem(cabin.getName());
}

Let’s start by getting a remote reference to the EJB home for an entity bean that
represents a cruise. We are using a remote reference instead of a local one,
because the client is a GUI Java application located outside the EJB container. In
EJB 1.1, we don’t have a choice because only remote component interfaces are
supported anyway. It’s not shown in the example, but references to the EJB
home are obtained using JNDI. Java Naming and Directory Interface (JNDI) is a
powerful API for locating resources, such as remote objects, on networks. It’s a
little too complicated to talk about here, but rest assured that it will be covered in
subsequent chapters.

We read a cruise ID from a text field, use it to create a primary key, and use that
primary key together with the EJB home to get a CruiseRemote reference, the

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 21

object that implements the business methods of our bean. Once we have the
appropriate Cruise EJB, we can ask the Cruise EJB to give us a remote reference
to a Ship EJB that will be used for the cruise. We can then get a Collection
of remote Cabin EJB references from the Ship EJB and display the names of the
Cabin EJBs in the client.

Entity beans model data and behavior. They provide a system with a reusable
and consis tent interface to data in the database. The behavior used in entity
beans is usually focused on applying business rules that pertain directly to
changing data. In addition, entity beans can model relationships with other
entities. A ship, for example, has many cabins. We can get a list of cabins owned
by the ship by invoking the ship.getCabins() method.

Entity beans are shared by many clients. An example is the Ship EJB. The
behavior and data associated with a Ship EJB will be used concurrently by many
clients on the system. There are only three ships in Titan’s fleet, so it’s easy to
imagine that several clients will need to access these entities at the same time.
Entity beans are designed to service multiple clients, providing fast, reliable
access to data and behavior while protecting the integrity of data changes.
Because entity beans are shared, we can rest assured that everyone is using the
same entity and seeing the same data as it changes. In other words, we don’t
have duplicate entities with different representations of the same data.1

Modeling Workflow with Session Beans

Entity beans are useful for objectifying data and describing business concepts
that can be expressed as nouns, but they’re not very good at representing a
process or a task. A Ship bean provides methods and behavior for doing things
directly to a ship, but it does not define the context under which these actions
are taken. The previous example retrieved data about cruises and ships; we could
also have modified this data. And if we had gone to enough effort, we could
have figured out how to book a passenger—perhaps by adding a Customer bean
to a Cruise bean or adding a customer to a list of passengers maintained by the
ship. We could try to shove methods for accepting payment and other tasks
related to booking into our GUI client application, or even into the Ship or Cabin
beans, but that’s a contrived and inappropriate solution. We don’t want
business logic in the client application—that’s why we went to a multitier
architecture in the first place. Similarly, we don’t want this kind of logic in our
entity beans that represent ships and cabins. Booking passengers on a ship or
scheduling a ship for a cruise are the types of activities or functions of the
business, not the Ship or the Cabin bean, and are therefore expressed in terms of
a process or task.

1 This is dependent on the isolation level set on the bean’s data, which is discussed in more
detail in Chapter 8.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates22

Session beans act as agents for the client managing business processes or tasks;
they’re the appropriate place for business logic. A session bean is not persistent
like an entity bean; nothing in a session bean maps directly into a database or is
stored between sessions. Session beans work with entity beans, data, and other
resources to control workflow. Workflow is the essence of any business system
because it expresses how entities interact to model the actual business. Session
beans control tasks and resources but do not themselves represent data.

The following code demonstrates how a session bean, designed to make cruise
line reservations, might control the workflow of other entity and session beans to
accomplish this task. Imagine that a piece of client software, in this case a user
interface, obtains a remote reference to a TravelAgent session bean. Using the
information entered into text fields by the user, the client application books a
passenger on a cruise:

// Get the credit card number from the text field.
String creditCard = textField1.getText();
int cabinID = Integer.parseInt(textField2.getText());
int cruiseID = Integer.parseInt(textField3.getText());

// Create a new Reservation session passing in a reference to a
// customer entity bean.
TravelAgent travelAgent = TravelAgentHome.create(customer);

// Set cabin and cruise IDs.
travelAgent.setCabinID(cabinID);
travelAgent.setCruiseID(cruiseID);

// Using the card number and price, book passage.
// This method returns a Ticket object.
Ticket ticket = travelAgent.bookPassage(creditCard, price);

This is a fairly coarse-grained abstraction of the process of booking a passenger
on a cruise. Coarse-grained means that most of the details of the booking
process are hidden from the client. Hiding the fine-grained details of workflow is
important because it provides us with more flexibility in how the system evolves
and how clients are allowed to interact with the EJB system.

The following listing shows some of the code included in the
TravelAgentBean. The bookPassage() method actually works with
three entity beans, the Customer, Cabin, and Cruise beans, and another session
bean, the ProcessPayment bean. The ProcessPayment bean provides several
different methods for making a payment including check, cash, and credit card. In
this case, we are using the ProcessPayment session to make a credit card
purchase of a cruise ticket. Once payment has been made, a serializable Ticket
object is created and returned to the client application.

public class TravelAgentBean implements javax.ejb.SessionBean {

 public Customer customer;

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 23

 public Cruise cruise;
 public Cabin cabin;

 public void ejbCreate(Customer cust) {
 customer = cust;
 }
 public Ticket bookPassage(CreditCard card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeRemote resHome = (ReservationHome)
 getHome("ReservationHome",ReservationHome.class);
 ReservationRemote reservation =
 resHome.create(customer, cruise, cabin, price);
 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHome)getHome("ProcessPaymentHome",
 ProcessPaymentHome.class);
 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

 Ticket ticket =
 new Ticket(customer,cruise,cabin,price);
 return ticket;
 } catch(Exception e){
 throw new EJBException(e);
 }
 }

// More business methods and EJB state management methods follow.
}

This example leaves out some details, but it demonstrates the difference in
purpose between a session bean and an entity bean. Entity beans represent the
behavior and data of a business object, while session beans model the workflow
of beans. The client application uses the TravelAgent EJB to perform a task
using other beans. For example, the TravelAgent EJB uses a ProcessPayment
EJB and a Reservation EJB in the process of booking a passage. The
ProcessPayment EJB processes a credit card and the Reservation EJB records the
actual reservation in the system. Session beans can also be used to read, update,
and delete data that can’t be adequately captured in an entity bean. Session
beans don’t represent records or data in the database like entity beans but can
access data in the database.

All the work performed by TravelAgent session bean could have been coded in
the client application. Having the client interact directly with entity beans is a
common but troublesome design approach because it ties the client directly to
the details of the business tasks. This is troublesome for two reasons: any

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates24

change in the entity beans and their interaction require changes to the client, and
it’s very difficult to reuse the code that models the workflow.

Session beans are coarse-grained components that allow clients to perform tasks
without being concerned with the details that make up the task. This allows
developers to update the session bean, possibly changing the workflow, without
impacting the client code. In addition, if the session bean is properly defined,
other clients that perform the same tasks can reuse it. The ProcessPayment
session bean, for example, can be reused in many other areas besides
reservations, including retail and wholesale sales. For example, the ship’s gift
shop could use the ProcessPayment EJB to process purchases. As a client of the
ProcessPayment EJB, the TravelAgent EJB doesn’t care how ProcessPayment
works; it’s only interested in the ProcessPayment EJB’s coarse-grained interface,
which validates and records charges.

Moving workflow logic into a session bean also helps to thin down the client
applications and reduce network traffic and connections. Excessive network
traffic is actually one of the biggest problems in distributed object systems.
Excessive traffic can overwhelm the server and clog the network, hurting
response times and performance. Session beans, if used properly, can
substantially reduce network traffic by limiting the number of requests needed to
perform a task. In distributed objects, every method invocation produces
network traffic. Distributed objects communicate requests using an RMI loop.
This requires that data be streamed between the stub and skeleton with every
method invocation. With session beans, the interaction of beans in a workflow is
kept on the server. One method invocation on the client application results in
many method invocations on the server, but the network only sees the traffic
produced by one method call on the session bean. In the TravelAgent EJB, the
client invokes bookPassage(), but on the server, the bookPassage()
method produces several method invocations on the component interfaces of
other enterprise beans. For the network cost of one method invocation, the client
gets several method invocations. In EJB 2.0 we would have used the local
component interfaces because they are much more efficient.

In addition, session beans reduce the number of network connections needed by
the client. The cost of maintaining many network connections can be very high,
so reducing the number of connections that each client needs is important in
improving the performance of the system as a whole. When session beans are
used to manage workflow, the number of connections that each client has to the
server is substantially reduced, which improves the EJB server’s performance.
Figure 2-5 compares the network traffic and connections used by a client that
only uses entity beans to that used by a client that uses session beans.

[FIGURE]

Figure 2-3: Session beans reduce network traffic and thin
down clients

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 25

Session beans also limit the number of stubs used on the client, which saves the
client memory and processing cycles. This may not seem like a big deal, but
without the use of session beans, a client might be expected to manage hundreds
or even thousands of remote references at one time. In the TravelAgent EJB, for
example, the bookPassage() method works with several remote references,
but the client is only exposed to the remote reference of the TravelAgent EJB.

Stateless and stateful session beans

Session beans can be either stateful or stateless. Stateful session beans maintain
conversational state when used by a client. Conversational state is not written
to a database; it’s state that is kept in memory while a client uses a session.
Maintaining conversational state allows a client to carry on a conversation with
an enterprise bean. As each method on the enterprise bean is invoked, the state
of the session bean may change, and that change can affect subsequent method
calls. The TravelAgent session bean, for example, may have many more methods
than the bookPassage() method. The methods that set the cabin and cruise
IDs are examples. These set methods are responsible for modifying
conversational state. They convert the IDs into remote references to Cabin and
Cruise EJBs that are later used in the bookPassage() method. Conversational
state is only kept for as long as the client application is actively using the bean.
Once the client shuts down or releases the TravelAgent EJB, the conversational
state is lost forever. Stateful session beans are not shared among clients; they
are dedicated to the same client for the life of the enterprise bean.

Stateless session beans do not maintain any conversational state. Each method
is completely independent and uses only data passed in its parameters. The
ProcessPayment EJB is a perfect example of a stateless session bean. The
ProcessPayment EJB doesn’t need to maintain any conversational state from one
method invocation to the next. All the information needed to make a payment is
passed into the byCreditCard() method. Stateless session beans provide
the highest performance in terms of throughput and resource consumption
compared to entity and stateful session beans because only a few stateless
session bean instances are needed to serve hundreds, possibly thousands of
clients. Chapter 12 talks more about the use of stateless session beans.

EJB 2.0: Accessing EJB with Message-Driven Beans

Message-driven beans are integration points for other applications interested in
working with EJB applications. Java applications or legacy systems that need to
access an EJB application can send messages via JMS to message-driven beans.
The message-driven beans can then process those messages and perform tasks
using other entity and session beans.

In many ways, message-driven beans fulfill the same role as session beans by
managing the workflow of entity and session beans to complete a given task.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates26

The task to be completed is initiated by an asynchronous message, which has
been sent by an application using JMS. Unlike session beans, which respond to
business methods invoked on their component interfaces, a message-driven
bean responds to asynchronous messages, which are delivered to the message-
driven bean through its onMessage() method. The fact that the messages are
asynchronous means the client that send message doesn’t expect and is not
waiting for a reply. The messaging client simply sends the message and forgets
about it.

As an example, we can recast the TravelAgent EJB developed earlier as a
message-driven bean:

public class TravelAgentMDBean
implements javax.ejb.MessageDrivenBean, javax.jms.MessageListener {

 CustomerHomeLocal customerHome;
 CruiseHomeLocal cruiseHome;
 CabinHomeLocal cabinHome;
 ReservationHomeLocal reservationHome;
 ProcessPaymentHomeLocal paymentHome;

 public void onMessage(Message msg) {

 try {

 MapMessage message = (MapMessage)msg;
 Integer customerID =
 (Integer) message.getObject(“customer_id”);
 Integer cruiseID =
 (Integer) message.getObject(“cruise_id”);
 Integer cabinID =
 (Integer)message.getObject(“cabin_id”);
 double price = message.getDouble(“price”);

 CustomerLocal customer =
 customerHome.findByPrimaryKey(customerID);
 CruiseLocal cruise=
 cruiseHome.findByPrimaryKey(cruiseID);
 CabinLocal cabin = cabinHome.findByPrimaryKey(cabin_id);

 ReservationLocal reservation =
 reservationHome.create(customer, cruise, cabin, price);

 ProcessPaymentLocal process = paymentHome.create();
 process.byCredit(customer, card, price);

 } catch(Exception e){
 throw new EJBException(e);
 }
 }

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 27

// More business methods and EJB state management methods follow.
}

Notice that all the information about the reservation is obtained from the
message delivered to the message-driven bean. In JMS messages can take many
forms, one of which is the javax.jms.MapMessage used in this example,
which carries name-value pairs. Once the information is obtained from the
message and the enterprise bean references are obtained, the reservation is
processed the same as it was in the session bean. The only difference is that a
Ticket is not returned to the caller, because message-driven beans don’t have
to respond to the caller, the process is asynchronous.

Message-driven beans, like stateless session beans, do not maintain any
conversational state. The processing of each new message is independent from
the previous for subsequent messages.

As was mentioned before the message-driven bean is very different in many
respects from entity and session beans, so it’s a bit unclear don’t worry it will be
explained in detail in Chapter 13, Message-Driven Beans.

The Bean-Container Contract

The environment that surrounds the beans on the EJB server is often referred to
as the container. The container is more a concept than a physical construct.
Conceptually, the container acts as an intermediary between the bean class and
the EJB server. The container manifests and manages the EJB objects and EJB
homes for a particular type of bean and helps these constructs to manage bean
resources and apply primary services like transactions, security, concurrency,
naming, and so forth at runtime. Conceptually, an EJB server may have many
containers, each of which may contain one or more types of enterprise beans. As
you will discover a little later, the container and the server are not clearly
different constructs, but the EJB specification defines the component model in
terms of the container’s responsibilities, so we will follow that convention here.

Enterprise beans components interact with the EJB container through a well-
defined component model. The EntityBean, SessionBean, and
MessageDrivenBean (EJB 2.0) interfaces are the bases of this component
model. As we learned earlier, these interfaces provide callback methods that
notify the bean class of state management events in its life cycle. At runtime, the
container invokes the callback methods on the bean instance when appropriate
state management events occur. When the container is about to write an entity
bean instance’s state to the database, for example, it first calls the bean
instance’s ejbStore() method. This provides the bean instance with an
opportunity to do some clean up on its state just before it’s written to the
database. The ejbLoad() method is called just after the bean’s state is

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates28

populated from the database, providing the bean developer with an opportunity
to manage the bean’s state before the first business method is called.2 Other
callback methods can be used by the bean class in a similar fashion. EJB defines
when these various callback methods are invoked and what can be done within
their context. This provides the bean developer with a predictable runtime
component model.

While all the callback methods are declared in bean interfaces, a meaningful
implementation of the methods is not mandatory. In other words, the method
body of any or all of the callback methods can be left empty in the bean class.
Beans that implement one or more callback methods are usually more
sophisticated and access resources that are not managed by the EJB system.
Enterprise beans that wrap legacy systems often fall into this category. The only
exception to this is the onMessage() method, which is defined in the
MessageDrivenBean interface. This method must be implemented if the
message-driven bean is to do anything useful.

javax.ejb.EJBContext is an interface that is implemented by the
container and is also a part of the bean-container contract. Entity beans use a
subclass of javax.ejb.EJBContext called
javax.ejb.EntityContext. Session beans use a subclass called the
javax.ejb.SessionContext. Message-driven beans use the subclass
javax.ejb.MessageDrivenContext. These EJBContext types
provide the bean class with information about its container, the client using the
enterprise bean, and the bean itself. They also provide other functionality that is
described in more detail in Chapters 119, 12 and 13. The important thing about
the EJBContext types is that they provide the enterprise bean with
information about the world around it, which the enterprise bean can use while
processing requests from both clients and callback methods from the container.

In addition to the EJBContext, EJB 1.1 and 2.0 have expanded the enterprise
bean’s interface with the container to include a JNDI name space, called the
environment context, which provides the bean with a more flexible and extensible
bean-container interface. The JNDI environment context is discussed in detail
later in this book.

The Container-Server Contract

The container-server contract is not defined by the Enterprise JavaBeans
specification. This was done to facilitate maximum flexibility for vendors defining
their EJB server technologies. Other than isolating the beans from the server, the

2 The ejbLoad() and ejbStore() behavior illustrated here is for container-managed
persistence. With bean-managed persistence the behavior is slightly different. This is
examined in detail in Chapter 9.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 29

container’s responsibility in the EJB system is a little vague. The EJB
specification only defines a bean-container contract and does not define the
container-server contract. It is difficult to determine, for example, exactly where
the container ends and the server begins when it comes to resource management
and other services.

In the first few generations of EJB servers this ambiguity has not been a problem
because most EJB server vendors also provide EJB containers. Since the vendor
provides both the container and the server, the interface between the two can
remain proprietary. In future generations of the EJB specification, however, some
work may be done to define the container-server interface and delimit the
responsibilities of the container.

One advantage of defining a container-server interface is that it allows third-
party vendors to produce containers that can plug into any EJB server. If the
responsibilities of the container and server are clearly defined, then vendors who
specialize in the technologies that support these different responsibilities can
focus on developing the container or server as best matches their core
competency. The disadvantage of a clearly defined container-server interface is
that the plug-and-play approach could impact performance. The high level of
abstraction that would be required to clearly separate the container interface from
the server, would naturally lead to looser binding between these large
components, which could result in lower performance. The following rule of
thumb best describes the advantages and disadvantages associated with a
container-server interface: the tighter the integration, the better the performance;
the higher the abstraction, the greater the flexibility. The biggest deterrent to
defining a container-server interface is that it would require the definition of low-
level facilities, which was one of the problems that established CTM vendors had
with CORBA. Allowing vendors to implement low-level facilities like transactions
and security as they see fit is one of EJB’s biggest attractions for vendors 3.

Many EJB-compliant servers actually support several different kinds of
middleware technologies. It’s quite common, for example, for an EJB server to
support the vendor’s proprietary CTM model as well as EJB, Servlets, web server
functionality, JMS provider, and other server technologies. Defining an EJB
container concept is useful for clearly distinguishing that part of the server that
supports EJB from all the other services it provides.

This said, we could define the responsibilities of containers and servers based
on current implementations of the EJB specification. In other words, we could
examine how current vendors are defining the container in their servers and use

3 Of all the commercial and open source EJB servers available today only one has
experimented with defining a container-server interface, OpenEJB. OpenEJB is an open
source EJB container system developed by Richard Monson-Haefel, the author of this
book.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates30

this as a guide. Unfortunately, the responsibilities of the container in each EJB
server largely depend on the core competency of the vendor in question.
Database vendors, for example, implement containers differently from TP monitor
vendors. The strategies for assigning responsibilities to the container and server
are so varied that it would provide little value in understanding the overall
architecture to discuss the container and server separately. Instead, this book
addresses the architecture of the EJB system as if the container and server were
one component.

The remainder of this book treats the EJB server and the container as the same
thing and refers to them collectively as the EJB server, container, system, or
environment.

Summary

This chapter covered a lot of ground describing the basic architecture of an EJB
system. At this point you should understand that beans are business object
components. The home interfaces define life-cycle methods for creating, finding,
and destroying beans and the remote and local interfaces define the public
business methods of the bean. Message-driven beans do not have component
interfaces. The bean class is where the state and behavior of the bean are
implemented.

There are three basic kinds of beans: entity, session, and message-driven. Entity
beans are persistent and represent a person, place, or thing. Session beans are
extensions of the client and embody a process or a workflow that defines how
other beans interact. Session beans are not persistent, receiving their state from
the client, and they live only as long as the client needs them. Message-driven
beans in EJB 2.0 are integration points that allow other applications to interact
with EJB applications using JMS asynchronous messaging. Message-driven
beans, like stateless session beans, are not persistent and do not maintain
conversational state.

The EJB object and EJB home are conceptual constructs that delegate method
invocations to session and entity beans from the client and help the container to
manage the enterprise bean at runtime. The clients of entity and session beans
do not interact with the instances of the bean class directly. Instead, the client
software interacts with EJBObject and EJBHome stubs, which are connected
to the EJB object and EJB homes respectively. The EJB object implements the
remote interface and expands the bean class’s functionality. The EJB home
implements the home interface and works closely with the container to create,
locate, and remove beans.

Beans interact with their container through the well-defined bean-container
contract. This contract provides callback methods, the EJBContext, and the
JNDI environment context. The callback methods notify the bean class that it is

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 31

involved in state management event. The EJBContext and JNDI environment
context provides the bean instance with information about its environment. The
container-server contract is not well defined and remains proprietary at this time.
Future versions of EJB may specify the container-server contract.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 1

3

Resource Management and the
Primary Services

Chapter 2 discussed the basic architecture of Enterprise JavaBeans (EJB),
including the relationship between the bean class, component interfaces, the EJB
object and EJB home, and the EJB container. These architectural components
define a common model for distributed server-side components in component
transaction monitors (CTMs).

One of the reasons CTMs are such great distributed object platforms is that they
do more than just distribute objects: they manage the resources used by
distributed objects. CTMs are designed to manage thousands, even millions, of
distributed objects simultaneously. To be this robust, CTMs must be very smart
resource managers, managing how dis tributed objects use memory, threads,
database connection, processing power, etc. EJB recognizes that some of the
resource management techniques employed by CTMs are very common, and it
defines interfaces that help developers create beans that can take advantage of
these common practices.

EJB CTMs are also great distributed object brokers. Not only do they help clients
locate the distributed objects they need, they also provide many services that
make it much easier for a client to use the objects correctly. CTMs commonly
support six primary services: concurrency, transaction management, persistence,
object distribution, naming, and security. These services provide the kind of
infrastructure that is necessary for a successful three-tier system.

With the introduction of message-driven beans in EJB 2.0, Enterprise JavaBeans
goes beyond most CTMs by expanding the platforms responsibility to include

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates2

managing asynchronous messaging components. CTMs have historically been
responsible only for managing RMI-based distributed objects. While the method
of access is different for message-driven beans, EJB is still responsible for
managing the primary services for message-driven beans just as it does for
session and entity beans.

This chapter discusses both the resource management facilities and the primary
services that are available to Enterprise JavaBeans.

Resource Management

One of the fundamental benefits of using EJB servers is that they are able to
handle heavy workloads while maintaining a high level of performance. A large
business system with many users can easily require thousands of objects—even
millions of objects—to be in use simultaneously. As the number of interactions
among these objects increase, concurrency and transactional concerns can
degrade the system’s response time and frustrate users. EJB servers increase
performance by synchronizing object interactions and sharing resources.

There is a relationship between the number of clients and the number of dis-
tributed objects that are required to service them. As client populations increase,
the number of distributed objects and resources required increases. At some
point, the increase in the number of clients will impact performance and diminish
throughput. EJB explicitly supports two mechanisms that make it easier to
manage large numbers of beans at runtime: instance pooling and activation.

Instance Pooling

The concept of pooling resources is nothing new. A commonly used technique
is to pool database connections so that the business objects in the system can
share database access. This trick reduces the number of database connections
needed, which reduces resource consump tion and increases throughput. Pooling
and reusing database connections is less expensive than creating and destroying
connections as needed. Some CTMs also apply resource pooling to server-side
components; this technique is called instance pooling. Instance pooling reduces
the number of component instances, and therefore resources, needed to service
client requests. In addition, it is less expensive to reuse pooled instances than to
frequently create and destroy instances.

As you already know, EJB clients of session and entity beans interact with these
types of enterprise beans through the remote, and for EJB 2.0, the local interfaces
that are implemented by EJB objects. Client applications never have direct access
to the actual session or entity bean. Instead, they interact with EJB objects,
which wrap bean instances. Similarly, JMS clients in EJB 2.0 never interact with
message-driven beans directly. They send messages which are routed to the EJB

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 3

container system. The EJB container then delivers these messages to the proper
message-driven bean.

Instance pooling leverages indirect access to enterprise beans to provide better
performance. In other words, since clients never access beans directly, there’s no
fundamental reason to keep a separate copy of each enterprise bean for each
client. The server can keep a much smaller number of enterprise beans around to
do the work, reusing enterprise bean instance to service different requests.
Although this sounds like a resource drain, when done correctly, it greatly
reduces the resources actually required to services all the client requests.

The entity bean life cycle

To understand how instance pooling works for RMI components (session and
entity beans), let’s examine the life cycle of an entity bean. EJB defines the life
cycle of an entity bean in terms of its relationship to the instance pool. An entity
bean exists in one of three states:

No state

When a bean instance is in this state, it has not been instantiated yet. We
identify this state to provide a beginning and an end for the life cycle of a
bean instance.

Pooled state

When an instance is in the pooled state, it has been instantiated by the
container but has not yet been associated with an EJB object.

Ready State

A bean instance in this state has been associated with an EJB object and is
ready to respond to business method invocations.

Overview of state transitions

Each EJB vendor implements instance pooling for entity beans differently, but all
instance pooling strategies attempt to manage collections of bean instances so
that they are quickly accessible at runtime. To create an instance pool, the EJB
container creates several instances of a bean class and then holds onto them
until they are needed. As clients make business method requests, bean instances
from the pool are assigned to the EJB objects associated with the clients. When
the EJB object doesn’t need the instance any more, it’s returned to the instance
pool. An EJB server maintains instance pools for every type of bean deployed.
Every instance in an instance pool is equivalent; they are all treated equally.
Instances are selected arbitrarily from the instance pool and assigned to EJB
objects as needed.

Soon after the bean instance is instantiated and placed in the pool, it’s given a
reference to a javax.ejb.EJBContext provided by the container. The
EJBContext provides an interface that the bean can use to communicate with

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates4

the EJB environment. This EJBContext becomes more useful when the bean
instance moves to the Ready State. Enterprise beans also have a JNDI context
called the environment naming context. The function of the environment naming
context is not critical to this discussion and will be addressed in more detail later
in the chapter.

When a client uses an EJB home to obtain a remote or local interface to a bean,
the container responds by creating an EJB object. Once created, the EJB object is
assigned a bean instance from the instance pool. When a bean instance is
assigned to an EJB object, it officially enters the Ready State. From the Ready
State, a bean instance can receive requests from the client and callbacks from the
container. Figure 3-1 shows the sequence of events that result in an EJB object
wrapping a bean instance and servicing a client.

[FIGURE]

Figure 3-1: A bean moves from the instance pool to the
Ready State

When a bean instance moves into the Ready State, the EntityContext takes
on new meaning. The EntityContext provides information about the client
that is using the bean. It also provides the instance with access to its own EJB
home and EJB object, which is useful when the bean needs to pass references to
itself to other instances, or when it needs to create, locate, or remove beans of its
own class. So the EntityContext is not a static class; it is an interface to the
container and its state changes as the instance is assigned to different EJB
objects.

When the client is finished with a bean’s remote reference, either the remote
reference passes out of scope or one of the bean’s remove methods is called.1

Once a bean has been removed or is no longer in scope, the bean instance is
disassociated from the EJB object and returned to the instance pool. Bean
instances can also be returned to the instance pool during lulls between client
requests. If a client request is received and no bean instance is associated with
the EJB object, an instance is retrieved from the pool and assigned to the EJB
object. This is called instance swapping.

After the bean instance returns to the instance pool, it is again available to
service a new client request. Figure 3-3 illustrates the life cycle of a bean
instance.

[FIGURE]

Figure 3-2: Life cycle of a bean instance

1 The EJBHome, EJBLocalHome, EJBObject, and EJBLocalObject interfaces all
define methods that can be used to remove a bean.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 5

The number of instances in the pool fluctuates as instances are assigned to EJB
objects and returned to the pool. The container can also manage the number of
instances in the pool, increasing the count when client activity increases and
lowering the count during less active periods.

Instance swapping

Stateless session beans offer a particularly powerful opportunity to leverage
instance pooling. A stateless session bean does not maintain any state between
method invocations. Every method invocation on a stateless session bean
operates independently, performing its task without relying on instance
variables. This means that any stateless session instance can service requests
for any EJB object of the proper type, allowing the container to swap bean
instances in and out between method invocations made by the client.

Figure 3-5 illustrates this type of instance swapping between method
invocations. In Figure 3-5(a), instance A is servicing a business method
invocation delegated by EJB object 1. Once instance A has serviced the request,
it moves back to the instance pool (Figure 3-5(b)). When a business method
invocation on EJB object 2 is received, instance A is associated with that EJB
object for the duration of the operation (Figure 3-5(c)). While instance A is
servicing EJB object 2, another method invocation is received by EJB object 1
from the client, which is serviced by instance B (Figure 3-5(d)).

[FIGURE]

Figure 3-3: Stateless session beans in a swapping strategy

Using this swapping strategy allows a few stateless session bean instances to
serve hundreds of clients. This is possible because the amount of time it takes to
perform most method invocations is substantially shorter than the pauses
between method invocations. The periods in a bean instance’s life when it is not
actively servicing the EJB object are unproductive; instance pooling minimizes
these inactive periods. When a bean instance is finished servicing a request for
an EJB object, it is immediately made available to any other EJB object that needs
it. This allows fewer stateless session instances to service more requests, which
decreases resource consumption and improves performance.

Stateless session beans are declared stateless in the deployment descriptor.
Nothing in the class definition of a session bean is specific to being stateless.
Once a bean class is deployed as stateless, the container assumes that no
conversational state is maintained between method invocations. So a stateless
bean can have instance variables, but because bean instances can be servicing
several different EJB objects, they should not be used to maintain conversational
state.

Implementations of instance pooling vary, depending on the vendor. One way
that instance pooling implementations often differ is in how instances are

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates6

selected from the pool. Two of the common strategies are FIFO and LIFO. The
FIFO (first in, first out) strategy places instances in a queue, where they wait in
line to service EJB objects. The LIFO (last in, first out) uses more of stack
strategy, where the last bean that was added to the stack is the first bean
assigned to the next EJB object. Figure 3-5 uses a LIFO strategy.

EJB 2.0: Message-Driven Beans and Instance Pooling

Message-driven beans, like stateless session beans, do not maintain state
specific to a client request, which makes them an excellent component for
instance pooling.

In most EJB containers a pool of each type of message-driven bean is used to
service incoming messages; each type of message-driven bean has its own
instance pool. Message-driven beans subscribe or listen to a specific message
destination, which is a kind of address used when sending messages. When a
JMS client sends an asynchronous message to a specific destination, it is
delivered to EJB container. The EJB container will first determine which message-
driven bean subscribes to that destination, and then it will choose an instance of
that type from the instance pool to process the message. Once the message-
driven bean instance has finished processing the message (when the
onMessage() method returns) the EJB container will return the instance to
its instance pool. An EJB container can process hundreds, possibly thousands,
of messages concurrently by leveraging instance pools. Figure 3-X illustrates
how client requests are processed by an EJB container.

FIGURE 3-X

Figure 3-x: Message-Driven bean instance pooling

In Figure 3-X A the top JMS client delivers a message to Destination A and the
bottom JMS client delivers a message to Destination B. The EJB container
chooses an instance of MessageDrivenBean_1 to process the message intended
to Destination A, and an instance of MessageDrivenBean_2 to process the
message intended for Destination B. The bean instances are removed from the
pool and assigned and used to process the messages.

A moment later the middle JMS client sends a message to Destination B, at this
point the first two messages have already been processed and the container is
returning the instances to their respective pools. As the new message comes in
the container choose a new instance of MessageDrivenBean_2 to process the
message.

Message driven beans are always deployed to process messages from a specific
destination. In the above example, instances of MessageDrivenBean_1 only
process messages for Destination A, while instances of MessageDrivenBean_2
only processes messages for Destination B. Several messages for the same
destination can be processed at the same time. If, for example, a hundred

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 7

messages for Destination A all arrived at the same time from a hundred different
JMS clients, the EJB container would simply choose a hundred instances of
MessageDrivenBean_1 to process the incoming messages; each instance is
assigned a message.

The ability to concurrently process messages makes the message-driven bean an
extremely powerful enterprise bean on the same playing field with session and
entity beans. They are truly first class components, and an important addition to
the Enterprise JavaBeans platform.

The Activation Mechanism

Unlike the other type of enterprise beans, stateful session beans maintain state
between method invocations. This is called conversational state because it
represents the continuing conversation with the stateful session bean’s client.
The integrity of this conversational state needs to be maintained for the life of
the bean’s service to the client. Stateful session beans do not participate in
instance pooling like stateless session, entity, and message-driven beans.
Instead, activation is used with stateful session beans to conserve resources.
When an EJB server needs to conserve resources, it can evict stateful session
beans from memory. This reduces the number of instances maintained by the
system. To passivate the bean and preserve its conversational state, the bean’s
state is serialized to a secondary storage and maintained relative to its EJB
object. When a client invokes a method on the EJB object, a new stateful
instance is instantiated and populated from the passivated secondary storage.

Passivation is the act of disassociating a stateful bean instance from its EJB
object and saving its state. Passivation requires that the bean instance’s state be
held relative to its EJB object. After the bean has been passivated, it is safe to
remove the bean instance from the EJB object and evict it from memory. Clients
are completely unaware of the deactivation process. Remember that the client
uses the bean’s remote interface, which is implemented by an EJB object, and
therefore does not directly communicate with the bean instance. As a result, the
client’s connection to the EJB object can be maintained while the bean is
passivated.

Activating a bean is the act of restoring a stateful bean instance’s state relative
to its EJB object. When a method on the passivated EJB object is invoked, the
container automatically instantiates a new instance and sets its fields equal to
the data stored during passivation. The EJB object can then delegate the method
invocation to the bean as normal. Figure 3-7 shows activation and passivation of
a stateful bean. In Figure 3-7(a), the bean is being passivated. The state of
instance B is read and held relative to the EJB object it was serving. In
Figure 3-7(b), the bean has been passivated and its state preserved. Here, the
EJB object is not associated with a bean instance. In Figure 3-7(c), the bean is
being activated. A new instance, instance C, has been instantiated and
associated with the EJB object, and is in the process of having its state

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates8

populated. The instance C is populated with the state held relative to the EJB
object.

[FIGURE]

Figure 3-4: The activation process

The exact mechanism for activating and passivating stateful beans is up to the
vendor, but all stateful beans are serializable and thus provide at least one way of
temporarily preserving their state. While some vendors take advantage of the
Java serialization mechanism, the exact mechanism for preserving the
conversational state is not specified. As long as the mechanism employed
follows the same rules as Java serialization with regard to transitive closure of
serializable objects, any mechanism is legal. Because Enterprise JavaBeans also
supports other ways of saving a bean’s state, the transient property is not
treated the same when activating a passivated bean as it is in Java serialization.
In Java serialization, transient fields are always set back to the initial value for
that field type when the object is deserialized. Integers are set to zero, Booleans
to false, object references to null, etc. In EJB, transient fields are not
necessarily set back to their initial values but can maintain their original values,
or any arbitrary value, after being activated. Care should be taken when using
transient fields, since their state following activation is implementation specific.

The activation process is supported by the state-management callback methods
discussed in Chapter 2. Specifically, the ejbActivate() and
ejbPassivate() methods notify the stateful bean instance that it is about to
be activated or passivated, respectively. The ejbActivate() method is
called immediately following the successful activation of a bean instance and can
be used to reset transient fields to an initial value if necessary. The
ejbPassivate() method is called immediately prior to passivation of the
bean instance. These two methods are especially helpful if the bean instance
maintains connections to resources that need to be manipulated or freed prior to
passivation and reobtained following activation. Because the stateful bean
instance is evicted from memory, open connections to resources are not
maintained. The exceptions are remote references to other beans and the
SessionContext, which must be maintained with the serialized state of the
bean and reconstructed when the bean is activated. EJB also requires that the
references to the JNDI environment context, component interfaces, and the
UserTransaction be maintained through passivation.

Entity beans do not have conversational state that needs to be serialized like
stateful beans; instead, the state of entity bean instances is persisted directly to
the database. Entity beans do, however, leverage the activation callback methods
(ejbActivate() and ejbPassivate()) to notify the instance when it’s
about to be swapped in or out of the instance pool. The ejbActivate()
method is invoked immediately after the bean instance is swapped into the EJB
object, and the ejbPassivate() method is invoked just before the instance
is swapped out.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 9

Primary Services

There are many value-added services available for distributed applications. The
OMG (the CORBA governing body), for example, has defined 13 services for use
in CORBA-compliant ORBs. This book looks at seven value-added services that
are called the primary services, because they are required to complete the
Enterprise JavaBeans platform. The primary services include concurrency,
transactions, persistence, distributed objects, asynchronous messaging (EJB
2.0), naming, and security.

The seven primary services are not new concepts; the OMG defined interfaces
for these services specific to the CORBA platform some time ago. In most
traditional CORBA ORBs, services are add-on subsystems that are explicitly
utilized by the application code. This means that the server-side component
developer has to write code to use primary service APIs right alongside their
business logic. The use of primary services becomes complicated when they are
used in combination with resource management techniques because the primary
services are themselves complex. Using them in combination only compounds
the problem.

As more complex component interactions are required, coordinating these
services becomes a difficult task, requiring system-level expertise unrelated to
the task of writing the application’s business logic. Application developers can
become so mired in the system-level concerns of coordinating various primary
services and resource management mechanisms that their main responsibility,
modeling the business, is all but forgotten.

EJB servers automatically manage all the primary services. This relieves the
application developers from the task of mastering these complicated services.
Instead, developers can focus on defining the business logic that describes the
system, and leave the system-level concerns to the CTM. The following sections
describe each of the primary services and explain how they are supported by
EJB.

Concurrency

The issue of concurrency is important to all the bean types, but it has a different
meaning when applied to EJB 2.0 message-driven beans than it does with the
RMI based session and entity beans. This because of the difference in context:
with RMI-based beans, concurrency refers to multiple clients accessing the same
bean simultaneously; in message-driven beans, concurrency refers to the
processing of multiple asynchronous messages simultaneously. For this reason
we will discuss the importance of concurrency as primary services separately for
these different types of beans.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates10

Concurrency with Session and Entity beans

Session beans do not support concurrent access. This makes sense if you
consider the nature of both stateful and stateless session beans. A stateful bean
is an extension of one client and only serves that client. It doesn’t make sense to
make stateful beans concurrent if they are only used by the client that created
them. Stateless session beans don’t need to be concurrent because they don’t
maintain state that needs to be shared. The scope of the operations performed by
a stateless bean is limited to the scope of each method invocation. No
conversational state is maintained.

Entity beans represent data in the database that is shared and needs to be
accessed concurrently. Entity beans are shared components. In Titan’s EJB
system, for example, there are only three ships: Paradise, Utopia, and Valhalla.
At any given moment the Ship entity bean that represents the Utopia might be
accessed by hundreds of clients. To make concurrent access to entity beans
possible, EJB needs to protect the data represented by the shared bean, while
allowing many clients to access the bean simultaneously.

In a distributed object system, problems arise when you attempt to share
distributed objects among clients. If two clients are both using the same EJB
object, how do you keep one client from writing over the changes of the other?
If, for example, one client reads the state of an instance just before a different
client makes a change to the same instance, the data that the first client read
becomes invalid. Figure 3-9 shows two clients sharing the same EJB object.

[FIGURE]

Figure 3-5: Clients sharing access to an EJB object

EJB has addressed the dangers associated with concurrency in entity beans by
implementing a simple solution: EJB, by default, prohibits concurrent access to
bean instances. In other words, several clients can be connected to one EJB
object, but only one client thread can access the bean instance at a time. If, for
example, one of the clients invokes a method on the EJB object, no other client
can access that bean instance until the method invocation is complete. In fact, if
the method is part of a larger transaction, then the bean instance cannot be
accessed at all, except within the same transactional context, until the entire
transaction is complete.

Since EJB servers handle concurrency automatically, a bean’s methods do not
have to be made thread-safe. In fact, the EJB specification prohibits use of the
synchronized keyword. Prohibiting the use of the thread synchronization
primitives prevents developers from thinking that they control synchronization
and enhances the performance of bean instances at runtime. In addition, EJB
explicitly prohibits beans from creating their own threads. In other words, as a
bean developer you cannot create a thread within a bean. The EJB container has
to maintain complete control over the bean to properly manage concurrency,
transactions, and persistence. Allowing the bean developer to create arbitrary

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 11

threads would compromise the container’s ability to track what the bean is doing,
and thus would make it impossible for the container to manage the primary
services.

Reentrance

When talking about concurrency in entity beans, we need to discuss the related
concept of reentrance. Reentrance is when a thread of control attempts to reenter
a bean instance. In EJB, entity bean instances are nonreentrant by default, which
means that loopbacks are not allowed. Before I explain what a loopback is, it is
important that you understand a very fundamental concept in EJB: entity and
session beans interact using each other’s remote references and do not interact
directly. In other words, when bean A operates on bean B, it does so the same
way an application client would, by using B’s remote or local interface as
implemented by an EJB object. This allows the EJB container to interpose
between method invocations from one bean to the next to apply security and
transaction services.

While most bean-to-bean interactions in EJB 2.0 will take place using local
interfaces of co-located enterprise beans, occasionally beans may interact using
remote interfaces. Remote interfaces enforce complete location transparency.
When interactions between beans take place using remote references, the beans
can be relocated—possibly to a different server—with little or no impact on the
rest of the application.

Regardless of whether remote or local interfaces are used, from the perspective of
the bean servicing the call, all clients are created equal. Figure 3-11 shows that,
from a bean’s point of view, only clients perform business method invocations.
When a bean instance has a business method invoked, it cannot tell the
difference between a remote application client and a bean client.

[FIGURE modified version of figure 3-6]

Figure 3-6: Beans access each other through EJB objects

A loopback occurs when bean A invokes a method on bean B that then attempts
to make a call back to bean A. Figure 3-13 shows this type of interaction. In
Figure 3-13, client 1 invokes a method on bean A. In response to the method
invocation, bean A invokes a method on bean B. At this point, there is no
problem because client 1 controls access to bean A and bean A is the client of
bean B. If, however, bean B attempts to call a method on bean A, it would be
blocked because the thread has already entered bean A. By calling its caller,
bean B is performing a loopback. This is illegal by default because EJB doesn’t
allow a thread of control to reenter a bean instance. To say that beans are non-
reentrant by default is to say that loopbacks are not allowed.

[FIGURE]

Figure 3-7: A loopback scenario

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates12

The nonreentrance policy is applied differently to session beans and entity
beans. Session beans can never be reentrant, and they throw a
RemoteException if a loopback is attempted. The same is true of a
nonreentrant entity bean. Entity beans can be configured in the deployment
descriptor to allow reentrance at deployment time. Making an entity bean
reentrant, however, is discouraged by the specification. The question of
reentrancy is not relevant to EJB 2.0’s message-driven beans because they do
not respond to RMI calls like session and entity beans.

As discussed previously, client access to a bean is synchronized so that only
one client can access any given bean at one time. Reentrance addresses a thread
of control—initiated by a client request—that attempts to reaccess a bean
instance. The problem with reentrant code is that the EJB object—which
intercepts and delegates method invocations on the bean instance—cannot
differentiate between reentrant code and multithreaded access within the same
transactional context. (More about transactional context in Chapter 148.) If you
permit reentrance, you also permit multithreaded access to the bean instance.
Multithreaded access to a bean instance can result in corrupted data because
threads impact each other’s work trying to accomplish their separate tasks.

It’s important to remember that reentrant code is different from a bean instance
that simply invokes its own methods at an instance level. In other words, method
foo() on a bean instance can invoke its own public, protected, default, or
private methods directly as much as it wants. Here is an example of intra-instance
method invocation that is perfectly legal:

public HypotheticalBean extends EntityBean {
 public int x;

 public double foo() {
 int i = this.getX();
 return this.boo(i);
 }
 public int getX() {
 return x;
 }
 private double boo(int i) {
 double value = i * Math.PI;
 return value;
 }
}

In the previous code fragment, the business method, foo(), invokes another
business method, getX(), and then a private method, boo(). The method
invocations made within the body of foo() are intra-instance invocations and
are not considered reentrant.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 13

EJB 2.0: Concurrency with Message-Driven Beans

When we are talking about concurrency in message-driven beans we are
referring to the processing of more then one message at a time. As mentioned
already in this chapter, concurrent processing of messages makes message-
driven beans a powerful asynchronous component model. If message-driven
beans could only process a single message at time, they would be practically
useless in a real-world application because they couldn’t handle heavy message
loads.

Many JMS clients may be sending messages to the same destination. The ability
to process all the messages by a single message-driven bean at the same time is
concurrency. If five messages are delivered to a specific destination, then five
instances of a message driven bean that subscribes or listens to that destination
can be used to process the messages simultaneously. Figure 3-y illustrates.

[Figure 3-y]

Figure 3-y: Concurrent processing with Message-driven
beans

In Figure 3-y, the same message-driven bean provides instances to process three
messages from three different clients at the same time. This is concurrent
processing.

There is actually a lot more to concurrent processing in message-driven beans.
There are topic and queue type destinations and these are processed differently,
but the basic value of concurrent processing is the same. The book will explore
the details behind of the topic and queue type destinations in Chapter 13,
Message-Driven Beans.

Transactions

Component transaction monitors (CTMs) were developed to bring the robust,
scalable transactional integrity of traditional TP monitors to the dynamic world of
distributed objects. Enterprise JavaBeans, as a server-side component model for
CTMs, provides robust support for transactions for both all the bean types
(session, entity and message-driven).

A transaction is a unit-of-work or a set of tasks that are executed together.
Transactions are atomic; in other words, all the tasks in a transaction must be
completed together to consider the transaction a success. In the previous
chapter we used the TravelAgent bean to describe how a session bean controls
the interactions of other beans. Here is a code snippet showing the
bookPassage() method described in Chapter 2:

public Ticket bookPassage(CreditCard card, double price)
throws IncompleteConversationalState {

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates14

 // EJB 1.0: also throws RemoteException

 if (customer == null || cruise == null || cabin == null) {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeRemote resHome = (ReservationHomeRemote)
 getHome("ReservationHome",ReservationHomeRemote.class);
 ReservationRemote reservation =
 resHome.create(customer, cruise, cabin, price);
 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)
 getHome("ProcessPaymentHome",ProcessPaymentHomeRemote.class);
 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

 Ticket ticket = new Ticket(customer, cruise, cabin, price);
 return ticket;
 } catch(Exception e) {
 // EJB 1.0: throw new RemoteException("",e);
 throw new EJBException(e);
 }
}

The bookPassage() method consists of two tasks that must be completed
together: the creation of a new Reservation bean and processing of the payment.
When the TravelAgent bean is used to book a passenger, the charges to the
passenger’s credit card and the creation of the reservation must both be
successful. It would be inappropriate for the ProcessPayment bean to charge the
customer’s credit card if the creation of a new Reservation bean fails. Likewise,
you can’t make a reservation if the customer credit card is not charged. An EJB
server monitors the transaction to ensure that all the tasks are completed
successfully.

Transactions are managed automatically, so as a bean developer you don’t need
to use any APIs to explicitly manage a bean’s involvement in a transaction.
Simply declaring the transactional attribute at deployment time tells the EJB
server how to manage the bean at runtime. EJB does provide a mechanism that
allows beans to manage transactions explicitly, if necessary. Setting the
transactional attributes during deployment is dis cussed in Chapter 148, as is
explicit management of transactions and other transactional topics.

Persistence

Entity beans represent the behavior and data associated with real-world people,
places, or things. Unlike session and message-driven type beans, entity beans
are persistent. That means that the state of an entity is stored permanently in a
database. This allows entities to be durable so that both their behavior and data

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 15

can be accessed at any time without concern that the information will be lost
because of a system failure.

When a bean’s state is automatically managed by a persistence service, the
container is responsible for synchronizing an entity bean’s instance fields with
the data in the database. This automatic persistence is called container-managed
persistence. When beans are designed to manage their own state, as is often the
case when dealing with legacy systems, it is called bean-managed persistence.

Each vendor gets to choose the exact mechanism for implementing container-
managed persistence, but the vendor’s implementation must support the EJB
callback methods and transactions. The most common mechanisms used in
persistence by EJB vendors are object-to-relational persistence and object
database persistence.

Object-to-relational persistence

Object-to-relational persistence is perhaps the most common persistence
mechanism used in distributed object systems today. Object-to-relational
persistence involves mapping entity bean state to relational database tables and
columns.

In EJB 2.0 the abstract accessor methods represents the entity bean’s container-
managed fields, which we will just call fields. When an entity bean is deployed
the container will implement these virtual fields for the bean, so its convient to
think of the abstract accessor methods as describing persistent fields. For
example, when we are talking about the state represented by the
setName()/getName() abstract accessor method, we will refer to as the
name field. Simularly, the getId()/setId() is the id field, and the
getDeckLevel()/setDeckLevel() is the deckLevel field.

In Titan’s system, for example, the CabinBean models the business concept of
a ship’s cabin. The CabinBean defined three fields: String type name, a int
type deckLevel, and an Integer type id. The following code shows an
abbreviated definition of the CabinBean:

EJB 2.0: CabinBean

public abstract class CabinBean implements javax.ejb.EntityBean {

 public abstract String getName();
 public abstract void setName(String str);

 public abstract int getDeckLevel();
 public abstract void setDeckLevel(int level);

 public abstract Integer getId();
 public abstract void setId(Integer id);

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates16

}

EJB 1.1: CabinBean

public class CabinBean implements javax.ejb.EntityBean {

 public int id;
 public String name;
 public int deckLevel;

}

With object-to-relational database mapping, the fields of an entity bean corre-
spond to columns in a relational database. The Cabin’s name field, for
example, maps to the column labeled NAME in a table called CABIN in Titan’s
relational database. Figure 3-15 shows a graphical depiction of this type of
mapping.

[FIGURE 3-8 modified]

Figure 3-8: Object-to-relational mapping of entity beans

Really good EJB systems provide wizards or administrative interfaces for
mapping relational database tables to the fields of entity bean classes. Using
these wizards, mapping entities to tables is a fairly straightforward process and is
usually performed at deployment time. Figure 3-17 shows WebLogic’s object-to-
relational mapping wizard.

[FIGURE]

Figure 3-9: Object-to-relational mapping wizard

Once a bean’s fields are mapped to the relational database, the container takes
over the responsibility of keeping the state of an entity bean instance consistent
with the corresponding tables in the database. This process is called
synchronizing the state of the bean instance. In the case of CabinBean, bean
instances at runtime will map one-to-one to rows in the CABIN table of the
relational database. When a change is made to a Cabin EJB, it is written to the
appropriate row in the database. Frequently, bean types will map to more than
one table. These are more complicated mappings, often requiring an SQL join.
Good EJB deployment tools should provide wizards that make multitable
mappings fairly easy.

In addition, EJB 2.0 container-managed persistence defines entity bean
relationships fields, which allow entity beans to have one-to-one, one-to-many,
and many-to-many relationships with other beans. Entity beans can maintain
collections of other entity beans or single references. The persistence of entity
beans in EJB 2.0 is a great deal more complex and powerful then was supported in
previous versions of the specification. The new EJB 2.0 container-managed
persistence model is covered in Chapters 6, 7 and 8.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 17

In addition to synchronizing the state of an entity, EJB provides mechanisms for
creating and removing entities. Calls to the EJB home to create and remove
entities will result in a corresponding insertion or deletion of records in the
database. Because entities store their state in database tables, new records (and
therefore bean identities) can be added to tables from outside the EJB system. In
other words, inserting a record into the CABIN table— whether done by EJB or
by direct access to the database—creates a new Cabin entity. It’s not created in
the sense of instantiating a Java object, but in the sense that the data that
describes a Cabin entity has been added to the system.

Object database persistence

Object-oriented databases are designed to preserve object types and object
graphs and therefore are a much better match for components written in an
object-oriented language like Java. They offer a cleaner mapping between entity
beans and the database than a traditional relational database. However, this is
more of an advantage in EJB 1.1 than it is in EJB 2.0. EJB 2.0 container-managed
persistence provides a programming model that is expressive enough to
accommodate both object-to-relational mapping as well as object databases.

While object databases perform well when it comes to very complex object
graphs, they are still fairly new to business systems and are not as widely
accepted as relational databases. As a result, they are not as standardized as
relational databases, making it more difficult to migrate from one database to
another. In addition, fewer third-party products exist that support object
databases, like products for reporting and data warehousing.

Several relational databases support extended features for native object
persistence. These databases allow some objects to be preserved in relational
database tables like other data types and offer some advantages over other
databases.

Legacy persistence

EJB is often used to put an object wrapper on legacy systems, systems that are
based on mainframe applications or nonrelational databases. Container-managed
persistence in such an environment requires a special EJB container designed
specifically for legacy data access. Vendors might, for example, provide mapping
tools that allow beans to be mapped to IMS, CICS, b-trieve, or some other legacy
application.

Regardless of the type of legacy system used, container-managed persistence is
preferable to bean-managed persistence. With container-managed persistence,
the bean’s state is managed automatically, which is more efficient at runtime and
more productive during bean development. Many projects, however, require that
beans obtain their state from legacy systems that are not supported by the EJB
vendor. In these cases, developers must use bean-managed persistence, which

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates18

means that the developer doesn’t use the automatic persistence service of the
EJB server. Chapters 6-11 describes both container-managed and bean-managed
persistence in detail.

Distributed Objects

Three main distributed object services are available today: CORBA IIOP, Java
RMI, and Microsoft’s .NET. Each of these platforms uses a different RMI
network protocol, but they all accomplish basically the same thing: location
transparency. Microsoft’s .NET platform, which relies on DCOM, is used in the
Microsoft Windows environment and is not supported by other operating sys-
tems. Its tight integration with Microsoft products makes it a good choice for
Microsoft-only systems. This may change with the growing support for SOAP
(Simple Object Access Protocol), an XML-based protocol that is quickly
becoming popular and offers interoperability with non-Microsoft applications.
CORBA IIOP is neither operating-system specific nor language specific and has
been traditionally been considered the most open distributed object service of
the three. It’s an ideal choice when integrating systems developed in multiple
programming languages. Java RMI is a Java language abstraction or
programming model for any kind of distributed object protocol. In the same way
that the JDBC API can be used to access any SQL relational database, Java RMI
is intended to be used with almost any distributed object protocol. In practice,
Java RMI has traditionally been limited to the Java Remote Method Protocol
(JRMP)—known as Java RMI over JRMP—which can only be used between
Java applications. Recently an implementation of Java RMI over IIOP (Java RMI-
IIOP), the CORBA protocol, has been developed. Java RMI-IIOP is a CORBA-
compliant version of Java RMI, which allows developers to leverage the
simplicity of the Java RMI programming model, while taking advantage of the
platform- and language-independent CORBA protocol, IIOP.2

When we discuss the component interfaces, and other EJB interfaces and
classes used on the client, we are talking about the client’s view of the EJB
system. The EJB client view doesn’t include the EJB objects, the EJB container,
instance swapping, or any of the other implementation specifics. As far as a
remote client is concerned, a bean is defined by its remote interface and home
interface. Everything else is invisible. As long as the EJB server supports the EJB
client view, any distributed object protocol can be used. However, EJB 2.0
requires that every EJB server support Java RMI-IIOP—but it doesn’t limit the
protocols a EJB server can support to Java RMI-IIOP.

Regardless of the protocol used, the server must support Java clients using the
Java EJB client API, which means that the protocol must map to the Java RMI-

2 Java RMI-IIOP is interoperable with CORBA ORBs that support the CORBA 2.3.1
specification. ORBs that support an older specification cannot be used with Java RMI-IIOP
because they do not implement the Object by Value portion of the 2.3.1 specification.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 19

IIOP programming model. Using Java RMI over DCOM seems a little far-fetched,
but Java RMI over SOAP is possible. Figure 3-19 illustrates the Java language
EJB API supported by different dis tributed object protocols.

[FIGURE modified 3-10]

Figure 3-10: Java EJB client view supported by various
protocols

EJB also allows servers to support access to beans by clients written in
languages other than Java. An example of this is the EJB-to-CORBA mapping
defined by Sun.3 This document describes the CORBA IDL (Interface Definition
Language) that can be used to access enterprise beans from CORBA clients. A
CORBA client can be written in any language, including C++, Smalltalk, Ada, and
even COBOL. The mapping also includes details about supporting the Java EJB
client view as well as details on mapping the CORBA naming system to EJB
servers and distributed transactions across CORBA objects and beans.
Eventually, a EJB-to-SOAP mapping may be defined that will allow SOAP client
applications written in languages like Visual Basic, Delphi, PowerBuilder, and
others to access beans. Figure 3-11 illustrates the possibilities for accessing an
EJB server from different distributed object clients.

[FIGURE]

Figure 3-11: EJB accessed from different distributed clients

As a mature, platform-independent and language-independent distributed object
protocol, CORBA is currently regarded by many as the superior of the three
protocols discussed here. For all its advantages, however, CORBA suffers from
some limitations. Pass-by-value, a feature easily supported by Java RMI-IIOP,
was only recently introduced in the CORBA 2.3 specification and is not well
supported. Another limitation of CORBA is with casting remote proxies. In Java
RMI-JRMP, you can cast or widen a proxy’s remote interface to a subtype or
supertype of the interface, just like any other object. This is a powerful feature
that allows remote objects to be polymorphic. In Java RMI-IIOP, you have to call
a special narrowing method to change the interface of a proxy to a subtype,
which is cumbersome.

However, JRMP is has its own limitations. While JRMP may be a more natural fit
for Java-to-Java distributed object systems, it lacks inherent support for both
security and transactional services—support that is a part of the CORBA IIOP
specification. This limits the effectiveness of JRMP in heterogeneous
environments where security and transactional contexts must be passed between
systems.

3 Sun Microsystems’ Enterprise JavaBeans™ to CORBA Mapping, Version 1.1, by Sanjeev
Krishnan, Copyright 1999 by Sun Microsystems.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates20

EJB 2.0: Asynchronous Enterprise Messaging

In past versions of Enterprise JavaBeans, support for asynchronous enterprise
messaging and specifically the Java Message Service was not considered a
primary service because it wasn’t necessary in order to have a complete
Enterprise JavaBeans platform. However, with the introduction of message-
driven beans to Enterprise JavaBeans, asynchronous enterprise messaging has
become so important that its status must be elevated to a primary service.

Support for this service is complex, but basically it requires that the EJB
container system reliably route messages from JMS clients to message-driven
beans. This involves more than the simple delivery semantics you associate with
e-mail or even the JMS API. With enterprise messaging, messages must be
reliably delivered which means that a failure to deliver the message should
require the EJB container system to attempt redelivery. What’s more, enterprise
messages may be persistent, which means they are stored to disk or a database
until it can be properly delivered to its intended clients. Persistent messages
must survive system failures, if the EJB server crashes the persistent messages
must still be available for delivery when the server comes back up.

Most importantly, enterprise messaging is transactional messaging. That means
if for any reason a message-driven bean fails while processing a message, that
failure will abort the transaction and force the EJB container to redeliver the
message to another message-driven bean instance.

In addition to message-driven beans, any stateless, entity, or message-driven
bean can also send JMS messages. Support for sending messages is not as
critical in Enterprise JavaBeans as delivery of messages to message-driven
beans, but support for these facilities tends to go hand in hand. In other words,
its unlikely that an EJB server would go to the trouble of supporting the
consumption of JMS messages by message-driven beans without also
supporting the sending of messages by all different types of enterprise beans.

It’s interesting to note that the semantics of supporting message-driven beans
requires light coupling between the EJB container system and the JMS message
router, so that many EJB container systems will support a limited number of JMS
providers. This means that message-driven beans can’t consume messages from
any arbitrary JMS provider or MOM product. Only the JMS providers supported
explicitly by the EJB vendor will be able to deliver messages to message-driven
beans.

Naming

All distributed object services use a naming service of some kind. Java RMI-
JRMP and CORBA use their own naming services. All naming services do

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 21

essentially the same thing regardless of how they are implemented: they provide
clients with a mechanism for locating distributed objects or resources.

To accomplish this, a naming service must provide two things: object binding
and a lookup API. Object binding is the association of a distributed object with a
natural language name or identifier. The CabinHomeRemote object, for
example, might be bound to the name “cabin.Home” or “room.” A binding is
really a pointer or an index to a specific dis tributed object, which is necessary in
an environment that manages hundreds of different distributed objects. A
lookup API provides the client with an interface to the naming system. Simply
put, lookup APIs allow clients to connect to a distributed service and request a
remote reference to a specific object.

Enterprise JavaBeans mandates the use of the Java Naming and Directory
Interface (JNDI) as a lookup API on Java clients. JNDI supports just about any
kind of naming and directory service. A directory service is a very advanced
naming service that organizes distributed objects and other resources—printers,
files, application servers, etc.—into hierarchical structures and provides more
sophisticated management features. With directory services, metadata about
distributed objects and other resources are also available to clients. The
metadata provides attributes that describe the object or resource and can be
used to perform searches. You can, for example, search for all the laser printers
that support color printing in a particular building.

Directory services also allow resources to be linked virtually, which means that a
resource can be located anywhere you choose in the directory services
hierarchy. JNDI allows different types of directory services to be linked together
so that a client can move between different types of services seamlessly. It’s
possible, for example, for a client to follow a directory link in a Novell NetWare
directory into an EJB server, allowing the server to be integrated more tightly
with other resources of the organization it serves.

There are many different kinds of directory and naming services; EJB vendors
can choose the one that best meets their needs, but all EJB 2.0 platforms must
support the CORBA Naming service in addition to any other directory service
they choose to support.

A Java client application would use JNDI to initiate a connection to an EJB
server and to locate a specific EJB home. The following code shows how the
JNDI API might be used to locate and obtain a reference to the EJB home
CabinHome:

javax.naming.Context jndiContext =
 new javax.naming.InitialContext(properties);
Object ref = jndiContext.lookup("cabin.Home");
CabinHome cabinHome = (CabinHome)
 PortableRemoteObject.narrow(ref, CabinHome.class);

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates22

Cabin cabin = cabinHome.create(382, "Cabin 333",3);
cabin.setName("Cabin 444");
cabin.setDeckLevel(4);

The properties passed into the constructor of InitialContext tell the JNDI
API where to find the EJB server and what JNDI service provider (driver) to load.
The Context.lookup() method tells the JNDI service provider the name of
the object to return from the EJB server. In this case, we are looking for the home
interface to the Cabin EJB. Once we have the Cabin EJB’s home interface, we can
use it to create new cabins and access existing cabins.

Enterprise JavaBeans requires the use of the
PortableRemoteObject.narrow() method to cast remote references
obtained from JNDI into the CabinHomeRemote interface type. This is
addressed in more detail in Chapters 4 and 5 and is not essential to the content
covered here – the use of this facility is not required when enterprise beans use
the local component interfaces of other co-located enterprise beans.

Security

Enterprise JavaBeans servers might support as many as three kinds of security:
authentication, access control, and secure communication. Only access control is
specifically addressed by Enterprise JavaBeans.

Authentication

Simply put, authentication validates the identity of the user. The most
common kind of authentication is a simple login screen that requires a
username and a password. Once users have successfully passed through
the authentication system, they are free to use the system. Authentication
can also be based on secure ID cards, swipe cards, security certificates, and
other forms of identification. While authentication is the primary safeguard
against unauthorized access to a system, it is fairly crude because it doesn’t
police an authorized user’s access to resources within the system.

Access control

Access control (a.k.a. authorization) applies security policies that regulate
what a specific user can and cannot do within a system. Access control
ensures that users only access resources for which they have been given
permission. Access control can police a user’s access to subsystems, data,
and business objects, or it can monitor more general behavior. Certain users,
for example, may be allowed to update information while others are only
allowed to view the data.

Secure communication

Communication channels between a client and a server are frequently the
focus of security concerns. A channel of communication can be secured by
physical isolation (like a dedicated network connection) or by encrypting the
communication between the client and the server. Physically securing

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 23

communication is expensive, limiting, and pretty much impossible on the
Internet, so we will focus on encryption. When communication is secured by
encryption, the messages passed are encoded so that they cannot be read or
manipulated by unauthorized individuals. This normally involves the
exchange of cryptographic keys between the client and the server. The keys
allow the receiver of the message to decode the message and read it.

Most EJB servers support secure communications—usually through SSL (secure
socket layer)—and some mechanism for authentication, but Enterprise
JavaBeans only specifies access control in their server-side component models.
Authentication may be specified in subsequent versions, but secure
communications will probably never be specified. Secure communications is
really independent of the EJB specification and the distributed object protocol.

Although authentication is not specified in EJB, it is often accomplished using
the JNDI API. In other words, a client using JNDI can provide authenticating
information using the JNDI API to access a server or resources in the server.
This information is frequently passed when the client attempts to initiate a JNDI
connection to the EJB server. The following code shows how the client’s
password and username are added to the connection properties used to obtain a
JNDI connection to the EJB server:

properties.put(Context.SECURITY_PRINCIPAL, userName);
properties.put(Context.SECURITY_CREDENTIALS, userPassword);

javax.naming.Context jndiContext =
 new javax.naming.InitialContext(properties);
Object ref= jndiContext.lookup("titan.CabinHome");
CabinHome cabinHome = (CabinHome)
 PortableRemoteObject.narrow(ref, CabinHome.class);

EJB specifies that every client application accessing an EJB system must be
associated with a security identity. The security identity represents the client as
either a user or a role. A user might be a person, security credential, computer, or
even a smart card. Normally, the user will be a person whose identity is assigned
when he or she logs in. A role represents a grouping of identities and might be
something like “manager,” which is a group of user identities that are considered
managers at a company.

When a remote client logs on to the EJB system, it is associated with a security
identity for the duration of that session. The identity is found in a database or
directory specific to the platform or EJB server. This database or directory is
responsible for storing individual security identities and their memberships to
groups.

Once a remote client application has been associated with a security identity, it is
ready to use beans to accomplish some task. The EJB server keeps track of each
client and its identity. When a client invokes a method on a component interface,
the EJB server implicitly passes the client’s identity with the method invocation.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates24

When the EJB object or EJB home receives the method invocation, it checks the
identity to ensure that the client is allowed to invoke that method.

Role-driven access control

In Enterprise JavaBeans, the security identity is represented by a
java.security.Principle object. As a security identity, the
Principle acts as a representative for users, groups, organizations, smart
cards, etc., to the EJB access control architecture. Deployment descriptors
include tags that declare which logical roles are allowed to access which bean
methods at runtime. The security roles are considered logical roles because they
do not directly reflect users, groups, or any other security identities in a specific
operational environment. Instead, security roles are mapped to real-world user
groups and users when the bean is deployed. This allows a bean to be portable;
every time the bean is deployed in a new system the roles can be mapped to the
users and groups specific to that operational environment. Here is a portion of
the Cabin EJB’s deployment descriptor that defines two security roles,
ReadOnly and Administrator:

<security-role>
 <description>
 This role is allowed to execute any method on the bean.
 They are allowed to read and change any cabin bean data.
 </description>
 <role-name>
 Administrator
 </role-name>
</security-role>

<security-role>
 <description>
 This role is allowed to locate and read cabin info.
 This role is not allowed to change cabin bean data.
 </description>
 <role-name>
 ReadOnly
 </role-name>
</security-role>

The role names in this descriptor are not reserved or special names, with some
sort of predefined meaning; they are simply logical names chosen by the bean
assembler. In other words, the role names can be anything you want as long as
they are descriptive.4

4 For a complete understanding of XML, including specific rules for tag names and data, see
XML Pocket Reference, by Robert Eckstein (O’Reilly).

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 25

How are roles mapped into actions that are allowed or forbidden? Once the
security-role tags are declared, they can be associated with methods in
the bean using method-permission tags. Each method-permission
tag contains one or more method tags, which identify the bean methods
associated with one or more logical roles identified by the role-name tags.
The role-name tags must match the names defined by the security-role tags
shown earlier.

<method-permission>
 <role-name>Administrator</role-name>
 <method>
 <ejb-name>CabinEJB</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>
</method-permission>
 <role-name>ReadOnly</role-name>
 <method>
 <ejb-name>CabinEJB</ejb-name>
 <method-name>getName</method-name>
 </method>
 <method>
 <ejb-name>CabinEJB</ejb-name>
 <method-name>getDeckLevel</method-name>
 </method>
 <method>
 <ejb-name>CabinEJB</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
</method-permission>

In the first method-permission, the Administrator role is associated
with all methods on the Cabin EJB, which is denoted by specifying the wildcard
character (*) in the method-name of the method tag. In the second
method-permission the ReadOnly role is limited to accessing only three
methods: getName(), getDeckLevel(), and findByPrimaryKey().
Any attempt by a ReadOnly role to access a method that is not listed in the
method-permission will result in an exception. This kind of access control
makes for a fairly fine-grained authorization system.

Since an XML deployment descriptor can be used to describe more than one
enterprise bean, the tags used to declare method permissions and security roles
are defined in a special section of the deployment descriptor, so that several
beans can share the same security roles. The exact location of these tags and
their relationship to other sections of the XML deployment descriptor will be
covered in more detail in Chapter 16.

When the bean is deployed, the person deploying the bean will examine the
security-role information and map each logical role to a corresponding

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates26

user group in the operational environment. The deployer need not be concerned
with what roles go to which methods; he can rely on the descriptions given in
the security-role tags to determine matches based on the description of
the logical role. This unburdens the deployer, who may not be a developer, from
having to understand how the bean works in order to deploy it.

Figure 3-23 shows the same enterprise bean deployed in two different
environments (labeled X and Z). In each environment, the user groups in the
operational environment are mapped to their logical equivalent roles in the XML
deployment descriptor so that specific user groups have access privileges to
specific methods on specific enterprise beans.

[FIGURE]

Figure 3-12: Mapping roles in the operational environment
to logical roles in the deployment descriptor

As you can see from the figure, the ReadOnly role is mapped to those groups
that should be limited to the get accessor methods and the find method. The
Administrator role is mapped to those user groups that should have
privileges to invoke any method on the Cabin EJB.

The access control described here is implicit; once the bean is deployed the
container takes care of checking that users only access methods for which they
have permission. This is accomplished by propagating the security identity, the
Principle, with each method invocation from the client to the bean. When a
client invokes a method on a bean, the client’s Principle is checked to see if
it is a member of a role mapped to that method. If it’s not, an exception is thrown
and the client is denied permission to invoke the method. If the client is a member
of a privileged role, the invocation is allowed to go forward and the method is
invoked.

If a bean attempts to access any other enterprise beans while servicing a client, it
will pass along the client’s security identity for access control checks by the
other beans. In this way, a client’s Principle is propagated from one bean
invocation to the next, ensuring that a client’s access is controlled whether or
not it invokes a bean method directly. In EJB 2.0 this propagation can be
overridden by specifying that the enterprise bean executes under a different
security identity called the runAs security identity.

EJB 2.0: The runAs Security Identity

In addition to specifying the Principals that have access to an enterprise
bean’s methods, the deployer can also specify the runAs Principal for the
entire enterprise bean. The runAs security identity was originally specified in
EJB 1.0, but was abandoned in EJB 1.1. It has been reintroduced in EJB 2.0 and
modified so that its is easier for vendors to implement.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 27

While the method-permission elements specify which Principals
have access to the bean’s methods, the security-identity element
specifies under which Principal the method will run. In other words, the
runAs Principal is used as the enterprise bean’s identity when it tries to
invoke methods on other beans—this identity isn’t necessarily the same as the
identity that’s currently accessing the bean.

For example, the following deployment descriptor elements declare that the
create() method can only be accessed by “JimSmith”, but that Cabin EJB
always runs under an “Administrator” Principal role.

<enterprise-beans>
...
 <entity>
 <ejb-name>EmployeeService</ejb-name>
 ...
 <security-identity>
 <run-as>
 <role-name>Administrator</role-name>
 </run-as>
 </security-identity>
 ...
 </entity>
...
</enterprise-beans>
<assembler>
<security-role>
 <role-name>Administrator</role-name>
</security-role>
<security-role>
 <role-name>JimSmith</role-name>
</security-role>
...
<method-permission>
 <role-name>JimSmith</role-name>
 <method>
 <ejb-name>CabinEJB</ejb-name>
 <method-name>create</method-name>
 </method>
</method-permission>
...
</assembler>

This is kind of configuration is useful when the enterprise beans or resources
accessed in the body of the method require a Principal that is different from
the one used to gain access to the method. The create() method might call a
method in enterprise bean X that requires the Administrator’s Principal. If
we want to use enterprise bean X in the create() method, but we only want
Jim Smith to create new cabins, we would use the security-identity and

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates28

method-permission elements together to give us this kind of flexibility: the
method-permission for create() would specify that only Jim Smith can
invoke the method, and the security-identity element would specify
that the enterprise bean always runs under the Administrator’s Principal.

In order to specify that an enterprise bean execute under the caller’s identity, the
security-identity role contains a single empty element, the use-caller-
identity element. For example, the following declarations specify that the
Cabin EJB always execute under the callers identity, so if JimSmith invokes the
create() method, the bean will run under the JimSmith security identity.

<enterprise-beans>
...
 <entity>
 <ejb-name>EmployeeService</ejb-name>
 ...
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 ...
 </entity>
...
</enterprise-beans>

Figure 3-27 illustrates how the runAs Principal can change in a chain of
method invocations. Notice that the runAs Principal is the Principal
used to test for access in subsequent method invocations.

[FIGURE modified figure 3-14]

Figure 3-14: runAs Identity

1. The client, who is identified as “Bill Jones”, invokes the method foo() on
enterprise bean A.

2. Before servicing the method, enterprise bean A is checked to see if “Bill
Jones” is included in the method-permissions for foo(). It is.

3. The security-identity of enterprise bean A is declared as use-caller-
identity, so the foo() method executes under the caller’s
Principal, in this case “Bill Jones”.

4. While foo() is executing, it invokes method bar() on enterprise bean B
using the “Bill Jones” security identity.

5. Enterprise bean B checks method foo()’s Principal (“Bill Jones”)
against the allowed identities for method bar(). “Bill Jones” is included in
the method-permissions, so the method bar() of enterprise bean B is
allowed to execute.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 29

6. The enterprise bean B specifies the security-identity to be the run-as
Principal of “Administrator”.

7. While bar() is executing, enterprise bean B invokes the method boo() on
enterprise bean C.

8. Enterprise bean C is checked and it’s determined that bar()’s runAs
Principal (“Administrator”) is included in the method-permissions for
method boo().

9. The security-identity for the enterprise bean C specifies a runAs
Principal of the “System”, which is the identity that the boo() method
executes under.

This protocol applies equally to entity and stateless session beans. However,
message-driven beans only have a runAs identity, the will never execute under
the caller identity, because there is no “caller”. Message-driven beans process
asynchronous JMS messages. These messages are not considered “calls” and
the JMS client that sent them is not associated with the message. Once a
message is sent by a JMS client, is autonomous and is no longer associated with
the sending client. So incoming messages do not have a “caller”. With no caller
security identity to propagate, message-driven beans must always have a runAs
security identity specified, and it will always execute under that runAs
Principal.

What’s Next?

The first three chapters gave you a foundation on which to develop Enterprise
JavaBeans components and applications. You should have a better
understanding of CTMs and the EJB component model.

Beginning with Chapter 4, you will develop your own beans and learn how to
apply them in EJB applications.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 1

4

Developing Your First Enterprise
Beans

Choosing and Setting Up an EJB Server

One of the most important features of EJB is that enterprise beans should work
with containers from different vendors. That doesn’t mean that selecting a server
and installing your enterprise beans on that server are trivial processes.1

The EJB server you choose should be compliant with the EJB 2.0 specification.
The first example in this chapter—and most of the examples in this book—
assumes that your EJB server supports entity beans and EJB 2.0 container-
managed persistence.2 The EJB server you choose should also provide a utility
for deploying an enterprise bean. It doesn’t matter whether the utility is

1 To help you work with different vendor’s products, free workbooks have been created
for specific EJB servers. Each workbook shows you how to download, install, and run
the examples in this book for a specific product. We are trying to create a library that
covers as many major vendors as possible, though with over 30 EJB servers on the
market, we won’t be able to cover all of them. The workbook examples cover EJB 2.0,
unless the product supports only EJB 1.1. The workbooks are available in PDF form
from http://www.oreilly.com/catalog/entjbeans3/ or http://www.monson-haefel.com. If
there is sufficient demand, we may make the workbooks available in a printed version.

2 Chapter 11 discusses EJB 1.1 container-managed persistence, which you can use if
your server doesn’t support EJB 2.0 container-managed persistence.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 2

command-line oriented or graphical, as long as it does the job. The deployment
utility should allow you to work with prepackaged enterprise beans, i.e.,
enterprise beans that have already been developed and archived in a JAR file.
Finally, the EJB server should support an SQL-standard relational database that
is accessible using JDBC. For the database, you should have privileges sufficient
for creating and modifying a few simple tables in addition to normal read, update,
and delete capabilities. If you have chosen an EJB server that does not support
an SQL standard relational database, you may need to modify the examples to
work with the product you are using.

This book does not say very much about how to install and deploy enterprise
beans. That task is largely server-dependent. We give some general ideas about
how to organize JAR files and create deployment descriptors, but for a complete
description of the deployment process, you’ll have to refer to your vendor’s
documentation, or look at the workbook for your vendor (if one is available).

This Chapter provides you with your first opportunity to use a workbook.
Throughout the rest of this book you will see these callouts which direct you to
an exercise in the workbook. A callout will look something like the following.

& Exercise 4.2, Develop and Deploy the TravelAgent EJB

As was mentioned in the Preface, the workbooks can be downloaded in PDF
format for free from http://www.oreilly.com/catalog/entjbeans3/ or
http://www.monson-haefel.com – some workbooks may even be available in
paper book form and can be ordered direct from the http://www.monson-
haefel.com.Setting Up Your Java IDE

To get the most from this chapter, it helps to have an IDE that has a debugger
and allows you to add Java files to its environment. Several Java IDEs, like
Symantec’s Visual Cafe, IBM’s VisualAge, Inprise’s JBuilder, and Sun’s Forte,
fulfill this simple requirement. Some EJB products, like IBM’s WebSphere, are
tightly coupled with an IDE that makes life a lot easier when it comes to writing,
deploying and debugging your applications.

Once you have an IDE set up, you need to include the Enterprise JavaBeans
package, javax.ejb. You also need the JNDI packages, including
javax.naming, javax.naming.directory, and
javax.naming.spi. In addition, you will need the javax.rmi and
javax.jms packages. All these packages can be downloaded from Sun’s Java
site (http://www. javasoft.com) in the form of ZIP or JAR files. They may also be
accessible in the subdirectories of your EJB server, normally under the lib
directory.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 3

Developing an Entity Bean

There seems to be no better place to start than the Cabin EJB, which we have
been examining throughout the previous chapters. The Cabin EJB is an entity
bean that encapsulates the data and behavior associated with a cruise ship cabin
in Titan’s business domain.

Cabin: The Remote Interface

When developing an entity bean, we first want to define the enterprise bean’s
remote interface. The remote interface defines the enterprise bean’s business
purpose; the methods of this interface must capture the concept of the entity.
We defined the remote interface for the Cabin EJB in Chapter 2; here, we add two
new methods for setting and getting the ship ID and the bed count. The ship ID
identifies the ship that the cabin belongs to, and the bed count tells how many
people the cabin can accommodate.

package com.titan.cabin;

import java.rmi.RemoteException;

public interface CabinRemote extends javax.ejb.EJBObject {
 public String getName() throws RemoteException;
 public void setName(String str) throws RemoteException;
 public int getDeckLevel() throws RemoteException;
 public void setDeckLevel(int level) throws RemoteException;
 public int getShipId() throws RemoteException;
 public void setShipId(int sp) throws RemoteException;
 public int getBedCount() throws RemoteException;
 public void setBedCount(int bc) throws RemoteException;
}

The CabinRemote interface defines four properties: the name, deckLevel,
ship, and bedCount. Properties are attributes of an enterprise bean that can
be accessed by public set and get methods. The methods that access these
properties are not explicitly defined in the CabinRemote interface, but the
interface clearly specifies that these attributes are readable and changeable by a
client.

Notice that we have made the CabinRemote interface a part of a new package
named com.titan.cabin. Place all the classes and interfaces associated
with each type of bean in a package specific to the bean.3 Because our beans are

3 The examples, which can be downloaded from www.oreilly.com, provide a good guide
for how to organize your code; the code is organized in a directory structure that’s typical

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 4

for the use of the Titan cruise line, we place these packages in the com.titan
package hierarchy. We also create directory structures that match package
structures. If you are using an IDE that works directly with Java files, create a
new directory somewhere called dev (for development) and create the directory
structure shown in Figure 4-1. Copy the CabinRemote interface into your IDE
and save its definition to the cabin directory. Compile the CabinRemote
interface to ensure that its definition is correct. The CabinRemote.class file,
generated by the IDE’s compiler, should be written to the cabin directory, the
same directory as the CabinRemote. java file. The rest of the Cabin bean’s
classes will be placed in this same directory.

[FIGURE]

Figure 4-1: Directory structure for the Cabin bean

CabinHome: The Home Interface

Once we have defined the remote interface of the Cabin EJB, we have defined the
remote view of this simple entity bean. Next, we need to define the Cabin EJB’s
remote home interface, which specifies how the enterprise bean can be created,
located, and destroyed by remote clients; in other words, the Cabin EJB’s life-
cycle behavior. Here is a complete definition of the CabinHomeRemote home
interface:

package com.titan.cabin;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.FinderException;

public interface CabinHomeRemote extends javax.ejb.EJBHome {

 public CabinRemote create(Integer id)
 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer pk)
 throws FinderException, RemoteException;
}

The CabinHomeRemote interface extends the javax.ejb.EJBHome and
defines two life- cycle methods: create() and findByPrimaryKey().
These methods create and locate remote references to Cabin EJBs. Remove
methods (for deleting enterprise beans) are defined in the
javax.ejb.EJBHome interface, so the CabinHomeRemote interface
inherits them.

for most products. The workbooks provide additional help for organizing your
development projects, and will point out any vendor-specific requirements.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 5

CabinBean: The Bean Class

You have now defined the complete client-side API for creating, locating,
removing, and using the Cabin EJB. Now we need to define CabinBean, the
class that provides the implementation on the server for the Cabin EJB. The
CabinBean class is an entity bean that uses container-managed persistence,
so its definition will be fairly simple.

In addition to the callback methods discussed in Chapters 2 and 3, we must also
define abstract accessor methods for the methods defined in the CabinRemote
interface and an implementation of the create method defined in the
CabinHomeRemote interface.

EJB 2.0: The Cabin Bean

Here is the complete definition of the CabinBean class:

package com.titan.cabin;

public abstract class CabinBean
implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){
 this.setId(id);
 }
 public void ejbPostCreate(String name){

 }
 public abstract void setId(Integer id);
 public abstract Integer getId();

 public abstract void setShipId(int ship);
 public abstract int getShipId();

 public abstract void setName(String name);
 public abstract String getName();

 public abstract void setBedCount(int count);
 public abstract int getBedCount();

 public abstract void setDeckLevel(int level);
 public abstract int getDeckLevel();

 public void setEntityContext(EntityContext ctx) {
 // Not implemented.
 }
 public void unsetEntityContext() {
 // Not implemented.
 }

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 6

 public void ejbActivate() {
 // Not implemented.
 }
 public void ejbPassivate() {
 // Not implemented.
 }
 public void ejbLoad() {
 // Not implemented.
 }
 public void ejbStore() {
 // Not implemented.
 }
 public void ejbRemove() {
 // Not implemented.
 }
}

The CabinBean class can be divided into four sections for discussion:
declarations for the container-managed fields, the ejbCreate() methods, the
callback methods, and the remote interface implementations.

The CabinBean defines several abstract accessor methods that appear in pairs.
For example, the abstract methods setName() and getName() are a pair of
abstract accessor methods. These methods will be responsible for setting and
getting the entity bean’s name field. When the bean is deployed, the EJB
container automatically implements all the abstract accessor methods so that the
bean state can be synchronized with the database. These implementations map
the abstract accessor methods to fields in the database. Although all the abstract
accessor methods have corresponding methods in the remote interface,
CabinRemote, it’s not necessary that they do so. Some accessor methods are
for the entity bean’s use only and are never exposed to the client through the
remote or local interfaces.

It’s customary in EJB 2.0 to consider the abstract accessor methods as providing
access to virtual fields and to refer to those fields by their method name, less the
get or set prefix. For example, the getName()/setName() abstract accessor
methods define a virtual container-managed persistence field called name – the
first letter is always changed to lower case. The
getDeckLevel()/setDeckLevel() abstract accessor methods define a
virtual container-managed persistence field called deckLevel, and so on.

The name, deckLevel, ship, and bedCount virtual container-managed
persistence fields represent the Cabin EJB’s persistent state. They will be
mapped to the database at deployment time. These fields are also publicly
available through the entity bean’s remote interface. Invoking the
getBedCount() method on a CabinRemote EJB object at runtime causes
the container to delegate that call to the corresponding getBedCount()
method on the CabinBean instance. The abstract accessor methods do not

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 7

throw the RemoteException like the matching methods in the remote
interface.

There is no requirement that CMP fields must be exposed. The id field is another
container-managed field, but its abstract accessor methods are not exposed to
the client through the CabinRemote interface. This field is the primary key of
the Cabin EJB; it’s the entity bean’s index to its data in the database. It’s bad
practice to expose the primary key of an entity bean so that it can be modified by
a client. You don’t want client applications changing that index.

EJB 1.1: The Bean Class

Here is the complete definition of the CabinBean class in EJB 1.1:

package com.titan.cabin;

import javax.ejb.EntityContext;

public class CabinBean implements javax.ejb.EntityBean {

 public Integer id;
 public String name;
 public int deckLevel;
 public int shipId;
 public int bedCount;

 public Integer ejbCreate(Integer id) {
 this.id = id;
 return null;
 }
 public void ejbPostCreate(Integer id) {
 // Do nothing. Required.
 }
 public String getName() {
 return name;
 }
 public void setName(String str) {
 name = str;
 }
 public int getShipId() {
 return shipId;
 }
 public void setShipId(int sp) {
 shipId = sp;
 }
 public int getBedCount() {
 return bedCount;
 }
 public void setBedCount(int bc) {
 bedCount = bc;

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 8

 }
 public int getDeckLevel() {
 return deckLevel;
 }
 public void setDeckLevel(int level) {
 deckLevel = level;
 }

 public void setEntityContext(EntityContext ctx) {
 // Not implemented.
 }
 public void unsetEntityContext() {
 // Not implemented.
 }
 public void ejbActivate() {
 // Not implemented.
 }
 public void ejbPassivate() {
 // Not implemented.
 }
 public void ejbLoad() {
 // Not implemented.
 }
 public void ejbStore() {
 // Not implemented.
 }
 public void ejbRemove() {
 // Not implemented.
 }
}

Declared fields in a bean class can be persistent fields and property fields. These
categories are not mutually exclusive. The persistent field declarations describe
the fields that will be mapped to the database. A persistent field is often a
property (in the JavaBeans sense): any attribute that is available using public set
and get methods. Of course, a bean can have any fields that it needs; they need
not all be persistent, or properties. Fields that aren’t persistent won’t be saved in
the database. In CabinBean, all the fields are persis tent.

The id field is persistent, but it is not a property. In other words, id is mapped
to the database but cannot be accessed through the remote interface.

The name, deckLevel, ship, and bedCount fields are persistent fields.
They will be mapped to the database at deployment time. These fields are also
properties because they are publicly available through the remote interface.

EJB 2.0 and 1.1: The callback methods

In the case of the Cabin EJB, there was only one create() method, so there is
only one corresponding ejbCreate() method and one ejbPostCreate()

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 9

method. When a client invokes the create() method on the remote home
interface, it is delegated to a matching ejbCreate() method on the entity
bean instance. The ejbCreate() method initializes the fields; in the case of
the CabinBean, it sets the name virtual field.

The ejbCreate() method always returns the primary key type; with con-
tainer-managed persistence, this method returns the null value. It’s the
container’s responsibility to create the primary key. Why does it return null?
Simply put, it makes it easier for a bean-managed enterprise bean to extend a
container-managed enterprise bean. This is valuable for EJB vendors who
support container-managed persistence beans by extending them with bean-
managed persistence beans implementations – it’s a technique that was more
common in EJB 1.1. Bean-managed persistence beans, which are covered in
Chapter 10, always return the primary key type.

Once the ejbCreate() method has executed, the ejbPostCreate()
method is called to perform any follow-up operations. The ejbCreate() and
ejbPostCreate() methods must have signatures that match the parameters
and (optionally) the exceptions of the home interface’s create() method. The
ejbPostCreate() method is used to perform any post processing on the
bean after its created, but before it can be used by the client. Both methods will
execute, one right after the other, when the client invokes the create()
method on the remote home interface.

The findByPrimaryKey() method is not defined in container-managed
bean classes. Instead, find methods are generated at deployment and
implemented by the container. With bean-managed entity beans (entity beans
that explicitly manage their own persistence), find methods must be defined in
the bean class. In Chapter 10, when you develop bean-managed entity beans,
you will define the find methods in the bean classes you develop.

The CabinBean class implements javax.ejb.EntityBean, which defines
five callback methods: setEntityContext(),
unsetEntityContext(), ejbActivate(), ejbPassivate(),
ejbLoad(), ejbStore(), and ejbRemove(). The container uses these
callback methods to notify the CabinBean of certain events in its life cycle.
Although the callback methods are implemented, the implementations are empty.
The CabinBean is simple enough that it doesn’t need to do any special
processing during its life cycle. When we study entity beans in more detail in
Chapters 6 through 11, we will take advantage of these callback methods.

The Deployment Descriptor

You are now ready to create a deployment descriptor for the Cabin EJB. The
deployment descriptor performs a function similar to a properties file. It describes

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 10

which classes make up a enterprise bean and how the enterprise bean should be
managed at runtime. During deployment, the deployment descriptor is read and
its properties are displayed for editing. The deployer can then modify and add
settings as appropriate for the application’s operational environment. Once the
deployer is satisfied with the deployment information, he or she uses it to
generate the entire supporting infrastructure needed to deploy the enterprise
bean in the EJB server. This may include adding the enterprise bean to the
naming system and generating the enterprise bean’s EJB object and EJB home,
persistence infrastructure, transactional support, resolving enterprise bean
references, and so forth.

Although most EJB server products provide a wizard for creating and editing
deployment descriptors, we will create ours directly so that the enterprise bean is
defined in a vendor-independent manner.4 This requires some manual labor, but it
gives you a much better understanding of how deployment descriptors are
created. Once the deployment descriptor is finished, the enterprise bean can be
placed in a JAR file and deployed on any EJB-compliant server of the appropriate
version.

An XML deployment descriptor for every example in this book has already been
created and is available from the download site.

