
 
 

 

  



Batch Script 

 

i 

 

 

About this Tutorial 

Batch Scripts are stored in simple text files containing lines with commands that get 

executed in sequence, one after the other. Scripting is a way by which one can alleviate 

this necessity by automating these command sequences in order to make one’s life at the 

shell easier and more productive.  

This tutorial discusses the basic functionalities of Batch Script along with relevant 

examples for easy understanding. 

 

Audience 

This tutorial has been prepared for beginners to understand the basic concepts of Batch 

Script.  

 

Prerequisites 

A reasonable knowledge of computer programming and concepts such as variables, 

commands, syntax, etc. is desired. 

 

Copyright & Disclaimer 

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 

  

mailto:contact@tutorialspoint.com


Batch Script 

 

ii 

 

Table of Contents 

About this Tutorial ................................................................................................................................... i 

Audience .................................................................................................................................................. i 

Prerequisites ............................................................................................................................................ i 

Copyright & Disclaimer ............................................................................................................................. i 

Table of Contents .................................................................................................................................... ii 

1. BATCH SCRIPT – OVERVIEW ................................................................................................. 1 

2. BATCH SCRIPT – ENVIRONMENT ......................................................................................... 2 

Writing and Executing ............................................................................................................................. 2 

Environment Variables ............................................................................................................................ 4 

3. BATCH SCRIPT – COMMANDS .............................................................................................. 5 

ver ........................................................................................................................................................... 5 

ASSOC ..................................................................................................................................................... 5 

CD ........................................................................................................................................................... 6 

CLS .......................................................................................................................................................... 7 

Copy ........................................................................................................................................................ 7 

DEL .......................................................................................................................................................... 8 

DIR .......................................................................................................................................................... 9 

DATE ....................................................................................................................................................... 9 

ECHO ..................................................................................................................................................... 10 

EXIT ....................................................................................................................................................... 11 

MD ........................................................................................................................................................ 11 

MOVE .................................................................................................................................................... 12 

PATH ..................................................................................................................................................... 12 

PAUSE ................................................................................................................................................... 13 

PROMPT ................................................................................................................................................ 13 



Batch Script 

 

iii 

 

RD ......................................................................................................................................................... 14 

REN ....................................................................................................................................................... 14 

REM ...................................................................................................................................................... 15 

START .................................................................................................................................................... 15 

TIME ...................................................................................................................................................... 15 

TYPE ...................................................................................................................................................... 16 

VOL ....................................................................................................................................................... 16 

ATTRIB .................................................................................................................................................. 17 

CHKDSK ................................................................................................................................................. 18 

CHOICE .................................................................................................................................................. 18 

CMD ...................................................................................................................................................... 19 

COMP .................................................................................................................................................... 19 

CONVERT ............................................................................................................................................... 19 

DRIVERQUERY ....................................................................................................................................... 20 

EXPAND ................................................................................................................................................. 21 

FIND ...................................................................................................................................................... 21 

FORMAT ................................................................................................................................................ 21 

HELP ...................................................................................................................................................... 22 

IPCONFIG .............................................................................................................................................. 23 

LABEL .................................................................................................................................................... 24 

MORE .................................................................................................................................................... 24 

NET ....................................................................................................................................................... 25 

PING ...................................................................................................................................................... 27 

SHUTDOWN .......................................................................................................................................... 27 

SORT ..................................................................................................................................................... 28 

SUBST .................................................................................................................................................... 28 

SYSTEMINFO ......................................................................................................................................... 28 



Batch Script 

 

iv 

 

TASKKILL ............................................................................................................................................... 29 

TASKLIST ............................................................................................................................................... 30 

XCOPY ................................................................................................................................................... 30 

TREE ...................................................................................................................................................... 30 

FC .......................................................................................................................................................... 31 

DISKPART .............................................................................................................................................. 31 

TITLE ..................................................................................................................................................... 32 

SET ........................................................................................................................................................ 32 

4. BATCH SCRIPT – FILES ........................................................................................................ 33 

Creating Batch Files ............................................................................................................................... 33 

Saving Batch Files .................................................................................................................................. 33 

Executing Batch Files ............................................................................................................................. 34 

Modifying Batch Files ............................................................................................................................ 35 

5. BATCH SCRIPT – SYNTAX .................................................................................................... 36 

6. BATCH SCRIPT – VARIABLES ............................................................................................... 37 

Command Line Arguments .................................................................................................................... 37 

Set Command ........................................................................................................................................ 38 

Working with Numeric Values ............................................................................................................... 38 

Local vs Global Variables ....................................................................................................................... 39 

Working with Environment Variables .................................................................................................... 40 

7. BATCH SCRIPT – COMMENTS ............................................................................................ 41 

Comments Using the Rem Statement .................................................................................................... 41 

Comments Using the :: Statement ......................................................................................................... 42 

8. BATCH SCRIPT – STRINGS .................................................................................................. 44 

Create String ......................................................................................................................................... 44 

Empty String .......................................................................................................................................... 44 



Batch Script 

 

v 

 

String Interpolation ............................................................................................................................... 45 

String Concatenation ............................................................................................................................. 45 

String length .......................................................................................................................................... 46 

toInt ...................................................................................................................................................... 46 

Align Right ............................................................................................................................................. 47 

Left String .............................................................................................................................................. 48 

Mid String ............................................................................................................................................. 48 

Remove ................................................................................................................................................. 49 

Remove Both Ends ................................................................................................................................ 49 

Remove All Spaces ................................................................................................................................ 50 

Replace a String ..................................................................................................................................... 50 

Right String ........................................................................................................................................... 51 

9. BATCH SCRIPT – ARRAYS .................................................................................................... 52 

Creating an Array .................................................................................................................................. 52 

Accessing Arrays.................................................................................................................................... 52 

Modifying an Array ............................................................................................................................... 53 

Iterating Over an Array ......................................................................................................................... 54 

Length of an Array ................................................................................................................................. 54 

Creating Structures in Arrays ................................................................................................................. 55 

10. BATCH SCRIPT – DECISION MAKING .................................................................................. 57 

If Statement .......................................................................................................................................... 57 

Checking Variables ................................................................................................................................ 58 

Checking Command Line Arguments ..................................................................................................... 59 

If/else Statement .................................................................................................................................. 60 

Checking Variables ................................................................................................................................ 60 

if defined ............................................................................................................................................... 62 

if exists .................................................................................................................................................. 63 



Batch Script 

 

vi 

 

Nested If Statements ............................................................................................................................. 63 

If errorlevel ........................................................................................................................................... 64 

Goto Statement..................................................................................................................................... 64 

11. BATCH SCRIPT – OPERATORS ............................................................................................. 66 

Arithmetic Operators ............................................................................................................................ 66 

Relational Operators ............................................................................................................................. 67 

Logical Operators .................................................................................................................................. 68 

Assignment Operators........................................................................................................................... 69 

Bitwise Operators ................................................................................................................................. 71 

Redirection ............................................................................................................................................ 72 

12. BATCH SCRIPT – DATE AND TIME ...................................................................................... 76 

DATE ..................................................................................................................................................... 76 

TIME ...................................................................................................................................................... 76 

13. BATCH SCRIPT – INPUT / OUTPUT ..................................................................................... 78 

14. BATCH SCRIPT – RETURN CODE ......................................................................................... 79 

Error Level ............................................................................................................................................. 79 

Loops .................................................................................................................................................... 81 

W .......................................................................................................................................................... 81 

hile Statement Implementation ............................................................................................................ 81 

For Statement - List Implementations ................................................................................................... 83 

Looping through Ranges ........................................................................................................................ 85 

Classic for Loop Implementation ........................................................................................................... 86 

Looping through Command Line Arguments ......................................................................................... 87 

Break Statement Implementation ......................................................................................................... 88 

15. BATCH SCRIPT – FUNCTIONS ............................................................................................. 91 

Function Definition ............................................................................................................................... 91 



Batch Script 

 

vii 

 

Calling a Function .................................................................................................................................. 92 

Functions with Parameters.................................................................................................................... 92 

Functions with Return Values ................................................................................................................ 93 

Local Variables in Functions .................................................................................................................. 94 

Recursive Functions .............................................................................................................................. 94 

File I/O .................................................................................................................................................. 96 

Creating Files ......................................................................................................................................... 96 

Writing to Files ...................................................................................................................................... 96 

Appending to Files................................................................................................................................. 97 

Reading from Files ................................................................................................................................. 98 

Deleting Files ......................................................................................................................................... 99 

Renaming Files .................................................................................................................................... 100 

Moving Files ........................................................................................................................................ 100 

Batch Files – Pipes ............................................................................................................................... 101 

Batch Files – Inputs ............................................................................................................................. 103 

Using the SHIFT Operator .................................................................................................................... 104 

Folders ................................................................................................................................................ 106 

Creating Folders .................................................................................................................................. 106 

Listing Folder Contents ........................................................................................................................ 107 

Deleting Folders .................................................................................................................................. 109 

Renaming Folders ................................................................................................................................ 110 

Moving Folders ................................................................................................................................... 111 

16. BATCH SCRIPT – PROCESS ................................................................................................ 113 

Viewing the List of Running Processes ................................................................................................. 113 

Killing a Particular Process .................................................................................................................. 115 

Starting a New Process ........................................................................................................................ 116 

17. BATCH SCRIPT – ALIASES ................................................................................................. 118 



Batch Script 

 

viii 

 

Creating an Alias ................................................................................................................................. 118 

Deleting an Alias ................................................................................................................................. 119 

Replacing an Alias ............................................................................................................................... 120 

18. BATCH SCRIPT – DEVICES ................................................................................................. 121 

19. BATCH SCRIPT – REGISTRY ............................................................................................... 125 

Reading from the Registry ................................................................................................................... 125 

Adding to the Registry ......................................................................................................................... 126 

Deleting from the Registry .................................................................................................................. 127 

Copying Registry Keys ......................................................................................................................... 128 

Comparing Registry Keys ..................................................................................................................... 129 

20. BATCH SCRIPT – NETWORK ............................................................................................. 130 

NET ACCOUNTS ................................................................................................................................... 130 

NET CONFIG ........................................................................................................................................ 131 

NET COMPUTER .................................................................................................................................. 131 

NET USER ............................................................................................................................................ 131 

NET STOP/START ................................................................................................................................. 133 

NET STATISTICS ................................................................................................................................... 133 

NET USE............................................................................................................................................... 135 

21. BATCH SCRIPT – PRINTING .............................................................................................. 136 

Command Line Printer Control ............................................................................................................ 136 

Testing if a Printer Exists ..................................................................................................................... 137 

22. BATCH SCRIPT – DEBUGGING .......................................................................................... 139 

Error Messages .................................................................................................................................... 139 

Complex Command Lines .................................................................................................................... 139 

Subroutines ......................................................................................................................................... 140 

Windows Versions............................................................................................................................... 140 



Batch Script 

 

ix 

 

23. BATCH SCRIPT – LOGGING ............................................................................................... 142 



Batch Script 

 

1 

 

Batch Script is incorporated to automate command sequences which are repetitive in 

nature. Scripting is a way by which one can alleviate this necessity by automating these 

command sequences in order to make one’s life at the shell easier and more productive. 

In most organizations, Batch Script is incorporated in some way or the other to automate 

stuff. 

Some of the features of Batch Script are: 

 Can read inputs from users so that it can be processed further. 

 

 Has control structures such as for, if, while, switch for better automating and 

scripting. 

 

 Supports advanced features such as Functions and Arrays. 

 

 Supports regular expressions. 

 

 Can include other programming codes such as Perl. 

Some of the common uses of Batch Script are: 

 Setting up servers for different purposes. 

 Automating housekeeping activities such as deleting unwanted files or log files. 

 Automating the deployment of applications from one environment to another. 

 Installing programs on various machines at once. 

Batch scripts are stored in simple text files containing lines with commands that get 

executed in sequence, one after the other. These files have the special extension BAT or 

CMD. Files of this type are recognized and executed through an interface (sometimes 

called a shell) provided by a system file called the command interpreter. On Windows 

systems, this interpreter is known as cmd.exe. 

Running a batch file is a simple matter of just clicking on it. Batch files can also be run in 

a command prompt or the Start-Run line. In such case, the full path name must be used 

unless the file's path is in the path environment. Following is a simple example of a batch 

script. This batch script when run deletes all files in the current directory. 

:: Deletes All files in the Current Directory With Prompts and Warnings 

::(Hidden, System, and Read-Only Files are Not Affected) 

:: @ECHO OFF 

DEL . DR 

1.   Batch Script – Overview 



Batch Script 

 

2 

 

This chapter explains the environment related to Batch Script. 

Writing and Executing 

Typically, to create a batch file, notepad is used. This is the simplest tool for creation of 

batch files. Next is the execution environment for the batch scripts. On Windows systems, 

this is done via the command prompt or cmd.exe. All batch files are run in this 

environment. 

Following are the different ways to launch cmd.exe:  

Method 1: Go to C:\Windows\System32 and double click on the cmd file. 

 

 

 

 

 

 

 

 

 

 

2.   Batch Script – Environment 



Batch Script 

 

3 

 

Method 2: Via the run command – The following snapshot shows to find the command 

prompt(cmd.exe) on Windows server 2012. 

 

Once the cmd.exe is launched, you will be presented with the following screen. This will 

be your environment for executing your batch scripts. 

 

 

 

 

 

 

 



Batch Script 

 

4 

 

Environment Variables 

In order to run batch files from the command prompt, you either need to go to the location 

to where the batch file is stored or alternatively you can enter the file location in the path 

environment variable. Thus assuming that the batch file is stored in the location 

C:\Application\bin, you would need to follow these instructions for the PATH variable 

inclusion. 

OS Output 

Windows 

 

Append the String; C:\Application\bin to the end of the system variable 

PATH. 

 



Batch Script 

 

5 

 

In this chapter, we will look at some of the frequently used batch commands. 

ver 

This batch command shows the version of MS-DOS you are using. 

Syntax 

ver 

Example 

@echo off 

ver 

Output 

The output of the above command is as follows. The version number will depend upon the 

operating system you are working on. 

Microsoft Windows [Version 6.3.9600] 

ASSOC 

This is a batch command that associates an extension with a file type (FTYPE), displays 

existing associations, or deletes an association. 

Syntax 

assoc – Displays all the file extensions 

assoc | find “.ext” – Displays only those file extensions which have the 
extension ext. 

Example 

@echo off 

assoc > C:\lists.txt 

assoc | find “.doc” > C:\listsdoc.txt 

 

 

3.   Batch Script – Commands 



Batch Script 

 

6 

 

Output 

The list of file associations will be routed to the file lists.txt. The following output shows 

what is there in the listsdoc.txt file after the above batch file is run. 

.doc=Word.Document.8 

.dochtml=wordhtmlfile 

.docm=Word.DocumentMacroEnabled.12 

.docmhtml=wordmhtmlfile 

.docx=Word.Document.12 

.docxml=wordxmlfile 

CD 

This batch command helps in making changes to a different directory, or displays the 

current directory. 

Syntax 

cd  

Example 

The following example shows how the cd command can be used in a variety of ways. 

@echo off 

Rem The cd without any parameters is used to display the current working 
directory 

cd 

Rem Changing the path to Program Files 

cd\Program Files 

cd 

Rem Changing the path to Program Files 

cd %USERPROFILE% 

cd 

Rem Changing to the parent directory 

cd.. 

cd 

Rem Changing to the parent directory two levels up 

cd..\.. 

cd 

 



Batch Script 

 

7 

 

Output 

The above command will display the following output after changing to the various folder 

locations. 

C:\Users\Administrator 

C:\Program Files 

C:\Users\Administrator 

C:\Users 

C:\ 

CLS 

This batch command clears the screen. 

Syntax 

cls 

Example 

@echo off 

Cls 

Output 

The command prompt screen will be cleared. 

Copy 

This batch command is used for copying files from one location to the other. 

Syntax 

Copy [source] [destination] 

The files will be copied from source to destination location. 

Example 

The following example shows the different variants of the copy command. 

@echo off 

cd 

Rem Copies lists.txt to the present working directory. If there is no 
destination identified , it defaults to the present working directory. 

copy c:\lists.txt 



Batch Script 

 

8 

 

Rem The file lists.txt will be copied from C:\ to C:\tp location 

copy C:\lists.txt c:\tp 

Rem Quotation marks are required if the file name contains spaces 

copy “C:\My File.txt” 

Rem Copies all the files in F drive which have the txt file extension to the 
current working directory 

copy F:\*.txt 

Rem Copies all files from dirA to dirB. Note that directories nested in dirA 
will not be copied 

copy C:\dirA dirB 

Output 

All actions are performed as per the remarks in the batch file. 

DEL 

This batch command deletes files and not directories. 

Syntax 

del [filename] 

Example 

The following example shows the different variants of the del command. 

@echo off 

Rem Deletes the file lists.txt in C:\ 

del C:\lists.txt 

Rem Deletes all files recursively in all nested directories 

del /s *.txt  

Rem Deletes all files recursively in all nested directories , but asks for the 
confirmation from the user first 

Del /p /s *.txt 

Output 

All actions are performed as per the remarks in the batch file. 

 

 



Batch Script 

 

9 

 

DIR 

This batch command lists the contents of a directory. 

Syntax 

dir 

Example 

The following example shows the different variants of the dir command. 

@echo off 

Rem All the directory listings from C:\ will be routed to the file lists.txt 

dir C:\>C:\lists.txt 

Rem Lists all directories and subdirectories recursively 

dir /s 

Rem Lists the contents of the directory and all subdirectories recursively, one 
file per line, displaying complete path for each listed file or directory. 

dir /s /b 

Rem Lists all files with .txt extension. 

dir *.txt 

Rem Includes hidden files and system files in the listing. 

dir /a 

Rem Lists hidden files only. 

dir /ah 

Output 

All actions are performed as per the remarks in the batch file. 

DATE 

This batch command help to find the system date. 

Syntax 

DATE 

Example 

@echo off 

echo %DATE% 

 



Batch Script 

 

10 

 

Output 

The current date will be displayed in the command prompt. For example,  

Mon 12/28/2015 

ECHO 

This batch command displays messages, or turns command echoing on or off. 

Syntax 

ECHO “string” 

Example 

The following example shows the different variants of the dir command. 

Rem Turns the echo on so that each command will be shown as executed 

echo on 

echo "Hello World" 

Rem Turns the echo off so that each command will not be shown when executed 

@echo off 

echo "Hello World" 

Rem Displays the contents of the PATH variable 

echo %PATH% 

Output 

The following output will be displayed in the command prompt. 

C:\>Rem Turns the echo on so that each command will be shown as executed 

 

C:\>echo on 

 

C:\>echo "Hello World" 

"Hello World" 

 

C:\>Rem Turns the echo off so that each command will not be shown when executed 

 

"Hello World" 

C:\Users\ADMINI~1\AppData\Local\Temp 

 



Batch Script 

 

11 

 

EXIT 

This batch command exits the DOS console. 

Syntax 

Exit 

Example 

@echo off 

echo "Hello World" 

exit 

Output 

The batch file will terminate and the command prompt window will close. 

MD 

This batch command creates a new directory in the current location. 

Syntax 

md [new directory name] 

Example 

@echo off 

md newdir 

cd newdir 

cd 

Rem “Goes back to the parent directory and create 2 directories” 

cd.. 

md newdir1 newdir1 

cd newdir1 

cd 

cd.. 

cd newdir2 

cd 

 



Batch Script 

 

12 

 

Output 

The above command produces the following output. 

C:\newdir 

C:\newdir1 

C:\newdir2 

MOVE 

This batch command moves files or directories between directories. 

Syntax 

move [source] [destination] 

The files will be copied from source to destination location. 

Example 

The following example shows the different variants of the move command. 

