EJB 3RD EDITION - Richard Monson-Haefel

Authors Note

In the winter of 1997 | was working on a distributed object project using Java
RMI. Not surprisingly, the project failed miserably because Java RMI didn’'t
address performance, scalability, fail-over, security, and transactions; qualities of
service that are so vital in a production environment. Although that lesson was
not new for me—I had seen the same thing happen with CORBA—the timing of
the project was especialy interesting. It was at that same time Enterprise
JavaBeans was first introduced by Sun Microsystems — had Enterprise
JavaBeans been available earlier, that same project probably would have
succeeded.

At the time | was working on that ill-fated Java RMI project, | was also writing a
column for JavaReport Online called the “The Cutting Edge”. The column

covered what were then, new Java technologies like Java Naming and Directory

Interface (INDI) and the JavaMail API. | was actually looking for a new topic for
the 3" edition of “The Cutting Edge”, when | discovered the first public draft of
Enterprise JavaBeans, version 0.8. | had first heard about this technology in 1996,

but this was the first time anything public has been available. Having worked on
CORBA, Java RMI and other distributed object technologies, | knew a good
thing when | saw it and immediately began writing an article about this new
“Enterprise JavaBeans’. Although the article in question has long since been
lost in the ether of the Internet, it was at that time the first article ever written on
Enterprise JavaBeans.

That seems like eons ago. Since | published that article in March 1998, literally
hundreds of articles have been written on Enterprise JavaBeans and several
books have come and gone on the subject. Over the past three years this book
has kept pace with three versions of the EJB specification and in its 3¢ edition is
considered by many, to my enormous satisfaction, to be the best book on
Enterprise JavaBeans. As the newest version of the specification takes flight
and a slew of new books on the subject daybew | can’'t help but remember the
days when the words “Enterprise JavaBeans’ drew blank looks from just about
everyone. I’m glad those days are over.

Copyright (c) 2001 O'Reilly & Associates 1

What |s Enterprise JavaBeans?

When Java™ was first introduced in the summer of 1995, most of the I T industry
focused on its graphical user interface characteristics and the competitive
advantage it offered in terms of distribution and platform independence. Those
were interesting times. The Applet was king, and only a few of us were
attempting to use it on the server side. | reality we spent about half our time
coding and the other half trying to convince management that Java was not a
fad.

Today, the focus has broadened considerably: Java has been recognized as an
excellent platform for creating enterprise solutions, specifically for developing
distributed server-side applications. This shift has much to do with Java's
emerging role as auniversal language for producing implementation-independent
abstractions for common enterprise technologies. The JDBC™ API is the first
and most familiar example. JDBC provides a vendor-independent Java interface
for accessing SQL relational databases. This abstraction has been so successful
that it’s difficult to find arelational database vendor that doesn’t support JDBC.
Java abstractions for enterprise technologies have expanded considerably to
include JNDI (Java Naming and Directory Interface™) for abstracting directory
services, JTA (Java Transaction API) for abstracting access to transaction
managers, IMS™ (Java Messaging Service) for abstracting access to different
message-oriented middleware products, and so on.

Enterprise JavaBeans™ was first introduced as a draft specification in late 1997
and has since established itself as one of the most important Java enterprise
technologies provided by Sun Microsystems. Enterprise JavaBeans (EJB)
provides an abstraction for component transaction monitors (CTMs).
Component transaction monitors represent the convergence of two technologies:
traditional transaction processing monitors, such as CICS, TUXEDO, and Encina,
and distributed object services, such as CORBA (Common Object Request
Broker Architecture), DCOM, and native Java RMI. Combining the best of both
technologies, component transaction monitors provide a robust, component-
based environment that simplifies distributed development while automatically
managing the most complex aspects of enterprise computing, such as object
brokering, transaction management, security, persistence, and concurrency.

Enterprise JavaBeans (EJB) defines a server-side component model that allows
business objects to be developed and moved from one brand of EJB container to
another. A component (an enterprise bean) presents a simple programming model
that allows the developer to focus on its business purpose. An EJB server is
responsible for making the component a distributed object and for managing
services such as transactions, persistence, concurrency, and security. In
addition to defining the bean’ s business logic, the developer defines the bean’s
runtime attributes in a way that is similar to choosing the display properties of
visual widgets. The transactional, persistence, and security behaviors of a
component can be defined by choosing from alist of properties. The end result is

Copyright (c) 2001 O'Reilly & Associates 2

that Enterprise JavaBeans makes devel oping distributed component systems that
are managed in a robust transactional environment much easier. For developers
and corporate | T shops that have struggled with the complexities of delivering
mission-critical, high-performance distributed systems using CORBA, DCOM, or
Java RMI, Enterprise JavaBeans provides a far simpler and more productive
platform on which to base development efforts.

When Enterprise JavaBeans 1.0 was finalized in 1998, it quickly become a de
facto industry standard. Many vendors announced their support even before the
specification was finalized. Since that time Enterprise JavaBeans has been
enhanced twice: The specification was first updated in 1999 to version 1.1, which
was covered by the 2 edition. The most recent revision to the specification,
version 2.0, is covered by this, the 3¢ edition of O'Reilly’s EJB book. This 3¢
edition also covers EJB 1.1, which is for the most part a subset of functionality
offered by EJB 2.0.

Products that conform to the EJB standard have come from every sector of the IT
industry, including the TP monitor, CORBA ORB, application server, relational
database, object database, and web server industries. Some of these products are
based on proprietary models that have been adapted to EJB; many more
wouldn’t even exist without EJB.

In short, Enterprise JavaBeans 2.0 and 1.1 provides a standard distributed
component model that greatly simplifies the development process and allows
beans that are developed and deployed on one vendor’'s EJB server to be easily
deployed on a different vendor’s EJB server. This book will provide you with the
foundation you need to devel op vendor-independent EJB solutions.

Who Should Read This Book?

This book explains and demonstrates the fundamentals of the Enterprise
JavaBeans 2.0 and 1.1 architecture. Although EJB makes distributed computing
much simpler, it is still a complex technology that requires a great deal of time to
master. This book provides a straightforward, no-nonsense explanation of the
underlying technology, Java classes and interfaces, component model, and
runtime behavior of Enterprise JavaBeans. It includes material that is backward
compatible with EJB 1.1 and provides special notes and chapters when there are
significant differences between 1.1 and 2.0.

Although this book focuses on the fundamentals, it's no “dummies’ book.
Enterprise JavaBeans embodies an extremely complex and ambitious enterprise
technology. While using EJB may be fairly simple, the amount of work required
to truly understand and master EJB is significant. Before reading this book, you
should be fluent with the Java language and have some practical experience
developing business solutions. Experience with distributed object systemsis not
a must, but you will need some experience with JDBC (or at least an

Copyright (c) 2001 O'Reilly & Associates 3

understanding of the basics) to follow the examples in this book. If you are
unfamiliar with the Java language, | recommend that you pick up a copy of
Learning Java™ by Patrick Neimeyer and Jonathan Knudsen, formerly
Exploring Java™, (O'Reilly). If you are unfamiliar with JDBC, | recommend
Database Programming with JDBC™ and Java™, 2™ Edition by George Reese
(O'Reilly). If you need a stronger background in distributed computing, |
recommend Java™ Distributed Computing by Jm Farley (O’ Reilly).

Organization

Here's how the book is structured. The first three chapters are largely
background material, placing Enterprise JavaBeans 2.0 and 1.1 in the context of
related technologies, and explaining at the most abstract level how the EJB
technology works and what makes up an enterprise bean. Chapters 4 through 13
go into detail about developing enterprise beans of various types. Chapters 14
and 15 could be considered “advanced topics,” except that transactions
(Chapter 14) are essential to everything that happens in enterprise computing,
and design strategies (Chapter 15) help you deal with a number of rea-world
issues that influence bean design. Chapter 16 describes in detail the XML
deployment descriptors used in EJB 2.0 and 1.1. Finally, Chapter17 is an
overview of the Java™ 2, Enterprise Edition (J2EE) includes Servlets, JSP and
EB.

Chapter 1, Introduction
This chapter defines component transaction monitors and explains how they
form the underlying technology of the Enterprise JavaBeans component
model.