Here’s a quick peek at the deployment descriptor for the Cabin EJB, so you can
get a feel for how an XML deployment descriptor is structured and the type of
information it contains:

EJB 2.0: The Cabin EJB’s Deployment Descriptor

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>CabinEJB</ejb-name>
 <home>com.titan.cabin.CabinHomeRemote</home>
 <remote>com.titan.cabin.CabinRemote</remote>
 <ejb-class>com.titan.cabin.CabinBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <abstract-schema-name>Cabin</abstract-schema-name>
 <cmp-field><field-name>id</field-name></cmp-field>

4 The workbooks show you how to use the vendor’s tools for creating deployment
descriptors.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 11

 <cmp-field><field-name>name</field-name></cmp-field>
 <cmp-field><field-name>deckLevel</field-name></cmp-field>
 <cmp-field><field-name>shipId</field-name></cmp-field>
 <cmp-field><field-name>bedCount</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 <security-identity><use-callers-identity/><security-identity>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 ...
 </assembly-descriptor>
</ejb-jar>

EJB 1.1: The Cabin EJB’s Deployment Descriptor

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>CabinEJB</ejb-name>
 <home>com.titan.cabin.CabinHomeRemote</home>
 <remote>com.titan.cabin.CabinRemote</remote>
 <ejb-class>com.titan.cabin.CabinBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>name</field-name></cmp-field>
 <cmp-field><field-name>deckLevel</field-name></cmp-field>
 <cmp-field><field-name>shipId</field-name></cmp-field>
 <cmp-field><field-name>bedCount</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 ...
 </assembly-descriptor>
</ejb-jar>

EJB 2.0 and 1.1: Defining the XML elements

The <!DOCTYPE> element describes the purpose of the XML file, its root
element, and the location of its DTD. The DTD is used to verify that the
document is structured correctly. This element is discussed in detail in
Chapter 16. One important distinction between EJB 2.0 and EJB 1.1 is that they
use different DTD for deployment descriptors. EJB 2.0 specifies the ejb-
jar_2_0.dtd while EJB 1.1 specifies the ejb-jar_1_1.dtd.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 12

The rest of the XML elements are nested one within the other and are delimited
by a beginning tag and ending tag. The structure is really not very complicated.
If you have done any HTML coding you should already understand the format.
An element always starts with <name of tag> tag and ends with </name of tag>
tag. Everything in between—even other elements—is part of the enclosing
element.

The first major element is the <ejb-jar> element, which is the root of the
document. All the other elements must lie within this element. Next is the
<enterprise- beans> element. Every bean declared in an XML file must
be included in this section. This file only describes the Cabin EJB, but we could
define several beans in one deployment descriptor.

The <entity> element shows that the beans defined within this tag are entity
beans. Similarly, a <session> element describes session beans; since the
Cabin EJB is an entity bean, we don’t need a <session> element. In addition
to a description, the <entity> element provides the fully qualified class names
of the remote interface, home interface, bean class, and primary key. The <cmp-
field> elements list all the container-managed fields in the entity bean class.
These are the fields that will be persisted in the database and are managed by the
container at runtime. The <entity> element also includes a <reentrant>
element that can be set as True or False depending on whether the bean
allows reentrant loopbacks or not.

EJB 2.0 specifies a name which is used in EJB QL to identify the entity bean in
queries. This isn’t important right now. The 2.0 deployment descriptor also
specifies <security-identity> as <use-callers-identity>,
which simply means the bean will propagate the calling clients security identity
when access resources or other beans. This was covered in detail in Chapter 3.

The next section of the XML file, after the <enterprise-bean> element, is
enclosed by the <assembly-descriptor> element, which describes the
security roles and transactional attributes of the bean. This section is the same
for both EJB 2.0 and EJB 1.1 in this example.

<ejb-jar>
 <enterprise-beans>
 ...
 <enterprise-beans>
 <assembly-descriptor>
 <security-role>
 <description>
 This role represents everyone who is allowed full access
 to the Cabin EJB.
 </description>
 <role-name>everyone</role-name>
 </security-role>

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 13

 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>CabinEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <container-transaction>
 <method>
 <ejb-name>CabinEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

It may seem odd to separate the <assembly-descriptor> information from
the <enterprise-beans> information, since it clearly applies to the Cabin
EJB, but in the scheme of things it’s perfectly natural. A single XML deployment
descriptor can describe several beans, which might all rely on the same security
roles and transactional attributes. To make it easier to deploy several beans
together, all this common information is separated into the <assembly-
descriptor> element.

There is another reason (perhaps a more important reason) for separating
information about the bean itself from the security roles and transactional
attributes. The Enterprise JavaBeans defines the responsibilities of different
participants in the development and deployment of beans. We don’t address
these development roles in this book because they are not critical to learning the
fundamentals of EJB. For now, it’s enough to know that the person who
develops the bean and the person who assembles the beans into an application
have separate responsibilities and therefore separate parts of the XML
deployment descriptor. The bean developer is responsible for everything within
the <enterprise-beans> element; the bean assembler is responsible for
everything within the <assembly-descriptor>. Throughout this book we
will play both roles, developing the beans and assembling them. But in a real
project, you might buy a set of beans developed by a third-party vendor, who
would have no idea how you intend to use the beans, what your security
requirements are, etc. There is also the role of deployer, which is the person who
actually loads the enterprise bean into the EJB container; and the Administrator
who is responsible for tuning the EJB server and managing it at runtime. In some
projects all these roles may be filled by on or two people, or by several different
individuals or even teams. Again, you’ll be assuming all these roles when
reading this book, which is only practical since you can read a book as a team,
but its also practical since you learn the responsibilities of each role anyway.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 14

The <assembly-descriptor> contains the <security-role>
elements and their corresponding <method-permission> elements, which
were described in Chapter 3 under “Security.” In this example, there is one
security role, everyone, which is mapped to all the methods in the Cabin EJB
using the <method-permission> element. (The * in the <method-name>
element means “all methods”). As already mentioned, for EJB 2.0 you’ll have to
specify a security-identity; in this case it’s the caller’s identity.

The container-transaction element declares that all the methods of the Cabin EJB
have a Required transactional attribute. Transactional attributes are explained
in more detail in Chapter 14, but for now it means that all the methods must be
executed within a transaction. The deployment descriptor ends with the
enclosing tab of the <ejb-jar> element.

Copy the Cabin EJB’s deployment descriptor into the same directory as the class
files for the Cabin EJB files (Cabin.class, CabinHome.class, CabinBean.class,
and CabinPK. class) and save it as ejb-jar.xml. You have now created all the files
you need to package your EJB 1.1 Cabin EJB. Figure 4-3 shows all the files that
should be in the cabin directory.

[FIGURE]

Figure 4-2: The Cabin EJB files (EJB 1.1)

cabin.jar: The JAR File

The JAR file is a platform-independent file format for compressing, packaging,
and delivering several files together. Based on ZIP file format and the ZLIB
compression standards, the JAR (Java archive) packages and tool were originally
developed to make downloads of Java applets more efficient. As a packaging
mechanism, however, the JAR file format is a very convenient way to “shrink-
wrap” components and other software for delivery to third parties. The original
JavaBeans component architecture depends on JAR files for packaging, as does
Enterprise JavaBeans. The goal in using the JAR file format in EJB is to package
all the classes and interfaces associated with a bean, including the deployment
descriptor into one file. The process of creating an EJB JAR file is slightly
different between EJB 1.1 and EJB 1.0.

Creating the JAR file for deployment is easy. Position yourself in the dev
directory that is just above the com/titan/cabin directory tree, and execute the
command:

\dev % jar cf cabin.jar com/titan/cabin/*.class META-INF/ejb-jar.xml

F:\..\dev>jar cf cabin.jar com\titan\cabin*.class META-INF\ejb-jar.xml

You might have to create the META-INF directory first and copy ejb-jar.xml into
that directory. The c option tells the jar utility to create a new JAR file that

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 15

contains the files indicated in subsequent parameters. It also tells the jar utility
to stream the resulting JAR file to standard output. The f option tells jar to
redirect the standard output to a new file named in the second parameter
(cabin.jar) . It’s important to get the order of the option letters and the
command-line parameters to match. You can learn more about the jar utility and
the java.util.zip package in Java™ in a Nutshell by David Flanagan, or
Learning Java™ (formerly Exploring Java™), by Pat Niemeyer and Jonathan
Knudsen (both published by O’Reilly).

The jar utility creates the file cabin.jar in the dev directory. If you’re interested in
looking at the contents of the JAR file, you can use any standard ZIP application
(WinZip, PKZIP, etc.), or you can use the command jar tvf cabin.jar.

Creating a CABIN Table in the Database

One of the primary jobs of a deployment tool is mapping entity beans to
databases. In the case of the Cabin EJB, we must map its id, name,
deckLevel, ship, and bedCount container-managed fields to some data
source. Before proceeding with deployment, you need to set up a database and
create a CABIN table. You can use the following standard SQL statement to
create a CABIN table that will be consistent with the examples provided in this
chapter:

create table CABIN
(
 ID int primary key,
 SHIP_ID int,
 BED_COUNT int,
 NAME char(30),
 DECK_LEVEL int
)

This statement creates a CABIN table that has five columns corresponding to
the container-managed fields in the CabinBean class. Once the table is created
and connectivity to the database is confirmed, you can proceed with the
deployment process.

Deploying the Cabin EJB

Deployment is the process of reading the bean’s JAR file, changing or adding
properties to the deployment descriptor, mapping the bean to the database,
defining access control in the security domain, and generating vendor-specific
classes needed to support the bean in the EJB environment. Every EJB server
product has its own deployment tools, which may provide a graphical user
interface, a set of command-line programs, or both. Graphical deployment
“wizards” are the easiest deployment tools to work with.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 16

A deployment tool reads the JAR file and looks for the ejb-jar.xml file. In a
graphical deployment wizard, the deployment descriptor elements will be
presented in a set of property sheets similar to those used to customize visual
components in environments like Visual Basic, PowerBuilder, JBuilder, and
Symantec Café. Figure 4-7 shows the deployment wizard used in the J2EE
Reference Implementation.

[FIGURE]

Figure 4-4: J2EE Reference Implementation’s deployment
wizard

The J2EE Reference Implementation’s deployment wizard has fields and panels
that match the XML deployment descriptor. You can map security roles to users
groups, set the JNDI look up name, map the container-managed fields to the
database, etc.

Different EJB deployment tools will provide varying degrees of support for
mapping container-managed fields to a data source. Some provide very robust
and sophisticated graphical user interfaces, while others are simpler and less
flexible. Fortunately, mapping the CabinBean’s container-managed fields to
the CABIN table is a fairly straightforward process. The documentation for your
vendor’s deployment tool will show you how to create this mapping. Once you
have finished the mapping, you can complete the deployment of the Cabin EJB
and prepare to access it from the EJB server.

Creating a Client Application

Now that the Cabin EJB has been deployed in the EJB server, we want to access
it from a remote client. When we say remote, we are usally talking about a client
application that is located on a different computer, or a different process on the
same computer. In this section, we will create a remote client that will connect to
the EJB server, locate the EJB remote home for the Cabin EJB, and create and
interact with several Cabin EJBs. The following code shows a Java application
that is designed to create a new Cabin EJB, set its name, deckLevel, ship,
and bedCount properties, and then locate it again using its primary key:

package com.titan.cabin;

import com.titan.cabin.CabinHomeRemote;
import com.titan.cabin.CabinRemote;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.rmi.RemoteException;
import java.util.Properties;
import javax.rmi.PortableRemoteObject;

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 17

public class Client_1 {
 public static void main(String [] args) {
 try {
 Context jndiContext = getInitialContext();
 Object ref = jndiContext.lookup("CabinHome");
 CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);
 CabinRemote cabin_1 = home.create(new Integer(1));
 cabin_1.setName("Master Suite");
 cabin_1.setDeckLevel(1);
 cabin_1.setShipId(1);
 cabin_1.setBedCount(3);

 Integer pk = new Integer(1);

 CabinRemote cabin_2 = home.findByPrimaryKey(pk);
 System.out.println(cabin_2.getName());
 System.out.println(cabin_2.getDeckLevel());
 System.out.println(cabin_2.getShipId());
 System.out.println(cabin_2.getBedCount());

 } catch (java.rmi.RemoteException re){re.printStackTrace();}
 catch (javax.naming.NamingException ne){ne.printStackTrace();}
 catch (javax.ejb.CreateException ce){ce.printStackTrace();}
 catch (javax.ejb.FinderException fe){fe.printStackTrace();}
 }

 public static Context getInitialContext()
 throws javax.naming.NamingException {

 Properties p = new Properties();
 // ... Specify the JNDI properties specific to the vendor.
 return new javax.naming.InitialContext(p);
 }
}

To access an enterprise bean, a client starts by using the JNDI package to obtain
a directory connection to a bean’s container. JNDI is an implementation-
independent API for directory and naming systems. Every EJB vendor must
provide directory services that are JNDI-compliant. This means that they must
provide a JNDI service provider, which is a piece of software analogous to a
driver in JDBC. Different service providers connect to different directory
services—not unlike JDBC, where different drivers connect to different relational
databases. The method getInitialContext() contains logic that uses
JNDI to obtain a network connection to the EJB server.

The code used to obtain the JNDI Context will be different depending on
which EJB vendor you are using. Consult your vendor’s documentation to find
out how to obtain a JNDI Context appropriate to your product. The code used

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 18

to obtain a JNDI Context in WebSphere, for example, might look something
like the following:

public static Context getInitialContext()
 throws javax.naming.NamingException {

 java.util.Properties properties = new java.util.Properties();
 properties.put(javax.naming.Context.PROVIDER_URL, "iiop:///");
 properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.ejs.ns.jndi.CNInitialContextFactory");
 return new InitialContext(properties);
}

The same method developed for BEA’s WebLogic Server would be different:

public static Context getInitialContext()throws javax.naming.NamingException {

 Properties p = new Properties();
 p.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.TengahInitialContextFactory");
 p.put(Context.PROVIDER_URL, "t3://localhost:7001");
 return new javax.naming.InitialContext(p);
}

Once a JNDI connection is established and a context is obtained from the
getIntialContext() method, the context can be used to look up the EJB
home of the Cabin EJB:

The Client_1 application uses the
PortableRemoteObject.narrow() method as prescribed in EJB 1.1:

Object ref = jndiContext.lookup("CabinHome");
CabinHome home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

The PortableRemoteObject.narrow() method was first introduced in
EJB 1.1 and continues to be used on remote clients in EJB 2.0. It is needed to
support the requirements of RMI over IIOP. Because CORBA supports many
different languages, casting is not native to CORBA (some languages don’t have
casting). Therefore, to get a remote reference to CabinHomeRemote, we must
explicitly narrow the object returned from lookup(). This has the same effect
as casting and is explained in more detail in Chapter 5.

The name used to find the Cabin EJB’s EJB home is set by the deployer using a
deployment wizard like the one pictured earlier. The JNDI name is entirely up to
the person deploying the bean; it can be the same as the bean name set in the
XML deployment descriptor or something completely different.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 19

Creating a new Cabin EJB

Once we have a remote reference to the EJB home, we can use it to create a new
Cabin entity:

CabinRemote cabin_1 = home.create(new Integer(1));

We create a new Cabin entity using the create(Integer id) method
defined in the remote home interface of the Cabin EJB. When this method is
invoked, the EJB home works with the EJB server to create a Cabin EJB, adding
its data to the database. The EJB server then creates an EJB object to wrap the
Cabin EJB instance and returns a remote reference to the EJB object to the client.
The cabin_1 variable then contains a remote reference to the Cabin EJB we
just created.

We don’t need to use the PortableRemoteObject.narrow() method to
get the EJB object from the home reference, because it was declared as returning
the Cabin type; no casting was required. We don’t need to explicitly narrow
remote references returned by findByPrimaryKey() for the same reason.

With the remote reference to the EJB object, we can update the name,
deckLevel, ship, and bedCount of the Cabin EJB:

CabinRemote cabin_1 = home.create(new Integer(1));
cabin_1.setName("Master Suite");
cabin_1.setDeckLevel(1);
cabin_1.setShipId(1);
cabin_1.setBedCount(3);

Figure 4-11 shows how the relational database table that we created should look
after executing this code. It should contain one record.

[FIGURE]

Figure 4-6: CABIN table with one cabin record

After an entity bean has been created, a client can locate it using the
findByPrimaryKey() method in the home interface. First, we create a
primary key of the correct type, in this case Integer. When we invoke the
finder method on the home interface using the primary key, we get back a remote
reference to the EJB object. We can now interrogate the remote reference
returned by findByPrimaryKey() to get the Cabin EJB’s name,
deckLevel, ship, and bedCount:

Integer pk = new Integer(1);

CabinRemote cabin_2 = home.findByPrimaryKey(pk);
System.out.println(cabin_2.getName());
System.out.println(cabin_2.getDeckLevel());
System.out.println(cabin_2.getShipId());
System.out.println(cabin_2.getBedCount());

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 20

You are now ready to create and run the Client_1 application against the
Cabin EJB you deployed in earlier. Compile the client application and deploy the
Cabin EJB into the container system. Then run the Client_1 application.

& Exersize 4.1, Developing and deploying the Cabin EJB

When you run the Client_1 application, your output should look something
like the following:

Master Suite
1
1
3

Congratulations! You just created and used your first entity bean! Of course, the
client application doesn’t do much. Before going on to create session beans,
create another client that adds some test data to the database. Here we’ll create
Client_2 as a modification of Client_1 that populates the database with a
large number of cabins for three different ships:

package com.titan.cabin;

import com.titan.cabin.CabinHomeRemote;
import com.titan.cabin.CabinRemote;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import javax.ejb.CreateException;
import java.rmi.RemoteException;
import java.util.Properties;
import javax.rmi.PortableRemoteObject;

public class Client_2 {

 public static void main(String [] args) {
 try {
 Context jndiContext = getInitialContext();

 Object ref =
 jndiContext.lookup("CabinHome");
 CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);
 // Add 9 cabins to deck 1 of ship 1.
 makeCabins(home, 2, 10, 1, 1);
 // Add 10 cabins to deck 2 of ship 1.
 makeCabins(home, 11, 20, 2, 1);
 // Add 10 cabins to deck 3 of ship 1.
 makeCabins(home, 21, 30, 3, 1);

 // Add 10 cabins to deck 1 of ship 2.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 21

 makeCabins(home, 31, 40, 1, 2);
 // Add 10 cabins to deck 2 of ship 2.
 makeCabins(home, 41, 50, 2, 2);
 // Add 10 cabins to deck 3 of ship 2.
 makeCabins(home, 51, 60, 3, 2);

 // Add 10 cabins to deck 1 of ship 3.
 makeCabins(home, 61, 70, 1, 3);
 // Add 10 cabins to deck 2 of ship 3.
 makeCabins(home, 71, 80, 2, 3);
 // Add 10 cabins to deck 3 of ship 3.
 makeCabins(home, 81, 90, 3, 3);
 // Add 10 cabins to deck 4 of ship 3.
 makeCabins(home, 91, 100, 4, 3);

 for (int i = 1; i <= 100; i++){
 Integer pk = new Integer(i);
 CabinRemote cabin = home.findByPrimaryKey(pk);
 System.out.println("PK = "+i+", Ship = "+cabin.getShipId()
 + ", Deck = "+cabin.getDeckLevel()
 + ", BedCount = "+cabin.getBedCount()
 + ", Name = "+cabin.getName());
 }

 } catch (java.rmi.RemoteException re) {re.printStackTrace();}
 catch (javax.naming.NamingException ne) {ne.printStackTrace();}
 catch (javax.ejb.CreateException ce) {ce.printStackTrace();}
 catch (javax.ejb.FinderException fe) {fe.printStackTrace();}
 }

 public static javax.naming.Context getInitialContext()
 throws javax.naming.NamingException{
 Properties p = new Properties();
 // ... Specify the JNDI properties specific to the vendor.
 return new javax.naming.InitialContext(p);
 }

 public static void makeCabins(CabinHomeRemote home,
 int fromId, int toId,
 int deckLevel, int shipNumber)
 throws RemoteException, CreateException {

 int bc = 3;
 for (int i = fromId; i <= toId; i++) {
 CabinRemote cabin = home.create(new Integer(i));
 int suiteNumber = deckLevel*100+(i-fromId);
 cabin.setName("Suite "+suiteNumber);
 cabin.setDeckLevel(deckLevel);
 bc = (bc==3)?2:3;
 cabin.setBedCount(bc);
 cabin.setShipId(shipNumber);

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 22

 }
 }
}

Create and run the Client_2 application against the Cabin EJB you deployed
in earlier. Client_2, produces a lot of output that lists all the new Cabin EJBs
you just added to the database.

PK = 1, Ship = 1, Deck = 1, BedCount = 3, Name = Master Suite
PK = 2, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 100
PK = 3, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 101
PK = 4, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 102
PK = 5, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 103
PK = 6, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 104
PK = 7, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 105
...

You now have 100 cabin records in your CABIN table, representing 100 cabin
entities in your EJB system. This provides a good set of test data for the session
bean we will create in the next section, and for subsequent examples throughout
the book.

Developing a Session Bean

Session beans act as agents to the client, controlling workflow (the business
process) and filling the gaps between the representation of data by entity beans
and the business logic that interacts with that data. Session beans are often used
to manage interactions between entity beans and can perform complex
manipulations of beans to accomplish some task. Since we have only defined one
entity bean so far, we will focus on a complex manipulation of the Cabin EJB
rather than the interactions of the Cabin EJB with other entity beans. In
Chapter 12, after we have had the opportunity to develop other entity beans, the
interactions of entity beans within session beans will be explored in greater
detail.

Client applications and other beans use the Cabin EJB in a variety of ways. Some
of these uses were predictable when the Cabin EJB was defined, but many were
not. After all, an entity bean represents data—in this case, data describing a
cabin. The uses to which we put that data will change over time—hence the
importance of separating the data itself from the workflow. In Titan’s business
system, for example, we may need to list and report on cabins in ways that were
not predictable when the Cabin EJB was defined. Rather than change the Cabin
EJB every time we need to look at it differently, we will obtain the information we
need using a session bean. Changing the definition of an entity bean should
only be done within the context of a larger process—for example, a major
redesign of the business system.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 23

In Chapters 1 and 2, we talked hypothetically about a TravelAgent EJB that was
responsible for the workflow of booking a passage on a cruise. This session
bean will be used in client applications accessed by travel agents throughout the
world. In addition to booking tickets, the TravelAgent EJB also provides
information about which cabins are available on the cruise. In this chapter, we
will develop the first implementation of this listing behavior in the TravelAgent
EJB. The listing method we develop in this example is admittedly very crude and
far from optimal. However, this example is useful for demonstrating how to
develop a very simple stateless session bean and how these session beans can
manage other beans. In Chapter 12, we will rewrite the listing method. This “list
cabins” behavior is used by travel agents to provide customers with a list of
cabins that can accommodate the customer’s needs. The Cabin EJB does not
directly support the kind of list, nor should it. The list we need is specific to the
TravelAgent EJB, so it’s the TravelAgent EJB’s responsibility to query the Cabin
EJBs and produce the list.

You will need to create a development directory for the TravelAgent EJB, as we
did for the Cabin EJB. We name this directory travelagent and nest it below the
com/titan directory, which also contains the cabin directory (see Figure 4-13).

[FIGURE]

Figure 4-7: Directory structure for the TravelAgent EJB

You will be placing all the Java files and XML deployment descriptor for the
TravelAgent EJB into this directory.

TravelAgentRemote: The Remote Interface

As before, we start by defining the remote interface so that our focus is on the
business purpose of the bean, rather than its implementation. Starting small, we
know that the TravelAgent EJB will need to provide a method for listing all the
cabins available with a specified bed count for a specific ship. We’ll call that
method listCabins(). Since we only need a list of cabin names and deck
levels, we’ll define listCabins() to return an array of Strings. Here’s the
remote interface for TravelAgentRemote:

package com.titan.travelagent;

import java.rmi.RemoteException;
import javax.ejb.FinderException;

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 // String elements follow the format "id, name, deck level"
 public String [] listCabins(int shipID, int bedCount)
 throws RemoteException;
}

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 24

TravelAgentHomeRemote: The Remote Home
Interface

The second step in the development of the TravelAgent EJB bean is to create the
remote home interface. The remote home interface for a session bean defines the
create methods that initialize a new session bean for use by a client.

Find methods are not used in session beans; they are used with entity beans to
locate persistent entities for use on a client. Unlike entity beans, session beans
are not persistent and do not represent data in the database, so a find method
would not be meaningful; there is no specific session to locate. A session bean
is dedicated to a client for the life of that client (or less). For the same reason, we
don’t need to worry about primary keys; since session beans don’t represent
persistent data, we don’t need a key to access that data.

package com.titan.travelagent;

import java.rmi.RemoteException;
import javax.ejb.CreateException;

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome {
 public TravelAgentRemote create()
 throws RemoteException, CreateException;
}

In the case of the TravelAgent EJB, we only need a simple create() method
to get a reference to the bean. Invoking this create() method returns a
TravelAgent EJB’s remote reference that the client can use for the reservation
process.

TravelAgentBean: The Bean Class

Using the remote interface as a guide, we can define the TravelAgentBean
class that implements the listCabins() method. The following code
contains the complete definition of TravelAgentBean for this example.

package com.titan.travelagent;

import com.titan.cabin.CabinRemote;
import com.titan.cabin.CabinHomeRemote;
import java.rmi.RemoteException;
import javax.naming.InitialContext;
import javax.naming.Context;
import java.util.Properties;
import java.util.Vector;
import javax.rmi.PortableRemoteObject;
import javax.ejb.EJBException.

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 25

public class TravelAgentBean implements javax.ejb.SessionBean {

 public void ejbCreate() {
 // Do nothing.
 }
 public String [] listCabins(int shipID, int bedCount) {

 try {
 javax.naming.Context jndiContext = new InitialContext();
 Object obj =
 jndiContext.lookup("java:comp/env/ejb/CabinHome");

 CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(obj,CabinHomeRemote.class);

 Vector vect = new Vector();
 for (int i = 1; ; i++) {
 Integer pk = new Integer(i);
 CabinRemote cabin;
 try {
 cabin = home.findByPrimaryKey(pk);
 } catch(javax.ejb.FinderException fe) {
 break;
 }
 // Check to see if the bed count and ship ID match.
 if (cabin.getShipId() == shipID &&
 cabin.getBedCount() == bedCount) {
 String details =
 i+","+cabin.getName()+","+cabin.getDeckLevel();
 vect.addElement(details);
 }
 }

 String [] list = new String[vect.size()];
 vect.copyInto(list);
 return list;

 } catch(Exception e) {throw new EJBException(e);}
 }

 private javax.naming.Context getInitialContext()
 throws javax.naming.NamingException {
 Properties p = new Properties();
 // ... Specify the JNDI properties specific to the vendor.
 return new javax.naming.InitialContext(p);
 }

 public void ejbRemove(){}
 public void ejbActivate(){}
 public void ejbPassivate(){}

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 26

 public void setSessionContext(javax.ejb.SessionContext cntx){}
}

Examining the listCabins() method in detail, we can address the
implementation in pieces, starting with the use of JNDI to locate the
CabinHomeRemote:

javax.naming.Context jndiContext = new InitialContext();

Object obj = jndiContext.lookup("java:comp/env/ejb/CabinHome");

CabinHomeRemote home = (CabinHomeRemote)
 javax.rmi.PortableRemoteObject.narrow(obj, CabinHomeRemote.class);

Beans are clients to other beans, just like client applications. This means that
they must interact with other beans in the same way that client applications
interact with beans. In order for one bean to locate and use another bean, it must
first locate and obtain a reference to the bean’s EJB home. This is accomplished
using JNDI in exactly the same way we used JNDI to obtain a reference to the
Cabin EJB in the Client_1 and Client_2 applications we developed earlier.

All beans have a default JNDI context called the environment context, which was
discussed a little in Chapter 3. The default context exists in the name space
(directory) called "java:comp/env" and its subdirectories. When the bean is
deployed, any beans it uses are mapped into the subdirectory
"java:comp/env/ejb", so that bean references can be obtained at runtime
through a simple and consistent use of the JNDI default context. We’ll come
back to this when we take a look at the deployment descriptor for the
TravelAgent EJB below.

In the case of the Cabin and TravelAgent EJBs we are working exclusively with
there remote component interfaces. As you learned in Chapter 2, enterprise
beans may have remote and/or local component interfaces. However, to keep
things simple with this first set of examples, we are working with only the remote
component interfaces – Chapter 5 will explain how this example may have been
implemented with local interfaces.

Once the remote EJB home of the Cabin EJB is obtained, we can use it to produce
a list of cabins that match the parameters passed. The following code loops
through all the Cabin EJBs and produces a list that includes only those cabins
with the ship and bed count specified:

Vector vect = new Vector();
for (int i = 1; ; i++) {
 Integer pk = new Integer(i);
 CabinRemote cabin;
 try {
 cabin = home.findByPrimaryKey(pk);
 } catch(javax.ejb.FinderException fe){
 break;

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 27

 }
 // Check to see if the bed count and ship ID match.
 if (cabin.getShipId() == shipID && cabin.getBedCount() == bedCount) {
 String details = i+","+cabin.getName()+","+cabin.getDeckLevel();
 vect.addElement(details);
 }
}

This method simply iterates through all the primary keys, obtaining a remote
reference to each Cabin EJB in the system and checking whether its shipId and
bedCount match the parameters passed in. The for loop continues until a
FinderException is thrown, which would probably occur when a primary
key is used that isn’t associated with a bean. (This isn’t the most robust code
possible, but it will do for now.) Following this block of code, we simply copy the
Vector’s contents into an array and return it to the client.

While this is a very crude approach to locating the right Cabin EJBs—we will
define a better method in Chapter 12—it is adequate for our current purposes.
The purpose of this example is to illustrate that the workflow associated with this
listing behavior is not included in the Cabin EJB nor is it embedded in a client
application. Workflow logic, whether it’s a process like booking a reservation or
obtaining a list, is placed in a session bean.

TravelAgent EJB’s Deployment Descriptor

The TravelAgent EJB uses an XML deployment descriptor similar to the one
used for the Cabin entity bean. Here is the ejb-jar.xml file used to deploy the
TravelAgent. In Chapter 12, you will learn how to deploy several beans in one
deployment descriptor, but for now the TravelAgent and Cabin EJBs are
deployed separately.

EJB 2.0: Deployment Descriptor

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd">
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <home>com.titan.travelagent.TravelAgentHomeRemote</home>
 <remote>com.titan.travelagent.TravelAgentRemote</remote>
 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <ejb-ref>
 <ejb-ref-name>ejb/CabinHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 28

 <home>CabinHomeRemote</home>
 <remote>CabinRemote</remote>
 </ejb-ref>
 <security-identity><use-callers-identity/></security-identity>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 ...
 </assembly-descriptor>
</ejb-jar>

EJB 1.1: Deployment Descriptor

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <home>com.titan.travelagent.TravelAgentHomeRemote</home>
 <remote>com.titan.travelagent.TravelAgentRemote</remote>
 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <ejb-ref>
 <ejb-ref-name>ejb/CabinHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.titan.cabin.CabinHomeRemote</home>
 <remote>com.titan.cabin.CabinRemote</remote>
 </ejb-ref>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 ...
 </assembly-descriptor>
</ejb-jar>

EJB 2.0 and 1.1: Defining the XML elements

The only significant difference between the 2.0 and 1.1 deployment descriptors is
the name of the DTD and the addition of a <security-identity> element
in EJB 2.0, which simply propagates the caller’s identity.

Other than the <session-type> and <ejb-ref> elements, the XML
deployment descriptor should make sense since it uses many of the same
elements as the Cabin EJB’s. The <session-type> element can be

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 29

Stateful or Stateless to indicate which type of session bean is used. In
this case we are defining a stateless session bean.

The <ejb-ref> element is used at deployment time to map the bean references
used within the TravelAgent EJB. In this case, the <ejb-ref> element
describes the Cabin EJB, which we already deployed. The <ejb-ref-name>
element specifies the name that must be used by the TravelAgent EJB to obtain a
reference to the Cabin EJB’s home. The <ejb-ref-type> tells the container
what kind of bean it is, Entity or Session. The <home> and <remote>
elements specify the fully qualified interface names of the Cabin’s home and
remote bean interfaces.

When the bean is deployed, the <ejb-ref> will be mapped to the Cabin EJB in
the EJB server. This is a vendor-specific process, but the outcome should always
be the same. When the TravelAgent does a JNDI lookup using the context name
"java:comp/env/ejb/CabinHome" it will obtain a remote reference to
the Cabin EJB’s home. The purpose of the <ejb-ref> element is to eliminate
network specific and implementation specific use of JNDI to obtain remote bean
references. This makes a bean more portable because the network location and
JNDI service provider can change without impacting the bean code or even the
XML deployment descriptor.

However, as you learn in Chapter 5, with EJB 2.0 it’s always preferable to use
local references instead of remote references when beans are access each other
with the same server. Local references are specified using the <ejb-local-
ref> element, which looks just like the <ejb-ref> element except it is for
local references.

The assembly-descriptor section of the deployment descriptor is the
same for EJB 2.0 and EJB 1.1.

<assembly-descriptor>
 <security-role>
 <description>
 This role represents everyone who is allowed full access
 to the Cabin EJB.
 </description>
 <role-name>everyone</role-name>
 </security-role>

 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>TravelAgentEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 30

 <container-transaction>
 <method>
 <ejb-name>TravelAgentEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Deploying the TravelAgent EJB

Once the XML deployment descriptor is defined you are ready to place the
TravelAgent EJB in its own JAR file and deploy it into the EJB server.

To make your TravelAgent EJB available to a client application, you need to use
the deployment utility or wizard of your EJB server. The deployment utility reads
the JAR file to add the TravelAgent EJB to the EJB server environment. Unless
your EJB server has special requirements, it is unlikely that you will need to
change or add any new attributes to the bean. You will not need to create a
database table for this example, since the TravelAgent EJB is using only the
Cabin EJB and is not itself persistent. However, you will need to map the <ejb-
ref> element in the TravelAgent EJB’s deployment descriptor to the Cabin EJB.
You EJB server’s deployment tool will provide a mechanism for doing this.
Deploy the TravelAgent EJB and proceed to the next section.

Use the same process to JAR the TravelAgent EJB as was used for the Cabin
EJB. We shrink-wrap the TravelAgent EJB class and its deployment descriptor
into a JAR file and save to the com/titan/travelagent directory:

\dev % jar cf cabin.jar com/titan/travelagent/*.class META-INF/ejb-jar.xml

F:\..\dev>jar cf cabin.jar com\titan\travelagent*.class META-INF\ejb-jar.xml

You might have to create the META-INF directory first, and copy ejb-jar.xml into
that directory. The TravelAgent EJB is now complete and ready to be deployed.
Next use your EJB containers proprietary tools to deploy the TravelAgent EJB
into the container system.

Creating a Client Application

To show that our session bean works, we’ll create a simple client application that
uses it. This client simply produces a list of cabins assigned to ship 1 with a bed
count of 3. Its logic is similar to the client we created earlier to test the Cabin EJB:
it creates a context for looking up TravelAgentHomeRemote, creates a
TravelAgent EJB, and invokes listCabins() to generate a list of the cabins
available. Here’s the code:

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 31

import com.titan.cabin.CabinHomeRemote;
import com.titan.cabin.CabinRemote;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import javax.ejb.CreateException;
import java.rmi.RemoteException;
import java.util.Properties;
import javax.rmi.PortableRemoteObject;

public class Client_3 {
 public static int SHIP_ID = 1;
 public static int BED_COUNT = 3;

 public static void main(String [] args) {
 try {
 Context jndiContext = getInitialContext();

 Object ref = jndiContext.lookup("TravelAgentHome");
 TravelAgentHomeRemote home = (TravelAgentHomeRemote)
 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

 TravelAgentRemote travelAgent = home.create();

 // Get a list of all cabins on ship 1 with a bed count of 3.
 String list [] = travelAgent.listCabins(SHIP_ID,BED_COUNT);

 for(int i = 0; i < list.length; i++){
 System.out.println(list[i]);
 }

 } catch(java.rmi.RemoteException re){re.printStackTrace();}
 catch(Throwable t){t.printStackTrace();}
 }
 static public Context getInitialContext() throws Exception {
 Properties p = new Properties();
 // ... Specify the JNDI properties specific to the vendor.
 return new InitialContext(p);
 }
}

When you have successfully run Client_3, the output should look like this:

1,Master Suite ,1
3,Suite 101 ,1
5,Suite 103 ,1
7,Suite 105 ,1
9,Suite 107 ,1
12,Suite 201 ,2
14,Suite 203 ,2
16,Suite 205 ,2

DRAFT, 10/21/017/6/2001

 Copyright (c) 2001 O'Reilly & Associates 32

18,Suite 207 ,2
20,Suite 209 ,2
22,Suite 301 ,3
24,Suite 303 ,3
26,Suite 305 ,3
28,Suite 307 ,3
30,Suite 309 ,3

You have now successfully created the first piece of the TravelAgent session
bean: a method that obtains a list of cabins by manipulating the Cabin EJB entity.

& Exercise 4.2, Develop and Deploy the TravelAgent EJB

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 1

5
The Client View

Developing the Cabin EJB and the TravelAgent EJB should have raised your
confidence, but it should also have raised a lot of questions. So far, we have
glossed over most of the details involved in developing, deploying, and access-
ing these enterprise beans. In this chapter and the ones that follow, we will
slowly peel away the layers of the Enterprise JavaBeans onion to expose the
details of EJB application development.

This chapter focuses specifically on the client’s view of an EJB system. The
client, whether it is an application or another enterprise bean, doesn’t work
directly with the beans in the EJB system. Instead, clients interact with a set of
interfaces that provide access to beans and their business logic. These interfaces
consist of the JNDI API and an EJB client-side API. JNDI allows us to find and
access enterprise beans regardless of their location on the network; the EJB
client-side API is the set of interfaces and classes that a developer uses on the
client to interact with enterprise beans.

The best approach to this chapter is to read about a feature of the client view and
then try working with some of the examples to see the feature in action. This will
provide you with hands-on experience and a much clearer understanding of the
concepts. Have fun, experiment, and you’ll be sure to understand the
fundamentals.

Locating Beans with JNDI

In Chapter 4, the client application started by creating an InitialContext,
which it then used to get a remote reference to the homes of the Cabin and
TravelAgent EJBs. The InitialContext is part of a larger API called the

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates2

Java Naming and Directory Interface (JNDI). We use JNDI to look up an EJB
home in an EJB server just like you might use a phone book to find the home
number of a friend or business associate.

JNDI is a standard Java optional package that provides a uniform API for
accessing a wide range of services. In this respect, it is somewhat similar to
JDBC, which provides uniform access to different relational databases. Just as
JDBC lets you write code that doesn’t care whether it’s talking to an Oracle
database or a Sybase database, JNDI lets you write code that can access
different directory and naming services, like LDAP, Novell Netware NDS,
CORBA Naming Service, and the naming services provided by EJB servers. EJB
servers are required to support JNDI by organizing beans into a directory
structure and providing a JNDI driver, called a service provider, for accessing
that directory structure. Using JNDI, an enterprise can organize its beans,
services, data, and other resources in a large virtual directory structure, which
can provide a very powerful mechanism for binding together normally disparate
systems.

The great thing about JNDI is that it is virtual and dynamic. JNDI is virtual
because it allows one directory service to be linked to another through simple
URLs. The URLs in JNDI are analogous to HTML links. Clicking on a link in
HTML allows a user to load the contents of a web page. The new web page
could be downloaded from the same host as the starting page or from a
completely different web site—the location of the linked page is transparent to
the user. Likewise, using JNDI, you can drill down through directories to files,
printers, EJB home objects, and other resources using links that are similar to
HTML links. The directories and subdirectories can be located in the same host
or can be physically hosted at completely different locations. The user doesn’t
know or care where the directories are actually located. As a developer or
administrator, you can create virtual directories that span a variety of different
services over many different physical locations.

JNDI is dynamic because it allows the JNDI drivers (a.k.a. service providers) for
specific types of directory services to be loaded at runtime. A driver maps a
specific kind of directory service into the standard JNDI class interfaces. Drivers
have been created for LDAP, Novell NetWare NDS, Sun Solaris NIS+, CORBA
Naming Service, and many other types of naming and directory services. When a
link to a different directory service is chosen, the driver for that type of directory
service is automatically loaded from the directory’s host, if it is not already
resident on the user’s machine. Automatically downloading JNDI drivers makes
it possible for a client to navigate across arbitrary directory services without
knowing in advance what kinds of services it is likely to find.

JNDI allows the application client to view the EJB server as a set of directories,
like directories in a common filesystem. After the client application locates and
obtains a remote reference to the EJB home using JNDI, the client can use the
EJB home to obtain an EJB object reference to an enterprise bean. In the
TravelAgent EJB and the Cabin EJB, which you worked with in Chapter 4, you

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 3

used the method getInitialContext() to get a JNDI InitialContext
object, which looked as follows:

public static Context getInitialContext() throws javax.naming.NamingException {
 Properties p = new Properties();
 // ... Specify the JNDI properties specific to the vendor.
 return new javax.naming.InitialContext(p);
}

An initial context is the starting point for any JNDI lookup—it’s similar in
concept to the root of a filesystem. The way you create an initial context is
peculiar, but not fundamentally difficult. You start with a properties table of type
Properties. This is essentially a hash table to which you add various values
that determine the kind of initial context you get.

Of course, as mentioned in Chapter 4, this code will change depending on how
your EJB vendor has implemented JNDI. For WebSphere,
getInitialContext() might look something like this:

public static Context getInitialContext()
 throws javax.naming.NamingException {

 java.util.Properties properties = new java.util.Properties();
 properties.put(javax.naming.Context.PROVIDER_URL, "iiop:///");
 properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.ejs.ns.jndi.CNInitialContextFactory");
 return new InitialContext(properties);
}

For BEA’s WebLogic Server, this method would be coded as:

public static Context getInitialContext() throws Exception {
 Properties p = new Properties();
 p.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.T3InitialContextFactory");
 p.put(Context.PROVIDER_URL, "t3://localhost:7001");
 return new InitialContext(p);
}

For a more detailed explanation of JNDI, see O’Reilly’s Java™ Enterprise in a
Nutshell, by David Flanagan, Jim Farley, William Crawford, and Kris Magnusson.

The Remote Client API
Enterprise bean developers are required to provide a bean class, component
interfaces, and for entity beans, a primary key. Of these types, the only the
component interfaces and primary key class are visible to the client, while the
bean class is not. The component interfaces and primary key contribute to the
client-side API in EJB. The methods defined in component interfaces as well as

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates4

the methods of their supertypes provide the mechanisms that clients use to
interact with an EJB business system.

In EJB 1.1, all clients, whether they are in the same container system or not, must
use the Remote Client API, which means they must use the remote interface and
remote home interface and Java RMI is all their interactions. In EJB 2.0, remote
clients must continue to use the Remote Client API, but enterprise beans that are
located in the same EJB container system have the option of using the Local
Client API. The Local Client API provides local component interfaces and avoids
the restrictions and overhead of the remote client API.

This section examines in more detail the remote component interfaces and the
primary key, as well as other types that make up EJB’s remote client-side API.
This will provide you with a better understanding of how the remote client-side
API is used and its relationship with the bean class on the EJB server. In the
next major section, The Local Client API, the use of local component interfaces
will be examined.

Java RMI-IIOP

Enterprise JavaBeans 2.0 and 1.1 define an EJB’s remote interfaces in terms of
Java RMI-IIOP, which enforces compliance with CORBA. In other words, the
underlying protocol used by remote clients to access enterprise beans can be
anything that the vendor wants as long as it supports the types of interfaces and
arguments that are compatible with Java RMI-IIOP. EJB 1.1 only required that
the wire protocol used by vendors utilize types that would be compatible with
Java RMI-IIOP. In other words, the interface types and values used in remote
references had to be compliant with the types allowed for Java RMI-IIOP. This
ensured that early Java RMI-IIOP adopters were supported and makes for a
seamless transition for other vendors who wanted to use real Java RMI-IIOP in
EJB 2.0. In EJB 2.0, vendor can still offer other Java RMI-IIOP-compatible
protocols, but in addition to any propritary protocols they support, they must
also support the CORBA IIOP 1.2 protocol as defined in the CORBA 2.3.1.

To be compliant with Java RMI-IIOP types, the EJB vendors have to restrict the
definition of interfaces and arguments to types that map nicely to IIOP 1.2. These
restrictions are really not all that bad, and you probably won’t even notice them
while developing your beans, but it’s important to know what they are. The next
few paragraphs discuss the Java RMI-IIOP programming model for both EJB 2.0
and EJB 1.1.

EJB 2.0’s local component interfaces are not Java RMI interfaces and do not
have to support IIOP 1.2 or use types compliant with the Java RMI-IIOP
protocol. Local component interfaces are discused after remote component
interfaces.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 5

Java RMI Return Types, Parameters, and Exceptions

The supertypes of the remote home interface and remote interface,
javax.ejb.EJBHome and javax.ejb.EJBObject, both extend
java.rmi.Remote. As Remote interface subtypes, they are expected to
adhere to the Java RMI specification for Remote interfaces.

Parameters and return types

As subtypes of the java.rmi.Remote interface, the remote component
interfaces must follow several guidelines, some of which apply to the return
types and parameters that are allowed. To be compatible with Java RMI, the
actual return types and parameter types used in the java.rmi.Remote
interfaces must be primitives, String types, java.rmi.Remote types, or
serializable types.

There is a difference between declared types, which are checked by the compiler,
and actual types, which are checked by the runtime. The types that may be used
in Java RMI are actual types, which are either primitive types, object types
implementing (even indirectly) java.rmi.Remote, or object types
implementing (even indirectly) java.io.Serializable. The
java.util.Collection type, for example, which does not explicitly
extends java.io.Serializable, is a perfectly valid return type for a
remote finder methods, provided that the concrete class implementing
Collection does implement java.io.Serializable. So Java RMI has
no special rules regarding declared return types or parameter types. At runtime, a
type that is not a java.rmi.Remote type is assumed to be serializable; if it is
not, an exception is thrown. The actual type passed cannot be checked by the
compiler, it must be checked at the runtime.

Here is a list of the types that can be passed as parameters or returned in Java
RMI:

• Primitives: byte, boolean, char, short, int, long, double, float.

• Java serializable types: any class that implements or any interface that
extends java.io.Serializable.

• Java RMI remote types: any class that implements or any interface that
extends java.rmi.Remote.

Serializable objects are passed by copy (a.k.a. passed by value), not by reference,
which means that changes in a serialized object on one tier are not automatically
reflected on the others. Objects that implement Remote, like
CustomerRemote or CabinRemote, are passed as remote references—
which is a little different. A remote reference is a Remote interface implemented
by a distributed object stub. When a remote reference is passed as a parameter or
returned from a method, it is the stub that is serialized and passed by value, not
the object server remotely referenced by the stub. In the home interface for the

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates6

TravelAgent EJB, the create() method takes a reference to a Customer EJB as
its only argument.

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome {
 public TravelAgentRemote create(CustomerRemote customer)
 throws RemoteException, CreateException;
}

The customer argument is a remote reference to a Customer EJB that is passed
into the create() method. When a remote reference is passed or returned in
Enterprise JavaBeans, the EJB object stub is passed by copy. The copy of the
EJB object stub points to the same EJB object as the original stub. This results in
both the enterprise bean instance and the client having remote references to the
same EJB object. So changes made on the client using the remote reference will
be reflected when the enterprise bean instance uses the same remote reference.
Figure 5-1 and Figure 5-3 show the difference between a serializable object and a
remote reference argument in Java RMI.

[FIGURE]

Figure 5-1: Serializable arguments in Java RMI

[FIGURE]

Figure 5-2: Remote reference arguments in Java RMI

Exceptions

The Java RMI specification states that every method defined in a Remote inter-
face must throw a java.rmi.RemoteException. The
RemoteException is used when problems occur with the distributed object
communications, like a network failure or inability to locate the object server. In
addition, Remote interface types can throw any application-specific exceptions
(exceptions defined by the application developer) that are necessary. The
following code shows the remote interface to the TravelAgent EJB discussed in
Chapter 2. This remote interface is similar to the one defined in Chapter 4.
TravelAgentRemote has several remote methods, including
bookPassage(). The bookPassage() method can throw a
RemoteException (as required), in addition to an application exception,
IncompleteConversationalState.

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public void setCruiseID(int cruise)
 throws RemoteException, FinderException;
 public int getCruiseID() throws RemoteException;

 public void setCabinID(int cabin)
 throws RemoteException, FinderException;
 public int getCabinID() throws RemoteException;

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 7

 public int getCustomerID() throws RemoteException;

 public Ticket bookPassage(CreditCardRemote card, double price)
 throws RemoteException,IncompleteConversationalState;

 public String [] listAvailableCabins(int bedCount)
 throws RemoteException, IncompleteConversationalState;

}

Java RMI-IIOP type restrictions

In addition to the Java RMI programming model discussed earlier, Java RMI-IIOP
imposes additional restrictions on the remote interfaces and value types used in
the Remote Client API. These restrictions are born of limitations inherit in the
Interface Definition Language (IDL) upon which CORBA IIOP 1.2 is based. The
exact nature of these limitations is outside the scope of this book. Here are two of
the restrictions; the others, like IDL name collisions, are so rarely encountered
that it wouldn’t be constructive to mention them.1

• Method overloading is restricted; a remote interface may not directly extend
two or more interfaces that have methods with the same name (even if their
arguments are different). A remote interface may, however, overload its own
methods and extend a remote interface with overloaded method names.
Overloading is viewed, here, as including overriding. Figure 5-3 illustrates
both of these situations.

[FIGURE]

Figure 5-3: Overloading rules for Remote interface
inheritance in Java RMI-IIOP

• Serializable types must not directly or indirectly implement the
java.rmi.Remote interface.

Explicit narrowing using PortableRemoteObject

In Java RMI-IIOP remote references must be explicitly narrowed using the
javax.rmi.PortableRemoteObject.narrow() method. The typical
practice in Java would be to cast the reference to the more specific type, as
follows:

javax.naming.Context jndiContext;
...
CabinHomeRemote home = (CabinHomeRemote)jndiContext.lookup("CabinHome");

1 To learn more about CORBA IDL and its mapping to the Java language consult
The Common Object Request Broker: Architecture and Specification and The Java
Language to IDL Mapping available at the OMG site (www.omg.org).

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates8

The javax.naming.Context.lookup() method returns an Object. In
EJB 2.0’s Local Client API, we can assume that it is legal to cast the return
argument. However, the Remote Client API must be compatible with Java RMI-
IIOP, which means that clients must adhere to limitations imposed by the IIOP 1.2
protocol. To accommodate all languages, many of which have no concept of
casting, IIOP 1.2 does not support stubs that implement multiple interfaces. The
stub returned in IIOP implements only the interface specified by the return type
of the remote method that was invoked. If the return type is Object, as is the
remote reference returned by the lookup() method, the stub will only
implement methods specific to the Object type.

Of course, some means for converting a remote reference from a more general
type to a more specific type is essential in an object-oriented environment, so
Java RMI-IIOP provides a mechanism for explicitly narrowing references to a
specific type. The javax.rmi.PortableRemoteObject.narrow()
method abstracts this narrowing to provide narrowing in IIOP as well as other
protocols. Remember while the Remote Client API requires that you use Java
RMI-IIOP reference and argument types, the wire protocol need not be IIOP 1.2.
Other protocols besides IIOP may also require explicit narrowing. The
PortableRemoteObject abstracts the narrowing process so that any
protocol can be used.

To narrow the return argument of the Context.lookup() method to the
appropriate type, we must explicitly ask for a remote reference that implements
the interface we want:

import javax.rmi.PortableRemoteObject;
...
javax.naming.Context jndiContext;
...
Object ref = jndiContext.lookup("CabinHome");
CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

When the narrow() method has successfully executed, it returns a stub that
implements the Remote interface specified. Because the stub is known to
implement the correct type, you can then use Java’s native casting to narrow the
stub to the correct Remote interface. The narrow() method takes two
arguments: the remote reference that is to be narrowed and the type it should be
narrowed to. The definition of the narrow() method is:2

package javax.rmi;

public class PortableRemoteObject extends java.lang.Object {

 public static java.lang.Object narrow(java.lang.Object narrowFrom,

2 Other methods included in the PortableRemoteObject class are not
important to EJB application developers. They are intended for Java RMI developers.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 9

 java.lang.Class narrowTo)
 throws java.lang.ClassCastException;
 ...
}

The narrow() method only needs to be used when a remote reference to an
EJB home or EJB object is returned without a specific Remote interface type.
This occurs in six circumstances:

• When a remote EJB home reference is obtained using the
javax.naming.Context.lookup() method:

Object ref = jndiContext.lookup("CabinHome");
CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

• When a remote EJB object reference is obtained using the
javax.ejb.Handle.getEJBObject() method:

Handle handle = // get handle
Object ref = handle.getEJBObject();
CabinRemote cabin = (CabinRemote)
PortableRemoteObject.narrow(ref,CabinRemote.class);

• When a remote EJB home reference is obtained using the
javax.ejb.HomeHandle.getEJBHome() method:

HomeHandle homeHdle = ... // get home handle
EJBHome ref = homeHdle.getEJBHome();
CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

• When a remote EJB home reference is obtained using the
javax.ejb.EJBMetaData.getEJBHome() method:

EJBMetaData metaData = homeHdle.getEJBMetaData();
EJBHome ref = metaData.getEJBHome();
CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

• When a remote EJB object reference is obtained from a collection returned
by a remote home interface finder method:

ShipHomeRemote shipHome = ... // get ship home
Enumeration enum = shipHome.findByCapacity(2000);
while(enum.hasMoreElements()){
 Object ref = enum.nextElement();
 ShipRemote ship = (ShipRemote)
 PortableRemoteObject.narrow(ref, ShipRemote.class);
 // do something with Ship reference
}

• When a wide remote EJB object type is returned from any business method.
Here is a hypothetical example:

// Officer extends Crewman
ShipRemote ship = // get Ship remote reference

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates10

CrewmanRemote crew = ship.getCrewman("Burns", "John", "1st Lieutenant");
OfficerRemote burns = (OfficerRemote)
 PortableRemoteObject.narrow(crew, OfficerRemote.class);

The PortableRemoteObject.narrow() method is not required when the
remote type is specified in the method signature. This is true of the create()
methods and find methods in remote home interfaces that return a single bean.
For example, the create() and findByPrimaryKey() methods defined in
the CabinHomeRemote interface (Chapter 4) do not require the use of
narrow() method because these methods already return the correct EJB object
type. Business methods that return the correct type do not need to use the
narrow() method either, as the following code illustrates:

/* The CabinHomeRemote.create() method specifies
 * the Cabin remote interface as the return type
 * so explicit narrowing is not needed.*/
CabinRemote cabin = cabinHome.create(12345);

/* The CabinHomeRemote.findByPrimaryKey() method specifies
 * the Cabin remote interface as the return type
 * so explicit narrowing is not needed.*/
CabinRemote cabin = cabinHome.findByPrimaryKey(12345);

/* The ShipRemote.getCrewman() business method specifies
 * the Crewman remote interface as the return type
 * so explicit narrowing is not needed.*/
CrewmanRemote crew = ship.getCrewman("Burns", "John", "1st Lieutenant");

The Remote Home Interface

The remote home interface provides life-cycle operations and metadata for the
bean. When you use JNDI to access a bean, you obtain a remote reference, or
stub, to the bean’s EJB home, which implements the remote home interface.
Every bean type may have one home interface, which extends the
javax.ejb.EJBHome interface.

Here is the EJBHome interface:

public interface javax.ejb.EJBHome extends java.rmi.Remote {
 public abstract EJBMetaData getEJBMetaData()
 throws RemoteException;
 public HomeHandle getHomeHandle() // new in 1.1
 throws RemoteException;
 public abstract void remove(Handle handle)
 throws RemoteException, RemoveException;
 public abstract void remove(Object primaryKey)
 throws RemoteException, RemoveException;
}

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 11

Removing beans

The EJBHome.remove() methods are responsible for deleting an enterprise
bean. The argument is either the javax.ejb.Handle of the enterprise bean
or, if it’s an entity bean, its primary key. The Handle will be discussed in more
detail later, but it is essentially a serializable pointer to a specific enterprise bean.
When either of the EJBHome.remove() methods are invoked, the remote
reference to the enterprise bean on the client becomes invalid: the stub to the
enterprise bean that was removed no longer works. If for some reason the
enterprise bean can’t be removed, a RemoveException is thrown.

The impact of the EJBHome.remove() on the enterprise bean itself depends
on the type of bean. For session beans, the EJBHome.remove() methods
end the session’s service to the client. When EJBHome.remove() is invoked,
the remote reference to the session beans becomes invalid, and any
conversational state maintained by the session bean is lost. The TravelAgent
EJB you created in Chapter 4 is stateless, so no conversational state exists (more
about this in Chapter 7).

When a remove() method is invoked on an entity bean, the remote reference
becomes invalid, and any data that it represents is actually deleted from the
database. This is a far more destructive activity because once an entity bean is
removed, the data that it represents no longer exists. The difference between
using a remove() method on a session bean and using remove() on an
entity bean is similar to the difference between hanging up on a telephone
conversation and actually killing the caller on the other end. Both end the
conversation, but the end results are a little different.

The following code fragment is taken from the main() method of a client
application that is similar to the clients we created to exercise the Cabin and
TravelAgent EJBs. It shows that you can remove enterprise beans using a
primary key (entity only) or a handle. Removing an entity bean deletes the entity
from the database; removing a session bean results in the remote reference
becoming invalid.

Context jndiContext = getInitialContext();

// Obtain a list of all the cabins for ship 1 with bed count of 3.

Object ref = jndiContext.lookup("TravelAgentHome");
TravelAgentHomeRemote agentHome = (TravelAgentHomeRemote)
 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

TravelAgentRemote agent = agentHome.create();
String list [] = agent.listCabins(1,3);
System.out.println("1st List: Before deleting cabin number 30");
for(int i = 0; i < list.length; i++){
 System.out.println(list[i]);
}

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates12

// Obtain the home and remove cabin 30. Rerun the same cabin list.

ref = jndiContext.lookup("CabinHome");
CabinHomeRemote c_home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

Integer pk = new Integer(30);
c_home.remove(pk);
list = agent.listCabins(1,3);
System.out.println("2nd List: After deleting cabin number 30");
for (int i = 0; i < list.length; i++) {
 System.out.println(list[i]);
}

First, the application creates a list of cabins, including the cabin with the primary
key 30. Then it removes the Cabin EJB with this primary key and creates the list
again. The second time the iteration is performed, cabin 30 will not listed.
Because it was removed, the listCabin() method was unable to find a cabin
with a primary key equal to 30, so it stopped making the list. The bean, including
its data, is no longer in the database.

Your output should look something like the following:

1st List: Before deleting cabin number 30
1,Master Suite ,1
3,Suite 101 ,1
5,Suite 103 ,1
7,Suite 105 ,1
9,Suite 107 ,1
12,Suite 201 ,2
14,Suite 203 ,2
16,Suite 205 ,2
18,Suite 207 ,2
20,Suite 209 ,2
22,Suite 301 ,3
24,Suite 303 ,3
26,Suite 305 ,3
28,Suite 307 ,3
30,Suite 309 ,3
2nd List: After deleting cabin number 30
1,Master Suite ,1
3,Suite 101 ,1
5,Suite 103 ,1
7,Suite 105 ,1
9,Suite 107 ,1
12,Suite 201 ,2
14,Suite 203 ,2
16,Suite 205 ,2
18,Suite 207 ,2
20,Suite 209 ,2
22,Suite 301 ,3

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 13

24,Suite 303 ,3
26,Suite 305 ,3
28,Suite 307 ,3

Bean metadata

EJBHome.getEJBMetaData() returns an instance of
javax.ejb.EJBMetaData that describes the remote home interface, remote
interface, and primary key classes, plus whether the enterprise bean is a session
or entity bean3. This type of metadata is valuable to Java tools like IDEs that
have wizards or other mechanisms for interacting with an enteprise bean from a
client’s perspective. A tool could, for example, use the class definitions provided
by the EJBMetaData with Java reflection to create an environment where
deployed enterprise beans can be “wired” together by developers. Of course,
information such as the JNDI names and URLs of the enterprise beans is also
needed.

Most application developers rarely use the EJBMetaData. Knowing that it’s
there, however, is valuable when you need to create automatic code generators
or some other automatic facility. In those cases, familiarity with the Reflection
API is necessary.4 The following code shows the interface definition for
EJBMetaData. Any class that implements the EJBMetaData interface must
be serializable; it cannot be a stub to a distributed object. This allows IDEs and
other tools to save the EJBMetaData for later use.

public interface javax.ejb.EJBMetaData {
 public abstract EJBHome getEJBHome();
 public abstract Class getHomeInterfaceClass();
 public abstract Class getPrimaryKeyClass();
 public abstract Class getRemoteInterfaceClass();
 public abstract boolean isSession();
}

The following code shows how the EJBMetaData for the Cabin EJB could be
used to get more information about the enterprise bean. Notice that there is no
way to get the bean class using the EJBMetaData; the bean class is not part
of the client API and therefore doesn’t belong to the metadata.

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHome");
CabinHomeRemote c_home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

3 Message-driven beans in EJB 2.0 don’t have component interfaces and can’t be accessed
by Java RMI-IIOP.

4 The Reflection API is outside the scope of this book, but it is covered in
Java™ in a Nutshell, by David Flanagan (O’Reilly).

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates14

EJBMetaData meta = c_home.getEJBMetaData();

System.out.println(meta.getHomeInterfaceClass().getName());
System.out.println(meta.getRemoteInterfaceClass().getName());
System.out.println(meta.getPrimaryKeyClass().getName());
System.out.println(meta.isSession());

This application creates output like the following:

com.titan.cabin.CabinHome
com.titan.cabin.Cabin
com.titan.cabin.CabinPK
false

In addition to providing the class types of the enterprise bean, the
EJBMetaData also makes available the remote EJB home for the bean. By
obtaining the remote EJB home from the EJBMetaData, we can obtain
references to the remote EJB object and perform other functions. In the following
code, we use the EJBMetaData to get the primary key class, create a key
instance, obtain the remote EJB home, and from it, get a remote reference to the
EJB object for a specific cabin entity:

Class primKeyType = meta.getPrimaryKeyClass();
If(primKetType instanceof java.lang.Integer){
 Integer pk = new Integer(1);

 Object ref = meta.getEJBHome();
 CabinHomeRemote c_home2 = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 CabinRemote cabin = c_home2.findByPrimaryKey(pk);
 System.out.println(cabin.getName());
}

The HomeHandle

EJB 1.1 provides a new object called a HomeHandle, which is accessed by
calling the EJBHome.getHomeHandle() method. This method returns a
javax.ejb.HomeHandle object that provides a serializable reference to an
enterprise bean’s remote home. The HomeHandle allows a remote home
reference to be stored and used later. It is similar to the javax.ejb.Handle
and is discussed in more detail a little later.

Creating and finding beans

In addition to the standard javax.ejb.EJBHome methods that all remote
home interfaces inherit, remote home interfaces also include special create and
find methods for the bean. We have already talked about create and find
methods, but a little review will solidify your understanding of the remote home
interface’s role in the Remote Client API. The following code shows the remote
home interface defined for the Cabin EJB:

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 15

public interface CabinHomeRemote extends javax.ejb.EJBHome {
 public CabinRemote create(Integer id)
 throws CreateException, RemoteException;

 public CabinRemote findByPrimaryKey(Integer pk)
 throws FinderException, RemoteException;
}

Create methods throw a CreateException if something goes wrong during
the creation process; find methods throw a FinderException if the
requested bean can’t be located. Since these methods are defined in an interface
that subclasses Remote, they must also declare that they throw
RemoteException.

The create and find methods are specific to the enterprise bean, so it is up to the
bean developer to define the appropriate create and find methods in the remote
home interface. CabinHomeRemote currently has only one create method that
creates a cabin with a specified ID and a find method that looks up an enterprise
bean given its primary key, but it’s easy to imagine methods that would create
and find a cabin with particular properties—for example, a cabin with three beds,
or a deluxe cabin with blue wallpaper.

Only entity beans have find methods; session beans do not. Entity beans
represent unique identifiable data within a database and therefore can be found.
Session beans, on the other hand, do not represent data: they are created to
serve a client application and are not persistent, so there is nothing to find. A
find method for a session bean would be meaningless.

In EJB 2.0, the create methods were expanded so that a method name could be
used as suffix. In other words, all create methods may take the form
create<SUFFIX>(). For example, the Customer EJB might define a remote
home interface with several create methods, each of which take a different String
type parameters, but have different methods names.

public interface CustomerHome extends javax.ejb.EJBHome {

 public CustomerRemote createWithSSN(Integer id,
 String socialSecurityNumber)
 throws CreateException, RemoteException;

 public CustomerRemote createWithPIN(Integer personalIdNubmer)
 throws CreateException, RemoteException;

 public CustomerRemote createWithBLN(Integer id,
 String businessLicenseNumber)
 throws CreateException, RemoteException;

 public Customer findByPrimaryKey(Integer id)
 throws FinderException, RemoteException;
 }

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates16

While the use of a suffix in the create method names in EJB 2.0 is allowed it is not
required. EJB 1.1 doesn’t support the use of suffixes in create method names.

The create and find methods defined in the remote home interfaces are
straightforward and can be easily employed by the client. The create methods on
the home interface have to match the ejbCreate() methods on the bean
class. create() and ejbCreate() match when they have the same
parameters, when the arguments are of same type and in the same order, and
when their method names are the same.

This way, when a client calls the create method on the home interface, the call
can be delegated to the corresponding ejbCreate() method on the bean
instance. The find methods in the home interface work similarly for bean-
managed entities in EJB 2.0 and 1.1. Every find<SUFFIX>() method in the
home interface must correspond to an ejbFind<SUFFIX>() method in the
bean itself. Container-managed entities do not implement ejbFind() methods
in the bean class; the EJB container supports find methods automatically. You
will discover more about how to implement the ebjCreate() and
ejbFind() methods in the bean in Chapters 6 and 8.

The Remote Interface

The business methods of an enterprise bean can be defined by the remote
interface provided by the enterprise bean developer. The
javax.ejb.EJBObject interface, which extends the java.rmi.Remote
interface, is the base class for all remote interfaces.

The following code is the remote interface for the TravelAgent bean that we
developed in Chapter 4:

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public String [] listCabins(int shipID, int bedCount)
 throws RemoteException;
}

Figure 5-7 shows the TravelAgentRemote interface’s inheritance hierarchy.

[FIGURE see modified figure 5-4]

Figure 5-4: Enterprise bean interface inheritance hierarchy

Remote interfaces are focused on the business problem and do not include
methods for system-level operations such as persistence, security, concurrency,
or transactions. System-level operations are handled by the EJB server, which
relieves the client developer of many responsibilities. All remote interface
methods for beans must throw, at the very least, a
java.rmi.RemoteException, which identifies problems with distributed
communications. In addition, methods in the remote interface can throw as many
custom exceptions as needed to indicate abnormal business-related conditions or

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 17

errors in executing the business method. You will learn more about defining
custom exceptions in Chapters 12 and 14.

& Exercise 5.1, The remote component interfaces

EJBObject, Handle, and Primary Key

All remote interfaces extend the javax.ejb.EJBObject interface, which
provides a set of utility methods and return types. These methods and return
types are valuable in managing the client’s interactions with beans. Here is the
definition for the EJBObject interface:

public interface javax.ejb.EJBObject extends java.rmi.Remote {
 public abstract EJBHome getEJBHome()
 throws RemoteException;
 public abstract Handle getHandle()
 throws RemoteException;
 public abstract Object getPrimaryKey()
 throws RemoteException;
 public abstract boolean isIdentical(EJBObject obj)
 throws RemoteException;
 public abstract void remove()
 throws RemoteException, RemoveException;
}

When the client obtains a reference to the remote interface, it is actually
obtaining a remote reference to an EJB object. The EJB object implements the
remote interface by delegating business method calls to the bean class; it
provides its own implementations for the EJBObject methods. These methods
return information about the corresponding bean instance on the server. As
discussed in Chapter 2, the EJB object is automatically generated when
deploying the bean in the EJB server, so the bean developer doesn’t need to
write an EJBObject implementation.

Getting the EJBHome

The EJBObject.getEJBHome() method returns a remote reference to the
EJB home for the bean. The remote reference is returned as a
javax.ejb.EJBHome object, which can be narrowed to the specific
enterprise bean’s remote home interface. This method is useful when an EJB
object has left the scope of the remote EJB home that manufactured it. Because
remote references can be passed as references and returned from methods, like
any other Java object on the remote client, a remote reference can quickly find
itself in a completely different part of the application from its remote home. The
following code is contrived, but it illustrates how a remote reference can move
out of the scope of its home and how getEJBHome() can be used to get a new
reference to the EJB home at any time:

public static void main(String [] args) {

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates18

 try {
 Context jndiContext = getInitialContext();
 Object ref = jndiContext.lookup("TravelAgentHomeRemote");
 TravelAgentHomeRemote home = (TravelAgentHomeRemote)
 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

 // Get a remote reference to the bean (EJB object).
 TravelAgentRemote agent = home.create();
 // Pass the remote reference to some method.
 getTheEJBHome(agent);

 } catch (java.rmi.RemoteException re){re.printStackTrace();}
 catch (Throwable t){t.printStackTrace();}
}

public static void getTheEJBHome(TravelAgentRemote agent)
 throws RemoteException {

 // The home interface is out of scope in this method,
 // so it must be obtained from the EJB object.
 // EJB 1.0: Use native cast instead of narrow()
 Object ref = agent.getEJBHome();
 TravelAgentHomeRemote home = (TravelAgentHomeRemote)
 PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);
// Do something useful with the home interface.
}

Primary key

EJBObject.getPrimaryKey() returns the primary key for an entity bean.
This method is only supported by EJB objects that represent entity beans. Entity
beans represent specific data that can be identified using this primary key.
Session beans represent tasks or processes, not data, so a primary key would be
meaningless. To better understand the nature of a primary key, we need to look
beyond the boundaries of the client’s view into the EJB container’s layer, which
was introduced in Chapters 2 and 3.

The EJB container is responsible for persistence of the entity beans, but the
exact mechanism for persistence is up to the vendor. In order to locate an
instance of a bean in a persistent store, the data that makes up the entity must be
mapped to some kind of unique key. In relational databases, data is uniquely
identified by one or more column values that can be combined to form a primary
key. In an object-oriented database, the key wraps an object ID (OID) or some
kind of database pointer. Regardless of the mechanism—which isn’t really
relevant from the client’s perspective—the unique key for an entity bean’s data
is encapsulated by the primary key, which is returned by the
EJBObject.getPrimaryKey() method.

The primary key can be used to obtain remote references to entity beans using
the findByPrimaryKey() method on the remote home interface. From the

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 19

client’s perspective, the primary key object can be used to identify a unique
entity bean. Understanding the context of a primary key’s uniqueness is
important, as the following code shows:

Context jndiContext = getInitialContext()

Object ref = jndiContext.lookup("CabinHomeRemote");
CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

Cabin cabin_1 = home.create(101);
Integer pk = (Integer)cabin_1.getPrimaryKey();
Cabin cabin_2 = home.findByPrimaryKey(pk);

In this code, the client creates a Cabin EJB, retrieves its primary key and then
uses the key to get a new reference to the same Cabin EJB. Thus, we have two
variables, cabin_1 and cabin_2, which are remote references to EJB objects.
These both reference the same Cabin bean, with the same underlying data,
because they have the same primary key.

The primary key must be used for the correct bean in the correct container. While
this seems fairly obvious, the primary key’s relationship to a specific container
and home interface is important. The primary key can only be guaranteed to
return the same entity if it is used within the container that produced the key. As
an example, imagine that a third-party vendor sells the Cabin EJB as a product.
The vendor sells the Cabin EJB to both Titan and to a competitor. Both
companies deploy the entity bean using their own relational databases with their
own data. An Integer primary key with value of 20 in Titan’s EJB system will
not map to the same Cabin entity in the competitor’s EJB system. Both cruise
companies have a Cabin bean with a primary key equal to 20, but they represent
different cabins for different ships. The Cabin EJBs come from different EJB
containers, so their primary keys are not equivalent. Every entity EJB object has
a unique identity with its EJB home. If two EJB objects have the same home and
same primary key, they are considered identical.

A primary key must implement the java.io.Serializable interface. This
means that the primary key, regardless of its form, can be obtained from an EJB
object, stored on the client using the Java serialization mechanism, and
deserialized when needed. When a primary key is deserialized, it can be used to
obtain a remote reference to that entity using findByPrimaryKey(),
provided that the key is used on the right remote home interface and container.
Preserving the primary key using serialization might be useful if the client
application needs to access specific entity beans at a later date.

The following code shows a primary key that is serialized and then deserialized to
reobtain a remote reference to the same bean:

// Obtain cabin 101 and set its name.
Context jndiContext = getInitialContext();

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates20

Object ref = jndiContext.lookup("CabinHome");
CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

Integer pk_1 = new Integer(101);
Cabin cabin_1 = home.findByPrimaryKey(pk_1);
cabin_1.setName("Presidential Suite");

// Serialize the primary key for cabin 101 to a file.
FileOutputStream fos = new FileOutputStream("pk101.ser");
ObjectOutputStream outStream = new ObjectOutputStream(fos);
outStream.writeObject(pk_1);
outStream.flush();
outStream.close();
pk_1 = null;

// Deserialize the primary key for cabin 101.
FileInputStream fis = new FileInputStream("pk101.ser");
ObjectInputStream inStream = new ObjectInputStream(fis);
Integer pk_2 = (Integer)inStream.readObject();
inStream.close();

// Re-obtain a remote reference to cabin 101 and read its name.
Cabin cabin_2 = home.findByPrimaryKey(pk_2);
System.out.println(cabin_2.getName());

Comparing beans for identity

The EJBObject.isIdentical() method compares two EJB object remote
references. It’s worth considering why Object.equals() isn’t sufficient for
comparing EJB objects. An EJB object is a distributed object stub and therefore
contains a lot of networking and other state. As a result, references to two EJB
objects may be unequal, even if they both represent the same unique bean. The
EJBObject.isIdentical() method returns true if two EJB object
references represent the same bean, even if the EJB object stubs are different
object instances.

The following code shows how this might work. It starts by creating two remote
references to the TravelAgent EJB. These remote EJB objects both refer to the
same type of enterprise bean; comparing them with isIdentical() returns
true. The two TravelAgent EJBs were created separately, but because they are
stateless they are considered to be equivalent. If TravelAgent EJB had been a
stateful bean (which it becomes in Chapter 12) the outcome would have been
very different. Comparing two stateful beans in this manner will result in false
because stateful beans have conversational state, which makes them unique.
When we use CabinHome.findByPrimaryKey() to locate two EJB
objects that refer to the same Cabin entity bean, we know the entity beans are
identical, because we used the same primary key. In this case,
isIdentical() also returns true because both remote EJB object
references point to the same entity.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 21

Context ctx = getInitialContext();

Object ref = ctx.lookup("TravelAgentHomeRemote");
TravelAgentHomeRemote agentHome =(TravelAgentHomeRemote)
 PortableRemoteObject.narrow(ref, TravelAgentHomeRemote.class);

TravelAgentRemote agent_1 = agentHome.create();
TravelAgentRemote agent_2 = agentHome.create();
boolean x = agent_1.isIdentical(agent_2);
// x will equal true; the two EJB objects are equal.

ref = ctx.lookup("CabinHomeRemote");
CabinHomeRemote c_home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref, CabinHomeRemote.class);

Integer pk_1 = new Integer(101);
Integer pk_2 = new Integer(101);
Cabin cabin_1 = c_home.findByPrimaryKey(pk_1);
Cabin cabin_2 = c_home.findByPrimaryKey(pk_2);
x = cabin_1.isIdentical(cabin_2);
// x will equal true; the two EJB objects are equal.

The Integer primary key used in the Cabin bean is simple. More complex custom
defined primary keys require us to override Object.equals() and
Object.hashCode() in order for the EJBObject.isIdentical()
method to work. Chapter 9 discusses this the development of more complex
custom primary keys, which are called compound primary keys.

Removing beans

The EJBObject.remove() method is used to remove the session or entity
bean. The impact of this method is the same as the EJBHome.remove()
method discussed previously. For session beans, remove() causes the
session to be released and the remote EJB object reference to become invalid. For
entity beans, the actual entity data is deleted from the database and the remote
reference becomes invalid. The following code shows the
EJBObject.remove() method in use:

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHome");
CabinHomeRemote c_home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

Integer pk = new Integer(101);
CabinRemote cabin = c_home.findByPrimaryKey(pk);
cabin.remove();

The remove() method throws a RemoveException if for some reason the
reference can’t be deleted.

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates22

The enterprise bean handle

The EJBObject.getHandle() method returns a javax.ejb.Handle
object. The Handle is a serializable reference to the remote EJB object. This
means that the client can save the Handle object using Java serialization and
then deserialize it to reobtain a reference to the same remote EJB object. This is
similar to serializing and reusing the primary key. The Handle allows us to
recreate a remote EJB object reference that points to the same type of session
bean or the same unique entity bean that the handle came from.

Here is the interface definition of the Handle:

public interface javax.ejb.Handle {
 public abstract EJBObject getEJBObject()
 throws RemoteException;
}

The Handle interface specifies only one method, getEJBObject(). Calling
this method returns the remote EJB object from which the handle was created.
Once you’ve gotten the object back, you can narrow it to the appropriate remote
interface type. The following code shows how to serialize and deserialize the EJB
Handle on a client:

// Obtain cabin 100.
Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHome");
CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

Integer pk_1 = new Integer(101);
CabinRemote cabin_1 = home.findByPrimaryKey(pk_1);

// Serialize the Handle for cabin 100 to a file.
Handle handle = cabin_1.getHandle();
FileOutputStream fos = new FileOutputStream("handle100.ser");
ObjectOutputStream outStream = new ObjectOutputStream(fos);
outStream.writeObject(handle);
outStream.flush();
fos.close();
handle = null;

// Deserialize the Handle for cabin 100.
FileInputStream fis = new FileInputStream("handle100.ser");
ObjectInputStream inStream = new ObjectInputStream(fis);
handle = (Handle)inStream.readObject();
fis.close();

// Reobtain a remote reference to cabin 100 and read its name.

ref = handle.getEJBObject();
CabinRemote cabin_2 = (CabinRemote)

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 23

 PortableRemoteObject.narrow(ref, CabinRemote.class);

if(cabin_1.isIdentical(cabin_2))
 // this will always be true.

At first glance, the Handle and the primary key appear to do the same thing,
but in truth they are very different. Using the primary key requires you to have
the correct remote EJB home—if you no longer have a reference to the EJB
remote home, you must look up the container using JNDI and get a new home.
Only then can you call findByPrimaryKey() to locate the actual enterprise
bean. The following code shows how this might work:

// Obtain the primary key from an input stream.
Integer primaryKey = (Integer)inStream.readObject();

// The JNDI API is used to get a root directory or initial context.
javax.naming.Context ctx = new javax.naming.InitialContext();

// Using the initial context, obtain the EJBHome for the Cabin bean.

Object ref = ctx.lookup("CabinHome");
CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

// Obtain a reference to an EJB object that represents the entity instance.
CabinRemote cabin_2 = CabinHome.findByPrimaryKey(primaryKey);

The Handle object is easier to use because it encapsulates the details of doing
a JNDI lookup on the container. With a Handle, the correct EJB object can be
obtained in one method call, Handle.getEJBObject(), rather than using
the three method calls required to look up the context, get the home, and find the
actual bean.

Furthermore, while the primary key can be used to obtain remote references to
unique entity beans, it is not available for session beans; a handle can be used
with either type of enterprise bean. This makes using a handle more consistent
across bean types. Consis tency is, of course, good in its own right, but it isn’t
the whole story. Normally, we think of session beans as not having identifiable
instances because they exist for only the life of the client session, but this is not
exactly true. We have mentioned (but not yet shown) stateful session beans,
which retain state information between method invocations. With stateful
session beans, two instances are not equivalent. A handle allows you to work
with a stateful session bean, deactivate the bean, and then reactivate it at a later
time using the handle.

A client could, for example, be using a stateful session bean to process an order
when the process needs to be interrupted for some reason. Instead of losing all
the work performed in the session, a handle can be obtained from the EJB object
and the client application can be closed down. When the user is ready to
continue the order, the handle can be used to obtain a reference to the stateful

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates24

session EJB object. Note that this process is not as fault tolerant as using the
handle or primary key of an entity object. If the EJB server goes down or crashes,
the stateful session bean will be lost and the handle will be useless. It’s also
possible for the session bean to time out, which would cause the container to
remove it from service so that it is no longer available to the client.

Changes to the container technology can invalidate both handles and primary
keys. If you think your container technology might change, be careful to take
this limitation into account. Primary keys obtain EJB objects by providing unique
identification of instances in persistent data stores. A change in the persistence
mechanism, however, can impact the integrity of the key.

HomeHandle

The javax.ejb.HomeHandle is similar in purpose to
javax.ejb.Handle. Just as the Handle is used to store and retrieve
references to remote EJB objects, the HomeHandle is used to store and retrieve
references to remote EJB homes. In other words, the HomeHandle can be
stored and later used to access an EJB home’s remote reference the same way
that a Handle can be serialized and later used to access an EJB object’s remote
reference. The following code shows how the HomeHandle can be obtained,
serialized, and used.

// Obtain cabin 100.
Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("CabinHome");
CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

// Serialize the HomeHandle for the cabin bean.
HomeHandle homeHandle = home.getHomeHandle();
FileOutputStream fos = new FileOutputStream("handle.ser");
ObjectOutputStream outStream = new ObjectOutputStream(fos);
outStream.writeObject(homeHandle);
outStream.flush();
fos.close();
homeHandle = null;

// Deserialize the HomeHandle for the cabin bean.
FileInputStream fis = new FileInputStream("handle.ser");
ObjectInputStream inStream = new ObjectInputStream(fis);
homeHandle = (HomeHandle)inStream.readObject();
fis.close();

EJBHome home = homeHandle.getEJBHome();
CabinHomeRemote home2 = (CabinHomeRemote)
 PortableRemoteObject.narrow(home,CabinHomeRemote.class);

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates 25

Inside the Handle

Different vendors define their concrete implementations of the EJB handle
differently. However, thinking about a hypothetical implementation of handles
will give you a better understanding of how they work. In this example, we define
the implementation of a handle for an entity bean. Our implementation
encapsulates the JNDI lookup and use of the home’s findByPrimaryKey()
method so that any change that invalidates the key invalidates preserved
handles that depend on that key. Here’s the code for our hypothetical
implementation of a Handle:

package com.titan.cabin;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import javax.ejb.EJBObject;
import javax.ejb.Handle;
import java.rmi.RemoteException;
import java.util.Properties;
import javax.rmi.PortableRemoteObject

public class VendorX_CabinHandle
 implements javax.ejb.Handle, java.io.Serializable {

 private Integer primary_key;
 private String home_name;
 private Properties jndi_properties;

 public VendorX_CabinHandle(Integer pk, String hn, Properties p) {
 primary_key = pk;
 home_name = hn;
 jndi_properties = p;
 }

 public EJBObject getEJBObject() throws RemoteException {
 try {
 Context ctx = new InitialContext(jndi_properties);

 Object ref = ctx.lookup(home_name);
 CabinHomeRemote home =(CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);

 return home.findByPrimaryKey(primary_key);
 } catch (javax.ejb.FinderException fe) {
 throw new RemoteException("Cannot locate EJB object",fe);
 } catch (javax.naming.NamingException ne) {
 throw new RemoteException("Cannot locate EJB object",ne);
 }
 }
}

DRAFT, 10/21/017/6/2001

Copyright (c) 2001 O'Reilly & Associates26

The Handle is less stable than the primary key because it relies on the
networking configuration and naming—the IP address of the EJB server and the
JNDI name of the bean’s home—to remain stable. If the EJB server’s network
address changes or the name used to identify the home changes, the handle
becomes useless.

In addition, some vendors choose to implement a security mechanism in the
handle that prevents its use outside the scope of the client application that
originally requested it. How this mechanism would work is unclear, but the
security limitation it implies should be considered before attempting to use a
handle outside the client’s scope.

& Exercise 5.2, The EJBObject, Handles and Primary Key

EJB 2.0: The Local Client API

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 1

6
EJB 2.0 CMP: Basic Persistence

Overview

In Chapter 4, we started developing some simple enterprise beans, skipping over
a lot of the details about developing enterprise beans. In this chapter, we’ll take a
thorough look at the process of developing entity beans. On the surface, some of
this material may look familiar, but it is much more detailed and specific to entity
beans.

Entity beans model business concepts that can be expressed as nouns. This is a
rule of thumb rather than a requirement, but it helps in determining when a
business concept is a candidate for implementation as an entity bean. In grammar
school you learned that nouns are words that describe a person, place, or thing.
The concepts of “person” and “place” are fairly obvious: a person EJB might
represent a customer or a passenger, and a place EJB might represent a city or a
port-of-call. Similarly, entity beans often represent “things”: real-world objects
like ships, credit cards, and so on. An EJB can even represent a fairly abstract
“thing,” such as a ticket or a reservation. Entity beans describe both the state
and behavior of real-world objects and allow developers to encapsulate the data
and business rules associated with specific concepts; a Customer EJB
encapsulates the data and business rules associated with a customer, and so on.
This makes it possible for data associated with a concept to be manipulated
consistently and safely.

In Titan’s cruise ship business, we can identify hundreds of business concepts
that are nouns and therefore could conceivably be modeled by entity beans.
We’ve already seen a simple Cabin EJB in Chapter 4, and we’ll develop Customer
and Address EJBs in this chapter. Titan could clearly make use of a Cruise EJB, a

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 2

Reservation EJB, and many others. Each of these business concepts represents
data that needs to be tracked and possibly manipulated. Entities really represent
data in the database, so changes to an entity bean result in changes to the
database.

There are many advantages to using entity beans instead of accessing the
database directly. Utilizing entity beans to objectify data provides programmers
with a simpler mechanism for accessing and changing data. It is much easier, for
example, to change a customer’s name by calling Customer.setName() than
to execute an SQL command against the database. In addition, objectifying the
data using entity beans also provides for more software reuse. Once an entity
bean has been defined, its definition can be used throughout Titan’s system in a
consistent manner. The concept of customer, for example, is used in many areas
of Titan’s business, including booking, scheduling, and marketing. A Customer
EJB provides Titan with one complete way of accessing customer information,
and thus it ensures that access to the information is consistent and simple.
Representing data as entity beans makes development easier and more cost
effective.

When a new EJB is created, a new record must be inserted into the database and
a bean instance must be associated with that data. As the EJB is used and its
state changes, these changes must be synchronized with the data in the
database: entries must be inserted, updated, and removed. The process of
coordinating the data represented by a bean instance with the database is called
persistence.

There are two basic types of entity beans, and they are distinguished by how
they manage persistence. Container-managed persistence beans have their
persistence automatically managed by the EJB container. The container knows
how a bean instance’s persistent fields and relationships map to the database
and automatically takes care of inserting, updating, and deleting the data
associated with entities in the database. Entity beans using bean-managed
persistence do all this work explicitly: the bean developer must write the code to
manipulate the database. The EJB container tells the bean instance when it is
safe to insert, update, and delete its data from the database, but it provides no
other help. The bean instance does all the persistence work itself. Bean-managed
persistence is covered in Chapter 10.

Container-managed persistence has undergone a dramatic change in EJB 2.0,
which is so different that it’s not backward compatible with EJB 1.1. For that
reason, EJB 2.0 vendors must support both EJB 2.0’s container-managed
persistence model and EJB 1.1 container-managed persistence model. The EJB 1.1
model is supported purely so that application developers can migrate their
existing applications to the new EJB 2.0 platform as painlessly as possible. It’s
expected that all new entity beans and new applications will use the EJB 2.0
container-managed persistence and not EJB 1.1 version. Although EJB 1.1
container-managed persistence is covered in this book, it should be avoided

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 3

unless you have a legacy EJB 1.1 system that you maintain. EJB 1.1 container-
managed persistence is covered in Chapter 9.

The next three chapters focus on developing entity beans that use EJB 2.0
container-managed persistence. In EJB 2.0, the data associated with an entity
bean can be much more complex than was possible in EJB 1.1 or EJB 1.0. In EJB
2.0, container-managed persistence entity beans can have relationships with
other entity beans, which wasn’t well supported in the older version. In addition,
container-managed persistence entity beans can be finer in granularity so that
they can easily model things like Address, LineItem, or Cabin.

This chapter develops two very simple entity beans, the Customer and Address
EJBs, which will be used to explain how Enterprise JavaBeans 2.0 container-
managed persistence entity beans are defined and operate at runtime. The
Customer EJB has relationships with other several entities including address,
phone, credit card, cruise, ship, cabin, and reservation EJBs. In the next few
chapters, you’ll learn how to leverage EJB 2.0’s powerful support for entity bean-
to-bean relationships as well as understanding their limitations. In addition, you
will learn about the Enterprise JavaBeans Query Language (EJB QL) in Chapter 8,
which is used to define how the find methods and the new select methods
should behave at runtime.

It is common to refer to Enterprise JavaBeans 2.0 container-managed persistence
as simply CMP 2.0 . In the chapters that follow, we will use this abbreviation to
distinguish between CMP 2.0 and CMP 1.1 (Enterprise JavaBeans 1.1 container-
managed persistence).

The abstract programming model

In CMP 2.0 , entity beans have their state managed automatically by the
container. The container will take care of enrolling the entity bean in
transactions and persisting its state to the database. The enterprise bean
developer describes the attributes and relationships of an entity bean using
virtual persistent fields and relationship fields. They are called virtual fields
because the bean developer does not declare these fields explicitly; instead,
abstract assessor (get and set) methods are declared in the entity bean class. The
implementations of these methods are generated at deployment time by EJB
vendor’s container tools. So it’s important to remember that the terms
relationship field and persistent field are referring to the abstract accessor
methods and not to actual fields declared in the classes. This use of terminology
is a convention in EJB 2.0 that you should become confortable with.

In Figure 6-1, the Customer EJB has four sets of accessor methods. The first two
read and update the last and first names of the customer. These are examples of
persistent fields; simple direct attributes of the entity bean. The other accessor
methods obtain and set references to the Address EJB through its local interface,
Address. This is an example of a relationship field called the address field.

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 4

[FIGURE (note 7-1 and 6-1 are the same figure)]

Figure 6-1 Class Diagram of Customer and Address EJBs

Abstract persistence schema

The CMP 2.0 entity bean classes are defined using abstract accessor methods
that represent virtual persistent and relationship fields. As already mentioned,
the actual fields themselves are not declared in the entity classes. Instead, the
characteristics of these fields are described in detail in the XML deployment
descriptor used by the entity bean. The abstract persistence schema is the set of
XML elements in the deployment descriptor that describe the relationship fields
and the persistent fields. Together with the abstract programming model (the
abstract accessor methods) and some help from the deployer, the container tool
will have enough information to map the entity and its relationships with other
entity beans in the database.

Container Tools & Persistence

One of the responsibilities of the vendor’s container deployment tool is
generating concrete implementations of the abstract entity beans. The concrete
classes generated by the container tool are called persistent classes. Instances
of the persistent classes will be responsible for working with the container to
read and write data between the entity bean and the database at run time. Once
the persistent classes are generated, they can be deployed into the EJB
container. The container informs the persistent instances (instances of persistent

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 5

classes) when it’s a good time to read and write data to the database. The
persistent instances perform the reading and writing in a way that is optimized for
the database being used.

The persistent classes will include database access logic tailored to a particular
database. For example, an EJB product might provide a container that can map an
entity beans to a specific database like the Oracle relational database or the
POET object database. This specificity allows the persistent classes to employ
native database optimizations particular to a brand or kind of database, schema,
and configuration. Persistent classes may employ other optimizations like lazy
loading and optimistic locking to further improve performance.

The container tool generates all the database access logic at deployment time,
which it imbeds in the persistent classes. This means that the bean developers
do not have to write this database access logic themselves, saving them a lot of
work, and can also results in better performing entity beans because they are
optimized implementations. As an entity bean developer, you will never have to
deal with any database access code when working with CMP 2.0 entities. In
fact, you won’t have access to the persistent classes that contain that logic
because they are generated by container tool automatically. In most cases, the
source code is not available to the bean developer.

Figures 7-2 and 7-3 show different container tools both of which are being used
to map the Customer entity bean to a relational database.