@echo off 

Rem Moves the file list.txt to the directory c:\tp 

move C:\lists.txt c:\tp 

Rem Renames directory Dir1 to Dir2, assuming Dir1 is a directory and Dir2 does 
not exist. 

move Dir1 Dir2 

Rem Moves the file lists.txt to the current directory. 

move C:\lists.txt 

Output 

All actions are performed as per the remarks in the batch file. 

PATH 

This batch command displays or sets the path variable. 

Syntax 

PATH 

 

 

 



Batch Script 

 

13 

 

Example 

@echo off 

Echo %PATH% 

Output 

The value of the path variable will be displayed in the command prompt. 

PAUSE 

This batch command prompts the user and waits for a line of input to be entered. 

Syntax 

Pause 

Example 

@echo off 

pause 

Output 

The command prompt will show the message “Press any key to continue….” to the user 

and wait for the user’s input. 

PROMPT 

This batch command can be used to change or reset the cmd.exe prompt. 

Syntax 

PROMPT [newpromptname] 

Example 

@echo off 

prompt myprompt$G 

The $G is the greater than sign which is added at the end of the prompt. 

Output 

The prompt shown to the user will now be myprompt> 



Batch Script 

 

14 

 

RD 

This batch command removes directories, but the directories need to be empty before 

they can be removed. 

Syntax 

rd [directoryname] 

Example 

The following example shows the different variants of the rd command. 

@echo off 

Rem removes the directory called newdir 

rd C:\newdir 

Rem removes 2 directories 

rd Dir1 Dir2 

Rem Removes directory with spaces 

rd "Application A" 

Rem Removes the directory Dir1 including all the files and subdirectories in it 

rd /s Dir1 

Rem Removes the directory Dir1 including all the files and subdirectories in it 
but asks for a user confirmation first. 

rd /q /s Dir1 

Output 

All actions are performed as per the remarks in the batch file. 

REN 

Renames files and directories. 

Syntax 

ren [oldfile/dirname] [newfile/dirname] 

Renames the file name from the old file/dir name to the new one. 

Example 

@echo off 

ren C:\lists.txt C:\newlists.txt 

 



Batch Script 

 

15 

 

Output 

The file lists.txt will be renamed to newlists.txt. 

REM 

This batch command is used for remarks in batch files, preventing the content of the 

remark from being executed. 

Syntax 

REM remark description 

Example 

@echo off 

REM This is a batch file 

Output 

None 

START 

This batch command starts a program in new window, or opens a document. 

Syntax 

START “programname” 

Example 

@echo off 

start notepad.exe 

Output 

When the batch file is executed, a new notepad windows will start. 

TIME 

This batch command sets or displays the time. 

Syntax 

TIME 



Batch Script 

 

16 

 

Example 

@echo off 

echo %TIME% 

Output 

The current system time will be displayed. For example, 

22:06:52.87 

TYPE 

This batch command prints the content of a file or files to the output. 

Syntax 

TYPE [filename] 

Where filename is the file whose contents need to be displayed. 

Example 

@echo off 

TYPE C:\tp\lists.txt 

Output 

The contents of the file lists.txt will be displayed to the command prompt.  

VOL 

This batch command displays the volume labels. 

Syntax 

VOL 

Example 

@echo off 

VOL 

Output 

The output will display the current volume label. For example,  



Batch Script 

 

17 

 

Volume in drive C is Windows8_OS 

 Volume Serial Number is E41C-6F43 

ATTRIB 

Displays or sets the attributes of the files in the current directory. 

Syntax 

attrib 

Example 

The following example shows the different variants of the attrib command. 

@echo off 

Rem Displays the attribites of the file in the current directory 

Attrib 

Rem Displays the attributes of the file lists.txt 

attrib C:\tp\lists.txt 

Rem Adds the "Read-only" attribute to the file. 

attrib +r C:\tp\lists.txt 

Attrib C:\tp\lists.txt 

Rem Removes the "Archived" attribute from the file 

attrib -a C:\tp\lists.txt 

Attrib C:\tp\lists.txt 

Output 

For example,  

 

A            C:\tp\assoclst.txt 

A            C:\tp\List.cmd 

A            C:\tp\lists.txt 

A            C:\tp\listsA.txt 

A            C:\tp\lists.txt 

A    R       C:\tp\lists.txt 

     R       C:\tp\lists.txt 

 



Batch Script 

 

18 

 

CHKDSK 

This batch command checks the disk for any problems. 

Syntax 

chkdsk 

Example 

@echo off 

chkdsk 

Output 

The above command starts checking the current disk for any errors. 

CHOICE 

This batch command provides a list of options to the user. 

Syntax 

CHOICE /c [Options] /m [Message] 

Where Options is the list of options to provide to the user and Message is the string 

message which needs to be displayed. 

Example 

@echo off 

echo "What is the file size you what" 

echo "A:10MB" 

echo "B:20MB" 

echo "C:30MB" 

choice /c ABC /m "What is your option A , B or C" 

 

Output 

The above program produces the following output. 

"What is the file size you what" 

"A:10MB" 

"B:20MB" 

"C:30MB" 



Batch Script 

 

19 

 

What is your option A , B or C [A,B,C]? 

CMD 

This batch command invokes another instance of command prompt. 

Syntax 

cmd 

Example 

@echo off 

cmd 

Output 

Another instance of command prompt will be invoked. 

COMP  

This batch command compares 2 files based on the file size. 

Syntax  

COMP [sourceA] [sourceB] 

Wherein sourceA and sourceB are the files which need to be compared. 

Example 

@echo off 

COMP C:\tp\lists.txt C:\tp\listsA.txt 

Output 

The above command will compare the files lists.txt and listsA.txt and find out if the two 

file sizes are different. 

CONVERT 

This batch command converts a volume from FAT16 or FAT32 file system to NTFS file 

system. 

 

 



Batch Script 

 

20 

 

Syntax 

CONVERT [drive] 

Example 

@echo off 

CONVERT C:\ 

Output 

The above command will convert the file system of C drive. 

DRIVERQUERY 

This batch command shows all installed device drivers and their properties. 

Syntax 

driverquery 

Example 

@echo off 

driverquery 

Output 

The above command will display the information of all the device drivers installed on the 

current system. Following is an example of a subset of the information displayed. 

WacomPen     Wacom Serial Pen HID D Kernel        8/22/2013 4:39:15 AM 

Wanarp       Remote Access IP ARP D Kernel        8/22/2013 4:35:45 AM 

Wanarpv6     Remote Access IPv6 ARP Kernel        8/22/2013 4:35:45 AM 

Wdf01000     Kernel Mode Driver Fra Kernel        8/22/2013 4:38:56 AM 

WFPLWFS      Microsoft Windows Filt Kernel        11/9/2014 6:57:28 PM 

WIMMount     WIMMount               File System   8/22/2013 4:39:34 AM 

WinMad       WinMad Service         Kernel        5/9/2013 9:14:27 AM 

WinNat       Windows NAT Driver     Kernel        1/22/2014 1:10:49 AM 

WinUsb       WinUsb Driver          Kernel        8/22/2013 4:37:55 AM 

WinVerbs     WinVerbs Service       Kernel        5/9/2013 9:14:30 AM 

WmiAcpi      Microsoft Windows Mana Kernel        8/22/2013 4:40:04 AM 

WpdUpFltr    WPD Upper Class Filter Kernel        8/22/2013 4:38:45 AM 

ws2ifsl      Windows Socket 2.0 Non Kernel        8/22/2013 4:40:03 AM 



Batch Script 

 

21 

 

wtlmdrv      Microsoft iSCSI Target Kernel        8/22/2013 4:39:19 AM 

WudfPf       User Mode Driver Frame Kernel        8/22/2013 4:37:21 AM 

WUDFWpdFs    WUDFWpdFs              Kernel        8/22/2013 4:36:50 AM 

WUDFWpdMtp   WUDFWpdMtp             Kernel        8/22/2013 4:36:50 AM 

EXPAND 

This batch command extracts files from compressed .cab cabinet files. 

Syntax 

EXPAND [cabinetfilename] 

Example 

@echo off 

EXPAND excel.cab 

Output 

The above command will extract the contents of the file excel.cab in the current location. 

FIND 

This batch command searches for a string in files or input, outputting matching lines. 

Syntax 

FIND [text] [destination] 

Where text is the string which needs to be searched for and destination is the source in 

which the search needs to take place. 

Example 

@echo off 

FIND "Application" C:\tp\lists.txt 

Output 

If the word “Application” resides in the file lists.txt, the line containing the string will be 

displayed in the command prompt. 

FORMAT 

This batch command formats a disk to use Windows-supported file system such as FAT, 

FAT32 or NTFS, thereby overwriting the previous content of the disk. 



Batch Script 

 

22 

 

Syntax 

format [drive] 

Where drive is the drive which needs to be formatted. 

Example 

@echo off 

format D:\ 

Output 

With the above command, D drive will be formatted. 

HELP 

This batch command shows the list of Windows-supplied commands. 

Syntax 

help 

Example 

@echo off 

help 

Output 

The above command will display a list of all commands and their description. Following is 

an example of a subset of the output. 

SCHTASKS       Schedules commands and programs to run on a computer. 

SHIFT          Shifts the position of replaceable parameters in batch files. 

SHUTDOWN       Allows proper local or remote shutdown of machine. 

SORT           Sorts input. 

START          Starts a separate window to run a specified program or command. 

SUBST          Associates a path with a drive letter. 

SYSTEMINFO     Displays machine specific properties and configuration. 

TASKLIST       Displays all currently running tasks including services. 

TASKKILL       Kill or stop a running process or application. 

TIME           Displays or sets the system time. 

TITLE          Sets the window title for a CMD.EXE session. 

TREE           Graphically displays the directory structure of a drive or 



Batch Script 

 

23 

 

               path. 

TYPE           Displays the contents of a text file. 

VER            Displays the Windows version. 

VERIFY         Tells Windows whether to verify that your files are written 

               correctly to a disk. 

VOL            Displays a disk volume label and serial number. 

XCOPY          Copies files and directory trees. 

WMIC           Displays WMI information inside interactive command shell. 

 

For more information on tools see the command-line reference in the online 
help. 

IPCONFIG 

This batch command displays Windows IP Configuration. Shows configuration by 

connection and the name of that connection. 

Syntax 

ipconfig 

Example 

@echo off 

ipconfig 

Output 

The above command will display the Windows IP configuration on the current machine. 

Following is an example of the output. 

Windows IP Configuration 

 

 

Wireless LAN adapter Local Area Connection* 11: 

 

   Media State . . . . . . . . . . . : Media disconnected 

   Connection-specific DNS Suffix  . : 

 

Ethernet adapter Ethernet: 

 

   Media State . . . . . . . . . . . : Media disconnected 

   Connection-specific DNS Suffix  . : 



Batch Script 

 

24 

 

 

Wireless LAN adapter Wi-Fi: 

   Media State . . . . . . . . . . . : Media disconnected 

   Connection-specific DNS Suffix  . : 

 

Tunnel adapter Teredo Tunneling Pseudo-Interface: 

 

   Media State . . . . . . . . . . . : Media disconnected 

   Connection-specific DNS Suffix  . : 

LABEL 

This batch command adds, sets or removes a disk label. 

Syntax 

Label 

Example 

@echo off 

label 

Output 

The above command will prompt the user to enter a new label for the current drive. 

MORE 

This batch command displays the contents of a file or files, one screen at a time. 

Syntax 

More [filename] 

Where filename is the file whose contents need to be listed one screen at a time. 

 

 

 

 

 

 



Batch Script 

 

25 

 

Example 

@echo off 

More C:\tp\lists.txt 

Directory of C:\Program Files 

Output 

The above command will display the contents of the file lists.txt one screen at a time. 

Following is an example of an output. Note the -- More (12%) – at the end of the screen. 

In order to proceed and display the remaining contents of the file, you need to enter a 

key. 

12/22/2015  02:31 AM    <DIR>          . 

12/22/2015  02:31 AM    <DIR>          .. 

12/15/2015  11:14 PM    <DIR>          Application Verifier 

12/18/2015  05:06 PM    <DIR>          Bonjour 

12/26/2015  08:01 PM    <DIR>          CCleaner 

12/18/2015  05:05 PM    <DIR>          Common Files 

12/17/2015  11:04 AM    <DIR>          Git 

12/15/2015  11:09 PM    <DIR>          IIS 

12/15/2015  11:10 PM    <DIR>          IIS Express 

12/15/2015  10:16 PM    <DIR>          Intel 

03/18/2014  02:24 AM    <DIR>          Internet Explorer 

12/18/2015  05:06 PM    <DIR>          iPod 

12/18/2015  05:06 PM    <DIR>          iTunes 

12/15/2015  11:16 PM    <DIR>          Microsoft Identity Extensions 

12/15/2015  11:46 PM    <DIR>          Microsoft Office 

12/22/2015  02:31 AM    <DIR>          Microsoft Silverlight 

12/15/2015  11:15 PM    <DIR>          Microsoft SQL Server 

12/15/2015  11:15 PM    <DIR>          Microsoft SQL Server Compact Edition 

12/15/2015  10:59 PM    <DIR>          Microsoft Visual Studio 12.0 

-- More (12%) -- 

NET 

Provides various network services, depending on the command used.  

Syntax 

NET [variant]  

 



Batch Script 

 

26 

 

Where its variants can be one of the following: 

 net accounts 

 net computer 

 net config 

 net continue 

 net file 

 net group 

 net help 

 net helpmsg 

 net localgroup 

 net name 

 net pause 

 net print 

 net send 

 net session 

 net share 

 net start 

 net statistics 

 net stop 

 net time 

 net use 

 net user 

 net view 

Example 

@echo off 

Net user 

Output 

The above command will display the current accounts defined on the system. Following is 

an example of an output. 

User accounts for \\WIN-50GP30FGO75 

 

------------------------------------------------------------------------------- 

Administrator            atlbitbucket             Guest 

The command completed successfully. 



Batch Script 

 

27 

 

PING 

This batch command sends ICMP/IP "echo" packets over the network to the designated 

address. 

Syntax 

PING [address] 

Where address is the IP address or hostname of the destination system. 

Example 

@echo off 

Ping 127.0.0.1 

Output 

The above command will send ICMP/IP "echo" packets to the destination address 

192.168.0.1. Following is an example of the output. 

Pinging 127.0.0.1 with 32 bytes of data: 

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128 

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128 

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128 

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128 

 

Ping statistics for 127.0.0.1: 

    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), 

Approximate round trip times in milli-seconds: 

    Minimum = 0ms, Maximum = 0ms, Average = 0ms 

SHUTDOWN 

This batch command shuts down a computer, or logs off the current user. 

Syntax 

shutdown 

Example 

@echo off 

shutdown 

https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol


Batch Script 

 

28 

 

Output 

If the user executing the batch files has the relevant rights, the computer will be shutdown. 

SORT 

This batch command takes the input from a source file and sorts its contents 

alphabetically, from A to Z or Z to A. It prints the output on the console. 

Syntax 

Sort [filename] 

Where filename is the file whose contents need to be sorted. 

Example 

@echo off 

Sort C:\tp\lists.txt 

SUBST 

This batch command assigns a drive letter to a local folder, displays current assignments, 

or removes an assignment. 

Syntax 

Subst [driveletter] 

Example 

@echo off 

Subst p: 

Output 

P: will be assigned as the drive letter for the current folder. 

SYSTEMINFO 

This batch command shows configuration of a computer and its operating system. 

Syntax 

systeminfo 

 



Batch Script 

 

29 

 

Example 

@echo off 

systeminfo 

Output 

The above command will show the system information on the current system. Following is 

a subset of the output. 

Host Name:                 WIN-50GP30FGO75 

OS Name:                   Microsoft Windows Server 2012 R2 Standard 

OS Version:                6.3.9600 N/A Build 9600 

OS Manufacturer:           Microsoft Corporation 

OS Configuration:          Standalone Server 

OS Build Type:             Multiprocessor Free 

Registered Owner:          Windows User 

Registered Organization: 

Product ID:                00252-70000-00000-AA535 

Original Install Date:     12/13/2015, 12:10:16 AM 

System Boot Time:          12/28/2015, 4:43:04 PM 

System Manufacturer:       LENOVO 

System Model:              20287 

System Type:               x64-based PC 

TASKKILL 

This batch command ends one or more tasks. 

Syntax 

Taskkill /im [taskname] 

Example 

@echo off 

Taskkill /im mspaint.exe 

Output 

The above command will send a termination message to any open programs of MS Paint. 



Batch Script 

 

30 

 

TASKLIST 

This batch command lists tasks, including task name and process id (PID). 

Syntax 

Tasklist 

Example 

@echo off 

Tasklist 

Output 

The above command will list all the tasks on the current system. 

XCOPY 

This batch command copies files and directories in a more advanced way. 

Syntax 

Xcopy [source][destination] 

Example 

Xcopy c:\lists.txt c:\tp\ 

Output 

The above command will copy the file lists.txt to the tp folder. 

TREE 

This batch command displays a tree of all subdirectories of the current directory to any 

level of recursion or depth. 

Syntax 

Tree 

Example 

@echo off 

tree 



Batch Script 

 

31 

 

Output 

The above command will display the tree structure of the current directory. Following is 

an example of the output. 

Folder PATH listing for volume Windows8_OS 

Volume serial number is E41C-6F43 

C:. 

├───newdir 

├───newdir1 

└───newdir2 

FC 

This batch command lists the actual differences between two files. 

Syntax 

Fc [fileA] [fileB] 

Where fileA and fileB are 2 files that need to be compared. 

Example 

@echo off 

FC lists.txt listsA.txt 

Output 

The above command will display the differences in the contents of the files (lists.txt and 

listsA.txt ) if any. 

DISKPART 

This batch command shows and configures the properties of disk partitions. 

Syntax 

Diskpart 

Example 

@echo off 

diskpart 

 



Batch Script 

 

32 

 

Output 

The above command shows the properties of disk partitions. Following is an example of 

the output. 

Microsoft DiskPart version 6.3.9600 

 

Copyright (C) 1999-2013 Microsoft Corporation. 

On computer: WIN-50GP30FGO75 

TITLE 

This batch command sets the title displayed in the console window. 

Syntax 

TITLE [Tilename] 

Where tilename is the new name to be given to the title of the command prompt window. 

Example 

@echo off 

Title “New Windows Title” 

Output 

The above command will change the title of the window to “New Windows Title”. 

SET 

Displays the list of environment variables on the current system. 

Syntax 

Set 

Example 

@echo off 

set 

Output 

The above command displays the list of environment variables on the current system. 

 



Batch Script 

 

33 

 

In this chapter, we will learn how to create, save, execute, and modify batch files. 

Creating Batch Files 

Batch files are normally created in notepad. Hence the simplest way is to open notepad 

and enter the commands required for the script. For this exercise, open notepad and enter 

the following statements. 

:: Deletes All files in the Current Directory With Prompts and Warnings 

::(Hidden, System, and Read-Only Files are Not Affected) 

:: 

@ECHO OFF 

DEL .  

DR 

Saving Batch Files 

After your batch file is created, the next step is to save your batch file. Batch files have 

the extension of either .bat or .cmd. Some general rules to keep in mind when naming 

batch files: 

 Try to avoid spaces when naming batch files, it sometime creates issues when they 

are called from other scripts. 

 

 Don’t name them after common batch files which are available in the system such 

as ping.cmd. 

4.   Batch Script – Files 



Batch Script 

 

34 

 

 

The above screenshot shows how to save the batch file. When saving your batch file a few 

points to keep in mind.   

 Remember to put the .bat or .cmd at the end of the file name. 

 

 Choose the “Save as type” option as “All Files”. 

 

 Put the entire file name in quotes “”. 

Executing Batch Files 

Following are the steps to execute a batch file:  

 Step 1: Open the command prompt (cmd.exe). 