Chapter 2, Architectural Overview
This chapter defines the architecture of the Enterprise JavaBeans
component model and examines the difference between the three basic types
of enterprise beans:. entity beans, session beans, and message-driven beans.

Chapter 3, Resource Management and the Primary Services
This chapter explains how the EJB-compliant server manages an enterprise
bean at runtime.

Chapter 4, Developing Y our First Enterprise Beans

This chapter walks the reader through the development of some simple
enterprise beans.

Chapter 5, The Client View
This chapter explains in detail how enterprise beans are accessed and used
by aremote client application.

Chapter 6, EJB 2.0 CMP: Basic Persistence
This chapter provides an explanation of how to develop basic container-
managed entity beansin EJB 2.0

Copyright (c) 2001 O'Reilly & Associates 4

Chapter 7, EJB 2.0 CMP: Entity Relationships
This chapter picks up where Chapter 6 left off, expanding your
understanding of container-managed persistence to complex bean-to-bean
relationships

Chapter 8, EJB 2.0 CMP: EJB QL
This chapter addresses the Enterprise JavaBeans Query Language (EJB QL),
which is used to query EJBs and locate specific entity beans in EJB 2.0
container-managed persistence.

Chapter 9, EJB 1.1: Container-Managed Persistence
This chapter covers EJB 1.1 container-managed persistence, which is
supported in EJB 2.0 for backward compatibility. Read this chapter only if
you need to support legacy EJB applications.

Chapter 10, Bean-Managed Persistence
This chapter covers the development of bean-managed persistence beans
including when to store, load, and remove data from the database.

Chapter 11, Entity-Container Contract
This chapter covers the general protocol between an entity bean and its
container at runtime and applies to container-managed persistencein EJB 2.0
and 1.1, aswell as bean-managed persistence.

Chapter 12, Session Beans
This chapter shows how to develop statel ess and stateful session beans.

Chapter 13, Message-Driven Beans
This chapter shows how to devel op message-driven beansin EJB 2.0.

Chapter 14, Transactions
This chapter provides an in-depth explanation of transactions and describes
the transactional model defined by Enterprise JavaBeans.

Chapter 15, Design Strategies
This chapter provides some basic design strategies that can simplify your
EJB development efforts and make your EJB system more efficient.

Chapter 16, XML Deployment Descriptors
This chapter provides an in-depth explanation of the XML deployment
descriptorsused in EJB 1.1 and 2.0.

Chapter 17, Java 2, Enterprise Edition

This chapter provides an overview of the Java 2, Enterprise Edition 1.3 and
explains how 2.0 fitsinto this new platform.

Appendix A, The Enterprise JavaBeans API
This appendix provides a quick reference to the classes and interfaces
defined in the EJB packages.

Appendix B, State and Sequence Diagrams
This appendix provides diagrams that clarify the life cycle of enterprise
beans at runtime.

Appendix C, EJB Vendors
This appendix provides information about the vendors of EJB servers.

Copyright (c) 2001 O'Reilly & Associates 5

Software and Versions

This book covers Enterprise JavaBeans version 2.0 and version 1.1, including al
optional features. It uses Java language features from the Java 1.2 platform and
JDBC. Because the focus of this book is to develop vendor-independent
Enterprise JavaBeans components and solutions, | have stayed away from
proprietary extensions and vendor- dependent idioms. Any EJB-compliant server
can be used with this book; you should be familiar with that server’s specific
installation, deployment, and runtime management procedures to work with the
examples.

This book covers both EJB 2.0 and EJB 1.1. These two versions have a lot in
common, but when they differ, chapters, or text with in a chapter, that specific to
each version is clearly marked. Feel free to skip version-specific sections that do
not concern you. Unlessindicated, the source code in this book has been written
for bothEJB 2.0and 1.1

Examples developed in this book are available from
ftp://ftp.oreilly.com/pub/examples/java/ejb. The examples are organized by
chapter.

Example Workbooks

Although EJB applications themselves are portable, the manor in which you
install and run EJB products vary wildly from one vendor to the next. For this
reason its nearly impossible to cover all the EJB products available, so we have
chosen a radical but very effective way to address these differences:
Workbooks.

To help you deploy the book examples in different EJB products, the author will
publish several free “workbooks” which are used along with this book to run the
examples on specific commercia and non-commercial EJB servers. The workbook
for a specific product will address that products most advanced server. So for
example, if the vendor supports EJB 2.0, then the examples in the workbook will
address EJB 2.0 features. If, on the other hand, the vendor only supports EJB 1.1,
then the examples in the workbook will be specific to EJB 1.1.

Although there are plans to publish workbooks for as many different EJB server,
at least two workbooks will be made available immediately. These workbooks are
free on-line in PDF format. The workbooks are all available at
http://mww.or eilly.com/catal og/entjbeans3/ or http://www.monson-haefel.com.

Copyright (c) 2001 O'Reilly & Associates 6

Conventions

Italicisused for:

Filenames and pathnames
Hostnames, domain names, URLS, and email addresses

New terms where they are defined
Const ant wi dt h isusedfor:

Code examples and fragments
Class, variable, and method names, and Java keywords used within the text
SQL commands, table names, and column names

XML elements and tags

Const ant wi dt h bol d isused for emphasisin some code examples.

Constant width italic is usedtoindicate text that is replaceable. For
example, in BeanNanePK, you would replace BeanNane with a specific bean
name.

An Enterprise JavaBean consists of many parts; it's not a single object, but a
collection of objects and interfaces. To refer to an Enterprise JavaBean as a
whole, we use the name of its business name in Roman type followed by the
acronym, EJB (Enterprise JavaBean). For example, we will refer to the Customer
EJB when we want to talk about the enterprise bean in general. If we put the
name in a constant width font, we are referring explicitly to the bean’s remote
interface. So Cust oner Renot e is the remote interface that defines the
business methods of the Customer EJB.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

Y ou can a'so send us messages electronically. To be put on our mailing list or to
reguest a catalog, send email to:

Copyright (c) 2001 O'Reilly & Associates 7

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we'll list errata and any plans for future
editions. Y ou can access this page at:

http://mwww.or eilly.convcatal og/entjbeans2/
For more information about this book and others, seethe O’ Reilly web site at:
http://www.oreilly.com/

The author maintains aweb site for the discussion of EJB and related distributed
computing technologies (http://www.ejbnow.com). EJBNow.com provides news
about this book as well as code tips, articles, and an extensive list of linksto EJB
resources.

Acknowledgments

While there is only one name on the cover of this book, the credit for its
development and delivery is shared by many individuals. Michael Loukides, my
editor, was pivotal to the success of every edition of this book. Without his
experience, craft, and guidance, this book would not have been possible.

Many expert technical reviewers helped ensure that the material was technically
accurate and true to the spirit of Enterprise JavaBeans. Of special note are David
Chappell of David Chappell & Associates, Jm Farley, author of Java™
Distributed Computing (O’ Reilly, 1998), Greg Nyberg of ObjectPartners, Prasad
Muppirala and Shannon Pieper of BORN Information Services, They
contributed greatly to the technical accuracy of this book and brought a
combination of industry and real-world experience to bear, helping to make this
one of the best books on Enterprise JavaBeans published today.

Special thanks also go to Sriram Srinivasan of BEA, Anne Thomas of Sun
Microsystems, and lan McCalion of IBM Hursley, Tim Rohaly of jGuru.com,
James D. Frentress of ITM Corp., Andrzej Jan Taramina of Accredo Systems,
Marc Loy, co-author of Java™ Swing (O Reilly, 1998), Don Weiss of Step 1,
Mike Slinn of The Dialog Corporation, and Kevin Dick of Kevin Dick &
Associates. The contributions of these technical experts were critical to the
technical and conceptual accuracy of earlier editions of this book. Others | would
like to thank include Maggie Mezquita, Greg Hartzel, John Klug and Jon Jamsa of
BORN Information who all suffered though the first draft of the first edition so
long ago to provide valuable feedback.

Thanks also to Vlad Matenaand Mark Hapner of Sun Microsystems, the primary
architects of Enterprise JavaBeans; Linda DeMichiel, EJB 2.0 specification lead;

Copyright (c) 2001 O'Reilly & Associates 8

and Bonnie Kellett 2EE Program Manager — they were al willing to answer
several of my most complex questions. Thanks to all the participants in the EJB-
INTEREST mailing list hosted by Sun Microsystems for their interesting and
sometimes controversial, but always informative, postings over the past four
years.