[Figure 7-2 need screen shot]

BEA’s Weblogic deployment tool

[Figure 7-3 need screen shot]

Sun Microsystem’s J2EE RI deployment tool

The Customer EJB

In the following example we will develop a simple CMP 2.0 entity bean, the
Customer EJB. The Customer EJB models the concept of a cruise customer or
passenger, but its design and use is applicable across many commercial domains.

As the chapter progresses the Customer EJB will be expanded and its complexity
will increase to illustrate concepts discussed in each section. So this section
serves only to introduce you to the entity bean and some basic concepts
regarding its development, packaging and deployment. To simply things, we will
skim over some concepts that are discussed in detail later in the chapter.

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 6

The Customer Table

Although CMP 2.0 is database independent, the examples through out this book
assume that you are using a relational database. For a relational database we will
need a CUSTOMER table from which we get our customer data. The relational
database table definition in SQL is as follows:

CREATE TABLE CUSTOMER
(
 ID INT PRIMARY KEY,
 LAST_NAME CHAR(20),
 FIRST_NAME CHAR(20)
)

The CustomerBean

The CustomerBean class is an abstract class that will be used by the
container tool for generating concrete implementation, the persistent entity class,
which will run in EJB container. The mechanism used by the container tool for
generating a persistent entity class varies, but most vendors will generate a
subclass of the abstract class provide by bean developer.

Figure 6-4

The container tool typically extends the bean class

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 7

The bean class must declare accessor (set and get) methods for each persistent
and relationship field defined in the abstract persistence schema of the
deployment descriptor. In truth, it’s somewhat of a chicken-and-egg scenario,
since the container tool needs both the abstract accessor methods (defined in
the entity bean class) and the XML elements of the deployment descriptor to
fully describe the bean’s persistence schema. In this book, the entity bean class
is always defined before the XML elements, because it’s a more natural approach
to developing entity beans.

Here is a very simple definition of the CustomerBean class which is
developed and packaged for deployment by the bean developer.

import javax.ejb.EntityContext;

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){
 setId(id);
 return null;
 }
 public void ejbPostCreate(Integer id){
 }

 // abstract accessor methods

 public abstract Integer getId();
 public abstract void setId(Integer id);

 public abstract String getLastName();
 public abstract void setLastName(String lname);

 public abstract String getFirstName();
 public abstract void setFirstName(String fname);

 // standard call back methods

 public void setEntityContext(EntityContext ec){}
 public void unsetEntityContext(){}
 public void ejbLoad(){}
 public void ejbStore(){}
 public void ejbActivate(){}
 public void ejbPassivate(){}
 public void ejbRemove(){}
}

The CustomerBean class is defined as an abstract class. This is required by
CMP 2.0 to reinforce the idea that the CustomerBean is not deployed directly
into the container system. Since abstract classes cannot be instantiated, the bean
class must be subclassed by a persistence class generated by the deployment
tool in order to be deployed. Also, the accessor methods are themselves

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 8

declared as abstract, which necessitates that container tool implement them
and that the bean class declared abstract.

The CustomerBean extends the javax.ejb.EntityBean interface,
which defines several callback methods including setEntityContext(),
unsetEntityContext(), ejbLoad(), ejbStore(),
ejbActivate(), ejbPassivate(), and ejbRemove(). These methods
are important for notifying the bean instance about events in its life cycle, but
they are not important to us at this point. We will discuss these methods in detail
in Chapter 11.

The first method in the entity bean class is ejbCreate(), which takes a
reference to an Integer object as its only argument. The ejbCreate()
method is called when the remote client invokes the create() method on the
entity bean’s home interface. This concept should be familiar, since it’s the same
way ejbCreate() worked in the cabin bean developed in Chapter 4. The
ejbCreate() method is responsible for initializing any persistent fields before
the entity bean is created. In this first example, the ejbCreate() method is
used to initialize the id persistent field, which is represented by the
setId()/getId() accessor methods.

The return type of the ejbCreate() method is an Integer type, which is
the primary key of the entity bean. The primary key is a unique identifier that
can take a variety of forms, including wrappers for primitive types and custom-
defined classes. The primary key in this case is an Integer, which is mapped
to the ID field in the CUSTOMER table. This will become more evident when we
define the XML deployment descriptor. Although the return type of the
ejbCreate() method is the primary key, the value that is actually returned by
the ejbCreate() method is null. The EJB container and persistence class
will take care to extract the primary key from the bean when needed. The reason
ejbCreate() has a return type is the result of a decision in EJB 1.1 that is
explained in the side bar, Why ejbCreate() returns null.

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 9

The ejbPostCreate() method is used to perform initialization after the
entity bean is created, but before it services any requests from the client.
Usually this method is used to perform work on the entity bean’s relationship
fields, which can only occur after the bean’s ejbCreate() method is invoked
and it’s added to the database. For each ejbCreate() method there must be a
matching ejbPostCreate() method that has the same method name and
arguments, but returns a void. This pairing of ejbCreate() and
ejbPostCreate() ensures that the container calls the correct methods
together. We’ll explore the use of the ejbPostCreate() in more detail later,
for now it’s not needed, so its implementation is left empty.

The abstract accessor methods represent the persistent fields in the
CustomerBean class. These methods are defined as abstract without
method bodies. As was already mentioned, when the bean is processed by a
container tool, these methods will be implemented by a persistence class based
on the abstract persistence schema (XML deployment descriptor elements), the
particular EJB container and the database used. Basically these method fetch

Why ejbCreate() returns null
In EJB 1.0, the first release of EJB, the ejbCreate() method in
container managed persistence was declared as returning void, but it
was changed to the primary key types in EJB 1.1 with an actual return
value of null.

EJB 1.1 changed its return value from void to the primary key type to
facilitate subclassing; the change was made so that it’s easier for a
bean-managed entity bean to extend a container-managed entity bean.
In EJB 1.0, this is not possible because Java doesn’t allow you to
overload methods with different return values. By changing this
definition so that a bean-managed entity bean can extend a container-
managed entity bean, the EJB 1.1 allowed vendors to support container-
managed persistence by extending the container-managed bean with a
generated bean-managed bean—a fairly simple solution to a difficult
problem.

With the introduction of CMP 2.0 , this little trick is not as useful to EJB
vendors as it once was. The abstract persistence schema of EJB CMP
2.0 beans is, in many cases, too complex for a simple BMP container.
However, it remains a part of the programming model for backward
compatibility and to facilitate bean-managed persistence subclassing if
needed.

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 10

and update values in the database and are not implemented by the bean
developer.

The Remote Interface

For the Customer EJB we will need a CustomerRemote remote interface,
because the bean will be accessed by clients outside the container system. The
remote interface defines the business methods that clients will use to interact
with the entity bean. The remote interface should define methods that model the
public aspects of the business concept being modeled—those behaviors and
data that should be exposed to client applications. Here is the remote interface
for CustomerRemote:

import java.rmi.RemoteException;

public interface CustomerRemote extends javax.ejb.EJBObject {

 public String getLastName() throws RemoteException;
 public void setLastName(String lname) throws RemoteException;

 public String getFirstName() throws RemoteException;
 public void setFirstName(String fname) throws RemoteException;
}

Any methods defined in the remote interface must match the signatures of
methods defined in the bean class. In this case, several accessor methods in the
CustomerRemote interface match persistent field accessor methods in the
CustomerBean class. When the remote interface methods match the
persistent field methods, the client has direct access to the entity bean’s
persistent fields.

You are not required to match abstract accessor methods in the bean class with
methods in the remote interface. In fact, it’s recommended that the remote
interface be as independent of the abstract programming model as possible.
Notice that the remote interface does not define getId() and setId()
methods, as does the CustomerBean class. While remote methods can match
persistent fields in the bean class, the specification prohibits the remote methods
from matching relationship fields, which access other entity beans.

The Remote Home interface

The remote home interface of any entity bean is used to create, locate, and
remove entities from the EJB container. Each entity bean type may have its own
remote home interface, or a local home interface or both. As you learned in
chapter 5, the remote and local home interfaces perform essentially the same
function. The home interfaces define three basic kinds of methods: home
business methods, zero or more create() methods and one or more find

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 11

methods.1 The create() methods act like remote constructors and define how
new entity beans are created. In our remote home interface, we only provide a
single create() method, which matches the corresponding ejbCreate()
method in the bean class. The find method is used to locate a specific Customer
EJB using the primary key as a unique identifier.

The following code contains the complete definition of the
CustomerHomeRemote interface:

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.FinderException;

public interface CustomerHomeRemote extends javax.ejb.EJBHome {

 public Customer create(Integer id)
 throws CreateException, RemoteException;

 public Customer findByPrimaryKey(Integer id)
 throws FinderException, RemoteException;

}

A create() method may be suffixed with a name in order to further qualify it
when overloading method arguments. This is useful if you have two create()
methods that take different arguments of the same type. For example, we could
declare two create() methods for Customer which both declare an Integer
argument. The Integer argument might be a social security number (SSN) in
one case and a tax identification number (TIN) in another—individuals have
social security numbers while corporations have tax identification number.

public interface CustomerHomeRemote extends javax.ejb.EJBHome {

 public Customer createWithSSN(Integer id,
 String socialSecurityNumber)
 throws CreateException, RemoteException;

 public Customer createWithTIN(Integer id,
 String taxIdentificationNumber)
 throws CreateException, RemoteException;

 public Customer findByPrimaryKey(Integer id)
 throws FinderException, RemoteException;
 }

The use of suffixes is useful when you need create() methods to be more
descriptive, or need to further qualify them for method overloading. Each

1 Chapter 15 explains when you should not define any create methods in the home
interface.

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 12

create<SUFFIX>() method must have a corresponding
ejbCreate<SUFFIX>() in the bean class. For example, the
CustomerBean class would need to define a ejbCreateWithSSN() and
ejbCreateWithTIN() methods. We are keeping this example simple, so we
only need one create() method and therefore, no suffix.

Enterprise JavaBeans specifies that create() methods in the remote home
interface must throw the javax.ejb.CreateException. In the case of
container-managed persistence, the container needs a common exception for
communicating problems experienced during the create process.

Entity remote home interfaces must define a findByPrimaryKey() method
which takes the entity bean’s primary key type as its only argument, but a
matching method is not defined in the entity bean class. The implementation of
the findByPrimaryKey() is generated automatically by the deployment
tool. At runtime the findByPrimaryKey() method will automatically locate
and return a remote reference to the entity bean with the matching primary key.

Other find methods can also be declared by the bean developer. For example, the
CustomerHomeRemote interface could define a
findByLastName(String lnam) method, which locates all the Customer
entities with the specified last name. These types of finder methods are
implemented by the deployment automatically based on the method signature
and an EJB-QL statement, which is similar to SQL but is specific to EJB. Custom
finder methods and EJB-QL are discussed in detail in Chapter 8.

The XML Deployment Descriptor

All CMP 2.0 entity beans must be packaged for deployment with an XML
deployment descriptor that describes the bean and its abstract persistence
schema. In most cases the bean developer is not directly exposed to the XML
deployment descriptor, but will use container’s visual deployment tools to
package beans. It is convention in this book, however, to describe the
declarations of the deployment descriptor in detail so that you have a full
understanding of their content and organization.

The XML deployment descriptor, for our simple Customer EJB, contains many
elements that are familiar to you from chapter 4. The elements specific to entity
beans and persistence are most important to us in this chapter. The following is
the complete XML deployment descriptor for the Customer EJB.

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <entity>

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 13

 <ejb-name>CustomerEJB</ejb-name>
 <home>com.titan.customer.CustomerHomeRemote</home>
 <remote>com.titan.customer.CustomerRemote</remote>
 <ejb-class>com.titan.customer.CustomerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>lastName</field-name></cmp-field>
 <cmp-field><field-name>firstName</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 <security-identity><use-caller-identity/></security-identity>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <security-role>
 <role-name>Employees</role-name>
 </security-role>
 <method-permission>
 <role-name>Employees</role-name>
 <method>
 <ejb-name>CustomerEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <method>
 <ejb-name>CustomerEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 <container-transaction>
 </assembly-descriptor>
</ejb-jar>

The first few elements, which declare the Customer EJB name, (CustomerEJB)
as well as its home, remote, and bean class, should already be familiar to you
from Chapter 4. The <security-identity> element was covered in Chapter
3.

The <assembly-descriptor> elements, which declare the security and
transaction attributes of the bean, were also covered briefly in chapter 4.
Basically all employees can access any CustomerEJB method and all methods
use the Required transaction attribute.

Container managed persistence entities also need to declare their persistence
type, version, and whether they are reentrant. These elements are declared under
the entity element.

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 14

The <persistence-type> tells the container system whether the bean will
be a container-managed persistence entity or a bean-managed persistence entity.
In this case it’s container-managed, so we use Container. Had it been bean-
managed persistence, the value would have been Bean.

The <cmp-version> tells the container system which version of container-
managed persistence is being used. Enterprise JavaBeans 2.0 containers must
support the new container-managed persistence model as well as the old one
defined in Enterprise JavaBeans 1.1. This is required for backward compatibility,
so that organizations can migrate to EJB 2.0 without having to redefine all their
established container-managed persistence entity beans at once. The value of
the <cmp-version> element can be either 2.x or 1.x for versions EJB 2.0
and EJB 1.1 respectively. The <cmp-version> element is optional. If its not
declared, the default value is 2.x, so its not really needed here but it’s specified
as an aid to other developers who are reading the deployment descriptor.

The <reentrant> element indicates whether reentrant behavior or loop-backs
are allowed. In this case the value is False, which indicates that the
CustomerEJB is not reentrant. A value of True would indicate that the
CustomerEJB is reentrant. Reentrant behavior was covered in chapter 3.

The entity bean will also declare its container managed persistence fields and its
primary key.

<entity>
 <ejb-name>CustomerEJB</ejb-name>
 <home>com.titan.customer.CustomerHomeRemote</ejb-home>
 <remote>com.titan.customer.CustomerRemote</ejb-remote>
 <ejb-class>com.titan.customer.CustomerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>lastName</field-name></cmp-field>
 <cmp-field><field-name>firstName</field-name></cmp-field>
 <primkey-field>id</primkey-field>
</entity>

The container-managed persistent fields are the id, lastName, and
firstName as indicated by the <cmp-field> elements. The <cmp-
field> elements must have matching accessor methods in the
CustomerBean class. As you can see from the following table, the values
declared in the <cmp-field> match the names of abstract accessor methods
we declared in the CustomerBean class—the get and set part of the
method names are ignored when matching methods to <cmp-field>
declarations.

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 15

Cmp-field Abstract accessor method

id public abstract Integer getId()

public abstract void setId(Integer id)

lastName public abstract String getLastName()

public abstract void setLastName(String
lname)

firstName public abstract String getFirstName()

public abstract void setFirstName(String
lname)

CMP 2.0 requires that the <cmp-field> values start with a lower case letter
while its matching accessor methods take the form get<cmp-field
value>(), set<cmp-field value>() where the first letter of the <cmp-
field> is capitalized. The return type of the get method and the parameter of
the set method determine the type of the <cmp-field>. It’s the convention
of this book, but not a requirement of CMP 2.0, that field names with multiple
words are declared using “camel case”, where each new word starts with a capital
letter (e.g. lastName).

Finally, we declare the primary key using two fields, the <prim-key-class>
and the <primkey-field>. The <prim-key-class> indicates the type
of the primary key and the <primkey-field> indicates which of the <cmp-
fields> elements designates the primary key. This is an example of single-
field primary key, where only one field of the entity beans container managed
fields describes a unique identifier for the bean. In many cases a compound
primary key, which uses more then one of the persistent fields as a key, is used.
In addition, an unknown primary key may be defined; unknown keys use a field
that may not be declared in the bean at all. The different types of primary keys
are covered in more detail in Chapter 11, Entity-Container Contract.

The EJB JAR file

Now that you have created the interfaces, bean class, and deployment
descriptor, you’re ready to package the bean for deployment. As you learned in
Chapter 4, the JAR file provides a way to “shrink-wrap” a component so that it
can be sold and or deployed in an EJB container. The examples available from
http://www.oreilly.com contain a properly prepared JAR file that includes the
Customer EJB’s interfaces, bean class, and deployment descriptor. You may use
these files or develop them yourself. The command for creating a new EJB JAR
file is:

\dev % jar cf customer.jar com/titan/customer/*.class
com/titan/customer/META-INF/ejb-jar.xml

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 16

F:\..\dev>jar cf cabin.jar com\titan\customer*.class com\titan\customer
\META-INF\ejb-jar.xml

Most EJB servers provide graphical or command line tools that will create the
XML deployment descriptor and package the enterprise bean into a JAR file
automatically. Some of these tools will even create the home and remote
interfaces automatically, based input from the developer. If you prefer to use
these tools, the workbooks will step you through the process of deploying an
entity bean using specific vendor’s container deployment tools.

Deployment

Once the CustomerEJB is packaged in a JAR file, it’s ready to be processed
by the deployment tools. For most vendors these tools will be combined into
one graphical user interface used at deployment time. The point is to map the
container-managed persistence fields of the bean to fields of data objects in the
database. Figures 7-2 and 7-3 show visual tools used to map the Customer EJB’s
persistent fields.

In addition, the security roles need to be mapped to the subjects in the security
realm of the target environment and the bean needs to be added to the naming
service and given a JNDI lookup name (name binding). These tasks are also
accomplished using the deployment tools provided by your vendor. The
workbooks provide step-by-step instructions for deploying the CustomerEJB
in specific vendor environments.

The Client application

The client application is a remote client to the CustomerEJB, which will create
several customers, find them, and then remove them. The following is the
complete definition of the Client application.

import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Properties;

public class Client {
 public static void main(String [] args) throws Exception {
 // obtain CustomerHome
 Context jndiContext = getInitialContext();
 Object obj=jndiContext.lookup("CustomerEJB");
 CustomerHomeRemote home = (CustomerHomeRemote)
 javax.rmi.PortableRemoteObject.narrow(obj,
 CustomerHomeRemote.class);

 // create Customers

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 17

 for(int i = 0; i < args.length;i++){
 Integer primaryKey = new Integer(args[i]);
 String firstName = args[++i];
 String lastName = args[++i];
 CustomerRemote customer = home.create(primaryKey);
 customer.setFirstName(firstName);
 customer.setLastName(lastName);
 }
 // find and remove Customers
 for(int i = 0; i < args.length;){
 Integer primaryKey = new Integer(args[i]);
 CustomerRemote customer
 = home.findByPrimaryKey(primaryKey);
 String lastName = customer.getLastName();
 String firstName = customer.getFirstName();
 System.out.print(primaryKey+" = ");
 System.out.println(firstName+" "+lastName);

 // remove Customer
 customer.remove();
 }
 }

 public static Context getInitialContext()
 throws javax.naming.NamingException {
 Properties p = new Properties();
 // ... Specify the JNDI properties specific to the vendor.
 //return new javax.naming.InitialContext(p);
 return null;
 }
}

The client application creates several Customer EJBs, sets their first and last
names, prints out the persistent field values, and then removes the entities from
the container system, and effectively the database.

& Exercise 6.1, Deploying the Customer EJB

Persistent Fields

Container-managed persistent fields are those virtual fields whose values map
directly to the database. Persistent fields can be Java serializable types and Java
primitive types.

The Java serializable types can be any class that implements the
java.io.Serializable interface. Most deployment tools will handle
java.lang.String, java.util.Date and the primitive wrappers (Byte,
Boolean, Short, Integer, Long, Double, and Float) easily, because

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 18

these types of objects are part of the Java core and map naturally to fields in
relational and other databases. The CustomerEJB declares three serializable
fields id, lastName, and firstName, which map naturally to the INT and
CHAR fields of the CUSTOMER table in the database.

You can also define your own serializable types, called dependent values classes,
and declare them as container-managed persistent fields. However, arbitrary
dependent values classes usually will not map naturally to database types, so
they must be stored in their serializable form in some type of binary database
field. Serializable objects are always returned as copies and not references, so a
change to a serializable object will not impact its database value. The entire value
must be updated using the abstract set<FIELD-NAME> method. This is
normally not an issue with String, Date, and the primitive wrappers types
since they are immutable objects. This book recommends that you don’t use
custom serializable objects as persistent field types unless it’s absolutely
necessary.

The primitive types (byte, short, int, long, double, float and
boolean) are also allowed to be container-managed persistence fields. These
types are easily mapped to the database and are supported by all deployment
tools. As an example, the CustomerEJB might declare a boolean that
represents a customer’s credit worthiness.

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){
 setId(id);
 return null;
 }

 // abstract accessor methods
 public abstract boolean getHasGoodCredit();
 public abstract void setHasGoodCredit(boolean creditRating);

Dependent value classes

As discussed in the previous section, dependent values classes are custom
serializable objects, which can be used as persistent fields -- although its not
recommended. However, dependent values classes are valuable for packaging
data and moving it between an entity bean and its clients. Dependent values
classes can separate the client’s view of the entity bean from its abstract
persistent model, which makes it easier for the entity bean class to change
without impacting existing clients.

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 19

The remote and local interface methods of an entity bean should be defined
independently of the anticipated abstract persistent schema. In other words, you
should design the remote interfaces to model the business concepts, not the
underlying persistent programming model. Dependent value classes can help
separate the client’s view from the persistence model by providing objects that
fill the gaps in these perspectives. Dependent value classes are used a lot in
remote interfaces where packaging data together can reduce network traffic, but
they are also useful in local interfaces.

For example, the CustomerEJB could be modified so that its lastName and
firstName fields are not exposed directly to remote clients through their
accessor methods. This is a reasonable design approach, since most clients
access the entire name of the customer at once. In this case, the remote interface
might modified to look as follows:

import java.rmi.RemoteException;

public interface CustomerRemote extends javax.ejb.EJBObject {

 public Name getName() throws RemoteException;
 public void setName(Name name) throws RemoteException;

}

The remote interface here is simpler than the one we saw earlier. It allows the
remote client to get all the name information in one method call instead of two—
this reduces network traffic and improves performance for remote clients. The
use of the Name dependent value is also semantically more consistent with how
the client interacts with the Customer EJB, which is useful in both remote and
local interfaces.

To implement these interfaces, the CustomerBean class adds a business
method that matches the remote interface methods. The setName() method
updates the lastName and firstName fields, while the getName() method
constructs a Name object from these fields.

import javax.ejb.EntityContext;

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){
 setId(id);
 return null;
 }
 public void ejbPostCreate(Integer id){
 }
 // business methods
 public Name getName(){
 Name name = new Name(getLastName(),getFirstName());
 return name;

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 20

 }
 public void setName(Name name){
 setLastName(name.getLastName());
 setFirstName(name.getFirstName());
 }
 // abstract accessor methods

 public abstract String getLastName();
 public abstract void setLastName(String lname);

 public abstract String getFirstName();
 public abstract void setFirstName(String fname);

This is a good example of how dependent value classes can be used to separate
the client’s view from the abstract persistence schema.

The getName() and setName() methods are not abstract persistence
methods, they are business methods. Entity beans can have as many business
methods as needed. Business methods introduce business logic to the Customer
EJB; otherwise the bean would only be a data wrapper. For example, validation
logic could be added to the setName() method to ensure that the data is
correct before applying the update. In addition, the entity bean class can use
other methods that help with processing data—these are just instance methods
and may not be exposed as business methods in the remote interface.

How dependent value classes are defined is important to understanding how
they should be used. The Name dependent values class is defined as follows:

public class Name implements java.io.Serializable {
 private String lastName;
 private String firstName;

 public Name(String lname, String fname){
 lastName = lname;
 firstName = fname;
 }
 public String getLastName() {
 return lastName;
 }
 public String getFirstName() {
 return firstName;
 }
}

You’ll notice that Name dependent values class has get accessor methods but
not set methods. It’s immutable. This is a design strategy used in this book
and is not a requirement of the specification; CMP 2.0 does not specify how
dependent value classes are defined.

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 21

We make dependent values immutable so that clients cannot change the Name
object’s fields. The reason is quite simple: the Name object is a copy, not a
remote reference. Changes to Name objects are not reflected in the database.
Making the Name immutable helps to ensure that clients do not mistake this
dependent value for a remote object reference, thinking that a change to the
Name object is automatically reflected on the database. To change the
customer’s name, the client is required to create a new Name object and use the
setName() method to update the Customer EJB.

The following code listing from illustrates how a client would modify the name of
a customer using the Name dependent values class.

// find Customer
customer = home.findByPrimaryKey(primaryKey);
name = customer.getName();
System.out.print(primaryKey+" = ");
System.out.println(name.getFirstName()+" "+name.getLastName());

// change customer's name
name = new Name("Monson-Haefel", "Richard");
customer.setName(name);
name = customer.getName();
System.out.print(primaryKey+" = ");
System.out.println(name.getFirstName()+" "+name.getLastName());

The output will look as follows:

1 = Richard Monson
1 = Richard Monson-Haefel

Defining the bean’s interfaces according to the business concept and not the
underlying data is not always reasonable, but you should try to employ this
strategy when the underlying data model doesn’t clearly map to the business
purpose or concept being modeled by the entity bean. The bean’s interfaces may
be used by developers who know the business, and not the abstract
programming model. It is important to them that the entity beans reflect the
business concept. In addition, defining the interfaces independent of the
persistence model enables the component interfaces and persistence model to
evolve separately. This is important because it allows the abstract persistent
programming model to change over time; it also allows for new behavior to be
added to the entity bean as needed.

While the dependent values classes serve a purpose, they should not be used
indiscriminately. In many cases it would be foolish to use dependent values
classes when the container-managed persistent field will do just fine. For
example, checking a client’s credit worthiness before processing an order can be
accomplished easily using the getHasGoodCredit() method directly. In
this case a dependent object class would serve no purpose.

& Exercise 6.2, Using Dependent value classes

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 22

Relationship Fields

Entity beans can form relationships with other entity beans. In figure 6-1, at the
beginning of this chapter, the Customer EJB is shown to have a one-to-one
relationship with the Address EJB. The Address EJB is a fine-grained business
object that should always be accessed in the context of another entity bean,
which means it should only have local interfaces and not remote interfaces. An
entity bean can have relationships with many different entity beans at the same
time. For example, we could easy add relationship fields for Phone, CreditCard
and other entity beans. At this point, however, we choose to keep the Customer
EJB simple.

Following Figure 7-1 as guide we define the Address EJB as follows.

public abstract class AddressBean
extends javax.ejb.EntityBean {

 public Object ejbCreateAddress
 (String street, String city,
 String state, String zip)
 {
 setStreet(street);
 setCity(city);
 setState(state);
 setZip(zip);
 return null;
 }
 public void ejbPostCreateAddress
 (String street, String city,
 String state, String zip){
 }

 // persistent fields
 public abstract String getStreet();
 public abstract void setStreet(String street);
 public abstract String getCity();
 public abstract void setCity(String city);
 public abstract String getState();
 public abstract void setState(String state);
 public abstract String getZip();
 public abstract void setZip(String zip);

 // standard call back methods

 public void setEntityContext(EntityContext ec){}
 public void unsetEntityContext(){}
 public void ejbLoad(){}
 public void ejbStore(){}
 public void ejbActivate(){}

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 23

 public void ejbPassivate(){}
 public void ejbRemove(){}

}

The AddressBean class defines an ejbCreateAddress() method that is
called when a new Address EJB is created as well as several persistent fields
(street, city, state, and zip). The persistent fields are represented by
the abstract accessor methods, which is the idiom required for persistent fields in
all entity bean classes. These abstract accessor methods are matched with their
own set of XML deployment descriptor elements which define the abstract
persistent schema of the Address EJB. At deployment time the container’s
deployment tool will map the Customer EJB’s persistent fields and the Address
EJB’s persistent fields to the database. This means that there must be a table in
our relational database that contains columns that match the persistent fields in
the Address EJB. In this example we will use a separate ADDRESS table for
storing address information, but the data could just as easily been declared in
other table.

CREATE TABLE ADDRESS
(
 ID INT PRIMARY KEY,
 STREET CHAR(40),
 CITY CHAR(20),
 STATE CHAR(2),
 ZIP CHAR(10)
)

You’ll have noticed that the table includes a column that has no corresponding
persistent field in the Address EJB, the ID column. Entity beans do not have to
define all of the columns from corresponding tables, as persistent fields. In fact,
an entity bean may not even have a single corresponding table; it may be
persisted to several tables. The bottom line is that the container’s deployment
tool allows the abstract persistence schema of entity beans to be mapped to a
database in a variety of ways, allowing a clean separation between the persistent
classes and the database. In this case the ID column is an auto-increment field,
which is created automatically by the database or container system. It serves the
primary key of the Address EJB and is not part of the bean’s abstract persistence
schema. It’s invisible.

In addition to the bean class, we will also define the local interface for the
Address EJB, which allows it to be accessed by other entity beans (namely the
Customer EJB) within the same address space or process.

// Address EJB’s local interface
public interface AddressLocal extends javax.ejb.EJBLocalObject {
 public String getStreet();
 public void setStreet(String street);
 public String getCity();
 public void setCity(String city);

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 24

 public String getState();
 public void setState(String state);
 public String getZip();
 public void setZip(String zip);
}

// Address EJB’s local home interface
public interface AddressLocalHome extends javax.ejb.EJBLocalHome {
 public AddressLocal create(String street, String city,
 String state, String zip)
 throws javax.ejb.CreateException;
 public AddressLocal findByPrimaryKey(Object primaryKey)
 throws javax.ejb.FinderException;

}

You may have noticed that the ejbCreate() method of the AddressBean
class and the findByPrimaryKey() method of the home interface both
define the primary key type as java.lang.Object instead of
java.lang.Integer. When a primary key type is defined as an Object
type, it’s said to be undefined, which means the exact type of key used is not
known until the bean is deployed. In this case, an undefined type allows us to
use the auto-increment facilities of the native database. If we were to define the
primary key type, then we would have to set the primary key value in the
ejbCreate() method, which would make it impossible to use auto-increment
for the id field. This is a concept that is explored in detail in Chapter 11.

The relationship field for the Address EJB is defined in the CustomerBean
class using an abstract accessor method, the same way that persistent fields are
declared. In the following code the CustomerBean has been modified to
include the Address EJB as a relationship field.

import javax.ejb.EntityContext;
import javax.ejb.CreateException;

public abstract class CustomerBean implements javax.ejb.EntityBean {
 ...

 // persistent relationships
 public abstract AddressLocal getHomeAddress();
 public abstract void setHomeAddress(AddressLocal address);

 // persistent fields
 public abstract boolean getHasGoodCredit();
 public abstract void setHasGoodCredit(boolean creditRating);
 ...

The getHomeAddress() and setHomeAddress() accessor methods are
self-explanatory; they allow the bean to access and modify its homeAddress
relationship. These accessor methods represent a relationship field, which is a

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 25

virtual field that references another entity bean. The name of the accessor
method is determined by the name of the relationship field, as declared in the
XML deployment descriptor. In this case we have named the customer’s address
homeAddress, so the corresponding accessor method names will be
getHomeAddress() and setHomeAddress().

To accommodate the relationship between the Customer EJB and the home
address a foreign key, ADDRESS_ID, will be added to the CUSTOMER table that
points to the ADDRESS record. In practice this schema is actually the reverse of
what is usually done, where the ADDRESS table contains a foreign key to the
CUSTOMER table. However, the schema used here is useful in demonstrating
alternative database mappings and is utilized again in Chapter 7.

CREATE TABLE CUSTOMER
(
 ID INT PRIMARY KEY,
 LAST_NAME CHAR(20),
 FIRST_NAME CHAR(20),
 ADDRESS_ID INT
)

When a new Address EJB is created and set as the Customer EJB’s
homeAddress relationship, the Address EJB’s primary key will be placed in the
ADDRESS_ID column of the CUSTOMER table creating a relationship in the
database. In other words, it’s the act of setting the relationship field that creates
the relationship between the beans.

// get local reference
AddressLocal address = ……

// establish the relationship
setHomeAddress(address);

To give the Customer a home address we will need to deliver the address
information to the Customer. This appears to be a simple matter of declaring
matching setHomeAddress()/getHomeAddress() in the remote
interface, but it’s not! While it’s valid to make persistent fields directly available
to clients, persistent relationships are more complicated.

The remote interface of a bean is not allowed to expose its relationship fields if
the relationship references another bean’s local interface. In the case of the
homeAddress field we have declared the type to be AddressLocal, which
is a local interface, so the setHomeAddress()/getHomeAddress()
assessors cannot be declared in the remote interface of the Customer EJB.

Remote interfaces may, however, expose relationship fields that use remote
interface types. So, for example, if we had declared the homeAddress field as a
remote interface (an interface that extends javax.ejb.EJBObject), we
could expose that relationship field in the remote interface of the Customer EJB.

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 26

The reason for this restriction on remote interfaces is fairly simple: The
EJBLocalObject, which implements the local interface, is optimized for use
within the same address space or process as the client, and is not capable of
being used across the network. In other words, references that implement the
local interface of a bean cannot be passed across the network, so it cannot
declared as a return type of a parameter of a remote interface.

We take advantage of the EJBLocalObject optimization for better
performance, but that same advantage limits location transparency; we must only
use it within the same address space.

Local interfaces (an interface that extends javax.ejb.EJBLocalObject)
on the other hand, can expose any kind of relationship field regardless of
whether it’s a remote or local interface. With local interfaces, the caller and the
enterprise bean being called are located in the same address space, so they can
pass around local references without a problem. So for example, if we had
defined a local interface for the Customer EJB, it could include a method that
allows local clients to access its Address relationship directly.

public interface CustomerLocal extends javax.ejb.EJBLocalObject {
 public AddressLocal getHomeAddress();
 public void setHomeAddress(AddressLocal address);
}

Unlike local interfaces, remote interfaces can be used as return values or
parameters in the methods of both remote and local interfaces because remote
interfaces are location transparent. The networking capabilities of a remote
interface reference work within the same address space as easily as across
address spaces.

When it comes to the Address EJB, it’s better to define a local interface only
because it’s such a fine-grained bean. To get around remote interface
restrictions, the business methods in the bean class exchange address data
instead of Address references. For example, we can declare a method that allows
the client to send address information to create a home address for the Customer.

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){
 setId(id);
 return null;
 }
 public void ejbPostCreate(Integer id){
 }
 // business method
 public void setAddress(String street,String city,
 String state,String zip)
 throws CreateException {

 AddressLocal addr = this.getHomeAddress();

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 27

 if(addr == null){
 // Customer doesn’t have an address yet. Create a new one.
 InitialContext cntx = new InitialContext();
 AddressHomeLocal addrHome =
 (AddressHomeLocal)cntx.lookup(“homeAddress”);
 addr = addrHome.createAddress(street, city, state, zip);
 this.setHomeAddress(addr);
 }else{
 // Customer already has an address. Change its fields
 addr.setStreet(street);
 addr.setCity(city);
 addr.setState(state);
 addr.setZip(zip);
 }
 }

 ...

The setAddress() business method in the CustomerBean class is also
declared in the remote interface of the Customer EJB, so that it can be called by
remote clients.

public interface Customer extends javax.ejb.EJBObject {

 public void setAddress(String street,String city,
 String state,String zip)
 throws CreateException;

 public Name getName() throws RemoteException;
 public void setName(Name name) throws RemoteException;

 public boolean getHasGoodCredit() throws RemoteException;
 public void setHasGoodCredit(boolean creditRating)
 throws RemoteException;

}

When the CustomerRemote.setAddress() business method is invoked
on the CustomerBean, the method’s arguments are used to create a new
Address EJB and set it as the homeAddress relationship field if one doesn’t
already exist. If the Customer EJB already has a homeAddress relationship,
that Address EJB is modified to reflect the new address information.

When creating a new Address EJB, the home object is obtained from the JNDI
ENC. and its createAddress() method is called. This results in the creation
of a new Address EJB and the insertion of a corresponding ADDRESS record
into the database. After the Address EJB is created, it’s used in the
setHomeAddress() method. The CustomerBean class must explicitly call

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 28

the setHomeAddress() method, otherwise the new address will not be
assigned to the customer. In fact, simply creating an Address EJB, without
assigning it to the customer using the setHomeAddress() method, will result
in a disconnected Address EJB. More precisely, it will result in an ADDRESS
record in the database that is not referenced by any CUSTOMER records.
Disconnected entity beans are fairly normal and even desirable in many cases. In
this case, however, we want the new Address EJB to be assigned to the
homeAddress relationship field of the Customer EJB.

The viability of disconnected entities depends, in part, on the
referential integrity of the database. If the database requires
that a foreign key contain a pointer to an existing record, then
creating a disconnected entity would result in a database error.

When the setHomeAddress() method is invoked, the container links the
ADDRESS record to the CUSTOMER record automatically. In this case, it places
the ADDRESS primary key in the CUSTOMER record’s ADDRESS_ID field and
creates a reference from the CUSTOMER record to the ADDRESS record.

If the Customer EJB already has a homeAddress, then we want to change its
values instead of creating a new one. Once the values of the existing Address
EJB have been updated, we don’t need to use setHomeAddress() since the
Address EJB we modified already has a relationship with the entity bean.

The AddressHome.createAddress() method is declared as throwing a
CreateException, as are all create methods. This requires that the
setAddress() business method either wrap the createAddress() call in
a try/catch block or propagate the exception to the client. In the above example,
we choose to propagate the exception because it’s more expedient. As an
alternative you could catch the CreateException and throw a new
application exception. Either approach is perfectly acceptable.

We will also want to provide clients with a business method for obtaining a
Customer EJB’s home address information. Since we are prohibited from sending
an instance of the Address EJB directly to the client (because it’s a local
interface), we must package the address data in some other form and send that
the client. There are two solutions to this problem: acquire the remote interface
of the Address EJB and return that; or return the data as a dependent value
object.

We can only obtain the remote interface for the Address EJB if one was defined.
Entity beans can have a set of local interfaces or remote interfaces or both. In
this situation the Address EJB is too fine-grained to justify creating a remote
interface, but in many other circumstances a bean may indeed want to have a
remote interface. If for example, the Customer EJB referenced a SalesPerson EJB,
the CustomerBean would need to convert the local reference into a remote

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 29

reference. This would be done by accessing the local EJB object, getting its
primary key (EJBLocalObject.getPrimaryKey()), obtaining the
SalesPerson EJB’s remote home from the JNDI ENC, and then using the primary
key and remote home reference to find a remote interface reference.

public SalesRemote getSalesRep(){
 SalesLocal local = getSalesPerson();
 Integer primKey = local.getPrimaryKey();

 Object ref = jndiEnc.lookup(“SalesHomeRemote”);
 SalesHomeRemote home = (SalesHomeRemote)
 PortableRemoteObject.narrow(ref, SalesHomeRemote.class);

 SalesRemote remote = home.findByPrimaryKey(primKey);
 return remote;
}

The other option is to use a dependent value to pass the Address EJB’s data
between remote clients and the Customer EJB. This is the approach
recommended for fine-grained beans like the Address EJB—in general we don’t
want to expose these beans directly to remote clients.

The following shows how the dependent values class, AddressDO, is used in
conjunction with the local component interfaces of the Address EJB. The DO in
AddressDO is a convention used in this book; it’s a qualifier that stands for
Dependent Object.

public abstract class CustomerBean implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer id){
 setId(id);
 return null;
 }
 public void ejbPostCreate(Integer id){
 }
 // business method
 public AddressDO getAddress(){
 AddressLocal addrLocal = getHomeAddress();
 String street = addrLocal.getStreet();
 String city = addrLocal.getCity();
 String state = addrLocal.getState();
 String zip = addrLocal.getZip();
 Address addrValue = new Address(street,city,state,zip);
 return addrValue;
 }
 public void setAddress(AddressDO addrValue)
 throws CreateException {

 String street = addrValue.getStreet();
 String city = addrValue.getCity();
 String state = addrValue.getState();

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 30

 String zip = addrValue.getZip();

 AddressDO addr = getAddressDO();

 if(addr == null){
 // Customer doesn’t have an address yet. Create a new one.
 InitialContext cntx = new InitialContext();
 AddressHome addrHome = (AddressHome)cntx.lookup(“homeAddress”);
 addr = addrHome.createAddress(street, city, state, zip);
 this.setHomeAddress(addr);
 }else{
 // Customer already has an address. Change its fields
 addr.setStreet(street);
 addr.setCity(city);
 addr.setState(state);
 addr.setZip(zip);
 }

 }
 ...

Here is the definition for an AddressDO dependent value class, which is used
by the enterprise bean to send address information to the client.

public class AddressDO implements java.io.Serializable {
 private String street;
 private String city;
 private String state;
 private String zip;

 public AddressDO(String street, String city,
 String state, String zip) {
 this.street = street;
 this.city = city;
 this.state = state;
 this.zip = zip;
 }
 public String getStreet(){
 return street;
 }
 public String getCity(){
 return city;
 }
 public String getState(){
 return state;
 }
 public String getZip(){
 return zip;
 }
}

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 31

The AddressDO dependent value follows the conventions laid out in this book.
It’s immutable, which means it cannot be altered once its created. As stated
earlier, immutability helps to reinforce that fact that the dependent values class is
a copy and is not a remote reference.

You can now use a client application to test the Customer EJBs relationship with
the Address EJB. The following code shows the client code that creates a new
Customer, gives it an address, then changes the address using the method
defined above.

import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Properties;

public class Client {
 public static void main(String [] args) throws Exception {
 // obtain CustomerHome
 Context jndiContext = getInitialContext();
 Object obj=jndiContext.lookup("CustomerEJB");
 CustomerHome home = (CustomerHome)
 javax.rmi.PortableRemoteObject.narrow(obj,
 CustomerHome.class);

 // create a Customer
 Integer primaryKey = new Integer(1);
 Customer customer = home.create(primaryKey);

 // create an address
 AddressDO address = new Address("1010 Colorado",
 "Austin","Texas", "78701");
 // set address
 customer.setAddress(address);

 address = customer.getAddress();
 System.out.print(primaryKey+" = ");
 System.out.println(address.getStreet());
 System.out.println(address.getCity()+","+
 address.getState()+" "+
 address.getZip());

 // create a new address
 address = new Address("1600 Pennsylvania Avenue NW",
 "DC","WA", "20500");

 // change customer's address
 customer.setAddress(address);

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 32

 address = customer.getAddress();
 System.out.print(primaryKey+" = ");
 System.out.println(address.getStreet());
 System.out.println(address.getCity()+","+
 address.getState()+" "+
 address.getZip());

 // remove Customer
 customer.remove();
 }

 public static Context getInitialContext()
 throws javax.naming.NamingException {
 Properties p = new Properties();
 // ... Specify the JNDI properties specific to the vendor.
 //return new javax.naming.InitialContext(p);
 return null;
 }
}

The following listing shows the deployment descriptor for Customer EJB and
Address EJB. To avoid confusion we will not discuss this deployment
descriptor in detail in this chapter because its covered in detail in Chapter 7.
Don’t be too concerned about the details until they are explained in the next
chapter.

& Exercise 6.3, Relationships Fields

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 <home>com.titan.customer.CustomerHomeRemote</home>
 <remote>com.titan.customer.CustomerRemote</remote>
 <ejb-class>com.titan.customer.CustomerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>lastName</field-name></cmp-field>
 <cmp-field><field-name>firstName</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 <security-identity><use-caller-identity/></security-identity>
 </entity>
 <entity>
 <ejb-name>AddressEJB</ejb-name>
 <local-home>com.titan.address.AddressHomeLocal</home>

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 33

 <local>com.titan.address.AddressLocal</remote>
 <ejb-class>com.titan.address.AddressBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Object</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <cmp-field><field-name>street</field-name></cmp-field>
 <cmp-field><field-name>city</field-name></cmp-field>
 <cmp-field><field-name>state</field-name></cmp-field>
 <cmp-field><field-name>zip</field-name></cmp-field>
 <security-identity><use-caller-identity/></security-identity>
 </entity>
 </enterprise-beans>
 <relationships>
 <ejb-relation>
 <ejb-relation-name>Customer-Address
 </ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-a-Address
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>address
 </cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Address-belongs-to-Customer
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>AddressEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 <ejb-relation>
 <relationships>
 <assembly-descriptor>
 <security-role>
 <role-name>Employees</role-name>
 </security-role>
 <method-permission>
 <role-name>Employees</role-name>
 <method>
 <ejb-name>CustomerEJB</ejb-name>
 <method-name>*</method-name>
 </method>

DRAFT, 10/21/017/26/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 34

 <method>
 <ejb-name>AddressEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <method>
 <ejb-name>AddressEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <method>
 <ejb-name>CustomerEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 <container-transaction>
 </assembly-descriptor>
</ejb-jar>

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 1

7
EJB 2.0 CMP: Entity

Relationships

In Chapter 6 you learned about basic EJB 2.0 container-managed persistence.
This included coverage of container-managed persistence fields and an
introduction to a basic container-managed relationship field. In this chapter we
will continue to develop the Customer EJB and discuss in detail each of seven
possible relationships that entity beans can have with each other.

In order for entity beans to model real world business concepts they must be
capable of forming complex relationships with each other. This was difficult to
accomplish in EJB 1.1 container-managed persistence because of the simplicity of
the programming model. In EJB 1.1, entity beans could have persistent fields but
not relationship fields.

Relationship fields in EJB 2.0 can model very complex relationships between
entity beans. In Chapter 6 you created a one-to-one relationship between the
Customer and Address EJBs. This relationship was unidirectional; the Customer
had a reference to the Address, but the Address did not have a reference back to
the Customer. This is a perfectly legitimate relationship between these entities,
but other more complicated relationships are also possible. Each Address could
also reference its Customer. This is an example of bi-directional navigation, where
both participants in the relationship maintain references to each other. In
addition to one-to-one relationships, entity beans can also have one-to-many,
many-to-one and many-to-many relationships. For example, the Customer EJB
may have many phone numbers, but each phone number belongs to only one
Customer (a one-to-many relationship). A Customer may also have been on
many Cruises in the past and each Cruise will have had many Customers (a
many-to-many relationship).

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates2

The Seven Relationship Types

Seven types of relationships can exist between EJBs. This chapter examines
those relationships and how the beans’ code and deployment descriptor work
together to define the relationships. First, let’s look at the different types of
relationships that are possible. There are four different types of cardinality: one-
to-one, one-to-many, many-to-one, and many-to-many. On top of that, each
relationship can be either unidirectional or bidirectional. That yields eight
possibilities, but if you think about it, you'll realize that one-to-many bidirectional
and many-to-one bidirectional relationships are actually the same thing, yielding
7 distinct relationship types.

To understand the relationships, it helps to think about some simple examples.
We'll expand on these examples in the course of the chapter.

one-to-one, unidirectional
The relationship between a customer and an address. You clearly want to be
able to look up a customer’s address, but you probably don't care about
looking up an address’s customer.

one-to-one, bidirectional
The relationship between a customer and a credit card number. Given a
customer, you obviously want to be able to look up his or her credit card
number. And, given a credit card number, it is also conceivable that you
would want to look up the customer who owns the credit card.

one-to-many, unidirectional
The relationship between a customer and a phone nubmer. A customer can
have many phone numbers (business, home, cell, etc.). You probably
wouldn’t want to look up a customer given his phone number.

one-to-many, bidirectional
The relationship between a cruise and a reservation. Given a reservation,
you want to be able to look up the cruise that the reservation is for. And
given a cruise, you want to be able to look up all reservations for that cruise.
Note that a many-to-one bidirectional relationship is just another
perspective on the same concept.

many-to-one, unidirectional
The relationship between a cruise and a ship. You obviously want to look
up the ship that will be used for a particular cruise, and many cruises share
the same ship, though at different times. It’s less useful to be able to look
up the cruises that are associated with the given ship, though if you want
this relationship, you can implement a many-to-one bidirectional
relationship.

many-to-many, unidirectional
The relationship between a reservation and a cabin. It’s possible to make a
reservation for multiple cabins, and you clearly want to be able to look up
the cabin assigned to a reservation. But you’re not likely to want to look up

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 3

the reservation associated with a particular cabin. (If you think you need to
do so, you’d implement it as a bidirectional relationship.)

many-to-many, bidirectional
The relationship between a cruise and a customer. A customer can make
reservations on many cruises, and each cruise has many customers. You
clearly want to be able to look up both the cruises on which a customer has
a booking, and the customers that will be going on any given cruise.

Abstract Persistence Schema

In Chapter 6 you learned how to form a basic relationship between the Customer
and Address entity beans using the abstract programming model. In reality, the
abstract programming model is only half the equation. In addition to declaring
abstract accessor methods, a bean developer must further describe the
cardinality and direction of the entity-to-entity relationships in the bean’s
deployment descriptor. This is handled in the relationships section of the XML
deployment descriptor. As we discuss each type of relationship in the following
sections, both the abstract programming model and the XML elements will be
examined. It’s the purpose of this section to introduce you to the basic elements
used in the XML deployment descriptor to better prepare you for subsequent
sections on specific relationship types.

In this book we always refer to the Java programming idioms used to describe
relationships, specifically the abstract accessor methods, as the abstract
programming model. When referring to the XML deployment descriptor
elements we use the term abstract persistence schema . In the EJB 2.0
specification, the term abstract persistence schema takes on a more general
meaning referring to both the Java idioms and the XML elements, but this book
separate these concepts so that they can be discussed more easily.

The abstract persistence schema of an entity bean is defined in the
<relationships> section of the XML deployment descriptor for that bean.
The <relationships section falls between the <enterprise-beans>
section and the <assembly-descriptor> section. Within the relationships
element each entity-to-entity relationship is defined in separate <ejb-
relation> elements.

<ejb-jar>
<enterprise-beans>
 …
</enterprise-beans>
<relationships>
 <ejb-relation>
 …
 </ejb-relation>
 <ejb-relation>
 …

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates4

 </ejb-relation>
</relationships>
<assembly-descriptor>
…
</assembly-descriptor>

Defining relationship fields requires that an <ejb-relation> element be
added to the XML deployment descriptor for each entity-to-entity relationship.
These <ejb-relation> elements complement the abstract programming
model. For each pair of abstract accessor methods that defined a relationship
field, there is an <ejb-relation> element in the deployment descriptor. EJB
2.0 requires that the entity beans that participate in a relationship be defined in
the same XML deployment descriptor.

Here is a partial listing of the deployment descriptor for the Customer and
Address EJBs with the emphasis on the elements that define the relationship.

<ejb-jar>
...
<enterprise-beans>
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 <local-home>com.titan.customer.CusomterLocalHome</local-home>
 <local>com.titan.customer.CustomerLocal</local>
 …
 </entity>
 <entity>
 <ejb-name>AddressEJB</ejb-name>
 <local-home>com.titan.address.AddressLocalHome</local-home>
 <local>com.titan.address.AddressLocal</local>
 …
 </entity>
 …
</enterprise-beans>

<relationships>
 <ejb-relation>
 <ejb-relation-name>Customer-Address
 </ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-a-Address
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>homeAddress
 </cmr-field-name>
 </cmr-field>

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 5

 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Address-belongs-to-Customer
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>AddressEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 <ejb-relation>
<relationships>

All relationships between the Customer EJB and other entity beans, such as
CreditCard, Address, and Phone EJBs will require that we define a <ejb-
relation> element to complement the abstract accessor methods.

Every relationship may, optionally, have a relationship name, which is declared in
the <ejb-relation-name> element. This serves to identify the relationship
for individuals reading the deployment descriptor or for deployment tools, but
it’s not required.

Every <ejb-relation> element has exactly two <ejb-relationship-
role> elements, one for each participant in a relationship. In the previous
example, the first <ejb-relationship-role> declares the Customer EJB’s
role in the relationship. We know this because the <relationship-role-
source> element specifies the <ejb-name> as CustomerEJB.
CustomerEJB is the <ejb-name> used in the Customer EJB’s original
declaration in the <enterprise-beans> section. The <relationship-
role-source> element’s <ejb-name> must always match an <ejb-
name> element in the enterprise-beans section.

The <ejb-relationship-role> element also declares the cardinality, or
multiplicity of the role. The <multiplicity> element can either be One or
Many. In the case of the Customer EJB’s <ejb-relationship-role>
element, the <multiplicity> element has a value of One, which means that
every Address EJB has a relationship with exactly one Customer EJB. The
Address EJB’s <ejb-relationship-role> specifies One also, which
means that every Customer EJB has exactly one Address EJB. If the Customer
had a relationship with many Address EJBs, the Address EBJs’
<multiplicity> would be Many.

In Chapter 6, we defined the Customer EJB has having abstract accessor
methods for getting and setting the Address EJB in the homeAddress field,
but the Address EJB did not have abstract accessor methods for the Customer
EJB. In this case the Customer EJB maintains a reference to the Address EJB, but
the Address EJB doesn’t maintain a reference back to the Customer EJB. This is a

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates6

unidirectional relationship, which means that only one of the entity beans in the
relationship maintains a container-managed relationship field.

If the bean that is described by the <ejb-relationship-role> element
maintains references to the other bean in the relationship, then that reference
must be declared as a container-managed relationship field in the <cmr-
field> element. The <cmr-field> element is declared under the <ejb-
relationship-role> element.

<ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-a-Address
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>homeAddress</cmr-field-name>
 </cmr-field>
</ejb-relationship-role>

The field name declared in the <cmr-field-name> element must match a pair
of abstract accessor methods in the bean class. In above example, the <cmr-
field-name> is homeAddress, which corresponds to the pair of abstract
accessor methods getHomeAddress() and setHomeAddress() defined
in the CustomerBean class. EJB 2.0 requires that the <cmr-field-name>
begin with a lower case letter. For every relationship field defined by a <cmr-
field> element, there must be a pair of matching abstract accessor methods in
the bean class. One method in this pair must be defined with the method name
set<cmr-field-name>() where the first letter of the <cmr-field-
name> value is changed to upper case. The other method is defined as
get<cmr-field-name>() with the first letter of the <cmr-field-
name> value in upper case. So, for example, the <cmr-field-name> value
of homeAddress would have a corresponding abstract accessor methods
getHomeAddress() and setHomeAddress().

// bean class code
public abstract void setHomeAddress(AddressLocal address);
public abstract AddressLocal getHomeAddress();

// XML deployment descriptor declaration
<cmr-field>
 <cmr-field-name>homeAddress</cmr-field-name>
</cmr-field>

The return type of the get<cmr-field-name>() method and the parameter
type of the set<cmr-field-name>() must be exactly the same type. The
type must be either the remote or local interface of the bean that is referenced or

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 7

one of two java.util.Collection types. In the case of the
homeAddress relationship field, we are using the Address EJB’s local
interface, AddressLocal. Collection types are discussed in more detail in one-
to-many, many-to-one and many-to-many relationships later in the chapter.

Having established a basic understanding of how elements are declared in the
abstract persistence schema, you are now ready to discuss each of the seven
types of relationships in more detail. In the process we will be introducing
additional entity beans that have relationships with the Customer EJB including
the CreditCard, Phone, Ship, and Reservation EJBs.

It’s important to understand that although entity beans may have both local and
remote interfaces, a container-managed relationship field may only use the entity
bean’s local interface when persisting a relationship. So for example, it would be
illegal to define abstract accessor methods that have an argument type of
javax.ejb.EJBObject (remote interface type). All container-managed
relationships are based on javax.ejb.EJBLocalObject (local interface)
types.

Database Modeling

This chapter discusses several Through out this chapter different database table
schemas are discussed. These schemas are intended purely illustrative and are
used only to to demonstrate possible manifestations of relationships between
entities in the database; they are not prescriptive. For example, the Address-
Customer relationship is manifested by having ADDRESS table maintain foreign
keys into the CUSTOMER table. This is not how most databases will be organized
– instead they will use a link table or have the ADDRESS table maintain a foreign
key to the CUSTOMER. – hHowever, this schema shows is useful in showing
how different database schemas can be supported by EJB 2.0’s container-
managed persistence can support different database organizations.

Its assumed tThrough out this chapter, we assume that the database tables are
created before the EJB application.-- Iin other words, that the EJB application is
mapped to a legacy database. Some vendors will offer tools that generate tables
automatically according to the relationships defined among entity beans. These
tools may create schemas that are very different from the ones explored here. In
other cases, vendors that support established database schemas may not have
the flexibility to support the schemas illustrated in this chapter. As an EJB
developer, you must be flexible enough to adapt to the facilities provided by
your EJB vendor.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates8

One-to-one Unidirectional Relationship

An example of a one-to-one unidirectional relationship is the relationship
between the Customer EJB and the Address EJB defined in Chapter 6. In this
case, a Customer has exactly one Address and every Address has exactly one
Customer. Which bean references which determines the direction of navigation.
While the Customer has a reference to the Address, the Address doesn’t
reference the Customer. This is a unidirectional relationship because you can
only go from the Customer to the Address, and not the other way around. In
other words, an Address EJB has no idea who owns it. Figure 7-1 shows this
relationship.

[Figure 8-1 figure 7-1 and 6-1 are the same]

Figure 7-1: One-to-one Unidirectional Relationship

Relational Database Schema

One-to-one unidirectional relationships normally use a fairly typical schema in
relational databases where one table contains a foreign key (pointer) to another
table. The CUSTOMER table contains a foreign key to the ADDRESS table, but

the ADDRESS table doesn’t contain a foreign key to the CUSTOMER table. This
allows records in the ADDRESS table to be shared by other tables, a scenario
explored in section Many-to-many Unidirectional Relationships.FigureHolder

Figure 7-2: One-to-one Unidirectional Relationship in
RDBMS

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 9

Abstract Programming Model

As you learned in Chapter 6, the abstract accessor methods are used to define
relationship fields in the bean class. When an entity bean maintains a reference
to another bean, it defines a pair of abstract accessor methods to model that
reference. In unidirectional relationships, only one of the enterprise beans will
define abstract accessor methods. It’s called unidirectional because you can
only navigate the relationship one-way. Inside the CustomerBean class you
can call the getHomeAddress()/setHomeAddress() to access the
Address EJBs, but inside the AddressBean class there are no methods to
access the Customer EJB.

Although the relationship is unidirectional, the Address EJB can be shared
between relationship fields of the same enterprise bean, but it may not be shared
between Customer EJBs. If, for example, the Customer EJB defined two
relationship fields, billingAddress and homeAddress, as one-to-one
unidirectional relationships with the Address EJB, these two fields could
conceivably reference the same Address EJB.

public class CustomerBean implements javax.ejb.EntityBean {
 …
 public void setAddress(String street,String city,
 String state,String zip)
 throws CreateException {
 …

 address = addressHome.createAddress
 (street, city, state, zip);

 this.setHomeAddress(address);
 this.setBillingAddress(address);

 AddressLocal billAddr, homeAddr;

 if(billAddr.isIdentical(homeAddr))
 // always true

 …
 }
 …
}

It’s possible for two fields in a bean to reference the same relationship if the
relationship type is the same. In this case, both the homeAddress and
billingAddress have to be defined as one-to-one unidirectional
relationships that utilize the Address EJB’s local interface. At any time, if you
want to make the billingAddress different from the homeAddress, you
could be simply set it equal to a different Address EJB. Sharing a reference to

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates10

another bean between two relationship fields in the same entity is sometimes
very convenient. In order to support this type of relationship a new billing
address field might be added to the CUSTOMER table.

CREATE TABLE CUSTOMER
(
 ID INT PRIMARY KEY,
 LAST_NAME CHAR(20),
 FIRST_NAME CHAR(20),
 ADDRESS_ID INT,
 BILLING_ADDRESS_ID INT
}

However, it would not be possible to share the Address EJB between two
different Customer EJBs. If, for example, the home Address of Customer A were
assigned as the home Address of Customer B, the Address would be moved, not
shared, so that Customer A wouldn’t have a home Address any longer. As you
can see in Figure 7-3, Address 2 is initially assigned to Customer B, but becomes
disconnected when Address 1 is re-assigned to Customer B.

FigureHolder

Figure 7-3: Exchanging references in a One-to-One
Unidirectional Relationship

This seemingly strange side affect is simply a natural result of how the
relationship is defined. The Customer-to-Address EJB relationship was defined

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 11

as one-to-one, so the Address EJB is allowed to be referenced by only one
Customer EJB.

Abstract Persistence Schema

The XML elements for the Customer-Address relationship were already defined
in the Abstract Persistence Schema section, so we won’t go over them again.
The <ejb-relation> element used in that section declared a one-to-one
unidirectional relationship. If, however, the Customer EJB did maintain two
relationship fields with the Address EJB, homeAddress, and
billingAddress, each of these relationships would have to be described in
its own <ejb-relation> element.

<relationships>
 <ejb-relation>
 <ejb-relation-name>Customer-HomeAddress
 </ejb-relation-name>
 <ejb-relationship-role>
 …
 <cmr-field>
 <cmr-field-name>homeAddress
 </cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 …
 </ejb-relationship-role>
 <ejb-relation>
 <ejb-relation>
 <ejb-relation-name>Customer-BillingAddress
 </ejb-relation-name>
 <ejb-relationship-role>
 …
 <cmr-field>
 <cmr-field-name>billing
 </cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 …
 </ejb-relationship-role>
 <ejb-relation>
<relationships>

One-to-one Bi-directional Relationship

We can expand our Customer EJB to include a reference to a CreditCard EJB,
which maintains credit card information. The Customer EJB will maintain a
reference to its CreditCard EJB and the CreditCard EJB will maintain a reference

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates12

back to the Customer—this makes good sense, since a CreditCard should be
aware of who owns it. When each CreditCard has a reference back to one
Customer, and each Customer references one CreditCard, we have a one-to-one
bi-directional relationship.

Relational Database Schema

The CreditCard EJB will have a corresponding CREDIT_CARD table and we
neeed to add a CREDIT_CARD foreign key to the CUSTOMER table:

CREATE TABLE CREDIT_CARD
(
 ID INT PRIMARY KEY,
 EXP_DATE DATE,
 NUMBER CHAR(20),
 NAME CHAR(40),
 ORGANIZATION CHAR(20),
 CUSTOMER_ID INT
}

CREATE TABLE CUSTOMER
(
 ID INT PRIMARY KEY,
 LAST_NAME CHAR(20),
 FIRST_NAME CHAR(20),
 HOME_ADDRESS_ID INT,
 ADDRESS_ID INT,
 CREDIT_CARD_ID INT
)

One-to-one bi-directional relationships may model relational database schemas
where the two tables each hold a foreign key for the other table. Specifically, two
rows in different tables point to each other. Figure 7-4 illustrates how this
schema would be implemented for rows in the CUSTOMER and CREDIT_CARD
tables.

FigureHolder

Figure 7-4: One-to-one Bi-directional Relationship in
RDBMS

Its also possible for a one-to-one bi-directional relationship to be established
through a linking table where each foreign key column in the table must be
unique, this is convenient when you do not want to impose relationship on the
original tables. We will use linking tables in one-to-many and many-to-many
relationships later in the chapter.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 13

Abstract Programming Model

To model the relationship between the Customer and CreditCard, we’ll need to
declare a relationship field named customer in the CreditCardBean class.

public abstract class CreditCardBean extends javax.ejb.EntityBean {

 …

 // relationship fields
 public abstract CustomerLocal getCustomer();
 public abstract void setCustomer(CustomerLocal local);

 // persistent fields
 public abstract Date getExpirationDate();
 public abstract void setExpirationDate(Date date);
 public abstract String getNumber();
 public abstract void setNumber(String number);
 public abstract String getNameOnCard();
 public abstract void setNameOnCard(String name);
 public abstract String getCreditOrganization();
 public abstract void setCreditOrganization(String org);

 // standard call back methods
 …

}

In this case, we use the Customer EJB’s local interface (assume one has been
created) because relationship fields require local interfaces types. All the
relationships explored in the rest of this chapter assume local interfaces. Of
course, the limitation of using local interfaces instead of remote interfaces is that
you don’t have location transparency. All the entity beans must be located in the
same process or Java Virtual Machine. Although relationships fields using
remote interfaces are not supported in EJB 2.0, it’s likely that support for remote
relationship fields will be added in a subsequent version of the specification.

We can also add a set of abstract accessor methods in the CustomerBean
class for the creditCard relationship field.

public class CustomerBean implements javax.ejb.EntityBean {
 …
 public abstract void setCreditCard(CreditCardLocal card)
 public abstract CreditCardLocal getCreditCard();
 …
}

Although a setCustomer() method is available in the CreditCardBean,
we do not have to set the Customer reference on the CreditCard EJB explicitly.
When a CreditCard EJB reference is passed into the setCreditCard()
method on the CustomerBean class, the EJB Container will automatically

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates14

establish the customer relationship on the Address EJB to point back to the
Customer EJB.

public class CustomerBean implements javax.ejb.EntityBean {
 …
 public void setCreditCard(Date exp, String numb,
 String name, String org)
 throws CreateException {
 …

 card = creditCardHome.create(exp,numb,name,org);

 // the Address EJB’s customer field will be set automatically
 this.setCreditCard(card);

 Customer customer = card.getCustomer();

 if(customer.isIdentical(ejbContext.getEJBLocalObject())
 // always true

 …
 }
 …
}

Attempting to share a CreditCard in a one-to-one bi-directional relationship has
the same affect as in one-to-one unidirectional relationships. While the
CreditCard EJB may be shared between relationship fields of the same entity
identity, the CreditCard entity can’t be shared between different Customer EJBs.
Assigning the CreditCard of Customer A to Customer B disassociates that
CreditCard from A, and moves it to B.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 15

Figure holder

Figure 7-5: Exchanging references in a One-to-One Bi-
idirectional Relationship

Abstract Persistence Schema

The <ejb-relation> element that defined the Customer-to-CreditCard
relationship is very similar to the one used for the Customer-to-Address
relationship, except for one important difference: both ejb-relationship-
role elements have a cmr-field.

<relationships>
 <ejb-relation>
 <ejb-relation-name>Customer-CreditCard
 </ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-a-CreditCard
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>creditCard
 </cmr-field-name>
 </cmr-field>

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates16

 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 CreditCard-belongs-to-Customer
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CreditCardEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>customer
 </cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relation>
<relationships>

The fact that both participants in the relationship define <cmr-field>
elements (relationship fields) tells up immediately that the relationship is bi-
directional.

One-to-many Unidirectional Relationship

Entity beans can also maintain relationships with multiplicity. This means that
one entity bean can aggregate or contain many other entity beans. For example,
the Customer EJB may have many Phone EJBs, each of which represents a phone
number. This is very different from the simple one-to-one relationship. One-to-
many and many-to-many relationships require the developer to work with a
collection of references when accessing the relationship field, instead of a single
reference.

Relational Database

To illustrate a one-to-many unidirectional relationship, we will use a new entity
bean, the Phone EJB, for which we must define a table, the PHONE table.

CREATE TABLE PHONE
(
 ID INT PRIMARY KEY,
 NUMBER CHAR(20),
 TYPE INT,
 CUSTOMER_ID INT
}

One-to-many unidirectional relationships between the CUSTOMER and PHONE
tables could be manifested in a relational database in a variety of ways. For this
example, we chose to have the PHONE table include a foreign key to the
CUSTOMER table

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 17

The table of aggregated data can maintain a column of non-unique foreign keys
to the aggregating table. In the case of the Customer and Phone EJBs, the
PHONE table maintains a foreign key for the CUSTOMER table; one or more
PHONE records may contain foreign keys the same CUSTOMER record. Here the
pointer is reversed in the database, so that the PHONE records point to the
CUSTOMER records. Although the database has the PHONE records pointing to
the CUSTOMER records, the abstract programming model would have the
Customer EJB pointing to the Phone EJBs. The two schemas are reversed, so
how can it work? The container system will hide this reverse pointer so that it
appears as if the Customer is aware of the Phone number and not the other way
around. When you ask the container to return a Collection of Phone EJBs
(invoking the getPhoneNumgers() method), it will query the PHONE table
for all the records with a foreign key matching the Customer EJB’s primary key.

FigureHolder

Figure 7-6: One-to-many Unidirectional Relationship in
RDBMS using reverse pointers

This database schema, with reverse pointers, illustrates that the structure and the
relationships of the database can be very different than the relationships as
defined in the abstract programming model. In this case the tables are set up
somewhat in reverse, but the EJB container system will manage the beans to meet
the specification of the bean developer. This isn’t always possible; in some
cases, the database schema is incompatible with a desired relationship field.
When dealing with legacy databases, databases that were established before the
EJB application, a reverse pointer scenario like the one illustrated here is very
common, so supporting this kind of relationship mapping is important.

A simpler implementation could use a link table that maintains two columns with
foreign keys pointing to both the CUSTOMER and PHONE records. In this case
we can constrain the link table so that the PHONE foreign key column requires
unique entries, ensuring that every phone has only one customer, while the
Customer foreign key column may have duplicates. The advantage of the link
table is that it doesn’t impose the relationship between the CUSTOMER and the
PHONE onto either of the tables.

Abstract Programming Model

In the abstract programming model, we represent multiplicity by defining a
relationship field that can point to many entity beans. This is accomplished by
employing the same abstract accessor methods used for one-to-one
relationships, except the field type is either a java.util.Collection or
java.util.Set. The collection maintains a homogeneous group of local EJB
object references, which means it contains many references to one kind of entity
bean. The Collection type may contain duplicate references to the same
entity bean, while the Set type may not.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates18

For example, the Customer EJB may have many different phone numbers: a home
phone, work phone, cell phone, fax, etc. Instead of having a single relationship
field for each of these different Phone EJBs, the Customer EJB keeps all the
Phone EJBs in a Collection relationship field, which can be accessed
through abstract accessor methods:

public abstract class CustomerBean implements javax.ejb.EntityBean {

 …
 // relationship fields
 public java.util.Collection getPhoneNumbers();
 public void setPhoneNumbers(java.util.Collection phones);

 public AddressLocal getHomeAddress();
 public void setHomeAddress(AddressLocal local);

 …

The Phone EJB, like other entity beans, has a bean class and local interface as
shown in the next listing. Notice that the PhoneBean doesn’t provide a
relationship field for the Customer EJB. It’s a unidirectional relationship; the
Customer maintains a relationship with many Phone EJBs, but the Phone EJBs do
not maintain a relationship field back to the Customer. Only the Customer EJB is
aware of the relationship.

// The local interface for the Phone EJB
public interface PhoneLocal
extends javax.ejb.EJBLocalObject {
 public String getNumber();
 public void setNumber(String number);
 public byte getType();
 public void setType(byte type);
}

// The bean class for the Phone EJB
public class PhoneBean
implements javax.ejb.EntityBean {

 public Integer ejbCreate(String number, byte type){
 setNumber(number);
 setType(type);
 }
 public void ejbPostCreate(String number,byte type)
 {}

 // persistent fields
 public abstract String getNumber();
 public abstract void setNumber(String number);
 public abstract byte getType();
 public abstract void setType(byte type);

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 19

 // standard callback methods
 …
}

To illustrate how an entity bean uses a collection-based relationship field, we will
define a method in the Customer EJB class that allows clients to add new phone
numbers. The method, addPhoneNumber(), uses the phone number
arguments to create a new Phone EJB and then add that Phone EJB to a
Collection named phoneNumbers.

public abstract class CustomerBean implements javax.ejb.EntityBean {

 // business methods
 public void addPhoneNumber(String number, String type){

 InitialContext jndiEnc = new InitialContext();
 PhoneHomeLocal phoneHome = jndiEnc.lookup(“PhoneNumber”);
 PhoneLocal phone = phoneHome.create(number,type);

 Collection phoneNumbers = this.getPhoneNumbers();
 phoneNumbers.add(phone);

 }
 …
 // relationship fields
 public java.util.Collection getPhoneNumbers();
 public void setPhoneNumbers(java.util.Collection phones);

 …

What is important with the above example is that the Phone EJB is first created,
and then added to the phoneNumbers Collection. The phoneNumbers
Collection is obtained from the getPhoneNumbers() accessor method
and then the new Phone number EJB is added to the Collection just as you
would add any object to a collection. The simple act of adding the Phone EJB to
the Collection causes the EJB container to set the foreign key on the new
PHONE record so that it points back to the Customer EJB’s CUSTOMER record.
If a link table had been used, a new link record would have been created. From
this point forward, the new Phone EJB will be available from the
phoneNumbers Collection.

References in a Collection-based relationship field can also be updated or
removed from the relationship using the relationship field accessor method. For
example, the following code defines two methods in the CustomerBean class
that allow clients to remove or update phone numbers in the bean’s
phoneNumbers relationship field.

public abstract class CustomerBean implements javax.ejb.EntityBean {

 // business methods

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates20

 public void removePhoneNumber(String typeToRemove){

 Collection phoneNumbers = this.getPhoneNumbers();
 Iterator iterator = phoneNumbers.iterator();
 while(iterator.hasNext()){
 PhoneLocal phone = (PhoneLocal)iterator.next();
 if(phone.getType().equals(typeToRemove)){
 iterator.remove(phone);
 break;
 }
 }
 }
 public void updatePhoneNumber(String number,String typeToUpdate){
 Collection phoneNumbers = this.getPhoneNumbers();
 Iterator iterator = phoneNumbers.iterator();
 while(iterator.hasNext()){
 PhoneLocal phone = (PhoneLocal)iterator.next();
 if(phone.getType().equals(typeToUpdate)){
 phone.setNumber(number);
 break;
 }
 }
 }
 …
 // relationship fields
 public java.util.Collection getPhoneNumbers();
 public void setPhoneNumbers(java.util.Collection phones);

In the removePhoneNumber() business method, a Phone EJB with the
matching type was found and then removed from the collection. This has the
effect of actually disassociating the phone number from Customer EJB so that its
not referenced by any Customer. The phone number is not deleted from the
database, it’s just not referenced by a Customer.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 21

FigureHolder

Figure 7-9: Removing a bean reference from a relationships
field collection

The updatePhoneNumber() method actually modifies an existing Phone
EJB, changing its state in the database. The Phone EJB is still referenced by the
Collection, but its data has changed.

Both removePhoneNumber() and updatePhoneNumber() illustrate that
a collection-based relationship can be accessed and updated just like any other
Collection object. In addition, a java.util.Iterator can be obtained
from the Collection for looping operations. However, caution should be
exercised while using an iterator over a collection-based relationship. You must
not add or remove elements from the Collection while using its iterator. The
only exception to this rule is that the Iterator.remove() method may be
called to remove an entry. Although the Collection.add() and
Collection.remove() methods can be used in other circumstances,
calling these methods while an iterator is in use will result in a
java.util.IllegalStateException exception.

If the phoneNumbers relationship field has never had any beans added to it,
the getPhoneNumbers() method will return an empty Collection.
Multiplicity relationship fields never return null. The Collection object
used with the relationship field is implemented by the container system and is
proprietary to the vendor and tightly coupled with the inner workings of the
container. This allows the EJB container to implement performance

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates22

enhancements like lazy loading or optimistic concurrency seamlessly, without
exposing those proprietary mechanisms to the bean developer. Because the
Collection is implemented and tightly coupled to the vendor’s EJB
container, its illegal to use application defined Collection objects in
relationship fields. For example, it is illegal to create a new Collection object
and then attempt to add that Collection object to the Customer EJB using
the setPhoneNumbers() method.

public void addPhoneNumber(String number, String type){

 …
 PhoneLocal phone = phoneHome.create(number,type);

 Collection phoneNumbers = java.util.Vector();
 phoneNumers.add(phone);

 // this is illegal. An exception will be thrown
 this.setPhoneNumbers(phoneNumbers);

}
// relationship fields
public java.util.Collection getPhoneNumbers();
public void setPhoneNumbers(java.util.Collection phones);

We have used the getPhoneNumbers() method extensively but have not
yet used the setPhoneNumbers(). In most cases, this method will not be
used, because it updates an entire collection of phone numbers. However, in
some scenarios it can be very useful for exchanging like relationships between
entity beans.

If two Customer EJBs want to exchange phone numbers, they can do so in a
variety of ways. The most important thing to keep in mind is that a Phone EJB,
as the subject of the one-to-many unidirectional relationship, may only reference
one Customer EJB. So a Phone EJB cannot be shared between Customer EJBs. It
can be copied, so that both Customers have Phone EJBs with similar data, but
the Phone EJB itself cannot be shared.

Imagine, for example, that Customer A wants to transfer all of its phone numbers
to Customer B. It can accomplish this by using the setPhoneNumbers()
method of Customer B as shown in the listing below. (We assume the Customer
EJBs are interacting through their local interfaces.)

Customer customerA = … get Customer A
Customer customerB = … get Customer B

Collection phonesA = customerA.getPhoneNumbers();
customerB.setPhoneNumbers(phonesA);

if(customerA.getPhoneNumbers().isEmpty())
 // this will be true

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 23

if(customerB.getPhoneNumbers().equals(phonesA))
 // this will be true

As the previous code and Figure 7-10 illustrate, passing one collection-based
relationship to another actually disassociates those relationships from the first
bean and associates them with the second. In addition, if the second already had
a Collection of Phone EJBs in its phoneNumbers relationship field, those
beans are bumped out of the relationship and disassociated from the bean.

FigureHolder

Figure 7-10: Exchanging a relationship collection in a One-
to-One unidirectional Relationship

The result of this exchange may be counterintuitive, but it is necessary to uphold
the unidirectional aspect of the relationship, which says that the Phone EJB may
only have one Customer EJB. This, at least, explains why Phone EJBs 1,2 and 3
don’t reference both Customer A and B, but it doesn’t explain why Phone EJBs 4,
5 and 6 disassociated from Customer B. Why isn’t Customer B associated with all
the Phone EJBs? The reason is purely a matter of semantics, since the relational
database schema wouldn’t technically prevent this from occurring. The act of
replacing one Collection with another by calling
setPhoneNumbers(Collection collection) implies that B’s initial
Collection object is no longer referenced, and is therefore not referenced by
any Customer.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates24

In addition to moving whole collection-based relationships between beans, it’s
also possible to move individual Phone EJBs between Customers, but again they
cannot be shared. For example, if a Phone EJB aggregated by Customer A is
added to the relationship collection of Customer B, that Phone EJB changes so
that it’s referenced by Customer B, and not A, as Figure 7-11 illustrates.

FigureHolder

Figure 7-11: Exchanging a bean in a One-to-One
unidirectional Relationship

One again, it’s the unidirectional aspect of the relationship that prevents Phone 1
from referencing both Customer A and B.

Abstract Persistence Schema

The abstract persistence schema for one-to-many unidirectional relationships
has a couple of significant changes when compared to the <ejb-relation>
elements seen so far, but these changes are easy to understand.

<relationships>
 <ejb-relation>
 <ejb-relation-name>Customer-Phones
 </ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-many-Phone-numbers

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 25

 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>phoneNumbers
 </cmr-field-name>
 <cmr-field-type>java.util.Collection
 </cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Phone-belongs-to-Customer
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>PhoneEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 <ejb-relation>
<relationships>

In the <ejb-relation> element, the multiplicity for the Customer EJB is
declared as One, while the multiplicity for the Phone EJB’s <ejb-
relationship-role> is Many. This obviously establishes the relationship
as one-to-many. The fact that the <ejb-relationship-role> for the
Phone EJB doesn’t specify a <cmr-field> element indicates that the one-to-
many relationship is unidirectional; the Phone EJB doesn’t contain a
reciprocating reference to the Customer EJB.

The most interesting change is the addition of the <cmr-field-type>
element in the Customer EJB’s <cmr-field> declaration. The <cmr-
field-type> must be specified for the bean that has a collection-based
relationship field (in this case the phoneNumbers field maintained by the
Customer EJB). The <cmr-field-type> can have one of two values,
java.util.Collection or java.util.Set, which are the allowed
collection-based relationships types. In a future specification, the allowed types
for collection-based relationships may be expanded to include
java.util.List and java.util.Map, but these are not supported yet.

& Exercise 7.1, Customer Relationships

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates26

The Cruise, Ship, and Reservation EJBs

To make things more interesting, we are going to introduce some more entity
beans so that we can model the remaining four relationships: Many-to-one
unidirectional, One-to-many bi-directional, and many-to-many unidirectional and
finally, many-to-many bi-directional.

In Titan’s reservation system every customer (a.k.a. passenger) can be booked
on one or more cruises. Each booking requires a reservation. A reservation may
be for one, or more passengers (usually 2). Each cruise requires exactly one ship,
but each ship may be used for many cruises through out the year. The following
diagram illustrates these relationships.

FigureHolder

Figure 7-12: Cruise, Ship & Customer Class Diagram

In the next four sections the relationships investigated will each refer back to the
above diagram and show how these relationships are manifested in EJB 2.0
container managed persistence.

Many-to-one Unidirectional Relationships

Many-to-one unidirectional relationships result when many entity beans
reference a single entity bean, but the referenced entity bean is unaware of the

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 27

relationship. In the Titian Cruise business, for example, the concept of a cruise
can be captured by a Cruise EJB. As shown in figure 7-12, each cruise has a
many to one relationship with a ship. This relationship is unidirectional; the
Cruise EJB will maintain a relationship with Ship EJB, but the Ship EJB is not
going to keep track of which Cruises it used for.

Relational Database Schema

The relational database schema for the cruise-to-ship relationship is fairly simple;
it requires that the CRUISE table maintain a foreign key column for the ship
table, where each row in the CRUISE table points to a row in the SHIP table.
The CRUISE and SHIP tables are defined below; Figure 7-13 shows the
relationship between these tables in the database.

An enormous about of data would be required to adequately describe an ocean
ship liner, but for the purposes of this book we will keep the definition of the
SHIP table very simply.

CREATE TABLE SHIP
(
 ID INT PRIMARY KEY,
 NAME CHAR(30),
 TONNAGE DECIMAL (8,2)
}

The CRUISE table maintains data on each cruise’s name, ship, and other
information that is not germaine to this discussion. (Other tables such as
RESERVATIONS, SCHEDULES, CREW, etc. would have relationships with the
CRUISE table through linking tables.) For our purposes we’ll keep it simple and
focus on a definition that useful for the examples in this book.

CREATE TABLE CRUISE
(
 ID INT PRIMARY KEY,
 NAME CHAR(30),
 SHIP_ID INT
}

FigureHolder

Figure 7-13: Many to One Unidirectional Relationship in
RDBMS

Abstract Programming Model

In the abstract programming model, the relationship field is of type ShipLocal
and is maintained by the Cruise EJB. This is not particularly interesting, as the
abstract accessor methods are similar to those defined in other examples.

public abstract class CruiseBean
implements javax.ejb.EntityBean {

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates28

 public Integer ejbCreate(String name,
 ShipLocal ship) {
 setName(name);
 }
 public void ejbPostCreate(String name,
 Ship shipLocal){
 setShip(ship);
 }
 public abstract void setName(String name);
 public abstract String getName();
 public abstract void setShip(ShipLocal ship);
 public abstract ShipLocal getShip();

 // EJB callback methods
 …
}

Notice that the Cruise EJB requires that a ShipLocal reference be passed as
an argument when the Cruise is created; this is perfectly natural since a cruise
cannot exist without a ship. According to the EJB 2.0 specification, relationship
fields cannot be modified or set in the ejbCreate() method. They must be
modifed in the ejbPostCreate(), a constraint that is followed in the
CruiseBean class.

The reason relationships are set in ejbPostCreate() and not
ejbCreate() is simple: In many cases it’s simpler for the EJB container to link
two beans together in a relationship after they both exist. Once the
ejbCreate() method executes, the CRUISE record has been inserted to the
database so that its relationship with the SHIP table can be established. This is
especially important when, for example, a link table is used to model
relationships. In that case, the link table may have referential integrity constraints
that require both records to exist before they are linked1.

The Ship EJB is even simpler then the Cruise EJB. The relationship between the
Cruise and Ship EJB in unidirectional, so the Ship EJB doesn’t define any
relationship fields, just persistent fields.

public abstract class ShipBean
implements javax.ejb.EntityBean {

 public Integer ejbCreate(Integer primaryKey,String name,
 double tonnage) {
 setId(primaryKey);
 setName(name);
 setTonnage(tonnage);

1 The database insert that occurs between the ejbCreate() and ejbPostCreate()
would be done within the same transactional context as updates to the relationship field.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 29

 }
 public void ejbPostCreate(Integer primaryKey,String name,
 double tonnage) {
 }
 public abstract void setId(Integer id);
 public abstract Integer getId();
 public abstract void setName(String name);
 public abstract String getName();
 public abstract void setTonnage(double tonnage);
 public abstract double getTonnage();

 // EJB callback methods
 …
}

This should all be fairly mundane for you now. The impact of exchanging Ship
references between Cruise EJBs is equally obvious. Each Cruise may only
reference a single Ship, but each Ship may have many Cruise EJBs. If you take
the Ship A, which is referenced by some Cruise EJB, and pass set it to some
other Cruise, then both Cruise EJBs will reference the same Ship.

FigureHolder

Figure 7-14: Sharing a bean reference in a many-to-one
Unidirectional Relationship

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates30

Abstract Persistence Schema

The abstract persistence schema is very simple in a many-to-one unidirectional
relationship. It uses everything you have learned up until now, and should not
contain any surprises.

<ejb-jar>
...
<enterprise-beans>
 <entity>
 <ejb-name>CruiseEJB</ejb-name>
 <local-home>com.titan.cruise.CruiseLocalHome</local-home>
 <local>com.titan.cruise.CruiseLocal</local>
 …
 </entity>
 <entity>
 <ejb-name>ShipEJB</ejb-name>
 <local-home>com.titan.ship.ShipLocalHome</local-home>
 <local>com.titan.ship.ShipLocal</local>
 …
 </entity>
 …
</enterprise-beans>

<relationships>
 <ejb-relation>
 <ejb-relation-name>Cruise-Ship
 </ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Cruise-has-a-Ship
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>CruiseEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>ship
 </cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Ship-has-many-Cruises
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>ShipEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 <ejb-relation>

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 31

<relationships>

The <ejb-relationship-role> of the Cruise EJB defines its multiplicity
as Many and declares ship as its relationship field. The <ejb-
relationship-role> of the Ship EJB defines its multiplicity as Many and
contains no <cmr-field> declaration, because it’s a unidirectional
relationship.

One-to-many Bi-directional Relationships

One-to-many and many-to-one bi-directional relationships are the same thing, so
they are both covered in this section. A one-to-many bi-directional relationship
occurs when one entity bean maintains a collection-based relationship field with
another entity bean, and each entity bean referenced in the collection maintains a
single reference back to its aggregating bean. For example, in the Titan Cruise
system, each Cruise EJB maintains a reference to all the passenger reservations
made for that Cruise, and each Reservation EJB maintains a single reference to its
Cruise. The relationship is a many-to-one bi-directional relationship from the
perspective of the Cruise EJB, and a one-to-many bi-directional relationship from
the perspective of the Reservation EJB.

Relational Database Schema

The first table we need is the RESERVATION table, which is defined in the
following listing. Notice that the RESERVATION table contains, among other
things, a column that serves as a foreign key to the CRUISE table.

CREATE TABLE RESERVATION
(
 ID INT PRIMARY KEY,
 CRUISE_ID INT,
 AMOUNT_PAID DECIMAL (8,2),
 DATE_RESERVED DATE
}

While the RESERVATION table contains a foreign key to the CRUISE table, the
CRUISE table doesn’t maintain foreign keys back to the RESERVATION table.
The EJB container system can realize the relationship between the Cruise and
Reservations EJBs by querying the RESERVATION table. Explicit pointers from
the CRUISE table to the RESERVATION table are not required. This illustrates
once again the separation between the entity bean’s view of its persistent
relationships and the database’s actual implementation of those relationships.

The relationship between the RESERVATION and CRUISE tables is illustrated
in Figure 7-15.

FigureHolder

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates32

Figure 7-15: One-to-many/ many-to-one Bi-directional
Relationship in RDBMS

As an alternative, we could have used a link table that would declare foreign
keys to both the CRUISE and RESERVATION table. This link table would
probably impose a unique constraint on the RESERVATION foreign key to
ensure that each RESERVATION record had only one corresponding CRUISE
record.

Abstract Programming Model

To model the relationship between cruises and reservations, we’ll first define the
Reservation EJB, which maintains a relationship field to the Cruise EJB.

public abstract class ReservationBean
implements javax.ejb.EntityBean {

 public Integer ejbCreate(CruiseLocal cruise){
 }
 public void ejbPostCreate(CruiseLocal cruise){
 setCruise(cruise);
 }

 public abstract void setCruise(CruiseLocal cruise);
 public abstract CruiseLocal getCruise();

 public abstract void setAmountPaid(float amount);
 public abstract float getAmountPaid();
 public abstract void setDate(Date date);
 public abstract Date getDate();

 // EJB callback methods
 …
}

When a Reservation EJB is created, a reference to the Cruise for which it is
created must be passed to the create() method. Notice that the
CruiseLocal reference is set in the ejbPostCreate() and not the
ejbCreate() method. As in many-to-one unidirectional relationships, the
ejbCreate() method is not allowed to update relationship fields; that is the
job of the ejbPostCreate() method.

The Cruise EJB needs to have a collection-based relationship field added so that
it can reference all the Reservation EJBs that were created for it.

public abstract class CruiseBean
implements javax.ejb.EntityBean {
 …

 public abstract void setReservations(Collection res);

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 33

 public abstract Collection getReservations();

 public abstract void setName(String name);
 public abstract String getName();
 public abstract void setShip(ShipLocal ship);
 public abstract ShipLocal getShip();

 // EJB callback methods
 …
}

The interdependency between the Cruise and Reservation EJBs produces some
interesting results when creating a relationship between these beans. For
example, the act of creating a Reservation EJB automatically adds that entity
bean to the collection-based relationship of the Cruise EJB.

CruiseLocal cruise = … get CruiseLocal reference

ReservationLocal reservation = ReservationLocalHome.create(cruise);

Collection collection = cruise.getReservations();

if(collection.contains(reservation))
 // always returns true

This is a side effect of the bi-directional relationship. Any Cruise referenced by a
specific reservation has a reciprocal reference back to that reservation. If
Reservation X references Cruise A, Cruise A must automatically have a reference
to Reservation X. When you create a new Reservation EJB and set the Cruise
reference on that bean, the Reservation is automatically added to the Cruise
EJB’s reservation field.

Sharing references between beans has some of the ugly side affects we learned
about earlier. For example, passing a collection of reservations referenced by
Cruise A to Cruise B actually moves those relationships to Cruise B, so Cruise A
has no more Reservations.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates34

FigureHolder

Figure 7-16: Sharing an entire Collection in a one-to-many
bi-directional relationship

As was the case with Customer and Phone (Figure 7-10), this effect is usually
undesirable and should be avoided, as it displaces the set of Reservation EJBs
formerly associated with Cruise B.

You can move an entire collection from one bean and combine it with the
collection of another bean if you use the Collection.addAll() method as
shown in the following figure2. The effect is that Cruise A does not reference
any Reservation EJBs, while Cruise B references all of the Reservation EJBs—
those it referenced before the exchange as well as Cruise B’s Reservation EJBs.

2 The addAll() method must be supported by collection-based relationship fields in
EJB 2.0.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 35

FigureHolder

Figure 7-17: Using Collection.addAll() in a one-to-many bi-
directional relationship

The impact of moving individual Reservation EJBs from one Cruise to another is
similar to what we have seen with other one-to-many relationships: the
Reservation EJB is effectively moved from one Cruise to another. The result is
the same as was shown in one-to-many unidirectional relationships when a
Phone was moved from one Customer to another. See figure 7-11. It’s interesting
to note that the net affect of using Collection.addAll()in this scenario is
the same as using Collection.add() on the target collection for every
element in the source collection. In other words, you move every element from
the source collection to the target collection.

Once again, container-managed relationship fields, collection-based or otherwise,
must always use the javax.ejb.EJBLocalObject (local interface) of a
bean and never the javax.ejb.EJBObject (remote interface). It would be
illegal, for example, to try and add the remote interface of the Reservation EJB (if
it has one) to the Cruise EJB’s reservation Collection. Any attempt to add a
remote interface type to a collection-based relationship field will result in a
java.lang.IllegalArgumentException.