 Step 2: Go to the location where the .bat or .cmd file is stored. 

 Step 3: Write the name of the file as shown in the following image and press the 
Enter button to execute the batch file. 

 



Batch Script 

 

35 

 

 

Modifying Batch Files 

Following are the steps for modifying an existing batch file. 

 Step 1: Open windows explorer. 

 Step 2: Go to the location where the .bat or .cmd file is stored. 

 Step 3: Right-click the file and choose the “Edit” option from the context menu. 
The file will open in Notepad for further editing. 

 



Batch Script 

 

36 

 

Normally, the first line in a batch file often consists of the following command. 

ECHO Command 

@echo off 

By default, a batch file will display its command as it runs. The purpose of this first 

command is to turn off this display. The command "echo off" turns off the display for the 

whole script, except for the "echo off" command itself. The "at" sign "@" in front makes 

the command apply to itself as well. 

Documentation 

Very often batch files also contains lines that start with the "Rem" command. This is a way 

to enter comments and documentation. The computer ignores anything on a line following 

Rem. For batch files with increasing amount of complexity, this is often a good idea to 

have comments. 

First Batch Script Program 

Let’s construct our simple first batch script program. Open notepad and enter the following 

lines of code. Save the file as “List.cmd”. 

The code does the following: 

 Uses the echo off command to ensure that the commands are not shown when the 

code is executed. 

 

 The Rem command is used to add a comment to say what exactly this batch file 

does. 

 

 The dir command is used to take the contents of the location C:\Program Files. 

 

 The ‘>’ command is used to redirect the output to the file C:\lists.txt. 

 

 Finally, the echo command is used to tell the user that the operation is completed. 

@echo off 

Rem This is for listing down all the files in the directory Program files 

dir "C:\Program Files" > C:\lists.txt 

echo "The program has completed" 

When the above command is executed, the names of the files in C:\Program Files will be 

sent to the file C:\Lists.txt and in the command prompt the message “The program has 

completed” will be displayed. 

 

5.   Batch Script – Syntax 



Batch Script 

 

37 

 

There are two types of variables in batch files. One is for parameters which can be passed 

when the batch file is called and the other is done via the set command.  

Command Line Arguments 

Batch Script supports the concept of command line arguments wherein arguments can be 

passed to the batch file when invoked. The arguments can be called from the batch files 

through the variables %1, %2, %3, and so on. 

The following example shows a batch file which accepts 3 command line arguments and 

echo’s them to the command line screen. 

@echo off 
echo %1 
echo %2 
echo %3 

If the above batch script is stored in a file called test.bat and we were to run the batch as 

Test.bat 1 2 3 

Following is a screenshot of how this would look in the command prompt when the batch 

file is executed. 

 

The above command produces the following output. 

1 
2 
3 

6.   Batch Script – Variables 



Batch Script 

 

38 

 

If we were to run the batch as 

Example 1 2 3 4 

The output would still remain the same as above. However, the fourth parameter would 

be ignored. 

Set Command 

The other way in which variables can be initialized is via the ‘set’ command. Following is 

the syntax of the set command.  

Syntax 

set /A variable-name = value 

where,  

 variable-name is the name of the variable you want to set. 

 

 value is the value which needs to be set against the variable. 

 

 /A – This switch is used if the value needs to be numeric in nature. 

The following example shows a simple way the set command can be used. 

Example 

@echo off 
set message=Hello World 
echo %message% 

 In the above code snippet, a variable called message is defined and set with the 

value of "Hello World". 

 

 To display the value of the variable, note that the variable needs to be enclosed in 

the % sign. 

Output 

The above command produces the following output.  

Hello World 

Working with Numeric Values 

In Batch Script, it is also possible to define a variable to hold a numeric value. This can be 

done by using the /A switch.  

The following code shows a simple way in which numeric values can be set with the /A 

switch.  



Batch Script 

 

39 

 

@echo off 
SET /A a=5 
SET /A b=10 
SET /A c=%a% + %b% 
echo %c% 

 We are first setting the value of 2 variables, a and b to 5 and 10 respectively. 

 

 We are adding those values and storing in the variable c. 

 

 Finally, we are displaying the value of the variable c. 

The output of the above program would be 15. 

All of the arithmetic operators work in batch files. The following example shows arithmetic 

operators can be used in batch files. 

@echo off 
SET /A a=5 
SET /A b=10 
SET /A c=%a% + %b% 
echo %c% 
SET /A c=%a% - %b% 
echo %c% 
SET /A c=%b% / %a% 
echo %c% 
SET /A c=%b% * %a% 
echo %c% 

The above command produces the following output.  

15 
-5 
2 
20 

Local vs Global Variables 

In any programming language, there is an option to mark variables as having some sort 

of scope, i.e. the section of code on which they can be accessed. Normally, variable having 

a global scope can be accessed anywhere from a program whereas local scoped variables 

have a defined boundary in which they can be accessed.  

DOS scripting also has a definition for locally and globally scoped variables. By default, 

variables are global to your entire command prompt session. Call the SETLOCAL command 

to make variables local to the scope of your script. After calling SETLOCAL, any variable 

assignments revert upon calling ENDLOCAL, calling EXIT, or when execution reaches the 

end of file (EOF) in your script. The following example shows the difference when local and 

global variables are set in the script. 

 

 



Batch Script 

 

40 

 

Example 

@echo off 
set globalvar=5 
SETLOCAL 
set var=13145 
set /A var=%var% + 5 
ENDLOCAL 
echo %var% 
echo %globalvar% 

Few key things to note about the above program. 

 The ‘globalvar’ is defined with a global scope and is available throughout the entire 

script. 

 

 The ‘var‘ variable is defined in a local scope because it is enclosed between a 

‘SETLOCAL’ and ‘ENDLOCAL’ block. Hence, this variable will be destroyed as soon 

the ‘ENDLOCAL’ statement is executed. 

Output 

The above command produces the following output.  

13150 
5 

You will notice that the command echo %var% will not yield anything because after the 

ENDLOCAL statement, the ‘var’ variable will no longer exist. 

Working with Environment Variables 

If you have variables that would be used across batch files, then it is always preferable to 

use environment variables. Once the environment variable is defined, it can be accessed 

via the % sign. The following example shows how to see the JAVA_HOME defined on a 

system. The JAVA_HOME variable is a key component that is normally used by a wide 

variety of applications. 

@echo off 
echo %JAVA_HOME% 

The output would show the JAVA_HOME directory which would depend from system to 

system. Following is an example of an output. 

C:\Atlassian\Bitbucket\4.0.1\jre 



Batch Script 

 

41 

 

It’s always a good practice to add comments or documentation for the scripts which are 

created. This is required for maintenance of the scripts to understand what the script 

actually does. 

For example, consider the following piece of code which has no form of comments. If any 

average person who has not developed the following script tries to understand the script, 

it would take a lot of time for that person to understand what the script actually does. 

ECHO OFF 
IF NOT "%OS%"=="Windows_NT" GOTO Syntax 
ECHO.%* | FIND "?" >NUL 
IF NOT ERRORLEVEL 1 GOTO Syntax 
IF NOT [%2]==[] GOTO Syntax 
SETLOCAL 
SET WSS= 
IF NOT [%1]==[] FOR /F "tokens=1 delims=\ " %%A IN ('ECHO.%~1') DO SET WSS=%%A 
FOR /F "tokens=1 delims=\ " %%a IN ('NET VIEW ^| FIND /I "\\%WSS%"') DO FOR /F 
"tokens=1 delims= " %%A IN ('NBTSTAT -a %%a ^| FIND /I /V "%%a" ^| FIND 
"<03>"') DO ECHO.%%a    %%A 
ENDLOCAL 
GOTO:EOF 
ECHO Display logged on users and their workstations. 
ECHO Usage:    ACTUSR  [ filter ] 
IF     "%OS%"=="Windows_NT" ECHO Where:    filter is the first part of the 
computer name^(s^) to be displayed 

Comments Using the Rem Statement 

There are two ways to create comments in Batch Script; one is via the Rem command. 

Any text which follows the Rem statement will be treated as comments and will not be 

executed. Following is the general syntax of this statement.  

Syntax 

Rem Remarks 

where ‘Remarks’ is the comments which needs to be added. 

The following example shows a simple way the Rem command can be used. 

Example 

@echo off 
Rem This program just displays Hello World 
set message=Hello World 
echo %message% 

 

7.    Batch Script – Comments 



Batch Script 

 

42 

 

Output 

The above command produces the following output. You will notice that the line with the 

Rem statement will not be executed. 

Hello World 

Comments Using the :: Statement 

The other way to create comments in Batch Script is via the :: command. Any text which 

follows the :: statement will be treated as comments and will not be executed. Following 

is the general syntax of this statement.  

Syntax 

:: Remarks 

where ‘Remarks’ is the comment which needs to be added. 

The following example shows a simple way the Rem command can be used. 

Example 

@echo off 
:: This program just displays Hello World 
set message=Hello World 
echo %message% 

Output 

The above command produces the following output. You will notice that the line with the 

:: statement will not be executed. 

Hello World 

Note: If you have too many lines of Rem, it could slow down the code, because in the end  

each line of code in the batch file still needs to be executed. 

Let’s look at the example of the large script we saw at the beginning of this topic and see 

how it looks when documentation is added to it. 

::=============================================================== 

:: The below example is used to find computer and logged on users 

:: 

::=============================================================== 

ECHO OFF 
:: Windows version check 
IF NOT "%OS%"=="Windows_NT" GOTO Syntax 
ECHO.%* | FIND "?" >NUL 
:: Command line parameter check 
IF NOT ERRORLEVEL 1 GOTO Syntax 



Batch Script 

 

43 

 

IF NOT [%2]==[] GOTO Syntax 
:: Keep variable local 
SETLOCAL 
:: Initialize variable 
SET WSS= 
:: Parse command line parameter 
IF NOT [%1]==[] FOR /F "tokens=1 delims=\ " %%A IN ('ECHO.%~1') DO SET WSS=%%A 
:: Use NET VIEW and NBTSTAT to find computers and logged on users 
FOR /F "tokens=1 delims=\ " %%a IN ('NET VIEW ^| FIND /I "\\%WSS%"') DO FOR /F 
"tokens=1 delims= " %%A IN ('NBTSTAT -a %%a ^| FIND /I /V "%%a" ^| FIND 
"<03>"') DO ECHO.%%a    %%A 
:: Done 
ENDLOCAL 

GOTO:EOF 
:Syntax 
ECHO Display logged on users and their workstations. 
ECHO Usage:    ACTUSR  [ filter ] 
IF     "%OS%"=="Windows_NT" ECHO Where:    filter is the first part of the 
computer name^(s^) to be displayed 

You can now see that the code has become more understandable to users who have not 

developed the code and hence is more maintainable. 



Batch Script 

 

44 

 

In DOS, a string is an ordered collection of characters, such as "Hello, World!". 

Create String 

A string can be created in DOS in the following way. 

Example 

@echo off 
:: This program just displays Hello World 
set message=Hello World 
echo %message% 

Output 

The above command produces the following output.  

Hello World 

Empty String 

An empty string can be created in DOS Scripting by assigning it no value during it’s 

initialization as shown in the following example.  

Set a= 

To check for an existence of an empty string, you need to encompass the variable name 

in square brackets and also compare it against a value in square brackets as shown in the 

following example.  

[%a%] == [] 

The following example shows how an empty string can be created and how to check for 

the existence of an empty string. 

Example 

@echo off 

SET a= 

SET b=Hello 

if [%a%] == [] echo "String A is empty" 

if [%b%] == [] echo "String B is empty " 

8.   Batch Script – Strings 



Batch Script 

 

45 

 

Output 

The above command produces the following output.  

String A is empty 

String Interpolation 

String interpolation is a way to construct a new String value from a mix of constants, 

variables, literals, and expressions by including their values inside a string literal. 

In DOS scripting, the string interpolation can be done using the set command and lining 

up the numeric defined variables or any other literals in one line when using the set 

command. 

The following example shows how a string interpolation can be done with numeric values 

as well. 

Example 

@echo off 

SET a=Hello 

SET b=World 

SET /A d=50 

SET c=%a% and %b% %d% 

echo %c% 

Output 

The above command produces the following output.  

Hello and World 50 

String Concatenation 

You can use the set operator to concatenate two strings or a string and a character, or 

two characters. Following is a simple example which shows how to use string 

concatenation. 

Example 

@echo off 

SET a=Hello 

SET b=World 

SET c=%a% and %b% 

echo %c% 



Batch Script 

 

46 

 

Output 

The above command produces the following output.  

Hello and World 

String length  

In DOS scripting, there is no length function defined for finding the length of a string. 

There are custom-defined functions which can be used for the same. Following is an 

example of a custom-defined function for seeing the length of a string. 

Example 

@echo off 

set str=Hello World 

call :strLen str strlen 

echo String is %strlen% characters long 

exit /b 

:strLen 

setlocal enabledelayedexpansion 

:strLen_Loop 

  if not "!%1:~%len%!"=="" set /A len+=1 & goto :strLen_Loop 

(endlocal & set %2=%len%) 

goto :eof 

 

A few key things to keep in mind about the above program are: 

 The actual code which finds the length of string is defined in the :strLen block. 

 

 The length of the string is maintained in the variable len. 

Output 

The above command produces the following output.  

11 

toInt 

A variable which has been set as string using the set variable can be converted to an 

integer using the /A switch which is using the set variable. The following example shows 

how this can be accomplished. 

 



Batch Script 

 

47 

 

Example 

@echo off 

set var=13145 

set /A var=%var% + 5 

echo %var% 

Output 

The above command produces the following output.  

13150 

Apart from this, strings have the following implementations which are available. Batch 

scripts have the following commands which are used to carry out string manipulation in 

strings. 

%variable:~num_chars_to_skip% 

%variable:~num_chars_to_skip,num_chars_to_keep% 

This can include negative numbers: 

%variable:~num_chars_to_skip, -num_chars_to_keep% 

%variable:~-num_chars_to_skip,num_chars_to_keep% 

%variable:~-num_chars_to_skip,-num_chars_to_keep% 

Let us discuss the possible string operations that can be performed by using the above 

commands. 

Align Right 

This used to align text to the right, which is normally used to improve readability of number 

columns. 

Example 

@echo off 
set x=1000 
set y=1 
set y=        %y% 
echo %x% 
set y=%y:~-4% 
echo %y% 

 

 

 

 



Batch Script 

 

48 

 

A few key things to note about the above program is:  

 Spaces are added to the variable of y, in this case we are adding 9 spaces to the 

variable of y. 

 

 We are using the ~-4 option to say that we just want to show the last 4 characters 

of the string y. 

Output 

The above command produces the following output. The key thing to note is that the value 

of 2 is aligned to match the units columns when displaying numbers. 

3000 
     2 

Left String 

This is used to extract characters from the beginning of a string. 

Example 

@echo off 
set str=Helloworld 
echo %str% 
set str=%str:~0,5% 
echo %str% 
 

The key thing to note about the above program is, ~0,5 is used to specify the characters 

which needs to be displayed. In this case, we are saying character 0 to 5 should be 

displayed. 

Output 

The above command produces the following output. 

Helloworld 
Hello 

Mid String 

This is used to extract a substring via the position of the characters in the string. 

Example 

@echo off 

set str = Helloworld 

echo %str% 



Batch Script 

 

49 

 

set str=%str:~5,10% 

echo %str% 

The key thing to note about the above program is, ~5,10 is used to specify the characters 

which needs to be displayed. In this case, we want character 5 to 10 should be displayed. 

Output 

The above command produces the following output. 

Helloworld 
world 

Remove 

The string substitution feature can also be used to remove a substring from another string. 

Example 

@echo off 
set str=Batch scripts is easy. It is really easy. 
echo %str% 
set str=%str:is =% 
echo %str% 

The key thing to note about the above program is, the ‘is’ word is being removed from the 

string using the :’stringtoberemoved’ = command. 

Output 

The above command produces the following output. 

Batch scripts is easy. It is really easy. 
Batch scripts easy. It really easy. 

Remove Both Ends 

This is used to remove the first and the last character of a string. 

Example 

@echo off 

set str=Batch scripts is easy. It is really easy 
echo %str% 
set str=%str:~1,-1% 
echo %str% 

The key thing to note about the above program is, the ~1,-1 is used to remove the first 

and last character of a string. 



Batch Script 

 

50 

 

Output 

The above command produces the following output. 

Batch scripts is easy. It is really easy 

atch scripts is easy. It is really eas 

Remove All Spaces 

This is used to remove all spaces in a string via substitution. 

Example 

@echo off 
set str=This string     has      a   lot   of spaces 
echo %str% 
set str=%str: =% 
echo %str% 

The key thing to note about the above program is, the : = operator is used to remove all 

spaces from a string. 

Output 

The above command produces the following output. 

This string     has      a   lot   of spaces 
Thisstringhasalotofspaces 

Replace a String 

To replace a substring with another string use the string substitution feature. 

Example 

@echo off 
set str=This message needs changed. 
echo %str% 
set str=%str:needs=has% 
echo %str% 

The key thing to note about the above program is, the example replaces the word ‘needs’ 

with the string ‘has’ via the statement %str:needs=has% 

Output 

The above command produces the following output. 

This message needs changed. 
This message has changed. 



Batch Script 

 

51 

 

Right String 

This is used to extract characters from the end of a string. 

Example 

@echo off 
set str=This message needs changed. 
echo %str% 
set str=%str:~-8% 
echo %str% 

The key thing to note about the above program is, the right hand of the string is extracted 

by using the ~-‘number of characters to extract’ operator. 

Output 

The above command produces the following output. 

This message needs changed. 
changed. 



Batch Script 

 

52 

 

Arrays are not specifically defined as a type in Batch Script but can be implemented. The 

following things need to be noted when arrays are implemented in Batch Script. 

 Each element of the array needs to be defined with the set command. 

 

 The ‘for’ loop would be required to iterate through the values of the array. 

Creating an Array 

An array is created by using the following set command. 

set a[0]=1 

Where 0 is the index of the array and 1 is the value assigned to the first element of the 

array.  

Another way to implement arrays is to define a list of values and iterate through the list 

of values. The following example show how this can be implemented. 

Example 

@echo off 
set list=1 2 3 4 
(for %%a in (%list%) do ( 
   echo %%a 
)) 

Output 

The above command produces the following output. 

1 
2 
3 
4 

Accessing Arrays 

You can retrieve a value from the array by using subscript syntax, passing the index of 

the value you want to retrieve within square brackets immediately after the name of the 

array.  

 

 

 

9.   Batch Script – Arrays 



Batch Script 

 

53 

 

Example 

@echo off 
set a[0]=1 
echo %a[0]% 

In this example, the index starts from 0 which means the first element can be accessed 

using index as 0, the second element can be accessed using index as 1 and so on. Let's 

check the following example to create, initialize and access arrays: 

@echo off 
set a[0]=1 
set a[1]=2 
set a[2]=3 
echo The first element of the array is %a[0]% 
echo The second element of the array is %a[1]% 
echo The third element of the array is %a[2]% 

The above command produces the following output. 

The first element of the array is 1 
The second element of the array is 2 
The third element of the array is 3 

Modifying an Array 

To add an element to the end of the array, you can use the set element along with the 

last index of the array element.  

Example 

@echo off 
set a[0]=1 
set a[1]=2 
set a[2]=3 
Rem Adding an element at the end of an array 
Set a[3]=4 
echo The last element of the array is %a[3]% 

The above command produces the following output. 

The last element of the array is 4 

You can modify an existing element of an Array by assigning a new value at a given index 

as shown in the following example: 

@echo off 
set a[0]=1 
set a[1]=2 
set a[2]=3 
Rem Setting the new value for the second element of the array 
Set a[1]=5 
echo The new value of the second element of the array is %a[1]% 



Batch Script 

 

54 

 

The above command produces the following output. 