Finally, the most sincere gratitude must be extended to my wife, Hollie, for
supporting and assisting me through three years of painstaking research and
writing which were required to produce three editions of this book. Without her
unfailing support and love, this book would not have been compl eted.

Copyright (c) 2001 O'Reilly & Associates 9

1

| ntroduction

This book is about Enterprise JavaBeans 1.1 and 2.0 the second and third versions of the
Enterprise JavaBeans specification. Just as the Java platform has revolutionized the way
we think about software development, Enterprise JavaBeans has revolutionized the way
we think about developing mission-critical enterprise software. It combines server-side
components with distributed object technologies and asynchronous messaging to greatly
simplify the task of application development. It automatically takes into account many of
the requirements of business systems. security, resource pooling, persistence,
concurrency, and transactional integrity.

This book shows you how to use Enterprise JavaBeans to develop scalable, portable
business systems. But before we can start talking about EJB itself, we'll need a brief
introduction to the technologies addressed by EJB, such as component models,
distributed objects, component transaction monitors (CTMs), and asynchronous
messaging. It's particularly important to have a basic understanding of component
transaction monitors, the technology that lies beneath EJB. In Chapters 2 and 3, we'll start
looking at EJB itself and see how enterprise beans are put together. The rest of this book
is devoted to developing enterprise beans for an imaginary business and discussing
advanced issues.

It is assumed that you're already familiar with Java; if you're not, Exploring Java™ by
Patrick Niemeyer and Josh Peck is an excellent introduction. This book also assumes that

Copyright (c) 2001 O'Reilly & Associates

you're conversant in the JDBC API, or at least SQL. If you're not familiar with JDBC, see
Database Programming with JDBC™ and Java™, 2™ Edition, by George Reese.

One of Java's most important features is platform independence. Since it was first
released, Java has been marketed as “write once, run anywhere.” While the hype has got-
ten alittle heavy-handed at times, code written with Sun’s Java programming language is
remarkably platform independent. Enterprise JavaBeansisn't just platform independent—
it's also implementation independent. If you’ ve worked with JDBC, you know alittle about
what this means. Not only can the JDBC API run on a Windows machine or on a Unix
machine, it can also access relational databases of many different vendors (DB2, Oracle,
Sybase, SQL Server, etc.) by using different JDBC drivers. You don’t have to code to a
particular database implementation; just change JDBC drivers and you change databases.
It's the same with Enterprise JavaBeans. Ideally, an Enterprise JavaBeans component, an
enterprise bean, can run in any application server that implements the Enterprise
JavaBeans (EJB) specification.' This means that you can develop and deploy your EJB
business system in one server, such as Orion , and later move it to a different EJB server,
such as Pramati, BEA’s WebLogic, IBM’s WebSphere, or open source projects like
OpenEJB, JONAS, and JBoss. Implementation independence means that your business
components are not dependent on the brand of server, which means there are more
options before you begin development, during development, and after deployment.

Setting the Stage

Before defining Enterprise JavaBeans more precisely, let’s set the stage by discussing a
number of important concepts: distributed objects, business objects, and component
transaction monitors and asynchronous messaging.

Distributed Objects

Distributed computing allows a business system to be more accessible. Distributed sys-
tems allow parts of the system to be located on separate computers, possibly in many dif-
ferent locations, where they make the most sense. In other words, distributed computing
allows business logic and data to be reached from remote locations. Customers, business
partners, and other remote parties can use a business system at any time from almost any-
where. The most recent development in distributed computing is distributed objects. Dis-

1 Provided that the bean components and EJB servers comply with the specification and no
proprietary functionality is used in development.

Copyright (c) 2001 O'Reilly & Associates

tributed object technologies such as Java RMI, CORBA, and Microsoft's .NET allow
objects running on one machine to be used by client applications on different computers.

Distributed objects evolved from alegacy form of three-tier architecture, which is used in
TP monitor systems such as IBM’s CICS or BEA's TUXEDO. These systems separate the
presentation, business logic, and database into three distinct tiers (or layers). In the past,
these legacy systems were usually composed of a “green screen” or dumb terminals for
the presentation tier (first tier), COBOL or PL/1 applications on the middle tier (second
tier), and some sort of database, such as DB2, as the backend (third tier). The introduction
of distributed objects in recent years has given rise to a new form of three-tier
architecture. Distributed object technologies make it possible to replace the procedural
COBOL and PL/1 applications on the middle tier with business objects. A three-tier dis-
tributed business object architecture might have a sophisticated graphical or web based
interface, business objects on the middle tier, and a relational or some other database on
the backend. More complex architectures are often used in which there are many tiers:
different objects reside on different servers and interact to get the job done. Creating
these n- tier architectures with Enterprise JavaBeansisrelatively easy.

Server-Side Components

Object-oriented languages, such as Java, C++, and Smalltalk, are used to write software
that isflexible, extensible, and reusable—the three axioms of object-oriented development.
In business systems, object-oriented languages are used to improve development of
GUIs, to simplify accessto data, and to encapsul ate the business logic. The encapsulation
of business logic into business objects has become is a fairly recent focus in the infor-
mation technology industry. Business is fluid, which means that a business's products,
processes, and objectives evolve over time. If the software that models the business can
be encapsulated into business objects, it becomes flexible, extensible, and reusable, and
therefore evolves as the business evolves.

A server-side component model may define an architecture for developing distributed
business objects. They combine the accessibility of distributed object systems with the
fluidity of objectified business logic. Server-side component models are used on the
middle-tier application servers, which manage the components at runtime and make them
available to remote clients. They provide a baseline of functionality that makes it easy to
develop distributed business objects and assembl e them into business solutions.

Server-side components can also be used to model other aspects of a business system,

such as presentation and routing. The Java Servlet for example is a server-side
component that is used to generate HTML and XML data for presentation layer of a
three-tier architecture. The EJB 2.0 message-driven beans, which are discussed later, are a

Copyright (c) 2001 O'Reilly & Associates

server-side components that is used for routing asynchronous messages from one source
to another.

Server-side components, like other components, can be bought and sold as independent
pieces of executable software. They conform to a standard component model and can be
executed without direct modification in a server that supports that component model.
Server-side component models often support attribute-based programming, which allows
the runtime behavior of the component to be modified when it is deployed, without having
to change the programming code in the component. Depending on the component model,
the server administrator can declare a server-side component’ s transactional, security, and
even persistence behavior by setting these attributes to specific values.

As an organization's services, products and operating procedures evolve, server-side
components can be reassembled, modified, and extended so that the business system
reflects those changes. Imagine a business system as a collection of server-side
components that model concepts like customers, products, reservations, and warehouses.
Each component islike aLego block that can be combined with other components to build

abusiness solution. Products can be stored in the warehouse or delivered to a customer;

acustomer can make areservation or purchase a product. Y ou can assemble components,
take them apart, use them in different combinations, and change their definitions. A
business system based on server-side components is fluid because it is objectified, and it

is accessible because the components can be distributed.

Component Transaction Monitors

A new breed of software called application servers has recently evolved to manage the
complexities associated with developing business systems in today’s Internet world. An
application server is often made up of some combination of several different technologies,
including web servers, ORBs, MOM (message-oriented middleware), databases, and so
forth. An application server can also focus on one technology, such as distributed
objects. Application servers that are based on distributed objects vary in sophistication.
The simplest facilitate connectivity between the client applications and the distributed
objects and are called object request brokers (ORBs). ORBs alow client applications to
locate and use distributed objects easily. ORBs, however, have frequently proven to be
inadeguate in high-volume transactional environments. ORBs provide a communication
backbone for distributed objects, but they fail to provide the kind of robust infrastructure
that is needed to handle larger user populations and mission-critical work. In addition,
ORBs provide a fairly crude server-side component model that places the burden of
handling transactions, concurrency, persistence, and other system-level considerations
on the shoulders of the application developer. These services are not automatically

Copyright (c) 2001 O'Reilly & Associates

supported in an ORB. Application developers must explicitly access these services (if
they are available) or, in some cases, devel op them from scratch.