Abstract Persistence Schema

The abstract persistence schema for the Cruise-Reservation relationship doesn’t
introduce any new concepts. The Cruise and Reservation <ejb-

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates36

relationship-role> elements both have <cmr-field> elements. The
Cruise specifies One as its multiplicity, while Reservation specifies Many.

<ejb-jar>
...
<enterprise-beans>
 <entity>
 <ejb-name>CruiseEJB</ejb-name>
 <local-home>com.titan.cruise.CruiseLocalHome</local-home>
 <local>com.titan.cruise.CruiseLocal</local>
 …
 </entity>
 <entity>
 <ejb-name>ReservationEJB</ejb-name>
 <local-home>
 com.titan.reservations.ReservationLocalHome
 </local-home>
 <local>com.titan.reservation.ReservationLocal</local>
 …
 </entity>
 …
</enterprise-beans>

<relationships>
 <ejb-relation>
 <ejb-relation-name>Cruise-Reservation
 </ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Cruise-has-many-Reservations
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CruiseEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>reservations
 </cmr-field-name>
 <cmr-field-type>
 java.util.Collection
 </cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Reservation-has-a-Cruise
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>ReservationEJB</ejb-name>

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 37

 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>cruise
 </cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relation>
<relationships>

Many-to-many Bi-directional Relationship

Many-to-many bi-directional relationships occurs when many beans maintain a
collection-based relationship field with another bean, and each bean referenced
in the Collection maintains a collection-based relationship fields back to the
aggregating beans. For example, in Titan Cruises every Reservation EJB may
reference many Customers (a family can make a single reservation) and each
Customer may have many reservations (a person may make more than one
reservation in a year). This is an example of a many-to-many bi-directional
relationship; the customer keeps track of all of its reservations and each
reservation may be for many customers.

Relational Database Programming

The RESERVATION and CUSTOMER tables have already been established. In
order to establish a many-to-many bi-directional relationship, the
RESERVATION_CUSTOMER_LINK table is created. This table maintains two
columns: A foreign key column for the RESERVATION table and another foreign
key column for the CUSTOMER table.

CREATE TABLE RESERVATION_CUSTOMER_LINK
(
 RESERVATION_ID INT,
 CUSTOMER_ID INT,
}

The relationship between the CUSTOMER, RESERVATION and
CUSTOMER_RESERVATION_LINK table is illustrated in the following diagram.

FigureHolder

Figure 7-18: Many-to-many Bi-directional Relationship in
RDBMS

Many-to-many bi-directional relationships will always require a link in a
normalized relational database.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates38

Abstract Programming Model

To model the many-to-many bi-directional relationship between the Customer
and Reservation EJBs, we need to modify both bean classes to include
collection-based relationship fields.

public abstract class ReservationBean
implements javax.ejb.EntityBean {

 public Integer ejbCreate(CruiseLocal cruise
 Collection customers){
 }
 public void ejbPostCreate(CruiseLocal cruise
 Collection customers){
 setCruise(cruise);
 Collection myCustomers = this.getCustomers();
 myCustomers.addAll(customers);
 }

 public abstract void setCustomers(Set customers);
 public abstract Set getCustomers();
 …
}

The abstract accessor methods defined for the customers relationship field
declare the Collection type as java.util.Set. The Set type should contain
only unique Customer EJBs, and no duplicates. Duplicate customers would
introduce some interesting but undesirable side effects in Titan’s reservation
system. To maintain a valid passenger count, and to avoid over-charging
customers, Titan requires that a customer only be booked once in the same
reservation. The Set collection type expresses this restriction. The
effectiveness of the Set collection type depends largely on referential integrity
constraints established in the underling database. Referential integrity of the
database and its affect on relationships fields is explored at the end of this
chapter.

In addition to adding the getCustomers()/setCustomers() abstract
accessors, the ejbCreate()/ejbPostCreate() methods were modified to
take a Collection of Customer EJBs. When a Reservation EJB is created, it
must be provided with a list of Customer EJBs that it will add to its own Customer
EJB collection. As is always the case, container-managed relationships field
cannot be modified in the ejbCreate() method. It’s the job of the
ejbPostCreate() method to modify container-managed relationships fields
when a bean is created.

The Customer EJB is also modified to maintain a collection-based relationship
with all of its reservations. While the idea of a Customer having multiple
reservations may seem odd, it’s possible for someone to book more than one

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 39

cruise in advance. In order to capture this possibility, the Customer EJB is
enhanced to include a reservations relationship field:

public abstract class CustomerBean
implements javax.ejb.EntityBean {
 …
 // relationship fields
 public abstract
 void setReservations(Collection reservations);

 public abstract Collection getReservations();
 …

When a Reservation EJB is created, it is passed references to both its Cruise and
a collection of Customers. Because the relationship is defined as bi-directional,
the EJB container will automatically add the Reservation EJB to the reservations
relationship field of the Customer EJB. The following code fragment
illustrates this:

Collection customers = .. get local Customer EJBs
CruiseLocal cruise = .. get a local Cruise EJB
ReservationLocalHome = .. get local Reservation home

ReservationLocal myReservation =
 resHome.create(cruise, customers);

Iterator iterator = customers.iterator();
while(iterator.hasNext()){
 CustomerLocal customer = CustomerLocal)iterator.next();
 Collection reservations customer.getReservations();
 if(reservations.contains(myReservation))
 // this will always be true
}

Exchanging bean reference between many-to-many bi-directional relationships
results in true sharing, where each relationship maintains a reference to the
transferred collection. This is illustrated in figure 7-19.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates40

FigureHolder

Figure 7-19: Using Collection.addAll() in many-to-many bi-
directional relationship

Of course, using the setCustomers() or setReservations() method
will end up displacing the references of the target collection, but it doesn’t
impact the original relationship of the source collection. Figure 7-20 illustrates.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 41

FigureHolder

Figure 7-20: Sharing an entire Collection in a many-to-many
bi-directional relationship

After the setCustomers() method is invoked on Reservation D, Reservation
D’s customers change to Customer EJBs 1, 2, and 3. Customer EJBs 1, 2, and 3
were also referenced by Reservation A before the sharing operation and remain
referenced after it’s complete. In fact, only the relationships between
Reservation D and Customers 4, 5 and 6 are impacted. The relationship between
Customer EJBs 4,5 and 6 and other Reservation EJBs are not affected by the
sharing operation. This is a unique property of many-to-many relationships
(both bi-directional and unidirectional); operations on the relationship fields only
affect those specific relationships, they do not impact either party’s relationships
with other beans of the same relationship type.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates42

Abstract Persistence Schema

The abstract persistence schema of a many-to-many bi-directional relationship
introduces nothing new and so it should have no surprises. Each ejb-
relationship-role specifies Many as its multiplicity and declares a
cmr-field of a specific Collection type.

<ejb-jar>
...
<enterprise-beans>
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 <local-home>com.titan.customer.CustomerLocalHome</local-home>
 <local>com.titan.customer.CustomerLocal</local>
 …
 </entity>
 <entity>
 <ejb-name>ReservationEJB</ejb-name>
 <local-home>
 com.titan.reservation.ReservationLocalHome
 </local-home>
 <local>com.titan.reservation.ReservationLocal</local>
 …
 </entity>
 …
</enterprise-beans>

<relationships>
 <ejb-relation>
 <ejb-relation-name>Customer-Reservation
 </ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-many-Reservations
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>reservations
 </cmr-field-name>
 <cmr-field-type>
 java.util.Collection
 </cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Reservation-has-many-Customers

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 43

 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>ReservationEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>customers
 </cmr-field-name>
 <cmr-field-type>
 java.util.Set
 </cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relation>
<relationships>

Many-to-many Unidirectional Relationship

Many-to-many unidirectional relationships occur when many beans maintain a
collection based relationship with another bean, but the beans referenced in the
Collection do not maintain a collection-based relationship back to the
aggregating beans. In Titan’s reservation system, every reservation is assigned
a cabin on the ship. This allows customers to reserve a specific cabin (a deluxe
suite or cabin with sentimental significance) on the Ship. In this case, each
reservation may be for more then one cabin, since each reservation can be for
more then one customer. An example is a family that makes a reservation for five
for two adjacent cabins (one for the kids and the other for the parents).

While the reservation will want to keep track of the cabins it reserves, it’s not
necessary for the cabins to track all the reservations made by all the cruises, so
the relationship is unidirectional. The Reservation EJBs reference a collection of
Cabin beans, but the Cabin beans do not maintain references back to the
Reservations.

Relational Database Schema

Our first order of business is to declare a CABIN table.

CREATE TABLE CABIN
(
 ID INT PRIMARY KEY,
 SHIP_ID INT,
 NAME CHAR(10),
 DECK_LEVEL INT,
 BED_COUNT INT
}

Notice that the CABIN table maintains a foreign key for the SHIP table. While
this relationship is important, it’s not explored because the relationship type

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates44

(one-to-many bi-directional) is already covered. The relationship is included in
Figure 8-12, however, for completeness. Another interesting aspect of the
CABIN table is its primary key.

In order to accommodate the many-to-many unidirectional relationship between
the RESERVATION and CABIN table, we will need a
RESERVATION_CABIN_LINK table.

CREATE TABLE RESERVATION_CABIN_LINK
(
 RESERVATION_ID INT,
 CABIN_ID INT,
}

The relationship between the CABIN records and the RESERVATION records
through the RESERVATION_CABIN_LINK table is illustrated in Figure 7-21.

FigureHolder

Figure 7-21: Many-to-many Unidirectional Relationship in
RDBMS

Abstract Programming Model

In order to model this relationship need to add a collection-based relationship
field for Cabin beans to the Reservation EJB.

public abstract class ReservationBean
implements javax.ejb.EntityBean {

 …

 public abstract void setCabins(Set customers);
 public abstract Set getCabins();
 …
}

In addition, we need to define a Cabin bean. Notice that the Cabin bean doesn’t
maintain a relationship back to the Reservation EJB. The lack of a container-
managed relationship field for the Reservation EJB tells us the relationship is
unidirectional.

public abstract class CabinBean
implements javax.ejb.EntityBean {

 public Integer ejbCreate(ShipLocal ship,
 String name){
 this.setName(name);
 }
 public void ejbPostCreate(ShipLocal ship,
 String name){
 this.setShip(ship);

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 45

 }
 public abstract void setShip(ShipLocal ship);
 public abstract ShipLocal getShip();
 public abstract void setName(String name);
 public abstract String getName();
 public abstract void setBedCount(int count);
 public abstract int getBedCount();
 public abstract void setDeckLevel(int level);
 public abstract int getDeckLevel();

 // EJB callback methods
}

Although the Cabin bean doesn’t define a relationship field for the Reservation
EJB, it does define a one-to-many bi-directional relationship for the Ship EJB.

The effect of exchanging relationship fields in a many-to-many unidirectional
relationship is basically the same as with many-to-many bi-directional
relationships. Use of the Collection.addAll() operation and sharing
entire collections has the same net effect as we noted in the section on many-to-
many bi-directional relationships. The only difference is that the arrows only
point one way.

If a reservation removes a Cabin bean from its collection-based relationship field,
the operation doesn’t affect other Reservation EJBs that reference that same
Cabin bean. This is illustrated in Figure 7-22.

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates46

FigureHolder

Figure 7-22: Removing beans in many-to-many
unidirectional relationship

If you performed this exact same operation on the many-to-many bi-directional
relationship, the result would be the same except the arrows would point both
ways.

Abstract Persistence Schema

The abstract persistence schema for the Reservation-Cabin relationship holds no
surprises whatsoever. The multiplicity of both ejb-relationship-role
elements is Many, but only the Reservation EJB’s ejb-relationship-
role defines a cmr-field.

<ejb-jar>

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 47

...
<enterprise-beans>
 <entity>
 <ejb-name>CabinEJB</ejb-name>
 <local-home>com.titan.cabin.CabinLocalHome</local-home>
 <local>com.titan.cabin.CabinLocal</local>
 …
 </entity>
 <entity>
 <ejb-name>ReservationEJB</ejb-name>
 <local-home>
 com.titan.reservation.ReservationLocalHome
 </local-home>
 <local>com.titan.reservation.ReservationLocal</local>
 …
 </entity>
 …
</enterprise-beans>

<relationships>
 <ejb-relation>
 <ejb-relation-name>Cabin-Reservation
 </ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Cabin-has-many-Reservations
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>CabinEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Reservation-has-many-Customers
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>ReservationEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>cabins
 </cmr-field-name>
 <cmr-field-type>
 java.util.Set
 </cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relation>
<relationships>

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates48

& Exercise 7.2, Reservation relationships

Collocation and the Deployment Descriptor

Only entity beans that are deployed together with the same deployment
descriptor can have relationships with each other. When deployed together, the
entity beans are seen as a single deployment unit or application, in which all the
entities are using the same database and are co-located in the same Java virtual
machine. This restriction makes it possible for the EJB container system to use
lazy loading, optimistic concurrency, and other performance optimizations.
While it would be technically possible to support relationships across
deployments, or even container systems, the difficulty of doing so combined
with the expected degradation in performance was reason enough to limit the
relationship fields to those entity beans that are deployed together. In the
future, entity relationships may be expanded to include remote reference to
entities deployed in other containers or other JARs in the same container, but
remote references are not allowed as relationship types in Enterprise JavaBeans
2.0.

Cascade Delete and Remove

As you learned in Chapter 5, invoking the remove() operation on the EJB
home or EJB object of an entity bean deletes that entity bean’s data from the
database. This, of course, has an impact on the relationships that the entity has
with other entity beans.

When an entity bean is deleted, the EJB container first removes it from any
relationships it maintains with other entity beans. Consider, for example, the
relationship between the entity beans we have created in this chapter as shown
in Figure 7-23.

[Figure 7-23 (note this is the same figure as figure 8-1)]

Figure 7-23: Titan Cruises Class Diagram

If an EJB application invokes remove() on a CreditCard EJB, then the
Customer EJB that referenced it would now have a value of null for its
creditCard relationships field, as the following code fragment illustrates.

CustomerLocal customer = … get Customer EJB
CreditCardLocal creditCard = customer.getCreditCard();
creditCard.remove();
if(custsomer.getCreditCard() == null)
 //This will always be true;

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates 49

The moment the remove() operation is invoked on the CreditCard EJB’s local
reference, the bean is disassociated from the Customer bean and is deleted. The
impact of removing a bean is even more interesting when it participates in several
relationships. For example, invoking remove() on a Customer EJB will impact
the relationship fields of Reservation, Address, Phone, and CreditCard EJBs.
With single EJB object relationship fields, such as the CreditCard EJB’s reference
to the Customer EJB, the field is set to null for the entity bean that was
removed. With collection-based relationship fields, the entity that is removed is
no longer a part of the collection. This was shown in Figure 7-9 of the One-to-
many Unidirectional Relationship section, where a Phone EJB was removed.

In some cases, you want the removal of an entity bean to cause a cascade of
deletions. For example, if a Customer EJB is removed, we would want the
Address EJBs referenced in its billingAddress and homeAddress
relationships field to be deleted. This would avoid the problem of disconnected
Address EJBs in the database. The <cascade-delete> element requests
cascade deletion; it can be used with one-to-one or one-to many relationships.
Here’s how to modify the relationship declaration for the Customer and Address
EJBs to obtain cascade delete:

<relationships>
 <ejb-relation>
 <ejb-relationship-role>
 <multiplicity>One</multiplicity>
 <role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </role-source>
 <cmr-field>
 <cmr-field-name>homeAddress</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <multiplicity>One</multiplicity>
 <cascade-delete/>
 <role-source>
 <dependent-name>Address</dependent-name>
 </role-source>
 </ejb-relationship-role>
 </ejb-relation>
 </relationships>

Without specifying a cascading delete, the ADDRESS record associated with the
Address EJB will not be removed when the CUSTOMER record is deleted. This
can result in a disconnected dependent object class, which means that the data is
not linked to anything. In some cases we want to specify a cascading delete to
ensure that there are no detached entities following a removal. In other cases,
however, we do not want to use a cascading delete. If, for example, the
ADDRESS record associated with an entity bean is shared by other CUSTOMER

DRAFT, 10/21/017/26/20017/12/20017/12/2001

Copyright (c) 2001 O'Reilly & Associates50

records, then we probably do not want it deleted when the CUSTOMER record is
deleted. It’s easy to imagine two different customers residing at the same
residence—sharing address records can be useful.

Cascade delete can only be specified on an entity bean that has a single
reference to the entity that is being deleted. For example, the <ejb-
relationship-role> for the Phone EJB in the Customer-Phone
relationship can have a cascade deleted specified if the Customer is deleted,
because each Phone EJB is referenced by only one Customer. However, the
Customer EJB cannot have a cascade delete specified in the Customer-Phone
relationships, because a Customer maybe referenced by many Phone EJBs. The
entity bean that causes the cascade delete must have a multiplicity of one in the
relationships.

Cascade delete only affects the relationship for which it is specified. So for
example, if cascade delete is specified for the Customer-Phone relationships but
not the Customer-HomeAddress relationships, then detecting a Customer will
cause all the Phone EJBs to be deleted but not the Address EJBs. The Address
EJBs must specify their own cascade-delete element if they want to be deleted.

Cascade deletes can propagate through relationships in a chain reaction. For
example, if the Ship-Cruise relationships specifies cascade-delete on the Cruise
relationships field and the Cruise-Reservation relationships specifies cascade-
delete on the Reservation relationship field, then when a Ship is removed all of its
Cruises and Reservations for those cruises will be removed.

Cascade delete can be a very powerful tool, but it’s also dangerous. It should be
handled with care. The effectiveness of a cascade delete depends in large part
on the referential integrity of the database. For example, the database may be set
up so that a foreign key must point to an existing record, which could result in a
transaction rollback if deleting an entity’s data would violate that restriction.

& Exercise 7.3, Cascade Deletes

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 1

8
EJB 2.0 CMP: EJB-QL

Find methods have been a part of EJB since EJB 1.0. These methods are defined
on the entity bean’s local and remote home interfaces and are used for locating
one or more entity beans. All entity beans must have a
findByPrimaryKey() find method, which takes the primary key of the
entity bean as an argument and returns a reference to an entity bean. For
example, the Cruise EJB defines the standard primary key find method in its home
interface:

public CruiseLocalHome extends javax.ejb.EJBLocalHome
{
 public Integer create(String name,ShipLocal ship);

 public CruiseLocal findByPrimaryKey(Integer key);

}

In addition to the mandatory findByPrimaryKey() methods, entity bean
developers may also define as many custom find methods as they like. For
example, the Cruise EJB might define a method (e.g., findByName()) for
locating a Cruise with a specific name.

public CruiseLocalHome extends javax.ejb.EJBLocalHome
{
 public Integer create(String name,ShipLocal ship)
 throws CreateException;

 public CruiseLocal findByPrimaryKey(Integer key)
 throws FindException;

 public CruiseLocal findByName(String cruiseName)
 throws FindException;

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 2

}

The option of defining custom find methods is nothing new, but until EJB 2.0
there was no standard way of defining how the find methods should work. The
behavior of the findByPrimaryKey() method is obvious: Find the entity
bean with the same primary key. However, the behavior of the custom find
methods is not obvious, so addition information is needed to tell the container
how these custom find methods should behave. EJB 1.1 didn’t provide any
standard mechanism for declaring how custom find methods should behave, so
vendors came up with their own query languages and methods. This resulted in
non-portability and basically guesswork on the part of the deployer in
determining how to execute queries of find methods. EJB 2.0 introduces EJB QL,
which provides a standard query language for declaring the behavior of custom
find methods, and adds new select methods. Select methods are similar to find
methods, but they are more flexible and are visible to the bean class only—like
private find methods. Find and select methods are collectively referred to as
query methods in EJB 2.0.

EJB QL is a declarative query language that is similar to the Structured Query
Language (SQL) used in relational databases, but it is tailored to work with the
abstract persistence schema of entity beans in EJB 2.0.

EJB QL queries are defined in terms of the abstract persistence schema of entity
beans and not the underlying data store, so they are portable across databases
and data schemas. When an entity bean’s abstract bean class is deployed by
the container, the EJB QL statements are typically examined and translated into
data access code optimized for that container’s data store. At run time, query
methods defined in EJB QL typically execute in the native language of the
underlying data store. For example, a container that uses a relational database for
persistence might translate EJB QL statements into standard SQL 92, while an
object-database container might translate the same EJB QL statements into an
object query language.

EJB QL makes it possible for bean developers to describe the behavior of query
methods in an abstract fashion, making queries portable across databases and
EJB vendors. The EJB QL language is easy for developers to learn, yet precise
enough to be interpreted into native database code. It is a fairly rich and flexible
query language that empowers developers at development time, while executing
in fast native code at run time. However, EJB QL is not a silver bullet and its not
without its problems, as we’ll see later in this chapter.

Declaring EJB QL

EJB QL statements are declared in <query> elements of entity bean’s
deployment descriptor. In the following listing, you see that the

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 3

findByName() method defined in the Customer bean local home interface has
its own query element and EJB QL statement.

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>CruiseEJB</ejb-name>
 …
 <reentrant>False</reentrant>
 <abstract-schema-name>Cruise</abstract-schema-name>
 <cmp-version>2.x</cmp-version>
 <cmp-field>
 <field-name>name</field-name>
 </cmp-field>
 <primkey-field>id</primkey-field>
 <query>
 <query-method>
 <method-name>findByName</method-name>
 <method-params>java.lang.String</method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Cruise c WHERE c.name = ?1
 </ejb-ql>
 </query>
 </entity>
 </enterprise-beans>

The <query> element contains two primary elements. The <query-
method> element identifies the find method of the remote and/or local home
interface, and the <ejb-ql> element declares the EJB QL statement. The
<query> element binds the EJB QL statement to the proper find method. Don’t
worry too much about the EJB QL statement just yet; we’ll cover that in detail
starting in the next section.

Every entity bean that will be referenced in an EJB QL statement must have a
special designator called the abstract schema name , which is declared by the
<abstract-schema-name> element. The <abstract-schema-name>
elements must have unique names; no two entity beans may have the same
abstract schema name. In the entity element that describes the Cruise EJB, the
abstract schema name is declared as Cruise. The <ejb-ql> element
contains an EJB QL statement that uses this identifier in its FROM clause.

In Chapter 7 you learned that the abstract persistence schema of an entity bean
is defined by its <cmp-fields> and <cmr-field> elements. The abstract
schema name is also an important part of the abstract persistence schema. EJB
QL statements are always expressed in terms of the abstract persistence schema
of entity beans. It uses the abstract schema names to identify entity bean types,
and the container-managed persistence (CMP) fields to identify specific entity

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 4

bean data and container-managed relationship (CMR) fields to create paths for
navigating from one entity bean to another.

The Query Methods

Find Methods

Find methods are invoked by EJB clients (applications or beans) in order to
locate and obtain remote or local EJB object reference of a specific entity bean.
For example, you might call the findByPrimaryKey() method on the
Customer EJB’s home interface to obtain a reference to a specific Customer bean.

Find methods are always declared in the local and remote home interfaces of an
entity bean. As you have already learned, every home interface must define a
findByPrimaryKey() method; this is a type of single-entity find method.
Specifying a single remote or local return type for a find method indicates that
the method only locates one bean. findByPrimaryKey() obviously returns
one remote reference because there is a one-to-one relationship between a
primary key’s value and an entity. Other single-entity find methods can also be
declared. For example, the Customer EJB could declare several single-entity find
methods, each of which supports a different query.

public interface CustomerHome extends javax.ejb.EJBHome {
 public Customer findByPrimaryKey(Integer primaryKey)
 throws javax.ejb.FindException;

 public Customer findByName(String lastName, String firstName)
 throws javax.ejb.FindException;

 public Customer findBySSN(String socialSecurityNumber)
 throws javax.ejb.FindException;
}

Bean developers can also define multi-entity find methods, which return a
collection of EJB objects. The following listing shows a couple of multi-find
methods:

public interface CustomerLocalHome extends javax.ejb.EJBLocalHome {
 public CustomerLocal findByPrimaryKey(Integer primaryKey)
 throws javax.ejb.FindException;

 public Collection findByCity(String city,String state)
 throws javax.ejb.FindException;

 public Set findByGoodCredit()
 throws javax.ejb.FindException;
}

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 5

To return several references from a find method, you must use the
java.util.Collection or java.util.Set collection types1. A find
method that uses a java.util.Set return type will not have duplicate
values, while a java.util.Collection return type may have duplicates.
Multi-entity finds return an empty Collection or Set if no matching beans
can be found.

Enterprise JavaBeans specifies that all query methods (find or select) must be
declared as throwing the javax.ejb.FindException. Find methods that
return a single remote reference throw a FindException if an application
error occurs and a javax.ejb.ObjectNotFoundException if a
matching bean cannot be found. The ObjectNotFoundException is a
subtype of FindException and is only thrown by single-entity find methods.

Every find method declared in the local or remote home interface of a CMP 2.0
entity bean must have a matching query declaration in the bean’s deployment
descriptor. The following snippet from the Customer EJB’s deployment
descriptor shows declarations two of find methods, findByName() and
findByGoodCredit(), from the examples above.

<query>
 <query-method>
 <method-name>findByName</method-name>
 <method-intf>Home</method-intf>
 <method-params>
 <method-params>java.lang.String</method-params>
 <method-params>java.lang.String</method-params>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.lastName = ?1 AND c.firstName = ?1
 </ejb-ql>
</query>
<query>
 <query-method>
 <method-name>findByGoodCredit</method-name>
 <method-intf>LocalHome</method-intf>
 <method-params></method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.hasGoodCredit = TRUE

1 As of EJB 2.0, these are the only collection types supported for multi-entity query
methods. Others, like java.util.List and java.util.Map, may be added in
future versions.

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 6

 </ejb-ql>
</query>

The query elements in the deployment descriptor allow the bean developer to
associate EJB QL query statements with specific find methods. When the bean
is deployed, the container attempts to match the find method declared in each of
the query elements with find methods in entity bean’s local and home interfaces.
This is done by matching the values of the <method-name> and <method-
params> elements with method names and parameter types (ordering is
important) in the home interfaces.

The <method-intf> element specifies which home interface (local or remote)
the method is defined in. If the find method is declared in the local home
interface, then the value LocalHome is used. If the find method is declared in
the remote home interface, then the value Home is used. This element is only
needed when two find methods collide, i.e., two find methods in the local and
remote home interfaces have the same method name and parameters. Using the
method-intf element allows the bean developer to specify different EJB QL
statements for each method. If <method-intf> not specified, and there is a
collision, the query declaration will apply to both of the colliding methods. The
container will take care of returning the proper type for each colliding query
method. The remote home will return a one or more remote EJB objects, and the
local home will return one or more local EJB objects. This allows you to define
the behavior of colliding local and remote home find methods using a single
query element, which is convenient if you want local clients to have access to
the same find methods as remote clients.

The <ejb-ql> element specifies the EJB QL statement for a specific find
method. You may have noticed that the EJB QL statement can use input
parameters (?1,?2,…?n), which are mapped to the <method-params> of
the find method, as well as literals (e.g. TRUE). The use of input parameters and
literals will be discussed in more detail through out this chapter.

All single-entity and multi-entity find methods must be declared in <query>
elements in the deployment descriptor, except for findByPrimaryKey()
methods. Query declarations for findByPrimaryKey() methods are not
necessary, and in fact, are forbidden. It’s obvious what this method should do,
and you may not try to change its behavior.

Select Methods

Select methods are very similar to find methods, but they are more versatile and
can only be used internally by the bean class. In other words, select methods are
private query methods; they are not exposed to entity bean’s clients through the
home interfaces.

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 7

Select methods are declared as abstract methods using the naming convention
ejbSelect<METHOD-NAME>. The following code shows four select methods
declared in the AddressBean class.

public class AddressBean implements javax.ejb.EntityBean {
 …
 public abstract String ejbSelectMostPopularCity()
 throws FindException;

 public abstract Set ejbSelectZipCodes(String state)
 throws FindException;

 public abstract Collection ejbSelectAll()
 throws FindException;

 public abstract CustomerLocal ejbSelectCustomer(AddressLocal addr)
 throws FindException;
 …

Select methods can return the value of CMP fields. The
ejbSelectMostPopularCity() select, for example, returns a single
String value, the name of the city referenced by the most Address EJBs. The
ejbSelectZipCodes() method returns a java.util.Set of String
values, which is a unique collection of all the zip codes declared for Address
EJB’s for a specific state.

Select methods can also return EJB objects, just like find methods. The
ejbSelectAll() method, for example, returns a
java.util.Collection of EJB objects representing all the Address EJBs
in the system. However, unlike find methods, select methods can return any type
of EJB object, and are not limited to the type of bean they are declared in. The
ejbSelectCustomer() method, for example, returns the remote EJB object
representing the Customer bean assigned to the specified Address EJB. Notice
that the bean type returned is CustomerLocal, not AddressLocal.

Like find methods, select methods can declare zero or more arguments, which are
used to limit the scope of the query. The ejbSelectZipCodes() and the
ejbSelectCustomer() methods both declare arguments used to limit the
scope of the results. These arguments will be used as input parameters in the
EJB QL statements assigned to the select methods.

Select methods can return local or remote EJB objects. For single-entity select
methods, the type is determined by the return type of the ejbSelect method.
The ejbSelectCustomer() method, for example, returns a local EJB object,
the CustomerLocal. This method could have easily been defined to return a
remote EJB object by changing the return type to the Customer bean’s remote
interface (CustomerRemote). Multi-entity select methods, which return a
collection of EJB objects, return a collection of local EJB objects by default.

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 8

However, the bean provider can override this default behavior using a special
element, the <result-type-mapping> element, in select method’s
<query> element.

The following portion of an XML deployment descriptor declares two of the
select methods from the above example. Notice that they are exactly the same as
the find method declarations. Find and select methods are declared in the same
part of the deployment descriptor, within an <entity> bean element, within the
same <query> element.

<query>
 <query-method>
 <method-name>ejbSelectZipCodes</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT a.homeAddress.zip FROM Address AS a
 WHERE a.homeAddress.state = ?1
 </ejb-ql>
</query>
<query>
 <query-method>
 <method-name>ejbSelectAll</method-name>
 <method-params></method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Address AS a
 </ejb-ql>
</query>

The name given in each <method-name> element must match one of the
ejbSelect<METHOD-NAME>() methods defined in the bean class. This is
different from find methods of CMP 2.0 beans, which do not have a
corresponding ejbFind method in the bean class. For find methods we use the
method name in the local or remote home interface. Select methods, on the other
hand, are not declared in the local or remote home interface so we use the
ejbSelect method name in the bean class.

If a select method returns a collection of EJB objects, then the <result-
type-mapping> can be used to declare if it should return local or remote EJB
objects. The value Local indicates that a method should return local EJB
objects; Remote indicates remote EJB objects. If the <result-type-
mapping> element is not declared, the default is Local. In the query element
for the ejbSelectAll method, the <result-type-mapping> is declared

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 9

as Remote, which means the query should return remote EJB object types;
remote references to the Address EJB.

Select methods are not limited to the context of any specific entity bean. They
can be used to query across all the entity beans declared in the same deployment
descriptor. Select methods may be used by the bean class from its ejbHome
methods or any business methods or the ejbLoad and ejbStore methods.
The ejbHome, ejbLoad and ejbStore methods are covered in more detail
in Chapter 11.

The most important thing to remember about select methods is that they can do
anything find methods can and more, but they can only be used by the entity
bean class that declares them, not by the entity bean’s clients.

EJB QL Examples

EJB QL is expressed in terms of the abstract persistence schema of an entity
bean; its abstract schema name, container-managed persistence fields, and
container-managed relationship fields. EJB QL uses the abstract schema names
to identify beans, the container-managed persistence fields to specify values and
container-managed relationship field names to navigate across relationships.

To discuss EJB QL, we will make use of the relationships among the Customer,
Address, CreditCard, Cruise, Ship, Reservation, and Cabin defined in Chapter 7.
Figure 8-1 is a class diagram that shows the direction and cardinality
(multiplicity) of the relationships among these beans.

[Figure 8-1(note this is the same figure as figure 7-23)]

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 10

Figure 8-1: Titan Cruises Class Diagram

Simple Queries

The simplest EJB QL statement has no WHERE clause and only one abstract
schema type. For example, a query method might be defined to select all
Customer beans.

SELECT OBJECT(c) FROM Customer AS c

The FROM clause determines which entity bean types will be included in the
select statement. It provides the scope of the select. In this case the FROM
clause declares the type to be Customer, which is the abstract schema name of
the Customer EJB. The “AS c” part of the clause assigns c as the identifier of
the Customer EJB. This is similar to SQL, which allows an identifier to be
associated with a table. Identifiers can be any length and follow the same rules
that are applied to field names in the Java programming language. The following
is also perfectly legal.

SELECT OBJECT(customer) FROM Customer AS customer

The AS operator is optional, but its used in this book to help make the EJB QL
statements more clear. The following statement is equivalent:

SELECT OBJECT(customer) FROM Customer customer

The SELECT clause determines the type of values returned. In this case, it’s the
Customer entity bean as indicated by the customer identifier.

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 11

The OBJECT() operator is required when the SELECT type is an abstract
schema identifier (entity bean identifier). The reason for this requirement is
pretty vague (and in the author’s opinion, the specification would have been
better off without it), but it’s required whenever the SELECT type is an entity
bean identifier.

Simple Queries with Paths

EJB QL allows SELECT clauses to return any container-managed persistence
(CMP) or single container-managed relationship (CMR) field. For example, a
simple select statement can be defined to return all the last names of all the
customers as follows.

SELECT c.lastName FROM Customer AS c

The SELECT clause uses a simple path to select the Customer bean’s
lastName CMP field as the return type. EJB QL uses the CMP and CMR field
names declared in <cmp-field> and <cmr-field> elements of the
deployment descriptor. This navigation leverages the same syntax as the Java
programming language, specifically the dot (“.”) navigation operator. For
example, compare the above EJB QL statement with the following snippet from
the Customer EJB’s deployment descriptor:

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 <home> CustomerHomeRemote</ejb-home>
 <remote>CustomerRemote</ejb-remote>
 <ejb-class>CustomerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <abstract-schema-name>Customer</abstract-schema-name>
 <cmp-version>2.x</cmp-version>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>lastName</field-name></cmp-field>
 <cmp-field><field-name>firstName</field-name></cmp-field>

CMR field types may also be used in simple select statements. For example, the
following EJB QL statement selects all the CreditCard EJBs from all the Customer
EJBs.

SELECT c.creditCard FROM Customer c

In this case, the EJB QL statement uses a path to navigate from the Customer
EJBs to their creditCard relationship fields. The creditCard identifier is
obtained from the <cmr-field> name used in the relationship element that
describes the Customer-CreditCard relationship.

<enterprise-beans>

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 12

 <entity>
 <ejb-name>CustomerEJB</ejb-name>
 …
 <abstract-schema-name>Customer</abstract-schema-name>
 </entity>
</enterprise-beans>
…
<relationships>
 <ejb-relation>
 <ejb-relation-name>Customer-CreditCard
 </ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-a-CreditCard
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>creditCard</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 ...

Paths can be as long as required. It’s common to use paths that navigate over
one or more CMR fields to end at either a CMR or CMP field. For example, the
following EJB QL statement selects all the city CMP fields of all the Address
EJBs of every Customer EJB.

SELECT c.homeAddress.city FROM Customer c

In this case, the path uses the abstract schema name of the Customer EJB, the
Customer EJB’s homeAddress CMR field and finally the Address EJB’s city
CMP field. Using paths in EJB QL is similar to navigating through object
references in the Java language.

To illustrate more complex paths, we’ll need to expand the class diagram. Figure
8-2 shows that CreditCard EJB is related to a CreditCompany EJB that has its own
Address EJB.

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 13

Figureholder

Figure 8-2: Expanded Class Diagram for CreditCard

Using these relationships, a more complex path could be specified that navigates
from the Customer EJB to the CreditCompany EJB’s Address EJB. The following
EJB QL selects all the addresses of all the credit companies.

SELECT c.creditCard.creditCompany.address FROM Customer AS c

The EJB QL statement could also navigate all the way to the Address bean’s
CMP fields. For example, the following EJB QL selects all the cities for all the
credit card companies for those credit cards used by Titan’s customers.

SELECT c.creditCard.creditCompany.address.city FROM Customer AS c

It’s interesting to note that these EJB QL statements would only return
address CMR fields or Address city CMP fields for credit companies of
cards owned by Titan’s customers. If there are any credit companies whose
cards are not currently used by Titan’s customers, their address information
won’t be included in the result.

Paths cannot navigate beyond CMP fields. For example, imagine that the
Address EJB uses a ZipCode class as its zip CMP field.

public class ZipCode implements java.io.Serializable{
 public int mainCode;
 public int codeSuffix;
 …
}

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 14

It would be illegal to attempt to navigate to one of the ZipCode class’ instance
fields.

// this is illegal
SELECT c.homeAddress.zip.mainCode FROM Customer AS c

CMP fields cannot be further decomposed and navigated by paths. All CMP
fields are considered opaque.

The paths used in a SELECT clause of an EJB QL must always end with a single
type. They may not end in a collection-based relationship field. For example, the
following is not legal because the CMR field reservations is a collection-
based relationship field.

// this is illegal
SELECT c.reservations FROM Customer AS c

In fact, it’s illegal to navigate across a collection-based relationship field. The
following EJB QL statement is also illegal, even though the path ends in a single
relationships field.

SELECT c.reservations.cruise FROM Customer AS c

If you think about it, this limitation makes sense. You cannot use a navigation
operator (“.”) in Java to access elements of a java.util.Collection
object either. For example, you can’t do the following (assume
getReservations() returns a java.util.Collection type).

// this is illegal in the Java programming language.
customer.getReservations().getCruise()

Referencing the elements of a collection-based relationship field is possible in
EJB QL, but it require the use of an IN operator and an identification assignment
in the FROM clause, which are discussed next.

Simple Queries the IN operation

Many relationships between entity beans are collection-based relationships;
being able to access and select from these relationships is important. We’ve
seen that it is illegal to select elements directly from a collection-based
relationship. To overcome this limitation, EJB QL introduces the IN operation,
which allows an identifier to represent individual elements in a collection-based
relationship field.

The following query uses the IN operation to select the elements from a
collection-based relationship. It returns all the reservations of all the customers.

SELECT OBJECT(r)
FROM Customer AS c, IN(c.reservations) AS r

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 15

The IN operation assigns the individual elements in the reservations CMR
field to the identifier r. Once we have an identifier to represent the individual
elements of the collection, we can reference them directly and even select them in
the EJB QL statement. The element identifier can also be used in path
expressions. For example, the following EJB QL statement will select every cruise
for which Titan’s customers have made reservations.

SELECT r.cruise
FROM Customer AS c, IN(c.reservations) AS r

The identifiers assigned in the FROM clause of EJB QL are evaluated from left to
right. Once an identifier has been declared it can be used is subsequent
declarations in the FROM clause. Notice that the identifier c, which was declared
first, was subsequently used in the IN operation to define the identifier r.

The OBJECT() operation is used for single identifiers in the
select statement and not for path expressions. While this
convention makes little sense, it is none-the-less required by
the EJB 2.0 specification. A rule of thumb: If the select type is a
solitary identifier, then it must be wrapped in an OBJECT()
operation. If the select type is a path expression then it is not.

Identification chains, in which subsequent identifications depend on previous
identifications, can become very long. The following EJB QL statement uses two
IN operations to navigate two collection-based relationships and a single CMR
relationship. While not necessarily useful, this statement demonstrates how a
query can use IN operations across many relationships.

SELECT cabin.ship
FROM Customer AS c, IN (c.reservations) AS r,
IN(r.cabins) AS cabin

& Exercise 8.1, Simple EJB QL Statements

The WHERE clause and Literals

Literal values can also be used in the EJB QL to narrow the scope of the elements
selected. This is accomplished through the WHERE clause, which behaves in
much the same way as the WHERE clause in SQL.

For example, an EJB QL statement can be defined to select all the Customer EJBs
that use a specific brand of credit card. The literal in this case is a string literal.
Literal strings are enclosed by single quotes. Literal values that include a single
quote, like the restaurant name “Wendy’s”, use two single quotes to escape the
quote: ‘Wendy’’s’. The following statement returns customers that use the
American Express credit card:

SELECT OBJECT(c) FROM Customer AS c

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 16

WHERE c.creditCard.organization = ‘American Express’

Path expressions are always used in the WHERE clause in the same way that
they’re used in the SELECT clause. When making comparisons with a literal, the
path expression must evaluate to a CMP field; you can’t compare a CMR field
with a literal.

In addition to literal strings, literal can also be exact numeric values (long types)
and approximate numerical values (double types). Exact numerical literal values
are expressed using the Java integer literal syntax (321, -8932, +22).
Approximate literal values are expressed using Java floating point literal syntax in
scientific (5E3, -8.932E5) or decimal (5.234, 38282.2) notation.

For example, the following EJB QL statement selects all the ships that weigh
100,000.00 metric tons.

SELECT OBJECT(s)
FROM Ship AS s
WHERE s.tonnage = 100000.00

Boolean literal values use TRUE and FALSE. Here’s an EJB QL statement selects
all the customers who have good credit.

SELECT OBJECT(c) FROM Customer AS c
WHERE c.hasGoodCredit = TRUE

The WHERE clause and Input Parameters

Query methods (find and select methods) that use EJB QL statements may
specify method arguments. Input parameters allow those method arguments to
be mapped to EJB QL statements and are used to narrow the scope of the query.
For example, the ejbSelectByCity() method is designed to select all the
customers that reside in a particular city and state.

public abstract class CustomerBean
implements javax.ejb.EntityBean {
 …
 public abstract Collection ejbSelectByCity(String city,String state)
 throws FindException;
 …
}

The EJB QL statement for this method would use the city and state arguments as
input parameters.

SELECT OBJECT(c) FROM Customer AS c
WHERE c.homeAddress.state = ?2
AND c.homeAddress.city = ?1

Input parameters use a ? prefix followed by the argument’s position, in order of
the query method’s parameters. In this case, state is the second argument and

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 17

city is the first argument listed in the ejbSelectByCity() method. When
a query method declares one or more arguments, the associated EJB QL
statement may use some or all of the arguments as input parameters.

Input parameters are not limited to simple CMP field types; they can also be EJB
object references. For example, the following find method findByShip() is
declared in the Cruise bean’s local interface.

public interface CruiseLocal extends javax.ejb.EJBLocalObject {
 public Collection findByShip(ShipLocal customer)
 throws FindException;
}

The EJB QL statement associated with this method would use the ship
argument to locate all the cruises scheduled for the specified Ship bean.

SELECT OBJECT(cruise) FROM Cruise AS cruise
WHERE cruise.ship = ?1

When an EJB object is used as an input parameter, the container bases the
comparison on the primary key of the EJB object. In this case, it searches
through all the Cruise EJBs looking for references to a Ship EJB with same
primary key value that the Ship EJB passed to the query method.

The WHERE clause and Operator Precedence

The WHERE clause is composed of conditional expressions that reduce the scope
of the query and limit the number of items selected. A number of conditional and
logical operators can be used in expressions; they are listed below in the order of
precedence. The operators at the top of the list have the highest precedence;
they are evaluated first.

• Navigation operator (.)

• Arithmetic operators:

+, - unary

*, / multiplication and division

+, - addition and subtraction

• Comparison operators :

=, >, >=, <, <=, <> (not equal),

LIKE, BETWEEN, IN, IS NULL, IS EMPTY, MEMBER OF

• Logical operators:

NOT, AND, OR

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 18

If you’ve been working as a programmer for longer than a month, most of these
operators will be familiar to you.

EJB QL statements are declared in XML deployment descriptors. XML uses the
greater than (‘>’) and less than (‘<’) characters as delimiters for tags, so using
these symbols in the EJB QL statements will cause parsing errors unless CDATA
sections are used. For example, the following EJB QL statement causes a parsing
error, because the XML parser cannot distinguish the use of the ‘>’ symbol from
a delimiter to a XML tag:

<query>
 <query-method>
 <method-name>findWithPaymentGreaterThan</method-name>
 <method-params>java.lang.Double</method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(r) FROM Reservation r
 WHERE r.amountPaid > ?1
 </ejb-ql>
</query>

To avoid this problem, the EJB QL statement should be placed in a CDATA
section:

<query>
 <query-method>
 <method-name>findWithPaymentGreaterThan</method-name>
 <method-params>java.lang.Double</method-params>
 </query-method>
 <ejb-ql>
 <![CDATA[
 SELECT OBJECT(r) FROM Reservation r
 WHERE r.amountPaid > 300.00
]]>
 </ejb-ql>
</query>

The CDATA section takes the form <![CDATA[literal-text]]>. When an
XML processor encounters a CDATA section it doesn’t attempt to parse the
contents enclosed by the CDATA section, instead the parser treats it as literal
text 2.

2 To learn more about XML and the use of CDATA Sections, see XML in a Nutshell by
Elliotte Rusty Harold and W. Scott Means published by O’Reilly & Associates 2001.

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 19

The WHERE clause and Arithmetic Operators

The arithmetic operators allow a query to perform arithmetic in the process of
doing a comparison. In EJB QL, arithmetic operators can only be used in the
WHERE clause and not in the SELECT clause. The following EJB QL statement
returns references to all the Reservation EJBs that will be charged a port tax of
more than $300.00.

SELECT OBJECT(r) FROM Reservation r
WHERE (r.amountPaid * .01) > 300.00

The rules applied to arithmetic operations are the same as those used in the Java
programming language, where numbers are widened or promoted in the process
of performing a calculation. For example, multiplying a double and an int
value requires that the int first be promoted to a double value. The result will
always be that of the widest type used in the calculation, so multiplying an int
and a double results in a double value.

String, boolean, and EJB object types cannot be used in arithmetic
operations. For example, using the addition operator with two String values is
considered an illegal operation. There is a special function for concatenating
String values, which is covered in The WHERE clause and FUNTIONS
section.

The WHERE clause and Logical Operators

Logical operators such as AND, OR, and NOT operate the same as their
corresponding logical operators in SQL.

Logical operators evaluate only boolean expressions, so each operand (each side
of the expression) must evaluate to true or false. This is why the logical
operators have the lowest precedence: so that all the expressions can be
evaluated before they are applied.

The AND and OR operations may not, however, behave like their Java language
counterparts && and ||. Specifically, EJB QL does not specify whether the right-
hand operands are evaluated conditionally. For example, the && operator in Java
evaluates its right-hand operand only if the left hand operand is true. Similarly,
the || logical operator evaluates the right-hand operand only if the left-hand
operand is false. We can’t make the same assumption for the AND and OR
operators in EJB QL. Whether these operators evaluate right-hand operands
depends on the native query language into which it’s translated. It’s best to
assume that both operands are evaluated on all logical operators.

NOT simply reverses the boolean result of its operand; expressions that evaluate
to the boolean value of true become false, and visa versa.

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 20

The WHERE clause and Comparison Symbols

Comparison operators, which use the symbols =, >, >=, <, <=, and <>, should be
familiar to you. The following statement selects all the Ship EJBs whose tonnage
CMP field is greater than or equal to 80,000 tons but less than or equal to 130,000
tons.

SELECT OBJECT(s) FROM Ship s
WHERE s.tonnage >= 80000.00 AND s.tonnage <= 130000.00

Only the = and <> (not equal) operators may be used on String, boolean,
and EJB object references. The greater-than and less-than symbols (>, >=, <, <=)
can only be used on numerical values. It would be illegal, for example, to use the
greater-than, or less-than symbols to compare two Strings. There is no
mechanism to compare Strings in this way in EJB QL.

The WHERE clause and Equality semantics

While it’s legal to compare an exact numerical value (short, int, long) to an
approximate numerical value (double, float) all other equality comparisons
must compare the exact same types. You cannot, for example, compare a
String value of ‘123’ to the integer literal 123.

EJB objects can also be compared for equality, but they too must be of the same
exact type. To be more specific, they must both be EJB object references to
beans of the same deployment. As an example, the following method finds all the
Reservation EJBs made by a specific Customer EJB:

public interface ReservationHomeLocal extends EJBLocalObject{
 public Collection findByCustomer(CustomerLocal customer)
 throws FindException;
...
}

The matching EJB QL statement uses the customer argument as an input
parameter.

SELECT OBJECT(r)
FROM Reservation r, IN (r.customers) customer
WHERE customer = ?1

It’s not enough for the EJB object that’s used in the comparison to implement the
CustomerLocal interface; it must be the same bean type as the Customer EJB
used in the Reservation’s customers CMR Field. In other words, they must be
from the same deployment. Once it’s determined that the bean is the correct type,
the actual comparison is performed on the bean’s primary keys. If they have the
same primary keys, they are considered equal.

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 21

java.util.Date objects cannot be used in equality comparisons. In order to
compare dates, the long millisecond value of the date must be used, which means
that the date must be persisted in a long CMP field and not a
java.util.Date CMP. The input value or literal must also be a long value.

The WHERE clause and BETWEEN

The BETWEEN clause is an inclusive operation specifying a range of values. It
can be used to select all ships between 80,000 and 130,000 tons.

SELECT OBJECT(s) FROM Ship s
WHERE s.tonnage BETWEEN 80000.00 AND 130000.00

The BETWEEN clause may only be used on numeric primitives (byte, short,
int, long, double, float) and their corresponding java.lang.Number
types (Byte, Short, Integer, etc.). It may not be used on String,
boolean, or EJB object references.

Using the NOT logical operator in conjunction with BETWEEN excludes the range
specified. For example, the following EJB QL statement selects all the Ship EJBs
that are less than 80,000 tons or greater then 130,000 tons but excludes
everything in-between.

SELECT OBJECT(s) FROM Ship s
WHERE s.tonnage NOT BETWEEN 80000.00 AND 130000.00

The net effect of this query is the same as if it had been executed with
comparative symbols:

SELECT OBJECT(s) FROM Ship s
WHERE s.tonnage < 80000.00 OR s.tonnage > 130000.00

The WHERE clause and IN

The IN conditional operator used in the WHERE clause is not the same as the IN
operator used in the FROM clause. In the WHERE clause, IN tests for membership
in a list of literal string values, and can only be used with operands that evaluate
to string values. For example, the following EJB QL statement uses the IN
operator to select all the customers who reside in a specific set of states:

SELECT OBJECT(c) FROM Customer c
WHERE c.homeAddress.state IN (‘FL’, ‘TX’, ‘MI’, ‘WI’, ‘MN’)

Applying the NOT operator to this expression reverses the selection, excluding
all customers who reside in the list of states:

SELECT OBJECT(c) FROM Customer c
WHERE c.homeAddress.city
 NOT IN (‘FL’, ‘TX’, ‘MI’, ‘WI’, ‘MN’)

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 22

If the field tested is null, the value of the expression is “unknown”, which
means it cannot be predicted.

The WHERE clause and IS NULL

The IS NULL comparison operator allows you to test whether a path
expression is null. For example, the following EJB QL statement selects all the
customers who do not have a home address.

SELECT OBJECT(c) FROM Customer c
WHERE c.homeAddress IS NULL

Using the NOT logical operator, we can reverse the results of this query,
selecting all the customers that do have a home address.

SELECT OBJECT(c) FROM Customer c
WHERE c.homeAddress IS NOT NULL

When null fields appear in comparison operations such as IN and BETWEEN,
they can have pretty serious side affects. In most cases, evaluating a null field
in a comparison operation (other than IS NULL) produces in an UNKNOWN
result. Unknown evaluations throw the entire EJB QL results set into question;
since we cannot predict the outcome the EJB QL statement, it is unreliable. One
way to avoid this situation is to require that fields used in the expressions have
values. This requires careful programming. To ensure an entity bean field is
never null, you must initialize the field when the entity is created. For primitive
values this not a problem, since they cannot be null; they have default values.
For other fields, such as single CMR fields and object based CMP fields, like
String, the fields must be initialized in the ejbCreate() and
ejbPostCreate() methods.

The WHERE clause and IS EMPTY

The IS EMPTY operator allows the query to test if a collection-based
relationship is empty. Remember from Chapter 7 that a collection-based
relationship will never be null. If a collection-based relationship field has no
elements, it will return an empty Collection or Set.

Testing whether a collection-based relationship is empty has the same purpose
as testing whether single CMR field or CMP field is null: it can be used to limit
the scope of the query and items selected. For example, the following query
selects all the cruises that have not booked any reservations:

SELECT OBJECT(cruise) FROM Cruise cruise
WHERE cruise.reservations IS EMPTY

The NOT operator reverses the result of IS EMPTY. The following query selects
all the cruises that have at least one reservation.

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 23

SELECT OBJECT(cruise) FROM Cruise c
WHERE cruise.reservations IS NOT EMPTY

Interestingly, it’s illegal to use IS EMPTY against collection-based
relationships that have been assigned an identifier in the FROM clause.

// illegal query
SELECT OBJECT(r)
FROM Reservation r, IN(r.customers) c
WHERE
r.customers IS NOT EMPTY AND
c.address.city = ‘Boston’

While this query appears to be good insurance against unknown results, it’s not.
In fact, it’s an illegal EJB QL statement, because the IS EMPTY operator cannot
be used on a collection-based relationship identified in an IN operation in the
FROM clause. Because the relationship is specified in the IN clause, only those
Reservation EJBs that have a non-empty customers field will be included in
the query; any Reservation EJB that has an empty CMR field will be excluded
because its customers elements cannot be assigned the c identifier.

The WHERE clause and MEMBER OF

The MEMBER OF operator is a powerful tool for determining whether an EJB
object is a member of a specific collection-based relationship. The following
query determines whether a particular Customer (specified by the input
parameter) is a member of any of the Reservation-Customer relationships.

SELECT OBJECT(cruise)
FROM Cruise cruise, Customer c
WHERE
 c = ?1
 AND
 c MEMBER OF cruise.reservations

Applying the NOT operator to MEMBER OF will have the reverse effect, select all
the cruises on which the specified customer doesn’t have a reservation.

SELECT OBJECT(cruise)
FROM Cruise cruise, Customer c
WHERE
c = ?1
 AND
c NOT MEMBER OF cruise.reservations

Checking whether an EJB object is a member of an empty collection always
returns false.

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 24

The WHERE clause and LIKE

The LIKE comparison operator allows the query to select String type CMP
fields that match a specified pattern. For example, the following EJB QL
statement selects all the customers with hyphenated names, like “Monson-
Haefel” and “Berners-Lee”.

SELECT OBJECT(c) FROM Customer c
WHERE c.lastName LIKE ‘%-%’

Two special characters can be used when establishing a comparison pattern:
‘%’ (percent) stands for any sequence of characters, and ‘_’ (underscore)
stands for any single character. % and _ characters can be used at any location
within a string pattern. The escape character \ can be used if a % or _ actually
occurs in the string. The NOT logical operator reverses the evaluation so that
matching patterns are excluded.

The following examples show how the LIKE clause would evaluate String type
CMP fields.

• phone.number LIKE ‘617%’

true for ‘617-322-4151’

false for ‘415-222-3523’

• cabin.name LIKE ‘Suite _100’

true for ‘Suite A100’

false for ‘Suite A233’

• phone.number NOT LIKE ‘608%’

true for ‘415-222-3523’

false for ‘608-233-8484’

• someField.underscored LIKE ‘_%’

true for ‘_xyz’

false for ‘abc’

• someField.percentage LIKE ‘\%%’

true for ‘% XYZ’

false for ‘ABC’

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 25

The WHERE clause and Functional Expressions

EJB QL has six functional expressions that allow for simple String
manipulation and a couple of basic numerical operations. The String
functions are listed below:

CONCAT(String1, String2)
returns the String that results from concatenating String1 and
String2.

SUBSTRING(String1, start, length)
returns the String consisting of length characters taken from
String1, starting at the position given by start.

LOCATE(String1, String2 [, start])
returns an int indicating the position at which String1 is found within
String2. If it’s present, start indicates the character position in
String2 at which the search should start.

LENGTH(String)
returns an int indicating the length of the string.

The start and length parameters indicate positions in a String as integer
values. These expressions can be used in the WHERE clause to help refine the
scope of the items selected. Here is an example of how the LOCATE and
LENGTH functions might be used:

SELECT OBJECT(c)
FROM Customer c
WHERE
LENGTH(c.lastName) > 6
 AND
LOCATE(c.lastName, ‘Monson’) > -1

This EJB QL statement selects all the customers with ‘Monson’ somewhere in
their last name, but the name must be longer than 6 characters. Therefore,
‘Monson-Haefel’ and ‘Monson-Ares’ evaluate to true, but ‘Monson’
returns false because it has only 6 characters.

The arithmetic functions are ABS and SQRT.

ABS(number)
returns the absolute value of a number (int, float, or double)

SQRT(double)
returns the square root of a double

& Exercise 8.2, Complex EJB QL statements

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 26

Problems with EJB QL

EJB QL is a powerful new tool that promises to improve performance, flexibility,
and portability of the entity beans in container-managed persistence, but it has
some design flaws and omissions.

The OBJECT() operation

The use of the OBJECT() operation is unnecessary, cumbersome, and provides
little or no value to the bean developer. It’s trivial for EJB vendors to determine
when an abstract schema type is the return value, so the OBJECT() operation
provides little real value during query translation. In addition, the OBJECT()
operation is applied haphazardly. It’s required when the return type is an abstract
schema identifier, but not when a path expression of the SELECT clause ends in
a CMR field. Both return an EJB object reference, so the use of OBJECT() in
one scenario and not the other is illogical and confusing.

When questioned about this, Sun replied that several vendors had requested the
use of the OBJECT() operations because it will be included in the next major
release of the SQL programming language. EJB QL was designed to be similar to
SQL because it’s the query language that is most familiar to developers, but this
doesn’t mean it should include functions and operations that have no real
meaning in Enterprise JavaBeans.

The missing ORDER BY clause

Soon after you begin using EJB QL you will quickly realize that it’s missing a
major component, the ORDER BY clause. Requesting ordered lists is extremely
important in any query language; most major query languages including SQL and
object query languages support this concept.

The ORDER BY clause has a couple of big advantages: it clearly communicates
the bean developer’s intentions; and it gives the application server vendors the
option of delegating ordering to the database:

• The ORDER BY clause would provide a very clear mechanism for the bean
developer to communicate his intentions to the EJB QL interpreter. The
ORDER BY clause is unambiguous; it states exactly how a collection should
be ordered (the attributes to order by, ascending, decending, etc.). Given
that it’s the purpose of EJB QL to clearly describe the behavior of the find
and select operations in a portable fashion, ORDER BY is clearly a
significant omission.

• With an ORDER BY clause, EJB QL interpreters used by EJB vendors could,
in most cases, choose an ordering mechanism that is optimized for a

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 27

particular database. Allowing the resource to perform the ordering is more
efficient than having the container do it after the data is retrieved. It was
suggested that EJB vendors could provide ordering mechanically, by having
the collection sorted after it’s obtained. This is a rather ridiculous
expectation, since it would require collections to be fully manifested after the
query completes, eliminating the advantages of lazy loading.

However, even if the application server vendor chooses to have the container do
the ordering, the ORDER BY clause still provides the EJB vendor with a clear
indication of how to order the collection. It’s up to the vendor to choose how to
support the ORDER BY clause. For databases and other resources that support
it, ordering could be delegated to the resource. For those resources that don't
support ordering, it can be performed by container. Without an ORDER BY
clause, the deployer will have to manipulate collections manually or force the
container’s collection implementations to do the ordering. These two options are
untenable in real world applications where performance is critical.

When pressed, Sun explained that the ORDER BY clause was not included in
this version of the specification because of problems dealing with the mismatch
in ordering behavior between the Java language and databases. The example
give was string values. The semantics of ordering strings in a database may be
different than that of the Java language. For example, Java orders String types
according to character sequence and case (upper case vs. lower case). Different
databases may or may not consider case while ordering or discount leading or
trailing white space. In light of these possible differences, it seams like Sun has a
reasonable argument, but only for limiting the portability of ORDER BY, not for
eliminating its use all together. EJB developers can live with less than prefect
portability of the ORDER BY clause, but they cannot live without the ORDER
BY clause.

Finally, contrary to popular belief, the ORDER BY clause would not necessitate
the use of the java.util.List as a return type. Although the List type is
supposed to be used for ordered lists, it also allows developers to place items in
a specific location of the list, which in EJB would mean a specific location of the
database. This is nearly impossible to support, and so appears to be a
reasonable argument against using the ORDER BY clause. However, this
reasoning is flawed, because there is nothing preventing EJB from using the
simple Collection type for ordered queries. The understanding would be that
the items are ordered, but only as long as the collection is not modified after it is
obtained. In other words, elements are not added or removed. Another option is
to require that EJB QL statements that use the ORDER BY clause return a
java.util.Enumeration type. This seems perfectly reasonable, since the
Collection received by a select or find operation shouldn’t be manipulated
anyway.

DRAFT, 10/21/01

Copyright (c) 2001 O'Reilly & Associates 28

Lack of support for Date

EJB QL doesn’t provide native support for the java.util.Date class. This
is not acceptable. The java.util.Date class should be supported as a
natural type in EJB QL. It should be possible, for example, to do comparisons
with Date CMP fields and literal and input parameters. It should be possible to
use comparison symbols (=, >, >=, <, <=, <>) with Date CMP fields. It should
also be possible to introduce common date functions so that comparisons can be
done at different levels, like comparing the day of the week DOW() or month
(MONTH()), etc. Of course, including the Date as a supported type in EJB QL
is not trivial and problems with interpretation of dates and locals would need to
be considered, but the failure to address Date as a supported type is a
significant omission.

Limited Functional Expressions

While the functional expressions provided by EJB QL will be valuable to
developers there are many other functions that should have been included. For
example, COUNT() is used a lot in real world applications. Other functions that
would be useful include (but are not limited to): CAST() useful for comparing
different types; MAX() and MIN(); SUM(); UPPER() and perhaps others. In
addition, if support for java.util.Date was included in EJB QL, other date
functions could be added, like DOW(), MONTH(), etc.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 1

9
EJB 1.1: Container-Managed

Persistence

A Note for EJB 2.0 Readers
Container-managed persistence has undergone a dramatic change in EJB 2.0,
which is not backward compatible with EJB 1.1. For that reason, EJB 2.0 vendors
must support both EJB 2.0’s container-managed persistence model and EJB 1.1’s
container-managed persistence model. The EJB 1.1 model is supported purely for
backward compatibility, so that application developers can migrate their existing
applications to the new EJB 2.0 platform as painlessly as possible. It’s expected
that all new entity beans and new applications will use the EJB 2.0 container-
managed persistence, not the EJB 1.1 version. Although EJB 1.1 container-
managed persistence is covered in this book, avoid it unless you maintain a
legacy EJB 1.1 system. EJB 2.0 container-managed persistence is covered in
Chapters 6 thru 8.

In EJB 2.0, EJB 1.1 container-managed persistence is limited in other ways. For
example, EJB 1.1 CMP beans can only have remote component interfaces; they
are not allowed to have local or local home interfaces. Other subtle differences
also make EJB 1.1 CMP more limiting the EJB 2.0. For example, the
ejbCreate() and ejbPostCreate() methods in EJB 1.1 do not support
the <METHOD-NAME> suffix allowed in EJB 2.0, which makes method
overloading more difficult.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates2

Overview for EJB 1.1 Readers

The following overview of EJB 1.1 container-managed persistence is pretty much
duplicated in Chapter 6, but for EJB 1.1 readers who have not read Chapter 6, the
overview is important to understanding the context of entity beans and
container-managed persistence.

In Chapter 4, we started developing some simple enterprise beans, skipping over
a lot of the details about developing enterprise beans. In this chapter, we’ll take a
thorough look at the process of developing entity beans. On the surface, some of
this material may look familiar, but it is much more detailed and specific to entity
beans.

Entity beans model business concepts that can be expressed as nouns. This is a
rule of thumb rather than a requirement, but it helps in determining when a
business concept is a candidate for implementation as an entity bean. In grammar
school you learned that nouns are words that describe a person, place, or thing.
The concepts of person and place are fairly obvious: a person EJB might
represent a customer or a passenger, and a place EJB might represent a city or a
port-of-call. Similarly, entity beans often represent things: real-world objects like
ships, credit cards, and so on. An EJB can even represent a fairly abstract thing,
such as a ticket or a reservation. Entity beans describe both the state and
behavior of real-world objects and allow developers to encapsulate the data and
business rules associated with specific concepts; a Ship EJB encapsulates the
data and business rules associated with a ship, and so on. This makes it possible
for data associated with a concept to be manipulated consistently and safely.

In Titan’s cruise ship business, we can identify hundreds of business concepts
that are nouns and therefore could conceivably be modeled by entity beans.
We’ve already seen a simple Cabin EJB in Chapter 4, and we’ll develop Ship EJB
in this chapter. Titan could clearly make use of a Customer EJB, Cruise EJB, a
Reservation EJB, and many others. Each of these business concepts represents
data that needs to be tracked and possibly manipulated. Entities really represent
data in the database, so changes to an entity bean result in changes to the
database.

There are many advantages to using entity beans instead of accessing the
database directly. Utilizing entity beans to objectify data provides programmers
with a simpler mechanism for accessing and changing data. It is much easier, for
example, to change a customer’s name by calling ShipRemote.setName()
than to execute an SQL command against the database. In addition, objectifying
the data using entity beans also provides for more software reuse. Once an entity
bean has been defined, its definition can be used throughout Titan’s system in a
consistent manner. The concept of customer, for example, is used in many areas
of Titan’s business, including booking, scheduling, and marketing. A Ship EJB
provides Titan with one complete way of accessing ship information, and thus it

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 3

ensures that access to the information is consistent and simple. Representing
data as entity beans makes development easier and more cost effective.

When a new EJB is created, a new record must be inserted into the database and
a bean instance must be associated with that data. As the EJB is used and its
state changes, these changes must be synchronized with the data in the
database: entries must be inserted, updated, and removed. The process of
coordinating the data represented by a bean instance with the database is called
persistence.

There are two basic types of entity beans, and they are distinguished by how
they manage persistence. Container-managed persistence beans have their
persistence automatically managed by the EJB container. The container knows
how a bean instance’s persistent fields and relationships map to the database
and automatically takes care of inserting, updating, and deleting the data
associated with entities in the database. Entity beans using bean-managed
persistence do all this work explicitly: the bean developer must write the code to
manipulate the database. The EJB container tells the bean instance when it is
safe to insert, update, and delete its data from the database, but it provides no
other help. The bean instance does all the persistence work itself. Bean-managed
persistence is covered in Chapter 10.

Container-Managed Persistence
When you deploy an EJB 1.1 CMP entity bean, you identify which fields in the
entity are managed by the container and how they map to the database. Once
you have defined the fields that will be automatically managed and how they map
to the database, the container generates the logic necessary to save the bean
instance’s state automatically.

Fields that are mapped to the database are called container-managed fields—EJB
1.1 doesn’t support relationship fields, as does EJB 2.0. Container- managed
fields can be any Java primitive type or serializable objects. Most beans will use
Java primitive types when persisting to a relational database, since it’s easier to
map Java primitives to relational data types.

EJB 1.1 also allows references to other beans to be container-managed fields. The
EJB vendor must support converting bean references (remote or home interface
types) from remote references to something that can be persisted in the database
and converted back to a remote reference automatically. Vendors will normally
convert remote references to primary keys, Handle or HomeHandle objects,
or some other proprietary pointer type, which can be used to preserve the bean
reference in the database. The container will manage this conversion from remote
reference to persistent pointer and back automatically. This feature was
abandoned in EJB 2.0 CMP in favor of container-managed relationship fields.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates4

The advantage of container-managed persistence is that the bean can be defined
independently of the database used to store its state. Container-managed beans
can take advantage of a relational database or an object-oriented database. The
bean state is defined independently, which makes the bean more reusable and
flexible.

The disadvantage of container-managed beans is that they require sophisticated
mapping tools to define how the bean’s fields map to the database. In some
cases, this may be a simple matter of mapping each field in the bean instance to a
column in the database, or of serializing the bean to a file. In other cases, it may
be more difficult. The state of some beans, for example, may be defined in terms
of a complex relational database join or mapped to some kind of legacy system
such as CICS or IMS.

In this chapter, we will create a new container-managed entity bean, the Ship EJB,
which we will examine in detail. A Ship EJB is also used in both Chapter 7, when
discussing complex relationships in EJB 2.0, and Chapter 10, when discussing
bean-managed persistence. When you are done with this chapter you may want
compare the Ship EJB developed here with the ones created in Chapter 7 and 10.

Let’s start by thinking about what we’re trying to do. An enormous amount of
data would go into a complete description of a ship, but for our purposes we will
limit the scope of the data to a small set of information. For now, we can say that
a ship has the following characteristics or attributes: its name, passenger
capacity, and tonnage (i.e., size). The Ship EJB will encapsulate this data; we’ll
need to create a SHIP table in our database to hold this data. Here is the
definition for the SHIP table expressed in standard SQL:

CREATE TABLE SHIP (ID INT PRIMARY KEY, NAME CHAR(30), CAPACITY INT,
TONNAGE DECIMAL(8,2))

When defining any bean, we start by coding the remote interfaces. This focuses
our attention on the most important aspect of any bean: its business purpose.
Once we have defined the interfaces, we can start working on the actual bean
definition.

The Remote Interface

For the Ship EJB we will need a remote interface. This interface defines the busi-
ness methods that clients will use to interact with the bean. When defining the
remote interface, we will take into account all the different areas in Titan’s system
that may want to use the ship concept. Here is the remote interface,
ShipRemote, for the Ship EJB:

package com.titan.ship;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 5

public interface ShipRemote extends javax.ejb.EJBObject {
 public String getName() throws RemoteException;
 public void setName(String name) throws RemoteException;
 public void setCapacity(int cap) throws RemoteException;
 public int getCapacity() throws RemoteException;
 public double getTonnage() throws RemoteException;
 public void setTonnage(double tons) throws RemoteException;
}

The Remote Home Interface

The remote home interface of any entity bean is used to create, locate, and
remove objects from EJB systems. Each entity bean type has its own home
interface. The home interface defines two basic kinds of methods: zero or more
create methods and one or more find methods.1 The create methods act like
remote constructors and define how new Ship EJBs are created. (In our home
interface, we only provide a single create() method.) The find method is used
to locate a specific ship or ships.

The following code contains the complete definition of the ShipHomeRemote
interface:

package com.titan.ship;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import java.rmi.RemoteException;
import java.util.Enumeration;

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote create(Integer id, String name,
 int capacity, double tonnage)
 throws RemoteException,CreateException;
 public ShipRemote create(Integer id, String name)
 throws RemoteException,CreateException;
 public ShipRemote findByPrimaryKey(Integer primaryKey)
 throws FinderException, RemoteException;
 public Enumeration findByCapacity(int capacity)
 throws FinderException, RemoteException;
}

Enterprise JavaBeans specifies that create methods in the home interface must
throw the javax.ejb.CreateException. In the case of container-

1 Chapter XX explains when you should not define any create methods in the home
interface.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates6

managed persistence, the container needs a common exception for
communicating problems experienced during the create process.

The find methods

EJB 1.1 CMP only supports find methods, not EJB 2.0’s select methods. In
addition, find methods are supported by only the remote home interface; local
component interfaces are not supported by EJB 1.1 entity beans.

With EJB 1.1 container-managed persistence, implementations of the find
methods are generated automatically at deployment time. Different EJB container
vendors employ different strategies for defining how the find methods work.
Regardless of the implementation, when you deploy the bean, you’ll need to do
some work to define the rules of the find method. findByPrimaryKey() is a
standard method that all home interfaces for entity beans must support. This
method locates beans based on the attributes of the primary key. In the case of
the Ship EJB, the primary key is the Integer class, which maps to the id field
of the ShipBean. With relational databases, the primary key attributes usually
map to a primary key in a table. In the ShipBean class, for example, the id
attribute maps to the ID primary key column in the SHIP table. In an object-
oriented database, the primary key’s attributes might point to some other unique
identifier.

EJB 1.1 allows you to specify other find methods in the home interface, in
addition to findByPrimaryKey(). All find methods must have names that
match the pattern find<SUFFIX>(). So, for example, if we were to include a
find method based on the Ship EJB’s capacity, it might be called
findByCapacity(int capacity). In container-managed persistence, any
find method included in the home interface must be explained to the container. In
other words, the deployer needs to define how the find method should work in
terms that the container understands. This is done at deployment time, using the
vendor’s deployment tools and syntax specific to the vendor.

Find methods return either the remote-interface type appropriate for that bean, or
an instance of java.util.Enumeration or java.util.Collection
type. Unlike EJB 2.0 CMP, EJB 1.1 CMP doesn’t support the java.util.Set
as a return type from finder methods.

Specifying a remote-interface type indicates that the method only locates one
bean. The findByPrimaryKey() method obviously returns one remote
reference because there is a one-to-one relationship between a primary key’s
value and an entity. The findByCapacity(int capacity) method,
however, could return several remote references, one for every ship that has a
capacity equal to the parameter capacity. The possibility of returning several
remote references requires the use of the Enumeration type or a
Collection type. Enterprise JavaBeans specifies that any find method used
in a home interface must throw the javax.ejb.FinderException. Find

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 7

methods that return a single remote reference throw a FinderException if an
application error occurs, and a javax.ejb.ObjectNotFoundException
if a matching bean cannot be found. The ObjectNotFoundException is a
subtype of FinderException and is only thrown by find methods that
return single remote references.

Find methods that return an Enumeration or Collection type (multi-entity
finders) return an empty collection (not a null reference) if no matching beans can
be found, or throw a FinderException if an application error occurs.

How find methods are mapped to the database for container-managed
persistence is not defined in the EJB 1.1 specification—it is vendor-specific.
Consult the documentation provided by your EJB vendor to determine how find
methods are defined at deployment time. Unlike EJB 2.0 CMP, there is no
standard query language for expressing the behavior of find methods at runtime.

The Primary Key

A primary key is an object that uniquely identifies an entity bean according to
the bean type, home interface, and container context from which it is used.

In container-managed persistence, a primary key can be a serializable object
defined specifically for the bean by the bean developer, or its definition can be
deferred until deployment. The primary key defines attributes that can be used to
locate a specific bean in the database. In this case, we need only one attribute,
id, but in other cases, a primary key may have several attributes, all of which
uniquely identify a bean’s data. We will examine primary keys in detail in Chapter
11; for now, we specify that the Ship EJB use a simple single-value primary key of
type java.lang.Integer.

The ShipBean Class

No bean is complete without its implementation class. Now that we have defined
the Ship EJB’s remote interfaces and primary key, we are ready to define the
ShipBean itself. The ShipBean will reside on the EJB server. When a client
application or bean invokes a business method on the Ship EJB’s remote
interface, that method invocation is received by the EJB object, which then
delegates it to the ShipBean instance.

When developing any bean, we have to use the bean’s remote interfaces as a
guide. Business methods defined in the remote interface must be duplicated in
the bean class. In container-managed beans, the create methods of the home
interface must also have matching methods in the bean class according to the
EJB 1.1 specification. Finally, callback methods defined by the
javax.ejb.EntityBean interface must be implemented. Here is the code
for the ShipBean class.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates8

package com.titan.ship;

import javax.ejb.EntityContext;

public class ShipBean implements javax.ejb.EntityBean {
 public Integer id;
 public String name;
 public int capacity;
 public double tonnage;

 public EntityContext context;

public Integer ejbCreate(Integer id, String name,
 int capacity, double tonnage) {
 this.id = id;
 this.name = name;
 this.capacity = capacity;
 this.tonnage = tonnage;
 return null;
}
public Integer ejbCreate(Integer id, String name) {
 this.id = id;
 this.name = name;
 capacity = 0;
 tonnage = 0;
 return null;
}

 public void ejbPostCreate(Integer id, String name, int capacity,
 double tonnage){
 Integer pk = (Integer)context.getPrimaryKey();
 // Do something useful with the primary key.
 }

 public void ejbPostCreate(int id, String name) {
 ShipRemote myself = (ShipRemote)context.getEJBObject();
 // Do something useful with the EJBObject reference.
 }
 public void setEntityContext(EntityContext ctx) {
 context = ctx;
 }
 public void unsetEntityContext() {
 context = null;
 }
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void ejbRemove() {}

 public String getName() {

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 9

 return name;
 }
 public void setName(String n) {
 name = n;
 }
 public void setCapacity(int cap) {
 capacity = cap;
 }
 public int getCapacity() {
 return capacity;
 }
 public double getTonnage() {
 return tonnage;
 }
 public void setTonnage(double tons) {
 tonnage = tons;
 }
}

The Ship EJB defines four persistent fields: id, name, capacity, and
tonnage. No mystery here: these fields represent the persistent state of the
Ship EJB; they are the state that defines a unique ship entity in the database. The
Ship EJB also defines another field, context, which holds the bean’s
EntityContext. We’ll have more to say about this later.

The set and get methods are the business methods we defined for the Ship EJB;
both the remote interface and the bean class must support them. This means that
the signatures of these methods must be exactly the same, except for the
javax.ejb.RemoteException. The bean class’s business methods aren’t
required to throw the RemoteException. This makes sense because these
methods aren’t actually invoked remotely— they’re invoked by the EJB object. If
a communication problem occurs, the container will throw the
RemoteException for the bean automatically.

Implementing the javax.ejb.EntityBean Interface

To make the ShipBean an entity bean, it must implement the
javax.ejb.EntityBean interface. The EntityBean interface contains a
number of callback methods that the container uses to alert the bean instance of
various runtime events:

public interface javax.ejb.EntityBean extends javax.ejb.EnterpriseBean {
 public abstract void ejbActivate() throws RemoteException;
 public abstract void ejbPassivate() throws RemoteException;
 public abstract void ejbLoad() throws RemoteException;
 public abstract void ejbStore() throws RemoteException;
 public abstract void ejbRemove() throws RemoteException;
 public abstract void setEntityContext(EntityContext ctx)
 throws RemoteException;

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates10

 public abstract void unsetEntityContext() throws RemoteException;
}

Each callback method is called at a specific time during the life cycle of a
ShipBean. In many cases, container-managed beans (like the ShipBean)
don’t need to do anything when a callback method is invoked. Container-
managed beans have persistence managed automatically, so many of the
resources and logic that might be managed by these methods are already
handled by the container.

This version of the Ship EJB has empty implementations for its callback methods.
It is important to note, however, that even a container-managed bean can take
advantage of these callback methods if needed; we just don’t need them in our
ShipBean at this time. The callback methods are examined in detail in Chapter
11. You should read the chapter to learn more about the callback methods and
when they are invoked.

The Create Methods

When a create method is invoked on the home interface, the EJB home delegates
it to the bean instance in the same way that business methods on the remote
interface are handled. This means that we need an ejbCreate() method in the
bean class that corresponds to each create() method in the home interface.

The ejbCreate() method returns a null value of type Integer for the
bean’s primary key. The return value of the ejbCreate() method for a
container-managed bean is actually ignored by the container.

EJB 1.1 changed its return value from void, which was the
return type in EJB 1.0, to the primary key type to facilitate
subclassing; the change was made so that it’s easier for a
bean-managed bean to extend a container-managed bean. In
EJB 1.0, this is not possible because Java won’t allow you to
overload methods with different return values. By changing
this definition so that a bean-managed bean can extend a
container-managed bean, the EJB 1.1 specification allows
vendors to support container-managed persistence by
extending the container-managed bean with a generated bean-
managed bean—a fairly simple solution to a difficult problem.
Bean developers can also take advantage of inheritance to
change an existing CMP bean into a BMP bean, which may be
needed to overcome difficult persis tence problems.

For every create() method defined in the entity bean’s home interface, there
must be a corresponding ejbPostCreate() method in the bean instance
class. In other words, ejbCreate() and ejbPostCreate() methods

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 11

occur in pairs with matching signatures; there must be one pair for each
create() method defined in the home interface.

ejbCreate() and ejbPostCreate

In a container-managed bean, the ejbCreate() method is called just prior to
writing the bean’s container-managed fields to the database. Values passed in to
the ejbCreate() method should be used to initialize the fields of the bean
instance. Once the ejbCreate() method completes, a new record, based on
the container-managed fields, is written to the database.

The bean developer must ensure that the ejbCreate() method sets the
persistent fields that correspond to the fields of the primary key. When a primary
key is defined for a container-managed bean, it must define fields that match one
or more of the container- managed (persistent) fields in the bean class. The fields
must match with regard to type and name exactly. At runtime, the container will
assume that fields in the primary key match some or all of the fields in the bean
class. When a new bean is created, the container will use those container-
managed fields in the bean class to instantiated and populate a primary key for
the bean automatically.

Once the bean’s state has been populated and its EntityContext
established, an ejbPostCreate() method is invoked. This method gives the
bean an opportunity to perform any post-processing prior to servicing client
requests.

The bean identity isn’t available to the bean during the call to ejbCreate(),
but is available in the ejbPostCreate() method. This means that the bean
can access its own primary key and EJB object, which can be useful for
initializing the bean instance prior to servicing business method invocations.
You can use the ejbPostCreate() method to perform any additional
initialization. Each ejbPostCreate() method must have the same parameters
as its corresponding ejbCreate() method. The ejbPostCreate()
method returns void.

Chapter 11 provides more details about the ejbCreate() and
ejbPostCreate() method and how they relate to the life cycle of entity
beans. Consult that chapter for more details about these methods.

Using ejbLoad() and ejbStore() in container-managed beans

The process of ensuring that the database record and the entity bean instance
are equivalent is called synchronization. In container-managed persistence, the
bean’s container- managed fields are automatically synchronized with the
database. In most cases, we will not need the ejbLoad() and ejbStore()
methods because persistence in container- managed beans is uncomplicated.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates12

Deployment Descriptor

Whether you are using an EJB 2.0 or EJB 1.1 platform, EJB 1.1 CMP entity beans
must use the EJB 1.1 deployment descriptor format. You do not use the EJB 2.0
deployment descriptor for deploying EJB 1.1 container-managed persistence
entities in a 2.0 platform.

With a complete definition of the Ship EJB, including the remote interface and the
home interface, we are ready to create a deployment descriptor. The following
listing shows the bean’s XML deployment descriptor. The <cmp-field>
element is particularly important. These elements list the fields that are managed
by the container; they have the same meaning as they do in EJB 2.0 container-
managed persistence.

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
 <enterprise-beans>
 <entity>
 <description>
 This bean represents a cruise ship.
 </description>
 <ejb-name>ShipEJB</ejb-name>
 <home>com.titan.ship.ShipHomeRemote</home>
 <remote>com.titan.ship.ShipRemote</remote>
 <ejb-class>com.titan.ship.ShipBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>1.x</cmp-version>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>name</field-name></cmp-field>
 <cmp-field><field-name>capacity</field-name></cmp-field>
 <cmp-field><field-name>tonnage</field-name></cmp-field>
 </entity>
 </enterprise-beans>

 <assembly-descriptor>
 <security-role>
 <description>
 This role represents everyone who is allowed full access
 to the Ship EJB.
 </description>
 <role-name>everyone</role-name>
 </security-role>

 <method-permission>

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 13

 <role-name>everyone</role-name>
 <method>
 <ejb-name>ShipEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <container-transaction>
 <method>
 <ejb-name>ShipEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

The <cmp-field> elements list all the container-managed fields in the entity
bean class. These are the fields that will be persisted in the database and are
managed by the container at runtime.

& Exercise 9.1, CMP 1.1 Entity Bean

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 1

10
Bean-Managed Persistence

Bean-Managed Persistence

Bean-managed persistence is more complicated than container-managed
persistence because you must explicitly write the persistence logic into the bean
class. In order to write the persistence handling code into the bean class, you
must know what type of database is being used and the how the bean class’s
fields map to that database.

Given that container-managed persistence saves a lot of work, why would
anyone bother with bean-managed persistence? The advantage of bean-
managed persistence is that it gives you more flexibility in how state is managed
between the bean instance and the database. Entity beans that use data from a
combination of different databases or other resources such as legacy systems
can benefit from bean-managed persistence. Essentially, bean-managed
persistence is the alternative to container-managed persistence when the
container tools are inadequate for mapping the bean instance’s state to the
backend databases or resource.

The disadvantage of bean-managed persistence is obvious: more work is
required to define the bean. You have to understand the structure of the
database or resource, the APIs that access them, and develop the logic to create,
update, and remove data associated with an entity. This requires diligence in
using the EJB callback methods such as ejbLoad() and ejbStore()
appropriately. In addition, you must explicitly develop the find methods defined
in the bean’s home interfaces.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 2

The select methods used in EJB 2.0 container-managed
persistence are not supported in bean-managed persistence.

Another disadvantage of bean-managed persistence is that it ties the bean to a
specific database type and structure. Any changes in the database or in the
structure of data require changes to the bean instance’s definition; these
changes may not be trivial. A bean-managed entity is not as database-
independent as a container-managed entity, but it can better accommodate a
complex or unusual set of data.1

To understand how bean-managed persistence works, we will create a new Ship
EJB that is similar to the one used in Chapters 7 and 11. For bean-managed
persistence, we need to implement the ejbCreate(), ejbLoad(),
ejbStore(), and ejbRemove() methods to handle synchronizing the
bean’s state with the database.

The Remote Interface

We will need a remote interface for the Ship EJB. This interface is basically the
same as any other remote or local interface. It defines the business methods used
by clients to interact with the bean:

package com.titan.ship;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface ShipRemote extends javax.ejb.EJBObject {
 public String getName() throws RemoteException;
 public void setName(String name) throws RemoteException;
 public void setCapacity(int cap) throws RemoteException;
 public int getCapacity() throws RemoteException;
 public double getTonnage() throws RemoteException;
 public void setTonnage(double tons) throws RemoteException;
}

In this chapter, we will not develop a local interface for the bean-managed Ship
bean; however, in EJB 2.0, bean-managed entity beans can have either local or
remote component interfaces, just like CMP.

Set and get methods

The ShipRemote definition uses a series of accessor methods whose names
begin with set and get. This is not a required signature pattern, but it is the

1 Containers that use object-to-relational mapping tools in bean-managed persistence
can mitigate this disadvantage.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 3

naming convention used by most Java developers when obtaining and changing
the values of object attributes or fields. These methods are often referred to as
setters and getters (a.k.a. mutators and accessors) and the attributes that they
manipulate can be called properties.2 These properties should be defined
independently of the anticipated storage structure of the data. In other words,
you should design the remote interface to model the business concepts, not the
underlying data. Just because there’s a capacity property doesn’t mean that
there has to be a capacity field in the bean or the database; the
getCapacity() method could conceivably compute the capacity from a list
of cabins, by looking up the ship’s model and configuration, or with some other
algorithm.

Defining entity properties according to the business concept and not the
underlying data is not always possible, but you should try to employ this
strategy whenever you can. The reason is two-fold. First, the underlying data
doesn’t always clearly define the business purpose or concept being modeled by
the entity bean. Remote interfaces will be used by developers who know the
business, not the database configuration. It is important to them that the entity
bean reflect the business concept. Second, defining the properties of the entity
bean independent of the data allows the bean and data to evolve separately. This
is important because it allows a database implementation to change over time; it
also allows for new behavior to be added to the entity bean as needed. If the
bean’s definition is independent of the data source, the impact of these
evolutions is limited.

The Remote Home Interface

The home interfaces (local and remote) of any entity bean are used to create,
locate, and remove objects from EJB systems. Each entity bean has its own
remote or local home interface. The home interface defines two basic kinds of
methods: zero or more create methods, and one or more find methods.3 The create
methods act like remote constructors and define how new Ship EJBs are created.
(In our home interface, we only provide a single create() method.) The find
method is used to locate a specific ship or ships.

The following code contains the complete definition of the ShipHomeRemote
interface:

package com.titan.ship;

2 Although EJB is different from its GUI counterpart, JavaBeans, the concepts of
accessors and properties are similar. You can learn about this idiom by reading Developing
Java Beans™ by Rob Englander (O’Reilly).

3 Chapter XX explains when you should not define any create methods in the home
interface.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 4

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import java.rmi.RemoteException;
import java.util.Collection;

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote create(Integer id, String name,
 int capacity, double tonnage)
 throws RemoteException,CreateException;
 public ShipRemote create(Integer id, String name)
 throws RemoteException,CreateException;
 public ShipRemote findByPrimaryKey(Integer primaryKey)
 throws FinderException, RemoteException;
 public Collection findByCapacity(int capacity)
 throws FinderException, RemoteException;
}

Enterprise JavaBeans specifies that create methods in the home interface must
throw the javax.ejb.CreateException. This provides the EJB container
with a common exception for communicating problems experienced during the
create process.

The RemoteException is thrown by all remote interfaces and is used to
communicate network problems that occurred while processing invocations
between a remote client and the EJB container system.

The Primary Key

In bean-managed persistence, a primary key can be a serializable object defined
specifically for the bean by the bean developer. The primary key defines
attributes that can be used to locate a specific bean in the database. For the
ShipBean, we need only one attribute, id, but in other cases, a primary key
may have several attributes, which taken together uniquely identify a bean’s
data.

We will examine primary keys in detail in Chapter 11; for now, we specify that the
Ship EJB uses a simple single-value primary key of type
java.lang.Integer. The actual persistence field in the bean class is an
Integer named id.

The ShipBean

The ShipBean defined for this chapter uses JDBC to synchronize the bean’s
state to the database. In reality, an entity bean that is this simple could easily be
deployed as a container-managed persistence bean. The purpose of this chapter,

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 5

however, is to illustrate exactly where the resource access code goes for bean-
managed persistence and how to implement it. The fact that we are
synchronizing the bean state against a relational database is not important to the
example. The bean could be persisted to some legacy system, or an ERP
application, or some other resource that is not supported by your vendor’s EJB
container-managed persistence, like LDAP or some hierarchical database.

So when learning about bean-managed persistence you should focus on when
and where the resource is accessed to synchronize the bean with the database,
and not be overly concerned with the fact that this example use JDBC and a
relational database.