The new value of the second element of the array is 5 

Iterating Over an Array 

Iterating over an array is achieved by using the ‘for’ loop and going through each element 

of the array. The following example shows a simple way that an array can be implemented. 

@echo off 
setlocal enabledelayedexpansion 
set topic[0]=comments 
set topic[1]=variables 
set topic[2]=Arrays 
set topic[3]=Decision making 
set topic[4]=Time and date 
set topic[5]=Operators 
for /l %%n in (0,1,5) do ( 
echo !topic[%%n]! 
) 

Following things need to be noted about the above program: 

 Each element of the array needs to be specifically defined using the set command. 

 

 The ‘for’ loop with the /L parameter for moving through ranges is used to iterate 

through the array. 

Output 

The above command produces the following output. 

Comments 
variables 
Arrays 
Decision making 
Time and date 
Operators 

Length of an Array 

The length of an array is done by iterating over the list of values in the array since there 

is no direct function to determine the number of elements in an array. 

@echo off 
set Arr[0]=1 
set Arr[1]=2 
set Arr[2]=3 
set Arr[3]=4 
set "x=0" 
:SymLoop 
if defined Arr[%x%] ( 
    call echo %%Arr[%x%]%% 
    set /a "x+=1" 



Batch Script 

 

55 

 

    GOTO :SymLoop 
) 

echo "The length of the array is" %x% 

Output 

The above command produces the following output. 

The length of the array is 4 

Creating Structures in Arrays 

Structures can also be implemented in batch files using a little bit of an extra coding for 

implementation. The following example shows how this can be achieved. 

Example 

@echo off 
set len=3 
set obj[0].Name=Joe 
set obj[0].ID=1 
set obj[1].Name=Mark 
set obj[1].ID=2 
set obj[2].Name=Mohan 
set obj[2].ID=3 
set i=0 
:loop 
if %i% equ %len% goto :eof 
set cur.Name= 
set cur.ID= 

for /f "usebackq delims==. tokens=1-3" %%j in (`set obj[%i%]`) do ( 
    set cur.%%k=%%l 
) 
echo Name=%cur.Name% 
echo Value=%cur.ID% 
set /a i=%i%+1 
goto loop 

The following key things need to be noted about the above code. 

 Each variable defined using the set command has 2 values associated with each 

index of the array. 

 

 The variable i is set to 0 so that we can loop through the structure will the length 

of the array which is 3. 

 

 We always check for the condition on whether the value of i is equal to the value 

of len and if not, we loop through the code. 

 

 We are able to access each element of the structure using the obj[%i%] notation. 

 



Batch Script 

 

56 

 

Output 

The above command produces the following output. 

Name=Joe 
Value=1 
Name=Mark 
Value=2 
Name=Mohan 
Value=3 



Batch Script 

 

57 

 

Decision-making structures require that the programmer specify one or more conditions 

to be evaluated or tested by the program, along with a statement or statements to be 

executed if the condition is determined to be true, and optionally, other statements to be 

executed if the condition is determined to be false. 

If Statement 

The first decision-making statement is the ‘if’ statement. The general form of this 

statement in Batch Script is as follows: 

if(condition) do_something  

The general working of this statement is that first a condition is evaluated in the ‘if’ 

statement. If the condition is true, it then executes the statements. The following diagram 

shows the flow of the if statement. 

 

 

 

10.   Batch Script – Decision Making 



Batch Script 

 

58 

 

Checking Variables 

One of the common uses for the ‘if’ statement in Batch Script is for checking variables 

which are set in batch script itself. The evaluation of the ‘if’ statement can be done for 

both strings and numbers. 

Checking Integer Variables 

The following example shows how the ‘if’ statement can be used for numbers. 

Example 

@echo off 
SET /A a=5 
SET /A b=10 
SET /A c=%a% + %b% 
if %c% == 15 echo "The value of variable c is 15" 
if %c% == 10 echo "The value of variable c is 10" 

The key thing to note about the above program is:  

 The first ‘if’ statement checks if the value of the variable c is 15. If so, then it echo’s 

a string to the command prompt. 

 

 Since the condition in the statement - if %c% == 10 echo "The value of variable c 

is 10 evaluates to false, the echo part of the statement will not be executed. 

Output 

The above command produces the following output. 

15 

Checking String Variables 

The following example shows how the ‘if’ statement can be used for strings. 

Example 

@echo off 
SET str1=String1 
SET str2=String2 
if %str1% == String1 echo "The value of variable String1" 
if %str2% == String3 echo "The value of variable c is String3" 

The key thing to note about the above program is:  

 The first ‘if’ statement checks if the value of the variable str1 contains the string 

“String1”. If so, then it echo’s a string to the command prompt. 

 

 Since the condition of the second ‘if’ statement evaluates to false, the echo part of 

the statement will not be executed. 

 



Batch Script 

 

59 

 

Output 

The above command produces the following output. 

"The value of variable String1" 

Note: One key thing to note is that the evaluation in the ‘if’ statement is "case-sensitive”. 

The same program as above is modified a little as shown in the following example. In the 

first statement, we have changed the comparison criteria. Because of the different casing, 

the output of the following program would yield nothing. 

@echo off 
SET str1=String1 
SET str2=String2 
if %str1% == StrinG1 echo "The value of variable String1" 
if %str2% == String3 echo "The value of variable c is String3" 

Checking Command Line Arguments 

Another common use of the ‘if’ statement is used to check for the values of the command 

line arguments which are passed to the batch files. The following example shows how the 

‘if’ statement can be used to check for the values of the command line arguments. 

@echo off 
echo %1 
echo %2 
echo %3 
if %1% == 1 echo "The value is 1" 
if %2% == 2 echo "The value is 2" 
if %3% == 3 echo "The value is 3" 

The key thing to note about the above program is: 

 The above program assumes that 3 command line arguments will be passed when 

the batch script is executed. 

 

 A comparison is done for each command line argument against a value. If the 

criteria passes then a string is sent as the output. 

Output 

If the above code is saved in a file called test.bat and the program is executed as  

test.bat 1 2 3 

Following will be the output of the above program.   

1 
2 
3 
"The value is 1" 
"The value is 2" 
"The value is 3" 



Batch Script 

 

60 

 

If/else Statement 

The next decision making statement is the If/else statement. Following is the general form 

of this statement.  

If (condition) (do_something) ELSE (do_something_else) 

The general working of this statement is that first a condition is evaluated in the ‘if’ 

statement. If the condition is true, it then executes the statements thereafter and stops 

before the else condition and exits out of the loop. If the condition is false, it then executes 

the statements in the else statement block and then exits the loop. The following diagram 

shows the flow of the ‘if’ statement. 

 

Checking Variables 

Just like the ‘if’ statement in Batch Script, the if-else can also be used for checking 

variables which are set in Batch Script itself. The evaluation of the ‘if’ statement can be 

done for both strings and numbers. 

Checking Integer Variables 

The following example shows how the ‘if’ statement can be used for numbers. 

Example 

@echo off 
SET /A a=5 
SET /A b=10 



Batch Script 

 

61 

 

SET /A c=%a% + %b% 
if %c% == 15 (echo "The value of variable c is 15") else (echo "Unknown value") 
if %c% == 10 (echo "The value of variable c is 10") else (echo "Unknown value") 

The key thing to note about the above program is : 

 Each ‘if else’ code is placed in the brackets (). If the brackets are not placed to 

separate the code for the ‘if and else’ code, then the statements would not be valid 

proper if else statements. 

 

 In the first ‘if else’ statement, the if condition would evaluate to true. 

 

 In the second ‘if else’ statement, the else condition will be executed since the 

criteria would be evaluated to false. 

Output 

The above command produces the following output. 

"The value of variable c is 15" 
"Unknown value" 

Checking String Variables 

The same example can be repeated for strings. The following example shows how the ‘if 

else’ statement can be used to strings. 

Example 

@echo off 
SET str1=String1 
SET str2=String2 
if %str1% == String1 (echo "The value of variable String1") else (echo "Unknown 
value") 
if %str2% == String3 (echo "The value of variable c is String3") else (echo 
"Unknown value") 

The key thing to note about the above program is:  

 The first ‘if’ statement checks if the value of the variable str1 contains the string 

“String1”. If so, then it echo’s a string to the command prompt. 

 

 Since the condition of the second ‘if’ statement evaluates to false, the echo part of 

the statement will not be executed. 

Output 

The above command produces the following output. 

"The value of variable String1" 
"Unknown value" 

 



Batch Script 

 

62 

 

Checking Command Line Arguments 

The ‘if else’ statement can also be used for checking of command line arguments. The 

following example show how the ‘if’ statement can be used to check for the values of the 

command line arguments. 

@echo off 
echo %1 
echo %2 
echo %3 
if %1% == 1 (echo "The value is 1") else (echo "Unknown value")  
if %2% == 2 (echo "The value is 2") else (echo "Unknown value")  
if %3% == 3 (echo "The value is 3") else (echo "Unknown value")  

Output 

If the above code is saved in a file called test.bat and the program is executed as  

test.bat 1 2 4 

Following will be the output of the above program.  

1 
2 
4 
"The value is 1" 
"The value is 2" 
"Unknown value" 

if defined  

A special case for the ‘if’ statement is the "if defined", which is used to test for the existence 

of a variable. Following is the general syntax of the statement. 

if defined somevariable somecommand 

Following is an example of how the ‘if defined’ statement can be used. 

Example 

@echo off 
SET str1=String1 
SET str2=String2 
if defined str1 echo "Variable str1 is defined" 
 

if defined str3 (echo "Variable str3 is defined") else (echo "Variable str3 is 
not defined") 

 

 



Batch Script 

 

63 

 

Output 

The above command produces the following output. 

"Variable str1 is defined" 
"Variable str3 is not defined" 

if exists  

Another special case for the ‘if’ statement is the "if exists ", which is used to test for the 

existence of a file. Following is the general syntax of the statement. 

If exist somefile.ext do_something 

Following is an example of how the ‘if exists’ statement can be used. 

Example 

@echo off 
if exist C:\set2.txt echo "File exists" 
if exist C:\set3.txt (echo "File exists") else (echo "File does not exist") 

Output 

Let’s assume that there is a file called set2.txt in the C drive and that there is no file called 

set3.txt. Then, following will be the output of the above code.  

"File exists" 

"File does not exist" 

Nested If Statements 

Sometimes, there is a requirement to have multiple ‘if’ statement embedded inside each 

other. Following is the general form of this statement. 

if(condition1) if (condition2) do_something 

So only if condition1 and condition2 are met, will the code in the do_something block be 

executed. 

Following is an example of how the nested if statements can be used. 

Example 

@echo off 

SET /A a=5 

SET /A b=10 

if %a% == 5 if %b% == 10 echo "The value of the variables are correct" 



Batch Script 

 

64 

 

 

 

Output 

The above command produces the following output. 

"The value of the variables are correct" 

If errorlevel 

Yet another special case is "if errorlevel", which is used to test the exit codes of the last 

command that was run. Various commands issue integer exit codes to denote the status 

of the command. Generally, commands pass 0 if the command was completed successfully 

and 1 if the command failed.  

Following is the general syntax of this statement.  

if errorlevel n somecommand 

where "n" is one of the integer exit codes. 

Goto Statement 

Generally, the execution of a batch file proceeds line-by-line with the command(s) on each 

line being run in turn. However, it is often desirable to execute a particular section of a 

batch file while skipping over other parts. The capability to hop to a particular section is 

provided by the appropriately named "goto" command (written as one word). The target 

section is labeled with a line at the beginning that has a name with a leading colon. Thus 

the script looks like: 

... 

goto :label 

...some commands 

:label 

...some other commands 

Execution will skip over "some commands" and start with "some other commands". The 

label can be a line anywhere in the script, including before the "goto" command. "Goto" 

commands often occur in "if" statements. For example, you might have a command of the 

type:  

if (condition) goto :label 

Following is an example of how the goto statement can be used. 

 

 



Batch Script 

 

65 

 

Example 

@echo off 
SET /A a=5 
SET /A b=10 
if %a% == 5 goto :labela 
if %b% == 10 goto :labelb 
:labela  
echo "The value of a is 5" 
:labelb  
echo "The value of a is 10" 
 

The key thing to note about the above program is:  

 The code statements for the label should be on the next line after the declaration 

of the label. 

 

 You can define multiple goto statements and their corresponding labels in a batch 

file. 

 

 The label declarations can be anywhere in the file. 

Output 

The above command produces the following output. 

"The value of a is 5" 

"The value of a is 10" 



Batch Script 

 

66 

 

An operator is a symbol that tells the compiler to perform specific mathematical or logical 

manipulations. 

In batch script, the following types of operators are possible. 

 Arithmetic operators 

 Relational operators 

 Logical operators 

 Assignment operators 

 Bitwise operators 

Arithmetic Operators 

Batch Script language supports the normal Arithmetic operators as any language. 

Following are the Arithmetic operators available. 

Operator Description Example 

+ Addition of two operands 1 + 2 will give 3 

− Subtracts second operand from the first 2 − 1 will give 1 

* Multiplication of both operands 2 * 2 will give 4 

/ Division of the numerator by the denominator 3 / 2 will give 1.5 

% 
Modulus operator and remainder of after an 

integer/float division 
3 % 2 will give 1 

 

The following code snippet shows how the various operators can be used. 

@echo off 

SET /A a=5 

SET /A b=10 

SET /A c=%a%+%b% 

echo %c% 

SET /A c=%a%-%b% 

echo %c% 

SET /A c=%b%*%a% 

echo %c% 

11.   Batch Script – Operators 



Batch Script 

 

67 

 

SET /A c=%b%/%a% 

echo %c% 

SET /A c=%b% %% %a% 

echo %c% 

Output 

The above command produces the following output. 

15 

-5 

50 

2 

0 

Relational Operators 

Relational operators allow of the comparison of objects. Below are the relational operators 

available.  

Operator Description Example 

EQU Tests the equality between two objects 2 EQU 2 will give true 

NEQ Tests the difference between two objects 3 NEQ 2 will give true 

LSS 
Checks to see if the left object is less than the 

right operand 
2 LSS 3 will give true 

LEQ 
Checks to see if the left object is less than or 

equal to the right operand 
2 LEQ 3 will give true 

GTR 
Checks to see if the left object is greater than the 

right operand 
3 GTR 2 will give true 

GEQ 
Checks to see if the left object is greater than or 

equal to the right operand 
3 GEQ 2 will give true 

 

The following code snippet shows how the various operators can be used. 

@echo off 
SET /A a=5 
SET /A b=10 
if %a% EQU %b% echo A is equal to than B 
if %a% NEQ %b% echo A is not equal to than B 
if %a% LSS %b% echo A is less than B 
if %a% LEQ %b% echo A is less than or equal B 



Batch Script 

 

68 

 

if %a% GTR %b% echo A is greater than B 
if %a% GEQ %b% echo A is greater than or equal to B 

Output 

The above command produces the following output. 

A is not equal to than B 

A is less than B 

A is less than or equal B 

Logical Operators 

Logical operators are used to evaluate Boolean expressions. Following are the logical 

operators available. 

The batch language is equipped with a full set of Boolean logic operators like AND, OR, 

XOR, but only for binary numbers. Neither are there any values for TRUE or FALSE. The 

only logical operator available for conditions is the NOT operator. 

Operator Description 

AND This is the logical “and” operator 

OR This is the logical “or” operator 

NOT This is the logical “not” operator 

 

The easiest way to implement the AND/OR operator for non-binary numbers is to use the 

nested IF condition. The following example shows how this can be implemented. 

@echo off 

SET /A a=5 

SET /A b=10 

IF %a% LSS 10 (IF %b% GTR 0 (ECHO %a% is less than 10 AND %b% is greater than 
0)) 

Output 

The above command produces the following output. 

5 is less than 10 AND 10 is greater than 0 

 

 

 



Batch Script 

 

69 

 

Following is an example of the AND operation that can be implemented using the IF 

statement. 

@echo off 

SET /A a=5 

SET /A b=10 

IF %a% GEQ 10 ( 

 IF %b% LEQ 0 ( 

  ECHO %a% is NOT less than 10 OR %b% is NOT greater than 0 

 ) ELSE ( 

  ECHO %a% is less than 10 OR %b% is greater than 0 

 ) 

) ELSE ( 

 ECHO %a% is less than 10 OR %b% is greater than 0 

) 

Output 

The above command produces the following output. 

5 is less than 10 AND 10 is greater than 0 

Following is an example of how the NOT operator can be used. 

@echo off 

SET /A a=5 

IF NOT %a%==6 echo "A is not equal to 6" 

Output 

The above command produces the following output. 

"A is equal to 5" 

Assignment Operators 

Batch Script language also provides assignment operators. Following are the assignment 

operators available. 

Operator Description Example 

+= 
This adds right operand to the left operand 

and assigns the result to left operand 

Set /A a = 5 

a+=3 



Batch Script 

 

70 

 

Output will be 8 

-= 

This subtracts the right operand from the left 

operand and assigns the result to the left 

operand 

Set /A a = 5 

a-=3 

Output will be 2 

*= 

This multiplies the right operand with the left 

operand and assigns the result to the left 

operand 

Set /A a = 5 

a*=3 

Output will be 15 

/= 

This divides the left operand with the right 

operand and assigns the result to the left 

operand 

Set /A a = 6 

a/=3 

Output will be 2 

%= 
This takes modulus using two operands and 

assigns the result to the left operand 

Set /A a = 5 

a%=3 

Output will be 2 

 

The following code snippet shows how the various operators can be used. 

@echo off 

SET /A a=5 

SET /A a +=5 

echo %a% 

SET /A a -=5 

echo %a% 

SET /A a *=5 

echo %a% 

SET /A a /=5 

echo %a% 

SET /A a %=5 

echo %a% 

 

 

 



Batch Script 

 

71 

 

Output 

The above command produces the following output. 

10 

5 

25 

5 

5 

Bitwise Operators 

Bitwise operators are also possible in Batch Script. Following are the operators available. 

Operator Description 

& This is the bitwise “and” operator 

| This is the bitwise “or” operator 

^ This is the bitwise “xor” or Exclusive or operator 

 

Following is the truth table showcasing these operators. 

p q p & q p | q p ^ q 

0 0 0 0 0 

0 1 0 1 1 

1 1 1 1 0 

1 0 0 1 1 

 

The following code snippet shows how the various operators can be used. 

@echo off 

SET /A "Result = 48 & 23" 

echo %Result% 

SET /A "Result = 16 | 16" 

echo %Result% 

SET /A "Result = 31 ^ 15" 

echo %Result% 



Batch Script 

 

72 

 

Output 

The above command produces the following output. 

16 

16 

16 

Redirection 

Redirection is a concept of taking the output of a command and re-directing that output 

to a different output media. The following commands are available for re-direction. 

 command > filename –  Redirect command output to a file. 

 command >> filename –  APPEND into a file. 

 command < filename  – Type a text file and pass the text to command. 

 command 2> file – Write standard error of command to file (OS/2 and NT). 

 command 2>> file – Append standard error of command to file (OS/2 and NT). 

 commandA | commandB – Redirect standard output of commandA to standard 
input of command. 

The following code snippet shows how the various redirection operations can be used. 

command > filename 

This command redirects command output to a file. 

Example 

@echo off 
ipconfig>C:\details.txt 

Output 

The output of the above program would be that all the details of the ipconfig command 

will be sent to the file C:\details.txt. If you open the above file, you might see the 

information similar to the one as the following. 