Early in 1999, Anne Manes? coined the term component transaction monitor (CTM) to
describe the most sophisticated distributed object application servers. CTMs evolved asa
hybrid of traditional TP monitors and ORB technologies. They implement robust server-
side component models that make it easier for developers to create, use, and deploy
business systems. CTMs provide an infrastructure that can automatically manage
transactions, object distribution, concurrency, security, persistence, and resource
management. They are capable of handling huge user populations and mission-critical
work, but also provide value to smaller systems because they are easy to use. CTMs are
the ultimate application server. Other terms for these kinds of technology include object
transaction monitor (OTM), component transaction server, distributed component server,
COMware, and so forth. This book uses the term “component transaction monitor”
because it embraces the three key characteristics of this technology: the use of a
component model, the focus on transactional management, and the resource and service
management typically associated with monitors.

Enter prise JavaBeans. Defined

Sun Microsystems' definition of Enterprise JavaBeansis:

The Enterprise JavaBeans architecture is a component architecture for the development
and deployment of component-based distributed business applications. Applications
written using the Enterprise JavaBeans architecture are scalable, transactional, and multi-
user secure. These applications may be written once, and then deployed on any server
platform that supports the Enterprise JavaBeans specification.

Wow! Now that’s a mouthful and not atypical of how Sun defines many of its Java tech-
nologies—have you ever read the definition of the Java language itself? It s about twice
aslong. Thisbook offers ashorter definition:

2 At the time that Ms. Manes coined the term she worked for the Patricia Seybold Group under her
maiden name, Anne Thomas. Ms. Manes is now the Directory of Business Strategy for Sun
Microsystems, Sun Software division.

3 Sun Microsystems Enterprise JavaBeans™ Specification, v2.0, Copyright 2001 by Sun
Microsystems, Inc.

Copyright (c) 2001 O'Reilly & Associates

Enterprise JavaBeans is a standard server-side component model for component transac-
tion monitors.

We have aready set the stage for this definition by briefly defining the terms distributed
objects, server-side components, and component transaction monitors. To provide you
with a complete and solid foundation for learning about Enterprise JavaBeans, this chap-
ter will now expand on these definitions.

If you already have a clear understanding of distributed objects, transaction monitors,
CTMs, and asynchronous messaging feel free to skip the rest of this chapter an move on
to chapter 2.

Distributed Object Architectures

EJB is a component model for component transaction monitors, which are based on dis-
tributed object technologies. Therefore, to understand EJB you need to understand how
distributed objects work. Distributed object systems are the foundation for modern three-
tier architectures. In athree-tier architecture, as shown in Figure 1-1, the presentation logic
resides on the client (first tier), the business logic on the middle tier (second tier), and
other resources, such as the database, reside on the backend (third tier).

[FGURE]
Figure 1-1: Three-tier architecture

All distributed object protocols are built on the same basic architecture, which is designed
to make an object on one computer look like it's residing on a different computer. Dis-
tributed object architectures are based on a network communication layer that is really
very simple. Essentially, there are three parts to this architecture: the business object, the
skeleton, and the stub.

The business object is the business object that resides on the middle tier. It's an instance
of an object that models the state and business logic of some real-world concept, like
person, order, account. Every business object class has matching stub and skeleton
classes built specifically for that type of business object. So, for example, a distributed
business object called Person would have matching Person_Stub and
Per son_Skel et on classes. As shown in Figure 1-3, the business object and skeleton
reside on the middletier, and the stub resides on the client.

The stub and the skeleton are responsible for making the business object, which lives on
the middle tier, look asif it is running locally on the client machine. This is accomplished

Copyright (c) 2001 O'Reilly & Associates

through some kind of remote method invocation (RMI) protocol. An RMI protocol is
used to communicate method invocations over a network. CORBA, Java RMI, and
Microsoft .NET all use their own RMI protocol.* Every instance of the business object on
the middle tier is wrapped by an instance of its matching skeleton class. The skeleton is
set up on a port and |IP address and listens for requests from the stub, which resides on
the client machine and is connected via the network to the skeleton. The stub acts as the
business object’ s surrogate on the client and is responsible for communicating requests
from the client to the business object through the skeleton. Figure 1-3 illustrates the
process of communicating a method invocation from the client to the server object and
back. The stub and the skeleton hide the communication specifics of the RMI protocol
from the client and the implementation class, respectively.

[FGURE]
Figure 1-2: RMI loop

The business object implements a public interface that declares its business methods. The
stub implements the same interface as the business object, but the stub’s methods do not
contain business logic. Instead, the business methods on the stub implement whatever
networking operations are required to forward the request to the business object and
receive the results. When a client invokes a business method on the stub, the request is
communicated over the network by streaming the name of the method invoked, and the
values passed in as parameters, to the skeleton. When the skeleton receives the incoming
stream, it parses the stream to discover which method is requested, and then invokes the
corresponding business method on the business object. Any value that is returned from
the method invoked on the business object is streamed back to the stub by the skeleton.
The stub then returns the value to the client application as if it had processed the
businesslogic locally.

Rolling Your Own Distributed Object

The best way to illustrate how distributed objects work isto show how you can implement
adistributed object yourself, with your own distributed object protocol. Thiswill give you
some appreciation for what a true distributed object protocol like CORBA does. Actual
distributed object systems such as DCOM, CORBA, and Java RMI are, however, much
more complex and robust than the simple example we will develop here. The distributed
object system we develop in this chapter is only illustrative; it is not a real technology,

4 The acronym RMI isn't specific to Java RMI. This section uses the term RMI to describe distributed
object protocols in general. Java RMI is the Java language version of a distributed object protocol.

Copyright (c) 2001 O'Reilly & Associates

nor is it part of Enterprise JavaBeans. The purpose is to provide you with some
understanding of how a more sophisticated distributed object system works.

Here' s avery simple distributed business object called Per sonSer ver that implements
the Per son interface. The Per son interface captures the concept of a person business
object. It hastwo business methods: get Age() and get Name() . In area application,
we would probably define many more behaviorsfor the Per son business object, but two
methods are enough for this example:

public interface Person {
public int getAge() throws Throwabl e;
public Sring get Nane() throws Throwabl e;

}

The implementation of this interface, Per sonSer ver, doesn’t contain anything at all
surprising. It definesthe business logic and state for aPer son:

public class PersonServer inpl enents Person {
int age;
Sring nang;

publ i ¢ PersonServer (Sring nane, int age){
this.age = age;
thi s. nane = nang;

}

public int getAge(){
return age;

}

public Sring get Nane(){
return nane;

}

}

Now we need some way to makethe Per sonSer ver available to aremote client. That's
the job of the Person_Skel eton and Person_St ub. The Per son interface
describes the concept of a person independent of implementation. Both the Per son-
Ser ver and the Per son_St ub implement the Per son interface because they are both
expected to support the concept of a person. The Per sonServer implements the
interface to provide the actual business logic and state; the Per son_St ub implements
the interface so that it can look like a Per son business object on the client and relay
requests back to the skeleton, which in turn sends them to the object itself. Here’'s what
the stub looks like:

inport java.io.jectQuitputStream
inport java.io.yjectlnputSXream

Copyright (c) 2001 O'Reilly & Associates

inport java. net. Socket;

public class Person_ Sub inplenents Person {
Socket socket ;

public Person Sub() throws Throwabl e {
/* Qreate a network connection to the skel eton.
Wse "l ocal host" or the |P Address of the skel et on
if it's onadfferent nachine. */
socket = new Socket ("1 ocal host", 9000) ;
}
public int getAge() throws Throwabl e {
// Wen this nethod is i nvoked, streamthe nethod nane to the
/1 skel eton.
oj ect Qut put S reamout S ream =
new (bj ect Qut put S r eanf{socket . get Qut put Sreant)) ;
out Sreamw iteCj ect ("age");
out Sreamfl ush();
(oj ect I nput S reaminS ream=
new (oj ect | nput S r ean{socket . get | nput S reant));
return inSreamreadint();
}
public Sring get Nane() throws Throwabl e {
/1 V¥en this nethod is invoked, streamthe nethod nane to the
/1 skel eton.
(hj ect Qut put St ream out Sream=
new Cbj ect Qut put St r eang socket . get Qut put Sreant)) ;
out Sreamw itej ect ("nane");
out Sreamfl ush();
(oj ect | nput S reaminS ream=
new (bj ect | nput S r ean{ socket . get I nput Sreang));
return (Sring)inSreamreadject();