Here is the complete definition of the ShipBean:

package com.titan.ship;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.ejb.EntityContext;
import java.rmi.RemoteException;
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.DriverManager;
import java.sql.ResultSet;
import javax.sql.DataSource;
import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.FinderException;
import javax.ejb.ObjectNotFoundException;
import java.util.Enumeration;
import java.util.Properties;
import java.util.Vector;
import java.util.Collection;

public class ShipBean implements javax.ejb.EntityBean {
 public Integer id;
 public String name;
 public int capacity;
 public double tonnage;

 public EntityContext context;

 public Integer ejbCreate(Integer id, String name,
 int capacity, double tonnage)
 throws CreateException {
 if ((id.intValue() < 1) || (name == null))
 throw new CreateException("Invalid Parameters");
 this.id = id;

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 6

 this.name = name;
 this.capacity = capacity;
 this.tonnage = tonnage;

 Connection con = null;
 PreparedStatement ps = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement(
 "insert into Ship (id, name, capacity, tonnage) " +
 "values (?,?,?,?)");
 ps.setInt(1, id.intValue());
 ps.setString(2, name);
 ps.setInt(3, capacity);
 ps.setDouble(4, tonnage);
 if (ps.executeUpdate() != 1) {
 throw new CreateException ("Failed to add Ship to database");
 }
 return id;
 }
 catch (SQLException se) {
 throw new EJBException (se);
 }
 finally {
 try {
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se) {
 se.printStackTrace();
 }
 }
 }
 public void ejbPostCreate(Integer id, String name,
 int capacity, double tonnage) {
 // Do something useful with the primary key.
 }
 public Integer ejbCreate(Integer id, String name)
 throws CreateException {
 return ejbCreate(id,name,0,0);
 }
 public void ejbPostCreate(int id, String name) {
 // Do something useful with the EJBObject reference.
 }
 public Integer ejbFindByPrimaryKey(Integer primaryKey)
 throws FinderException {
 Connection con = null;
 PreparedStatement ps = null;
 ResultSet result = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement(

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 7

 "select id from Ship where id = ?");
 ps.setInt(1, primaryKey.intValue());
 result = ps.executeQuery();
 // Does ship id exist in database?
 if (!result.next()) {
 throw new ObjectNotFoundException(
 "Cannot find Ship with id = "+id);
 }
 } catch (SQLException se) {
 throw new EJBException(se);
 }
 finally {
 try {
 if (result != null) result.close();
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se){
 se.printStackTrace();
 }
 }
 return primaryKey;
 }
 public Collection ejbFindByCapacity(int capacity)
 throws FinderException {
 Connection con = null;
 PreparedStatement ps = null;
 ResultSet result = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement(
 "select id from Ship where capacity = ?");
 ps.setInt(1,capacity);
 result = ps.executeQuery();
 Vector keys = new Vector();
 while(result.next()) {
 keys.addElement(result.getObject("id"));
 }
 return keys;

 }
 catch (SQLException se) {
 throw new EJBException (se);
 }
 finally {
 try {
 if (result != null) result.close();
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se) {
 se.printStackTrace();
 }

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 8

 }
 }
 public void setEntityContext(EntityContext ctx) {
 context = ctx;
 }
 public void unsetEntityContext() {
 context = null;
 }
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void ejbLoad() {

 Integer primaryKey = (Integer)context.getPrimaryKey();
 Connection con = null;
 PreparedStatement ps = null;
 ResultSet result = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement(
 "select name, capacity, tonnage from Ship where id = ?");
 ps.setInt(1, primaryKey.intValue());
 result = ps.executeQuery();
 if (result.next()){
 id = pk.intValue();
 name = result.getString("name");
 capacity = result.getInt("capacity");
 tonnage = result.getDouble("tonnage");
 } else {
 throw new EJBException();
 }
 } catch (SQLException se) {
 throw new EJBException(se);
 }
 finally {
 try {
 if (result != null) result.close();
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se) {
 se.printStackTrace();
 }
 }
 }
 public void ejbStore() {
 Connection con = null;
 PreparedStatement ps = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement(
 "update Ship set name = ?, capacity = ?, " +
 "tonnage = ? where id = ?");

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 9

 ps.setString(1,name);
 ps.setInt(2,capacity);
 ps.setDouble(3,tonnage);
 ps.setInt(4,id.intValue());
 if (ps.executeUpdate() != 1) {
 throw new EJBException("ejbStore");
 }
 }
 catch (SQLException se) {
 throw new EJBException (se);
 }
 finally {
 try {
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se) {
 se.printStackTrace();
 }
 }
 }
 public void ejbRemove() {
 Connection con = null;
 PreparedStatement ps = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement("delete from Ship where id = ?");
 ps.setInt(1, id.intValue());
 if (ps.executeUpdate() != 1) {
 throw new EJBException("ejbRemove");
 }
 }
 catch (SQLException se) {
 throw new EJBException (se);
 }
 finally {
 try {
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se) {
 se.printStackTrace();
 }
 }
 }
 public String getName() {
 return name;
 }
 public void setName(String n) {
 name = n;
 }
 public void setCapacity(int cap) {
 capacity = cap;

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 10

 }
 public int getCapacity() {
 return capacity;
 }
 public double getTonnage() {
 return tonnage;
 }
 public void setTonnage(double tons) {
 tonnage = tons;
 }
 private Connection getConnection() throws SQLException {
 // Implementations for EJB 1.0 and EJB 1.1 shown below
 }
}

Obtaining a Resource Connection

In order for a BMP entity bean to work, it must have access to the database or
resource that it will persist itself to. To get access to the database, the bean
usually obtains a resource factory from the JNDI ENC. The JNDI ENC is covered
in detail in chapter 12, Session beans, but an overview here will be helpful since
this is the first time its actually used. To get access to the database we simply
request a connection from a DataSource, which we obtain from the JNDI
environment naming context:

private Connection getConnection() throws SQLException {
 try {
 Context jndiCntx = new InitialContext();
 DataSource ds =
 (DataSource)jndiCntx.lookup("java:comp/env/jdbc/titanDB");
 return ds.getConnection();
 }
 catch (NamingException ne) {
 throw new EJBException(ne);
 }
}

In EJB, every enterprise bean has access to its JNDI environment naming context
(ENC), which is part of the bean-container contract. The bean’s deployment
descriptor maps resources such as the JDBC DataSource, JavaMail, and Java
Message Service to a context (name) in the ENC. This provides a portable model
for accessing these types of resources. Here’s the relevant portion of the
deployment descriptor that describes the JDBC resource:

<enterprise-beans>
 <entity>
 <ejb-name>ShipEJB</ejb-name>
 ...
 <resource-ref>
 <description>DataSource for the Titan database</description>
 <res-ref-name>jdbc/titanDB</res-ref-name>

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 11

 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <resource-ref>
 ...
 <entity>
...
<enterprise-beans>

The <resource-ref> tag is used for any resource (JDBC, JMS, JavaMail)
that is accessed from the ENC. It describes the JNDI name of the resource
(<res-ref-name>), the factory type (<res-type>), and whether
authentication is performed explicitly by the bean or automatically by the
container (<res-auth>). In this example, we are declaring that the JNDI name
"jdbc/titanDB" refers to a javax.sql.DataSource resource manager,
and that authentication to the database is handle automatically by the container.
The JNDI name specified in the <res-ref-name> tag is always relative to the
standard JNDI ENC context name, "java:comp/env".

When the bean is deployed, the deployer maps the information in the
<resource-ref> tag to a live database. This is done in a vendor-specific
manner, but the end result is the same. When a database connection is requested
using the JNDI name "java:comp/jdbc/titanDB", a DataSource for
the Titan database is returned. Consult your vendor’s documentation for details
on how to map the DataSource to the database at deployment time.

The getConnection() method provides us with a simple and consistent
mechanism for obtaining a database connection for our ShipBean class. Now
that we have a mechanism for obtaining a database connection, we can use it to
insert, update, delete, and find Ship EJBs in the database.

Exception Handling

Exception handling is particularly relevant in our discussion of bean-managed
persistence because, unlike container-managed persistence, the bean developer
is responsible for throwing the correct exceptions at the right moments. For this
reason we’ll take a moment to discuss different types of exceptions in bean-
managed persistence. This discussion will be useful when we get into the details
of database access and implementing the callback methods.

There are three types of exceptions thrown from a bean: application exceptions,
which indicate business logic errors, runtime exceptions, and checked subsystem
exceptions, which are thrown from subsystems like JDBC or JNDI.

Application exceptions

Application exceptions include standard EJB application exceptions and
custom application exceptions. The standard EJB application exceptions are
CreateException, FinderException,

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 12

ObjectNotFoundException, DuplicateKeyException, and
RemoveException. These exceptions are thrown from the appropriate
methods to indicate that a business logic error has occurred. Custom
exceptions are exceptions you develop for specific business problems. You
will develop custom exceptions in Chapter 12, Session beans.

Runtime exceptions

RuntimeException types are thrown from the virtual machine itself and
indicate that a fairly serious programming error has occurred. Examples
include NullPointerException and
IndexOutOfBoundsException. These exceptions are handled by the
container automatically and should not be handled inside a bean method.

You will notice that all the callback methods (ejbLoad, ejbStore,
ejbActivate, ejbPassivate, and ejbRemove) throw an
EJBException when a serious problem occurs. All EJB callback methods
declare the EJBException and RemoteException in their throws
clause. If you need to throw an exception from one of the callback methods,
it must be an EJBException or a subclass. The RemoteException
type is included in the method signature to support backward compatibility
with EJB 1.0 beans. Its use has been deprecated since EJB 1.1.
RemoteExceptions should never be thrown by callback methods of EJB
1.1 or EJB 2.0 beans.

Subsystem exceptions

Checked exceptions thrown by other subsystems should be wrapped in an
EJBException or application exception and re-thrown from the method.
Several examples of this can be found in the previous example, in which an
SQLException that was thrown from JDBC was caught and rethrown as
an EJBException. Checked exceptions from other subsystems, such as
those thrown from JNDI, JavaMail, JMS, etc., should be handled in the same
fashion. The EJBException is a subtype of the RuntimeException,
so it doesn’t need to be declared in the method’s throws clause. If the
exception thrown by the subsystem is not serious, you can opt to throw an
application exception, but this is not recommended unless you are sure of
the cause and affect of the exception on the subsystem. In the majority of
cases, throwing an EJBException is prefered.

Exceptions have an impact on transactions and are fundamental to transaction
processing. Exceptions are examined in greater detail in Chapter 14, Transactions.

The ejbCreate() Method

The ejbCreate() methods are called by the container when a client invokes
the corresponding create() method on the bean’s home. With bean-managed
persistence, the ejbCreate() methods are responsible for adding the new
entity to the database. This means that the new version of ejbCreate() will
be much more complicated than the equivalent methods in container-managed

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 13

entities; with container-managed beans, ejbCreate() doesn’t have to do
much more than initialize a few fields. The EJB specification also states that
ejbCreate() methods in bean-managed persistence must return the primary
key of the newly created entity. This is another difference between bean-
managed and container-managed persistence; in our container-managed beans,
ejbCreate() is required to return void.

The following code contains the ejbCreate() method of the ShipBean. Its
return type is the Ship EJB’s primary key, Integer. Furthermore, the method
uses the JDBC API to insert a new record into the database based on the
information passed as parameters.

public Integer ejbCreate(Integer id, String name,
 int capacity, double tonnage)
 throws CreateException {
 if ((id.intValue() < 1) || (name == null))
 throw new CreateException("Invalid Parameters");
 this.id = id;
 this.name = name;
 this.capacity = capacity;
 this.tonnage = tonnage;

 Connection con = null;
 PreparedStatement ps = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement(
 "insert into Ship (id, name, capacity, tonnage) " +
 "values (?,?,?,?)");
 ps.setInt(1, id.intValue());
 ps.setString(2, name);
 ps.setInt(3, capacity);
 ps.setDouble(4, tonnage);
 if (ps.executeUpdate() != 1) {
 throw new CreateException ("Failed to add Ship to database");
 }
 return id;
 }
 catch (SQLException se) {
 throw new EJBException (se);
 }
 finally {
 try {
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se) {
 se.printStackTrace();
 }
 }
}

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 14

At the beginning of the method, we verify that the parameters are correct, and
throw a CreateException if the id is less than 1, or the name is null.
This shows how you would typically use a CreateException to report an
application logic error.

The ShipBean instance fields are still initialized using the parameters passed to
ejbCreate() by setting the instance fields of the ShipBean. These values will
be used to manually insert the data into the SHIP table in our database.

To perform the database insert, we use a JDBC PreparedStatement for SQL
requests because it makes it easier to see the parameters being used.
Alternatively, we could have used a stored procedure through a JDBC
CallableStatement or a simple JDBC Statement object. We insert the
new bean into the database using a SQL INSERT statement and the values
passed into ejbCreate() parameters. If the insert is successful (no
exceptions thrown), we create a primary key and return it to the container.

If the insert operation is unsuccessful, we throw a new CreateException,
which illustrates its use in more ambiguous situation. Failure to insert the record
could be construed as an application error or a system failure. In this situation,
the JDBC subsystem hasn’t thrown an exception, so we shouldn’t interpret the
inability to insert a record as a failure of the subsystem. Therefore, we throw a
CreateException instead of an EJBException. Throwing a
CreateException provides the application the opportunity to recover from
the error, a transactional concept that is covered in more detail in Chapter 14,
Transactions.

After the insert operation is successful, the primary key is returned to the EJB
container from the ejbCreate() method. In this case we simply return the
same Integer object passed into the method, but in many cases a new key
might be derived from the method arguments. This is especially true when using
compound primary keys, which are discussed in Chapter 11. Behind the scenes,
the container uses the primary key and the ShipBean instance that returned it
to provide the client with a reference to the new Ship entity. Conceptually, this
means that the ShipBean instance and primary key are assigned to a newly
constructed EJB object, and the EJB object stub is returned to the client.

Our home interface requires us to provide a second ejbCreate() method with
different parameters. We can save work and write more bulletproof code by
making the second method call the first:

public Integer ejbCreate(Integer id, String name)
throws CreateException {
 return ejbCreate(id,name,0,0);
}

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 15

The ejbLoad() and ejbStore() Methods

Throughout the life of an entity, its data will be changed by client applications.
In the ShipBean, we provide accessor methods to change the name,
capacity, and tonnage of the Ship EJB after it has been created. Invoking
any of these accessor methods changes the state of the ShipBean instance,
which must be reflected in the database.

In container-managed persistence, synchronization between the entity bean and
the database takes place automatically; the container handles it for you. With
bean-managed persis tence, you are responsible for synchronization: the entity
bean must read and write to the database directly. The container works closely
with the bean-managed persistence entities by advising them when to
synchronize their state through the use of two callback methods: ejbStore()
and ejbLoad().

The ejbStore() method is called when the container decides that it is a good
time to write the entity bean’s data to the database. The container makes these
decisions based on all the activities it is managing, including transactions,
concurrency, and resource management. Vendor implementations may differ
slightly as to when the ejbStore() method is called, but this is not the bean
developer’s concern. In most cases, the ejbStore() method will be called
after a business method has been invoked or at the end of a transaction. Here is
the ejbStore() method for the ShipBean:

public void ejbStore() {
 Connection con = null;
 PreparedStatement ps = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement(
 "update Ship set name = ?, capacity = ?, " +
 "tonnage = ? where id = ?");
 ps.setString(1,name);
 ps.setInt(2,capacity);
 ps.setDouble(3,tonnage);
 ps.setInt(4,id.intValue());
 if (ps.executeUpdate() != 1) {
 throw new EJBException("ejbStore");
 }
 }
 catch (SQLException se) {
 throw new EJBException (se);
 }
 finally {
 try {
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se) {

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 16

 se.printStackTrace();
 }
 }
}

Except for the fact that we are doing an update instead of an insert, this method
is similar to the ejbCreate() method we examined earlier. A JDBC
PreparedStatement is employed to execute the SQL UPDATE command,
and the entity bean’s persistent fields are used as parameters to the request. This
method synchronizes the database with the state of the bean.

EJB also provides an ejbLoad() method that synchronizes the state of the
entity with the database. This method is usually called prior to a new transaction
or business method invocation. The idea is to make sure that the bean always
represents the most current data in the database, which could be changed by
other beans or other non-EJB applications. Here is the ejbLoad() method for a
bean-managed ShipBean class:

public void ejbLoad() {

 Integer primaryKey = (Integer)context.getPrimaryKey();
 Connection con = null;
 PreparedStatement ps = null;
 ResultSet result = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement(
 "select name, capacity, tonnage from Ship where id = ?");
 ps.setInt(1, primaryKey.intValue());
 result = ps.executeQuery();
 if (result.next()){
 id = primaryKey;
 name = result.getString("name");
 capacity = result.getInt("capacity");
 tonnage = result.getDouble("tonnage");
 } else {
 throw new EJBException();
 }
 } catch (SQLException se) {
 throw new EJBException(se);
 }
 finally {
 try {
 if (result != null) result.close();
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se) {
 se.printStackTrace();
 }
 }
}

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 17

To execute the ejbLoad() method we need a primary key. To get a primary
key, we query the bean’s EntityContext. Note that we don’t get the primary
key directly from the ShipBean’s id field because we cannot guarantee that
this field is always valid—the ejbLoad() method might be populating the
bean instance’s state for the first time, in which case the fields would all be set to
their default values. This situation would occur following bean activation. We
can guarantee that the EntityContext for the ShipBean is valid because
the EJB specification requires that the bean instance EntityContext
reference is valid before the ejbLoad() method can be invoked. The
EntityContext will be discussed in detail in Chapter 11.

You may want to jump to Chapter 11 and read the section titled EntityContext so
that you have a better understanding of its purpose and usefulness in entity
beans.

The ejbRemove() Method

In addition to handling their own inserts and updates, bean-managed entities
must also handle their own deletions. When a client application invokes the
remove method on the EJB home or EJB object, that method invocation is
delegated to the bean-managed entity by calling ejbRemove(). It is the bean
developer’s responsibility to implement an ejbRemove() method that deletes
the entity’s data from the database. Here’s the ejbRemove() method for our
bean-managed ShipBean:

public void ejbRemove() {
 Connection con = null;
 PreparedStatement ps = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement("delete from Ship where id = ?");
 ps.setInt(1, id.intValue());
 if (ps.executeUpdate() != 1) {
 throw new EJBException("ejbRemove");
 }
 }
 catch (SQLException se) {
 throw new EJBException (se);
 }
 finally {
 try {
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se) {
 se.printStackTrace();
 }
 }
}

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 18

ejbFind() Methods

In bean-managed persistence, the find methods in the remote or local home
interface must match the ejbFind methods in the actual bean class. In other
words, for each method named find<SUFFIX>() in a home interface, there
must be a corresponding ejbFind<SUFFIX>() method in the entity bean
class with the same arguments and exceptions. When a find method is invoked
on an EJB home, the container delegates the find method to a corresponding
ejbFind method on the bean instance. The bean-managed entity is responsible
for locating records that match the find requests. In ShipHomeRemote, there
are two find methods:

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote findByPrimaryKey(Integer primaryKey)
 throws FinderException, RemoteException;
 public Enumeration findByCapacity(int capacity)
 throws FinderException, RemoteException;
}

And here are the signatures of the corresponding ejbFind methods in the
ShipBean:

public class ShipBean extends javax.ejb.EntityBean {

 public Integer ejbFindByPrimaryKey(Integer primaryKey)
 throws FinderException, RemoteException {}
 public Collection ejbFindByCapacity(int capacity)
 throws FinderException, RemoteException {}
}

Aside from the names, there’s one difference between these two groups of
methods. The find methods in the home interface return either an EJB object
implementing the bean’s remote interface—in this case, ShipRemote—or a
collection of EJB objects in the form of a java.util.Enumeration or
java.util.Collection. The ejbFind methods in the bean class, on the
other hand, return either a primary key for the appropriate bean—in this case,
Integer—or a collection of primary keys. The methods that return a single
value (whether a remote/local interface or a primary key) are used whenever you
need to look up a single reference to a bean. If you are looking up a group of
references (for example, all ships with a certain capacity), you have to use the
method that returns either the Collection or Enumeration type. In either
case, the container intercepts the primary keys and converts them into remote
references for the client.

The EJB 2.0 specification recommends that EJB 2.0 bean-
managed persistence beans use the Collection type
instead of the Enumeration type. This recommendation is
probably made so that bean-managed persistence beans are

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 19

more consistent with EJB 2.0 container-managed persistence
beans, which use the Collection type. However, unlike
EJB 2.0 container-managed persistence beans, bean-managed
persistence beans do not support java.util.Set a s a
return type.

It shouldn’t come as a surprise that the type returned—whether it’s a primary
key or a remote (or local in EJB 2.0) interface—must be appropriate for the type of
bean you’re defining. For example, you shouldn’t put find methods in a Ship EJB
to look up and return Cabin EJB objects. If you need to return collections of a
different bean type, use a business method in the remote interface, not a find
method from one of the home interfaces.

In EJB 2.0, the EJB container takes care of returning the proper (local or remote)
interface to the client. For example, the Ship EJB may define both a local and
remote home interface both of which have a findByPrimaryKey() method.
When findByPrimary()is invoked on the local or remote interface, it will be
delegated to the same ejbFindByPrimary() key method. After the
ejbFindByPrimaryKey() method executes and returns the primary key, the
EJB container takes care of returning a ShipRemote or ShipLocal reference
to the client, depending on which home interface (local or remote) was used. The
EJB container also handles this for multi-entity find methods, returning a
collection of remote references for remote home interfaces and local references
for local home interfaces.

Both find methods defined in the ShipBean class throw a
FinderException if a failure in the request occurs when an SQL exception
condition is encountered. The findByPrimaryKey() throws the
ObjectNotFoundException if there are no records in the database that
match the id argument. This is exception should always be thrown by single-
entity find methods if no entity is found.

The findByCapacity() method returns an empty collection if no SHIP
records were found with a matching capacity; multi-entity find methods do not
throw an ObjectNotFoundException if no entities are found. Find
methods also throw FinderException and EJBException, in addition to
any application-specific exceptions that the bean developer considers
appropriate.

It is mandatory that all entity remote and local home interfaces include the
method findByPrimaryKey(). This method returns the remote interface
type, Ship. The method declares one parameter, the primary key for that bean
type. With local home interfaces, the return type of any single-entity finder
method is always the bean’s local interface. With remote home interfaces, the
return type of any single-entity find method is always the remote interface. You

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 20

cannot deploy an entity bean that doesn’t include a findByPrimaryKey()
method in its home interfaces.

Following the rules outlined earlier, we can define two ejbFind methods in
ShipBean that match the two find methods defined in the ShipHome:

public Integer ejbFindByPrimaryKey(Integer primaryKey)
 throws FinderException, {
 Connection con = null;
 PreparedStatement ps = null;
 ResultSet result = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement(
 "select id from Ship where id = ?");
 ps.setInt(1, primaryKey.intValue());
 result = ps.executeQuery();
 // Does ship id exist in database?
 if (!result.next()) {
 throw new ObjectNotFoundException(
 "Cannot find Ship with id = "+id);
 }
 } catch (SQLException se) {
 throw new EJBException(se);
 }
 finally {
 try {
 if (result != null) result.close();
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se){
 se.printStackTrace();
 }
 }
 return primaryKey;
}
public Collection ejbFindByCapacity(int capacity)
 throws FinderException {
 Connection con = null;
 PreparedStatement ps = null;
 ResultSet result = null;
 try {
 con = this.getConnection();
 ps = con.prepareStatement(
 "select id from Ship where capacity = ?");
 ps.setInt(1,capacity);
 result = ps.executeQuery();
 Vector keys = new Vector();
 while(result.next()) {
 keys.addElement(result.getObject("id"));
 }

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 21

 return keys

 }
 catch (SQLException se) {
 throw new EJBException (se);
 }
 finally {
 try {
 if (result != null) result.close();
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se) {
 se.printStackTrace();
 }
 }
}

The mandatory findByPrimaryKey() method uses the primary key to
locate the corresponding database record. Once it has verified that the record
exists, it simply returns the primary key to the container, which then uses the key
to activate a new instance and associate it with that primary key at the
appropriate time. If there is no record associated with the primary key, the
method throws an ObjectNotFoundException.

The ejbFindByCapacity() method returns a Collection of primary
keys that match the criteria passed into the method. Again, we construct a
prepared statement that we use to execute our SQL query. This time, however, we
expect multiple results so we use the java.sql.ResultSet to iterate
through the results, creating a vector of primary keys for each SHIP_ID
returned.

Find methods are not executed on bean instances that are currently supporting a
client application. Only bean instances that are not assigned to an EJB object
(instances in the instance pool) are supposed to service find requests, which
means that the ejbFind() methods in the bean instance have somewhat
limited use of the EntityContext. The EntityContext methods
getPrimaryKey() and getEJBObject() will throw exceptions because
the bean instance is in the pool and is not associated with a primary key or EJB
object when the ejbFind method is called.

Where do the objects returned by a finder method come from? This seems like a
simple enough question, but the answer is surprisingly complex. Remember that a
finder method isn’t executed by a bean instance that is actually supporting the
client; the container selects an idle bean instance from the instance pool to
execute the method. The container is responsible for creating the EJB objects and
local or remote references for the primary keys returned by the ejbFind method
in the bean class. As the client accesses these remote references, bean instances

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 22

are swapped into the appropriate EJB objects, loaded with data, and made ready
to service the client’s requests.

Deployment Descriptor

With a complete definition of the Ship EJB, including the remote interface, home
interface, and primary key, we are ready to create a deployment descriptor. Here
are the XML deployment descriptors for EJB 1.1 and 2.0. These deployment
descriptors are a little different from the descriptors we created for the container-
managed entity beans in Chapters 6, 7, and 10. In this deployment descriptor, the
persistence-type is Bean and there are no container-managed or
relationship field declarations. We also must declare the DataSource resource
factory that we use to query and update the database.

Here is the deployment descriptor for EJB 2.0:

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <entity>
 <description>
 This bean represents a cruise ship.
 </description>
 <ejb-name>ShipEJB</ejb-name>
 <home>com.titan.ship.ShipHomeRemote</home>
 <remote>com.titan.ship.ShipRemote</remote>
 <ejb-class>com.titan.ship.ShipBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <security-identity><use-callers-identity/><security-identity>
 <resource-ref>
 <description>DataSource for the Titan database</description>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 </entity>
 </enterprise-beans>

 <assembly-descriptor>
 <security-role>
 <description>
 This role represents everyone who is allowed full access

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 23

 to the Ship EJB.
 </description>
 <role-name>everyone</role-name>
 </security-role>

 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>ShipEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <container-transaction>
 <method>
 <ejb-name>ShipEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

</ejb-jar>

The EJB 1.1 deployment descriptor is exactly the same except for two things: the
<!DOCTYPE> element references EJB 1.1 instead of 2.0:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

And the <security-identity> element is specific to EJB 2.0 and would
not be in the EJB 1.1 deployment descriptor.

<security-identity><use-callers-identity/><security-identity>

& Exercise 10.1, Bean-Managed Persistence

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 1

11
Entity-Container Contract

Although each of the three entity type components (EJB 2.0 CMP, EJB 1.1 CMP,
and BMP) are programmed differently, their relationships to the container system
at runtime are very similar. This chapter covers the relationship between EJBs
and their containers, which includes areas like primary keys, callback methods,
and the entity bean lifecycle. When differences between the bean types are
important, they will be noted.

The Primary Key

A primary key is an object that uniquely identifies a specific type of entity bean.
A primary key can be any serializable type including primitive wrappers
(Integer, etc.) or custom classes defined by the bean developer. In the Ship
EJB (Chapters 7, 9, and 10) we used the Integer type as a primary key. Primary
keys can be declared by the bean developer, or the primary key type can be
deferred until deployment. We will talk about deferred primary keys later.

Because the primary key may be used in remote invocations, it must adhere to
the restrictions imposed by Java RMI-IIOP. These are addressed in Chapter 5,
but for most cases, you just need to make the primary key serializable. In
addition, the primary key must be a valid Java RMI-IIOP value type; and it must
implement equals() and hashCode() appropriately.

EJB allows two types of primary keys: compound and single-field keys. Single-
field primary keys map to a single persistent field defined in the bean class. The
Customer and Ship EJBs, for example, use a java.lang.Integer primary
key that maps to the container-managed persistence (CMP) field named id. A

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates2

compound primary key is a custom defined object that contains several instance
variables that map to more than one persistent field in the bean class.

Single-field key

The String class and the standard wrapper classes for the primitive data types
(java.lang.Integer, java.lang.Double, etc.) can be used as primary
keys. These are referred to as single-field primary keys because the primary key
is atomic; it maps only to one of the bean’s persistent fields. A compound
primary key, discussed next, maps a primary key to two or more persistent fields.
In the case of the Ship EJB, we specified an Integer type as the primary key in
the finder methods

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public Ship findByPrimaryKey(java.lang.Integer primarykey)
 throws FinderException, RemoteException;
 ...
}

In this case, there must be a single persistent field in the bean class with the
same matching type as the primary key. For the ShipBean, the id CMP field is
of type java.lang.Integer, so it maps well to the Integer primary key
type.

In EJB 2.0 container-managed persistence, the primary key type must map to one
of the CMP fields. The abstract accessor methods for the id field in the
ShipBean class fit this description.

public class ShipBean implements javax.ejb.EntityBean {
 public abstract Integer getId();
 public abstract void setId(Integer id);
 …
}

In bean-managed persistence (Chapter 10) and EJB 1.1 container-managed
persistence (Chapter 9) the single-field primary key maps to a container-managed
persistent field. For the ShipBean defined in Chapters 9 and 10, the Integer
primary key would map to the id instance field.

public class ShipBean implements javax.ejb.EntityBean {
 public Integer id;
 public String name;
 …
}

With single-field types, you identify the matching persistent field in the bean
class using the primkey-field element in the deployment descriptor to
specify one of the bean’s CMP fields as the primary key. The prim-key-
class element specifies the type of object used for the primary key class. The

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 3

Ship EJB uses both of these elements when defining the id persistent field as
the primary key.

<entity>
 <ejb-name>ShipEJB</ejb-name>
 <home>com.titan.ShipHomeRemote</ejb-home>
 <remote>com.titan.ShipRemote</ejb-remote>
 <ejb-class>com.titan.ShipBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>name</field-name></cmp-field>
 <cmp-field><field-name>tonnage</field-name></cmp-field>
 <primkey-field>id</primkey-field>
</entity>

Although primary keys can be primitive wrappers (Integer, Double, Long,
etc.), primary keys cannot be primitive types (int, double, long, etc.); some
of the semantics of EJB interfaces prohibit the use of primitives. For example, the
EJBObject.getPrimaryKey() method returns an Object type, thus
forcing primary keys to be Objects. Primitives also cannot be primary keys
because primary keys must implement the equals() and hashcode()
methods, so they can be managed in collections. Primitives are not objects and
do not have equals() or hashcode() methods.

Compound primary keys

A compound primary key is a class that implements
java.io.Serializable and contains one or more public fields whose
names and types match a subset of persistent fields in the bean class. These
types of primary keys are classes defined by the bean developer for a specific
entity bean.

For example, if a Ship EJB didn’t have an id field, we might uniquely identify
ships by their name and registration number. (We are adding the
registration CMP to the Ship EJB for this example.) In this case the name
and registration CMP fields would become our primary key fields. To
accommodate multiple fields as a primary key we need to define a primary key
class.

In this book, it’s a convention to define all compound primary keys as serializable
classes with names that match the pattern BeanNamePK. In this case we can
construct a new class called ShipPK, which serves as the compound primary
key for our Ship EJB.

public class ShipPK implements java.io.Serializable {
 public String name;

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates4

 public String registration;

 public ShipPK(){
 }
 public ShipPK(String name, String registration){
 this.name = name;
 this.registration = registration;
 }
 public String getName() {
 return name;
 }
 public String getRegistration() {
 return registration;
 }
 public boolean equals(Object obj){
 if (obj == null || !(obj instanceof ShipPK))
 return false;

 ShipPK other = (ShipPK)obj;
 if(this.name.equals(other.name) andand
 this.registration.equals(other.registration))
 return true;
 else
 return false;

 }
 public int hashCode(){
 return name.hashCode()̂ registration.hashCode();
 }

 public String toString(){
 return name+" "+registration;
 }

}

To make the ShipPK class work as a compound primary key we must make its
fields public. This allows the container system to use reflection when
synchronizing the values in the primary key class with the persistent fields in the
bean class. In addition, we must define an equals() and hashCode()
method so that the primary key can be easily manipulated within collections,
which is often needed by container systems and application developers alike.

It’s important to make sure that the variables declared in the primary key have
corresponding CMP fields in the entity bean with matching identifiers (names)
and data types. This is required so that the container, using reflection, can match
the variables declared in the compound key to the correct CMP fields in the bean
class. In this case, the name and registration instance variables declared
in the ShipPK class correspond to name and registration CMP fields in
the Ship EJB, so it’s a good match.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 5

We have also overridden the toString() method to return a meaningful
value. The default implementation defined in Object returns the class name of
the object appended to the object identity for that name space.

The ShipPK class defines two constructors: a no-argument constructor and an
overloaded constructor that sets the name and registration variables. The
overloaded constructor is a convenience method for developers that reduces the
number of steps required to create a primary key. The no-argument constructor is
required for container-managed persistence. When a new bean is created, the
container automatically instantiated the primary key using the Class.newIn-
stance() method, and populates it from the bean class’s container-managed
fields. A no-argument constructor must exist in order for that to work.

To accommodate the ShipPK we change the
ejbCreate()/ejbPostCreate() methods so that they have name and
registration arguments to set the primary key fields in the bean. Here is how the
ShipPK primary key class would be used in EJB 2.0 using the Ship EJB’s bean
class that was developed in Chapter 7:

import javax.ejb.EntityContext;
import javax.ejb.CreateException;

public abstract class ShipBean implements javax.ejb.EntityBean {

 public ShipPK ejbCreate(String name, String registration){
 setName(name);
 setRegistration(registration);
 return null;
 }
 public void ejbPostCreate(String name, String registration){
 }
 ...

In EJB 1.1 container-managed persistence, the container-managed fields are set
directly. Here is an example of how this would be done with the Ship EJB in CMP
1.1:

public class ShipBean implements javax.ejb.EntityBean {
 public String name;
 public String registration;

 public ShipPK ejbCreate(String name, String registration){
 this.name = name;
 this.registration = registration;
 return null;
 }

In bean-managed persistence, the Ship EJB sets its instance fields, instantiate the
primary key, and return it to the container.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates6

public class ShipBean implements javax.ejb.EntityBean {
 public String name;
 public String registration;

 public ShipPK ejbCreate(String name, String registration){
 this.name = name;
 this.registration = registration;
 ...
 // database insert logic goes here
 ...
 return new ShipPK(name, registration);
 }

The ejbCreate() method now returns the ShipPK as the primary key type.
The ejbCreate() method of entity beans must be defined with a return type
matching the primary key type if it’s defined—it returns the type
java.lang.Object if it is undefined.

In EJB 2.0 container-managed persistence, if the primary key fields are defined—
if they are accessible through abstract accessor methods—then they must be set
in the ejbCreate() method. Undefined or deferred primary keys are explained
in the next section. While the return type of the ejbCreate() method is
always the primary key type, the value returned must always be null. The EJB
container itself takes care of extracting the proper primary key directly. In bean-
managed persistence, the bean class is responsible for constructing the primary
key and returning it to the container.

The ShipHomeRemote interface must be modified so that it uses the name and
registration arguments in the create() method and the ShipPK in the
findByPrimaryKey() method—EJB requires that we use the primary key
type in that method.

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.FinderException;

public interface ShipHomeRemote extends javax.ejb.EJBHome {

 public ShipRemote create(String name, String registration)
 throws CreateException, RemoteException;

 public ShipRemote findByPrimaryKey(ShipPK primaryKey)
 throws FinderException, RemoteException;

}

setName() and setRegistration(), which modify the name and
registration of the Ship EJB, should not be declared in the remote or local
interfaces of the bean. The primary key of an entity bean must not be changed

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 7

once the bean is created. However, methods that simply read the primary key
fields may be exposed because they don’t change the key’s values.

EJB 2.0 specifies that the primary key may only be set once in the
ejbCreate() method or, if it’s undefined, automatically by the container
when the bean is created. Once the bean is created the primary key fields must
never be modified by the bean or one of its clients. This is a reasonable
requirement that should also be applied to EJB 1.1 CMP and bean-managed
persistence beans, because the primary key is the unique identifier of the bean.
Changing it could violate referential integrity in the database, resulting in two
beans mapped to the same identifier or breaking relationships with other beans
based on value of the primary key.

Undefined primary keys

Undefined primary keys for container-managed persistence were introduced in
EJB 1.1, but they didn’t realize their full potential until EJB 2.0. Basically,
undefined primary keys allow the bean developer to defer declaring the primary
key to the deployer, which makes it possible to utilize auto-generated primary
keys and to create more portable entity beans.

Undefined Primary Keys and Auto-Generated Values

An advantage of the undefined primary key is that the primary key’s value can
be automatically generated by the database or resources. The most popular
relational databases, for example, allow fields to be defined so that they auto-
increment or otherwise auto-generate values when a new record is inserted. This
is convenient as it allows new records to be allotted a unique primary key; the
application code doesn’t have to invent unique identifiers every time a new
record is added.

To facilitate an undefined primary key, the bean class and its interfaces use the
Object type to identify the primary key. In Chapter 6 the Address EJB was
introduced, which uses an undefined primary key. The following shows the
ejbCreate() method as returning an Object type.

public abstract class AddressBean extends javax.ejb.EntityBean {

 public Object ejbCreateAddress
 (String street, String city,
 String state, String zip)
 {
 setStreet(street);
 setCity(city);
 setState(state);
 setZip(zip);
 return null;
 }

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates8

The findByPrimaryKey() method defined in the local and remote home
interface must also use an Object type.

public interface AddressLocalHome extends javax.ejb.EJBLocalHome {

 public AddressLocal findByPrimaryKey(Object primaryKey)
 throws javax.ejb.FinderException;

}

Finally, the deployment descriptor of the Address EJB defines its primary key
type as java.lang.Object, and does not define any prim-key-field
elements.

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>AddressEJB</ejb-name>
 <local-home>AddressLocalHome</local-home>
 <local>AddressLocal</local>
 <ejb-class>AddressBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Object</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>street</field-name></cmp-field>
 <cmp-field><field-name>city</field-name></cmp-field>
 <cmp-field><field-name>state</field-name></cmp-field>
 <cmp-field><field-name>zip</field-name></cmp-field>
 </entity>

The use of an undefined primary key means that the bean developer and
application developer (client code) must work with a java.lang.Object
type and not a specific primary key type, which can be limiting. For example, it’s
not possible to construct an undefined primary key to use in a finder method if
you don’t know its type. This limitation can be quite daunting if you need to
locate an entity bean by its primary key. However, entity beans with undefined
primary keys can be easily located using other query methods that do not
depend on the primary key value, so this limitation is not a serious handicap.

In the case of the Address EJB we derived a great deal of value from using an
undefined primary key. It allowed us to create new Address beans without
having to worry about what the value of the primary key should be. If using
auto-generated primary keys makes your life easier, feel free to use undefined
primary keys throughout your system. Just be aware of the limitations
mentioned above.

Undefined Primary Keys and Portability

Another advantage of undefined primary keys is that they can improve the
portability of entity beans across different databases and resources. One

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 9

problem with container-managed persistence in EJB 1.0 was that the entity bean
developer had to define the primary key before the entity bean was deployed. In
turn, this requirement forced the developer to make assumptions about the
environment in which the entity bean would be used, which limited the entity
bean’s portability across databases. For example, a relational database uses a set
of columns in a table as the primary key, to which entity bean’s fields map nicely.
An object database, however, uses a completely different mechanism for
indexing objects, to which a primary key may not map very well. The same is true
for legacy systems and Enterprise Resource Planing (ERP) systems.

An undefined primary key allows the deployer to choose a system-specific key at
deployment time. An object database may generate an Object ID, while an ERP
system may generate some other primary key. These keys are generated by the
database or backend system automatically. This may require that the CMP bean
be altered or extended to support the key, but this is immaterial to the bean
developer; she concentrates on the business logic of the bean and leaves the
indexing to the container.

In bean-managed persistence an undefined primary key can be declared by
simply making the primary key type java.lang.Object. However, this is
pure semantics; the primary key value will not be auto-generated by the
container because the bean developer has total control over persistence. In this
case the bean developer would still need to use a valid primary key, but its type
would be hidden from the bean clients. This could be useful if the primary key
type is expected to change over time.

The Callback Methods

All entity beans (container- or bean-managed) must implement the
javax.ejb.EntityBean interface. The EntityBean interface contains a
number of callback methods that the container uses to alert the bean instance of
various runtime events:

public interface javax.ejb.EntityBean extends javax.ejb.EnterpriseBean {
 public abstract void ejbActivate()
 throws EJBException, RemoteException;
 public abstract void ejbPassivate()
 throws EJBException, RemoteException;
 public abstract void ejbLoad() throws EJBException, RemoteException;
 public abstract void ejbStore() throws EJBException, RemoteException;
 public abstract void ejbRemove()
 throws EJBException, RemoteException;
 public abstract void setEntityContext(EntityContext ctx)
 throws EJBException, RemoteException;
 public abstract void unsetEntityContext() throws EJBException,
 RemoteException;
}

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates10

Each callback method is invoked on an entity bean instance at a specific time
during its life cycle.

As described in Chapter 10, BMP beans must implement most of these callback
methods to synchronize the bean’s state with the database. The ejbLoad()
method tells the BMP bean when to read its state from the database;
ejbStore() tells it when to write to the database; and ejbRemove() tells
the bean when to delete itself from the database.

While bean-managed persistence beans take full advantage of callback methods,
CMP entity beans may not use them at all. CMP entity beans have persistence
managed automatically, so many of the resources and logic that might be
managed by these methods are already handled by the container. However, even
a CMP entity bean can take advantage of these callback methods if needed; we
just don’t need them in any of the container-managed entity beans defined in
this book.

You will have noticed that each method in the EntityBean interface throws
both javax.ejb.EJBException and java.rmi.RemoteException.
EJB 1.0 required that a RemoteException be thrown if a system exception
occurred while bean executed a callback method. However, since EJB 1.1, the use
of RemoteException in these methods has been deprecated in favor of the
javax.ejb.EJBException. EJB 1.1 and EJB 2.0 require that the
EJBException be thrown if a system error, like a SQLException, is
encountered while executing a method. The EJBException is a subclass of
RuntimeException, so you don’t have to declare it in the method signature.
At any rate, you don’t have to declare the RemoteException when
implementing the callback methods, and it’s recommended that you don’t.

setEntityContext() and unsetEntityContext()

The first method called after a bean instance is instantiated is
setEntityContext(). As the method signature indicates, this method
passes the bean instance a reference to a javax.ejb.EntityContext,
which is really the bean instance’s interface to the container. The purpose and
functionality of the EntityContext is covered in detail later in this chapter.

The setEntityContext() method is called prior to the bean instance’s
entry into the instance pool. In Chapter 3, we discussed the instance pool that
EJB containers maintain, where instances of entity and stateless session beans
are kept ready to use. EntityBean instances in the instance pool are not
associated with any data in the database; their state is not unique. When a client
requests a specific entity, an instance from the pool is chosen, populated with
data from the database, and assigned to service the client. It is recommended
that any non-managed resources needed for the life of the instance be obtained

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 11

when this method is called. This ensures that such resources are only obtained
once in the life of a bean instance. A non-managed resource is one that is not
automatically managed by the container (e.g., references to CORBA objects).
Only resources that are not specific to the entity bean’s identity should be
obtained in the setEntityContext(). Other managed resources (e.g. Java
Message Service factories) and entity bean references are obtained as needed
from the JNDI ENC. Bean references and managed resources obtained through
the JNDI ENC are not available from the setEntityContext(). The JNDI
ENC is covered in detail later in this chapter.

At the end of the entity bean instance’s life, after the entity bean instance is
removed permanently from the instance pool and before it’s garbage collected,
the unsetEntityContext() method is called, indicating that the bean
instance’s EntityContext is no longer implemented by the container. This
is a good time to free up any resources obtained in the
setEntityContext() method.

ejbCreate()

In a CMP bean, the ejbCreate() method is called just prior to writing the
bean’s state to the database. Values passed in to the ejbCreate() method
should be used to initialize the CMP fields of the bean instance. Once the
ejbCreate() method completes, a new record, based on the persistent fields,
is written to the database.

In bean-managed persistence, the ejbCreate() method is called when it’s
time for the bean to add itself to the database. Inside the ejbCreate()
method, a BMP bean must use some kind of API to insert its data into the
database.

Each ejbCreate() method must have parameters that match a create()
method in the home interface. If you look at the ShipBean class definition and
compare it to the Ship EJB’s home interface (Chapters 7, 9, and 10), you can see
how the parameters for the create methods match exactly in type and sequence.
This enables the container to delegate the create() method on the home
interface to the proper ejbCreate() method in the bean instance.

In EJB 2.0, the ejbCreate() method can take the form
ejbCreate<SUFFIX>(), which allows for easier method overloading when
parameters are the same but the methods act differently. For example,
ejbCreateByName(String name) and
ejbCreateByRegistration(String registration) would have
corresponding create methods defined in the local or home interface of the form
createByName(String name) and
createByRegistration(String registration).

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates12

EJB 1.1 CMP does not allow the use of suffixes on ejbCreate() names. The
ejbCreate() and create() methods may only differ by the number and
type of parameters defined.

The EntityContext maintained by the bean instance does not provide an
entity bean with the proper identity until the ejbCreate() method has
completed. This means that during the course of the ejbCreate() method,
the bean instance doesn’t have access to its primary key or EJB object. The
EntityContext does, however, provide the bean with information about the
caller’s identity, access to its EJB home object (local and remote), and properties.
The bean can also use the JNDI naming context to access other beans and
resource managers like javax.sql.DataSource.

The CMP entity bean developer must, however, ensure that the ejbCreate()
method sets the persistent fields that correspond to the fields of the primary key.
When a new CMP entity bean is created, the container will use the CMP fields in
the bean class to instantiate and populate a primary key automatically. In the
case of an undefined primary key, the container and database will work together
to generate the primary key for the entity bean.

Once the bean’s state has been populated and its EntityContext
established, the ejbPostCreate() method is invoked. This method gives
the bean an opportunity to perform any post-processing prior to servicing client
requests. In EJB 2.0 CMP entity beans, the ejbPostCreate() method is
used to manipulate container-managed relationship (CMR) fields. In EJB 2.0
container-managed persistence, CMR fields must not be modified in the
ejbCreate() method. The reason for this restriction has to do with
referential integrity; in order for two beans to have a relationship, both must
exist. In the case of a relational database, for example, relationships between data
may not be possible unless both parties have records in the database. There
could be a referential integrity constraint that says a foreign key value cannot be
used if the corresponding record doesn’t exist. Requiring that the ejbCreate
method complete before CMR fields are modified ensures that the entity bean’s
record is inserted into the database before attempting to link it to other records.

ejbPostCreate()

The bean identity isn’t available during the call to ejbCreate(), but is
available in the ejbPostCreate() method. This means that the bean can
access its own primary key and EJB object (local or remote) inside of
ejbPostCreate(). This can be useful for performing post processing prior
to servicing business method invocations—in CMP 2.0 it can be used for
initializing CMR fields of the entity bean.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 13

Each ejbPostCreate() method must have the same parameters as its
corresponding ejbCreate() method as well as the same method name. For
example, if the ShipBean class defines an ejbCreateByName(String
name) method, it must also define a matching
ejbPostCreateByName(String name) method. The ejbPost-
Create() method returns void. In EJB 1.1 CMP, suffixes are not allowed on
create methods. Only the parameter lists may differ between
ejbPostCreate() methods, but the method names must be
ejbPostCreate.

Matching the parameter lists of ejbCreate() and ejbPostCreate()
methods is important for a couple of reasons. First, it indicates which
ejbPostCreate() method is associated with which ejbCreate()
method. This ensures that the container calls the correct ejbPostCreate()
method after ejbCreate() is done. Second, it is possible that one of the
parameters passed is not assigned to a persistent field. In this case, you would
need to duplicate the parameters of the ejbCreate() method to have that
information available in the ejbPostCreate() method.

In EJB 2.0 container-managed persistence, relationship fields are the primary
reason for utilizing the ejbPostCreate() method, because of referential
integrity (discussed in the previous section on ejbCreate()).

ejbCreate() and ejbPostCreate() sequence of events

To understand how an entity bean instance gets up and running, we have to
think of a entity bean in the context of its life cycle. Figure 11-1 shows the
sequence of events during a portion of a container-managed persistence bean’s
life cycle, as defined by the EJB specification. Every EJB vendor must support
this sequence of events.

[FIGURE a modified version of Figure 6-1 from the 2nd edition]

Figure 11-1: Event sequence for bean instance creation

The process begins when the client invokes one of the create() methods on
the bean’s EJB home. A create() method is invoked on the EJB home stub
(step 1), which communicates the method to the EJB home across the network
(step 2). The EJB home plucks a ShipBean instance from the pool and invokes
its corresponding ejbCreate() method (step 3).

The create() and ejbCreate() methods are responsible for initializing the
bean instance so that the container can insert a record into the database. In the
case of the ShipBean, the minimal information required to add a new customer
to the system is the customer’s unique id. This CMP field is initialized during
the ejbCreate() method invocation (step 4).

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates14

In container-managed persistence (EJB 2.0 and 1.1), the container uses the bean
bean’s CMP fields (id, name, tonnage) to insert a record in the database,
which it reads from the bean (step 5). Only the fields described as CMP fields in
the deployment descriptor are accessed. Once the container has read the CMP
fields from the bean instance, it will automatically insert a new record into the
database using those fields (step 6). How the data is written to the database is
defined when the bean’s fields are mapped at deployment time. In our example, a
new record is inserted into the CUSTOMER table.

In bean-managed persistence, the bean class itself reads the
fields and performs a database insert to add the bean’s data to
the database. This would take place in steps 5 and 6.

Once the record has been inserted into the database, the bean instance is ready
to be assigned to an EJB object (step 7). Once the bean is assigned to an EJB
object, the bean’s identity is available. This is when the ejbPostCreate()
method is invoked (step 8).

In EJB 2.0 CMP entity beans the ejbPostCreate() method is used to
manage the entity beans container-managed relationship fields. This might
involve setting the Cruise, in the Ship EJB’s cruise CMP field or some other
relationship (step 9).

Finally, when the ejbPostCreate() processing is complete, the bean is
ready to service client requests. The EJB object stub is created and returned to
client application, which will use it to invoke business methods on the bean (step
10).

Using ejbLoad() and ejbStore() in container-
managed persistence

The process of ensuring that the database record and the entity bean instance
are equivalent is called synchronization. In container-managed persistence, the
bean’s CMP fields are automatically synchronized with the database. In most
cases, we will not need the ejbLoad() and ejbStore() methods because
persistence in container-managed beans is fairly straightforward.

Leveraging the ejbLoad() and ejbStore() callback methods in container-
managed beans, however, can be useful if custom logic is needed when
synchronizing CMP fields. Data intended for the database can be reformatted or
compressed to conserve space; data just retrieved from the database can be used
to calculate derived values for non-persistent fields.

Imagine a hypothetical bean class that includes some binary value that you want
to store in the database. The binary value may be very large (an image for
example), so you need to compress it before storing it away. Using the

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 15

ejbLoad() and ejbStore() methods in a container-managed bean allows
the bean instance to reformat the data as appropriate for the state of the bean
and the structure of the database. Here’s how this might work:

import java.util.zip.Inflater;
import java.util.zip.Deflater;

public abstract class HypotheticalBean implements javax.ejb.EntityBean {
 // instance variable
 public byte [] inflatedImage;

 // CMP field methods
 public abstract void setImage(byte [] image);
 public abstract byte [] getImage();

 // business methods. Used by client.
 public byte [] getImageFile(){
 if(inflatedImage == null){
 Inflater unzipper = new Inflater();
 byte [] temp = getImage();
 unzipper.setInput(temp);
 unzipper.inflate(inflatedImage);
 }
 return inflatedImage;
 }
 public void setImageFile(byte [] image){
 inflatedImage = image;
 }

 // callback methods
 public void ejbLoad(){
 inflatedImage = null;
 }
 public void ejbStore(){
 if(inflatedImage != null){
 Deflater zipper = new Deflater();
 zipper.setInput(inflatedImage);
 byte [] temp = new byte[inflatedImage.length];
 int size = zipper.deflate(temp);
 byte [] temp2 = new byte[size];
 System.arraycopy(temp, 0, temp2, 0, size);
 setImage(temp2);
 }
 }
}

Just before the container synchronizes the state of entity bean with the database,
it calls the ejbStore() method. This method uses the java.util.zip
package to compress the image file, if it has been modified, before writing it to the
database.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates16

Just after the container updates the fields of the HypotheticalBean with
fresh data from the database, it calls the ejbLoad() method, which re-
initializes the inflatedImage instance variable to null. Decompression is
preformed lazily so it’s only done when it is needed. Compression is performed
by the ejbStore() method only if the image was accessed, otherwise the
image field is not modified.

Using ejbLoad() and ejbStore() in bean-managed
persistence

In bean-managed persistence the ejbLoad() and ejbStore() methods are
called by the container when it’s time to read or write the database. The
ejbLoad() method will be invoked after the start of a transaction, but before
the entity bean can service a method call. The ejbStore() is usually called
after the business method is called, but it must be called before the end of the
transaction.

While the entity bean is responsible for reading and writing its state to the
database, the container is responsible for managing the scope of the transaction.
This means that the entity bean developer need not worry about committing
operations on database access APIs, provided the resource is managed by the
container. The container will take care of committing the transaction and making
persistent the changes at the appropriate times.

If a bean-managed persistence entity bean uses a resource that is not managed
by the container system, the entity bean must manage the scope of the
transaction manually, using operations specific to the API. Examples of how to
use the ejbLoad() and ejbStore() methods in bean-managed persistence
are shown in detail in Chapter 10.

ejbPassivate() and ejbActivate()

The ejbPassivate() method notifies the bean developer that the entity
bean instance is about to be pooled or otherwise disassociated from the entity
bean identity. This gives the entity bean developer an opportunity to do some
last minute clean up before the bean is placed in the pool—where it will be
reused by some other EJB object.

The ejbActivate() method notifies the bean developer that the entity bean
instance has just returned from the pool and is now associated with an EJB
object and has been assigned an identity. This gives the entity bean developer
an opportunity to prepare the entity bean for service, which might include
obtaining some kind of resource connection.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 17

However, as with the ejbPassivate() method, it’s difficult to see why this
method would be used in practice. It is best to secure resources lazily (i.e., as
needed). The ejbActivate() method suggests that some kind of eager
preparation can be accomplished, but this is rarely used in practice.

Even in EJB containers that do not pool entity bean instances,
the value of ejbActivate() and ejbPassivate() is
questionable. It’s possible that an EJB container may choose
to evict instances from memory between client invocations,
and create a new instance for each new transaction. While this
may appear to hurt performance, it’s a reasonable design
provided the container system’s Java virtual machine has an
extremely efficient garbage collection and memory allocation
strategy. Hotspot is an example of a VM that has made some
important advances in this area. Even in this case,
ejbActivate() and ejbPassivate() provide little
value because the setEntityContext() and
unsetEntityContext() can accomplish the same thing.

One of the few practical reasons for using ejbActivate() is to re-initialize
non-persistent instance fields of the bean class that may have become dirty while
the instance serviced another client.

Regardless of their general usefulness, these callback methods are at your
disposal if you need them. In most cases, you are better off using
setEntityContext() and unsetEntityContext() for the same
purpose, since these methods will only execute once in the life cycle of a bean
instance.

ejbRemove()

The component interfaces (remote, local, home, and local home) define
remove() methods that can be used to delete an entity from the system.
When a client invokes one of the remove() methods, as shown in the
following code, the container must delete the entity’s data from the database.

CustomerHomeRemote customerHome;
CustomerRemote customer;

customer.remove()
// or
customerHome.remove(customer);

The data deleted from the database includes all CMP fields and, in the case of
CMP 2.0, the CMR fields. So, for example, when invoking remove on a Ship EJB,
the corresponding record in the SHIP table is deleted.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates18

In CMP 2.0, the remove method also removes the link between the SHIP record
and the CRUISE record. However, the CRUISE record associated with the
SHIP record will not be automatically deleted. The address data will be deleted
along with the customer data only if cascading delete is specified. A cascading
delete must be declared explicitly in the XML deployment descriptor, as
explained in Chapter 7.

The ejbRemove() method in container-managed persistence notifies the
entity bean that it’s about to be removed, and its data deleted. This notification
occurs after the client invokes one of the remove() methods defined in a
component interface, but before the container actually deletes the data. It gives
the bean developer an opportunity to do some last minute clean up before the
entity is removed. Any clean-up operations that might ordinarily be done in the
ejbPassivate() method should also be done in the ejbRemove()
method, because the bean will be pooled after the ejbRemove() method
without having its ejbPassivate() method invoked.

In bean-managed persistence, the bean developer is responsible for
implementing the logic that removes the entity bean’s data from the database.

EJB 2.0: ejbHome

In EJB 2.0, CMP and BMP entity beans can declare home methods that perform
operations related to the EJB component, but that are not specific to an entity
bean instance. A home method must have a matching implementation in the
bean class with the signature ejbHome<METHOD-NAME>().

For example, the Cruise EJB might define a home method that calculates the total
revenue in bookings for a specific Cruise.

public interface CruiseHomeLocal extends javax.ejb.EJBLocalHome {

 public CruiseLocal create(String name, ShipLocal ship);
 public void setName(String name);
 public String getName();
 public void setShip(ShipLocal ship);
 public ShipLocal getShip();

 public double totalReservationRevenue(CruiseLocal cruise);
}

Every method in the home interfaces must have a corresponding
ejbHome<METHOD-NAME>() in the bean class. For example, the
CruiseBean class would have an
ejbHomeTotalReservationRevenue() method, as shown in the
following code.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 19

public abstract class CruiseBean
implements javax.ejb.EntityBean {
 public Integer ejbCreate(String name,
 ShipLocal ship) {
 setName(name);
 }
 ...
 public double ejbHomeTotalReservationRevenue(CruiseLocal cruise){

 Set reservations = ejbSelectReservations(cruise);
 Iterator enum = set.iterator();
 double total = 0;
 while(enum.hasNext()){
 ReservationLocal res = (ReservationLocal)enum.next();
 Total += res.getAmount();
 }
 return total;

 }

 public abstract ejbSelectReservations(CruiseLocal cruise);
 …
}

Like the ejbFind methods in bean-managed persistence, the ejbHome
methods execute without an identity within the instance pool. This is why the
ejbHomeTotalReservationRevenue() required that a CruiseLocal
EJB object reference be passed in to the method. This makes sense once you
realize that the caller is invoking the home method on the entity bean’s EJB home
object, and not an entity bean reference directly. The EJB home (local or remote)
is not specific to any one entity instance.

The bean developer may implement home methods in both EJB 2.0 bean-managed
persistence and container-managed persistence. Container-managed persistence
implementations typically rely on select methods, while BMP implementations
frequently use direct database access and the finder methods of beans to query
data and apply changes.

EntityContext

The first method called by the container after a bean instance is created is
setEntityContext(). This method passes the bean instance a reference to
its javax.ejb.EntityContext, which is really the instance’s interface to
the container.

The setEntityContext() method is called prior to the bean instance’s
entry into the instance pool. In Chapter 3, we discussed the instance pool that

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates20

EJB containers maintain, where instances of entity and stateless session beans
are kept ready to use. EntityBean instances in the instance pool are not
associated with any data in the database; their state is not unique. When a
request for a specific entity is made by a client, an instance from the pool is
chosen, populated with data from the database, and assigned to service the
client.

At the end of the entity bean instance’s life, after it is removed permanently from
the instance pool and before it is garbage collected, the unsetEn-
tityContext() method is called, indicating that the bean instance’s
EntityContext is no longer implemented by the container.

The setEntityContext() method should be implemented by the entity
bean developer so that it places the EntityContext reference in an instance
field of the bean where it will be kept for the life of the instance. The definition of
EntityContext in EJB 2.0 is as follows:

public interface javax.ejb.EntityContext extends javax.ejb.EJBContext {
 public EJBLocalObject getEJBLocalObject()
 throws IllegalStateException
 public abstract EJBObject getEJBObject()
 throws IllegalStateException;
 public abstract Object getPrimaryKey() throws IllegalStateException;
}

EJBLocalObject is new to EJB 2.0 and is not supported by EJB 1.1. EJB 1.1
uses the Enterprise JavaBeans 1.1 EntityContext, which doesn’t define a
getEJBLocalObject() method.

The definition of the EntityContext in EJB 1.1 is as follows:

public interface javax.ejb.EntityContext extends javax.ejb.EJBContext {
 public abstract EJBObject getEJBObject()
 throws IllegalStateException;
 public abstract Object getPrimaryKey() throws IllegalStateException;
}

As the bean instance is swapped from one EJB object to the next, the information
obtainable from the EntityContext reference changes to reflect the EJB
object that the instance is assigned to. This is possible because the
EntityContext is an interface, not a static class definition. This means that
the container can implement the EntityContext with a concrete class that it
controls. As the entity bean instance is swapped from one EJB object to another,
some of the information made available through the EntityContext will also
change.

The getEJBObject() method returns a remote reference to the bean
instance’s EJB object. The getEJBLocalObject() method (EJB 2.0), on the
other hand, returns a local reference to the bean instance’s EJB object.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 21

The EJB objects obtained from the EntityContext are the same kinds of
references that might be used by an application client, in the case of the remote
reference, or another co-located bean, in the case of a local reference. The
purpose of this method is to provide the bean instance with a reference to itself
when it needs to perform a loopback operation, or to provide a reference to
another bean for a relationship field.

A loopback occurs when a bean invokes a method on another bean, passing
itself as one of the parameters. Here is an example:

public class A_Bean extends EntityBean {
 public EntityContext context;
 public void someMethod() {
 B_Bean b = ... // Get a remote reference to B_Bean.
 EJBObject obj = context.getEJBObject();
 A_Bean mySelf = (A_Bean)
 PortableRemoteObject.narrow(obj,A_Bean.class);
 b.aMethod(mySelf);
 }
 ...
}

It is illegal for a bean instance to pass a this reference to another bean; instead,
it passes its remote or local EJB object reference, which the bean instance gets
from its EntityContext. As discussed in Chapter 3, loopbacks or reentrant
behavior are problematic in EJB and should be avoided by new EJB developers.

Session beans also define the getEJBObject() and
getEJBLocalObject() method (EJB 2.0) in the
SessionContext interface; its behavior is exactly the same.

In EJB 2.0, the ability to obtain an EJB object reference to itself is also useful
when establishing relationships with other beans in container-managed
persistence. For example, the Customer EJB might implement a business method
that allows it to assign itself a Reservation.

public abstract class CustomerBean implements javax.ejb.EntityBean {
 public EntityContext context;

 public void assignToReservation(ReservationLocal reservation){
 EJBLocalObject localRef = context.getEJBLocalObject();
 Collection customers = reservation.getCustomers();
 customers.add(localRef);
 }
 …
}

The getPrimaryKey() method allows a bean instance to get a copy of the
primary key to which it is currently assigned. Using this method outside of the
ejbLoad() and ejbStore() methods of BMP entity beans is probably rare,

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates22

but the EntityContext makes the primary key available for those unusual
circumstances when it is needed.

As the context in which the bean instance operates changes, some of the
information made available through the EntityContext reference will be
changed by the container. This is why the methods in the EntityContext
throw the java.lang.IllegalStateException. The
EntityContext is always available to the bean instance, but the instance is
not always assigned to an EJB object. When the bean is between EJB objects,
when it’s in the pool, it has no EJB object or primary key to return. If the
getEJBObject(), getEJBLocalObject(), or getPrimaryKey()
methods are invoked when the bean is not assigned to an EJB object (when it’s
in the pool), these methods will throw an IllegalStateException.
Appendix B provides tables for each bean type describing which EJBContext
methods can be invoked at what times.

EJBContext

The EntityContext extends the javax.ejb.EJBContext class, which
is also the base class for the SessionContext used by session beans. The
EJBContext defines several methods that provide useful information to a bean
at runtime. Here is the definition of the EJBContext interface:

package javax.ejb;
public interface EJBContext {

 // EJB home methods
 public EJBHome getEJBHome();
 // EJB 2.0 only
 public EJBLocalHome getEJBLocalHome();

 // security methods
 public java.security.Principal getCallerPrincipal();
 public boolean isCallerInRole(java.lang.String roleName);

 // transaction methods
 public javax.transaction.UserTransaction getUserTransaction()
 throws java.lang.IllegalStateException;
 public boolean getRollbackOnly()
 throws java.lang.IllegalStateException;
 public void setRollbackOnly()
 throws java.lang.IllegalStateException;

 // deprecated methods
 public java.security.Identity getCallerIdentity();
 public boolean isCallerInRole(java.security.Identity role);
 public java.util.Properties getEnvironment();

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 23

}

The getEJBHome() and getEJBLocalHome() methods (EJB 2.0) returns a
reference to the bean’s EJB home. This is useful if the bean needs to create or
find entity beans of its own type. Access to the EJB home proves more useful in
bean-managed entity beans or CMP 1.1 entity beans then it does in CMP 2.0
entity beans, which have select methods and CMR fields.

As an example, if all employees in Titan’s system (including managers) are
represented by CMP 1.1 Employee beans, then a manager employee who needs
access to subordinate employees can use the getEJBHome() method to get
beans representing the appropriate employees:

public class EmployeeBean implements EntityBean {
 int id;
 String firstName;
 ...
 public Enumeration getSubordinates() {
 Object ref = ejbContext.getEJBHome();
 EmployeeHome home = (EmployeeHome)
 PortableRemoteObject.narrow(ref, EmployeeHome.class);
 Integer primKey = (Integer)context.getPrimaryKey();
 Enumeration subordinates = home.findByManagerID(primKey);
 return subordinates;
 }
 ...
}

The getCallerPrincipal() method is used to obtain the Principal
object representing the client that is currently accessing the bean. The
Principal object can, for example, be used by the Ship bean to track the
identity of clients making updates:

 public class ShipBean implements EntityBean {
 String modifiedBy;
 EntityContext context;
 ...
 public void setTonnage(double tons){
 tonnage = tons;
 Principal principal = context.getCallerPrincipal();
 String modifiedBy = principal.getName();
 }
 ...
}

The isCallerInRole() method tells you whether the client accessing the
bean is a member of a specific role, identified by a role name. This method is
useful when more access control is needed than simple method-based access
control can provide. In a banking system, for example, the Teller role might be
allowed to make withdrawals, but only a Manager can make withdrawals over
$10,000. This kind of fine-grained access control cannot be addressed through

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates24

EJB’s security attributes because it involves a business logic problem. Therefore,
we can use the isCallerInRole() method to augment the automatic access
control provided by EJB. First, let’s assume that all Managers also are Tellers.
Let’s also assume that the deployment descriptor for the Account bean specifies
that clients that are members of the Teller role can invoke the withdraw()
method. The business logic in the withdraw() method uses
isCallerInRole() to further refine access control so that only the Manager
role can withdraw over $10,000.00.

public class AccountBean implements EntityBean {
 int id;
 double balance;
 EntityContext context;

 public void withdraw(Double withdraw)
 throws AccessDeniedException {

 if (withdraw.doubleValue() > 10000) {
 boolean isManager = context.isCallerInRole("Manager");
 if (!isManager) {
 // Only Managers can withdraw more than 10k.
 throw new AccessDeniedException();
 }
 }
 balance = balance - withdraw.doubleValue();

 }
 ...
}

The EJBContext contains some deprecated methods that were used in EJB 1.0
but were deprecated in EJB 1.1 and have been abandoned in EJB 2.0. Support for
these deprecated methods is optional for EJB 1.1 containers, which can host EJB
1.0 beans. EJB containers that do not support the deprecated security methods
will throw a RuntimeException. The deprecated security methods are based
on EJB 1.0’s use of the Identity object instead of the Principal object.
The semantics of the deprecated methods are basically the same, but because
Identity is an abstract class, it has proven to be too difficult to use.

The getEnvironment() method has been replaced by the JNDI Environment
Naming Context, which is discussed later in the book. Support in EJB 1.1 for the
deprecated getEnvironment() method is discussed in detail in Chapter 12.

The transactional methods (getUserTransaction(),
setRollbackOnly(), getRollbackOnly()) are described in detail in
Chapter 14.

The material on the EJBContext as covered in this section apply equally well
to session and message-driven beans. There are some exceptions, however, and

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 25

these differences are covered in Chapter 12, Session beans and Chapter 13,
Message-Driven beans.

JNDI ENC

Starting with EJB 1.1, the bean-container contract for entity and stateful beans
was expanded beyond the EJBContext using the Java Naming and Directory
Interface (JNDI). A special JNDI name space, which is referred to as the
environment naming context (ENC), was added which allows any enterprise
bean to access environment entries, other beans, and resources such as JDBC
DataSource objects specific to that enterprise bean.

The JNDI ENC continues to be an extremely important part of the bean-container
contract in EJB 2.0. Although the JNDI ENC is used to access JDBC in the bean-
managed persistence chapter (Chapter 10), it’s not specific to entity beans. The
JNDI ENC is used by session, entity, and message-driven beans alike. To avoid
unnecessary duplication, a detailed discussion of this important facility is left for
Chapter 12, Session beans. What you learn about using the JNDI ENC in
Chapter 12 applies equally as well to session, entity, and message-driven beans.

The Life Cycle of an Entity Bean
To understand how to best develop entity beans, it is important to understand
how the container manages them. The EJB specification defines just about every
major event in an entity bean’s life, from the time it is instantiated to the time it is
garbage collected. This is called the life cycle, and it provides the bean developer
and EJB vendors with all the information they need to develop beans and EJB
servers that adhere to a consistent protocol. To understand the life cycle, we will
follow an entity instance through several life-cycle events and describe how the
container interacts with the entity bean during these events. Figure 11-2
illustrates the life cycle of an entity instance.

[FIGURE]

Figure 11-2: Entity bean life cycle

We will examine the life cycle of an entity bean and identify the points at which
the container would call each of the methods described in the EntityBean
interface, as well as the find methods, and in EJB 2.0, the select and home
methods. Bean instances must implement the EntityBean interface, which
means that invocations of the callback methods are invocations on the bean
instance itself.

At each stage of the entity bean’s life cycle the bean container provides varying
levels of access. For example, the EntityContext.getPrimary() method
will not work if it’s invoked during in the ejbCreate() method, but it does

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates26

work when called in the ejbPostCreate() method. Other EJBContext
methods have similar restrictions, as does the JNDI ENC. While this section
touches on the accessibility of these methods, a complete table that details what
is available in each bean class method (ejbCreate(), ejbActivate(),
ejbLoad(), etc.) can be found in Appendix B.

Does Not Exist

The entity bean begins life as a collection of files. Included in that collection are
the bean’s deployment descriptor, component interfaces and all the supporting
classes generated at deployment time. At this stage, no instance of the bean
exists.

The Pooled State

When the EJB server is started, it reads the EJB’s files and instantiated several
instances of the entity bean’s bean class, which it places in a pool. The instances
are created by calling the Class.newInstance() method on the bean class.
The newInstance() method creates an instance using the default
constructor, which has no arguments.1 This means that the persistent fields of
the bean instances are set at their default values; the instances themselves do
not represent any data in the database.

Immediately following the creation of an instance, and just before it is placed in
the pool, the container assigns the instance its EntityContext. The
EntityContext is assigned by calling the setEntityContext() method
defined of the EntityBean interface which is implemented by the bean class.
After the instance has been assigned its context, it is entered into the instance
pool.

In the instance pool, the bean instance is available to the container as a
candidate for servicing client requests. Until it is requested, however, the bean
instance remains inactive unless it is used to service a query methods (finder or
select methods) or ejbHome requests. Bean instances in the Pooled state
typically service query and ejbHome requests, which makes perfectly good sense
because they aren’t busy, and these methods don’t rely on the bean instance’s
state. All instances in the Pooled state are equivalent. None of the instances are
assigned to an EJB object, and none of them has meaningful state.

1 Constructors should never be defined in the bean class. The default no-argument
constructor must be available to the container.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 27

The Ready State

When a bean instance is in the Ready State, it can accept client requests. A bean
instance moves to the Ready State when the container assigns it to an EJB
object. This occurs under two circumstances: when a new entity bean is being
created or when the container is activating an entity.

Transitioning from the Pooled state to the Ready State via creation

When a client application invokes the create() method on an EJB home,
several operations must take place before the EJB container can return a remote
or local reference (EJB object) to the client. First, an EJB object must be created
on the EJB server 2. Once the EJB object is created, a entity bean instance is
taken from the instance pool and assigned to the EJB object. Next, the
create() method, invoked by the client, is delegated to its corresponding
ejbCreate() method on the bean instance. After the ejbCreate()
method completes, a primary key is created. In container-managed persistence,
the container instantiates and populates the key automatically; in bean-managed
persistence the entity bean constructs the primary key manually in the
ejbCreate() method. Once the primary key is created, the key is embedded in
the EJB object, providing it with identity. Once the EJB object has identity, the
bean instance’s EntityContext can access information specific to that EJB
object, including the primary key and its own remote reference. While the
ejbCreate() method is executing, the security and transactional information
is available.

When the ejbCreate() method is done, the ejbPostCreate() method
on the entity bean instance is called. At this time, the bean instance can perform
any post-processing that is necessary before making itself available to the
client—modifying relationship fields is typical. While the ejbPostCreate()
executes, the bean’s primary key and access to its own EJB object reference are
available through the EntityContext. In EJB 2.0, the ejbPostCreate()
method can be used to initialize the container-managed relationship fields.

Finally, after the successful completion of the ejbPostCreate() method, the
home is allowed to return a remote or local reference—an EJB object—to the
client. The bean instance and EJB object are now ready to service method
requests from the client. This is one way that the bean instance can move from
the Pooled state to the Ready State.

2 This is only a conceptual model. In reality an EJB container and the EJB object may be the
same thing or perhaps a single EJB object provides a multiplexing service for all entities of
the same type. The implementation details are not as important as understanding the life
cycle protocol.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates28

Transitioning from the Pooled state to the Ready State via a query method

When a query method is executed, each EJB object that is found as a result of
the query will be realized by transitioning an instance from the Pooled state to
the Ready State. When an entity bean is found, it is assigned to an EJB object
and its EJB object reference is returned to the client. A found bean follows the
same protocol as a passivated bean; it is activated when the client invokes a
business method. A found bean can be considered to be a passivated bean and
will move into the Ready State through activation as described in the next
section.

In many cases (depending on the EJB vendor), found entity beans don’t actually
migrate into the ready state until they are accessed by the client. So, for example,
of a find method returns a collection of entity beans, the entity beans may not be
activated until they are obtained from the collection or when accessed directly by
the client. This saves resources by activating entity beans lazily (as needed).

Transitioning from the Pooled state to the Ready State via activation

The activation process can also move an entity bean instance from the Pooled
state to the Ready State. Activation facilitates resource management by allowing
a few bean instances to service many EJB objects. Activation was explained in
Chapter 2, but we will revisit the process as it relates to the entity bean
instance’s life cycle. Activation presumes that the entity bean has previously
been passivated. More is said about this state transition later; for now, suffice it
to say that when a bean instance is passivated, it frees any resources that it does
not need and leaves the EJB object for the instance pool. When the bean
instance returns to the pool, the EJB object is left without an instance to delegate
client requests to. The EJB object maintains its stub connection on the client, so
as far as the client is concerned, the entity bean hasn’t changed. When the client
invokes a business method on the EJB object, the EJB object must obtain a new
bean instance. This is accomplished by activating a bean instance.

When a bean instance is activated, it leaves the instance pool (the Pooled State)
to be assigned to an EJB object. Once assigned to the proper EJB object, the
ejbActivate() method is called—the instance’s EntityContext can
now provide information specific to the EJB object, but it cannot provide security
or transactional information. The ejbActivate() callback method can be
used in the bean instance to re-obtain any resources or perform some other work
needed before servicing the client.

When an entity bean instance is activated, non-persistent instance fields of the
bean instance may contain arbitrary values (dirty values) and must be
reinitialized in the ejbActivate() method.

In container-managed persistence, container-managed fields are automatically
synchronized with the database after ejbActivate() is invoked and before a

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 29

business method can be serviced by the bean instance. The order in which these
things happen in CMP entity beans is:

1. ejbActivate() is invoked on the bean instance.

2. Persistent fields are synchronized automatically.

3. ejbLoad() notifies the bean that its persistent fields have been
synchronized.

4. Business methods are invoked as needed.

In bean-managed persistence, persistent fields are synchronized by the
ejbLoad() method after ejbActivate() has been called and before a
business method can be invoked. Here is the order of operations in bean-
managed persistence:

1. ejbActivate() is invoked on the bean instance.

2. ejbLoad() is called to let the bean synchronize its persistent fields.

3. Business methods are invoked as needed.

Transitioning from the Ready State to the Pooled state via passivation

A bean can move from the Ready State to the Pooled state via passivation, which
is the process of disassociating a bean instance from an EJB object when it is not
busy. After a bean instance has been assigned to an EJB object, the EJB
container can passivate the instance at any time, provided that the instance is
not currently executing a method. As part of the passivation process, the
ejbPassivate() method is invoked on the bean instance. This callback
method can be used by the instance to release any resources or perform other
processing prior to leaving the EJB object. When ejbPassivate() has
completed, the bean instance is disassociated from the EJB object server and
returned to the instance pool. The bean instance is now back in the Pooled State.

A bean-managed entity instance should not try to save its state to the database
in the ejbPassivate() method; this activity is reserved for the
ejbStore() method. The container will invoke ejbStore() to synchronize
the bean instance’s state with the database prior to passivating the bean.

The most fundamental thing to remember is that, for entity beans, passivation is
simply a notification that the instance is about to be disassociated from the EJB
object. Unlike stateful session beans, an entity bean instance’s fields are not
serialized and held with the EJB object when the bean is passivated. Whatever
values are held in the instance’s non-persistent fields when it was assigned to
the EJB object will be carried with it to its next assignment.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates30

Transitioning from the Ready State to the Pooled state via removal

A bean instance also moves from the Ready State to the Pooled state when it is
removed. This occurs when the client application invokes one of the remove()
methods on the bean’s EJB object or EJB home. With entity beans, invoking a
remove method means that the entity’s data is deleted from the database. Once
the entity’s data has been deleted from the database, it is no longer a valid entity.
The EntityContext can provide the EJB object with identity information
during the execution of the ejbRemove() method. Once the ejbRemove()
method has finished, the bean instance is moved back to the instance pool and
out of the Ready State. It is important that the ejbRemove() method release
any resources that would normally be released by ejbPassivate(), which is
not called when a bean is removed. This can be done, if need be, by invoking the
ejbPassivate() method within the ejbRemove() method body.

In bean-managed persistence, the ejbRemove() method is implemented by the
entity bean developer and include code to delete the entity bean’s data from the
database. The EJB container will invoke the ejbRemove() method in
response to a client’s invocation of the remove() method on one of the
component interfaces.

In container-managed persistence, the ejbRemove() method notifies the
entity bean instance that its data is about to be removed form the database.
Immediately following the ejbRemove() call, the container detetes the entity
bean’s data.

In EJB 2.0 CMP the container also cleans up the entity bean’s relationships with
other entity beans in the database. If a cascade delete is specified, it removes
each entity bean in the cascade delete relationships. This involves activating
each entity bean and calling its ejbActivate() methods, loading each entity
bean’s state by calling its ejbLoad() method, calling the ejbRemove() on
all of the entity beans in the cascade relationship, and then deleting their data.
This process can continue in a chain until all the cascade-delete operations of all
the relationships have completed.

Life in the Ready State

A bean is in the Ready State when it is associated with an EJB object and is
ready to service requests from the client. When the client invokes a business
method, like Ship.getName(), on the bean’s remote or local reference (EJB
object), the method invocation is received by the EJB server and delegated to the
bean instance. The instance performs the method and returns the results. As
long as the bean instance is in the Ready State, it can service all the business
methods invoked by the client. Business methods can be called zero or more
times in any order.

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates 31

In addition to servicing business methods, an entity bean in the ready state can
also execute select methods, which are called by the bean instance on itself while
servicing a business method or ejbHome method.

The ejbLoad() and ejbStore() methods, which synchronize the bean
instance’s state with the database, can be called only when the bean is in the
Ready State. These methods can be called in any order, depending on the
vendor’s implementation. Some vendors call ejbLoad() before every method
invocation and ejbStore() after every method invocation, depending on the
transactional context. Other vendors call these methods less frequently.

In bean-managed persistence, the ejbLoad() method should always use the
EntityContext.getPrimaryKey() to obtain data from the database and
not trust any primary key or other data that the bean has stored in one of its
fields. (This is how we implemented it in the bean-managed version of the Ship
bean in Chapter 10.) It should be assumed, however, that the state of the bean is
valid when calling the ejbStore() method.

In container-managed persistence, the ejbLoad() method is always called
immediately following the synchronization of the bean’s container-managed
fields with the database—in other words, right after the container updates the
state of the bean instance with data from the database. This provides an
opportunity to perform any calculations or reformat data before the instance can
service business method invocations from the client. The ejbStore() method
is called just before the database is synchronized with the state of the bean
instance—just before the container writes the container-managed fields to the
database. This provides the CMP entity bean instance with an opportunity to
change the data in the container-managed fields prior to their persistence to the
database.

In bean-managed persistence, the ejbLoad() and ejbStore() methods are
called when the container deems it appropriate to synchronize the bean’s state
with the database. These are the only callback methods that should be used to
synchronize the bean’s state with the database. Do not use ejbActivate(),
ejbPassivate(), setEntityContext(), or
unsetEntityContext() to access the database for the purpose of
synchronization. The ejbCreate() and ejbRemove() methods, however,
can be used to insert and delete (respectively) the entity’s data from the
database.

End of the Life Cycle

A bean instance’s life cycle ends when the container decides to remove it from
the pool and allow it to be garbage collected. This happens under a few different
circumstances. If the container decides to reduce the number of instances in the
pool—usually to conserve resources—it releases one or more bean instances

DRAFT, 10/21/017/17/2001

Copyright (c) 2001 O'Reilly & Associates32

and allows them to be garbage collected. The ability to adjust the size of the
instance pool allows the EJB server to manage its resources (the number of
threads, available memory, etc.) so that it can achieve the highest possible
performance. This behavior is typical of a CTM.

When an EJB server is shut down, most containers release all the bean instances
so that they can be safely garbage collected. Finally, some containers may decide
to release an instance that is behaving unfavorably or an instance that has
suffered from some kind of unrecoverable error that makes it unstable. For
example, anytime an entity bean instance throws a type of
RuntimeException from any of its methods, the EJB container will evict that
instance from memory and replace it with a stable instance from the instance
pool.

When an entity bean instance leaves the instance pool to be garbage collected,
the unsetEntityContext() method is invoked by the container to alert the
bean instance that it is about be destroyed. This callback method lets the bean
instance release any resources it maintains before being garbage collected. Once
the bean’s unsetEntityContext() method has been called it will be
garbage collected.

The bean instance’s finalize() method may or may not be invoked
following the unsetEntityContext() method. A bean should not rely on
its finalize() method, since each vendor handles evicting instances
differently.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 1

12

Session Beans

Chapters 6 through 11 demonstrated that entity beans provide an object-oriented
interface that makes it easier for developers to create, modify, and delete data
from the database. Entity beans make developers more productive by
encouraging reuse and reducing development costs. A concept like a Ship can
be reused throughout a business system without having to redefine, recode, or
retest the business logic and data access.

However, entity beans are not the entire story. We have also seen another kind
of enterprise bean: the session bean. Session beans fill the gaps left by entity
beans. They are useful for describing interactions between other beans
(workflow) or for implementing particular tasks. Unlike entity beans, session
beans don’t represent shared data in the database, but they can access shared
data. This means that we can use session beans to read, update, and insert data.
For example, we might use a session bean to provide lists of information, such as
a list of all available cabins. Sometimes we might generate the list by interacting
with entity beans, like the cabin list we developed in the TravelAgent EJB in
Chapter 4. More frequently, session beans will generate lists by accessing the
database directly.

So when do you use an entity bean and when do you use a session bean to
directly access data? Good question! As a rule of thumb, an entity bean is
developed to provide a safe and consistent interface to a set of shared data that
defines a concept. This data may be updated frequently. Session beans access
data that spans concepts, is not shared, or is usually read-only.

In addition to accessing data directly, session beans can represent workflow.
Workflow describes all the steps required to accomplish a particular task, such as
booking passage on a ship or renting a video. Session beans are part of the same

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates2

business API as entity beans, but as workflow components, they serve a
different purpose. Session beans can manage the interactions between entity
beans, describing how they work together to accomplish a specific task. The
relationship between session beans and entity beans is like the relationship
between a script for a play and the actors that perform the play. Where entity
beans are the actors, the session bean is the script. Actors without a script can
each serve a function individually, but only in the context of a script can they tell
a story. In terms of our example, it makes no sense to have a database full of
cabins, ships, customers, and other objects if we can’t create interactions
between them, like booking a customer for a cruise.

Session beans are divided into two basic types: stateless and stateful. A
stateless session bean is a collection of related services, each represented by a
method; the bean maintains no state from one method invocation to the next.
When you invoke a method on a stateless session bean, it executes the method
and returns the result without knowing or caring what other requests have gone
before or might follow. Think of a stateless session bean as a set of procedures
or batch programs that execute a request based on some parameters and return a
result. Stateless session beans tend to be general-purpose or reusable, such as a
software service.

A stateful session bean is an extension of the client application. It performs tasks
on behalf of the client and maintains state related to that client. This state is
called conversational state because it represents a continuing conversation
between the stateful session bean and the client. Methods invoked on a stateful
session bean can write and read data to and from this conversational state, which
is shared among all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might have been captured in
the client application of a two-tier system. Session beans, whether they are
stateful or stateless, are not persistent like entity beans. In other words, session
beans are not saved to the database.

Depending on the vendor, stateful session beans may have a timeout period. If
the client fails to use the stateful bean before it times out, the bean instance is
destroyed and the EJB object reference is invalidated. This prevents the stateful
session bean from lingering long after a client has shut down or otherwise
finished using it. A client can also explicitly remove a stateful session bean by
calling one of its remove methods.

Stateless session beans have longer lives because they don’t retain any
conversational state and are not dedicated to one client, but they still aren’t
saved in a database because they don’t represent any data. Once a stateless
session bean has finished a method invocation for a client, it can be reassigned
to any other EJB object to service a new client. A client can maintain a
connection to a stateless session bean’s EJB object, but the bean instance itself
is free to service requests from any client. Because it doesn’t contain any state
information, there’s no difference between one client and the next. Stateless
session beans may also have a timeout period and can be removed by the client,

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 3

but the impact of these events is different than with a stateful session bean. With
a stateless session bean, a timeout or remove operation simply invalidates the
EJB object reference for that client; the bean instance is not destroyed and is free
to service other client requests.

The Stateless Session Bean
A stateless session bean is very efficient and relatively easy to develop.
Stateless session beans require few server resources because they are neither
persistent nor dedicated to one client. Because they aren’t dedicated to one
client, many EJB objects can share a few instances of a stateless bean. A
stateless session bean does not maintain conversational state relative to the
client it is servicing, so it can be swapped freely between EJB objects. As soon
as a stateless instance services a method invocation, it can be swapped to
another EJB object immediately. Because there is no conversational state, a
stateless session bean doesn’t require passivation or activation, further reducing
the overhead of swapping. In short, they are lightweight and fast!

Stateless session beans often perform services that are fairly generic and
reusable. The services may be related, but they are not interdependent. This
means that everything a method needs to know has to be passed via the
method’s parameters. This provides an interesting limitation. Stateless session
beans can’t remember anything from one method invocation to the next, which
means that they have to take care of the entire task in one method invocation.
The only exception to this rule is information obtainable from the
SessionContext and the JNDI ENC.

Stateless session beans are EJB’s version of the traditional transaction
processing applications, which are executed using a procedure call. The
procedure executes from beginning to end and then returns the result. Once the
procedure is done, nothing about the data that was manipulated or the details of
the request are remembered. There is no state.

These restrictions don’t mean that a stateless session bean can’t have instance
variables or maintain some kind of internal state. There’s nothing that prevents
you from keeping a variable that tracks the number of times a bean has been
called or that saves data for debugging. An instance variable can even hold a
reference to a live resource like a URL connection for writing debugging data,
verifying credit cards, or anything else that might be useful. However, it’s
important to remember that this state can never be visible to a client. A client
can’t assume that the same bean instance will service it every time. If these
instance variables have different values in different bean instances, their values
will appear to change randomly as stateless session beans are swapped from one
client to another. Therefore, any resources that you reference in instance
variables should be generic. For example, each bean instance might reasonably
record debugging messages in a different file—that might be the only way to
figure out what was happening on a large server with many bean instances. The

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates4

client doesn’t know or care where debugging output is going. However, it would
be clearly inappropriate for a stateless bean to remember that it was in the
process of making a reservation for Madame X—the next time it is called, it may
be servicing another client entirely.

Stateless session beans can be used for report generation, batch processing, or
some stateless services like validating a credit card. Another good application
would be a StockQuote EJB that returns a stock’s current price. Any activity that
can be accomplished in one method call is a good candidate for the high-
performance stateless session bean.

EJB 1.1: Downloading the Missing Pieces

Both the TravelAgent EJB and the ProcessPayment EJB, which we develop in
this chapter, depend on other entity beans, some of which we developed earlier
in this book and several that you can download from O’Reilly’s web site. The
Cabin was developed in Chapter 4, but we still need several other beans to
develop this example. The other beans are the Cruise, Customer, and Reservation
EJBs. The source code for these beans is available with the rest of the examples
for this book at the O’Reilly download site. Instructions for downloading code
are available in the preface of this book and in the workbook.

Before you can use these beans, you will need to create some new tables in your
database. Here are the table definitions that the new entity beans will need. The
Cruise EJB maps to the CRUISE table:

CREATE TABLE CRUISE
(
 ID INT PRIMARY KEY,
 NAME CHAR(30),
 SHIP_ID INT
)

The Customer EJB maps to the CUSTOMER table:

CREATE TABLE CUSTOMER
(
 ID INT PRIMARY KEY,
 FIRST_NAME CHAR(30),
 LAST_NAME CHAR(30),
 MIDDLE_NAME CHAR(30)
)

The Reservation EJB maps to the RESERVATION table:

CREATE TABLE RESERVATION
(
 CUSTOMER_ID INT,
 CABIN_ID INT,
 CRUISE_ID INT,

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 5

 AMOUNT_PAID DECIMAL (8,2),
 DATE_RESERVED DATE
)

Once you have created the tables, deploy these beans as container-managed
entities in your EJB server and test them to ensure that they are working
properly.

The ProcessPayment EJB

Chapters 2 and 3 discussed the TravelAgent EJB, which had a business method
called bookPassage() that uses the ProcessPayment EJB. The next section
develops a complete definition of the TravelAgent EJB, including the logic of the
bookPassage() method. At this point, however, we are interested in the
ProcessPayment EJB, which is a stateless bean used by the TravelAgent EJB.
The TravelAgent EJB uses the ProcessPayment EJB to charge the customer for
the price of the cruise.

The process of charging customers is a common activity in Titan’s business
systems. Not only does the reservation system need to charge customers, but so
do Titan’s gift shops, boutiques, and other related businesses. The process of
charging a customer for services is common to many systems, so it has been
encapsulated in its own bean.

Payments are recorded in a special database table called PAYMENT. The
PAYMENT data is batch processed for accounting purposes and is not normally
used outside of accounting. In other words, the data is only inserted by Titan’s
system; it’s not read, updated, or deleted. Because the process of making a
charge can be completed in one method, and because the data is not updated
frequently or shared, a stateless session bean has been chosen for processing
payments. Several different forms of payment can be used: credit card, check, or
cash. We will model these payment forms in our stateless ProcessPayment EJB.

PAYMENT: The database table

The ProcessPayment EJB accesses an existing table in Titan’s system called the
PAYMENT table. Create a table in your database called PAYMENT with this
definition:

CREATE TABLE PAYMENT
(
 customer_id NUMERIC,
 amount DECIMAL(8,2),
 type CHAR(10),
 check_bar_code CHAR(50),
 check_number INTEGER,
 credit_number NUMERIC,
 credit_exp_date DATE

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates6

)

ProcessPaymentRemote: The remote interface

A stateless session bean, like any other bean, needs a component interface.
While EJB 1.1 uses only remote interfaces, in EJB 2.0 a session beans may have
either a local or remote interface. For EJB 2.0 we’ll develop both.

For the remote interface, we obviously need a byCredit() method because
the TravelAgent EJB uses it. We can also identify two other methods that we’ll
need: byCash() for customers paying cash and byCheck() for customers
paying with a personal check.