Windows IP Configuration 

Wireless LAN adapter Local Area Connection* 11: 

   Media State . . . . . . . . . . . : Media disconnected 

   Connection-specific DNS Suffix  . :  

Ethernet adapter Ethernet: 

   Media State . . . . . . . . . . . : Media disconnected 

   Connection-specific DNS Suffix  . :  

Wireless LAN adapter Wi-Fi: 

   Media State . . . . . . . . . . . : Media disconnected 

http://ss64.com/nt/type.html


Batch Script 

 

73 

 

   Connection-specific DNS Suffix  . :  

Tunnel adapter Teredo Tunneling Pseudo-Interface: 

   Media State . . . . . . . . . . . : Media disconnected 

   Connection-specific DNS Suffix  . : 

 

command >> filename 

This command appends the output of the command into a file.  

Example 

@echo off 

systeminfo>>C:\details.txt 

 

Output 

The output of the above program would be that all the details of the systeminfo command 

will be appended to the file C:\details.txt. if you open the above file you might see the 

information similar to the one as the following. 

Windows IP Configuration 

Wireless LAN adapter Local Area Connection* 11: 

  Media State . . . . . . . . . . . : Media disconnected 

   Connection-specific DNS Suffix  . :  

Ethernet adapter Ethernet: 

   Media State . . . . . . . . . . . : Media disconnected 

   Connection-specific DNS Suffix  . :  

Wireless LAN adapter Wi-Fi: 

   Media State . . . . . . . . . . . : Media disconnected 

   Connection-specific DNS Suffix  . :  

Tunnel adapter Teredo Tunneling Pseudo-Interface: 

   Media State . . . . . . . . . . . : Media disconnected 

   Connection-specific DNS Suffix  . :  

Host Name:                 WIN-50GP30FGO75 

OS Name:                   Microsoft Windows Server 2012 R2 Standard 

OS Version:                6.3.9600 N/A Build 9600 

OS Manufacturer:           Microsoft Corporation 

OS Configuration:          Standalone Server 

OS Build Type:             Multiprocessor Free 

Registered Owner:          Windows User 

Registered Organization:    



Batch Script 

 

74 

 

Product ID:                00252-70000-00000-AA535 

Original Install Date:     12/13/2015, 12:10:16 AM 

System Boot Time:          12/30/2015, 5:52:11 AM 

System Manufacturer:       LENOVO 

System Model:              20287 

System Type:               x64-based PC 

 

command < filename   

This command types a text file and passes the text to command. 

Example 

@echo off 

SORT < Example.txt 

 

Output 

If you define a file called Example.txt which has the following data. 

4 

3 

2 

1  

The output of the above program would be 

1 

2 

3 

4 

 

command 2> file 

This command writes the standard error of command to file (OS/2 and NT). 

Example 

DIR C:\ >List_of_C.txt 2>errorlog.txt 

 

http://ss64.com/nt/type.html


Batch Script 

 

75 

 

In the above example, if there is any error in processing the command of the directory 

listing of C, then it will be sent to the log file errorlog.txt. 

command 2>> file 

Appends the standard error of command to file (OS/2 and NT). 

Example 

DIR C:\ >List_of_C.txt 2>errorlog.txt 

DIR D:\ >List_of_C.txt 2>>errorlog.txt 

In the above example, if there is any error in processing the command of the directory 

listing of D, then it will be appended to the log file errorlog.txt. 

commandA | commandB 

This command redirects standard output of commandA to standard input of command. 

Example 

Echo y | del *.txt 

 

Output 

The above command will pass the option of ‘y’ which is the value of ‘Yes’ to the command 

of del. This will cause the deletion of all files with the extension of txt. 

 



Batch Script 

 

76 

 

The date and time in DOS Scripting have the following two basic commands for retrieving 

the date and time of the system. 

DATE 

This command gets the system date. 

Syntax 

DATE 

Example 

@echo off 

echo %DATE% 

Output 

The current date will be displayed in the command prompt. For example,   

Mon 12/28/2015 

TIME 

This command sets or displays the time. 

Syntax 

TIME 

Example 

@echo off 

echo %TIME% 

Output 

The current system time will be displayed. For example,  

22:06:52.87 

Following are some implementations which can be used to get the date and time in 

different formats. 

12.   Batch Script – DATE and TIME 



Batch Script 

 

77 

 

Date in Format Year-Month-Day 

Example 

@echo off 

echo/Today is: %year%-%month%-%day% 

goto :EOF 

setlocal ENABLEEXTENSIONS 

set t=2&if "%date%z" LSS "A" set t=1 

for /f "skip=1 tokens=2-4 delims=(-)" %%a in ('echo/^|date') do ( 

  for /f "tokens=%t%-4 delims=.-/ " %%d in ('date/t') do ( 

    set %%a=%%d&set %%b=%%e&set %%c=%%f)) 

endlocal&set %1=%yy%&set %2=%mm%&set %3=%dd%&goto :EOF 

Output 

The above command produces the following output. 

Today is: 2015-12-30 

 

 

 



Batch Script 

 

78 

 

There are three universal “files” for keyboard input, printing text on the screen and printing 

errors on the screen. The “Standard In” file, known as stdin, contains the input to the 

program/script. The “Standard Out” file, known as stdout, is used to write output for 

display on the screen. Finally, the “Standard Err” file, known as stderr, contains any error 

messages for display on the screen. 

Each of these three standard files, otherwise known as the standard streams, are 

referenced using the numbers 0, 1, and 2. Stdin is file 0, stdout is file 1, and stderr is file 

2. 

Redirecting Output (Stdout and Stderr) 

One common practice in batch files is sending the output of a program to a log file. The > 

operator sends, or redirects, stdout or stderr to another file. The following example shows 

how this can be done. 

Dir C:\ > list.txt 

In the above example, the stdout of the command Dir C:\ is redirected to the file list.txt. 

If you append the number 2 to the redirection filter, then it would redirect the stderr to 

the file lists.txt. 

Dir C:\ 2> list.txt 

One can even combine the stdout and stderr streams using the file number and the ‘&’ 

prefix. Following is an example. 

DIR C:\ > lists.txt 2>&1 

Suppressing Program Output 

The pseudo file NUL is used to discard any output from a program. The following example 

shows that the output of the command DIR is discarded by sending the output to NUL. 

Dir C:\ > NUL 

Stdin 

To work with the Stdin, you have to use a workaround to achieve this. This can be done 

by redirecting the command prompt’s own stdin, called CON.  

The following example shows how you can redirect the output to a file called lists.txt. After 

you execute the below command, the command prompt will take all the input entered by 

user till it gets an EOF character. Later, it sends all the input to the file lists.txt. 

TYPE CON > lists.txt 

13.   Batch Script – Input / Output 



Batch Script 

 

79 

 

By default when a command line execution is completed it should either return zero when 

execution succeeds or non-zero when execution fails. When a batch script returns a non-

zero value after the execution fails, the non-zero value will indicate what is the error 

number. We will then use the error number to determine what the error is about and 

resolve it accordingly. 

Following are the common exit code and their description. 

Error Code Description 

0 Program successfully completed. 

1 

Incorrect function. Indicates that Action has attempted to 

execute non-recognized command in Windows command 

prompt cmd.exe. 

2 
The system cannot find the file specified. Indicates that the 

file cannot be found in specified location. 

3 
The system cannot find the path specified. Indicates that the 

specified path cannot be found. 

5 

 

Access is denied. Indicates that user has no access right to 

specified resource. 

 

9009 

0x2331 

Program is not recognized as an internal or external 

command, operable program or batch file. Indicates that 

command, application name or path has been misspelled 

when configuring the Action. 

221225495 

0xC0000017 

-1073741801 

Not enough virtual memory is available. 

It indicates that Windows has run out of memory. 

3221225786 

0xC000013A 

-1073741510 

The application terminated as a result of a CTRL+C. Indicates 

that the application has been terminated either by the user's 

keyboard input CTRL+C or CTRL+Break or closing command 

prompt window. 

3221225794 

0xC0000142 

-1073741502 

The application failed to initialize properly. Indicates that the 

application has been launched on a Desktop to which the 

current user has no access rights. Another possible cause is 

that either gdi32.dll or user32.dll has failed to initialize. 

Error Level 

The environmental variable %ERRORLEVEL% contains the return code of the last executed 

program or script.  

By default, the way to check for the ERRORLEVEL is via the following code. 

 

 

14.   Batch Script – Return Code 



Batch Script 

 

80 

 

Syntax 

IF %ERRORLEVEL% NEQ 0 ( 

DO_Something 

) 

It is common to use the command EXIT /B %ERRORLEVEL% at the end of the batch file 

to return the error codes from the batch file. 

EXIT /B at the end of the batch file will stop execution of a batch file.  

Use EXIT /B < exitcodes > at the end of the batch file to return custom return codes. 

Environment variable %ERRORLEVEL% contains the latest errorlevel in the batch file, 

which is the latest error codes from the last command executed. In the batch file, it is 

always a good practice to use environment variables instead of constant values, since the 

same variable get expanded to different values on different computers. 

Let’s look at a quick example on how to check for error codes from a batch file. 

Example 

Let’s assume we have a batch file called Find.cmd which has the following code. In the 

code, we have clearly mentioned that we if don’t find the file called lists.txt then we should 

set the errorlevel to 7. Similarly, if we see that the variable userprofile is not defined then 

we should set the errorlevel code to 9. 

if not exist c:\lists.txt exit 7 
if not defined userprofile exit 9 
exit 0 

Let’s assume we have another file called App.cmd that calls Find.cmd first. Now, if the 

Find.cmd returns an error wherein it sets the errorlevel to greater than 0 then it would 

exit the program. In the following batch file, after calling the Find.cnd find, it actually 

checks to see if the errorlevel is greater than 0. 

Call Find.cmd 

if errorlevel gtr 0 exit 
echo “Successful completion” 

Output 

In the above program, we can have the following scenarios as the output: 

 If the file c:\lists.txt does not exist, then nothing will be displayed in the console 

output. 

 

 If the variable userprofile does not exist, then nothing will be displayed in the 

console output. 

 

 If both of the above condition passes then the string “Successful completion” will 

be displayed in the command prompt. 



Batch Script 

 

81 

 

Loops 

In the decision making chapter, we have seen statements which have been executed one 

after the other in a sequential manner. Additionally, implementations can also be done in 

Batch Script to alter the flow of control in a program’s logic. They are then classified into 

flow of control statements.  

While Statement Implementation 

There is no direct while statement available in Batch Script but we can do an 

implementation of this loop very easily by using the if statement and labels.  

The following diagram shows the diagrammatic explanation of this loop. 

 

The first part of the while implementation is to set the counters which will be used to 

control the evaluation of the ‘if’ condition. We then define our label which will be used to 

embody the entire code for the while loop implementation. The ‘if’ condition evaluates an 



Batch Script 

 

82 

 

expression. If the expression evaluates to true, the code block is executed. If the condition 

evaluates to false then the loop is exited. When the code block is executed, it will return 

back to the label statement for execution again. 

Following is the syntax of the general implementation of the while statement. 

Set counters 

:label 

If (expression)  

( 

Do_something 

Increment counter 

Go back to :label 

) 

 The entire code for the while implementation is placed inside of a label. 

 

 The counter variables must be set or initialized before the while loop 

implementation starts. 

 

 The expression for the while condition is done using the ‘if’ statement. If the 

expression evaluates to true then the relevant code inside the ‘if’ loop is executed. 

 

 A counter needs to be properly incremented inside of ‘if’ statement so that the while 

implementation can terminate at some point in time. 

 

 Finally, we will go back to our label so that we can evaluate our ‘if’ statement again. 

Following is an example of a while loop statement. 

Example 

@echo off 

SET /A "index=1" 

SET /A "count=5" 

:while 

if %index% leq %count% ( 

    echo The value of index is %index% 

    SET /A "index = index + 1" 

    goto :while 

) 

In the above example, we are first initializing the value of an index integer variable to 1. 

Then our condition in the ‘if’ loop is that we are evaluating the condition of the expression 

to be that index should it be less than the value of the count variable. Till the value of 

index is less than 5, we will print the value of index and then increment the value of index. 

 



Batch Script 

 

83 

 

Output 

The above command produces the following output. 

The value of index is 1 

The value of index is 2 

The value of index is 3 

The value of index is 4 

The value of index is 5 

For Statement - List Implementations 

The "FOR" construct offers looping capabilities for batch files. Following is the common 

construct of the ‘for’ statement for working with a list of values. 

FOR %%variable IN list DO do_something 

The classic ‘for’ statement consists of the following parts: 

 Variable declaration – This step is executed only once for the entire loop and used 

to declare any variables which will be used within the loop. In Batch Script, the 

variable declaration is done with the %% at the beginning of the variable name. 

 

 List – This will be the list of values for which the ‘for’ statement should be executed. 

 

 The do_something code block is what needs to be executed for each iteration for 

the list of values. 

The following diagram shows the diagrammatic explanation of this loop. 

 

 



Batch Script 

 

84 

 

 

Following is an example of how the ‘goto’ statement can be used. 

Example 

@echo off 
FOR %%F IN (1 2 3 4 5) DO echo %%F 

The key thing to note about the above program is:  

 The variable declaration is done with the %% sign at the beginning of the variable 

name. 

 

 The list of values is defined after the IN clause. 

 

 The do_something code is defined after the echo command. Thus for each value in 

the list, the echo command will be executed. 

 

 



Batch Script 

 

85 

 

Output 

The above program produces the following output. 

1 
2 
3 
4 
5 

Looping through Ranges 

The ‘for’ statement also has the ability to move through a range of values. Following is the 

general form of the statement. 

FOR /L %%variable IN (lowerlimit,Increment,Upperlimit) DO do_something 

Where 

 The /L switch is used to denote that the loop is used for iterating through ranges. 

 

 Variable declaration – This step is executed only once for the entire loop and used 

to declare any variables which will be used within the loop. In Batch Script, the 

variable declaration is done with the %% at the beginning of the variable name. 

 

 The IN list contains of 3 values. The lowerlimit, the increment, and the upperlimit. 

So, the loop would start with the lowerlimit and move to the upperlimit value, 

iterating each time by the Increment value. 

 

 The do_something code block is what needs to be executed for each iteration. 

Following is an example of how the looping through ranges can be carried out. 

Example 

@ECHO OFF 
FOR /L %%X IN (0,1,5) DO ECHO %%X 

Output 

The above program produces the following output.  

0 
1 
2 
3 
4 
5 

 



Batch Script 

 

86 

 

Classic for Loop Implementation 

Following is the classic ‘for’ statement which is available in most programming languages. 

for(variable declaration;expression;Increment) 

{ 

statement #1 

statement #2 

… 

} 

The Batch Script language does not have a direct ‘for’ statement which is similar to the 

above syntax, but one can still do an implementation of the classic ‘for’ loop statement 

using if statements and labels. 

Following is the general flow of the classic ‘for’ loop statement.  

 

Let’s look at the general syntax implementation of the classic for loop in Batch Script. 

Set counter 

:label 

If (expression) exit loop 



Batch Script 

 

87 

 

Do_something 

Increment counter 

Go back to :label 

 The entire code for the ‘for’ implementation is placed inside of a label. 

 

 The counters variables must be set or initialized before the ‘for’ loop 

implementation starts. 

 

 The expression for the ‘for’ loop is done using the ‘if’ statement. If the expression 

evaluates to be true then an exit is executed to come out of the loop. 

 

 A counter needs to be properly incremented inside of the ‘if’ statement so that the 

‘for’ implementation can continue if the expression evaluation is false. 

 

 Finally, we will go back to our label so that we can evaluate our ‘if’ statement again. 

 

Following is an example of how to carry out the implementation of the classic ‘for’ loop 

statement. 

Example 

@echo off 
SET /A i=1 
:loop 
IF %i%==5 GOTO END 
echo The value of i is %i% 
SET /a i=%i%+1 
GOTO :LOOP 
:END 

Output 

The above command produces the following output.  

The value of i is 1 

The value of i is 2 

The value of i is 3 

The value of i is 4 

Looping through Command Line Arguments 

The ‘for’ statement can also be used for checking command line arguments. The following 

example shows how the ‘for’ statement can be used to loop through the command line 

arguments. 

 



Batch Script 

 

88 

 

Example 

@ECHO OFF 
:Loop 
IF "%1"=="" GOTO completed 
FOR %%F IN (%1) DO echo %%F 
SHIFT 
GOTO Loop 
:completed 

Output 

Let’s assume that our above code is stored in a file called Test.bat. The above command 

will produce the following output if the batch file passes the command line arguments of 

1,2 and 3 as Test.bat 1 2 3. 

1 
2 
3 

Break Statement Implementation 

The break statement is used to alter the flow of control inside loops within any 

programming language. The break statement is normally used in looping constructs and 

is used to cause immediate termination of the innermost enclosing loop. 

The Batch Script language does not have a direct ‘for’ statement which does a break but 

this can be implemented by using labels. The following diagram shows the diagrammatic 

explanation of the break statement implementation in Batch Script. 

 



Batch Script 

 

89 

 

 

The key thing to note about the above implementation is the involvement of two ‘if’ 

conditions. The second ‘if’ condition is used to control when the break is implemented. If 

the second ‘if’ condition is evaluated to be true, then the code block is not executed and 

the counter is directly implemented. 

Following is an example of how to carry out the implementation of the break statement. 

Example 

@echo off 
SET /A "index=1" 
SET /A "count=5" 
:while 
if %index% leq %count% ( 
    if %index% == 2 goto :Increment  
      echo The value of index is %index% 
:Increment 
    SET /A "index = index + 1" 
    goto :while 

) 

The key thing to note about the above program is the addition of a label called :Increment. 

When the value of index reaches 2, we want to skip the statement which echoes its value 

to the command prompt and directly just increment the value of index. 

 



Batch Script 

 

90 

 

Output 

The above command produces the following output.  

The value of index is 1 
The value of index is 3 
The value of index is 4 
The value of index is 5 



Batch Script 

 

91 

 

A function is a set of statements organized together to perform a specific task. In batch 

scripts, a similar approach is adopted to group logical statements together to form a 

function. 

As like any other languages, functions in Batch Script follows the same procedure:  

 Function Declaration: It tells the compiler about a function's name, return type, 

and parameters. 

 

 Function Definition: It provides the actual body of the function. 

Function Definition 

In Batch Script, a function is defined by using the label statement. When a function is 

newly defined, it may take one or several values as input 'parameters' to the function, 

process the functions in the main body, and pass back the values to the functions as 

output 'return types'. 

Every function has a function name, which describes the task that the function performs. 

To use a function, you "call" that function with its name and pass its input values (known 

as arguments) that matches the types of the function's parameters.  

Following is the syntax of a simple function.  

:function_name 
Do_something 
EXIT /B 0 

 The function_name is the name given to the function which should have some 

meaning to match what the function actually does. 

 

 The EXIT statement is used to ensure that the function exits properly. 

Following is an example of a simple function.  

Example 

:Display 
SET /A index=2 
echo The value of index is %index% 
EXIT /B 0 

 

 

15.   Batch Script – Functions 



Batch Script 

 

92 

 

Calling a Function 

A function is called in Batch Script by using the call command. Following is the syntax. 

call :function_name 

Following example shows how a function can be called from the main program.  

Example 

@echo off 
SETLOCAL 
CALL :Display 
EXIT /B %ERRORLEVEL% 
:Display 
SET /A index=2 
echo The value of index is %index% 
EXIT /B 0 

One key thing to note when defining the main program is to ensure that the statement 

EXIT /B %ERRORLEVEL% is put in the main program to separate the code of the main 

program from the function. 

Output 

The above command produces the following output.  

The value of index is 2 

Functions with Parameters 

Functions can work with parameters by simply passing them when a call is made to the 

function. 

Syntax 

Call :function_name parameter1, parameter2… parametern 

The parameters can then be accessed from within the function by using the tilde (~) 

character along with the positional number of the parameter. 

Following example shows how a function can be called with parameters. 