}

When a method is invoked on the Person_St ub, a String token is created and
streamed to the skeleton. The token identifies the method that was invoked on the stub.
The skeleton parses the method-identifying token, invokes the corresponding method on
the business object, and streams back the result. When the stub reads the reply from the
skeleton, it parses the value and returns it to the client. From the client’s perspective, the
stub processed the request locally. Now let’ slook at the skeleton:

inport java.io.(ojectQutput Xream
inport java.io.yjectlnputStream
inport java. net. Socket ;

Copyright (c) 2001 O'Reilly & Associates

inport java. net. Server Socket ;

public class Person_Skel eton extends Thread {
Per sonServer nyServer;

publi ¢ Person_Skel et on(Per sonSer ver server){
Il Get a reference to the business object that this skel eton waps.
this.nyServer = server;
}
public void run(){
try {
// Qeate a server socket on port 9000.
Server Socket server Socket = new Server Socket (9000) ;
/1 Vit for and obtain a socket connection from st ub.
Socket socket = server Socket . accept () ;
vhil e (socket !'= null){
/]l Greate an input streamto recei ve requests fromstub.
(oj ect I nput S reaminS ream=
new C(bj ect | nput & r eanf{socket . get | nput S reant)) ;
/1 Read next nethod request fromstub. Bl ock until request is
/1 sent.
Sring nethod = (Sring)i nSreamreadject();
/1 Bval uate the type of nethod request ed.
if (nethod. equal s("age")){
/1 I'nvoke busi ness net hod on server obj ect.
int age = nyServer. get Age();
/]l Qreate an output streamto send return val ues back to
/1 stub.
(bj ect Qut put St reamout S ream =
new (bj ect Qut put St r eang socket . get Qut put S reant)) ;
/1 Send results back to stub.
out Sreamw i tel nt (age);
out Sreamfl ush();
} el se if(nethod. equal s("nane")){
/1 I'nvoke busi ness net hod on server obj ect.
Sring nane = nyServer. get Nane();
/]l Qreate an output streamto send return val ues back to
/1 the stub.
(pj ect Qut put S reamout Sream=
new (hj ect Qut put St r eanf socket . get Qut put Sreant)) ;
/1 Send results back to stub.
out Sreamw it e(j ect (nane) ;
out Sreamfl ush();

Copyright (c) 2001 O'Reilly & Associates

}
} catch(Throwabl e t) {t.printSackTrace(); Systemexit(0); }

}

public static void nain(Sring args []){
/1 btain a uni que i nstance Person.
Per sonSer ver person = new Per sonServer ("R chard", 36);
Person_Skel et on skel = new Per son_Skel et on(person);
skel . start();

}

ThePer son_Skel et on routes requests received from the stub to the business object,
Per sonSer ver . Essentially, the Per son_Skel et on spends all its time waiting for
the stub to stream it arequest. Once arequest isreceived, it is parsed and delegated to the
corresponding method on the Per sonSer ver. The return value from the business
object isthen streamed back to the stub, which returnsit asif it was processed locally.

Now that we've created all the machinery, let's look at a simple client that makes use of
the Per son:

public class Persondient {
public static void nmain(Sring [] args){

try {
Per son person = new Person_Stub();
int age = person. get Age();
Sring nane = person. get Nane() ;
Systemout. printl n(nane+" is "+age+' years ol d");

} catch(Throwabl e t) {t.printSackTrace();}

}

This client application shows how the stub is used on the client. Except for the instantia-
tion of the Per son__St ub at the beginning, the client is unaware that the Per son busi-
ness object is actually a network proxy to the real business object on the middle tier. In
Figure 1-5, the RMI loop diagram is changed to represent the RMI process as applied to
our code.

[FGURE]
Figure 1-3: RMI Loop with Person business object
Asyou examine Figure 1-5, notice how the RMI loop was implemented by our distributed
Per son object. RMI is the basis of distributed object systems and is responsible for

making distributed objects location transparent. Location transparency means that a
server object’s actual location—usually on the middle tier—is unknown and unimportant

Copyright (c) 2001 O'Reilly & Associates

to the client using it. In this example, the client could be located on the same machine or
on adifferent machine very far away, but the client’s interaction with the business object
isthe same. One of the biggest benefits of distributed object systemsislocation transpar-
ency. Although transparency is beneficial, you cannot treat distributed objects as local
objectsin your design because of the performance differences. This book will provide you
with good distributed object design strategies that take advantage of transparency while
maximizing the distributed system’ s performance.

When this book talks about the stub on the client, we will often refer to it as a remote ref-
erence to the business object. This allows us to talk more directly about the business
object and its representation on the client.

Distributed object protocols such as CORBA, DCOM, and Java RMI provide a lot more
infrastructure for distributed objects than the Per son example. Most implementations of
distributed object protocols provide utilities that automatically generate the appropriate
stubs and skeletons for business objects. This eliminates custom development of these
constructs and allows alot more functionality to beincluded in the stub and skeleton.

Even with automatic generation of stubs and skeletons, the Per son example hardly
scratches the surface of a sophisticated distributed object protocol. Real world protocols
like Java RMI and CORBA 110P provide error and exception handling, parameter passing,
and other services like the passing of transaction and security context. In addition,
distributed object protocols support much more sophisticated mechanisms for connecting
the stub to the skeleton; the direct stub-to-skeleton connection in the Per son example is
fairly primitive.

Real distributed object protocols, like CORBA, also provide an Object Request Broker
(ORB), which allows clients to locate and communicate with distributed objects across the
network. ORBs are the communication backbone, the switchboard, for distributed objects.
In addition to handling communications, ORBs generally use a naming system for locating
objects and many other features such as reference passing, distributed garbage collection,
and resource management. However, ORBs are limited to facilitating communication
between clients and distributed business objects. While they may support services like
transaction management and security, use of these servicesis not automatic. With ORBs,
most of the responsibility for creating system-level functionality or incorporating services
falls on the shoulders of the application developer.

Copyright (c) 2001 O'Reilly & Associates

Component Models

The term “component model” has many different interpretations. Enterprise JavaBeans
specifies a server-side component model. Using a set of classes and interfaces from the
j avax. ej b package, developers can create, assemble, and deploy components that
conform to the EJB specification.

The original JavaBeans™, is also a component model, but it's not a server-side
component model like EJB. In fact, other than sharing the name “JavaBeans,” these two
component models are completely unrelated. In the past, alot of the literature had referred
to EJB as an extension of the original JavaBeans, but this is a misrepresentation. Other
than the shared name, and the fact that they are both Java component models, the two
APIs serve very different purposes. EJB does not extend or use the original JavaBeans
component model.

JavaBeansisintended to be used for intraprocess purposes, while EJB is designed to be
used for interprocess components. In other words, the original JavaBeans was not
intended for distributed components. JavaBeans can be used to solve a variety of
problems, but is primarily used to build clients by assembling visual (GUI) and nonvisual
widgets. It's an excellent conponent model, possibly the best component model for
intraprocess development ever devised, but it's not a server-side component model. EJB
is designed to address issues involved with managing distributed business objectsin a
three-tier architecture.

Given that JavaBeans and Enterprise JavaBeans are completely different, why are they
both called component models? In this context, a component model defines a set of
contracts between the component developer and the system that hosts the component.
The contracts express how a component should be developed and packaged. Once a
component is defined, it becomes an independent piece of software that can be
distributed and used in other applications. A component is developed for a specific
purpose but not a specific application. In the original JavaBeans, a component might be a
push button or spreadsheet that can be used in any GUI application according to the rules
specified in the original JavaBeans component model. In EJB, a component might be a
customer business object that can be deployed in any EJB server and used to develop
any business application that needs a customer business object. Other types of Java
component modelsinclude Servlets, JSPs, and Applets.