Here is a complete definition of the remote interface for the ProcessPayment EJB:

package com.titan.processpayment;

import java.rmi.RemoteException;
import java.util.Date;
import com.titan.customer.Customer;

public interface ProcessPaymentRemote extends javax.ejb.EJBObject {

 public boolean byCheck(CustomerRemote customer, CheckDO check,
double amount)
 throws RemoteException,PaymentException;

 public boolean byCash(CustomerRemote customer, double amount)
 throws RemoteException,PaymentException;

 public boolean byCredit(CustomerRemote customer, CreditCardDO card,
double amount)
 throws RemoteException,PaymentException;
}

Remote interfaces in session beans follow the same rules as the entity beans.
Here we have defined the three business methods, byCheck(), byCash(),
and byCredit(), which take information relevant to the form of payment used
and return a boolean value that indicates the success of the payment. In
addition to the required RemoteException, these methods can throw an
application-specific exception, the PaymentException. The
PaymentException is thrown if any problems occur while processing the
payment, such as a low check number or an expired credit card. Notice, however,
that nothing about the ProcessPaymentRemote interface is specific to the
reservation system. It could be used just about anywhere in Titan’s system. In
addition, each method defined in the remote interface is completely independent
of the others. All the data that is required to process a payment is obtained
through the method’s arguments.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 7

As an extension of the javax.ejb.EJBObject interface, the remote
interface of a session bean inherits the same functionality as the remote interface
of an entity bean. However, the getPrimaryKey() method throws a
RemoteException, since session beans do not have a primary key to return:

public interface javax.ejb.EJBObject extends java.rmi.Remote {
 public abstract EJBHome getEJBHome()
 throws RemoteException;
 public abstract Handle getHandle()
 throws RemoteException;
 public abstract Object getPrimaryKey()
 throws RemoteException;
 public abstract boolean isIdentical(EJBObject obj)
 throws RemoteException;
 public abstract void remove()
 throws RemoteException, RemoveException;
}

The getHandle() method returns a serializable handle object, just like the
getHandle() method in the entity bean. For stateless session beans, this
handle can be serialized and reused any time, as long as the stateless bean type
is still available in the container that generated the handle.

Unlike stateless session beans, stateful session beans are only
available through the handle for as long as that specific bean
instance is kept alive on the EJB server. If the client explicitly
destroys the stateful session bean using one of the
remove() methods, or if the bean times out, the instance is
destroyed and the handle becomes invalid. As soon as the
server removes a stateful session bean, its handle is no longer
valid and will throw a RemoteException when its
getEJBObject() is invoked.

A remote reference to the bean can be obtained from the handle by invoking its
getEJBObject() method:

public interface javax.ejb.Handle {
 public abstract EJBObject getEJBObject()
 throws RemoteException;
}

The ProcessPayment EJB has its own package, which means it has its own
directory in our development tree, dev/com/titan/processpayment. That’s where
we’ll store all the code and compile class files for this bean.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates8

Dependent Objects: The CreditCardDO and CheckDO classes

The ProcessPayment EJB’s remote interface uses two classes in its definition
that are particularly interesting: the CreditCardDO and CheckDO classes.
The definitions for these classes are as follows:

/* CreditCard.java */
package com.titan.processpayment;

import java.util.Date;

public class CreditCardDO implements java.io.Serializable {
 final static public String MASTER_CARD = "MASTER_CARD";
 final static public String VISA = "VISA";
 final static public String AMERICAN_EXPRESS =
 "AMERICAN_EXPRESS";
 final static public String DISCOVER = "DISCOVER";
 final static public String DINERS_CARD = "DINERS_CARD";

 public long number;
 public Date expiration;
 public String type;

 public CreditCard(long nmbr, Date exp, String typ) {
 number = nmbr;
 expiration = exp;
 type = typ;
 }
}

/* Check.java */
package com.titan.processpayment;

public class CheckDO implements java.io.Serializable {
 String checkBarCode;
 int checkNumber;
 public Check(String barCode, int number) {
 checkBarCode = barCode;
 checkNumber = number;
 }
}

The CreditCardDO and CheckDO are dependent objects (DO standards for
Dependent Object) a concept that was explored with the Address EJB in Chapter
6. If you examine the class definitions of the CreditCardDO and CheckDO
classes, you will see that they are not enterprise beans. They are simply
serializable Java classes. These classes provide a convenient mechanism for
transporting and binding together related data. CreditCardDO, for example,
binds all the credit card data together in once class, making it easier to pass the
information across the network as well as making our interfaces a little cleaner.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 9

PaymentException, An application exception

Any remote or local interface, whether it’s for an entity bean or a session bean,
can throw application exceptions. Application exceptions are created by the bean
developer and should describe a business logic problem—in this particular case,
a problem making a payment. Application exceptions should be meaningful to the
client, providing an explanation of the error that is both brief and relevant.

It’s important to understand what exceptions to use and when to use them. The
RemoteException indicates subsystem-level problems and is used by the
RMI facility. Likewise, exceptions like javax.naming.NamingException
and java.sql.SQLException are thrown by other Java subsystems;
usually these should not be thrown explicitly by your beans. The Java Compiler
requires that you use try/catch blocks to capture checked exceptions like
these.

In EJB 2.0, the EJBException can express container problems processing
local interface invocations. The EJBException is an unchecked exception so
you won’t get a compile error if you don’t write code to handle it. However,
under certain circumstances it’s a good idea to catch EJBException, while in
other circumstances it’s best to propagate it.

When a checked exception from a subsystem (JDBC, JNDI, JMS, etc.) is caught
by a bean method, it should be rethrown as an EJBException or an
application exception. You would rethrow a checked exception as an
EJBException if it represented a system-level problem; checked exceptions
are rethrown as application exceptions when they result from business logic
problems. Your beans incorporate your business logic; if a problem occurs in the
business logic, that problem should be represented by an application exception.
When an EJBException or someother type of RuntimeException is
thrown by the enterprise bean, the exception is first processed by the container,
which discards the bean instance and replaces it with another. After the
container processes the exception, it then propagates an exception to the client.
For remote clients, the container throws a RemoteException; for local clients
(co-located enterprise beans), the container rethrows the original
EJBException or RuntimeException that was thrown by the bean
instance.

The PaymentException describes a specific business problem, so it is an
application exception. Application exceptions extend
java.lang.Exception. If you choose to include any instance variables in
the exception, they should all be serializable. Here is the definition of
ProcessPayment application exception:

package com.titan.processpayment;

public class PaymentException extends java.lang.Exception {
 public PaymentException() {

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates10

 super();
 }
 public PaymentException(String msg) {
 super(msg);
 }
}

ProcessPaymentHomeRemote: The home interface

The home interface of a stateless session bean must declare a single create()
method with no arguments. This is a requirement of the EJB specification. It is
illegal to define create() methods with arguments, because stateless session
beans don’t maintain conversational state that needs to be initialized. There are
no find methods in session beans, because session beans do not have primary
keys and do not represent data in the database.

Although EJB 2.0 defines create<SUFFIX>() methods for stateful and
entity beans, stateless session beans may only define a single create()
method, with no suffix and no arguments. This is also the case in EJB 1.1. The
reason for this restriction has to do with the life cycle of stateless session beans,
which is explained later in the chapter.

Here is the definition of the remote home interface for the ProcessPayment EJB:

package com.titan.processpayment;

import java.rmi.RemoteException;
import javax.ejb.CreateException;

public interface ProcessPaymentHomeRemote extends javax.ejb.EJBHome {
 public ProcessPayment create()
 throws RemoteException, CreateException;
}

The CreateException is mandatory, as is the RemoteException. The
CreateException can be thrown by the bean itself to indicate an application
error in creating the bean. A RemoteException is thrown when other system
errors occur, for example, when there is a problem with network communication or
when an unchecked exception is thrown from the bean class.

The ProcessPaymentHomeRemote interface, as an extension of the
javax.ejb.EJBHome, offers the same EJBHome methods as entity beans.
The only difference is that remove(Object primaryKey) doesn’t work
because session beans don’t have primary keys. If
EJBHome.remove(Object primaryKey) is invoked on a session bean
(stateless or stateful), a RemoteException is thrown. Logically, this method
should never be invoked on the remote home interface of a session bean. Here
are the definitions of the javax.ejb.EJBHome interface for EJB 1.1 and 2.0:

public interface javax.ejb.EJBHome extends java.rmi.Remote {

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 11

 public abstract HomeHandle getHomeHandle()
 throws RemoteException;
 public abstract EJBMetaData getEJBMetaData()
 throws RemoteException;
 public abstract void remove(Handle handle)
 throws RemoteException, RemoveException;
 public abstract void remove(Object primaryKey)
 throws RemoteException, RemoveException;
}

The home interface of a session bean can return the EJBMetaData for the
bean, just like an entity bean. EJBMetaData is a serializable object that
provides information about the bean’s interfaces. The only difference between
the EJBMetaData for a session bean and an entity bean is that the
getPrimaryKeyClass() on the session bean’s EJBMetaData throws a
java.lang.RuntimeException when invoked:

public interface javax.ejb.EJBMetaData {
 public abstract EJBHome getEJBHome();
 public abstract Class getHomeInterfaceClass();
 public abstract Class getPrimaryKeyClass();
 public abstract Class getRemoteInterfaceClass();
 public abstract boolean isSession();
 public abstract boolean isStateless(); // EJB 1.0 only
}

ProcessPaymentBean: The bean class

As stated earlier, the ProcessPayment EJB accesses data that is not generally
shared by systems, so it is an excellent candidate for a stateless session bean.
This bean really represents a set of independent operations that can be invoked
and then thrown away—another indication that it’s a good candidate for a
stateless session bean. Here is the definition of the ProcessPaymentBean
class, which supports the remote interface functionality:

package com.titan.processpayment;
import com.titan.customer.*;

import java.sql.*;
import java.rmi.RemoteException;
import javax.ejb.SessionContext;

import javax.naming.InitialContext;
import javax.sql.DataSource;
import javax.ejb.EJBException;
import javax.naming.NamingException;

public class ProcessPaymentBean implements javax.ejb.SessionBean {

 final public static String CASH = "CASH";
 final public static String CREDIT = "CREDIT";

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates12

 final public static String CHECK = "CHECK";

 public SessionContext context;

 public void ejbCreate() {
 }

 public boolean byCash(CustomerRemote customer,
 double amount)
 throws PaymentException{
 return process(getCustomerID(customer),amount,
 CASH,null,-1,-1,null);
 }

 public boolean byCheck(CustomerRemote customer,
 CheckDO check, double amount)
 throws PaymentException{
 int minCheckNumber = getMinCheckNumber();
 if (check.checkNumber > minCheckNumber) {
 return process(getCustomerID(customer), amount, CHECK,
 check.checkBarCode,check.checkNumber,
 -1,null);
 }
 else {
 throw new PaymentException(
 "Check number is too low. Must be at least "+
 minCheckNumber);
 }
 }
 public boolean byCredit(CustomerRemote customer,
 CreditCardDO card, double amount)
 throws PaymentException {
 if (card.expiration.before(new java.util.Date())) {
 throw new PaymentException("Expiration date has”+
 “ passed");
 }
 else {
 return process(getCustomerID(customer), amount,
 CREDIT, null,-1, card.number,
 new java.sql.Date(card.expiration.getTime()));
 }
 }
 private boolean process(Integer customerID, double amount,
 String type, String checkBarCode,
 int checkNumber, long creditNumber,
 java.sql.Date creditExpDate)
 throws PaymentException{

 Connection con = null;

 PreparedStatement ps = null;

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 13

 try {
 con = getConnection();
 ps = con.prepareStatement
 ("INSERT INTO payment (customer_id, amount, type,"+
 "check_bar_code,check_number,credit_number,"+
 "credit_exp_date) VALUES (?,?,?,?,?,?,?)");
 ps.setInt(1,customerID.intValue());
 ps.setDouble(2,amount);
 ps.setString(3,type);
 ps.setString(4,checkBarCode);
 ps.setInt(5,checkNumber);
 ps.setLong(6,creditNumber);
 ps.setDate(7,creditExpDate);
 int retVal = ps.executeUpdate();
 if (retVal!=1) {
 throw new EJBException("Payment insert failed");
 }
 return true;
 } catch(SQLException sql) {
 throw new EJBException(sql);
 } finally {
 try {
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se){se.printStackTrace();}
 }
 }
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void ejbRemove() {}
 public void setSessionContext(SessionContext ctx) {
 context = ctx;
 }
 private Integer getCustomerID(Customer customer) {
 try {
 (Integer)customer.getPrimaryKey();
 } catch(RemoteException re) {
 throw new EJBException(re);
 }
 }
 private Connection getConnection() throws SQLException {
 // Implementations shown below
 }
 private int getMinCheckNumber() {
 // Implementations shown below
 }
}

The three payment methods all use the private helper method process(),
which does the work of adding the payment to the database. This strategy

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates14

reduces the possibility of programmer error and makes the bean easier to
maintain. The process() method simply inserts the payment information into
the PAYMENT table. The use of JDBC in this method should be familiar to you
from your work on the bean-managed Ship EJB in Chapter 10. The JDBC
connection is obtained from the getConnection() method as shown in the
following code listing.

private Connection getConnection() throws SQLException {
 try {
 InitialContext jndiCntx = new InitialContext();
 DataSource ds = (DataSource)
 jndiCntx.lookup("java:comp/env/jdbc/titanDB");
 return ds.getConnection();
 } catch(NamingException ne){throw new EJBException(ne);}
}

The byCheck() and the byCredit() methods contain some logic to
validate the data before processing it. The byCredit() method verifies that
the credit card’s expiration data does not precede the current date. If it does, a
PaymentException is thrown.

The byCheck() method verifies that the check is above a minimum number, as
determined by a property that’s defined when the bean is deployed. If the check
number is below this value, a PaymentException is thrown. The property is
obtained from the getMinCheckNumber() method. We can use the JNDI
ENC to read the value of the minCheckNumber property.

private int getMinCheckNumber() {
 try {
 InitialContext jndiCntx = new InitialContext();
 Integer value = (Integer)
 jndiCntx.lookup("java:comp/env/minCheckNumber");
 return value.intValue();
 } catch(NamingException ne){throw new EJBException(ne);}
}

Thus, we are using an environment property set in the deployment descriptor to
change the business behavior of a bean. It is a good idea to capture thresholds
and other limits in the environment properties of the bean rather than hardcoding
them. This gives you greater flexibility. If, for example, Titan decided to raise the
minimum check number, you would only need to change the bean’s deployment
descriptor, not the class definition. (You could also obtain this type of
information directly from the database.)

JNDI ENC: Accessing environment properties

In EJB, the bean container contract includes the JNDI environment naming
context (JNDI ENC). The JNDI ENC is a JNDI name space that is specific to each
bean type. This name space can be referenced from within any bean, not just
entity beans, using the name "java:comp/env". The enterprise naming

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 15

context provides a flexible, yet standard, mechanism for accessing properties,
other beans, and resources from the container.

We’ve already seen the JNDI ENC several times. In Chapter 10, we used it to
access a resource factory, the DataSource. The ProcessPaymentBean
also uses the JNDI ENC to access a DataSource in the getConnection()
method; further, it uses the JNDI ENC to access an environment property in the
getMinCheckNumber() method. This section examines the use of the JNDI
ENC to access environment properties.

Named properties can be declared in a bean’s deployment descriptor. The bean
accesses these properties at runtime by using the JNDI ENC. Properties can be of
type String or one of several primitive wrapper types including Integer,
Long, Double, Float, Byte, Boolean, and Short. By modifying the
deployment descriptor, the bean deployer can change the bean’s behavior
without changing its code. As we’ve seen in the ProcessPayment EJB, we could
change the minimum check number that we’re willing to accept by modifying the
minCheckNumber property at deployment. Two ProcessPayment EJBs
deployed in different containers could easily have different minimum check
numbers, as shown in the following example:

<ejb-jar>
 <enterprise-beans>
 <session>
 <env-entry>
 <env-entry-name>minCheckNumber</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>2000</env-entry-value>
 </env-entry>
 ...
 </session>
 ...
 <enterprise-beans>
 ...
</ejb-jar>

EJBContext

The EJBContext.getEnvironment() method is optional in EJB 2.0 and
1.1, which means that it may or may not be supported. If it is not functional, the
method will throw a RuntimeException. If it is functional, it returns only
those values declared in the deployment descriptor as follows (where
minCheckNumber is the property name):

<ejb-jar>
 <enterprise-beans>
 <session>
 <env-entry>
 <env-entry-name>
 ejb10-properties/minCheckNumber
 </env-entry- name>

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates16

 <env-entry-type>
 java.lang.String
 </env-entry-name>
 <env-entry-value>20000</env-entry-value>
 </env-entry>
 ...
 </session>
 ...
 </enterprise-beans>
 ...
</ejb-jar>

The ejb10-properties subcontext specifies that the property
minCheckNumber is available from both JNDI ENC context
"java:comp/env/ejb10-properties/minCheckNumber" (as a
String value), and from the getEnvironment() method.

Only those properties declared under the ejb10-properties subcontext are
available via the EJBContext. Furthermore, such properties are only available
through the EJBContext in containers that choose to support the EJB 1.0
getEnvironment() method; all other containers will throw a
RuntimeException. It’s expected that most EJB 2.0 vendors will have
dropped support for this feature. In either case, developers are encouraged to
use the JNDI ENC to obtain property values and to stop using the
EJBContext.getEnvironment() method.

The ProcessPayment EJB’s deployment descriptor

Deploying the ProcessPayment EJB presents no significant problems. It’s
essentially the same as deploying entity beans, except that the ProcessPayment
EJB has no primary key or persistent fields. Here is the XML deployment
descriptor for the ProcessPayment EJB:

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <session>
 <description>
 A service that handles monetary payments.
 </description>
 <ejb-name>ProcessPaymentBean</ejb-name>
 <home>
 com.titan.processpayment.ProcessPaymentHomeRemote
 </home>
 <remote>
 com.titan.processpayment.ProcessPaymentRemote

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 17

 </remote>
 <ejb-class>
 com.titan.processpayment.ProcessPaymentBean
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <env-entry-name>minCheckNumber</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>2000</env-entry-value>
 </env-entry>
 <resource-ref>
 <description>DataSource for the Titan database</description>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <security-role>
 <description>
 This role represents everyone who is allowed full access
 to the ProcessPayment EJB.
 </description>
 <role-name>everyone</role-name>
 </security-role>

 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>ProcessPaymentBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <container-transaction>
 <method>
 <ejb-name>ProcessPaymentBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

The deployment descriptor for EJB 1.1 is exactly the same, except its header
specifies the EJB 1.1 specification and deployment descriptor.

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates18

JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

& Exercise 12.1, The ProcessPayment EJB

EJB 2.0: Local Component Interfaces

Like entity beans, stateless session beans can define local component interfaces.
This allows the local interfaces of a stateless session bean to be used by other
co-located enterprise beans, including other stateless and stateful session beans
and even entity beans. Obviously, it’s more efficient to use local component
interfaces between two beans in the same container system than to use the
remote interfaces.

The process of defining local interfaces for a stateless or stateful session bean is
the same as that for entity beans. The local interfaces extend
javax.ejb.EJBLocalObject (for business methods) and
javax.ejb.EJBLocalHome (for the home interfaces). These interfaces are
then defined in the XML deployment descriptor in the <local> and <local-
home> elements.

For the sake of brevity, we will not define local interfaces for either the stateless
ProcessPayment EJB or the stateful TravelAgent EJB developed in the next
section. Your experience in Chapters 5, 6, and 7 at creating local interfaces for
entity beans can be applied easily to any kind of session bean.

The Life Cycle of a Stateless Session Bean
Just as the entity bean has a well-defined life cycle, so does the stateless session
bean. The stateless session bean’s life cycle has two states: Does Not Exist and
Method-Ready Pool. The Method-Ready Pool is similar to the instance pool
used for entity beans. This is one of the significant life-cycle differences between
stateless and stateful session beans; stateless beans define instance pooling in
their life cycle and stateful beans do not.1 Figure 12-1 illustrates the states and
transitions that a stateless session bean instance goes through in its lifetime.

[FIGURE]

Figure 12-1: Stateless session bean life cycle

1 Some vendors do not pool stateless instances, but may instead create and
destroy instances with each method invocation. This is an implementation-specific decision
that shouldn’t impact the specified life cycle of the stateless bean instance.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 19

Does Not Exist
When a bean is in the Does Not Exist state, it is not an instance in the memory of
the system. In other words, it has not been instantiated yet.

The Method-Ready Pool
Stateless bean instances enter the Method-Ready Pool as the container needs
them. When the EJB server is first started, it will probably create a number of
stateless bean instances and enter them into the Method-Ready Pool. (The
actual behavior of the server depends on the implementation.) When the number
of stateless instances servicing client requests is insufficient, more can be
created and added to the pool.

Transitioning to the Method-Ready Pool

When an instance transitions from the Does Not Exist state to the Method-
Ready Pool, three operations are performed on it. First, the bean instance is
instantiated by invoking the Class.newInstance() method on the
stateless bean class.

Enterprise bean classes, entity, session and message-driven
beans alike, must never define constructors. Take care of
initialization needs within ejbCreate() and other callback
methods. The container instantiates instances of the bean
class using Class.newInstance(), which requires a no-
argument constructor.

Although the life cycle of a bean instance is defined by the
specification, the actual implementation by EJB vendors need
only support the specified life cycle as perceived by the bean
class and the client. For this reason, a bean developer must
only depend on behavior described by the specification. The
specification does not describe the behavior of Java language
constructors; it only describes the behavior of the create and
callback methods in the bean class.

Second, the SessionBean.setSessionContext(SessionContext
context) method is invoked on the bean instance. This is when the instance
receives its reference to the EJBContext for its lifetime. The
SessionContext reference may be stored in a nontransient instance field of
the stateless session bean.

Finally, the no-argument ejbCreate() method is invoked on the bean
instance. Remember that a stateless session bean only has one ejbCreate()
method, which takes no arguments. The ejbCreate() method is invoked only

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates20

once in the life cycle of the stateless session bean; when the client invokes the
create() method on the EJB home, it is not delegated to the bean instance.

Stateless session beans are not subject to activation, so they can maintain open
connections to resources for their entire life cycle.2 The ejbRemove() method
should close any open resources before the stateless session bean is evicted
from memory at the end of its life cycle. More about ejbRemove() later in this
section.

Life in the Method-Ready Pool

Once an instance is in the Method-Ready Pool, it is ready to service client
requests. When a client invokes a business method on an EJB object, the method
call is delegated to any available instance in the Method-Ready Pool. While the
instance is executing the request, it is unavailable for use by other EJB objects.
Once the instance has finished, it is immediately available to any EJB object that
needs it. This is slightly different from the instance pool for entity beans
described in Chapter 11. In the entity instance pool, a bean instance might be
swapped in to service an EJB object for several method invocations. Stateless
session instances are only dedicated to an EJB object for the duration of the
method.

Although vendors can choose different strategies to support stateless session
beans, it’s likely that vendors will use an instance-swapping strategy similar to
that used for entity beans (the strategy utilized by entity beans is described in
Chapter 11). However, the swap is very brief, lasting only as long as the business
method needs to execute. When an instance is swapped in, its
SessionContext changes to reflect the context of its EJB object and the
client invoking the method. The bean instance may be included in the
transactional scope of the client’s request, and it may access
SessionContext information specific to the client request, for example, the
security and transactional methods. Once the instance has finished servicing the
client, it is disassociated from the EJB object and returned to the Method-Ready
Pool.

Stateless session beans are not subject to activation and never have their
ejbActivate() or ejbPassivate() callback methods invoked. The
reason is simple: stateless instances have no conversational state that needs to
be preserved. (Stateful session beans do depend on activation, as we’ll see
later.)

Clients that need a remote or local reference to a stateless session bean begin by
invoking the create() method on the bean’s EJB home:

2 The duration of a stateless bean instance’s life is assumed to be very
long. However, some EJB servers may actually destroy and create instances with every
method invocation, making this strategy less attractive. Consult your vendor’s
documentation for details on how your EJB server handles stateless instances.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 21

Object ref = jndiConnection.lookup("ProcessPaymentHome");
ProcessPaymentHomeRemote home = (ProcessPaymentHomeRemote)
PortableRemoteObject.narrow(ref,ProcessPaymentHomeRemote.class);

ProcessPaymentRemote pp = home.create();

Unlike the entity bean and stateful session bean, invoking the create()
method does not result in a call to the bean’s ejbCreate() method. In
stateless session beans, calling the EJB home’s create() method results in
the creation of an EJB object for the client, but that is all. The ejbCreate()
method of a stateless session bean is only invoked once in the life cycle of an
instance—when it is transitioning from the Does Not Exist state to the Method-
Ready Pool. It isn’t reinvoked every time a client requests a remote reference to
the bean.

That’s why stateless session beans are limited to a single no-argument create
method; there is no way for the container to anticipate which create method the
client might invoke, so only one standard no-argument create() method is
allowed.

Transitioning out of the Method-Ready Pool:
The death of a stateless bean instance

Bean instances leave the Method-Ready Pool for the Does Not Exist state when
the server no longer needs the instance. This occurs when the server decides to
reduce the total size of the Method-Ready Pool by evicting one or more
instances from memory. The process begins by invoking the ejbRemove()
method on the instance. At this time, the bean instance should perform any
cleanup operations, like closing open resources. The ejbRemove() method is
only invoked once in the life cycle of a stateless session bean’s instance—when
it is about to transition to the Does Not Exist state. When a client invokes one of
the remove() methods on a stateless session bean’s remote or home interface,
it is not delegated to the bean instance. The client’s invocations of this method
simply invalidate the stub and releases the EJB object; it notifies the container
that the client no longer needs the bean. The container itself invokes the
ejbRemove() method on the stateless instance, but only at the end of the
instance’s life cycle. Again, this is very different from both stateful session
beans and entity beans, which suffer more destructive consequences when the
client invokes a remove method. During the ejbRemove() method, the
SessionContext and access to the JNDI ENC is still available to the bean
instance. Following the execution of the ejbRemove() method, the bean is
dereferenced and eventually garbage collected.

The Stateful Session Bean
Stateful session beans offer an alternative that lies between entity beans and
stateless session beans. Stateful session beans are dedicated to one client for

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates22

the life of the bean instance; a stateful session bean acts on behalf of a client as
its agent. They are not swapped among EJB objects or kept in an instance pool
like entity and stateless bean instances. Once a stateful session bean is
instantiated and assigned to an EJB object, it is dedicated to that EJB object for
its entire life cycle.3

Stateful session beans maintain conversational state, which means that the
instance variables of the bean class can cache data relative to the client between
method invocations. This makes it possible for methods to be interdependent, so
that changes made by methods to the bean’s state can affect the result of
subsequent method invocations. In contrast, the stateless session beans we
have been talking about do not maintain conversational state. Although
stateless beans may have instance variables, these fields are not specific to one
client. A stateless instance is swapped among many EJB objects, so you can’t
predict which instance will service a method call. With stateful session beans,
every method call from a client is serviced by the same instance (at least
conceptually), so the bean instance’s state can be predicted from one method
invocation to the next.

Although stateful session beans maintain conversational state, they are not
themselves persistent like entity beans. Entity beans represent data in the
database; their persistent fields are written directly to the database. Stateful
session beans, like stateless beans, can access the database but do not represent
data in the database. In addition, stateful beans are not used concurrently like
entity beans. If you have an entity EJB object that wraps an instance of the ship
called Paradise, for example, all client requests for that ship will be coordinated
through the same EJB object.4 With stateful session beans, the EJB object is
dedicated to one client—stateful session beans are not used concurrently.

Stateful session beans are often thought of as extensions of the client. This
makes sense if you think of a client as being made up of operations and state.
Each task may rely on some information gathered or changed by a previous
operation. A GUI client is a perfect example: when you fill in the fields on a GUI
client you are creating conversational state. Pressing a button executes an
operation that might fill in more fields, based on the information you entered
previously. The information in the fields is conversational state.

Stateful session beans allow you to encapsulate the business logic and the
conversational state of a client and move it to the server. Moving this logic to

3 This is a conceptual model. Some EJB containers may actually use
instance swapping with stateful session beans but make it appear as if the same instance is
servicing all requests. Conceptually, however, the same stateful session bean instance
services all requests.

4 This is a conceptual model. Some EJB containers may actually use
separate EJB objects for concurrent access to the same entity, relying on the database to
control concurrency. Conceptually, however, the end result is the same.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 23

the server thins the client application and makes the system as a whole easier to
manage. The stateful session bean acts as an agent for the client, managing
processes or workflow to accomplish a set of tasks; it manages the interactions
of other beans in addition to direct data access over several operations to
accomplish a complex set of tasks. By encapsulating and managing workflow on
behalf of the client, stateful beans present a simplified interface that hides the
details of many interdependent operations on the database and other beans from
the client.

EJB 2.0: Modifying the Reservation EJB

The Reservation EJB that was used in Chapter 7 will be modified slightly so that
it can be created with all its relationships identified right away. To accommodate
this, we overload the ejbCreate() method:

public abstract class ReservationBean
implements javax.ejb.EntityBean {
 public Integer ejbCreate(CustomerRemote customer,
 CruiseLocal cruise,
 CabinLocal cabin, double price){
 setAmountPaid(price);
 }
 public void ejbPostCreate(CustomerRemote customer,
 CruiseLocal cruise,
 CabinLocal cabin, double price)
 throws javax.ejb.CreateException{

 setCruise(cruise);
 setCabin(cabin);
 try{
 Integer primKey = (Integer)customer.getPrimaryKey();
 CustomerLocalHome home = (CustomerLocalHome)
 jndiContext.lookup(“java:comp/env/ejb/CustomerHome”);
 CustomerLocal custL = home.findByPrimaryKey(primKey);
 setCustomer(custL);
 }catch(FinderException fe){
 throw new CreateException("Invalid Customer");
 }
 }

Relationship fields use local EJB object references, so we must convert the
CustomerRemote reference to a CustomerLocal reference in order to set
the Reservation EJB’s customer relationship field. This is accomplished using
the JNDI ENC to locate the local home interface and then executing the
findByPrimaryKey() method. As an alternative, you could have
implemented an ejbSelect method in the Reservation EJB to locate the
CustomerLocal reference.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates24

The TravelAgent EJB

The TravelAgent EJB, which we have already seen, is a stateful session bean
that encapsulates the process of making a reservation on a cruise. We will
develop this bean further to demonstrate how stateful session beans can be used
as workflow objects.

Although the TravelAgent EJB will use the local interfaces of other beans, we
will not develop a local interface for the TravelAgent EJB. The rules for
developing local interfaces for stateful session beans are the same as those for
stateless and entity beans. The TravelAgent EJB is designed to be used only by
remote clients and therefore doesn’t require a set of local component interfaces.

TravelAgent: The remote interface

In Chapter 4, we developed an early version of the TravelAgentRemote
interface that contained a single business method, listCabins(). We are
going to remove the listCabins() method and redefine the TravelAgent EJB
so that it behaves like a workflow object. Later in the chapter, we will add a
modified listing method for obtaining a more specific list of cabins for the user.

As a stateful session bean that models workflow, TravelAgent manages the
interactions of several other beans while maintaining conversational state. The
following code contains the modified TravelAgentRemote interface:

package com.titan.travelagent;

import java.rmi.RemoteException;
import javax.ejb.FinderException;
import com.titan.cruise.Cruise;
import com.titan.customer.Customer;
import com.titan.processpayment.CreditCard;

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public void setCruiseID(Integer cruise)
 throws RemoteException, FinderException;

 public void setCabinID(Integer cabin)
 throws RemoteException, FinderException;

 public TicketDO bookPassage(CreditCardDO card, double price)
 throws RemoteException,IncompleteConversationalState;
}

The purpose of the TravelAgent EJB is to make cruise reservations. To
accomplish this task, the bean needs to know which cruise, cabin, and customer
make up the reservation. Therefore, the client using the TravelAgent EJB needs
to gather this kind of information before making the booking. The
TravelAgentRemote interface provides methods for setting the IDs of the

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 25

cruise and cabin that the customer wants to book. We can assume that the cabin
ID came from a list and that the cruise ID came from some other source. The
customer is set in the create() method of the home interface—more about
this later.

Once the customer, cruise, and cabin are chosen, the TravelAgent EJB is ready
to process the reservation. This operation is performed by the
bookPassage() method, which needs the customer’s credit card information
and the price of the cruise. bookPassage() is responsible for charging the
customer’s account, reserving the chosen cabin in the right ship on the right
cruise, and generating a ticket for the customer. How this is accomplished is not
important to us at this point; when we are developing the remote interface, we are
only concerned with the business definition of the bean. We will discuss the
implementation when we talk about the bean class.

Note that the bookPassage() method throws an application-specific
exception, IncompleteConversationalState. This exception is used to
communicate business problems encountered while booking a customer on a
cruise. The IncompleteConversationalState exception indicates that
the TravelAgent EJB didn’t have enough information to process the booking.
The IncompleteConversationalState application exception class is
defined below:

package com.titan.travelagent;

public class IncompleteConversationalState extends java.lang.Exception {
 public IncompleteConversationalState(){super();}
 public IncompleteConversationalState(String msg){super(msg);}
}

Dependent Object: TicketDO

Like the CreditCardDO and CheckDO classes used in the ProcessPayment
EJB, the TicketDO class that bookPassage() returns is defined as a pass-
by-value object. It can be argued that a ticket should be an entity bean since it is
not dependent and may be accessed outside the context of the TravelAgent EJB.
However, determining how a business object is used can also dictate whether it
should be a bean or simply a class. The TicketDO object, for example, could be
digitally signed and emailed to the client as proof of purchase. This wouldn’t be
feasible if the TicketDO object had been an entity bean. Enterprise beans are
only referenced through their remote interfaces and are not passed by value, as
are serializable objects such as TicketDO, CreditCardDO, and CheckDO.
As an exercise in pass-by-value, we define the TicketDO as a simple serializable
ojbect instead of a bean.

EJB 2.0: TicketDO

EJB 2.0 utilizes the local interfaces of Customer, Cruise, and Cabin EJB’s when
creating a new TicketDO.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates26

package com.titan.travelagent;

import com.titan.cruise.CruiseLocal;
import com.titan.cabin.CabinLocal;
import com.titan.customer.CustomerRemote;

public class TicketDO implements java.io.Serializable {
 public Integer customerID;
 public Integer cruiseID;
 public Integer cabinID;
 public double price;
 public String description;

 public TicketDO(CustomerRemote customer,
 CruiseLocal cruise, CabinLocal cabin,
 double price)
 throws javax.ejb.FinderException, RemoteException,
 javax.naming.NamingException {

 description = customer.getFirstName()+
 " " + customer.getLastName() +
 " has been booked for the "
 + cruise.getName() +
 " cruise on ship " +
 cruise.getShip().getName() + ".\n" +
 " Your accommodations include " +
 cabin.getName() +
 " a " + cabin.getBedCount() +
 " bed cabin on deck level " + cabin.getDeckLevel() +
 ".\n Total charge = " + price;
 customerID = (Integer)customer.getPrimaryKey();
 cruiseID = (Integer)cruise.getPrimaryKey();
 cabinID = (Integer)cabin.getPrimaryKey();
 price = amount;
 }

 public String toString() {
 return description;
 }
}

EJB 1.1: TicketDO

EJB 1.1 utilizes the remote interfaces of Customer, Cruise, and Cabin EJB’s when
creating a new TicketDO.

package com.titan.travelagent;

import com.titan.cruise.CruiseRemote;
import com.titan.cabin.CabinRemote;
import com.titan.customer.CustomerRemote;
import java.rmi.RemoteException;

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 27

public class TicketDO implements java.io.Serializable {
 public Integer customerID;
 public Integer cruiseID;
 public Integer cabinID;
 public double price;
 public String description;

 public TicketDO(CustomerRemote customer,
 CruiseRemote cruise, CabinRemote cabin,
 double price)
 throws javax.ejb.FinderException, RemoteException,
 javax.naming.NamingException {

 description = customer.getFirstName()+
 " " + customer.getLastName() +
 " has been booked for the "
 + cruise.getName() +
 " cruise on ship " + cruise.getShipID() + ".\n" +
 " Your accommodations include " +
 cabin.getName() +
 " a " + cabin.getBedCount() +
 " bed cabin on deck level " + cabin.getDeckLevel() +
 ".\n Total charge = " + price;

 customerID = (Integer)customer.getPrimaryKey();
 cruiseID = (Integer)cruise.getPrimaryKey();
 cabinID = (Integer)cabin.getPrimaryKey();
 price = amount;

 }
 public String toString() {
 return description;
 }
}

TravelAgentHomeRemote: The home interface

Starting with the TravelAgentHomeRemote interface that we developed in
Chapter 4, we can modify the create() method to take a remote reference to
the customer who is making the reservation:

package com.titan.travelagent;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import com.titan.customer.Customer;

public interface TravelAgentHomeRemote extends javax.ejb.EJBHome {

 public TravelAgent create(CustomerRemote cust)
 throws RemoteException, CreateException;

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates28

}

The create() method in this home interface requires that a remote reference to
a Customer EJB be used to create the TravelAgent EJB. Because there are no
other create() methods, you can’t create a TravelAgent EJB if you don’t
know who the customer is. The Customer EJB reference provides the
TravelAgent EJB with some of the conversational state it will need to process the
bookPassage() method.

Taking a peek at the client view

Before settling on definitions for your component interfaces, it is a good idea to
figure out how the bean will be used by clients. Imagine that the TravelAgent
EJB is used by a Java application with GUI fields. The GUI fields capture the
customer’s preference for the type of cruise and cabin. We start by examining the
code used at the beginning of the reservation process:

Context jndiContext = getInitialContext();
Object ref = jndiContext.lookup("CustomerHome");
CustomerHomeRemote customerHome =(CustomerHomeRemote)
 PortableRemoteObject.narrow(ref, CustomerHomeRemote.class);

String ln = tfLastName.getText();
String fn = tfFirstName.getText();
String mn = tfMiddleName.getText();
Customer customer = customerHome.create(nextID, ln, fn, mn);

ref = jndiContext.lookup("TravelAgentHome");
TravelAgentHomeRemote home = (TravelAgentHomeRemote)
PortableRemoteObject.narrow(ref, TravelAgentHomeRemote.class);

TravelAgentRemote agent = home.create(customer);

This snippet of code creates a new Customer EJB based on information the travel
agent gathered over the phone. The CustomerRemote reference is then used
to create a TravelAgent EJB. Next, we gather the cruise and cabin choices from
another part of the applet:

Integer cruise_id =
 new Integer(textField_cruiseNumber.getText());

Integer cabin_id =
 new Integer(textField_cabinNumber.getText());

agent.setCruiseID(cruise_id);
agent.setCabinID(cabin_id);

The user chooses the cruise and cabin that the customer wishes to reserve.
These IDs are set in the TravelAgent EJB, which maintains the conversational
state for the whole process.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 29

At the end of the process, the travel agent completes the reservation by
processing the booking and generating a ticket. Because the TravelAgent EJB
has maintained the conversational state, caching the customer, cabin, and cruise
information, only the credit card and price are needed to complete the
transaction:

long cardNumber = Long.parseLong(textField_cardNumber.getText());
Date date =
 dateFormatter.format(textField_cardExpiration.getText());
String cardBrand = textField_cardBrand.getText();
CreditCardDO card = new CreditCardDO(cardNumber,date,cardBrand);
double price =
double.valueOf(textField_cruisePrice.getText()).doubleValue();
TicketDO ticket = agent.bookPassage(card,price);
PrintingService.print(ticket);

We can now move ahead with development; this summary of how the client will
use the TravelAgent EJB confirms that our remote interface and home interface
definitions are workable.

TravelAgentBean: The bean class

We now implement all the behavior expressed in the new remote interface and
home interface for the TravelAgent EJB. Here is a partial definition of the new
TravelAgentBean:5

EJB 2.0: TravelAgentBean

import com.titan.reservation.*;

import java.sql.*;
import javax.sql.DataSource;
import java.util.Vector;
import java.rmi.RemoteException;
import javax.naming.NamingException;
import javax.ejb.EJBException;

public class TravelAgentBean implements javax.ejb.SessionBean {

 public CustomerRemote customer;
 public CruiseLocal cruise;
 public CabinLocal cabin;

5

If you’re modifying
the bean developed in Chapter 4, remember to delete the listCabin()method. We will
add a new implementation of that method later in this chapter.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates30

 public javax.ejb.SessionContext ejbContext;

 public javax.naming.Context jndiContext;

 public void ejbCreate(CustomerRemote cust) {
 customer = cust;
 }
 public void setCabinID(Integer cabinID)
 throws javax.ejb.FinderException {
 try {
 CabinHomeLocal home = (CabinHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/CabinHome");

 cabin = home.findByPrimaryKey(cabinID);
 } catch(RemoteException re) {
 throw new EJBException(re);
 }
 }
 public void setCruiseID(Integer cruiseID)
 throws javax.ejb.FinderException {
 try {
 CruiseHomeLocal home = (CruiseHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/CruiseHome");

 cruise = home.findByPrimaryKey(cruiseID);
 } catch(RemoteException re) {
 throw new EJBException(re);
 }

 }
 public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null)
 {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeLocal resHome =
 (ReservationHomeLocal)
 jndiContext.lookup
 ("java:comp/env/ejb/ReservationHome");

 ReservationLocal reservation =
 resHome.create(customer, cruise, cabin, price);

 Object ref = jndiContext.lookup
 ("java:comp/env/ejb/ProcessPaymentHome");

 ProcessPaymentHomeRemote ppHome =

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 31

 (ProcessPaymentHomeRemote)
 PortableRemoteObject.narrow
 (ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);
 return ticket;
 } catch(Exception e) {
 throw new EJBException(e);
 }
 }
 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}

 public void setSessionContext(javax.ejb.SessionContext cntx)
 {

 ejbContext = cntx;
 try {
 jndiContext = new javax.naming.InitialContext();
 } catch(NamingException ne) {

 throw new EJBException(ne);
 }
 }
}

EJB 1.1: TravelAgentBean

import com.titan.reservation.*;

import java.sql.*;
import javax.sql.DataSource;
import java.util.Vector;
import java.rmi.RemoteException;
import javax.naming.NamingException;
import javax.ejb.EJBException;

public class TravelAgentBean implements javax.ejb.SessionBean {

 public CustomerRemote customer;
 public CruiseRemote cruise;
 public CabinRemote cabin;

 public javax.ejb.SessionContext ejbContext;

 public javax.naming.Context jndiContext;

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates32

 public void ejbCreate(CustomerRemote cust) {
 customer = cust;
 }
 public void setCabinID(Integer cabinID)
 throws javax.ejb.FinderException {
 try {
 CabinHomeRemote home = (CabinHomeRemote)
 getHome("CabinHome",CabinHomeRemote.class);
 cabin = home.findByPrimaryKey(cabinID);
 } catch(RemoteException re) {
 throw new EJBException(re);
 }
 }
 public void setCruiseID(Integer cruiseID)
 throws javax.ejb.FinderException {
 try {
 CruiseHomeRemote home = (CruiseHomeRemote)
 getHome("CruiseHome", CruiseHomeRemote. class);
 cruise = home.findByPrimaryKey(cruiseID);
 } catch(RemoteException re) {
 throw new EJBException(re);
 }

 }
 public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeRemote resHome =
 (ReservationHomeRemote)getHome("ReservationHome",
 ReservationHomeRemote.class);
 ReservationRemote reservation =
 resHome.create(customer, cruise, cabin, price);
 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote)
 getHome("ProcessPaymentHome",
 ProcessPaymentHomeRemote.class);
 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);
 return ticket;
 } catch(Exception e) {
 throw new EJBException(e);
 }
 }

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 33

 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}

 public void setSessionContext(javax.ejb.SessionContext cntx)
 {

 ejbContext = cntx;
 try {
 jndiContext = new javax.naming.InitialContext();
 } catch(NamingException ne) {

 throw new EJBException(ne);
 }
 }
 protected Object getHome(String name,Class type) {
 try {
 Object ref =
 jndiContext.lookup("java:comp/env/ejb/"+name);
 return PortableRemoteObject.narrow(ref, type);
 } catch(NamingException ne) {
 throw new EJBException(ne);
 }
}

There is a lot of code to digest in the TravelAgentBean class definition, so
we will approach it in small pieces. First, let’s examine the ejbCreate()
method:

public class TravelAgentBean implements javax.ejb.SessionBean {

 public CustomerRemote customer;
 ...

 public javax.ejb.SessionContext ejbContext;
 public javax.naming.Context jndiContext;

 public void ejbCreate(CustomerRemote cust) {
 customer = cust;
 }

When the bean is created, the remote reference to the Customer EJB is passed to
the bean instance and maintained in the customer field. The customer field
is part of the bean’s conversational state. We could have obtained the
customer’s identity as an integer ID and constructed the remote reference to the
Customer EJB in the ejbCreate() method. However, we passed the reference
directly to demonstrate that remote references to beans can be passed from a
client application to a bean. They can also be returned from the bean to the client
and passed between beans on the same EJB server or between EJB servers.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates34

References to the SessionContext and JNDI context are held in fields called
ejbContext and jndiContext. The ejb and jndi prefixes help to avoid
confusion between the different content types.

When a bean is passivated, the JNDI ENC must be maintained as part of the
bean’s conversational state. This means that the JNDI context should not be
transient. Once a field is set to reference the JNDI ENC, the reference
remains valid for the life of the bean. In the TravelAgentBean, we set the
field jndiContext to reference the JNDI ENC when the SessionContext
is set a the beginning of the bean’s life cycle:

public void setSessionContext(javax.ejb.SessionContext cntx) {
 ejbContext = cntx;
 try {
 jndiContext = new InitialContext();
 } catch(NamingException ne) {
 throw new EJBException(ne);
 }
}

The EJB container makes special accommodations for references to
SessionContext, the JNDI ENC, references to other beans (remote and home
interface types) and the JTA UserTransaction type, which is discussed in
detail in Chapter 14. The container must maintain any instance fields that
reference objects of these types as part of the conversational state, even if they
are not serializable. All other fields must be serializable or null when the bean is
passivated.

The TravelAgent EJB has methods for setting the desired cruise and cabin.
These methods take Integer IDs as arguments and retrieve references to the
appropriate Cruise or Cabin EJB from the appropriate home interface. These
references are also a part of the TravelAgent EJB’s conversational state:

EJB 2.0: setCabinID() and getCabinID()

public void setCabinID(Integer cabinID)
 throws javax.ejb.FinderException {
 try {
 CabinHomeLocal home = (CabinHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/CabinHome");

 cabin = home.findByPrimaryKey(cabinID);
 } catch(RemoteException re) {
 throw new EJBException(re);
 }
}
public void setCruiseID(Integer cruiseID)
 throws javax.ejb.FinderException {
 try {
 CruiseHomeLocal home = (CruiseHomeLocal)

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 35

 jndiContext.lookup("java:comp/env/ejb/CruiseHome");

 cruise = home.findByPrimaryKey(cruiseID);
 } catch(RemoteException re) {
 throw new EJBException(re);
 }
}

EJB 1.1: setCabinID() and getCabinID()

public void setCabinID(Integer cabinID)
 throws javax.ejb.FinderException {
 try {
 CabinHomeRemote home =
 (CabinHome)getHome("CabinHome",CabinHome.class);
 cabin = home.findByPrimaryKey(cabinID);
 } catch(RemoteException re) {
 throw new EJBException(re);
 }
}
public void setCruiseID(Integer cruiseID)
 throws javax.ejb.FinderException {
 try {
 CruiseHome home =
 (CruiseHome)getHome("CruiseHome", CruiseHome. class);
 cruise = home.findByPrimaryKey(cruiseID);
 } catch(RemoteException re) {
 throw new EJBException(re);
 }

}

It may seem strange that we set these values using the Integer IDs, but we keep
them in the conversational state as entity bean references. Using the Integer IDs
for these objects is simpler for the client, which doesn’t work with their entity
bean references. In the client code, we get cabin and cruise IDs from text fields.
Why make the client obtain a bean reference to the Cruise and Cabin EJBs when
an ID is simpler? In addition, using the IDs is cheaper than passing a remote
reference in terms of network traffic. We need the EJB object references to these
bean types in the bookPassage() method, so we use their IDs to obtain
actual entity bean references. We could have waited until the bookPassage()
method was invoked before reconstructing the remote references, but this way
we keep the bookPassage() method simple.

JNDI ENC and EJB References

The JNDI ENC can be used to obtain a reference to the home interface of other
beans. Using the ENC lets you avoid hardcoding vendor-specific JNDI

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates36

properties into the bean. In other words, the JNDI ENC allows EJB references to
be network and vendor independent.

In the EJB 2.0 listing for the TravelAgentBean, the JNDI ENC is used to
access both the remote home interface of the ProcessPayment EJB as well as the
local home interfaces of the Cruise and Cabin EJBs. This illustrates the flexiblity
of the JNDI ENC, which can provide a directory for both local and remote
enterprise beans.

In the EJB 1.1 listing for the TravelAgentBean class, getHome() is a
convenience method that hides the details of obtaining remote references to EJB
home objects. The getHome() method uses the jndiContext reference to
obtain references to the Cabin, Ship, ProcessPayment, and Cruise home objects.

The EJB specification recommends that all EJB references be bound to the
"java:comp/env/ejb" context, which is the convention followed here. In
the TravelAgent EJB, we pass in the name of the home object we want and
append it to the "java:comp/env/ejb" context to do the lookup.

Remote EJB references in the JNDI ENC

The deployment descriptor provides a special set of tags for declaring remote
EJB references. Here’s how the <ejb-ref> tag and its subelements are used:

<ejb-ref>
 <ejb-ref-name>ejb/ProcessPaymentHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>
 com.titan.processpayment.ProcessPaymentHomeRemote
 </home>
 <remote>
 com.titan.processpayment.ProcessPaymentRemote
 </remote>
</ejb-ref>

The <ejb-ref> tag and its subelements should be self-explanatory: they
define a name for the bean within the ENC, declare the bean’s type, and give the
names of its remote and home interfaces. When a bean is deployed, the deployer
maps the <ejb-ref> elements to actual beans in a way specific to the vendor.
The <ejb-ref> elements can also be linked by the application assembler to
beans in the same deployment (a subject covered in detail in Chapter 16, which is
about the XML deployment descriptors). EJB 2.0 developers should try to use
local component interfaces for beans located in the same deployment and
container.

At deployment time, the EJB container’s tools map the remote references
declared in the <ejb-ref> elements to entity beans in other EJB containers,
which might located on the same machine or at a different node on the network.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 37

EJB 2.0: Remote EJB references in the JNDI ENC

The deployment descriptor also provides a special set of tags, the <ejb-
local-ref> elements, to declare local EJB references: enterprise beans that
are co-located in the same container and deployed in the same EJB JAR file. The
<ejb-local-ref> elements are declared immediately after the <ejb-ref>
elements.

<ejb-local-ref>
 <ejb-ref-name>ejb/CruiseHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 < local-home >
 com.titan.cruise.CruiseHomeLocal
 </local-home >
 <local>
 com.titan.cruise.CruiseLocal
 </local>
 <ejb-link>CruiseEJB</ejb-link>
</ejb-local-ref>
<ejb-local-ref>
 <ejb-ref-name>ejb/CabinHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home >
 com.titan.cabin.CabinHomeLocal
 </local-home >
 <local>
 com.titan.cabin.CabinLocal
 </local>
 <ejb-link>CabinEJB</ejb-link>
</ejb-local-ref>

The <ejb-local-ref> tag defines a name for the bean within the ENC,
declares the bean’s type, and gives the names of its local component interfaces.
The <ejb-local-ref> elements should be linked explicitly to other co-
located beans using the <ejb-link> element, but this is not required—the
application assembler or deployer can do it later. The value of the <ejb-
link> element within the <ejb-local-ref> must equal the <ejb-name>
of the appropriate bean in the same JAR file.

At deployment time the EJB container’s tools map the local references declared
in the <ejb-local-ref> elements to entity beans that are co-located in the
same container system.

The bookPassage() method

The last point of interest in our bean definition is the bookPassage()
method. This method leverages the conversational state accumulated by
ejbCreate(), setCabinID(), and setCruiseID() methods to process
a reservation for a customer.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates38

EJB 2.0: bookPassage() method

public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeLocal resHome =
 (ReservationHomeLocal)
 jndiContext.lookup
 ("java:comp/env/ejb/ReservationHome");

 ReservationLocal reservation =
 resHome.create(customer, cruise, cabin, price);

 Object ref = jndiContext.lookup
 ("java:comp/env/ejb/ProcessPaymentHome");

 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote)
 PortableRemoteObject.narrow
 (ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);
 return ticket;
 } catch(Exception e) {
 throw new EJBException(e);
 }
}

EJB 1.1: bookPassage() method

public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeRemote resHome =
 (ReservationHomeRemote)getHome("ReservationHome",
 ReservationHomeRemote.class);
 ReservationRemote reservation =

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 39

 resHome.create(customer, cruise, cabin, price);
 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote)
 getHome("ProcessPaymentHome",
 ProcessPaymentHomeRemote.class);
 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);
 return ticket;
 } catch(Exception e) {
 // EJB 1.0: throw new RemoteException("",e);
 throw new EJBException(e);
 }
}

This method exemplifies the workflow concept. It uses several beans, including
the Reservation, ProcessPayment, Customer, Cabin and the Cruise EJBs to
accomplish one task: book a customer on a cruise. Deceptively simple, this
method encapsulates several interactions that ordinarily might have been
performed on the client. For the price of one bookPassage() call from the
client, the TravelAgent EJB performs many operations:

1. Look up and obtain a reference to the Reservation EJB’s EJB home.

2. Create a new Reservation EJB resulting in a database insert.

3. Look up and obtain a remote reference to the ProcessPayment EJB’s EJB
home.

4. Create a new ProcessPayment EJB.

5. Charge the customer’s credit card using the ProcessPayment EJB.

6. Generate a new TicketDO with all the pertinent information describing the
customer’s purchase.

From a design standpoint, encapsulating the workflow in a stateful session bean
means a less complex interface for the client and more flexibility for implementing
changes. We could, for example, easily change the bookPassage() method to
check for overlapped booking (when a customer books passage on two different
cruises that overlap). This type of enhancement would not change the remote
interface, so the client application wouldn’t need modification. Encapsulating
workflow in stateful session beans allows the system to evolve over time without
impacting clients.

In addition, the type of clients used can change. One of the biggest problems
with two-tier architectures—besides scalability and transactional control—is that
the business logic is intertwined with the client logic. This makes it difficult to
reuse the business logic in a different kind of client. With stateful session beans
this is not a problem, because stateful session beans are an extension of the
client but are not bound to the client’s presentation. Let’s say that our first

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates40

implementation of the reservation system used a Java applet with GUI widgets.
The TravelAgent EJB would manage conversational state and perform all the
business logic while the applet focused on the GUI presentation. If, at a later
date, we decide to go to a thin client (HTML generated by a Java servlet, for
example), we would simply reuse the TravelAgent EJB in the servlet. Because all
the business logic is in the stateful session bean, the presentation (Java applet or
servlet or something else) can change easily.

The TravelAgent EJB also provides transactional integrity for processing the
customer’s reservation. If any one of the operations within the body of the
bookPassage() method fails, all the operations are rolled back so that none
of the changes are accepted. If the credit card can’t be charged by the
ProcessPayment EJB, the newly created Reservation EJB and its associated
record are removed. The transactional aspects of the TravelAgent EJB are
explained in detail in Chapter 14.

In EJB 2.0, remote and local EJB references can be used within
the same workflow. For example, the bookPassage()
method uses local references when accessing the Cruise and
Cabin beans, but remote references when accessing the
ProcessPayment and Customer EJB. This is totally appropriate.
The EJB container ensures that failures when accessing remote
or local EJB references will impact the entire transaction.

Why use a Reservation entity bean?

If we have a Reservation EJB, why do we need a TravelAgent EJB? Good
question! The TravelAgent EJB uses the Reservation EJB to create a reservation,
but it also has to charge the customer and generate a ticket. These are not
activities that are specific to the Reservation EJB, so they need to be captured in
a stateful session bean that can manage workflow and transactional scope. In
addition, the TravelAgent EJB also provides listing behavior, which spans
concepts in Titan’s system. It would have been inappropriate to include any of
these other behaviors in the Reservation entity bean. (For EJB 2.0 readers, the
Reservation EJB was developed in chapter 7. For EJB 1.1 readers, the code for
this bean is available on the O’Reilly web site.)

listAvailableCabins(): Listing behavior

As promised, we are going to bring back the cabin-listing behavior we played
around with in Chapter 4. This time, however, we are not going to use the Cabin
EJB to get the list; instead, we will access the database directly. Accessing the
database directly is a double-edged sword. On one hand, we don’t want to
access the database directly if entity beans exist that can access the same
information. Entity beans provide a safe and consis tent interface for a particular
set of data. Once an entity bean has been tested and proven, it can be reused
throughout the system, substantially reducing data integrity problems. The
Reservation EJB is an example of that kind of usage. In addition, entity beans can

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 41

pull together disjointed data and apply additional business logic such as
validation, limits, and security to ensure that data access follows the business
rules.

But entity beans cannot define every possible data access needed, and they
shouldn’t. One of the biggest problems with entity beans is that they tend to
become bloated over time. Huge entity beans with dozens of methods are a sure
sign of poor design. Entity beans should be focused on providing data access to
a very limited, but conceptually bound, set of data. You should be able to
update, read, and insert records or data. Data access that spans concepts, like
listing behavior, should not be encapsulated in one entity bean.

Systems always need listing behavior to present clients with choices. In the
reservation system, for example, customers need to choose a cabin from a list of
available cabins. The word available is key to the definition of this behavior.
The Cabin EJB can provide us with a list of cabins, but it doesn’t know whether
any given cabin is available. For EJB 2.0, Chapter 7 defined the Cabin-
Reservation relationship as unidirectional where the Reservation was aware of
its Cabin relationships, but not the other way around.

The question of whether a cabin is available is relevant to the process using it—
in this case TravelAgent EJB—but may not be relevant to the cabin itself. As an
analogy, an automobile entity would not care what road it’s on; it is only
concerned with characteristics that describe its state and behavior. An
automobile-tracking system would be concerned with the location of individual
automobiles.

To get availability information, we need to compare the list of cabins on our ship
to the list of cabins that have already been reserved. The
listAvailableCabins() method does exactly that. It uses a complex SQL
query to produce a list of cabins that have not yet been reserved for the cruise
chosen by the client:

public String [] listAvailableCabins(int bedCount)
 throws IncompleteConversationalState {
 if (cruise == null)
 throw new IncompleteConversationalState();

 Connection con = null;
 PreparedStatement ps = null;;
 ResultSet result = null;
 try {
 Integer cruiseID = (Integer)cruise.getPrimaryKey();
 Integer shipID = (Integer)
 cruise.getShip().getPrimaryKey();
 con = getConnection();
 ps = con.prepareStatement(
 "select ID, NAME, DECK_LEVEL from CABIN "+
 "where SHIP_ID = ? and ID NOT IN "+
 "(SELECT CABIN_ID FROM RESERVATION “+

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates42

 “ WHERE CRUISE_ID = ?)");

 ps.setInt(1,shipID.intValue());
 ps.setInt(2,cruiseID.intValue());
 result = ps.executeQuery();
 Vector vect = new Vector();
 while(result.next()) {
 StringBuffer buf = new StringBuffer();
 buf.append(result.getString(1));
 buf.append(',');
 buf.append(result.getString(2));
 buf.append(',');
 buf.append(result.getString(3));
 vect.addElement(buf.toString());
 }
 String [] returnArray = new String[vect.size()];
 vect.copyInto(returnArray);
 return returnArray;
 }
 catch (Exception e) {
 throw new EJBException(e);
 }
 finally {
 try {
 if (result != null) result.close();
 if (ps != null) ps.close();
 if (con!= null) con.close();
 }catch(SQLException se){se.printStackTrace();}
 }
}

EJB 1.1 readers use almost exactly the same code for
listAvailableCabins() except for how the Ship EJB’s
ID is obtained. EJB 1.1 readers should replace the line:

Integer shipID = (Integer)

cruise.getShip().getPrimaryKey();

With the line:

Integer shipID =cruise.getShipID();

This change is necessary because EJB 1.1 doesn’t support
relationship fields.

As you can see, the SQL query is complex. It could have been defined using a
method like Cabin.findAvailableCabins(Cruise cruise) in the
Cabin EJB. However, this method would be difficult to implement because the
Cabin EJB would need to access the Reservation EJB’s data, which is a navigable
relationship. Another reason for accessing the database directly is to
demonstrate that this kind of behavior is both normal and, in some cases

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 43

preferred. In some cases, the query is fairly specific to the scenario and is not
reusable. To avoid adding finder methods for every possible query, you can
instead simply use direct database access as shown in the
listAvailableCabins() method. Direct database access generally has
less of an impact on performance because the container doesn’t have to manifest
EJB object references, but its also less reusable. These things must be
considered when deciding if a query for information should be done using direct
database access or if a new finder method should be defined.

The listAvailableCabins() method returns an array of String objects
to the remote client. This is important because we could have opted to return an
collection of remote Cabin references, but we didn’t. The reason is simple: we
want to keep the client application as lightweight as possible. A list of String
objects is much more lightweight than the alternative, a collection of remote
references. In addition, a collection of remote references means that client would
be working with many stubs, each with its own connection to EJB objects on the
server. By returning a lightweight string array, we reduce the number of stubs on
the client, which keeps the client simple and conserves resources on the server.

To make this method work, you need to create a getConnection() method
for obtaining a database connection and add it to the TravelAgentBean:

private Connection getConnection() throws SQLException {
 try {
 DataSource ds = (DataSource)jndiContext.lookup(
 "java:comp/env/jdbc/titanDB");
 return ds.getConnection();
 } catch(NamingException ne) {throw new EJBException(ne);}
}

Change the remote interface for TravelAgent EJB to include the
listAvailableCabins() method:

package com.titan.travelagent;

import java.rmi.RemoteException;
import javax.ejb.FinderException;
import com.titan.cruise.Cruise;
import com.titan.customer.Customer;
import com.titan.processpayment.CreditCard;

public interface TravelAgentRemote extends javax.ejb.EJBObject {

 public void setCruiseID(Integer cruise)
 throws RemoteException, FinderException;

 public void setCabinID(Integer cabin)
 throws RemoteException, FinderException;

 public TicketDO bookPassage(CreditCardDO card, double price)
 throws RemoteException,IncompleteConversationalState;

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates44

 public String [] listAvailableCabins(int bedCount)
 throws RemoteException, IncompleteConversationalState;
}

EJB 2.0: The TravelAgent deployment descriptor

The following listing is an abbreviated version of the XML deployment
descriptor use for the TravelAgent application. It defined not only the
TravelAgent EJB, but also the Customer, Cruise, Cabin and Reservation EJBs.
The ProcessPayment EJB is not defined in this deployment descriptor because it
is assumed to be deployed in a separate JAR file, or possibly even an EJB server
on a different network node.

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>TravelAgentBean</ejb-name>
 <home>com.titan.travelagent.TravelAgentHome</home>
 <remote>com.titan.travelagent.TravelAgent</remote>
 <ejb-class>
 com.titan.travelagent.TravelAgentBean
 </ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>

 <ejb-ref>
 <ejb-ref-name>ejb/ProcessPaymentHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>
 com.titan.processpayment.ProcessPaymentHomeRemote
 </home>
 <remote>
 com.titan.processpayment.ProcessPaymentRemote
 </remote>
 </ejb-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/CabinHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.cabin.CabinHomeLocal
 </local-home>
 <local>com.titan.cabin.CabinLocal</local>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/CruiseHome</ejb-ref-name>

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 45

 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.cruise.CruiseHomeLocal
 </local-home>
 <local>com.titan.cruise.CruiseLocal</local>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ReservationHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.reservation.ReservationHomeLocal
 </local-home>
 <local>com.titan.reservation.ReservationLocal</local>
 </ejb-local-ref>

 <resource-ref>
 <description>
 DataSource for the Titan database
 </description>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </session>
 <entity>
 <ejb-name>CabinEJB</ejb-name>
 <local-home>com.titan.cabin.CabinHomeLocal</local-home>
 <local>com.titan.cabin.CabinLocal</local>
 ...
 </entity>
 <entity>
 <ejb-name>CruiseEJB</ejb-name>
 <local-home>com.titan.cruise.CruiseHomeLocal</local-home>
 <local>com.titan.cruise.CruiseLocal</local>
 ...
 </entity>
 <entity>
 <ejb-name>ReservationEJB</ejb-name>
 <local-home>
 com.titan.reservation.ReservationHomeLocal
 </local-home>
 <local>com.titan.reservation.ReservationLocal</local>
 ...
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <security-role>
 <description>
 This role represents everyone
 </description>
 <role-name>everyone</role-name>

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates46

 </security-role>

 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>TravelAgentBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <container-transaction>
 <method>
 <ejb-name>TravelAgentBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

EJB 1.1: The TravelAgent deployment descriptor

Use the following XML deployment descriptor when deploying the TravelAgent
EJB. The most important difference between this descriptor and the deployment
descriptor used for the ProcessPayment EJB is the <session-type> tag,
which states that this bean is stateful, and the use of the <ejb-ref> elements
to describe beans that are referenced through the ENC:

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
 <enterprise-beans>
 <session>
 <description>
 Acts as a travel agent for booking passage on a ship.
 </description>
 <ejb-name>TravelAgentBean</ejb-name>
 <home>com.titan.travelagent.TravelAgentHome</home>
 <remote>com.titan.travelagent.TravelAgent</remote>
 <ejb-class>
 com.titan.travelagent.TravelAgentBean
 </ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>

 <ejb-ref>
 <ejb-ref-name>ejb/ProcessPaymentHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 47

 <home>
 com.titan.processpayment.ProcessPaymentHome
 </home>
 <remote>
 com.titan.processpayment.ProcessPayment
 </remote>
 </ejb-ref>
 <ejb-ref>
 <ejb-ref-name>ejb/CabinHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.titan.cabin.CabinHome</home>
 <remote>com.titan.cabin.Cabin</remote>
 </ejb-ref>
 <ejb-ref>
 <ejb-ref-name>ejb/CruiseHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.titan.cruise.CruiseHome</home>
 <remote>com.titan.cruise.Cruise</remote>
 </ejb-ref>
 <ejb-ref>
 <ejb-ref-name>ejb/CustomerHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.titan.customer.CustomerHome</home>
 <remote>com.titan.customer.Customer</remote>
 </ejb-ref>
 <ejb-ref>
 <ejb-ref-name>ejb/ReservationHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.titan.reservation.ReservationHome</home>
 <remote>com.titan.reservation.Reservation</remote>
 </ejb-ref>

 <resource-ref>
 <description>
 DataSource for the Titan database
 </description>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <security-role>
 <description>
 This role represents everyone
 </description>
 <role-name>everyone</role-name>
 </security-role>

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates48

 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>TravelAgentBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <container-transaction>
 <method>
 <ejb-name>TravelAgentBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Once you have generated the deployment descriptor, jar the TravelAgent EJB
and deploy it in your EJB server. You will also need to deploy the Reservation,
Cruise, and Customer EJBs that you downloaded earlier. Based on the business
methods in the remote interface of the TravelAgent EJB and your past
experiences with the Cabin, Ship, and ProcessPayment EJBs, you should be able
to create your own client application to test this code.

& Exercise 12.2, The TravelAgent EJB

The Life Cycle of a Stateful Session Bean
The biggest difference between the stateful session bean and the other bean
types is that stateful session beans don’t use instance pooling. Stateful session
beans are dedicated to one client for their entire life, so there is no swapping or
pooling of instances.6 Instead of pooling instances, stateful session beans are
simply evicted from memory to conserve resources. The EJB object remains
connected to the client, but the bean instance is dereferenced and garbage
collected during inactive periods. This means that a stateful bean must be
passivated before it is evicted to preserve the conversational state of the
instance, and it must be activated to restore the state when the EJB object
becomes active again.

6

Some vendors use pooling with stateful
session beans, but that is a proprietary implementation and shouldn’t impact the specified
life cycle of the stateful session bean.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 49

The bean’s perception of its life cycle depends on whether or not it implements a
special interface called javax.ejb.SessionSynchronization. This
interface defines an additional set of callback methods that notify the bean of its
participation in transactions. A bean that implements
SessionSynchronization can cache database data across several method
calls before making an update. We have not discussed transactions in detail yet,
so we will not consider this part of the bean’s life cycle until Chapter 14. This
section describes the life cycle of stateful session beans that do not implement
the SessionSynchronization interface.

The life cycle of a stateful session bean has three states: Does Not Exist,
Method-Ready, and Passivated. This sounds a lot like a stateless session bean,
but the Method-Ready state is significantly different from the Method-Ready
Pool of stateless beans. Figure 12-2 shows the state diagram for stateful session
beans.

[FIGURE]

Figure 12-2: stateful session bean life cycle

Does Not Exist State

When a stateful bean instance is in the Does Not Exist state, it is not an instance
in the memory of the system. In other words, it has not been instantiated yet.

The Method-Ready State

Transitioning to the Method-Ready state

When a client invokes the create() method on an EJB home of a stateful
session bean, its life cycle begins. When the create() method is received by
the container, the container invokes newInstance() on the bean class,
creating a new instance of the bean. Next, the container invokes
setSessionContext() on the instance, handing it its reference to the
SessionContext, which it must maintain for life. At this point, the bean
instance is assigned to its EJB object. Finally, the container invokes the ejb-
Create() method on the instance that matches the create() method
invoked by the client. Once ejbCreate() has completed, the container
returns the EJB object’s reference to the client. The instance is now in the
Method-Ready State and is ready to service business methods invoked by the
client on the bean’s remote reference.

Life in the Method-Ready state

While in the Method-Ready State, the bean instance is free to receive method
invocations from the client, which may involve controlling the workflow of other

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates50

beans or accessing the database directly. During this time, the bean can maintain
conversational state and open resources in its instance variables.

Transitioning out of the Method-Ready state

Bean instances leave the Method-Ready state to enter either the Passivated state
or the Does Not Exist state. During its lifetime, a bean instance will be passivated
and activated zero or more times. Depending on how the client uses the stateful
bean, the EJB container’s load, and the passivation algorithm used by the
vendor, a bean instance may be passivated several times in its life or not at all.
The bean enters the Does Not Exist state if it is removed. A client application can
remove a bean by invoking one of the remove() methods on the client API, or
the container can choose to remove the bean.

The container can also move the bean instance from the Method-Ready State to
the Does Not Exist state if the bean times out. Timeouts are declared at
deployment time in a manner specific to the EJB vendor. When a timeout occurs,
the ejbRemove() method is not invoked. A stateful bean cannot time out
while a transaction is in progress.

Passivated State

During the lifetime of a stateful session bean, there may be periods of inactivity,
when the bean instance is not servicing methods from the client. To conserve
resources, the container can passivate the bean instance while it is inactive by
preserving its conversational state and evicting the bean instance from memory.

When a stateful bean is passivated, the instance fields are read and then written
to the secondary storage associated with the EJB object. When the stateful
session bean has been successfully passivated, the instance is evicted from
memory; it is destroyed.

When a bean is about to be passivated, its ejbPassivate() method is
invoked, alerting the bean instance that it is about to enter the Passivated state.
At this time, the bean instance should close any open resources and set all
nontransient, nonserializable fields to null. This will prevent problems from
occurring when the bean is serialized. Transient fields will simply be ignored.

A bean’s conversational state may consist of only primitive values, objects that
are serializable, and the following special types:

EJB 2.0 and 1.1
javax.ejb.SessionContext

javax.ejb.EJBHome (home interface types)

javax.ejb.EJBObject (remote interface types)

javax.jta.UserTransaction (bean transaction interface)

javax.naming.Context (only when it references the JNDI ENC)

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates 51

EJB 2.0 only
javax.ejb.EJBLocalHome (home interface types)

javax.ejb.EJBLocalObject (remote interface types)

References to Managed Resource Factories (e.g.,
javax.sql.DataSource)

The types in this list (and their subtypes) are handled specially by the
passivation mechanism. They don’t need to be serializable; they will be
maintained through passivation and restored automatically to the bean instance
when it is activated.

A bean instance’s conversational state will be written to secondary storage to
preserve it when the instance is passivated and destroyed. Containers can use
standard Java serialization to preserve the bean instance, or some other
mechanism that achieves the same result. Some vendors, for example, will simply
read the values of the fields and store them in a cache. The container is required
to preserve remote references to other beans with the conversational state.
When the bean is activated, the container must restore any bean references
automatically. The container must also restore any references to the special
types listed earlier.

Fields declared transient will not be preserved when the bean is passivated.
Except for the special types listed earlier, all fields that are nontransient and
nonserializable must be set to null before the instance is passivated or else the
container will destroy the bean instance, making it unavailable for continued use
by the client. References to special types must automatically be preserved with
the serialized bean instance by the container so that they can be reconstructed
when the bean is activated.

When the client makes a request on an EJB object whose bean is passivated, the
container activates the instance. This involves deserializing the bean instance
and reconstructing the SessionContext reference, bean references, and
managed resource factories (EJB 2.0 only) held by the instance before it was
passivated. When a bean’s conversational state has been successfully restored,
the ejbActivate() method is invoked. The bean instance should open any
resources that cannot be passivated and initialize the value of any transient
fields within the ejbActivate() method. Once ejbActivate() is
complete, the bean is back in the Method-Ready state and available to service
client requests delegated by the EJB object.

In EJB 1.1, open resources such as sockets or JDBC
connections must be closed whenever the bean is passivated.
In stateful session beans, open resources will not be
maintained for the life of the bean instance. When a stateful
session bean is passivated, any open resource can cause
problems with the activation mechanism.

DRAFT, 10/21/017/20/2001

Copyright (c) 2001 O’Reilly & Associates52

The activation of a bean instance follows the rules of Java serialization. The
exception to this is transient fields. In Java serialization, transient fields are set to
their default values when an object is deserialized; primitive numbers become
zero, Boolean fields false, and object references null. In EJB, transient fields
do not have to be set to their initial values; therefore, they could contain
arbitrary values when the bean is activated. The value held by transient fields
following activation is unpredictable across vendor implementations, so don’t
depend on them to be initialized. Instead, use ejbActivate() to reset their
values.

System Exceptions

Whenever a system exception is thrown by a bean method, the container
invalidates the EJB object and destroys the bean instance. The bean instance
moves directly to the Does Not Exist state and the ejbRemove() method is
not invoked.

A system exception is any unchecked exception, including EJBException.
Checked exceptions thrown from subsystems are usually wrapped in an
EJBException and rethrown as system exceptions. A checked exception
thrown by a subsystem does not need to be handled this way if the bean can
safely recover from the exception. In most cases, however, the subsystem
exception should be rethrown as an EJBException.

In EJB 1.1, the java.rmi.RemoteException is also considered a system
exception for backward compatibly with EJB 1.0. However, throwing the
RemoteException from a bean class method is discouraged. Throwing a
RemoteException from a bean class method has been deprecated.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 1

13
Message-Driven Beans

This section is divided into two subsections: JMS as a Resource, and Message-
Driven Beans. The first section describes the Java Message Service (JMS) and
its role as a resource that is available to any enterprise bean (session, entity, or
message-driven). An enterprise bean can use the JMS API to send messages to
other applications through a virtual channel called a topic or queue. Readers
unfamiliar with JMS should read the first section before proceeding to the
second section, which provides an overview of the message-driven bean.

The second section in this chapter addresses the new enterprise bean type, the
message-driven bean. A message-driven bean is an asynchronous bean
activated by message delivery. In EJB 2.0, vendors are required to support a
JMS-based message-driven bean that listens to a specific topic or queue, and
processes JMS messages as they are delivered.

All EJB 2.0 vendors must, by default, support a JMS provider. Most EJB 2.0
vendors have a JMS provider built in, but some may also support other JMS
providers. For example, VENDOR XXX uses Sonic Software’s SonicMQ as its
JMS service. Regardless of how the EJB 2.0 vendor provides the JMS service,
having one is pretty much a requirement if the vendor expects to support
message-driven beans. The advantage of this forced adoption of JMS is that
EJB developers cannot expect to have a working JMS provider on which
messages can be both consumed and delivered.

JMS as a resource

JMS is a standard vendor-neutral API that is part of the J2EE platform and can be
used to access enterprise messaging systems. An enterprise messaging system

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 2

(a.k.a. message-oriented middleware) facilitates the exchange of messages among
software applications over a network. JMS is analogous to JDBC: Whereas
JDBC is an API that can be used to access many different relational databases,
JMS provides the same vendor-independent access to enterprise messaging
systems. Many enterprise messaging products currently support JMS, including
IBM's MQSeries, BEA’s Weblogic JMS service, Sun Microsystems’ Java
Message Queue, and Progress’ SonicMQ to name a few. Software applications
that use the JMS API for sending or receiving messages are called JMS clients
and are portable across brands of JMS vendors.

Messaging clients in JMS are called JMS clients, and the messaging system—
the MOM—including the JMS service provider is called the JMS provider. A
JMS application is a business system composed of many JMS clients and,
generally, one JMS provider.

In EJB, enterprise beans of all types can use JMS to send messages to other Java
applications or to message-driven beans. JMS facilitates sending messages from
enterprise beans by using a messaging service, sometimes called a message
broker or router. Message brokers have been around for a couple of decades the
oldest and most established being IBM’s MQSeries, but JMS is fairly new and is
specifically designed to deliver a variety of messages types from one Java
application to another.

Reimplimenting the TravelAgent EJB with JMS

As an example we can modify the TravelAgent EJB developed in Chapter 12 so
that it uses JMS to alert some other Java application that a reservation was made.
The following code shows how to modify the bookPassage() method so that
the TravelAgent EJB will send a simple text message based on the description
information from the TicketDO:

public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeLocal resHome =
 (ReservationHomeLocal)
 jndiContext.lookup
 ("java:comp/env/ejb/ReservationHome");

 ReservationLocal reservation =
 resHome.create(customer, cruise, cabin, price);

 Object ref = jndiContext.lookup

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 3

 ("java:comp/env/ejb/ProcessPaymentHome");

 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote)
 PortableRemoteObject.narrow
 (ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentLocal process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);

 String ticketDescription = ticket.toString();

 TopicConnectionFactory factory = (TopicConnectionFactory)
 jndiContext.lookup(“java:comp/env/jms/TopicFactory”);

 Topic topic = (Topic)
 jndiContext.lookup(“java:comp/env/ejb/TicketTopic”);

 TopicConnection connect = factory.createTopicConneciton();

 TopicSession session =
 connect.createTopicSession(true,0);

 TopicPublisher publisher = session.createPublisher(topic);

 TextMessage textMsg = new TextMessage(ticketDescription);
 publisher.publish(textMsg);
 connect.close();

 return ticket;
 } catch(Exception e) {
 throw new EJBException(e);
 }
}

A lot of new code was needed in order to send a message. However, while it may
look a little overwhelming at first, the basics of JMS are not all that complicated.

TopicConnectionFactory and Topic

In order to send a JMS message we need a connection to the JMS provider and a
destination address for the messages. The connection to the JMS provider is
made possible by a JMS connection factory; the destination address of the
message is identified by a Topic object. Both the connection factory and the
Topic object are obtained from the TravelAgent EJB’s JNDI ENC.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 4

TopicConnectionFactory factory = (TopicConnectionFactory)
jndiContext.lookup(“java:comp/env/jms/TopicFactory”);

Topic topic = (Topic)
jndiContext.lookup(“java:comp/env/ejb/TicketTopic”);

The TopicConnectionFactory in JMS is similar in function to the
DataSource in JDBC. Just as the DataSource provides a JDBC connection
to a database, the TopicConnectionFactory provides a JMS connection
to a message router.

The Topic object itself represents a network independent destination to which
the message will be addressed. In JMS, messages are sent to destinations—
either topics or queues—instead of sending them directly to other applications.
Destinations in JMS are analogous to e-mail lists or news groups; any
application with the proper credentials can subscribe to any destination and
send messages and receive messages from that destination. JMS decouples
applications by allowing them to send messages to each other through a
destination, which serves as virtual channel. This example uses a Topic type
destination, but JMS also supports Queue type destinations. The difference
between these types is explained in more detail later.

TopicConnection and TopicSession

The TopicConnectionFactory is used to create a TopicConnection,
which is an actual connection to the JMS provider:

TopicConnection connect = factory.createTopicConneciton();

TopicSession session =
connect.createTopicSession(true,0);

Once a TopicConnection is obtained, it can be used to create a
TopicSession. A TopicSession allows the Java developer to group the
actions of sending and receiving messages. In most cases, you will only need a
single TopicSession, but occasionally having more than one
TopicSession object is helpful.

The createTopicSession() method is defined with two parameters:

createTopicSession(boolean transacted, int acknowledgeMode)

These arguments are ignored at runtime because the EJB container manages the
transaction and acknowledgment mode of any JMS resource obtained from the
JNDI ENC. The specification recommends that developers use the arguments
true for transacted and 0 for acknowlegeMode, but since they are
supposed to be ignored, it should not matter what you use.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 5

TopicPublisher

The TopicSession is used to create a TopicPublisher. The
TopicPublisher is used to send messages from the TravelAgent EJB to the
destination specified by the topic. Any JMS clients that subscribe or listen to
that topic will receive a copy of the message:

TopicPublisher publisher = session.createPublisher(topic);

TextMessage textMsg = new TextMessage(ticketDescription);
publisher.publish(textMsg);

Message Types

In JMS, a message is a Java object with two parts: a header and a message body.
The header is composed of delivery information and metadata, while the message
body carries the application data, which can take several forms: text, serializable
objects, byte streams, etc. The JMS API defines several message types
(TextMessage, MessageMap, ObjectMessage, and others) and provides
methods for delivering messages to, and receiving messages from, other
applications.

For example, we can change the TravelAgent EJB so that it sends a
MapMessage instead of a TextMessage:

TicketDO ticket = new TicketDO(customer,cruise,cabin,price);
...
TopicPublisher publisher = session.createPublisher(topic);

MapMessage mapMsg = new MapMessage();
textMsg.setInt(“CustomerID”, ticket.customerID.intValue());
textMsg.setInt(“CruiseID”, ticket.cruiseID.intValue());
textMsg.setInt(“CabinID”, ticket.cabinID.intValue());
textMsg.setDouble(“Price”, ticket.price);

publisher.publish(mapMsg);

The attributes of the MapMessage (CustomerID, CruiseID, CabinID,
and Price) can be accessed by name from those JMS clients that receive it.

As an alternative, The TravelAgent EJB could be modified to use the
ObjectMessage type, which would allow us to send the entire TicketDO
object as the message using Java serialization:

TicketDO ticket = new TicketDO(customer,cruise,cabin,price);
...
TopicPublisher publisher = session.createPublisher(topic);

ObjectMessage objectMsg = new ObjectMessage();
ObjectMsg.setObject(ticket);

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 6

publisher.publish(objectMsg);

In addition to the TextMessage, MapMessage and ObjectMessage, JMS
provides two other message types: StreamMessage and BytesMessage.
StreamMessage can take as its payload the contents of an I/O stream.
BytesMessage can take any array of bytes, which it treats as opaque data.

XML Deployment Descriptor

When a JMS resource is used, it must be declared in the bean’s XML
deployment descriptor, in a manner similar to the JDBC resource used by the
Ship EJB in Chapter 10:

<enterprise-beans>
 <session>
 <ejb-name>TravelAgentBean</ejb-name>
 ...

 <resource-ref>
 <res-ref-name>jms/TopicFactory</res-ref-name>
 <res-type>javax.jms.TopicConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-ref>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>
 jms/TicketTopic
 </resource-env-ref-name>
 <resource-env-ref-type>
 javax.jms.Topic
 </resource-env-ref-type>
 </resource-env-ref>
 </session>

The <resource-ref> for the JMS TopicConnectionFactory is similar
to the <resource-ref> declaration for the JDBC DataSource. The JNDI
ENC name, interface type, and authorization protocol are declared. In addition to
the <resource-ref>, the TravelAgent EJB must also declare the
<resource-env-ref>, which lists any “administered objects” associated
with a <resource-ref> entry. In this case, we declare the Topic used for
sending a Ticket message. While the bean is under development, the
<resource-env-ref> is only used for declaring JMS destinations. At
deployment time the deployer will map the JMS TopicConnectionFactory
and Topic declared by the <resource-ref> and <resource-env-
ref> elements to a JMS factory and topic.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 7

JMS Application Client

To get a better idea of how JMS is used, we can create a Java application whose
sole purpose is receiving and processing reservation messages. We will develop
a very simple JMS client that simply prints a description of each ticket as it
receives the messages. We’ll assume that the TravelAgent is using the
TextMessage to send a description of the Ticket to the JMS clients. The
following code shows how the JMS application client might look.

import javax.jms.Message;
import javax.jms.TextMessage;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicConnection;
import javax.jms.TopicSession;
import javax.jms.Topic;
import javax.jms.TopicSubscriber;
import javax.jms.JMSException;
import javax.naming.InitalContext;

public class JmsClient_1 extends javax.jms.MessageListener{

 public static void main(String [] args){

 if(args.length != 2)
 throw new Exception("Wrong number of arguments");

 new JmsClient_1(args[0], args[1]);

 while(true){Thread.sleep(10000);}

 }

 public JmsClient_1(String factoryName, String topicName)
 throws Exception{

 InitialContext jndiContext = getInitialContext()

 TopicConnectionFactory factory = (TopicConnectionFactory)
 jndiContext.lookup(factoryName);

 Topic topic = (Topic)
 jndiContext.lookup(topicName);

 TopicConnection connect = factory.createTopicConneciton();

 TopicSession session =
 connect.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

 TopicSubscriber subscriber = session.createSubscriber(topic);

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 8

 subscriber.setMessageListener(this);

 connect.start();
 }

 public void onMessage(Message message){
 try{

 TextMessage textMsg = (TextMessage)message;
 String text = textMsg.getText();
 System.out.println("\n RESERVATION RECIEVED:\n"+text);

 }catch(JMSException jmsE){
 jmsE.printStackTrace();
 }
 }

 public static InitialContext getInitialContext(){
 // create vendor speicific JNDI Context here
 }
}

The constructor of JmsClient_1 obtains the
TopicConnectionFactory and Topic from the JNDI
InitialContext. This context is created with vendor-specific properties so
that the client can connect to the same JMS provider as the one used by the
TravelAgent EJB. For example, the getInitialContext() method for the
Weblogic Application server would be coded as follows:

public static InitialContext getInitialContext(){
 Properties env =new Properties();
 env.put(Context.SECURITY_PRINCIPAL, “guest”);
 env.put(Context.SECURITY_CREDENTIALS, “guest”);
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 “weblogic.jndi.WLInitialContextFactory”);
 env.put(“Context.PROVIDER_URL, “t3://localhost:7001”);
 return new InitialContext(env);
}

Once the client has the TopicConnectionFactory and Topic, it creates a
TopicConnection and a TopicSession in the same way as the
TravelAgent EJB. The big difference comes when the TopicSession object
is used to create a TopicSubscriber instead of a TopicPublisher. The
TopicSubscriber is designed specifically to process incoming messages
that are published to its specified Topic.

TopicSession session =
connect.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

TopicSubscriber subscriber = session.createSubscriber(topic);

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 9

subscriber.setMessageListener(this);

connect.start();

The TopicSubscriber can receive messages directly, or it can delegate the
processing of the messages to a javax.jms.MessageListener. We
chose to have JmsClient_1 implement the MessageListener interface so
that it can process the messages itself. MessageListener objects implement
a single method, onMessage(), which is invoked every time a new message is
sent to the subscriber’s topic. In this case, every time the TravelAgent EJB
sends a reservation message to the topic, the JMS client will have its
onMessage() method invoked so that it can receive a copy of the message
and process it.

public void onMessage(Message message){
 try{

 TextMessage textMsg = (TextMessage)message;
 String text = textMsg.getText();
 System.out.println("\n RESERVATION RECIEVED:\n"+text);

 }catch(JMSException jmsE){
 jmsE.printStackTrace();
 }
}

& Exercise 13.1, JMS and the TravelAgent EJB

JMS is Asynchronous

One of the principal advantages of JMS messaging is that it’s asynchronous. In
other words, a JMS client can send a message without having to wait for a reply.
Contrast this flexibility with the synchronous messaging of Java RMI. RMI is an
excellent choice for assembling transactional components, but is too restrictive
for some uses. Each time a client invokes a bean’s method it blocks until the
method completes execution. This lock-step processing makes the client
dependent on the availability of the EJB server, resulting in a tight coupling
between the client and enterprise bean.

In JMS, a client sends messages asynchronously to a topic, to which other JMS
clients subscribe or listen. When a JMS client sends a message, it doesn’t wait
for a reply; it sends the message to a router, which is responsible for forwarding
it to other clients. Clients sending messages are decoupled from the clients
receiving them; senders are not dependent on the availability of receivers.

The limitations of RMI make JMS an attractive alternative for communicating
with other applications. Using the standard JNDI environment-naming context,
an enterprise bean can obtain a JMS connection to a JMS provider and use it to

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 10

deliver asynchronous messages to other Java applications. As an example, a
TravelAgent session bean can use JMS to notify other applications that an order
has been processed.

Figure 13-1: Using JMS with the TravelAgent EJB

In this case, the applications receiving JMS messages from the TravelAgent EJB
may be message-driven beans, other Java applications in the enterprise, or
applications in other organizations that benefit from being notified that an order
has been processed. Examples might include business partners who share
customer information or an internal marketing application that adds customers to
a catalog mailing list.

JMS enables the enterprise bean to send messages without blocking. The
enterprise bean doesn't know who will receive the message, because it delivers
the message to a virtual channel (destination) and not directly to another
application. Applications can choose to subscribe to that virtual channel and
receive notification of new reservations.

An interesting aspect of enterprise messaging in general and JMS in particular, is
that the de-coupled asynchronous nature of the technology means that
transactions and security contexts of the sender are not propagated to the
receiver of the message. The sender can be authenticated against the JMS
provider (message router) but it doesn’t propagate its security context. For
example, when the TravelAgent EJB sends the ticket message, it may be
authenticated by the JMS provider but it won’t propagate the security context.
When a JMS client receives the message from the TravelAgent EJB, it will have
no idea about the security context under which it was sent. This is how it should
be; the sender and receiver often operate in different environments with different
security domains.

Similarly, transactions are never propagated from the sender to the receiver. For
one thing, the sender has no idea who the receivers of the message will be. If the
message is sent to a topic there could be one receiver or thousands, managing a
distributed transaction under such ambiguous circumstances is not tenable. In
addition, the clients receiving the message may not get it for a long time after its
sent. Clients may be down or otherwise unable to receive messages; one key
strength of JMS is that it allows senders and receivers to be temporally de-
coupled. Transactions are designed to be executed very quickly because they
lock of resources; the possibility of a long transaction with an unpredictable end
is also not tenable.

A JMS client can, however, have a distributed transaction with the JMS provider
so that it manage the send or receive operation in the context of a transaction.
For example, if the TravelAgent EJB’s transaction fails or any reason, the JMS
provider will discard the ticket message sent by the TravelAgent EJB.
Transactions and JMS are covered in more detail in Chapter 14.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 11

JMS Messaging Models: Publish/Subscribe and
Point-to-Point

JMS provides two types of messaging models: publish-and-subscribe and point-
to-point queuing. The JMS specification refers to these as messaging domains.
In JMS terminology, publish-and-subscribe and point-to-point are frequently
shortened to pub/sub and p2p (or PTP) respectively. This chapter uses both the
long and short forms throughout.

In the simplest sense, publish-and-subscribe is intended for a one-to-many
broadcast of messages, while point-to-point is intended for one-to-one delivery
of messages (See Figure 13-1).