Example 

@echo off 

SETLOCAL 

CALL :Display 5 , 10 

EXIT /B %ERRORLEVEL% 

:Display 

echo The value of parameter 1 is %~1 



Batch Script 

 

93 

 

echo The value of parameter 2 is %~2 

EXIT /B 0 

As seen in the above example, ~1 is used to access the first parameter sent to the function, 

similarly ~2 is used to access the second parameter. 

Output 

The above command produces the following output. 

The value of parameter 1 is 5 

The value of parameter 2 is 10 

Functions with Return Values 

Functions can work with return values by simply passing variables names which will hold 

the return values when a call is made to the function as shown below 

Syntax 

Call :function_name value1, value2… valuen 

The return values are set in the function using the set command and the tilde(~) character 

along with the positional number of the parameter. 

Following example shows how a function can be called with return values.  

Example 

@echo off 

SETLOCAL 

CALL :SetValue value1,value2 

echo %value1% 

echo %value2% 

EXIT /B %ERRORLEVEL% 

:SetValue 

set "%~1=5" 

set "%~2=10" 

EXIT /B 0 

Output 

The above command produces the following output.  

5 
10 



Batch Script 

 

94 

 

Local Variables in Functions 

Local variables in functions can be used to avoid name conflicts and keep variable changes 

local to the function. The SETLOCAL command is first used to ensure the command 

processor takes a backup of all environment variables. The variables can be restored by 

calling ENDLOCAL command. Changes made in between are local to the current batch 

script. ENDLOCAL is automatically called when the end of the batch file is reached, i.e. by 

calling GOTO:EOF.  

Localizing variables with SETLOCAL allows using variable names within a function freely 

without worrying about name conflicts with variables used outside the function. 

Following example shows how local variables can be used in functions. 

Example 

@echo off 

set str=Outer 

echo %str% 

CALL :SetValue str 

echo %str% 

EXIT /B %ERRORLEVEL% 

:SetValue 

SETLOCAL 

set str=Inner 

set "%~1=%str%" 

ENDLOCAL 

EXIT /B 0 

Output 

In the above program, the variable ‘str’ is being localized in the function SetValue. Thus 

even though the str value is being returned back to the main function, the value of str in 

the main function will not be replaced by the value being returned from the function. 

The above command produces the following output. 

Outer 

Outer 

Recursive Functions 

The ability to completely encapsulate the body of a function by keeping variable changes 

local to the function and invisible to the caller. We can now have the ability to call a 

function recursively making sure each level of recursion works with its own set of variables 

even though variable names are being reused.  

Following example shows how recursive functions can be used. 



Batch Script 

 

95 

 

Example 

The example shows how to calculate a Fibonacci number recursively. The recursion stops 

when the Fibonacci algorism reaches a number greater or equal to a given input number. 

The example starts with the numbers 0 and 1, the :myFibo function calls itself recursively 

to calculate the next Fibonacci number until it finds the Fibonacci number greater or equal 

to 1000000000.  

The first argument of the myFibo function is the name of the variable to store the output 

in. This variable must be initialized to the Fibonacci number to start with and will be used 

as current Fibonacci number when calling the function and will be set to the subsequent 

Fibonacci number when the function returns. 

@echo off 

set "fst=0" 

set "fib=1" 

set "limit=1000000000" 

call:myFibo fib,%fst%,%limit% 

echo.The next Fibonacci number greater or equal %limit% is %fib%. 

echo.&pause&goto:eof 

:myFibo  -- calculate recursively  

:myFibo  -- calculate recursively the next Fibonacci number greater or equal to 
a limit 

SETLOCAL 

set /a "Number1=%~1" 

set /a "Number2=%~2" 

set /a "Limit=%~3" 

set /a "NumberN=Number1 + Number2" 

if /i %NumberN% LSS %Limit% call:myFibo NumberN,%Number1%,%Limit% 

(ENDLOCAL 

    IF "%~1" NEQ "" SET "%~1=%NumberN%" 

)goto:eof 

Output 

The above command produces the following output. 

The next Fibonacci number greater or equal 1000000000 is 1134903170. 

 

 

 

 



Batch Script 

 

96 

 

File I/O 

In Batch Script, it is possible to perform the normal file I/O operations that would be 

expected in any programming language.  

Following are some of the operations that can performed on files. 

 Creating files 

 Reading files 

 Writing to files 

 Deleting files 

 Moving files  

 Renaming files 

Creating Files 

The creation of a new file is done with the help of the redirection filter >. This filter can be 

used to redirect any output to a file. Following is a simple example of how to create a file 

using the redirection command. 

Example 

@echo off 

echo "Hello">C:\new.txt 

Output 

If the file new.txt is not present in C:\, then it will be created with the help of the above 

command. 

Writing to Files 

Content writing to files is also done with the help of the redirection filter >. This filter can 

be used to redirect any output to a file. Following is a simple example of how to create a 

file using the redirection command to write data to files. 

Example 

@echo off 

dir C:\>C:\new.txt 

The above code snippet first uses the DIR command to get the directory listing of the 

entire C:\ . It then takes that output and with the help of the redirection command sends 

it to the file new.txt. 

Output 

If you open up the file new.txt on your C drive, you will get the contents of your C drive 

in this file. Following is a sample output. 



Batch Script 

 

97 

 

 

Volume in drive C is Windows8_OS 

 Volume Serial Number is E41C-6F43 

 

 Directory of C:\ 

 

12/22/2015  09:02 PM    <DIR>          01 - Music 

06/14/2015  10:31 AM    <DIR>          02 - Videos 

09/12/2015  06:23 AM    <DIR>          03 - Pictures 

12/17/2015  12:19 AM    <DIR>          04 - Software 

12/15/2015  11:06 PM    <DIR>          05 - Studies 

12/20/2014  09:09 AM    <DIR>          06 - Future 

12/20/2014  09:07 AM    <DIR>          07 - Fitness 

09/19/2015  09:56 AM    <DIR>          08 - Tracking 

10/19/2015  10:28 PM    <DIR>          09 – Misc 

Appending to Files  

Content writing to files is also done with the help of the double redirection filter >>. This 

filter can be used to append any output to a file. Following is a simple example of how to 

create a file using the redirection command to append data to files. 

Example 

@echo off 

echo "This is the directory listing of C:\ Drive">C:\new.txt 

dir C:\>>C:\new.txt 

In the above example, you can see that the first echo command is used to create the file 

using the single redirection command whereas the DIR command is outputted to the file 

using the double redirection filter. 

Output 

If you open the file new.txt on your C drive, you will get the contents of your C drive in 

this file plus the string “This is the directory listing of C:\ Drive”. Following is a sample 

output. 

"This is the directory listing of C:\ Drive" 

Volume in drive C is Windows8_OS 

 Volume Serial Number is E41C-6F43 

 

 Directory of C:\ 

 



Batch Script 

 

98 

 

12/22/2015  09:02 PM    <DIR>          01 - Music 

06/14/2015  10:31 AM    <DIR>          02 - Videos 

09/12/2015  06:23 AM    <DIR>          03 - Pictures 

12/17/2015  12:19 AM    <DIR>          04 - Software 

12/15/2015  11:06 PM    <DIR>          05 - Studies 

12/20/2014  09:09 AM    <DIR>          06 - Future 

12/20/2014  09:07 AM    <DIR>          07 - Fitness 

09/19/2015  09:56 AM    <DIR>          08 - Tracking 

10/19/2015  10:28 PM    <DIR>          09 – Misc 

Reading from Files  

Reading of files in a batch script is done via using the FOR loop command to go through 

each line which is defined in the file that needs to be read. Since there is a no direct 

command to read text from a file into a variable, the ‘for’ loop needs to be used to serve 

this purpose. 

Let’s look at an example on how this can be achieved. 

Example 

@echo off 

FOR /F "tokens=* delims=" %%x in (new.txt) DO echo %%x 

The delims parameter is used to break up the text in the file into different tokens or words. 

Each word or token is then stored in the variable x. For each word which is read from the 

file, an echo is done to print the word to the console output. 

Output 

If you consider the new.txt file which has been considered in previous examples, you might 

get the following output when the above program is run. 

"This is the directory listing of C:\ Drive" 

Volume in drive C is Windows8_OS 

 Volume Serial Number is E41C-6F43 

 

 Directory of C:\ 

 

12/22/2015  09:02 PM    <DIR>          01 - Music 

06/14/2015  10:31 AM    <DIR>          02 - Videos 

09/12/2015  06:23 AM    <DIR>          03 - Pictures 

12/17/2015  12:19 AM    <DIR>          04 - Software 

12/15/2015  11:06 PM    <DIR>          05 - Studies 



Batch Script 

 

99 

 

12/20/2014  09:09 AM    <DIR>          06 - Future 

12/20/2014  09:07 AM    <DIR>          07 - Fitness 

09/19/2015  09:56 AM    <DIR>          08 - Tracking 

10/19/2015  10:28 PM    <DIR>          09 – Misc 

Deleting Files  

For deleting files, Batch Script provides the DEL command.  

Syntax 

DEL [/P] [/F] [/S] [/Q] [/A[[:]attributes]] names 

Following are the description of the options which can be presented to the DEL command. 

Names 

Specifies a list of one or more files or directories. Wildcards may 

be used to delete multiple files. If a directory is specified, all files 

within the directory will be deleted 

/P Prompts for confirmation before deleting each file. 

/F Force deletes of read-only files. 

/S Deletes specified files from all subdirectories. 

/Q Quiet mode, do not ask if ok to delete on global wildcard. 

/A Selects files to delete based on attributes. 

attributes 
R Read-only files, S System files, H Hidden files, A Files ready for archiving 

- Prefix meaning not 

 

Following examples show how the DEL command can be used. 

Examples 

del test.bat 

The above command will delete the file test.bat in the current directory, if the file exists. 

 

del c:\test.bat 

The above command will delete the file C:\test.bat in the current directory, if the file exists. 

 

del c:\*.bat 

The * (asterisks) is a wild character. *.bat indicates that you would like to delete all bat 

files in the c:\directory. 



Batch Script 

 

100 

 

 

del c:\?est.tmp 

The ? (question mark) is a single wild character for one letter. The use of this command 

in the above example will delete any file ending with "est.tmp", such as pest.tmp or 

test.tmp. 

Renaming Files 

For renaming files, Batch Script provides the REN or RENAME command.  

Syntax 

RENAME [drive:][path][directoryname1 | filename1] [directoryname2 | filename2] 

Let’s take a look at some examples of renaming files. 

Examples 

rename *.txt *.bak 

The above command will rename all text files to files with .bak extension. 

rename "TESTA.txt" "TESTB.txt" 

The above command will rename the file TESTA.txt to TESTB.txt. 

Moving Files 

For moving files, Batch Script provides the MOVE command.  

Syntax 

MOVE [/Y | /-Y] [drive:][path]filename1[,...] destination 

Following are the description of the options which can be presented to the DEL command. 

[drive:][path]filename1 
Specifies the location and name of the file or files you 

want to move 

destination 

Specifies the new location of the file. Destination can consist 

of a drive letter and colon, a directory name, or a 

combination. If you are moving only one file, you can also 

include a filename if you want to rename the file when you 

move it. 

[drive:][path]dirname1 Specifies the directory you want to rename. 

dirname2 Specifies the new name of the directory. 

/Y 
Suppresses prompting to confirm you want to overwrite an 

existing destination file. 

/-Y 
Causes prompting to confirm you want to overwrite an 

existing destination file. 



Batch Script 

 

101 

 

Let’s look at some examples of renaming files. 

Examples 

move c:\windows\temp\*.* c:\temp 

The above command will move the files of c:\windows\temp to the temp directory in root.  

 

move new.txt, test.txt c:\example 

The above command will move the files new.txt and test.txt into the c:\example folder. 

Batch Files – Pipes 

The pipe operator (|) takes the output (by default, STDOUT) of one command and directs 

it into the input (by default, STDIN) of another command. For example, the following 

command sorts the contents of the directory C:\ 

dir C:\ | sort  

In this example, both commands start simultaneously, but then the sort command pauses 

until it receives the dir command's output. The sort command uses the dir command's 

output as its input, and then sends its output to handle 1 (that is, STDOUT). 

 
Following is another example of the pipe command. In this example, the contents of the 

file C:\new.txt are sent to the sort command through the pipe filter. 

@echo off 
TYPE C:\new.txt | sort 

Combining Commands with Redirection Operators 

Usually, the pipe operator is used along with the redirection operator to provide useful 

functionality when it comes to working with pipe commands. 

For example, the below command will first take all the files defined in C:\, then using the 

pipe command, will find all the files with the .txt extension. It will then take this output 

and print it to the file AllText.txt. 

dir C:\ | find "txt" > AllText.txt 

Using Multiple Pipe Commands 

To use more than one filter in the same command, separate the filters with a pipe (|). For 

example, the following command searches every directory on drive C:, finds the file names 

that include the string "Log", and then displays them in one Command Prompt window at 

a time: 

dir c:\ /s /b | find "TXT" | more 



Batch Script 

 

102 

 

Following are some examples of how the pipe filter can be used. 

Examples 

The following example send’s the list of all running tasks using the tasklist command and 

sends the output to the find command. The find command will then find all processes 

which are of the type notepad and display them in the command prompt. 

tasklist | find "notepad" 

Output 

Following is a sample output.  

notepad.exe                   1400 Console                    1      8,916 K 

notepad.exe                   4016 Console                    1     11,200 K 

notepad.exe                   1508 Console                    1      8,720 K 

notepad.exe                   4076 Console                    1      8,688 K 

The following example send’s the list of all running tasks using the tasklist command and 

sends the output to the more command. The more command will then display the lists of 

running tasks one page at a time. 

tasklist | more 

Output 

Image Name                     PID Session Name        Session#    Mem Usage 

========================= ======== ================ =========== ============ 

System Idle Process              0 Services                   0          4 K 

System                           4 Services                   0        276 K 

smss.exe                       344 Services                   0      1,060 K 

csrss.exe                      524 Services                   0      4,188 K 

csrss.exe                      608 Console                    1     58,080 K 

wininit.exe                    616 Services                   0      3,528 K 

winlogon.exe                   644 Console                    1      5,636 K 

services.exe                   708 Services                   0      7,072 K 

lsass.exe                      716 Services                   0     10,228 K 

svchost.exe                    784 Services                   0     10,208 K 

svchost.exe                    828 Services                   0      7,872 K 

dwm.exe                        912 Console                    1    208,316 K 

nvvsvc.exe                     932 Services                   0      6,772 K 

nvxdsync.exe                   968 Console                    1     16,584 K 

nvvsvc.exe                     976 Console                    1     12,780 K 

svchost.exe                   1008 Services                   0     20,340 K 



Batch Script 

 

103 

 

svchost.exe                    224 Services                   0     39,740 K 

svchost.exe                    468 Services                   0     11,864 K 

svchost.exe                    860 Services                   0     11,184 K 

svchost.exe                    232 Services                   0     16,992 K 

wlanext.exe                   1168 Services                   0     12,840 K 

-- More  -- 

The following example send’s the list of all running tasks using the tasklist command and 

sends the output to the find command. The find command will then find all processes 

which are of the type notepad and then uses the redirection command to send the content 

to the file tasklist.txt. 

tasklist | find "notepad" > tasklist.txt 

Output 

If you open the file tasklist.txt, you will get the following sample output. 

notepad.exe                   1400 Console                    1      8,916 K 

notepad.exe                   4016 Console                    1     11,200 K 

notepad.exe                   1508 Console                    1      8,720 K 

notepad.exe                   4076 Console                    1      8,688 K 

Batch Files – Inputs 

When a batch file is run, it gives you the option to pass in command line parameters which 

can then be read within the program for further processing. The batch files parameters 

can be recalled from within the program using the % operator along with the numeric 

position of the parameter. Following is how the command line parameters are defined. 

 %0 is the program name as it was called. 

 %1 is the first command line parameter. 

 %2 is the second command line parameter. 

 So on till %9. 

Let’s take a look at a simple example of how command line parameters can be used. 

Example 

@echo off 

echo The first parameter is %1 

echo The second parameter is %2 

echo The third parameter is %3 

 



Batch Script 

 

104 

 

Output 

If the above code is stored in a file called test.bat and the file is run as  

test.bat 5 10 15 

then, following will be the output. 

The first parameter is 5 

The second parameter is 10 

The third parameter is 15 

Using the SHIFT Operator 

One of the limitations of command line arguments is that it can accept only arguments till 

%9. Let’s take an example of this limitation.  

Example 

@echo off 

echo %1 

echo %2 

echo %3 

echo %4 

echo %5 

echo %6 

echo %7 

echo %8 

echo %9 

echo %10 

Output 

If the above code is stored in a file called test.bat and the file is run as  

test.bat a b c d e f g h i j  

Then following will be the output. 

a 
b 

c 

d 

e 

f 



Batch Script 

 

105 

 

h 

i 

a0 

As you can see from the above output, the final value which should be shown as ‘j’ is being 

shown as a0. This is because there is no parameter known as %10. 

This limitation can be avoided by using the SHIFT operator. After your batch file handled 

its first parameter(s) it could SHIFT them (just insert a line with only the 

command SHIFT), resulting in %1 getting the value B, %2 getting the value C, etcetera, 

till %9, which now gets the value J. Continue this process until at least %9 is empty. 

Let’s look at an example of how to use the SHIFT operator to overcome the limitation of 

command line arguments. 

Example 

@ECHO OFF 

:Loop 

IF "%1"=="" GOTO Continue 

   echo %1% 

SHIFT 

GOTO Loop 

:Continue 

If the above code is stored in a file called test.bat and the file is run as  

test.bat a b c d e f g h i j 

Then following will be the output. 

a 
b 

c 

d 

e 

f 

h 

i 

j 

Note 

Some characters in the command line are ignored by batch files, depending on the DOS 

version, whether they are "escaped" or not, and often depending on their location in the 

command line: 

http://www.robvanderwoude.com/escapechars.php


Batch Script 

 

106 

 

 Commas (",") are replaced by spaces, unless they are part of a string in 

doublequotes. 

 

 Semicolons (";") are replaced by spaces, unless they are part of a string in 

doublequotes. 

 

 "=" characters are sometimes replaced by spaces, not if they are part of a string 

in doublequotes. 

 

 The first forward slash ("/") is replaced by a space only if it immediately follows the 

command, without a leading space. 

 

 Multiple spaces are replaced by a single space, unless they are part of a string in 

doublequotes. 

 

 Tabs are replaced by a single space. 

 

 Leading spaces before the first command line argument are ignored. 

 

 Trailing spaces after the last command line argument are trimmed. 

Folders 

In Batch Script, it is possible to perform the normal folder based operations that would be 

expected in any programming language.  

Following are some of the operations that can be performed on folders. 

 Creating folders 

 Listing folders 

 Traversing files in folders 

 Deleting folders 

 Renaming folders 

Creating Folders 

The creation of a folder is done with the assistance of the MD (Make directory) command. 

Syntax 

MKDIR [drive:]path 
MD [drive:]path 

 

Let’s look at some examples on how to use the MD command. 

 

 



Batch Script 

 

107 

 

Examples 

md test 

The above command will create a directory called test in your current directory. 

 

md C:\test 

The above command will create a directory called test in the C drive. 

 

md “Test A” 

If there are spaces in the folder name, then the folder name should be given in quotes. 

 

mkdir \a\b\c 

The above command creates directories recursively and is the same as issuing the 

following set of commands. 

mkdir \a 
chdir \a 
mkdir b 
chdir b 
mkdir c 

Listing Folder Contents 

The listing of folder contents can be done with the dir command. This command allows 

you to see the available files and directories in the current directory. The dir command 

also shows the last modification date and time, as well as the file size. 