Copyright (c) 2001 O'Reilly & Associates

Component Transaction Monitors

The CTM industry grew out of both the ORB and the transaction processing monitor (TP
monitor) industries. The CTM isreally a hybrid of these two technologies that provides a
powerful, robust distributed object platform. To better understand what a CTM is, we will
examine the strengths and weakness of TP monitors and ORBs.

TP Monitors

Transaction processing monitors have been evolving for about 30 years (CICS was intro-
duced in 1968) and have become powerful, high-speed server platforms for mission-critical
applications. Some TP products like CICS and TUXEDO may be familiar to you. TP
monitors are operating systems for business applications written in languages like
COBOL. It may seem strange to call a TP monitor an “operating system,” but because they
control an application’s entire environment, it’s a fitting description. TP monitor systems
automatically manage the entire environment that a business application runsin, including
transactions, resource management, and fault tolerance. The business applications that
run in TP monitors are written in procedural programming languages (e.g. COBOL and C)
that are often accessed through network messaging or remote procedure calls (RPC).
Messaging allows a client to send a message to a TP monitor requesting that some
application be run with certain parameters. It’s similar in concept to the Java event model.
Messaging can be synchronous or asynchronous, meaning that the sender may or may
not be required to wait for aresponse. RPC, which is the ancestor of RMI, is a distributed
mechanism that allows clients to invoke procedures on applications in a TP monitor as if
the procedure was executed locally. The primary difference between RPC and RMI is that
RPC is used for procedure-based applications and RMI is used for distributed object
systems. With RMI, methods can be invoked on a specific object identity, a specific
business entity. In RPC, a client can call procedures on a specific type of application, but
thereis no concept of object identity. RMI is object oriented; RPC is procedural.

TP monitors have been around for along time, so the technology behind them is as solid
as arock; that is why they are used in many mission-critical systems today. But TP moni-
tors are not object oriented. Instead, they work with procedural code that can perform
complex tasks but has no sense of identity. Accessing a TP monitor through RPC is like
executing static methods; there’s no such thing as a unique object. In addition, because
TP monitors are based on procedural applications, and not objects, the businesslogicin a
TP monitor is not as flexible, extensible, or reusable as business objects in a distributed
object system.

Copyright (c) 2001 O'Reilly & Associates

Object Request Brokers

Distributed object systems allow unique objects that have state and identity to be
accessed across a network. Distributed object technologies like CORBA and Java RMI
grew out of RPC with one significant difference: when you invoke a distributed object
method, it's on an object instance, not an application procedure. Distributed objects are
usually deployed on some kind of ORB, which is responsible for helping client
applications find distributed objects easily.

ORBs, however, do not define an “operating system” for distributed objects. They are
simply communications backbones that are used to access and interact with unique
remote objects. When you develop a distributed object application using an ORB, all the
responsibility for concurrency, transactions, resource management, and fault tolerance
falls on your shoulders. These services may be supported by an ORB, but the application
developer is responsible for incorporating them into the business objects. In an ORB,
there is no concept of an “operating system,” where system-level functionality is handled
automatically. The lack of implicit system-level infrastructure places an enormous burden
on the application developer. Developing the infrastructure required to handle
concurrency, transactions, security, persistence, and everything else needed to support
large user populations is a Herculean task that few corporate development teams are
equipped to accomplish.

CTMs:. TheHybrid of ORBsand TP Monitors

As the advantages of distributed objects became apparent, the number of systems
deployed using ORBs increased very quickly. ORBs support distributed objects by
employing asomewhat crude server-side component model that allows distributed objects
to be connected to a communication backbone, but don’t implicitly support transactions,
security, persistence, and resource management. These services must be explicitly
accessed through APIs by the distributed object, resulting in more complexity and,
frequently, more development problems. In addition, resource management strategies
such as instance swapping, resource pooling, and activation may not be supported at all.
These types of strategies make it possible for a distributed object system to scale, improv-
ing performance and throughput and reducing latency. Without automatic support for
resource management, application developers must implement homegrown resource
management solutions, which requires a very sophisticated understanding of distributed
object systems. ORBs fail to address the complexities of managing a component in a high-
volume, mission-critical environment, an areawhere TP monitors have always excelled.

Copyright (c) 2001 O'Reilly & Associates

With three decades of TP monitor experience, it wasn't long before companies like IBM
and BEA began developing a hybrid of ORBs and TP monitor systems, which we refer to
as component transaction monitors. These types of application servers combine the fluid-
ity and accessibility of distributed object systems based on ORBs with the robust
“operating system” of a TP monitor. CTMs provide a comprehensive environment for
server- side components by managing concurrency, transactions, object distribution, load
balancing, security, and resource management automatically. While application
developers still need to be aware of these facilities, they don’t have to explicitly implement
them when usingaCTM.

The basic features of aCTM are distributed objects, an infrastructure that includes trans-
action management and other services, and a server-side component model. CTMs sup-
port these features in varying degrees; choosing the most robust and feature-rich CTM is
not always as critical as choosing one that best meets your needs. Very large and robust
CTMs can be enormously expensive and may be overkill for smaller projects. CTMs have
come out of several different industries, including the relational database industry, the
application server industry, the web server industry, the CORBA ORB industry, and the
TP monitor industry. Each vendor offers products that reflect their particular area of
expertise. However, when you're getting started, choosing a CTM that supports the
Enterprise JavaBeans component model may be much more important than any particular
feature set. Because Enterprise JavaBeans is implementation independent, choosing an
EJB CTM provides the business system with the flexibility to scale to larger CTMs as
needed. We will discuss the importance of EJB as a standard component model for CTMs
later in this chapter.

Analogiesto Relational Databases

This chapter spent alot of time talking about CTMs because they are essential to the defi-
nition of EJB. The discussion of CTMs s not over, but to make things as clear as possible
before proceeding, we will use relational databases as an analogy for CTMs.

Relational databases provide a simple development environment for application develop-
ers, in combination with a robust infrastructure for data. As an application developer
using arelational database, you might design the table layouts, decide which columns are
primary keys, and define indexes and stored procedures, but you don’t devel op the index-
ing algorithm, the SQL parser, or the cursor management system. These types of system-
level functionality are left to the database vendor; you simply choose the product that
best fits your needs. Application developers are concerned with how business data is
organized, not how the database engine works. It would be waste of resources for an
application developer to write a relational database from scratch when vendors like
Microsoft, Oracle, and others already provide them.

Copyright (c) 2001 O'Reilly & Associates

Distributed business objects, if they are to be effective, require the same system-level
management from CTMs as business data requires from relational databases. System-
level functionality like concurrency, transaction management, and resource management is
necessary if the business system is going to be used for large user populations or mis-
sion-critical work. It is unrealistic and wasteful to expect application developers to rein-
vent this system-level functionality when commercial solutions already exist.

CTMs are to business objects what relational databases are to data. CTMs handle al the
system-level functionality, allowing the application developer to focus on the business
problems. With a CTM, application developers can focus on the design and development
of the business objects without having to waste thousands of hours developing the infra-
structure that the business objectsoperatein.

EJB 2.0: Asynchronous M essaging

An asynchronous messaging system alows two or more applications to exchange
information in the form of messages. A message, in this case, is a self-contained package
of business data and network routing headers. The business data contained in a message
can be anything—depending on the business scenario—and usually contains information
about some business transaction. In enterprise messaging systems, messages inform an
application of some event or occurrence in another system.

Messages are transmitted from one application to another on a network using message-
oriented middleware (MOM). MOM products ensure that messages are properly
distributed among applications. In addition, MOMs usually provide fault tolerance, load
balancing, scalability, and transactional support for enterprises that need to reliably
exchange large quantities of messages.

MOM vendors use different message formats and network protocols for exchanging
messages, but the basic semantics are the same. An API is used to create a message, give
it a payload (application data), assign it routing information, and then send the message.
The same API is used to receive messages produced by other applications.

In al modern enterprise messaging systems, applications exchange messages through

virtual channels called destinations. When sending a message, it's addressed to a
destination, not a specific application. Any application that subscribes or registers an

interest in that destination may receive that message. In this way, the applications that

receive messages and those that send messages are decoupled. Senders and receiversare

not bound to each other in any way and may send and receive messages as they seefit.