[FIGURE use figure 1-4 from JMS book]

Figure 13-2: JMS Messaging Domains

A JMS client that produces a message is called a producer, while a JMS client
that receives a message is called a consumer. A JMS client can be both a
producer and a consumer. When we use the term consumer or producer, we
mean a JMS client that consumes messages or produces messages, respectively.
We use this terminology throughout the book.

Publish and Subscribe

In pub/sub, one producer can send a message to many consumers through a
virtual channel called a topic. Consumers, which receive messages, can choose
to subscribe to a topic. Any messages addressed to a topic are delivered to all
the topic’s consumers. Every consumer receives a copy of each message. The
pub/sub messaging model is by and large a push-based model, where messages
are automatically broadcast to consumers without them having to request or poll
the topic for new messages.

In the pub/sub messaging model, the producer sending the message is not
dependent on the consumers receiving the message. Optionally, JMS clients
that use pub/sub can establish durable subscriptions that allow consumers to
disconnect and later reconnect and collect messages that were published while
they were disconnected.

The TravelAgent EJB in this chapter uses the pub/sub programming model with
a Topic as a destination. The TopicPublisher sends messages from the
TravelAgent EJB to the Topic.

Point To Point

The point-to-point messaging model allows JMS clients to send and receive
messages both synchronously and asynchronously via virtual channels known

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 12

as queues. The p2p messaging model has traditionally been a pull- or polling-
based model, where messages are requested from the queue instead of being
pushed to the client automatically1.

A queue may have multiple receivers, but only one receiver may consume each
message. As shown in Figure 13-1, the JMS provider will take care of doling out
the work, ensuring that each message is consumed once by the next available
receiver in the group. The JMS specification does not dictate the rules for
distributing messages among multiple receivers, although some JMS vendors
have chosen to implement this as a load balancing capability.

The messaging API for p2p is very similar to that used for pub/sub. The
following shows how the TravelAgent EJB could be modified to use the Queue-
based p2p API instead of the Topic-based pub/sub model used in the earlier
example.

public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {
 ...

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);

 String ticketDescription = ticket.toString();

 QueueConnectionFactory factory = (QueueConnectionFactory)
 jndiContext.lookup(“java:comp/env/jms/QueueFactory”);

 Queue queue = (Queue)
 jndiContext.lookup(“java:comp/env/ejb/TicketQueue”);

 QueueConnection connect = factory.createQueueConneciton();

 QueueSession session =
 connect.createQueueSession(true,0);

 QueueSender sender = session.createSender(queue);

 TextMessage textMsg = new TextMessage(ticketDescription);
 sender.send(textMsg);
 connect.close();

 return ticket;
 } catch(Exception e) {
 throw new EJBException(e);

1 In JMS, an option allows p2p clients to use a push model similar to pub/sub.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 13

 }
}

Which messaging model should you use?

The rationale behind the two models lies in the origin of the JMS specification.
JMS started out as a way of providing a common API for accessing existing
messaging systems. At the time of its conception, some messaging vendors had
a p2p model, and some had a pub/sub model. Hence JMS needed to provide an
API for both models to gain wide industry support. The JMS 1.0.2 specification
does not require a JMS provider to support both models, although most JMS
vendors do.

Almost anything that can be done with the pub/sub model can be done with
point-to-point, and vice versa. An analogy can be drawn to developers’
programming language preferences. In theory, any application that can be
written with Pascal can also be written with C. Anything that can be written in
C++ can also be written in Java. In some cases it comes down to a matter of
preference, or which model you are already familiar with.

In most cases, the decision about which model to use depends on the distinct
merits of each model. With pub/sub, any number of subscribers can be listening
on a topic, all receiving copies of the same message. The publisher may not care
if everybody is listening, or even if nobody is listening. For example, consider a
publisher that broadcasts stock quotes. If any particular subscriber is not
currently connected and misses out on a great quote, the publisher is not
concerned. In contrast, a point-to-point session is likely to be intended for a
one-on-one conversation with a specific application at the other end. In this
scenario, every message really matters.

The range and variety of the data that the messages represent can be a factor as
well. Using pub/sub, messages are dispatched to the consumers based on
filtering that is provided through the use of specific topics. Even when
messaging is being used to establish a one-on-one conversation with another
known application, it can be advantageous to use pub/sub with multiple topics
to segregate different kinds of messages. Each kind of message can be dealt with
separately through its own unique consumer and onMessage() handler.

Point-to-point is more convenient when you want one receiver to process any
given message once. This is perhaps the most critical difference between the two
models: point-to-point guarantees that only one consumer processes a given
message. This is extremely important when messages need to be processed
separately but in tandem.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 14

Entity and session beans shouldn’t receive messages

JmsClient_1 was designed to consume messages produced by the
TravelAgent EJB. Can another entity or session bean receive those message
also? The answer is yes, but it’s a really bad idea.

Entity and session beans respond to Java RMI calls from EJB clients and cannot
be programmed to respond to JMS messages as do message-driven beans. That
means it’s impossible to write a session or entity bean that will be driven by
incoming messages. The inability to make EJBs respond to JMS messages was
why message-driven beans were introduced in EJB 2.0. Message-driven beans
are designed to subscribe or listen to topics and queues and to process
messages delivered to those destinations. They fill an important niche; we’ll
learn more about how to program them in the next section.

It is, however, possible to develop an entity or session bean that can consume a
JMS message from a business method, but the method must be called by an EJB
client first. For example, when the business method on the Hypothetical EJB is
called, it sets up a JMS session and then attempts to read a message from a
queue.

public class HypotheticalBean implements javax.ejb.SessionBean {
 InitialContext jndiContext;

 public String businessMethod(){

 try{

 QueueConnectionFactory factory = (QueueConnectionFactory)
 jndiContext.lookup(“java:comp/env/jms/QueueFactory”);

 Queue topic = (Queue)
 jndiContext.lookup(“java:comp/env/jms/Queue”);

 QueueConnection connect = factory.createQueueConneciton();

 QueueSession session =
 connect.createQueueSession(true,0);

 QueueReceiver receiver = session.createReciever(queue);

 TextMessage textMsg = (TextMessage)reciever.receive();

 connect.close();

 return textMsg.getText();

 }catch(Exception e){
 throws new EJBException(e);

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 15

 }

 }
 …
}

The QueueReceiver, which is a message consumer, is used to proactively
fetch a message from the queue. While this has been programmed correctly, it is
a dangerous operation because a call to the QueueReceiver.receive()
method blocks the thread until a message becomes available. If a message is
never delivered to the receiver’s queue, the thread will block indefinitely! In
other words, if no one every sends a message to the queue we are listening too,
then the QueueReceiver will just sit their waiting forever.

To be fair, there are other receive() methods that are less dangerous. For
example, receive(long timeout) allows you to specify a time after which
the QueueReceiver should stop blocking the thread and give up waiting for a
message. There is also receiveNoWait(), which checks for a message and
returns null if there are none waiting, thus avoiding a prolonged thread block.

While the alternative receive() methods are much safer, this is still a
dangerous operation to perform. There is no guarantee that the less risky
receive() methods will perform as expected, and the risk of programmer error
(e.g., using the wrong receive() method) is too risky. Besides, the message-
driven bean provides you with a powerful and simple enterprise bean that is
especially designed to consume JMS messages. This book recommends that
you do not attempt to consume messages from entity or session beans.

Learning more about JMS

JMS (and enterprise messaging in general) represents a powerful paradigm in
distributed computing. In my opinion, the Java Message Service is as important
as Enterprise JavaBeans itself, and should be well understood before it’s used in
development.

While this chapter has provided a brief overview of JMS, we have only been able
to present you with enough material to prepare you for the discussion of
message-driven beans in the next section. To understand JMS and how it is
used, you will need to study it independently. For a detailed treatment of JMS,
see Java Message Service (O’Reilly, 2000). Taking the time to learn JMS is well
worth the effort.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 16

Message-Driven Beans

Message-driven beans (MDBs) are stateless, server-side, transaction-aware
components for processing asynchronous JMS messages. Newly introduced in
EJB 2.0, message-driven beans process messages delivered via the Java
Message Service.

Message-driven beans can receive JMS messages and process them using the
same robust component-based infrastructure that session and entity beans
enjoy. While a message-driven bean is responsible for processing messages, its
container takes care of automatically managing the component’s entire
environment including transactions, security, resources, concurrency, message
acknowledgment, etc.

One of the most important aspects of message-driven beans is that they can
consume and process messages concurrently. This capability provides a
significant advantage over traditional JMS clients, which must be custom-built to
manage resources, transactions, and security in a multi-threaded environment.
The message-driven bean containers provided by EJB manage concurrency
automatically, so the bean developer can focus on the business logic of
processing the messages. The MDB can receive hundreds of JMS messages
from many different applications and process them all at the same time, because
the container can have many instances of any MDB executing concurrently.

The container also ensures that any operations on resources or enterprise beans
accessed by an MDB are executed in the same transaction and that the security
identity associated with the MDB is propagated to the resources and enterprise
beans it accesses.

A message-driven bean is a complete enterprise bean, just like a session or entity
bean, but there are some important differences. While a message-driven bean
has a bean class and XML deployment descriptor, it does not have remote or
home interfaces. These interfaces are absent because the message-driven bean
is not accessible via the Java RMI API; it responds only to asynchronous
messages.

ReservationProcessor EJB

The ReservationProcessor EJB is a message-driven bean that receives JMS
messages notifying it of new reservations. The ReservationProcessor is an
automated version of the TravelAgent EJB that processes reservations sent via
JMS by other travel organizations. It requires no human intervention; it’s
completely automated.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 17

The JMS messages that notify the ReservationProcessor EJB of new
reservations might come from another application in the enterprise or an
application in some other organization. When the ReservationProcessor EJB
receives a message, it creates a new Reservation EJB (adding it to the database),
processes the payment using the ProcessPayment EJB, and sends out a ticket.

[FIGURE}

Figure 13-3: The ReservationProcessor EJB processing
reservations

ReservationProcessorBean

Here is a partial definition of the ReservationProcessorBean class. Some
methods are left empty; they will be filled in later. Notice that the
onMessage() method contains the business logic of the bean class; it is
similar to the business logic developed in the bookPassage() method of the
TravelAgent EJB in Chapter 12.

package com.titan.reservationprocessor;

import javax.jms.Message;
import javax.jms.MapMessage;
import com.titan.customer.*;
import com.titan.cruise.*;
import com.titan.cabin.*;
import com.titan.reservation.*;
import com.titan.processpayment.*;

public class ReservationProcessorBean
implements javax.ejb.MessageDrivenBean, javax.jms.MessageListener {

 MessageDrivenContext ejbContext;
 Context jndiContext;

 public void setMessageDrivenContext(MessageDrivenContext mdc){
 ejbContext = mdc;
 try{
 jndiContext = new InitialContext();
 }catch(NamingException ne){
 throw new EJBException(ne);
 }
 }

 public void ejbCreate(){}

 public void onMessage(Message message) {
 try {
 MapMessage reservationMsg = (MapMessage)message;

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 18

 Integer customerPk = (Integer)
 reservationMsg.getObject("CustomerID");
 Integer cruisePk = (Integer)
 reservationMsg.getObject("CruiseID");
 Integer cabinPk = (Integer)
 reservationMsg.getObject("CabinID");

 double price = reservationMsg.getDouble(“Price”);

 CreditCardDO card = (CreditCardDO)
 reservationMsg.getObject(“CreditCard”);

 CustomerLocal customer = getCustomer(customerPk);
 CruiseLocal cruise = getCruise(cruisePk);
 CabinLocal cabin = getCabin(cabinPk);

 ReservationHomeLocal resHome = (ReservationHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/ReservationHome");

 ReservationLocal reservation =
 resHome.create(customer, cruise, cabin, price);

 Object ref = jndiContext.lookup
 ("java:comp/env/ejb/ProcessPaymentHome");

 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote)
 PortableRemoteObject.narrow
 (ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentLocal process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);

 deliverTicket(reservationMsg, ticket);

 } catch(Exception e) {
 throw new EJBException(e);
 }
 }

 public void deliverTicket(MapMessage reservationMsg){

 // create a ticket and send it to the proper destination
 }
 public CustomerRemote getCustomer(Integer key)
 throws NamingException, ObjectNotFoundException{

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 19

 // get a remote reference to the Customer EJB
 }
 public CruiseLocal getCruise(Integer key)
 throws NamingException, ObjectNotFoundException{
 // get a local reference to the Cruise EJB
 }
 public CabinLocal getCabin(Integer key)
 throws NamingException, ObjectNotFoundException{
 // get a local reference to the Cabin EJB
 }

 public void ejbRemove(){
 try{
 jndiContext.close();
 ejbContext = null;
 }catch(NamingException ne){ /* do nothing */ }
 }
}

MessageDrivenBean Interface

The message-driven bean class is required to implement the
javax.ejb.MessageDrivenBean interface, which defines callback
methods similar to those in entity and session beans. Here is the definition of
the MessageDrivenBean interface.

package javax.ejb;

public interface MessageDrivenBean extends javax.ejb.EnterpriseBean {
 public void setMessageDrivenContext(MessageDrivenContext context)
 throws EJBException;
 public void ejbRemove() throws EJBException;
}

The setMessageDrivenContext() method is called at the beginning of
the MDB’s life cycle and provides the MDB instance with a reference to its
MessageDrivenContext:

 MessageDrivenContext ejbContext;
 Context jndiContext;

 public void setMessageDrivenContext(MessageDrivenContext mdc){
 ejbContext = mdc;
 try{
 jndiContext = new InitialContext();
 }catch(NamingException ne){
 throw new EJBException(ne);
 }
 }

The setMessageDrivenContext() method in the
ReservationProcessorBean class sets the ejbContext instance field

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 20

to the MessageDrivenContext, which was passed into the method. It also
obtains a reference to the JNDI ENC, which it stores in the jndiContext.
MDBs may have instance fields that are similar to a stateless session beans
instance fields. These instance fields are carried with the MDB instance for its
life time and may be reused every time it processes a new message. Unlike
stateful session beans, MDBs do not have “conversational” state and are not
specific to a single JMS client. MDB instances are used to processes messages
from many different JMS clients, and are tied to a specific topic or queue to
which they subscribe or listen, not to a specific JMS client. They are stateless in
the same way that stateless session beans are stateless.

ejbRemove() provides the MDB instance an opportunity to clean up any
resources it stores in its instance fields. In this case, we use it to close the JNDI
Context and set the ejbContext field to null. These operations are not
absolutely necessary, but they illustrate the kind of operation that an
ejbRemove() method might do. Note that ejbRemove() is called at the
end of the MDB’s life cycle, before it is garbage collected. It may not be called if
the EJB server hosting the MDB fails or if an EJBException is thrown by the
MDB instance in one its other methods. When an EJBException is thrown
by any method in the MDB instance, the instance is immediately removed from
memory and the transaction is rolled back.

MessageDrivenContext

The MessageDrivenContext simply extends the EJBContext and
doesn’t add any new methods. The EJBContext is defined as:

package javax.ejb;
public interface EJBContext {

 // transaction methods
 public javax.transaction.UserTransaction getUserTransaction()
 throws java.lang.IllegalStateException;
 public boolean getRollbackOnly()
 throws java.lang.IllegalStateException;
 public void setRollbackOnly()
 throws java.lang.IllegalStateException;

 // EJB home methods
 public EJBHome getEJBHome();
 public EJBLocalHome getEJBLocalHome();

 // security methods
 public java.security.Principal getCallerPrincipal();
 public boolean isCallerInRole(java.lang.String roleName);

 // deprecated methods
 public java.security.Identity getCallerIdentity();
 public boolean isCallerInRole(java.security.Identity role);

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 21

 public java.util.Properties getEnvironment();

}

Only the transactional methods that the MessageDrivenContext inherits
from EJBContext are available to message-driven beans. The home methods
(getEJBHome() and getEJBLocalHome()) throw a
RuntimeException if invoked, because MDBs do not have home interfaces
or EJB home objects. The security methods (getCallerPrincipal() and
isCallerInRole()) also throw a RuntimeException if invoked on a
MessageDrivenContext. When an MDB services a JMS message there is
no “caller” so a security context doesn’t exist that can be obtained from the
caller. Remember that JMS is asynchronous, and doesn’t propagate the sender’s
security context to the receiver—that wouldn’t make sense since senders and
receivers tend to operate in different environments.

MDBs usually execute in a container-initiated or bean-initiated transaction, so
the transaction methods allow the MDB to manage its context. The transaction
context is not propagated from the JMS sender, but is a transaction that is either
initiated by the container or by the bean explicitly using
javax.jta.UserTransaction. The transaction methods in the
EJBContext are explained in more detail in Chapter 14.

Message-driven beans also have access to their own JNDI environment naming
context (ENC) which provides the MDB instance access to environment entries,
other enterprise beans, and resources. The ReservationProcessor EJB takes
advantage of the JNDI ENC to obtain references to the Customer, Cruise, Cabin,
Reservation, and ProcessPayment EJB as well as a JMS
QueueConnectionFactory and Queue for sending out tickets.

MessageListener Interface

In addition to the MessageDrivenBean interface, MDBs implement the
javax.jms.MessageListener interface, which defines the
onMessage() method; bean developers implement this method to process
JMS messages received by a bean. It’s in this onMessage() method that the
bean processes the JMS message.

package javax.jms;
public interface MessageListener {
 public void onMessage(Message message);
}

It’s interesting to consider why the MDB implements the MessageListener
interface separately from the MessageDrivenBean interface. Why not just
put the onMessage() method, MessageListener only method, in the
MessageDrivenBean interface so that there is only interface for the MDB
class to implement? This was the solution taken by an early proposed version of

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 22

EJB 2.0. However, it was quickly realized that message-driven beans could, in the
future, process messages from other types of systems, not just JMS. To make
the MDB open to other messaging systems, it was decided that it should
implement the javax.jms.MessageListener interface separately, thus
separating the concept of the message-driven bean from the types of messages it
can process. In a future version of the specification other types of MDB might
be available for things like SMTP (e-mail) or JAXM (Java API for XML
Messaging) for ebXML. Other technologies will use different methods rather
then onMessage() which is specific to JMS.

The onMessage() method: Workflow and Integration for B2B

The onMessage() method is where all the business logic goes. As messages
arrive they are passed to the MDB using its onMessage() method by the
container. When the method returns, the MDB is ready to process a new
message.

In the ReservationProcessor EJB, the onMessage() method extracts
information about a reservation from a MapMessage and uses that information
to create a reservation in the system:

public void onMessage(Message message) {
 try {
 MapMessage reservationMsg = (MapMessage)message;

 Integer customerPk = (Integer)
 reservationMsg.getObject("CustomerID");
 Integer cruisePk = (Integer)
 reservationMsg.getObject("CruiseID");
 Integer cabinPk = (Integer)
 reservationMsg.getObject("CabinID");

 double price = reservationMsg.getDouble("Price");

 CreditCardDO card = (CreditCardDO)
 reservationMsg.getObject("CreditCard");

JMS is frequently used as an integration point for business-to-business
applications, so it’s easy to imagine the reservation message coming from one of
Titan’s business partners, perhaps a 3rd party processor or branch travel agency.

The ReservationProcessor needs to access the Customer, Cruise and Cabin EJBs
in order to process the reservation. The MapMessage contains the primary keys
for these entities; the ReservationProcessor EJB uses helper methods
(getCustomer(), getCruise(), and getCabin()) methods to look up
the entity beans and obtain EJB object references to them:

public void onMessage(Message message){
 ...

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 23

 CustomerLocal customer = getCustomer(customerPk);
 CruiseLocal cruise = getCruise(cruisePk);
 CabinLocal cabin = getCabin(cabinPk);
 ...
}

public CustomerLocal getCustomer(Integer key)
throws NamingException, ObjectNotFoundException{

 CustomerHomeLocal home = (CustomerHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/CustomerHome");
 CustomerLocal customer = home.findByPrimaryKey(key);
 return customer;
}
public CruiseLocal getCruise(Integer key)
throws NamingException, ObjectNotFoundException{

 CruiseHomeLocal home = (CruiseHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/CruiseHome");
 CruiseLocal cruise = home.findByPrimaryKey(key);
 return cruise;
}
public CabinLocal getCabin(Integer key)
throws NamingException, ObjectNotFoundException{

 CabinHomeLocal home = (CabinHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/CabinHome");
 CabinLocal cabin = home.findByPrimaryKey(key);
 return cabin;
}

Once the information is extracted from the MapMessage, it is used to create a
reservation and process the payment. This is basically the same workflow that
was used by the TravelAgent EJB in Chapter 12. A Reservation EJB is created
that represents the reservation itself, and a ProcessPayment EJB is created to
process the credit card payment.

ReservationHomeLocal resHome = (ReservationHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/ReservationHome");

ReservationLocal reservation =
 resHome.create(customer, cruise, cabin, price);

Object ref = jndiContext.lookup
 ("java:comp/env/ejb/ProcessPaymentHome");

ProcessPaymentHomeRemote ppHome =
(ProcessPaymentHomeRemote)
PortableRemoteObject.narrow

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 24

 (ref, ProcessPaymentHomeRemote.class);

ProcessPaymentLocal process = ppHome.create();
process.byCredit(customer, card, price);

TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);

deliverTicket(reservationMsg, ticket);

This illustrates that the MDB can access any other entity or session bean, and
use those other beans to complete a task, just like session beans. In this way,
the MDB fulfills its role as an integration point in B2B application scenarios.
MDB can manage a process and interact with other beans as well as resources.
For example, it’s commonplace for an MDB to use JDBC to access a database
based on the contents of the message it’s processing.

Sending Messages from a Message-Driven Bean

MDB can also send messages using JMS. The deliverTicket() method
sends the Ticket information to a destination defined by the sending JMS client:

public void deliverTicket(MapMessage reservationMsg, TicketDO ticket)
throws NamingException, JMSException{

 Queue queue = (Queue)reservationMsg.getJMSReplyTo();

 QueueConnectionFactory factory = (QueueConnectionFactory)
 jndiContext.lookup("java:comp/env/jms/QueueFactory");

 QueueConnection connect = factory.createQueueConneciton();

 QueueSession session =
 connect.createQueueSession(true,0);

 QueueSender sender = session.createSender(queue);

 ObjectMessage message = new ObjectMessage(ticket);

 sender.send(message);

 connect.close();

}

As stated earlier, every message type has two parts: a message header and a
message body (a.k.a. payload). The message header contains routing
information, and may also have properties for message filtering and other
attributes, including a JMSReplyTo attribute. When a JMS client sends a
message, it may set the JMSReplyTo attribute to be any destination accessible to
its JMS provider. In the case of the reservation message, the sender set the

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 25

JMSReplyTo attribute to the Queue to which the resulting Ticket should be
sent. Another application can access this Queue to read tickets and distribute
them to customers, or store the information in the sender’s database.

The JMSReplyTo address can also be used to report business errors that occur
while processing the message. For example, if the Cabin is already reserved, the
ReservationProcessor EJB might send an error message to the JMSReplyTo
queue explaining that the reservation could not be processed. Including this type
of error handling is left as an exercise for the reader.

XML Deployment Descriptor

MDBs have XML deployment descriptors, just like entity and session beans.
They can be deployed alone or, more often than not, deployed together with
other enterprise beans. For example, the ReservationProcessor EJB would have
to be deployed in the same JAR using the same XML deployment descriptor as
the Customer, Cruise, and Cabin beans if it’s going to use their local interfaces.

Here’s how the XML deployment descriptor that defines the
ReservationProcessor EJB. This deployment descriptor also defines the
Customer, Cruise, Cabin, and other beans, but these are left out for brevity.

<enterprise-beans>
 ...
 <message-driven>
 <ejb-name>ReservationProcessorEJB</ejb-name>
 <ejb-class>
 com.titan.reservationprocessor.ReservationProcessorBean
 </ejb-class>
 <transaction-type>Container</transaction-type>
 <message-selector>MessageFormat = "Version 2.3"</message-selector>
 <acknowledge-mode>Auto-acknowledge</acknowledge-mode>
 <message-driven-destination>
 <destination-type>javax.jms.Queue</destination-type>
 </message-driven-destination>
 <ejb-ref>
 <ejb-ref-name>ejb/ProcessPaymentHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>
 com.titan.processpayment.ProcessPaymentHomeRemote
 </home>
 <remote>
 com.titan.processpayment.ProcessPaymentRemote
 </remote>
 </ejb-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/CustomerHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 26

 com.titan.customer.CustomerHomeLocal
 </local-home>
 <local>com.titan.customer.CustomerLocal</local>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/CruiseHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.cruise.CruiseHomeLocal
 </local-home>
 <local>com.titan.cruise.CruiseLocal</local>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/CabinHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.cabin.CabinHomeLocal
 </local-home>
 <local>com.titan.cabin.CabinLocal</local>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ReservationHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.reservation.ReservationHomeLocal
 </local-home>
 <local>com.titan.reservation.ReservationLocal</local>
 </ejb-local-ref>
 <security-identity>
 <run-as>MANAGER</run-as>
 </security-identity>
 <resource-ref>
 <res-ref-name>jms/QueueFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </message-driven>
 ...
<enterprise-beans>

An MDB is declared in a <message-driven> element within the
<enterprise-beans> element, alongside <session> and <entity>
beans. Similar to <session> bean types, it defines an <ejb-name>, <ejb-
class> and <transaction-type>, but it does not define component
interfaces (local or remote). MDBs don’t have component interfaces, so these
definitions aren’t needed.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 27

message-selector

An MDB can also declare a <message-selector> element, which is unique
to message-driven beans.

<message-selector>MessageFormat = "Version 3.4"</message-selector>

Message selectors allow an MDB to be more selective about the messages it
receives from a particular topic or queue. Message selectors use Message
properties as criteria in conditional expressions2. These conditional expressions
use boolean logic to declare which messages should be delivered to a client.

Message properties, upon which message selectors are based, are additional
headers that can be assigned to a message. They give the application developer
or JMS vendor the ability to attach more information to a message. The
Message interface provides several accessor and mutator methods for reading
and writing properties. Properties can have a String value, or one of several
primitive values (boolean, byte, short, int, long, float, double).
The naming of properties, together with their values and conversion rules, is
strictly defined by JMS.

The ReservationProcessor uses a message selector filter to select messages that
meet a specific format. In this case the format is “Version 2.3”; this is a string
that Titan uses to identify messages of type MapMessage and contain the
name values CustomerID, CruiseID, CabinID, CreditCard, and
Price. In other words, by specifying a “MessageFormat” on every reservation
message, we can write MDBs that are designed to process that type of message.
If a new business partner needs to use a different type of Message object, we
only need a new message version and an MDB to process it.

This is how a JMS producer would go about setting a MessageFormat
property on a Message:

Message message = new MapMessage();
message.setPropery(“MessageFormat”,” Version 3.4”);

// set the reservation named values

sender.send(message);

The message selectors are based on a subset of the SQL-92 conditional
expression syntax that is used in the WHERE clauses of SQL statements. They
can become fairly complex, including the use of literal values, boolean
expressions, unary operators, etc.

2 Message selectors are also based on message headers, which is outside the scope of this
chapter.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 28

Message Selector Examples

Here are three complex selectors used in hypothetical environments. Although
you will have to use your imagination a little, the purpose of these examples is to
convey the power of the message selectors. When a selector is declared, the
identifier always refers to a property name or JMS header name. For example, the
selector “UserName !='William'” assumes that there is a property in the
message named UserName, which can be compared to the value 'William'.

Managing claims in an HMO

Due to some fraudulent claims, an automatic process is implemented using
MDBs that will audit all claims submitted by patients who are employees of the
ACME manufacturing company with visits to chiropractors, psychologists, and
dermatologists:

<message-selector>
<![CDATA[
PhysicianType IN ('Chiropractic','Psychologists','Dermatologist') AND
PatientGroupID LIKE 'ACME%'
]]>
</message-selector>

MDB <message-selector> statements are declared in
XML deployment descriptors. XML assigns a variety of
characters like the greater than (‘>’) and less than (‘<’) special
meaning, so using these symbols in the <message-
selector> statements will cause parsing errors unless
CDATA sections are used. This is the same reason CDATA
section were needed in EJB QL <ejb-ql> statements as
explained in Chapter 8.

Notification of certain bids on inventory

A supplier wants notification of requests-for-bids on specific inventory items at
specific quantities:

<message-selector>
<![CDATA[
 InventoryID ='S93740283-02'AND Quantity BETWEEN 1000 AND 13000 ";
]]>
</message-selector>

Selecting recipients for a catalog mailing

An online retailer wants to deliver a special catalog to any customer that orders
more then $500.00 worth of merchandise where the average price per item ordered
is greater than $75.00 and the customer resides in one several states. The retailer
creates a special application that subscribes to the order processing topic and

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 29

processes catalog deliveries for only those customers that meet the defined
criteria:

<message-selector>
<![CDATA[
 TotalCharge >500.00 AND ((TotalCharge /ItemCount)>=75.00)
 AND State IN ('MN','WI','MI','OH')";
]]>
</message-selector>

acknowledge-mode

JMS has the concept of acknowledgment, which means that the JMS client
notifies the JMS provider (message router) that a message was received. In EJB,
it’s the MDB container’s responsibility to send acknowledgements to the JMS
provider when it receives a message. To acknowledge a message is to tell the
JMS provider that MDB container has received the message and processed it
using an MDB instance. Without an acknowledgement, the JMS provider will
not know whether the MDB container has received the message, so it will try to
redeliver it. This can cause problems. For example, once we have processed a
reservation message using the ReservationProcessor EJB, we don’t want to
receive the same message again.

When transactions are involved, the acknowledgment mode set by the bean
provider is ignored. In this case, the acknowledgment is performed within the
context of the transaction. If the transaction succeeds, the message is
acknowledged. If the transaction fails, the message is not acknowledged. So if
the MDB is using container-managed transactions, as it will in most cases, the
acknowledgment mode is ignored by the MDB container. When using container-
managed transactions with a Required transaction attribute, the
<acknowledge-mode> is usually not specified; we included it in the
deployment descriptor for the sake of discussion.

<acknowledge-mode>Auto-acknowledge</acknowledge-mode>

When the MDB executes with bean-managed transactions, or with the container-
managed transaction attribute NotSupported (see Chapter 14), then the value
of <acknowledge-mode> becomes important.

Two values can be specified for <acknowledge-mode>: Auto-
acknowledge and Dups-ok-acknowledge. The first tells the container
that it should send an acknowledgement to the JMS provider soon after the
message is given to an MDB instance to process. The Dups-ok-
acknowledge tells the container that it doesn’t have to send the
acknowledgement immediately; any time after the message is given to the MDB
instance will be fine. With Dups-ok-acknowledge, it’s possible for the
MDB container to delay acknowledgement so long that the JMS provider
assumes that the message was not received and so sends a “duplicate” message.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 30

Obviously, with Dups-ok-acknowledge, your MDBs must be able to handle
duplicate messages correctly.

Auto-acknowledge duplicate messages because the acknowledgement is
sent immediately. Therefore, the JMS provider won’t send a duplicate. In most
cases an MDB will want to use Auto-acknowledge, to avoid processing the
same message twice. Dups-ok-acknowledge exists because it may allow a
JMS provider to optimize its use of the network. In practice, the overhead of an
acknowledgment is so small, and the frequency of communication between the
MDB container and JMS provider is so high, that Dups-ok-acknowledge
doesn’t have a big impact of performance.

message-driven-destination

The <message-driven-destination> element designates the type of
destination that the MDB is subscribed to or listens to. The allowed values for
this element are javax.jms.Queue and javax.jms.Topic. In the case
of the ReservationProcessor EJB, this value is set to javax.jms.Queue
meaning that the MDB is getting its messages via the p2p messaging model from
a Queue.

<message-driven-destination>
 <destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>

When the MDB is deployed, the deployer will map the MDB so that it listens to a
real Queue on the network.

When the <destination-type> is a javax.jms.Topic, the
<subscription-durability> element must be declared with either
Durable or NonDurable as its value.

<message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 <subscription-durability>Durable</subscription-durability>
</message-driven-destination>

The <subscription-durability> element determines whether or not the
MDB’s subscription to the Topic is durable. A Durable subscription
outlasts an MDB’s connection to the JMS provider. So if the EJB server suffers a
partial failure, is shut down, or is otherwise disconnected from the JMS provider,
the messages that it would have received will not be lost. While a Durable
MDB is disconnected from the JMS provider, it is the responsibility of the JMS
provider to store any messages the subscriber misses. When the Durable
MDB reconnects to the JMS provider, the JMS provider sends it all the
unexpired messages that accumulated while it was down. This behavior is
commonly referred to as store-and-forward messaging. Durable MDBs make
MDBs tolerant of disconnections, whether they are intentional or the result of a
partial failure. If <subscription-durability> is NonDurable, then

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 31

any messages the bean would have received while it was disconnected will be
lost. Developers use NonDurable subscriptions when it’s not critical that all
messages be processed. Using a NonDurable subscription improves the
performance of a JMS provider but significantly reduces the reliability of the
MDBs.

When <destination-type> is javax.jms.Queue, as is the case in the
ReservationProcessor EJB, durability is not a factor because of the nature of p2p
or Queue based messaging systems. With a queue, messages may only be
consumed once, and remain in the Queue until they are distributed to one of the
Queue’s listeners.

The rest of the elements in the deployment descriptor should already be familiar.
The <ejb-ref> element provides JNDI ENC bindings for a remote EJB home
object while the <ejb-local-ref> elements provide JNDI ENC bindings for
local EJB home objects. Note that the <resource-ref> element that defined
the JMS QueueConnectionFactory used by the ReservationProcessor EJB
to send ticket messages is not accompanied by a <resource-env-ref>
element. The Queue to which the tickets are sent is obtained from the
JMSReplyTo header of the MapMessage itself, and not from the JNDI ENC.

The ReservationProcessor Clients

In order to test the ReservationProcessor EJB, we need to develop two new client
applications: one to send reservation messages and the other to consume ticket
messages produced by the ReservationProcessor EJB.

The Reservation Message Producer

The JmsClient_ReservationProducer is designed to send 100
reservation requests very quickly. The speed with which it sends these
messages will force many MDB containers to use multiple instances to process
the reservation messages.

import javax.jms.Message;
import javax.jms.MapMessage;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueConnection;
import javax.jms.QueueSession;
import javax.jms.Queue;
import javax.jms.QueueSender;
import javax.jms.JMSException;
import javax.naming.InitalContext;

import com.titan.processpayment.CreditCardDO;

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 32

public class JmsClient_ReservationProducer {

 public static void main(String [] args){

 InitialContext jndiContext = getInitialContext()

 QueueConnectionFactory factory = (QueueConnectionFactory)
 jndiContext.lookup(factoryName);

 Queue reservationQueue = (Queue)
 jndiContext.lookup(topicName);

 QueueConnection connect = factory.createQueueConneciton();

 QueueSession session =
 connect.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

 QueueSender sender = session.createSender(reservationQueue);

 Integer cruiseID = new Integer(1);

 for(int i = 0; i < 100; i++){
 MapMessage message = new MapMessage();

 message.setInt("CruiseID",1);
 message.setInt("CustomerID",i%10);
 message.setInt("CabinID",i);
 message.setDouble("Price", (double)1000+i);

 // the card expires in about 30 days
 Date expirationDate =
 new Date(System.currentTimeMillis()+43200000);
 CreditCardDO card =
 new CreditCardDO(923830283029l,
 expirationDate,
 CreditCardDO.MASTER_CARD);

 message.setObject("CreditCard", card);

 sender.send(message);

 }

 connect.close();
 }

 public static InitialContext getInitialContext()
 throws JMSException{
 // create vendor speicific JNDI Context here
 }
}

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 33

You may have noticed that the JmsClient_ReservationProducer sets
the CustomerID, CruiseID, and CabinID as primitive int values, but the
ReservationProcessorBean reads these values as
java.lang.Integer types. This is not a mistake. The MapMessage
automatically converts any primitive to its proper wrapper if that primitive is read
using MapMessage.getObject(). So, for example, a named-value that is
loaded into a MapMessage using setInt() can be read as an Integer using
getObject():

MapMessage mapMsg = new MapMessage();

mapMsg.setInt(“TheValue”,3);

Integer myInteger = (Integer)mapMsg.getObject(“TheValue”);

if(myInteger.intValue() == 3)
 // this will always be true

JMS has a cornucopia of features and details which are simply too extensive to
cover in this book.

The Ticket Message Consumer

The JmsClient_TicketConsumer is designed to consume all the ticket
messages delivered by ReservationProcessor instances to the queue. It
consumes the messages and prints out the descriptions.

import javax.jms.Message;
import javax.jms.ObjectMessage;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueConnection;
import javax.jms.QueueSession;
import javax.jms.Queue;
import javax.jms.QueueSender;
import javax.jms.JMSException;
import javax.naming.InitalContext;

import com.titan.travelagent.TicketDO;

public class JmsClient_TicketConsumer
extends javax.jms.MessageListener{

 public static void main(String [] args){

 new JmsClient_TicketConsumer();

 while(true){Thread.sleep(10000);}

 }

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 34

 public JmsClient_TicketConsumer
 throws Exception{

 InitialContext jndiContext = getInitialContext()

 QueueConnectionFactory factory = (QueueConnectionFactory)
 jndiContext.lookup(factoryName);

 Queue ticketQueue = (Queue)
 jndiContext.lookup(topicName);

 QueueConnection connect = factory.createQueueConneciton();

 QueueSession session =
 connect.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

 QueueReceiver receiver = session.createReceiver(ticketQueue);

 receiver.setMessageListener(this);

 connect.start();
 }

 public void onMessage(Message message){
 try{

 ObjectMessage objMsg = (ObjectMessage)message;
 TicketDO ticket = (TicketDO)obj.Msg.getObject();
 System.out.println("********************************");
 System.out.println(ticket);
 System.out.println("********************************");

 }catch(JMSException jmsE){
 jmsE.printStackTrace();
 }
 }
 public static InitialContext getInitialContext()
 throws JMSException{
 // create vendor speicific JNDI Context here
 }
}

In order to make the ReservationProcessor EJB work with the two client
applications, JmsClient_ReservationProducer and
JmsClient_TicketConsumer, you must configure your EJB container and
JMS provider so that it has two queues: one for reservation messages and
another for ticket messages.

& Exercise 13.2, ReservationProcessor: The Message-driven bean

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 35

The Life Cycle of a Message-Driven Bean

Just as the entity and session beans have well-defined life cycles, so does the
MDB. The MDB’s life cycle has two states: Does Not Exist and Method-Ready
Pool. The Method-Ready Pool is similar to the instance pool used for stateless
session beans. Like stateless beans, MDBs define instance pooling in their life
cycle.3 Figure 13-4 illustrates the states and transitions that an MDB instance
goes through in its lifetime.

[FIGURE]

Figure 13-4: MDB life cycle

Does Not Exist
When a bean is in the Does Not Exist state, it is not an instance in the memory of
the system. In other words, it has not been instantiated yet.

The Method-Ready Pool
MDB instances enter the Method-Ready Pool as the container needs them.
When the EJB server is first started, it will probably create a number of MDB
instances and enter them into the Method-Ready Pool. (The actual behavior of
the server depends on the implementation.) When the number of MDB instances
handling incoming messages is insufficient, more can be created and added to
the pool.

Transitioning to the Method-Ready Pool

When an instance transitions from the Does Not Exist state to the Method-
Ready Pool, three operations are performed on it. First, the bean instance is
instantiated by invoking the Class.newInstance() method on the MDB
class. Second, the setMessageDrivenContext() method is invoked when
the instance receives its reference to the EJBContext. The
MessageDrivenContext reference may be stored in an instance field of the
MDB.

Finally, the no-argument ejbCreate() method is invoked on the bean
instance. Remember that an MDB only has one ejbCreate() method, which
takes no arguments. The ejbCreate() method is invoked only once in the life
cycle of the MDB.

3 Some vendors do not pool MDB instances, but may instead create and
destroy instances with each new message. This is an implementation-specific decision that
shouldn’t impact the specified life cycle of the stateless bean instance.

DRAFT, 10/21/017/24/2001

Copyright (c) 2001 O’Reilly & Associates 36

MDBs are not subject to activation, so they can maintain open connections to
resources for their entire life cycle.4 The ejbRemove() method should close
any open resources before the MDB is evicted from memory at the end of its life
cycle.

Life in the Method-Ready Pool

Once an instance is in the Method-Ready Pool, it is ready to handle incoming
messages. When a message is delivered to an MDB it is delegated to any
available instance in the Method-Ready Pool. While the instance is executing the
request, it is unavailable to process other messages. The MDB can handle many
messages simultaneously, delegating the responsibility of handling each
message to a different MDB instance. Once the instance has finished, it is
immediately available to handle a new message.

When a message is delegated to an instance, the MDB instance’s
MessageDrivenContext changes to reflect the new transaction context.

MDBs are not subject to activation and do not have ejbActivate() or
ejbPassivate() callback methods. The reason is simple: MDB instances
have no conversational state that needs to be preserved. (Stateful session beans
do depend on activation, as we’ll see later.)

Transitioning out of the Method-Ready Pool: The death of an MDB
instance

Bean instances leave the Method-Ready Pool for the Does Not Exist state when
the server no longer needs the instance. This occurs when the server decides to
reduce the total size of the Method-Ready Pool by evicting one or more
instances from memory. The process begins by invoking the ejbRemove()
method on the instance. At this time, the bean instance should perform any
cleanup operations, like closing open resources. The ejbRemove() method is
only invoked once in the life cycle of an MDB’s instance—when it is about to
transition to the Does Not Exist state. During the ejbRemove() method, the
MessageDrivenContext and access to the JNDI ENC is still available to the
bean instance. Following the execution of the ejbRemove() method, the bean
is dereferenced and eventually garbage collected.

4 The duration of an MDB instance’s life is assumed to be very long.
However, some EJB servers may actually destroy and create instances with every new
message, making this strategy less attractive. Consult your vendor’s documentation for
details on how your EJB server handles stateless instances.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 1

14

Transactions

ACID Transactions
To understand how transactions work, we will revisit the TravelAgent EJB, a
stateful session bean that encapsulates the process of making a cruise
reservation for a customer. Here is the TravelAgent’s bookPassage()
method in EJB 2.0 and 1.1 versions:

EJB 2.0: bookPassage() method

public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeLocal resHome =
 (ReservationHomeLocal)
 jndiContext.lookup
 ("java:comp/env/ejb/ReservationHome");

 ReservationLocal reservation =
 resHome.create(customer, cruise, cabin, price);

 Object ref = jndiContext.lookup
 ("java:comp/env/ejb/ProcessPaymentHome");

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates2

 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote)
 PortableRemoteObject.narrow
 (ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);
 return ticket;
 } catch(Exception e) {
 throw new EJBException(e);
 }
}

EJB 1.1: bookPassage() method

public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeRemote resHome =
 (ReservationHomeRemote)getHome("ReservationHome",
 ReservationHomeRemote.class);
 ReservationRemote reservation =
 resHome.create(customer, cruise, cabin, price);
 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote)
 getHome("ProcessPaymentHome",
 ProcessPaymentHomeRemote.class);
 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);
 return ticket;
 } catch(Exception e) {
 throw new EJBException(e);
 }
}

The TravelAgent EJB is a fairly simple session bean, and its use of other EJBs is
a typical example of business object design and workflow. Unfortunately, good
business object design is not enough to make these EJBs useful in an industrial-
strength application. The problem is not with the definition of the EJBs or the

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 3

workflow; the problem is that a good design doesn’t, in and of itself, guarantee
that the TravelAgent’s bookPassage() method represents a good
transaction. To understand why, we will take a closer look at what a transaction
means and what criteria a transaction must meet to be considered reliable.

In business, a transaction usually involves an exchange between two parties.
When you purchase an ice cream cone, you exchange money for food; when you
work for a company, you exchange skill and time for money (which you use to
buy more ice cream). When you are involved in these exchanges, you monitor
the outcome to ensure that you don’t get “ripped off.” If you give the ice cream
vendor a $20 bill, you don’t want him to drive off without giving you your
change; you want to make sure that your paycheck reflects all the hours that you
worked. By monitoring these commercial exchanges, you are attempting to
ensure the reliability of the transactions; you are making sure that the transaction
meets everyone’s expectations.

In business software, a transaction embodies the concept of a commercial
exchange. A business system transaction (transaction for short) is the execution
of a unit-of-work that accesses one or more shared resources, usually databases.
A unit-of-work is a set of activities that relate to each other and must be
completed together. The reservation process is a unit-of-work made up of several
activities: recording a reservation, debiting a credit card, and generating a ticket
together make up a unit-of-work.

Transactions are part of many different types of systems. In each transaction, the
objective is the same: to execute a unit-of-work that results in a reliable exchange.
Here are some examples of other types of business systems that employ
transactions:

ATM
The ATM (automatic teller machine) you use to deposit, withdraw, and
transfer funds, executes these units-of-work as transactions. In an ATM
withdrawal, for example, the ATM checks to make sure you don’t overdraw
and then debits your account and spits out some money.

Online book order
You’ve probably purchased many of your Java books from an online
bookseller—maybe even this book. This type of purchase is also a unit-of-
work that takes place as a transaction. In an online book purchase, you
submit your credit card number, it is validated, and then a charge is made for
price of the book, and an order to ship you the book is sent to the
bookseller’s warehouse.

Medical system
In a medical system, important data—some of it critical—is recorded about
patients every day, including information about clinical visits, medical
procedures, prescriptions, and drug allergies. The doctor prescribes the
drug, then the system checks for allergies, contraindications, and
appropriate dosages. If all tests pass, then the drug can be administered.
The tasks just described make up a unit-of-work in a medical system. A unit-

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates4

of-work in a medical system may not be financial, but it’s just as important.
A failure to identify a drug allergy in a patient could be fatal.

As you can see, transactions are often complex and usually involve the
manipulation of a lot of data. Mistakes in data can cost money, or even a life.
Transactions must therefore preserve data integrity, which means that the
transaction must work perfectly every time or not be executed at all. This is a
pretty tall order, especially for complex systems. As difficult as this requirement
is, however, when it comes to commerce there is no room for error. Units-of-work
involving money or anything of value always require the utmost reliability,
because errors impact the revenues and the well-being of the parties involved.

To give you an idea of the accuracy required by transactions, think about what
would happen if a transactional system suffered from seemingly infrequent
errors. ATMs provide customers with convenient access to their bank accounts
and represent a significant percentage of the total transactions in personal
banking. The number of transactions handled by ATMs are simple but
numerous, providing us with a great example of why transactions must be error
proof. Let’s say that a bank has 100 ATMs in a metropolitan area, and each ATM
processes 300 transactions (deposits, withdrawals, or transfers) a day for a total
of 30,000 transactions per day. If each transaction, on average, involves the
deposit, withdrawal, or transfer of about $100, about three million dollars would
move through the ATM system per day. In the course of a year, that’s a little
over a billion dollars:

(365 days) ? (100 ATMs) ? (300 transactions) ? ($100.00) =
$1,095,000,000.00

How well do the ATMs have to perform in order for them to be considered
reliable? For the sake of argument, let’s say that ATMs execute transactions
correctly 99.99% of the time. This seems to be more than adequate: after all, only
one out of every ten thousand transactions executes incorrectly. But over the
course of a year, if you do the math, that could result in over $100,000 in errors!

$1,095,000,000.00 ? .01% = $109,500.00

Obviously, this is an oversimplification of the problem, but it illustrates that even
a small percentage of errors is unacceptable in high-volume or mission-critical
systems. For this reason, experts in the field of transaction services have
identified four characteristics of a transaction that must be followed in order to
say that a system is safe. Transactions must be atomic, consistent, isolated, and
durable (ACID)—the four horsemen of transaction services. Here’s what each
term means:

Atomic
To be atomic, a transaction must execute completely or not at all. This means
that every task within a unit-of-work must execute without error. If any of the
tasks fails, the entire unit-of-work or transaction is aborted, meaning that
changes to the data are undone. If all the tasks execute successfully, the

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 5

transaction is committed, which means that the changes to the data are made
permanent or durable.

Consistent
Consistency is a transactional characteristic that must be enforced by both
the transactional system and the application developer. Consistency refers
to the integrity of the underlying data store. The transactional system fulfills
its obligation in consis tency by ensuring that a transaction is atomic,
isolated, and durable. The application developer must ensure that the
database has appropriate constraints (primary keys, referential integrity, and
so forth) and that the unit-of-work, the business logic, doesn’t result in
inconsistent data (data that is not in harmony with the real world it
represents). In an account transfer, for example, a debit to one account must
equal the credit to the other account.

Isolated
A transaction must be allowed to execute without interference from other
processes or transactions. In other words, the data that a transaction
accesses cannot be affected by any other part of the system until the
transaction or unit-of-work is completed.

Durable
Durability means that all the data changes made during the course of a
transaction must be written to some type of physical storage before the
transaction is successfully completed. This ensures that the changes are not
lost if the system crashes.

To get a better idea of what these principles mean, we will examine the
TravelAgent EJB in terms of the four ACID properties.

Is the TravelAgent EJB Atomic?

Our first measure of the TravelAgent EJB’s reliability is its atomicity: does it
ensure that the transaction executes completely or not at all? What we are really
concerned with are the critical tasks that change or create information. In the
bookPassage() method, a Reservation EJB is created, the ProcessPayment
EJB debits a credit card, and a TicketDO object is created. All of these tasks
must be successful for the entire transaction to be successful.

To understand the importance of the atomic characteristic, you have to imagine
what would happen if even one of the subtasks failed to execute. If, for example,
the creation of a Reservation EJB failed but all other tasks succeeded, your
customer would probably end up getting bumped from the cruise or sharing the
cabin with a stranger. As far as the travel agent is concerned, the
bookPassage() method executed successfully because a TicketDO was
generated. If a ticket is generated without the creation of a reservation, the state
of the business system becomes inconsistent with reality because the customer
paid for a ticket but the reservation was not recorded. Likewise, if the
ProcessPayment EJB fails to charge the customer’s credit card, the customer gets

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates6

a free cruise. He may be happy, but management isn’t. Finally, if the TicketDO
is never created, the customer would have no record of the transaction and
probably wouldn’t be allowed onto the ship.

So the only way bookPassage() can be completed is if all the critical tasks
execute successfully. If something goes wrong, the entire process must be
aborted. Aborting a transaction requires more than simply not finishing the
tasks; in addition, all the tasks that did execute within the transaction must be
undone. If, for example, the creation of the Reservation EJB and
ProcessPayment.byCredit() method succeeded but the creation of the
TicketDO failed throwing an exception from constructor, then the reservation
record and payment records must not be added to the database.

Is the TravelAgent EJB Consistent?

In order for a transaction to be consistent, the state of the business system must
make sense after the transaction has completed. In other words, the state of the
business system must be consistent with the reality of the business. This
requires that the transaction enforce the atomic, isolated, and durable
characteristics of the transaction, and it also requires diligent enforcement of
integrity constraints by the application developer. If, for example, the application
developer fails to include the credit card charge operation in the
bookPassage() method, the customer would be issued a ticket but would
never be charged. The data would be inconsistent with the expectation of the
business—a customer should be charged for passage. In addition, the database
must be set up to enforce integrity constraints. For example, it should not be
possible for a record to be added to the RESERVATION table unless the
CABIN_ID, CRUISE_ID, and CUSTOMER_ID foreign keys map to
corresponding records in the CABIN, CRUISE, and CUSTOMER tables,
respectively. If a CUSTOMER_ID is used that doesn’t map to a CUSTOMER
record, referential integrity should cause the database to throw an error message.

Is the TravelAgent EJB Isolated?

If you are familiar with the concept of thread synchronization in Java or row-
locking schemes in relational databases, isolation will be a familiar concept. To be
isolated, a transaction must protect the data that it is accessing from other
transactions. This is necessary to prevent other transactions from interacting
with data that is in transition. In the TravelAgent EJB, the transaction is isolated
to prevent other transactions from modifying the EJBs that are being updated.
Imagine the problems that would arise if separate transactions were allowed to
change any entity bean at any time—transactions would walk all over each other.
You could easily have several customers book the same cabin because their
travel agents happened to make their reservations at the same time.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 7

The isolation of data accessed by EJBs doesn’t mean that the entire application
shuts down during a transaction. Only those entity beans and data directly
affected by the transaction are isolated. In the TravelAgent EJB, for example, the
transaction isolates only the Reservation EJB created. There can be many
Reservation EJBs in existence; there’s no reason these other EJBs can’t be
accessed by other transactions.

Is the TravelAgent EJB Durable?

To be durable, the bookPassage() method must write all changes and new
data to a permanent data store before it can be considered successful. While this
may seem like a no-brainer, often it isn’t what happens in real life. In the name of
efficiency, changes are often maintained in memory for long periods of time
before being saved on a disk drive. The idea is to reduce disk accesses—which
slow systems down—and only periodically write the cumu lative effect of data
changes. While this approach is great for performance, it is also dangerous
because data can be lost when the system goes down and memory is wiped out.
Durability requires the system to save all updates made within a transaction as
the transaction successfully completes, thus protecting the integrity of the data.

In the TravelAgent EJB, this means that the new RESERVATION and PAYMENT
records inserted are made persistent before the transaction can complete
successfully. Only when the data is made durable are those specific records
accessible through their respective EJBs from other transactions. Hence,
durability also plays a role in isolation. A transaction isn’t finished until the data
is successfully recorded.

Ensuring that transactions adhere to the ACID principles requires careful design.
The system has to monitor the progress of a transaction to ensure that it does all
its work, that the data is changed correctly, that transactions don’t interfere with
each other, and that the changes can survive a system crash. Engineering all this
functionality into a system is a lot of work, and not something you would want to
reinvent for every business system you worked on. Fortunately, EJB is
specifically designed to support transactions automatically, making the
development of transactional systems easier. The rest of this chapter examines
how EJB supports transactions implicitly (through declarative transaction
attributes) and explicitly (through the Java Transaction API).

Declarative Transaction Management
One of the primary advantages of Enterprise JavaBeans is that it allows for
declarative transaction management. Without this feature, transactions must be
controlled using explicit transaction demarcation. This involves the use of fairly
complex APIs like the OMG’s OTS (Object Transaction Service) or its Java
implementation, JTS (Java Transaction Service). Explicit demarcation is difficult
for developers to use at best, particularly if you are new to transactional systems.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates8

In addition, explicit transaction demarcation requires that the transactional code
be written within the business logic, which reduces the clarity of the code and
more importantly creates inflexible distributed objects. Once transaction
demarcation is “hardcoded” into the business object, changes in transaction
behavior require changes to the business logic itself. We talk more about explicit
transaction management and EJB later in this chapter.

With EJB’s declarative transaction management, the transactional behavior of
EJBs can be controlled using the deployment descriptor, which sets transaction
attributes for individual enterprise bean methods. This means that the
transactional behavior of a EJB within an application can be changed easily
without changing the EJB’s business logic. In addition, a EJB deployed in one
application can be defined with very different transactional behavior than the
same EJB deployed in a different application. Declarative transaction
management reduces the complexity of transactions for EJB developers and
application developers and makes it easier for you to create robust transactional
applications.

Transaction Scope

Transaction scope is a crucial concept for understanding transactions. In this
context, transaction scope means those EJBs—both session and entity—that are
participating in a particular transaction.

In the bookPassage() method of the TravelAgent EJB, all the EJBs involved
are a part of the same transaction scope. The scope of the transaction starts
when a client invokes the TravelAgent EJB’s bookPassage() method. Once
the transaction scope has started, it is propagated to both the newly created
Reservation EJB and the ProcessPayment EJB:

As you know, a transaction is a unit-of-work that is made up of one or more
tasks. In a transaction, all the tasks that make up the unit-of-work must succeed
for the entire transaction to succeed; the transaction must be atomic. If any task
fails, the updates made by all the other tasks in the transaction will be rolled back
or undone. In EJB, tasks are expressed as enterprise bean methods, and a unit-of-
work consists of every enterprise bean method invoked in a transaction. The
scope of a transaction includes every EJB that participates in the unit-of-work.

It is easy to trace the scope of a transaction by following the thread of execution.
If the invocation of the bookPassage() method begins a transaction, then
logically, the transaction ends when the method completes. The scope of the
bookPassage() transaction would include the TravelAgent, Reservation, and
ProcessPayment EJBs—every EJB touched by the bookPassage() method.
A transaction is propagated to an EJB when that EJB’s method is invoked and
included in the scope of a transaction.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 9

A transaction can end if an exception is thrown while the bookPassage()
method is executing. The exception could be thrown from one of the other EJBs
or from the bookPassage() method itself. An exception may or may not
cause a rollback, depending on its type. More about exceptions and transactions
later.

The thread of execution isn’t the only factor that determines whether a EJB is
included in the scope of a transaction; the EJB’s transaction attributes also play
a role. Determining whether a EJB participates in the transaction scope of any
unit-of-work is accomplished either implicitly using EJB’s transaction attributes
or explicitly using the Java Transaction API (JTA).

Transaction Attributes

As an application developer, you do not normally need to control transactions
explicitly when using an EJB server. EJB servers can manage transactions
implicitly, based on the transaction attributes established for EJBs at deployment
time. The ability to specify how business objects participate in transactions
through attribute-based programming is a common characteristic of CTMs, and
one of the most important features of the EJB component model.

When an EJB is deployed, you can set its runtime transaction attribute in the
deployment descriptor to one of several values. The list below shows the XML
attribute values used to specify these transaction attributes:

• NotSupported

• Supports

• Required

• RequiresNew

• Mandatory

• Never

Using transaction attributes simplifies building transactional applications by
reducing the risks associated with improper use of transactional protocols like
JTA (discussed later in this chapter). It’s more efficient and easier to use
transaction attributes than to control transactions explicitly.

It is possible to set a transaction attribute for the entire EJB (in which case, it
applies to all methods) or to set different transaction attributes for individual
methods. The former is much simpler and less error prone, but setting attributes
at the method level offers more flexibility. The code fragments in the following
sections show how the default transaction attribute of a EJB can be set in the
EJB’s deployment descriptor.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates10

Setting a transaction attribute

In the XML deployment descriptor, a <container-transaction> element
specifies the transaction attributes for the EJBs described in the deployment
descriptor:

<ejb-jar>
 ...
 <assembly-descriptor>
 ...
 <container-transaction>
 <method>
 <ejb-name>TravelAgentEJB</ejb-name>
 <method-name> * </method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>TravelAgentEJB</ejb-name>
 <method-name>listAvailableCabins</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
 </container-transaction>
 ...
 </assembly-descriptor>
 ...
</ejb-jar>

This deployment descriptor specifies the transaction attributes for the
TravelAgent EJB. The <container-transaction> element specifies a
method and the transaction attribute that should be applied to that method. The
first <container-transaction> element specifies that all methods by
default have a transaction attribute of Required; the * is a wildcard that
indicates all of the methods of the TravelAgent EJB. The second
<container-transaction> element overrides the default setting to
specify that the listAvailableCabins() method will have a Supports
transaction attribute. Note that we have to specify which EJB we’re referring to
with the <ejb-name> element; an XML deployment descriptor can cover many
EJBs.

Transaction Attributes Defined

Here are the definitions of the transaction attributes listed above. In a few of the
definitions, we say that the client transaction is suspended. This means that the
transaction is not propagated to the enterprise bean method being invoked;
propagation of the transaction is temporarily halted until the enterprise bean
method returns.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 11

To make things easier, we’ll talk about attribute types as if they were bean types:
for example, we’ll say a “Required EJB” as shorthand for “an enterprise bean
with the Required transactional attribute”.

NotSupported

Invoking a method on an EJB with this transaction attribute suspends the
transaction until the method is completed. This means that the transaction
scope is not propagated to the NotSupported EJB or any of the EJBs it calls.
Once the method on the NotSupported EJB is done, the original transaction
resumes its execution.

Figure 8-1 shows that a Not Supported EJB does not propagate the client
transaction when one of its methods is invoked.

[FIGURE (modified 8-1)]

Figure 14-1: Not Supported attribute

Supports
This attribute means that the enterprise bean method will be included in the
transaction scope if it is invoked within a transaction. In other words, if the
EJB or client that invokes the Supports EJB is part of a transaction scope,
the Supports EJB and all EJBs accessed by it become part of the original
transaction. However, the Supports EJB doesn’t have to be part of a
transaction and can interact with clients and other EJBs that are not included
in a transaction scope.

Figure 8-3(a) shows the Supports EJB being invoked by a transactional
client and propagating the transaction. Figure 8-3(b) shows the Supports
EJB being invoked from a non-transactional client.

[FIGURE (modifed 8-2)]

Figure 14-2: Supports attribute

Required
This attribute means that the enterprise bean method must be invoked within
the scope of a transaction. If the calling client or EJB is part of a transaction,
the Required EJB is automatically included in its transaction scope. If,
however, the calling client or EJB is not involved in a transaction, the
Required EJB starts its own new transaction. The new transaction’s scope
covers only the Required EJB and all other EJBs accessed by it. Once the
method invoked on the Required EJB is done, the new transaction’s scope
ends.

Figure 8-5(a) shows the Required EJB being invoked by a transactional
client and propagating the transaction. Figure 8-5(b) shows the Required
EJB being invoked from a non-transactional client, which causes it to start
its own transaction.

[FIGURE (modifed 8-3)]

Figure 14-3: Required attribute

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates12

Requires New
This attribute means that a new transaction is always started. Regardless of
whether the calling client or EJB is part of a transaction, a method with the
RequiresNew attribute begins a new transaction when invoked. If the calling
client is already involved in a transaction, that transaction is suspended
until the RequiresNew EJB’s method call returns. The new transaction’s
scope only covers the RequiresNew EJB and all the EJBs accessed by it.
Once the method invoked on the RequiresNew EJB is done, the new
transaction’s scope ends and the original transaction resumes.

Figure 8-7(a) shows the RequiresNew EJB being invoked by a transactional
client. The client’s transaction is suspended while the EJB executes under its
own transaction. Figure 8-7(b) shows the RequiresNew EJB being invoked
from a non-transactional client; the RequiresNew executes under its own
transaction.

[FIGURE (modified 8-4)]

Figure 14-4: Requires New attribute

Mandatory
This attribute means that the enterprise bean method must always be made
part of the transaction scope of the calling client. If the calling client or EJB
is not part of a transaction, the invocation will fail, throwing a
javax.transaction.TransactionRequiredException to
remote clients or a
javax.ejb.TransactionRequiredLocalException to local
EJB 2.0 clients.

Figure 8-9(a) shows the Mandatory EJB being invoked by a transactional
client and propagating the transaction. Figure 8-9(b) shows the Mandatory
EJB being invoked from a non-transactional client; the method throws the
TransactionRequiredException to remote clients or
TransactionRequredLocalException to local EJB 2.0 clients,
because there is no transaction scope.

[FIGURE (modifed 8-5)]

Figure 14-5: Mandatory attribute

Never
This attribute means that the enterprise bean method must never be invoked
within the scope of a transaction. If the calling client or EJB is part of a
transaction, the Never EJB will throw a RemoteException to remote
clients or an EJBException to local EJB 2.0 clients. If, however, the
calling client or EJB is not involved in a transaction, the Never EJB will
execute normally without a transaction.

Figure 8-11(a) shows the Never EJB being invoked by a non-transactional
client. Figure 8-11(b) shows the Never EJB being invoked by transactional
client; the method throws the RemoteException to remote clients or

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 13

EJBException to local EJB 2.0 clients, because the method can never be
invoked by a client or EJB that is included in a transaction.

[FIGURE (modifed 8-6)]

Figure 14-6: Never attribute

EJB 2.0: Message-driven beans and transaction attributes

Message-driven beans may only declare the NotSupported or Required
transaction attributes. The other transaction attributes don’t make sense in
message-driven beans because they apply to client-initiated transactions. The
Supports, RequiresNew, Mandatory, and Never attributes are all relative to the
transaction context of the client. For example, the Mandatory attribute requires
the client to have a transaction in progress before calling the enterprise bean.
This is meaningless for a message-driven bean, which is uncoupled from the
client.

The NotSupported transaction attribute indicates the message will be processed
without a transaction. The Required transaction attribute indicates that the
message will be processed with a container-initiated transaction.

Transaction Propagation

To illustrate the impact of transaction attributes on enterprise bean methods,
we’ll look once again at the bookPassage() method of the TravelAgent EJB
created in Chapter 7 (see the listings at the earlier in the chapter):

In order for bookPassage() to execute as a successful transaction, both the
creation of the Reservation EJB and the charge to the customer must be
successful. This means that both operations must be included in the same
transaction. If either operation fails, the entire transaction fails. We could have
specified the Required transaction attribute as the default for all the EJB
involved, because that attribute enforces our desired policy that all EJBs must
execute within a transaction and thus ensures data consistency.

As a transaction monitor, an EJB server watches each method call in the
transaction. If any of the updates fail, all the updates to all the EJBs will be
reversed or rolled back . A rollback is like an undo command. If you have worked
with relational databases, then the concept of a rollback should be familiar. Once
an update is executed, you can either commit the update or roll it back. A commit
makes the changes requested by the update permanent; a rollback aborts the
update and leaves the database in its original state. Making EJBs transactional
provides the same kind of rollback/commit control. For example, if the
Reservation EJB cannot be created, the charge made by the ProcessPayment EJB
is rolled back. Transactions make updates an all-or-nothing proposition. This
ensures that the unit-of-work, like the bookPassage() method, executes as
intended, and it prevents inconsistent data from being written to databases.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates14

In cases where the container implicitly manages the transaction, the commit and
rollback decisions are handled automatically. When transactions are managed
explicitly within an enterprise bean or by the client, the responsibility falls on the
enterprise bean or application developer to commit or roll back a transaction.
Explicit demarcation of transactions is covered in detail later in this chapter.

Let’s assume that the TravelAgent EJB is created and used on a client as follows:

TravelAgent agent = agentHome.create(customer);
agent.setCabinID(cabin_id);
agent.setCruiseID(cruise_id):
try {
 agent.bookPassage(card,price);
} catch(Exception e) {
 System.out.println("Transaction failed!");
}

Furthermore, let’s assume that the bookPassage() method has been given
the transaction attribute RequiresNew. In this case, the client that invokes the
bookPassage() method is not itself part of a transaction. When
bookPassage() is invoked on the TravelAgent EJB, a new transaction is
created, as dictated by the RequiresNew attribute. This means that the
TravelAgent EJB registers itself with the EJB server’s transaction manager,
which will manage the transaction automatically. The transaction manager
coordinates transactions, propagating the transaction scope from one EJB to the
next to ensure that all EJBs touched by a transaction are included in the
transaction’s unit-of-work. That way, the transaction manager can monitor the
updates made by each enterprise bean and decide, based on the success of
those updates, whether to commit all changes made by all enterprise beans to the
database or roll them all back. If a system exception is thrown by the
bookPassage() method, the transaction is automatically rolled back. We will
talk more about exceptions later in this chapter.

When the byCredit() method is invoked within the bookPassage()
method, the ProcessPayment EJB registers with the transaction manager under
the transactional context that was created for the TravelAgent EJB; the
transactional context is propagated to the ProcessPayment EJB. When the new
Reservation EJB is created, it is also registered with the transaction manager
under the same transaction. When all the EJBs are registered and their updates
made, the transaction manager checks to ensure that their updates will work. If all
the updates will work, then the transaction manager allows the changes to
become permanent. If one of the EJBs reports an error or fails, any changes made
by either the ProcessPayment or Reservation EJB are rolled back by the
transaction manager. Figure 8-15 illustrates the propagation and management of
the TravelAgent EJB’s transactional context.

[FIGURE (modified 8-8)]

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 15

Figure 14-7: Managing the TravelAgent EJB’s transactional
context

In addition to managing transactions in its own environment, an EJB server can
coordinate with other transactional systems. If, for example, the ProcessPayment
EJB actually came from a different EJB server than the TravelAgent EJB, the two
EJB servers would cooperate to manage the transaction as one unit-of-work. This
is called a distributed transaction.1

A distributed transaction is a great deal more complicated, requiring what is
called a two- phase commit (2-PC or TPC). 2-PC is a mechanism that allows
transactions to be managed across different servers and resources (e.g.
databases and JMS providers). The details of a 2-PC are beyond the scope of
this book, but a system that supports it will not require any extra operations by a
EJB or application developer. If distributed transactions are supported, the
protocol for propagating transactions, as discussed earlier, will be supported. In
other words, as an application or EJB developer, you should not notice a
difference between local and distributed transactions.

Isolation and Database Locking
Transaction isolation (the “I” in ACID) is a critical part of any transactional
system. This section explains isolation conditions, database locking, and
transaction isolation levels. These concepts are important when deploying any
transactional system.

Dirty, Repeatable, and Phantom Reads

Transaction isolation is defined in terms of isolation conditions called dirty
reads, repeatable reads, and phantom reads. These conditions describe what
can happen when two or more transactions operate on the same data.2

To illustrate these conditions, let’s think about two separate client applications
using their own instances of the TravelAgent EJB to access the same data—
specifically, a cabin record with the primary key of 99. These examples revolve
around the RESERVATION table, which is accessed by both the
bookPassage() method (through the Reservation EJB) and the
listAvailableCabins() method (through JDBC). It might be a good idea
to go back to Chapter 12 and review how the RESERVATION table is accessed
through these methods. This will help you to understand how two transactions

1 Not all EJB servers support distributed transactions.

2 Isolation conditions are covered in detail by the ANSI SQL-92 Specification,
Document Number: ANSI X3. 135-1992 (R1998).

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates16

executed by two different clients can impact each other. Assume that both
methods have a transaction attribute of Required.

Dirty reads

A dirty read occurs when the first transaction reads uncommitted changes made
by a second transaction. If the second transaction is rolled back, the data read by
the first transaction becomes invalid because the rollback undoes the changes.
The first transaction won’t be aware that the data it has read has become invalid.
Here’s a scenario showing how a dirty read can occur (illustrated in Figure 14-8):

1. Time 10:00:00: Client 1 executes the TravelAgent.bookPassage() method.
Along with the Customer and Cruise EJBs, Client 1 had previously chosen
Cabin 99 to be included in the reservation.

2. Time 10:00:01: Client 1’s TravelAgent EJB creates a Reservation EJB within
the bookPassage() method. The Reservation EJB’s create() method inserts a
record into the RESERVATION table, which reserves Cabin 99.

3. Time 10:00:02: Client 2 executes TravelAgent.listAvailableCabins(). Cabin 99
has been reserved by Client 1, so it is not in the list of available cabins that
are returned from this method.

4. Time 10:00:03: Client 1’s TravelAgent EJB executes the
ProcessPayment.byCredit() method within the bookPassage() method. The
byCredit() method throws an exception because the expiration date on the
credit card has passed.

5. Time 10:00:04: The exception thrown by the ProcessPayment EJB causes the
entire bookPassage() transaction to be rolled back. As a result, the record
inserted into the RESERVATION table when the Reservation EJB was
created is not made durable (it is removed). Cabin 99 is now available.

[FIGURE (use 8-9)]

Figure 14-8: A dirty read

Client 2 is now using an invalid list of available cabins because Cabin 99 is
available but is not included in the list. This would be serious if Cabin 99 was the
last available cabin because Client 2 would inaccurately report that the cruise
was booked. The customer would presumably try to book a cruise on a
competing cruise line.

Repeatable reads

A repeatable read is when the data read is guaranteed to look the same if read
again during the same transaction. Repeatable reads are guaranteed in one of two
ways: either the data read is locked against changes or the data read is a
snapshot that doesn’t reflect changes. If the data is locked, then it cannot be
changed by any other transaction until this transaction ends. If the data is a
snapshot, then other transactions can change the data, but these changes won’t

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 17

be seen by this transaction if the read is repeated. Here’s an example of a
repeatable read (illustrated in Figure 14-9):

1. Time 10:00:00: Client 1 begins an explicit javax.transaction.UserTransaction.

2. Time 10:00:01: Client 1 executes TravelAgent.listAvailableCabins(2), asking
for a list of available cabins that have two beds. Cabin 99 is in the list of
available cabins.

3. Time 10:00:02: Client 2 is working with an interface that manages Cabin EJBs.
Client 2 attempts to change the bed count on Cabin 99 from 2 to 3.

4. Time 10:00:03: Client 1 re-executes the TravelAgent.listAvailableCabins(2).
Cabin 99 is still in the list of available cabins.

[FIGURE (use 8-10)]

Figure 14-9: Repeatable read

This example is somewhat unusual because it uses
javax.transaction.UserTransaction. This class is covered in more
detail later in this chapter; essentially, it allows a client application to control the
scope of a transaction explicitly. In this case, Client 1 places transaction
boundaries around both calls to listAvailableCabins(), so that they are
a part of the same transaction. If Client 1 didn’t do this, the two
listAvailableCabins() methods would have executed as separate
transactions and our repeatable read condition would not have occurred.

Although Client 2 attempted to change the bed count for Cabin 99 to 3, Cabin 99
still shows up in the Client 1 call to listAvailableCabins() when a bed
count of 2 is requested. This is because either Client 2 was prevented from
making the change (because of a lock), or Client 2 was able to make the change,
but Client 1 is working with a snapshot of the data that doesn’t reflect that
change.

A nonrepeatable read is when the data retrieved in a subsequent read within the
same transaction can return different results. In other words, the subsequent
read can see the changes made by other transactions.

Phantom reads

Phantom reads occur when new records added to the database are detectable by
transactions that started prior to the insert. Queries will include records added by
other transactions after their transaction has started. Here’s a scenario that
includes a phantom read (illustrated in Figure 14-10):

1. Time 10:00:00: Client 1 begins an explicit javax.transaction.UserTransaction.

2. Time 10:00:01: Client 1 executes TravelAgent.listAvailableCabins(2), asking
for a list of available cabins that have two beds. Cabin 99 is in the list of
available cabins.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates18

3. Time 10:00:02: Client 2 executes bookPassage() and creates a Reservation
EJB. The reservation inserts a new record into the RESERVATION table,
reserving cabin 99.

4. Time 10:00:03: Client 1 re-executes the TravelAgent.listAvailableCabins(2).
Cabin 99 is no longer in the list of available cabins.

[FIGURE (use 8-11)]

Figure 14-10: Phantom read

Client 1 places transaction boundaries around both calls to listAvailable-
Cabins(), so that they are a part of the same transaction. In this case, the
reservation was made between the listAvailableCabins() queries in the
same transaction. Therefore, the record inserted in the RESERVATION table
didn’t exist when the first listAvailableCabins() method is invoked, but
it does exist and is visible when the second listAvailableCabins()
method is invoked. The record inserted is a phantom record .

Database Locks

Databases, especially relational databases, normally use several different locking
techniques. The most common are read locks, write locks, and exclusive write
locks. (I’ve taken the liberty of adding “snapshots,” although this isn’t a formal
term.) These locking mechanisms control how transactions access data
concurrently. Locking mechanisms impact the read conditions that were just
described. These types of locks are simple concepts that are not directly
addressed in the EJB specification. Database vendors implement these locks
differently, so you should understand how your database addresses these
locking mechanisms to best predict how the isolation levels described in this
section will work.

Read locks
Read locks prevent other transactions from changing data read during a
transaction until the transaction ends, thus preventing nonrepeatable reads.
Other transactions can read the data but not write it. The current transaction
is also prohibited from making changes. Whether a read lock locks only the
records read, a block of records, or a whole table depends on the database
being used.

Write locks
Write locks are used for updates. A write lock prevents other transactions
from changing the data until the current transaction is complete. A write lock
allows dirty reads, by other transactions and by the current transaction
itself. In other words, the transaction can read its own uncommitted
changes.

Exclusive write locks
Exclusive write locks are used for updates. An exclusive write lock prevents
other transactions from reading or changing data until the current

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 19

transaction is complete. An exclusive write lock prevents dirty reads by
other transactions. Other transactions are not allowed to read the data while
it is exclusively locked. Some databases do not allow transactions to read
their own data while it is exclusively locked.

Snapshots
Some databases get around locking by providing every transaction with its
own snapshot of the data. A snapshot is a frozen view of the data that is
taken when the transaction begins. Snapshots can prevent dirty reads,
nonrepeatable reads, and phantom reads. Snapshots can be problematic
because the data is not real-time; it is old the instant the snapshot is taken.

Transaction Isolation Levels

Transaction isolation is defined in terms of the isolation conditions (dirty reads,
repeatable reads, and phantom reads). Isolation levels are commonly used in
database systems to describe how locking is applied to data within a
transaction.3 The following terms are usually used to discuss isolation levels:

Read Uncommitted
The transaction can read uncommitted data (data changed by a different
transaction that is still in progress).

Dirty reads, nonrepeatable reads, and phantom reads can occur. Bean
methods with this isolation level can read uncommitted change.

Read Committed
The transaction cannot read uncommitted data; data that is being changed
by a different transaction cannot be read.

Dirty reads are prevented; nonrepeatable reads and phantom reads can
occur. Bean methods with this isolation level cannot read uncommitted data.

Repeatable Read
The transaction cannot change data that is being read by a different
transaction.

Dirty reads and nonrepeatable reads are prevented; phantom reads can
occur. Bean methods with this isolation level have the same restrictions as
Read Committed and can only execute repeatable reads.

Serializable
The transaction has exclusive read and update privileges to data; different
transactions can neither read nor write the same data.

Dirty reads, nonrepeatable reads, and phantom reads are prevented. This
isolation level is the most restrictive.

3 Isolation conditions are covered in detail by ANSI SQL-92 Specification, Document
Number: ANSI X3.135- 1992 (R1998).

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates20

These isolation levels are the same as those defined for JDBC. Specifically, they
map to the static final variables in the java.sql.Connection class. The
behavior modeled by the isolation levels in the connection class is the same as
the behavior described here.

The exact behavior of these isolation levels depends largely on the locking
mechanism used by the underlying database or resource. How the isolation
levels work depends in large part on how your database supports them.

In EJB, the deployer sets transaction isolation levels in a vendor specific way if
the container manages the transaction. The EJB developer sets the transaction
isolation level if the enterprise bean manages its own transactions. Up to this
point we have only discussed container-managed transactions; bean-managed
transactions are discussed later in this chapter.

Balancing Performance Against Consistency

Generally speaking, as the isolation levels become more restrictive, the
performance of the system decreases because more restrictive isolation levels
prevent transactions from accessing the same data. If isolation levels are very
restrictive, like Serializable, then all transactions, even simple reads, must wait in
line to execute. This can result in a system that is very slow. EJB systems that
process a large number of concurrent transactions and need to be very fast will
therefore avoid the Serializable isolation level where it is not necessary, since it
will be prohibitively slow.

Isolation levels, however, also enforce consistency of data. More restrictive
isolation levels help ensure that invalid data is not used for performing updates.
The old adage “garbage in, garbage out” applies here. The Serializable isolation
level ensures that data is never accessed concurrently by transactions, thus
ensuring that the data is always consis tent.

Choosing the correct isolation level requires some research about the database
you are using and how it handles locking. You must also balance the
performance needs of your system against consistency. This is not a cut-and-
dried process, because different applications use data differently.

Although there are only three ships in Titan’s system, the entity beans that
represent them are included in most of Titan’s transactions. This means that
many, possibly hundreds, of transactions will be accessing these Ship EJBs at
the same time. Access to Ship EJBs needs to be fast or it becomes a bottleneck,
so we do not want to use very restrictive isolation levels. At the same time, the
ship data also needs to be consistent; otherwise, hundreds of transactions will
be using invalid data. Therefore, we need to use a strong isolation level when
making changes to ship information. To accommodate these conflicting
requirements, we can apply different isolation levels to different methods.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 21

Most transactions use the Ship EJB’s get methods to obtain information. This is
read- only behavior, so the isolation level for the get methods can be very low,
such as Read Uncommitted. The set methods of the Ship EJB are almost never
used; the name of the ship probably wouldn’t change for years. However, the
data changed by the set methods must be isolated to prevent dirty reads by
other transactions, so we will use the most restrictive isolation level,
Serializable, on the ship’s set methods. By using different isolation levels on
different business methods, we can balance consistency against performance.

Controlling isolation levels

Different EJB servers allow different levels of granularity for setting isolation
levels; some servers defer this responsibility to the database. Most EJB servers
control the isolation level through the resource access API (e.g. JDBC and JMS)
and may allow different resources to have different isolation levels, but will
generally require that access to the same resource within a single transaction use
a consistent isolation level. You will need to consult your vendor’s
documentation to find out the level of control your server offers.

Bean-managed transactions in session beans (stateful and stateless) and
message-driven beans (EJB 2.0), however, allow the EJB developer to specify the
transaction isolation level using the API of the resource providing persis tent
storage. The JDBC API, for example, provides a mechanism for specifying the
isolation level of the database connection. The following code shows how this is
done. Bean- managed transactions are covered in more detail later in this chapter.

...
DataSource source = (javax.sql.DataSource)
 jndiCntxt.lookup("java:comp/env/jdbc/titanDB");

Connection con = source.getConnection();
con.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);
...

You can set the isolation level to be different for different resources within the
same transaction, but all enterprise beans that use the same resource in a
transaction should use the same isolation level.

Non-Transactional Beans
Beans that reside outside a transaction scope normally provide some kind of
stateless service that doesn’t directly manipulate data in a data store. While
these types of enterprise beans may be necessary as utilities during a
transaction, they do not need to meet the stringent ACID requirements of a
transaction.

Consider a non-transactional stateless session bean, the QuoteBean, that
provides live stock quotes. This EJB may respond to a request from a

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates22

transactional EJB involved in a stock purchase transaction. The success or
failure of the stock purchase, as a transaction, will not impact the state or
operations of the QuoteBean, so it doesn’t need to be part of the transaction.
Beans that are involved in transactions are subjected to the isolated ACID
property, which means that their services cannot be shared during the life of the
transaction. Making an enterprise bean transactional can be an expensive
runtime activity. Declaring an EJB to be non-transactional (i.e., Not Supported)
leaves it out of the transaction scope, which may improve the performance and
availability of that service.

Explicit Transaction Management

Although this section covers JTA, it is strongly recommended
that you do not attempt to manage transactions explicitly.
Through transaction attributes, EJB provides a comprehensive
and simple mechanism for delimiting transactions at the
method level and propagating transactions automatically. Only
developers with a thorough understanding of transactional
systems should attempt to use JTA with EJB.

In EJB, implicit transaction management is provided on the enterprise bean
method level so that we can define transactions that are delimited by the scope
of the method being executed. This is one of the primary advantages of EJB over
cruder distributed object implementations: it reduces complexity and therefore
programmer error. In addition, declarative transaction demarcation, as used in
EJB, separates the transactional behavior from the business logic; a change to
transactional behavior does not require changes to the business logic. In rare
situations, however, it may be necessary to take control of transactions explicitly.
To do this, it is necessary to have a much more complete understanding of
transactions.

Explicit management of transactions is complex and is normally accomplished
using the OMG’s OTS (Object Transaction Service) or the Java implementation
of OTS, JTS (Java Transaction Service). OTS and JTS provide APIs that allow
developers to work with transaction managers and resources (e.g. databases and
JMS providers) directly. While the JTS implementation of OTS is robust and
complete, it is not the easiest API to work with; it requires clean and intentional
control over the bounds of enrollment in transactions.

Enterprise JavaBeans supports a much simpler API, the Java Transaction API
(JTA), for working with transactions. This API is implemented by the
javax.transaction package. JTA actually consists of two components: a
high-level transactional client interface and a low-level X/Open XA interface. We
are concerned with the high-level client interface since that is the one accessible
to the enterprise beans and is the recommended transactional interface for client

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 23

applications. The low-level XA interface is used by the EJB server and container
to automatically coordinate transactions with resources like databases.

As an application and EJB developer, your use of explicit transaction
management will focus on one very simple interface:
javax.transaction.UserTransaction. UserTransaction
provides an interface to the transaction manager that allows the application
developer to manage the scope of a transaction explicitly. Here is an example of
how explicit demarcation might be used in a EJB or client application:

Object ref = getInitialContext().lookup("TravelAgentHome");
TravelAgentHome home = (TravelAgentHome)
 PortableRemoteObject.narrow(ref, TravelAgentHome.class);

TravelAgent tr1 = home.create(customer);
tr1.setCruiseID(cruiseID);
tr1.setCabinID(cabin_1);
TravelAgent tr2 = home.create(customer);
tr2.setCruiseID(cruiseID);
tr2.setCabinID(cabin_2);

javax.transaction.UserTransaction tran = ...; // Get the UserTransaction.
tran.begin();
tr1.bookPassage(visaCard,price);
tr2.bookPassage(visaCard,price);
tran.commit();

The client application needs to book two cabins for the same customer—in this
case, the customer is purchasing a cabin for himself and his children. The
customer doesn’t want to book either cabin unless he can get both, so the client
application is designed to include both bookings in the same transaction.
Explicitly marking the transaction’s boundaries through the use of the
javax.transaction.UserTransaction object does this. Each
enterprise bean method invoked by the current thread between the User-
Transaction.begin() and UserTransaction.commit() method is
included in the same transaction scope, according to transaction attribute of the
enterprise bean methods invoked.

Obviously this example is contrived, but the point it makes is clear. Transactions
can be controlled directly, instead of depending on method scope to delimit
them. The advantage of using explicit transaction demarcation is that it gives the
client control over the bounds of a transaction. The client, in this case, may be a
client application or another enterprise bean.4 In either case, the same
javax.transaction.UserTransaction is used, but it is obtained from

4 Only beans declared as managing their own transactions (bean-managed transaction
beans) can use the UserTransaction interface.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates24

different sources depending on whether it is needed on the client or in an
enterprise bean.

Java 2 Enterprise Edition (J2EE) specifies how a client application can obtain a
UserTransaction object using JNDI. Here’s how a client obtains a
UserTransaction object if the EJB container is part of a J2EE system (J2EE and its
relationship with EJB is covered in more detail in Chapter 17):

...
Context jndiCntx = new InitialContext();
UserTransaction tran =
 (UserTransaction)jndiCntx.lookup("java:comp/UserTransaction");

utx.begin();
...
utx.commit();
...

Enterprise beans can also manage transactions explicitly. Only session beans
and message-driven beans (EJB 2.0) with the <transaction-type> value of
“Bean” can be managed their own transactions. Enterprise beans that manage
their own transactions are frequently referred to as bean-managed transaction
(BMT) beans. Entity beans can never be BMT beans. BMT beans do not declare
transaction attributes for their methods. Here’s how a session bean declares that
it will manage transactions explicitly:

<ejb-jar>
 <enterprise-beans>
 ...
 <session>
 ...
 <transaction-type>Bean</transaction-type>
 ...

To manage its own transaction, an enterprise bean needs to obtain a
UserTransaction object. An enterprise bean obtains a reference to the
UserTransaction from the EJBContext, as shown below:

public class HypotheticalBean extends SessionBean {
 SessionContext ejbContext;

 public void someMethod() {
 try {
 UserTransaction ut = ejbContext.getUserTransaction();
 ut.begin();

 // Do some work.

 ut.commit();
 } catch(IllegalStateException ise) {...}
 catch(SystemException se) {...}
 catch(TransactionRolledbackException tre) {...}

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 25

 catch(HeuristicRollbackException hre) {...}
 catch(HeuristicMixedException hme) {...}

An enterprise bean can also access the UserTransaction from the JNDI
ENC as shown in the following example. Both methods are legal and proper. The
enterprise bean performs the lookup using the
"java:comp/env/UserTransaction" context:

InitialContext jndiCntx = new InitialContext();
UserTransaction tran = (UserTransaction)
 jndiCntx.lookup("java:comp/env/UserTransaction");

Transaction Propagation in Bean-Managed
Transactions

With stateless session beans, transactions that are managed using the
UserTransaction must be started and completed within the same method. In
other words, UserTransaction transactions cannot be started in one
method and ended in another. This makes sense because stateless session bean
instances are shared across many clients. So while one stateless instance may
service a client’s first request, a completely different instance may service the
same client subsequent request. With stateful session beans, however, a
transaction can begin in one method and be committed in another because a
stateful session bean is only used by one client. This allows a stateful session
bean to associate itself with a transaction across several different client- invoked
methods. As an example, imagine the TravelAgent EJB as a BMT bean. In the
following code, the transaction is started in the setCruiseID() method and
completed in the bookPassage() method. This allows the TravelAgent EJB’s
methods to be associated with the same transaction.

EJB 2.0: TravelAgentBean

import com.titan.reservation.*;

import java.sql.*;
import javax.sql.DataSource;
import java.util.Vector;
import java.rmi.RemoteException;
import javax.naming.NamingException;
import javax.ejb.EJBException;

public class TravelAgentBean implements javax.ejb.SessionBean {

 ...
 public void setCruiseID(Integer cruiseID)
 throws javax.ejb.FinderException {
 try {
 ejbContext.getUserTransaction().begin();
 CruiseHomeLocal home = (CruiseHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/CruiseHome");

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates26

 cruise = home.findByPrimaryKey(cruiseID);
 } catch(RemoteException re) {
 throw new EJBException(re);
 }

 }
 public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 try {
 if (ejbContext.getUserTransaction().getStatus() !=
 javax.transaction.Status.STATUS_ACTIVE) {

 throw new EJBException("Transaction is not active");
 }
 } catch(javax.transaction.SystemException se) {
 throw new EJBException(se);
 }

 if (customer == null || cruise == null || cabin == null)
 {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeLocal resHome =
 (ReservationHomeLocal) jndiContext.lookup(
 "java:comp/env/ejb/ReservationHome");

 ReservationLocal reservation =
 resHome.create(customer, cruise, cabin, price);

 Object ref = jndiContext.lookup
 ("java:comp/env/ejb/ProcessPaymentHome");

 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote) PortableRemoteObject.narrow(
 ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);

 ejbContext.getUserTransaction().commit();

 return ticket;
 } catch(Exception e) {

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 27

 throw new EJBException(e);
 }
 }
 ...
}

EJB 1.1: TravelAgentBean

public class TravelAgentBean implements javax.ejb.SessionBean {

 ...
 public void setCruiseID(Integer cruiseID)
 throws javax.ejb.FinderException {
 try {
 ejbContext.getUserTransaction().begin();
 CruiseHomeRemote home = (CruiseHomeRemote)
 getHome("CruiseHome", CruiseHomeRemote. class);
 cruise = home.findByPrimaryKey(cruiseID);
 } catch(RemoteException re) {
 throw new EJBException(re);
 }

 }
 public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 try {
 if (ejbContext.getUserTransaction().getStatus() !=
 javax.transaction.Status.STATUS_ACTIVE) {

 throw new EJBException("Transaction is not active");
 }
 } catch(javax.transaction.SystemException se) {
 throw new EJBException(se);
 }

 if (customer == null || cruise == null || cabin == null) {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeRemote resHome =
 (ReservationHomeRemote)getHome("ReservationHome",
 ReservationHomeRemote.class);
 ReservationRemote reservation =
 resHome.create(customer, cruise, cabin, price);

 ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)
 getHome("ProcessPaymentHome", ProcessPaymentHomeRemote.class);
 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates28

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);

 ejbContext.getUserTransaction().commit();

 return ticket;
 } catch(Exception e) {
 throw new EJBException(e);
 }
 }
 ...
}

Repeated calls to the EJBContext.getUserTransaction() method
return a reference to the same UserTransaction object. The container is
required to retain the association between the transaction and the stateful bean
instance across multiple client calls until the transaction terminates.

In the bookPassage() method, we can check the status of the transaction to
ensure that it’s still active. If the transaction is no longer active, we throw an
exception. The use of the getStatus() method is covered in more detail later
in this chapter.

When a bean-managed transaction method is invoked by a client that is already
involved in a transaction, the client’s transaction is suspended until the method
returns. This suspension occurs whether the BMT bean explicitly starts its own
transaction within the method or the transaction was started in a previous
method invocation. The client transaction is always suspended until the bean-
managed transaction method returns.