Syntax 

DIR [drive:][path][filename] [/A[[:]attributes]] [/B] [/C] [/D] [/L] [/N] 
[/O[[:]sortorder]] [/P] [/Q] [/R] [/S] [/T[[:]timefield]] [/W] [/X] [/4] 

 

 

 

 

 

 



Batch Script 

 

108 

 

[drive:][path][filename] Specifies drive, directory, or files to list 

/A Displays files with specified attributes. 

attributes 

D - Directories R - Read-only files 

H - Hidden files A - Files ready for archiving 

S - System files I - Not content indexed files 

L - Reparse Points - Prefix meaning not 

   

/B Uses bare format (no heading information or summary). 

/C 
Displays the thousand separator in file sizes. This is the 

default. Use /-C to disable the display of the separator. 

/D Same as wide but files are list sorted by column. 

/L Uses lowercase. 

/N New long list format where filenames are on the far right. 

/O Lists by files in sorted order. 

sortorder 

N By name (alphabetic), S By size (smallest first), E By 

extension (alphabetic), D By date/time (oldest first), G 

Group directories first - Prefix to reverse order 

/P Pauses after each screen is full of information. 

/Q Displays the owner of the file. 

/R Displays alternate data streams of the file. 

/S 
Displays files in the specified directory and all 

subdirectories. 

/T Controls what time field is displayed or used for sorting. 

timefield 

C - Creation 

A - Last Access 

W - Last Written 

/W Uses wide list format. 

/X 

This displays the short names generated for non-8dot3 file 

names. The format is that of /N with the short name 

inserted before the long name. If no short name is 

present, blanks are displayed in its place. 

/4 Displays four-digit years. 

 

Let’s see some of the examples on how to use the DIR command. 

Examples 

dir *.exe 

The above command lists any file that ends with the .exe file extension.  

 

 



Batch Script 

 

109 

 

dir *.txt *.doc 

The above command uses multiple filespecs to list any files ending with .txt and .doc in 

one command. 

 

dir /ad 

Lists only the directories in the current directory. If you need to move into one of the 

directories listed use the cd command. 

 

dir /s 

Lists the files in the directory that you are in and all sub directories after that directory. If 

you are at root "C:\>", type this command, this will list to you every file and directory on 

the C: drive of the computer. 

 

dir /p 

If the directory has lots of files and you cannot read all the files as they scroll by, you can 

use the above command and it displays all files one page at a time. 

 

dir /w 

If you don't need file information you can use the above command to list only the files and 

directories going horizontally, taking as little space as needed. 

 

dir /s /w /p 

The above command will list all the files and directories in the current directory and the 

sub directories, in wide format and one page at a time. 

Deleting Folders 

For deleting folders, Batch Script provides the DEL command.  

Syntax 

DEL [/P] [/F] [/S] [/Q] [/A[[:]attributes]] names 

 

 



Batch Script 

 

110 

 

Following are the description of the options which can be presented to the DEL command. 

Names 

Specifies a list of one or more files or directories. Wildcards may 

be used to delete multiple files. If a directory is specified, all files 

within the directory will be deleted 

/P Prompts for confirmation before deleting each file. 

/F Force deletes read-only files. 

/S Deletes specified files from all subdirectories. 

/Q Quiet mode, do not ask if ok to delete on global wildcard. 

/A Selects files to delete based on attributes. 

attributes 
R - Read-only files, S - System files, H - Hidden files, A - Files ready for 

archiving - Prefix meaning not 

 

Let’s look at some examples of how the DEL command can be used for folders. 

Examples 

del Example 

The above command will delete the folder called Example in the current working directory. 

 

del C:\Example 

The above command will delete the folder called Example in C drive. 

 

Del Example1 , Example2 

The above command will delete the folder called Example1 and Example2 in the current 

working directory. 

Renaming Folders 

For renaming folders, Batch Script provides the REN or RENAME command. 

Syntax 

RENAME [drive:][path][directoryname1 | filename1] [directoryname2 | filename2] 

 

 

 

 

 



Batch Script 

 

111 

 

Let’s look at some examples of renaming folders. 

Examples 

ren Example Example1 

The above command will rename the folder called Example in the current working directory 

to Example1. 

del C:\Example Example1 

The above command will rename the folder called Example in C Drive to Example1. 

 

Moving Folders 

For moving folders, Batch Script provides the MOVE command.  

Syntax 

MOVE [/Y | /-Y] [drive:][path]filename1[,...] destination 

 

Following are the description of the options which can be presented to the DEL command. 

[drive:][path]filename1 Specifies the location and name of the file or files 

you want to move 

destination 

Specifies the new location of the file. Destination can 

consist of a drive letter and colon, a directory name, or a 

combination. If you are moving only one file, you can also 

include a filename if you want to rename the file when you 

move it. 

[drive:][path]dirname1 Specifies the directory you want to rename. 

dirname2 Specifies the new name of the directory. 

/Y 
Suppresses prompting to confirm you want to overwrite an 

existing destination file. 

/-Y 
Causes prompting to confirm you want to overwrite an 

existing destination file. 

 

 

 

 

 

 

 

 



Batch Script 

 

112 

 

Let’s look at some examples of moving folders. 

Examples 

move *.* C:\Example 

The above command will move all files from the current directory to the folder C:\Example. 

 

 

move *.txt C:\Example 

The above command will move all files with the txt extension from the current directory 

to the folder C:\Example. 

 

move C:\old\*.* C:\Example 

The above command will move all files from the folder called ‘old’ in C drive to the folder 

C:\Example. 



Batch Script 

 

113 

 

In this chapter, we will discuss the various processes involved in Batch Script. 

Viewing the List of Running Processes 

In Batch Script, the TASKLIST command can be used to get the list of currently running 

processes within a system. 

Syntax 

TASKLIST [/S system [/U username [/P [password]]]] [/M [module] | /SVC | /V] 
[/FI filter] [/FO format] [/NH] 

 

Following are the description of the options which can be presented to the TASKLIST 

command. 

/S system Specifies the remote system to connect to 

/U 

[domain\]user 
Specifies the user context under which the command should execute. 

/P [password] 
Specifies the password for the given user context. Prompts for input 

if omitted. 

/M [module] 
Lists all tasks currently using the given exe/dll name. If the module 

name is not specified all loaded modules are displayed. 

/SVC Displays services hosted in each process. 

/V Displays verbose task information. 

/FI filter 
Displays a set of tasks that match a given criteria specified by the 

filter. 

/FO format Specifies the output format. Valid values: "TABLE", "LIST", "CSV". 

/NH 
Specifies that the "Column Header" should not show in the output. 

Valid only for "TABLE" and "CSV" formats. 

 

Examples 

TASKLIST 

The above command will get the list of all the processes running on your local system. 

Following is a snapshot of the output which is rendered when the above command is run 

as it is. As you can see from the following output, not only do you get the various processes 

running on your system, you also get the memory usage of each process. 

 

 

16.   Batch Script – Process 



Batch Script 

 

114 

 

Image Name                     PID Session Name        Session#    Mem Usage 

========================= ======== ================ =========== ============ 

System Idle Process              0 Services                   0          4 K 

System                           4 Services                   0        272 K 

smss.exe                       344 Services                   0      1,040 K 

csrss.exe                      528 Services                   0      3,892 K 

csrss.exe                      612 Console                    1     41,788 K 

wininit.exe                    620 Services                   0      3,528 K 

winlogon.exe                   648 Console                    1      5,884 K 

services.exe                   712 Services                   0      6,224 K 

lsass.exe                      720 Services                   0      9,712 K 

svchost.exe                    788 Services                   0     10,048 K 

svchost.exe                    832 Services                   0      7,696 K 

dwm.exe                        916 Console                    1    117,440 K 

nvvsvc.exe                     932 Services                   0      6,692 K 

nvxdsync.exe                   968 Console                    1     16,328 K 

nvvsvc.exe                     976 Console                    1     12,756 K 

svchost.exe                   1012 Services                   0     21,648 K 

svchost.exe                    236 Services                   0     33,864 K 

svchost.exe                    480 Services                   0     11,152 K 

svchost.exe                   1028 Services                   0     11,104 K 

svchost.exe                   1048 Services                   0     16,108 K 

wlanext.exe                   1220 Services                   0     12,560 K 

conhost.exe                   1228 Services                   0      2,588 K 

svchost.exe                   1276 Services                   0     13,888 K 

svchost.exe                   1420 Services                   0     13,488 K 

spoolsv.exe                   1556 Services                   0      9,340 K 

 

tasklist > process.txt 

The above command takes the output displayed by tasklist and saves it to the process.txt 

file. 

 

tasklist /fi "memusage gt 40000" 

The above command will only fetch those processes whose memory is greater than 40MB. 

Following is a sample output that can be rendered. 

 



Batch Script 

 

115 

 

Image Name                     PID Session Name        Session#    Mem Usage 

========================= ======== ================ =========== ============ 

dwm.exe                        916 Console                    1    127,912 K 

explorer.exe                  2904 Console                    1    125,868 K 

ServerManager.exe             1836 Console                    1     59,796 K 

WINWORD.EXE                   2456 Console                    1    144,504 K 

chrome.exe                    4892 Console                    1    123,232 K 

chrome.exe                    4976 Console                    1     69,412 K 

chrome.exe                    1724 Console                    1     76,416 K 

chrome.exe                    3992 Console                    1     56,156 K 

chrome.exe                    1168 Console                    1    233,628 K 

chrome.exe                     816 Console                    1     66,808 K 

Killing a Particular Process 

Allows a user running Microsoft Windows XP professional, Windows 2003, or later to kill a 

task from a Windows command line by process id (PID) or image name. The command 

used for this purpose is the TASKILL command. 

Syntax 

TASKKILL [/S system [/U username [/P [password]]]] { [/FI filter] [/PID 
processid | /IM imagename] } [/T] [/F] 

 

Following are the description of the options which can be presented to the TASKKILL 

command. 

/S system Specifies the remote system to connect to 

/U 

[domain\]user 
Specifies the user context under which the command should execute. 

/P [password] 
Specifies the password for the given user context. Prompts for input 

if omitted. 

/FI 

FilterName 

Applies a filter to select a set of tasks. Allows "*" to be used. ex. 

imagename eq acme* See below filters for additional information and 

examples. 

/PID 

processID 

Specifies the PID of the process to be terminated. Use TaskList to get 

the PID. 

/IM 

ImageName 

Specifies the image name of the process to be terminated. Wildcard 

'*' can be used to specify all tasks or image names. 

/T 
Terminates the specified process and any child processes which were 

started by it. 

/F Specifies to forcefully terminate the process(es). 

 

 



Batch Script 

 

116 

 

Examples 

taskkill /f /im notepad.exe 

The above command kills the open notepad task, if open. 

 

taskill /pid 9214 

The above command kills a process which has a process of 9214. 

 

Starting a New Process 

DOS scripting also has the availability to start a new process altogether. This is achieved 

by using the START command.  

Syntax 

START "title" [/D path] [options] "command" [parameters] 

 
Wherein  

 title - Text for the CMD window title bar (required.) 

 path - Starting directory. 

 command - The command, batch file or executable program to run. 

 parameters - The parameters passed to the command. 

 
Following are the description of the options which can be presented to the START 

command. 

/MIN 

 

Start window Minimized 

 

/MAX 

 

Start window maximized. 

 

/LOW 

 

Use IDLE priority class. 

 

/NORMAL 

 

Use NORMAL priority class. 

 

/ABOVENORMAL 

 

Use ABOVENORMAL priority class. 

 

/BELOWNORMAL 

 
Use BELOWNORMAL priority class. 

/HIGH 

 

Use HIGH priority class. 

 

/REALTIME 

 

Use REALTIME priority class. 

 



Batch Script 

 

117 

 

Examples 

START "Test Batch Script" /Min test.bat 

The above command will run the batch script test.bat in a new window. The windows will 

start in the minimized mode and also have the title of “Test Batch Script”. 

START "" "C:\Program Files\Microsoft Office\Winword.exe" "D:\test\TESTA.txt" 

The above command will actually run Microsoft word in another process and then open the 

file TESTA.txt in MS Word. 



Batch Script 

 

118 

 

Aliases means creating shortcuts or keywords for existing commands. Suppose if we 

wanted to execute the below command which is nothing but the directory listing command 

with the /w option to not show all of the necessary details in a directory listing. 

Dir /w  

 

Suppose if we were to create a shortcut to this command as follows. 

dw= dir /w 

When we want to execute the dir /w command, we can simply type in the word dw. The 

word ‘dw’ has now become an alias to the command Dir /w.  

Creating an Alias 

Alias are managed by using the doskey command.  

Syntax 

DOSKEY [options] [macroname=[text]] 

Wherein  

 macroname - A short name for the macro. 

 text - The commands you want to recall. 

 

Following are the description of the options which can be presented to the DOSKEY 

command. 

/REINSTALL Installs a new copy of Doskey 

/LISTSIZE=size Sets size of command history buffer. 

/MACROS Displays all Doskey macros. 

/MACROS:ALL Displays all Doskey macros for all executables which have 

Doskey macros. 

/MACROS:exename Displays all Doskey macros for the given executable. 

/HISTORY Displays all commands stored in memory. 

/INSERT Specifies that new text you type is inserted in old text. 

/OVERSTRIKE Specifies that new text overwrites old text. 

/EXENAME=exename Specifies the executable. 

/MACROFILE=filename Specifies a file of macros to install. 

17.   Batch Script – Aliases 



Batch Script 

 

119 

 

macroname Specifies a name for a macro you create. 

text Specifies commands you want to record. 

Example 

Create a new file called keys.bat and enter the following commands in the file. The below 

commands creates two aliases, one if for the cd command, which automatically goes to 

the directory called test. And the other is for the dir command. 

@echo off 

doskey cd=cd/test 

doskey d=dir 

Once you execute the command, you will able to run these aliases in the command prompt. 

Output 

The following screenshot shows that after the above created batch file is executed, you 

can freely enter the ‘d’ command and it will give you the directory listing which means that 

your alias has been created. 

 

Deleting an Alias 

An alias or macro can be deleted by setting the value of the macro to NULL.  

Example 

@echo off 

doskey cd=cd/test 

doskey d=dir 

d= 



Batch Script 

 

120 

 

In the above example, we are first setting the macro d to d=dir. After which we are setting 

it to NULL. Because we have set the value of d to NULL, the macro d will deleted. 

Replacing an Alias 

An alias or macro can be replaced by setting the value of the macro to the new desired 

value.  

Example 

@echo off 

doskey cd=cd/test 

doskey d=dir 

 

d=dir /w 

In the above example, we are first setting the macro d to d=dir. After which we are setting 

it to dir /w. Since we have set the value of d to a new value, the alias ‘d’ will now take on 

the new value. 

 



Batch Script 

 

121 

 

Windows now has an improved library which can be used in batch scripts for working with 

devices attached to the system. This is known as the device console – DevCon.exe. 

Windows driver developers and testers can use DevCon to verify that a driver is installed 

and configured correctly, including the proper INF files, driver stack, driver files, and driver 

package. You can also use the DevCon commands (enable, disable, install, start, stop, and 

continue) in scripts to test the driver. DevCon is a command-line tool that performs device 

management functions on local computers and remote computers. 

Display driver and device info DevCon can display the following properties of drivers and 

devices on local computers, and remote computers (running Windows XP and earlier): 

 Hardware IDs, compatible IDs, and device instance IDs. These identifiers are 

described in detail in device identification strings. 

 

 Device setup classes. 

 

 The devices in a device setup class. 

 

 INF files and device driver files. 

 

 Details of driver packages. 

 

 Hardware resources. 

 

 Device status. 

 

 Expected driver stack. 

 

 Third-party driver packages in the driver store. 

 

 Search for devices DevCon can search for installed and uninstalled devices on a 

local or remote computer by hardware ID, device instance ID, or device setup class. 

 

 Change device settings DevCon can change the status or configuration of Plug and 

Play (PnP) devices on the local computer in the following ways: 
o Enable a device. 

o Disable a device. 

o Update drivers (interactive and non-interactive). 

o Install a device (create a devnode and install software). 

o Remove a device from the device tree and delete its device stack. 

o Rescan for Plug and Play devices. 

o Add, delete, and reorder the hardware IDs of root-enumerated devices. 

o Change the upper and lower filter drivers for a device setup class. 

o Add and delete third-party driver packages from the driver store. 

 

18.   Batch Script – Devices 



Batch Script 

 

122 

 

DevCon (DevCon.exe) is included when you install the WDK, Visual Studio, and the 

Windows SDK for desktop apps. DevCon.exe kit is available in the following locations when 

installed. 

%WindowsSdkDir%\tools\x64\devcon.exe 

%WindowsSdkDir%\tools\x86\devcon.exe 

%WindowsSdkDir%\tools\arm\devcon.exe 

Syntax 

devcon [/m:\\computer] [/r] command [arguments]  

wherein  

 /m:\\computer - Runs the command on the specified remote computer. The 

backslashes are required. 

 

 /r - Conditional reboot. Reboots the system after completing an operation only if 

a reboot is required to make a change effective. 

 

 command - Specifies a DevCon command. 

 

 To list and display information about devices on the computer, use the following 

commands: 
o DevCon HwIDs 

o DevCon Classes 

o DevCon ListClass 

o DevCon DriverFiles 

o DevCon DriverNodes 

o DevCon Resources 

o DevCon Stack 

o DevCon Status 

o DevCon Dp_enum 

 To search for information about devices on the computer, use the following 

commands: 

o DevCon Find 

o DevCon FindAll 

 To manipulate the device or change its configuration, use the following commands: 
o DevCon Enable 

o DevCon Disable 

o DevCon Update 

o DevCon UpdateNI 

o DevCon Install 

o DevCon Remove 

o DevCon Rescan 



Batch Script 

 

123 

 

o DevCon Restart 

o DevCon Reboot 

o DevCon SetHwID 

o DevCon ClassFilter 

o DevCon Dp_add 

o DevCon Dp_delete 

 

Examples 

Following are some examples on how the DevCon command is used. 

List all driver files 

 

The following command uses the DevCon DriverFiles operation to list the file names of 

drivers that devices on the system use. The command uses the wildcard character (*) to 

indicate all devices on the system. Because the output is extensive, the command uses 

the redirection character (>) to redirect the output to a reference file, driverfiles.txt. 

devcon driverfiles * > driverfiles.txt 

 

The following command uses the DevCon status operation to find the status of all devices 

on the local computer. It then saves the status in the status.txt file for logging or later 

review. The command uses the wildcard character (*) to represent all devices and the 

redirection character (>) to redirect the output to the status.txt file. 

devcon status * > status.txt 

 

The following command enables all printer devices on the computer by specifying the 

Printer setup class in a DevCon Enable command. The command includes 

the /r parameter, which reboots the system if it is necessary to make the enabling 

effective. 

devcon /r enable =Printer 

 

 

 

 

 

https://msdn.microsoft.com/en-us/library/windows/hardware/ff544741(v=vs.85).aspx


Batch Script 

 

124 

 

The following command uses the DevCon Install operation to install a keyboard device on 

the local computer. The command includes the full path to the INF file for the device 

(keyboard.inf) and a hardware ID (*PNP030b). 

devcon /r install c:\windows\inf\keyboard.inf *PNP030b 

 

The following command will scan the computer for new devices. 

devcon scan 

The following command will rescan the computer for new devices. 

devcon rescan 

 

 

 

https://msdn.microsoft.com/en-us/library/windows/hardware/ff544780(v=vs.85).aspx


Batch Script 

 

125 

 

The Registry is one of the key elements on a windows system. It contains a lot of 

information on various aspects of the operating system. Almost all applications installed 

on a windows system interact with the registry in some form or the other.  

The Registry contains two basic elements: keys and values. Registry keys are container 

objects similar to folders. Registry values are non-container objects similar to files. Keys 

may contain values or further keys. Keys are referenced with a syntax similar to Windows' 

path names, using backslashes to indicate levels of hierarchy. 