Copyright (c) 2001 O'Reilly & Associates

Java M essage Service

Each MOM vendor implements its own networking protocols, routing, and administration
facilities, but the basic semantics of the developer API provided by different MOMs are
the same. It'sthis similarity in APIsthat makes the Java Message Service possible.

The Java Message Service (JMS) is a vendor-agnostic Java APl that can be used with
many different MOM vendors. IMS isvery similar to JDBC in that application developer
reuses the same API to access many different systems. If a vendor provides a compliant
service provider for IMS, then the IMS API can be used to send and receive messages to
that vendor. For example, you can use the same JMS APl to send messages using
Progress’ SonicMQ as you do IBM’sMQSeries.

M essage-Driven Beans

All JMS vendors provide application developers with the same API for sending and
receiving messages, and sometimes they provide a component model for developing
routers that can receive and send messages. These component models, however, are
proprietary and not portable across MOM vendors.

Enterprise JavaBeans 2.0 introduces a new kind of component, called a message-driven
bean, which is akind of standard JMS bean. It can receive and send asynchronous JMS
messages, because it’'s co-located with other kinds of RMI beans (entity and session
beans) it can also interact with RMI components.

Message-driven beans in EJB 2.0 act as an integration point for a EJB application,
allowing other applications to asynchronous messages which can be captured and
processed by an EJB application. Thisisan extremely important feature that will allow EJB
applicationsto better integrate with legacy and other proprietary systems.

Message-driven beans are al so transactional and required all the infrastructure associated
with other RMI based transactional server-side components. Like other RMI based
components, message-driven beans are considered business objects, which full fill an
important role of routing and interpreting requests and coordinating the application of
those requests against other RMI based components, namely enterprise beans. Message-
driven beans are a good fit for the component transaction manager landscape and are an
excellent addition to the Enterprise JavaBeans platform.

Copyright (c) 2001 O'Reilly & Associates

CTMsand Server-Side Component Models

CTMs require that business objects adhere to the server-side component model imple-
mented by the vendor. A good component model is critical to the success of a develop-
ment project because it defines how easily an application developer can write business
objects for the CTM. The component model is a contract that defines the responsibilities
of the CTM and the business objects. With a good component model, a devel oper knows
what to expect from the CTM and the CTM understands how to manage the business
object. Server-side component models are great at describing the responsibilities of the
application developer and CTM vendor.

Server-side component models are based on a specification. As long as the component
adheres to the specification, it can be used by the CTM. The relationship between the
server-side component and the CTM islike the relationship between a CD-ROM and a CD
player. As long as the component (CD-ROM) adheres to the player’s specifications, you
can play it.

A CTM'’s relationship with its component model is also similar to the relationship the
railway system has with trains. The railway system manages the train’s environment, pro-
viding alternate routes for load balancing, multiple tracks for concurrency, and a traffic
control system for managing resources. The railway provides the infrastructure that trains
run on. Similarly, a CTM provides server-side components with the entire infrastructure
needed to support concurrency, transactions, load balancing, etc.

Trains on the railway are like server-side components: they all perform different tasks but
they do so using the same basic design. The train, like a server-side component, focuses
on performing atask, such as moving cars, not managing the environment. For the engi-
neer, the person driving the train, the interface for controlling the train is fairly simple: a
brake and throttle. For the application developer, the interface to the server-side compo-
nent issimilarly limited.

Different CTMs may implement different component models, just as different railways
have different kinds of trains. The differences between the component models vary, like
railway systems having different track widths and different controls, but the fundamental
operations of CTMs are the same. They all ensure that business objects are managed so
that they can support large populations of usersin mission-critical situations. This means
that resources, concurrency, transactions, security, persistence, load balancing, and
distribution of objects can be handled automatically, limiting the application developer to
a simple interface. This allows the application developer to focus on the business logic
instead of the enterpriseinfrastructure.

Copyright (c) 2001 O'Reilly & Associates

Microsoft’'s .NET Framework

Microsoft was the first vendor to ship a CTM. Originally called the Microsoft Transaction
Server (MTYS), it was later renamed COM+. Microsoft’s COM+ is based on the Component
Object Model (COM), originally designed for use on the desktop but eventually pressed
into service as a server-side component model. For distributed access, COM+ clients use
DCOM (Distributed Component Object Model).

When MTS was introduced in 1996, it was exciting because it provided a very
comprehensive environment for business objects. With MTS, application developers
could write COM components without worrying about system-level concerns. Once a
business object was designed to conform to the COM model, MTS (and nhow COM+)
would take care of everything else, including transaction management, concurrency,
resource management—everything!

Recently, COM+ has become part of Microsoft's new .NET Framework. The core
functionality provided by COM+ services remains essentially the same in .NET, but the
way it’'s appears to a developer changes significantly. Rather than writing components as
COM objects, applications written for the .NET Framework are built as managed objects.
All managed objects, and in fact al code written for the .NET Framework, depends on a
Common Language Runtime (CLR). For Java-oriented developers, the CLR is much like a
Java VM, and a managed object is very analogous to an instance of aJavaclass, i.e., to a
Java object.

Although .NET Framework provides many interesting features, as an open standard, it
falls short. The COM+ servicesin the .NET Framework are Microsoft’s proprietary CTM,
which means that using this technology binds you to the Microsoft platform. This may
not be so bad, because .NET promises to work well, and the Microsoft platform is
pervasive. In addition, the .NET Framework’s support for SOAP (Simple Object Access
Protocol) will enable business objects in the NET world to communicate with objects on
any other platform written in any language. This can potentially make business objectsin
.NET universally accessible, afeature that is not easily dismissed.

If, however, your company is expected to deploy server-side components on a non-
Microsoft platform, .NET is not a viable solution. In addition, the COM+ services in the
.NET Framework are focused on stateless components; there’'s no built-in support for
persistent transactional objects. Although stateless components can offer higher
performance, business systems need the kind of flexibility offered by CTMs that include
stateful and persistent components.

Copyright (c) 2001 O'Reilly & Associates

EJB and CORBA CTMs

Until the fall of 1997, non-Microsoft CTMs were pretty much nonexistent.
Promising products from IBM, BEA, and Hitachi were on the drawing board,
while MTS was aready on the market. Although the non-M TS designs were only
designs, they al had one thing in common: they all used CORBA as a distributed
object service.

Most non-Microsoft CTMs were focused on, what was at the time, the more
open standard of CORBA so that they could be deployed on non-Microsoft
platforms and support non-Microsoft clients. CORBA is both language and
platform independent, so CORBA CTM vendors could provide their customers
with more implementation options’. The problem with CORBA CTM designs was
that they all had different server-side component models. In other words, if you
developed a component for one vendor’s CTM, you couldn’t turn around and
use that same component in another vendor's CTM. The component models
weretoo different.

With Microsoft’'s MTS far in the lead by 1997 (it had already been around a
year), CORBA-based CTM vendors needed a competitive advantage. One
problem CTMs faced was a fragmented CORBA market where each vendor's
product was different from the next. A fragmented market wouldn't benefit
anyone, so the CORBA CTM vendors needed a standard to rally around.
Besides the CORBA protocol, the most obvious standard needed was a
component model, which would allow clients and third-party vendors to develop
their business objects to one specification that would work in any CORBA CTM.
Microsoft was, of course, pushing their component model as a standard—which
was attractive because MTS was an actual working product—but Microsoft
didn’t support CORBA. The OMG (Object Management Group), the same people
who developed the CORBA standard, were defining a server-side component
model. This held promise because it was sure to be tailored to CORBA, but the
OMG was slow in developing a standard—at least too slow for the evolving
CTM market’.

5 Recently, the introduction of SOAP (Simple Object Access Protocol) brings into
question the future of the CORBA 11OP protocol (Internet-InterOperability Protocol).
It's obvious that these two protocols are competing to become the standard language-
independent protocol for distributed computing. [1OP has been around for severa years
and is therefore far more mature, but as a late entry SOAP may quickly catch up by
leveraging lessons learned in the development of 11OP.

% Eventually, CORBA’s CTM component model was released and called CCM, for
CORBA Component Model. It has seen lackluster acceptance is general, and was forced
to adopt Enterprise JavaBeans as part of its component model just to be viable and
interesting.