Transaction control across methods is strongly discouraged
because it can result in improperly managed transactions and
long-lived transactions that lock up resources.

EJB 2.0: Message-driven beans and bean-managed transactions

Message-driven beans also have the option of managing their own transactions.
In the case of MDBs, the scope of the transaction must begin and end within the
onMessage() method—it’s not possible for a bean-managed transaction to
span onMessage() calls.

The ReservationProcessor EJB can be transformed to be a BMT bean, simply by
changing its <transaction-type> value to “Bean”.

<ejb-jar>
 <enterprise-beans>
 ...
 <message-driven>

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 29

 ...
 <transaction-type>Bean</transaction-type>
 ...

In this case, the ReservationProcessorBean class would be modified to
use the javax.transaction.UserTransaction to mark the beginning
and end of the transaction in onMessage():

public class ReservationProcessorBean
implements javax.ejb.MessageDrivenBean, javax.jms.MessageListener {

 MessageDrivenContext ejbContext;
 Context jndiContext;

 public void onMessage(Message message) {
 try {

 ejbContext.getUserTransaction().begin();

 MapMessage reservationMsg = (MapMessage)message;

 Integer customerPk = (Integer)
 reservationMsg.getObject("CustomerID");
 Integer cruisePk = (Integer)
 reservationMsg.getObject("CruiseID");
 Integer cabinPk = (Integer)
 reservationMsg.getObject("CabinID");

 double price = reservationMsg.getDouble(“Price”);

 CreditCardDO card = (CreditCardDO)
 reservationMsg.getObject(“CreditCard”);

 CustomerLocal customer = getCustomer(customerPk);
 CruiseLocal cruise = getCruise(cruisePk);
 CabinLocal cabin = getCabin(cabinPk);

 ReservationHomeLocal resHome = (ReservationHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/ReservationHome");

 ReservationLocal reservation =
 resHome.create(customer, cruise, cabin, price);

 Object ref = jndiContext.lookup
 ("java:comp/env/ejb/ProcessPaymentHome");

 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote)
 PortableRemoteObject.narrow
 (ref, ProcessPaymentHomeRemote.class);

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates30

 ProcessPaymentLocal process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);

 deliverTicket(reservationMsg, ticket);

 ejbContext.getUserTransaction().commit();

 } catch(Exception e) {
 throw new EJBException(e);
 }
 }
 ...
}

It is important to understand that in BMT, the message consumed by the MDB is
not a part of the transaction. When an MDB uses container-managed
transactions, the message it is handling is a part of the transaction, so if the
transaction is rolled back, the consumption of the message is also rolled back,
forcing the JMS provider to redeliver the message. But with bean-managed
transactions, the message is not a part of the transaction, so if the BMT
transaction is rolled back, the JMS provider will not be aware of transaction the
failure. However, all is not lost because the JMS provider can still rely on
message acknowledgment to determine if the message was successfully
delivered.

The EJB container will acknowledge the message if the onMessage() method
returns successfully. If, however, a RuntimeException is thrown by the
onMessage() method, the container will not acknowledge the message and the
JMS provider will suspect a problem and will probably attempt to redeliver the
message. If redlivery of a message is important when a transaction fails in BMT,
you’re best course of action is to ensure that the onMessage() method throws
an EJBException so that the container will not acknowledge the message
received from the JMS provider.

Vendors will use proprietary (declarative) mechanisms to
specify the number of times to redeliver messages to
BMT/NotSupported MDBs which 'fail' to acknowledge. The
JMS provider may provide a "dead message" area into which
such messages would be placed if they cannot be successfully
processed according to the retry count. The “dead message”
area can monitored by administrators and delivered messages
can be detected and handled manually."

While the message is not a part of the transaction, everything else between the
UserTransaction.begin() and UserTransaction.commit() is a

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 31

part of the same transaction. This includes creating a new Reservation EJB and
processing the credit card using the ProcessPayment EJB. If a transaction failure
occurs, these operations will be rolled back. The transaction also includes the
use of the JMS API in the deliverTicket() method to send the ticket
message. If a transaction failure occurs, the ticket message will not be sent.

Heuristic Decisions

Transactions are normally controlled by a transaction manager (often the EJB
server) that manages the ACID characteristics across several enterprise beans,
databases, and servers. This transaction manager uses a two-phase commit (2-
PC) to manage transactions. 2-PC is a protocol for managing transactions that
commits updates in two stages. 2-PC is complex and outside the scope of this
book, but basically it requires that servers and databases cooperate through an
intermediary, the transaction manager, to ensure that all the data is made durable
together. Some EJB servers support 2-PC while others don’t, and the value of
this transaction mechanism is a source of some debate. The important point to
remember is that a transaction manager controls the transaction; based on the
results of a poll against the resources (databases, JMS providers, and other
resources), it decides whether all the updates should be committed or rolled back.
A heuristic decision is when one of the resources makes a unilateral decision to
commit or roll back without permission from the transaction manager. Once a
heuristic decision has been made, the atomicity of the transaction is lost and
possible data integrity errors can occur.

UserTransaction, discussed in the next section, throws a couple of
different exceptions related to heuristic decisions; these are included in the
following discussion.

UserTransaction

UserTransaction is a Java interface that is defined in the following code.
EJB servers are not required to support the rest of JTA, nor are they required to
use JTS for their transaction service. The UserTransaction is defined as
follows:

public interface javax.transaction.UserTransaction
{
 public abstract void begin()
 throws IllegalStateException, SystemException;
 public abstract void commit()
 throws IllegalStateException, SystemException,
 TransactionRolledbackException,
 HeuristicRollbackException, HeuristicMixedException;
 public abstract int getStatus();
 public abstract void rollback()
 throws IllegalStateException, SecurityException, SystemException;
 public abstract void setRollbackOnly()

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates32

 throws IllegalStateException, SystemException;
 public abstract void setTransactionTimeout(int seconds)
 throws SystemException;
}

Here’s what the methods defined in this interface do:

begin()
Invoking the begin() method creates a new transaction. The thread that
executes the begin() method is immediately associated with the new
transaction. The transaction is propagated to any EJB that supports existing
transactions. The begin() method can throw one of two checked
exceptions. IllegalStateException is thrown when begin() is called by a
thread that is already associated with a transaction. You must complete any
transactions associated with that thread before beginning a new transaction.
SystemException is thrown if the transaction manager (the EJB server)
encounters an unexpected error condition.

commit()
The commit() method completes the transaction that is associated with
the current thread. When commit() is executed, the current thread is no
longer associated with a transaction. This method can throw several
checked exceptions. IllegalStateException is thrown if the current
thread is not associated with a transaction. SystemException is thrown
if the transaction manager (the EJB server) encounters an unexpected error
condition. TransactionRolledbackException is thrown when the
entire transaction is rolled back instead of committed; this can happen if one
of the resources was unable to perform an update or if the
UserTransaction.rollBackOnly() method was called.
HeuristicRollbackException indicates that heuristic decisions
were made by one or more resources to roll back the transaction.
HeuristicMixedException indicates that heuristic decisions were
made by resources to both roll back and commit the transaction; some
resources decided to roll back while others decided to commit.

rollback()
The rollback() method is invoked to roll back the transaction and undo
updates. The rollback() method can throw one of three different
checked exceptions. SecurityException is thrown if the thread using
the UserTransaction object is not allowed to roll back the transaction.
IllegalStateException is thrown if the current thread is not
associated with a transaction. SystemException is thrown if the
transaction manager (the EJB server) encounters an unexpected error
condition.

setRollBackOnly()
This method is invoked to mark the transaction for rollback. This means that,
whether or not the updates executed within the transaction succeed, the
transaction must be rolled back when completed. This method can be

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 33

invoked by any TX_BEAN_MANAGED EJB participating in the transaction
or by the client application. The setRollBackOnly() method can throw
one of two different checked exceptions. IllegalStateException is
thrown if the current thread is not associated with a transaction.
SystemException is thrown if the transaction manager (the EJB server)
encounters an unexpected error condition.

setTransactionTimeout(int seconds)
This method sets the life span of a transaction: how long it will live before
timing out. The transaction must complete before the transaction timeout is
reached. If this method is not called, the transaction manager (EJB server)
automatically sets the timeout. If this method is invoked with a value of
0 seconds, the default timeout of the transaction manager will be used. This
method must be invoked after the begin() method. SystemException
is thrown if the transaction manager (EJB server) encounters an unexpected
error condition.

getStatus()
The getStatus() method returns an integer that can be compared to
constants defined in the javax.transaction.Status interface. This
method can be used by a sophisticated programmer to determine the status
of a transaction associated with a UserTransaction object.
SystemException is thrown if the transaction manager (EJB server)
encounters an unexpected error condition.

Status

Status is a simple interface that contains no methods, only constants. Its sole
purpose is to provide a set of constants that describe the current status of a
transactional object— in this case, the UserTransaction:

interface javax.transaction.Status
{
 public final static int STATUS_ACTIVE;
 public final static int STATUS_COMMITTED;
 public final static int STATUS_COMMITTING;
 public final static int STATUS_MARKED_ROLLBACK;
 public final static int STATUS_NO_TRANSACTION;
 public final static int STATUS_PREPARED;
 public final static int STATUS_PREPARING;
 public final static int STATUS_ROLLEDBACK;
 public final static int STATUS_ROLLING_BACK;
 public final static int STATUS_UNKNOWN;
}

The value returned by getStatus() tells the client using the
UserTransaction the status of a transaction. Here’s what the constants
mean:

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates34

STATUS_ACTIVE
An active transaction is associated with the UserTransaction object.
This status is returned after a transaction has been started and prior to a
transaction manager beginning a 2-PC commit. (Transactions that have been
suspended are still considered active.)

STATUS_COMMITTED
A transaction is associated with the UserTransaction object; the
transaction has been committed. It is likely that heuristic decisions have
been made; otherwise, the transaction would have been destroyed and the
STATUS_NO_TRANSACTION constant would have been returned instead.

STATUS_COMMITTING
A transaction is associated with the UserTransaction object; the
transaction is in the process of committing. The UserTransaction
object returns this status if the transaction manager has decided to commit
but has not yet completed the process.

STATUS_MARKED_ROLLBACK
A transaction is associated with the UserTransaction object; the
transaction has been marked for rollback, perhaps as a result of a
UserTransaction.setRollbackOnly() operation invoked
somewhere else in the application.

STATUS_NO_TRANSACTION
No transaction is currently associated with the UserTransaction
object. This occurs after a transaction has completed or if no transaction has
been created. This value is returned rather than throwing an
IllegalStateException.

STATUS_PREPARED
A transaction is associated with the UserTransaction object. The
transaction has been prepared, which means that the first phase of the two-
phase commit process has completed.

STATUS_PREPARING
A transaction is associated with the UserTransaction object; the
transaction is in the process of preparing, which means that the transaction
manager is in the middle of executing the first phase of the two-phase
commit.

STATUS_ROLLEDBACK
A transaction is associated with the UserTransaction object; the
outcome of the transaction has been identified as a rollback. It is likely that
heuristic decisions have been made; otherwise, the transaction would have
been destroyed and the STATUS_NO_TRANSACTION constant would
have been returned.

STATUS_ROLLING_BACK
A transaction is associated with the UserTransaction object; the
transaction is in the process of rolling back.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 35

STATUS_UNKNOWN
A transaction is associated with the UserTransaction object; its
current status cannot be determined. This is a transient condition and
subsequent invocations will ultimately return a different status.

EJBContext Rollback Methods

Only BMT beans have access to the UserTransaction from the
EJBContext and JNDI ENC. Enterprise beans that manager their own
transactions, container-managed transaction (CMT) beans, can not use the
UserTransaction. CMT beans use the setRollbackOnly() and
getRollbackOnly()methods of the EJBContext to interact with the
current transaction.

The setRollbackOnly() method gives an enterprise bean the power to
veto a transaction. This power can be used if the enterprise bean detects a
condition that would cause inconsistent data to be committed when the
transaction completes. Once an enterprise bean invokes the setRollback-
Only() method, the current transaction is marked for rollback and cannot be
committed by any other participant in the transaction—including the container.

The getRollbackOnly() method returns true if the current transaction
has been marked for rollback. This can be used to avoid executing work that
wouldn’t be committed anyway. If, for example, an exception is thrown and
captured within an enterprise bean method, getRollbackOnly()can be
used to determine whether the exception caused the current transaction to be
rolled back. If it did, there is no sense in continuing the processing. If it didn’t,
the EJB has an opportunity to correct the problem and retry the task that failed.
Only expert EJB developers should attempt to retry tasks within a transaction.
Alternatively, if the exception didn’t cause a rollback (getRollbackOnly()
returns false), a rollback can be forced using the setRollbackOnly()
method.

BMT beans must not use the setRollbackOnly() and
getRollbackOnly() methods of the EJBContext. BMT beans should
use the getStatus() and rollback() methods on the
UserTransaction object to check for rollback and force a rollback
respectively.

Exceptions and Transactions

Application Exceptions Versus System Exceptions

An application exception is any exception that does not extend
java.lang.RuntimeException or the

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates36

java.rmi.RemoteException. System exceptions are
java.lang.RuntimeException and its subtypes, including
EJBException.

An application exception must never extend either the
RuntimeException, the RemoteException, or one of
their subtypes.

Transactions are automatically rolled back if a system exception is thrown from
an enterprise bean method. Transactions are not automatically rolled back if an
application exception is thrown. If you remember these two rules, you will be well
prepared to deal with exceptions and transactions in EJB.

The bookPassage() method provides a good illustration of an application
exception and how it’s used. The following code shows the bookPassage()
method:

 EJB 2.0: bookPassage() method

public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeLocal resHome =
 (ReservationHomeLocal)
 jndiContext.lookup
 ("java:comp/env/ejb/ReservationHome");

 ReservationLocal reservation =
 resHome.create(customer, cruise, cabin, price);

 Object ref = jndiContext.lookup
 ("java:comp/env/ejb/ProcessPaymentHome");

 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote)
 PortableRemoteObject.narrow
 (ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);
 return ticket;
 } catch(Exception e) {

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 37

 throw new EJBException(e);
 }
}

EJB 1.1: bookPassage() method

public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null) {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeRemote resHome =
 (ReservationHomeRemote)getHome("ReservationHome",
 ReservationHomeRemote.class);
 ReservationRemote reservation =
 resHome.create(customer, cruise, cabin, price);
 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote)
 getHome("ProcessPaymentHome",
 ProcessPaymentHomeRemote.class);
 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);
 return ticket;
 } catch(Exception e) {
 throw new EJBException(e);
 }
}

System exceptions

System exceptions are the RuntimeException and its subclasses. The
EJBException is a subclass of the RuntimeException, so it’s consid-
ered a system exception.

System exceptions always cause a transaction to roll back when thrown from a
enterprise bean method. Any RuntimeException (EJBException,
NullPointerException, IndexOutOfBoundsException, etc.)
thrown within the bookPassage() method is handled by the container
automatically, and also results in a transaction rollback. In Java, Run-
timeException types do not need to be declared in the throws clause of
the method signature or handled using try/catch blocks; they are
automatically thrown from the method.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates38

RuntimeException types thrown from within enterprise beans always cause
the current transaction to roll back. If the method in which the exception occurs
started the transaction, the transaction is rolled back. If the transaction started
from a client that invoked the method, the client’s transaction is marked for
rollback and cannot be committed.

System exceptions are handled automatically by the container, which will always:

• Roll back the transaction

• Log the exception to alert the system administrator

• Discard the EJB instance

RuntimeExceptions thrown from the callback methods (ejbLoad(),
ejbActivate(), etc.) are treated the same as exceptions thrown from
business methods.

While EJB requires that system exceptions be logged, it does not specify how
exceptions should be logged or the format of the log file. The exact mechanism
for recording the exception and reporting it to the system administrator is left to
the vendor.

When a system exception occurs, the EJB instance is discarded, which means
that it’s dereferenced and garbage collected. The container assumes that the EJB
instance may have corrupt variables or otherwise be unstable, and is therefore
unsafe to use.

The impact of discarding an EJB instance depends on the enterprise beans’s
type. In the case of stateless session beans and entity beans, the client does not
notice that the instance was dis carded. These types are not dedicated to a
particular client; they are swapped in and out of an instance pool, so any
instance can service a new request. With stateful session beans, however, the
impact on the client is severe. Stateful session beans are dedicated to a single
client and maintain conversational state. Discarding a stateful bean instance
destroys the instance’s conversation state and invalidates the client’s reference
to the EJB. When stateful session instances are discarded, subsequent
invocations of the EJB’s methods by the client result in a
NoSuchObjectException, a subclass of the RemoteException.5

With message-driven beans a system exception thrown by the onMessage()
method or one of the callback methods (ejbCreate() or ejbRemove()) will
cause the bean instance to be discarded. If the MDB was BMT bean, then the
message it was handling may or may not be redelivered depending on when the
EJB container acknowledges delivery. In the case of container-managed

5 Although the instance is always discarded with a RuntimeException, the impact
on the remote reference may vary depending on the vendor.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 39

transactions, the container will rollback the transaction, so the message will not
be acknowledged and may be redelivered.

In session and entity beans, a system exception occurs and the instance is
discarded, a RemoteException is always thrown to remote clients; clients
using the beans remote component interfaces. If the client started the
transaction, which was then propagated to the EJB, a system exception (thrown
by the enterprise bean method) will be caught by the container and rethrown as a
javax.transaction.TransactionRolledbackException. The
TransactionRolledbackException is a subtype of the
RemoteException; it’s a more explicit indication to the client that a rollback
occurred. In all other cases, whether the EJB is container-managed or bean-
managed, a RuntimeException thrown from within the enterprise bean
method will be caught by the container and rethrown as a EJBException. A
system exception always results in a rollback of the transaction.

In EJB 2.0 session and entity beans, when a system exception occurs and the
instance is discarded, an EJBException is always thrown to any local
enterprise bean clients (clients using the enterprise bean’s local component
interfaces). If the client started the transaction, which was then propagated to the
EJB, a system exception (thrown by the enterprise bean method) will be caught
by the container and rethrown as a
javax.ejb.TransactionRolledbackLocalException. The
TransactionRolledbackLocalException is a subtype of the
EJBException; it’s a more explicit indication to the client that a rollback
occurred. In all other cases, whether the EJB is container-managed or bean-
managed, a RuntimeException thrown from within the enterprise bean
method will be caught by the container and rethrown as an EJBException. A
system exception always results in a rollback of the transaction.

An EJBException should be thrown, in most cases, when a subsystem
throws an exception such as JDBC throwing a SQLException or JMS
throwing a JMSException. In some cases the bean developer may attempt to
handle the exception and retry an operation rather then throw an
EJBException. This should only be done when the exceptions thrown by the
subsystem and their repurcussions on the transaction are well understood. As a
rule of thumb, throw subsystem exceptions as EJBExceptions and allow the
EJB container to rollback the transaction and discard the bean instance.

The callback methods defined in the
javax.ejb.EntityBean and
javax.ejb.SessionBean interfaces declare the
java.rmi.RemoteException in their throws clause.
This is left over from EJB 1.0, which has been deprecated since
EJB 1.1. You should never throw RemoteExceptions from
callback methods, or any other bean class methods.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates40

Application exceptions

An application exception is normally thrown in response to a business logic
error, as opposed to a system error. They are always delivered directly to the
client, without being repackaged as RemoteException or EJBException
(EJB 2.0) types. They do not typically cause transactions to roll back; the client
usually has an opportunity to recover after an application exception is thrown.
For example, the bookPassage() method throws an application exception
called IncompleteConversationalState; this is an application
exception because it does not extend RuntimeException or
RemoteException. The IncompleteConversationalState
exception is thrown if one of the arguments passed into the bookPassage()
method is null. (Application errors are frequently used to report validation
errors like this.) In this case, the exception is thrown before tasks are started, and
is clearly not the result of a subsystem (JDBC, JMS, Java RMI, JNDI, etc.) failure.

Because it is an application exception, throwing
IncompleteConversationalState does not result in a transaction
rollback. The exception is thrown before any work is done, avoiding
unnecessary processing by the bookPassage() method and providing the
client (the enterprise bean or application that invoked the bookPassage()
method) with an opportunity to recover and possibly retry the method call with
valid arguments.

Business methods defined in the remote and local interfaces can throw any kind
of application exception. These application exceptions must be declared in the
method signatures of the remote and local interfaces and in the corresponding
method in the Enterprise EJB class.

The EJB create, find, and remove methods can also throw several exceptions
defined in the javax.ejb package: CreateException,
DuplicateKeyException, FinderException,
ObjectNotFoundException, and RemoveException. These exceptions
are also considered application exceptions: they are delivered to the client as is,
without being repackaged as RemoteExceptions. Furthermore, these
exceptions don’t necessarily cause a transaction to roll back, giving the client the
opportunity to retry the operation. These exceptions may be thrown by the EJBs
themselves; in the case of container-managed persistence (CMP), the container
can also throw any of these exceptions while handling the EJB’s create, find, or
remove methods (ejbCreate(), ejbFind...(), and ejbRemove()).
The container might, for example, throw a CreateException if the container
encounters a bad argument while attempting to insert a record for a container-
managed EJB. You can always choose to throw a standard application exception
from the appropriate method regardless of how persistence is managed.

Here is a detailed explanation of the five standard application exceptions and the
situations in which they are thrown:

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 41

CreateException
The CreateException is thrown by the create() method in the
remote interface. This exception can be thrown by the container if the
container is managing persistence, or it can be thrown explicitly by the EJB
developer in the ejbCreate() or ejbPostCreate() methods. This
exception indicates that an application error has occurred (invalid
arguments, etc.) while the EJB was being created. If the container throws this
exception, it may or may not roll back the transaction. Explicit transaction
methods must be used to determine the outcome. Bean developers should
roll back the transaction before throwing this exception only if data integrity
is a concern.

DuplicateKeyException
The DuplicateKeyException is an subtype of the
CreateException; it is thrown by the create() method in the remote
interface. This exception can be thrown by the container, if the container is
managing persistence, or it can be thrown explicitly by the EJB developer in
the ejbCreate() method. This exception indicates that an EJB with the
same primary key already exists in the database. The transaction is typically
not rolled back by the EJB provider or container before throwing this
exception.

FinderException
The FinderException is thrown by the find methods in the home
interface. This exception can be thrown by the container, if the container is
managing persistence, or it can be thrown explicitly by the EJB developer in
the ejbFind...() methods. This exception indicates that an application
error occurred (invalid arguments, etc.) while the container attempted to find
the EJBs. Do not use this method to indicate that entities were not found.
Multi-entity find methods return an empty collection if no entities were
found; single-entity find methods throw an ObjectNotFound-
Exception to indicate that no object was found. The transaction is
typically not rolled back by the EJB provider or container before throwing
this exception.

ObjectNotFoundException
The ObjectNotFoundException is thrown from a single-entity find
method to indicate that the container couldn’t find the requested entity. This
exception can be thrown by the container if the container is managing
persistence, or it can be thrown explicitly by the EJB developer in the
ejbFind...() methods. This exception should not be thrown to indicate
a business logic error (invalid arguments, etc.). Use the
FinderException to indicate business logic errors in single-entity find
methods. The ObjectNotFoundException is only thrown by single-
entity find methods to indicate that the entity requested was not found. Find
methods that return multiple entities should return an empty collection if
nothing is found. The transaction is typically not rolled back by the EJB
provider or container before throwing this exception.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates42

RemoveException
The RemoveException is thrown from the remove() methods in the
remote and home interfaces. This exception can be thrown by the container,
if the container is managing persistence, or it can be thrown explicitly by the
EJB developer in the ejbRemove() method. This exception indicates that
an application error has occurred while the EJB was being removed. The
transaction may or may not have been rolled back by the container before
throwing this exception. Explicit transaction methods must be used to
determine the outcome. Bean developers should roll back the transaction
before throwing the exception only if data integrity is a concern.

Table 14-1 summarizes the interactions between different types of exceptions and
transactions in session and entity beams.

Table 14-1: Exception Summary for Session and Entity beans

Transaction Scope Transaction Type
Attributes

Exception
Thrown

Container’s Action Client’s View

Client Initiated Transaction

Transaction is started by the client
(application or EJB) and is propa-
gated to the enterprise bean method.

transaction-type =

Container

transaction-attribute =

Required |
Mandatory |
Supports |

Application
Exception

If the EJB invoked
setRollbackOnly(), then mark
the client’s transaction for rollback.

Rethrow the Application Exception.

Receives the Application
Exception. The client’s
transaction may or may not
have been marked for roll

System
Exception

Mark the client’s transaction for
rollback.

Log the error.

Discard the instance.

Rethrow the JTA Transaction
RollbackException to remote
clients or the
javax.ejb.TransactionR
ollbackLocalException
to EJB 2.0 local clients.

Remote clients receives the
JTA
RollbackException;
local clients receive the
javax.ejb.Transact
ionRollbackLocalEx
ception

The client’s transaction has
been rolled back.

Container Initiated Transaction

The transaction started when the
EJB’s method was invoked and will
end when method completes.

transaction-type =

Container

transaction-attribute =

Required |
RequiresNew

Application
Exception

If the EJB method called
setRollbackOnly(), then roll
back the transaction and rethrow the
Application Exception.

If the EJB didn’t explicitly roll back
the transaction, then attempt to
commit the transaction and rethrow
the Application Exception.

Receives the Application
Exception. The EJB’s
transaction may or may not
have been rolled back. The
client’s transaction is not
affected.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 43

System
Exception

Roll back the transaction.

Log the error.

Discard the instance.

Rethrow RemoteException to
remote clients or the
EJBException to EJB 2.0 local
clients.

Remote clients receive the
RemoteEx ception
EJB 2.0 clients receive the
EJBException

The EJB’s transaction was
rolled back.

The client’s transaction is not
affected.

Bean is not part of a transaction

The EJB was invoked but does not
propagate the client’s transaction and
does not start its own transac tion.

transaction-type =

Container

transaction-attribute =

Never |
NotSupported |
Supports |

Application
Exception

Rethrow the Application Exception. Receives the Application
Exception.

The client’s transaction is not
affected.

System
Exception

Log the error.

Discard the instance.

Rethrow RemoteException to
remote clients or the
EJBException to EJB 2.0 local
clients.

Remote clients receives the
RemoteEx ception
EJB 2.0 clients receive the
EJBException

The client’s transaction is not
affected.

Bean Managed Transaction.

The stateful or stateless session EJB
uses the EJBContext to explicitly
manage its own transac tion

transaction-type =

Bean

transaction-attribute =

Bean-managed
transaction EJBs do not
use transaction
attributes.

Application
Exception

Rethrow the Application Exception. Receives the Application
Exception.

The client’s transaction is not
affected.

System
Exception

Roll back the transaction.

Log the error.

Discard the instance.

Rethrow RemoteException to
remote clients or the
EJBException to EJB 2.0 local
clients.

Remote clients receive the
RemoteEx ception
EJB 2.0 clients receive the
EJBException

The client’s transaction is not
affected.

Table 14-2 summarizes the interactions between different types of exceptions and
transactions in message-driven beans.

Table 14-2: Exception Summary for Message-Driven beans

Transaction Scope Transaction Type
Attributes

Exception
Thrown

Container’s Action

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates44

Container Initiated Transaction

The transaction started before the
onMessage() method was
invoked and will end when method
completes.

transaction-type =

Container

transaction-attribute =

Required

System
Exception

Roll back the transaction.

Log the error.

Discard the instance.

Container Initiated Transaction

No-transaction was started.

transaction-type =

Container

transaction-attribute =

NotSupported

System
Exception

Log the error.

Discard the instance.

Bean Managed Transaction.

The message-driven bean uses the
EJBContext to explicitly manage its
own transaction

transaction-type =

Bean

transaction-attribute =

Bean-managed
transaction EJBs do not
use transaction
attributes.

System
Exception

Roll back the transaction.

Log the error.

Discard the instance.

Transactional Stateful Session Beans
As you saw in Chapter 12, session beans can interact directly with the database
as easily as they can manage the workflow of other enterprise beans. The
ProcessPayment EJB, for example, makes inserts into the PAYMENT table when
the byCredit() method is invoked. The TravelAgent EJB queries the
database directly when the listAvailableCabins() method is invoked.
With stateless session beans like ProcessPayment, there is no conversational
state, so each method invocation must make changes to the database immedi-
ately. With stateful session beans, however, we may not want to make changes
to the database until the transaction is complete. Remember, a stateful session
bean can be just one participant out of many in a transaction, so it may be
advisable to postpone database updates until the entire transaction is committed
or to avoid updates if it’s rolled back.

There are several different scenarios in which a stateful session bean would want
to cache changes before applying them to the database. For example, think of a
shopping cart implemented by a stateful session bean that accumulates several
items for purchase. If the stateful bean implements
SessionSynchronization, it can cache the items and only write them to
the database when the transaction is complete.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 45

The javax.ejb.SessionSynchronization interface allows a session
bean to receive additional notification of the session’s involvement in
transactions. The addition of these transaction callback methods by the
SessionSynchronization interface expands the EJB’s awareness of its
life cycle to include a new state, the Transactional Method-Ready state. This
third state, although not discussed in Chapter 12, is always a part of the life cycle
of a transactional stateful session bean. Implementing the
SessionSynchronization interface simply makes it visible to the EJB.
Figure 14-11 shows the stateful session bean with the additional state in EJB.

[FIGURE (use modifed 8-12)]

Figure 14-11: Life cycle of a stateful session bean

The SessionSynchronization interface has the following definition:

package javax.ejb;

public interface javax.ejb.SessionSynchronization {
 public abstract void afterBegin() throws RemoteException;
 public abstract void beforeCompletion() throws RemoteException;
 public abstract void afterCompletion(boolean committed)
 throws RemoteException;
}

When a method of the SessionSynchronization bean is invoked outside of a
transaction scope, the method executes in the Method-Ready state as discussed
in Chapter 12. However, when a method is invoked within a transaction scope (or
creates a new transaction), the EJB moves into the Transactional Method-Ready
state.

The Transactional Method-Ready State

Transitioning into the Transactional Method-Ready state

When a transactional method is invoked on a SessionSynchronization
bean, the stateful bean becomes part of the transaction. This causes the
afterBegin() callback method defined in the
SessionSynchronization interface to be invoked. This method should
take care of reading any data from the database and storing the data in the
bean’s instance fields. The afterBegin() method is called before the EJB
object delegates the business method invocation to the EJB instance.

Life in the Transactional Method-Ready state

When the afterBegin() callback method is done, the business method
originally invoked by the client is executed on the EJB instance. Any subsequent
business methods invoked within the same transaction will be delegated directly
to the EJB instance.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates46

Once a stateful session bean is a part of a transaction—whether it implements
SessionSynchronization or not—it cannot be accessed by any other
transactional context. This is true regardless of whether the client tries to access
the EJB with a different context or the EJB’s own method creates a new context.
If, for example, a method with a transaction attribute of RequiresNew is invoked,
the new transactional context causes an error to be thrown. Since the attributes
NotSupported and Never simply a different transactional context (no context),
invoking a method with these attributes also causes an error. A stateful session
bean cannot be removed while it is involved in a transaction. This means that
invoking ejbRemove() while the SessionSynchronization bean is in the
middle of a transaction will cause an error to be thrown.

At some point, the transaction in which the SessionSynchronization bean has
been enrolled will come to an end. If the transaction is committed, the
SessionSynchronization bean will be notified through its
beforeCompletion() method. At this time, the EJB should write its cached
data to the database. If the transaction is rolled back, the
beforeCompletion() method will not be invoked, avoiding the pointless
effort of writing changes that won’t be committed to the database.

The afterCompletion() method is always invoked, whether the
transaction ended successfully with a commit or unsuccessfully with a rollback.
If the transaction was a success—which means that beforeCompletion()
was invoked—the committed parameter of the afterCompletion() method
will be true. If the transaction was unsuccessful, committed will be false.

It may be desirable to reset the stateful session bean’s instance variables to
some initial state if the afterCompletion() method indicates that the
transaction was rolled back.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 1

15

Design Strategies

The previous fourteen chapters have presented the core EJB technology. What’s
left is a grab bag of miscellaneous issues: how do you solve particular design
problems, how do you work with particular kinds of databases, and topics of that
nature.

Hash Codes in Compound Primary Keys
Chapter 11 discusses the necessity of overriding the Object.hashCode()
and Object.equals() methods in the primary key class of entity beans.
With complex primary keys that have several fields, overriding the
Object.equals() method is fairly trivial. However, the
Object.hashCode() method is more complicated because an integer value
that can serve as a suitable hash code must be created from several fields.

One solution is to concatenate all the values into a String and use the
String object’s hashCode() method to create a hash code value for the
whole primary key. The String class has a decent hash code algorithm that
generates a fairly well distributed and repeatable hash code value from any set of
characters. The following code shows how to create such a hash code for a
hypothetical primary key:

public class HypotheticalPrimaryKey implements java.io.Serializable {
 public int primary_id;
 public short secondary_id;
 public java.util.Date date;
 public String desc;

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates2

 public int hashCode() {

 StringBuffer strBuff = new StringBuffer();
 strBuff.append(primary_id);
 strBuff.append(secondary_id);
 strBuff.append(date);
 strBuff.append(desc);
 String str = strBuff.toString();
 int hashCode = str.hashCode();
 return hashCode;
 }
 // the constructor, equals, and toString methods follow
}

A StringBuffer cuts down on the number of objects created, since String
concatenation is expensive. The code could be improved by saving the hash
code in a private variable and returning that value in subsequent method calls;
this way, the hash code is only calculated once in the life of the instance.

Well-Distributed Versus Unique Hash Codes

A Hashtable is designed to provide fast lookups by binding an object to a
key. Given any object’s key, looking the object up in a hash table is a very quick
operation. For the lookup, the key is converted to an integer value using the
key’s hashCode() method.

Hash codes do not need to be unique, only well-distributed. By “well-
distributed,” we mean that given any two keys, the chances are very good that
the hash codes for the keys will be different. A well-distributed hash code
algorithm reduces, but does not eliminate, the possibility that different keys
evaluate to the same hash code. When keys evaluate to the same hash code,
they are stored together and uniquely identified by their equals() method. If
you look up an object using a key that evaluates to a hash code that is shared by
several other keys, the Hashtable locates the group of objects that have been
stored with the same hash code; then it uses the key’s equals() method to
determine which key (and hence, which object) you want. (That’s why you have
to override the equals() method in primary keys, as well as the hashCode()
method.) Therefore, the emphasis in designing a good hash code algorithm is on
producing codes that are well-distributed rather than unique. This allows you to
design an index for associating keys with objects that is easy to compute, and
therefore fast.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 3

Passing Objects by Value
Passing objects by value is tricky with Enterprise JavaBeans. Two simple rules
will keep you out of most problem areas: objects that are passed by value should
be fine-grained Dependent Objects or wrappers used in bulk accessors, and
dependent objects should be immutable.

EJB 1.1: Dependent Objects

The concept of dependent objects was addressed in Chapter 6, which describes
the use of dependent objects in EJB 2.0. But for EJB 1.1, dependent objects are a
new concept. EJB 2.0 and EJB 1.1 use dependent objects differently, because
EJB 2.0 can accommodate much finer-grained entity beans than EJB 1.1.

Dependent objects are objects that only have meaning within the context of
another business object. They typically represent fairly fine-grained business
concepts, like an address, phone number, or order item. For example, an address
has little meaning when it is not associated with a business object like Person
or Organization. It depends on the context of the business object to give it
meaning. Such an object can be thought of as a wrapper for related data. The
fields that make up an address (street, city, state, and Zip) should be packaged
together in a single object called AddressDO. In turn, the AddressDO object
is usually an attribute or property of another business object; in EJB, we would
typically see an AddressDO or some other dependent object as a property of
an entity bean.

Here’s a typical implementation of an AddressDO:

public class AddressDO implements java.io.Serializable {

 private String street;
 private String city;
 private String state;
 private String zip;

 public Address(String str, String cty, String st, String zp) {
 street = str;
 city = cty;
 state = st;
 zip = zp;
 }
 public String getStreet() {return street;}
 public String getCity() {return city;}
 public String getState() {return state;}
 public String getZip() {return zip;}
}

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates4

We want to make sure that clients don’t change an AddressDO’s fields. The
reason is quite simple: the AddressDO object is a copy, not a remote reference.
Changes to AddressDO objects are not reflected in the entity from which it
originated. If the client were to change the AddressDO object, those changes
would not be reflected in the database. Making the AddressDO immutable
helps to ensure that clients do not mistake this fine-grained object for a remote
reference, thinking that a change to an address property is reflected on the
server.

To change an address, the client is required to remove the AddressDO object
and add a new one with the changes. This enforces the idea that the dependent
object is not a remote object and that changes to its state are not reflected on the
server. Here is the remote interface to a hypothetical Employee bean that
aggregates address information:

public interface Employee extends javax.ejb.EJBObject {
 public AddressDO [] getAddresses() throws RemoteException;
 public void removeAddress(AddressDO adrs) throws RemoteException;
 public void addAddress(AddressDO adrs) throws RemoteException;
 // ... Other business methods follow.
}

In this interface, the Employee can have many addresses, which are obtained
as a collection of pass-by-value AddressDO objects. To remove an address,
the target AddressDO is passed back to the bean in the removeAddress()
method. The bean class then removes the matching AddressDO object from its
persistent fields. To add an address, an AddressDO object is passed to the
bean by value.

Dependent Objects may be persistent fields, or they may be properties that are
created as needed. The following code demonstrates both strategies using the
AddressDO object. In the first listing, the AddressDO object is a persistent
field, while in the second the AddressDO object is a property that doesn’t
correspond to any single field; we create the AddressDO object as needed but
don’t save it as part of the bean. Instead, the AddressDO object corresponds
to four persistent fields: street, city, state, and zip.

// Address as a persistent field
public class Person extends javax.ejb.EntityBean {
 public AddressDO address;
 public AddressDO getAddress(){
 return address;
 }
 public void setAddress(AddressDO addr){
 address = addr;
 }

}

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 5

// Address as a property
public class Person extends javax.ejb.EntityBean {

 public String street;
 public String city;
 public String state;
 public String zip;

 public AddressDO getAddress(){
 return new AddressDO(street, city, state, zip);
 }
 public void setAddress(AddressDO addr){
 street = addr.street;
 city = addr.city;
 state = addr.state;
 zip = addr.zip;
 }

}

When a dependent object is used as a property, it can be synchronized with the
persistent fields in the accessor methods themselves or in the ejbLoad() and
ejbStore() methods. Both strategies are acceptable.

This discussion of dependent objects has been full of generalizations, and thus
may not be applicable to all situations. That said, it is recommended that only
very fine-grained, dependent, immutable objects should be passed by value. All
other business concepts should be represented as beans—entity or session. A
very fine-grained object is one that has very little behavior, consisting mostly of
get and set methods. A dependent object is one that has little meaning outside
the context of its aggregator. An immutable object is one that provides only get
methods and thus cannot be modified once created.

Validation Rules in Dependent Objects

Dependent Objects make excellent homes for format validation rules. Format
validation ensures that a simple data construct adheres to a predetermined
structure or form. As an example, a Zip Code always has a certain format. It must
be composed of digits; it must be five or nine digits in length; and if it has nine
digits, it must use a hyphen as a separator between the fifth and sixth digits.
Checking to see that a Zip Code follows these rules is format validation.

One problem that all developers face is deciding where to put validation code.
Should data be validated at the user interface (UI), or should it be done by the
bean that uses the data? Validating the data at the UI has the advantage of
conserving network resources and improving performance. Validating data in the
bean, on the middle tier, ensures that the logic is reusable across user interfaces.
Dependent objects provide a logical compromise that allows data to be validated
on the client, but remain independent of the UI. By placing the validation logic in

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates6

the constructor of a dependent object, the object automatically validates data
when it is created. When data is entered at the UI (GUI, Servlet, JSP, or whatever)
it can be validated by the UI using its corresponding dependent object. If the
data is valid, the dependent object is created; if the data is invalid, the
constructor throws an exception.

The following code shows a dependent object that represents a Zip Code. It
adheres to the rules for a dependent object as I have defined them, and also
includes format validation rules in the constructor.

public class ZipCodeDO implements java.io.Serializable {

 private String code;
 private String boxNumber;

 public ZipCode(String zipcode) throws ValidationException
{
 if (zipcode == null)
 throw new ValidationException("Zip code cannot be null");
 else if (zipcode.length()==5 && ! isDigits(zipcode))
 throw new ValidationException("Zip code must be all digits");
 else if (zipcode.length()==10)
 if (zipcode.charAt(5) == '-') {
 code = zipcode.substring(0,5);
if (isDigits(code)){
 boxNumber = zipcode.substring(6);
 if (isDigits(boxNumber))
 return;
 }
 }
 throw new ValidationException("Zip code must be of form #####- ####");
 }
 private boolean isDigits(String str) {
 for (int i = 0; i < str.length(); i++){
 char chr = str.charAt(i);
 if (! Character.isDigit(chr)) {
 return false;
 }
 }
 return true;
 }
 public String getCode() { return code; }

 public String getBoxNumber() { return boxNumber; }

 public String toString() {
 return code+'-'+boxNumber;
 }
}

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 7

This simple example illustrates that format validation can be performed by
dependent objects when the object is constructed at the user interface or client.
Any format validation errors are reported immediately, without requiring any
interaction with the middle tier of the application. In addition, any business
object that uses ZipCodeDO automatically gains the benefit of the validation
code, making the validation rules reusable (and consis tent) across beans. Placing
format validation in the dependent object is also a good coding practice because
it makes the dependent object responsible for its own validation; responsibility is
a key concept in object-oriented programming. Of course, dependent objects are
only useful for validation if the Enterprise JavaBeans implementation supports
pass-by-value.

As an alternative to using Dependent Objects, format validation can be
performed by the accessors of enterprise beans. If, for example, a customer bean
has accessors for setting and obtaining the Zip Code, the accessors could
incorporate the validation code. While this is more efficient from a network
perspective—passing a String value is more efficient than passing a
dependent object by value—it is less reusable than housing format validation
rules in dependent objects.

Bulk Accessors

Most entity beans have several persistent fields that are manipulated through
accessor methods. Unfortunately, the one-to-one nature of the accessor idiom
can result in many invocations when accessing an entity, which translates into a
lot of network traffic even for simple edits. Every field you want to modify
requires a method invocation, which in turn requires you to go out to the
network. One way to reduce network traffic when editing entities is to use bulk
accessors. This strategy packages access to several persistent fields into one
bulk accessor. Bulk accessors provide get and set methods that work with struc-
tures or simple pass-by-value objects. The following code shows how a bulk
accessor could be implemented for the Cabin bean:

// CabinData DataObject
public class CabinData {
 public String name;
 public int deckLevel;
 public int bedCount;
 public CabinData() {
 }
 public CabinData(String name, int deckLevel, int bedCount) {
 this.name = name;
 this.deckLevel = deckLevel;
 this.bedCount = bedCount;
 }
}

// CabinBean using bulk accessors

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates8

public class CabinBean implements javax.ejb.EntityBean {
 public int id;
 public String name;
 public int deckLevel;
 public int ship;
 public int bedCount;
 // bulk accessors
 public CabinData getData() {
 return new CabinData(name,deckLevel,bedCount);
 }
 public void setData(CabinData data) {
 name = data.name;
 deckLevel = data.deckLevel;
 bedCount = data.bedCount;
 }
 // simple accessors and entity methods
 public String getName() {
 return name;
 }
 public void setName(String str) {
 name = str;
 }
 // more methods follow
 }

The getData() and setData() methods allow several fields to be packaged
into a simple object and passed between the client and bean in one method call.
This is much more efficient than requiring three separate calls to set the name,
deck level, and bed count.

Rules-of-thumb for bulk accessors

Here are some guidelines for creating bulk accessors:

Data objects are not dependent objects
Data objects and dependent objects serve clearly different purposes, but
they may appear at first to be the same. Where dependent objects represent
business concepts, data objects do not; they are simply an efficient way of
packaging an entity’s fields for access by clients. Data objects may package
dependent objects along with more primitive attributes, but they are not
dependent objects themselves.

Data objects are simple structures
Keep the data objects as simple as possible; ideally, they should be similar
to a simple struct in C. In other words, the data object should not have any
business logic at all; it should only have fields. All the business logic
should remain in the entity bean, where it is centralized and easily
maintained.

In order to keep the semantics of a C struct, data objects should not have
accessor (get and set) methods for reading and writing their fields. The

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 9

CabinData class doesn’t have accessor methods; it only has fields and a
couple of constructors. The lack of accessors reinforces the idea that the
data object exists only to bundle fields together, not to “behave” in a
particular manner. As a design concept, we want the data object to be a
simple structure devoid of behavior; it’s a matter of form following function.
The exception is the multi-argument constructor, which is left as a con-
venience for the developer.

Bulk accessors bundle related fields
The bulk accessors can pass a subset of the entity’s data. Some fields may
have different security or transaction needs, which require that they be
accessed separately. In the CabinBean, only a subset of the fields (name,
deckLevel, bedCount) is passed in the data object. The id field is not
included for several reasons: it doesn’t describe the business concept, it’s
already found in the primary key, and the client should not edit it. The ship
field is not passed because it should only be updated by certain individuals;
the identities authorized to change this field are different from the identities
allowed to change the other fields. Similarly, access to the ship may fall
under a different transaction isolation level than the other fields (e.g.,
Serializable versus Read Committed).

In addition, it’s more efficient to design bulk accessors that pass logically
related fields. In entity beans with many fields, it is possible to group certain
fields that are normally edited together. An employee bean, for example,
might have several fields that are demographic in nature (address,
phone, email) that can be logically separated from fields that are specific
to benefits (compensation, 401K, health, vacation). Logically
related fields can have their own bulk accessor; you might even want several
bulk accessors in the same bean:

public interface Employee extends javax.ejb.EJBObject {

 public EmployeeBenefitsData getBenefitsData()
 throws RemoteException;

 public void setBenefitsData(EmployeeBenefitsData data)
 throws RemoteException;

 public EmployeeDemographicData getDemographicData()
 throws RemoteException;

 public void setDemographicData(EmployeeDemographicData data)
 throws RemoteException;

 // more simple accessors and other business methods follow

}
Retain simple accessors

Simple accessors (get and set methods for single fields) should not be
abandoned when using bulk accessors. It is still important to allow editing of

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates10

single fields. It’s just as wasteful to use a bulk accessor to change one field
as it is to change several fields using simple accessors.

Local references in EJB 2.0 container-managed persistence are very efficient, so
the performance benefits of bulk accessors are minimal. Therefore, if you’re
using EJB 2.0, use bulk accessors with remote interfaces whenever it makes
sense according to the guidelines given here, but use them sparingly with local
interfaces.

Entity Objects

The pass-by-value section earlier gave you some good ground rules for when
and how to use pass-by-value in EJB. Business concepts that do not meet the
dependent object criteria should be modeled as either session or entity beans.
It’s easy to mistakenly adopt a strategy of passing business objects that would
normally qualify as entity beans (Customer, Ship, and City) by value to the
clients. Overzealous use of bulk accessors that pass data objects loaded with
business behavior is bad design. The belief is that passing the entity objects to
the client avoids unnecessary network traffic by keeping the set and get methods
local. The problem with this approach is object equivalence. Entities are sup-
posed to represent the actual data on the database, which means that they are
shared and always reflect the current state of the data. Once an object is resident
on the client, it is no longer representative of the data. It is easy for a client to
end up with many dirty copies of the same entity, resulting in inconsistent
processing and representation of data.

While it’s true that the set and get methods of entity objects can introduce a lot
of network traffic, implementing pass-by-value objects instead of using entity
beans is not the answer. The network problem can be avoided if you stick to the
design strategy elaborated throughout this book: remote clients interact primarily
with session beans, not entity beans. You can also reduce network traffic
significantly by using bulk accessors, provided that these accessors only
transfer structures with no business logic. Finally, try to keep the entity beans on
the server encapsulated in workflow defined by session beans. This eliminates
the network traffic associated with entities, while ensuring that they always
represent the correct data.

Improved Performance with Session
 Beans
In addition to defining the interactions among entity beans and other resources
(workflow), session beans have another substantial benefit: they improve
performance. The performance gains from using session beans are related to the
concept of granularity. Granularity describes the scope of a business
component, or how much business territory the component covers. As you

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 11

learned previously, very fine-grained dependent business objects are usually
modeled as pass-by-value objects. At a small granularity, you are dealing with
entity beans like Ship or Cabin. These have a scope limited to a single concept
and can only impact the data associated with that concept. Session beans
represent large, coarse-grained components with a scope that covers several
business concepts—all the business concepts or processes that the bean needs
in order to accomplish a task. In distributed business computing, you rely on
fine-grained components like entity beans to ensure simple, uniform, reusable,
and safe access to data. Coarse-grained business components like session beans
capture the interactions of entities or business processes that span multiple
entities so that they can be reused; in doing so, they also improve performance
on both the client and the server. As a rule of thumb, client applications should
do most of their work with coarse-grained components like session beans, and
with limited direct interaction with entity beans.

To understand how session beans improve performance, we have to address the
most common problems cited with distributed component systems: network
traffic, latency, and resource consumption.

Network Traffic and Latency

One of the biggest problems of distributed component systems is that they
generate a lot of network traffic. This is especially true of component systems
that rely solely on entity- type business components, such as EJB’s
EntityBean component. Every method call on a remote reference begins a
remote method invocation loop, which sends information from the stub to the
server and back to the stub. The loop requires data to be streamed to and from
the client, consuming bandwidth. If we built a reservation system for Titan Cruise
Lines, we would probably use several entity beans like Ship, Cabin, Cruise, and
Customer. As we navigate through these fine-grained beans, requesting
information, updating their states, and creating new beans, we generate network
traffic. One client probably doesn’t generate very much traffic, but multiply that
by thousands of clients and we start to develop problems. Eventually, thousands
of clients will produce so much network traffic that the system as a whole will
suffer.

Another aspect of network communications is latency. Latency is the delay
between the time we execute a command and the time it completes. With
enterprise beans there is always a bit of latency due to the time it takes to
communicate requests via the network. Each method invocation requires a RMI
loop that takes time to travel from the client to the server and back to the client.
A client that uses many beans will suffer from a time delay with each method
invocation. Collectively, the latency delays can result in very slow clients that
take several seconds to respond to each user action.

Accessing coarse-grained session beans from the client instead of fine-grained
entity beans can substantially reduce problems with network bandwidth and

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates12

latency. In Chapter 12, we developed the bookPassage() method on the
TravelAgent bean. The bookPassage() method encapsulates the
interactions of entity beans that would otherwise have resided on the client. For
the network cost of one method invocation on the client (bookPassage()),
several tasks are performed on the EJB server. Using session beans to
encapsulate several tasks reduces the number of remote method invocations
needed to accomplish a task, which reduces the amount of network traffic and
latency encountered while performing these tasks.

In EJB 2.0, a good design is to use remote component interfaces on the session
bean that manages the workflow, and local compenent interfaces on the
enterprise beans (both entity and session) that it manages. This ensures the best
performance.

Striking a Balance

We don’t want to abandon the use of entity business components, because they
provide several advantages over traditional two-tier computing. They allow us to
encapsulate the business logic and data of a business concept so that it can be
used consistently and reused safely across applications. In short, entity
business components are better for accessing business state because they
simplify data access.

At the same time, we don’t want to overuse entity beans on the client. Instead,
we want the client to interact with coarse-grained session beans that encapsulate
the interactions of small-grained entity beans. There are situations where the
client application should interact with entity beans directly. If a client application
needs to edit a specific entity— change the address of a customer, for example—
exposing the client to the entity bean is more practical than using a session bean.
If, however, a task needs to be performed that involves the interactions of more
than one entity bean—transferring money from account to another, for
example—then a session bean should be used.

When a client application needs to perform a very specific operation on an
entity, like an update, it makes sense to make the entity available to client
directly. If the client is performing a task that spans business concepts or
otherwise involves more then one entity, that task should be modeled in a
session bean as a workflow. A good design will emphasize the use of coarse-
grained session beans as workflow and limit the number of activities that require
direct client access to entity beans.

In EJB 2.0, entity beans that are accessed by both remote clients and local
enterprise beans can accommodate both by implementing both remote and local
component interfaces. The methods defined in remote and local component
interfaces do not need to be identical; each should define methods appropriate to
the clients that will use them. For example, the remote interfaces might make more
use of bulk accessors then the local interface.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 13

Listing Behavior

Make decisions about whether to access data directly or through entity beans
with care. Listing behavior that is specific to a workflow can be provided by
direct data access from a session bean. Methods like
listAvailableCabins() in the TravelAgent bean use direct data access
because it is less expensive than creating a find method in the Cabin bean that
returns a list of Cabin beans. Every bean that the system has to deal with
requires resources; by avoiding the use of components where their benefit is
questionable, we can improve the performance of the whole system. A CTM is
like a powerful truck, and each business component it manages is like a small
weight. A truck is much better at hauling around a bunch of weights than an
lightweight vehicle like a bicycle, but piling too many weights on the truck will
make it just as ineffective as the bicycle. If neither vehicle can move, which one is
better?

Chapter 12 spends some time discussing the TravelAgent bean’s
listAvailableCabins() method as an example of a method that returns a
list of tabular data. This section provides several different strategies for
implementing listing behavior in your beans.

Tabular data is data that is arranged into rows and columns. Tabular data is often
used to let application users select or inspect data in the system. Enterprise
JavaBeans lets you use find methods to list entity beans, but this mechanism is
not a silver bullet. In many circumstances, find methods that return remote
references are a heavyweight solution to a lightweight problem. For example,
Table 9-1 shows the schedule for a cruise.

Table 9-2: Hypothetical Cruise Schedule (continued)

Cruise ID Port-of-Call Arrive Depart

233 San Juan June 4, 1999 June 5, 1999

233 Aruba June 7, 1999 June 8, 1999

233 Cartagena June 9, 1999 June 10, 1999

233 San Blas Islands June 11, 1999 June 12, 1999

It would be possible to create a Port-Of-Call entity object that represents every
destination, and then obtain a list of destinations using a find method, but this
would be overkill. Recognizing that the data is not shared and only useful in this
one circumstance, we would rather present the data as a simple tabular listing.

In this case, we will present the data to the bean client as an array of String
objects, with the values separated by a character delimiter. Here is the method
signature used to obtain the data:.

public interface Schedule implements javax.ejb.EJBObject {
 public String [] getSchedule(int ID) throws RemoteException;
}

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates14

And here is the structure of the String values returned by the
getSchedule() method:

233; San Juan; June 4, 1999; June 5, 1999
233; Aruba; June 7, 1999; June 8, 1999
233; Cartegena; June 9, 1999; June 10, 1999
233; San Blas Islands; June 11, 1999; June 12, 1999

The data could also be returned as a multidimensional array of strings, in which
each column represents one field. This would certainly make it easier to
reference each data item, but would also complicate navigation.

One disadvantage to using the simple array strategy is that Java is limited to
single type arrays. In other words, all the elements in the array must be of the
same type. We use an array of Strings here because it has the most flexibility
for representing other data types. We could also have used an array of
Objects or even a Vector. The problem with using an Object array or a
Vector is that there is no typing information at runtime or development time.

Implementing lists as arrays of structures

Instead of returning a simple array, a method that implements some sort of listing
behavior can also return an array of structures. For example, to return the cruise
ship schedule data illustrated in Table 9-1, you could return an array of schedule
structures. The structures are simple Java objects with no behavior (i.e., no
methods) that are passed in an array. The definition of the structure and the bean
interface that would be used are:

// Definition of the bean that uses the Structure
public interface Schedule implements javax.ejb.EJBObject {
 public CruiseScheduleItem [] getSchedule(int ID) throws RemoteException;
}

// Definition of the Structure
public class CruiseScheduleItem {
 public int cruiseID;
 public String portName;
 public java.util.Date arrival;
 public java.util.Date departure;
}

Using structures allows the data elements to be of different types. In addition,
the structures are self-describing: it is easy to determine the structure of the data
in the tabular set based on its class definition.

Implementing lists as ResultSets

A more sophisticated and flexible way to implement a list is to provide a pass-by-
value implementation of the java.sql.ResultSet interface. Although it is
defined in the JDBC package (java.sql) the ResultSet interface is

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 15

semantically independent of relational databases; it can be used to represent any
set of tabular data. Since the ResultSet interface is familiar to most enterprise
Java developers, it is an excellent construct for use in listing behavior. Using the
ResultSet strategy, the signature of the getSchedule() method would
be:

public interface Schedule implements javax.ejb.EJBObject {
 public ResultSet getSchedule(int cruiseID) throws RemoteException;
}

In some cases, the tabular data displayed at the client may be generated using
standard SQL through a JDBC driver. If the circumstances permit, you may
choose to perform the query in a session bean and return the result set directly
to the client through a listing method. However, there are many cases in which
you don’t want to return a ResultSet that comes directly from JDBC drivers.
A ResultSet from a JDBC 1.x driver is normally connected directly to the
database, which increases network overhead and exposes your data source to
the client. In these cases, you can implement your own ResultSet object that
uses arrays or vectors to cache the data. JDBC 2.0 provides a cached
javax.sql.RowSet that looks like a ResultSet, but is passed by value
and provides features like reverse scrolling. You can use the RowSet, but don’t
expose behavior that allows the result set to be updated. Data updates should
only be performed by bean methods.

In some cases, the tabular data comes from several data sources or nonrelational
databases. In these cases, you can query the data using the appropriate
mechanisms within the listing bean, and then reformat the data into your
ResultSet implementation. Regardless of the source of data, you still want to
present it as tabular data using a custom implementation of the ResultSet
interface.

Using a ResultSet has a number of advantages and disadvantages. First, the
advantages:

Consistent interface for developers
The ResultSet interface provides a consistent interface that developers
are familiar with and that is consistent across different listing behaviors.
Developers don’t need to learn several different constructs for working with
tabular data; they use the same ResultSet interface for all listing
methods.

Consistent interface for automation
The ResultSet interface provides a consistent interface that allows
software algorithms to operate on data independent of its content. A builder
can be created that constructs an HTML or GUI table based on any set of
results that implements the ResultSet.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates16

Metadata operations
The ResultSet interface defines several metadata methods that provide
developers with runtime information describing the result set they are
working with.

Flexibility
The ResultSet interface is independent of the data content, which allows
tabular sets to change their schema independent of the interfaces. A change
in schema does not require a change to the method signatures of the listing
operations.

And now, the disadvantages of using a ResultSet:

Complexity
The ResultSet interface strategy is much more complex than returning a
simple array or an array of structures. It normally requires you to develop a
custom implementation of the ResultSet interface. If properly designed,
the custom implementation can be reused across all your listing methods,
but it’s still a significant development effort.

Hidden structure at development time
Although the ResultSet can describe itself through metadata at runtime,
it cannot describe itself at development time. Unlike a simple array or an
array of structures, the ResultSet interface provides no clues at
development time about the structure of the underlying data. At runtime,
metadata is available, but at development time, good documentation is
required to express the structure of the data explicitly.

Bean Adapters
One of the most awkward aspects of the EJB bean interface types is that, in some
cases, the callback methods are never used or are not relevant to the bean at all.
A simple container-managed entity bean might have empty implementations for
its ejbLoad(), ejbStore(), ejbActivate(), ejbPassivate(), or
even its setEntityContext() methods. Stateless session beans provide an
even better example of unnecessary callback methods: they must implement the
ejbActivate() and ejbPassivate() methods even though these
methods are never invoked!

To simplify the appearance of the bean class definitions, we can introduce
adapter classes that hide callback methods that are never used or that have
minimal implementations. Here is an adapter for the entity bean that provides
empty implementations of all the EntityBean methods:

public class EntityAdapter implements javax.ejb.EntityBean {
 public EntityContext ejbContext;

 public void ejbActivate(){}
 public void ejbPassivate(){}

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 17

 public void ejbLoad(){}
 public void ejbStore(){}
 public void ejbRemove(){}

 public void setEntityContext(EntityContext ctx) {
 ejbContext = ctx;
 }
 public void unsetEntityContext() {
 ejbContext = null;
 }
 public EntityContext getEJBContext() {
 return ejbContext;
 }
}

We took care of capturing the EntityContext for use by the subclass. We
can do this because most entity beans implement the context methods in exactly
this way. We simply leverage the adapter class to manage this logic for our
subclasses.

If a callback method is deemed necessary, it can simply be overridden by a
method in the bean class.

A similar Adapter class can be created for stateless session beans:

public class SessionAdapter implements javax.ejb.SessionBean {
 public SessionContext ejbContext;

 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void ejbRemove() {}

 public void setSessionContext(SessionContext ctx) {
 ejbContext = ctx;
 }
 public SessionContext getEJBContext() {
 return ejbContext;
 }
}

Don’t use these adapter classes when you need to override more than one or two
of their methods. If you need to implement several of the callback methods, your
code will be clearer if you don’t use the adapter class. The adapter class also
impacts the inheritance hierarchy of the bean class. If later you would like to
implement a different superclass, one that captures business logic, the class
inheritance would need to be modified.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates18

Implementing a Common Interface
This book discourages implementing the remote interface in the bean class. This
makes it a little more difficult to enforce consistency between the business
methods defined in the remote interface and the corresponding methods on the
bean class. There are good reasons for not implementing the remote interface in
the bean class, but there is also a need for a common interface to ensure that the
bean class and remote interface define the same business methods. This section
describes a design alternative that allows you to use a common interface to
ensure consistency between the bean class and the remote interface.

Why the Bean Class Shouldn’t Implement the
Remote Interface

There should be no difference, other than the missing
java.rmi.RemoteException, between the business methods defined in
the ShipBean and their corresponding business methods defined in the
ShipRemote interface. EJB requires you to match the method signatures so
that the remote interface can accurately represent the bean class on the client.
Why not implement the remote interface com.titan.ShipRemote in the
ShipBean class to ensure that these methods are matched correctly?

EJB allows a bean class to implement its remote interface, but this practice is
discouraged for a couple of very good reasons. First, the remote interface is
actually an extension of the javax.ejb.EJBObject interface, which you
learned about in Chapter 5. This interface defines several methods that are
implemented by the EJB container when the bean is deployed. Here is the
definition of the javax.ejb.EJBObject interface:

public interface javax.ejb.EJBObject extends java.rmi.Remote {
 public abstract EJBHome getEJBHome();
 public abstract Handle getHandle();
 public abstract Object getPrimaryKey();
 public abstract boolean isIdentical(EJBObject obj);
 public abstract void remove();
}

The methods defined here are implemented and supported by the EJB object for
use by client software and are not implemented by the
javax.ejb.EntityBean class. In other words, these methods are intended
for the remote interface’s implementation, not the bean instance’s. The bean
instance implements the business methods defined in the remote interface, but it
does so indirectly. The EJB object receives all the method invocations made on
the remote interface; those that are business methods (like the getName or
setCapacity methods in Ship) are delegated to the bean instance. The other
methods, defined by the EJBObject, are handled by the container and are
never delegated to the bean instance.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 19

Just for kicks, change the ShipBean definition so that it implements the Ship
interface as show here:

public class ShipBean implements ShipRemote {

When you recompile the ShipBean, you should have five errors stating that
the ShipBean must be declared abstract because it doesn’t implement the
methods from the javax.ejb.EJBObject. EJB allows you to implement the
remote interface, but in so doing you clutter the bean class’s definition with a
bunch of methods that have nothing to do with its functionality. You can hide
these methods in an adapter class; however, using an adapter for methods that
have empty implementations is one thing, but using an adapter for methods that
shouldn’t be in the class at all is decidedly bad practice.

Another reason that beans should not implement the remote interface is that a
client can be an application on a remote computer or it can be another bean.
Beans as clients are very common. When calling a method on an object, the caller
sometimes passes itself as one of the parameters.1 In normal Java programming,
an object passes a reference to itself using the this keyword. In EJB, however,
clients, even bean clients, are only allowed to interact with the remote interfaces
of beans. When one bean calls a method on another bean, it is not allowed to
pass the this reference; it must obtain its own remote reference from its context
and pass that instead. The fact that a bean class doesn’t implement its remote
interface prevents you from passing the this reference and forces you to get a
reference to the interface from the context. The bean class won’t compile if you
attempt to use this as a remote reference. For example, assume that the
ShipBean needs to call someMethod(ShipRemote ship). It can’t simply
call someMethod(this) because ShipBean doesn’t implement
ShipRemote. If, however, the bean instance implements the remote interface,
you could mistakenly pass the bean instance reference using the this keyword
to another bean.

Beans should always interact with the remote references of other beans so that
method invocations are intercepted by the EJB objects. Remember that the EJB
objects apply security, transaction, concurrency, and other system-level
constraints to method calls before they are delegated to the bean instance; the
EJB object works with the container to manage the bean at runtime.

The proper way to obtain a bean’s remote reference, within the bean class, is to
use the EJBContext. Here is an example of how this works:

public class HypotheticalBean extends EntityBean {
 public EntityContext ejbContext;
 public void someMethod() throws RemoteException {

1 This is frequently done in loopbacks where the invokee will need
information about the invoker. Loopbacks are discouraged in EJB because they require
reentrant programming, which should be avoided.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates20

 Hypothetical mySelf = (Hypothetical) ejbContext.getEJBObject();

 // Do something interesting with the remote reference.
 }
 // More methods follow.
}

EJB 2.0: Why the Bean Class Shouldn’t Implement
the Local Interface

In EJB 2.0, the bean class should not implement the local interface for the exact
same reasons that it shouldn’t implement the remote interface: You would have
to support the methods of the javax.ejb.EJBLocalObject, which are not
germane to the bean class.

EJB 1.1: The Business Interface Alternative

Although it is undesirable for the bean class to implement its remote interface, we
can define an intermediate interface that is used by both the bean class and the
remote interface to ensure consistent business method definitions. We will call
this intermediate interface the business interface.

The following code contains an example of a business interface defined for the
Ship bean, called ShipBusiness. All the business methods formerly defined
in the ShipRemote interface are now defined in the ShipBusiness
interface. The business interface defines all the business methods, including
every exception that will be thrown from the remote interface when used at
runtime:

package com.titan.ship;
import java.rmi.RemoteException;

public interface ShipBusiness {
 public String getName() throws RemoteException;
 public void setName(String name) throws RemoteException;
 public void setCapacity(int cap) throws RemoteException;
 public int getCapacity() throws RemoteException;
 public double getTonnage() throws RemoteException;
 public void setTonnage(double tons) throws RemoteException;
}

Once the business interface is defined, it can be extended by the remote
interface. The remote interface extends both the ShipBusiness and the
EJBObject interfaces, giving it all the business methods and the EJBObject
methods that the container will implement at deployment time:

package com.titan.ship;

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 21

import javax.ejb.EJBObject;

public interface ShipRemote extends ShipBusiness, javax.ejb.EJBObject {
}

Finally, we can implement the business interface in the bean class as we would
any other interface:

public class ShipBean implements ShipBusiness, javax.ejb.EntityBean {
 public int id;
 public String name;
 public int capacity;
 public double tonnage;

 public String getName() {
 return name;
 }
 public void setName(String n) {
 name = n;
 }
 public void setCapacity(int cap) {
 capacity = cap;
 }
 public int getCapacity() {
 return capacity;
 }
 public double getTonnage() {
 return tonnage;
 }
 public void setTonnage(double tons) {
 tonnage = tons;
 }

 // More methods follow...
}

In the case of the ShipBean class, we choose not to throw the
RemoteException. Classes that implement interfaces can choose not to
throw exceptions defined in the interface. They cannot, however, add exceptions.
This is why the business interface must declare that its methods throw the
RemoteException and all application exceptions. The remote interface
should not modify the business interface definition. The bean class can choose
not to throw the RemoteException, but it must throw all the application-
specific exceptions.

The business interface is an easily implemented design strategy that will make it
easier to develop beans. This book recommends that you use the business
interface strategy in your own implementations. Remember not to pass the
business interface in method calls; always use the bean’s remote interface in
method parameters and as return types.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates22

Entity Beans Without Create Methods
If an entity bean is never meant to be created by a client, you can simply not
implement a create() method on the home interface. This means that the
entity in question can only be obtained using the find() methods on the home
interface. Titan might implement this strategy with their Ship beans, so that new
ships must be created by directly inserting a record into the database—a
privilege that might be reserved for the database administrator. They wouldn’t
want some crazed travel agent inserting random ships into their cruise line.

EJB 1.1: Object-to-Relational Mapping
Tools
Some EJB vendors provide object-to-relational mapping tools that, using wizards,
can create object representations of relational databases, generate tables from
objects, or map existing objects to existing tables. These tools are outside the
scope of this book because they are proprietary in nature and cannot generally
be used to produce beans that can be used across EJB servers. In other words, in
many cases, once you have begun to rely on a mapping tool to define a bean’s
persistence, you might not be able to migrate your beans to a different EJB
server; the bean definition is bound to the mapping tool.

Mapping tools can make bean developers much more productive, but you should
consider the implementation-specific details of your tool before using it. If you
will need to migrate your application to a bigger, faster EJB server in the future,
make sure that the mapping tool you use is supported in other EJB servers.

Some products that perform object-to-relational mapping use JDBC. The Object
People’s TOPLink and Watershed’s ROF are examples of this type of product.
These products provide more flexibility for mapping objects to a relational
database and are not as dependent on the EJB server. However, EJB servers
must support these products in order for them to be used, so again let caution
guide your decisions about using these products.

Avoid Emulating Entity Beans with
Session Beans
Session beans that implement the SessionSynchronization interface
(discussed in Chapter 8) can emulate some of the functionality of bean-managed
entity beans. This approach provides a couple of advantages. First, these
session beans can represent entity business concepts like entity beans; second,
dependency on vendor-specific object-to- relational mapping tools is avoided.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 23

Unfortunately, session beans were never designed to represent data directly in
the database, so using them as a replacement for entity beans is problematic.
Entity beans fulfill this duty nicely because they are transactional objects. When
the attributes of a bean are changed, the changes are reflected in the database
automatically in a transactionally safe manner. This cannot be duplicated in
stateful session beans because they are transactionally aware but are not
transactional objects. The difference is subtle but important. Stateful session
beans are not shared like entity beans. There is no concurrency control when
two clients attempt to access the same bean at the same time. In the case of the
stateful session beans, each client gets its own instance, so many copies of the
same session bean representing the same entity data can be in use concurrently.
Database isolation can prevent some problems, but the danger of obtaining and
using dirty data is high.

Other problems include the fact that session beans emulating entity beans
cannot have find() methods in their home interfaces. Entity beans support
find() methods as a convenient way to locate data. Find methods could be
placed in the session bean’s remote interface, but this would be inconsistent
with the EJB component model. Also, a stateful session bean must use the
SessionSynchronization interface to be transactionally safe, which
requires that it only be used in the scope of the client’s transaction. This is
because methods like ejbCreate() and ejbRemove() are not
transactional. In addition, ejbRemove() has a significantly different function
in session beans than in entity beans. Should ejbRemove() end the
conversation, delete data, or both?

Weighing all the benefits against the problems and risks of data inconsistency, it
is recommended that you do not use stateful session beans to emulate entity
beans.

Limiting Session Beans to Workflow

Direct database access with JDBC

Perhaps the most straightforward and most portable option for using a server
that only supports session beans is direct database access. We did some of this
with the ProcessPayment bean and the TravelAgent bean in Chapter 12. When
entity beans are not an option, we simply take this a step further. The following
code is an example of the TravelAgent bean’s bookPassage() method, coded
with direct JDBC data access instead of using entity beans:

public Ticket bookPassage(CreditCard card, double price)
 throws RemoteException, IncompleteConversationalState {
 if (customerID == 0 || cruiseID == 0 || cabinID == 0) {
 throw new IncompleteConversationalState();
 }

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates24

 Connection con = null;
 PreparedStatement ps = null;;
 try {
 con = getConnection();

 // Insert reservation.
 ps = con.prepareStatement("insert into RESERVATION "+
 "(CUSTOMER_ID, CRUISE_ID, CABIN_ID, PRICE) values (?,?,?,?)");
 ps.setInt(1, customerID);
 ps.setInt(2, cruiseID);
 ps.setInt(3, cabinID);
 ps.setDouble(4, price);
 if (ps.executeUpdate() != 1) {
 throw new RemoteException (
 "Failed to add Reservation to database");
 }
 // Insert payment.
 ps = con.prepareStatement("insert into PAYMENT "+
 "(CUSTOMER_ID, AMOUNT, TYPE, CREDIT_NUMBER, CREDIT_EXP_DATE) "+
 "values(?,?,?,?,?)");
 ps.setInt(1, customerID);
 ps.setDouble(2, price);
 ps.setString(3, card.type);
 ps.setLong(4, card.number);
 ps.setDate(5, new java.sql.Date(card.experation.getTime()));
 if (ps.executeUpdate() != 1) {
 throw new RemoteException (
 "Failed to add Reservation to database");
 }
 Ticket ticket = new Ticket(customerID,cruiseID,cabinID,price);
 return ticket;

 } catch (SQLException se) {
 throw new RemoteException (se.getMessage());
 }
 finally {
 try {
 if (ps != null) ps.close();
 if (con!= null) con.close();
 } catch(SQLException se){
 se.printStackTrace();
 }
 }
}

No mystery here: we have simply redefined the TravelAgent bean so that it
works directly with the data through JDBC rather than using entity beans. This
method is transactional safe because an exception thrown anywhere within the
method will cause all the database inserts to be rolled back. Very clean and
simple.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates 25

The idea behind this strategy is to continue to model workflow or processes with
session beans. The TravelAgent bean models the process of making a
reservation. Its conversational state can be changed over the course of a
conversation, and safe database changes can be made based on the
conversational state.

EJB 1.1: Direct access with object-to-relational
mapping tools

Object-to-relational mapping provides another mechanism for “direct” access to
data in a stateful session bean. The advantage of object-to-relational mapping
tools is that data can be encapsulated as object-like entity beans. So, for example,
an object-to-relational mapping approach could end up looking very similar to
our entity bean design. The problem with object-to-relational mapping is that
most tools are proprietary and may not be reusable across EJB servers. In other
words, the object-to-relational tool may bind you to one brand of EJB server.
Object-to-relational mapping tools are, however, a much more expedient, safe,
and productive mechanism to obtaining direct database access when entity
beans are not available.

Avoid Chaining Stateful Session Beans
In developing session-only systems you will be tempted to use stateful session
beans from inside other stateful session beans. While this appears to be a good
modeling approach, it’s problematic. Chaining stateful session beans can lead to
problems when beans time out or throw exceptions that cause them to become
invalid. Figure 9-1 shows a chain of stateful session beans, each of which
maintains conversational state that other beans depend on to complete an
operation encapsulated by bean A.

[FIGURE (use figure 9-1)]

Figure 9-1: Chain of stateful session beans

If any one of the beans in this chain times out, say bean B, the conversational
state trailing that bean is lost. If this conversational state was built up over a
long time, considerable work can be lost. The chain of stateful session beans is
only as strong as its weakest link. If one bean times out or becomes invalid, the
entire conversational state on which bean A depends becomes invalid. Avoid
chaining stateful session beans.

Using stateless session beans from within stateful session beans is not a
problem, because a stateless session bean does not maintain any conversational
state. Use stateless session beans from within stateful session beans as much as
you need.

DRAFT, 10/21/017/26/2001

Copyright (c) 2001 O’Reilly & Associates26

Using a stateful session bean from within a stateless session bean is almost
nonsensical because the benefit of the stateful session bean’s conversational
state cannot be leveraged beyond the scope of the stateless session bean’s
method.

DRAFT, 10/21/017/26/2001

Copyright (c) O’Reilly & Associates 1

17

Java 2, Enterprise Edition

The specification for the Java 2, Enterprise Edition (J2EE) defines a platform for
developing web-enabled applications that includes Enterprise JavaBeans, Serv-
lets, and Java Server Pages (JSP). J2EE products are application servers that
provide a complete implementation of the EJB, Servlet, and JSP technologies. In
addition, the J2EE outlines how these technologies work together to provide a
complete solution. To understand what J2EE is, it’s important that we introduce
Servlets and JSP and explain the synergy between these technologies and
Enterprise JavaBeans.

At risk of spoiling the story, J2EE provides two kinds of “glue” to make it easier
for components to interact. We’ve already seen both types of glue. The JNDI
Enterprise Naming Context (ENC) is used to standardize the way components
look up resources that they need. We’ve seen the ENC in the context of
enterprise beans; in this chapter, we’ll look briefly at how servlets, JSPs, and
even some clients can use the ENC to find resources. Second, the idea of
deployment descriptors—in particular, the use of XML to define a language for
deployment descriptors is also used with servlets and JSP. Java servlets and
server pages can be packaged with deployment descriptors that define their rela-
tionship to their environment. Deployment descriptors are also used to define
entire assemblies of many components into applications.

Servlets
The Servlet specification defines a server-side component model that can be
implemented by web server vendors. Servlets provide a simple but powerful API
for generating web pages dynamically. (Although servlets can be used for many

DRAFT, 10/21/017/26/2001

Copyright (c) O’Reilly & Associates2

different request- response protocols, they are predominantly used to process
HTTP requests for web pages.)

Servlets are developed in the same fashion as enterprise beans; they are Java
classes that extend a base component class and have a deployment descriptor.
Once a servlet is developed and packaged in a JAR file, it can be deployed in a
web server. When a servlet is deployed, it is assigned to handle requests for a
specific web page or assist other servlets in handling page requests. The
following servlet, for example, might be assigned to handle any request for the
helloworld.html page on a web server:

import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

 protected void doGet(HttpServletRequest req,
 HttpServletResponse response)
 throws ServletException,java.io.IOException {

 try {
 ServletOutputStream writer = response.getWriter();
 writer.println("<HTML><BODY>");
 writer.println("<h1>Hello World!!</h1>");
 writer.println("</BODY></HTML>");
 } catch(Exception e) {
 // handle exception
 }
 ...
}

When a browser sends a request for the page to the web server, the server
delegates the request to the appropriate servlet instance by invoking the
servlet’s doGet() method.1 The servlet is provided information about the
request in the HttpServletRequest object, and can use the
HttpServletResponse object to reply to the request. This simple servlet
sends a short HTML document including the text “Hello World” back to the
browser, which displays it. Figure 17-1 illustrates how a request is sent by a
browser and serviced by a servlet running in a web server.

[FIGURE (use figure 11-1)]

Figure 17-1: Servlet servicing an HTTP request

Servlets are similar to session beans because they both perform a service and
can directly access backend resources like a database through JDBC, but they do
not represent persis tent data. Servlets do not, however, have support for
transactions and are not composed of business methods. Servlets respond to

1 HttpServlets also have a doPost() method which handles requests for forms.

DRAFT, 10/21/017/26/2001

Copyright (c) O’Reilly & Associates 3

very specific requests, usually HTTP requests, and respond by writing to an
output stream.

The Servlet specification is extensive and robust but also simple and elegant. It’s
a powerful server-side component model. You can learn more about servlets by
reading Java™ Servlet Programming, 2nd Edition by Jason Hunter and William
Crawford (O’Reilly).

Java Server Pages
Java Server Pages (JSP) is an extension of the servlet component model that
simplifies the process of generating HTML dynamically. JSP essentially allows
you to incorporate Java directly into an HTML page as a scripting language. In
J2EE, the Java code in a JSP page can access the JNDI ENC, just like the code in
a servlet. In fact, JSP pages (text documents) are translated and compiled into
Java servlets, which are then run in a web server just like any other servlet—
some servers do the compilation automatically at runtime. JSP can also be used
to generate XML documents dynamically.

You can learn more about servlets by reading Java™ Server Pages by Hans
Bergsten (O’Reilly).

Web Components and EJB
Together Servlets and JSP provide a powerful platform for generating web pages
dynamically. Servlets and JSP, which are collectively called web components, can
access resources like JDBC and enterprise beans. Because web components can
access databases using JDBC, they can provide a powerful platform for e-
commerce by allowing an enterprise to expose its business systems to the web
through an HTML interface. HTML has several advantages over more
conventional client applications, in Java or any other language. The most
important advantages have to do with distribution and firewalls. Conventional
clients need to be distributed and installed on client machines, which is their
biggest limitation: they require additional work for deployment and maintenance.
Applets, which are dynamically downloaded, can be used to eliminate the
headache of installation, but applets have other limitations like sandbox
restrictions and heavyweight downloads. In contrast, HTML is extremely
lightweight, doesn’t require prior installation, and doesn’t suffer from security
restrictions. In addition, HTML interfaces can be modified and enhanced at their
source without having to update the clients.

Firewalls present another significant problem in e-commerce. HTTP, the protocol
over which web pages are requested and delivered, can pass through most
firewalls without a problem, but other protocols like IIOP or JRMP cannot. This
has proven to be a significant barrier to the success of distributed object

DRAFT, 10/21/017/26/2001

Copyright (c) O’Reilly & Associates4

systems that must support access from anonymous clients. This means that
distributed object applications generally cannot be created for a client base that
may have arbitrary firewall configurations. HTTP does not have this limitation,
since practically all firewalls allow HTTP to pass unhindered.

The problems with distribution and firewalls have led the EJB industry to adopt,
in large part, an architecture based on the collaborative use of web components
(Servlets/JSP) and Enterprise JavaBeans. While web components provide the
presentation logic for generating web pages, Enterprise JavaBeans provides a
robust transactional middle tier for business logic. Web components access
enterprise beans using the same API used by application clients. Each
technology is doing what it does best: Servlets and JSP are excellent components
for generating dynamic HTML, while Enterprise JavaBeans is an excellent
platform for transactional business logic. Figure 17-2 illustrates how this
architecture works.

[FIGURE (use figure 11-3)]

Figure 17-2: Using Servlets/JSP and EJB together

This web component–EJB architecture is so widely accepted that it begs the
question, “Should there be a united platform?” This is the question that the J2EE
specification is designed to answer. The J2EE specification defines a single
application server platform that focuses on the interaction between these
Servlets, JSP, and EJB. J2EE is important because it provides a specification for
the interaction of web components with enterprise beans, making solutions more
portable across vendors that support both component models.

J2EE Fills in the Gaps
The J2EE specification attempts to fill the gaps between the web components
and Enterprise JavaBeans by defining how these technologies come together to
form a complete platform.

One of the ways in which J2EE adds value is by creating a consistent
programming model across web components and enterprise beans through the
use of the JNDI ENC and XML deployment descriptors. A servlet in J2EE can
access JDBC DataSource objects, environment entries, and references to
enterprise beans through a JNDI ENC in exactly the same way that enterprise
beans use the JNDI ENC. To support the JNDI ENC, web components have their
own XML deployment descriptor that declares elements for the JNDI ENC
(<ejb-ref>, <resource-ref>, <env-entry>) as well security roles and
other elements specific to web components. In J2EE, web components (Servlets
and JSP pages) along with their XML deployment descriptors, are packaged and
deployed in JAR files with the extension .war, which stands for web archive. The
use of the JNDI ENC, deployment descriptors, and JAR files in web components

DRAFT, 10/21/017/26/2001

Copyright (c) O’Reilly & Associates 5

makes them consistent with the EJB programming model and unifies the entire
J2EE platform.

Use of the JNDI ENC makes it much simpler for web components to access
Enterprise JavaBeans. The web component developer doesn’t need to be
concerned with the network location of enterprise beans; the server will map the
ejb-ref elements listed in the deployment descriptor to the enterprise beans at
deployment time. The JNDI ENC also supports access to a
javax.jta.UserTransaction object, as is the case in EJB. The
UserTransaction object allows the web component to manage transactions
explicitly. The transaction context must be propagated to any enterprise beans
accessed within the scope of the transaction (according to the transaction
attribute of the enterprise bean method). A .war file can contain several servlets
and JSP documents, which share an XML deployment descriptor.

J2EE also defines an .ear (Enterprise archive) file, which is a JAR file for
packaging Enterprise JavaBean JAR files and web component JAR files (.war
files) together into one complete deployment called a J2EE Application. A J2EE
Application has its own XML deployment descriptor that points to the EJB and
web component JAR files (called modules) as well as other elements like icons,
descriptions, and the like. When a J2EE Application is created,
interdependencies like ejb-ref elements can be resolved and security roles
can be edited to provide a unified view of the entire web application.

The J2EE Enterprise Archive (.ear) file would contain the EJB JAR files and the
web component .war files. Figure 17-3 illustrates the file structure inside a J2EE
archive file.

[FIGURE (figure 11-3)]

Figure 17-3: Contents of a J2EE EAR file

J2EE Application Client Components

In addition to integrating web and enterprise bean components, J2EE introduces
a completely new component model: the application client component. An
application client component is a Java application that resides on a client
machine and accesses enterprise bean components on the J2EE server. Client
components also have access to a JNDI ENC that operates the same way as the
JNDI ENC for web and enterprise bean components. The client component also
includes an XML deployment descriptor that declares the env-entry, ejb-
ref, and resource-ref elements of the JNDI ENC in addition to a
description, display-name, and icon that can be used to represent the
client component in a deployment tool.

A client component is simply a Java program that uses the JNDI ENC to access
environment properties, enterprise beans, and resources (JDBC, JavaMail, etc.)

DRAFT, 10/21/017/26/2001

Copyright (c) O’Reilly & Associates6

made available by the J2EE server. Client components reside on the client
machine, not the J2EE server. Here is an extremely simple component:

public class MyJ2eeClient {

 public static void main(String [] args) {

 InitialContext jndiCntx = new InitialContext();

 Object ref = jndiCntx.lookup("java:comp/env/ejb/ShipBean");
 ShipHome home = (ShipHome)
 PortableRemoteObject.narrow(ref,ShipHome.class);

 Ship ship = home.findByPrimaryKey(new ShipPK(1));
 String name = ship.getName();
 System.out.println(name);
 }
}

MyJ2eeClient illustrates how a client component is written. Notice that the
client component did not need to use a network-specific JNDI
InitialContext. In other words, we did not have to specify the service
provider in order to connect to the J2EE server. This is the real power of the J2EE
Application client component: location transparency. The client component does
not need to know the exact location of the Ship EJB or choose a specific JNDI
service provider; the JNDI ENC takes this care of locating the enterprise bean.

When application components are developed, an XML deployment descriptor is
created that specifies the JNDI ENC entries. At deployment time, a vendor-
specific J2EE tool generates the class files needed to deploy the component on
client machines.

A client component is packaged into a JAR file with its XML deployment
descriptor and can be included in a J2EE Application. Once a client component
is included in the J2EE Application deployment descriptor, it can be packaged in
the EAR file with the other components, as Figure 17-4 illustrates.

[FIGURE (use figure 11-4)]

Figure 17-4: Contents of a J2EE EAR file with Application
component

Guaranteed Services

The J2EE 1.3 specification requires application servers to support a specific set
of protocols and Java enterprise extensions. This ensures a consistent platform
for deploying J2EE applications. J2EE application servers must provide the
following “standard” services:

DRAFT, 10/21/017/26/2001

Copyright (c) O’Reilly & Associates 7

Enterprise JavaBeans 2.0
J2EE products must support the complete specification.

Servlets 2.3
J2EE products must support the complete specification.

Java Sever Pages 1.2
J2EE products must support the complete specification.

HTTP and HTTPS
Web components in a J2EE server service both HTTP and HTTPS requests.
The J2EE product must be capable of advertising HTTP 1.0 and HTTPS
(HTTP 1.0 over SSL 3.0) on ports 80 and 443 respectively.

Java RMI-IIOP
As was the case with EJB 2.0, only the semantics of Java RMI-IIOP are
required; the underlying protocol need not be IIOP. Therefore, components
must use return and parameter types that are compatible with IIOP, and must
use the PortableRemoteObject.narrow() method.

Java RMI-JRMP
J2EE components can be Java RMI-JRMP clients.

JavaIDL
Web components and enterprise beans must be able to access CORBA
services hosted outside the J2EE environment using JavaIDL, a standard
part of the Java 2 platform.

JDBC 2.0
J2EE requires support for the JDBC Core (JDK 1.3) and some parts of the
JDBC 2.0 Extension including connection naming and pooling, and
distributed transaction support.

Java Naming and Directory Interface (JNDI) 1.2
Web and enterprise bean components must have access to the JNDI ENC,
which make available EJBHome objects, JTA UserTransaction objects, JDBC
DataSource objects, and optionally Java Messaging Service connection
factory objects.

JavaMail 1.2 and JAF 1.0
J2EE products must support sending basic Internet mail messages (the
protocol is not specified) using the JavaMail API from web and enterprise
bean components. The JavaMail implementation must support MIME
message types. JAF is the Java Activation Framework, which is needed to
support different MIME types and is required for support of JavaMail
functionality.

Java Message Service (JMS) 1.0.2
J2EE products must provide support for both point-to-point (p2p) and
publish-and-subscribe (pub/sub) messaging models. Support for the
optional application integration interfaces is not required.

Java API for XML Parsing (JAXP) 1.1
J2EE products must support JAXP and provide must at least one SAX 2
parser, at least one DOM 2 parser, and at least one XSLT transform engine.

DRAFT, 10/21/017/26/2001

Copyright (c) O’Reilly & Associates8

J2EE™ Connector Architecture (JCA) 1.0
J2EE must support the JCA API from all components and provide full
support for resource adapters and transaction capabilities as defined by the
JCA.

Java™ Authentication and Authorization Service (JAAS) 1.0
J2EE products must support the use of JAAS as described in the JCA
specification. In addition, application client containers must support the
authentication facilities defined in the JAAS specification.

Java Transaction API 1.0.1
Web and enterprise bean components must have access to JTA UserTrans-
action objects via the JNDI ENC under the "java:comp/UserTrans-
action" context. The UserTransaction interface is used for explicit
transaction control.

Fitting the Pieces Together
To illustrate how a J2EE platform would be used, imagine using a J2EE server in
Titan’s reservation system. To build this system, we would use the TravelAgent,
Cabin, ProcessPayment, Customer, and other enterprise beans we defined in this
book, along with web components that would provide a HTML interface.

The web components would access the enterprise beans in the same way that
any Java client would, by using the enterprise beans’ remote and home
interfaces. The web components would generate HTML to represent the
reservation system.

Figure 17-5 shows a web page generated by a servlet or JSP page for the Titan
reservation system. This web page was generated by web components on the
J2EE server. The person using the reservation system would have been guided
through a login page, a customer selection page, and cruise selection page, and
would be about to choose an available cabin for the customer.

[FIGURE (use figure 11-5)]

Figure 17-5: HTML interface to the Titan reservation system

The list of available cabins was obtained from the TravelAgent EJB, whose
listAvailableCabins() method was invoked by the servlet that
generated the web page. The list of cabins was used to create a HTML list box in
a web page that was loaded into the user’s browser. When the user chooses a
cabin and submits the selection, an HTTP request is sent to the J2EE server. The
J2EE server receives the request and delegates it to the
ReservationServlet, which invokes the
TravelAgent.bookPassage() method to do the actual reservation. The
Ticket information returned by the bookPassage() method is then used to
create another web page that is sent back to the user’s browser. Figure 17-6
shows how the different components work together to process this request.

DRAFT, 10/21/017/26/2001

Copyright (c) O’Reilly & Associates 9

[FIGURE (use 11-6)]

Figure 17-6: J2EE Titan Reservation System

Future Enhancements
There are several areas that are targeted for improvement in the next major release
of the J2EE specification. Support for “web services” is expected to be a larger
part of a future J2EE specification, including support for Java API for XML
messaging (JAXM), Java API for XML registries (JAXR), and Java API for XML
RPC (JAX-RPC). Support for the XML Data Binding API may be required in a
future version of the specification, which considered easier to use than JAXP.

In addition, J2EE may be expanded to require support for JDBC rowsets, SQLJ,
management and deployment APIs, and possibly a J2EE SPI that would build on
the advancements made with the JCA specification.