This chapter looks at various functions such as querying values, adding, deleting and 

editing values from the registry. 

Reading from the Registry 

Reading from the registry is done via the REG QUERY command. This command can be 

used to retrieve values of any key from within the registry. 

Syntax 

REG QUERY [ROOT\]RegKey /v ValueName [/s] 

REG QUERY [ROOT\]RegKey /ve  --This returns the (default) value 

Where RegKey is the key which needs to be searched for in the registry. 

Example 

@echo off 
REG QUERY HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Windows\ 

The above command will query all the keys and their respective values under the registry 

key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Windows\ 

Output 

The output will display all the keys and values under the registry key. 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Windows\ 

This location in the registry has some key information about the windows system such as 

the System Directory location. 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Windows 

    Directory    REG_EXPAND_SZ    %SystemRoot% 

    SystemDirectory    REG_EXPAND_SZ    %SystemRoot%\system32 

    NoInteractiveServices    REG_DWORD    0x1 

19.   Batch Script – Registry 



Batch Script 

 

126 

 

    CSDBuildNumber    REG_DWORD    0x4000 

    ShellErrorMode    REG_DWORD    0x1 

    ComponentizedBuild    REG_DWORD    0x1 

    CSDVersion    REG_DWORD    0x0 

    ErrorMode    REG_DWORD    0x0 

    CSDReleaseType    REG_DWORD    0x0 

    ShutdownTime    REG_BINARY    3AFEF5D05D46D101 

Adding to the Registry 

Adding to the registry is done via the REG ADD command. Note that in order to add values 

to the registry you need to have sufficient privileges on the system to perform this 

operation. 

Syntax 

The REG ADD command has the following variations. In the second variation, no name is 

specified for the key and it will add the name of “(Default)” for the key. 

REG ADD [ROOT\]RegKey /v ValueName [/t DataType] [/S Separator] [/d Data] [/f] 

REG ADD [ROOT\]RegKey /ve [/d Data] [/f] 

Where 

 ValueName - The value, under the selected RegKey, to edit. 

 

 /d Data - The actual data to store as a "String", integer, etc. 

 

 /f - Force an update without prompting "Value exists, overwrite Y/N". 

 

 /S Separator - Character to use as the separator in REG_MULTI_SZ values.                 

The default is "\0".  

 

 /t DataType – These are the data types defined as per the registry standards 

which can be:  
o REG_SZ (default) 

o REG_DWORD 

o REG_EXPAND_SZ 

o REG_MULTI_SZ 

Example 

@echo off 

REG ADD HKEY_CURRENT_USER\Console /v Test /d "Test Data" 

REG QUERY HKEY_CURRENT_USER\Console /v Test 

 



Batch Script 

 

127 

 

In the above example, the first part is to add a key into the registry under the location 

HKEY_CURRENT_USER\Console. This key will have a name of Test and the value assigned 

to the key will be Test Data which will be of the default string type. 

The second command just displays what was added to the registry by using the REG 

QUERY command. 

Output 

Following will be the output of the above program. The first line of the output shows that 

the ‘Add’ functionality was successful and the second output shows the inserted value into 

the registry. 

The operation completed successfully. 
HKEY_CURRENT_USER\Console 

    Test    REG_SZ    Test Data 

Deleting from the Registry 

Deleting from the registry is done via the REG DEL command. Note that in order to delete 

values from the registry you need to have sufficient privileges on the system to perform 

this operation. 

Syntax 

The REG DELETE command has the following variations. In the second variation, the 

default value will be removed and in the last variation all the values under the specified 

key will be removed. 

REG DELETE [ROOT\]RegKey /v ValueName [/f] 

   REG DELETE [ROOT\]RegKey /ve [/f] 

   REG DELETE [ROOT\]RegKey /va [/f] 

Where 

 ValueName - The value, under the selected RegKey, to edit. 

 /f - Force an update without prompting "Value exists, overwrite Y/N". 

Example 

@echo off 

REG DELETE HKEY_CURRENT_USER\Console /v Test /f 

REG QUERY HKEY_CURRENT_USER\Console /v Test 

In the above example, the first part is to delete a key into the registry under the location 

HKEY_CURRENT_USER\Console. This key has the name of Test. The second command just 

displays what was deleted to the registry by using the REG QUERY command. From this 

command, we should expect an error, just to ensure that our key was in fact deleted. 

 



Batch Script 

 

128 

 

Output 

Following will be the output of the above program. The first line of the output shows that 

the ‘Delete’ functionality was successful and the second output shows an error which was 

expected to confirm that indeed our key was deleted from the registry. 

The operation completed successfully. 
ERROR: The system was unable to find the specified registry key or value. 

Copying Registry Keys  

Copying from the registry is done via the REG COPY command. Note that in order to copy 

values from the registry, you need to have sufficient privileges on the system to perform 

this operation on both the source location and the destination location. 

Syntax 

REG COPY  [\\SourceMachine\][ROOT\]RegKey [\\DestMachine\][ROOT\]RegKey 

Example 

@echo off 

REG COPY HKEY_CURRENT_USER\Console HKEY_CURRENT_USER\Console\Test 

REG QUERY HKEY_CURRENT_USER\Console\Test 

In the above example, the first part is to copy the contents from the location 

HKEY_CURRENT_USER\Console into the location HKEY_CURRENT_USER\Console\Test on 

the same machine. The second command is used to query the new location to check if all 

the values were copied properly. 

Output 

Following is the output of the above program. The first line of the output shows that the 

‘Copy’ functionality was successful and the second output shows the values in our copied 

location. 

The operation completed successfully. 

HKEY_CURRENT_USER\Console\Test 

    HistoryNoDup    REG_DWORD    0x0 

    FullScreen    REG_DWORD    0x0 

    ScrollScale    REG_DWORD    0x1 

    ExtendedEditKeyCustom    REG_DWORD    0x0 

    CursorSize    REG_DWORD    0x19 

    FontFamily    REG_DWORD    0x0 

    ScreenColors    REG_DWORD    0x7 

    TrimLeadingZeros    REG_DWORD    0x0 

    WindowSize    REG_DWORD    0x190050 



Batch Script 

 

129 

 

    LoadConIme    REG_DWORD    0x1 

    PopupColors    REG_DWORD    0xf5 

    QuickEdit    REG_DWORD    0x0 

    WordDelimiters    REG_DWORD    0x0 

    ColorTable10    REG_DWORD    0xff00 

    ColorTable00    REG_DWORD    0x0 

    ColorTable11    REG_DWORD    0xffff00 

    ColorTable01    REG_DWORD    0x800000 

    ColorTable12    REG_DWORD    0xff 

Comparing Registry Keys  

Comparing registry keys is done via the REG COPY command.  

Syntax 

REG COMPARE [ROOT\]RegKey [ROOT\]RegKey [/v ValueName] [Output] [/s] 

REG COMPARE [ROOT\]RegKey [ROOT\]RegKey [/ve] [Output] [/s] 

Wherein Output - /od (only differences) /os (only matches) /oa (all) /on (no output). 

Example 

@echo off 

REG COMPARE HKEY_CURRENT_USER\Console HKEY_CURRENT_USER\Console\Test 

The above program will compare all of the values between the registry keys 

HKEY_CURRENT_USER\Console & HKEY_CURRENT_USER\Console\Test. 

Output 

Result Compared:  Identical 

The operation completed successfully. 

If there is a difference between the values in either registry key, it will be shown in the 

output as shown in the following result. The following output shows that the value 

‘EnableColorSelection’ is extra I the registry key ‘HKEY_CURRENT_USER\Console’. 

< Value: HKEY_CURRENT_USER\Console  EnableColorSelection REG_DWORD 0x0 

Result Compared:  Different 

The operation completed successfully. 

 



Batch Script 

 

130 

 

Batch Script has the facility to work with network settings. The NET command is used to 

update, fix, or view the network or network settings. This chapter looks at the different 

options available for the net command. 

NET ACCOUNTS 

View the current password & logon restrictions for the computer. 

Syntax 

NET ACCOUNT [/FORCELOGOFF:{minutes | NO}] [/MINPWLEN:length] 
[/MAXPWAGE:{days | UNLIMITED}] [/MINPWAGE:days] 
[/UNIQUEPW:number] [/DOMAIN] 

Wherein  

 FORCELOGOFF – Force the log-off of the current user within a defined time period. 

 MINPWLEN – This is the minimum password length setting to provide for the user. 

 MAXPWAGE - This is the maximum password age setting to provide for the user. 

 MINPWAGE - This is the minimum password age setting to provide for the user. 

Example 

NET ACCOUNT 

Output 

Force user logoff how long after time expires?:       Never 

Minimum password age (days):                          0 

Maximum password age (days):                          42 

Minimum password length:                              0 

Length of password history maintained:                None 

Lockout threshold:                                    Never 

Lockout duration (minutes):                           30 

Lockout observation window (minutes):                 30 

Computer role:                                        SERVER 

The command completed successfully. 

20.   Batch Script – Network 



Batch Script 

 

131 

 

NET CONFIG 

Displays your current server or workgroup settings. 

Syntax 

NET CONFIG 

Example 

NET CONFIG 

Output 

The following running services can be controlled: 

   Server 

   Workstation 

The command completed successfully. 

NET COMPUTER 

Adds or removes a computer attached to the windows domain controller. 

Syntax 

NET COMPUTER \\computername {/ADD | /DEL} 

Example 

NET COMPUTER \\dxbtest /ADD 

Output 

The above command will add the machine with the name dxbtest to the domain in which 

the windows domain controller exists. 

NET USER 

This command can be used for the following: 

 View the details of a particular user account. 

 Add a user account. 

 Delete a user’s account.  

 Modify a user’s account. 

 



Batch Script 

 

132 

 

Syntax 

Net user [username [password | *] [options]] [/DOMAIN] 
username {password | *} /ADD [options] [/DOMAIN] 
username [/DELETE] [/DOMAIN] 

Example 

NET USER 

The above command shows all the accounts defined on a system. Following is the output 

of the above command. 

User accounts for \\WIN-50GP30FGO75 

 

------------------------------------------------------------------------------- 

Administrator            atlbitbucket             Guest 

The command completed successfully. 

 

net user Guest 

The above command shows the details of Guest account defined on a system. Following is 

the output of the above command. 

User name                    Guest 

Full Name                     

Comment                      Built-in account for guest access to the 
computer/domain 

User's comment                

Country/region code          000 (System Default) 

Account active               No 

Account expires              Never 

 

Password last set            1/4/2016 9:34:25 AM 

Password expires             Never 

Password changeable          1/4/2016 9:34:25 AM 

Password required            No 

User may change password     No 

 

Workstations allowed         All 

Logon script                  

User profile                  



Batch Script 

 

133 

 

Home directory                

Last logon                   Never 

 

Logon hours allowed          All 

 

Local Group Memberships      *Guests                

Global Group memberships     *None                  

The command completed successfully. 

NET STOP/START  

This command is used to stop and start a particular service. 

Syntax 

Net stop/start [servicename] 

Example 

NET STOP Spooler 

The above command is used to stop the printer spooler service. Following is the output of 

the above command. 

 

The Print Spooler service is stopping. 

The Print Spooler service was stopped successfully. 

NET START Spooler 

The above command is used to start the printer spooler service. Following is the output of 

the above command. 

The Print Spooler service is starting. 

The Print Spooler service was started successfully. 

NET STATISTICS 

Display network statistics of the workstation or server. 

Syntax 

Net statistics [SERVER/WORKSTATION] 

 



Batch Script 

 

134 

 

Example 

Net statistics Server 

Output 

Server Statistics for \\WIN-50GP30FGO75 

 

 

Statistics since 1/3/2016 9:16:28 PM 

 

 

Sessions accepted                  0 

Sessions timed-out                 0 

Sessions errored-out               0 

 

Kilobytes sent                     0 

Kilobytes received                 0 

 

Mean response time (msec)          0 

 

System errors                      0 

Permission violations              0 

Password violations                0 

 

Files accessed                     0 

Communication devices accessed     0 

Print jobs spooled                 0 

 

Times buffers exhausted 

 

  Big buffers                      0 

  Request buffers                  0 

 

 

 



Batch Script 

 

135 

 

NET USE 

Connects or disconnects your computer from a shared resource or displays information 

about your connections. 

Syntax 

NET USE [devicename | *] [\\computername\sharename[\volume] [password | *]] 
[/USER:[domainname\]username] 
[/USER:[dotted domain name\]username] 
[/USER:[username@dotted domain name] 
[/SMARTCARD] 
[/SAVECRED] 
[[/DELETE] | [/PERSISTENT:{YES | NO}]] 
 

where 

 \\computername\sharename - This is the name of the share which needs to 

be connected to. 

 

 /USER – This needs to be specified to ensure that the right credentials are specified 

when connecting to the network share. 

Example 

net use z: \\computer\test 

The above command will connect to the share name \\computer\test and assign the Z: 

drive name to it. 

 

 

file://///computer/test


Batch Script 

 

136 

 

Printing can also be controlled from within Batch Script via the NET PRINT command. 

Syntax 

PRINT [/D:device] [[drive:][path]filename[...]] 

Where /D:device - Specifies a print device. 

Example 

print c:\example.txt /c /d:lpt1 

The above command will print the example.txt file to the parallel port lpt1. 

Command Line Printer Control 

As of Windows 2000, many, but not all, printer settings can be configured from Windows's 

command line using PRINTUI.DLL and RUNDLL32.EXE 

Syntax 

RUNDLL32.EXE PRINTUI.DLL,PrintUIEntry [ options ] [ @commandfile ] 

Where some of the options available are the following:  

 /dl- Delete local printer. 

 

 /dn -  Delete network printer connection. 

 

 /dd -  Delete printer driver. 

 

 /e - Display printing preferences. 

 

 /f[file] - Either inf file or output file. 

 

 /F[file] - Location of an INF file that the INF file specified with /f may depend on. 

 

 /ia - Install printer driver using inf file. 

 

 /id - Install printer driver using add printer driver wizard. 

 

 /if - Install printer using inf file. 

 

 /ii - Install printer using add printer wizard with an inf file. 

 

 /il - Install printer using add printer wizard. 

 

 /in - Add network printer connection. 

21.   Batch Script – Printing 



Batch Script 

 

137 

 

 

 /ip - Install printer using network printer installation wizard. 

 

 /k - Print test page to specified printer, cannot be combined with command when 

installing a printer. 

 

 /l[path] - Printer driver source path. 

 

 /m[model] - Printer driver model name. 

 

 /n[name] - Printer name. 

 

 /o - Display printer queue view. 

 

 /p - Display printer properties. 

 

 /Ss -  Store printer settings into a file. 

 

 /Sr -  Restore printer settings from a file. 

 

 /y -  Set printer as the default. 

 

 /Xg  - Get printer settings. 

 

 /Xs - Set printer settings. 

 

Testing if a Printer Exists 

There can be cases wherein you might be connected to a network printer instead of a local 

printer. In such cases, it is always beneficial to check if a printer exists in the first place 

before printing. 

The existence of a printer can be evaluated with the help of the RUNDLL32.EXE 

PRINTUI.DLL which is used to control most of the printer settings. 

Example 

SET PrinterName=Test Printer 

SET file=%TEMP%\Prt.txt 

RUNDLL32.EXE PRINTUI.DLL,PrintUIEntry /Xg /n "%PrinterName%" /f "%file%" /q 

IF EXIST "%file%" ( 

 ECHO %PrinterName% printer exists 

) ELSE ( 

 ECHO %PrinterName% printer does NOT exists 

) 

 

 

 



Batch Script 

 

138 

 

The above command will do the following: 

 It will first set the printer name and set a file name which will hold the settings of 

the printer. 

 

 The RUNDLL32.EXE PRINTUI.DLL commands will be used to check if the printer 

actually exists by sending the configuration settings of the file to the file Prt.txt 

 



Batch Script 

 

139 

 

Very often than not you can run into problems when running batch files and most often 

than not you would need to debug your batch files in some way or the other to determine 

the issue with the batch file itself. Following are some of the techniques that can help in 

debugging Batch Script files. 

Error Messages 

To discover the source of the message, follow these steps: 

Step 1: REM out the @ECHO OFF line, i.e. REM @ECHO OFF or :: @ECHO OFF. 

Step 2: Run the batch file with the required command line parameters, redirecting all 

output to a log file for later comparison. 

test.bat > batch.log  2>&1 

Step 3: Search the file batch.log for the error messages.  

Step 4: Check the previous line for any unexpected or invalid command, command line 

switch(es) or value(s); pay special attention to the values of any environment variables 

used in the command. 

Step 5: Correct the error and repeat this process until all error messages have 

disappeared. 

Complex Command Lines 

Another common source of errors are incorrectly redirected commands, like for example 

"nested" FIND or FINDSTR commands with incorrect search strings, sometimes within a 

FOR /F loop. 

To check the validity of these complex commands, follow these steps: 

Step 1: Insert "command check lines" just before a line which uses the complex command 

set. 

Following is an example wherein the ECHO command is inserted to mark where the output 

of the first TYPE command ends and the next one starts. 

 

 

 

 

 

 

22.   Batch Script – Debugging 



Batch Script 

 

140 

 

TYPE %Temp%.\apipaorg.reg 

ECHO.================================================ TYPE %Temp%.\apipaorg.reg 
| FIND 
"[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\TCPIP\Parameters\Interfa
ces\" 

Step 2: Follow the procedure to find error message sources described above. 

Step 3: Pay special attention to the output of the "simplified" command lines: Is the 

output of the expected format? Is the "token" value or position as expected? 

Subroutines 

Subroutines generating error messages pose an extra "challenge" in finding the cause of 

the error, as they may be called multiple times in the same batch file. 

To help find out what causes the incorrect call to the subroutine, follow these steps: 

Step 1: Add and reset a counter variable at the beginning of the script: 

SET Counter=0 

Step 2: Increment the counter each time the subroutine is called, by inserting the 

following line at the beginning of the subroutine: 

SET /A Counter += 1 

Step 3: Insert another line right after the counter increment, containing only the SET 

command; this will list all environment variables and their values. 

Step 4: Follow the procedure to find error message sources described above. 

Windows Versions 

If you intend to distribute your batch files to other computers that may or may not run the 

same Windows version, you will need to test your batch files in as many Windows versions 

as possible. 

The following example shows how to check for various operating system versions to check 

the relevant windows versions. 

@ECHO OFF 

:: Check for Windows NT 4 and later 

IF NOT "%OS%"=="Windows_NT" GOTO DontRun 

:: Check for Windows NT 4 

VER | FIND "Windows NT" >NUL && GOTO DontRun 

:: Check for Windows 2000 

VER | FIND "Windows 2000" >NUL && GOTO DontRun 

:: Place actual code here . . . 

:: End of actual code . . . 



Batch Script 

 

141 

 

EXIT 

:DontRun 

ECHO Sorry, this batch file was written for Windows XP and later versions only 

 



Batch Script 

 

142 

 

Logging in is possible in Batch Script by using the redirection command.  

Syntax 

test.bat > testlog.txt 2> testerrors.txt 

Example 

Create a file called test.bat and enter the following command in the file. 

net statistics /Server 

The above command has an error because the option to the net statistics command is 

given in the wrong way. 

Output 

If the command with the above test.bat file is run as  

test.bat > testlog.txt 2> testerrors.txt 

And you open the file testerrors.txt, you will see the following error. 

The option /SERVER is unknown. 

The syntax of this command is: 

NET STATISTICS 

[WORKSTATION | SERVER] 

More help is available by typing NET HELPMSG 3506. 

If you open the file called testlog.txt, it will show you a log of what commands were 

executed. 

C:\tp>net statistics /Server 

 

23.   Batch Script – Logging 