21

In 1997, Sun Microsystems was developing the most promising standard for
server-side components called Enterprise JavaBeans. Sun offered some key
advantages. First, Sun was respected and was known for working with vendors
to define Java-based and vendor-agnostic APIs for common services. Sun had a
habit of adopting the best ideas in the industry and then making the Java
implementation an open standard—usually successfully. The Java database
connectivity API, caled JDBC, was a perfect example. Based largely on
Microsoft’s own ODBC, JDBC offered vendors a more flexible model for plugging
in their own database access drivers. In addition, developers found the JDBC
APl much easier to work with. Sun was doing the same thing in its newer
technologies like the JavaMail™ APl and the Java Naming and Directory
Interface (JNDI). These technologies were till being defined, but the
collaboration among vendors was encouraging and the openness of the APls
was attractive.

Although CORBA offered an open standard, it attempted to standardize very
low-level facilities like security and transactions. Vendors could not justify
rewriting existing products such as TUXEDO and CICS to the CORBA standards.
EJB got around that problem by saying it doesn’t matter how you implement the
low-level services;, all that matters is al the facilities be applied to the
components according to the specification—a much more pal atable solution for
existing and prospective CTM vendors. In addition, the Java language offered
some pretty enticing advantages, not all of them purely technical. First, Javawas
a hot and sexy technology and simply making your product Java-compatible
seemed to boost your exposure in the market. Java also offered some very
attractive technical benefits. Java was more or less platform independent. A
component model defined in the Java language would have definite marketing
and technical benefits.

Asit turned out, Sun had not been idle after it announced Enterprise JavaBeans.
Sun’'s engineers had been working with several leading vendors to define a
flexible and open standard to which vendors could easily adapt their existing
products. This was a tall order because vendors had different kinds of servers
including web servers, database servers, relational database servers, application
servers, and early CTMs. It's likely that no one wanted to sacrifice their
architecture for the common good, but eventually the vendors agreed on a model
that was flexible enough to accommodate different implementations yet solid
enough to support real mission-critical development. In December of 1997, Sun
Microsystems released the first draft specification of Enterprise JavaBeans, EJB
1.0, and vendors have been flocking to the server-side component model ever
since.

Benefits of a Standard Server-Side Component
M odel

So what does it mean to be a standard server-side component model? Quite
simply, it means that you can develop business objects using the Enterprise
JavaBeans (EJB) corrponent model and expect them to work in any CTM that
supports the complete EJB specification. This is a pretty powerful statement
because it largely eliminates the biggest problem faced by potential customers of
CORBA-based CTM products: fear of vendor “lock-in.” With a standard server-
side component model, customers can commit to using an EJB-compliant CTM
with the knowledge that they can migrate to a better CTM if one becomes
available. Obviously, care must be taken when using proprietary extensions
developed by vendors, but this is nothing new. Even in relational database
industry— which has been using the SQL standard for a couple of decades—
optional proprietary extensions abound.

Having a standard server-side component model has benefits beyond
implementation independence. A standard component model provides a vehicle
for growth in the third- party products. If numerous vendors support EJB, then
creating add-on products and component libraries is more attractive to software
vendors. The IT industry has seen this type of cottage industry grow up around
other standards like SQL, where hundreds of add-on products can be purchased
to enhance business systems whose data is stored in SQL-compliant relational
databases. Report generating tools and data warehouse products are typical
examples. The GUI component industry has seen the growth of its own third-
party products. A healthy market for component libraries already exists for GUI
component models like Microsoft's ActiveX and Sun’s original JavaBeans
component models.

There are many examples of third-party product for Enterprise JavaBeans today
Add-on products that provide services to EJB-compliant systems like credit card
processing, legacy database access, and other business services have been
introduced. These types of products make development of EJB systems simpler
and faster than the aternatives, making the EJB component model attractive to
corporate IS and server vendors alike. The industry has market grow for
prepackaged EJB components in several domains including sales, finance,
education, web content management, collaboration and other areas.

Titan Cruises. An Imaginary Business

To make things a little easier, and more fun, we will attempt to discuss al the
concepts in this book in the context of one imaginary business, a cruise line
called Titan. A cruise line makes a particularly interesting example because it
incorporates several different businesses: a cruise has cabins that are similar to

hotel rooms, serves meads like a restaurant, offers various recreational
opportunities, and needs to interact with other travel businesses.

This type of business is a good candidate for a distributed object system
because many of the system’s users are geographically dispersed. Commercial
travel agents, for example, who need to book passage on Titan ships, will need to
access the reservation system. Supporting many—possibly hundreds—of travel
agents requires arobust transactional system to ensure that agents have access
and reservations are completed properly.

Throughout this book we will build a fairly simple slice of Titan's EJB system
that focuses on the process of making areservation for acruise. Thiswill give us
an opportunity to develop enterprise beans like Ship, Cabin, TravelAgent,
ProcessPayment, and so forth. In the process, you will need to create relational
database tables for persisting data used in the example. It is assumed that you
arefamiliar with relational database management systems and that you can create
tables according to the SQL statements provided. EJB can be used with any kind
of database or legacy application, but relational databases seem to be the most
commonly understood database so we have chosen this as the persistence layer.

What' s Next?

In order to devel op business objects using EJB, you have to understand the life
cycle and architecture of EJB components. This means understanding
conceptually how EJB’s components are managed and made available as
distributed objects. Developing an understanding of the EJB architecture is the
focus of the next two chapters.

24

2

Architectura Overview

As you learned in Chapter 1, Enterprise JavaBeans is a component model for
component transaction monitors, the most advanced type of business
application server available today. To effectively use Enterprise JavaBeans, you
need to understand the EJB architecture, so this book includes two chapters on
the subject. This chapter explores the core of EJB: how enterprise beans are
distributed as business objects. Chapter 3 explores the services and resource
management techniques supported by EJB.

To be truly versatile, the EJB component design had to be smart. For application
developers, assembling enterprise beans is simple, requiring little or no expertise
in the complex system-level issues that often plague three-tier development
efforts. While EJB makes it easy for application developers, it also provides
system developers (the people who write EJB servers) with a great deal of
flexibility in how they support the EJB specification.

The similarities among different component transaction monitors (CTMs) allow
the EJB abstraction to be a standard component model for all of them. Each
vendor’'s CTM is implemented differently, but they all support the same primary
services and similar resource management techniques. The primary services and
resource management techniques are covered in more detail in Chapter 3, but
some of the infrastructure for supporting them is addressed in this chapter.

Copyright (c) 2001 O'Reilly & Associates 1

The Enterprise Bean Component

Enterprise JavaBeans server-side components come in three fundamentally
different types. entity, session, and message-driven beans Both session and
entity beans are RMI based server-side components that are accessed using
distributed object protocols. The message-driven bean, which is new to EJB 2.0,
is an asynchronous server-side component that responds to JMS asyncrhonous

messages.

A good rule of thumb is that entity beans model business concepts that can be
expressed as nouns. For example, an entity bean might represent a customer, a
piece of equipment, an item in inventory, or even a place. In other words, entity
beans model real-world objects; these objects are usually persistent records in
some kind of database. Our hypothetical cruise line will need entity beans that
represent cabins, customers, ships, etc.

Session beans are an extension of the client application and are responsible for
managing processes or tasks. A Ship bean provides methods for doing things
directly to a ship but doesn’t say anything about the context under which those
actions are taken. Booking passengers on the ship requires that we use a Ship
bean, but also requires alot of things that have nothing to do with the Ship itself:
we'll need to know about passengers, ticket rates, schedules, and so on. A
session bean is responsible for this kind of coordination. Session beans tend to
manage particular kinds of activities, for example, the act of making areservation.
They have alot to do with the relationships between different enterprise beans.
A Travel Agent session bean, for example, might make use of a Cruise, a Cabin,
and a Customer—all entity beans—to make a reservation.

Similarly, the message-driven beans in EJB 2.0 are responsible for coordinating
tasks involving other session and entity beans. The major difference between a
message-driven bean and a session bean is how they are accessed. While a
session bean provides a remote interface that defines which methods can be
invoked, a message-driven bean does not. Instead, the message driven bean
subscribes or listens for specific asynchronous messages to which it responds
by processing the message and managing the activities of other beans in
response